FINAL REMEDIAL INVESTIGATION REPORT OFF-SITE CARRIAGE CLEANERS NYSDEC SITE # C828131A

WORK ASSIGNMENT NO. D004434-36

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC: 3612102168

APRIL 2012

FINAL REMEDIAL INVESTIGATION REPORT OFF-SITE CARRIAGE CLEANERS SITE # C828131A

WORK ASSIGNMENT NO. D004434-36

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

MACTEC: 3612102168

APRIL 2012

with premission by SWP

Submitted by:

Approved by:

John Peterson

Principal Professional

Jeffrey Vickett Project Manager

TABLE OF CONTENTS

LIST OF FIGURESii							
LIST	OF TAI	BLES	iv				
GLO	SSARY	OF ACRONYMS AND ABBREVIATIONS	v				
1.0	INTRODUCTION						
	1.1	REPORT ORGANIZATION	1-1				
	1.2	PURPOSE OF REPORT					
	1.3	OFF-SITE RI TECHNICAL OBJECTIVES	1-2				
	1.4	SITE BACKGROUND	1-3				
		1.4.1 Site Description	1-3				
		1.4.2 Previous Field Investigations					
		1.4.3 Current on-Site Status					
2.0	SCOPE OF WORK						
	2.1	REMEDIAL INVESTIGATION FIELD WORK					
		2.1.1 Direct Push Groundwater Sampling	2-4				
		2.1.2 Groundwater Microwell Installation					
		2.1.3 Groundwater Monitoring Well Installation					
		2.1.4 Well Development					
		2.1.5 Monitoring Well Groundwater Sampling					
		2.1.6 Pore Water Sampling					
		2.1.7 Hydraulic Conductivity Testing					
		2.1.8 Soil Vapor Implant Installation and Sampling					
		2.1.9 Soil Vapor Intrusion Sampling					
		2.1.10 DER-31 Implementation	2-12				
	2.2	INTERIM REMEDIAL MEASURES	2-13				
	2.3						
3.0	SITE PHYSICAL SETTING						
	3.1						
	3.2						
	3.3	SURFACE WATER HYDROLOGY	3-1				
	3.4						
	3.5	GEOLOGY	3-3				
4.0	NATURE AND EXTENT OF CONTAMINATION						
	4.1 GROUNDWATER						
		4.1.1 Direct Push Groundwater Profiling VOC Results	4-2				
		4.1.2 Monitoring Well Groundwater VOC Results					
		4.1.3 Monitoring Well Groundwater MNA Results					
		4.1.4 Pore Water VOC Results					
		4.1.5 Sump Water VOC Results					
	4.2	SOIL VAPOR INTRUSION SAMPLING					
		4.2.1 Exterior Soil Vapor Sampling					

TABLE OF CONTENTS (CONTINUED)

				tial Soil Vapor Intrusion Samplingrcial Soil Vapor Intrusion Sampling				
5.0	CONT 5.1 5.2 5.3	CONCE	PTUAL MINAN	E AND TRANSPORT	5-1 5-2			
6.0	QUAL 6.1 6.2	INTROE	OUCTIO	AN HEALTH EXPOSURE ASSESSMENT ON EXPOSURE PATHWAYS, AND EXPOSURE POINTS	6-1			
7.0	SUMM 7.1 7.2 7.3	SUMMA CONCL	ARY USION	SND RECOMMENDATIONS	7-1 7-3			
8.0	REFEI	RENCES			8-1			
FIGUF TABL								
APPEI	NDICES							
	Appen	dix A: Site	Photog	graphs				
Appendix B: Site Survey Data								
	Appen	Appendix C: Field Data Records (FDRs)						
		Appendi	x C-1:	Direct Push Groundwater Sampling Records				
		Appendi	x C-2:	Soil Boring Logs				
		Appendi	x C-3:	Well Diagrams				
		Appendi	x C-4:	Well Development Logs				
		Appendi	x C-5:	Monitoring Well Low Flow Sampling Records				
		Appendi	x C-6:	Pore Water Sampling Records				
		Appendi	x C-7:	Exterior Soil Vapor Sampling Records				
	Appen	dix D: Slu	g Test a	nd Hydraulic Conductivity Data				
	Appen	dix E: Soil	Grain	Size Data				
	Appen	dix F: Data	a Usabil	lity Summary Reports				
	Appen	dix G: Nat	ural Att	renuation Screening Protocol Forms				

LIST OF FIGURES

Figure

1.1	Site Location Map
1.2	Historical Investigation Locations
2.1	Remedial Investigation Sample Locations
3.1	July 2011 Interpreted Groundwater Contours
3.2	A-A' Geologic Cross Section
4.1	Groundwater Sampling Locations - Oblique View
4.2	Tetrachloroethene Concentrations in Groundwater
4.3	Trichloroethene Concentrations in Groundwater
1.4	cis-1,2-dichloroethene Concentrations in Groundwater
4.5	Vinyl Chloride Concentrations in Groundwater

LIST OF TABLES

Table

2.1	Remedial Investigation Field Activities
2.2	Monitoring Well Details
2.3	Conceptual Site Model
3.1	Groundwater Elevation Measurements
3.2	Summary of Hydraulic Conductivity Test Results
3.3	Soil Total Organic Carbon Results
4.1	Direct Push Groundwater VOC Results
4.2	Monitoring Well Groundwater VOC Results
4.3	Monitored Natural Attenuation Results
1.4	Pore Water VOC Results
4.5	Sump Water VOC Results
4.6	Exterior Soil Vapor VOC Results
1.7	Soil Vapor and Indoor Air VOC Results
5.1	Select Chlorinated VOC Results Over Time

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

ASP Analytical Services Protocols

AOC area of concern

BCP Brownfield Cleanup Program

BIOCHLOR Biochlor Model

bgs below ground surface

cis-1,2-DCE cis-1,2-dichloroethene
cm/sec centimeter(s) per second
COC contaminant of concern
CSM conceptual site model

CVOC chlorinated volatile organic compounds

C_{sat} Soil Saturation Limit

DER Division of Environmental Remediation

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

DUSR Data Usability Summary Report

ESA Environmental Site Assessment

°F degrees Fahrenheit FDR Field Data Record

GIS Geographic Information System

GPS Global Positioning System

Hg Mercury

ID inside diameter

IDW investigation-derived wastes IRM Interim Remedial Measure

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

LaBella Associates, P.C.

MACTEC Engineering and Consulting, P.C.

mg/kg milligram(s) per kilogram

mg/L milligram(s) per liter

MNA monitoring natural attenuation

NYCRR New York Codes, Rules, and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

ORP oxidation reduction potential

PCE tetrachloroethene

PID photoionization detector PVC polyvinyl chloride

QHHEA Qualitative Human Health Exposure Assessment

RI Remedial Investigation

SCGs standards, criteria and guidance values

Site Carriage Cleaners

SSD sub-slab depressurization SVI Soil Vapor Intrusion

TAGM Technical and Administrative Guidance Memorandum

TCE trichloroethene

TOC total organic carbon

μg/L microgram per liter

μg/m³ microgram per cubic meter

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compound

WA Work Assignment

1.0 INTRODUCTION

This Remedial Investigation (RI) Report has been prepared by MACTEC Engineering and Consulting, P.C. (MACTEC) in response to Work Assignment (WA) No. D004434-36 from the New York State Department of Environmental Conservation (NYSDEC) for the Off-Site Carriage Cleaners contamination investigation in the Town of Penfield, Monroe County, New York (Figure 1.1). The Carriage Cleaners site (Site) is listed as a Class A Brownfield Cleanup Program (BCP) site (Site No. C828131) in the New York State (NYS) Environmental Remediation Database. As part of the brownfield agreement, the property owner accepted responsibility for cleanup of this significant threat BCP site and the NYSDEC agreed to evaluate potential off-site contamination resulting from former activities at the Site. A RI and a soil removal as an interim remedial measure (IRM) were conducted at the Site property by LaBella Associates, P.C. (LaBella) under contract to the property owner. This WA is for the NYS funded off-site investigation at Carriage Cleaners. The Off-Site Carriage Cleaners is listed in the NYS Environmental Remediation Database as site No. C828131A. This report has been prepared in accordance with the NYSDEC requirements in WA No. D004434-36 dated September 13, 2010, between MACTEC and the NYSDEC (NYSDEC, 2010b).

1.1 REPORT ORGANIZATION

The RI report is structured in general accordance with the NYSDEC Division of Environmental Remediation (DER)-10 "Technical Guidance for Site Investigation and Remediation" (NYSDEC, 2010a) and the United States Environmental Protection Agency (USEPA) RI guidance (USEPA, 1988). The RI includes Sections 1.0 to 7.0 and associated Appendices, as outlined below.

- Section 1.0: Discusses the purpose of the RI, Site history and previous investigations.
- Section 2.0: Presents the specific scope of work for the RI.
- Section 3.0: Summarizes the physical characteristics of the Site and surrounding area. This includes results of physical characteristics as determined during the RI field program.
- Section 4.0: Presents results of the analytical data and discusses the nature and extent of contamination.
- Section 5.0: Discusses the fate and transport of Site contaminants.
- Section 6.0: Presents the qualitative human health exposure assessment (QHHEA).
- Section 7.0: Presents the summary and conclusions, including a discussion of data gaps.

Field data records (FDRs) and supporting information are included in the Appendices of this report. The RI Report is supplemented by the following attached documents:

- Appendix A Site Photographs
- Appendix B Site Survey Data
- Appendix C Field Data Records
- Appendix D Slug Test and Hydraulic Conductivity Data
- Appendix E Soil Grain Size Data
- Appendix F Data Usability Summary Reports
- Appendix G Natural Attenuation Screening Protocol Forms

1.2 PURPOSE OF REPORT

The purpose of the report is to present the findings of the RI, the results of the IRM activities conducted to date, and the evaluation of the potential exposure pathways and receptors of the Site contaminants.

This Draft RI Repot includes a summary of the Site background and history, including results of investigations conducted prior to the RI, summarizes results of the field investigations and laboratory analytical activities performed during the RI field investigations, summarizes the IRMs performed, presents a Human Health Exposure Assessment characterizing the potential exposure pathways under the current and potential future land use if no further remedial action is taken, and provides recommendations for future remedial efforts to address potentially complete exposure pathways.

1.3 OFF-SITE RI TECHNICAL OBJECTIVES

Based on historical data, chlorinated solvents are present in groundwater at the Site at concentrations that exceed Class GA groundwater standards as defined in 6 of New York Codes, Rules, and Regulations (NYCRR) Part 700-705 (NYS, 1999b). In addition, confirmatory soil samples collected from the Site after the IRM soil removal indicated the presence of chlorinated solvents above 6 NYCRR Part 375 Soil Cleanup Objectives for commercial use (NYS, 2006). The chlorinated volatile organic compounds (CVOCs) detected at the Site are listed hazardous wastes under Title 6 of NYCRR Part 371 (NYS, 1999a). B ased on previously detected groundwater and soil contaminant

concentrations at the Site, it was anticipated, but not known if CVOCs had migrated off-site in groundwater and/or soil vapor and if those CVOCs posed a potential significant threat to public health and the environment as defined in 6 NYCRR 375 (NYS, 2006) outside the Site property limits. Previous investigations identified two specific tetrachloroethene (PCE) source/disposal areas and evaluated the nature and extent of the on Site contamination, but did not address off-site contamination. The Off-Site Carriage Cleaners RI was performed to address the following technical objectives:

- evaluate off-site groundwater conditions emanating from the Site by assessing the horizontal and vertical extent of contamination in off-site groundwater;
- evaluate whether the CVOC contamination emanating from the Site is resulting in the potential for soil vapor intrusion at downgradient residential and commercial structures; and,
- evaluate present and future human health exposure pathways, such as through exposure to site source materials, groundwater, and/or soil vapor migration to indoor air.

The off-site RI field program described in Section 2 was conducted to further evaluate off-site conditions resulting from historical practices at the Site based on the technical objectives listed above. This information was used to evaluate the need for further action, including potential additional investigations, remedial evaluations and interim remedial measures.

1.4 SITE BACKGROUND

On September 23, 201 0, MACTEC personnel visited the Site and adjacent properties west and northwest of the Site with Charlotte Theobald (NYSDEC), and Katie Fish (New York State Department of Health [NYSDOH]). Information pertaining to the history of site operations and past releases of contamination were reviewed to help prepare the scope of work for the RI field investigation. Observations of the Site reconnaissance, the information collected, and other information provided in the WA are summarized below. Photographs of the Site taken during the site visit, as well as during various RI field efforts, are presented in Appendix A.

1.4.1 Site Description

The Site is located at 1600 Penfield Road in a mixed residential/commercial area in the Town of Penfield, Monroe County (Figure 1.1). It is identified on the Town of Penfield tax map as Map

123.20, Block 2, Lot 47. The site property size is 0.68 acres, with fencing at the perimeter. The Site consists of a former building concrete slab, construction debris and a paved parking lot. The former site building was constructed in 1961 and demolished in the summer of 2009.

The property is bordered immediately to the north by a day care facility and dance studio; to the east by an unoccupied automated banking facility; to the south by right of way for Penfield Road (with a large parking lot for the commercial plaza beyond); and to the west by a one story commercial office space with several tenants, including a beauty salon. Further west and northwest of the Site are residential condominiums. The Site and surrounding community are serviced by public drinking water and sewer.

The Site reportedly operated as a dry cleaning facility from 1961 until approximately 2005 (LaBella, 2009a). A plumbing diagram (unknown date) indicated that drain lines from the building discharged to a 1,500-gallon pre-cast concrete wastewater holding tank located adjacent to the northern portion of the building (LaBella, 2009a). According to Monroe County property deeds, the current owner purchased the property in 2006.

1.4.2 Previous Field Investigations

The NYSDEC provided information to MACTEC on environmental studies conducted at the Site by LaBella for the Site owner under the state's BCP. Previous studies referenced the Site as "Carriage Cleantown". F or the purposes of this RI Report, the references to "Carriage Cleantown" are synonymous with "the Site". The Carriage Cleantown Site is identified under New York State Spill # 0270503.

Background documents reviewed by MACTEC include the Carriage Cleantown RI Report (LaBella, 2009a) and the Carriage Cleantown IRMs (Labella, 2009b). These reports indicate that four prior investigations have been completed at the Site.

LaBella – Phase II Environmental Site Assessment (ESA), 2002

LaBella completed a Phase II Environmental Site Assessment (ESA) at the Carriage Cleantown site in 2002 as part of a potential real estate transaction. Field work consisted of nine Geoprobe[®] soil borings and the installation of one groundwater monitoring well (MW-1). Results indicated soil contamination

exceeding the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 Soil Clean-up Objectives to Protect Groundwater Quality adjacent to a wastewater holding underground storage tank, located north of the building.

LaBella – Passive Soil Vapor Survey, 2003

LaBella completed a passive soil vapor survey at the Carriage Cleantown site in 2003. The soil vapor survey included sampling of 13 soil vapor locations. Results indicated the presence of PCE and trichloroethylene (TCE) on the Site. The highest concentrations of soil vapor contamination were detected on the northwest portion of the Site.

LaBella – Remedial Investigation, 2005 through 2006

LaBella completed a RI of the Carriage Cleantown Site in 2006. The RI included a shallow soil and groundwater evaluation, a deep soil and groundwater evaluation, and a soil vapor investigation. During the RI LaBella advanced 55 shallow soil borings and one deep soil boring, installed three permanent soil vapor implants, installed nine shallow overburden groundwater monitoring wells and two deep groundwater monitoring wells, and collected soil, groundwater and soil vapor samples. The initial phase of borings consisted of a grid pattern around the concrete wastewater holding tank area, area of concern (AOC) 1, to evaluate the extent of shallow soil contamination. In addition, several borings were advanced within the building to evaluate the floor drains/drain lines, and other potential source areas. The second phase of soil borings provided evaluation of the former PCE Still area (AOC 2) and overall groundwater impacts. A deep soil boring was advanced and a nested pair consisting of two deep groundwater monitoring wells was installed to evaluate the vertical extent of contamination. Soil vapor sampling was conducted along property lines and offsite as part of a qualitative exposure assessment. LaBella defined the extent of contamination on the Site as three AOCs as described in the following paragraphs. Figure 1.2 identifies the locations of historical investigations at the Site.

AOC #1: Concrete Wastewater Holding Tank Area

LaBella determined that the horizontal extent of site soil contamination that exceeded hazardous waste criteria was limited to the concrete wastewater holding tank area north/northeast of the former site building. LaBella determined the vertical extent of soils that exceeded hazardous waste criteria was limited to approximately 10 feet in depth. PCE and TCE were detected at low concentrations in the deeper soil and groundwater samples collected.

AOC #2: Former PCE Still Area

The second phase of soil borings characterized contamination from the former PCE still, located in the southeastern corner of the former site building. LaBella determined that PCE contamination from the former PCE still potentially migrated from the still through the site building slab and into the shallow overburden soil and groundwater. Soil contamination from the former PCE still was identified beneath the southern corner of the former site building. Soil samples from adjacent borings did not indicate concentrations of volatile organic compounds (VOCs) that exceed the NYSDEC guidance.

AOC #3: Groundwater Contamination

LaBella characterized groundwater contamination on the Site at nine shallow groundwater monitoring wells and a deep nested pair of monitoring wells, MW-6M (40 feet below ground surface [bgs]) and MW-6D (72 feet bgs). The highest concentration of PCE was detected in a groundwater sample from shallow well MW-1 (142,000 microgram per liter [µg/L]). PCE was detected in groundwater samples from MW-6M and MW-6D, at concentrations of 19 µg/L and 46 µg/L, respectively. B ased on photoionization detector (PID) readings from within the saturated zone that generally decreased with depth, as well as the analytical results from the soil and groundwater samples collected, LaBella concluded that the vertical extent of shallow groundwater impacts was limited to be approximately 15 feet in depth (concentrations of VOCs detected in groundwater below approximately 15 feet were determined by LaBella to be minimal). The horizontal extent of groundwater contamination was relatively widespread across the Site (Labella, 2009a), with CVOC concentrations in groundwater below standards in samples collected from the northern, eastern, and southern edge of the property and concentrations above groundwater standards in samples collected from the center and western edge of the Site property.

LaBella – IRM, 2007

On June 30, 2007, LaBella conducted an IRM at the Site (LaBella, 2009b). During the IRM, impacted soil and water (i.e. above published standards, criteria, and guidance values [SCGs]) in the proximity of the former wastewater holding tank located to the north of the former site building was removed. The stated goal of the IRM was to remove soil that exceeded characteristic hazardous waste criteria (i.e. exceeding USEPA criteria for VOCs following the toxicity

characteristic leaching procedure extraction). This area was characterized using a grid of soil borings. Materials removed from the Site during the 2007 IRM included:

- 632 gallons of CVOC contaminated water that was pumped from the wastewater holding tank prior to its removal, and pumped from the excavation during the soil removal;
- 175.38 tons of CVOC impacted soil disposed as non-hazardous waste on August 31, 2007;
- 19.22 tons of CVOC impacted soil was disposed of as hazardous waste at Waste Management's Model City Landfill in Model City, New York; and,
- 43.28-tons of heavily CVOC-impacted soil was transported to the Recupere Sol, Inc. treatment facility in St. Ambrose, Quebec, Canada for thermal treatment on November 13, 2007.

Confirmation soil samples were collected from the base and the side walls of the IRM soil excavation area. Soils collected from the base of the excavation pit ranged in concentrations of PCE from 9.3 milligrams per kilograms (mg/kg) to 130,000 mg/kg. Soils collected from the side walls of the pit excavation ranged in concentrations of PCE from 1.6 mg/kg to 46 mg/kg. LaBella recommended that "Based on the confirmatory soil sampling results, additional remedial actions appear warranted for this area".

1.4.3 Current on-Site Status

The Site building was demolished in the summer of 2009 (NYSDEC, 2010b). The Site is still in the NYS BCP.

2.0 SCOPE OF WORK

The off-site RI focused on groundwater conditions downgradient from the Site, and was conducted based on the detection of chlorinated solvents present in Site media. PCE, TCE, cis-1,2-dichloroethene (DCE), and vinyl chloride (VC) are listed hazardous wastes under 6 NYCRR Part 371 (NYS, 1999a). Based on existing Site data, chlorinated solvents (including PCE, TCE, cis-1,2-DCE, and VC) are present in soil and groundwater at the Site at concentrations above the state Class GA groundwater standards as defined in 6 NYCRR Part 700-705 (NYS, 1999b). B ased on previously collected groundwater and soil data, the Site poses a potential significant threat to public health and the environment as defined in 6 NYCRR 375 (NYS, 2006).

Section 2 outlines the off-site RI scope of work performed by MACTEC. Field activities were conducted to evaluate the nature and extent of the contaminants present in groundwater and soil vapor outside the property limits of the Site, (i.e. downgradient of the Carriage Cleaners Site).

2.1 REMEDIAL INVESTIGATION FIELD WORK

The fieldwork was conducted in accordance with the specifications presented in the Work Plan (MACTEC, 2010). Groundwater analysis was performed by Chemtech Laboratory and soil vapor, indoor and ambient air analyses were performed by Enalytic. Chemtech and Enalytic are accredited through the NYSDOH Environmental Laboratory Approval Program for the analysis performed during this RI.

MACTEC and its subcontractors mobilized to the Site and performed the RI fieldwork activities between November 2010 and August 2011. Figure 2.1 is an aerial photograph of the Site area showing locations sampled from November 2010 and August 2011 by MACTEC. Table 2.1 outlines the off-site RI sampling program, including types of explorations completed, samples collected, and dates. The RI was conducted in two phases. A summary of the phases is outlined below and are discussed in further detail in following subsections. FDRs documenting the RI field investigation are included in Appendix C.

Phase I: November 2010

- Twenty direct push borings (DP-01 to DP-20) were advanced in the vicinity of the Site. DP-01 through DP-18 were advanced at locations presumed to be hydraulically downgradient from the Site. D P-19 and DP-20 were advanced at presumed hydraulically upgradient locations from the Site. Groundwater samples were collected from one or two depth intervals per boring and analyzed for VOCs. An additional groundwater sample depth interval was collected at DP-04, and two additional depth intervals were collected at DP-10.
- Groundwater samples were collected from five existing microwells on the Site (MW-2, MW-5, MW-6M, MW-6D, and MW-7). Groundwater samples were submitted for VOC analysis.
- Four, one-inch microwells (DP-06, DP-10, DP-12, and DP-15) were installed at presumed downgradient locations from the Site. The microwells were installed to obtain groundwater samples and to evaluate off-site groundwater flow direction.
- Three permanent soil vapor implants were installed adjacent to the Site (SV-01, SV-02, and SV-03). Soil vapor samples were collected from SV-03 and from an existing off-site soil vapor implant, SV-04. Soil vapor sample were not able to be collected from SV-01 and SV-02 due to subsurface conditions. Soil vapor samples were submitted for VOC analysis.
- Four pore water samples were collected from the banks of Irondequoit Creek (PS-01, PS-02, PS-03, and PS-05) and submitted for VOC analysis.
- Newly installed microwells, existing Site wells, and Irondequoit Creek water level at Old Penfield Road were surveyed by Lu Engineers, a licensed land surveyor.

Based on the results of the initial investigation, Phase II field work was conducted.

Phase II: January 2011 to August 2011

- An additional 14 direct push borings (DP-21 to DP-34) were advanced at presumed downgradient locations from the Carriage Cleaners Site. Groundwater samples were collected from one or two depth intervals per boring and analyzed for VOCs.
- Two direct push borings (DP-33 and DP-34) were installed as temporary microwells to further evaluate groundwater flow direction.
- Six additional, two-inch monitoring wells were installed at presumed downgradient locations from the Site. Four shallow monitoring wells were installed at direct push sampling locations (DP-22, DP-23, DP-27, and DP-28); and two deeper monitoring wells paired with existing wells (MW-11 paired with DP-10; MW-12 paired with DP-23).
- Saturated soil samples were collected from MW-11 and MW-12 borings during monitoring well installation and submitted for total organic carbon (TOC) analysis. A saturated soil sample was also collected from DP-28 and submitted for grain size analysis.
- Three additional pore water samples were collected from the banks of the Irondequoit Creek (PS-04, PS-06, and PS-07) and submitted for VOC analysis.

- The six new monitoring wells, temporary wells (DP-33 and DP-34) and the Irondequoit Creek and gravel quarry water level adjacent to DP-34, were surveyed by Lu Engineers.
- Groundwater samples were collected from nine newly installed and four existing Site monitoring wells for VOC analyses. In addition, groundwater samples were collected from six monitoring wells and submitted for monitored natural attenuation (MNA) parameters. MNA parameters are discussed in detail under section 2.1.4.
- Hydraulic conductivity testing was conducted at five off-site monitoring wells and three direct push boring locations.
- Two sump water samples (SW-15A and SW-15B) were collected from within the sump pit of one residential structure.
- Indoor air and soil vapor samples were collected at 15 commercial and/or residential structures from the vicinity of the Site.

Health and Safety. Daily tailgate briefings were held prior to the field work with MACTEC and subcontractor personnel to familiarize field personnel with Site history, health and safety requirements, equipment calibration procedures, and other investigation methods and procedures. RI fieldwork was conducted at Level D personal protection. Due to the presence of underground utilities located in the area as identified by the dig-safe markout, a sub-set of borings were cleared using an air compressor and vacuum truck by a subcontractor. These borings were cleared to a minimum of four feet bgs.

Investigation Derived Waste. The method of disposing investigation derived wastes (IDW) generated during this RI was based upon whether the wastes were considered hazardous or non-hazardous. If visual (e.g. sheen) or olfactory indications of contamination were not noted, purged groundwater was allowed to infiltrate into the ground surface in the vicinity of the sample location. Due to the field program being conducted in a primarily landscaped residential area, soil cuttings generated during monitoring well installation were containerized in United States Department of Transportation approved 55-gallon drums. Drums filled during Phase 1 and Phase 2 field work were labeled and staged on the Site property prior to disposal. Clean Harbors transported the IDW in March 2012 to a licensed facility (Spring Grove Resource Recovery, Inc., in Cincinnati, Ohio) for disposal. Based on analytical results, four 55-gallon drums of purge water were transported under hazardous waste manifest as hazardous waste liquid. Two additional drums of purge water and five drums of soil and drilling/sampling waste were disposed of as non-regulated material.

Site Survey. MACTEC's survey subcontractor (Lu Engineers) completed a survey of existing Site monitoring wells, newly installed off-site wells, and surface water elevations for Irondequoit Creek. Horizontal locations were tied to the NYS Plane Coordinate System using North American Datum of

1983 and measured to an accuracy of 0.01 feet. Vertical elevations of groundwater wells were tied to mean sea level, using North American Vertical Datum of 1988, and measured to an accuracy of 0.01 feet.

Horizontal and vertical locations were provided to MACTEC and entered into a database to be used with geographic information system (GIS) software. Locations of direct push samples and pore water samples that were not surveyed by Lu Engineers were surveyed by MACTEC using a Trimble Global Positioning Satellite (GPS), or tied to building corners and plotted using GIS. GPS data is tied to the NYS Plane Coordinate System using North American Datum of 1983 and is accurate to within one meter. The sample locations are presented on Figure 2.1. The summary tables of the survey data are included in Appendix B.

2.1.1 Direct Push Groundwater Sampling

The existing set of monitoring wells located on the Site did not give sufficient coverage to adequately characterize the limits of the VOC contamination in off-site groundwater. To supplement the Site data, 34 Geoprobe® borings (DP-01 through DP-34) were advanced and discrete groundwater samples were collected from various depth intervals within each location (Figure 2.1). Direct push groundwater samples were collected during three events; November 2010, January 2011, and July 2011.

Groundwater samples were collected using direct push technology to advance either a wire-wrapped, stainless steel screen or polyvinyl chloride (PVC) to a desired depth. Groundwater was purged using a peristaltic pump. One volume of water approximately equal to the volume in the rods was purged and one set of groundwater parameters including temperature, conductivity, pH, dissolved oxygen (DO) and turbidity was measured prior to sampling, if possible. Groundwater samples were collected from two depths within the majority of these locations. Based on subsurface conditions, one groundwater sample was collected at DP-04, DP-10, DP-20, DP-31 and DP-32. Groundwater samples were collected at a low purge rate (approximately 100 milliliters per minute) to evaluate off-site groundwater VOC contamination.

Groundwater measurements and sampling activities were documented using a groundwater grab FDR and are presented in Appendix C-1. Groundwater samples were analyzed by Chemtech for VOCs by USEPA Method 8260. Groundwater laboratory analysis included Category B deliverables.

Direct push Geoprobe[®] boring locations were located using a GPS by MACTEC on November 19, 2010 (DP-01 through DP-20) and January 21, 2011 (DP-21 through DP-32).

2.1.2 Groundwater Microwell Installation

To determine groundwater flow characteristics and quality downgradient of the Site and evaluate the VOC groundwater plume, six microwells (DP-06, DP-10, DP-12, DP-15, DP-33, and DP-34) were installed. Microwell locations are shown on Figure 2.1. Off-site groundwater was encountered at depths ranging from two and eight feet bgs. Microwells were installed after soil and groundwater samples were collected from direct push borings (with the exception of DP-33 and DP-34). Each boring was advanced using direct push drilling techniques. Discrete subsurface soil samples were collected using a 4-foot long, 2.5-inch diameter core sampler with an acrylic liner. Soil samples were collected continuously from the ground surface to approximately 20 feet below the groundwater table. PID readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the sample collection tube. S amples were described using the Unified Soil Classification System (USCS). S ample descriptions and classifications, PID readings, and boring observations were recorded on the FDRs and are presented in Appendix C-2.

Four microwells were completed as permanent microwells (DP-06, DP-10, DP-12, and DP-15) and were used for groundwater level measurements and groundwater sampling locations. DP-33 and DP-34 were installed as temporary well locations to collect groundwater samples, as well as further evaluate groundwater flow direction northwest of the Irondequoit Creek. Microwells, with the exception of DP-33 and DP-34, were screened across the water table to determine groundwater table elevations and create a potentiometric surface map.

The permanent microwells were constructed with one-inch inside diameter (ID) schedule 40 PVC, with 10 foot lengths of 0.01-inch machine slotted well screens. Microwells were constructed with a # 0 sand pack to one foot above the screen, and a bentonite seal to the ground surface. Microwells were

completed with a locking cap and a six inch flush mount cover. Microwell specifications are presented in Table 2.2 and the construction diagrams are presented in Appendix C-3.

2.1.3 Groundwater Monitoring Well Installation

To further evaluate groundwater flow characteristics and quality downgradient of the Site and better

define the VOC contamination, six, two-inch groundwater monitoring wells (MW-11, MW-12, DP-22,

DP-23, DP-27, and DP-28) were installed. Analytical data from the direct push groundwater profiling

and microwell installation was used to determine the placement of the permanent monitoring wells.

Monitoring wells were installed within the interpreted off-site VOC groundwater contamination

plume, located west of the Site, to allow monitoring of the contamination.

Four shallow overburden wells (DP-22, DP-23, DP-27, and DP-28) were installed at depths ranging

from approximately 18 feet bgs to 24 feet bgs (Figure 2.1). These monitoring wells were installed

within locations where direct push groundwater profiling was previously conducted. Two deep

overburden groundwater monitoring wells (MW-11 and MW-12) were installed to a depth of

approximately 61 feet bgs.

Monitoring well borings were advanced using hollow stem auger drilling techniques. Soil samples

were collected within the screening interval, using 2-inch split spoons. PID readings were used to

screen soil samples for the presence of VOCs as each soil sample was removed from the split-spoon.

Soil samples were described using USCS. The sample description and classification, VOC reading,

and boring observations were recorded on an FDR and are presented in Appendix C-2.

During monitoring well installation at MW-11 and MW-12, soil samples were collected from an

interval below the water table and analyzed by Chemtech for TOC by Lloyd Kahn Method. In

addition, a soil sample was collected from an interval below the water table at DP-28 and analyzed by

Chemtech for grain size to aid in the hydraulic conductivity evaluation at the Site.

Monitoring wells were constructed with two-inch ID schedule 40 PVC with ten foot screens and

threaded flush joint riser. Well screens have 0.010-inch wide machine slots with #0 sand pack to two

feet above the screen, a 2-foot bentonite seal above the sand pack and native backfill to the ground

surface (sand pack and seal depths varied slightly based on depth of screen bgs). Monitoring wells

2-6

were completed with a locking cap and a six-inch flush mount cover. Monitoring well specifications are presented in Table 2.2 and the construction diagrams are presented in Appendix C-3.

2.1.4 Well Development

Upon completion of well installations, the wells were developed (no sooner than 24 hours after installation for wells installed with top of screens below the water table) using pump and surge techniques. Wells were developed to remove excess sediment, if present, as well as to qualitatively evaluate well conductivity/recharge and remove stagnant water. Field measurements for pH, temperature, specific conductivity, oxidation reduction potential (ORP), DO, and turbidity were measured from most wells during development. These measurements were recorded on a FDR and are presented in Appendix C-4.

2.1.5 Monitoring Well Groundwater Sampling

To evaluate contaminant concentrations in groundwater at the Carriage Cleaners site in conjunction with the November 2010 off-site direct push groundwater investigation, groundwater samples were collected from five existing Site wells (MW-2, MW-5, MW-6M, MW-6D, and MW-7) in November of 2010. An attempt to sample existing Site wells MW-9 and MW-10 was unsuccessful due to the wells being clogged with debris. Field measurements for pH, temperature, specific conductivity, ORP, DO, and turbidity were collected through a flow through cell (with the exception of turbidity) from each well during pre-sample purging. These measurements were recorded on the FDRs and are presented in Appendix C-5. Purge water was observed for sheens and odors and containerized and stored on-Site for future disposal. Groundwater samples were analyzed by Chemtech for VOCs by USEPA Method 8260.

To further evaluate off-site groundwater conditions downgradient from the Site, a second round of groundwater samples was collected from 13 m onitoring wells in August 2011 (Table 2.1). Groundwater samples were analyzed for VOCs by USEPA Method 8260. In addition, six wells (MW-2, MW-7, DP-10, DP-15, DP-23, and MW-11) were sampled for MNA parameters, including: TOC by USEPA Method 415.1, Nitrate by NYSDEC Analytical Services Protocols (ASP) Method 352.1, Nitrite by NYSDEC ASP Method 354.1, Sulfate by NYSDEC ASP Method 375.4, Sulfide by NYSDEC ASP Method 376.2, Methane/Ethane/Ethane/Ethane by Method RSK 175, carbon dioxide by

calculation, Alkalinity by Method 310.1, chloride by Method 325.3, and iron and manganese by USEPA Method 6010B. DO and ORP were measured in the field as part of stabilization parameters. To evaluate background conditions, MW-5 was analyzed for CO₂, alkalinity, and chloride.

2.1.6 Pore Water Sampling

Pore water samples were collected from seven locations (PS-01 to PS-07) downgradient from the Site to evaluate potential groundwater plume discharge points to surface water (Figure 2.1). Samples were collected in November 2010 to evaluate if site-related contaminants were discharging from shallow groundwater to surface water west of the Site. Samples were collected in January 2011 to further evaluate if contaminants were discharging from shallow groundwater to surface water northwest of the Site.

Temporary pore water sample points consisting of a 1/4-inch stainless steel pipe with a one-inch screen were pushed by hand to approximately 8-inches to three feet into the banks of the Irondequoit Creek. Tubing was attached to the end of the pore water sampler and groundwater samples were collected using a Geopump.

At a minimum, three sets of pore water parameters including temperature, conductivity, pH, DO and turbidity were measured prior to sampling. Prior to pore water sample collection, temperature and DO measurements were compared to surface water measurements (Irondequoit Creek) to verify the collection of groundwater (DO in groundwater is typically much lower than DO concentrations in surface water). DO in the pore water sample and the surface water were measured using a Hach DR 890 calorimetric field testing kit. Pore water, associated surface water measurements, and other sampling observations were documented on a FDR and are presented in Appendix C-6. Pore water samples were analyzed for VOCs by USEPA Method 8260.

Pore water sample locations were surveyed using a GPS by MACTEC on November 19, 2010 (PS-01, PS-02, PS-03 and PS-05) and January 21, 2011 (PS-04, PS-06 and PS-07).

2.1.7 Hydraulic Conductivity Testing

In January 2011, pneumatic slug testing was conducted at three direct push groundwater profiling locations (DP-22, DP-30 and DP-31) to evaluate the hydraulic conductivity of the shallow aquifer.

Pneumatic slug testing was conducted by using direct push technology to advance a point to a desired depth and exposing a wire-wrapped stainless steel screen to the aquifer. Pneumatic slug testing consisted of pressurizing the rods to a known pressure (the slug) and measuring groundwater elevation data with a pressure transducer placed within the screened interval. A hand pump was used to add pressure to the rods, "depressing" the groundwater table. The pressure within the rods was then released, allowing the aquifer to rebound. The aquifer rebound within the screened interval was monitored and recorded using a transducer, at times ranging from one to four minutes. Pneumatic slug test data was analyzed by the methods Hvorslev and Bouwer and Rice (1976).

Upon completion of groundwater sampling in August 2011, hydraulic conductivity slug tests were performed on five off-site monitoring wells to characterize shallow and deep overburden aquifer characteristics (MW-11, MW-12, DP-22, DP-23 and DP-28). The hydraulic conductivity tests consisted of slug tests, using a solid mass of PVC (the slug) and a data logger. Two rising head and falling head tests were conducted within the five monitoring wells. Hydraulic conductivity test data were analyzed by the methods Springer-Gelhar and Bouwer and Rice (1976). Pneumatic slug testing and slug test data is presented in Appendix D.

2.1.8 Soil Vapor Implant Installation and Sampling

Based on the Sites' proximity to nearby residences and businesses, exterior soil vapor samples were collected to evaluate the potential for soil vapor contaminant migration from the vadose zone. Three exterior permanent soil vapor implants (GV-01, GV-02, and GV-03) were installed in November 2010 using direct-push drilling technology. An existing soil vapor implant (GV-04) was located adjacent to the Site (Figure 2.1). Soil vapor probe construction and sampling procedures were in accordance with the NYSDOH guidance (NYSDOH, 2006).

The soil vapor implants were installed by advancing a two-inch diameter borehole using direct-push drilling methods to evacuate a soil profile with a macrocore sampler. Subsurface soil samples were collected using a 4-foot long 2-inch diameter core sampler with an acrylic liner. Soil samples were collected continuously from the ground surface to approximately six feet bgs. PID headspace readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the sample collection tube. Soil samples from the soil vapor implant borings were described using USCS. The soil sample description and classification, VOC reading, and boring observations were recorded

on an FDR and are presented in Appendix C-7. Upon removal of the soil, the hole remained open

allowing for the installation of the soil vapor implant.

After review of the subsurface conditions, MACTEC installed a soil vapor implant at within the open

borehole. Glass beads were used to create a sampling zone around the screen. The implants included

a 6-inch length, double woven stainless steel wire screen that threaded into a disposable stainless steel

point. Approximately 250 milliliters of glass beads were placed in the hole and brought to a depth

approximately one foot above the implant screen. Hydrated bentonite was placed above the glass

beads to within six inches of the ground surface. Soil vapor locations were completed at the ground

surface with six-inch diameter road boxes.

Three times the volume of the annular space of the screen pack plus the volume of the implant and

sample tubing was purged using a personal air monitoring pump prior to collecting the sample. During

the soil vapor purge, vapors were screened with a PID.

Exterior soil vapor samples were collected from two locations (SV-03 and SV-04). An attempt was

made to sample SV-01 and SV-02, but sampling was unsuccessful due to low vapor flow. Soil vapor

samples were collected in a SUMMA®-type canister with a flow rate of less than 0.1 liters per minute.

Samples were analyzed by Enalytic Laboratory for VOCs by USEPA Method TO-15. The soil vapor

implant diagrams and soil vapor sampling records are provided as Appendix C. Exterior soil vapor

locations were surveyed using a GPS by MACTEC on November 19, 2010.

2.1.9 Soil Vapor Intrusion Sampling

Based on an evaluation of November 2010 groundwater results and discussions with the NYSDEC and

NYSDOH, soil vapor intrusion (SVI) samples were collected from structures at presumed

hydraulically downgradient locations from the Site. SVI sampling was conducted during the

2010/2011 heating season, at fifteen commercial and/or residential structures. A summary of the soil

vapor and indoor air sampling program is included in Table 2.1. The SVI investigation included the

collection of 14 sub-slab vapor samples and 18 indoor air samples, two sump water samples from one

location, as well as five exterior ambient air samples and one duplicate sample. The SVI sampling

program is discussed in detail in a confidential report issued to the NYSDEC on June 30, 2011.

2-10

Prior to collecting SVI samples, an indoor air survey was completed using the NYSDOH "Indoor Air Quality Questionnaire and Building Inventory" form. To collect the sub-slab soil vapor samples, a one-inch diameter hole was drilled with an impact drill two inches into the building floor, near the center of the basement/slab-on grade, but away from any cracks or sumps. The hole was continued with a 3/8-inch drill bit, until the building slab was penetrated. The hole was continued approximately 3-inches below the slab. The hole was swept to remove drill cuttings/dust from the area. A ½-inch piece of Teflon tubing was inserted through a 1" diameter rubber stopper, and placed into the hole, so that the bottom of the tubing was below the slab floor and the stopper rested inside the one-inch hole, forming a seal. The stopper was then covered with bees wax to provide a seal to prevent the migration of indoor air into the sub-slab. One 60 cubic centimeter volume of air was purged from the tubing with a polyethylene syringe. The syringe was capped and the air was screened outside the building using a PID. A SUMMA®-type canister with a 24-hour flow valve was connected to the tubing.

Helium leak tests were conducted on four sub-slab soil vapor sample locations (Structure 08, Structure 09, Structure 12 and Structure 13) to ensure samples were representative of subsurface conditions and not ambient air. Helium leak tests were conducted by encapsulating the sample point using a bucket or plastic sheeting sealed to the floor surface. The encapsulated area was filled with helium to a concentration exceeding 90-percent and measured using a MGD 2002, a portable helium monitoring device. Care was taken not to pressurize the enclosure while introducing the helium. The soil vapor sample port was then tested for helium breakthrough before collection of the soil vapor sample. Helium concentrations within the enclosures ranged from 90 to 98 percent, and helium concentrations within the sample ports ranged from zero to 0.6-percent. Based on the helium leak testing conducted within the four structures, it is reasonable to believe the soil vapor samples collected from the vicinity of the Site are representative of subsurface conditions.

Basement indoor air samples (or first floor air samples if slab on-grade) were collected in a SUMMA®-type canisters from the vicinity of the sub-slab vapor sample collection points. MACTEC collected the indoor air samples as far away from sumps as possible. Indoor air samples were collected from approximately three to six feet above the floor level. Indoor air samples were set up with 24-hour flow valves. SVI from within Structure 15 consisted of one indoor air sample; there were no sub-slab soil vapor samples collected at Structure 15. The air sample from structure 15 was used to evaluate potential vapors from groundwater that was leaking into the basement. Sub-slab vapor samples were

collected from the adjoining Structures on both sides of Structure 15 (one shares the same foundation) and were used to evaluate potential risk from vapor intrusion into this Structure.

Ambient air samples were collected in SUMMA®-type canisters from the vicinity of the structures being sampled for indoor air and sub-slab vapor VOC contamination. Samples were collected from approximately three to six feet above ground surface. Ambient air samples were set up with 24-hour flow valves.

Once the sub-slab vapor sample canisters, indoor air sample canisters, and exterior ambient air canister were set up with 24-hour flow valves for an individual location, the valves from each container was opened. Sample collection information was recorded on an Indoor Air/Soil Vapor Sampling FDR which is presented in a standalone SVI report.

The samples were shipped to Enalytic laboratory for analyses of VOCs via USEPA Method TO-15 with a detection limit of 1 microgram per cubic meter ($\mu g/M^3$) for most compounds. TCE, VC, and carbon tetrachloride were reported with a detection limit of 0.25 $\mu g/M^3$ for indoor and ambient air samples. The laboratory provided category B deliverables.

Upon completion of the sampling, tubing and stopper were removed from the building floor and the holes were filled completely with a fast drying hydraulic concrete (i.e. Quickcrete).

In addition to the active sample collectors (i.e. SUMMA®-type cans), two indoor air samples were collected from a commercial structure (Structure 11) using Radiello 130 passive samplers and analyzed for VOCs under USEPA method TO-17. The samplers were placed approximately four feet above the ground surface and left for two weeks. After the two weeks, the samplers were placed in a sealed container and shipped to Air Toxics of California for analysis of select VOCs.

2.1.10 DER-31 Implementation

This section describes the NYSDEC DER approach to remediating sites in the context of the larger environment, a concept known as "Green Remediation". The approach is intended to improve the overall sustainability of the investigation by promoting the use of more sustainable practices and technologies. Green Remediation practices and technologies are less disruptive to the environment, generate less IDW, increase reuse and recycling, and emit fewer pollutants, including greenhouse

gases, to the atmosphere. Green Remediation concepts and techniques were considered during the RI investigation field events, and include:

- Installing microwells during the initial phase investigation using direct push technology with a Geoprobe® device, rather than installing monitoring wells with hollow stem auger techniques (reducing emissions to the atmosphere and production of IDW);
- Eliminating idling vehicles, when possible.

2.2 INTERIM REMEDIAL MEASURES

Three rounds of SVI sampling were conducted in the mixed residential/commercial area adjacent to the Site during the 2010 heating season in 12 residential structures and three commercial structures. In April 2011, Structure 13 was re-sampled based on the results from March 2011.

The NYSDEC and the NYSDOH evaluated the potential for exposures related to SVI in residential structures off-site. Based on their evaluation of the analytical results from the 15 residential and commercial structures sampled for SVI during the 2010 heating season, the NYSDEC and NYSDOH recommended that five residential structures receive mitigation systems, and no further action be conducted at the remaining10 structures (although SVI results did not indicate the need for mitigation at one of the five residential structures, this structure shared a foundation with a structure recommended for mitigation and therefore this structure was also recommended by the NYSDEC and NYSDOH for mitigation). In addition, three other residential structures that were not sampled were constructed with shared foundations to structures recommended for mitigation, and therefore these three structures were also recommended by the NYSDEC and NYSDOH for mitigation.

Based on discussions with and direction from the NYSDEC and the NYSDOH, an IRM in the form of sub-slab depressurization (SSD) systems was implemented to address potential exposure to SVI at eight off-site residential structures recommended for mitigation. These eight structures are part of a condominium complex. Based on the configuration of the condominium complex, four SSD systems were designed and installed to mitigate the eight residential structures. The SSD system installations included placement of plastic sump covers sealed to the basement floors to prevent the entry of vapors through these slab openings.

2.3 CONCEPTUAL SITE MODEL

MACTEC reviewed available historical data and developed a conceptual site model (CSM). The CSM describes the contaminants of potential concern, primary or secondary release mechanisms, the media affected, migration pathways, and potential receptors. The conceptual model for the Site is presented in Table 2.3.

Chlorinated solvents have migrated into site soil and groundwater as a result of previous activities at the Site. Groundwater was encountered between approximately two and eight feet bgs in the study area. Groundwater reportedly flows to the west to northwest in the shallow overburden towards a gravel quarry. Deeper groundwater flow is also expected to be in a west or northwest direction toward Irondequoit Creek and Lake Ontario.

Existing Site data indicates that groundwater and soil in the vicinity of the Site contains concentrations of chlorinated solvents above applicable SCGs. Previous investigations and IRMs suggest that the Site is contributing to the presence of PCE and PCE breakdown products on Site, and potentially in off-site groundwater and soil vapor.

3.0 SITE PHYSICAL SETTING

The sections below describe site topography, climate, surface water and groundwater hydrology, and geology.

3.1 TOPOGRAPHY

Figure 1.1 shows the general topography of the surrounding area.

3.2 CLIMATE

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 70°F in July. A verage annual precipitation is 32 inches. A verage annual snowfall is 90 inches per year (National Climatic Data Center, 1999).

3.3 SURFACE WATER HYDROLOGY

The Site property consists primarily of impermeable surfaces (asphalt pavement or former building concrete slab), with the exception of the west and north edges of the property which are covered in vegetation. Surface water at the site is expected to flow to low areas on the Site, and then to local storm sewers located west of the Site. Water that does not flow into the sewers may infiltrate into unpaved areas of the Site. The storm sewers flow to Irondequoit Creek, located approximately 650 feet west of the Site. I rondequoit Creek eventually flows into Irondequoit Bay and then to Lake Ontario. Although a gravel quarry is located approximately 1900 feet northwest of the Site, it is not connected to the surrounding surface water bodies (i.e. there are no inlets or outlets to Irondequoit Creek).

3.4 GROUNDWATER HYDROLOGY

Groundwater at the Site is present at approximately two to seven feet bgs, with some seasonal variability. Based on groundwater levels collected during the RI, overburden groundwater flow is

Surface water levels within the quarry were two to three feet lower than those measured just southeast of the quarry in Irondequoit Creek. Table 3.1 presents a summary of groundwater level measurements and measuring point elevation data. Figure 3.1 presents interpreted overburden groundwater contours from synoptic water level measurements collected in July 2011. Studies of Irondequoit Creek indicated that the creek water level can fluctuate several feet in elevation with rain events. This change in surface water elevation can affect groundwater levels within the vicinity of the creek, causing the typically gaining stream to be a losing stream at times (USGS, 1999). Shallow groundwater is interpreted to discharge to Irondequoit Creek, but based on analytical data, deeper overburden groundwater is interpreted to flow beneath the creek and discharge to the adjacent gravel quarry. Due to the depth of the quarry (greater than 100 feet deep), and it being used for sand and gravel, the surface water elevation within the quarry is interpreted to reflect the surface water elevation of groundwater. Groundwater that enters the quarry is interpreted to flow through the quarry to the northeast as part of regional groundwater flow towards Lake Ontario.

Three well clusters with screens set at varying depths are located within the monitoring well network at and off the Site. Water levels were collected at these wells to evaluate potential vertical groundwater gradients. Groundwater elevation measurements from August 2011 show vertical gradients range from 0.2 feet, indicating a slight upward gradient at the Site (MW-6M and MW-6D), to negligible further downgradient of the Site (DP-23 and MW-12). These measurements indicate minimal vertical gradients within the overburden. The lack of silt or clay layers observed within the boring logs also indicates that significant confining layers are likely not present in the overburden in the vicinity of the Site.

Hydraulic conductivity slug tests were conducted at selected shallow (10 to 24 feet bgs) and deep (50 to 60 feet bgs) overburden locations to estimate hydraulic conductivity values. S lug tests were conducted both pneumatically at direct push locations with four inch screens, and with a solid slug at two-inch monitoring wells. Hydraulic conductivities were calculated using Aqtesolv and primarily using the methods of Bouwer and Rice (1976) and Hvorslev (1951) for the shallow overburden wells with regular appearing data. Hydraulic conductivities were calculated using the method of Springer and Gelhar (1971) for the deeper overburden wells, and for one of the shallow overburden wells, where the data indicated inertial effects. The estimated hydraulic conductivities for the shallow overburden locations ranged from 1.2 feet/day to 41.7 feet/day. The variations in hydraulic

conductivities indicate that the overburden in the study area is not uniform and that some areas likely have higher silt content. The geometric mean hydraulic conductivity in the shallow overburden was 9.2 feet/day. The estimated hydraulic conductivities for the deeper overburden locations ranged from84 feet/day to 81 feet/day. The geometric mean hydraulic conductivity in the deeper overburden was 131 feet/day. Based on an average horizontal gradient for the shallow overburden in the vicinity of the wells tested of 0.001 feet per foot and an assumed porosity of 0.25, the estimated travel time for shallow overburden groundwater ranged from four feet per year to 45 feet per year, with an average estimated travel time of 13 feet per year. This range represents zones of varying conductivity; with groundwater flow expected follow preferential pathways within the overburden. Site related CVOCs were detected at least 1600 feet downgradient of the source area, and if spills occurred forty years ago, that would indicate an estimated contaminant travel time along preferential pathways of 40 feet per year.

Based on an average horizontal gradient for the shallow overburden in the vicinity of the wells tested of 0.0012 feet per foot and an assumed porosity of 0.25, the average travel time for deeper overburden groundwater was estimated to be 230 feet per year. The higher estimated hydraulic conductivity and faster groundwater travel time for the deeper overburden is reflected in the observation of less fine soil at depths. A summary of the hydraulic conductivity slug test results is presented on Table 3.2. Hydraulic conductivity slug test plots and FDRs are presented in Appendix D.

3.5 GEOLOGY

Irondequoit Creek flows through a valley carved out of a pre-glacial Genesee River valley that was filled in with glacial drift (Rogers, 1893). Based on the off-site RI and previous investigations at the Site, the overburden at and in the vicinity of the Site consists of fine to very fine grained sand with little to some silt and trace amounts of gravel to approximately 12 feet bgs. Below 12 feet bgs soils predominantly consist of medium to very fine-grained sand with some to no silt with occasional gravel. Based on the one deep boring at the Site property, silt, followed by gravel and then silt and clay were encountered from 70 to 74 feet bgs, at which point the boring was terminated. Bedrock was not encountered in the on-site borings, although pieces of shale were noted in the deep boring between 72 and 74 feet bgs (LaBella, 2009a). Based on discussions with employees from the Dolomite Products Co., a gravel quarry located approximately 0.5 miles northwest of the Site, bedrock is anticipated to be greater than 115 feet bgs downgradient of the

Site. Figure 3.2 presents the interpreted geologic cross-section of the investigation area, along a line running from the southeast to the northwest (A to A'). The aerial presentation of the cross-section is shown on Figure 2.1.

A soil sample was collected from a depth of 15 feet from DP-28, located approximately 1,300 northwest of the Site, and submitted for grain size analysis. Grain size analytical results from DP-28 were described as, fine to coarse grained sand (79 percent), with little gravel (12 percent), and trace fines (6 percent of silt and clay). Analytical laboratory results of Site soil grain size sample is presented in Appendix E. Soil TOC results are presented in Table 3.3

4.0 NATURE AND EXTENT OF CONTAMINATION

To determine whether the laboratory data met the project specific criteria for data quality and data usability a Data Usability Summary Report (DUSR) was prepared. The DUSR was prepared for each batch of samples analyzed in accordance with the "Guidance for the Development of Data Usability Reports" (NYSDEC, 2010a) and included as an appendix to the RI Report.

Analytical results were compared to the appropriate SCGs, as indicated below. Reported concentrations of individual analytes indicating contravention of standards or guidelines will be noted in the report.

Groundwater and Pore Water Samples. Analytical results were compared to the NYS Class GA Groundwater Quality Standards from 6 NYCRR Parts 700-705 (NYS, 1999b), as well as to guidance values in the NYSDEC Technical and Operational Guidance Series 1.1.1 (NYSDEC, 1998), as appropriate.

Soil Vapor and Indoor Air Samples. Analytical results were compared to Matrices 1 and 2 of the NYSDOH Guidance for Evaluating Vapor Intrusion into Indoor Air in the State of New York (NYSDOH, 2006).

4.1 GROUNDWATER

Groundwater samples were collected from 34 temporary Geoprobe® sampling points (DP-01 through DP-34) and 14 permanent monitoring wells from both the Site and presumed downgradient locations from the Carriage Cleaners Site. Groundwater sampling locations are shown on 2.1.

An oblique view of the valley showing groundwater sampling locations is presented on Figure 4.1. Figures 4.2 through 4.5 also show the same oblique view of the valley as Figure 4.1, although the surface of the land is shown as transparent so that the various sampling depths can also be portrayed, allowing more of a three dimensional presentation of the data. The range of detected concentrations of PCE in groundwater is shown on Figure 4.2. The range of detected concentrations of TCE, a primary breakdown product of PCE, in groundwater is shown on Figure 4.3. The ranges of detected

concentrations of cis-1,2-DCE and VC, a breakdown products of TCE, in groundwater are shown on Figure 4.4 and Figure 4.5, respectively.

4.1.1 Direct Push Groundwater Profiling VOC Results

A total of 34 direct push borings were advanced at the Site to characterize off-site groundwater conditions. From November 2010 through July 2011, three direct push groundwater profiling events were conducted from the Site. Direct push boring locations DP-19 and DP-20 were advanced at presumed hydraulically upgradient locations from the Site; the remaining 32 direct push borings were advance in locations presumed to be hydraulically downgradient from the Site. A total of 66 groundwater grab samples (not including quality control) were collected from the 34 direct push locations. Groundwater samples were collected at discrete intervals by pushing rods to a desired depth. Groundwater was purged from the rods using a peristaltic pump and dedicated tubing. Detected VOCs from the direct push groundwater sampling are presented in Table 4.1. Complete analytical results are presented within the DUSR in Appendix F.

To evaluate upgradient groundwater conditions from the Site, two direct push borings (DP-19 and DP-20) were advanced and three discrete groundwater samples were collected. PCE, TCE, cis-1,2-DCE and VC were not detected at concentrations above their applicable SCGs (5 μ g/L, 5 μ g/L, and 2 μ g/L, respectively) in the three groundwater samples collected from the upgradient locations.

PCE, TCE, cis-1,2-DCE and/or VC were detected at concentrations above their applicable SCGs in groundwater samples from 21 of the 32 direct push groundwater profiling locations, downgradient from the Site. The maximum concentration of PCE (1,400 μ g/L) detected was at DP-02 (screening interval from 16 to 20 feet bgs), located approximately 10 feet west of the Site. The maximum concentration TCE (570 JD μ g/L) detected was at DP-10 (screening interval from 16 to 20 feet bgs), located approximately 240 feet west of the Site. The maximum concentration of cis-1,2-DCE (1,200 JD μ g/L) detected was at DP-11 (screening interval from 16 to 20 feet bgs), located approximately 250 feet west of the Site. The maximum concentration of VC (360 D μ g/L) detected was at DP-10 (screening interval from 8 to 12 feet bgs), located approximately 240 feet west of the Site. Based on the solubility of PCE (150 milligrams per liter [mg/L]), off-site groundwater exhibiting concentrations high enough to suggest the presence of dense non-aqueous phase liquid (DNAPL) were not reflected in the sample results during the direct push profiling events (USEPA, 1990).

4.1.2 Monitoring Well Groundwater VOC Results

Two rounds of groundwater samples were collected from monitoring wells at and further downgradient from the Site, and were analyzed for VOCs via USEPA Method 8260. The first round, or the baseline groundwater sampling event, was conducted in November 2010; and the second round was conducted in August 2011. The primary contaminants of concern (COCs) from the Site are chlorinated solvents related to dry cleaning operations; more specifically, PCE and TCE, and their breakdown products cis-1,2-DCE, and VC. Detected VOCs from monitoring well groundwater samples are presented in Table 4.2. Complete analytical results are presented within the DUSR in Appendix F.

PCE, TCE, cis-1,2-DCE, and/or VC were detected at concentrations above their applicable SCG in groundwater samples from 12 of the 14 monitoring wells sampled at the Site. The highest concentrations of PCE (680 D μ g/L) and TCE (1,300 DJ μ g/L) were detected on the Site (MW-2), adjacent to the former Site building. The highest concentration of cis-1,2-DCE (2,500 DJ μ g/L) and VC (150 μ g/L) were detected from MW-7, also located on the Site and adjacent to the former Site building.

4.1.3 Monitoring Well Groundwater MNA Results

Samples from seven overburden monitoring wells were submitted for analysis of MNA parameters August 2011. MNA groundwater results are presented in Table 4.3. Groundwater results were used to evaluate the likelihood that anaerobic biological degradation of CVOCs is occurring within groundwater at, and downgradient of the Site. MNA groundwater samples were not compared to SCGs. A subset of MNA parameters were collected from MW-5 to evaluate background groundwater conditions. An evaluation of MNA results is discussed in Section 5.

4.1.4 Pore Water VOC Results

Seven pore water samples were collected from locations west to northwest of the Site and analyzed for VOCs via USEPA Method 8260 (Figure 2.1). Pore water sampling results are summarized in Table

4.4. PCE was detected at PS-02 at a concentration of 0.52 J μ g/L. The other VOC parameter detected in the pore water was chloromethane (PS-06).

4.1.5 Sump Water VOC Results

Two groundwater samples were collected from separate influent pipes within the sump pit of Structure 15 and were analyzed for VOCs via USEPA Method 8260. Sump water sampling VOC results are presented in Table 4.5. PCE concentrations in the two sump water samples ranged from non-detect to 5.6 μ g/L. TCE concentrations in the two sump water samples ranged from non-detect to 37 J μ g/L. Cis-1,2-DCE concentrations in the two sump water samples ranged from 17 D μ g/L to 170 EJ μ g/L. VC concentrations in the two sump water samples ranged from 17 D μ g/L to 41 μ g/L.

4.2 SOIL VAPOR INTRUSION SAMPLING

Two exterior soil vapor samples were sampled in 2010. Twelve residential structures and three commercial structures were sampled in 2011. VOCs detected in exterior soil vapor samples are presented in Table 4.6. VOCs detected in sub-slab vapor and indoor/ambient air samples are presented by location in Table 4.7. Complete analytical results are presented within the DUSR in Appendix F. The SVI sampling program is discussed in detail in a confidential report issued to the NYSDEC on June 30, 2011.

4.2.1 Exterior Soil Vapor Sampling

PCE detected in exterior soil vapor ranged in concentrations from 2.3 J $\mu g/M^3$ to 2.8 J $\mu g/M^3$. TCE detected in exterior soil vapor ranged in concentrations from non-detect to 2 J $\mu g/M^3$. Cis-1,2-DCE and VC were not detected at concentrations greater than the reporting limit.

4.2.2 Residential Soil Vapor Intrusion Sampling

PCE concentrations in the 12 sub-slab vapor samples ranged from non-detect to 21,000 $\mu g/M^3$ and indoor air concentrations ranged from non-detect to 29 J $\mu g/M^3$. TCE concentrations in the 12 sub-slab vapor ranged from non-detect to 28,000 J $\mu g/M^3$ and indoor air concentrations ranged from non-detect to 42 J $\mu g/M^3$. Cis-1,2-DCE concentrations in the 12 sub-slab vapor ranged from non-detect to 22,000 $\mu g/M^3$ and indoor air concentrations ranged from non-detect to 43 $\mu g/M^3$. VC concentrations

in the 12 sub-slab vapor ranged from non-detect to 2,000 J μ g/M³ and indoor air concentrations ranged from non-detect to 8.5 J μ g/M³.

4.2.3 Commercial Soil Vapor Intrusion Sampling

PCE concentrations in the three sub-slab vapor samples ranged from non-detect to 16 J $\mu g/M^3$ and indoor air concentrations ranged from non-detect to 2.7 $\mu g/M^3$. TCE concentrations in the three sub-slab vapor samples ranged from non-detect to 17 J $\mu g/M^3$ and indoor air concentrations ranged from non-detect to 0.082 $\mu g/M^3$. Cis-1,2-DCE concentrations in the three sub-slab vapor samples ranged from non-detect to 17 $\mu g/M^3$ and indoor air concentrations were non-detect. VC concentrations in the three sub-slab vapor samples ranged from non-detect to 19 $\mu g/M^3$ and indoor air concentrations were non-detect.

5.0 CONTAMINANT FATE AND TRANSPORT

This section presents an assessment of contaminant movement and disposition within the environment.

5.1 CONCEPTUAL SITE MODEL

The CSM takes into consideration sources of contamination, fate and transport processes, potential receptors, exposure pathways, and exposure points. Contaminated media associated with the Site include soil, groundwater, soil vapor, and indoor air. Table 2.3 provides a summary of the contamination sources, migration pathways, and potential receptors.

Site access is currently controlled by a chain link fence. Within the fenced area, contamination is located in subsurface soil that is primarily covered by clean fill, asphalt or beneath the concrete slab of the former Site building. If the Site were to undergo development activities, workers who excavate the soil for underground utility repair or maintenance, or for construction activities, could be exposed to contaminants in soil through incidental ingestion of soil, dermal contact with the soil, or by inhaling dust or vapor that may be released from the soil.

Residential and commercial properties located within the potential groundwater plume path are serviced by public water and sewer. Therefore, direct exposure to groundwater associated with the Site through domestic or other uses is not anticipated. Minimal direct exposure to contaminated groundwater could occur if work was conducted on basement sumps that potentially contain contaminated groundwater. In addition, workers excavating in the vicinity of the Site could come in contact with contaminated groundwater. Deeper groundwater appears to be flowing below Irondequoit Creek and into the Quarry, although discharge of contaminants from shallow groundwater to surface water could also occur into Irondequoit Creek. Based on expected diffusion and dispersion of contaminants, contaminants discharged to surface water would not be expected to pose a health risk to human or ecological receptors.

SVI sampling performed within structures at presumed hydraulically downgradient locations of the Site, identified the potential for vapor intrusion of VOCs at eight residential locations. Sub-slab depressurization systems were installed at these locations in 2011, mitigating this potential route of exposure.

5.2 CONTAMINANT PERSISTENCE

The following sections discuss contaminant persistence and characteristics of COCs at the Site.

VOCs

COCs detected at concentrations greater than their associated NYS groundwater standards include PCE, TCE, cis-1,2-DCE, and, VC. These compounds are classified as halogenated hydrocarbons (specifically chlorinated hydrocarbons) and are present in groundwater and soils on the Site. The processes that likely control the fate of VOCs at, and hydraulically downgradient of, the Site include volatilization, dissolution, and biodegradation. These processes are briefly discussed below.

Volatilization. The primary fate of VOCs in soils and shallow groundwater is likely volatilization, as VOCs partition rapidly to the atmosphere, and neither biodegradation nor hydrolysis (a photolytic decomposition due to exposure to sunlight) occurs at a rapid rate. (Agency for Toxic Substances and Disease Registry, 1997)

Dissolution. Dissolution of VOCs from site sources to groundwater is a significant transport mechanism for VOCs at the Site. Factors affecting dissolution of VOCs likely are: (1) water table elevation in comparison to source areas; (2) flow rate (residence time) of the groundwater in the contaminated material; (3) solubility of the compound; (4) amount of recharge through VOCs in the unsaturated zone; and (5) the degree of partitioning to soils.

Biodegradation. Biodegradation reactions can reduce the total mass of VOCs in groundwater. Naturally occurring bacteria in soil are capable of degrading VOCs. Certain types of microorganisms (aerobes) require oxygen to aerobically biodegrade VOCs and the concentration of DO is an indicator of the potential for aerobic biologic activity in groundwater. Aerobic biodegradation is particularly effective for aromatic hydrocarbons, such as benzene and toluene, and may be effective in mineralizing chlorinated solvent daughter products such as 1,2-DCE and VC.

Under aerobic conditions, the parent compound PCE and its daughter product TCE are relatively stable and persistent in the environment. Under suitable anaerobic conditions, however, PCE and TCE

may undergo biologic transformation as the dominant fate process. It has been shown that biodegradation of PCE and TCE in groundwater increases with the organic content of the soil.

The complete anaerobic biologic transformation pathway for PCE is:

PCE→TCE→1,2-DCE→VC→ethene→carbon dioxide and water. Degradation pathways may not be complete, however, depending on the presence of suitable conditions to complete the process.

Persistence of VOCs in Site Media

Chlorinated solvents, the primary COCs at the Site, are fairly persistent in the environment. The chlorinated solvents associated with the dry cleaning process were reportedly used at the Site from approximately 1961 to 2005. The primary source of the PCE contamination, a leaky concrete waste water holding tank on the north side of the Site building, and leaks from a PCE still located in the southern half of the former Site building were removed in 2007, along with PCE contaminated soil. Soil samples collected from the base of the excavation pit indicated the continued presence of PCE in soil; concentrations detected as high as 130,000 mg/kg. PCE in Site soils present a continued source of groundwater contamination.

The properties of PCE and its degradation products are listed below.

Contaminant	(mm Hg)		Density constant (g/cm³)	Water solubility (mg/L)	Octanol- water partition coefficient (K _{ow})	$\begin{array}{c} Organic\\ carbon\\ partition\\ coefficient\\ (K_{oc}) \end{array}$	
tetrachloroethene	17.8	2.59E-02	1.6311	150	398	364	
trichloroethene	57.9	9.10E-03	1.4679	1,100	240	126	
cis-1,2-dichloroethene	208	7.58E-03	1.27	3,500	5.01	49.0	
vinyl chloride	2,660	8.19E-02	0.9106	2,670	24	57	

Based on the solubility (150 mg/L), Henry's Constant (0.754-unitless) and organic carbon partition coefficient (364 mg/g) of PCE and using the Soil Saturation Limit (C_{sat}^{-1}) equation assuming saturated conditions, DNAPL is possible if concentrations in soils exceed 300 mg/kg.

The Soil Saturation Limit equation, assuming saturated conditions is as follows:

$$C_{\text{sat}} = S / \rho_b (K_d \rho_b + \Theta_w)$$

Parameter = Definition (units)

 C_{sat} = soil saturation concentration (mg/kg)

S = solubility in water (mg/L)

 ρ_b = dry soil bulk density (kg/L) = assume 1.5

 K_d = soil-water partition coefficient (L/kg) = K_{oc} x foc

 K_{oc} = organic carbon partition coefficient (L/kg)

Foc = fraction organic carbon in soil (g/g) = 0.0047 (0.47% interpreted from TOC results in Table 3.3)

 $\Theta_{\rm w}$ = water-filled soil porosity (Lwater /Lsoil) = assume 0.43

In 2007, the highest concentration of PCE detected in soil at the Site after the soil removal program was 130,000 mg/Kg. This PCE concentration was above the C_{sat} concentration of 300 mg/kg, suggesting that the presence of PCE as a DNAPL remains a likely possibility at the Site in soils surrounding the area excavated.

In 2011, the highest detected concentration of PCE in Site groundwater was 1,300 μ g/L (MW-2). Based on the general "rule of thumb" that NAPL is potentially present if dissolved concentrations in groundwater exceed 1% of the effective solubility of the compound (Plankow, 1996), this concentration does not indicate the potential presence of PCE as DNAPL in Site soil in the vicinity of MW-2 (i.e., downgradient of the historic source). However, the primary purpose of the off-site RI investigation was evaluation of off-site groundwater, and shallow groundwater samples from within AOC 1 or AOC 2 were not collected in 2011.

Shallow soils at the Site exhibit some silt and clay content based on historic reports (Labella, 2009a) and some of the remaining mass of PCE may have diffused into the silt matrix. As stated above, the primary mechanisms of concentration reduction of VOCs are typically through volatilization into soil

 1 C_{sat} is the concentration in soil at which the solubility limits of the soil pore water, the vapor phase limits of the soil pore air, and the absorptive limits of the soil particles have been reached. C_{sat} is a theoretical threshold above which a free phase liquid hazardous substance may exist. The equation is described in the USEPA "Soil Screening Guidance"

(USEPA, 1996).

gas (for unsaturated soil or groundwater table surface concentrations), and dispersion and diffusion in groundwater, as well as through biological degradation. If the mass of PCE is bound within the soil matrix (i.e., adsorbed to the soils), then dispersion through advection will be less of a factor in concentration reduction.

To evaluate contaminant persistence in groundwater, contaminant concentrations in samples collected over several years were reviewed. Table 5.1 presents concentrations of PCE and its breakdown products TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, and VC detected in groundwater in a select set of Site monitoring wells for sampling events conducted to date at the Site. MW-2 is located adjacent to AOC 1, and MW-7 is located downgradient from the historic PCE still (AOC 2). Although a soil removal action was conducted in 2007 from AOC 1, concentrations of select VOCs in groundwater samples collected from MW-2 appear to have remained relatively consistent from 2005 to 2011. This indicates that a source of groundwater contamination is likely present in soil upgradient from this location. Concentrations of PCE, TCE and cis-1,2-DCE have appear to have increased in groundwater samples collected from MW-7, when comparing available data from 2006 through 2011. Higher concentrations were historically detected in groundwater samples collected from MW-1 and MW-9, both of which were located within the approximate boundaries of the two source areas. These monitoring wells were either removed (MW-1) or were deemed not usable (MW-9) during the 2010 and 2011 groundwater sampling events. Results associated with MW-1 and MW-9 were not included in Table 5.1.

Based on direct push and monitoring well groundwater data collected during the off-site RI, PCE concentrations within the plume appear to decrease with distance from the Site. PCE concentrations decreased from 1,300 μ g/L (MW-2 and DP-10) at the source area to 110 μ g/L (DP-18), located approximately 700 feet northwest of the Site. For VC, a breakdown product of PCE, concentrations increased from a maximum concentration of 150 μ g/L (MW-7) at the source area to 360 μ g/L (DP-10) located approximately 300 feet northwest from the Site. VC was detected as high as 220 μ g/L in DP-22, located approximately 1,350 feet northwest of the source.

5.3 MONITORED NATURAL ATTENUATION

Evaluation of Biological Degradation/Natural Attenuation of VOCs at the Site

Natural attenuation refers to the presence of microorganisms which are capable of degrading chlorinated solvents. Anaerobic conditions occur under reducing conditions and with little to no DO. Aerobic conditions occur under oxygenated conditions or with high levels of DO.

MNA parameters for groundwater were collected in August 2011 from select monitoring wells. MNA analytical results are presented in Table 4.3. BIOCHLOR Model (BIOCHLOR) Natural Attenuation Screening forms are included in Appendix G.

BIOCHLOR uses the MNA data to evaluate the likelihood that biodegradation of the chlorinated solvents is occurring in the aquifer. Evaluation results are presented as a numerical value in Table 4.3, which represents whether there is *inadequate evidence*, *limited evidence*, *adequate evidence*, or *strong evidence* that anaerobic biodegradation of chlorinated organics is occurring in the aquifer. Based on an evaluation of the MNA data, there is *adequate evidence for anaerobic biodegradation* in groundwater at the Site (MW-2), and *limited evidence for anaerobic biodegradation* in groundwater downgradient from the Site. Although BIOCHLOR results indicated that there is *limited evidence for anaerobic biodegradation* in the aquifer downgradient of the Site, VOC analytical groundwater data collected from 2010 and 2011 strongly suggests that reductive dechlorination is occurring based on the high concentrations of the PCE breakdown products.

The occurrence of natural attenuation is also indicated by the increase in concentration of VC as groundwater moves away from the source area of PCE contamination (See Section 5.2).

5.4 CONTAMINANT MIGRATION

Sources and Migration Pathways

Contaminants detected in Site media at concentrations above associated regulatory SCG values consist of CVOCs.

Historical documentation and previously collected data from the Site, indicate chlorinated solvents typically used in the dry cleaning industry were released to the environment. Previous investigations indicated that the two primary release mechanisms and source areas were 1) the leaking waste water

tank on the north side of the Site building (AOC 1), and 2) the spills to the ground surface from the PCE still, located inside the south end of the Site building (AOC 2). Incidental spills may also have occurred outside the site building.

Chlorinated solvents or waste water containing CVOCs can percolate into soils, and further into to groundwater. CVOCs bound to the soil matrix can also readily leach from soil with infiltration of precipitation, and migrate to groundwater. Once dissolved in groundwater, CVOCs can migrate with groundwater flow. G roundwater at and in the vicinity of the Site is present from between approximately 5.5 feet bgs to 7.5 feet bgs. Localized groundwater flow is interpreted to flow in a generally west to northwesterly direction, towards Irondequoit Creek. Regional groundwater flow is also likely to the northwest, toward Lake Ontario. Groundwater data collected during the RI indicates that CVOCs are present in groundwater below the Site, and that CVOC contaminated groundwater extends, at least, approximately 2,100 feet northwest of the Site. The highest concentrations of CVOCs in groundwater were historically detected in samples collected from the two source areas. Monitoring wells were either deemed not usable, or had been removed from these source areas prior to the MACTEC RI. The highest concentrations of CVOCs detected in groundwater during the MACTEC RI were in groundwater samples from MW-2 and MW-7, located adjacent to the historic source areas.

Groundwater from the site is expected to discharge to Irondequoit Creek (shallow groundwater) or to the gravel quarry (deep groundwater) to the northwest of the Site. Although low concentrations of CVOCs present in groundwater may be discharging to these surface water bodies, concentrations are expected to be minimal and rapidly diminish to below detectable limits due to dilution.

VOCs can partition from both soil and groundwater to soil vapor and migrate through the soil column. Detections of CVOCs in sub-slab soil vapor samples indicate that CVOCs are partitioning from groundwater to soil vapor in residential properties northwest from the Site. Soil vapor can be drawn into buildings through seams and cracks in foundations and floor slabs. Indoor air samples collected from within several structures located over the VOC-impacted groundwater indicate that the soil vapor to indoor air migration pathway was complete. For structures where the soil vapor and indoor air samples exceeded the NYSDOH guidance values, sub-slab depressurization systems were installed to reduce this exposure pathway.

Although shallow groundwater can discharge to surface water, low levels of CVOCs were detected in one pore water sample (PS-02) collected by MACTEC (PCE at a concentration of $0.52~J~\mu g/L$). Based on this data, migration of groundwater contamination to surface water is not anticipated to occur.

6.0 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

6.1 INTRODUCTION

This section provides a QHHEA for the off-site groundwater at the Carriage Cleaners site. The QHHEA was performed in accordance with NYSDEC DER-10 Technical Guidance (NYSDEC, 2010a), which indicates that the QHHEA should evaluate the mechanisms or exposure pathways by which humans may be potentially exposed to contamination associated with the Site. This section also evaluates the significance of exposure that may occur through the potential exposure pathways. This exposure assessment involves five elements:

- 1. Description of the contaminant source and the contaminated environmental medium (discussed in detail in Section 5.0);
- 2. An explanation of the contaminant release and transport mechanisms to the exposed population (discussed in detail in Section 5.0);
- 3. Identification of potential exposure points to which the populations may come in contact with contaminated medium(discussed in detail in Section 5.0);
- 4. Description of the routes of exposure (i.e., ingestion, inhalation, etc.); and
- 5. Characterization of the receptor population who may be exposed to contaminants at the identified points of exposure (takes into consideration the populations that may be potentially exposed to Site-related contamination under the current and future land uses).

In addition, this section includes a discussion of contaminant concentrations at potential exposure points compared to regulatory SCGs.

6.2 RECEPTORS, EXPOSURE PATHWAYS, AND EXPOSURE POINTS

The current and anticipated future use of the Site property is commercial. The properties bordering the Site are also commercial properties. Properties further west and northwest of the Site include both residential and commercial uses.

The Site related contaminants of concern are CVOCs. These contaminants leaked/spilled to the ground surface resulting in contamination of soil, groundwater, and soil vapor. Potentially complete

exposure pathways were identified for direct contact with groundwater via sump water, and inhalation of vapors that may migrate from groundwater to air within overlying structures.

The significance of exposure pathways associated with groundwater and soil vapor/indoor air media is evaluated in this subsection through comparison of analytical data to standard and guidance concentrations published by the NYS and NYSDOH and/or background concentrations.

Groundwater

Groundwater at and in the vicinity of the Site is not used as drinking water and therefore there are no direct exposures to contaminated groundwater from a drinking water perspective under the current or anticipated future land uses. However, a comparison of groundwater analytical data to NYS drinking water standards and guidance values provides information regarding constituents that would be of concern from a health risk perspective if the groundwater was used as potable water under existing conditions. A review of the analytical data indicates that CVOCs (PCE TCE, cis-1,2-DCE, and VC) were detected in groundwater samples collected between the Site and the quarry at concentrations that exceed NYS class GA drinking water standards. Direct contact with contaminated groundwater is possible if excavations are conducted within the area of the overburden groundwater plume (depth to groundwater at the Site varies from between approximately five and seven feet bgs). Minimal direct exposure to contaminated groundwater could also occur if work was conducted on basement sumps that potentially contain contaminated groundwater.

Surface Water

While surface water was not sampled during this RI, seven pore water samples were collected at the groundwater/surface water interface from along the banks of Irondequoit Creek. PCE was detected in one pore water sample (PS-02) at a concentration of 0.52 J µg/L. This concentration is below the drinking water standard for PCE and therefore direct contact with surface water is not anticipated to be a complete exposure pathway.

Soil Vapor Intrusion

SVI is the process by which volatile chemicals migrate from a subsurface source into the indoor air of overlying structures. Evaluations of the SVI pathways are often complex as a result of VOCs in indoor air which are present in part or all due to anthropogenic (background) sources and not the result of the migration of a subsurface source through soil vapor into an enclosed space. Therefore, the

evaluation of the SVI pathway was performed by comparing sub-slab vapor sampling data, indoor air sampling data, outdoor (ambient) air sampling data, and air guideline values, as well as evaluating adjacent residences analytical results. The NYSDOH Guidance for evaluating the potential for vapor migration into indoor air was also followed for compounds that have been assigned to the soil vapor / indoor air decision matrices (available for carbon tetrachloride, 1,1-DCE, cis-1,2-DCE, PCE, 1,1,1-TCA, TCE and VC) (NYSDOH, 2006 and 2007). Recommendations resulting from the decision matrices include: no further action, evaluate potential indoor air sources, monitor, and mitigate.

Comparing concentrations of CVOCs detected in the soil vapor and indoor air within residential and commercial structures north and northwest of the Site to the NYSDOH decision matrix, as well as evaluating residential basement construction, the NYSDEC and NYSDOH determined there was a potential complete exposure pathway at eight residential structures.

7.0 SUMMARY AND CONCLUSIONS

7.1 SUMMARY

The Site is located at 1600 Penfield Road in a mixed residential/commercial area in the Town of Penfield, Monroe County. The site property size is 0.68 acres and is currently vacant, with fencing at the perimeter. The Site contains a former building concrete slab, construction debris and a paved parking lot. The former site building was constructed in 1961 and demolished in the summer of 2009.

The site reportedly operated as a dry cleaning facility from 1961 until approximately 2005, however, on-site dry cleaning operations may not have been implemented for the entire time period. A Phase II ESA was conducted at the Site in 2002 and results indicated soil contamination exceeding the NYSDEC TAGM 4046 Soil Clean-up Objectives to Protect Groundwater Quality adjacent to AOC 1.

A RI was conducted at the Site in 2006 that included an evaluation of shallow soil and groundwater and deep soil and groundwater. The extent of contamination on the Site was divided into three AOCs (Figure 1.2).

An IRM was conducted at the Site in 2007 and approximately 238 tons of CVOC impacted soil in the proximity of AOC 1 was removed and disposed off-site. In addition, 632 g allons of contaminated water from the wastewater holding tank was also remove for off-site disposal. Confirmation soil samples were collected upon completion of the soil removal. PCE was detected at a concentration of 130,000 mg/kg in a soil sample collected from the bottom of the completed excavation prior to backfilling. LaBella recommended that "Based on the confirmatory soil sampling results, additional remedial actions appear warranted for this area".

To evaluate the extent of the off-site groundwater contamination, and the potential for soil vapor intrusion to overlying buildings, MACTEC, conducted the off-site RI between 2010 and 2011. Interpretation of groundwater table elevations recorded indicates groundwater flow is toward the

northwest. Estimated shallow overburden groundwater flow velocities ranged from 4 to 41 feet per year. Estimated deep overburden flow velocities averaged 230 feet per year.

Based on direct push and monitoring well groundwater data collected during the off-site RI, the extent of CVOC contaminated groundwater extends approximately 2100 feet northwest of the Site. PCE concentrations within the plume appear to decrease with distance from the Site. PCE concentrations in groundwater decreased from 1,300 μ g/L (MW-2 and DP-10) at the source area to 110 μ g/L (DP-18), located approximately 700 feet northwest of the Site.

Although BIOCHLOR results indicated that there is "limited evidence for anaerobic biodegradation" in the aquifer downgradient of the Site, VOC analytical groundwater data collected from 2010 and 2011 strongly suggests that reductive dechlorination is occurring based on the high concentrations of PCE daughter products detected. V inyl chloride concentrations increased from a maximum concentration of 150 μ g/L (MW-7) at the source area to 360 μ g/L (DP-10) located approximately 300 feet northwest from the Site. Vinyl chloride was detected as high as 220 μ g/L in DP-22, located approximately 1,350 feet northwest of the source area. Concentrations of CVOCs in groundwater continue to diminish as groundwater flows further northwest. In addition to the biological degradation, dispersion and dilution of the VOCs in the water column also likely contribute to the diminishing concentrations of VOC in groundwater.

Based on results obtained during the off-site RI, VOC groundwater contamination appears to be primarily located in shallow groundwater (extending to approximately 35 feet bgs) downgradient from the Site property. Concentrations of PCE at the Site were detected at 780 μ g/L (12 feet bgs) from MW-2, and at approximately 30 μ g/L at both 35 feet bgs and 65 feet bgs from MW-6M/D. The concentrations of CVOCs in groundwater downgradient of AOC 1, located north of the former Site building, also appear to be higher in the shallow groundwater. PCE was detected at a concentration of 400 D μ g/L (10 feet bgs) from DP-03, but was not detected from the sample at 20 feet bgs. Further west of the Site, high concentrations of CVOCs were detected at DP-10 from the top of the water table down to 25 feet bgs, with the highest concentrations detected at approximately 17 to 27 feet bgs (PCE at 1,300 μ g/L; cis-1,2-DCE at 760 μ g/L). PCE concentrations detected at DP-10 decreased with depth to approximately 50 μ g/L (at approximately 35 and 45 feet bgs). Based on the low concentrations of PCE detected in one of the seven pore water samples collected along the banks of Irondequoit Creek

northwest of the Site, surface water is not anticipated to be a potential complete exposure pathway for CVOCs.

Although the Site and surrounding area are serviced by public water and sewer, shallow groundwater has the potential to migrate into basement sumps. Chlorinated solvents were detected in water samples collected from a basement sump within the residential neighborhood northwest of the Site.

Contaminated groundwater has the potential to migrate to soil vapor and into overlying occupied structures. Based on an evaluation by the NYSDOH and NYSDEC of the soil vapor and indoor air samples collected from 15 structures, four mitigation systems were recommended and installed to mitigate eight residences (these included SSD systems and sump covers). No further action was recommended for the remaining 10 structures. This SVI information is presented in a standalone document.

7.2 CONCLUSIONS

CVOCs have been disposed of at the Site property. Although a soil removal was conducted to remediate soil defined as a characteristic hazardous waste based on the CVOC concentrations CVOCs are still present in soils at the Site above the SCGs for unrestricted use. This contamination appears to be a continuing source of overburden groundwater contamination. Based on data collected during the RI, site-related CVOCs have migrated in groundwater as far as 2,100 feet to the northwest of the Site at concentrations in excess of SCGs (refer to Figure 4.2 through Figure 4.5). G roundwater concentrations diminish further to the northwest of the Site at DP-34 (cis-1,2-DCE at a concentration of $47 \mu g/L$ in 2011) through dispersion, dilution, and anaerobic biological degradation. Shallow groundwater contamination may be discharging to the gravel quarry, northwest of the Site, but likely at concentrations below regulatory criteria.

Chlorinated VOCs present in shallow groundwater in the vicinity of the Site appear to be volatilizing to soil vapor. The soil vapor has the potential to migrate to indoor air through vapor intrusion.

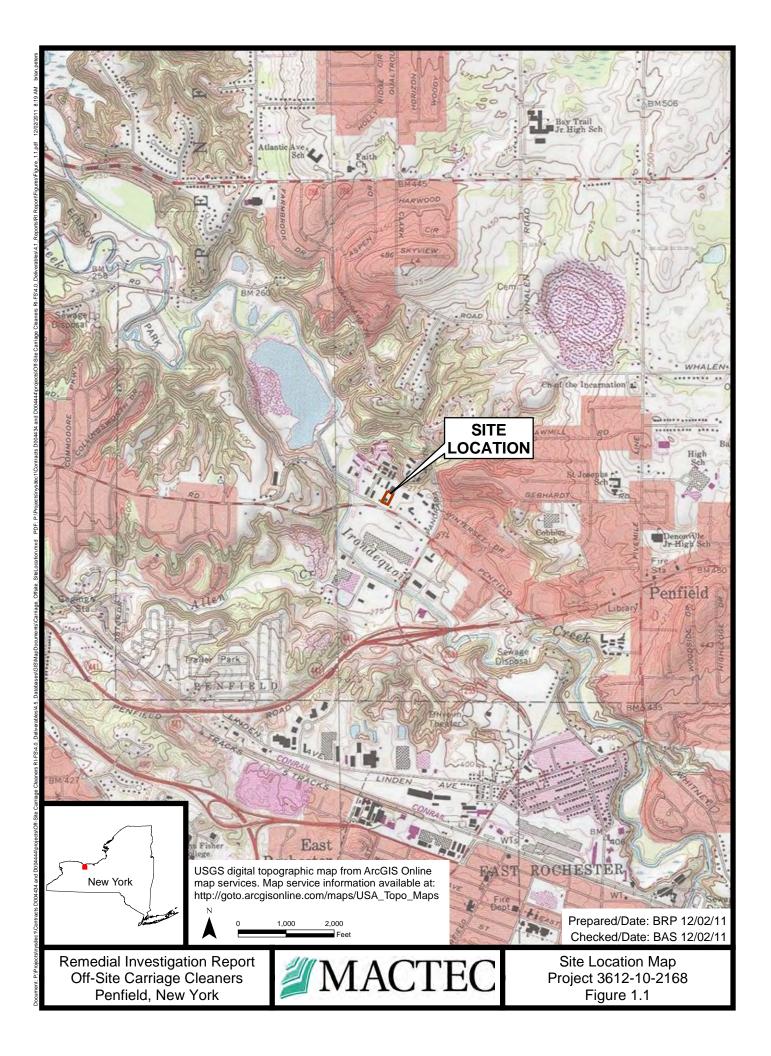
Based on an evaluation of the data collected to date, several potential complete exposure pathways for site related CVOCs were identified. Although the site is currently inactive and surrounded by a fence, potential future construction workers at the Site that perform earthwork could come into contact with

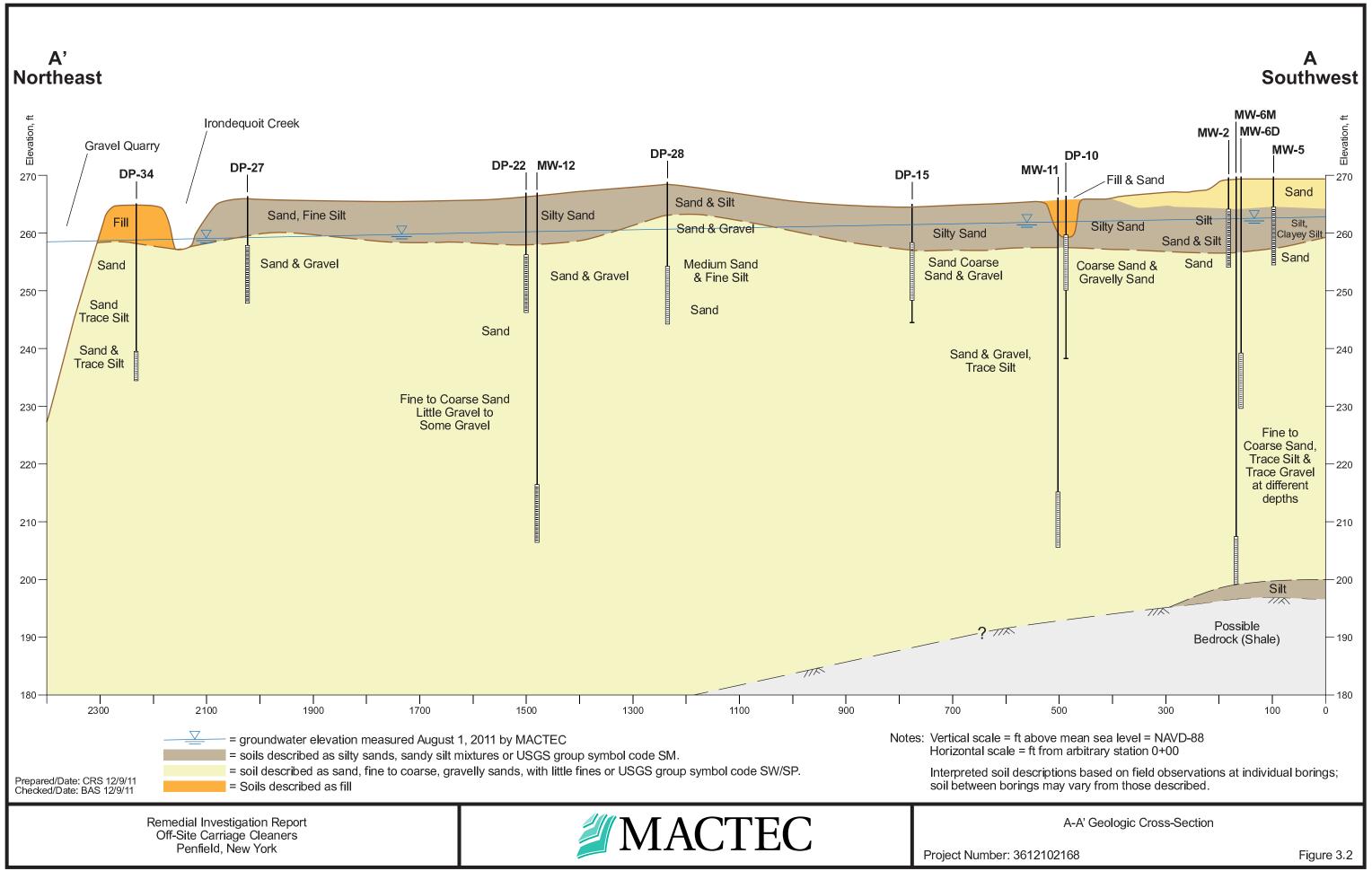
contaminated soil and groundwater above SCGs. Groundwater in the vicinity of the Site is not used as a source of drinking water. Direct contact with contaminated groundwater is therefore not anticipated to be a complete exposure pathway under most circumstances, although incidental exposure to contaminated groundwater entering basement sumps is a possibility. The primary potential exposure route for site related CVOCs is to contaminated air resulting from the migration of contaminants from groundwater to indoor air through SVI. A complete exposure pathway from SVI was identified within several residential structures northwest of the Site. This potential and actual exposure pathway was mitigated with the installation of four sub-slab depressurization systems.

7.3 DATA GAPS AND RECOMMENDATIONS

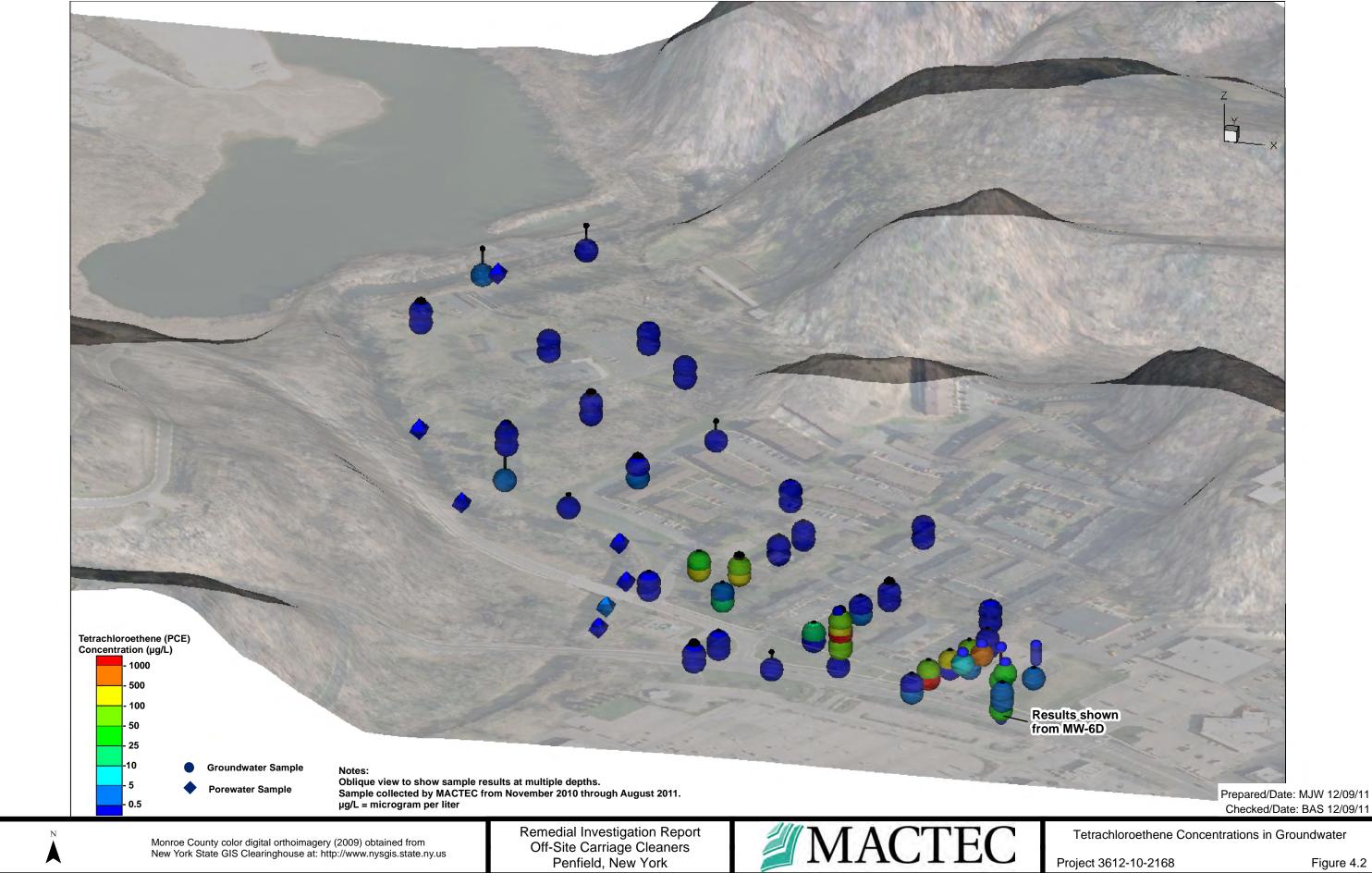
Based on the information collected to date, several data gaps were identified, including:

- 1. Previous investigations have not determined the full extent/mass of soil contamination remaining at the Site within AOC 1 and AOC 2. This soil contamination appears to be a continuing source of groundwater contamination.
- 2. The vertical extent of groundwater contamination at and downgradient of the Site has not been defined.

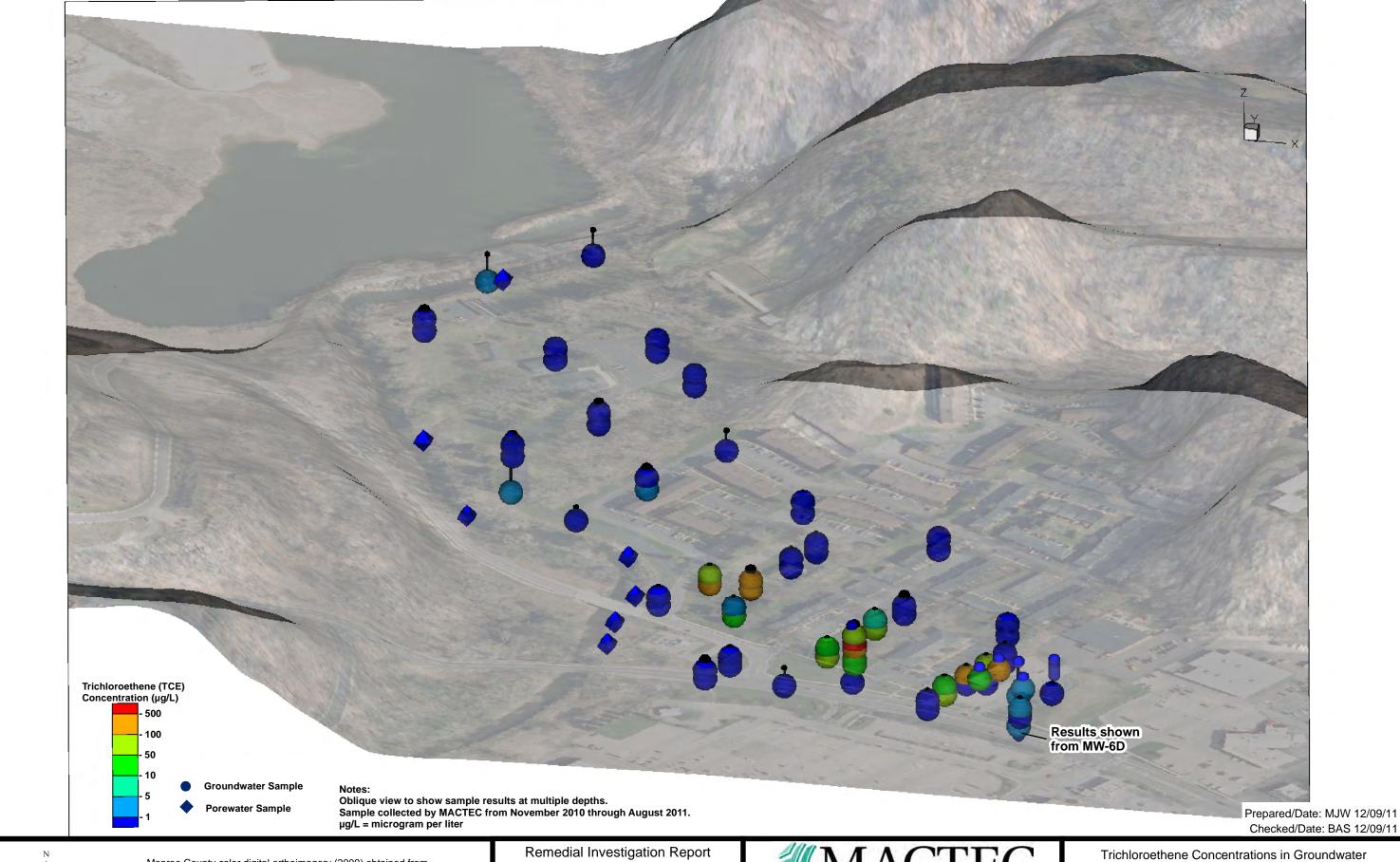

To remediate groundwater contamination migrating off-site and the continued potential for vapor migration of CVOCs into the indoor air of structures located above and adjacent to the groundwater plume, the residual soil contamination on the Site should be further evaluated and remediated. This remediation should be conducted prior to, or in conjunction with remediation of the off-site groundwater plume. Prior to remediating soil and groundwater contamination at and downgradient from the Site, a feasibility study is recommended to evaluate remedial alternatives.

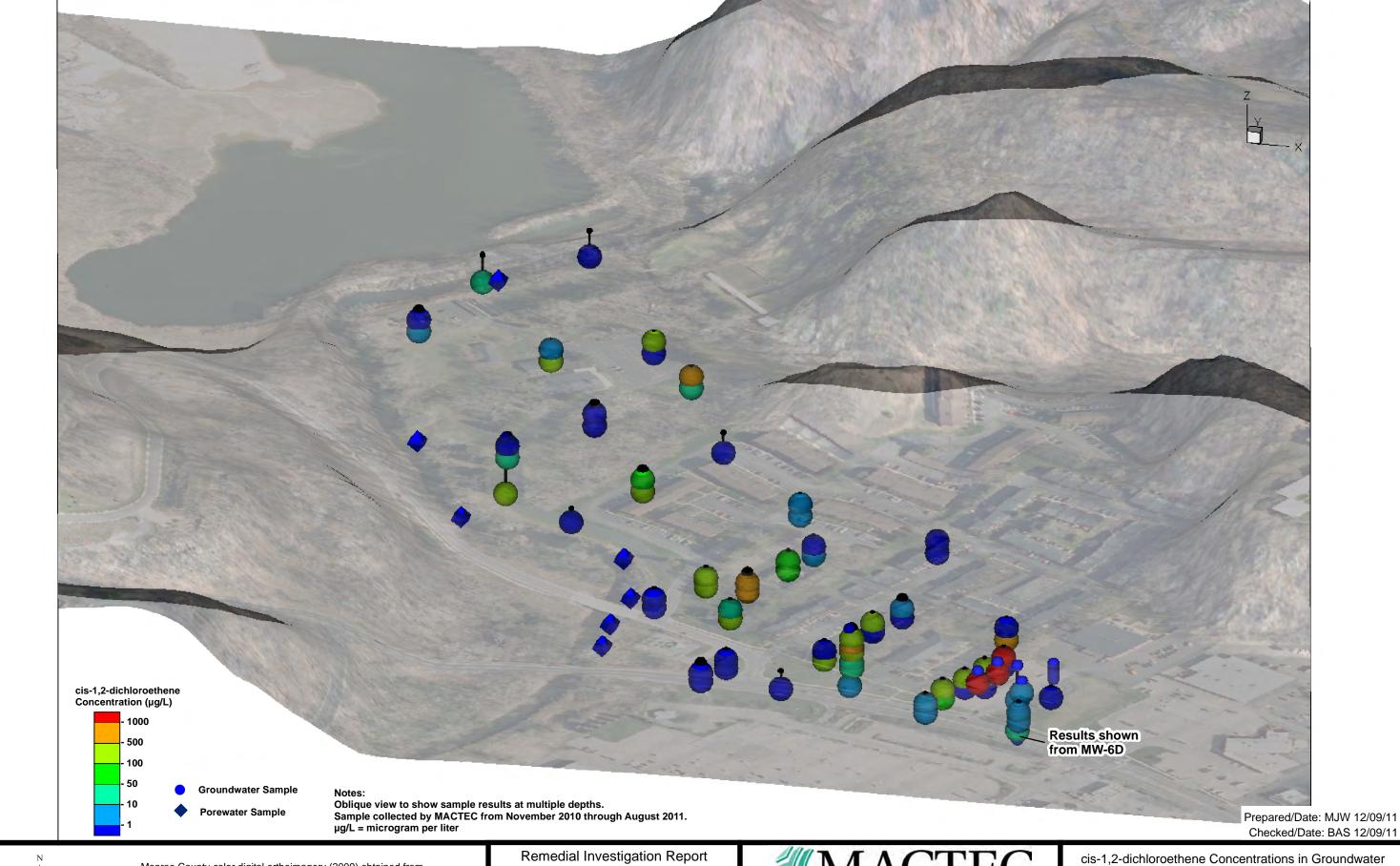

8.0 REFERENCES

- Agency for Toxic Substances and Disease Registry, 1997. Toxicological profile for Tetrachloroethene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- LaBella Associates, P.C. (LaBella), 2009a. *Remedial Investigation Report*, Carriage Cleantown, 1600 Penfield Road, Town of Penfield, Monroe County, New York. June 2009.
- LaBella, 2009b. *Interim Remedial Measures*, Carriage Cleantown, 1600 Penfield Road, Town of Penfield, Monroe County, New York. July 2009.
- MACTEC, 2010. Draft Remedial Investigation/Feasibility Study, Off-Site Carriage Cleaners, NYSDEC Site # C828131A. October 2010.
- Work Plan National Climactic Data Center (NCDC), 1999. Comparative Climactic Data for the United States through 1998. June 22, 1999.
- New York State (NYS), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375- Inactive Hazardous Waste Disposal Sites Remedial Program. Re-issued, October, 2006.
- NYS, 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371- Identification and Listing of Hazardous Wastes. Amended November 1999.
- NYS, 1999b. New York Codes, Rules, and Regulations, Title 6, P art 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State Department of Environmental Conservation (NYSDEC), 2010a. DER-10, Technical Guidance for Site Investigation and Remediation. May 2010.
- NYSDEC, 2010b. Work Assignment Issuance/Conflict of Interest Letter for Off-site Carriage Cleantown; dated September 13, 2010.
- NYSDEC, 1998. Class GA Groundwater Quality Guidance Values from the Division of Water Technical and operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values", 1998.


- New York State Department of Health (NYSDOH), 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October, 2006.
- NYSDOH, 2006 and 2007. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006, as amended June 25, 2007.
- Plankow, James F., Cherry, John A., 1996; "Dense Chlorinated Solvents in Groundwater and other DNAPLs in Groundwater"; Waterloo Press, 1996.
- Rogers, Brownell, 1893. "The Genesee River", Science, Vol. ns-21 no. 526 p. 121; March 3,1893.
- United States Environmental Protection Agency, 1988. G uidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA (Interim Final); EPA/540/G-89/004; October 1988.
- United States Environmental Protection Agency (USEPA), 1990. *Basics of Pump-and-Treat Groundwater Remediation Technology*, EPA/600/8-90/003. March, 1990.
- USEPA, 1996. Soil Screening Guidance: User's Guide. EPA/540/R-96/018. April 1996.
- United States Geological Survey, 1999; Water Resources of Monroe County, New York, Water Years 1989-93, with Emphasis on Water Quality in Irondequoit Creek Basin; U.S. Geological Survey Water Resource Investigations Report 99-4048 by Donald A. Sherwood; 1999.

FIGURES

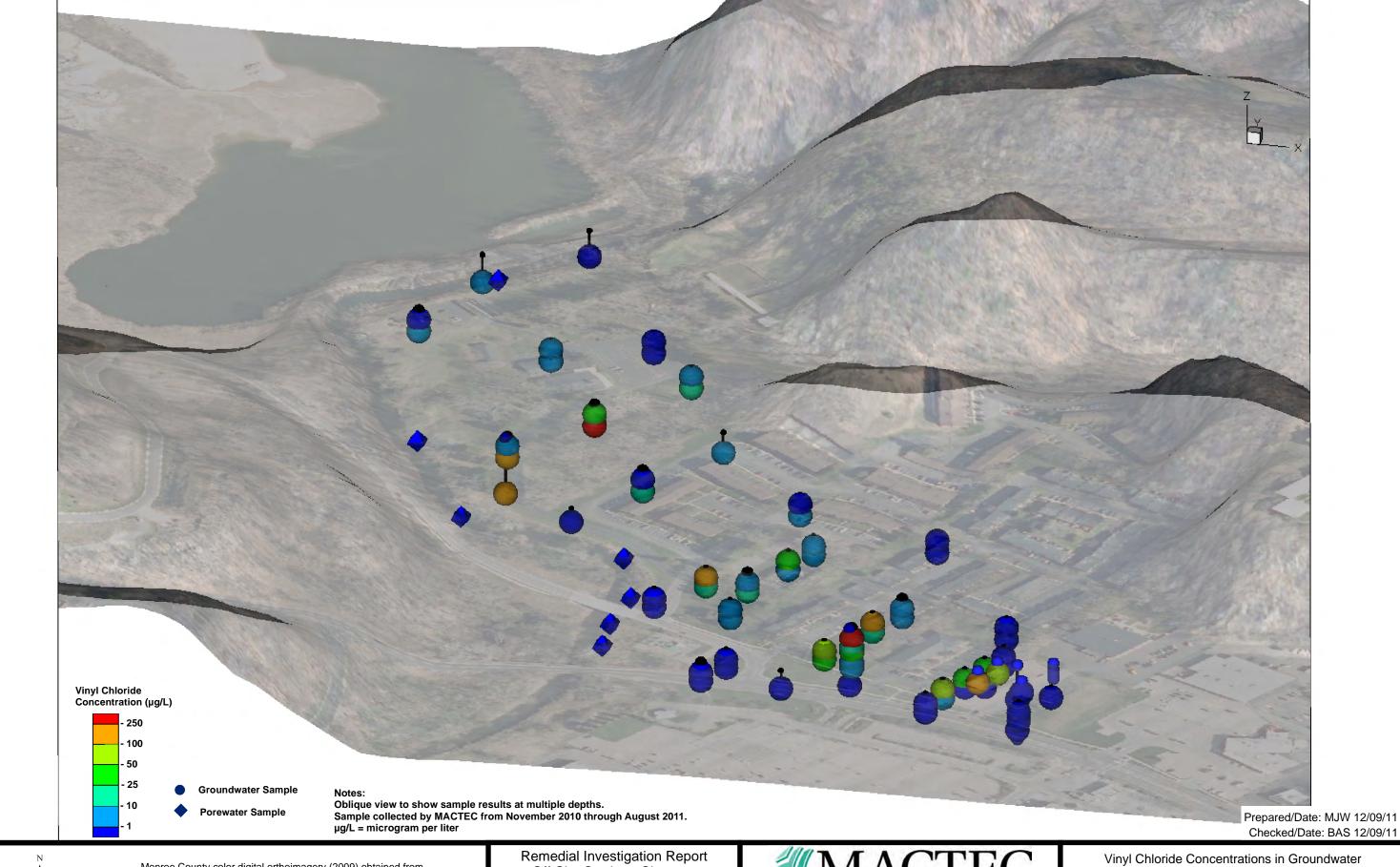



Monroe County color digital orthoimagery (2009) obtained from New York State GIS Clearinghouse at: http://www.nysgis.state.ny.us

Remedial Investigation Report Off-Site Carriage Cleaners Penfield, New York

Project 3612-10-2168

Figure 4.3


Monroe County color digital orthoimagery (2009) obtained from New York State GIS Clearinghouse at: http://www.nysgis.state.ny.us

Remedial Investigation Report Off-Site Carriage Cleaners Penfield, New York

Project 3612-10-2168

Figure 4.4

Monroe County color digital orthoimagery (2009) obtained from New York State GIS Clearinghouse at: http://www.nysgis.state.ny.us

Remedial Investigation Report Off-Site Carriage Cleaners Penfield, New York

Project 3612-10-2168

Figure 4.5

TABLES

Table 2.1: Remedial Investigation Field Activities

Media Type	Date	Sample Locations	Parameters	
Pore Water Sampling	November 15-18, 2010	PS-1, PS-2, PS-3, PS-5	VOCs	
Pore water Sampling	January 17-21, 2011	PS-4, PS-6, PS-7	VOCs	
	November 15-18, 2010	DP-1 to DP-20	VOCs	
Direct Push Geoprobe Groundwater Sampling	January 17-21, 2011	DP-21 to DP-32	VOCs	
	July 13, 2011	DP-33 to DP-34	VOCs	
Microwell Installation	November 15-18, 2010	Installed four (4), one-inch microwells: DP-6, DP-10, DP-12, DP-15	NA	
Groundwater Monitoring	January 17-21, 2011	Installed four (4), two-inch monitoring wells: DP-22, DP-23, DP-27, DP-28	NA	
Well Installation	July 14, 2011	Installed two (2), two-inch monitoring wells: MW-11, MW-12	Total Organic Carbon	
Hydraulic Conductivity (Slug)	January 17-21, 2011	DP-22, DP-30, DP-31	NA	
Testing	August 1-3, 2011	DP-22, DP-23, DP-28, MW-11, MW-12	NA	
Groundwater Monitoring	November 15-18, 2010	MW-2, MW-5, MW-6M, MW-6D, MW-7	VOCs	
Well Sampling	August 1-3, 2011	DP-10, DP-12, DP-15, DP-22, DP-23, DP-27, DP-28, MW-2, MW-5, MW-6M, MW-7, MW-11, MW-12	VOCs, MNA (select wells)	
	January 17-21, 2011	AA-1 to AA-3, SS/IA-1 to SS/IA-5, SS/IA-6A, SS/IA-6B, SS/IA-7 to SS/ IA-10, IA-11A, IA-11B	VOCs (TO-15 and TO-17)	
Soil Vapor/Indoor Air	March 16, 2011	AA-12, SS/IA-12, SS/IA-13	VOCs (TO-15)	
Sampling and Sump Water	March 24, 2011	AA-14, SS/IA-14	VOCs (TO-15)	
	April 28, 2011	IA-13 (first floor), IA-15, SW-15	VOCs (TO-15), VOCs	
Cita Cumuay	February 22, 2011	DP-6, DP-10, DP-12, DP-15, DP-22, DP-23, DP-27, DP-28, MW-2, MW-4, MW-5, MW-6M, MW-6D, MW-7	NA	
Site Survey	July 13, 2011	DP-33, DP-34, MW-11, MW-12	NA	

Notes:

VOC = volatile organic compound

TOC = total organic carbon

MNA = monitored natural attenuation

NA = not applicable

Sample Location types:

DP = direct push

SW = sump water

MW = monitoring well

PS = porewater sample

SW = sump water

SV = soil vapor

IA = indoor air

GV = soil vapor point

Table 2.2: Monitoring Well Details

Monitoring Well ID	Northing	Easting	Ground Elevation (ft amsl)	Casing Elevation (ft amsl)	Measuring Point (TOR) Elevation (ft amsl)	TOC-TOR (ft)	BOW (from TOR) (ft)	Screen Length
DP-06	1144251.052	1438065.202	268.26	268.33	267.85	0.48	16.30	10
DP-10	1144452.473	1438293.115	267.57	267.58	267.14	0.44	15.90	10
DP-12	1144596.758	1438352.500	267.18	267.19	266.76	0.44	16.44	10
DP-15	1144661.879	1438060.782	264.24	264.22	263.83	0.39	16.40	10
DP-22	1145299.481	1437649.187	266.66	266.71	266.55	0.16	19.60	10
DP-23	1145143.156	1437526.181	264.29	264.28	263.89	0.39	20.80	10
DP-27	1145633.093	1437261.896	266.18	266.32	265.91	0.41	18.10	10
DP-28	1145033.933	1437792.854	268.42	268.62	268.37	0.24	23.60	10
DP-33	1146030.199	1437483.341	265.91	NA	266.54	NA	28.00	5
DP-34	1145901.892	1437318.571	263.52	NA	263.97	NA	29.40	5
MW-2	1144357.243	1438575.489	269.21	269.24	268.84	0.40	14.45	10
MW-4	1144381.661	1438670.624	266.78	266.78	266.44	0.34	10.00	5
MW-5	1144285.345	1438634.106	269.35	269.34	269.11	0.23	14.65	10
MW-6M	1144351.711	1438612.045	269.10	269.15	268.78	0.37	39.01	10
MW-6D	1144351.694	1438611.943	269.10	269.15	268.90	0.24	68.10	10
MW-7	1144313.802	1438549.540	268.99	269.02	268.79	0.23	15.10	10
MW-11	1144448.222	1438290.021	267.67	267.67	267.32	0.35	59.90	10
MW-12	1145136.763	1437524.205	264.31	264.31	264.02	0.29	58.60	10

Notes:

TOC = top of casing

TOR = top of riser

BOW = bottom of monitoring well

DP = direct push boring

MW = overburden monitoring well

ft = feet

amsl = above mean sea level

Points Surveyed by LU Engineering on 2/2/11,

Horizontal Datum New York State Plane 1983 West Zone

Vertical Datum North American Vertical Datum 1988

Elevation in Feet Above Mean Sea Level (AMSL)

NA = Not Applicable

Table 2.3: Conceptual Site Model

Media	Known or Suspected Source of Contamination	Type of Contamination (General)	COPCs (Specific)	Primary or Secondary Source Release Mechanism	Migration Pathways	Potential Receptors
Soil	Concrete Wastewater Holding Tank Area (portions of the source area have been removed, residual contamination remains in Site soils) and Former PCE Still Area.	PCE dry cleaning solvent	PCE; TCE; cis-1,2 DCE; vinyl choride		Infiltration / percolation	Human: direct contact if excavation occurs in contaminated area (s)
Groundwater	Contaminated Soil (Secondary Source)	Solvents	PCE; TCE; cis-1,2 DCE; vinyl choride	Infiltration / percolation from contaminated soils	Groundwater flow	Humans could come in contact with contaminated groundwater from contact through basement sumps, as well as construction workers if excavation occurred below the water table.
Indoor Air /Soil Vapor	Contaminated groundwater downgradient from the Off-Site Carriage Cleaners Site.	Solvents	PCE; TCE; cis-1,2 DCE; vinyl choride		Soil vapor migration into commercial and residential structures	Human: Inhalation
Surface Water	Contaminated groundwater could discharge to surface water	Solvents	PCE; TCE; 1,2- DCE; vinyl chloride	· ·	Groundwater flow	Human or ecological: direct contact (likely diluted below risk levels).

COPCs = contaminants of potential concern

PCE = tetrachloroethene

TCE = trichloroethene

DCE = dichloroethene

Table 3.1: Groundwater Elevation Measurements

Monitoring Well ID	Ground Elevation (ft amsl)	Casing Elevation (ft amsl)	Measuring Point (TOR) Elevation (ft amsl)	DTW 1/21/2011	Groundwater Elevation (1/21/2011)	DTW 3/16/2011	Groundwater Elevation (3/16/2011)	DTW 7/11/2011	Groundwater Elevation (7/11/2011)	DTW (8/1/2011)	Groundwater Elevation (8/1/2011)
DP-06	268.26	268.33	267.85	7.31	260.54	6.13	261.72	7.77	260.08	7.81	260.04
DP-10	267.57	267.58	267.14	6.43	260.71	5.07	262.07	6.87	260.27	6.93	260.21
DP-12	267.18	267.19	266.76	6.09	260.67	4.87	261.89	6.54	260.22	6.61	260.15
DP-15	264.24	264.22	263.83	4.61	259.22	2.34	261.49	4.05	259.78	4.15	259.68
DP-22	266.66	266.71	266.55	6.80	259.75	5.29	261.26	7.18	259.37	7.42	259.13
DP-23	264.29	264.28	263.89	4.37	259.52	2.94	260.95	4.75	259.14	5.00	258.89
DP-27	266.18	266.32	265.91	6.80	259.11	5.30	260.61	7.21	258.70	7.50	258.41
DP-28	268.42	268.62	268.37	8.69	259.68	7.25	261.12	9.07	259.30	9.28	259.09
DP-33	265.91	NA	266.54					7.96	258.58		
DP-34	263.52	NA	263.97					5.79	258.18		
MW-2	269.21	269.24	268.84	7.18	261.66	5.87	262.97			7.57	261.27
MW-4	266.78	266.78	266.44	4.71	261.73	2.20	264.24				
MW-5	269.35	269.34	269.11	7.37	261.74	6.06	263.05	7.71	261.40	7.75	261.36
MW-6M	269.10	269.15	268.78	7.10	261.68					7.46	261.32
MW-6D	269.10	269.15	268.90	7.36	261.54					7.74	261.16
MW-7	268.99	269.02	268.79	7.17	261.62	5.89	262.90			7.60	261.19
MW-11	267.67	267.67	267.32							7.22	260.10
MW-12	264.31	264.31	264.02							5.11	258.91
Bridge Gauge	277.62	NA	NA	18.11	259.51	16.7	260.92	18.91	258.71	18.85	258.77
Creek Gauge	NA	261.52	NA			2.91	258.61		258.59*	2.80	258.72
Quarry Gauge	NA	262.16	NA			5.98	256.18		256.11*	6.51	255.65

Notes:

TOR = top of riser

DTW = depth to water

DP = direct push boring

MW = monitoring well

ft = feet

amsl = above mean sea level

Points Surveyed by LU Engineering on 02/02/2011, 07/13/2011, and 08/01/2011

Horizontal Datum New York State Plane 1983 West Zone

Vertical Datum North American Vertical Datum 1988

Elevation in Feet AMSL

NA = Not Applicable

-- = indicates a depth to water measurement was not recorded

Created by: BAS 11/09/2011 Checked by: RCM 11/09/2011

^{* =} water table elevation surveyed directly by Lu Engineering on 07/13/2011

NYSDEC – Site No. C828131A

MACTEC Engineering and Consulting, P.C., Project No. 3612102168

Table 3.2: Summary of Hydraulic Conductivity Test Results

Location	Well	Hvorslev	Bouwer-Rice	Springer-Gelhar	K values				
Identification	Type	(ft/day)	(ft/day)	(ft/day)	Geometric				
	<u> </u>				mean (ft/day)	V = Ki/n (ft/day)		Geometric mean	
DP-22*	Overburden 10 PSI - RHT	8.1	6.2		7.1	0.028	10	4	=V (ft/year)
Screening	Overburden 10 PSI - RHT	3.7	3.0		3.3	0.013	5		
Interval:	Overburden 20 PSI - RHT	2.3	2.0		2.2	0.009	3		
18' - 22' bgs	Overburden 30 PSI - RHT	1.4	1.2		1.3	0.005	2		
	Overburden 30 PSI - RHT	1.4	1.2		1.3	0.005	2		
	Overburden 10 PSI - RHT	13.9	11.2		12.5	0.050	18	15	=V (ft/year)
	Overburden 10 PSI - RHT	11.9	9.2		10.5	0.042	15		
DP-30*	Overburden 20 PSI - RHT	9.6	7.8		8.6	0.035	13		
Screening	Overburden 20 PSI - RHT	10.0	7.9		8.9	0.035	13		
Interval:	Overburden 30 PSI - RHT	8.8	7.2		7.9	0.032	12		
18' - 22' bgs	Overburden 30 PSI - RHT	11.6	9.5		10.5	0.042	15		
	Overburden 38 PSI - RHT	12.7	10.0		11.3	0.045	16		
	Overburden 37 PSI - RHT	14.6	12.5		13.5	0.054	20		
	Overburden 10 PSI - RHT	9.9	7.5		8.6	0.035	13	21	=V (ft/year)
DP-31*	Overburden 10 PSI - RHT	22.8	17.2		19.8	0.079	29		
Screening	Overburden 20 PSI - RHT	13.2	10.7		11.9	0.048	17		
Interval:	Overburden 20 PSI - RHT	25.4	18.0		21.4	0.085	31		
18' - 22' bgs	Overburden 30 PSI - RHT	16.2	11.9		13.9	0.055	20		
	Overburden 30 PSI - RHT	16.6	12.5		14.4	0.058	21		
DP-22**	MW - FHT-1	11.6	8.2		9.8	0.039	14	18	=V (ft/year)
Screening	MW - FHT-2	13.7	10.3		11.9	0.047	17		
Interval:	MW - RHT-1	17.6	11.5		14.2	0.057	21		
9.6' - 19.6' bgs	MW - RHT-2	16.6	10.7		13.3	0.053	19		
DP-23**	MW - FHT-1		32.9	41.7	37.1	0.148	54	45	=V (ft/vear)
Screening	MW - FHT-2		32.8	40.0	36.2	0.145	53		. (. , ,
Interval:	MW - RHT-1		16.2	23.0	19.3	0.077	28		
10.8' - 20.8' bgs	MW - RHT-2		28.9	38.7	33.4	0.134	49		
DP-28**	MW - FHT-1	4.6	3.6		4.0	0.016	6	7	=V (ft/vear)
Screening	MW - FHT-2	4.9	3.7		4.3	0.017	6	,	(10, j cu1)
Interval:	MW - RHT-1	6.3	4.6		5.4	0.022	8		
13.6' - 23.6' bgs	MW - RHT-2	5.4	4.0		4.7	0.019	7		
MW-11**	MW - FHT-1	5.1		191	191	0.915	334	222	=V (ft/year)
Screening	MW - FHT-2			159	159	0.762	278		= v (lu year)
Interval:	MW - RHT-1			101	101	0.486	177		
49.9' - 59.9' bgs	MW - RHT-2			84	84	0.403	147		
MW-12**	MW - FHT-1			159	159	0.765	279	238	=V (ft/year)
Screening	MW - FHT-2	<u> </u>		170	170	0.763	298	236	- v (ii/year)
Interval:		 		1					
48.6' - 58.6' bgs	MW - RHT-1	 		111	111	0.530	194		
40.0 - 30.0 Dgs	MW - RHT-2			114	114	0.545	199		

Notes:

cm/sec = centimeters per seconds

MW = monitoring well

FHT = Falling Head Test

RHT = Rising Head Slug Test

ft/day = feet per day

ft/year = feet per year

K = hydraulic conductivity

V = velocity (in either ft/day or ft/year)

Notes (Continued):

Geometric Mean of Shallow Overburden =

13 ft/year

Geometric Mean of Deep Overburden =

230 ft/year

bgs = below ground surface

n = porosity, using assumed porosity of 0.25 for the overburden locations

^{*} indicates results were obtained through pneumatic slug testing of 1" direct push explorations, conducted by MACTEC in January 20

^{**} indicates results were obtained through solid slug testing on five 2-inch ID monitoring wells by MACTEC in August 2011

Table 3.3: Soil Total Organic Carbon Results

Location ID	MW	7-11	MW	V-12
Field Sample ID	828131 <i>A</i>	A-MW11	828131 <i>A</i>	A-MW12
Field Sample Depth (ft bgs)	29-	-31	20-	-22
Field Sample Date	7/11/	2011	7/13/	2011
Parameter Name	Result	Qualifier	Result	Qualifier
Total Organic Carbon (TOC)	4500	EJ	4900	EJ

TOC soil samples analyzed by Lloyd Kahn Method Results in milligram per kilogram ft bgs = feet below ground surface Qualifiers:

E and J indicate estimated concentration

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-01	DP	-01	DP	2-02	DP	-02	DF	P-03	DP	P-03
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ısh Grab	Direct P	ush Grab	Direct P	ush Grab
	Field Sample Date	11/15	/2010	11/15	/2010	11/15	5/2010	11/15	/2010	11/15	5/2010	11/15	5/2010
	Field Sample ID	828131A-	DP0120X	828131A-	-DP0110X	828131A-	-DP0220X	828131A-	DP0210X	828131A-	-DP0320X	828131A-	-DP0310X
	Sample Depth	2	0	1	0	2	.0	1	0	2	20	1	.0
	QC Code	F	S	F	S	F	S	F	S	F	FS	F	S
Parameter Name	Criteria	Result	Qualifier										
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	2.3	
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	UJ										
Acetone	50*	5	UJ										
Benzene	1	1	U	1	U	1	U	0.52	J	1	U	1	U
Carbon disulfide	60*	1	UJ										
Chloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	5.2	J	5.4	J	69	J	180	JD	1	UJ	440	JD
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	5	1.6		1	U	1400	D	95		1	U	400	D
Toluene	5	1	U	1	U	1	U	1.3		1	U	0.72	J
trans-1,2-Dichloroethene	5	1	U	1	U	3		4.3		1	U	12	
Trichloroethene	5	0.87	J	1	U	95	D	27		1	U	180	D
Vinyl chloride	2	1	U	1	U	4	J	72	J	1	U	49	J

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unless unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-04	DF	P-04	DP	-04	DP	-04	DI	P-05	DF	P-05
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct Po	ush Grab	Direct P	ush Grab	Direct F	Push Grab	Direct P	Push Grab
Fi	ield Sample Date	11/15	/2010	11/15	5/2010	11/15	/2010	11/15	/2010	11/1:	5/2010	11/15	5/2010
	Field Sample ID	828131A-	DP0430X	828131A	-DP0420X	828131A-	DP0410X	828131A-DI	P0410XDUP	828131A	-DP0520X	828131A	-DP0510X
	Sample Depth	3	0	2	20	1	0	1	0		20	1	10
	QC Code	F	S	I	S	F	S	F	D	1	FS	I	FS
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	0.7	J	0.66	J	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ
Acetone	50*	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ
Chloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	0.57	J	130	JD	340	JD	330	JD	1	UJ	1	UJ
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U		U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	10		U		U		U		U	1	U	1	U
Tetrachloroethene	5	0.71	J	2.9	J	59	J	59		1	U	1	U
Toluene	5		U	0.56		0.52	J		U	1	U	1	U
trans-1,2-Dichloroethene	5	1	U	1.8		6.8		4.3		1	U	1	U
Trichloroethene	5		U	1.5		73		68		1	U		U
Vinyl chloride	2	1	U	15	J	31	J	26	J	1	U	1	U

VOC = volatile organic compounds

Results in microgram per liter (µg/L)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	P-06	DF	P-06	DF	P- 07	DP	-07	DF	P-08	DP	2-09
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab
	Field Sample Date	11/16	5/2010	11/16	5/2010	11/16	5/2010	11/16	/2010	11/16	6/2010	11/16	5/2010
	Field Sample ID	828131A-	-DP0620X	828131A	-DP0610X	828131A	-DP0720X	828131A-	DP0710X	828131A	-DP0820X	828131A-	-DP0920X
	Sample Depth	2	20	1	10	2	20	1	0	2	20	2	.0
	QC Code	F	S	F	FS	I	FS .	F	S	I	FS	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	1.1	
1,3-Dichlorobenzene	3	1	J	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	U
Acetone	50*	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ	1	U
Chloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ	830	D
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1		1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	0.94	J
Methyl Tertbutyl Ether	10	2.5		1	U	1.2	J	2.2	J	2	2	1	U
Tetrachloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	5	1	U	1	U	1	U	1	U	0.77	J	1.2	1
trans-1,2-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	16	1
Trichloroethene	5	1	U	1	U	1	U	1	U	1	U	58	
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U	31	1

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Prepared by: BAS 11/17/2011 Checked by: CRS 11/23/2011

3 of 12

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-09	DF	P-10	DP	-10	DP	-10	DP	-10	DF	P-10
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab
Fie	eld Sample Date	11/16	/2010	11/17	7/2010	11/17	//2010	11/17	//2010	11/17	//2010	11/17	7/2010
]	Field Sample ID	828131A-	DP0910X	828131A	-DP1020X	828131A-	DP1010X	828131A-D	P1010XDUP	828131A-	-DP1045X	828131A	-DP1035X
	Sample Depth	1	0	2	20	1	0	1	0	4	.5	3	35
	QC Code	F	S	I	FS .	F	S	F	D	F	S	F	FS
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	0.7	J	1.5		1	U	0.5	5 J	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U		l U	1	U	1	U
2-Butanone	50*	5	UJ	5	U	5	U	4	5 UJ	5	U	5	U
Acetone	50*	5	UJ	5	U	5	U	4	5 UJ	5	U	5	U
Benzene	1	1	U	1	U	1	U		l U	0.56	J	1	U
Carbon disulfide	60*	1	UJ	1	U	1	U		l UJ	1	UJ	1	UJ
Chloromethane	5	1	U	1	U	1	U		l U	1	U	1	U
Cis-1,2-Dichloroethene	5	260	JD	760	JD	310	D	390	JD	42		35	
Cyclohexane	NA	1	U	1	U	1	U		l U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U		U	1	U	1	U
Methyl cyclohexane	NA	1	U	7		1.2			l U	0.59	J	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U		l U	1	U	1	U
Tetrachloroethene	5	21		430	JD	61		65	5	51		53	
Toluene	5	1	U	0.59	J	0.58	J		l U	0.57	J	1	U
trans-1,2-Dichloroethene	5	7.2		11		2.6		2.5		1	U	1	U
Trichloroethene	5	37		570	JD	100		130	D	19		16	i
Vinyl chloride	2	70	J	28		360	D	250	JD	3.5		1.9	
NT-4													

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-10	DP	-11	DP	-11	DP	-12	DP	P-12	DF	P-13
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct Pu	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	Push Grab
	Field Sample Date	11/17	/2010	11/17	/2010	11/17	/2010	11/17	/2010	11/17	7/2010	11/17	7/2010
	Field Sample ID	828131A-	DP1025X	828131A-	DP1120X	828131A-	DP1110X	828131A-	DP1220X	828131A-	-DP1210X	828131A	-DP1320X
	Sample Depth	2	5	2	0	1	0	2	0	1	.0	2	20
	QC Code	F	S	F	S	F	S	F	S	F	S	I	FS
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1.7		1.7		1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	UJ	5	UJ	5	UJ	5	UJ	5	UJ
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	UJ	1	U	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	240	D	1200	D	290	D	0.54	J	3.7		1	U
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	7.2		0.78	J	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U	1	U	0.98	J
Tetrachloroethene	5	1300	D	1.7		1	U	1	U	1	U	1	U
Toluene	5	1	U	_	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	5	6		26		2.7		1	U	1	U	1	U
Trichloroethene	5	280	D	71		6.1		1	U	1	U	1	U
Vinyl chloride	2	23		20		130		1.5		6.9		1	U

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	2-13	DP	-14	DP	P-14	DP	-15	DP	-15	DF	P-16
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ısh Grab	Direct P	ush Grab	Direct P	ush Grab
	Field Sample Date	11/17	7/2010	11/17	/2010	11/17	7/2010	11/18	/2010	11/18	/2010	11/18	8/2010
	Field Sample ID	828131A-	-DP1310X	828131A-	DP1420X	828131A-	-DP1410X	828131A-	DP1520X	828131A-	DP1510X	828131A-	-DP1620X
	Sample Depth	1	.0	2	0	1	.0	2	0	1	0	2	20
	QC Code	F	S	F	S	F	S	F	S	F	S	F	FS
Parameter Name	Criteria	Result	Qualifier										
1,1-Dichloroethene	5	1	U	1	U	1	U	1.4		1.5		1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	UJ										
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	1	U	140		37		710	D	670	D	56	
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	5.5		5.1		1	U
Methyl Tertbutyl Ether	10	1.1			U	1	U	1	U	_	U	1	U
Tetrachloroethene	5	1	U	21		4.1		110		95		1	U
Toluene	5	1	U	1	U	1	U	1	U	0.73	J	1	U
trans-1,2-Dichloroethene	5	1	U	4.5		0.64	J	20		18		0.64	J
Trichloroethene	5	1	U	27		3.5		460	D	390	D	1	U
Vinyl chloride	2	1	U	8.4		8.8		17		3.4		2.1	

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Prepared by: BAS 11/17/2011 Checked by: CRS 11/23/2011

4.1 Table_4.1_DP_Results.xls 6 of 12

Table 4.1: Direct Push Groundwater VOC Results

Date 11/1 le ID 828131/1	Push Grab 18/2010 A-DP1610X 10 FS Oualifier	11/18 828131A- 2 F	DP1720X 0	11/18 828131A- 1	ush Grab /2010 -DP1710X 0	Direct Po 11/18 828131A- 2	/2010 DP1820X	11/18 828131A-	ush Grab 3/2010 -DP1810X	11/18 828131A-	
e ID 828131A	A-DP1610X 10 FS	828131A- 2 F	DP1720X 0	828131A- 1	DP1710X	828131A-	DP1820X	828131A-	-DP1810X	828131A-	
epth Code	10 FS	2 F	0	1							DP1920X
Code	FS	F			0	2	^	1	٠		
			C			2	0	1	0	2	0
a Result	Qualifier	n 1.	J.	F	S	F	S	F	S	F	S
		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
	1 U	1	U	1	U	0.82	J	1	U	1	U
	1 U	1	U	1	U	1	U	1	U	1	U
	5 U	5	U	5	U	5	U	5	U	5	U
	5 UJ	5	UJ	5	UJ	5	UJ	5	UJ	5	U
	1 U	1	U	1	U	1	U	1	U	0.59	J
	1 U	1	U	0.66	J	1	U	0.59	J	1	UJ
	1 U	1	U	1	U	1	U	1	U	1	U
10	0	3.6		0.58	J	470	D	310	D	1.8	
	1 U	1	U	1	U	1	U	1	U	0.85	J
	1 U	1	U	1	U	1	U	1	U	1	U
	1 U	1	U	1	U	1	U	1	U	1.1	
	1 U	1	U	1	U	1	U	1	U	1	U
	1 U	1	U	1	U	110		42		1.9	
	1 U	1	U	1	U	1	U	1	U	1.1	
1.	8	1	U	1	U	12	•	5.3		1	U
	1 U	1	U	1	U	270	D	84		0.72	Ј
4	6	7.6		7.3		13		220	D	1	U
	10	1 U 1 U 5 U 5 U 5 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	1 U 1 1 U 1 1 1 U 1 1 1 U 1 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-19	DP	-20	DP	2-21	DP	-21	DP	2-22	DP	2-22
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct Pu	ısh Grab	Direct P	ush Grab	Direct P	ush Grab
	Field Sample Date	11/18	/2010	11/18	3/2010	1/20/	/2011	1/20/	2011	1/17/	/2011	1/17/	/2011
	Field Sample ID	828131A-	DP1910X	828131A-	-DP2020X	828131A-	-DP2120X	828131A-	DP2110X	828131A-	-DP2220X	828131A-	-DP2207X
	Sample Depth	1	0	2	.0	1	.0	1	0	2	.0	,	7
	QC Code	F	S	F	S	F	S	F	S	F	S	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	UJ	5	U	6.6		7.6		5.7		6.2	
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	U	1	UJ	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	0.83	J	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	2.4		0.77	J	1	U	1	U	1	U	1	U
Cyclohexane	NA	0.51	J	0.56	J	1	U	0.54	J	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	0.81	J	0.92	J	1	U	0.66	J	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U	0.8	J	1	U
Tetrachloroethene	5	2.3		1.9		1	U	1	U	1	U	1	U
Toluene	5	0.92	J	0.93	J	1	U	0.55	J	1	U	1	U
trans-1,2-Dichloroethene	5	1	U	1	U	1	U	1	U	0.56	J	1	U
Trichloroethene	5	1.9		0.55	J	1	U	1	U	1	U	1	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	260	D	43	

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value
D = Result from diluted run

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-23	DP	-23	DP	-24	DP	-24	DF	P-24	DP	P-25
	Location Type	Direct P	ush Grab	Direct Po	ush Grab	Direct Po	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab
	Field Sample Date	1/18/	2011	1/18/	2011	1/18/	2011	1/18/	2011	1/18	/2011	1/18/	/2011
	Field Sample ID	828131A-	DP2320X	828131A-	DP2307X	828131A-	DP2420X	828131A-	DP2407X	828131A-D	P2407XDUP	828131A-	-DP2520X
	Sample Depth	2	0		7	2	0	1	7	,	7	2	20
	QC Code	F	S	F	S	F	S	F	S	F	D	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1.9		1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	4.2	J	5	U	5.9		5	UJ	5.6	J	6.1	
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	0.59	J	1	U	1	U	1.1	
Cis-1,2-Dichloroethene	5	920	D	30		220	D	40		50		1	U
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	5		U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	5	31		1	U	2.2		0.94	J	1	U	1	U
Trichloroethene	5	1	U	1	U		U	1	U	1	U	1	U
Vinyl chloride	2	110	D	3.3		24		2.4		3.8		1	U

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Prepared by: BAS 11/17/2011 Checked by: CRS 11/23/2011

9 of 12

Table 4.1: Direct Push Groundwater VOC Results

_	Location Name	DP	-25	DP	-26	DP	-26	DP	-27	DF	P-27	DP	-28
	Location Type	Direct P	ush Grab	Direct P	ush Grab	Direct P	ush Grab	Direct Pu	ısh Grab	Direct P	ush Grab	Direct P	ush Grab
	Field Sample Date	1/18	/2011	1/18/	2011	1/18/	2011	1/19/	2011	1/19	/2011	1/19/	/2011
	Field Sample ID	828131A-	-DP2507X	828131A-	DP2620X	828131A-	DP2607X	828131A-	DP2720X	828131A-	-DP2707X	828131A-	-DP2820X
	Sample Depth		7	2	0	-	7	2	0		7	2	.0
	QC Code	F	S	F	S	F	S	F	S	F	FS	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5.2		4.8	J	6.1		5.6		9.1		5	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	0.86	J	0.54	J	0.61	J	1	U
Cis-1,2-Dichloroethene	5	1	U	110	D	4.1		1.3		1	U	210	D
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	5	1	U	1	U	1	U	1	U	1	U	1.1	
Toluene	5	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	5	1	U	2.6		1	U	1	U	1	U	1	U
Trichloroethene	5	1	U	1	U	1	U	1	U	1	U	2.6	
Vinyl chloride	2	1	U	3.4		3.5		1.3		1	U	22	

VOC = volatile organic compounds

Results in microgram per liter ($\mu g/L$)

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Prepared by: BAS 11/17/2011 Checked by: CRS 11/23/2011

10 of 12

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-28	DP-	-28	DP	-29	DP	-29	DI	P-30	DP	2-30
	Location Type	Direct P	ush Grab	Direct Pu	sh Grab	Direct P	ush Grab	Direct P	ısh Grab	Direct P	Push Grab	Direct P	ush Grab
F	ield Sample Date	1/19	/2011	1/19/2	2011	1/19/	2011	1/19/	2011	1/20	/2011	1/20	/2011
	Field Sample ID	828131A-	-DP2807X	828131A-DF	2807XDUP	828131A-	DP2920X	828131A-	DP2907X	828131A	-DP3020X	828131A-	-DP3007X
	Sample Depth	,	7	7		20		7		20		,	7
	QC Code	F	S	FI	FD		S	F	S	l	FS	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	2.8	J	5	U	5	U	5	U	5	U
Acetone	50*	15		19		5	U	5	U	5	U	5	U
Benzene	1	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	U	1	U	1	U	1	U	1	U	1.1	
Chloromethane	5	1	U	1	U	1	U	0.63	J	1	U	1	U
Cis-1,2-Dichloroethene	5	59		46		1	U	1	U	3.5	5	2.6	
Cyclohexane	NA	1	U	1	U	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U		U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	UJ	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	5	1	U	1	U	1	U	1	UJ	1	U		U
trans-1,2-Dichloroethene	5		U	_	U	1	U	1	U	1	U	1	U
Trichloroethene	5	0.98		0.82		1	U	1	U	1	U		U
Vinyl chloride	2	0.85	J	0.57	J	1	U	1	U	1.1		1	U

VOC = volatile organic compounds

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

4.1 Table_4.1_DP_Results.xls

Table 4.1: Direct Push Groundwater VOC Results

	Location Name	DP	-31	DP-	-32	DP	2-33	DP	-34
	Location Type	Direct P	ush Grab	Direct Pu	ush Grab	Temporary	Well Grab	Temporary	Well Grab
F	ield Sample Date	1/20/	/2011	1/20/	2011	7/13/	/2011	7/13/	2011
	Field Sample ID	828131A-	-DP3120X	828131A-	DP3215X	828131A-	-DP3325X	828131A-	DP3225X
	Sample Depth	2	.0	1	5	2	25	2	.5
	QC Code	F	S	FS		FS		F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene	3	1	U	1	U	1	U	1	U
2-Butanone	50*	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	5	U	5	U
Benzene	1	1	U	1	U	1	U	1	U
Carbon disulfide	60*	1	U	1	U	1	U	1	U
Chloromethane	5	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	0.96	J	1	U	1	U	47	
Cyclohexane	NA	1	U	1	U	1	U	1	U
Ethyl benzene	5	1	U	1	U	1	U	1	U
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	10	1	U	1	U	1	U	1	U
Tetrachloroethene	5	1	U	1	U	1	U	3.2	
Toluene	5	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	5	1	U	1	U	1	U	0.94	J
Trichloroethene	5	1	U	1	U	1	U	3.5	
Vinyl chloride	2	7.8		1	U	1	U	2.1	

VOC = volatile organic compounds

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Detections are indicated in BOLD

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample, FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unles unless noted.

* Criteria is Ambient Water Quality Guidance Value.

Highlighted results exceed criteria

NA = No criteria available

Table 4.2: Monitoring Well Groundwater VOC Results

	Location Name	MV	V-2	MV	V-2	MW	-2	M	W-5	MV	W-5
	Field Sample Date	11/16	/2010	8/2/2	2011	8/2/20	011	11/16	5/2010	8/2/	2011
	Field Sample ID	828131.	A-MW2	828131A-MW02012		828131A-MW02012DUP		828131A-MW5		828131A-	MW05012
	Sample Depth	1	2	12		12		12		1	2
	QC Code	FS		F	S	FD		I	FS	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	2.1		2.5		3.2		1	U	1	U
Chloromethane	5	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	1300	JD	1400	D	1500	D	1.1		0.81	J
Methyl cyclohexane	NA	4.4		1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	50*	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	5	760	JD	1300	DJ	1300	DJ	35		14	J
trans-1,2-Dichloroethene	5	14		47		31		1	U	1	U
Trichloroethene	5	410	JD	660	D	680	D	2.2		1.9	
Vinyl chloride	2	83		63		71		1	U	1	U

Samples analyzed for VOCs by EPA Method SW8260B VOC = volatile organic compound Results reported in micrograms per liter (µg/L) Only detected compounds shown (detections in **bold**). It bgs = feet below ground surface Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Criteria shown is the Ambient Water Quality Standard unless noted.

Highlighted results exceed criteria

QC Code:

FS = Field Sample;

FD = Field Duplicate

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

^{*} Criteria is Ambient Water Quality Guidance Value.

Table 4.2: Monitoring Well Groundwater VOC Results

	Location Name	MW	7-6D	MW	V-6D	MW	-6M	MW	-6M	MV	W-7
	Field Sample Date	11/15	/2010	11/15	5/2010	11/15/2010		8/2/2011		11/15	/2010
	Field Sample ID	828131A	A-MW6D	828131A-N	MW6DDUP	828131A	-MW6M	828131A-MW6035		8281312	A-MW-7
	Sample Depth	-		(67		37		5	1	2
	QC Code	F	S	F	D	F	S	F	S	F	S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	5.3	
Chloromethane	5	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	31		22		1.9		1	U	1100	D
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	50*	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	5	30		19		27		1	U	8	
trans-1,2-Dichloroethene	5	1	U	1	U	1	U	1	U	25	
Trichloroethene	5	2		1.5		1.2		0.67	J	32	
Vinyl chloride	2	1	U	1	U	1	U	1	UJ	150	

Samples analyzed for VOCs by EPA Method SW8260B VOC = volatile organic compound Results reported in micrograms per liter (μ g/L) Only detected compounds shown (detections in **bold**). It bgs = feet below ground surface Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (*NYSDEC*, 1998).

Criteria shown is the Ambient Water Quality Standard unless note

Highlighted results exceed criteria

QC Code:

FS = Field Sample;

FD = Field Duplicate

Qualifiers

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

^{*} Criteria is Ambient Water Quality Guidance Value.

Table 4.2: Monitoring Well Groundwater VOC Results

	Location Name	MV	V-7	MV	V-11	MV	V-12	DF	P-10	DF	P-12
	Field Sample Date	8/2/2	2011	8/2/	8/2/2011		8/2/2011		8/2/2011		2011
	Field Sample ID	828131A-	MW07012	828131A-	828131A-MW11055		828131A-MW12055		828131A-DP10013		-DP12013
	Sample Depth	1	12		55		55		13	1	.3
	QC Code	F	FS		FS	F	S	I	FS	F	FS
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	7.6		1	U	1	U	1.9	J	1	U
Chloromethane	5	1	U	1	U	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	2500	DJ	1.9		130		410	D	0.82	J
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	50*	1	U	1	U	1.1		1	U	1	U
Tetrachloroethene	5	11	J	1	U	0.98	J	2.2	J	1	U
trans-1,2-Dichloroethene	5	32		1	U	4.2		15	J	1	U
Trichloroethene	5	78		1	U	2.9		70	D	1	U
Vinyl chloride	2	89		1	U	110	Ţ.	86	D	2.7	

Samples analyzed for VOCs by EPA Method SW8260B VOC = volatile organic compound Results reported in micrograms per liter (μ g/L) Only detected compounds shown (detections in **bold**). It bgs = feet below ground surface Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (*NYSDEC*, 1998).

Criteria shown is the Ambient Water Quality Standard unless note

Highlighted results exceed criteria

QC Code:

FS = Field Sample;

FD = Field Duplicate

Qualifiers

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

^{*} Criteria is Ambient Water Quality Guidance Value.

Table 4.2: Monitoring Well Groundwater VOC Results

	Location Name	DP	-15	DF	P-22	DF	2-23	DP	2-27	DF	P-28
	Field Sample Date	8/2/2	2011	8/2/	2011	8/2/	2011	8/2/	2011	8/2/	2011
	Field Sample ID	828131A-	-DP15013	828131A	828131A-DP22015		-DP23015	828131A	-DP27015	828131A	-DP28018
	Sample Depth	1	13		15		15		5	1	8
	QC Code	FS		F	⁷ S	F	S	F	S	F	⁷ S
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1-Dichloroethene	5	1.8		1	U	1	U	1	U	1	U
Chloromethane	5	1	U	0.69	J	1	U	1	U	1	U
Cis-1,2-Dichloroethene	5	1100	D	1	U	240	D	1	U	5.1	
Methyl cyclohexane	NA	1	U	1	U	1	U	1	U	1	U
Methyl Tertbutyl Ether	50*	1	U	1	U	0.54	J	1	U	1	U
Tetrachloroethene	5	330	DJ	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	5	8.6		1	U	8.1		1	U	1	U
Trichloroethene	5	610	D	1	U	1	U	1	U	1	U
Vinyl chloride	2	7.9	J	130		120		1	U	4.5	J

Samples analyzed for VOCs by EPA Method SW8260B VOC = volatile organic compound Results reported in micrograms per liter (μ g/L) Only detected compounds shown (detections in **bold**). It bgs = feet below ground surface Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (*NYSDEC*, 1998).

Criteria shown is the Ambient Water Quality Standard unless note

Highlighted results exceed criteria

QC Code:

FS = Field Sample;

FD = Field Duplicate

Qualifiers

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

^{*} Criteria is Ambient Water Quality Guidance Value.

MACTEC Engineering and Consulting, P.C., Project No. 3612102168

Table 4.3: Monitored Natural Attenuation Results

<u> </u>	T	ocation Name	DP-10	DP-15	DP-23	MW-2	MW-5	MW-7	MW-11
		eld Sample ID	828131A-DP10013	828131A-DP15013	828131A-DP23015	828131A-MW02012	828131A-MW05012	828131A-MW07012	828131A-MW11055
	Field Sample	Depth (ft bgs)	13	13	15	12	12	12	55
		Sample Date	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011
Parameter Name	Analysis Method	Units	Result Qualifier						
Iron	SW6010B	μg/L	834	121 U	1450	1920		728	254
Manganese	SW6010B	μg/L	831	412	219	564		711	98.7
Chloride	E300.0	mg/L	250 D	250 D	260 D	350 D	320 D	350 D	500 D
Nitrate as N	E300.0	mg/L	0.1 U						
Nitrite as N	E300.0	mg/L	0.15 U						
Sulfate	E300.0	mg/L	280 D	150 D	71 D	120 D	120 D	130 D	88 D
Ethane	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethene	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methane	RSK175	μg/L	13.56	4.1 J	16.85	5.63	-	12.64	3.59 J
Total Alkalinity, as CaCO3	SM 2320 B	mg/L	520	400	420	420	420	430	400
Carbon Dioxide	SM2320 B	mg/L	540	400	420	440	430	440	390
Sulfide	SM4500 S	mg/L	1 U	1 U	1 U	1 U	-	1 U	1 U
Total Organic Carbon	SM5310B	mg/L	2	3.7	3.9	4.9	-	4	2.9
Oxidation Reduction Potential (ORP)	YSI 556 MP	mV	-8.3	32	-0.7	-23	44	-15	-28
Dissolved Oxygen	YSI 556 MP	mg/L	0.3	0.2	0.3	0.3	0.4	0.2	0.3
рН	YSI 556 MP	pН	6.7	6.8	6.9	6.8	6.8	6.9	7.0
		NASP Score	12	12	13	15	Background	12	10

Notes:

mg/L = milligrams per liter

 $\mu g/L = micrograms per liter$

mV = millivolts

ft bgs = feet below ground surface

Bolded value = Compound detected

ORP = Oxidation Reduction Potential

DO, pH, and ORP from Yellow Springs Instruments 556 MP water quality meter.

NASP = natural attenuation screening protocol (for chlorinated organics) from USEPA Biochlor Model:

Score 0-5 = inadequate evidence for anaerobic biodegradation

Score 6-14 = limited evidence for anaerobic biodegradation

Score 14-20 = adequate evidence for anaerobic biodegradation

Score > 20 = strong evidence for anaerobic biodegradation

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

-- = compound not analyzed

Table 4.4: Pore Water VOC Results

S	Sample Location	PS-01	PS-02	PS-03	PS-04	PS-05	PS-06	PS-07
Fie	eld Sample Date	11/16/2010	11/16/2010	11/16/2010	1/17/2011	11/17/2010	1/17/2011	1/21/2011
I	Field Sample ID	828131A-PS0101	828131A-PS0201	828131A-PS0301	828131A-PS0402	828131A-PS0501	828131A-PS0602	828131A-PS0702
	QC Code	FS						
Parameter Name	Criteria	Result Qualifier						
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	0.58 J	1 U
Tetrachloroethene	5	1 U	0.52 J	1 U	1 U	1 U	1 U	1 U

VOC = volatile organic compounds

Results reported in micrograms per liter (µg/L)

Detected compounds shown in **bold**.

Samples analyzed for VOCs by EPA Method SW8260B

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1,

Qualifiers:

U = Not detected greater than the reporting limit

J = Estimated value

NA = criteria not available

QC code:

FS = field sample

[&]quot;Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Table 4.5: Sump Water VOC Results

	Location Name	SW	V-15	SW	⁷ -15	
	Field Sample ID	828131A-	SW1501A	828131A-SW1501B		
	Field Sample Date	4/27	/2011	4/27/	/2011	
Parameter Name	Criteria*	Result	Qualifier	Result	Qualifier	
Cis-1,2-Dichloroethene	5	170	EJ	17	D	
Tetrachloroethene	5	5.6		5	U	
trans-1,2-Dichloroethene	5	4.6		5	U	
Trichloroethene	5	37		5	U	
Vinyl chloride	2	41		17	D	

Results reported in micrograms per liter (µg/L)

Detected compounds shown in **bold**.

Samples analyzed for VOCs by EPA Method SW8260B

Highlighted results exceed criteria

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1,

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

E and J = Estimated value

[&]quot;Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

^{*}Although there are no criteria for sump water, the groundwater Ambient Water Quality Standards and Guidance Values were used for comparitive purposes.

Table 4.6: Exterior Soil Vapor VOC Results

Sample Typ	e Exterior S	Soil Vapor	Exterior Soil Vap		
Location II	GV GV	'-03	GV	'-04	
Field Sample Dat	e 11/29	/2010	11/29	/2010	
Field Sample II	828131A	-GV0301	828131A-GV040		
QC Cod	e F	S	FS		
Parameter Name	Result	Qualifier	Result	Qualifier	
1,3,5-Trimethylbenzene	1	UJ	1.4	J	
2-Butanone	0.6	U	57		
Acetone	16	J	180		
Benzene	3.8	J	0.65		
Carbon disulfide	69	J	0.63	U	
Chloroform	0.99	U	2.1		
Cyclohexane	7.1	J	0.7	U	
Dichlorodifluoromethane	2.6	J	2.3		
Ethyl benzene	0.88	UJ	3.6	J	
Heptane	21	J	0.83		
Hexane	120	J	0.72	U	
Methylene chloride	0.71	U	0.78	J	
Styrene	0.87	U	3.9	J	
Tetrachloroethene	2.3	J	2.8	J	
Tetrahydrofuran	4.9	J	1,700		
Toluene	20	J	2.7		
Trichloroethene	2	J	1.1	U	
Xylene, o	0.88	UJ	4	J	
Xylenes (m&p)	6.5	J	13	J	

Results in microgram per cubic meter (µg/m³)

Detected compounds shown in **bold**.

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

Table 4.7: Soil Vapor and Indoor Air VOC Results

Structure ID		1	Ambient Air Sample	s			Structure 1		Structure 2		
Location Type			Ambient Air				Residential		Resid		
Location ID	AA-01	AA-02	AA-03	AA-12	AA-14	IA-01	SS-01	SS-01	IA-02	SS-02	
Field Sample Date	1/18/2011	1/19/2011	1/20/2011	3/16/2011	3/24/2011	1/18/2011	1/18/2011	1/18/2011	1/19/2011	1/19/2011	
Field Sample ID	828131A-AA0101	828131A-AA0201	828131A-AA0301	828131A-AA1202	828131A-AA1402	828131A-IA0101	828131A-SS0101	828131A-SS0101DUP	828131A-IA0201	828131A-SS0201	
QC Code	FS	FS	FS	FS	FS	FS	FS	FD	FS	FS	
Parameter Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
1,1,1-Trichloroethane	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	
1,1-Dichloroethene	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	
1,2,4-Trimethylbenzene	1.5 U	1.5 U	1.5 U	1.5 UJ	1.5 UJ	1.5 U	7.2	7	1.5 U	1 U	
1,2-Dichloroethane	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	
1,3,5-Trimethylbenzene	1 U	1 U	1 U	1 UJ	1 UJ	1.5	17	17	1 U	1.6	
1,4-Dichlorobenzene	1.2 UJ	1.2 U	1.2 U	1.2 UJ	1.2 UJ	1.2 UJ	1.2 U	1.2 U	1.2 UJ	1.2 U	
2-Butanone	1.6	1.6	3.5	1.8 J	0.6 UJ	3.2	6.7 J	12 J	0.6 U	9.7	
2-Propanol	5.2 J	8.4 J	11 J	2 J	1 J	36 J	11 J	6.1 J	18 J	13 J	
4-Ethyltoluene	1 U	1 U	1 U	1 UJ	1 UJ	1 U	7.1	7.3	1 U	1.7	
4-Methyl-2-pentanone	0.83 U	0.83 U 17 J	0.83 U	0.83 UJ	0.83 UJ	0.83 U 17 J	5.1 230 J	220 J	0.83 U	1.2 330 J	
Acetone	11 J 1.5	17 J	12 U 0.65 U	9.7 U 0.88	8.7 U 0.65 J	17 J 1.6	4.7	4.7	13 J 2.2	0.65 U	
Benzene Benzentablerida	1.5 1.1 U	1.1 U	1.65 U	1.1 UJ	1 1 I I I	1.6 1.1 U	4.7	4.7	2.2 1.1 U	1.1 U	
Benzyl chloride Carbon disulfide	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	6.2	6	0.63 U	7	
Carbon tetrachloride	0.26 U	0.26 U	0.03 U	0.05 U	0.03 U	0.05 U	1.3 U	1.3 U	0.26 U	1.3 U	
Chlorobenzene	0.20 U	0.20 U	0.20 U	0.26 U	0.20 U	0.20 U	0.94 U	0.94 U	0.20 U	0.94 U	
Chloroform	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.99 U	0.94 U	
Chloromethane	1.3	1.3	1.2	1.1	1.2	0.42 U	0.42 U	0.42 U	1.2	0.42 U	
Cis-1,2-Dichloroethene	0.81 U	0.81 U	0.81 U	0.85 J	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	
Cyclohexane	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	1.4	6.7	6.5	0.7 U	0.7 U	
Dichlorodifluoromethane	2.3	2.5	2.5	2.5	2.7	1 U	3.5	3.3	2.4	2.3	
Ethanol	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ethyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ethyl benzene	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	1.2	4.2	4.8	0.88 U	2.3	
Heptane	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	21	21	0.83 U	2.5	
Hexane	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	2.3 J	14	14	1 J	1.2	
Methylene chloride	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	1.7	0.71 U	0.71 U	0.71 U	0.71 U	
Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Styrene	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3	0.87 U	0.87 U	1.3 U	3.9	
Tetrachloroethene	1.4 U	1.4 U	1.4 U	1.5 J	1.4 UJ	1.4 U	1.4 U	1.4 U	1.4 U	1.4	
Tetrahydrofuran	0.6 U	0.6 U	1.6	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	
Toluene	2.2	1.6	0.8	1.3	2.6	6.2	61	65	2.4	170	
trans-1,2-Dichloroethene	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	
Trichloroethene	0.22 U	0.22 U	0.22 U	1.1 J	0.22 UJ	0.22 U	1.1 U	1.1 U	0.22 U	1.1 U	
Trichlorofluoromethane	1.3	1.1 U	1.3	1.6	1.5	0.52 11	1.3	1.3	1.3	1.2	
Vinyl chloride	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	
Xylene, o	0.88 U	0.88 U 2.6 U	0.88 U 2.6 U	0.88 U 2.6 U	0.88 U	0.88 U	9.9	7.3	0.88 U	1.8 8.8	
Xylenes (m&p) Notes:	2.6 U	2.6 U	2.6 ∪	2.6 ∪	2.6 U	3.1 J	29	26	2.6 U	8.8	

SVI = Soil Vapor Intrusion

VOCs = volatile organic compounds

Samples analyzed by EPA Method TO-15

(IA-6A and 6B analyzed by Method TO-17)

Results in micrograms per cubic meter (µg/m3).

Detected compounds shown in **bold**.

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate Sample

NA = not analyzed; requested method

did not include the target analyte

Table 4.7: Soil Vapor and Indoor Air VOC Results

Structure ID	Structure 3		Struc	ture 4	Struc	ture 5		Struc	ture 6	
Location Type	Resid		Resid		Resid				nercial	
Location ID	IA-03	SS-03	IA-04	SS-04	IA-05	SS-05	IA-06A	IA-06B	SS-06A	SS-06B
Field Sample Date	1/19/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011
Field Sample ID	828131A-IA0301	828131A-SS0301	828131A-IA0401	828131A-SS0401	828131A-IA0501	828131A-SS0501	828131A-IA06A01	828131A-IA06B01	828131A-SS06A01	828131A-SS06B01
OC Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier					
1,1,1-Trichloroethane	1.1 U	1.1 U	1.1 U	1.1 U	1.6					
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U					
1,1-Dichloroethene	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U					
1,2,4-Trimethylbenzene	1.5 U	1 U	1.5 U	1 U	1.5 U	1 U	1.5 U	1.5 U	2.2	5.9
1,2-Dichloroethane	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U					
1,3,5-Trimethylbenzene	1 U	1.9	1 U	1.3	1.2	1 U	1 U	1 U	3.6	11
1,4-Dichlorobenzene	1.2 UJ	1.2 U	1.2 UJ	1.2 U	1.2 U	1.2 U	1.2 UJ	1.2 U	1.2 U	1.2 U
2-Butanone	3.4	9.8	1.6	2.5	3.1	2.7	5.5	5.6	2	3.6
2-Propanol	10 J	6.9 J	23 J	14 J	4 J	5.2 J	14 J	19 J	5 U	15 J
4-Ethyltoluene	1 U	1.1	1	1 U	1 U	1 U	1 U	1 U	1.6	5
4-Methyl-2-pentanone	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U					
Acetone	16 J	150 J	11 J	170 J	8.9 U	240 J	130 J	170 J	110 J	150 J
Benzene	1.2	0.68	1.2 1.1 U	1.2	1.1	0.65 U	1.1	1.3	2.4	3.2
Benzyl chloride Carbon disulfide	1.1 U 0.63 U	1.1 U 2.6	0.63 U	1.1 U 1.7	1.1 U 0.63 U	1.1 U 1.9	1.1 U 0.63 U	1.1 U 0.63 U	1.1 U 1.8	1.1 U 2.6
Carbon distillide Carbon tetrachloride	0.63 U	1.3 U	0.63 U	1.7 1.3 U	0.83 U	1.3 U	0.63 U	5.8	1.3 U	1.3 U
Chlorobenzene	0.26 U 0.94 U	0.94 U	0.26 U 0.94 U	0.94 U	0.26 U 0.94 U	0.94 U	0.26 U	0.94 U	0.94 U	0.94 U
Chloroform	0.94 U	7.4	0.94 U	0.94 U	0.94 U	25				
Chloromethane	1.2	0.42 U	1.2	0.42 U	1.2	0.42 U	1.2	1.4	0.42 U	0.42 U
Cis-1,2-Dichloroethene	0.81 U	0.42 U	1.3	0.42 U	0.81 U	0.42 U	0.81 U	0.81 U	0.42 U	0.42 U
Cyclohexane	0.51 U	0.51 U	0.7 U	1.6	0.7 U	0.7 U	0.7 U	0.51 U	4	8.5
Dichlorodifluoromethane	2.3	2.5	2.2	2.3	2.4	2.5	2.5	2.6	2.5	9.8
Ethanol	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
Ethyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl benzene	0.88 U	1.1	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	1	2.3
Heptane	0.83 U	2.6	0.83 U	4.5	0.83 U	0.83 U	0.83 U	3.1	5.9	17
Hexane	0.72 U	1.6	0.72 U	4.1	0.75	1.3	0.72 U	1.1	4.7	12
Methylene chloride	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U					
Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	1.3 U	0.87 U	1.3 U	0.87 U	1.3 U	0.87 U	1.3 U	3.8	0.87 U	0.87 U
Tetrachloroethene	3	1.4 U	2.7	2.1	1.7	1.9				
Tetrahydrofuran	5.5	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U				
Toluene	2.1	50	2.5	35	2.2	44	2	3.3	26	35
trans-1,2-Dichloroethene	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U					
Trichloroethene	0.22 U	1.1 U	0.22 U	1.1 U	0.22 U	1.1 U	0.22 U	0.22 U	1.1 U	1.1 U
Trichlorofluoromethane	1.2	1.3	1.3	1.2	1.3	1.3	1.3	1.4	1.3	1.3
Vinyl chloride	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U					
Xylene, o	0.88 U	1.8	0.88 U	1.1	0.88 U	1.3	0.97	1.3	2.4	5.9
Xylenes (m&p)	2.6 U	5.1	2.6 U	3.4	2.6 U	3.2	2.6 U	2.6 U	9.6	19

SVI = Soil Vapor Intrusion

VOCs = volatile organic compounds

Samples analyzed by EPA Method TO-15

(IA-6A and 6B analyzed by Method TO-17)

Results in micrograms per cubic meter (µg/m3

Detected compounds shown in **bold**.

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate Sample

NA = not analyzed; requested method

did not include the target analyte

Table 4.7: Soil Vapor and Indoor Air VOC Results

Structure ID	Struc	ture 7	Structure 8		Struc	ture 9	Struct	ure 10	Structure 11		
Location Type		ential	Residential		Resid			ential	Commercial		
Location ID		SS-07	IA-08	SS-08	IA-09	SS-09	IA-10	SS-10	IA-11A	IA-11B	
Field Sample Date		1/19/2011	1/20/2011	1/20/2011	1/20/2011	1/20/2011	1/20/2011	1/20/2011	1/20/2011	1/20/2011	
Field Sample ID		828131A-SS0701	828131A-IA0801	828131A-SS0801	828131A-IA0901	828131A-SS0901	828131A-IA1001	828131A-SS1001	828131A-IA11A01	828131A-IA11B01	
QC Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS	
Parameter Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
1,1,1-Trichloroethane	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 UJ	1.1 U	1.1 U	0.08 U	0.08 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 UJ	1.6 U	1.6 U	NA	NA	
1,1-Dichloroethene	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 UJ	0.81 U	0.81 U	NA	NA	
1,2,4-Trimethylbenzene	1.5 U	1 U	1.5 U	1.1	1.5 U	1.1 J	1.5 U	1.6	NA	NA	
1,2-Dichloroethane	1.2	0.82 U	0.82 U	0.82 U	0.82 U	0.82 UJ	0.82 U	0.82 U	0.064 U	0.064 U	
1,3,5-Trimethylbenzene	1 U	1 U	1 U	2.4	1 U	2.6 J	1 U	3.3	NA	NA	
1,4-Dichlorobenzene	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 UJ	1.2 U	1.2 U	0.097 UJ	0.097 UJ	
2-Butanone	1.9	2.7	6	3.6	1.1	3.6 J	1.5	13	0.41	0.52	
2-Propanol	11 J	5 U	660 J	14 J	65 J	15 J	35 J	8.4 J	3.7	17	
4-Ethyltoluene	1 U	1 U	1 U	1.2	1 U	1.6 J	1 U	3.5	NA	NA	
4-Methyl-2-pentanone	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 UJ	0.83 U	0.83 U	0.15	0.16	
Acetone	24 J	180 J	170 J	120 J	11 U	230 J	35 J	160 J	3.5	7.9	
Benzene	1.4	3.1	2.6	0.84	0.84	1.7 J	0.84	5.7	0.75	0.89	
Benzyl chloride	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 UJ	1.1 U	1.1 U	NA	NA	
Carbon disulfide	0.63 U	10	0.63 U	1.8	0.63 U	3.4 J	0.63 U	36	NA	NA	
Carbon tetrachloride	0.26 U	1.3 U	0.51	1.3 U	0.26 U	1.3 UJ	0.26 U	1.3 U	0.41	0.48	
Chlorobenzene	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 UJ	0.94 U	0.94 U	0.073 U	0.073 U	
Chloroform	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 UJ	0.99 U	0.99 U	0.2	0.24	
Chloromethane	0.42 U	4.4	1.6	0.42 U	1.3	0.42 UJ	1.4	0.42 U	NA	NA	
Cis-1,2-Dichloroethene	0.81 U	0.81 U	0.81 U	0.81 U	1.7	720	0.81 U	0.81 U	NA	NA	
Cyclohexane	0.7 U	12	0.7 U	1.2	0.7 U	1.7 J	0.7 U	8.6	0.27	0.44	
Dichlorodifluoromethane	2.4	2.3	2.3	2.3	2.5	2.5 J	2.5	2.5	NA	NA	
Ethanol	NA	NA	NA	NA	NA	NA	NA	NA	17 J	64 J	
Ethyl acetate	NA	NA	NA	NA	NA	NA	NA	NA	0.44	0.56	
Ethyl benzene	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	1.5 J	0.88 U	7.4	0.16	0.22	
Heptane	0.83 U	1.2	0.83 U	2.9	0.83 U	4.7 J	0.87	20	0.64	1.9	
Hexane	0.72 U	7.8	0.72 U	2.1	0.72 U	3.5 J	0.86	13	0.5	0.53	
Methylene chloride	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	0.71 UJ	1.2	0.71 U	NA 0.007 II	NA 0.007	
Propylbenzene	NA 1.2 II	NA 0.07 II	NA 12 II	NA 0.87 II	NA 1.2 II	NA 0.07 I	NA 1.2 II	NA	0.087 U	0.095	
Styrene	1.3 U	0.87 U	1.3 U	0.87 U	1.3 U	0.87 J	1.3 U	3.8	0.13 J	0.3 J	
Tetrachloroethene	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	650 J	1.4 U		0.084 U	0.084 U	
Tetrahydrofuran	0.6 U 3.5	0.6 U 2.3	0.6 U 2.9	0.6 U 19	0.6 U	0.6 UJ 46 J	0.6 U 2.6	0.6 U 360	NA 0.94	NA 1.4	
Toluene	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	6.9 J		0.81 U	0.94 NA	NA	
trans-1,2-Dichloroethene Trichloroethene	0.81 U	0.81 U	0.81 U 0.22 U	1.1 U	0.81 U	400	0.81 U 0.22 U	0.81 U	0.072 U	0.082	
	1.4	1.1 U	3.7	2.5	1.1 U	1.3 J	1.4	1.1 U	0.072 U NA	NA	
Trichlorofluoromethane Vinyl chloride	0.52 U	1.1	0.52 U	0.52 U	0.52 U	1.3 J 1.8 J	0.52 U	0.52 U	NA NA	NA NA	
Xylene. o	0.52 U 0.88 U	0.88 U	0.52 U 0.88 U	1.3	0.52 U 0.88 U	1.8 J 1.6 J	0.52 U 0.88 U	5.7	0.2	0.29	
2, -	2.6 U	0.88 U	2.6 U	4.1	2.6 U	6 J	2.6 U	24	0.39	0.29	
Xylenes (m&p) Notes:	2.0 U	U.00 U	4.0 U	4.1	2.0 U	υJ	4.0 U	24	0.37	0.33	

SVI = Soil Vapor Intrusion

VOCs = volatile organic compounds

Samples analyzed by EPA Method TO-15

(IA-6A and 6B analyzed by Method TO-17)

Results in micrograms per cubic meter (µg/m3

Detected compounds shown in **bold**.

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate Sample

NA = not analyzed; requested method

did not include the target analyte

Table 4.7: Soil Vapor and Indoor Air VOC Results

Structure ID	Struct	ure 12		Structure 13		Struct	Structure 15	
Location Type	Resid			Residential		Comn	Residential	
Location ID	IA-12	SS-12	IA-13	IA-13 (1st floor)	SS-13	IA-14	SS-14	IA-15
Field Sample Date	3/16/2011	3/16/2011	3/16/2011	4/28/2011	3/16/2011	3/24/2011	3/24/2011	4/28/2011
Field Sample ID		828131A-SS1202	828131A-IA1302	828131A-IA1303	828131A-SS1302	828131A-IA1402	828131A-SS1402	828131A-IA1503
QC Code	FS	FS	FS	FS	FS	FS	FS	FS
Parameter Name	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	1.6 J	1.1 U	1.1 U	1.1 U	1.1 U	3.4	2.7	1.1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.6 U	1.6 U	1.6	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
1,1-Dichloroethene	0.81 U	30	0.81 U	0.81 U	130	0.81 U	0.81 U	0.81 U
1,2,4-Trimethylbenzene	1.5 UJ	2.3 J	1.5 UJ	5.3	2.1 J	1.5 UJ	1 J	1.5 U
1,2-Dichloroethane	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	1.1
1,3,5-Trimethylbenzene	1 UJ	5.8 J	1.3 J	25	4.7 J	1.1 J	2 J	1.6
1,4-Dichlorobenzene	3.3 J	1.2 UJ	170 J	1.2 U	5.4 J	2.1 J	2.6 J	1.2 U
2-Butanone	2.6 J	2.1 J	3.4 J	5.6 J	3.8 J	0.6 UJ	4.2 J	2.8 J
2-Propanol	13	5.8 J	32	5 U	5 U	12	23	8.8
4-Ethyltoluene	1 UJ	2.1 J	1.1 J	24	2.4 J	1 UJ	1.5 J	1.3
4-Methyl-2-pentanone	0.83 UJ	0.83 UJ	0.96 J	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
Acetone	27	16	22	41 J	18	16	16	27 J
Benzene	1	1.6	1.2	29	3.6	0.94	1.1	1.2
Benzyl chloride	1.1 UJ	1.1 UJ	1.1 J	1.1 U	1.1 UJ	1.1 UJ	1.1 UJ	1.1 U
Carbon disulfide	0.63 U	1.9	0.63 U	0.63 UJ	5	0.63 U	1.4	0.63 UJ
Carbon tetrachloride	0.26 U	1.3 U	1.3	0.77	1.3 U	0.26 U	0.26 U	0.83
Chlorobenzene	0.94 U	0.94 U	0.94 U	0.94 U	1.3	0.94 U	0.94 U	0.94 U
Chloroform	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U
Chloromethane	1.2	0.42 U	1.2	0.42 U	0.42 U	0.42 U	0.42 U	1.6
Cis-1,2-Dichloroethene	12	8800	43	0.81 U	22000	0.81 U	17	17
Cyclohexane	0.7 U	1.5	0.7 U	0.7 U	5.9	8.7	1.2	0.7 U
Dichlorodifluoromethane	2.5	3.8	2.7	2.6	10	1 U	46	2.5
Ethanol	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl acetate	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl benzene	1.9	1.4 J	1.4 J	25	4.1 J	0.88 U	0.88 U	1.2
Heptane	2.2	4.1	1.7 J	0.83 UJ	14	3.2	2.6	0.83 UJ
Hexane	0.72 U	3	0.72 U	23	11	5.7	2.2	0.72 U
Methylene chloride	0.71 U	0.71 U	1 J	2.5 J	0.71 U	0.99 J	0.71 U	0.95 J
Propylbenzene	NA	NA	NA	NA	NA	NA	NA	NA
Styrene	1.3 U	0.87 U	1.3	1.3 U	1.3	1.3 U	1.3 U	1.3 U
Tetrachloroethene	6.2 J	610 J	29 J	1.4 U	21000 J	1.4 UJ	16 J	5.8
Tetrahydrofuran	0.6 U	0.6 U	0.69	1 J	0.6 U	0.6 U	0.6 U	0.6 UJ
Toluene	15	6.9	6.7	130	35 J	61	5.4	7
trans-1,2-Dichloroethene	0.81 U	110	0.81 U	0.81 U	260	0.81 U	0.81 U	0.81 U
Trichloroethene	7.9 J	3000 J	42 J	0.22 U	28000 J	0.22 UJ	17 J	20
Trichlorofluoromethane	1.5	1.4	2	1.5	1.6	1.7	1.5	1.4
Vinyl chloride	0.86	410	2.1	0.52 UJ	2000	0.52 U	1.9	8.5 J
Xylene, o	1.5 J	2	1.1 J	31	3.5	0.88 J	1.2 J	1.2
Xylenes (m&p)	4.6	5.6	2.7	87	11	2.6 U	3.7	3.2

SVI = Soil Vapor Intrusion

VOCs = volatile organic compounds

Samples analyzed by EPA Method TO-15

(IA-6A and 6B analyzed by Method TO-17)

Results in micrograms per cubic meter (µg/m3

Detected compounds shown in **bold**.

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample

FD = Field Duplicate Sample

NA = not analyzed; requested method did not include the target analyte

and not merade the target analyte

Table 5.1: Select Chlorinated VOC Results Over Time

	Location Name	MV	W-2	2 MW		MW-2		MW-2		MW-2		MW-2 (dup)	
	Sample Date	11/2/	11/2/2005		11/21/2005		3/3/2008		11/16/2010		8/2/2011		2011
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene	5	2500		1900		1400		760	JD	1300	DJ	1300	DJ
Trichloroethene	5	1200		900		260		410	JD	660	D	680 D	
Cis-1,2-Dichloroethene	5	2100		1400		810		1300	JD	1400	D	1500	D
trans-1,2-Dichloroethene	5	16		10		50	U	14		47		31	
1,1-Dichloroethene	5	3.6		2.7		50	U	2.1		2.5		3.2	
Vinyl chloride	2	25		21		31	J	83		63		71	

Samples analyzed for VOCs by EPA Method SW8260B $\,$

(dup) = duplicate sample

VOC = volatile organic compound

Results reported in micrograms per liter $(\mu g/L)$

Detected compounds shown in **bold**.

ft bgs = feet below ground surface

Highlighted results exceed criteria

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

2005, 2006, and 2008 data as reported by Labella

Associates, P.C.

Table 5.1: Select Chlorinated VOC Results Over Time

	Location Name			MW-5 11/21/2005		MW-5 3/3/2008		MW-5 11/16/2010		MW-5	
	Sample Date									8/2/2	2011
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene	5	2.1		1.9		2.4	J	35	J	14	J
Trichloroethene	5	1.2		1.1		5	U	2.2		1.9	
Cis-1,2-Dichloroethene	5	2.5		2.2		1.6	J	1.1	J	0.81	J
trans-1,2-Dichloroethene	5	1	U	1	U	5	U	1	U	1	U
1,1-Dichloroethene	5	1	U	1	U	5	U	1	U	1	U
Vinyl chloride	2	1.1		1.4		1.2	J	1	U	1	U

Samples analyzed for VOCs by EPA Method SW8260B $\,$

(dup) = duplicate sample

VOC = volatile organic compound

Results reported in micrograms per liter (µg/L)

Detected compounds shown in $\,\boldsymbol{bold}.$

ft bgs = feet below ground surface

Highlighted results exceed criteria

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

2005, 2006, and 2008 data as reported by Labella Associates, P.C.

Table 5.1: Select Chlorinated VOC Results Over Time

	Location Name	Location Name MW-6D Sample Date 3/13/2006		MW-6D 11/15/2010		MW-6D (dup) 11/15/2010		MW-6M 3/13/2006		MW-6M 11/15/2010		MW-6M	
	Sample Date											8/2/	/2011
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene	5	46		30		19		19		27		1	. U
Trichloroethene	5	2.3		2		1.5		2.3		1.2		0.67	J J
Cis-1,2-Dichloroethene	5	4.4		31		22		4.4		1.9		1	U
trans-1,2-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethene	5	1	U	1	U	1	U	1	U	1	U	1	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U	1	UJ

Samples analyzed for VOCs by EPA Method SW8260B

(dup) = duplicate sample

VOC = volatile organic compound

Results reported in micrograms per liter ($\mu g/L$)

Detected compounds shown in **bold**.

ft bgs = feet below ground surface

Highlighted results exceed criteria

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

2005, 2006, and 2008 data as reported by Labella Associates, P.C.

Table 5.1: Select Chlorinated VOC Results Over Time

	Location Name	MV	W-7	MV	W-7	MW-7	
	Sample Date	4/5/2006		11/15	/2010	8/2/	2011
Parameter Name	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier
Tetrachloroethene	5	1	U	8		11	J
Trichloroethene	5	5.3		32		78	
Cis-1,2-Dichloroethene	5	800		1100	D	2500	DJ
trans-1,2-Dichloroethene	5	12		25		32	
1,1-Dichloroethene	5	1.7		5.3		7.6	
Vinyl chloride	2	130		150		89	

Samples analyzed for VOCs by EPA Method SW8260B

(dup) = duplicate sample

VOC = volatile organic compound

Results reported in micrograms per liter $(\mu g/L)$

Detected compounds shown in **bold**.

ft bgs = feet below ground surface

Highlighted results exceed criteria

Criteria = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998).

Qualifiers:

U = Not detected greater than the reporting limit

D = Result is reported from a dilution

J = Estimated value

2005, 2006, and 2008 data as reported by Labella Associates, P.C.

APPENDIX A

SITE PHOTOGRAPHS

Site property, view looking to the west.

Site property, view looking to the south.

Former Site building, view looking to the north.

Pore water sample location PS-03 at Irondequoit Creek, view looking north.

Conducting helium leak testing at Structure 09.

Conducting helium leak testing at Structure 08.

Sampling sub-slab soil vapor at Structure 06.

Installing monitoring well MW-11.

APPENDIX B

SITE SURVEY

CARRIAGE 1600 PENFIELD HORIZONTAL VERTICAL Description	CLEANERS ROAD DATUM DATUM Northing (ft)	LU #36418 NYSP 1983 NAVD 1988 Easting (ft)	PENFIELD, NY 2/2/2011 WEST ZONE 3102 Elevation (ft)
DP 23	rtortillig (it)	Eusting (11)	21¢ (which (10)
ground	=		264.29
rim			264.28
riser	1145143.156	1437526.181	263.89
11501	11 131 13.130	1137320.101	203.07
DP 27	_		
ground	_		266.18
rim			266.32
riser	1145633.093	1437261.896	265.91
DD 22			
DP 22	_		266.66
ground rim			266.66 266.71
riser	1145200 491	1437649.187	266.55
riser	1145299.481	143/049.18/	200.33
BRIDGE POINT	1144464.615	1437843.816	277.62
	_		
DP 13			
ground	1144549.005	1437917.391	267.30
DP 15	_		
ground			264.24
rim			264.22
riser	1144661.879	1438060.782	263.83
DP 06			
	_		268.26
ground rim			268.33
riser	1144251.052	1438065.202	267.85
TISEI	1144231.032	1436003.202	207.83
DP 07			
ground	1144316.249	1438096.564	267.88
C			
DP 10	_		
ground	_		267.57
rim			267.58
riser	1144452.473	1438293.115	267.14
DP 11	-		
ground	1144526.822	1438314.505	266.96

CARRIAGE 1600 PENFIELD HORIZONTAL VERTICAL Description	CLEANERS ROAD DATUM DATUM Northing (ft)	LU #36418 NYSP 1983 NAVD 1988 Easting (ft)	PENFIELD, NY 2/2/2011 WEST ZONE 3102 Elevation (ft)
DP 12	U ()		, ,
ground	-		267.18
rim			267.19
riser	1144596.758	1438352.500	266.76
MW 05			
ground	-		269.35
rim			269.34
riser	1144285.345	1438634.106	269.11
MW 06			
ground			269.10
rim			269.15
riser 6M	1144351.711	1438612.045	268.78
riser 6D	1144351.694	1438611.943	268.90
MW 02			
ground			269.21
rim			269.24
riser	1144357.243	1438575.489	268.84
MW 07			
ground	•		268.99
rim			269.02
riser	1144313.802	1438549.540	268.79
MW 04			
ground	-		266.78
rim			266.78
riser	1144381.661	1438670.624	266.44
DP 28			
ground	=		268.42
rim			268.62
riser	1145033.933	1437792.854	268.37

<u>CARRIAGE</u>	<u>CLEANERS</u>		PENFIELD, NY
1600 PENFIELD	ROAD	LU #36418	7/13/2011
HORIZONTAL	DATUM	NYSP 1983	WEST ZONE 3102
VERTICAL	DATUM	NAVD 1988	
Description	Northing (ft)	Easting (ft)	Elevation (ft)
DP 34	_		
ground	-		263.52
riser	1145901.892	1437318.571	263.97
DP 33			
ground			265.91
riser	1146030.199	1437483.341	266.54
TOD DIDE DI ODEEN	1145021 560	1.427.416.500	261.52
TOP PIPE IN CREEK	1145931.560	1437416.509	261.52
TOP OF WATER			258.59
TOP OF STEEL	1145999.485	1437340.477	262.16
ON SOUTH SIDE	11 13777. 103	1137310.177	202.10
OF POND			
TOP OF WATER			256.11
MW-11			
GROUN/RIM			267.67
PVC RISER	1144448.222	1438290.021	267.32
LOCATED 8-1-11			
MW-12			
GROUND/RIM			264.31
PVC RISER	1145136.763	1437524.205	264.02
LOCATED 8-1-11			

APPENDIX C

FIELD DATA RECORDS

APPENDIX C-1

DIRECT PUSH GROUNDWATER DATA RECORDS

GROUNDWATER/ PORE WAT	ER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage Clear PROJECT NUMBER 3612102168 SAMPLE ID SA	SAMPLE LOCATION DATE 11-15-20 10 START TIME 1220 END TIME 1250. SAMPLE TIME 1220 END TIME 1250. SITE NAME/NUMBER 828/3/14 PAGE OF WELL INTEGRITY YES NO NA ATTEMPT OTHER CAP CASING LOCKED COLEAR COLLEGE COLEAR TOC/TOR DIFFERENCE FT
FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (units) (mS/cm) PH (units)	TO STATE OF THE ST
12 24 BEGIN PURGING 1230 C. L. L. C. G. G. G. C.	
WATTERA HEXANE X LOPE TUBING OTHER METHANOL OTHER OTHER OTHER OTHER ANALYTICAL PARAMETERS	TEFLON BLADDER OTHER
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 x 40 mL SAMPLE QC SAMPLE BOTTLE ID NUMBERS SPEC Attivo
- Screening intervient from 8' to 12' bps - processing intervient from	SKETCH OPUS SIFE BOUNDERY
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED VES NO SENERATED NO-PURGE METHOD VES NO If yes, purged approximately 1 standing volume prior to sampling or many multiple for this sample location.	0 b-n,
Sampler Strandon Show Print Name: Checked By: J. Rawelifth Date: 11132410	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC OHALITY ASSURANCE PROJECT BLAN

	GROUNDWATER/ PORE WATER GRAB SAM	PLING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER	SAMPLE LOCATION DP - 2 II - 15 - 2 1 START TIME END TIME
	3612102168 SAMPLE ID \$28731A - Droi 20 K \$28731A - Droi 20 K	1155 1220 SITE NAME/NUMBER PAGE 1 OF 1
(BMP) SC FT (BI (BMP) SC FT LE WATER COLUMN FT VC	TER GEOPROBE PORE WATER OUTFALL C	OTHER WELL INTEGRITY YES NO DAY CAP CASING LOCKED
CALCULATED TO GAL PU	OTAL VOL. IRGED L per minute X total minutes X 0.00026 gal/mL) DRAWDOWN/ TOTAL PURGED	PRESSURE TO PUMP PSI
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (units) DISS. O ₂ (mg/L) 1	PUMP TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1210 — 400	15.92 1.988 7.09 0.35	102.1 819 PID = 130ppb
1218 - 1000	16.05 1.986 6.97 1.69	50.9 ×19 10 = 121 pob
SAMPLE OBSERVATIONS: CLEARCC	DLORED LT YEV CLOUDY TURBID	ODOR OTHER (see notes) The Soul
X	ONIZED WATER TEFLON TUBING PVC PL TABLE WATER TEFLON LINED TUBING GEOPR	EL PUMP MATERIAL JUMP MATERIAL PID 1 P TO P PROBE SCREEN N BLADDER TURB. METER PUMP P O UNP OTHER
ANALYTICAL PARAMETERS PARAMETER X Volatile Organic Compound	METHOD NUMBER PRESERVATION VOLUME REQ. 8620B HCI 12 1/2 40 mL	NUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS
NOTES - Sereening interval	from 16' to 20' by	Site Boundary
- seveer was a 1's	notted pre	003
-pro readspace;	outer on grandsorture	1 00×
PURGE OBSERVATIONS PURGE WATER YES NO N G	UMBER OF GALLONS 2	
NO-PURGE METHOD YES NO If to	yes, purged approximately 1 standing volume prior sampling ormL for this sample location.	
Sampler Signature:	Branden Shaw	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD
Checked By: J. Kawchru	Date: (1 63 1)	NYSDEC QUALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD			
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage Clear PROJECT NUMBER	sample location DATE DP-2 START TIME END TIME		
3612102168 SAMPLE ID 878131A - 090270 X	SAMPLE TIME SITE NAME/NUMBER PAGE OF DEPT.		
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	OUTFALL OTHER WELL INTEGRITY YES NO OTHER CAP CASING LOCKED COLLAB OTHER TOCITOR		
(BMP) FT (BMP) FT S WELL DEPTH SCREEN P	TICKUP (AGS) FT DIFFERENCE FT ID REFILL TIMER SETTING SEC		
COLUMN FT VOLUME GAL M (initial DTW- final DTW X well diam. squared X 0.041) CALCULATED TOTAL VOL.	ID WELL OUTH PPM DISCHARGE TIMER SETTING SEC RAWDOWN/ DTAL PURGED PSI TO PUMP PSI		
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE pH (units) (mS/cm) PH (units)	DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)		
1134 - 400. 15-70 1.575 7.03 1140 Ullested an sample @ 09-2	3 0.23123 10' PID: 4.8pp=		
1/245			
SAMPLE OBSERVATIONS: CLEARCOLOREDCLOUDY			
Type of pump	CUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL G. GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER OTHER FILTERS NO. TYPE		
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID COLLECTED COLLECTED NUMBERS 2 1/x 40 mL See Above		
NOTES	SKETCH		
- using 4' pre 1" shifted screens - screening internal from 12' to 8' bgs	Site Boundary		
- DTW ~ 6.5° by	00-01		
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS ~ 2	N		
	Penfeld Road		
KTOW (FOUR STOCK)	Rocal		
Checked By: J. Rawcliffe Date: it >> 10	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC OLIALITY ASSURANCE PROJECT BLAND		

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD			
PROJECT NAME Off-Site Carriage C PROJECT NUMBER 3612102168 SAMPLE ID SAM	SAMPLE LOCATION DATE 11-15-2010 START TIME END TIME 125. SAMPLE TIME SAMPLE TIME OF PAGE 125. SITE NAME/NUMBER PAGE OF PAGE 125. OUTFALL OTHER CAP CASING LOCKED COLLAR COLLAR TOTHER DIFFERENCE FT PAGE 125. PROT. CASING TOC/TOR DIFFERENCE FT PAGE 125. PROT. CASING TOC/TOR DIFFERENCE FT PAGE 125. PROT. CASING STICKUP (AGS) FT TOC/TOR DIFFERENCE FT PAGE 125. PID WALL INTEGRITY NIA PAGE 125. TOC/TOR DIFFERENCE FT TOC/TOR DIFFERENCE FT PAGE 125. PID WELL INTEGRITY NIA PAGE 125. TOC/TOR DIFFERENCE FT TOC/TOR DIFFERENCE FT PAGE 125. PID WELL TIMER SETTING SEC 25.		
FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (un (ms/cm) PH (un	COMMENTS		
X PERISTALTIC X LIQUINOX X SILICON TUBING SUBMERSIBLE X DEIONIZED WATER TEFLON TUBING	TURBID ODOR OTHER (see notes) G/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL		
POTABLE WATER HIDRE TUBING HIDRE TUBING OTHER OT	GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER OTHER OTHER TEREN TURB. METER TURB. M		
NOTES Screening interval (116' to 20' rgs	SKETCH O		
Sween used is a 1° pre spetted	Obas of Site Bornging		
Brinden shaw	Rendield Red		
Checked By: T. Rawchife Date: 11/2-210	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC OUALITY ASSURBANCE PROJECT PLAN		

	GROUNDWATER/ PORE WA	TER GRAB SAMPL	ING RECORD	
MACTEC	PROJECT NAME Off-Site Carriage Cle	aners	SAMPLE LOCATION	DATE 11-15-210
511 Congress Street, Portland Maine 04101	PROJECT NUMBER	saileis	START TIME	END TIME
	3612102168		1345	14/8.
	\$281314-DP0310X	SAMPLE TIME 1355	SITE NAME/NUMBER 828131 A	PAGE OF 1
SAMPLE TYPE GRAB WELL/PIEZON			·	
	2 4 6 8 1	OTHER OTHE		WELL INTEGRITY YES NO NA A
TUBING ID (INCHES) 1/8	1/4 🗹 3/8 🔲 1/2 🗍 5/8	OTHER	CAP CASI	
MEASUREMENT POINT (MP) TOP OF	RISER (TOR) TOP OF CASING (TOC)	OTHER NONE	(bys) coy	
		PROT. CASING	TOC/TOR	
		STICKUP (AGS)	FT DIFFEREN	
	LENGTH FT	AMBIENT AIR	REFILL TI SETTING	SEC SEC
COLUMN FT	VOLUME . GAL	PID WELL MOUTH	DISCHAR	
CALCULATED		DRAWDOWN	PRESSUR	
(column X well diameter squared X 0.041)	PURGED GAL (mL per minute X total minutes X 0.00026 gal/mL)	TOTAL PURGED	TO PUMP	PSI
FIELD PARAMETERS TIME DISALET PURGE RATE	TEMP (%) SP. CONDUCTANCE		PUMP	
(mUmin) -	TEMP. (°C) SF. CONDOCTANCE PH (unit:	s) DISS. O ₂ (mg/L) TURB	IDITY (ntu) REDOX (mv) INTAKE	
345 BEGIN PURGING 350 - 460	13			
355 (1) = 400	14.60	<u> </u>	10°	P10:54.8 pp=
1 Celucted gr	Simple (DP-03			·
BAL				
170				
MPLE OBSERVATIONS:	COLORED Reddish Processing		<u> </u>	
EQUIPMENT DOCUMENTATION	COLORED FERMIN CLOUDY	TURBID	ODOR	OTHER (see notes)
WATTERA HE OTHER MI	DTABLE WATER TEFLON LINED TUBII TRIC ACID HDPE TUBING EXANE X LDPE TUBING OTHER OTHER OTHER	NG GEOPROBE TEFLON BLA OTHER OTHER OTHER	DDER TU	DAETER YA RB. METER A MP JLO PIND HER J IERS NO. TYPE
PARAMETER	METHOD NUMBER PRESERVATION	VOLUME REQUIRED	SAMPLE QC	SAMPLE BOTTLE ID
X Volatile Organic Compound	METHOD 8620B HCI	2 /x 40 mL	COLLECTED COLLECTE	NUMBERSSee Above
		<u> </u>		
NOTES				-
	+ 12' her	SKETCH	11	-
series fra the	15 12 5 11		04 /	iteBourdary
- PID headspace = 77.8 pg	<u> </u>			,
Severing interval: 8° -PiD headspace: 54.8 pg - Seveen " 1" pvc 51	ated	08-1	13.	\
, , , , , , , , , , , , , , , , , , ,	1	4		_
		020	/ / / / /	/
BURCE ODCEDVATIONS		010	<u> </u>	
PURGE OBSERVATIONS			\ \ /	
	UMBER OF GALLONS 22			
CONTAINERIZED G	ENERATED		\checkmark	
NO-PURGE METHOD YES NO	yes, purged approximately 1 standing volume prior	Pen Licht Rd		·
UTILIZED to	sampling ormL for this sample location.	\ (AU) \		
	The state of the s	- au (g)		
	Brandon Shaw	- all M	\	
opler Signature:	Bravelon Shaw Print Name: Date: (11 0-510	/,	DUNDWATER/ PORE WATE	FIGURE

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD			
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage C PROJECT NUMBER 361210216	START TIME END TIME		
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW FINAL DTW FINAL DTW	OUTFALL OTHER WELL INTEGRITY YES NO NA CAP CASING COLLAR COLLAR TOC/TOR		
(BMP) FT (BMP) FT WELL DEPTH (BMP) FT WATER COLUMN FT DRAWDOWN VOLUME (Initial DTW- final DTW X well diam. squared X 0.041 CALCULATED GALVOL GAL PURGED 1.2 GAL	PID WELL MOUTH DIFFERENCE FT DIFFERENCE FT REFILL TIMER SETTING SEC PID WELL MOUTH DISCHARGE TIMER SETTING SEC PRESSURE PRESSURE		
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (utility) PURGING	PUMP		
1335 - 400 15.07 1.861 (e. 1340 Willeted gw smple @ DP-05	97 1.0651.6 119' PID=/70ppb.		
SAMPLE OBSERVATIONS: CLEAR COLORED Lt grey: CLOUDY CLOUDY	TURBID ODOR OTHER (see notes)		
X	SCHUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL BING GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER OTHER FILTERS NO. TYPE		
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVATIC METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 /x 40 mL SAMPLE QC SAMPLE BOTTLE ID NUMBERS COLLECTED COLLECTED SAMPLE BOTTLE ID NUMBERS		
Screening interval from 16 to 20° zys Pid headspace: 170 pp.	SKETCH OF, Side Boundary		
	ορ-ο3. οι.		
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 2 CONTAINERIZED GENERATED NO-PURGE METHOD YES NO	Ren Field Road		
UTILIZED If yes, purged approximately 1 standing volume prior to sampling or NA ml. for this sample location. Brundon Shaw Print Name:	FIGURE 4-10		
Checked By: J. Rawch He Date: 11 20100	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN		

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD			
MACTEC PROJE	CT NAME	SAMPLE LOCATION DATE	
511 Congress Street, Portland Maine 04101 PROJE	Off-Site Carriage Cleaners	1 10-04 11-15-2010	
PROJE	3612102168	START TIME END TIME 1500	
SAMPE	SAMPLE TIME	SITE NAME/NUMBER PAGE	
12	8131 A-DPO410XD 1455	828731 A OF	
SAMPLE TYPE GRAB WELL/PIEZOMETER	GEOPROBE PORE WATER OUTFALL	OTHER WELL INTEGRITY	
WELL DIAMETER (INCHES) 1 2	4 6 8 OTHER	CAP YES NO N/A CASING 344	
TUBING ID (INCHES) 1/8 1/4 MEASUREMENT POINT (MP) TOP OF RISER (TOR)	3/8	LOCKED W	
INITIAL DOM	TOP OF CASING (TOC) OTHER PROT. CASING		
(BMP) FT (BMP)	FT STICKUP (AGS)	TOC/TOR DIFFERENCE FT	
WELL DEPTH SCREEN (BMP) FT LENGTH	PID AMBIENT AIR	Co. PPM REFILL TIMER SETTING SEC	
WATER DRAWDOWN FT VOLUME	PID WELL GAL MOUTH	DISCHARGE	
(initial DTW- t	inal DTW X well diam. squared X 0.041) DRAWDOWN/	PPM TIMER SETTING SEC	
GALVOL GAL PURGED (column X well diameter squared X 0.041) (mL per minut	e X total minutes X 0.00026 gal/mL)	TO PUMP PSI	
FIELD PARAMETERS			
TIME DTW (FT) PURGE RATE (ML/min) TEMP. (°C)	SP. CONDUCTANCE pH (units) DISS. O ₂ (mg/L)	PUMP TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)	
1 445 BEGIN PURGING			
1450 - 400 15.6		/2.1 ~10' PID: 6,5pp	
1455 Celleted Jw Sam	ple 608-04		
1 Ba			
140			
SAMPLE OBSERVATIONS: CLEAR COLORED	CLOUDY TURBID	V 0000	
EQUIPMENT DOCUMENTATION		ODOR OTHER (see notes)	
	X SILICON TUBING S. S.	TEEL PUMP MATERIAL WATER LEVEL METER	
BLADDER POTABLE WAT NITRIC ACID	ER TEFLON LINED TUBING GEO	PUMP MATERIAL PID DPROBE SCREEN WQ METER LON BLADDER TURB, METER	
WATTERA HEXANE OTHER METHANOL OTHER OTHER	X LDPE TUBING OTH	IER PUMP IER OTHER	
ANALYTICAL PARAMETERS	OTHEROTH	ER FILTERS NO TYPE	
PARAMETER METHOD	NUMBER PRESERVATION VOLUME RE	EQUIRED SAMPLE QC SAMPLE BOTTLE ID	
X Volatile Organic Compound 8620	2	COLLECTED COLLECTED. NUMBERS	
NOTES	SKETCH		
sense ning interval; 81 + - Duplicate where	v 12'	005	
	44 < 4 :	DP-04 / Site Boundary	
- Duplicate Guicles neve	M Y	83	
·		03	
		*//	
PURGE OBSERVATIONS			
PURGE WATER YES, NO NUMBER OF C	SALLONS x 2		
CONTAINERIZED GENERATED	Penn		
NO-PURGE METHOD YES NO	- COMED		
	provimetaly 4 standies welves and		
UTILIZED to sampling or	proximately 1 standing volume prior mL for this sample location.	Roza	
by to sampling or Brand	m. for this sample location.	Road	
to sampling or	on Shaw	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD	

	GROUNDWATER/ PORE WAT	ER GRAB SAMPLING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cle PROJECT NUMBER 3612102168	START TIME	11-15-2010 END TIME 1445
:	\$281314 - DP0420X	SAMPLE TIME SITE NAME/NUMBI	PAGE OF
TUBING ID (INCHES) 1/8 MEASUREMENT POINT (MP) TOP OF INITIAL DTW (BMP) C.5 FT WELL DEPTH (BMP) FT WATER COLUMN FT	GEOPROBE PORE WATER 2	OUTFALL OTHER OTHER OTHER OTHER VOTHER VOTHER (Word (W)). PROT. CASING STICKUP (AGS) FT PID AMBIENT AIR PPM PID WELL MOUTH PPM	WELL INTEGRITY YES NO N/A CAP CASING LOCKED COLLAR TOC/TOR DIFFERENCE REFILL TIMER SETTING DISCHARGE TIMER SETTING SEC
CALCULATED GAL	TOTAL VOL.	DRAWDOWN/ TOTAL PURGED	PRESSURE TO PUMP PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (unit	s) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv	
1420 BEGIN PURGING			DEPTH (ft)
1940 Celletel gw 5	16.05 1.848 7.0	2 0.20 — -115.7	19 110, 586,00
1190 100162 900	COL-04		
YAS			
SAMPLE OBSERVATIONS: CLEAR	COLORED LT. GWCV CLOUDY	TURBID ODOR	OTHER (see notes)
X PERISTALTIC X L SUBMERSIBLE X D BLADDER P WATTERA H OTHER D OTHER C	TUBING T	JPUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL NG GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER	WATER LEVEL METER PID FRA WQ METER TURB. METER PUMP OTHER FILTERS NO. TYPE
ANALYTICAL PARAMETERS PARAMETER Volatile Organic Compound	METHOD NUMBER PRESERVATION METHOD 8620B HCI	VOLUME REQUIRED SAMPLE COLLECTED 2 1/2 x 40 mL	COLLECTED SAMPLE BOTTLE ID NUMBERS SEL Above
NOTES Sincerning interval:	16 to 20' igs	sketch 0ρ-οϤ	Sixtanday
		03	
PURGE OBSERVATIONS PURGE WATER YES NO	NUMBER OF GALLONS 3.7		/ /
CONTAINERIZED VES NO	GENERATED	Pan Kild Roods	1
	If yes, purged approximately 1 standing volume prior to sampling or N mL for this sample location.	oud.	
Sampler Signature:	Brandon Shaw, Print Name:	GROLINDWATER/ PO	FIGURE 4-10 DRE WATER GRAB SAMPLING RECORD
Checked By: J. Rawcliff	Date: 11/20/10		QUALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD			
PROJECT NAME Off-Site Carriage Cleaner: PROJECT NUMBER 3612102168	SAMPLE LOCATION DATE 11-15 2010 START TIME 1410 END TIME 1425		
SAMPLE ID 81314-080430X	AMPLE TIME SITE NAME/NUMBER PAGE 1 OF 1		
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER OU WELL DIAMETER (INCHES) 1 2 4 5 8 0	THER CAP CASING LOCKED		
	THER		
(BMP) FT STICK	CASING JP (AGS) FT DIFFERENCE FT		
WELL DEPTH 30 FT SCREEN PID AMBIEL	320		
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	PPM TIMER SETTING SEC		
FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (units) D	PUMP DISS. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS		
1411 BEGIN PURGING	DEPTH (ft)		
1415 - 400, 15,10 1.687 7.02	0.2581.0 -29' PID: 125 pob		
14h Olveted en sample CDP-84			
134			
SAMPLE OBSERVATIONS: CLEAR COLORED LT DIWN CLOUDY	TURBID (Silly) ODOR OTHER (see profes)		
EQUIPMENT DOCUMENTATION			
TYPE OF PUMP	BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL GEOPROBE SCREEN TEFLON BLADDER OTHER		
ANALYTICAL PARAMETERS	OTHER FILTERS NO TYPE		
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC COLLECTED COLLECTED NUMBERS A SAMPLE BOTTLE ID NUMBERS A SAMPLE BOTTLE ID NUMBERS		
NOTES 1 1 1 (+ - 72) had SKE	ETICH =		
NOTES Screening interval 2 26' to 30' bys Pid hundspace 7 125 pps	DP-40 / Site Boundary		
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 22 CONTAINERIZED GENERATED	Pen Geld Rd		
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.			
Sampler Signature Brint Name:			
Checked By: J. Rawcliffe Date: [1] 24(0	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN		

	GROUNDWATER/ PORE WA	TER GRAB SAMPLING	RECORD	
MEASUREMENT POINT (MP) TOP OF RI INITIAL DTW (BMP) FT (E WELL DEPTH (BMP) FT LE WATER COLUMN FT VI CALCULATED GALJVOL GAL PI	4 6 8	SAMPLE TIME SITE OUTFALL OTHER OTHER OTHER PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WELL OUTFALL OTHER OTHER OTHER PROT. CASING FID AMBIENT AIR PID WELL OUTFALL OTHER OTHER	BP-05 ART TIME 1540 ENAMENUMBER 520 131 H	PATE 11-15-2010 END TIME 1600 PAGE OF VELL INTEGRITY YES NO N/A FT SEC SEC PSI
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (un	its) DISS. O ₂ (mg/L) TURBIDITY (r	PUMP ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
1545 - 400 1550 Celleted gw	15.27 j. 442 7.0° Sumple @ DP-0	, 6.0	-79-1 2/0 4),p:190pps
SAMPLE OBSERVATIONS: CLEAR CO	DLORED CLOUDY	TURBID	ODOR O	THER (see notes)
X	UINOX ONIZED WATER FICACID RICACID CANE CANE THANOL A SILCON TUBING TEFLON LINED TUE HDPE TUBING THANOL THANOL THANOL TEFLON LINED TUE HDPE TUBING THER	TEFLON BLADDER OTHER OTHER OTHER	TERIAL WATER AL PID WQ MET	DUIPMENT USED LEXEL METER CAP LEXE M
Scrunning interval: 8	to 12' by	SKETCH -02	-04° bb-02	Site Boundary
PURGE OBSERVATIONS				
PURGE WATER YES NO NU CONTAINERIZED V GE	IMBER OF GALLONS NERATED es, purged approximately 1 standing volume prior ampling or	Pendrell Rd		N N
Sampler Signature: Checked By: J. Rawcliffe	Date: 1/120/10	GROUND		FIGURE 4-10 GRAB SAMPLING RECORD SURANCE PROJECT PLAN

	GROUNDWATER/ PORE WA	TER GRAB SAMPI	LING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101 SAMPLE TYPE VGRAB WELL/PIEZON	PROJECT NAME Off-Site Carriage CI PROJECT NUMBER 3612102168 SAMPLE ID 127 3 A - DF0 5 20	SAMPLETIME	SAMPLE LOCATION DP - 05 START TIME 15 10 SITE NAME/NUMBER 728131 A	DATE 1/5-2010 END TIME 5 40. PAGE 1 OF 1
WELL DIAMETER (INCHES) 1 1/8 TUBING ID (INCHES) 1/8 MEASUREMENT POINT (MP) TOP OF I	2 4 6 8 1/4 3/8 11/2 5/8 RISER (TOR) TOP OF CASING (TOC)	OTHER		ED
(BMP) FT WELL DEPTH	FINAL DTW (BMP) FT	PROT. CASING STICKUP (AGS)	FT TOC/TOR DIFFEREN	
WATER COLUMN FT CALCULATED	DRAWDOWN VOLUME GAL (initial DTW- final DTW X well diam, squared X 0.041) TOTAL VOL. PURGED GAL GAL	AMBIENT AIR PID WELL MOUTH DRAWDOWN/ TOTAL PURGED	PPM SETTING PPM DISCHARG TIMER SE PRESSUR TO PUMP	SEC SEC SEC SEC
	(mL per minute X total minutes X 0.00026 gal/mL)	TOTAL TOTAL	TOPUMP	PSI
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (uni	its) DISS. O₂ (mg/L) TUR	PUMP RBIDITY (ntu) REDOX (mv) INTAKE DEPTH (f	
1532 - 400	15.15 1.271 7.1	8 0.53	103.8 - 19	Pio: Fee Apb
1535 Collected of	rsample FDP-05	5		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
120				
SAMPLE OBSERVATIONS: CLEAR	COLORED LT Grey CLOUDY_	TURBID V	ODOR	OTHER (see notes)
X	ON FLUIDS USED QUINOX X SILICON TUBING EIONIZED WATER OTABLE WATER ITRIC ACID EXAME EXAME EXAME ETHANOL THER OTHER TOBING TEFLON LINED TUB HOPE TUBING OTHER OTHER	PVC PUMP GEOPROBI TEFLON BL	PUMP MATERIAL W/ MATERIAL PIE E SCREEN LADDER TU PIU VIOYAL OT	EQUIPMENT USED ATER LEVEL METER O POST REAL D MEN METER MP HER TERS NO. TYPE
PARAMETER X Volatile Organic Compound	METHOD NUMBER PRESERVATIO 8620B HCI	N VOLUME REQUIRE 2 / x 40 mL	ED SAMPLE QC COLLECTED COLLECTE	SAMPLE BOTTLE ID NUMBERS SLE ASM
NOTES		SKETCH		
sereemy interval:	11' to 20' bps	o	03	Site Boundwry
PURGE OBSERVATIONS				
PURGE WATER YES NO	NUMBER OF GALLONS SENERATED	Rendreld Rd		
NO-PURGE METHOD YES NO UTILIZED YES	f yes, purged approximately 1 standing volume prior osampling ormL for this sample location.	To the second		
Sample-Signature:	Print Name:		\ ·	FIGURE 4.40
Checked By: J. Rawcliffe	1 1	GF		FIGURE 4-10 ER GRAB SAMPLING RECORD
SHOWELDY VINGWAIFFE	Date: /// 22/10		NYSDEC QUALITY	ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WA	TER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage C PROJECT NUMBER 361210216	START TIME END TIME
SAMPLE ID 828131 A - DPOL LOX	SAMPLE TIME SITE NAME/NUMBER PAGE
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER	OUTFALL OTHER WELL INTEGRITY
WELL DIAMETER (INCHES) 1 2 4 6 8	CAP CASING — DAT
TUBING ID (INCHES) . 1/8 1/4 2/3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	OTHER LOCKED
INITIAL DTW FINAL DTW	PROT. CASING TOC/TOR
(BMP) FT (BMP) FT	STICKUP (AGS) FT DIFFERENCE FT
(BMP) FT LENGTH FT	AMBIENT AIR ZD. PPM SETTING SEC
WATER COLUMN FT DRAWDOWN VOLUME (initial DTVV- final DTVV X welf diam, squared X 0.041	PID WELL MOUTH PPM DISCHARGE TIMER SETTING SEC
CALCULATED GAL TOTAL VOL. PURGED PURGED (no lumn X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	DRAWDOWN/ TOTAL PURGED PRESSURE TO PUMP PSI
FIELD PARAMETERS	
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE pH (ur	PUMP ilts) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1000 BEGIN PURGING 1005 - 400 14.84 1.719 6.9	
1005 - 400 14.84 1.719 6.9 1010 Wheeled on Souple DD-06	9 0.96100.9 -10' PID: 35 pp
1010 (6110) (101 50	
180	
SAMPLE OBSERVATIONS: CLEAR COLORED LEGIS PRINTING CLOUDY	TURBID ODOR OTHER (see notes)
TYPE OF PUMP	TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER
ANALYTICAL PARAMETERS	OTHER FILTERS NO TYPE
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 / Sx 40 ml. VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS See a bove
- Screening interval: 8 to 12 bys - stainless steel screen	SKETCH
	0007
DUDOS OPOSTOVATIONO	Ren Riels Red
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED PURGE OBSERVATIONS	1 red
NO-PURGE METHOD YES NO UTILIZED If yes, purged approximately 1 standing volume prior to sampling or many mile for this sample location.	
Sampler Signature. Brandon Shaw	FIGURE 4-10
Checked By: J1 Rawchiffe Date: 11/20/10	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE W.	ATER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage	START TIME END TIME
828131A-DP6620X	SAMPLE TIME. SITE NAME/NUMBER PAGE 1955 OF 1
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 5 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW	OUTFALL OTHER WELL INTEGRITY YES NO N/A CAP CASING LOCKED COLLAB OTHER OTHER COLLAB TOC/TOR PROT. CASING TOC/TOR
(BMP)	STICKUP (AGS) FT DIFFERENCE FT
WATER COLUMN FT LENGTH FT CALCULATED GAL/VOL Golumn X well diameter squared X 0.041) FIELD PARAMETERS FT LENGTH FT DRAWDOWN VOLUME GAL (Initial DTW- final DTW X well diam. squared X 0.04- TOTAL VOL. PURGED L2 GAL (mL per minute X total minutes X 0.00026 gal/mL)	AMBIENT AIR PPM SETTING SEC PID WELL MOUTH PPM TIMES SETTING
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (u (mS/cm)	PUMP units) DISS, O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
0945 BEGIN PURGING 0957 - 400 14.65 3.264 6	
0455 Cilcited gw Sample	.98 0.82 86.4.19 PND: 140ppb
> Ax	
SAMPLE OBSERVATIONS: CLEARCOLORED LY WEY, CLOUDY	TURBID ODOR OTHER (see notes)
TYPE OF PUMP	NG/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL PVD PUMP TEFLON BLADDER OTHER
PARAMETER METHOD NUMBER PRESERVATII METHOD X Volatile Organic Compound 8520B HCI	ON VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2/x40 mL 1 SEC abive
NOTES	SKETCH
- Severing internal? 16 to 20 bys - Stunless steel whenveyed screen (14).	SKETCH CITY OF THE SECOND SECO
- PID neads pace = 140 pr=;	TOPOT
-9 disposed of gur on ground shota	Penfuld Rel
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED	N A
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	
Sampler Signature: Print Name:	FIGURE 4-10
Checked By: J. Rawd He Date: 11) 72/10	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

	GROUNDWATER/ PORE WAT	ER GRAB SAMPLING	RECORD	
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cle PROJECT NUMBER 3612102168	eaners	AMPLE LOCATION DP-07 TART TIME 1335	DATE 1 - 16 - 2016 END TIME 1400.
	8 28 3 1 A - D10710	SAMPLE TIME SIT	828131 A	PAGE 1 OF 1
SAMPLE TYPE GRAB WELL/PIEZOME* WELL DIAMETER (INCHES) 1 2 TUBING ID (INCHES) 1/8 1/ MEASUREMENT POINT (MP) TOP OF RIS	TER GEOPROBE PORE WATER 4 6 8 6 4 7 3/8 1/2 5/8	OUTFALL OTHER OTHER OTHER	CAP CASING LOCKER	WELL INTEGRITY YES NO BAS
		PROT. CASING STICKUP (AGS)	TOC/TOR FT DIFFERENCE	FT FT
		AMBIENT AIR	REFILL TIME	
COLUMN FT VC CALCULATED GAL/VOL GAL CALCULATED GAL/VOL GAL	DLUME GAL M tital DTW- final DTW X well diam, squared X 0,041) TTAL VOL.	PID WELL MOUTH PRAWDOWN/ OTAL PURGED	PPM DISCHARGE TIMER SETTI PRESSURE TO PUMP	
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (units) DISS. O ₂ (mg/L) TURBIDITY (PUMP (ntu) REDOX (mv) INTAKE DEPTH (ff)	COMMENTS
1340 - 460.	15.44 2-792 7.07	0.10 71000	-1151 -10	711)-19 ach
1345 - Collected	gu sample & DP-	67		μρο
1200	0 4	,		
SAMPLE OBSERVATIONS: CLEARCO	LORED OF GWEY CLOUDY	TURBID V	ODOR	OTHER (see notes)
X PERISTALTIC X LIQU SUBMERSIBLE X DEIC BLADDER POT WATTERA HEX. OTHER MET. OTHER OTH	JINOX SILICON TUBING DIVIZED WATER TEFLON LINED TUBING TEFLON LINED TUBING TEFLON LINED TUBING HOPE TUBING LOPE TUBING LOPE TUBING OTHER TOTHER TERMS	PUMP/BLADDER MATERIALS S. STEEL PUMP MA PVC PUMP MATERIA GEOPROBE SCREE TEFLON BLADDER OTHER OTHER OTHER	TERIAL WATE AL PID WQ M TUMP PUMP OTHE	
ANALYTICAL PARAMETERS PARAMETER	METHOD NILIANDED PRESERVATION		SAMPLE QC	
X Volatile Organic Compound	METHOD NUMBER PRESERVATION METHOD HCI	VOLUME REQUIRED 2 / x 40 mL	SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID NUMBERS SEC ABOVE
NOTES				
-screening interval.	8, 40 15, ph	SKETCH	Renfred Rd	
PURGE OBSERVATIONS		P. C	5000)	
	IBER OF GALLONS	Penfull Rd	of of	A Company
UTILIZED V If yes	s, purged approximately 1 standing volume prior mpling ormL for this sample location.	7		17
	Brindon Shaw.	GROUND	WATER/ PORE WATER	FIGURE 4-10 GRAB SAMPLING RECORD
Checked By: J. Rawcliffe	Date: 11 2910			SSURANCE PROJECT PLAN

GROUNDWATER/ PORE WA	ATER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage C PROJECT NUMBER 361210216 SAMPLE ID 36121021 SAMPLE ID 36121021 SAMPLE ID 36121	SAMPLE LOCATION START TIME S
CALCULATED GALVOL GALVOL (column X well diameter squared X 0.041) TOTAL VOL. PURGED (mL per minute X total minutes X 0.00026 gal/mL)	DRAWDOWN/ TOTAL PURGED — PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (ut	PUMP nits) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1325 BEGIN FORGING 1330 - 400 15.19 2.308 7.2 1335 Giketel gn Sample & DP-07	
SAMPLE OBSERVATIONS: CLEAR COLORED LT CIVE! CLOUDY	
EQUIPMENT DOCUMENTATION	TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER OTHER TURE. METER PUMP OTHER OTHER FILTERS NO. TYPE
Norre	
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED PURGE WATER YES NO NUMBER OF GALLONS A GENERATED	Penful Rel Doro
NO-PURGE METHOD YES NO UTILIZED If yes, purged approximately 1 standing volume prior to sampling orml. for this sample location.	
Sampler Signature: Print Name: Print Name:	
Checked By: J. Rawaliffic Date: 11) 20(1)	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD
TIVO III	NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WATER GR	KAB SAIMPLING RECORD	\$100 man (編集) (2015年)
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER	SAMPLE LOCATION	
	3612102168	START TIME	END TIME 1 430
	\$28131A-DP0820X SAM	SITE NAME/NUMBER	PAGE OF
SAMPLE TYPE GRAB WELL/PIEZOME	TER GEOPROBE PORE WATER OUTF	ALL OTHER	WELL INTEGRITY
WELL DIAMETER (INCHES) 1 2 TUBING ID (INCHES) 1/8 1			CAP CASING YES NO N/A /4
MEASUREMENT POINT (MP) TOP OF RI	/4	R Whene (bys)	COLLAR
	INAL DTW PROT. CAS	SING TO	DC/TOR
WELL DEPTH S	CREEN PID	R	FFERENCE FT
WATER	RAWDOWN PID WELL		SCHARGE SEC
(ir	OLUME GAL MOUTH nitial DTW- final DTW X well diam. squared X 0.041) DTAL VOL. DRAWDOW	PPM TI	MER SETTING SEC
GAL/VOL GAL PI	URGED GAL TOTAL PUR GAL TOTAL		RESSURE PSI
FIELD PARAMETERS TIME PURGE RATE	SP. CONDUCTANCE		PUMP
(mL/min)	TEMP. (°C) (mS/cm) pH (units) DISS	. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv)	INTAKE COMMENTS DEPTH (ft)
1470 BEGIN PURGING	15.02 4.044 7.09 4.	56 124 53.91	16 20 000
1425 alreated gm	saple @ 12P-08	121 -33-1	~19" pid=100 pps
	J		
1 Par			
MPLE OBSERVATIONS: 01548			
EQUIPMENT DOCUMENTATION	DLORED CLOUDY TI	JRBIDODOR	OTHER (see notes)
WATTERA HEX	TABLE WATER RIC ACID HDPE TUBING KANE X LDPE TUBING THANOL HER OTHER	GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER	WO METER TURB. METER PUMP OTHER FILTERS NO. TYPE
PARAMETER	METHOD NUMBER PRESERVATION WETHOD V	OLUME REQUIRED SAMPLE COLLECTED CO	QC SAMPLE BOTTLE ID
X Volatile Organic Compound	8620B HCI 2	× 40 mL	Ser above
		PX-FORME V	
NOTES			
	SKETC	H 2011	
	No to 20'spr	H 2011	
NOTES Screening, hteral;	16' to 20'sfr	H 2011	
	SKETC	H Old Participal Red.	
	16' to 20'sfr	H eld particulated	
Screening internal:	16' to 20'sfr	H eld particulated	
Screening internal:	16' to 20'sfr	Pens 1	
PURGE OBSERVATIONS PURGE WATER YES NO NU	16' to 20'sfr	H eld particulated	- 0p-08
PURGE OBSERVATIONS PURGE WATER YES NO NU GE NO-PURGE METHOD YES NO	IMBER OF GALLONS 22	H eld particulated	
PURGE OBSERVATIONS PURGE WATER YES NO NU GE CONTAINERIZED GE NO-PURGE METHOD YES NO	IMBER OF GALLONS PRENETED Ses, purged approximately 1 standing volume prior nampling or The for this sample location.	H eld particulated	
PURGE OBSERVATIONS PURGE WATER YES NO NU GE CONTAINERIZED GE NO-PURGE METHOD YES NO	IMBER OF GALLONS 22 ENERATED Sees, purged approximately 1 standing volume prior	H eld particulated	

	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD					
MMACTEC	PROJECT NAME		SAMPLE LOCATION	M De	ATE .	
511 Congress Street, Portland Maine 04101	Off-Site Carriage	Cleaners	J	-09	11-16-10	
· ·	PROJECT NUMBER 361210216	8	START TIME	(i) EN	ID TIME GOO.	
	SAMPLE ID 1314 DP091	SAMPLETIME	SITE NAME/NUMB	ER PA	GE	
		0x 1 200	8 28 13	MA	OF	
SAMPLE TYPE V GRAB WELL/PIEZOME	TER GEOPROBE PORE WATER	OUTFALL OT	HER	WE	LL INTEGRITY	
WELL DIAMETER (INCHES) 2 TUBING ID (INCHES) 1/8 1.	4 G 8	OTHER		CAP CASING	YES NO NA PA	1
MEASUREMENT POINT (MP) TOP OF RI		OTHER	2 thest	LOCKED COLLAR	_ = =	
INITIAL DTW FI	NAL DTW	PROT. CASING	- (-)			
(BMP) <u>b</u> FT (B	MP)	STICKUP (AGS)	FT	TOC/TOR DIFFERENCE	FT	
	REEN NGTH FT	PID AMBIENT AIR	CO. PPM	REFILL TIMER SETTING	SEC	
COLUMN FT VC	AWDOWN GAL	PID WELL . MOUTH		DISCHARGE		
CALCOLATED	tial DTW- final DTW X well diam. squared X 0.041	DRAWDOWN/	PPM	TIMER SETTING	SEC	
	RGED GAL per minute X total minutes X 0.00026 gal/mL)	TOTAL PURGED		PRESSURE TO PUMP	PSI	
FIELD PARAMETERS						
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (u	nits) DISS. O₂ (mg/L) TUR	RBIDITY (ntu) REDOX (mv)		COMMENTS	
1540. BEGIN PURGING				DEPTH (ft)		
	13,90. 2,043 7,0	1 0.87 7	1006 90.7	101 P	10:35pp=	\neg
1550 Cellected go	Suple & DP-09			<i> </i>		\dashv
1 BAS						
SAMPLE OBSERVATIONS: CLEAR	ORED L'OINE SIGNEY		/			
EQUIPMENT DOCUMENTATION CO	LORED DOWN CLOUDY	TURBID	ODOR	ОТН	ER (see notes)	
		G/PUMP/BLADDER MATERIAL		EQUI	PMENT USED	
SUBMERSIBLE X DEIC	INOX X SILICON TUBING NIZED WATER TEFLON TUBING ABLE WATER TEFLON LINED TU	PVC PUMP		WATER LE	VEL METER () () b Rive	
WATTERA NITR	IC ACID HDPE TUBING	GEOPROBE TEFLON BL		WQ METER TURB. MET		ļ
OTHER METI	ANOL OTHER	OTHER OTHER		PUMP OTHER FILTERS I	NO. TYPE	j
ANALYTICAL PARAMETERS						\dashv
PARAMETER	METHOD NUMBER PRESERVATION METHOD	N VOLUME REQUIRE	D SAMPLE COLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS	
X Volatile Organic Compound	8620B HCI	2 1/x 40 mL		V	reculsive	
NOTES//		SKETCH				
Statement interest: 8 to	12 10/	SKEICH				
Streening internal: 8' to - Wilested us I were her		\ /	/ .w			
- collected us / wer her	re		OP-ON		Site	İ
					Boundary	
		·))		/	/	
		_ / / ,	8000		/	
PURGE OBSERVATIONS			DI.	- / ·	/	
PURGE OBSERVATIONS	_	P	entill Rd		/	
· · · · · · · · · · · · · · · · · · ·	BER OF GALLONS ~Z	λ	The state of the s			
CONTAINERIZED GEN	ERATED	<i>A</i> .			~ / /	
NO-PURGE METHOD YES NO If yes, to see	purged approximately 1 standing volume prior pling ormL for this sample location.	1				
,	7411	·				
Campler Signature:	Brandon Shar					\dashv
20 00		GRO	OUNDWATER/ POP	F WATER OR	FIGURE 4-16 AB SAMPLING RECORD	0
Checked By: J. Rawch Ffe	Date: 11/22/10	OI C			AB SAMPLING RECORE	اد

	GROUNDWATER/ PORE V	VATER GRAB SAMPLING	RECORD	
WELL DIAMETER (INCHES) TUBING ID (INCHES) MEASUREMENT POINT (MP) INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATED GALVOL (column X well diameter squared X 0.041) FIELD PARAMETERS	PROJECT NAME Off-Site Carriage PROJECT NUMBER 36121021 SAMPLE ID 28 31 A DPO 27 EZOMETER GEOPROBE PORE WATER 2 4 6 8 1/4 3/8 1/2 5/8 P OF RISER (TOR) TOP OF CASING (TOC) FINAL DTW (BMP) FT SCREEN LENGTH FT DRAWDOWN VOLUME (initial DTW- final DTW X well diam, squared X 0,0 TOTAL VOL PURGED (mL per minute X total minutes X 0,00026 gal/mL)	Cleaners STA SAMPLE TIME OUTFALL OTHER OTHER PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WOUTH	TOC/TOR DIFFERENCE PPM REFILL TIME SETTING PPM PRESSURE TO PUMP	FT R SEC
TIME DTW (FT) PURGE RAT (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH	(units) DISS. O ₂ (mg/L) TURBIDITY (ni	PUMP tu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
BEGIN PURGING 1532 SAMPLE OBSERVATIONS: CLEAR EQUIPMENT DOCUMENTATION TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER OTHER ANALYTICAL PARAMETERS PARAMETER Volatile Organic Compound	COLORED CLOUDY	UBING PVC PUMP MATERIAL GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER	ODOR	METER A
PURGE OBSERVATIONS PURGE WATER YES NO CONTAINERIZED V NO-PURGE METHOD YES NO UTILIZED	NUMBER OF GALLONS GENERATED If yes, purged approximately 1 standing volume prior to sampling or the sample location.	SKETCH OP 15	Feld Rd.	Site Dovuly
Sampler Signature: Checked By: J. Rawcl. The	Rrandon Shaw Print Name: Date: 11/02/10			FIGURE 4-10 GRAB SAMPLING RECORD

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD			
MACTEC PROJECT NAME Off-Site Carriage C	0, 1, 1, 1, 0, 0, 0		
511 Congress Street, Portland Maine 04101 PROJECT NUMBER 361210216	START TIME END TIME 0815		
SAMPLEID Z8131 A-DP1010	SAMPLE TIME SITE NAME/NUMBER PAGE OF OF		
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER	OUTFALL OTHER WELL INTEGRITY		
WELL DIAMETER (INCHES)	OTHER CAP CASING DATE		
1/8	OTHER LOCKED COLLAR COLLAR		
(BMP) FT (BMP) FT	PROT. CASING STICKUP (AGS) FT TOC/TOR DIFFERENCE FT		
WELL DEPTH 20. FT SCREEN LENGTH FT	PID AMBIENT AIR AMBIENT AIR PPM REFILL TIMER SETTING SEC		
WATER COLUMN FT VOLUME (initial DTW- final DTW X well diam, squared X 0,041	PID WELL MOUTH DISCHARGE TIMER SETTING SEC		
CALCULATED GAL/VOL (column X well diameter squared X 0.041) TOTAL VOL PURGED (mL per minute X total minutes X 0.00026 gal/mL)	DRAWDOWN/ TOTAL PURGED PRESSURE TO PUMP PSI		
FIELD PARAMETERS	DIME		
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (ur	PUMP nits) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)		
0805 - 400 14.38 1.706 6	19 0.31 71000 -79.9 WID' PID: 10.2 pp		
0810 Collected que supre & DP-10	The state of the s		
120	<u> </u>		
177			
SAMPLE OBSERVATIONS: CLEAR COLORED DE GIVEY CLOUDY EQUIPMENT DOCUMENTATION	TURBID ODOR OTHER (see notes)		
TYPE OF PUMP DECON FLUIDS USED TUBIN	TEFLON BLADDER TURB, METER		
OTHER METHANOL OTHER OTHER OTHER	OTHER OTHER OTHER OTHER FILTERS NO. TYPE		
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVATION	ON VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID		
X Volatile Organic Compound 8620B HCI	26×40 mL COLLECTED COLLECTED NUMBERS See Above		
	// // // // // // // // // // // // //		
PVi screen from 8' to 12' by	SKETCH SKETCH		
Pro screen from 8 to 12 by Pro headspace * 10,2 pp=. -sturbles steel 4' screen -private cherted here Asso	1 1 0 po 10		
-stumus steel 4' screen	Open Site		
- preparate allested here Asso	Burnell		
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 2	N A		
CONTAINERIZED VES NO If yes, purged approximately 1 standing volume prior			
UTILIZED V 1945, pulged approximately 1 standing volume prior to sampling or Marchan Shared			
Sampler Streetures Print Name:	FIGURE 4-10		
Checked By: J. Rawalth Date: 11/2-110	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC OHALITY ASSURANCE PROJECT BLAN		

	GROUNDWATER/ PORE WATER GRAB SAM	PLING RECORD
511 Congress Street, Portland Maine 04101	ROJECT NAME Off-Site Carriage Cleaners ROJECT NUMBER 3612102168 AMPLE ID SAMPLE TIME	SAMPLE LOCATION DP - (0) DATE 11 - 16 - 26 (0) ASTART TIME 0735 SITE NAME/NUMBER PAGE
L	828 131 A - DP 1020 6800	828131A OF
SAMPLE TYPE GRAB WELL/PIEZOMETER WELL DIAMETER (INCHES) 1 2 TUBING ID (INCHES) 1/8 1/4 MEASUREMENT POINT (MP) TOP OF RISER	4	WELL INTEGRITY YES NO CAP CASING LOCKED COLLAR COLLAR
INITIAL DTW FT FINAL (BMP) WELL DEPTH GA SCREE	FT STICKUP (AGS)	TOC/TOR DIFFERENCE FT
(BMP) FT LENGT	TH AMBIENT AIR	AC PPM SETTING SEC
CALCULATED TOTAL GAL/VOL GAL PURGE	ME GAL MOUTH DTW-final DTW X well diam, squared X 0.041) VOL. DRAWDOWN/	DISCHARGE TIMER SETTING PRESSURE TO PUMP PSI
FIELD PARAMETERS PURGE RATE	SP. CONDUCTANCE	PUMP
TIME DTW (FT) FORGERATE TEN	MP. (°C) SP. CONDOCTANCE pH (units) DISS. O ₂ (mg/L) T	URBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
	1.87 1.902 7.10 4.65	57.9 ~ 19 " DID: 18.9 00 m
0500 Collected and	Somple @ DP-10	50.1 51.4 110 · 105 1 py =
\		
1845		
SAMPLE OBSERVATIONS: CLEAR COLOR	RED CLOUDY TURBID	ODOR OTHER (see notes)
	X SILICON TUBING S. STEEL ED WATER TEFLON LINED TUBING GEOPRE ACID HDPE TUBING TEFLON LDPE TUBING TEFLON OTHER	ALS PUMP MATERIAL PM ATERIAL PM ATERIAL PID
PARAMETER ME X Volatile Organic Compound	PRESERVATION VOLUME REQUIREMENTS AND METHOD VOLUME REQUIREMENT	RED SAMPLE QC SAMPLE BOTTLE ID NUMBERS SEL Above
Springers steel screen.	trom 16, 40 50, 20	= pp-10
PURGE OBSERVATIONS	OP OP	A
CONTAINERIZED YES NO GENER.	J. 11 J	ied Rd.
	randum Shan	
-0 (M	· 1	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

GROUNDWATER/ PORE WA	TER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage C PROJECT NUMBER 3612102168 SAMPLE ID SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW (BMP) FT (BMP) WELL DEPTH (BMP) FT LENGTH CALCULATED GAL CALCULATED GAL GAL PURGED GAL PURGED Off-Site Carriage C Off-Site Carriage C PROJECT NAME Off-Site Carriage C PROJECT NAME Off-Site Carriage C Off-Site Carriage C PROJECT NAME Off-Site Carriage C PROJECT NUMBER 3612102168 SAMPLE ID 1/4 0 6 8 8 TUBING ID (INCHES) FT OF OF CASING (TOC) SAMPLE LOCATION START TIME SAMPLE-TIME SITE NAME/NUMBER OF OUTFALL OTHER	
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS	
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pH (un (mS/cm) pH (un	, , , , , , , , , , , , , , , , , , ,
1415 BEGIN PURGING	DEPTH (ft)
1420 - 200 13.43 1.766 7.8	1 8.01 71000 -219.9-45 PID: 0.6 pp-
1425 Collected gus comple e DF 10	
N RAN	
SAMPLE OBSERVATIONS: CLEAR COLORED DX GVC CLOUDY	TURBID V. SITY ODOR OTHER (see notes)
EQUIPMENT DOCUMENTATION TYPE OF PUMP X PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER OTHER ANALYTICAL PARAMETERS EQUIPMENT DECON FLUIDS USED X LIQUINOX X SILICON TUBING TEFLON TUBING DECON FLUIDS USED TUBINO X SILICON TUBING TEFLON TUBING TEFLON TUBING TEFLON TUBING TEFLON TUBING TEFLON TUBING TEFLON TUBING TOTHER OTHER OTHER OTHER OTHER OTHER	G/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL V PID VM METER V TURB. METER PUMP OTHER OTHER OTHER OTHER FILTERS NO. TYPE
PARAMETER METHOD NUMBER PRESERVATIC X Volatile Organic Compound 86208 HCI	VOLUME REQUIRED COLLECTED COLLECTED NUMBERS See Above
Superior When it a At to Al by	SKETCH
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS A GENERATED	Op-9 Site Boundary Penfield Pol
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling orml. for this sample location.	
Brandon Sha	
Sampler Signature: Print Name:	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD
Checked By: J. Rawat Me Date: #1231.2	MYSDEC OHALITY ASSUBANCE DEGLECT DUAN

GROUNDWATER/ PORE W	ATER GRAB SAMPLING RECORD
SAMPLE TYPE	SAMPLE LOCATION DATE 17-2010 START TIME END TIME 331 A PAGE OUTFALL OTHER WELL INTEGRITY YES NO N/A CAPICAL CASING CONTER CASING CASI
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (u	PUMP nits) DISS. O $_2$ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1435 - 400, 12.91 1.783 7.1 1446 literted gur sample @ DP-10	4 0.09 71000225.1 435 PID 4 0.8 pg 112
SAMPLE OBSERVATIONS: CLEAR COLORED DE WEY CLOUDY	TURBID V/ STILLY ODOR OTHER (see notes)
EQUIPMENT DOCUMENTATION TYPE OF PUMP X PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER OTHER ANALYTICAL PARAMETERS EQUIPMENT DOCUMENTATION DECON FLUIDS USED LIQUINOX X SILICON TUBING DEIONIZED WATER DEIONIZED WATER TEFLON LINED TU INTRIC ACID HEXANE METHANOL OTHER OTHER OTHER OTHER OTHER ANALYTICAL PARAMETERS	BING GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER TOTHER TOTHE
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 1 x 40 mL See Above
Screening intervals 35 to 31' 591 PVD headspure: 0.8 ppm.	SKETCH Site Bounday
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO UTILIZED YES NO If yes, purged approximately 1 standing volume prior to sampling or much for this sample location.	Rentield Rd N
Sampler Signature: Checked By: J. Nawdiffe Date: 11 2-210	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE	WATER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriag PROJECT NUMBER SAMPLE ID SAMPLE ID SAMPLE ID	START TIME END TIME 1500 SITE-NAME(NUMBER A PAGE)
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATE WELL DIAMETER (INCHES) 1 2 4 6 8 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC INITIAL DTW (BMP) FINAL DTW (BMP) WELL DEPTH (BMP) FT LENGTH FT WATER COLUMN FT DRAWDOWN VOLUME (Initial DTW X well diam. squared X O TOTAL VOL. PURGED GAL/VOL (column X well diameter squared X 0.041) FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PLANT OF TEMP COLUMN (INITIAL DTW X WEIL DEPTH X WEIL DEPTH (INITIAL DTW X WEIL DEPTH X	PID AMBIENT AIR PID WELL MOUTH AIR PID WELL MOUTH PPM MOUTH DISCHARGE TIMER SETTING PRESSURE TO PUMP PUMP PUMP
1441 BEGIN PURGING 1446 - 400 13,05 2.009 1450 Cellested Gir Sample @ 10 F SAMPLE OBSERVATIONS: CLEAR COLORED LT Briwn CLOUDY EQUIPMENT DOCUMENTATION	DEPTH (ft)
NOTES Se-elming inferval: 25 to 21 kgs Finally purel: 29-8pp	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 2 CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or The mL for this sample location.	Pentill Ad
Sampler Signature: Checked By: J. Raweliffe Date: 11/22/10	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage PROJECT NUMBER 3612102	START TIME, A FINE LOO	
SAMPLE \$28131A-01	SITE NAME NUMBER PAGE 1 OF	
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATT WELL DIAMETER (INCHES) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/ MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TO INITIAL DTW (BMP) FT FINAL DTW (BMP) WELL DEPTH SCREEN (BMP) FT LENGTH WATER COLUMN FT DRAWDOWN VOLUME (INITIAL DTW X well diam. squared X COLUMN CALCULATED GARDON TOTAL VOL.	PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WELL MOUTH PPM MELL INTEGRITY YES NO N/A CAP CASING LOCKED COLLAB TOC/TOR DIFFERENCE FT PID REFILL TIMER SETTING DISCHARGE TIMER SETTING SEC	
GAL/VOL GAL (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/m	TOTAL PURGED TO PUMP	
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm)	PUMP IH (units) DISS. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)	
	7.10 0.3070.9 MO' DID 3400 pb	
1105 Calletted gov sample of	ρ=1	
1240		
SAMPLE OBSERVATIONS: CLEAR COLORED CLOUDY		
EQUIPMENT DOCUMENTATION	TURBIDODOROTHER (see notes) UBING/PUMP/BLADDER MATERIALS EQUIPMENT USED	
X	NG S. STEEL PUMP MATERIAL PVC PUMP MATERIAL PVC PUMP MATERIAL PLD IN CONTROL OF THE PUBL PUBL PUBL PUBL PUBL PUBL PUBL PUBL	
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERV METH X Volatile Organic Compound 8620B HCI		
Sureung Herry : 8t +12' 49	SKETCH 912	
Screening Herral: 8t to 12' 450	- OP-11	
PNO: 3.4 por using stanhless steel screen	51te Bounday	
PURGE OBSERVATIONS	08	
PURGE WATER YES NO NUMBER OF GALLONS 2 CONTAINERIZED YES NO	Pendula II	
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location		
Sampler Signature: Brand . Print Name:	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD	
Checked By: J. Kawoli Ffe Date: 11/22/10	NYSDEC QUALITY ASSURANCE PROJECT PLAN	

GROUNDWATER/ PORE WA	ATER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage O PROJECT NUMBER 361210216	START TIME END TIME 1055
SAMPLE ID 17-09 11205	SAMPLE TIME SITE NAME/NUMBER PAGE 1 05 1
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8	OUTFALL OTHER WELL INTEGRITY OTHER CAP
TUBING ID (INCHES) 1/8 1/4 2/3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	OTHER Wine (515).
INITIAL DTW (BMP) FT (BMP) FT	PROT. CASING TOC/TOR STICKUP (AGS) FT DIFFERENCE FT
WELL DEPTH SCREEN SCREEN LENGTH FT	PID AMBIENT AIR AMBIENT AIR PPM REFILL TIMER SETTING SEC
WATER COLUMN FT DRAWDOWN VOLUME GAL (initial DTW-7 final DTW X well diam. squared X 0.041)	PID WELL MOUTH DISCHARGE TIMER SETTING SEC
CALCULATED GALVOL GAL (column X well diameter squared X 0.041) FIELD PARAMETERS TOTAL VOL PURGED (mL per minute X total minutes X 0.00026 gal/mL)	DRAWDOWN/ TOTAL PURGED PRESSURE TO PUMP PSI
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pH (ull /min) TEMP. (°C) (mS/cm) pH (ull /mS/cm)	PUMP nits) DISS. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
0 44 BEGIN PURGING 0 5 2 — 400 13.04 1.848 7.2	20 1 20
1055 Wested ou suple PDP-1	1 7.39 — -61.9 ~ 19 Prohentspice: 1250
SAMPLE OBSERVATIONS: OLFAD	
EQUIPMENT DOCUMENTATION	TURBID ODOR OTHER (see notes)
X PERISTALTIC X LIQUINOX X SILICON TUBING SUBMERSIBLE X DEIONIZED WATER TEFLON TUBING	IG/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL PVC PUMP MATERIAL PVC PUMP MATERIAL PID PID PD PVC PUMP MATERIAL
BLADDER	BING GEOPROBE SCREEN WQ METER TURB. METER TURB. METER PUMP
OTHER OTHER OTHER OTHER	OTHER OTHER OTHER FILTERS NO. TYPE
PARAMETER METHOD NUMBER PRESERVATIC METHOD X Volatile Organic Compound 86208	VOLUME REQUIRED COLLECTED COLLECTED NUMBERS
X Volatile Organic Compound 8620B HCI	hg/x 40 mL See Above
NOTES	
Screening internal frame: 16' to 26' bys PD headspace: 1250 p. 6	SKETCH 8 12
Pro neadspace: 1250 pro	°DP-11 Site
- using startiers steel surcer	Bounday
PURGE OBSERVATIONS	609
PURGE WATER YES NO NUMBER OF GALLONS W2	06
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	Penhied Rd
Sampler Signature: BMMdon Shaw	
Checked By: J. Rawd He Date: (1) 24(0	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC OHALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
PROJECT NAME Off-Site Carriage Cl PROJECT NUMBER 3612102168	START TIME 25 END TIME 145	
SAMPLE TYPE WGRAB WELL/PIEZOMETER WGEOPROBE PORE WATER	2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
WELL DIAMETER (INCHES) 1	OTHER CAP CASING LOCKED COLLAB COLLAB	
INITIAL DTW FT FINAL DTW FT FT	PROT, CASING TOC/TOR STICKUP (AGS) FT DIFFERENCE FT	
WELL DEPTH SCREEN 4 FT LENGTH FT	PID AMBIENT AIR CDL PPM REFILL TIMER SETTING SEC	
COLUMN FT VOLUME GAL (Initial DTW- final DTW X well diam. squared X 0.041) CALCULATED GAL GALVOL GAL PURGED GAL GAL	PID WELL MOUTH PPM TIMER SETTING DRAWDOWN/ TOTAL PURGED DISCHARGE TIMER SETTING SEC PRESSURE TO PUMP PSI	
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS TIME DRW (FD PURGE RATE TEMP 60) SP. CONDUCTANCE	PUMP	
TIME DTW (FT) FORGE POT TEMP. (°C) SF. CONDUCTANCE PH (uni	ts) DISS. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)	
1133 - 400 12.49 1.499 7.2 1135 Collected gor sample @ DP-12	3 0,10116,1 ~ 10' più: 450 pps	
1 1241		
SAMPLE OBSERVATIONS: OLS ID COLORS IN CONTRACT COLORS IN	TURBID V SANDY ODOR OTHER (con setes)	
EQUIPMENT DOCUMENTATION	TURBID ODOR OTHER (see notes)	
X PERISTALTIC X LIQUINOX X SILICON TUBING SUBMERSIBLE X DEIONIZED WATER TEFLON TUBING BLADDER POTABLE WATER TEFLON TUBING NITRIC ACID HDPE TUBING WATTERA HEXANE X LIQUINOX X SILICON TUBING TEFLON TUBING HDPE TUBING	S. STEEL PUMP MATERIAL WATER LEVEL METER PVC PUMP MATERIAL PID DD 2	
OTHER OTHER OTHER OTHER OTHER OTHER	OTHER OTHER OTHER FILTERS NO. TYPE	
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 x 40 mL VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 x 40 mL	
seveling interval: P' to 12' bys	SKETCH O DP-12	
NOTES Sevelving interval: P' to 12' bles - using a 3/4" pro succes - pro neadspace; 450 ppb	5, je	
- PID headspore, 450 ppb	og Site Brundley	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 72 CONTAINERIZED GENERATED	Restrictor	
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	The state of the s	
Sampler Signature: Checked By: J. Rawdiffe Date: 11)2-2\100	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD	

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
NAACTEC PROJECT NAME	SAMPLE LOCATION DATE	
TVIACIEC Off-Site Carriage	Cleaners DP-12 DATE VI -17-2010	
511 Congress Street, Portland Maine 04101 PROJECT NUMBER	START TIME END TIME	
361210216 SAMPLE ID	1410 125	
828131A-DP122	OX 1125 SITE NAME/NUMBER PAGE 1 OF 1	
SAMPLE TYPE VGRAB WELL/PIEZOMETER GEOPROBE PORE WATER	COUTEAU CONTRA	
WELL DIAMETER (INCHES) 1 2 4 6 8	YES NO N/A	
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8	OTHER CASING CASING LOCKED	
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	JOTHER Mone (bys)	
INITIAL DTW (BMP) FT (BMP) FT	PROT. CASING TOC/TOR	
WELL DEPTH SCREEN	STICKUP (AGS) FT DIFFERENCE FT	
(BMP) FT LENGTH FT	AMBIENT AIR PPM SETTING SEC	
WATER DRAWDOWN COLUMN FT VOLUME GAL	PID WELL MOUTH 7 PPM DISCHARGE TIMER SETTING SEC	
CALCULATED (initial DTW- final DTW X well diam. squared X 0.04 GAL VOL. GAL PURGED (A)	DRAWDOWN/	
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	TOTAL PURGED TO PUMP PSI	
FIELD PARAMETERS TIME PURGE RATE SP CONDUCTANCE		
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (in S/cm)	INTAKE COMMENTS	
BEGIN PURGING	DEPTH (ft)	
	20 0.50 - 199.4 19 DID : 70 Ret	
1725 Colleged gw smple PM-1	2	
189		
SAMPLE OBSERVATIONS:	1	
EQUIPMENT DOCUMENTATION CLEAR COLORED CLOUDY		
TYPE OF PUMP DECON FLUIDS USED TUBIL	NG/PUMP/BLADDER MATERIALS EQUIPMENT USED	
SUBMERSIBLE X DEIONIZED WATER TEFLON TUBING	S. STEEL PUMP MATERIAL WATER LEVE METER PVC PUMP MATERIAL PID WATER LEVE METER LEVE METE	
NITRIC ACID HOPE TUBING	JBING GEOPROBE SCREEN WQ METER TURB, METER TURB, METER	
OTHER HEXANE X LDPE TUBING OTHER OTHER OTHER OTHER OTHER	OTHER PUMP OTHER	
ANALYTICAL PARAMETERS	OTHER FILTERS NOTYPE	
PARAMETER METHOD NUMBER PRESERVATION METHOD	VOLUME REQUIRED 97 IIII 22 GO SAMPLE BOTTLE ID	
X Volatile Organic Compound 8620B HCI	2 1/2 40 mL COLLECTED COLLECTED NUMBERS See Above	
Servering inferval; 16 to 20 ys -using 3/4" proserce. PD headspare: 70 pp.	SKETCH	
Sevenil Interval. 10 40 10 18	» pp-12	
-using 3/4" pre sercer	9 11	
70 00h	Site	
pro headsports 11 112	310 Bounday	
	.9	
PURGE OBSERVATIONS		
PURGE WATER YES NO / NUMBER OF GALLONS		
CONTAINERIZED GENERATED	Penticular O	
NO-PURGE METHOD YES NO	N CHAIL	
UTILIZED If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	1	
Brander show.		
Sampler Signature: Print Name:	FIGURE 4-10	
Checked By: J. Rawcliffe Date: 11/2-410	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD	

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage PROJECT NUMBER 361210216	START TIME END TIME	
SAMPLE ID 82513 1A - 0 13 10	SAMDI E TIME STEEN AMERICAN PROPERTY OF THE PR	
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8	OUTFALL OTHER WELL INTEGRITY OTHER CAP CASING RATE	
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	other vene (13)	
INITIAL DTW (BMP) WELL DEPTH SOREEN	PROT. CASING STICKUP (AGS) FT TOC/TOR DIFFERENCE FT PID REFEIL TIMES	
(BMP) FT LENGTH FT WATER DRAWDOWN	AMBIENT AIR PPM SETTING SEC PID WELL DISCHARGE	
COLUMN FT VOLUME GAL (initial DTW- final DTW X well diam. squared X 0.04 TOTAL VOL PURGED GAL (column X well diameter squared X 0.041) CALCULATED GAL (mL per minute X total minutes X 0.00026 gal/mL)	MOUTH PPM TIMEP SETTING	
FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pH (mU/min) TEMP. (°C) (mS/cm)	PUMP units) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)	
1536 BEGIN PURGING 1540 - 400 13.47 2.667 7.	19 0.69 >1000 -1067 MID PID: 0.10pm	
1545 Wellested gor- Sample & OP-	13	
RA		
SAMPLE OBSERVATIONS: CLEAR COLORED 1 From CLOUDY	TURBID ODOR OTHER (see notes)	
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON FLUIDS USED TUB	ING/PUMP/BLADDER MATERIALS EQUIPMENT LISED	
X PERISTALTIC X LIQUINOX X SILICON TUBING	S. STEEL PUMP MATERIAL WATER LEVEL METER PVC PUMP MATERIAL PID SOLUTION OF THE PUBLIC PUMP MATERIAL PID SOLUTION OF THE PUBLIC P	
OTHER OTHER OTHER	OTHER FILTERS NO. TYPE	
PARAMETER METHOD NUMBER PRESERVAT METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2/x 40 ml Sec Above	
Screening interval: 8° to 12'. fit head-pace - 0.1 ppm.	SKETCH	
fin head-pace - Oil ppm	0(1) pp-13 / (
	Old Penhelm Rd	
PURGE OBSERVATIONS		
PURGE WATER YES NO NUMBER OF GALLONS 2 CONTAINERIZED GENERATED	The state of the s	
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	1 '	
Sampler Signature: Brandon Shawl Print Name:	FIGURE 4-10	
Checked By. J. Rawcliffe Date: 11/20/10	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN	

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
SAMPLE ID STANDING ID (INCHES) INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATED GALVOL (column X well diameter squared X 0,041) FIELD PARAMETERS PROJECT NAME Off-Site Carriage (OPROJECT NUMBER) A 6 1210216 SAMPLE ID SA	SAMPLE LOCATION SAMPLE LOCATION START TIME START TI	
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (u	PUMP Inits) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)	
153B Collected gw saple	22 0.70 71000 -117.0 -19" PID: 0.0 pp	
SAMPLE OBSERVATIONS: CLEARCOLORED LT Brown CLOUDY		
EQUIPMENT DOCUMENTATION	TURBID ODOR OTHER (see notes) NG/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP WATER LEVEL METER PUMP OTHER OTHER OTHER OTHER OTHER FILTERS NO. TYPE	
PARAMETER METHOD NUMBER PRESERVATIC METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS VIX 40 mL VOLUME REQUIRED COLLECTED COLLECTED NUMBERS VIX 40 mL VIX 40 mL	
Screening interval: 16° to 20° PID heaspace: 6.0 ppm	SKETCH OP-13	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or the mile for this sample location.	Old Centrold Ed	
Sampler Signature: Brandon Shew Checked By: J. Rawcliffe Date: 11/23/10	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN	

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD				
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage C PROJECT NUMBER 3612102168 SAMPLE D 11 10		START TIME 1620. SITE-NAMENUMBER A	DATE 11-17-2010 END TIME 45 PAGE L OF L
(BMP) FT (BI WELL DEPTH (BMP) FT LE WATER COLUMN FT VC CALCULATED GALVOL GAL	4 6 8	OUTFALL OTHER OTHER OTHER OTHER PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WELL MOUTH DRAWDOWN/ TOTAL PURGED	CAP CASING LOCKET COLLAR TOC/TOR DIFFERENCE PPM REFILL TIME SETTING PPM DISCHARGE TIMER SETTI PRESSURE TO PUMP	WELL INTEGRITY YES NO N/A FT SEC
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (ML/min) BEGIN PURGING	TEMP. (°C) SP. CONDUCTANCE pH (un	its) DISS. O₂ (mg/L) TURBID	TY (ntu) REDOX (mv) PUMP INTAKE DEPTH (ft)	COMMENTS
1627 - 460 1635 Correct GW	9mpe P DP-1	§ 1.12 7 ₁	500-\$1 -10	pid: Oloppin
SAMPLE OBSERVATIONS: CLEAR CO EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON	LORED CLOUDY CLOUDY TUBIN	TURBID	ODOR	OTHER (see notes)
SUBMERSIBLE X DEIC BLADDER POT NITR WATTERA HEX	HANOL OTHER	S. STEEL PUMP PVC PUMP MAT GEORGES SC TEFLON BLADE OTHER OTHER OTHER	PMATERIAL WATE FERIAL PID WQ M TURB PUMF OTHE	ER LEVEL METERS 18 INTEREST. METER
PARAMETER X Volatile Organic Compound	METHOD NUMBER PRESERVATIO 8620B HCI	VOLUME REQUIRED 2/x 40 mL	SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID NUMBERS SEE ANSWE
Sweening interval:	8/ + 12/ Lys		OP-13 al	. DP-14
CONTAINERIZED GEN	IBER OF GALLONS JERATED S, purged approximately 1 standing volume prior mpling or			
Sampler Signature:	Print Name:	GROL		FIGURE 4-10 GRAB SAMPLING RECORD SSURANCE PROJECT PLAN

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage PROJECT NUMBER	START TIME () END TIME 7 9	
361210216 SAMPLE ID 828131 A - D0142	SAMPLE TIME SITE NAME NUMBER A C 20 SITE NAME NUMBER A PAGE LOF	
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW (BMP) FT (BMP) FT	OUTFALL OTHER WELL INTEGRITY YES NO N/A \$45 CAP CASING LOCKED LOCKED COLUMN PROT. CASING STICKUP (AGS) FI DIEFFERENCE	
WELL DEPTH SCREEN (BMP) FT LENGTH 4 FT	PID AMBIENT AIR LOV PPM REFILL TIMER SETTING SEC	
WATER COLUMN FT CALCULATED GAL/VOL (column X well diameter squared X 0.041) FIELD PARAMETERS DRAWDOWN VOLUME (Initial DTW- final DTW X well diam, squared X 0.04 TOTAL VOL PURGED (mL per minute X total minutes X 0.00026 gal/mL)	PID WELL MOUTH PPM TIMER SETTING SEC 1) DRAWDOWN/ TOTAL PURGED PRESSURE TO PUMP PSI	
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE pH (if ms/cm) pH (if ms/cm)	units) DISS. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)	
1617 - 200 12.30 2.212 7: 1620 (Mestel que sample (D)-1	31 3,51 121 -69.1 ~ M' PID> 3,5ppm	
645		
SAMPLE OBSERVATIONS: CLEAR COLORED CLOUDY EQUIPMENT DOCUMENTATION		
	JBING GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER FILTERS NO. TYPE	
PARAMETER METHOD NUMBER PRESERVATI METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS SAMPLE DC SAMPLE BOTTLE ID NUMBERS SAMPLE DC SAMPLE BOTTLE ID NUMBERS SAMPLE DC SAMPLE BOTTLE ID NUMBERS	
NOTES A	SKETCH	
Screening inferval: 16' to 20'hp PID headspace: 3.5 ppm	0P-13 0P-14	
PURGE OBSERVATIONS	Old Renfreld Road	
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED	The state of the s	
NO-PURGE METHOD YES NO UTILIZED Visampling or Machine prior to sampling or		
Sampler signature: Checked By: J. Rawcliffe Date: 11/25/10	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD	
Checked By: U 1 Kawcliffe Date: 11 75410	NYSDEC QUALITY ASSURANCE PROJECT PLAN	

	GROUNDWATER/ PORE	WATER GRAB SAMP	LING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage PROJECT NUMBER 3612102 SAMPLE ID		SAMPLE LOCATION DP-15 START TIME D-750 SITE NAME NUMBER	DATE 1 - 18 - 2010 END TIME 2 805
	828131 A-DP152	6 X 0805	SITE NAME NUMBER 2813 A	PAGE
MEASUREMENT POINT (MP) TOP OF RI INITIAL DTW (BMP) FT (E WELL DEPTH (BMP) FT LE WATER DI	4 6 8 14 3/8 1/2 5/8	OTHER	CAP CASI LOCK COLL TOC/TOR DIFFEREN COLL PPM REFILL TII SETTING PPM TIMER SETTING	AB FT SEC SE
CALCULATED TO	itial DTW- final DTW X well diam. squared X 0. DTAL VOL. JRGED	DRAWDOWN/ TOTAL PURGED	PRESSURI	
	L per minute X total minutes X 0.00026 gal/mL)	TOTAL PORGED	ТО РИМР	PSI
TIME DTW (FT) PURGE RATE (mL/min) BEGIN PURGING	(mo/cm)	l (units) DISS. O ₂ (mg/L) TUI	PUMP RBIDITY (ntu) REDOX (mv) INTAKE DEPTH (fi	
0905 ionental and son		120 1.90 7	1000 -99.1 -19	Pro: 14.9 ppn=
1 collected and son	yk 6 00-15			
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \				
SAMPLE OBSERVATIONS: CLEAR	LORED V+ graysh Brown			
EQUIPMENT DOCUMENTATION		TURBID	ODOR	OTHER (see notes)
X	JINOX X SILICON TUBIN ONIZED WATER ABLE WATER RIC ACID ANE ANE HANOL X SILICON TUBIN TEFLON LINED HDPE TUBING LDPE TUBING OTHER	PVC PUMP	PUMP MATERIAL WA MATERIAL PIL E SCREEN LADDER TUI PUT OTI	METER RB. METER
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER PRESERVA	TION	ED SAMPLE QC	SAMPLE BOTTLE ID
X Volatile Organic Compound	8620B HCI	VOLUME REQUIRI	ED COLLECTED COLLECTE	
NOTES (A CEMBA MEVA)		SKETCH	1/	
proheatique: 149	bbw		13 obs	45
		old Pen	Field Rd	
PURGE OBSERVATIONS .	. ~	Wash N	To Rd	
CONTAINERIZED GEI	MBER OF GALLONS 1,5	15) 1		
NO-PURGE METHOD YES NO If ye to sa	s, purged approximately 1 standing volume prior impling ormL for this sample location.			`
Sampler Signature:	Brandon Shaw			FIGURE 4-10
Checked By: J. Rawcliffe	Date: 11(22)10	GR	NYSDEC QUALITY	R GRAB SAMPLING RECORD ASSURANCE PROJECT PLAN

	GROUNDWATER/ POF	RE WATER GRAB SAM	PLING RECORD	
MACTEC		iage Cleaners	SAMPLE LOCATION	DATE 1-18-2010
511 Congress Street, Portland Maine 04101	PROJECT NUMBER 3612	102168	START TIME	END TIME
	828131A-DP	1510X SAMPLETIME 0815	SITE NAME/NUMBER	PAGE
SAMPLE TYPE GRAB WELL/PIE	ZOMETER GEOPROBE PORE W	ATER OUTFALL O	THER	WELL INTEGRITY
WELL DIAMETER (INCHES)	□² □⁴ □6 □	8 OTHER	CAP	YES NO NA
TUBING ID (INCHES) 1/8 [MEASUREMENT POINT (MP) TOP	1/4 3/8 1/2 OF RISER (TOR) TOP OF CASING	5/8 OTHER	CASIN LOCKI	
INITIAL DTW (BMP) FT	FINAL DTW (BMP)	PROT. CASING	TOC/TOR	
WELL DEPTH	SCREEN	FT STICKUP (AGS)	FT DIFFERENCE	
WATER	LENGTH DRAWDOWN	FT AMBIENT AIR	SETTING	SEC
COLUMN FT	VOLUME (initial DTW- final DTW X well diam. squared TOTAL VOL.	GAL MOUTH X 0.041)	PPM DISCHARGI	TING SEC
GAL/VOL GAL (column X well diameter squared X 0.041)	2	GAL TOTAL PURGED	PRESSURE TO PUMP	PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE	TEMP (60) SP. CONDUCTANCE		PIMP	
TIME DTW (FT) PURGE RATE (mL/min) BEGIN PURGING	TEMP. (°C) GN CONDUCTANCE (mS/cm)	pH (units) DISS, O₂ (mg/L) TL	PUMP JRBIDITY (ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
0810 — 400	11-79 1-783	7.35 6.85	42.3 -70.9 -12	
0815 pleated	w sample & DA	-15	42.3 - 10.9 -10'	DID: 15.3pp=
			•	
MA				
SAMPLE OBSERVATIONS: CLEAR	COLORED			
EQUIPMENT DOCUMENTATION	COLOREDCLOUDY_	TURBID	ODOR	OTHER (see notes)
X PERISTALTIC X SUBMERSIBLE X BLADDER WATTERA	ECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER HITRIC ACID HEXANE X LOPE TUBIK	BING PVC PUMI NED TUBING GEOPROE NG TEFLON B	PUMP MATERIAL P MATERIAL BE SCREEN WATERIAL WATERIAL WATERIAL WATERIAL	EQUIPMENT USED ER LEVEL-METER WETER METER 3. METER
OTHER OTHER	METHANOL OTHER OTHER	OTHER OTHER OTHER OTHER	PUM OTH	
ANALYTICAL PARAMETERS	PPFOF			-10 10 17FE
PARAMETER Volatile Organic Compound	METHOS HOMBER	RVATION THOD VOLUME REQUIR	RED SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID NUMBERS
	8620B HCI	2/x 40 mL		see Alove
NOTES		SKETCH	- / 18	
Sweening interval: PID head space ? 15	8-12 2		OP-1:	5
D10 Wad 502 50 7 15	3 0 0A	13	114	
110 1001 250 0	7 0	Pla o	Aliela Per	
	•	S Rei	150	
		Sofre was	acut Dr	·
PURGE OBSERVATIONS		2, V		
PURGE WATER YES NO CONTAINERIZED	NUMBER OF GALLONS	- '1'		
NO-PURGE METHOD YES NO UTILIZED	If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location	on.		
ampler Signature:	Brandon Snaw			
checked By: J. Rawcliffe	Date: 11/22/10	GR	ROUNDWATER/ PORE WATER	
	ייייייייייייייייייייייייייייייייייייייי		NYSDEC QUALITY A	SSURANCE PROJECT DUANT

GROUNDWATER/ PORE WA	TER GRAB SAMPLING RECORD
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage CI PROJECT NUMBER 3612102168	START TIME END TIME
\$2813/A-D0162	SAMPLE TIME SITE NAME/NUMBER PAGE
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 2 4 6 8	OUTFALL OTHER WELL INTEGRITY YES NO N/A CAP
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8	OZHER CASING D41
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW (BMP) FT (BMP) FT	PROT. CASING TOC/TOR
WELL DEPTH 20 SCREEN 4 FT	PID AMBIENT AIR LO L PPM REFILL TIMER SETTING SEC
WATER COLUMN FT CALCULATED GALVOL GAL (column X well diameter squared X 0.041) DRAWDOWN VOLUME GAL (initial DTW- final DTW X well diam. squared X 0.041) TOTAL VOL. PURGED (mL per minute X total minutes X 0.00026 gal/mL)	PID WELL MOUTH PPM DISCHARGE TIMER SETTING SEC DRAWDOWN/ TOTAL PURGED PRESSURE TO PUMP PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pH (uni	Somments
0417 BEGIN PURGING 0423 - 400 13,47 1,545 73	1 0.37 71000 -129.1 -191 71P 1.60 MA
0925 Calletted gon Sample @DD-16	1 1000 1211 110 11.000 1152
\PAs	
SAMPLE OBSERVATIONS: CLEAR COLORED QUILIN DIFFUSION CLOUDY	TIPPIN (Silk)
EQUIPMENT DOCUMENTATION	TURBID ODOR OTHER (see notes) G/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL PVC PUMP MATERIAL PID SOURCE SING GEOPROBE SCREEN TELONO BLADDER OTHER
PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compound 8620B HCI	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS SAMPLE QC SAMPLE BOTTLE ID NUMBERS See above
NOTES CARRELLE MENTAL : 11 to 20! FAX	SKETCH 4 17
pid headspace: 1,6 ppm	0P-16
	13.0
	14
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED	Old Pour Roll Rd
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	
Sampler Signature: Brandon Show Print Name:	FIGURE 4-10
Checked By. J. Ruse I He Date: 112240	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

GROUNDWATER/ PORE V	VATER GRAB SAMPLING RECORD
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage PROJECT NUMBER 36121021	START TIME ACCIONAL END TIME
SAMPLE ID8 13 1A-DP161	SAMPLE TIME SITE NAME/NUMBER PAGE
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8	
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	OTHER CASING LOCKED COLLAR COLLAR
INITIAL DTW (BMP) FT (BMP) FT	PROT. CASING TOC/TOR STICKUP (AGS) FT DIFFERENCE FT
WELL DEPTH 6 SCREEN SCREEN FT LENGTH FT	PID AMBIENT AIR LOC PPM REFILL TIMER SETTING SEC
WATER COLUMN FT DRAWDOWN VOLUME GAL (initial DTW- final DTW X well diam. squared X 0.0 TOTAL VOL.	
GALCULATED TOTAL VOL. GALVOL (column X well diameter squared X 0.041) TOTAL VOL. PURGED (mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS	DRAWDOWN/ TOTAL PURGED PRESSURE TO PUMP PSI
PURGE RATE SP. CONDUCTANCE	PUMP (units) DISS. O₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
0433 - 400 13.28 1.381 7	17 0.82 71600-696 -101 PID: 2,50PM
0438 Wheeled you sample & DP-11	
\ PA	
SAMPLE OBSERVATIONS: CLEAR COLORED LT GIVEY CLOUDY	
TYPE OF PUMP	PVC PUMP MATERIAL PID SAUB
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVA' METHOD X Volatile Organic Compound 8620B HCI	
	The Monte
	017
Screening interval: 8' to 12 bys p. 0 readspore: 2.5 pp. W.	SKETCH * OP-15
p.o readspace, 2.5 ppm.	13) 18 15
PURGE OBSERVATIONS	Old Penkield Rd
PURGE WATER YES NO NUMBER OF GALLONS ~2 CONTAINERIZED GENERATED	Notation Notation of the state
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or	
Sampler Signature: Brandon Shaw Print Name:	FIGURE 4-10
Checked By: J, Rawchffe Date: 11 22/10	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ POR	RE WATER GRAB SAMP	LING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NUMBER 3612	iage Cleaners	SAMPLE LOCATION START TIME	DATE - 18-2010 END TIME 0 4 25
	SAMPLE ID 8 28 131 A ~ 10+	720 SAMPLE TIME	SITE NAME/NUMBER	PAGE
SAMPLE TYPE GRAB WELL/PIEZOME	TER GEOPROBE PORE W	ATER OUTFALL OT	HER	WELL INTEGRITY
WELL DIAMETER (INCHES) 1 1/8 1/8		8 OTHER	CAP CASING	YES NO N/A
	/4	5/8 OTHER	LOCKED COLLAR	
	NAL DTW	PROT. CASING FT STICKUP (AGS)	TOC/TOR DIFFERENCE	FI FI
	CREEN FINGTH	PID	PPM REFILL TIMES	
	RAWDOWN OLUME	PID WELL GAL MOUTH	DISCHARGE TIMER SETTIF	
CALCULATED GAL PO (column X well diameter squared X 0.041) (n	nitial DTW- final DTW X well diam. squared	X 0.041) DRAWDOWN/ GAL TOTAL PURGED	PRESSURE TO PUMP	PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE	pH (units) DISS. O₂ (mg/L) TUF	PUMP RBIDITY (ntu) REDOX (mv) INTAKE	COMMENTS
BEGIN PURGING	(mS/cm)		DEPTH (ft)	COMMENTS
1023 - 200	13.27 1.386		275 -918 219	110.0.6 por
los Wester gr	Sample C	DP-17		,
1345				
SAMPLE OBSERVATIONS: CLEAR CO	DLORED CLOUDY	TURBID	ODOR	OTHER (see notes)
X PERISTALTIC X LIQ	N FLUIDS USED UINOX X SILICON TO ONIZED WATER TEFLON TO		PUMP MATERIAL WATE	R LEVEL METER
BLADDER PO		NED TUBING GEOPROB. ING TEFLON BI		TER METER
	THANOL OTHER	ING OTHER OTHER OTHER OTHER	PUMP OTHER	
ANALYTICAL PARAMETERS PARAMETER		ERVATION	SAMPLE QC	SAMPLE BOTTLE ID
X Volatile Organic Compound		VOLUME REQUIRE 7 /x 40 mL	COLLECTED COLLECTED	NUMBERS
	·			
NOTES SCHEENING INTERNAL PD headspace: 0	16' to 20'	SKETCH		8 DP-17
Market 10	600		5	11>
170 headsfoot.	, ,)).18 015	
			13.	
,		old	914	
PURGE OBSERVATIONS			Pentiple Rd	
· · · · · · · · · · · · · · · · · · ·	MBER OF GALLONS &	- Leam	N	
NO-PURGE METHOD YES NO If y to s	es, purged approximately 1 standing volume pr ampling orAmL for this sample loca			
Sampler Signature:	Brandon Shi	aw		FIGURE 4-10
Checked By: J. Rawcliffe	Date: 11/2-2/10	GF	ROUNDWATER/ PORE WATER	GRAB SAMPLING RECORD

GROUND	WATER/ PORE WATER GRAB SAME	PLING RECORD
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NU	Off-Site Carriage Cleaners	SAMPLE LOCATION DATE 12-18-2010 START TIME 6 25 END TIME 45
SAMPLE ID	8131A - NOTION SAMPLE TIME	SITE NAME/NUMBER A PAGE
WELL DIAMETER (INCHES) 1 2 4 TUBING ID (INCHES) 1/8 1/4 3/8 MEASUREMENT POINT (MP) INITIAL DTW FINAL DTW	ROBE PORE WATER OUTFALL OT 6 8 OTHER 1/2 5/8 OTHER TOP OF CASING (TOC) OTHER PROT. CASING	THER WELL INTEGRITY YES NO N/A CAP CASING LOCKED
(BMP) FT (BMP) WELL DEPTH SCREEN (BMP) FT LENGTH	FT STICKUP (AGS)	FT DIFFERENCE FT
WATER COLUMN FT CALCULATED GALVOL GAL DRAWDOWN VOLUME (Initial DTW- final DTW TOTAL VOL. PURGED PURGED	FT AMBIENT AIR PID WELL MOUTH V X well diam. squared X 0.041) PRAWDOWN/ TOTAL PURGED minutes X 0.00026 gal/mL)	PPM SETTING SEC DISCHARGE TIMER SETTING SEC PRESSURE TO PUMP PSI
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C)	SP. CONDUCTANCE pH (units) DISS. O ₂ (mg/L) TU	PUMP RBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1033 — 400. 13.14 1635 (2) Wested and Sample	2.08 7.04 0.47 -	7/00092.2 -10 PID : 20.1 pgma
0 0		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1,
SAMPLE OBSERVATIONS: CLEAR COLORED DEC	CLOUDYTURBID	Y, S, 11) DOR OTHER (see notes)
TYPE OF PUMP DECON FLUIDS USED	TEFLON TUBING PVC PUMP	PUMP MATERIAL WATER LEVE METER PID SES SCREEN WO METER VID METER PID SES SCREEN WO METER VID VID METER VID VID METER VID
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBE	R PRESERVATION VOLUME REQUIR	RED SAMPLE QC SAMPLE BOTTLE ID
X Volatile Organic Compound 8620B	METHOD VOLUME REQUIRE HCI XX 40 mL	COLLECTED COLLECTED NUMBERS SEE Above
NOTES J.A. AGAL & 9/ 1- 12	SKETCH	* OP 17
Screening shiperent: 8 to 12 prohendque: 40.1 ppm))018 015
· .	13	3 * (
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED	s &Z	held Rd
NO-PURGE METHOD YES NO If yes, purged approximate to sampling or No.	المجاوزة على المجاوزة المجاوز	
	on Show	
Checked By: J. Rawchife Date: 11/20/10	GF	FIGURE 4-10 ROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WA	ATER GRAB SAMPLI	NG RECORD	
MACTEC	PROJECT NAME	N.	SAMPLE LOCATION	DATE 1000
511 Congress Street, Portland Maine 04101	Off-Site Carriage (PROJECT NUMBER	leaners	START TIME	11-18-2010 END TIME: 1 2
	361210216 SAMPLE ID		10.50	1100
;	828131A-001820	SAMPLE TIME	SITE NAME/NUMBER	PAGE
SAMPLE TYPE GRAB WELL/PIEZOM	METER GEOPROBE PORE WATER	OUTFALL OTHE	R	WELL INTEGRITY
WELL DIAMETER (INCHES) 1	2 4 6 8	OTHER	CA	YES NO N/A
	1/4 3/8 1/2 5/8	OTHER	LO	SING CKED
	RISER (TOR) TOP OF CASING (TOC)	OTHER WYC C		
(BMP) FT ((BMP) FT	PROT. CASING STICKUP (AGS)	FT DIFFER	
	SCREEN LENGTH FT	PID AMBIENT AIR	PPM REFILL	
	DRAWDOWN VOLUME GAL	PID WELL MOUTH	DISCHA	RGE
CALCULATED	(initial DTW- final DTW X well diam. squared X 0.041	DRAWDOWN/	PPM TIMER S	SETTING SEC
(column X well diameter squared X 0.041) (PURGED GAL (mL per minute X total minutes X 0.00026 gal/mL)	TOTAL PURGED	TO PUM	
FIELD PARAMETERS TIME DTW (FT) PURGE RATE	SP. CONDUCTANCE		PUM	D
(mL/min)	TEMP. (°C) (mS/cm) pH (ui	nits) DISS. O ₂ (mg/L) TURBI	DITY (ntu) REDOX (mv) INTAI	KE COMMENTS
050 BEGIN PURGING	1287 1011 7	(2) 47:	 	
noo Coherted a	10-01 1.924 1.2		500 -89.1 2/1	1 pid : 13.3 pg 10
vito correct as	v same & op	· \\		•
bas				
1 81		/		
	COLORED LTGEY CLOUDY V	TURBID	ODOR	OTHER (see notes)
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECO	ON FLUIDS USED TUBIN	G/PUMP/BLADDER MATERIALS		
X PERISTALTIC X LIC	QUINOX X SILICON TUBING TONIZED WATER TEFLON TUBING	S. STEEL PUN PVC PUMP MA	/	EQUIPMENT USED WATER LEVEL METER PID 500
NIT NIT	OTABLE WATER TEFLON LINED TUI TRIC ACID HDPE TUBING EXANE X LDPE TUBING	GEOPROBE S TEFLON BLAC	CREEN DER	VQ METER 1/1/2
OTHER ME	THANOL OTHER OTHER	OTHER OTHER		PUMP DTHER FILTERS NO. TYPE
ANALYTICAL PARAMETERS				
PARAMETER	METHOD NUMBER PRESERVATION METHOD	VOLUME REQUIRED	SAMPLE QC COLLECTED COLLEC	
X Volatile Organic Compound	8620B HCI	2 /3 x 40 mL		Sec Atore
Soverning thereal: frib heads pric: 13.3	11/2 1 78 bag	SKETCH		
? Creamy	10 10 20 13		1-90.	8
fro heads que; 13.5	PB199=	/) //	015
, v)) ا	
		O		314
			I Penheld RJ	
		Laura (1)	N Cold Dr	
PURGE OBSERVATIONS			n	
	UMBER OF GALLONS 21	7 7		
	ENERATED	,		
NO-PURGE METHOD YES NO If your total total total in the state of the s	yes, purged approximately 1 standing volume prior			
LO				
	sampling or			
npier signature:	Prinklame: NAME Shaw			FIGURE 4-

GROUNDWATER	R/ PORE WATER GRAB SAMP	PLING RECORD	
511 Congress Street, Portland Maine 04101 PROJECT NUMBER	ite Carriage Cleaners 3612102168	DP-18	DATE 11-18-10 END TIME 1 20
SAMPLE ID 8281	3/A-DOISIN SAMPLETIME	SITE NAME/NUMBER A	PAGE / OF /
WELL DIAMETER (INCHES) 1 2 4 6 TUBING ID (INCHES) 1/8 1/4 3/8 1/2	S OTHER 5/8 OTHER CASING (TOC) OTHER PROT. CASING STICKUP (AGS) FT PID AMBIENT AIR GAL MOUTH DRAWDOWN/ GAL TOTAL PURGED		VELL INTEGRITY YES NO N/A FT SEC
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUC (mS/cn		PUMP RBIDITY (ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
10 10 10 10 10 10	93 7.99 0.76 7 C DP-18	71000 -97.6 -101	110 "12-2 por
TRAS			
SAMPLE OBSERVATIONS: CLEAR COLORED LT GATEY OW:	CLOUDYTURBID	(Sily) ODOR OT	HER (see notes)
TYPE OF PUMP DECON FLUIDS USED	TUBING/PUMP/BLADDER MATERIALS ILICON TUBING EFLON TUBING EFLON LINED TUBING FUCUL LINED TUBING DPE TUBING DPE TUBING DPE TUBING THER THER THER OTHER	S EQUIUMP MATERIAL WATER I. PID E SCREEN WO METE	UIPMENT USED EVEL METER
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER	PRESERVATION VOLUME PROJUDE	0.1171 = (SAMPLE BOTTLE ID
X Volatile Organic Compound 8620B	METHOD VOLUME REQUIRE	COLLECTED COLLECTED	NUMBERS See Above
NOTES A SACRE SOLUTION OF THE SACRE SOLUTION	SKETCH		
Screening interval : 8' to 12. 6 PID head Space : 12.2 ppps)) 0,0-18	5
		13.	
PURGE OBSERVATIONS	The second secon	N Held Ed	
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED	55/		
NO-PURGE METHOD YES NO UTILIZED If yes, purged approximately 1 standing v to sampling ormL for this sa	rolume prior mple location.		
Sampler Signature: Print Name:	land		FIGURE 4.40
Checked By: J. Rawcliff Date: 11/20/10	GRO	OUNDWATER/ PORE WATER GR NYSDEC QUALITY ASSI	FIGURE 4-10 RAB SAMPLING RECORD URANCE PROJECT PLAN

	GROUNDWATER/ PORE WA	TER GRAB SAMPLI	NG RECORD	
MACTEC	PROJECT NAME		SAMPLE LOCATION	DATE.
	Off-Site Carriage CI	eaners	<u> </u>	11-18-10
·	3612102168		START TIME 1 140	1155
	828131 A-DP1920	X SAMPLE TIME	SITE NAME/NUMBER 17	PAGE
SAMPLE TYPE GRAB WELL/PIEZOMETER	GEOPROBE PORE WATER	OUTFALL OTHER	3	WELL INTEGRITY
WELL DIAMETER (INCHES) 1 2	☐ 4 ☐ 6 ☐ 8	OTHER	CAP	YES NO N/A
TUBING ID (INCHES) 1/8 1/4	3/8 1/2 5/8	OTHER	CASIN LOCK	
MEASUREMENT POINT (MP) TOP OF RISEF		Nother Name (logs) coll	AR
INITIAL DTW FT (BMP)	DTW FT	PROT, CASING STICKUP (AGS)	TOC/TOR DIFFEREN	CE FT
WELL DEPTH SCRE	L	PID AMBIENT AIR 4.	(REFILL TIA	
WATER DRAW	VDOWN	PID WELL	PPM SETTING DISCHARG	SEC
COLUMN FT VOLU (initial	ME GAL DTW- final DTW X well diam. squared X 0.041)	MOUTH	PPM TIMER SET	
GAL/VOL GAL PURG		DRAWDOWN/ TOTAL PURGED	PRESSURE TO PUMP	PSI
FIELD PARAMETERS	Trimide X total minutes X 0,00026 gaimile)	<u> </u>		
TIME DTW (FT) PURGE RATE TE (mL/min)	MP. (°C) SP. CONDUCTANCE pH (unit	s) DISS. O ₂ (mg/L) TURBIC		COMMENTS
BEGIN PURGING	1-61	<i>t</i> .	DEPTH (ft)	,
154 - 400.	4.81 1.958 73	6 0.30 71	000-106.1-19	P70112000
115 Corrected gw	Surple CDP-14	7		/ / / / / / / / / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
128		- · · · · · · · · · · · · · · · · · · ·		
MP E OBSERVATIONS:	Reddin prom	1/5:	1.7	
EQUIPMENT DOCUMENTATION	RED CLOUDY	TURBID_V 7600	ODOR	OTHER (see notes)
X PERISTALTIC X LIQUING	UIDS USED TUBING IX SILICON TUBING	/PUMP/BLADDER MATERIALS	D'MATERIAI	EQUIPMENT USED
BLADDER POTABL	ZED WATER TEFLON TUBING E WATER TEFLON LINED TUBI	PVC PUMP MA GEOPROBE SO	TERIAL PID	METER VSI
WATTERA HEXANG	X LDPE TUBING	TEFLON BLADI	DER TUR	B. METER 1
OTHER OTHER OTHER	OTHER	OTHER OTHER	OTH FILT	ER ERS NO TYPE
	THOD NUMBER PRESERVATION	NOLUME PROCESS	SAMPLE QC	SAMPLE BOTTLE ID
X Volatile Organic Compound	METHOD 8620B HCI	VOLUME REQUIRED 2/x 40 mL	COLLECTED COLLECTED	NUMBERS
	1101	— — — — — — — — — — — — — — — — — — —		See Above
		_		
None				
NOTES - A DIAM A-A	11 to 20 bes	SKETCH		Ó A
Screening interval 710 neadsprace: 1.2 p	p		SiH	Bounday
man madrowe 1/20	pm.			J.
1.0 .2.0 4				J-00-20
			. /	/ × pr
			/	/ / 6)
PURGE OBSERVATIONS		• /	/ /	' / _/]
ONCE OBSERVATIONS	•	Λ	/ /	
	R OF GALLONS 22	1	/	
CONTAINEDIZED W CELICO			<u> </u>	
				DP-19
NO-PURGE METHOD YES NO	rged approximately 1 standing volume prior		Pentiol A P. I	OP-19
NO-PURGE METHOD YES NO If yes, pu UTILIZED If yes, pu	rged approximately 1 standing volume prior ng ormL for this sample location.	- f-	Endield Rd	<u> </u>
NO-PURGE METHOD YES NO If yes, pu UTILIZED If yes pu to sample	rged approximately 1 standing volume prior		Pendiell Rd	09-19

	GROUNDWATER/ PORE W.	ATER GRAB SAMPL	LING RECORD	
SAMPLE TYPE GRAB WELL/PIE WELL DIAMETER (INCHES) 1 TUBING ID (INCHES) 1/8 MEASUREMENT POINT (MP) TOP INITIAL DTW (BMP) FT WELL DEPTH (BMP) FT WATER COLUMN FT CALCULATED GAL/VOL (column X well diameter squared X 0.041) FIELD PARAMETERS	PROJECT NAME Off-Site Carriage (PROJECT NUMBER 361210216 SAMPLE IP 3 A F 19 90 ZOMETER GEOPROBE PORE WATER 2 4 6 8 1/4 3/8 1/2 5/8 OF RISER (TOR) TOP OF CASING (TOC) FINAL DTW (BMP) FT SCREEN LENGTH FT DRAWDOWN VOLUME (Initial DTW X well diam. squared X 0.041 TOTAL VOL. PURGED GAL (ml. per minute X total minutes X 0.00026 gal/ml.)	SAMPLE TIME OUTFALL OTH OTHER OTHER OTHER PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WELL	CAI CAI LOC	REELING SEC
TIME DTW (FT) PURGE RATE (mL/min) 1156 BEGIN PURGING	TEMP. (°C) SP. CONDUCTANCE pH (u	nits) DISS. O ₂ (mg/L) TURE	BIDITY (ntu) REDOX (mv) INTAK DEPTH	E COMMENTS
SAMPLE DESERVATIONS: CLEAR EQUIPMENT DOCUMENTATION TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER OTHER OTHER Volatile Organic Compound NOTES	COLORED CLOUDY COLORED CLOUDY COLORED CLOUDY TURBID V SQ I	MATERIAL WATERIAL SCREEN UDDER TI	OTHER (see notes) EQUIPMENT USED VATER LEVEL METER ID QUIPMETER UMP UMP THER LTERS NO. TYPE SAMPLE BOTTLE ID	
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD YES NO UTILIZED	NUMBER OF GALLONS GENERATED If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location. Brandon Shaw	N A Pen Field k	Site Boundary	DP-19
Sampler Signature Checked By. J., Rawcli He	Print Name: Date: 11 > 3 / 10	GRO	DUNDWATER/ PORE WATE	FIGURE 4-10 ER GRAB SAMPLING RECORD ASSURANCE PROJECT PLAN

8 31 6

GROUNDWATER/ PORE I	WATER GRAB SAMPL	LING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage PROJECT NUMBER	e Cleaners	SAMPLE LOCATION	DATE 110-10
PROJECT NUMBER 3612102	168	START TIME	END TIME
8281314-DP2026	X SAMPLE TIME	SITE NAME/NUMBER X28131 A	PAGE
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE PORE WATER	R OUTFALL OTH	ER	WELL INTEGRITY
WELL DIAMETER (INCHES) 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 1/6 7 8	OTHER		CAP YES NO N/A
MEACHDENENT DOING (1922)	OTHER NONE		CASING LOCKED TO COLLAR
INITIAL DTW FINAL DTW	PROT. CASING		
WELL DEPTH SCREEN	STICKUP (AGS)	FT DIFF	TOR ERENCE FT
(BMP)	PID AMBIENT AIR	DC PPM REFI	ILL TIMER TING SEC
COLUMN FT VOLUME GAL (Initial DTW X well diam sourced X or	PID WELL MOUTH		CHARGE ER SETTING SEC
CALCULATED GALVOL (column X well diameter squared X 0.041) TOTAL VOL. PURGED (mL per minute X total minutes X 0.00026 gal/mL)	DRAWDOWN/ TOTAL PURGED	PRES TO P	SSURE
FIELD PARAMETERS			F5I
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH	(units) DISS. O ₂ (mg/L) TURE	BIDITY (ntu) REDOX (mv) IN	UMP TAKE COMMENTS PTH (ft)
12/15 - 400. 15,12 1,933 7.	21 0.51 7	1000 -88,1 -1	9 PID: 0.3 Para
1200 Collected an smoke @ DP-	20		The state of the s
1245			
SAMPLE OBSERVATIONS: CLEAR COLORED COLORED COLORED COLORED	TURBID	Sandy DOOR_	OTHER (see notes)
TYPE OF PUMP DECON FLUIDS USED TUE	ING/PUMP/BLADDER MATERIALS		EQUIPMENT USED
SUBMERSIBLE X DEIONIZED WATER TEFLON TUBING BLADDER POTABLE WATER TEFLON LINED T	PVC PUMP M		WATER LEVEL METER PID 5 X0 13
WATTERA NITRIC ACID HDPE TUBING OTHER HEXANE X LDPE TUBING OTHER METHANOL OTHER	TEFLON BLAI OTHER		TURB. METER PUMP
OTHER OTHER OTHER OTHER	OTHER OTHER		OTHER FILTERS NO TYPE
PARAMETER METHOD NUMBER PRESERVAT		SAMPLE Q	C SAMPLE BOTTLE ID
X Volatile Organic Compound 8620B HCI	2 1/x 40 mL	COLLECTED COLLE	
			<u> </u>
NOTES	SKETCH		
Screening internal: 16 to 20' bys PVD headspace: 0,3 ppm		Site Bounday	
TVD headspace: 0,3 pmm			_
The state of the s			
	. ,	/ / /	- OP-20
	\sim	/ //	4,
PURGE OBSERVATIONS .	1 1 (//5	7
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED			t-op-19
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or mL for this sample location.	Penfield	Pd.	
ampler Signature: Ryundon Shawl Pfint Name:			
hecked By: J. Rawdiffe Date: 11/23/10	GRO	UNDWATER/ PORE WA	FIGURE 4-10 TER GRAB SAMPLING RECORD
1/2/10		NYSDEC QUALI	TY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WATER GRAB SAM	IPLING RECORD
WELL DIAMETER (INCHES) X 1 2 TUBING ID (INCHES) 1/8 1/8 MEASUREMENT POINT (MP) TOP OF RIS INITIAL DTW 7.5 FT (BI (BMP) (BMP) TO FT LE	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID 6073 ER X GEOPROBE PORE WATER OUTFALL 4 6 8 OTHER 4 X 3/8 1/2 5/8 OTHER ER (TOR) TOP OF CASING (TOC) X OTHER LAL DTW PROJECT NAME OFFI PROJECT NAME OUTFALL PROJECT NAME OUTFALL A X 3/8 1/2 5/8 OTHER FI PROT. CASING STICKUP (AGS) REEN NGTH FT AMBIENT AIR	SAMPLE LOCATION DATE
COLUMN / FT VC (init	LAWDOWN LIUME SAL FIGAL MOUTH STAL VOL. RGED GAL DRAWDOWN/ TOTAL PURGED L per minute X total minutes X 0.00026 gal/mL)	/ :PM DISCHARGE TIMER SETTING NA SEC / PRESSURE TO PUMP NA PSI
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECOM X	7.201 1.788 7.23 C.SO AND CORED BROW CLOUDY TURBID SI OLORED SILICON TUBING S. STE ONIZED WATER TEFLON LINED TUBING GEOP RIC ACID HOPE TUBING TEFLO CANE HOPE TUBING TEFLO THANOL OTHER OTHER THANOL OTHER	ERIALS EQUIPMENT USED WATERIAL WATER LEVEL METER PID ppb ThermoDVM 580B WA METER YSI 556 TURB. METER TURB. METER PUMF Geopump OTHER R SAMPLE CO. SAMPLE DOTLED
PURGE OBSERVATIONS PURGE WATER YES NO NI CONTAINERIZED X G NO-PURGE METHOD YES NO UTILIZED X If	SKETCH	Str whorks figure 4-10
ampler Signature:	Deta: 22-27-8-73-1	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

GROUNDWAT	ER/ PORE WATER GRAB SAMP	LING RECORD	
SAMPLE ID	Off-Site Carriage Cleaners 2102168/02.02 SAMPLE TIME 0747	SAMPLE LOCATION DATE DY-ZI START TIME END TO	1/20/11 0948
SAMPLE TYPE X GRAB WELL/PIEZOMETER X GEOPROBE WELL DIAMETER (INCHES) X 1 2 4		WELL YE	INTEGRITY ES NO N/A
INTIAL DIW 12.S FT FINAL DIW (BMP)	DRAWDOWN/ GAL TOTAL PURGED	/ FT DIFFERENCE REFILL TIMER SETTING DISCHARGE TIMER SETTING PRESSURE TO PUMP	NA SEC NA PSI
TIME DTW (FI) (mL/min) TEMP. (°C) (ms/cm)	PUMP INTAKE DEPTH (ft)	COMMENTS
SAMPLE OBSERVATIONS: CLEAR COLORED BROWN		ODOR OTHER	₹ (see notes)
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON FLUIDS USED X PERISTALTIC X LIQUINOX X SUBMERSIBLE X DEIONIZED WATER BLADDER POTABLE WATER NITRIC ACID WATTERA HEXANE X OTHER METHANOL OTHER OTHER	TEFLON TUBING PVC PUN TEFLON LINED TUBING S GEOPRO	PUMP MATERIAL WATER LEV	emoOVM 580B YSI 556 R
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER Volatile Organic Compounds 8620B	PRESERVATION VOLUME REQU	IRED SAMPLE QC COLLECTED	SAMPLE BOTTLE ID NUMBERS See Above
SURCENING INTUVAL: 18:-2	SKETCH	SQ-	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED X GENERATED NO-PURGE METHOD YES NO UTILIZED X If yes, purged approximately 1 to sampling or NA.		Rim Funda	inp
Sampler Signature: 72 Print Name: Ryn Checked By 11/4 in 11/4 Shifts W	Markovski	GROUNDWATER/ PORE WATER GF	

	GROUNDWATER/ PORE WATER GRAB SAMP	LING RECORD
MACTEC	PROJECT NAME	SAMPLE LOCATION DATE
511 Congress Street, Portland Maine 04101	Off-Site Carriage Cleaners PROJECT NUMBER	START TIME END TIME
•	3612102168/02.02	1610 1645
	828131A-P/22071642	SITE NAME/NUMBER
SAMPLE TYPE X GRAB WELL/PIEZOMET	ER X GEOPROBE PORE WATER OUTFALL OT	HER WELL INTEGRITY YES NO N/A
WELL DIAMETER (INCHES) X 1 2	468OTHER	CAP X X
TUBING ID (INCHES) 1/8 1/8	4 X 3/8 1/2 5/8 OTHER	CAP X CASING X LOCKED X COLLAR X
MEASUREMENT POINT (MP) TOP OF RIS	EER (TOR) TOP OF CASING (TOC) X OTHER	None
	IAL DTW / PROT. CASING MP) FT STICKUP (AGS)	TOC/TOR NA FT
	REEN PID AMBIENT AIR	PPM REFILL TIMER NA SEC
COLUMN / FT VC	AWDOWN / GAL PID WELL MOUTH	/ DISCHARGE NA SEC
GALCULATED / GAL PU	tital DTW - final DTW X well diam. squared X 0.041) TAL VOL. RGED L per minute X total minutes X 0.00026 gal/mL) DRAWDOWN/ TOTAL PURGED	/ PRESSURE NA PSI
FIELD PARAMETERS	CR CONTRICTANCE	PUMP
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) $SP. CONDUCTANCE pH (units) DISS. O2 (mg/L) TU (mS/cm)$	RBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1615 BEGIN PURGING		-> Purp ON
1625 Punging		Pungin
1635 A225	6.64 1.085 7.29 3.23	71000 -42.6 811
1642 Colloctor 5	AMPIU	
	nen 1/17/11	
	and the same of th	
	DLORED BOOK CLOUDY TURBID 5:	ODOR OTHER (see notes)
	N FLUIDS USED TUBING/PUMP/BLADDER MATERIA	
SUBMERSIBLE X DEI		PUMP MATERIAL P MATERIAL X PID ppb ThermoOVM 580B BLE SCREEN PVL X WO METER YSI 556 TURB METER
NIT	TABLE WATER TEFLON LINED TUBING GEOPROI RIC ACID HDPE TUBING TEFLON E ANE X LDPE TUBING X OTHER	BE SCREEN A V W METER YSI 556 SLADDER TURB. METER none X PUMF Geopump
	THANOL OTHER OTHER	OTHER OTHER FILTERS NO. NA TYPE
ANALYTICAL PARAMETERS		
PARAMETER	METHOD NUMBER PRESERVATION VOLUME REQUI	RED SAMPLE QC SAMPLE BOTTLE ID COLLECTED COLLECTED NUMBERS
X Volatile Organic Compounds	8620B HCL 2 X 40ml	See Above
100		
NOTES	SKETCH	
Screening Interval= PID Herdspace= 2	7' 10 11 bgs	
PTN Harris 2	300106	
120 1140 9 1120 2	11	
		√ 5
		V.
		LOAKU .
		R(m Fe
PURGE OBSERVATIONS	7. ~	gune/
FORGE WATER	UMBER OF GALLONS 11.5	R (m Figure/mp
NO-PURGE METHOD YES NO		
UTILIZED X If	yes, purged approximately 1 standing volume prior sampling ornAmL for this sample location.	
Va Mal	Riac Martanecks	
Sampler Signature:	Print Name: Ryn Markowsk!	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD
Checked By: BYANDON Shand	Date: 32-28-2011.	NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WATER GRA	AB SAMPLING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID S	SAMPLE LOCATION DF-Z2 START TIME 1400 SITE NAME/NUMBER	DATE O - 17-11 END TIME 1440 PAGE
	4 6 8 OTHER X 3/8 1/2 5/8 OTHER ER (TOR) TOP OF CASING (TOC) X OTHER ALD TW PROT. CASI	CAP CASING LOCKED COLLAR TOC/TOR	1 OF 1 WELL INTEGRITY YES NO N/A
(BMP) FT LEI WATER COLUMN / FT VO CALCULATED GALIVOL / GAL PU	REEN PID AMBIENT AI AWDOWN AMBIENT AI LUME AMBIENT AI TAL VOL. RGED GAL per minute X total minutes X 0.00026 gal/ml.) STICKUP (A AMBIENT AI AM	R PPM REFILL TIME SETTING PPM DISCHARGE TIMER SETTING PRESSURE	R NA SEC
PURGE RATE	(ms/cm)	PUMP INTAKE DEPTH (ft) 7/000 - 1.6 ~ 20	Punp ()a
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON X DEIC X	R(m /28/11	RBID STILL ODOR ODOR ODOR WATERIAL WATER	OTHER (see notes) EQUIPMENT USED ER LEVEL METER ppb ThermoVM 580B
WATTERA NITE	METHOD NUMBER PRESERVATION VI	TEFLON BLADDER TURE	
NOTES	SKETCI		
710 heidspace: 3200 Screening Internal: 18' DTW= 11.1'	form wh	Rcn /28/	,
CONTAINERIZED X GE NO-PURGE METHOD YES NO	MBER OF GALLONS NERATED es, purged approximately 1 standing volume prior ampling orNA	725/	, u
Sampler Signatura:	Print Name: I/28/11	GROUNDWATER/ PORE WATE NYSDEC QUALITY	FIGURE 4-10 R GRAB SAMPLING RECORD ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WA	TER GRAB SAMPL	ING RECORD	
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cle. PROJECT NUMBER 3612102168/02.02	aners ·	SAMPLE LOCATION DP-23 START TIME KA	DATE 1/18/11
	SAMPLE ID 828/31A-78230	SAMPLE TIME	0956-/035 SITE NAME/NUMBER 828131A	PAGE 1 OF 1
WELL DIAMETER (INCHES) X 1 TUBING ID (INCHES) 1/8	ETER X GEOPROBE PORE WATER 2 4 6 8 11/4 X 3/8 1/2 5/8 EISER (TOR) TOP OF CASING (TOC)	OTHER	C/	WELL INTEGRITY YES NO N/A AP
(BMP) [7.7.3] FT (I	INAL DTW / FT	PROT. CASING STICKUP (AGS)	/ FT TOC/TO	
(BMP) 7 25 FT L	PRAWDOWN	PID AMBIENT AIR PID WELL	PPM SETTIN	
COLUMN	OLUME / GAL nitial DTW-final DTW X well diam. squared X 0.041) OTAL VOL.	MOUTH DRAWDOWN/ TOTAL PURGED	/ DISCH. TIMER PRESS TO PUI	SETTING SEC
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (uni	ts) DISS. O ₂ (mg/L) TURE	. PUI BIDITY (ntu) REDOX (mv) INTA	AKE COMMENTS
1036 BEGIN PURGING			DEPT	
1041 275	9.22 0.748 7.2	7 2.15 >	1000 17.7	
1043 Samples Lollo	2701)			
	Mon			
	160 1/18/1		(
SAMPLE OBSERVATIONS: CLEAR C	()	<u> </u>		
EQUIPMENT DOCUMENTATION	OLORED CIOLOTY CLOUDY	TURBID/	ODOR	OTHER (see notes)
X	NFLUIDS USED TUBING	ING PVC PUMP N GEOPROBE TEFLON BLA	MP MATERIAL MATERIAL X SCREEN - PVC X DDER DDER X	EQUIPMENT USED
ANALYTICAL PARAMETERS	METHOD NUMBER PRESERVATION		5.MD: =	
Volatile Organic Compounds	METHOD NUMBER **RESERVATION** METHOD **8620B HCL	VOLUME REQUIRED 2 X 40ml	SAMPLE QC COLLECTED COLLEC	
NOTES		SKETCH		
PID = 348 ppb Scrooning Intival= 7	7'-11'	And the second and th	Set 46 Day	
PURGE OBSERVATIONS	·		J. Try	<i>E.</i>
CONTAINERIZED X GE	JMBER OF GALLONS A 1.0 ga /		Ren	ignor map
	ves, purged approximately 1 standing volume prior sampling orNAmL for this sample location.			
Sampler Signature: And Checked By: BM Word Show	Print Name: Ryw Markowsk: Date: 28-28-2011	GRO		FIGURE 4-10

	GROUNDWATER/ PORE WATER GRAB	SAMPLING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID \$2813 A - DP23 20x 1026	1,402
SAMPLE TYPE X GRAB WELL/PIEZOME* WELL DIAMETER (INCHES) X 1 2 TUBING ID (INCHES) 1/8 1/8 MEASUREMENT POINT (MP) TOP OF RIS	4 6 8 OTHER	OTHER WELL INTEGRITY YES NO N/A CAP X CASING X LOCKED X X COLLAR X COLLAR
(BMP) / /- 33 FT (B	NAL DTW / FT PROT. CASING STICKUP (AGS) CREEN / FT AMBIENT AIR	TOC/TOR DIFFERENCE NA FT REFILL TIMER SETTING NA SEC
COLUMN	RAWDOWN	/ JPM DISCHARGE NA SEC / PRESSURE NA PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (units) DISS. O₂ (m	PUMP ng/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1016 BEGIN PURGING 1023 9375	10.48 1.737 7.03 1.65	121068 17.0 RZ1'
1026 Samples Collec	fr)	
	1/18/11	
EQUIPMENT DOCUMENTATION		S: (Ly ODOR OTHER (see notes)
X	ONIZED WATER TEFLON TUBING TABLE WATER TEFLON LINED TUBING RIC ACID HOPE TUBING CANE X LDPE TUBING THANOL OTHER	RMATERIALS
ANALYTICAL PARAMETERS PARAMETER Volatile Organic Compounds	METHOD NUMBER PRESERVATION METHOD VOLUM 8620B HCL 2 X 40	ME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS Oml See Above
Screening Interval = 18	SKETCH	•
		See up works
	IMBER OF GALLONS $\frac{2}{2}$ $\frac{1}{2}$	Rin Figure /wap
NO-PURGE METHOD YES NO UTILIZED X If ye to so	es, purged approximately 1 standing volume prior ampling orNAmL for this sample location.	
Sampler Signature: Shaw	Print Name: Ryn MNFor 6k. Date: 02-28-2011.	FIGURE 4- GROUNDWATER/ PORE WATER GRAB SAMPLING RECO

	GROUNDWATER/ PORE WATER GRAB SAMP	LING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02	SAMPLE LOCATION DATE 1/18/11 START TIME END TIME 1437
2 18	SAMPLE ID SAMPLE TIME 8281314 - 212407x 1425	SITE NAME/NUMBER PAGE
SAMPLE TYPE X GRAB WELL/PIEZOME WELL DIAMETER (INCHES) X 1 2 TUBING ID (INCHES) 1/8 1 MEASUREMENT POINT (MP) TOP OF RI	4 6 8 OTHER	WELL INTEGRITY YES NO N/A
(BMP) / O FT (E	NAL DTW / PROT. CASING STICKUP (AGS) CREEN / PID	/ FT TOC/TOR NA FT
(BMP)	RAMDOWN DILUME Itital DTW- final DTW X well diam. squared X 0.041) DTAL VOL. JRGED GAL Liper minute X total minutes X 0.00026 gal/ml.)	/ PPM REFILL TIMER SETTING NA SEC / >PM DISCHARGE TIMER SETTING NA SEC / PRESSURE TO PUMP NA PSI
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (units) DISS. O ₂ (mg/L) TU	PUMP RBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1415 BEGIN PURGING - 1420 10.0 7175 1425 SAMPLIS COLAU	9.82 1.310 7.07 3.97 For	> 1000 17.8 A
	16/11	
EQUIPMENT DOCUMENTATION	ONIZED WATER TEFLON TUBING PVC PUMP ABLE WATER TEFLON LINED TUBING SEOPROBE TO TUBING TEFLON BI	PUMP MATERIAL WATER LEVEL METER P MATERIAL X SE SCREEN (2002) X W METER YSI 556
PARAMETER X Volatile Organic Compounds	METHOD NUMBER PRESERVATION METHOD VOLUME REQUIR	SAMPLE QC SAMPLE BOTTLE ID NUMBERS See Above
SCREENING INTOVAL	SKETCH	
20.00		YEE MAD !
	MBER OF GALLONS $70.5gr$	Rim Figure map
NO-PURGE METHOD YES NO	NERATED s, purged approximately 1 standing volume prior ampling orNAmL for this sample location.	" map
Sampler Signature: Kally	Print Name: Ryn Mar Korsk: Date: 02-28-7011 GF	FIGURE 4-10 ROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

GROUNDWATE	R/ PORE WATER GRAB SAMPL	ING RECORD	
511 Congress Street, Portland Maine 04101 PROJECT NUMBER 361210 SAMPLE ID \$28/3	F-Site Carriage Cleaners 2168/02.02 SAMPLE TIME 1400	DP-24 START TIME 1352	OATE 1/18/11 END TIME 1/4/0 PAGE 1 OF 1
	8 OTHER	CAP CASING LOCKED COLLAR	VELL INTEGRITY
(BMP) FT FINAL DTW (BMP)	PROT. CASING STICKUP (AGS)	/ TOC/TOR DIFFERENCE	NA FT
(DMF) ENGIH	PID AMBIENT AIR	PPM REFILL TIMER SETTING	NA SEC
WATER COLUMN CALCULATED GAL/VOL GAL/V	DRAWDOWN/ GAL TOTAL PURGED	/ DISCHARGE TIMER SETTING PRESSURE TO PUMP	NA SEC
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDL (mL/min) TEMP. (°C) (mS/c		PUMP BIDITY (ntu) REDOX (mv) INTAKE	COMMENTS
1355 BEGIN PURGING		DEPTH (ft)	RMMO ON
1400 11.1 5375 13.77 1.50	16 7.03 1.20 >	1000 14.9 7215	,
1400 SAMPIB Collector			
In .	115/11		
I IV M			
SAMPLE OBSERVATIONS: CLEAR COLORED Brownis (CLOUDY TURBID	ODOR NONE OT	THER (see notes)
SUBMERSIBLE X DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE X OTHER METHANOL	EFLON TUBING PVC PUMP M	MP MATERIAL WATER I HATERIAL X PID ppl ppl ppl ppl ppl ppl ppl ppl ppl pp	ETER
PARAMETER METHOD NUMBER	PRESERVATION VOLUME REQUIRED	SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID
X Volatile Organic Compounds 8620B	HCL 2 X 40ml	COLLECTED	NUMBERS See Above
NOTES	SKETCH		
PID= 1.9 ppm SCRetning Internol= 181 to 22'		Sot 400	
		COTAN ~	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED X GENERATED NO-PURGE METHOD YES NO	1.0971	Per uportus Figur	t map
UTILIZED X If yes, purged approximately 1 standin to sampling or NA mL for the sampling or NA mL	volume prior iis sample location.		
Sampler Signature: A Print Name: Ryn A Checked By: Brandon Shaw Date: 02-28-	Inkovski 2011 GRO	DUNDWATER/ PORE WATER G	

	GROUNDWATER/ PORE WATER GRAB SAMPL	LING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID 828/3/A DP 2507 1535	SAMPLE LOCATION
SAMPLE TYPE X GRAB WELL/PIEZOMET WELL DIAMETER (INCHES) X 1 2 TUBING ID (INCHES) 1/8 1/8 MEASUREMENT POINT (MP) TOP OF RIS	ER X GEOPROBE PORE WATER OUTFALL OTH 4 6 8 OTHER 4 X 3/8 1/2 5/8 OTHER ER (TOR) TOP OF CASING (TOC) X OTHER	
(BMP)	REEN PID AMBIENT AIR AWDOWN PID GAL MOUTH LUME GAL MOUTH TAL VOL. DRAWDOWN/	/ FT TOC/TOR NA FT DIFFERENCE NA FT REFILL TIMER NA SEC DISCHARGE TIMER SETTING NA SEC PRESSURE NA
(column X well diameter squared X 0.041) (mL FIELD PARAMETERS	(morall)	RBIDITY (ntu) REDOX (mv) PUMP INTAKE COMMENTS DEPTH (ft) Pump Or
1525 Z20 1535 SAMPLES Collock	8.98 0.979 7.29 2.25	>1000 15.3
EQUIPMENT DOCUMENTATION	DNIZED WATER	LS PUMP MATERIAL WATER LEVEL METER PID ppb ThermoOVM 580B SE SCREEN AV X WO METER YSI 556
ANALYTICAL PARAMETERS PARAMETER Volatile Organic Compounds	METHOD NUMBER PRESERVATION VOLUME REQUIR 8620B HCL 2 X 40ml	RED SAMPLE QC SAMPLE BOTTLE ID NUMBERS See Above
NOTES PID - 0.5 pp. R. SCROENING Internal:	7'-11' SKETCH	
Screening Internal: - Low Spot in Ponking Lopooling unter	g bot	Ser Parky
I TOROL WATER	IMBER OF GALLONS 77/, 2gr	Ren Figure my
	es, purged approximately 1 standing volume prior sampling orNAmL for this sample location. Print Name: Ry Makovsli	FIGURE 4-10
Checked By: Brandon Shaw	Date: 02-28-201 G	ROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

GROUNDWATER/ PO	RE WATER GRAB SAMF	PLING RECORD	
511 Congress Street, Portland Maine 04101 PROJECT NUMBER	arriage Cleaners	SAMPLE LOCATION DP-25 START TIME	DATE 1/18/11 END TIME
3612102168/02 SAMPLE ID \$28131A-D	SAMPLE_TIME	SITE NAME/NUMBER 828131A	PAGE 1 OF 1
SAMPLE TYPE X GRAB WELL/PIEZOMETER X GEOPROBE PORE WELL DIAMETER (INCHES) X 1 2 4 6	8 OTHER	CAP CASING LOCKED COLLAR	<u> </u>
INITIAL DTW /S. I FT FINAL DTW (BMP) / SCREEN SCREEN SCREEN SCREEN	PROT. CASING FT STICKUP (AGS)	/ FT TOC/TOR DIFFERENCE	
(BMP) WATER COLUMN / FT CALCULATED GAL/VOL (column X well diameter squared X 0.041) FIELD PARAMETERS SOLEH 47 DRAWDOWN VOLUME (initial DTW- final DTW X well diam. square TOTAL VOL. PURGED (mL per minute X total minutes X 0.00026 (FT AMBIENT AIR PID WELL MOUTH ad X 0.041) DRAWDOWN/ GAL TOTAL PURGED	PPM SETTING DISCHARGE TIMER SETTING PRESSURE TO PUMP	NA SEC
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE (mL/min) TEMP. (°C) (mS/cm)	pH (units) DISS. O ₂ (mg/L) TU	PUMP PRBIDITY (ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
1500 BEGIN PURGING)	Pump On
1506 325 11.36 1.213	7.56 0.91	21000 10.2 821	
1511 SAMPLES COLLECTION			
Rin	118/11	1	
SAMPLE OBSERVATIONS: CLEAR COLORED BROWN 5 h CLOUD	Y TURBID 5:1+		·
EQUIPMENT DOCUMENTATION	Y TURBID_5.1+	ODOR	OTHER (see notes)
WATTERA	TUBING PVC PUM LINED TUBING GEOPROI IBING TEFLON E	PUMP MATERIAL PID SESCREEN PU X WQ M TURB. ALADDER TOTHE TO	. METER
ANALYTICAL PARAMETERS	SERVATION	SAMPLE OF	
	HCL 2 X 40ml	RED SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID NUMBERS See Above
NOTES PID = O.Sppm	SKETCH		
Schooling Introd = 16'-22' -Low Spot in Ponky Lot		50-	· ,
		Rem Figure	
PURGE OBSERVATIONS		igun-	<i>(</i>
PURGE WATER YES NO NUMBER OF GALLONS 7 7 C	091		dry
NO-PURGE METHOD YES NO UTILIZED X If yes, purged approximately 1 standing volume to sampling orNAmL for this sample	prior e location.	3	
Sampler Signature: Print Name: Kyn Ma- Checked By: Bindon Show Date: 57-28-201	Kosti	DOLINDWATER	FIGURE 4-10
Checked By: Brandon Shaw Date: 17-28-201		ROUNDWATER/ PORE WATER	GRAB SAMPLING RECORD

GROUNDWATI	ER/ PORE WATER GRAB SAMP	LING RECORD	
511 Congress Street, Portland Maine 04101 PROJECT NUMBER 3612	Off-Site Carriage Cleaners 102168/02.02 SAMPLE TIME 607×	START TIME EN	TE 1/18/11 D TIME 1645 GE 1 OF 1
TUBING ID (INCHES) 1/8 1/4 X 3/8	PORE WATEROUTFALLOTH 6	HER	ELL INTEGRITY YES NO N/A
INITIAL DTW 9.95 FT FINAL DTW (BMP) WELL DEPTH 7.10 7 FT LENGTH	PROT. CASING STICKUP (AGS)	/ FT TOC/TOR DIFFERENCE REFILL TIMER	NA FT
WATER COLUMN FT CALCULATED GALIVOL (column X well diameter squared X 0.041) CALCULATED (mittal DTW- final DTW X well puresed (mt per minute X total minutes	GAL DRAWDOWN GAL TOTAL PURGED	PPM SETTING	NA SEC
	DUCTANCE pH (units) DISS. O ₂ (mg/L) TUI	PUMP RBIDITY (ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
SAMPLE OBSERVATIONS: CLEAR COLORED DAGWAYS L EQUIPMENT DOCUMENTATION TYPE OF PUMP X PERISTALTIC SUBMERSIBLE BLADDER BLADDER BLADDER BEGIN PURGING A 120 LOO 1.9 A 120 L	CLOUDY TURBID 5:11 TUBING/PUMP/BLADDER MATERIA SILICON TUBING S, STEEL	ODOR OTI	
WATTERA HEXANE X OTHER METHANOL OTHER OTHER ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER X Volatile Organic Compounds 8620B	LDPE TUBING OTHER OTHER OTHER OTHER OTHER OTHER PRESERVATION METHOD HCL 2 X 40ml	none X PUMF Get OTHER FILTERS	оритр
NOTES ASS 540 PRIS	SKETCH		
NOTES PID: 580 PPD Scroening Antonval: 7'-11'		See reported Figure	
PURGE OBSERVATIONS		Figun	!t-/
PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED X GENERATED NO-PURGE METHOD YES NO UTILIZED X If yes, purged approximately 1 st to sampling orNAmill			داس)
Sampler Signature: BM MANN SWAW Print Name: RYN	Markowsk.	ROUNDWATER/ PORE WATER (

GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD		
PROJECT NAME Off-Site Carriage CI PROJECT NUMBER 3612102168/02.02 SAMPLE ID	START TIME END TIME /620 SAMPLE TIME SITE NAME/NUMBER PAGE	
\$28131A - 2620 SAMPLE TYPE X GRAB WELL/PIEZOMETER X GEOPROBE PORE WATER WELL DIAMETER (INCHES) X 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/4 X 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW (BMP) FT WELL DEPTH Z2 FT LENGTH FT	OUTFALL OTHER WELL INTEGRITY YES NO N/A CAP X CASING X LOCKED X COLLAR OTHER None PROT. CASING STICKUP (AGS) / FT TOC/TOR DIFFERENCE NA FT PID AMBIENT AIR PPM REFILL TIMER SETTING NA SEC	
WATER COLUMN FT CALCULATED GALIVOL (column X well diameter squared X 0.041) CALCULATED (column X well diameter squared X 0.041) CALCULATED GALIVOL (mL per minute X total minutes X 0.00026 gal/mL)	PID WELL / PM DISCHARGE NA SEC MOUTH PRESSURE NA PSI DRAWDOWN/ TOTAL PURGED / PRESSURE NA PSI	
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (u	DEPTH (M) > Rump On	
1612 375 12.79 1.694 7. 1616 Samples Collector	21 2.19 71000 -6.4 719'	
	TURBID 5: 1 ODOR OTHER (see notes) NG/PUMP/BLADDER MATERIALS EQUIPMENT USED	
X	S. STEEL PUMP MATERIAL PVC PUMP MATERIAL BING GEOPROBE SCREEN X TEFLON BLADDER X OTHER none OTHER OTHER TOTHER TOT	
PARAMETER METHOD NUMBER PRESERVATI METHOD X Volatile Organic Compounds 86208 HCL // / / / / / / / / / / / / / / / / /	VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 X 40ml See Above	
Densining Interval = 18'-22'	SKETCH	
	Ser-	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS A 1.0 g.1	Min Figure / Map	
NO-PURGE METHOD VES NO UTILIZED VES NO If yes, purged approximately 1 standing volume prior to sampling or NA ML for this sample location. Print Name: Ryn Makors Checked By: BYONGON Date: 02-28-2011	FIGURE 4-10	
Checked By: BYANGON Shaw Date: 02-28-2011	NYSDEC QUALITY ASSURANCE PROJECT PLAN	

	GROUNDWATER/ PORE WATER GRAB SAMPI	LING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID SAMPLE TIME	SAMPLE LOCATION DATE //9/// START TIME SAMPLE CONTROL OF SAMPLE LOCATION DATE //9/// PAGE
	828131A-DP2767 x 0825	828131A 1 OF 1
SAMPLE TYPE X GRAB WELL/PIEZOMETI		HER WELL INTEGRITY YES NO N/A
WELL DIAMETER (INCHES) X 1 2 TURING ID (INCHES) 1/8 1/8		CAP X CASING X LOCKED X
TUBING ID (INCHES) 1/8 1/4 MEASUREMENT POINT (MP) TOP OF RISI		None COLLAR X
_ <u></u>	AL DTW PROT, CASING	/ TOC/TOR NA FT
WELL DEPTH SCI	REEN PID AMBIENT AIR	REFILL TIMER NA SEC
COLUMN / FT VOI	AWDOWN / GAL MOUTH	/ DISCHARGE NA SEC
CALCULATED TO GAL PUI	jal DTW X well diam. squared X 0.041) TAL VOL. DRAWDOWN/ RGED GAL TOTAL PURGED . per minute X total minutes X 0.00026 gal/mL)	PRESSURE NA PSI
FIELD PARAMETERS PURGE RATE	SP. CONDUCTANCE	PUMP
TIME DIW (F1) (mL/min)	TEMP. (°C) SP. CONDOCTANCE pH (units) DISS. O ₂ (mg/L) TU	RBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
0814 BEGIN PURGING 7700 9	8.25 1.020 7.10 1.15	>1000-598 =10:
0818 7200 9	8,25 1.020 1.10 1.15	>1000 -59.8 210
C 303 211 ptil 1 ctill	. //10	
	Min 1/18/	
	an many	
SAMPLE OBSERVATIONS: CLEARCO EQUIPMENT DOCUMENTATION	LORED Brown CLOUDY TURBID Silt	ODOR OTHER (see notes)
TYPE OF PUMP DECON X PERISTALTIC X LIQL X SUBMERSIBLE X DEIGN POT BLADDER POT NITE HEX	DNIZED WATER ABLE WATER ABLE WATER TEFLON LINED TUBING TEFLON ENDER THE TUBING ANE TABLE X LDPE TUBING THER THANOL THER TOTHER TOTHER	PUMP MATERIAL WATER LEVEL METER PM MATERIAL PID ppb ThermoOVM
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER PRESERVATION VOLUME REQUIR	RED SAMPLE QC SAMPLE BOTTLE ID NUMBERS
X Volatile Organic Compounds	8620B HCL 2 X 40ml	See Above
NOTES PTN = 850 app	SKETCH	
NOTES PID= 850 ppb Screening Introd	= 7-11'	
i i		See
		CAP DAYNO
PURGE OBSERVATIONS		acm m
FORGE WATER	UMBER OF GALLONS 1030	acm ap Figur
NO-PURGE METHOD YES NO IF 1 to 100	res, purged approximately 1 standing volume prior sampling orNAmL for this sample location.	~
Sampler Signature: Shand on Shaw	Print Name: Ryan Markoush. Date: 012-28-201	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

			GROUND	WATER/ PORE W	ATER GRAB	SAMPL	NG REC	ORD		
	ACT		PROJECT NU PROJECT NU SAMPLE ID	Off-Site Carriage	CAMPLET	TIME	START TI	E/NUMBER	5	END TIME OSI PAGE 1 OF 1
TUBING ID (II) MEASUREME INITIAL D' (BMP) WELL DEF (BMP) WATER COLUMN CALCULA GAL/VOL	TER (INCHES) NCHES) ENT POINT (MP) TW 19 PTH 2.2	7.3 FT	1/4 X 3/8 1/4 X 3/8 RISER (TOR) FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (initial DTW- final DTT TOTAL VOL. PURGED	ROBE PORE WATER 6 8 1/2 5/8 TOP OF CASING (TOC) / FT / GAL W x well diam. squared X 0.0 GAL In minutes X 0.00026 gal/mL)	OUTFALL OTHER OTHER TO OTHER PROT. CASING STICKUP (AGS) PID AMBIENT AIR PID WELL MOUTH	OTHE	None PF	T TOO DIF	CAP CASING LOCKED COLLAR C/TOR FERENCE FILL TIMEF TTING CHARGE ER SETTIM	WELL INTEGRITY YES NO N/A X X X X NA FT NA SEC
FIELD PARA	METERS	DUDOE BATE		CD CONDUCTANCE					PUMP	
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE pH (mS/cm)	(units) DISS. O ₂ (mg/L) TURE	BIDITY (ntu) F	EDOX (mv) I	NTAKE PTH (ft)	COMMENTS
6758	BEGIN PUR									Pumpon
0805	`	7300	8.75	G. 948 7	20 1.31		1000 -	77.9 7	1221	. /
0810	SAMPL	3 Collo	citan)				1		_\	
	, ,			- Rin			1			
				7	1/19/1		1		V	
SAMPLE OBSÉRY	/ATIONS: CLE	AR	COLORED	CLOUDY_	TURBI	D <u>・ジ, /</u> +	<u> </u>	DOR		OTHER (see notes)
X PERI SUBA BLAC WAT OTHE OTHE		XX	CON FLUIDS USED IQUINOX IQUINOX ISIONIZED WATER OTABLE WATER IITRIC ACID IEXANE METHANOL OTHER	X SILICON TUBIN TEFLON TUBIN TEFLON LINED HDPE TUBING X LOPE TUBING OTHER OTHER	G	S. STEEL PU PVC PUMP I GEOPROBE TEFLON BL	JMP MATERIAI MATERIAL SCREEN	ν χ χ χ	WATE PID WQ M TURB PUMF OTHE	EQUIPMENT USED R LEVEL METER Ppb ThermodyM 580B IETER YSI 556 METER Geopump R NO. NA TYPE
X	PARAMI		METHOD NUME 8620B	BER PRESERV, METHO	D VOLU	iME REQUIRE		APLE CO	QC LLECTED	SAMPLE BOTTLE ID NUMBERS See Above
NOTES P	ID=65 cnowning	Oppb Entura	1- 18'-	22'	SKETCH		300	POAL		
PLIDOT ODGE	:DVATIONS				_			((1,1)	D.	
PURGE OBSE PURGE WATE CONTAINERIZ NO-PURGE M UTILIZED	ER YE	x	NUMBER OF GALLO GENERATED If yes, purged approxint to sampling or	nately 1 standing volume prior	ion.				- gun _u	Intp
		220 0								
Sampler Signature	: 12	Shan	Print Name: /	Ryn Mark 28-201	ons/co	GF				FIGURE 4-10 R GRAB SAMPLING RECORD

	GROUNDWATER/ PORE WATER G	RAB SAMPLIN	G RECORD	
MACTEC	PROJECT NAME Off-Site Carriage Cleaners		SAMPLE LOCATION DP-28	DATE 1/19/1)
511 Congress Street, Portland Maine 04101	PROJECT NUMBER 3612102168/02.02		START TIME	END TIME
	SAMPLE ID SAM 828 1314 - DP2807X	1210	SITE NAME/NUMBER 828131A	PAGE 1 OF 1
SAMPLE TYPE X GRAB WELL/PIEZOMET	DP2807X	Dup		WELL INTEGRITY
SAMPLE TYPE X GRAB WELL/PIEZOMET WELL DIAMETER (INCHES) X 1 2		HER	CAP	YES NO N/A
TUBING ID (INCHES) 1/8 1/8		HER	CASING LOCKED	
MEASUREMENT POINT (MP) TOP OF RIS	ER (TOR) TOP OF CASING (TOC) X OTI	HER No	COLLAR	<u> </u>
INITIAL DTW ID. 7 FT (BI	IAL DTW PROT. C		TOC/TOR DIFFERENCE	NA FT
	REEN PÍD NGTH FT AMBIEN	T AIR	REFILL TIME PPM SETTING	R NA SEC
COLUMN / FT VO	AWDOWN / GAL MOUTH	L	DISCHARGE TIMER SETTI	ING NA SEC
CALCULATED / TO GAL/VOL / GAL PU	tial DTW- final DTW X well diam. squared X 0.041) TAL VOL. RGED GAL TOTAL F L per minute X total minutes X 0.00026 gal/mL)		PRESSURE TO PUMP	NA PSI
FIELD PARAMETERS			PUUD	
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (units) DI	SS. O ₂ (mg/L) TURBID	PUMP ITY (ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
1150 BEGIN PURGING —			h.a.c.	Pump on
1157		>10	900 - \$10.9	
1210 3978103 Cal	lot tw			
	ecy 1/2			
	200	<i>/</i> //	\ 	
SAMPLE OBSERVATIONS: CLEAR OC	DLORED BAUN CLOUDY		1	
EQUIPMENT DOCUMENTATION	DLORED BAG CLOUDY V	TURBID 55	1/ ODOR	OTHER (see notes)
X	N FLUIDS USED JINOX X SILICON TUBING ONIZED WATER CABLE WATER ITEFLON LINED TUBING HOPE TUBING CANE ITERLON TUBING TEFLON LINED TUBING HOPE TUBING THANOL OTHER	BLADDER MATERIALS S. STEEL PUM PVC PUMP MA GEOPROBE SC TEFLON BLAD X OTHER none OTHER	TERIAL X PID CREEN X WQ N DER TURK e X PUM OTH	EQUIPMENT USED ER LEVEL METER ppb ThermoOVM 580B METER YSI 556 B. METER F Geopump ER
OTHER OTH		OTHER	FILT	ERS NO. NA TYPE
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER PRESERVATION METHOD	VOLUME REQUIRED	SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID NUMBERS
X Volatile Organic Compounds	8620B HCL	2 X 40ml		See Above
1 245				
PID = D:0 not		ETCH .		
Succesing Interval=	7'-11'			•
- DID NOT DRODUC	= much H. O			
to vous little in	oba		$S_{\mathcal{E}_{\overline{v}}}$	
- DID NOT PRODUCE 13 VORY little in to Did not get	primote Romany		4Parks	
PURGE OBSERVATIONS			Rin My	/
FORGE WATER	umber of Gallons $20,391$		Rin Map	Figure
NO-PURGE METHOD YES NO If to	yes, purged approximately 1 standing volume prior sampling orNAmL for this sample location.			
Sampler Signature: A. Mar	Print Name: RYAN Makowski			FIGURE 4-10
Checked By: MANAVA Man	Date: 02-28-2011.	GRO		R GRAB SAMPLING RECORD ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WAT	TER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage Clear PROJECT NUMBER 3612102168/02.02 SAMPLE ID 828/31A DP2820 ×	START TIME END TIME /OSS (120) SAMPLE TIME SITE NAME/NUMBER PAGE
INITIAL DTW (BMP)	OUTFALL OTHER WELL INTEGRITY YES NO N/A CAP X CASING X LOCKED X COLLAR X OTHER None PROT. CASING STICKUP (AGS) PID AMBIENT AIR PPM PPM PPM PPM PPM PPM PPM P
FIELD PARAMETERS TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pH (units (mS/cm)) pH (units (mS/cm))	PUMP s) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
SAMPLE OBSERVATIONS: CLEAR COLORED GRAPIS LOUDY EQUIPMENT DOCUMENTATION TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER OTHER OTHER OTHER ANALYTICAL PARAMETER PARAMETER PARAMETER DECON FLUIDS USED TUBING TEFLON TUBING TEFLON TUBING HEXANE HEXANE HEXANE OTHER OTHER OTHER OTHER Volatile Organic Compounds RCA I/19 CLOUDY DECON FLUIDS USED TUBING TEFLON TUBING TEFLON TUBING TOTHER OTHER OTHER OTHER OTHER OTHER Volatile Organic Compounds RETHOD NUMBER PRESERVATION METHOD M	TURBID SULLY ODOR OTHER (see notes) SPUMP/BLADDER MATERIAL S. STEEL PUMP MATERIAL PVC PUMP MATERIAL NG GEOPROBE SCREEN / / X TEFLON BLADDER X OTHER none OTHER OTHER OTHER TURBID SULLY ODOR OTHER (see notes) WATER LEVEL METER PUD pub ThermoOVM 580B WQ METER YSI 556 TURB. METER TURBID SULLY WATER LEVEL METER PID pub ThermoOVM 580B WQ METER YSI 556 TURB. METER TURBID SULLY TO THER NOTHER OTHER OTHER FILTERS NO. NA TYPE
NOTES PID= 1.1 ppM SCREENing Intron(- 18'-22') PURGE OBSERVATIONS	SKETCH SEE UP DANKS
PURGE UBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS A 1.0 g. 4 CONTAINERIZED X GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or NA_mL for this sample location. Sampler Signature: Print Name: Ryn Markowsk i	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

		GROUNDWATER/ PORE WATER GRAB SAMP	LING RECORD	
	MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID SAMPLE TIME 8281314 - DP2907X 1515	SAMPLE LOCATION DP-Z9 START TIME 1 45 7 SITE NAME/NUMBER 828131A	DATE 1/19/11 END TIME 15 25 PAGE 1 OF 1
	(BMP) (BN FT (BN WELL DEPTH 1/) 5 SCF	ER	HER CAP CASING LOCKED COLLAR COLLAR DIFFERENCE REFILL TIME	NA FT
	WATER COLUMN CALCULATED GALIVOL GAL GAL GAL GAL GAL GAL GAL G	AMBIENT AIR AMBOWN J GAL BOTH FT AMBIENT AIR PID WELL MOUTH AND THE MOUTH BOTH # PPM SETTING DISCHARGE TIMER SETTING PRESSURE TO PUMP PUMP	NA SEC	
	TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (units) DISS. O ₂ (mg/L) TU (mS/cm)	RBIDITY (ntu) REDOX (mv) INTAKE DEPTH (ft)	COMMENTS
9/2	1955 BEGIN PURGING	Tari 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- tump on
4	100 0 01	(5.94 3.535 7.19 1.20)	>1060 -61.7 ×10°	
		Hern //		
		612 1/19/11	1 4	
	EQUIPMENT DOCUMENTATION TYPE OF PUMP DECON X PERISTALTIC X LIQU SUBMERSIBLE X DEIC BLADDER POT. NITR NITR WATTERA HEX	INIZED WATER TEFLON TUBING PVC PUM ABLE WATER TEFLON LINED TUBING GEOPROI IC ACID HDPE TUBING TEFLON E ANE X LOPE TUBING X OTHER OTHER	ALS PUMP MATERIAL P MATERIAL P MATERIAL X PID BE SCREEN V L X WQ I SLADDER	
	NOTES PARAMETER Volatile Organic Compounds PTD = 550 A SCROENING TAKE	METHOD NUMBER PRESERVATION METHOD 8620B HCL 2 X 40ml SKETCH	RED SAMPLE QC COLLECTED COLLECTED	SAMPLE BOTTLE ID NUMBERS See Above
s a	Scroening Into	avr1=7'-11'	Sec 400 mm	n
	CONTAINERIZED X GE	MBER OF GALLONS A 1.0 gg/	Rem	gunt map
	NO-PURGE METHOD YES NO If y UTILIZED X to s	es, purged approximately 1 standing volume prior sampling orNAmL for this sample location.		
	Sampler Signature:	Print Name: Rygr Markowski		FIGURE 4-10

	GROUNDWATER/ PORE WATER GRAB SAMP	LING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02 SAMPLE ID 828131A - DP2920x SAMPLE TIME 1453	SAMPLE LOCATION DATE 19 START TIME 1432 SITE NAME/NUMBER 828131A DATE 1/19 LUSS SITE NAME/NUMBER PAGE 828131A 1 OF 1
SAMPLE TYPE X GRAB WELL/PIEZOMET WELL DIAMETER (INCHES) X 1 2 TUBING ID (INCHES) 1/8 1/8 MEASUREMENT POINT (MP) TOP OF RIS	4 X 3/8 1/2 5/8 OTHER	WELL INTEGRITY YES NO N/A CAP
(BMP) [1, C] FT (BI	NAL DTW / PROT. CASING STICKUP (AGS)	/ FT TOC/TOR NA FT
(BMP) 21.6 FT LE	REEN PID AMBIENT AIR LAWDOWN PID WELL	PPM REFILL TIMER NA SEC DISCHARGE NA SEC
CALCULATED / GAL PU	ILUME	/ PM TIMER SETTING SEC PRESSURE NA PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (units) DISS. O ₂ (mg/L) TU	PUMP JRBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1436 BEGIN PURGING		J Punp on
1447 7375	8.73 1.612 7.75 1.13	71000 -78.4 521
1453 SAMILOS 40	ilocta)	
	0: -	
	1/19/11	
	for "	
SAMPLE OBSERVATIONS: CLEAR CO	DLORED BROWN CLOUDY TURBID_5:1+	ODOR OTHER (see notes)
X	ONIZED WATER TEFLON TUBING PVC PUM TABLE WATER TEFLON LINED TUBING GEOPRO'S RIC ACID HDPE TUBING TEFLON E	PUMP MATERIAL WATER LEVEL METER PID ppb ThermoOVM 580B BE SCREEN PV L X WO METER YSI 556
ANALYTICAL PARAMETERS	PRESERVATION NOLUME DESIGN	SAMPLE QC SAMPLE BOTTLE ID
X Volatile Organic Compounds	METHOD NUMBER METHOD VOLUME REQUIR 8620B HCL 2 X 40ml	COLLECTED COLLECTED NUMBERS See Above
	1 0/	
NOTES PID = 900 PPB SCREENING INTERVA	SKETCH SKETCH	
		Ren Figure/map
PURGE OBSERVATIONS		Rin Fin
FORGE WATER	UMBER OF GALLONS 6 1.0 gml	Junomap
	yes, purged approximately 1 standing volume prior sampling orNAmt. for this sample location.	
Sampler Signature: K.M. Checked By: Blandon Shaw	Print Name: Ryn Makorski Date: 62-28-201	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WATER GRAB SAMPL	ING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02	SAMPLE LOCATION DATE DP. 30 START TIME 2 1 END TIME 1235
	SAMPLE ID 828/314-DP3007× SAMPLE TIME	SITE NAME/NUMBER PAGE 828131A 1 OF 1
WELL DIAMETER (INCHES) X 1 2 TUBING ID (INCHES) 1/8 1/4 MEASUREMENT POINT (MP) TOP OF RIS INITIAL DTW (BMP) FT (BM WELL DEPTH (BMP) FT LEF WATER COLUMN FT VO CALCULATED CALCULATED TO GAL PUL	ER X GEOPROBE PORE WATER OUTFALL OTHE 4 6 8 OTHER X 3/8 1/2 5/8 OTHER ER (TOR) TOP OF CASING (TOC) X OTHER AL DTW PROT. CASING STICKUP (AGS) REEN PID AMBIENT AIR AWDOWN J GAL MOUTH LUME AWDOWN J GAL MOUTH LIAM DTW FINANCE GAL MOUTH AND DTW X well diam. squared X 0.041) TAL VOL. GAL PROWN/TOTAL PURGED DRAWDOWN/TOTAL PURGED	020131.1
TIME DTW (FT) PURGE RATE (mL/min)	TEMP. (°C) SP. CONDUCTANCE pH (units) DISS. O ₂ (mg/L) TUR	RBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1217 9 7 200 1220 Conjected com	Sale	1000 73.7 ~10
\ RAK	70 1,47 7.2 6.7 7	1000-73.7 Ren 2/4/117
(11)	LORED SUM CLOUDY TURBID 5:1/+	
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECOM X	FLUIDS USED	EQUIPMENT USED
ANALYTICAL PARAMETERS PARAMETER Volatile Organic Compounds	METHOD NUMBER PRESERVATION METHOD VOLUME REQUIRED See 1	SAMPLE QC SAMPLE BOTTLE ID NUMBERS See Above
NOTES PID = 1004 ppl Screening Interval:	7 to 11	ren
		1/28/4
PURGE WATER	UMBER OF GALLONS 0,2	
NO-PURGE METHOD YES NO If to	yes, purged approximately 1 standing volume prior sampling orNAmL for this sample location.	
Sampler Signature:	Print Name: Ryw Markowski:	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WATER GRAB SAMP	LING RECORD
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168/02.02	SAMPLE LOCATION DIP-30 START TIME END TIME 40
	SAMPLE ID SZ8131A-DP3020× SAMPLE TIME SZ8131A-DP3020×	SITE NAME/NUMBER
(BMP) FT (BN	4	WELL INTEGRITY YES NO N/A
(BMP) FT LEN WATER COLUMN / FT VOI CALCULATED GALLVOL / GAL PUI	REEN NGTH FT AMBIENT AIR AMBOWN LUME GAL MOUTH GIAI DTW- final DTW X well diam. squared X 0.041) TAL VOL. RGED GAL L per minute X total minutes X 0.00026 gal/mL)	/ PPM REFILL TIMER SETTING NA SEC / PPM DISCHARGE TIMER SETTING NA SEC / PRESSURE TO PUMP NA PSI
(IIID/IIII)	TEMP. (°C) SP. CONDUCTANCE $_{ m PH}$ (units) DISS. ${ m O_2}$ ($_{ m mg/L}$) TU	PUMP URBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1124 BEGIN PURGING 1133 9.1 350	11.43 1.430 7.29 1.61 7 Wenter DF-30	7/000 -46,2 -21
		21000 -46.2 Ren 2/4/117
SAMPLE OBSERVATIONS: CLEARCO	DLORED LA GLOUDY V TURBID 5/1	ODOR OTHER (see notes)
TYPE OF PUMP DECON	DNIZED WATER TEFLON TUBING PVC PUM ABLE WATER TEFLON LINED TUBING X GEOPROI RICACID HOPE TUBING TEFLON E ANE X LDPE TUBING X HANOL OTHER OTHER	ALS PUMP MATERIAL MP MATERIAL BE SCREEN / V
ANALYTICAL PARAMETERS PARAMETER Volatile Organic Compounds	METHOD NUMBER PRESERVATION METHOD VOLUME REQUIREMENTS AND ADDRESS	IRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS See Above
NOTES (1-)	SKETCH	
Screening Interval:	221 to 18' bys	.
		Rcm 1/28/11
PURGE WATER	JMBER OF GALLONS - JAN	
	yes, purged approximately 1 standing volume prior sampling orNAmL for this sample location.	(an)
Sampler Signature: // //	Print Name: Ryn Markowsko B. Shi	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD THE SAMPL

	GROUNDWATER/ PORE WATER GRAB SAMP	LING RECORD
MEASUREMENT POINT (MP) TOP OF RI		SAMPLE LOCATION
WATER COLUMN CALCULATED GALIVOL (column X well diameter squared X 0.041) (BMP) FT L D ((iii) (iii)	CREEN ENGTH FT AMBIENT AIR PID AMBIENT AIR PID AMBIENT AIR PID WELL MOUTH Intial DTW- final DTW X well diam. squared X 0.041) OTAL VOL. URGED GAL TOTAL PURGED L per minute X total minutes X 0[00026 gal/mL)	REFILL TIMER NA SEC PPM DISCHARGE NA SEC PPM TIMER SETTING NA SEC PRESSURE NA PSI
FIELD PARAMETERS TIME DTW (FT) PURGERATE (mL/min)	(mszern)	PUMP JRBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
EQUIPMENT DOCUMENTATION TYPE OF PUMP DECC X PERISTALTIC X LIC SUBMERSIBLE X DECC	W 3 mple & T P - 31 1.56 7.1 1.0 COLORED L+ Green Brown School TURBID YES TURBID YES TO TURBING SILICON TUBING S.	1000
WATTERA HE OTHER O	EXANE X LDPE TUBING X OTHER ETHANOL OTHER OTHER OTHER OTHER METHOD NUMBER PRESERVATION METHOD NUMBER METHOD VOLUME REQUI	OTHER FILTERS NO. NA TYPE IRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS
NOTES PID: 0.7 PI	8620B HCL 2 X 40ml	See Above
PID: 0.7 pl- Screeng interna	1: 18 to 22 bg	Rim 1/28/11
CONTAINERIZED X X CONTAINERIZED YES NO	NUMBER OF GALLONS SENERATED If yes, purged approximately 1 standing volume prior o sampling orNAmL for this sample location.	
Sampler Fightsure:	Print Name:	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD

GROUNDWATER/ PORE WAT	ER GRAB SAMPLING RECORD					
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NAME Off-Site Carriage Clear PROJECT NUMBER 3612102168/02.02	SAMPLE LOCATION DATE 1-20 -11 START TIME END TIME 1450					
SAMPRE 28121A-107=215)	SAMPLE-TIME SITE NAME/NUMBER PAGE 828131A 1 OF 1					
SAMPLE TYPE X GRAB WELL/PIEZOMETER X GEOPROBE PORE WATER OUTFALL OTHER WELL INTEGRATED OTHER YES						
FIELD PARAMETERS PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (unif) TEMP. (°C) (mS/cm) PH (unif)						
1428 BEGIN PURGING 1439 95 350 10.51 0.41 7.8 1440 CILECTECT GAS Suple	3 1.14 7100 -37A 15					
1 /11 6.411 7.8	1.1 >1000 -37.4 Pen 2/4/17					
SAMPLE OBSERVATIONS: CLEAR COLORED CLOUDY CLOUDY	TURBID SITH ODOR OTHER (see notes)					
	S. STEEL PUMP MATERIAL S. STEEL PUMP MATERIAL WATER LEVEL METER PVC PUMP MATERIAL X. PID ppb ThermoOVM 580B					
OTHER OTHER OTHER OTHER	OTHER OTHER OTHER FILTERS NO. NA TYPE					
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compounds 8620B HCL DATE: 17 17 17 17 17 17 17 17 17 17 17 17 17 1	N VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 2 X 40ml See Above					
NOTES PID: 3.9 00=	SKETCH					
NOTES PID: 3.9 DP = Screen: 11 to 15						
	Ken 1/2					
PURGE OBSERVATIONS VES. NO. NUMBER OF GALLONS 4. 3	1/25/11					
CONTAINERIZED X GENERATED NO-PURGE METHOD YES NO						
UTILIZED X If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.						
Sample Signature: Print Name: Date: 128/11	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD					
Checked By: RCM Date: 1/28/11	NYSDEC QUALITY ASSURANCE PROJECT PLAN					

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER S	AMPLING		JOI	B NUMBER	3612102168-02.1
l I	NYSDEC Off Si			FIELD SAM			IA-DP33	25 ×		
		P/PZ-33		consup hypes					DATE 7	7/13/11
	START (35		14150	SAMPLE TI	′ _	1415				,
	VEL / PUMP S			REMENT POINT		PROTECTIVI			SING / WELL	NA 5
INITIAL DEF	PTH %	11.00	TOF	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GRO		FT FT	FER.	FT FT
TO WAT	TER 7	LE .	<u>FT</u> WELL DEPT	TH ~ 000	,]	PID	3 018	WE DIA		/ in
FINAL DEF		D }	(TOR)	~ 78	FT	AMBIENT AIR	R (9/15		LL INTERGRI	TY:
DRAWDO		246	SCREE!		FT	PID WELL MOUTH	0,6	PPM C	YES	s no N/A
VOLU	VOLUME CASING CASING (initial - final x 0.16 (2-inch) or x 0.65 (4-inch) RATIO OF DRAWDOWN VOLUME PRESSURE LOCKED									
i .	(O)		<u></u>	OTAL VOLUME PUR		TO PUMP			DLLAR 17	romets
TOTAL V PURG	GED フィ			100 4 00000 colla	villilitor)	REFILL SETTING			CHARGE	
(purge v	****	per minute) x tin	ne duration (minu	ites) x 0.00026 gal/n SPECIFIC	illuiter)	SETTING			TTING	
	DEPTH TO	PURGE	TEMP.	CONDUCTANCE	pH (unite)	DISS. O2	TURBIDITY	REDOX		OMMENTS
1330	WATER (ft)	RATE (ml/m)	(deg. c) く な にらて	(mS/cm) to collected	(units) /vω/	(mg/L)	(ntu)	(mv) Ĉi		JIVIIVILIN I G
1340	8,23	200	14.3	1,258	7.2	0.33	71000	-110		
1345	8.16	4	14.5	1,257	7.2	0.14	>(000	722		
1352	8110	200	14.6	1.254	7,2	0.12	7/000	-135		
1400	8.05		14.5	1.253	7,2 7,3	0.10	71000	-138		
1405	8:07	200	14.6	1.250	7,2	0,10	71000	-137		
7770	0102	7-0-0	14.9	7,000	7,70	10110	7,000	/ / /		
1415	Sayle	Thu								
	0		-121A	202	270					
		800	57.31.65	-UP) /	<u> </u>				
<u> </u>										
<u> </u>										
-:						-				
				4(~						
										1-11-11
-										
					_			<u> </u>		
	ļ					 			1	
						-		<u> </u>		
TYPE (INT DOCUMEN OF PUMP EOPUMP (perist ED BLADDER		TYPE OF TUBI	SITY POLYETHYLE		PE OF PUMP N STAINLESS OTHER		T	<u>PE OF BLADE</u> EFLON THER	DER MATERIAL
ANALYTIC	CAL PARAMET	ERS			DDE	SED/ATION	VOLUME	SAMDIE		
/ Vo	METHOD PRESERVATION VOLUME SAMPLE NUMBER METHOD REQUIRED COLLECTED USEPA-8260B HCL / 4 DEG. C 3 X 40 ML									
NOTES:						LOCATION	SKETCH		I	ha
SIGNATURE: LOCATION SKETCH PO NOTES: LOCATION SKETCH P										
	00011	Kind	IVA					30110	you	
SIGNATUR	RE: MUY	V Vun	4/1/					(hans	·	MACTEC
L	OWFLOW.xlbx/y	F Swalm	V				-			7/18/2011

FIELD I	DATA REC	ORD - LC	W FLQW	GROUNDW	ATER S	AMPLING	3		JOB NUMBER 3612102168-02.1
1	C2 (71 A 1920 15)							1.25×	
SITE ID	- 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							DATE 7/13/11	
ACTIVITY	START /20		1240	SAMPLET	IME	1235			, , , , , , , , , , , , , , , , , , ,
	VEL / PUMP S			REMENT POINT		PROTECTIV			CASING / WELL NA
INITIAL DEF TO WAT	, n	79	FT TO	P OF WELL RISER P OF PROTECTIVE		CASING STIC (FROM GRO		<u> </u>	WELL 12
FINAL DEF	4	86	WELL DEP	27,9	FT	PID AMBIENT AII	R 0	PPM	WELL INTERGRITY:
DRAWDO VOLU	ME 00	2- Ch} or x 0.65 {4-ir	SCREE LENGTI		FT	PID WELL MOUTH PRESSURE	0	РРМ	CAP TEMPORAL LOCKED O
TOTAL V	/OL	<u> </u>		DTAL VOLUME PUI		TO PUMP			COLLAR VICUME
PURG (purge v			AL ne duration (minu	utes) x 0.00026 gal/r	 milliliter)	REFILL SETTING			DISCHARGE SETTING
PURGE DA	ATA			SPECIFIC	· · · · · ·				
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	(units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COMMENTS
1205	yed × 35	llurs pr	ion to ca	1,202	7.1	12 ruet	71000	7. 14	
1211	5.50		15.3	1,194	7.1	0,40	>/000	-34	
1216	5,89	*	14.9	1.186	フ・ユ	0.40	71000	-67	
1220	5.89	25-১	14.7	1.182	7.2	0.30	-	-85	
1225	5.89	 	14.5	1.181	7.2	0.79	71000	702	<u> </u>
1233	5.86	4	14.3	1.175	7.2	0.26	71000	126	
1235	Smole to	ino							
70.42.5	7	0100	> 1 A A	0 20 17	/				
		00013	1/3- DE	25400.	\wedge				
								<u> </u>	
							1		
							 	<u> </u>	
1									
					الأحر				
				,					
-						-			
								>	
	 			<u> </u>				L	
	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBI	NG	TVE	PE OF PUMP M	Ι ΔΤΕΡΙΔΙ	-	TYPE OF BLADDER MATERIAL
<u> </u>	EOPUMP (perist:	altic)		SITY POLYETHYLE		STAINLESS		ГП	TEFLON
ı =	D BLADDER		OTHER _	-098	_ 🗀	OTHER		_ 🗖	OTHER
ANALYTIC	AL PARAMET	ERS			· · · · · · · · · · · · · · · · · · ·				_
	METHOD PRESERVATION VOLUME SAMPLE NUMBER METHOD REQUIRED COLLECTED USEPA-8260B HCL / 4 DEG. C 3 X 40 ML								
NOTES:			A	20		LOCATION	SKETCH		
	leupum	prerou	sec opp	os/mm 29	-	PON	N	/	
,	, / , /	、レン =	130-2	Ц		1000	-/		/ _{[12}) /\$ / /
1 6	·ocation	ナリー	に「フ	1				<i>(_/.</i>	0 01/02/33
				joz/mn-32 4			0P/PZ-32	Conso	
		0	_1 _1 .		├ ~	\	nol02-37	500	
1	Las bu	. R.~	7/18/11				UTI		
1 Cho	TUTUE TO	Ω	•		"	<u></u>	_		
	1100 11	L. HIN/1	,					W-1800	INEQUO!
SIGNATUR	E: HELLY V	matt!				1	- 6	(ROI	MACTEC
10	OWFLOW XISX/L	E-Swalm			•		~·····································		7/18/2011

APPENDIX C-2

SOIL BORING LOGS

									SOIL BORING LOG			
	11.41		_						Project Name: Parada Santa	Boring II	mw-11	
		\mathbf{N}	A		"	'	⊢](\cdot	0 1 7 170 071-1:00 03-01			
		_ V	7 3		ه. ر			_	Project Location: Penfield, NY	Page No.		
		ngress S							Project No.: 3612 (102/168) Client: NYSDEC	of		
Borin	g Loc	ation:) _{eu}	in L	~cui		<u>coud.</u>	ا کر	Refusal Depth: 61,4 Total Depth: 61,4	Bore Hole ID(QD:) 8		
		alle				w	<u>لتا</u>	_	Soil Drilled: 61, 4 Method: HSA	Casing Size: 41/5/10 155/5		
Subc	ontrac	tor: Geo	ologic	NY					P.I.D (eV): /0.0 Protection Level:	Sampler:	Split Spoon	
Drille	π: D/	un l	عبد	ns					Date Started: 7/10/11 Date Completed: 7/10/11		ID/OD: 1.5"/2"	
Rig T	ype/N	1odel:	74 1	<u> </u>	urd	CN	NB-9	5			Wt/Fall: 140/30-	
Refer	ence I	Elevation	n: Z	<u>67</u>	<u>. 6</u>	<u>7 </u>	92000	ŋ_	Water Level: 27.4'865 Time: 7/11/11 1315	Hammer	Type: Art hanny	
	Sampl	e Inform	ation		 _	Mon	itoring					
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
0.0									0-21.0 Darkbrown to very dak brown howy topsoil 1-3.5 Brown to light brown Frieto preting sun and site (Fill).	Fice	P10=0 ppn	
									3.5-6 Wood forible, concrete in fine sound with a little medicato couse sound condermed true 5:7+ (File)	Fiv	FILL to ~6.5-7'BGS PIN=UPM, GWG+7.4'BGS	
10									6' Encountered southings had (corretesh's?) Broke throat & C.5' becomes soft-duly smooth hoyers at 15' Oull cuttings borroundo light brown fine sent untl someton hote sit wet.	SM	Brown Ine cand and silt west. (SM) PID=Oppm	
15									15-20' Cettings similar to 10-15 huturch sometocalite median to cocrescul andgrand, becoming grayioh brown.		PIDZO	
	34.5	100	8/m/m/d	۵	O		1900		Pives ofbrich caven pluggedend of spoon very little recovery. No souple collected Compreh from facto medingered with a little course sundandgrud		PIDZO	
35	52 37 37 38 39 36	0500		11	0		1930 TOO		Storting to get sandruing into angers can't really get a simple of native inter below argers brown fine to course survived in a little grand and a true of 57th into massim. Cry to granich brown fine to course survived on the grand. Wet masson	ul .	P18=0 7/11/19 7/12/19 PIN=0	
NO	OTES:	=(7	₩,	<u> </u>	0	P-1	Ö			FIGURE 4-4 SOIL BORING LOG	

	N	1	Λ				:		SOIL BORING LOG											
oring I eather	Cons		Project Name: BEDITE CARRIAGE CLEANERS Boring ID: MW-11																	
oring I eather	. Cons	v	А		7		己し	ار	Project Location: Pen Gell, NY	Page No.										
oring I eather	511 Congress Street, Portland Maine 04101 Project No.: 3612 (Client: NYSDEC of:)																			
eather	oring Location: Penn have Condis Refusal Depth: 61.4 Total Depth: 61.4 Bore Hole ID(QD) 82																			
bcont	A	, 1	1.00	1. (<u>^ (~^</u> (~) ~ ()	001	Aur S		Soil Drilled: 61.4 Method: 1+5 A		ize: 41/42 10									
IOCOIII	racto	ry Geo	logic	NY	00 1	0 , 0	www.c		P.I.D (eV): /0.0 Protection Level: D	Sampler:	Split Soven									
riller		ve h							Date Started: 7/11/1/ Date Completed: 7/12/11		ID/OD: 1.5 -/1=									
o Tyn	- <i>Vέ</i> λι re/Μο	<u>ve∠ v</u> del: A	₹	. a t	al C	Cunt	445		Logged By: J. Rawclifle Checked By: Rem 7/18/1	Hammer	Wt/Fall: 140 /302									
eferen	ce Ele	evation	n: 2	67	1.6	7' 0	Mous		Water Level: ≈7.4'B65 Time: 7/u/1 1315	Hammer	Type: Audo hammer									
Sar	nple l	nform	ation				itoring		·											
Samule Number	T	Ģ.	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks									
5° 3° 4	4 2	~20 20 20 29	فهاساعان	フ	O		ļ		Gray to grayshlowen fine to course send and grand, West, massive	SW/W										
5 4	2	845).0 .5	3121012	28	J	_	NA	M	Gray to slightly reddish bown gray fire to coarse such and gravel slight drove of soft. Wet massal deuse. Had 24' of blow in that to oka while to cl split spoons. Gray fine to coarse such with a	CW/Si	P10=0									
10 S	29 7	1.0	31416	ĝ	1	<u>-</u>	M	NA	little grovel and a slight war of sit.	SW	P1120									
5 5 5	4 0	025	SI SIMPS	9	0	_	NG	AV	Gray fine to course soul with a little growl and a slight trace of site. Wet.	SW	P10=0									
60 S	59,5 1	1.9/17	14/0/8/06	18	0		NA	M	Grey with some slight reddish browning material. From to coorse send with a little gracel slight tomes of set. Wet; Pefural with split ground bl. 4- likely ou grand or colole. We thing in shoe of spec	sw v	PID=0 Defundmish spoon at 61546									
									Auger to 59,5'BGS Split Spoon to 61,4'BGS Bottom of Goray =61,4'BGS											

NOTES: 26 from DP10

FIGURE 4-4 SOIL BORING LOG

SOIL BORING LOG												
	Project Name: Beautiful Control of the Project Name:	Boring ID: MW-17										
MACIEC	Project Location: Penfield, NY	Page No.										
511 Congress Street, Portland Maine 04101	Project No.: 3612 102168 Client: NYSDEC	of: 2										
Boring Location: General Conservation L	Refusal Depth: VA Total Depth: 61	Bore Hole ID/QD) 8"										
Weather: Mushly sung 20-50 morn	Soil Drilled: 61 Method: HSA	Casing Size: 8 =										
Subcontractor: Geologic, NY	P.I.D (eV): 10,0 Protection Level: Mod D	Sampler: Solit Sovon										
Driller: Dave by ous	Date Started: 7/13/11 Date Completed: 7/13/11	Sampler ID/OD: (5-/2.4										
Rig Type/Model: ATV Mounted Cime 185	Logged By: J. Rawshiff Checked By: Ron 7/18 11	Hammer Wt/Fall: 140/30										
Reference Elevation: 264.31' grow)	Water Level: 5.27'TOR Time: 7/15/11 0800	Hammer Type: Actohumer										
Sample Information Monitoring												
Sample Number Penetration/ Recovery (feet) SPT Blows/6" N Value PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	Symbol Symbol Remarks										
20 51 2.0 2 2 20 20 20 20 20 20 20 20 20 20 20 2	Auguing to 20' before cultering surples for Stratispiply see has of DP-23 hogging cuttings only 0-to at unvil 0-4- Brown to light brown fixes of s moist. 4-8' Brown fine sundand with forces of s moist to wet. 8-10 Carry fined sand and silt wet. 10-10 Partisonan to gruy fries and and 5ilt. Wet. 15-20 Carry fine to median sundanth alib Coursesant Corry to devegory fine to median sand with traces of coase send contine grand with grand and svores of coarse send and fine grand (well remided). Wet was sure. Cray to dark gray fine to coarse suf with some growned and slight trace of silt Wet, massae.	PID=0 Re Running suds										
NOTES: WW 12 28 from [P-23	FIGURE 4-4										

				7					SOIL BORING LOG			
st s		<i>1</i> /5			7			7	Project Name: B	Boring I	D. MW-D	
		VI	A),	ï		己(•	OFF-SITE CARRIAGE CLEANERS Project Location: Penfield, NY	Page No.	. 2-	
		ngress S		Dortlar	nd Ma	ine O	1101		Project No.: 3612 102168 Client: NYSDEC	01	- ^	
				$\overline{}$			_		Refusal Depth: NA Total Depth: 61		le ID(OD:) 82	
							n hear	jui	Soil Drilled: 61' Method: HSA	Casing Size: 4 1/4 1D		
		ار ډېل tor: Ge			U- BC	>	alm		P.I.D (eV): 10:0 Protection Level: Mil D.		Solit Souch	
									Date Started: 7/13/1/ Date Completed: 7/13/1/	Sampler		
Din T	une/N	avelu	400	<u>~></u> M	ا د ماؤر ر	Cu	M.B-U		Logged By: J. Rawcliff Checked By: Kr 7/18/	Hammer		
Refere	tig Type/Model: ATU Mountal COME-US Reference Elevation: 264.31° arow1								Water Level: 5,27'70R Time: 7/15/11 4800		Type: Autohammer	
		e Inforn					itoring	<u></u>				
@T			SPT Blows/6"		PID Field Scan	P1D Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
40 40 41	र्डू इक्	750 8 2.0 1.4	8/4/6/4	li	O	-		_	Grey to dark gray fine to cocerse surd with some gravel (well normaled). Wet, well graved (not uniteral), massive; Possible toware of site.	\$64/ 6i~	Glaciotivind Stillhavaytrubb with sand in any	
44 46 45 48		0530 2.0 0.7	M:21216	8	U			_	Grupto dorkgrup medium to course su with some gravel and faire sand . Wet massive, grand is well vouled, wellquiled.	Suyou		
50 52 54	Ś 7	350 2.0 1.1	コシーク	lo"	₩ 1,4		-	-	Congradade gry media tococree sund with gravel and a little fixe su Bottom 0,4 is very coerse (c surtiguel Wet geneally missing (werser a depth) well rended. some large prices of gravel	V	Bachqued hus crept up him 0 to 2ppn±	
56 58 55		0930 2.0 1.3	8111718	Į.	#0.7) -			Gry to darkopy to reddishigny fine to course sand andgrand with twels of silt. West, some famil (apeny (riddish material). Otherwise massive. well graded. Overchilled to 61' and publish but to clo	er ai	323.	
61									Bottom of bony = 61'B65 No refusal.			
NO	TES	- MAG	1.0		10 6	2/			DP 23			

MW-12 281 from DP 23

FIGURE 4-4 SOIL BORING LOG

NYSDEC QUALITY ASSURANCE PROGRAM PLAN

							SOIL BORING LOG		
		ΝΛΔΟ	71		F(7	Project Name: Off-Site Carriage Cleaners	Boring II	D: DP-06
	<u></u> -					_	Project Location: Penfield, New York	Page No.	-
		ongress Street, Portlar		_	101		Project No.: 3612102168 Client: NYSDEC	01	
		cation: Store	8				Refusal Depth: NA. Total Depth: 28		le ID/OD: -2"
Weat	her:		uny				Soil Drilled: 28 Method: Direct Push	Casing S	
Subc	ontrac		nagle				P.I.D (eV): 10.8 Protection Level: D	Sampler:	
Drille		<u> </u>	<u>ۍ.</u>	• • •			Date Started: 11 - 16 - 20 18 Date Completed: 11 - 16 - 20 10	Sampler	
_		Model: Cele	10	<u></u> 1			Logged By: BAS Checked By: 855 1/24/10	Hammer	
		Elevation: 26	<u>8.</u>		_		Water Level: 7.45 pr Time: BOS	Hammer	Type:
	Samp	le Information		Mot	itoring		, V		
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
0.0	·		Lou				0-1 Brown silty Loam; poorly graded; vet, Mp, Mitriff; some grass roots 1-4 Brown to silve Brown SILTY SAND with some coarse sand to fine gravel; well graded, Damp, Sp, Midense	Fill	
			1	İ			met, mp, mstriff some exact not		
ì							1-4 2		
							1 prom to sime Brank SILTY SAND	\(\bullet\)	1
							with some course sand to fine gravel,		
						İ	well grated, Damp, Sp, mount		
		a 🌬	V		ŀ				
12		1.3	ŀ						
	1	. /		ļ			45		
		13.0		İ	l				
	1	7							
3									
-							·		,
İ							·		
	1			ļ			·		
14			1			1			
							1 0 s	*	
	ļ.						4-8 Brown to greyish brown fine	SM	4
	1					İ	SAND with some SILT and fine gravel;	15	W.
上					1		weed in the	"	
一	1						well graded, damp to most, upense,		
						1	No to SP;		
\vdash	4		1.	, 2	1			1.	
1		. 1/	115) p pi	1			[
P	4	10/							
		/x n							
<u></u>		"1"		1	1			[
؍ ا	1						·		
17]	Į.	1	1		1			,
	1				1				
	7					.[
8	-			1				1	
<u></u>		<u> </u>			ــــــــــــــــــــــــــــــــــــــ		L		1

NOTES:

							SOIL BORING LOG		
		NAC	7			7	Project Name: Off-Site Carriage Cleaners	Boring II	DP-06
		MIAC	المد		口	_1	Project Location: Penfield, New York	Page No	
722	511 C	ongress Street, Portla	nd Ma	ine 04	101		Project No.: 3612102168 Client: NYSDEC	0	f: 4
Borin	ng Loc	cation: Store	91/0	•			Refusal Depth: NA Total Depth: 28	Bore Ho	le ID/OD: ~ Z"
Weat	her:	12°F, 81m	1y <u>.</u>				Soil Drilled: 28 Method: Direct Push	Casing S	ize: NA
Subc	ontrac		magle				P.I.D (eV): 10.8 Protection Level: D	Sampler:	
Drill			v .				Date Started: 11-16-2010 Date Completed: 11-16-2012		
		Model: Wb1					Logged By: BAS Checked By: BJS W24/10	Hammer	
			8.		nitoring		Water Level: 7.45 by Time: \$55	Hammer	Type:
	Sampi	le Information	-	MOI	IIIOTIIIG		•		
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
			Lo	١,			F-12 Dk grey SILT SAND with trace fine gravel, wet, well graded, NI to SP; Mouse; gravel is vounded to well rounded	SM	Cad
			١,				fine gravel, wet, well graded, NI to SP;	/	, , , , , , , , , , , , , , , , , , ,
9							Mouse; gravel is rounded to well		
							bunded		
							1000000		
			П						,
io		10/			Ì				i
H	1 1	1.9/		i					
,		10	1	1					
		7.		1	•				
In			ŀ		,				
 ''	1					i			
-									
112							<u> </u>		
14	-		-	<u> </u>		ļ	12-13 Lt olive brown masser to fine	1 6:	
			Lo	1			12-13 LF 01112 10 10 10 10 10 10 10 10 10 10 10 10 10	Sp	
-				[,	ļ		SAND, poorly graded, suturated, ruse		
1.5			$ \ $				13-14.5 Olive trown STITY SAND, prorty	' .	
13							13-14,) 0110 01000 1		
1			П				graded, suturated, loose, SP	SM	
_]							W	
1.,							1915-16 Brown SANDY GRAVEL GRAVEL	_1	
14		32		1			SAND; little fires, Saturaled, midens	Y	
							Mb!		
		4.0					,	sw	
		'		V		1			
15	1			1			•		
	1								
, ,	1								
16									
NO	TES:	I			<u> </u>		la de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		

							SOIL BORING LOG		
		MAC	7		F(_	Project Name: Off-Site Carriage Cleaners	Boring I	04-00
	<u> </u>	TATT TC				١	Project Location: Penfield, New York	Page No	
	511 C	ongress Street, Portlan			101		Project No.: 3612102168 Client: NYSDEC	0	
Borir	ıg Loc	eation: SW of	જાં	<u>e</u>			Refusal Depth: NA. Total Depth: 28	Bore Ho	le ID/OD: 🔊
Weat	her:	4VF, 84	nm	<u>(, </u>			Soil Drilled: 28 Method: Direct Push	Casing S	Size: NA
Subc	ontrac	tor: Noth	nagle				P.I.D (eV): 10.8 Protection Level: D	Sampler	: BAS
Drille	er:	Jeff:	ر ز				Date Started: - (0 Date Completed: 11 - 16-20 lo	Sampler	ID/OD:
Rig 7	Гуре/М	Model: UE	0 p				Logged By: BAS Checked By: BJS いんり 11	Hammer	· Wt/Fall:
Refe	rence	Elevation: 2.6	8.	26	6		Water Level: 7.45 Ws Time: BSS	Hammer	Туре:
	Sampl	le Information			nitoring				
S Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
			Lo.	,			is a learn to gray is brown 54NDY	SW	
		•	[;	'			16-20 it Brown to gray ish brown SANDY GRAVEL with some sect; Saturated, well graded, NP, Moense	"	
							GRAVEL with some silt; Suthrated, well]	
17							enaded NO whense		
1	li	•					grape, sty segons	1 1.	·
			1/				<u> </u>	۲	,
							· ·		,
						٠			
18		a 0						1	
		3.0							
		40	ŀ				•		
<u> </u>		7.0	1						
19						İ			
''	ļ								
,									
l '									
	1					·			
2									
-			 	-	-	├		-	
			6	l			20-20,5 same as 16-20	COL	
	.			[72 T - 2-4 1 Land L WAR MCOURSE SAND	SP/	\$M
۱.,							wis by travely to give the second	. '	
14							with some SILT, poorly graded, Saturate	1	
	1								
1					}		NP, Mounte to 10080,		
 	1		I						
22		3.2/	\ <i>I</i>			ļ		₩	
			1/			İ			
	.	14.0						1	
L]	1,,,	V						
7	.['			1	
23								1	
	1								
	1		1						
	-								
7L	,						·		
			<u> </u>		<u> </u>	<u>L.</u>			
NO'	TES.	-							

							SOIL BORING LOG		
4	111-	MAC	77			7	Project Name: Off-Site Carriage Cleaners	Boring II	DP-06
	.	NTAC	ا ر	L J		_	Project Location: Penfield, New York	Page No.	. 4
	511 C	ongress Street, Portla	nd Ma	ine 04	101		Project No.: 3612102168 Client: NYSDEC	0:	
Borin	g Loc	ation: SW of	Si {	2			Refusal Depth: NA Total Depth: 28		le ID/OD: 🗻 🗸 "
Weat	her:	42'F, 31	m	√.			Soil Drilled: 28 Method: Direct Push	Casing S	
Subc	ontrac	tor: Noth	magle	•			P.I.D (eV): 10.8 Protection Level: D	Sampler:	
Drille	er:	Jeff S	-				Date Started: 11 -16 2010 Date Completed: 11-16-2010		
Rig T	ype/l	Model: 661	O D	<u> </u>				Hammer	Wt/Fall:
Refe	ence	Elevation: 2	8				Water Level: 7.45 bys Time: NA- 855	Hammer	Type:
1	Samp	e Information		Mor	itoring		0		
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
			20	.\			2f-28 Brown Mcourse SAND with trace fines; clean fine SANI 6245 lense,	Sp	
25							2f-28 frown accurse SAND with trace fines; clean fine SANI € 24.5 lense, more fine sand from 27-28; poorly graded, superfed, NP, moderse.		
26		3.3							·
27		70						-	
28									
		. 1			-				
			:						
NO	TES:			ــــــلـــ	.l	ــــــــــــــــــــــــــــــــــــــ	Lagran, and the second		<u> </u>

	SOIL BORING LOG	
MACTEC	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-10
WITICILC	Project Location: Penfield, New York	Page No.
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 4
Boring Location: West of Site	Refusal Depth: NA Total Depth: 28	Bore Hole ID/OD: i. Z.'
Weather: 50'F, Vaihing	Soil Drilled: 28 Method: Direct Push	Casing Size: NA
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS
Driller: Jeff Si	Date Started: 11-17-2010 Date Completed: 11-17-10	Sampler ID/OD:
Rig Type/Model: 6610)T	Logged By: BAS Checked By: BTS 11/24 10	Hammer Wt/Fall:
Reference Elevation: 267.57	Water Level: 6. 1 hys Time: 875	Hammer Type:
Sample Information Monitoring	,	
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks
20,1	0-4 Brown Stity Louin for	15. N
 	0-4 Brown Stly wound form Seturated, brillo pard & ~4; wood fragments, wy,	
	for each	
	Traphant, uf,	
├- 		
	·	
[<u>]</u> V		
	·	
3		
4		
	1 7 1 2 1 2 1	154)
├ ─┤	4-7 modfraguents and preces of	· ' '
	merese	1 3 1
	(3700)	
	7-8 4 brown clear fine SAND,	🖟
⊢	1	
	poorly graded, damp, whense, SP,	
	· · · · · · · · · · · · · · · · · · ·	'
4.0	little fines	
		·
[7]		
		SP
8		
NOTES:	<u> </u>	

			SOIL BORING LOG				
18			Project Name: Off-Site Carriage Cleaners	Boring ID: DP-10			
الشير		JIEU	Project Location: Penfield, New York	Page No. 2			
5	11 Congress Street, Portla	and Maine 04101	Project No.: 3612102168 Client: NYSDEC	of. 4			
Boring	Location: West	- of site	Refusal Depth: NA Total Depth: 28	Bore Hole ID/OD: -2"			
Weath			Soil Drilled: 28 Method: Direct Push	Casing Size: NA			
Subco		hnagle J	P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS			
Driller			Date Started: 11-17-20 to Date Completed: 11-17-10	Sampler ID/OD:			
		0610 DT	Logged By: BAS Checked By: 655 1/24/10	Hammer Wt/Fall:			
		267.57	Water Level: 4.7 by Time: 675	Hammer Type:			
्वा	Sample Number number Penetration/ Recovery (feet)	PID Field Scan PID Headspace Lab Tests Performed Guident Lab Sample ID	Sample Description and Classification	USCS Group Remarks			
9		60.1	8-9 Brown Plan fine SAND with some 511+, saturated, NP/SP, Pourly gradely 9-10 Brown to Reddish Brown to Light	St			
10			grey, acourse sand, withe salt, powerly graded, net, SP - tree roof P = 10.2	SP			
ıl	3.5	50 ppb	10-12 grey to DK grey coarse SAND with Some fine GDAVEL and trace SILT, were graded, SP to NP, wet, Some Saturated zones @ 211.5	SW			
12		11000	12-14 Grey GRAVERY SAND, with little Sir, wen graded, Saturated, in Dunse	6W			
14	2.0	عم p م د 22	SP to NP; 14-16 pt clean coarsel acourse SAND, 100 se pourly graded, NP, saturated, trace well rounded graves (rine)	59			
15		330pp					
NOTI	E <u>S:</u>						

	SOIL BORING LOG				
MAACTEC	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-10			
MACIEC	Project Location: Penfield, New York	Page No. 3			
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 4			
Boring Location: West of site	Refusal Depth: NA Total Depth: 28	Bore Hole ID/OD: -2"			
Weather: 50 F. Ruiniteg Subcontractor: Nothnagle	Soil Drilled: 28 Method: Direct Push P.I.D (eV): 10.8 Protection Level: D	Casing Size: NA Sampler: BAS			
Driller: Teff &		Sampler ID/OD:			
Rig Type/Model: 6 6 10 PT	Logged By: BAS Checked By: BTS V24 10	Hammer Wt/Fall: ← 855			
Reference Elevation: 267.57	Water Level: U.7 bys Time: BTS	Hammer Type: 85>			
Sample Information Monitoring					
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	OSCS Group Symbol Remarks			
150 pps 220 pps	16-18 Dt grey to DIVE moorse SAND. with some fine graves and little SILT, Saturated, were graded, NP, Mounte 18-19 ARRIGE Offe GRAVELY SAND	5 4			
18 2.9 450 pp - 19 1200 pp - 3000 pp - 20 4300 pp -	19-19 orgish ofre Gravery SAND, men graded, saturated, Mr., Miscush 19-20 Dive grey Micarse SAND, withe fine gravel to coarse SAND, Saturated, poorly graded, Mr., Mother to Losse	5W/51 5P			
3000 pr 3	Ze-24 Brown misure to course SAND with some fine gravel, poorly graded, suterated, NP, loose to Moenze	50			
22 2.0 70% 4.0 10.1 pp=					
NOTES:					

							SOIL BORING LOG			
	1111-	NAA	<u> </u>	П		1	Project Name: Off-Site Carriage Cleaners	Boring II	DP-10	
	<u>I</u>	IVLA	C'.	L	ヒし	_		Page No.		
Para de la constitución de la co	 511 C	ongress Street, Por	tland Ma	aine 04	101		Project No.: 3612102168 Client: NYSDEC	of		
Borin	ıg Lo	cation: Wes	4 01	? e/	He		Refusal Depth: NA Total Depth: 28	Bore Hol	le ID/OD: ~ 2 "	
Weat			rain	ing	1		Soil Drilled: Z8 Method: Direct Push	Casing Size: NA		
Subc	ontrac	ctor: No	othnagle	. 1				Sampler: BAS		
Drille	er:	Terr					Date Started: 11-17-2010 Date Completed: 11-17-10 S	Sampler	ID/OD:	
		Model:	0610	Dr				Hammer		
			267				Water Level: 6.7 621 Time: 655	Hammer	Type:	
	Samp	le Information	_	Mo	nitoring		•			
Depth (fect bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
							24-28 Brann Igney moarse SAND with some course SAND and fine youver, poorly graded, saturated boose to moence, NP.			
			1.6	- CO	[,		with Comp. FATANTO FAMO GOL C.	ca		
•			1000	N P	95		or the same dried the	, SP		
24	`		ĺ				praver, poorly graded, saturated			
		•	80	A UII	1		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
l		- 1-	,"	to p			house to moense, Nr.	1		
		27	١.					y	•	
26		1	1/2	15,	pre					
1.0		420		١,	_					
		40								
			12	4 6	ppt					
27			'	10	Prope					
127									•	
			404	Ι.		Ì				
<u> </u>			42	400	طوم		•			
28										
100					ļ			,	· · · · · ·	
1									·	
<u></u>		<u>.</u>								
			1							
L										
			ľ							
						١.				
	1						P43			
							/ · · · · ·			
	1		1		1	/				
					/	1	·			
	1				/		,	ı		
	1			1	1			ı		
	1							ı		
				Ì			:			
NO'	TES:		1.		-	ــــــــــــــــــــــــــــــــــــــ				

	SOIL BORING LOG											
شنند	INN -	N / A /	7	ויי		~	Project Name: Off-Site Carriage Cleaners	Boring ID: 6P-12				
	뷀.	IVI/AU	ـ ب		C	ً ال	Project Location: Penfield, New York	Page No.				
1		ongress Street, Port		ine 04	101		Project No.: 3612102168 Client: NYSDEC	of: 4				
Bor	ing Lo	cation: WW 0	4 <	1 H	2		Refusal Depth: NA Total Depth: 28	Bore Hole ID/OD: 2				
Wea	ather:		UM		<u> </u>		Soil Drilled: 28 Method: Direct Push	Casing Size: NA				
Sub	contrac		thnagle		1		P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS				
Dril		Jet	7				Date Started: 11-17-10 Date Completed: 11-17-10	Sampler ID/OD:				
_			1670 167				Logged By: BAS Checked By: 375 1/24 (10) Water Level: 5 1/38 Time: BTS	Hammer Wt/Fall: Hammer Type:				
Rei		Elevation: 2 le Information	- 0 		nitoring		Water Level: 6,5 933 Time: BJS	Traininer Type.				
S Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Perfonned	Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks				
2		3.1 4.0	Zo.				0-0,8 DE Brown GATY him full. 0.8-1.5 Lt years ish Brown fine SAMD POUTLY graded, moense, damp, sp 1.5-4 feddish Brown to Brown clean fine SAMD, damp, pourly graded, sp, Wittle SALT	F-11				
5 7		3.9	10	1			4-5 save as 1.5-9 5-7 LTBrown & Reddish Brown SILTY SAND, pourly graded, SP/MP, damp to Most, in Duse to Dense, well drained-5 5-7 Lt greyich brown sity sand, purly graded, damp to dry, Duse/stite, MP					
NO	TES:	-						FIGURE 4-4				

	SOIL BORING LOG										
SHA T	/ A C	7	71		7	Project Name: Off-Site Carriage Cleaners	Boring II): 10-12			
	VIAC	J		ユし	ار	Project Location: Penfield, New York	Page No.				
511 Cor	ngress Street, Portland	d Mair	ne 041	101		Project No.: 3612102168 Client: NYSDEC	of: 4				
Boring Loca		-	'nН		_	Refusal Depth: NA Total Depth: 78	Bore Hol	le ID/OD: 211			
Weather:		ain		-		Soil Drilled: 75 Method: Direct Push	Casing S	ize; NA			
Subcontracto				T		P.I.D (eV): 10.8 Protection Level: D	Sampler:	BAS			
Driller:	JUTES	-				Date Started: - 7- 0 Date Completed: - 7- 0	Sampler	ID/OD:			
Rig Type/M						Logged By: BAS Checked By: B55 1/24/10	Hammer				
Reference E		67				Water Level: 615 W Time: 875	Hammer	Type:			
	Information		Mon	itoring T							
O Depth (feet bgs) Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks			
		<u>ا</u> ر ه				9-10,5 hedder brann clean five Sand poorly graded, Sp, drup, wornse, some	۷s				
9 10 11	3.8	70.	1 b3			Fines 10.5-11.5 Lt Brown to Redchish brown Silty SAND; houses of Silt Pall and 11.7 (20:11), MP, wet, poorly graded; 11.5-12 pk dhive grey clean fine to M warre sand, pourly graded, trace loarse sand, MP/Sp, wet,	Sm				
12		Z0 ¢	ρb			loarse sand, mp/sp, wet,	Sp				
13		30	ρęb			12-14.5 DE grey in warse SAND, some Coarse SAND, saturated, pourly graded, NPISP, midense	SP				
14	2.8	50 ₀	ρb	c ·	ľ	and fire Graver, poorly graded, saturated, NP, house to m Dense					
IS .		15	طم م				58				
NOTES:		ť,			3						

		SOIL BORING LOG	
MMACT	TEC	Project Name: Off-Site Carriage Cleaners	Boring ID: pp-12
		Project Location: Penfield, New York	Page No. 3
511 Congress Street, Portland Mair		Project No.: 3612102168 Client: NYSDEC	of: 4
Boring Location: NW OF 81			Bore Hole ID/OD: ¬Z"
Weather: 52 Firam	vig		Casing Size: NA
Subcontractor: Nothnagle		<u> </u>	Sampler: BAS
Driller: Jeff S.	1 1		Sampler ID/OD: —
Rig Type/Model: Lie iO			Hammer Wt/Fall:
Reference Elevation: 267.		Water Level: U.5 bys Time: 375	Hammer Type:
	PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks
0.0	PID H Lab Perl Lab Si	And I say the say of the say	
		GRAVER with done fines, vell graded	
17		16-19 Reddish tem Brown SANDY GRAVET with done fines, very graded Sutwated, NP, or Dunge to couse 19-20 Brown / Grey ish Brown fine Sand, portly graded, Saturated, NP, MDUSE	GW/GP
		19-20 Brand grey ish Brown fine	
		Sand, poorly graded, saturated, NP,	
2.0		Muse	
			S
20 0			
		20-27 Same as 19-20	5)
21		22-24 grevish Brown clean	
		Meourse Sand, pourly graded, sutureto	
22 32		NP, mouse	
73			
			59
24			
NOTES:			

3 pro not wring

						SOIL BORING LOG		
1	181	MAC	77	T	\overline{C}	Project Name: Off-Site Carriage Cleaners	Boring II	DP-12
		NTAC	LL	ناـ		Project Location: Penfield, New York	Page No.	4
	511 C	ongress Street, Portlar	nd Mair	ne 04101		Project No.: 3612102168 Client: NYSDEC	of	
Borin	g Loc	ation: NW	04	Syle	/	Refusal Depth: NA Total Depth: 78	Bore Hol	e ID/OD: 62"
Weat	her:	\$0.F 11	ain	wel.		Soil Drilled: 🔏 Method: Direct Push	Casing Si	ize: NA
Subco	ontrac		nagle	1		P.I.D (eV): 10.8 Protection Level: D	Sampler:	BAS
Drille	er:	Terr	- S			Date Started: 11 - 17 - 10 Date Completed: 11 - 17 - 10	Sampler 1	ID/OD: —
Rig T	ype/N	Model:	610)	DT:		Logged By: BAS Checked By: BJS 1/24/10	Hammer	Wt/Fall:
	_			1.18		Water Level: 65 7 Time: BJS	Hammer	Type:
5	Sampl	le Information		Monitori	ing			
Ocpth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	لما	PID Headspace Lab Tests	Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
26 20 27 28		3.9/ 4.0	*			24-27 grey brown course sand, poorly graded, some Mcoarse SAND, Suturfed, ND, MDense 27-28 grey cogrese SANDY GRAVET poorly graded, saturfed, hoss to usurse, NP.	59 GP	
NO	TES:					B43		
1	• [[]							FIGURE 4-4

@ pio not working.

MATACTEC		
	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-15
WIACIEC	Project Location: Penfield, New York	Page No.
<u> </u>	Project No.: 3612102168 Client: NYSDEC	of: 3
	Refusal Depth: JA Total Depth: 20	Bore Hole ID/OD: 22"
	Soil Drilled: 20 Method: Direct Push	Casing Size: NA
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS
Oriller: Jeff5.	Date Started: 1 - 18 - 10 Date Completed: 1 - 18 - 10	Sampler ID/OD:
	Logged By: BAS Checked By: B55 1/24/10	Hammer Wt/Fall:
Reference Elevation: 264.24	Water Level: 4 by Time: 855	Hammer Type:
Sample Information Monitoring	'	
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks
40.1	0-2 Brown SILTY Learn, pourly graded, SP[MP; MStiff, damp-	Fil
1	SPIMP, MStiff, damp. z-9 Lt Reddish Brown SANDY SILT, poorly graided, mp, damp to mist	
	The state of the s	
$\frac{2}{2}$		
_ ' 4.0		SM
3		
4		:
5	4-42 Same as z-1 4-2-6.5 Reddish Brown SILTY SAND, poorly graded, wet, SP, a Dense	SM
6 2-7 4.0	6.5-7.5 Lt to Dark grey SILTY SAND with 1:ttle coarse SAND, poorly graded, met to saturated, 50,	
7	7,5-8 Gray SILTY SAND and GREVEL well graded, Saturated, SPINP, loose to un Dense	SM
8 NOTES:		SW

	SOIL BORING LOG	
	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-15
I WIACTEO	Project Location: Penfield, New York	Page No. 2
511 Commerce Street Portland Maine 04101		of: 3
511 Congress Street, Portland Maine 04101 Boring Location: W2st of Site	Project No.: 3612102168 Client: NYSDEC Refusal Depth: NA Total Depth: 20	Bore Hole ID/OD: -2"
	Soil Drilled: Method: Direct Push	Casing Size: NA
Weather: 42' F. Kenhih y Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS
Driller: teff 5-	Date Started: 11-18-10 Date Completed: 11-18-10	Sampler ID/OD:
Rig Type/Model: 6600T		Hammer Wt/Fall:
Reference Elevation: 264.24	Water Level: 1 24 Time: —— 855	Hammer Type:
Sample Information Monitoring		
Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed	Sample Description and Classification	USCS Group Symbol Remarks
Let	8-12 Brown to Lttan, mourse to course SAND, poorly graded, more course sand & 11-121, saturated, NP, Mouse	
	CIEVES CAND TO LOS	·
	course strong poorly generally more	
q	course sand & 11-12, saturated, NP.	50
	13.44	
1	priyuse	1
		
10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	·	
N		
12		
		
	12-13.5 Same as 8-12, but 2 silt	
0.6 900	LAMinations @ 12,2 and 13,0 (-0,11)	SP 3M
		1 18M
13	suturated NP to mp.	
1.1	IN THE DE GARN M GATSE SAND	
	13.5-15.5 DE grey mularse SAND	
	with little fine graves, well gradeds	
114 3,00	Sutverted, NP, whense	
		SPISW
	IE-END GOOD CANON COMPL Tell CARNEL	1 1 1200
3	15.5-16 grey SANDY GRAVEL, religionale	1
	Saturated, NP,	
44		· ·
		
		GW
v6		
NOTES:		de la companya del companya de la companya del companya de la comp

							SOIL BORING LOG			
211	7	MAC	7	די		7	Project Name: Off-Site Carriage Cleaners	Boring II	D: DP-15	
		VIAC	ا ر			_	Project Location: Penfield, New York		Page No. 3	
51	1 Co	ngress Street, Portlan	nd Mai	ne 041	101		Project No.: 3612102168 Client: NYSDEC	of: 3		
Boring :	Loc	ation: West	56	Çı	te_		Refusal Depth: NA Total Depth: 20	Bore Ho	Bore Hole ID/OD: ∽ Z ⁴	
Weathe	r:		an				Soil Drilled: 2.0 Method: Direct Push	Casing S	ize: NA	
Subcon	tract	or: Noth	nagle		J		P.I.D (eV): 10.8 Protection Level: D	Sampler	: BAS	
Driller:		Teff ?	<u> </u>				Date Started: 11-18-10 Date Completed: 11-18-10	Sampler		
Rig Typ			101	1			Logged By: BAS Checked By: B55 1/24/10	Hammer	Wt/Fall:	
Referen	nce I	Elevation: 2	64				Water Level: 4' has Time: - 855	Hammer	Туре:	
Sa	mpl	e Information		Mon	itoring		0			
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks	
17			2.	9	l l p≅	•	16-20 greyish brown GRAVELLY SAND well graded, little fines, supervented indense to dense, MP,	SW		
17		ā	3. \$, 	1		indense to bense, MP,	1		
iÝ		9.0	5.		. !					
19			2,	Ç						
20			2,0							
							As			
NOTI										

	SOIL BORING LOG										
AS)		N / A /				$\overline{}$	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-21			
يست		MA	ر آب		Ľ(Project Location: Penfield, New York	Page No.			
	۔ 511 Cc	ongress Street, Por	tland Ma	ine 04	101	_	Project No.: 3612102168 Client: NYSDEC	of: 3			
						uM	Refusal Depth: VA Total Depth: 20, 865	Bore Hole ID/OD: 874" 68			
		7150 F, Sun					Soil Drilled: 20' Method: Direct Push	Casing Size: NA			
	ontrac		thnagle				P.I.D (eV): 10.8 Protection Level: D	Sampler: RIM BAS 4			
Drille	er: 1	Verl Sho	rt				Date Started: $1/20/11$ Date Completed: $1/20/11$	Sampler ID/OD: Z 1/4 " 0)			
Rig T	ype/N	Model: CME	55	in	ack is	<u>.``&</u>	Logged By: BAS RIM Checked By: JR 7/6/11	Hammer Wt/Fall: MA			
		Elevation: WK	-				Water Level: ~ 7.1 BGS Time: ——	Hammer Type: VA			
\vdash	Sampl	le Information	<u> </u>	Mor	itoring						
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PI	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks			
ì		6. 6. 2. 6.	5000 15 6"		<i></i> ₩^	V V	0-0.5 -> DANK BROWN, FINE SAND TRACE/ESILT, POORLY GRADED, NON-P 1005E, DAJ - Moist				
2		4.0	2				0.5-1- Dank Brown, Fire Sand Trace/Fall, Trace / Fow gravel (Fire NON plastic, Day-Moist				
4	-						1-4-> Light Brown, MEDIUM SAND, FOW FINC-COMBE, GRAVEL, 100 NON PLASTIC, DRY-MOIST, Fluvial D	se, SP eposits			
5		۷.	2.			4	.050-3 Light Brown w/ Redish to Medium SAD, Few Fire - Course Gravel, loose, NON plastic, Day-M Fluvial Deposits	SP			
6		4.0					50-75-2 GRAyish Brown, Fire SAND, TRACE For Silt, WEll GR LOW phosticity, Day-Moist	C.A			
F	CES:	20	p.i				75-8.0-> GRAY, MEDIUM SAND FINE-MCDIUM SAND, FEW FIVE-COM GRAVEL, NON plastic, DRY-MOIST	s _c SP			
NU	LLS:							-			

	SOIL BORING LOG			
		Boring ID: DP-21		
MACTEC		Page No. Z		
511 Commons Street Portland Maine 04101	Project Location: Penfield, New York Project No.: 3612102168 Client: NYSDEC	of: 3		
Boring Location: DP-21-35tt Figure	Project No.: 3612102168 Client: NYSDEC Refusal Depth: NA Total Depth: 20'865	Bore Hole ID/OD: 81/4 * 00		
Weather: =15=F Samy, Slight Will				
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Casing Size: NA Mac BAS 4		
Driller: NEAL Short	Date Started: 1/20/11 Date Completed: 1/20/11	Sampler ID/OD: 2 14' 0 d		
Rig Type/Model: CME 55 TRACK Rig	Logged By: BAS RIM Checked By: &R 7/4/11	Hammer Wt/Fall: A-		
Reference Elevation: VNK	Water Level: ~ 7' Ags Time: —	Hammer Type: NA-		
Sample Information Monitoring				
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks		
9 201 NA NA	Drownish gray, FINE-	SP		
10 4.07	9.0-45-> GRM, MEDIUM SAND, MEDIUM - COMSE GRAVEL, VORY loose NON-plastic, WET	sβ		
201	1.5-12.0-> GRAY, FINE SAD, TRACE-FOW Silt, poorly graded LOOSE, LOW PLASTIC, Moist/wet	5M		
13 14 14 101	20-16.0-> Brownish GRM, Medium - Corns & SND, Few Fire-Medium gravel, Loose, Now-p Wot, Fluvial Deposits, Well grade	SW MSAZ,		
15 Zo V				

							SOIL BORING LOG			
Ala	11 do -					~	Project Name: Off-Site Carriage Cleaners	Boring II	D: DP-21	
		MAC	11		⊢:(. 1	On-Site Carriage Cicaners		PF-61	
			لد امد مالاد	ine Ad	1101	_	Project Location: Penfield, New York	Page No		
		ongress Street, Portla			-	٠. ٢	Project No.: 3612102168 Client: NYSDEC	of: 3 Bore Hole ID/OD: 84" 35		
		cation: DP-2		-	Figur		Refusal Depth: Total Depth: 20' 665 Soil Drilled: 20' Method: Direct Push	Casing S		
		15°F Surary	<u>, 51ñ</u> magle	_	W.\/	12	P.I.D (eV): 10.8 Protection Level: D	Sampler:	A Macauki Ve	
Subco							Date Started: 1/26/11 Date Completed: 1/20/11	Sampler		
		Verl Short Model: CME		介	anck	R.A	Logged By: BASICM Checked By: R 7/6/1/	 	Wt/Fall: NA	
		Elevation: UW			MATTICE .	1 4.5	Water Level: ~ 7 bas Time:	Hammer		
_		le Information	Ť	Mor	nitoring		Water Bover. ~ 1 0g S 1 mile.	Transition	1 ypc. 7 0 70	
<u> </u>			-		<u>_</u>	Γ		<u>,</u>		
Depth (feet bgs)	ber	n/ eet)	can	ace	<u>ہ</u> ۔	В		USCS Group Symbol		
[feet	n -	Penetration/ ecovery (fee	S PI	dsp	Lab Tests Performed	uple	Sample Description and Classification	SCS Groa Symbol.	Remarks	
€	e J	netr	Fie	He	ab J	San		JSC Sy		
De	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace		Lab Sample ID	•	~		
0.0				₩A	NA	1/A].		
			,	iac,	1441	/'``.	O- HOD - SAME AS AbovE Before			
					<u> </u>	ll	O- HOD - SAME AS ABOVE Before	SW		
丁							/		,	
17	Ì	Loi			1					
		•	Y				·			
		~	11							
18		13.0								
10		//-					•			
		N.0 3.5	Ш	ļ						
	Ì		11							
19			Π	l .						
			11							
		/mi								
		Zo.l	11						,	
20			Ш							
20			1		ŀ					
							Bottom of Boring = 20'BGS. No Refusal.			
							DONORIO COLUMN DO COS, POR MER MERC.		·	
				1				1		
211		*				1			(
-										
				1						
						1				
						ļ	·	1		
22		·								
								1		
								,		
	,	·								
23										
لــــــــــــــــــــــــــــــــــــــ		1			1			1		
		!		1						
24						1				
12-1							·			
NOI	ES.	·					<u> </u>		 	
., 01									FIGURE 4.4	

		SOIL BORING LOG	
MIN A	ACTEC	Project Name: Off-Site Carriage Cleaners	Boring ID: 00-22
	ACTEC	Project Location: Penfield, New York	Page No.
511 Congress Str	eet, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 3
	ast of site	Refusal Depth: W.A Total Depth: 20'865	Bore Hole ID/OD: 81/4 " ED.
Weather: 34 +		Soil Drilled: 20' Method: Direct Push / H5A	Casing Size: NA
Subcontractor:	Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: Marco Core (4) BAS
Driller: Ne	· · · · · · · · · · · · · · · · · · ·	Date Started: 01-18-2011 Date Completed: 1/18/11	Sampler ID/OD: 2 4 11 Q2
	CME 55 Track Rig	Logged By: BAS Checked By: PCM	Hammer Wt/Fall: NA
Reference Elevation		Water Level: ~ 6.8' Bron Time: —	Hammer Type: NA
Sample Informa			
Sample Number Penetration/	PID Field Scan PID Headspace Lab Tests Performed		USCS Group Symbol Remarks
0.0	100 K K K	B. E.K SNOV.	NA
	1 2 4 2	0-05 snow.	
		05-215 DE Brown STILL LOAM.	Fi]
2 4		ois-215 DK Brown Silty Loam, poorly graded, trace fine gravel, damp, Sp, Dense 2.5-4 Dive brown silty F Sand, trace fine gravel, poorly graded, damp MP, Dense.	
		1	
3	,6	MP, Dense.	SM
4	Loil	4.7 N. D. M	
5		4.7 DEBrum & Sand, provily graded M. Dense, lang, SP, trace organice,	SP
		1- o live to keedlish Brown Silly	
6 A.O		Sand, well dimbed, poorly graded	
1/2	.0 0.	Med. Stiff, Mp, dang,	
7			
 			
1			SW
8	V		
NOTES:		h4	<u> </u>
		NACONEC CHANTEN	FIGURE 4 SOIL BORING LO ASSURANCE PROGRAM PLA

								SOIL BORING LOG		克马克 医多翼
	2	(1817	1 1 1 (7	٦,		7	Project Name: Off-Site Carriage Cleaners	Boring II	D: DP-22
			VLAC	ا ز	LJ		المد	Project Location: Penfield, New York	Page No	. 2
		511 C	ongress Street, Portlar	nd Mai	ne 04	101		Project No.: 3612102168 Client: NYSDEC		f: }
	Borin	g Loc						Refusal Depth: NA Total Depth: 20'865		le ID/OD: 81/4" 1)
	Weat			كبعلا	<u>~ ~ ~</u>	5-		Soil Drilled: 20' Method: Direct Push	Casing S	
		Subcontractor: Nothnagle Driller: Netl Short						P.I.D (eV): 10.8 Protection Level: D Date Started: 0 1 2 1 D Date Completed: 1 1 6 1 1 1 D	Sampler:	
	Drille Rig T						7.	Logged By: BAS Checked By: Nem		· Wt/Fall: NA
	Rig Type/Model: CME 55 Track Rig Reference Elevation: 266.7					(- \))	Water Level: ~ 6.8° Blok Time: —	Hammer	
	Sample Information Monitoring					itoring				
	ODepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
53	G			/ 30)	ł _K	N	S. X	8-88 same as 7-8 88-10.5 same as 7-8 Silly sand, proving gracked, mounted	Spn	
85	13 d	jø	k.o.	Ì	:			(Moist to wet, Mp.	SM	
5	10		2.1			đ	÷	10.5-12 Lt gray to dx gray, silty F sand, poorly graded, appears to have flurial deposits in Dunce, Moist,		_
	12							have flurial defosits in Danse, Moist, Sp(MP)	Sm	
5	13		40	L 0:				graded, loose, notit tout, up 14-16 Digrey sandy grarel	Sp	
0820	14		1.5					with little silt, wet/sapiroted, well graded, loosefubense, NP.		
	5	 							Gw/	¢₩
	NO.	TES:	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	PA NUSDEG GYALVENA	norm :	FIGURE 4-4 SOIL BORING LOG NCE PROGRAM PLAN

		SOIL BORING LOG Project Name: Off-Site Carriage Cleaners	Boring ID: 3P-22
I WIA	CIEC	Project Location: Penfield, New York	Page No. 3
511 Congress Street	Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 3
Boring Location: E4		Refusal Depth: MA Total Depth: 20' B65	Bore Hole ID/OD: 814" to
	& overcourt	Soil Drilled: 20' Method: Direct Push	Casing Size: NA
Subcontractor:	Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: Machine 4' BA
	short	Date Started: 1 1811 Date Completed: 1/15/11	Sampler ID/OD: 21/4
Rig Type/Model: Cw	455 Thaikkiy		Hammer Wt/Fail: // A
Reference Elevation:	266.7	Water Level: ~ 6.8 Broa Time:	Hammer Type: NA
Sample Information		1	di di
Sample Number Semple Number Penetration/ Recovery (feet)	PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	CSCS Group Remarks
	n in a	16-20 DK grey gravely sound with	Sul
<u>17</u>		16-20 DK grey gravely sand with some silt, well graded, in bense, net saturated, NP SP, silt lumba	Hu-
8 4.0		G-19°,	
19			MH
			54,
20		Bottomof Boruy = 20'BGS - No Refush	
		1 to	
		5	
NOTES:			FIGUI SOIL BORING

		SOIL BORING LOG	
Aller -		Project Name: Off-Site Carriage Cleaners	Boring ID: DP-23
I MA MA	["I 'E()		Page No. Au
I V II I	Pland Mains 04101	Project Location: Penfield, New York Project No.: 3612102168 Client: NYSDEC	of: 3
511 Congress Street, Por Boring Location: Set up		Project No.: 3612102168 Client: NYSDEC Refusal Depth: A Total Depth: 24 665	Bore Hole ID/OD: 8 4 0)
02000	lovely	Soil Drilled: 24' Method: Direct Push	Casing Size: NA Core
	othnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: RCM Magas 4
Driller: New Short		Date Started: 1/18/11 Date Completed: 1/18/11	Sampler ID/OD: Z'/4" 00
Rig Type/Model: CME		Logged By: Rin BAS Checked By: 9R 71611	Hammer Wt/Fall: MA
Reference Elevation: ~ 2		Water Level: N 4,5 1 BTON Time: —	Hammer Type: NA-
Sample Information	Monitoring		
Sample Number Sample Number Penetration/ Recovery (feet)	PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks
2 4.0		0-0.5-> DANK BROWN, ORGANIC MATTER / FOW GRASSIS, LOOSE, POONLY GRADED 1.6-1.6-> DANK BROWN, FINT SAND, 1.5 TRACE SILT, TRACE MEDIUM GRAVET 3.0-> Light BROWN, MEDIUM SAND, POONLY GRADED, DAY, NON PLASTIC 3.0=4.0-> DANK BROWN, MEDIUM SAND, TARCE-FEW SILT, MEDIUM	50
4		Donse, Low Physicity, Moist	
5 6 4.0 2.8		Porc-modium Sond, well graded) moist, Fluvial Deposits, Non	olastic
7 Ø NOTES:	p.1		FIGURE 4-4

	SOIL BORING LOG	
MNAACTEC	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-23
WIACIEC	Project Location: Penfield, New York	Page No. 2
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 3
		Bore Hole ID/OD: 84 00
Weather: 835°F, Cloudy	Soil Drilled: 34' Method: Direct Push	Casing Size: NA Conf
		Sampler: REM BAS 4
Dillion. 70 [7] (STOOL)	Date Started: 718/11 Date Completed: 1/18/11	Sampler ID/OD: 24" 00
	30 7	Hammer Wt/Fall: NA
Reference Elevation: - 264.3	Water Level: ~4.5 (BTON Time: —	Hammer Type: NA
Sample Information Monitoring		. *
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks
9 Za T MM NA NA	8-100 GRM - DANK GRAY, FINE - MEDIUM SAND, TRACE MEDI GRAVEL, POORLY GRADED, MOIST NOV- plastic	کش ح
10 23	10.0-12.0-) ORGANIC TREE ROOT/	Branch
20.		
12		
13 201	2.0-16.0-> Ganyish TAV, MODING EGARST BAND, FEW-little FINE gravel, Moist, NON-plastic, poonly grades	Sρ
15 20. 16 NOTES:		

	SOIL BORING LOG				
MNACTEC	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-23			
	Project Location: Penfield, New York	Page No. 3			
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 3			
Boring Location: Gov Updath) Figur	Refusal Depth: NA Total Depth: 24 B65	Bore Hole ID/OD: 8"4" 00			
Weather: A35°F, Lloudy	Soil Drilled: 24 Method: Direct Push	Casing Size: NA			
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: RLMIBAS 4			
Driller: NEAL Short	Date Started: 1/18/11 Date Completed: 1/18/11	Sampler ID/OD: Z/4" ol			
	Logged By: RIM BAS Checked By: JC 7611	Hammer Wt/Fall: WA-			
Reference Elevation: ~ 264.3	Water Level: ~ 4.5 ' Bron Time:	Hammer Type: NA			
Sample Information Monitoring					
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Performed Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Kemarks			
20.1	16-20 -> SAME AS Above/ before	50			
18 4.0 18 2.3 19 20.1 20					
21	20-24-3 SAME 15 Above/bofun	Sp			
27 4.0					
24 60.1	Bottom of boring = 24 (865) o Refersal.				

	SOIL BORING LOG	
	Project Name: Off-Site Carriage Cleaners	Boring ID: PP-27
MACTEC		Page No. 2
TVIII TO I LO	Project Location: Penfield, New York	of: 3
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC Refusal Depth: NA Total Depth: 2665	D THE IDIOD CHE
Boring Location: Gor was Figure	Refusal Depth: WA Total Depth: 26'86's Soil Drilled: 20' Method: Direct Push	Casing Size: NA (ne
Weather: 30°F PL. Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: RCM Macva GAS-4
1 01	Date Started: 1/19/11 Date Completed: 1/19/11	Sampler ID/OD: 214" al
Oriller: Nort Shurt Rig Type/Model: CMC 55 Track Rig	Logged By: BAS Checked By: AR 7/4/1	Hammer Wt/Fall: NA-
Reference Elevation: 7 266.2	Water Level: ~6.8' Bron Time:	Hammer Type: NA
Sample Information Monitoring		
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Symbol
, W/T /V (T /V	0.5-10.0-2 Light Brownish/Grayist ROD, Medium SAND; trace-four Bilt, poorly graded, moist-we Medium Donse, Firm	SM/SP
10 4.0		
12 20.1	16.0-12.0-s Dank Grayish/Black modium said, poorly garded, moist-wot, Loose/McDium Donsc Firm	, , ,
13 Cai	12.0-13.0-s Dank Ganyish Brown McDium Sand, poorly garded, Soft, McDium/Loose, wet, non	-plash c
14 N.O 3.0	BO-18.0 -> DANK GRAY, COMSE SAND, fow-Little MODIAN-COMSE gravel, Well GRADED, LOESE, Soft, Wet, Fluvial Deposits	SW/6W
IG NOTES:		

	** .\$*						SOIL BORING LOG			
di	didi -					_	Project Name: Off-Site Carriage Clea	aners	Boring ID	DP-27
		MAC	"	Ì	ન((Page No.	
		and the Design	هد مر شده د د.	041	101	_	Project Location: Penfield, New York Project No.: 3612102168 Client			3
<u></u>		ongress Street, Portlar								: ID/OD: 8 1/4 " 01
		ation: Sow upon	Prati.		guru		Soil Drilled: 20 Metho			
_			nagle	7	cloud.	_		ction Level: D	Sampler:	RCMMacrobasy
Drille	ontrac	NEAL Sho							Sampler I	
		Model: CME5		ton	V.A	-01		ked By: DR 7/1/1/	Hammer \	
		Elevation: A 2		1	CR	/ -	Water Level: ~ 6 · 8 ' Broa Time:		Hammer '	
		e Information	16	Moni	itoring		V 01015			, , , , , , , , , , , , , , , , , , , ,
_			Т				•		ď	
Depth (feet bgs)	ıber	Penetration/ Recovery (feet)	can	ace	s q	; ID		,	JSCS Group Symbol	
Je J	Sample Number	atio y (f	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and C	Classification	SCS Gro	Remarks
at ()	Je J	netr	Fie	He	ab erfo	Sar	,		JSC	
Del	am	Pe	<u> </u>		I A	Lab		* * * * * * * * * * * * * * * * * * *		•
0.0	رد				#					
_				IN U	NA	14 14		<i>/</i>		
							O-1.0-> Dank Br organic matter Day, Loose, Pop	noun/Blackish		(Arr)
一		20.1			1		Ongaric matters		CM	
1				Ì			Diegrane MAPITER	grasses,	2/1	
							DRY, LOOSE, POO	Charpe Vin		
								,7		
	1 1	. (1)	111					. •		
7		N.X					10-20 1.1.0	1/1/2		*
2	1 1	0.1					1.0 20 -> Light 131	LOWNISH / ROD,		
	1	10	$\ \ \ $				FINE SAND TRACE-	for silt		
l							sould around to	W.C 10 - 1 - 1	5m	
<u> </u>	-		Y				poemy ganders, La	DSU, MICDIUM		
3							1.0-20 -> Light Br Fire SAVD, TRACE- poonly graded, La Donse, Dry, Low	plasticity		
12	'	20.1			,		/	<i>'</i>	1	
		20-1						D 44 /00		
							20-4.0-) Dank 1 Five BND, Little S	Brownish Ingly		5M
	1	•					Fire SND, Little S	silt, poonly gar	1001)	>' '
14	1	·			ļ ·		LOOSE, DRY-MOIS	T		
-	┼─		╀			1	2000			
<u> </u>	_					1	6-10-1 D 111	- h+ Brown.		
15		la:				'	DANIC/L		SM	
دا		<i>Lo.</i> i	1			İ	FIRE SOND, TRACE	Silt, poorly	`	
	1						gATORD, MOIST, L	-005E NON- Pla	4/2	
							, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,		y
\vdash	-	l	11							
1		ひ・ン	11		1					
18	4	10						a		
		7 5.℃		1			8.0-8.0 -> Ligh	+ 13nown. 5h		
					1		ROD, MODIUM ST	D trace-for	1 C.A	1-1
	7				1		and and	and and	17%/	15P
17			₩		1		silt poonly gari	MI 17 / 10121	1 '	-
H	\dashv						Modium Donse, Le	or plastic	i	
1		20.	4					1	1	
\perp	4						ŀ			
8	:								1	
10	'		1							
NO	TES:									

	SOIL BORING LOG	
MATACTEC	Project Name: Off-Site Carriage Cleaners	Boring ID: 10-27
IVIACIEC	Project Location: Penfield, New York	Page No. 3
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 3
Boring Location: 500 W/DTM F.yum	Refusal Depth: 1/A Total Depth: 20'865	Bore Hole ID/OD: 8'4" 6b
Weather: 228°F, Slight Snow, Ovences 1	Soil Drilled: 20 Method: Direct Push	Casing Size: NA Cone
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: RCM BAS 4
Driller: NEAL Short	Date Started: 1/19/11 Date Completed: 1/19/11	Sampler ID/OD: 2 1/4" on
	Logged By: RCMBAS Checked By:	Hammer Wt/Fall: NA
Reference Elevation: # 266.2	Water Level: ~ 6.8' Bron Time:	Hammer Type: //A
Sample Information Monitoring		
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Performed Performed Lab Sample ID	Sample Description and Classification	Coup Remarks Remarks
17 18 18 2.7	SAD, poonly graded, modium Stiff modium Donse, wot, Pluvial Deposits	n Sp
20	10 m 1/h = 520/200 al Polling 1	
	Bottom of boring = 20'BGS. No Refusal.	
21		
22	Ren	
23		
24 · · · · · · · · · · · · · · · · · · ·		· FIGURE 4-

SOIL BORING LOG CE PROGRAM PLAN

NYSDEC QUALITY ASSURANCE PROGRAM PLAN

	SOIL BORING LOG	
	Project Name: Off-Site Carriage Cleaners	Boring ID: DP-28
MACTEC		Page No.
511 Common Street Portland Maine 04101	Project Location: Penfield, New York Project No.: 3612102168 Client: NYSDEC	of: 3
Boring Location: See Worth Ryun	Refusal Depth: 1/A Total Depth: 24 665	Bore Hole ID/OD: 84" 01
Weather: 728°F, 51 ight Snow, Ovenlast		Casing Size: NA
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: Mount RCM BAS
Driller: NEAL Short	Date Started: 1/19/11 Date Completed: 1/19/11	Sampler ID/OD: 2 1/4" 08
Rig Type/Model: CME 55 TRACK Rig	Logged By: Rin BAS Checked By: R 7611	Hammer Wt/Fall: NA
Reference Elevation: 268,4	Water Level: ~ 8.7 Bron Time: —	Hammer Type: NA
Sample Information Monitoring		
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Symbol
1 20.1 VA NA NA NA NA NA NA NA NA NA NA NA NA NA	0-4.0 -> Snow, Organic Matter, Dank, grasses, Dry, 10056 Verylittle crecovery	
3 20.1 4		
6 4.0 7 20.1	MEDIUM SAD, Little Silt, poorly graded, MEDIUM DENSE, S MOIST, LOW plasticity 5.0-8.0-3 Dark gay, medium SAD, Little gravel, well graded Loose, Medium Dense, Dry-Mois	#:ff, 5. Sw
8 VIII		

15, 11						SOIL BORING LOG					
	CARAL -				_	Project Name: Off-Site Carriage Cleaners	Boring II	DP-28			
		MAC	"] `	H(`.		Page No.				
		ongress Street, Portla	nd Maine	0/101		Project Location: Penfield, New York Project No.: 3612102168 Client: NYSDEC		of: 3			
		cation: See M				Refusal Depth: NA Total Depth: 24 665		Bore Hole ID/OD: 8 44" 04			
		~28°F, Slight				Soil Drilled: 24' Method: Direct Push	Casing S				
	ontrac		magle	OVER	1.2	P.I.D (eV): 10.8 Protection Level: D	Sampler:	RCM WOUBER			
_		Verl Shor				Date Started: 1/19/11 Date Completed: 1/19/17	Sampler	ID/OD: 2 % " o)			
		Model: CME 5		RACK 1	Ria	Logged By: Ren BAS Checked By: 92 7/6 1	Hammer	Wt/Fall: M			
			8.4		7	Water Level: ~ 6.7 BDA Time:	Hammer	Type: MA			
	Samp	le Information	М	onitoring							
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	M	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks			
9		20.1		A NA	N ^A	B.O-10.0 SAME AS. Above/before	Sw				
10		N.O									
12		L 0.1									
13		Z0.i	Y		i	0.0-12.5 SAME AS Above/before					
14	1	W. 7				11.0-13.5 -> Light Brown - Tan, MEDIUM SAND, Few Silt, poorly gARDED, MEDIUM DENSE, MEDIUM Stiff, LOW PLASTICITY, DAY- MO	5M	/SP			
10		20!				13.5-46.0 - DARK BROWN, MEDIN SAND, FON SILT, POORLY GRADED LOW- PLASTICLY, MEDIUM DONSE, MEDIUM STIFF, MOIST	SM	/sp			
NO	OTES	<u>:</u> .						EICHDE 4.4			

	SOIL BORING LOG	
	Denicet News	Boring ID: DP-28
MNIACTEC	Ott-Site Carriage Cleaners	
	Project Location: Penfield, New York	Page No. 3
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of: 3 Bore Hole ID/OD: 84 ol
Boring Location: GEE WONTH REANS	Refusal Depth: NA Total Depth: 24 865	
Weather: 128°F, Slight Snow, Overins		Casing Size: NA Sure Sampler: Rem War BAS
Subcontractor: Nothnagle	1.1.0 (01).	Sampler ID/OD: 2 1/4 " 01)
Driller: NEAL Short	Date Started: 1/19/11 Date Completed: 1/19/11 Logged By: RCM BAS Checked By: 902 7/6/11	Hammer Wt/Fall: NA
Rig Type/Model: CME 55 TRACK Rig		Hammer Type: NA
Reference Elevation: 268, 4	Water Level: ~ 8.7 370 \ Time:	Training Type. 70 %
Sample Information Monitoring	-	
Depth (feet bgs) ample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	· ·	USCS Group Sympol Remarks
Depth (feet bgs Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	Sympol Remarks
th (f) the N (f)		Sy
ab Pen Laboration and Applicat		
	i e e e e e e e e e e e e e e e e e e e	
O.O NA WA		
		1 cm/kn
<u></u>	6.0-18.0 -) SAME 15 Above/before	13/4/2/2
17 20.1		
	•	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	100	
18 18 1	100 - that april - Tan	
H 1 2 0 11 1 1	180 - All Signi Sivily	5.4/50
	MEDIUM SAND, Few Silt, POURLY	3/1/3/
	4501	1 (1)
19	GULDED' WEDING DONSE WEDING 2	HIT,
	180- Light gray - TAN, MEDIUM SAND, Few Silt, Poorly gATOND, MEDIUM DONSE, MEDIUM S LOW-plasticity, Moist-wet	
20.1		
20		
	20.0-21.0 -> SAME AS Above/before	(SMISP
21 60.1	75 - 75 11 5/5 11 50 40 / Octor	" /
21 2011		
	710.7110 > 7	
	21.0-24.0-> Brown, MEDIUM	SP
	SAD, LOOSE, poonly garden,	>
72 120	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
	wet	
[] 'a,?		
		1:
23		
20.1		
	11101	
K4 1 1	Bottom of Barring = 24'B65 NoRefusel	
NOTES:		
		TT CYTOT 1

.,							4 : -		SOIL BORING LOG		
d	<i>(1) (1)</i> 7	\	٨		7	77	7	7	Project Name: BECARRIAGE CLEANERS	Boring II	mw/0p-33
		\mathbf{M}	A	rC	ا ر	l	ノし	ار	Project Location: Penfield, NY	Page No.	
	511 C	ngress S	treet.	Portiar	nd Mai	ine 04	101	Ì	Project No.: 3612 2008 102168 Client: NYSDEC	of	
Borir		ation:	_						Refusal Depth: 11 Total Depth: 32		e ID(OD:) 81
		SUMM		70-	800	ZI.	dola	124	Soil Drilled: 32 Method: HSA		ize: 41/43
		tor: Ge				,	0	7	P.I.D (eV): /0.0 Protection Level:	Sampler:	Split-Spoon
1—		ave			んつ				Date Started: 7/13/11 Date Completed: 7/13/11		ID/OD: 1.5/1.07
Rig '	Type/N	Aodel: /	TVn	Jucus	ed (ME	- 43			Hammer	Wt/Fall: 14016/30
		Elevatio		2	65.	91	gro	<u>~)</u>	Water Level: 7,56 4012 Time: 7/13/11/420	Hammer	Type: Autilianur
	Sampl	e Inforn	nation	1		Mon	itoring				
S Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
0.0									Sandandgrund road Kill		
9	1 1	1040	ー・ー・・	2	O		_	<u></u>	Top 0.7 Brown fine surlivith alittle median sud and trues of excressionlyman growel. Motst. (Pall)	(
(0) (0)	14	2:0	了一丁到一	-	0	_	_		Botton 0.6 higher brown fine soudwith some matin such. Some pressible strathentum (Fill) office to other gray fine soud with a little silt and trucks of median to coarse soud and grains wet, some strathenton some blu organic ingers!		Slight organic demy "subupy" odor.
19 16 18	53	2.0	100	4 8	2.(-		_	oline gry Rine sendantla truce of silt wet, stratified, lugar 1-4 mm.	occut	tonalsieus znul
34 343	0 57	2.0	5	15	0	_			Top Ov6 Ohne brown to gray Fix surf with son silt and twees of median to course send and Wet, 5 trutified. Bottom 0,3 Gray to ohne gray frie to median such and grand with a littlewere seed wet.	e gral.	Chage at = 21' to sul + grand.
*	55 5-27 3	2.0 1.35	913/8	28	14	f -			Top 0.2 Com fine to medium sund with a trace of course sand, with. Bottom 1.0 Brown course sundand gravel and some five to medium sand slight true of 57h	e	
Г	0 56 0-33	120	म्बार्च ।	za	0	_		-	Top 0,4 - Brown fore sent with a lible site. when struction with some thin site layers: Bottom 1.0 Brown covered and grand with a lible median and and true of fire sent we	etaus	s two
N	OTES	: Î	- W	<u></u>	ساسد	_ <u></u>	1 1100				
1		- Insi	m ((1)	~ 			1 Piez	~~~~	The state of the s	•	FIGURE 4-4
			12	40C	5	SOL	eeu	150	W=26,5 (lots of sawlin well)		SOIL BORING LOC
- 1									Butom should be 2 29'BCS NYSDEC QUALITY	ASSUKA	ANCE PROGRAM PLAI

st.	(10)-		A A		7			7	Project Name: BECARVIAGE CLEANUAS	Boring I	DimwfDP-35
		\mathbf{M}	A		ا رُ		旦(إز	OFF-SITE CARRIAGE CLEANERS Project Location: Penfield, NY	Page No	
	- التاك السالغ	ongress S	treet	ortla	nd Ma	ine 04	1101		Project No.: 3612 102168 Client: NYSDEC	0	f: /
	_	ation:	_						Refusal Depth: MA Total Depth: 30		le ID(OD:) 5 z
						idd	1	2	Soil Drilled: 30 Method: +51		Size: 4 1/4 19
Subco	ntrac	tor: Ge	logic	, NY	<i>j</i>				P.I.D (eV): 10.0 Protection Level: D		: NA
Drille	r: ()	أعربت	سور	w					Date Started: 7 13 11 Date Completed: 7 13 11		ID/OD: NA
Rig T	ype/N	Aodel: U	TV	لكراري	wee	la	vis-4	<u> </u>			Wt/Fall: WA
Refer	ence :	Elevatio	n:	26	<u>3.</u> :	51	ghou	<u>()</u>	Water Level: 5.79 ToR Time: 7/3/11 1420	Hamme	r 1 ype: ////
5	ampl	e Inform	nation			Mor	itoring		•		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks
ŀ	w	NA	W	NA	. — .	_	<u> </u>		0-4' Encourtaing bots of cowerele		Logging cultings
<u>ء</u> ب									0-4' Encounting bots of cowerede whole Concrete bubble, whiles and roudbed your from 20-7'BGS (BLL)		
s 10									7-21 Gruy Fine swed and silt wet.	SP	910=0
12											
ρί									,		
14	·										
						1					
15	_							Ì			
											•
do											91000
<u>3)</u>				+		-			21-30 Gray Line to median scul with some course sunt and grand.	SW	Jan e wood Consol
24	-									الم	JACO E ANUMAN
26											p 33 Pono
30								ŀ	30' Bottom of borning	Havel	Peno
		•							No vefusul.		
NO	OTES	1500 1500	5 ta 2211	معاا	l i	و رب ما نہ	or c	my P=	piezometr in boushole 12 FVC 29.4° 2 Stickup = 0.35°AGS NYSDEC QUALITY	Accin	FIGUR SOIL BORING
L		<u>O-epil</u>	10	Me	yer .	2	المداد	TO	5 Styling 50.33 MAS MASDEC CONTILLA	ASSUK	MINCE FRUGKAMI P
٠. ٨	, '	D P -	34	ſ							

APPENDIX C-3

WELL CONSTRUCTION DIAGRAMS

Overburden Well Constr	uction Diagr	am Well No.: MW-/2
Project No.: 3612/02/68-02,1	Project Name: 6	PF-SITE Carriage Cleaners
NUSDEC		ennésse Conservation League (Gun Club)
Contractor: Geologic NY Driller: Da	velyous	Method: /+5/A
Logged By: J. Rawcliffe	1932	Date Started: 7/13/11 Completed: 7/14/11
	: 7/18/u	Well Development Date: 7/15/11
Not To Scale		
Surface Casing Type:		
Flush mount Huminum		
Ground Surface Elevation:		
264.31		Type of Surface Course
	12/2011/2	,
Surface Casing Diameter: @1/,>	\$ 0.26	
Inside Diameter of	>	— Borehole Diameter:
Surface Casing:	- A	
		Inside Diameter of 44410 Augers
		, y
Depth/Elevation of		Type of Backfill:
Top of Well Seal:		Type of Riser: Sch 40 PVC
Depth/Elevation of		Iype of Riser: Oct 40 F V
Top of Sand:		Riser Inside Diameter:
48'BGS 1 - 216.3'		Type of Seal: Bewtonite Pellet3
Depth/Elevation of		1,500 01 00011
Top of Screen: 48.7 865 / ~ 215.6		thin C
48.7.865 1 ~ 215.6		— Type of Sand Pack: #1 Best Sand
		Type of Screen: Sch 40 PVC
		Slot Size x Length: 0.02" x 9.7'
		Inside Diameter of Screen: 22
Depth/Elevation of Bottom of Screen:		
58,100,58.4/36/206.21		
Depth/Elevation of 205.91'		Depth of Sediment Sump with Plug: 58.6 TOR 58.9 B65
Bottom of Boring: 3.65 — 6 1'865 — 203.3 '		
# MACIEC →	PRIIRDEN MON	FIGURE 4-7 ITORING WELL CONSTRUCTION DIAGRAM
511 Congress Street Portland, ME 04101		DEC QUALITY ASSURANCE PROJECT PLAN
PORT2007022f.cdr	·	· ·

Overburden Well Construction Diagr	am Well No.: MW-[]
Project No.: 3611(02168-22(Project Name: (OFFSITE Carriage Cleaners
	ENNILANE COUDUS
Contractor: Geologic NY Driller: Dave hyous	Method: 1-514
Logged By: J. Rawchff	Date Started: 2/11/11 Completed: 7/12/11
Checked By: Rcm 7/18/11 Date: 7/18/11	Well Development Date: 7/14/11
Not To Scale	
	·
Surface Casing Type: Plush mount Aluminum	
Ground Surface Elevation: 267.67	Type of Surface Cement Seal:
Surface Casing Diameter: 91/42	
Inside Diameter of Surface Casing:	Borehole Diameter: 8 -
8"	Inside Diameter of 41/2 10 Augus
	Type of Backfill: Bentonite Clups, Begt Sand, Mater
Depth/Elevation of Top of Well Seal:	Care
45'865 1 ~222.7'	Type of Riser: Sch 40 PVC
Depth/Elevation of Top of Sand:	Riser Inside Diameter: 22
48'665 1 ~ 219.7'	_
│	Type of Seal: <u>Bewtonite Pellets</u>
Depth/Elevation of Top of Screen:	
50.1'865 1 ~ 217.6'	Type of Sand Pack: #1 BEST SAUD
	Type of band t dok.
	Type of Screen: Sch 40 DVC
	•
	Slot Size x Length: 0.03 × 0.7
	Inside Diameter of Screen: 22
Depth/Elevation of Bottom of Screen:	
59.8'BCS 1 -207.9'	Double of Codiment
Depth/Elevation of Bottom of Boring:	Depth of Sediment Sump with Plug: 59.9 TOR + 60.3 BG5
61.4'BGS / ~206.3"	
MACTEC OVERBURDEN NO.	FIGURE 4-7
1 211 Couldiese officer	ITORING WELL CONSTRUCTION DIAGRAM DEC QUALITY ASSURANCE PROJECT PLAN

WELL/PIEZOMETER CONSTRUCTION DIAGR	
FLUSHMOUNT	DP-06
Project Name: Off-Site Carriage Cleaners	Date Started: 11-16-2010 Date Completed: 11-18-10
Project Location: Penfield, New York	Logged By: (BAS) Branden Shew,
	Checked By: B55 Checked Date: 1/24/10
Subcontractor: Nothnagle Drilling Method: Dir	
Development Method: Parastaltic Development Date:	Measuring Point Information
Bucking Posts/Ballards: NA	
Notes: Depth to water : 8.2 ' 245 (11-16-1 Depth to water : 7.15 (bgs) 611-18-2	Measuring Point (MP) Type: Top Of Riser
Depth to water = 7.15 (bgs) 611-18-2	MP Elevation (ft): 267.85
Item Depth BMP (ft) Elevation (ft)	Description
Surface Casing Elevation 1268.33	Cl A
Surface Casing Elevation 768.55	Slope Away
Ground Surface Elevation 768.26	Surface Seal Type: Concrete pad
Riser Pipe (Top) 0.45 hgs 267.85	
B75 11/24	Lock Identification NA.
. :	Sticker Casing Diameter:
·	Backfill/Grout Type:
	Riser Pipe Type: 11 pvu (Sun 40)
	Riser Pipe ID:
	asi. d
Top of Well Seal 0.5 by ~ 267.35	Borehole Diameter:
Top of Sand Pack 5 by 262.851	Type of Seal: pentenite Coned.
Top of Screen	Screen Type: Shotted PVC
	Screen ID:
	Screen Slot Size:
	∃ ∰
	Screen Length:
	Filter/Sand Pack
_ _ .	Type: #00N Industrial
Base of Screen 16 675 1/24 ~ 251.9	a wartz.
End Cap 855 105 17. 16.3 ~ 251.1	Sump: (5.3)
Drilled Depth 28' bgs 239.85	Fallback/Backfill: Native Sul
Bottom of Exploration 28' by ~ 239,65	
Bedrock Surface wn Kwww	NOT TO SCALE
MACTEC 511 Congress Street, Portland Maine 04101	FIGURE 4-8 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/PI	EZOMETER CONST FLUSHMOU		M	LOCATION ID:	10
Project Name:	Off-Site Carriage Cleaners			Date Started: 11-17-1	Date Completed: 11 - 18 - 10
Project Location:	Penfield, New York		711111	Logged By: Brando	-
Project Number:	3612102168	Task Number 52	-07	Checked By: 875	Checked Date: 1/24/10
Subcontractor:	Nothnagle	Drilling Method: Direc	t Push	,	- 117-17-17
Development Method	: Parastaltic	Development Date:	-18-10	Measuring P	oint Information
Bucking Posts/Ballar					
Notes:		6.31 (TOR) (11-18-		Measuring Point (MP) Type	Top Of Riser
- dvni	ng development,	~0.45° of Sedime	nt	MP Elevation (ft):	267.14
	was removed.				
Item	Depth BMP (ft) El	evation (ft)		Desc	ription
		/-			
Surface Casing Eleva	tion (RIV) 7	47.58	Slo	pe Away	
Ground Surface Elev	atio1 2	.67.57		-	CALCALA
Riser Pipe (Top)	0-4	267.14		Surface Seal Type:	Conerete
	0000 000 0			Lock Identification	NA
706-TOR:	0.4	1		Stickup Casing Diameter:	~8n
400				Stekup Casing Diameter.	
					NA
	•			Backfill/Grout Type:	
				Riser Pipe Type:	PVC (seh 40)
				Riser Pipe ID:	~1 ¹¹
				raser i the ib.	
T 633/11.0 1	05' 548	2(613		Borehole Diameter:	~3'/4"
Top of Well Seal		200.6			فالمالة المالة
<u> </u>	51 bas	v 267.1°	← —	Type of Seal:	med. Bentonte chip
Top of Sand Pack		261.1			•
	6.25 (TOR) A	7,00			
Top of Screen		7260.91	_	Camana Transa	stotted pro
				Screen Type:	
				Screen ID:	
	•			Screen Slot Size:	0,000
					~90'(10')
				Screen Length:	-78 CIV)
				·	
			= 1	Filter/Sand Pack	# MAL J. Areal
Base of Screen	16.05 (TOR)	~ 251.1' E		Туре:	#OON Indivitual
			1	(00)	G V**/ T 2
End Cap		~ 250.8'		Sump: (0.3')	
Drilled Depth	-28' bgs .	~239.1	—	Fallback/Backfill:	_ Nathe Sil
	~ 28'14s	~ 239.1'			
Bottom of Exploration					
Bedrock Surface	unknown				NOT TO SCALE
,			•		
MINIA	CTEC				FIGURE 4-8

MACTEC
511 Congress Street, Portland Maine 04101

FIGURE 4-8
WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT
NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/PIE	ZOMETER CON	STRUCTION DL	AGRAM	LOCATION ID:	
***************************************	FLUSHM			DP	-12
Project Name:	Off-Site Carriage Clea	ners		Date Started: 11-17-2	Mate Completed: 11-18-10
Project Location:	Penfield, New York			Logged By: Brand	n Shaw
Project Number:	3612102168	Task Number	0.01	Checked By: 855	Checked Date: 11/24/10
Subcontractor:	Nothnagle	Drilling Method			,
Development Method:	Parastaltic	Development D	ate: 11-18-10.	Measuring	Point Information
Bucking Posts/Ballard	ls: NA				
Notes: Depth	to unteri 6.	09 (BTOR) (1	178 -2010).	Measuring Point (MP) Typ	
				MP Elevation (ft):	266.76'
Item	Depth BMP (ft)	Elevation (ft)		Des	cription
Surface Casing Elevat	ion \num	267.19	Slo	ope Away	
Ground Surface Eleva		267.18			
				Surface Seal Type:	Concrete pad
Riser Pipe (Top)	0.35	266.76		Lock Identification	Conerete find
706-TOR	= 0.35	·	1 1	Stickup Casing Diameter:	ng1
	BJS 11/24				
				Backfill/Grout Type:	<u> n</u> A
ı		. '	—	Riser Pipe Type:	Sch 40 prc
			:	Riser Pipe ID:	ــــــــــــــــــــــــــــــــــــــ
	a 51 bas	27/(3)		Borehole Diameter:	31/4"
Top of Well Seal	9.7 24	~ 266.3'		e transfer	1
Top of Sand Pack	~5' bgs	~ 261.8	←	Type of Seal:	med Benforite clips
Top of Sand Fack					
Top of Screen	- F	~ 260.5'			Sclade Over
	6.3 (BTM).		Screen Type:	3ch to prc
				Screen ID:	<u>~1"</u>
				Screen Slot Size:	0.010"
				Screen Length:	_9.8' (10')
			= +-	Filter/Sand Pack	tus Industrial
Base of Screen	16.1 CTOR	250.7		Туре:	#16N Industrial
End Cap	16.44 (TOR)	- 250.3'		Sump: (~6,3°).	• -
Drilled Depth	~281 ban	~ 250.3' ~ 256.6' ~ 236.6'	——————————————————————————————————————	Fallback/Backfill:	Native Soil
	n -28' lgs	~ > 3 · S · S ·			1 3
Bottom of Exploratio	9				
Bedrock Surface	wknown		egonomica e de la compania del compania de la compania del compania de la compania del la compania dela compania del la compania de la compania del la compania del la compania del la com		NOT TO SCALE
МУЛ Д	CTEC				FIGURE 4-8

FIGURE 4-8
WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT
NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/PIE	ZOMETER CONST	RUCTION DIAGI	RAM	LOCATION ID:	
	FLUSHMOU	JNT		DP-15	
Project Name:	Off-Site Carriage Cleaners			Date Started: 11-18-	10 Date Completed: 11 - 18-10
Project Location:	Penfield, New York			Logged By: Rran	on Shaw
Project Number:	3612102168	Task Number	o2~01	Checked By: 855	Checked Date: 1/24/(8
Subcontractor:	Nothnagle	Drilling Method: Di	rect Push		· · · · · · · · · · · · · · · · · · ·
Development Method:	Parastaltic	Development Date:	11-18-10	Measuring	Point Information
Bucking Posts/Ballard	s: NA				
Notes: Depth	to water: 3.48	(BTOR) (11418-	2010).	Measuring Point (MP) Typ	pe: Top Of Riser
Rem	 	sediment divir	¥	MP Elevation (ft):	263.83
der	clopment				***
Item	Depth BMP (ft) El	evation (ft)		Des	scription
Surface Casing Elevat	ion \	264.22	Slo	pe Away	
	11000	64.24			,
Ground Surface Lieva	2			Surface Seal Type:	concrete par
Riser Pipe (Top)	BJS 1124 Z	63.83		Lock Identification	NA
-, -00	4	[T]		9:1 1 2 : 5:	~8 N
-100-10K	· V. I			Stickup Casing Diameter:	
	### 2 2 2 2 2 3 3 1 2 4 2 4 5 4 5 4 5 4 5 4 5 5 6 5 6 5 6 6 6 6 6		-	Backfill/Grout Type:	NA
				Riser Pipe Type:	geh 40 prc
				Riser Pipe ID: .	<u></u>
T (W 110-1	~ 0.5 (b93	~ 7(3.3)	—	Borehole Diameter:	3 1/4 m
Top of Well Seal	~0.5 bgs _	262.		T. 60 1	1. Bridovile
Top of Sand Pack	151 bys	~ 258.8°		Type of Seal:	Med. Bentowfe chips
•	-				
Top of Screen	6.3' (TOR)	~ 25 1.5		_	
				Screen Type:	sch to prc
				Screen ID:	
				Screen Slot Size:	0-61011
				Screen Length:	-9.8' (10')
				Joroon Zongan	
				Filter/Sand Pack	,
	16. 11.6-05	7477'		Type:	#OON Industrial
Base of Screen	16.1° (TOR)	~ 6 [1.]			Qvav+2
End Cap	16.4 (TOR)	- 247.4		Sump: (~ 6. 3 1)	
Drilled Depth	20 bgs	~ 243.8B		Fallback/Backfill:	Native Soil
	20 loss	~ 243.8'	Γ		
Bottom of Exploration	on Soph				
Bedrock Surface	mknom				NOT TO SCALE
	_				
MAT A	CTEC	•			FIGURE 4-8

FIGURE 4-8
WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT
NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/PIEZOMETER CONSTRUCTION DIAGRAM	LOCATION ID:
Project Name: Off-5it Londing & Cleaner's	Date Started: 1/18/11 Date Completed: 1/18/11
Project Name: Off-Site Landing E Cleaner's Project Location: Pentill, NY	Logged By: Ryw Markowski:
Project Number: 3612102168 Task Number 2.02	Checked By: Checked Date: 7/6/11
Subcontractor: Nothwaals Drilling Method: H5A 674	
Development Method: Sunge -/ whole purpovelopment Date: 61/20/11	Measuring Point Information
Bucking Posts/Ballards:	
Notes: Depth to Worker: 6.81' (BTOR)	Measuring Point (MP) Type: Top Of Riser
AMSL = Above now son love Bron = Below top of	
365= Bolov ground Surface	
Item Depth BMP (ft) Elevation (ft) (Amsu)	Description
	Slope Away
Ground Surface Elevation 266.66	Surface Seal Type: Covert Road Bo
Riser Pipe (Top) 0.4 bg 5 266.55	110
	DOOK ISSISTANCE
	Stickup Casing Diameter: Z"
	- Backfill/Grout Type: NAK'vc So-1
	11 40 4:
	Riser Pipe ID: 2"
Top of Well Seal 6 bq s 260.7	Borehole Diameter:
	- Type of Seal: Botovite Chip 5
Top of Sand Pack S'bg 5 258.7	
Top of Screen 9.8 'bg < 256.9	Sch 40
Top of Screen 7.0 09 5 23 07	- Screen Type: Slotte PVC
	Screen ID: 2 ''
	Screen Slot Size: O. 010 ''
	Screen Length:
	- Filter/Sand Pack
Base of Screen	Type: OON INDUSTRIAL GUART 2
End Cap 20.0' bas 246.7 []	- Sump: 0.4
Drilled Depth 20' 695 246.7	Fallback/Backfill:
Bottom of Exploration 20' bgs 246.7	
Bedrock Surface Wrknow Mrknow	NOT TO SCALE
MACTEC 511 Congress Street Portland Maine 04101	

WELL/PIEZ	OMETER CONST		IAGRAM	LOCATION ID:	3
Project Name:				Date Started: 1/18/11	Date Completed: 1/18/11
	Perficio NY	ange CIENNE	æ5		Markorski
Project Number:	3612102168	Task Number	2.02	Checked By:	Checked Date: 7/6/11
	VOTH MAG LE		od: HSA 8461		
Development Method:					Point Information
Bucking Posts/Ballards:	NA				
Notes: Depth	to WAFER = 4	41 (BTOR	01-2011	Measuring Point (MP) Typ	De: Top Of Riser
	ove mon son lov	- '	BELOW top of NI	MP Elevation (ft):	263.89
bgs be	low ground sun				
Item	Depth BMP (ft)	levation (ft) (Am	sl)	Des	cription
Surface Casing Elevation		64.28	Slo	pe Away	
Ground Surface Elevation	26.0	264.29		-	[10 2
Riser Pipe (Top)	0.4bgs	263,89/		Surface Seal Type:	Loverote/ROND BOT
reser i pe (rop)				Lock Identification	<u>Na</u>
				Stickup Casing Diameter:	2"
				Backfill/Grout Type:	NATIVE Soil
				Riser Pipe Type:	Sch 40 PVL
				Riser Pipe ID:	<u>Z"</u>
Top of Well Seal	7'bgs	257.3		Borehole Diameter:	E''
Top of well sear			-	Type of Seal:	Bostonita Chips
Top of Sand Pack	9'bgs	255.5			,
	11.1 bgs	7577			Sah 40
Top of Screen	11.1.093	<u> </u>		Screen Type:	SlottED PVL
				Screen ID:	. Z."
				Screen Slot Size:	0.010"
					10 '
				Screen Length:	10
				Filter/Sand Pack	
D 65	70 6 has	7435		Type:	OON Industrial aumti
Base of Screen	20.8 bgs				Qumt 2
End Cap	21.2' bgs	243,1		Sump: O. 4	
Drilled Depth	22' hgs			Fallback/Backfill:	NA
Bottom of Exploration	22'bgs		_		
Bedrock Surface	Unknown	unknown	V		NOT TO SCALE
MAC 511 Congress Street Po	CTEC				

WELL/PIEZ	OMETER CON	STRUCTION D	OIAGRAM	LOCATION ID:	
	FLUSHM			DP-2	Z /
Project Name:	Off-Site a	Empirge Clo	arms	Date Started: 1/19/11	Date Completed: 1/19/1
Project Location:	10011011	NY		Logged By:	MNKowski;
Project Number:	361210216			Checked By:	_Checked Date: _7/v[]
Subcontractor:	NOTHNAglé		nod: HSA 8 40		Point Information
Development Method: Bucking Posts/Ballards:	Sunge w/while	Development	Date. 01/20/11	Micasuring I	· ·
~	The to Water	n= 6.81 (Brow	Measuring Point (MP) Typ	ne: Top Of Riser
	APONE NOW SEN		D= BElow top of v	MP Elevation (ft):	265.91
B65 = B	flow ground su	nfoer			
Item	Depth BMP (ft) (なら)	Elevation (ft)	msL)	Des	cription
Surface Casing Elevation	n 0.2A65	266.32	Slo	pe Away	
Ground Surface Elevation	oiO	266.18 70		-	(1/0 x B
Riser Pipe (Top)	0.4' bas	265.91/		Surface Seal Type:	Conunct / ROAD BO;
Table 1 spe (1 sp)				Lock Identification	NA
				Stickup Casing Diameter:	2"
				Backfill/Grout Type:	NATIVE SOIL
		. '		Riser Pipe Type:	Sch. 40 PVL
				Riser Pipe ID:	2"
Top of Well Seal	4' bgs	262.20		Borehole Diameter:	8"
	<i>C</i> ()		-	Type of Seal:	Bentovite Chips
Top of Sand Pack	<u>6 bgs</u>	260.2		•	
	79' has	258.3			Sdr 40
Top of Screen	7, 1 10/3	230.3		Screen Type:	SlotteD PVL
·	*			Screen ID:	2"
				•	
	* .			Screen Slot Size:	0.010"
				Screen Length:	10'
				•	
				Filter/Sand Pack	ODAL Franchill
Base of Screen	18.0' bas	248.2		Type:	OON INDustrial
End Cap	18.4'bg	5 247.8	1.	Sump: O. H	
	18.4 ha	5 247.8	4	Fallback/Backfill:	NA
Drilled Depth Bottom of Exploration	18.4' bas	247.8		i anoaon Daoniii.	
Bedrock Surface	UNKrow~	WKrow			NOT TO SCALE
		·			
MAG	CTEC				
511 Congress Street, P	ortland Maine 04101				

WELL/PIEZO	METER CONS		DIAGRAM	LOCATION ID:	8
Project Name:		mainge Clo	1ven S	Date Started: 1/19/11	Date Completed: 1/19/11
 -	Penfield, N	- U	1_0.3	-/-/-	Markon ye
	612102169		2.02	Checked By:	Checked Date: 7/6/11
	othnale		od: HSA 81/4	<i>''00</i>	•
	inge Wahali	Development	Date: 01/24/11	Measuring I	Point Information
	NA		(D. 1)		The Coch'
Notes: Depth			13TOR)	Measuring Point (MP) Typ	
B65= Below	or more son l		= Bflow top of	MIT Elevation (II).	266.37
		Elevation (ft) (A)	nsu)	Dac	cription
Item	Depth BMP (ft) (B&S)	Elevation (11) (7)		Desc	irpuon
Surface Casing Elevation	0.2465	268.62	Slo	pe Away	
Ground Surface Elevation	0	268.4270		-	// 2
Riser Pipe (Top)	0.3'bgs	268.37/		Surface Seal Type:	Concrete / Rons Bo
Kisei Fipe (10p)	0.0 595	200.0.		Lock Identification	<u>NA</u>
				Stickup Casing Diameter:	2"
· ·				Backfill/Grout Type:	NATIVE So.
				Riser Pipe Type:	Sch. 40 PVC
		•.		Riser Pipe ID:	<u>z"</u>
	1011			Borehole Diameter:	8"
Top of Well Seal	10 bgs	258,4		•	
		400		Type of Seal:	Bentonite Chips
Top of Sand Pack	12 bgs	256.4		·	•
	13711	7511 7			Sch40
Top of Screen	13.7'bgs	234.1		Screen Type:	Slotters PVL
				- -	2"
				Screen ID:	
	•			Screen Slot Size:	0.010"
·				Screen Length:	
				Filter/Sand Pack	
Base of Screen	23.5 bg	244.9		Type:	OON Injustrial
End Cap	23,9' bgs			Sump: 0 i-l	- VI Z
_	24' bgs		- I - V - I	Fallback/Backfill:	NA
Drilled Depth	_			I and actor Dackilli.	
	24' bgs				
Bedrock Surface	Unknow	Maknow			NOT TO SCALE
MAC 511 Congress Street Portle	TEC				

APPENDIX C-4

WELL DEVELOPMENT RECORDS

with the second of the second will be seen to be a second or with the second of the second of the second or will be second or with the second or will be sec	ELL DEVELOPMENT RECORD	
Project: OFF-Site Curriage Cleaners	Well Installation Date: 7/12/11	Project No. 3612102108 ひよし
Client: NYSOCC	Well Development Date: ">// 4)	Logged by: Checked by: TKR Run 7/18
Well/Site I.D.: $m\omega$ - //	Weather: Suny, warn 78-8007, light helige.	Start Date: Finish Date: 7/14/11
Well Construction Record Data:	Well Diameter 2	Start Time: Finish Time:
Bottom of Screen 59,1	ov in	1345 1630.
Sediment Sump/Plug	- Liour rob of user	Ý
Screen Length 9.7 ft	Fluide Lost during Orilling (2)	.]
Protective Casing Stick-up (7) ft.	Protective Casing/Well Diff. 0.37 ft. PID R	eadings: Ambient Air o ppm Well Mouth ppm
Well Levels:	Sediment:	
Initial 7,23 ft.	· · · · · · · · · · · · · · · · · · ·	t. (from top of PVC)
End of Development 7.25 ft.	Well Depth after Development 59.9	<u>t.</u>
24 Hours after Development ft.	Sediment Depth Removed	<u>t.</u>
HT of Water Column 51.87 ft.	× 1.68* gal./ft. = 8.3	gal./vol. *for 4" HSA Installed Wells
Equipment: Dedicated Submersible Pump Surge Block Bailer 2" Grundios Pump 2" 4" Well Development Criteria Met: Notes: End of Well Development Sample (1 pint) Co	Total Gallons Removed # Well water cle Sediment thick well is <1.0% Total water re of 5x calculate 5x drilling fluid Turbidity < 5N	
Record at start, twice during and at the end of Time Volume Total Gallo 1513 15 30 15 30 150 150 150 75 1608 75 90 Well Developer's Signature WACTEC	ons pH Temp. Conductance 7.0 14.8 2.534 7.1 14.6 2.568 7.1 14.6 2.579 7.1 14.6 2.579 7.1 14.6 2.573 WELL DE	Turbidity Pumping Rate 72 0,9 47 0,9 38 0,9 59 1),9 17 0,9 17 0,9 17 0,9 17 0,9 17 0,9 17 0,9
511 Congress Steet Portland, ME 04101	NYSDEC QUALITY ASSURA	INCE PROGRAM PLAN

PORT2007022h.mac

+ Sup to dum przewcter

WELL DE	VELOPMENT REC	ORD		
OFF Six Cornay Chewers	Well Installation Date:		361	Project No.
Client: NYS DEC	Well Development Date: フルリ リ		Logged by: ナドア	Checked by:
Well/Site I.D.: WW-12	Weather: Mustly Survey	65-750/2 calm	Start Date: 7/15/1/	Finish Date:
Well Construction Record Data:	Well Diameter	ی in.	Start Time: りをつり	Finish Time:
Sediment Sump/Plug	m Ground Surface D From	Top of Riser		
- In the second	Fluids Lost during Drilling	O gal.	•	
Protective Casing Stick-up Oft. Protective	e Casing/Well Diff. じいん	PID Rea	dings: Ambient A	ppm
Well Levels: Sedim	ent:		 	
Initial 5.37 ft. Well	Depth before Development	58.2 ft.	(from top of PV	C) .
End of Development 4,98 ft. Well	Depth after Development	58.6 ft.		·
24 Hours after Developmentft. Sedi	iment Depth Removed	O.Y ft.		
HT of Water Column 53.6 ft. × 1.52 i.	68* gal./ft. =	8.6	gal./vol. *for 4" HSA in:	stalled Wells
□ Surge Block □ Bailer □ 2" □ 4" Mo Grundfes Pump 2" Well Development Criteria Met: Notes:	Yes No		to unaided eye ess remaining in screen length oved = a minimun well volume plus ost	Yes No
Record at start, twice during and at the end of development of the end of the end of development of the end of the	ent (minimum): e_ pH Temp. 7. / /3. / 7. / /3. 4 7. 0 /3. 5 7. / /3. 6	in S/cm Conductance 2.157 2.135 2.126 2.110 2.094 2.094	Turbidity 340 /00 >1000 /70 58 /0.2	Pumping Rate // U // U // U // U // O
Well Developer's Signature Lucy white Sing pupir to fully water to drive MACTEC 511 Congress Steet Portland, ME 04101	NYSDEC QUALIT		ELOPMENT	

	<u> </u>			WEL	LEDEVE	LOPMENT	RECORD			<u> </u>		
Mara				PROJECT NAME	Off-Site C	Carriage Cleane	ers	LOCATIO	00-06	;	PAGE /	OF /
	\mathbf{M}	ACT	EC	PROJECT NUMBER		612102168		STARTT	E40		START DATE	05-11-18
5	11 Congress Str	reet. Portland Maine	041 0 1	WELL INSTALLATION	NDATE	WELL DEVELOP		END TIM	5/15		END DATE	-18-10
			/ l	11-16	-2010·	11-18	-2010		605		11	70 10
WELL	. DIAMETER	(INCHES)	1-IN.	2-lN.	4-IN.	6-IN.	8-IN.	отн	ER	.		
CASI	NG DIAMETE	R (INCHES)	4-IN.	6-IN.	8-IN.	10-IN.	12-IN.	ОТН	ER			
MEAS	SUREMENT PO	OINT (MP)	TOP OF	RISER (TOR)	ТОР	OF CASING (TOC)	ОТН	ER			
	F					COPERN			PD O	T. CASING		
	AL WELL H (BMP)	16.3	FINAL W	BMP)	.32 _{FT}	SCREEN LENGTH	<i>i</i>	Ø FT		CKUP (AGS)	0	. O FT
INITE	ALDTW		SEDIME	NT		SCREENED	· []		тос	/TOR		
(BMP		1.15	FT REMOV	ED 2	o,(_{FT}	INTERVAL (BMP) 6 2	то 16		FERENCE	0.	45 FT
WATI	er [(final well DTW AF	depth - initial well depth) TER	az	PUMPING	11/24	,,	PID			
COLU	JMN	9.2	FT DEVELO	OP. (BMP)	95 _{ft}	DEPTH (BMI		16 FT	AME	BIENT AIR	20	PPM
	well depth - init	ial depth to water)	FINAL R	LECOVERY		APPROXIMA	ATE			WELL	۷.	. 1
GAL/		er squared X 0.041)	GAL DEPTH	(ВМР)	FT	RECHARGE	RATE	FT/MIN	MOI	JTH		PPM .
тота	AL VOL.		FINAL R	RECOVERY	_	FLUIDS LOS	1 0	1		OF WELL	Y	N
PURC (mL p		I minutes X 0.00026	GAL TIME (el gal/mL)	apsed)	MIN	DURING DR	ILLING	GAL		'ELOPMENT IPLE TAKEN	L	, 💌
	RAMETERS						I .		VOLUME	TOT		
TIME	DTW (fl BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PURGED (gal)	TOTAL GALLONS		COMMENTS
1541	oun	9 2 3	@ DP-	86-								
	7.87	pon	15.13	2.021	7.10	0.51	71000	-82.1		1	PID- 0	.6 00m
1544		506	15-28		-			-89.1	:		0/2.1	
1549	8:11	500	1)-20	\$-983	7.00	0.28	71000			/	bip;	(0.1 pg~
1554	8.07	500	15,24	2.073	6.95	0.11	71000	-94.4			Pigi	Zoil ppm
1559	7.95	200	15-31	2-189	6.90	0.07	212	-98.1			bio.	Loil ppn
1600	Dun	206	a pp-	de				٠.	-			
1 640	1,000	Pett	1		100	٠.	252	-100	0-		12.0	110
 			15	2.19	6.9	0.1	212	-100	BI	>	11/24	/ 10
$\perp \perp$,							-		
							:			,		
·	1											
	1/24	-										
EQUIPM	ENT DOCUM	ENTATION		1	L	WELL D	EVELOPMENT CF	RITERIA	<u> </u>	L		
	DEDICATED S	SUBMERSIBLE	WATER I	LEVEL METER			ater clear to the unaid					Y N
	SURGE BLOC BAILER		PID WQ MET	opb Roe er Yyı		Sedime Total v	ent thickness remaining vater removed = a mir	ng in well <1.0% nimum of 5x cak	of screen length ulated well volu	i? imes plus 5x d	rilling fluids lost	, Y
	2" GRUNDFOS]	TURB. M OTHER			Turbid	ity < 5NTUs? hange in field paramet				,	
/	OTHER TUBE]4" [a _//=18-16]	OTHER OTHER			_	VELOPMENT CRI		Y	ا ل	V	
	ONAL OBSER	1 - /				SKETCH						
PURGE V			NUMBI GENER	ER OF GALLONS	~5							•
	NEKIZED											
NOTES									•			
)		Ryandon S	5ha~							FIGURE 4-
	eloper Signature	05%	· · · · · · · · · · · · · · · · · · ·	Branden S Print Name: Date: 11/2				NV¢n	EC OTIAT			PMENT-RECORI PROGRAM PLAI
Checked	By SAC	(X) (XX)	0474	Date: ///	1. <i>[()</i> ()			17130	LC QUAL	** * 4700	UNCHITCE I	ACCIONALI LA

		113135		WEL	L DEVE	LOPMENT	RECORD				
. Asrsa -	- A- A			PROJECT NAME	Off-Site C	arriage Cleane	rs	LOCATIO	DP-1	Ò	PAGE OF
	\mathbf{M}^{P}	IC T	EC	PROJECT NUMBER	*-	612102168		START T			START DATE 11-18-1
51	11 Congress Stre	et, Portland Maine C	4101	WELL INSTALLATION		WELL DEVELOP	S-2010	END TIM	163	37	END DATE 11-18-10
WFLL.	DIAMETER (I	NCHES)	I-IN.	2-IN.	4-IN.	6-IN.	8-IN	ОТН	ER		
	G DIAMETER		4-IN.				12-IN.		ER		
				RISER (TOR)	TOP	OF CASING (TOC)	<u> </u>	 отн	. —— ER		
	UREMENT PO		FINAL W		· 35 FT	SCREEN	· i		PRO	T. CASING	9. छ . _{FT}
DEPTI	H (BMP)	15-9	FT DEPTH (I	3MP)	· // FT	LENGTH		FT		CKUP (AGS)	
INITIA (BMP)	AL DTW	6.31	FT REMOVE (final well	v. €	. 45 _{ft}	SCREENED LAVASTRI BJS V		то 16		C/TOR FERENCE	9.4 FT
WATE COLU	MN	9.6	DTW AF DEVELO	R:	41 FT	PUMPING DEPTH (BMF	"	16 FT	PID AMI	BIENT AIR	∠o/ PPM
CALC GAL/V	ULATED /OL	0.4	FINAL R GAL DEPTH (ECOVERY BMP)	FT	APPROXIMA RECHARGE		FT/MIN		WELL UTH	Loc PPM
TOTA PURG (mL pe	L VOL. ED er minute X total	~ 5 minutes X 0.00026	GAL TIME (el	ECOVERY apsed)	MIN	FLUIDS LOS DURING DRI	1	- GAL	DEV	O OF WELL VELOPMENT VIPLE TAKEN	
TIME	DTW (1 BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
1615	-Jum	1p on	@ 1	p-10							PiD Rendi
1618	8.11	500	15-10	2.148	693	0.29	71000	-36,9		/	11.4 ger
1623	8-31	500	15.19	2.081	682	0 · 30	>1000	-44.1			13.3 pp
1628	8.37	500	15-73	1.990	6.85	0.26	71000	-58,4	- /		12-2 pon
1693	8.41	50)	15.42	1.805	6-9A	0.21	34.6	-626			13.7 opn
1635	Man	p SFL	Q D	P-10							
<u>, , , , , , , , , , , , , , , , , , , </u>	To	, ,									
1			15	1.81	6.9	0.2	34.6	-630	8.	75	1/24/10
+				1.0	<u> </u>	\ \tag{\tau}	 		,		17
1										-	
1	A r										
 	1 1/2							1			
EQUIPMI	ENT DOCUME	NTATION	<u></u>	L	<u></u>	WELL D	EVELOPMENT CF	RITERIA	l	<u> </u>	Y
	DEDICATED S SURGE BLOCK BAILER 2" GRUNDFOS 2" 2"	{]]4"	PID WQ METH TURB. MI OTHER OTHER			Sedime Total v Turbid	ater clear to the unaic ent thickness remainir vater removed = a min ity < 5NTUs? nange in field parame	g in well <1.0% nimum of 5x cald	of screen lengt culated well vol	h? lumes plus 5x d	drilling fluids lost?
,		by (18)) OTHER			SKETCH		. Smarter			-
PURGE W		ATTONS Y N	NUMBI GENER	ER OF GALLONS ATED	~5						
NOTES						_	•				,
			_	a lac	1/						
4		<u></u>		Syandon S Print Name: Date: 1/12	Now					WFI_I	FIGU DEVELOPMENT RI
Well Deve Checked B	eloper Signature	05ch	march	Date: 1//1	1/10		NYSDEC QUALITY ASSURANCE PROGRAM				

				WEL	L DEVE	LOPMENT	RECORD	_				
11.18.1.	<u> </u>			PROJECT NAME	Off-Site C	arriage Cleaner		LOCATIO	DP-12		PAGE 1 OF]
21	MA	(CT)	EC	PROJECT NUMBER				START TI	<u> </u>	1 0	START DATE	-10
	I Congress Stre	eet, Portland Maine 0	4101	WELL INSTALLATION	DATE	612102168 WELL DEVELOPI		END TIME			END DATE	
. ,				11-17-	2010		7-2010		1705	,	11-18	70
WELL	DIAMETER (INCHES)	1-IN.	2-IN.	4-IN.	6-1N.	8-iN.	ОТН	ER			
CASIN	IG DIAMETER	R (INCHES)	4-IN.	6-IN.	8-IN.	10-IN.	12-IN.	. ОТН	ER			
MEAS	UREMENT PC	OINT (MP)	TOP OF S	RISER (TOR)	TOP	OF CASING (TOC)		ОТН	ER			
	AL WELL H (BMP)	16.4	FINAL W	1 114	,44 _{ft}	SCREEN LENGTH	u	10 ¹ FT		T. CASING CKUP (AGS)	0.6	FT
INITI	AL DTW	6.09	SEDIMEI FT REMOVE	<i>P</i>	o. l _{ft}	screened interval (8 BSS 1		то 16. С		TOR FERENCE	0.32	FT
WATE	MN		DTW AF	TER /	0 7 FT	PUMPING DEPTH (BMP		6' FT	PID AMI	BIENT AIR	20.1	РРМ
CALC GAL	ULATED VOL		FINAL R GAL DEPTH (ECOVERY BMP)	FT	APPROXIMA RECHARGE		FT/MIN	PID	WELL UTH	40.1	РРМ
TOTA PURG	L VOL.	5 minutes X 0.00026 g	GAL TIME (el	ECOVERY apsed)	MIN	FLUIDS LOST DURING DRI		GAL	DEV	OF WELL ELOPMENT IPLE TAKEN	?	N
	RAMETERS								VOLUME	TOTAL		
TIME	DTW (fl BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PURGED (gal)	GALLONS	COM	MENTS
1642	Ph	pon	0	DP-12							1	udings:
1646	4.09	508	13,79	1-437	7.14	0.25	71600	-81.0			20.6	pp
1651	6.09	500	14.01	1.424	7.19	0.29	71000	85.5	/		1	1
1656	6.07	500	14.04	1.412	7.07	0.13	67.5	-940				
1701	6-07	500	14.00	1.414	7-12	0.07	121	-95.5	1		Y	
1702	Don	o off	PD0-12									
1	Fra		NA		,		,					44.44
			14	1.41	7.1	001	12.1	-95	BJS	11/2	4/2011	
						3						
18	h					4		-				
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.											
EQUIPM	ENT DOCUME	ENTATION				WELL DE	VELOPMENT CR	RITERIA				Y N
	SURGE BLOCI	SUBMERSIBLE K	WATER L PID WO MET	EVEL METER PROPERTY	 .	Sedime	ater clear to the unaid nt thickness remainin ater removed = a min	g in well <1.0%			illing fluids lost?	
	BAILER 2" GRUNDFOS	<u> </u>	TURB. M OTHER			Turbidi	ater removed = a mil. ty < 5NTUs? ange in field paramet			p on u	/	
	OTHER]+" 2 Na /3/2"	OTHER OTHER			_	ELOPMENT CRI		_ <u>Y</u>] N		
	ONAL OBSER	VATIONS	NI IMBI	ER OF GALLONS		SKETCH					· · · · · ·	
PURGE \	VATER NERIZED		GENER		u5	-						
NOTES						-						
			វ) A . A . A	Jana!	'						DIOTION :
Well Dev	eloper signature	200		Print Name: Date: 11/2 9							DEVELOPMI	
Checked	7-	& Delya	ned	Date: 1/2 \	10			NYSD	EC QUAL	ITY ASSU	JRANCE PRO	OGRAM PLAN

WELL DEVEL	OPMENT RECORD
PROJECT NAME	LOCATION ID A 12 PAGE
PROJECT NUMBER	riage Cleaners START TIME START DATE
	1/10 1/-18
	G-IN 8-IN OTHER
	IO-IN. I 12-IN. OTHER
CASINO BIANDIBIA (INCIDIO)	F CASING (TOC) OTHER
	SCREEN PROT. CASING
INITIAL WELL DEPTH (BMP) I 6.4 FT DEPTH (BMP)	LENGTH - 10 FT STICKUP (AGS) 5.0 FT
INITIAL DTW SEDIMENT OF FT REMOVED OF FT	SCREENED TOC/TOR DIFFERENCE 0.4 FT
(final well depth - initial well depth)	BJS 1721
WATER COLUMN 12.5 FT DTW AFTER DEVELOP. (BMP) 3.90 FT	PUMPING DEPTH (BMP) - 16 PID AMBIENT AIR - 17 PPM
(initial well depth - initial depth to water) CALCULATED ON ONE ON ONE CALCULATED ON ONE ON ONE FINAL RECOVERY FINAL RECOVERY FINAL RECOVERY FINAL RECOVERY FINAL RECOVERY	APPROXIMATE PID WELL RECHARGE RATE FT/MIN MOUTH PPM
(column X well diameter squared X 0.041)	
TOTAL VOL. PURGED Solution FINAL RECOVERY TIME (elapsed) MIN	DURING DRILLING GAL DEVELOPMENT
(mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS	SAMPLE TAKEN? VOLUME TOTAL
TIME DTW (1 BMP) PURGERATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) pH (units) D	DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) PURGED (gal) TOTAL GALLONS COMMENTS
1713 pump on @ DP-15	Pinkendings:
1715 3.81 500 14.25 1.847 7.69	1.04 71006 -20.0 \ 28.9 ppm
1720 3.90 500 13.89 1.657 7.05	1.10 71000 -17.9 39.8 ppm
1725 3.91 500 13.81 1.713 7.07	0.61 71000 -15.1 27.8 ppn
1770 3.90 560. 14.91 1.774 6.99	0.54 71060 -11.1 31.9 ppm
1735 phup off @ DP-15	
15 1.77 7.0	0.5 /100 -11 B55 11/24/10
184	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	WELL DEVELOPMENT CRITERIA
EQUIPMENT DOCUMENTATION DEDICATED SUBMERSIBLE WATER LEVEL METER	WELL DEVELOPMENT CRITERIA Y N Well water clear to the unaided eye?
SURGE BLOCK BAILER PID PPB ROP WQ METER SI	Sediment thickness remaining in well <1.0% of screen length? Total water removed = a minimum of 5x calculated well volumes plus 5x drilling fluids lost?
GRUNDFOS OTHER OTHER OTHER	Turbidity < 5NTUs? 10% change in field parameters? Y
OTHER TUBY (3/8) OTHER OTHER	WAS DEVELOPMENT CRITERIA MET?
ADDITIONAL OBSERVATIONS PURGE WATER Y N NUMBER OF GALLONS GENERATED T S OUT A INTERIZED	SKETCH
CONTAINERIZED	
NOTES	
Well Developer Signature: Checked By Shaw School Date (1/2 Y/10	FIGURE 4-9
Well Developer Signature: Checked By Show School Date (1/2 1/10	NYSDEC QUALITY ASSURANCE PROGRAM PLAN

WELL DEVELOPMENT RECORD											
PROJECT NAME Off-Site Carriage Cleaners DP-22 OF OF											
MACTE	PR	OJECT NUMBER 3612102168			· · · · ·	START T			START DATE 01-20-2011		
511 Congress Street, Portland Maine 0410	oı we	ELL INSTALLATION	DATE	WELL DEVELOP	MENT DATE	END TIM	5900.		END DATE		
₹A	<u>~</u>	01 - 18 - 2	011	01-6	7201	_			01-20-2011		
WELL DIAMETER (INCHES)	X 1-IN.	2-IN.	4-IN.	6-IN.	8-IN.	ОТН	ER				
CASING DIAMETER (INCHES)	4-IN.	6-IN.	8-IN.	10-IN.	12-IN	OTH	ier				
MEASUREMENT POINT (MP)	X TOP OF RIS	ER (TOR)	TOP	OF CASING (TOC)		ОТН	ER				
INITIAL WELL PROPERTY (BMP)	FINAL WEL DEPTH (BM	1 4/1	, 6 FT	SCREEN LENGTH		О гт		OT. CASING CKUP (AGS)	≯ FT		
INITIAL DTW (BMP) (BMP) (BMP)		زر 0 '	FT FT	SCREENED INTERVAL I	M P)	то 20	•	C/TOR FERENCE	~ 0.4 FT		
WATER COLUMN (final well depth - initial well depth) DTW AFTER DEVELOP. (BMP) Q 3 6 FT DEVELOP. (BMP) PUMPING PUMPING PUMPING AMBIENT AIR COLUMN AMBIENT AIR COLUMN PM											
(initial well depth - initial depth to water)											
CALCULATED GAL/VOL GOLUMN X well diameter squared X 0.041) FINAL RECOVERY DEPTH (BMP) FINAL RECOVERY RECHARGE RATE FINAL RECOVERY RECHARGE RATE FINAL RECOVERY RECHARGE RATE FINAL RECOVERY MOUTH PID WELL M											
TOTAL VOL.	FINAL REC			FLUIDS LOS	^/	GAL		D OF WELL VELOPMENT	Y N		
PURGED 77 GAI (mL per minute X total minutes X 0.00026 gal/	_ ` -	sea)	MIN	DURING DRI	LLING	GAL		MPLE TAKEN			
FIELD PARAMETERS DTW PURGE RATE	91	P. CONDUCTANCE	,				VOLUME	TOTAL			
TIME (ft BMP) (mL/min)	TEMP. (°C)	(mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PURGED (gal)	GALLONS	COMMENTS		
0814 6.92 pump	0- 6	= Dp-z	2					1	PID Hendipace		
0820 8.56 1 gpm	_	-	•		71000	-	5	6	PID head space: 22		
0825 8.90		*	-	-	7/000		5	11	PID 2790 pps		
0830 9.01		-		-	71000		5	16	510:4820 NP		
0835 9.07	-		-	_	71000		5	21	PID: 6270 pp		
0840 9.24	,	س سر	_	-	33-7	-	5	26	PID: 3850 pola		
0845 9.32	0.04	1.285	7.65	3.94	7.78	302	5	31	PID: 2900 ppb		
0847 Dump off	CD8	-22.		_	_	-		33			
1 1 1 1	•										
1					,						
147								<u> </u>	· · · · · · · · · · · · · · · · · · ·		
EQUIPMENT DOCUMENTATION			L	WELL DE	VELOPMENT CR	ITERIA	L	<u> </u>			
DEDICATED SUBMERSIBLE X	WATER LEV	^ ^ 1	Rae	I	ter clear to the unaid	-			Ž		
SURGE BLOCK X BAILER	PID Tharme	VSI 556 A		Total w	nt thickness remainin ater removed = a mir				illing fluids lost?		
GRUNDFOS X	OTHER _	ER HACH 2100P		_	ty < 5NTUs? ange in field paramet	ers?			垃		
X OTHER Whale Dimo	OTHER _			WAS DEV	ELOPMENT CRI	TERIA MET?	Ľ.		<		
ADDITIONAL OBSERVATIONS		OF CALL SUS	··-·	SKETCH		> ic :		· · · · · · · · · · · · · · · · · · ·			
ADDITIONAL OBSERVATIONS PURGE WATER ONLY SKETCH Durge water > DK grey is L Olive Ontainerized											
NOTES			<u> </u>	- d	rd wt	- ha	ve c	i ys	1 donshy		
	in	and on s	hand	,		dires	op m	4	v		
FIGURE 4-9 Well Developer Signature: WELL DEVELOPMENT RECORD											
Checked By: J. Rawcliff		Date:				NYSD	EC QUAI		JRANCE PROGRAM PLAN		

			WEI	LL DEVE	LOPMENT	RECORD				
100-			PROJECT NAME	ringo Classic			LOCATI	ON ID	23	PAGE
	ACT	EC	PROJECT NUMBER	riage Cleaners	***************************************		START T	IME 4		START DATE - 751
	treet, Portland Maine		361210216 WELL INSTALLATIO	8/ 02.0	'2_ WELL DEVELOP	MENT DATE	END TIM	042	0.	END DATE
511 Congress S	treet, Portland Ivianie	5744	1 711 KZ 7	81/1°	01-20-		LAD III	1015		01-20-201
WELL DIAMETER	(INCHES)	1-IN.	2-IN.	4-IN.	6-IN.	8-IN.	OTE	IER	•	
CASING DIAMETE	ER (INCHES)	4-IN.	6-IN.	S-I N.	10-IN.	12-IN.	OTI	ER		
MEASUREMENT F	POINT (MP)	X TOP OF	RISER (TOR)	TOP	OF CASING (TOC		OTE	HER		
INITIAL WELL DEPTH (BMP)	20.1	FINAL V	1 7 2	, 8 _{ft}	SCREEN LENGTH	ام	\mathcal{D}_{FT}		OT. CASING CKUP (AGS)	FT
INITIAL DTW (BMP)	4.41	SEDIMI REMOV (final we	(7)	7. _{ft}	SCREENED INTERVAL (BMT).	то 21		C/TOR FERENCE	Ø,4 _{ft}
WATER COLUMN	-15-7	DTW A	THE PARTY OF THE P	-17 FT	PUMPING DEPTH (BMI	365 n	2) _{FT}	PID AM	BIENT AIR	Loi) PPM
(initial well depth - ini			RECOVERY		Approxim Approxima	nato		l pin	WELL	
GAL/VOL (column X well diame	215 eter squared X 0.041)	GAL DEPTH		FT	RECHARGE	-	FT/MIN	мо	UTH	0,2 ppm
TOTAL VOL. PURGED	_~ 27		RECOVERY	MIN	FLUIDS LOS DURING DR	رم ا مر <i>ا</i>	GAL		O OF WELL VELOPMENT	Y N X
(mL per minute X tot	al minutes X 0.00026	gal/mL)			-			SAN	APLE TAKEN	¥?
TIME (ft BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
0936 4-49	Plahy	on p	P-23	_		-4			١	PID Headspace.
0940 5-32	igpm	-	-	_	-	71000	_	5	5.	PID: 38.9000
0445 5.35	3		-	-	_	71000	_	5	16	PID: 42.1 ppm
0950 5-37				_	_	71660	_	5	15	PID: 32-0 pp M
0955 5.29				-	_	230		5	20	PID. 1160 ppb
1000 5.21	1	_				47.9	-	ら	25	PID: 8.5 ppm
	n et f	@ DD-	2-3	-		\ <u></u>		_	27	
100		-								
				1						
						,				·
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	3									-
EQUIPMENT DOCUM	ENTATION		<u></u>	l	WELL DI	EVELOPMENT CR	ITERIA	<u>. </u>		
DEDICATED	SUBMERSIBLE	X WATER	LEVEL METER DA	b Rat	Well w	ater clear to the unaid	ed eye?			
SURGE BLOO BAILER	ck .		ER YELSSE BAT		Sedime	nt thickness remainin rater removed = a mir				rilling fluids lost?
2"]	X TURB. M	ETER HACH 2100P		Turbidi	ty < 5NTUs?			•	
GRUNDFOS 2"	4"	OTHER OTHER			- 10% cn	ange in field paramet	ers?	Y	_ <u>N</u>	
X OTHER 72/81 Tubi	hale pw	OTHER				VELOPMENT CRI				\leftarrow
ADDITIONAL OBSER PURGE WATER	VATIONS Y N	√ NUMB	ER OF GALLONS	21	SKETCH	ما ما ما	v : t	k an	evish	olive, v. silty of dishig
CONTAINERIZED		GENE	RATED	-61	- Pro	y war			Γ π. }	en di dise
NOTES					<i>,</i> ⊗ î	id hot	have	acters	to y	ri guring
) วั⊸ก	rund on	Alan	/	v12	il de	re lopn	rev (1)	THAT IS A
Well-Developer-Signature		<i>y</i>	Print-Name:	o ruan					WELL	DEVELOPMENT RECORI
Checked By:	VIV 3/1/10		Date:				NYSD	EC QUAL	ITY ASSU	JRANCE PROGRAM PLAT

		<u> </u>		WEL	L DEVE	LOPMENT	RECORD				
Man.	.			ROJECT NAME Off-Site Carr	age Cleaners			LOCATIO	0-2-	7	PAGE
	M <i>P</i>	\(EC	PROJECT NUMBER				START TI	1020	`	START DATE 01-20-201
5	1 Congress Stre	et, Portland Maine	04101	3612102168 VELL INSTALLATION	O2.O	WELL DEVELOP	MENT DATE	END TIMI		\	END DATE 01-20-201
,		,	/	01-19-	1011	01-20			1051) ·	01-20-201
WELL	DIAMETER (INCHES)	1-IN.	2-IN.	4-IN.	6-IN.	8-IN,	ОТНІ	ER	<u>, , ,</u>	
CASIN	G DIAMETER	(INCHES)	4-IN.	• 6-IN.	8-IN.	10-IN.	12-IN.	ОТНІ	ER		
MEAS	UREMENT PO	OINT (MP)	X TOP OF F	ISER (TOR)	ТОР	OF CASING (TOC		ОТН	ER		
	AL WELL H (BMP)	17.9	FINAL W FT DEPTH (I	1 1 1	, Ó _{ft}	SCREEN LENGTH	ام	<i>O</i> _{FT}		T. CASING CKUP (AGS)	₽ FT
INITIA (BMP)	AL DTW	6.81	SEDIMEN REMOVE	147 x 1	FT	SCREENED INTERVAL (I		то-18		C/TOR FERENCE	6.4 FT
WATE	r [21 1	DTW AF		\$0 FT	PUMPING BA	35 20	18	PID		20,1
COLU		al depth to water)	FT DEVELO	P. (BMP) Lt	O'U FT	DEPTH (BATT	'A \	FT	AM	BIENT AIR	PPM
•	ULATED	14	1	ECOVERY		APPROXIMA	TE			WELL	Lo.1
GAL/V		er squared X 0.041	GAL DEPTH (I	ВМР)	FT FT	RECHARGE	RATE	FT/MIN	MO	UTH	PPM
•	L VOL.	- 24	FINAL R	ECOVERY		FLUIDS LOS	^/	<i>,</i>		OF WELL	Y N
PURG (mL pe	L	minutes X 0.0002	GAL TIME (ela 5 gal/mL)	psed)	MIN	DURING DR	ILLING	GAL		ÆLOPMENT IPLE TAKEN	
	RAMETERS		<u>-</u>						VOLUME		
TIME	DTW (ft BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PURGED (gal)	TOTAL GALLONS	COMMENTS
1020	6.99	pung	e~	e do-	27	<u> </u>	_	-		1	
1623	7.97	1 90	_		-	_	71006	-	3 	_	PID: 5 pps
1028	8.21)			-	71000	-	<u>5</u>	9	PID: 12 pps
1033	8,26		_	-	<u> </u>	-	71000	-	5	14	PIP= 2 pp5
1038	8,17		_				122		5	19	PAP & PPS
1043	8,16	1		_	 .	_	43.3	-	5	24	PID: Spp3
1044	8,10	Dring	67 F Q	DP-27	_			-	<u> </u>	2	4
\		1 1					1:7.				
1											
\vdash											
$\vdash \vdash$											
<u></u>	RA.										
\	. ,										
EQUIPM	ENT DOCUME	ENTATION				WELL D	EVELOPMENT CR	RITERIA			Y N
	DEDICATED S SURGE BLOCK BAILER 2" GRUNDFOS 2"		X PID Live	EVEL METER PHOOVIN 380B PR VSI-556 PR TER HACH 2100P	pb Rose	Sedime Total w	ater clear to the unaid ent thickness remaining vater removed = a min ity < 5NTUs? nange in field paramet	g in well <1.0% nimum of 5x calc			rilling fluids lost?
	OTHER W		OTHER			1	VELOPMENT CRI				4
	p w/ 3/8" Tubin NAL OBSER				<u></u>	SKETCH		10 -1 3	18.00	1/101	Azem - cloudy.
PURGE V		Ľ Ì	N NUMBE GENER	R OF GALLONS ATED	25	_ סט	ge was	ier f	in you	yish	- 11/
NOTES							(x) md	not	have	water	quality instrumo
(- 7	Mulay Print-Name: Date:	la =		oth	er the	an Ho	ich. 21	prem - cloudy. graphy instructions 60% and pid- FIGURE 4
Wall D	eloner Signatura		, B	Print-Name:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					WELL	<u>DEVELOPMENT RECOR</u>
Checked I	eloper Signature:	JH 34	10	Date:				NYSD	EC QUAL		JRANCE PROGRAM PLA

			WEI	L DEVE	LOPMENT	RECORD				
			PROJECT NAME				LOCATIO	ON ID	28	PAGE
∄™\ ∕	ACT	FC	PROJECT NUMBER	Off-Site Carriag	ge Cleaners		START T		- 0	OF START DATE
171					2102168/02.02	LENE DATE	end tim			of -21-11 END DATE
511 Congress	Street, Portland Maine	04101	WELL INSTALLATION	2011-	WELL DEVELOP	1-2011	ENDTIM	<i>430</i>		01-21-11
WELL DIAMET	ER (INCHES)	1-IN.	X 2-IN.	4-IN.	6-IN.	8-IN.	ОТН	ER	···	
CASING DIAME	TER (INCHES)	4-IN.	6-IN.	X 8-IN.	10-JN.	12-IN.	НТО	ER		
MEASUREMEN'	Γ POINT (MP)	X TOP OF	RISER (TOR)	TO	OF CASING (TOC)	ПТО П	ER		
INITIAL WELL DEPTH (BMP)	23.4	FINAL V	1 7	23.9 FT	SCREEN LENGTH	· •~	/0 _{FT}		T. CASING CKUP (AGS)	9 FT
INITIAL DTW (BMP)	8.69	SEDIME FT REMOV	عمد ا	7.5 FT	SCREENED, INTERVAL (BAH)	то 24		C/TOR FERENCE	~ 0.3 _{FT}
WATER COLUMN	14.7	DTW AF	TER	. 6/ FT	PUMPING DEPTH (BAH (Apple OX)	500 3	23.5 FT	PID AM	BIENT AIR	∠o₁ PPM
CALCULATED GAL/VOL		FINAL F	RECOVERY (BMP)	FT	APPROXIMA RECHARGE	TE	FT/MIN		WELL UTH	1.9 PPM
TOTAL VOL.	wheter squared X 0.041) 25 total minutes X 0.00026	GAL TIME (e	RECOVERY	MIN	FLUIDS LOS DURING DR		GAL	DE	O OF WELL ELOPMENT	Y N
FIELD PARAMETER		garme				<u> </u>				
TIME DTW (f) BMP	PURGE RATE (mUmin)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
0757 8.69	igm	Jany	on p	DP-2	8				i	71) headspace
0805 15.2	j I	1 - '		_		7/600	-	5	B8	17:8 popus 000
0810 15.61)	1800	-	•	-	71000	-	5 /	73 13	9.7 00000
1815 15.5	. _		_	_	_	cloudy	-,	5	1818	31.7 AB200M
0820 15.58		_			-	Clear		Ś	73	z7.9
V	-	66	DP-28			~ ·			25	- A POWI
0822 15.6	punp	077	3 04 20	,	_		_		75	
							,			
145				,						
14.							,			
EQUIPMEN' DOCU	IMENTATION				WELL DI	EVELOPMENT CR	ITERIA			
SURGE BL BAILER 2" GRUNDFO		X PID WQ MET TURB. M OTHER OTHER			Sedime Total w Turbidi	ater clear to the unaid int thickness remaining ater removed = a ining ty < 5NTUs? ange in field paramet	g in well <1.0% on the state of			illing fluids lost?
OTHER WAR	pump.	OTHER				VELOPMENT CRI	TERIA MET?		→	J
ADDITIONAL OBS PURGE WATER CONTAINERIZED	E VATIONS Y N	NUMBI GENER	ER OF GALLONS ATED	25	SKETCH	urge not	er: di	Lgrey	to	dear.
NOTES					∀	id not 2	rare	V 51	and p	clear. Lack during FIGURE 4
	}		Blandon	dans			dever	lipnos	A.	FIGURE 4-
Checked By:	ure: 1:01, 3/1/10		Print Name: Date:) V(U/VV					WELL D	DEVELOPMENT RECORI RANCE PROGRAM PLAI
0,000	101 1									

APPENDIX C-5

LOW FLOW GROUNDWATER SAMPLING FIELD DATA RECORDS

	LOW FLOW GROU	NDWATER SAMPL	ING RECORD	
	PROJECT NAME		LOCATION ID	DATE
MACTEC	Off-Site C	arriage Cleaners	M W START TIME	-2 11/16/10 END TIME
1 222	361	2102168	10:30	11:45
511 Congress Street, Portland Maine 04101	\$28/3/A-MU	UZ ED //:	e SITE NAME/NUN \$2813	A PAGE
WELL DIAMETER (INCHES)		8 OTHER		WELL INTEGRITY
TUBING ID (INCHES) 1/8 1/4	3/8 1/2	5/8 OTHER		CAP YES NO N/A CASING
MEASUREMENT POINT (MP) TOP OF RISER				LOCKED COLLAR
INITIAL DTW 7 CC FINAL	L DTW	PROT. CASING	-	TOC/TOR
WELL DEPTH IN SCRE	EEN (O	FT STICKUP (AGS) [FT	DIFFERENCE FT REFILL TIMER
WATER C DRAW	WDOWN (A)	FT AMBIENT AIR [PID WELL [PPM	SETTING SEC DISCHARGE
	al DTW- final DTW X well diam. squared	AL MOUTH [X 0.041) DRAWDOWN/ [PPM	TIMER SETTING SEC
GAL/VOL 0.28 GAL PURG		AL TOTAL PURGED	0/1.5	TO PUMP PSI
FIELD PARAMETERS WITH PROGRAM STABILIZA	SP CONDUCTANCE		TURDIDITY (-1.)	PUMP
TIME OCCUPATE I	TEMP. (TC) (mS/cm)	pH (units) DISS. O ₂ (mg/L) (+/- 0.1 units) (+/- 10%)	TURBIDITY (ntu) REDOX (mv) (+/- 10% <10 ntu) (+/- 10 mv)	INTAKE COMMENTS DEPTH (ft)
BEGIN PURGING				
11:05 7.55 160 1	6.70 1.180	7.31 4.21	22.1 36.0	13.0
11:10 7.55 /60 /	6.92 1.634	7.07 0.48	11.7 -47.0	13.0
118 7.55 160 /6	6.82 1.698	7.02 0.23	5,23 77.1	13,0
11120 7.55 160 16	6.75 1.714	7.01 0.14	3.31 -86.6	13.0
11:25 7.55 160 16	6.73 1.727	7.01 0.12	2.69 -89.4	13.0
11:30 7:55 160 1	6.8/ 1.728	7.01 0.11	1.84 -85.9	T
	6.82 1.730	7.01 0.11	1.62 -86.8	
11:40 Collect Sample				* PID reading or
	.,		:	DILAGE WESTER = 8-1 pm
100			:	Deale
/ 4/3				(Paris)
FINAL STABILIZED F	FIELD PARAMETERS (to appro	priate significant figures[SF	D :	TEMP.: nearest degree (ex. 10.1 = 10) COND.: 3 SF max (ex. 3333 = 3330, 0.696 = 0.696)
	16.8 1.73	7.0 0.1	1.6 -87	pH: nearest tenth (ex. 5.53 = 5.5) DO: nearest tenth (ex. 3.51 = 3.5) TURB: 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATION	14/3	7.0 0.1	1,0 -87	ORP: 2 SF (44.1 = 44, 191 = 190)
TYPE OF PUMP DECON F PERISTALTIC LIQUIN	FLUIDS USED SILICON TU	TUBING/PUMP/BLADDER MATE	RIALS IL PUMP MATERIAL	EQUIPMENT USED WL METER SELVEST
SUBMERSIBLE DEIONIZ	IZED WATER TEFLON TUI	BING PVC PU	MP MATERIAL OBE SCREEN	PID PID RES Plus WQMETER YST 556
NITRIC HEXAN	ACID HDPE TUBIN	IG TEFLO	N BLADDER	PUMP GEODUMO
OTHER METHA		OTHER OTHER		OTHER FILTERS NO. TYPE
ANALYTICAL PARAMETERS	METHOD FIELD	PRESERVATION VO	LUME SAMPLE	
PARAMETER TCL VOCS	NUMBER FILTERED	METHOD REC	DUIRED COLLECTED	QC SAMPLE BOTTLE ID COLLECTED NUMBERS
100 1003	8260B NO	1701/4°C 2x	40 ml yes	NO 82813/A-MW2
	 	· · · · · · · · · · · · · · · · · · ·		
	<u> </u>			
-				
PURGE OBSERVATIONS	2	LOCATION SKETC	H /	
	BER OF GALLONS / 5		1-21	ITE BOUNDARY
NO-PURGE METHOD YES NO If yes, UTILIZED to sum	purged approximately 1 standing volume prior mpling ormL for this sample location			N
NOTES			// 7 /	^
Sampler Signature: Lie De Ruile: Checked By: J. Rawclifte	G > Dat	ر ا ا	$/ \vee /$	FIGURE 4-1
Sampler Signature: Green Supplier Signature: Green Do	Print Name: Enc Velue Date: 12212	(ROUNDWATER SAMPLING RECORI LLITY ASSURANCE PROGRAM PLAT
- GINAWCHINA	- III-SHO		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

ÿ

Sampler Signature: Even Detruct Print Name: Eric Detweiler Land LOW FLOW GROUNDWATER SAMPLING RECORD				LOW	FLOW GRO	UNDWA'	TER SAMP	LING REC	ORD		
STATE STAT	IMM TO	πΛ	7000	PROJECT		Carriage Cl	eaners	LC	CATION ID Mu	1-5	DATE
STATE STAT		VIAC	JLE	PROJECT	NUMBER			ST	ART TIME	<i>y</i>	END TIME
WELL BLANCHER (PRICES)	511 C	Congress Street, Portle	and Maine 04101		D			ME SI	TE NAME/NUM	MBER	PAGE
WILL DESIRED AND 1 2 3 5 C C C C C C C C C				828	13/A-ML	<u>us</u>	10:0	5	8781	51A	
NAMERICAN PROPERTY OF THE PR	WELL DIAM	IETER (INCHES)	V	24	6	8	OTHER	· · · · · · · · · · · · · · · · · · ·		CAP	
STANLED HIT COLOR 197 19	TUBING ID ((INCHES)			1/2	5/8	OTHER			CASING	
COLUMN C	MEASUREM	IENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(TOC)	OTHER				
COLORN C. C. C. C. C. C. C. C		7.	7 2. FT		7.72			flushmow	nt _T		O.25 FT
COLLINE 64.70 FT VOLUME 1.7 FT VOLUME 1.		14 ⁴	.65 FT		10				PPM		
CALVOY COMMENT COMME		6	(93 _{FT}	VOLUME		GAL MO			PPM		
Table	GAL/VOL	. 0.		PURGED		GAL TO		0 f+/i	.7		PSI
25 Olificate 200-03.28 200-04.00 200-0000 200-0000 200-0000 200-0000 200-0000 200-0000 200-0000 200-0000	FIELD PAR	RAMETERS WITH	PROGRAM STAI	BILIZATION CRITE		1				DIRAD	
9:25 7.72 160 16.10 1.840 6.97 0.98 108 207.8 13.5 9:30 7.72 160 16.71 1.794 6.94 0.76 23.7 209.5 13.5 9:35 7.72 160 16.76 1.785 6.97 0.70 11.1 197.3 13.5 9:49 7.72 160 16.85 1.779 6.97 0.49 4.69 193.3 13.5 9:45 7.72 160 17.01 1.780 6.97 0.35 2.06 184.0 13.5 9:55 7.72 160 17.11 1.801 6.97 0.24 0.69 169.1 13.5 9:55 7.72 160 17.11 1.801 6.97 0.24 0.69 169.1 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.1		0.0-0.33 ft			(mS/cm)	pri (units)				INTAKE	COMMENTS
9:30 7:72 /60 /6:76 /.785 6.97 0.70 /11.1 /97.3 /3.5 9:35 7.72 /60 /6.85 /.779 6.97 0.49 4.69 93.3 /3.5 9:49 7.72 /60 /7.01 /.780 6.97 0.35 2.06 /89.0 /3.5 9:50 7:72 /60 /7.11 /.88 6.97 0.32 /.32 /.780 /89.0 /3.5 9:50 7:72 /60 /7.11 /.88 6.97 0.32 /.32 /.780 /89.0 /3.5 9:50 7:72 /60 /7.11 /.88 6.97 0.29 0.69 /6.91 /3.5 10:00 7.72 /60 /7.11 /.88 6.98 0.18 0.66 /6/5 /3.5 10:00 7.72 /60 /7.11 /.88 6.98 0.18 0.66 /6/5 /3.5 10:00 7.72 /60 /7.12 /60 /6.87 /.8/4 6.98 0.18 0.66 /6/5 /3.5 10:00 7.72 /60 /7.12 /60 /6.87 /.8/4 6.98 0.18 0.66 /6/5 /3.5 10:00 7.72 /60 /7.12 /60 /6.87 /.8/4 6.98 0.18 0.66 /6/5 /3.5 10:00 7.72 /60 /60 /6/5 /6/5 /6/5 /6/5 /6/5 /6/5 /		BEGIN PUR				т_	T			1	
9:35 7.72 160 16.85 1.779 6.97 0.70 11.1 197.3 13.5 9:49 7.72 160 16.85 1.779 6.97 0.49 4.69 193.3 13.5 9:50 7.72 160 17.11 1.780 6.97 0.35 2.06 184.0 13.5 9:50 7.72 160 17.11 1.801 6.97 0.32 1.32 176.0 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.1	_	7.72	160	16.10	1.840	6.97	0,98			·	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
9:40 7,72 160 16.85 1.779 6.97 0.49 4.69 193:3 13:5 9:45 7.72 160 17:01 1.780 6.97 0.35 2.06 184.0 13.5 9:50 7.72 160 17:12 1.788 6.97 0.32 1:32 176.0 13.5 10:00 7.72 160 17:11 1.801 6.97 0.24 0.69 169.1 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13:5 10:00 5 collect Sample FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FINAL STABILIZED FIELD FIRE STABILITY (to appropriate significant figures(SFI) FINAL STABILIZED FIELD FIRE STABILITY (to appropriate significant figures(SFI) FINAL STABILIZED FIELD FIRE STABILITY (to appropriate significant figures(SFI) FINAL STABILIZED FIRE STABILITY (to appropriate significant figures(SFI) FI	9:30	7.72	160		1:794		0.76				
9:45 7.72 160 17:01 1.780 6.97 0.35 2.06 184.0 13.5 9:50 7.72 160 17.12 1.788 6.97 0.32 1.32 176.0 13.5 9:55 7.72 160 17.11 1.801 6.97 0.24 0.69 169.1 3.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.60 161.5 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.60 161.5 13.5 10:00 Caffect Sample FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to	9135	7.72	160		1.785	6.97		11.1	197.3	13.5	
9:50 7.72 160 17.12 1.788 6.97 0.32 1.32 176.0 13.5 9:55 7.72 160 17.11 1.801 6.97 0.24 0.69 169.1 13.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.60 16.5 13.5 10:00 Callect Sample FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI)) FOR ALL STABILIZED FIELD PARAMETERS (to appropriate sig	9:40	7.72	160	16.85	1.779	6.97		4.69	193.3		
9:55 7.72 160 17.11 1.801 6.97 0.24 0.69 169.1 73.5 10:00 7.72 160 16.87 1.814 6.98 0.18 0.60 161.5 13:5 10:00 Cafteet Sample FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appr	9:45	7,72	160	17.01	1.780	6.97	0.35	2.06	184.0	13.5	
10:00 7.72 160 16.87 1.814 6.98 0.18 0.66 161.5 13.5 10:00 coffect Sample FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SFI)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SFI)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SFI)) FOUR STABLES (TO SET TO SET	9:50	7.72	160	17.12	1.788	6.97	0.32	1.32	176.0	13.5	
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FIGURE STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FIGURE STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FIGURE STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FIGURE STABILIZED FIELD PARAMETERS (to appropriate significant figures [SF]) FIGURE STABILIZED FIELD PARAMETERS (to a	9:55	7,72	160	17:11	1.801	6.97	0.24	0.69	169.1	13.5	
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SF) [16, 9] 1, 81 7.0 0, 2 0, 7 162 20 000 0000 0000 0000 0000 0000 000	10:00	7.72	160	16.87	1.814	6.98	0.18	0.66	161.5	13.5	
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) 16	10)05	collect	Sampl	e							APID headspace on
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SFI) 16	1 60		•								initial purge water
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) TABLE INSTRUMENTO STRUME, 10.10.10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUME, 10.10.2 STRUMENT, 10.10.2	(1/1	//		ļ		<u></u>			4		was 610 ppb
EQUIPMENT DOCUMENTATION TOPE OF PUMP PERSON FLUIDS USED LOUNDING SIGNIFICATION TOPE OF PUMP PERSON FLUIDS USED LOUNDING STEEL PUMP MATERIALS SUBMINISTRICA USUMMENT USED VILLED TO THER POTABLE WATER POTABLE WATER OTHER OTHER OTHER ANALYTICAL PARAMETERS PARAMETER METHOD TOTHER OTHER OTHER TOTAL VOCs METHOD OTHER NUMBER OF GALLONS PURGE WATER NUMBER OF GALLONS PURGE WATER NUMBER OF GALLONS PURGE WATER NUMBER OF GALLONS PURGE WATER VILLEBRY OTHER OTHER OTHER OTHER OTHER NUMBER OF GALLONS PURGE WATER PURGE WATER NUMBER OF GALLONS PURGE WATER PURGE WATER VESS NO NUMBER OF GALLONS PURGE WATER PURGE WATER VESS NO NUMBER OF GALLONS PURGE WATER PURGE WATER VESS NO NUMBER OF GALLONS PURGE WATER PURGE WATER PURGE WATER VESS NO NUMBER OF GALLONS PURGE WATER PURGE W		FI	NAL STABILIZ	ZED FIELD PARA	AMETERS (to app	ropriate sign	ificant figures[S]	F])		COND.: 3 SF max	egree (ex. 10.1 = 10)
EQUIPMENT DOCUMENTATION THE OF PUMP DECON FLUIDS USED LIQUINOX SILICON TUBINO S				16.9	1.81	7.0	0,2	0.7	162	DO: nearest tenth TURB: 3 SF max,	(ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
PURGE OBSERVATIONS PURGE WATER VES NO CONTAINERIZED VO.PURGE METHOD VOLUME REQUIRED VOLUME REQ	PERIS SUBM BLAD WATTI OTHE OTHE	TYPE OF PUMP STALTIC STERSIBLE SDER STERA		LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL	TEFLON T TEFLON L HDPE TUE LDPE TUE OTHER	UBING UBING INED TUBING BING	S. STE PVC P GEOP TEFLC OTHE	EL PUMP MATERIA PUMP MATERIAL ROBE SCREEN ON BLADDER R	NL	PID WQ M TURB.	eter HET Solinst AND Pac Phis ETER YST 556 METER Hach 2100 P R
PURGE WATER YES NO NUMBER OF GALLONS 1.7 CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes. purged approximately 1 standing volume prior to sampling or NA mL for this sample location. NOTES Sampler Signature: Like Defail Print Name: Evic Defauer every low of the sample location. LOW FLOW GROUNDWATER SAMPLING RECORD	ANALYTIC	PARAME	ETER	NUMBER	FILTERED		THOD RE	OUIRED CO	DLLECTED	COLLECTED	NUMBERS
Sampler Signature: Like Defail Print Name: Evic Defauer Per	PURGE OF	BSERVATIONS					LOCATION SKET	СН			
Sampler Signature: Escal Detail Print Name: Eric Detweiler Low FLOW GROUNDWATER SAMPLING RECORD	CONTAINE NO-PURGE UTILIZED	ERIZED	s NO	GENERATED If yes, purged approxima	ately 1 standing volume prio			N T	9 mm-	×	
			Detil	Print Name: F		ler	ا لاا	ل د_نو LOV	V FLOW G	ROUNDW	FIGURE 4-17 ATER SAMPLING RECORD

			LOW	FLOW GROU	UNDWAT	TER SAMP	LING RECO	ORD		
e to on an			PROJECT				LO	CATION ID	1 .4 4	DATE
	ΛAC	TE(PROJECT		Carriage Cle	aners	ST	MW		END TIME
	onewers Street Boutle	nd Mains 04101	SAMPLE		12102168	SAMPLE TU	JE CIT	14:45 E NAME/NUN	1000	15:35
311 CC	ongress Street, Portla	nd wante 04101		BIAMWEN	1	15;2	5	8281	31 A	OF /
Well blin	ETER (INCHES)]2		18	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID (1/4 3/8	1/2	15/8				CAP CASING	YES NO N/A
,	ENT POINT (MP)	TOP OF		TOP OF CASING		OTHER			LOCKED	
INITIAL D			FINAL DTW			T. CASING			TOC/TOR	
(BMP)	// // // // // // // // // // // // //	42 FT	(BMP)	7.58		CKUP (AGS)	FLUSHMOUN	FT	DIFFERENCE	6 0.5 FT
WELL DE (BMP)	3°	7. O/ _{FT}	SCREEN LENGTH	NNFWMN	FT AMI	BIENT AIR	_	РРМ	REFILL TIME SETTING	ER SEC
WATER COLUMN	31	,59 FT	DRAWDOWN VOLUME	0.006	GAL MOI	WELL UTH		РРМ	DISCHARGE TIMER SETT	
CALCULA GAL/VOL (column X			TOTAL VOL. PURGED	W X well diam, squared 1.45 Il minutes X 0.00026 gal	DRA GAL TOT	WDOWN/ AL PURGED	1:45 9	al	PRESSURE TO PUMP	PSI
FIELD PAR TIME	DTW (FT)	PROGRAM STAE	TEMP. (°C)	SP. CONDUCTANCE		DISS. O ₂ (mg/L)	TURBIDITY (ntu) REDOX (mv)	PUMP	20.4.70.00
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)		INTAKE DEPTH (ft)	COMMENTS
	BEGIN PUR		· · · · · · · · · · · · · · · · · · ·		1		T	1 .	T	
4:50	7.60	/60	16.65	1:806	8,02	4,25	165	-78.1	37.0	
4:55	7.58	160	16.36	1.972	7.22	0,55	53,3	-85.7	37.0	ے.
15:00	7,58	160	16.30	1,989	7.11	0.26	37.1	-87.8	37.0	
5:05	7,59	160	16.22	1.995	7.08	0,20	27.5	-89.2	37.0	
15:10	7,59	160	16.11	2.001	7.07	0.17	16.9	-90.3	37.0	
15:15	7,59	160	16.12	2,005	7.06	0.14	10,2	-91,4	37.0	
15:20	7,58	160	16.03	2.006	7.05	0.12	6.89	-91.8	37.0	
5,25	7.58	160	15.89	2,008	7.06	0.11	5,98	-91.8	37.0	
_	ect sam			•						A HEADSPACE ON
V				, ,						INITIAL PURSE WATER
	WXS									WAS 3. 1 ppm (pearle)
	FI	NAL STABILIZ	ZED FIELD PARA	AMETERS (to appr	opriate signi	ficant figures[S	F]) -		TEMP.: nearest de COND.: 3 SF max pH: nearest tenth (c	gree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
			15.9	2.01	7.1	0,1	6.0	-92	DO: nearest tenth (TURB: 3 SF max,	(ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
-	DOCUMENTATIO			_					ORP: 2 SF (44.1 =	
PERIS	TYPE OF PUMP TALTIC		ECON FLUIDS USED LIQUINOX	SILICON T	UBING		EL PUMP MATERIA	L .	WLME	
BLAD	ERSIBLE DER		DEIONIZED WATER POTABLE WATER NITRIC ACID	TEFLON T TEFLON L HDPE TUB	INED TUBING	GEOP	'UMP MATERIAL ROBE SCREEN ON BLADDER		PID WQ MI	_ oph Par eter _ ysi _556 mps meter _ Hach 2100 ps
WATT		—	HEXANE METHANOL	LDPE TUB		ОТНЕ	R			Geopump
OTHE	R		OTHER NOVE	OTHER		ОТНЕ			FILTER	
ANALYTIC	CAL PARAMETER PARAME		METHOD	FIELD				SAMPLE	QC	SAMPLE BOTTLE ID
	VOCS ((TCL)	NUMBER 8266	FILTERED	_ HCI			LLECTED ES	COLLECTED NO	828131A-MW6M
\vdash					-				-	
	*							··		
PURGE OR	SERVATIONS					OCATION SKET	CH			
PURGE WA	TER YE	S NO	NUMBER OF GALL GENERATED	ons 1.45				-613	_ S-LA [].	
CONTAINE NO-PURGE		S NO	If yes, purged approxima	ntely 1 standing volume prior	r	(/ mw-	Janyo 7	-Site Bo	vivally
NOTES			to sampling or	mL for this sample locati	ion.	N	1	· /		
		N / /	7	_ a i		T	// /	/		FIGURE 4-17
Sampler Sign	nature:	Stall	Print Name: E	ne Detwe	iler					ATER SAMPLING RECORD
Checked By	J. Rawchift	7	Date: (1 23)	10		/	NY	SDEC/QUA	ALITY ASS	SURANCE PROGRAM PLAN
			•			/		/		

	``\		LOW	FLOW GRO	UNDWAT	TER SAMP	LING RE	CORD		
ANN TO	<i>A</i> . A .	·	PROJECT		Carriage Cle	eaners		LOCATION ID	-6D	DATE
	1AC	JIE(PROJECT	NUMBER	12102168			START TIME	•	END TIME
511 Cong	gress Street, Ponla	nd Maine 04101	SAMPLE	0		SAMPLETI	ME	15:40 SITE NAME/NUM 77.81	IBER	PAGE
		_	8281	31A-MW6D	3 Date	16:20	16:21	8281	列升	OF WELL INTEGRITY
WELL DIAMET	TER (INCHES)		24	6] 8	OTHER			CAP	YES NO N/A
TUBING ID (IN	(CHES)	□ 1/8 , □		1/2	5/8	OTHER			CASIN LOCK	
MEASUREMEN	NT POINT (MP)	TOP OF	•	TOP OF CASING	(TOC)	OTHER			COLL	
INITIAL DT (BMP)		70 FT	FINAL DTW (BMP)	7.70	FT STI	OT. CASING CKUP (AGS)	flushm	zunt _T	TOC/TOR DIFFEREN	NCE DIS FT
WELL DEPT (BMP)	68	3./ FT	SCREEN LENGTH	inknows		BIENT AIR		PPM	REFILL TI SETTING	SEC
WATER COLUMN	60	4 FT	DRAWDOWN VOLUME	W X well diam. squared	GAL MO	WELL UTH		PPM	DISCHARO	
CALCULAT: GAL/VOL (column X we	ED 2:		TOTAL VOL. PURGED	1.33 I minutes X 0.00026 gal	DRA GAL TOT	AWDOWN/ FAL PURGED	0/1,35	3	PRESSURE TO PUMP	PSI
	METERS WITH			IA (AS LISTED IN T	HE QAPP)					
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)		ntu) REDOX (mv) ntu) (+/- 10 mv)	PUMP INTAKE DEPTH (f	
	BEGIN PUR	GING	<u>, </u>	(7/- 370)		L	_!		DEFIH(I	<u> </u>
15:48	7.71	160	16.31	1.277	7.60	5.68	6.16	-172.1	67	Strong Sulfur odor
15:53	7.70	160	15,96	1,263	7.47	0,50	4.44	-200.3	1	7
15:58	7.70	160	15.89	1.270	7.43	0.24	3.78	-222.0		
16:03	7.70	160	15.73	1.621	7,28	0,17	7,12	-217.3		
16:08	7.70	160	15.68	1.800	7.21	0,20	3.67	-215.1		
16:13	7.71	160	15.45	i.789	7.19	0.19	3,41	-214.8		
16:20		sample		1.78/	7.18	0.18	3.71	-213.9	•	
16:21	collect	desplica	te sany	sle						Headspace ready
				· · · · · · · · · · · · · · · · · · ·						on pa initial purg
	RAD							1		water = 3.5 ppm
								* * *	TFMP : neares	n degree (ex. 10.1 = 10)
•	FI	NAL STABILIZ	LED FIELD PARA	METERS (to appr	opriate signi	ficant figures[S	F])	<u> </u>	COND.; 3 SF n pH: nearest ten	max (ex. 3333 = 3330, 0.696 = 0.696) th (ex. 5.53 = 5.5)
			15.4	1.78	7.2	0.2	3,7	-214	TURB: 3 SF m	nth (ex. 3.51 = 3.5) ax, nearest tenth (6.19 = 6.2, 101 = 101) .1 = 44, 191 = 190)
PERISTA SUBMER BLADDE WATTER OTHER	RSIBLE ER RA		ECON FLUIDS USED LIQUINOX DEIONIZED WATER OTABLE WATER NITRIC ACID HEXANE METHANOL DTHER	SILICON T TEFLON L TEFLON L HDPE TUB OTHER OTHER	UBING UBING INED TUBING ING	PVC F GEOP	EEL PUMP MATER PUMP MATERIAL PROBE SCREEN ON BLADDER ER ER	NAL :	PID WQ TUR PUM OTH	METER YSI RB. METER HACK 2100 F AP GEODIMO
ANALYTICAL	L PARAMETER: PARAME TCL VO	TER	METHOD NUMBER 82601	FIELD FILTERED AND		HOD RE	OLUME COURED 40 ml	SAMPLE COLLECTED YES	QC COLLECTI Yes	SAMPLE BOTTLE ID NUMBERS 828131A-MW6D 828B1A-MW6D
PURGE OBSE PURGE WATE CONTAINERL NO-PURGE UTILIZED NOTES	ER YES	2 Dole	to sampling or	tely 1 standing volume prio mL for this sample locati	on.	OCATION SKETT	U-GA LO		−× − ROUND	FIGURE 4-17 WATER SAMPLING RECORD SSURANCE PROGRAM PLAN

n o dinina aciya	1-3-31 Suith-Cate	평문작 (한 1816)	IOW	ELOW CDOL	INDWAT	PED CAMDI	INC DEC	ODD		
	La Harris R. H.			FLOW GROU	JNIJWAY	ER SAWIPI				ID ATE
	ЛАС	TE	PROJECT	Off-Site C	Carriage Cle	aners		CATION ID ART TIME	7	IN 15/10
	VIII IC			36	12102168	lo veni m mu		12:00		/310
31100	ongress Street, Portla	nd Maine 04101	SAMPLE II	131A-MWT	7	SAMPLE TIM	1 1	te name/num Aplia G iE	CLEANER	
WELL DIAM.	ETER (INCHES)		24	6	8	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID (I	INCHES)	1/8	1/4 3/8	1/2	5/8	OTHER			CAP CASING LOCKED	$\stackrel{\smile}{=}$ $\stackrel{=}{=}$
MEASUREM)	ENT POINT (MP)	TOP OI	RISER (TOR)	TOP OF CASING	(TOC)	OTHER			COLLAR	$\angle = $
INITIAL DTW 7,55 FT FINAL DTW 7,55 FT PROT. CASING STICKUP (AGS) Flushmount TOC/TOR DIFFERENCE - FT										
WELL DEI (BMP)	PTH IS	(O FT	SCREEN LENGTH	10(?)	FT AMI	BIENT AIR		РРМ	REFILL TIME SETTING	SEC.
WATER COLUMN	7	,55 _{ft}	DRAWDOWN VOLUME (initial DTW- final DT	W X well diam, squared	GAL MO	WELL UTH		РРМ	DISCHARGE TIMER SETTI	NG SEC
CALCULA GAL/VOL (column X v	TED O	0	TOTAL VOL. PURGED	10	DRA GAL TOT	WDOWN/ AL PURGED			PRESSURE TO PUMP	PSI
	AMETERS WITH	PROGRAM STA		IA (AS LISTED IN TE	IE QAPP)		T	···	DIDA	***
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntt (+/- 10% <10 ntt		PUMP INTAKE DEPTH (fl)	COMMENTS
	BEGIN PUR	GING		(-r/ - 370)		1		1	DELIU(II)	
12:15	7,55	150	15,68	1.508	6:79	2.31	91.3	162.5	14.0	
12:20	7.56	160	15.80	1:814	6.85	0.78	37.5	61.0	1410	
12:25	7.55	160	15.82	1.888	6.91	0.42	17.7	11.9	14.0	
12:30	7,55	160	15.89	1,895	6.96	0.91	19.7	-10,4	14.0	
12:35	7,55	160	15.97	1.879	6.92	0,63	10.3	-4.1	14.0	
12:40	7.55	160	15,97	1,926	6.96	0.23	3,49	-17.4	14.0	,
12:45	7.55	160	16.00	1.931	6.98	0.16	2.25	-28.2	14.0	
12:50	7.55	160	16.02	1.933	6,98	0.15	1.96	-33.3	14.0	
12:55	7.55	160	15,99	1,936	6.99	0.14	1,98	-36,1	14.0	
13:00	7.55	160	15,97	1.936	7,00	0.13	1.78	-38,6	14.0	HEADSPACE ON PURCE
\$3;00 \$	AMPLE								TEMP.: nearest degr	WATER = 8.5 ppm
	FII	NAL STABILI	ZED FIELD PARA	METERS (to appr	opriate signi	ficant figures[SI	F])		COND.: 3 SF max (e pH: nearest tenth (ex	ex. 3333 = 3330, 0.696 = 0.696) t. 5.53 = 5.5)
			16.0	1.94	7,0	0.1	1.8		DO: nearest tenth (ex TURB: 3 SF max, no ORP: 2 SF (44.1 = 4	earest tenth (6.19 = 6.2, 101 = 101)
1 -	DOCUMENTATIO TYPE OF PUMP		DECON FLUIDS USED		TUBING/PL	JMP/BLADDER MAT	ERIALS		_ I	EQUIPMENT USED
SUBMI	FALTIC ERSIBLE		LIQUINOX DEIONIZED WATER	SILICON TO TEFLON TO	JBING	PVC P	EL PUMP MATERIA UMP MATERIAL	AL	WL MET PID	
BLADI		🗀	POTABLE WATER NITRIC ACID	HDPE TUB		TEFLO	ROBE SCREEN ON BLADDER		HETER Hach 2160P	
OTHER OTHER	R		HEXANE METHANOL OTHER WONE	OTHER OTHER	NG	OTHE OTHE			PUMP OTHER FILTERS	620 pump TYPE
	AL PARAMETER	S			DD = 0 = -			CAMP! F		
	PARAME		METHOD NUMBER	FIELD FILTERED		HOD RE	OUIRED CO	SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
H	TCL VO	<u></u>	8260		HCI	176 8	omt .	YES		828131A-MW7 (x2)
				. .						
				······	<u> </u>					
PURGE WA		NO_NO	NUMBER OF GALL	ons 1.9	L	OCATION SKET	СН			(1)
	CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior									
UTILIZED NOTES		_ _	to sampling or NA	mL for this sample location	on.		L			
	NOTES									
Sampler Sign Checked By:	nature: Giri T. Kawali	Detail	Print Name: E	ric Detwei	ler					ATER SAMPLING RECORD URANCE PROGRAM PLAN

	LOW FLOW GROUND	WATER SAMPLING	RECORD	
	PROJECT NAME		LOCATION ID	DATE
MMACTEC	Off-Site Carria	ge Cleaners	MW-9	ii 15/10
	361210		1400	แกร่ง
511 Congress Street, Portland Maine 04101	SAMPLE ID	SAMPLE TIME	SITE NAME/NUMBER	ANERS PAGE
			GW-14-GE -SC	WELL INTEGRITY
WELL DIAMETER (INCHES)	4 6 8,	OTHER		CAP YES NO NA
TUBING ID (INCHES) 1/8	3/8 1/2 5/8	OTHER		CASING
MEASUREMENT POINT (MP) TOP OF RISER	(TOR) TOP OF CASING (TOC)	OTHER		COLLAR
(BMP) 4,27 FT FINAL (BMP)	>6.85 _{FT}	PROT. CASING STICKUP (AGS)		TOR FERENCE FT
WELL DEPTH 7.13 FT SCRE		AMBIENT AIR		ILL TIMER FING SEC
COLUMN 2.66 FT VOLU	WDOWN UME GAL I DTW- final DTW X well diam. squared X 0.04	1100111		CHARGE ER SETTING SEC
CALCULATED O.12 GAL PURG	UL VOL.	DRAWDOWN/ TOTAL PURGED		SSURE PSI
FIELD PARAMETERS WITH PROGRAM STABILIZA		PP)		
			% <10 mm) (+/- 10 mv)	PUMP ITAKE COMMENTS PTH (R)
BEGIN PURGING		·		
14:10 NA ->				WELL PURGED
				DRY IMMEDIATELY
				(SCREEN LIKELY FULL
				of surface dirt
			· ·	DEBRIS: RISEL
				BROKEN @ SLAB
			:	GRADE A HEADSPACE
		<u> </u>		ON PURGE WATER
				ivas 509 ppm (peak)
			•	
FINAL STABILIZED F	FIELD PARAMETERS (to appropria	te significant figures[SF])	CONI	2.: nearest degree (ex. 10.1 = 10) 2.: 3 SF max (ex. 3333 = 3330, 0.696 = 0.696) earest tenth (ex. 5.53 ≈ 5.5)
			DO: n	earest tenth (ex. 3.51 = 3.5) b: 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101) 2 SF (44.1 = 44, 191 = 190)
PERISTALTIC LIQUING SUBMERSIBLE DEIONIL	OX SILICON TUBING ZED WATER TEFLON TUBING LE WATER TEFLON LINED TI ACID HOPE TUBING IE LOPE TUBING NOL OTHER	JBING/PUMP/BLADDER MATERIALS S. STEEL PUMP PVC PUMP MA UBING GEOPROBE SCI TEFLON BLADI OTHER OTHER OTHER	TERIAL REEN	EQUIPMENT USED WL METER SOLEWST PID AND ROW WQ METER TURB. METER PUMP OTHER EILTERS NO. TYPE
ANALYTICAL PARAMETERS	METHOD FIELD	PRESERVATION VOLUME	SAMPLE	QC SAMPLE BOTTLE ID
PARAMETER NO SAMPLE 11/15/10	NUMBER FILTERED	METHOD REOUIRED		LECTED NUMBERS
NO SAVILLE MIST				
	-			·
* Bloken TO	R Sticking UC	03+ of CC	nacete _	BJS 11/24/10
PURGE OBSERVATIONS		LOCATION SKETCH	- <u> </u>	1 :
	BER OF GALLONS 0.12		l set	mw-9 (!
	purged approximately 1 standing volume prior upling ormL for this sample location.	1 1	87_	7 \ \
NOTES ()		┤	Ļ	1
Beal Schronord	0 . A . A	Lx	* ×	→ ¬ ¬ FIGURE 4-17
	Print Name: Eric Detweiler			UNDWATER SAMPLING RECORD
Checked By: Birsh Silver Word	Date: ///24//0		NYSDEC QUALIT	TY ASSURANCE PROGRAM PLAN

MACTEC Company area, to had value (-1) Company area, to had value (-1		LOW FLOW GROUNDWATER SAMPLING R	ECORD	
STATE				1 1 1 1
## COLUMN TO PRODUCTION OF THE	MACTEC			
WELD BAMBETS (INCRES) TOURS OF GREEKE (19 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15				
WELL BLANKTER (MCIRS)	511 Congress Street, Portland Maine 04101			
TURNIC HONCHED IN AL STREET CONTROL TO THE			WEL	
MEASTREMENT POLYTINE? WELL BETTI 7.62			CAP	YES NO N/A
ANTICLETOR H. 4.4 IT PRINGE TO CORP. WITE SETTIN TO SELECT LANGUAGE TO THE SETTING SECTION OF THE SETTING SECTION				
WILL SUTTIN TO JUNE SERVING SECONDARY AND SE	MEASUREMENT POINT (MP) TOP OF RISER (TO			
MATER COLUMN 3.2.1 TO MANDOWN POLICIES (1990) TO	1 .77 77 1	>7.35 FT PROT. CASING STICKUP (AGS)	TOC/TOR DIFFERENCE	¥ FT
COLUMN 2.1 PT VOLUME CALCULATION OF 10 PT COLUMN CALCULATION OF 10 PT COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN OF 10 PT COLUMN	1 1 67 1			SEC
CACLATED 0.13 D TOTAL VOL POR 10 D TOTAL VOL POR 10 D TOTAL PRICED TO TOTAL PR	COLUMN 3.21 FT VOLUME	E GAL MOUTH		SEC
Colland Need Statemer regarded \$4.04(1) Col. by emissed X and imbriness \$4.05(1) Col. by emissed X and im	CALCULATED 0.12 TOTAL V	OL. DRAWDOWN/		PSI
TOWE PROPERTY	(c'olumn X well diameter squared X 0.041) (mL per mi	inute X total minutes X 0.00026 gal/mL)		101
3 3 O NA BEON PURRING BEON PURRING RUBER MAY HAVE REEN COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) COMPROMISED (PLASSES) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SE)) FINAL STABILIZED FIELD PARAMETER	TIME DTW (FT) PURGERATE TEME	SP CONDUCTANCE		
BEGIN PURGING PURGED DRY IMMEDIATE WELL MANY HAVE 62EM CAMP DMISSO (6 PAGES) TOR @ SLABE GARDS) NO REGOLAGES NO R	3-5 Minutes 0.0-0.33 ft (mL/min) (+/- 3 d	P. (C) pri (units) Diss. O ₂ (nig/L) TORBIDIT	to ntu) (+/- 10 my) INTAKE	COMMENTS
EVALUATION TO PLANE OF THE PROPERTY SEGMENT SEGMENT OF THE PROPERTY SEGMENT SEGMENT OF THE PROPERTY SEGMENT SEGMENT OF THE PROPERTY SEGMENT SE				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figure(SF)) FINAL STABILIZED FIEL	13:30 NA>		Pu	RGED DRY IMMEDIATED
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(
PINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures)SFI) FINAL STABILIZED FIRED FIRED FIRED FIELD FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIRED FIR				. [
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures(SF)) FINAL STABILIZED FIELD PARAMETER (to appropriate significant figures (significant figur				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures SF) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures SF) EQUIPMENT DOCUMENTATION TYPE OF PLANE DECON FLUIDS USED DECON FLUIDS USED DECON FLUIDS USED DECON FLUIDS USED DOCUMENT ATTON DOCUMENT ATTO				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIN			Pu	REE WATER=18.4 ppm
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SF)) FORM 1997 FINAL STABILIZED FIN				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SFI) COND. 18F ms. (sc. 1333 - 1300, 0.056 - 0.056)				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SFI) COND. 18F ms. (sc. 1333 - 1300, 0.056 - 0.056)				
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures (SFI) COND. 18F ms. (sc. 1333 - 1300, 0.056 - 0.056)				
BEQUIPMENT DOCUMENTATION TOPS OF PUMP PERISTALTIC SUBMESSIBLE BLADDER WITHERA WINCO ACID WINCO ACID WINCO OTHER WINCO ACID WINCO OTHER WINCO OTHER OTHER OTHER ANALYTICAL PARAMETERS PARAMETER PARAMETER PARAMETER METHOD FILLD PERSERVATION PURGE OBSERVATIONS PURGE OB	FINAL STABILIZED FIEI	LD PARAMETERS (to appropriate significant figures[SF])		
EQUIPMENT DOCUMENTATION TOPE OF PIMP PERSTALTIC SUBMESSIBLE BLADDER DECON FLUIDS USED LIQUINOX DECONIEUR OF ATER DECONIEUR OF ATER DECONIEUR OF ATER DECONIEUR OF ATER DECONIEUR OF ATER DECONIEUR OF ATER TEFLON LIDEN OF ATER TOPE OF PIMP POPULOG POP			pH: nearest tenth (ex. 5.53 DO: nearest tenth (ex. 3.51	= 5.5) = 3.5)
TYPE OF PILMP PERSTALTIC SUMMERSHUE BLADDER POTABLE WATER METHANOL OTHER OTHER ANALYTICAL PARAMETERS PARAMETER PARAMETER METHOD NUMBER POTABLE WITS METHOD NUMBER OTHER OTHER NO SAMPLE WISS NO NUMBER OF GALLONS CONTAINERIZED NO-PURGE METHOD	FOUIPMENT DOCUMENTATION		ORP: 2 SF (44.1 = 44, 19)	lenth (6.19 = 6.2, 101 = 101)
SUBMERSIBLE BLADDER POTABLE WATER POTABLE WA	TYPE OF PUMP DECON FLUI	[
WATTERA WATTERA WEXANE WEXANE OTHER OTH	SUBMERSIBLE DEIONIZED	WATER TEFLON TUBING PVC PUMP MATER	AL PID	
OTHER OTHER	NITRIC ACID	D HDPE TUBING TEFLON BLADDER	TURB. METE	
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER FILTERED PRESERVATION NUMBER FILTERED PRESERVATION NETHOD NUMBER FILTERED PRESERVATION NUMBER SAMPLE COLLECTED COLLECTED COLLECTED COLLECTED SAMPLE BOTTLE ID NUMBERS NUMBERS PURGE OBSERVATIONS PURGE OBSERVATIONS PURGE WATER CONTAINERIZED SEMPLE COLLECTED NUMBERS NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD VES NO If yes, purged approximately 1 standing volume prior to sampling orml. for this sample location. NOTES Sampler Signature: ANALYTICAL PARAMETERS METHOD FILLD PRESERVATION NUMBER FIGURE 4-17 LOW FLOW GROUNDWATER SAMPLING RECORD	OTHER METHANOL	OTHER OTHER	OTHER	
NO SAMPLE IN STOR STICK OF DOTAL COLLECTED COLLECTED NUMBERS WE BOOKEN TOR STICK OF DOTAL COLLECTED COLLECTED NUMBERS PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS O. 13 CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or ml. for this sample location. NOTES Sampler Signature: With Defail Print Name: Griz Defaueiler LOW FLOW GROUNDWATER SAMPLING RECORD		OTHER OTHER	FICTERS	NO
PURGE OBSERVATIONS PURGE OBSERVATIONS PURGE WATER PURGE WATER ONLY ONLY	FARAMETER 6 6			
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior to sampling or mL for this sumple location. NOTES Sampler Signature: Guic Defail Print Name Exiz Detweiler LOCATION SKETCH LOCATION S	NO SAMPLE 11/15/10			
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior to sampling or mL for this sumple location. NOTES Sampler Signature: Guic Defail Print Name Exiz Detweiler LOCATION SKETCH LOCATION S				
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior to sampling or mL for this sumple location. NOTES Sampler Signature: Guic Defail Print Name Exiz Detweiler LOCATION SKETCH LOCATION S	_			·
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior to sampling or mL for this sumple location. NOTES Sampler Signature: Guic Defail Print Name Exiz Detweiler LOCATION SKETCH LOCATION S				
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior to sampling or mL for this sumple location. NOTES Sampler Signature: Guic Defail Print Name Exiz Detweiler LOCATION SKETCH LOCATION S				
PURGE WATER CONTAINERIZED NO.PURGE METHOD UTILIZED NOTES Sampler Signature: Wie Defal Print Name Exiz Detweiler LOW FLOW GROUNDWATER SAMPLING RECORD			R BJS 11/21	1/2010
CONTAINERIZED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior to sampling or mL for this sample location. NOTES Sampler Signature: Guic Defail Print Name Eviz Detweiler LOW FLOW GROUNDWATER SAMPLING RECORD	1			
NOTES Sampler Signature: Give Defeil Print Name: Eriz Detweiler LOW FLOW GROUNDWATER SAMPLING RECORD	CONTAINERIZED GENERA	TED	(
NOTES Sampler Signature: Girls Defiel Print Name: Eriz Detweiler LOW FLOW GROUNDWATER SAMPLING RECORD			9 HW-10	
Sampler Signature: Girc Defeat Detweifer LOW FLOW GROUNDWATER SAMPLING RECORD	NOTES		(- x - x/2	
Sampler Signature: LOW FLOW GROUNDWATER SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN	Deli P	Gar Detweiler	ON ET ON CROSSING	· •
		11/24/11		

				FLOW GRO						
	PROJECT NAME O HSite	0	ge Cleaner		LOC	MW-11	DAT	ቴ 8-2-11		
	PROJECT NUMBE	R.	0	~	STA	RT TIME	END	TIME		
	3616	<u> 510 9168</u>		PLE TIME	SITE	1545 Ename/number	PAG	165	0	
	828131 <u>4</u>	MWIIOS		630		56C-28	1) OF	1	
,]8	OTHER				WELL INTEGRITY YES NO N/A
	ETER (INCHES)	X 1/8] 1/4	1/2] 5/8				CAP CASING	<u>×</u>
TUBING ID (LOCKED							
MEASUREM!	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING		OTHER			TOC/TOR	
INITIAL DI (BMP)	rw t	1.25 FT	FINAL DTW (BMP)	7.26		T. CASING CKUP (AGS)	NA		DIFFERENCE	0.40 FT
WELL DEP (BMP)	тн (60	, Ol FT	SCREEN LENGTH	~10		BIENT AIR	0.0		REFILL TIME SETTING	R SEC
WATER COLUMN	52.	76 FT	DRAWDOWN VOLUME	20.16	GAL MO	WELL UTH	21.0		DISCHARGE TIMER SETTI	NG SEC
CALCULAT				W X well diam. squared		wdown/	40.1	0.0004)	PRESSURE	
GAL/VOL	vell diameter squared	G GAL	PURGED	 minutes X 0.00026 gal		AL PURGED	20.1		TO PUMP	PSI
			LIZATION CRITERIA	A (AS LISTED IN THE		,				
TIME	DTW (FT) 0.0-0.33 ft	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)		PUMP INTAKE	COMMENTS
3-5 Minutes	Drawdown		(47- 3 degrees)	(+/- 3%)	(17- 0.1 dille)	(17-1070)	(DEPTH (ft)	
1550	BEGIN PURG		1/ 0-	1 6 6 1	6.96	2.95	B 03	F .		
1554	7.26	160	16.95	1.997			7.23	7.6	55	
1559	7.26	185	16.77	2,085	6.93	0.85	5,89	- 22.9	55	
1604	7.26	185	16.67	2.090	6.95	0.46	4,40	-19-8	55	
1609	7.25	185	16.91	2.100	6.95	0.36	4.82	-15.3	55	
1614	7.26	185	16.43	2.083	6.95	0.32	2.41	-23.8	55	
1619	7.26	180	16-59	2.088	6.95	0.29	2.15	-24.8	55	
1624	7.26	185	16.50	2.086	6.96	0.27	1.72	-29.9	55	
1629	7.26	185	16-60	2,090	6.96	0.27	1,40	-28.1	55	
				n-						
	F	INAL STABIL	IZED FIELD PARA	AMETERS (to app	ropriate signi	ificant figures[SI	ř])		pil: nearest tenth (e	ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.5)
			17	2.09	7.0	0.3	1.4	-28	DO: nearest tenth (c TURB: 3 SF max, r ORP: 2 SF (44.1 +	searest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO)N	<u>.</u>					<u> </u>	IORT: 2 SP (44.) W	
1	TYPE OF PUMP TALTIC		DECON FLUIDS USED LIQUINOX	SILICON T	UBING		EL PUMP MATERIAL		WL MET	EQUIPMENT USED ER
	ERSIBLE		DEIONIZED WATER POTABLE WATER	TEFLON TO	UBING INED TUBING		JMP MATERIAL ROBE SCREEN		X PID WQ MET	
			NITRIC ACID HEXANE	HDPE TUB	ING	TEFLO	N BLADDER		y TURB. № yc PUMP	IETER
WATT	R	🖂 :	METHANOL	OTHER_		OTHE	`		OTHER FILTERS	NO. TYPE
ANALYTIC	R AL PARAMETERS		OTHER	OTHER_		OTHE			<u></u>	
	PARAM		METHOD NUMBER	FIELD FILTERED				SAMPLE OLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	VOC		82608				l <u>Onluoa</u>	Yes_	٠٥٥ ا	828131A - MW1105S
	Methone, Et	hone, Ethe	ne RSK17	5 <u>vo</u>	H	CL 2-4	onluca	yes_	<u> </u>	828131A-MW11055
X	Antons (300			pres.	16	<u>Yes</u>		828131A-MW11055
x	CO2 AII	Ealinity	SM4500, 31		Unp	162'		Yes_	<i>N</i> 0	828131 A-MW11055
X	<u>Sulfide</u>		376				00 ml	Yes_	<u> 100</u>	8281314-MW11055
X Fe+Mn 60103 NO HNO3 500ml							<u>yes</u>	<u>,いさ</u>	<u>828131A-461105</u> 5 828131A-4611055	
X RUBGE OR	TOC	,	<u> 415.1</u>	<u> </u>		2504 S	<u>00ml</u>	Yes	<u> </u>	0401 9111 - 210110 25
PURGE WA	TER YE	S NO	NUMBER OF GALL	ons v2	scl.					
CONTAINE NO-PURGE			GENERATED If yes, purged approxim	ately 1 standing volume pr	rior		•			
UTILIZED			to sampling or	mL for this sample loc		_				
leino	1. T		Jer:	L. Kibu	2			~ ·~		
Simpler Sign	Sampler Signature: Print Name:									
Checked By:	PCM &	5/22/4	Date: 2	3-2-11						FIGURE 4.1
SIN T	ΛΛΛΛ	TIT								UNDWATER SAMPLING RECOR
	ress Street. Portlan	Marre (1410)						NYS	SDEC QUAL	ITY ASSURANCE PROJECT PLAI
עמטט נוכן ו	ress purcer Politian	TO LED OTHERS OF								

			LON	FLOW GRO			DAT			
	PROJECT NAME Offsite	Carriag	e Clever	5	LOC	DP-10		8-2-11		
	PROJECT NUMBE	ER.	,		STA	RT TIME 1433	END	TIME 154	٧	
	361210.	· ·	SAM	PLE TIME		E NAME/NUMBER	PAG	E 1	1	
	828131A-	DP 10013	i ;	525	05	666-3 85	81214	1 OF		WELL INTEGRITY
WELL DIAM	ETER (INCHES)	X 1	24	6	8	OTHER			CAP	YES NO. N/A
TUBING ID (INCHES)	∑ 1/8] 1/4 3/8	1/2	5/8	OTHER			CASING LOCKED	<u>×</u> <u>×</u> <u></u>
MEASUREM	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(тос)	OTHER			COLLAR	<u> </u>
INITIAL DI (BMP)	rw (s-	96 FT	FINAL DTW (BMP)	7.28		OT. CASING CKUP (AGS)	NA	FT	TOC/TOR DIFFERENCE	0.40 FT
WELL DEP (BMP)	тн 10	6.40 FT	SCREEN LENGTH	~10		BIENT AIR	0.0		REFILL TIME SETTING	SR NA SEC
WATER COLUMN	9	.44 pt	DRAWDOWN VOLUME (initial DTW- final DT	W X well diam, squared		WELL UTH		PPM	DISCHARGE TIMER SETTI	ING NA SEC
CALCULAT GAL/VOL	TED O.	39 GAL	TOTAL VOL. PURGED	~2.25	DR/	AWDOWN/ FAL PURGED	40.1	(0.006)	PRESSURE TO PUMP	NA PSI
(column X w	vell diameter squared	X 0.041)		d minutes X 0.00026 gal	inL)					
TIME	DTW (FT) 0.0-0.33 ft	PURGE RATE (mL/min)	TEMP. ("C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)	REDOX (mv)	INTAKE	COMMENTS
3-5 Minutes	BEGIN PURG	I	(17-3 degrees)	(+/- 3%)	[C. 5	(1, 10,0)		<u> </u>	DEPTH (ft)	
1440	 	T	V 112	2 : 28:	115	2.29	10.8	-1.3	13	
1443	7.26	190	16.43	2.108	6.65			-	-	
1448	7.29	200	16.43	2.069	6.68	0.55	7-33	-10.0	13	
1453	7-26	180	16-58	2.004	6.70	0-41	6.65	-5.0		
1458	7.28	180	16.22	1.946	6.71	0.37	4.76	- G-1	13	
1503	7.28	180	16.23	1.923	(2-71	0.41	3.25	-6.4	13	
1508	7.28	190	16.29	1.900	6.72	0.26	1.33	-7.2	13	
1513	7.28	200	16.14	1.874	6.74	0.30	1.51	- 8.9	13	
1518	7.28	200	16.13	1-851	6.74	0.25	1.98	-8.9	13	
1523	7.28	200	16.16	1-844	6.74	0-26	3.46	-8.3	13_	
L					<u>k</u> ~					
					1		<u> </u>		TPMH - soone de	prec (ex. 10,1 = 10)
	F	INAL STABILI	ZED FIELD PAR.	AMETERS (to appi	ropriate signi	ificant figures[SI			COND.: 3 SF max pH; nearest tenth (c	(ex. 3333 = 3330, 0.696 = 0.696) ex. 5.53 = 5.5)
		Run	16	1.84	6.7	0.3	3.5	-8.3	DO: mearest tenth (TURB: 3 SF max.: ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101)
1 '	DOCUMENTATIO			.1.	TIMBLE	PUMP/BLADDER MAT	PERIAL C			EQUIPMENT USED
PERIST	TYPE OF PUMP TALTIC	X I	DECON FLUIDS USED	SILICON T	UBING	S. STE.	EL PUMP MATERIAL UMP MATERIAL		× WLME	
BLADI	ERSIBLE DER	X F	DEIONIZED WATER OTABLE WATER	TEFLON II TEFLON LI HDPE TUB	NED TUBING	GEOPE	ROBE SCREEN ON BLADDER		> WQME	
WATT		I	IITRIC ACID IEXANE	LDPE TUBI		OTHE	R		X PUMP OTHER	
OTHEI OTHEI	R		METHANOL OTHER	OTHER_		OTHE			FILTER	
ANALYTIC	AL PARAMETERS PARAM		METHOD					SAMPLE	QC	SAMPLE BOTTLE ID
X	VOC		number 82 6 0		ME り り		equired co 40 m l unal	Yes_	COLLECTED	NUMBERS 828131A - DP 6 0013
	Methone Eth	one Ethere	RSK17		H		10 ml viel	Yes	NO	828131A - DP10013
X	Anions C		300	<u> </u>	unpa		14	yes_	<u>~~0</u>	828131A-DP10013
X		<u>calinity</u>	5 <u>M4500 3</u> 376.		_ onp		160ml _	Yes Yes	200 200	828131A-DP10013 828131A-DP10013
XX	- Sulfid Fe & M		(601013				10000	Yes	100	828131A - DP10013
X	Toc		415.1	No	HZ	.504 _2		Yes_	<i>N</i> 0	828131A-DP1∞13
1	Purge observations sketch/notes purge water yes no number of gallons ~ 2.25 gal.									
CONTAINE	RIZED		GENERATED		0			_		
NO-PURGE \UTILIZED	METHOD Y	ES NO	If yes, purged approxin to sampling or	nately 1 standing volume pr mL for this sample loc				Run		
Simpler Sign	L V		Jec: L Print Name:	. Kiburz						
10	<i>d</i>	8/22/4	Date:	8-2-11						
Checked By	NAA	-1-1-	Date:	<u> </u>				LOW	FI OW CRO	FIGURE 4.1 UNDWATER SAMPLING RECOR

MACTEC
S11 Congress Street. Portland Mame U4101

LOW FLOW GROUNDWATER SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

			LOW	FLOW GROU	JNDWAT	ER SAMPL	ING RECO	RD		
	PROJECT NAME Offsite	Carriage	2 Cleaners			ATION ID DP-12	Q DAT	8-2-11		
	PROJECT NUMBI	-	02.1		STAI	RT TIME 1305	END	1430		
	SAMPLE ID	and the second	SAMI	PLETIME		NAME/NUMBER		l of	2	
.!		- DP120	13 1	425			6/3/7			WELL INTEGRITY
WELL DIAM	ETER (INCHES)		24	☐ 6 ☐		OTHER	· · · · · · · · · · · · · · · · · · ·		CAP	YES NO N/A X —————————————————————————————————
TUBING ID (INCHES)	1/8] 1/4 3/8		5/8	OTHER			CASING LOCKED	* * =
MEASUREM	ENT POINT (MP)	TOP OF		TOP OF CASING		OTHER			COLLAR TOC/TOR	
INITIAL DI (BMP)	<u></u>	.65 FT	FINAL DTW (BMP)	6.67	FT STIC	T. CASING CKUP (AGS)	NA	FT	DIFFERENCE REFILL TIME	SD.
WELL DEP (BMP)	TH 10	.45 FT	SCREEN LENGTH		FT AME	BIENT AIR	0.0	РРМ	SETTING DISCHARGE	NA SEC
WATER COLUMN	9	.80 FT	DRAWDOWN VOLUME		GAL MOT		2.5	РРМ	TIMER SETTI	ING NA SEC
CALCULAT	TED 7	.40 _{GAL}	TOTAL VOL. PURGED	w x well diam. squared.	DRA	WDOWN/ AL PURGED	40.16	.0044)	PRESSURE TO PUMP	NA PSI
GAL/VOL (column X w	ell diameter squared	X 0.041)	(mL per minute X total	minutes X 0.00026 gal/1	mL)	AD1 0102D				
FIELD PARA	DTW (FT)	ROGRAM STABI	TEMP. ("C)	SP. CONDUCTANCE	QAPP) pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP INTAKE	COMMENTS
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (÷/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)		DEPTH (ft)	COMMEN 12
1320	BEGIN PURC	GING						γ	Τ	
1325	6.68	195	15.33	1.403	6.96	1.39	53.6	-90.1	13	
1330	له - (يوله	200	14.91	1.309	6.93	0.71	49.2	- 83-6	13	
1335	7.ف- ي	175	14.60	1.286	6.97	0.49	46.8	-77.0	13_	
1340	6.67	160	14.69	1.262	6.97	0.52	48.1	-75.1	13	
1345	6.67	155	14.74	1.258	6.98	0,60	46.3	- 77.6	13	
1350	6.67	150	14.82	1.250	6.98	0.53	28.1	-73.9	13	
1355	6.67	155	14-71	1.241	6.99	0.60	23.3	-79.6	13	
1400	6.67	155	14.79	1.242	6,99	0.50	16.3	-80-1	i3	
1405	(e.(e7	150	14.55	1.235	6.99	0.41	8.47	-65.3	13	
1410	(0.67	160	14.51	1.229	6.99	0.39	7.61	- 70.3	1.3	
1415	6-67	155	14.44	1.228	6.99	6.30	8,83	-71.1	13	
			ZED FIELD PAR	AMETERS (to appr	opriate signi	ficant figures[SI	F})		COND.: 3 SF max	grec (cx. 10.1 = 10) (cx. 3333 = 3330, 0.696 = 0.696) cx. 5.53 = 5.5)
	R	in	14	1.23	7.0	0.3	98.8	-71	DO: nearest tenth ((ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATION				-	<u> </u>		1	JORP: 2 SF (44,1 sc	
X PERIST	TYPE OF PUMP TALTIC		DECON FLUIDS USED LIQUINOX	SILICON TU	JBING		EL PUMP MATERIAL		X WL MET	EQUIPMENT USED TER
SUBMI BLADI	ersible Der	\mathbf{x}	DEIONIZED WATER POTABLE WATER		NED TUBING	GEOPI	UMP MATERIAL ROBE SCREEN		> PID > WQ ME ➤ TURB. N	
WATT			NITRIC ACID HEXANE	HDPE TUBE		OTHE			✓ PUMP OTHER	
OTHE	R		METHANOL OTHER	OTHER		OTHE			FILTER	
ANALYTIC	AL PARAMETER: PARAM		METHOD					SAMPLE	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
l k	VOC		number 2008				EQUIRED CO	Yes_	NO.	828131A-MW
	*									DP12013
										
				·						
I I	OCEDIVATIONS					KETCH/NOTES		 -		
PURGE OF	SERVATIONS ATER Y	ES NO	NUMBER OF GALI	LONS		REICHMOIS				·
CONTAINE NO-PURGE		ES NO	GENERATED If yes, purged approxim	nately 1 standing volume pri	·					
UTILIZED										
Sampler Sig	mature:		Jest 1 Print Name:	- Kipoic						
Checked By	. Fcm	8/22/2	Date:	8-2-11					·	FIGURE 4.1
<i>3881</i> 7	\ T A C	$\neg \Box \Box$	C							UNDWATER SAMPLING RECORD
511 Congr	ress Street, Portla	nd Maine 04101	<u> </u>					NY	SDEC QUAL	ITY ASSURANCE PROJECT PLAI

			LOW	FLOW GROU	JNDWAI	ER SAMPL	ING RECU	RD .		
	PROJECT NAME	. 0			LOC	ATION ID	DAT			
	OHS!	te Carri	age Clean	<u>12</u>	STAI	DP-12	END	8-2-11 TIME		
	361210 SAMPLE ID	8216			1	1302		1430		
	SAMPLE ID	~ ^ . ^ .		PLETIME	SITE	NAME/NUMBER	2561314 PAG	E 2 OF	2	
	828131A -	- DP120	13 1 1	425	<u> </u>	/00 				WELL INTEGRITY
WELL DIAM	ETER (INCHES)	X 1	24	6	8	OTHER			CAP	YES NO N/A
TUBING ID (INCHES)	> 1/8] 1/4 3/8	1/2	5/8	OTHER			CASING LOCKED	
MEASUREM	ENT POINT (MP)	🔀 тор о	F RISER (TOR)	TOP OF CASING	тос)	OTHER			COLLAR	* * =
INITIAL D	rw /	, _	FINAL DTW	1 (17	PRO	T. CASING	NA		TOC/TOR	0.40 FT
(BMP)	<u> </u>	FT <u>کی) ،</u>	(BMP)	6-67	FT STIC	CKUP (AGS)	70.1	FT	DIFFERENCE	
WELL DEP (BMP)	TH 16	.45 FT	SCREEN LENGTH	-10	FT AMI	BIENT AIR	0.0	PPM	REFILL TIME SETTING	IR NA SEC
WATER			DRAWDOWN	(0.16	0.000¥1)	WELL			DISCHARGE	
COLUMN	<u> </u>	. 80 FT	VOLUME		GAL MOT	ЛН	<u>a.5</u>		TIMER SETTI	ING <u>NA SEC</u>
CALCULA	TED O	40 GAL	TOTAL VOL.	~2.25	DRA	.WDOWN/ AL PURGED	20.16	0.0004)	PRESSURE TO PUMP	NA PSI
	ell diameter squared	X 0.041)	(mL per minute X total	minutes X 0.00026 gal/s	mL)		L	· · · · · · · · · · · · · · · · · · ·		
	METERS WITH P	1	ILIZATION CRITERIA	A (AS LISTED IN THE SP. CONDUCTANCE	OAPP) pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP	T
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
	BEGIN PURG	ING								
1420	6.67	160	14,48	1,228	6.99	0.30	9.8	-70.5	13	
1740	6.61	700	1 7 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Q					
							 		 	
ļ									<u> </u>	
						_			 	
								ļ	ļ <u> </u>	
					CM					
	1	 	 							
	<u> </u>	1			<u> </u>			1.		
 	<u> </u>					S+ SISE		J	TEMP.: nearest de	gree (ox. 10.1 = 10) (cx. 3333 = 3330, 0.696 = 0.696)
		·	IZED FIELD PARA		1	T		T	pH; nearest tenth (a	ex, 5.53 = 5.5) ex, 3.51 = 3.5)
		Lin	14	1.23	7.0	0.3.	9.8	-71	TURB: 3 SF max.: ORP: 2 SF (44.) **	nearest tenth (6.19 = 6.2, 101 = 101) 44, 191 = 190)
	DOCUMENTATIO	N	DECON FLUIDS USED		TUBING/P	UMP/BLADDER MAT	ERIALS			EOUIPMENT USED
PERIS"	TALTIC	\times	LIQUINOX DEIONIZED WATER	SILICON TO TEFLON TO	JBING	S. STEE	EL PUMP MATERIAL JMP MATERIAL		WLME	TER
BLAD	ERSIBLE DER	,x/	POTABLE WATER	TEFLON LI	NED TUBING	GEOPR	OBE SCREEN N BLADDER		X PID X WQME X TURB.	
WATT			NITRIC ACID HEXANE	MDPE TUBI		OTHER	·		Y PUMP OTHER	
OTHE			METHANOL OTHER	OTHEROTHER		OTHER OTHER			FILTER	
ANALYTIC	AL PARAMETERS		METHOD	FIELD	PRESEI	RVATION V	OLUME S	AMPLE	QC	SAMPLE BOTTLE ID
150	PARAMI VOC	EIEK	8260 B	FILTERED O	ме [.]		EQUIRED CO tOmburals	Yes Yes	COLLECTED	828131A - DP12013
X			2860 13			<u></u>		703		000010111 01 100
					_					
										
PURGE OF	SERVATIONS				s	KETCH/NOTES	,			
PURGE WA	TER YE	S NO	NUMBER OF GALI GENERATED	.ons ~2.25	_ A					
NO-PURGE		S NO	If yes, purged approxim	ately 1 standing volume pri	or			2 cm		
1 1000 1700			to sampling or	mL for this sample loca	tion.			_		
UTILIZED	<u></u>				1				•	
	i d K	`	Jer:	F. Kipnus	' l					
			Jec. Print Name:							
	mature:	:s/22/n		8-2-11						
Sampler Sig	mature:	6/22/n	Print Name:					LOW	FLOW GRO	FIGURE 4.1' UNDWATER SAMPLING RECORI
Sampler Sig	mature:	s/zz/n TE	Print Name:							

			LOW	FLOW GROU	INDWAT	ER SAMPL	ING RECO	RD		
F	PROJECT NAME				roc	ATION ID	DAT		,	
<u> </u>	OFFSite	Carrage	Cleaners		STAI	MW-7	END	8-2-1		
`	361210		(02-1)			1120		1249	5	
	SAMPLE ID	-		LE TIME	SITE	NAME/NUMBER	25131A	ℓ of	/	
	8281314-	·2[W6.70	12	1220	<u> </u>					WELL INTEGRITY
WELL DIAM	ETER (INCHES)	Z 1 _	24	6	8	OTHER			CAP	YES NO N/A
TUBING ID (I	TUBING ID (INCHES)								CASING LOCKED	$\frac{\times}{\times} = -$
MEASUREMI	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING (тос)	OTHER			COLLAR	
INITIAL DT (BMP)	w 7.	63 FT	FINAL DTW (BMP)		T. CASING CKUP (AGS)	NA	FT	TOC/TOR DIFFERENCE	0.25 FT	
WELL DEP (BMP)	TH 15	.OI FT	SCREEN LENGTH	-10	PID AME	BIENT AIR	0.0	РРМ	REFILL TIME SETTING	SR NA SEC
WATER COLUMN	7	.38 FT	DRAWDOWN VOLUME	20.13	O. BOOM). BAL MOT		4.8	РРМ	DISCHARGE TIMER SETTI	
CALCULAT	<u> </u>		(initial DTW- final DT TOTAL VOL.	W X well diam, squared 2		.wdown/	1016	0.0003	PRESSURE	
GAL/VOL	ell diameter squared	30 _{GAL}	PURGED	~2.5 minutes X 0.00026 gal/r		AL PURGED	20.16		TO PUMP	NA PSI
FIELD PARA	METERS WITH P	ROGRAM STABI		(AS LISTED IN THE			· · · · · · · · · · · · · · · · · · ·	1	DIN (D	
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)		PUMP INTAKE DEPTH (ft)	COMMENTS
1135	BEGIN PURG	ING								
1140	7.66	235	16.32	1.789	6.84	1.39	24.4	7.01	12	
1145	7.65	235	15.99	1.772	6.83	0.46	7.89	-28.9	12	
1150	7.65	235	15.42	1.750	6.85	0.32	2.25	- 22.7	12	
					6.85	0.23	1.21	-17,6	12	
1155	7.65	235	15.54	1.750					12	
1260	7.65	245	15.37	1.742	6.84	0.21	0.91	-16.2		
1265	7.65	250	15.52	1.749	6.85	0.24	0.88	-19.9	12	
1210	7.65	245	15.54	1.730	6.86	0-28	1,96	-18.9	12	
1215	7.65	240	15.51	1.735	6.86	0.24	4.08	-14.9	12	
								<u> </u>		
					Rem					
	, F	INAL STABIL	ZED FIELD PARA	METERS (to appr	opriate signi	ficant figures[SF	7])		TEMP.: nearest de COND.:3 SF max pf1: nearest teath (e	egree (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696) (ex. 5.53 = 5.5)
	R	Com	16	1.74	6.9	0.2	4.1	-15	DO: nearest tenth (TURB: 3 SF max, 1 ORP: 2 SF (44.1 =	nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO		<u> </u>					1	(OR) : 2 (0 (44.) -	
PERIST	TYPE OF PUMP		DECON FLUIDS USED LIQUINOX	SILICON TU		UMP/BLADDER MAT S. STE	<u>TERIALS</u> EL PUMP MATERIAL		WL ME	EOUIPMENT USED TER
	ERSIBLE		DEIONIZED WATER POTABLE WATER	TEFLON TU TEFLON LIN			UMP MATERIAL ROBE SCREEN		X PID X WQ ME X TURB. N	
WATT		🔲	NITRIC ACID HEXANE	HDPE TUBIN		TEFLO	N BLADDER R		X TURB. N	METER
OTHER			METHANOL OTHER	OTHER OTHER		OTHE	3		OTHER FILTER	
	AL PARAMETERS									SAMPLE BOTTLE ID
	PARAM	ETER	METHOD NUMBER	FIELD FILTERED	ME	THOD R	EQUIRED CO	SAMPLE DLLECTED	QC COLLECTED	O NUMBERS
X	Noc		8260				40mluials	<u>Yes</u>		828131A-MW07016
1 -	<u>Methone, Eth</u> Anians Car		<u>RSK175</u>		<u> </u>		tomluials_	Yes Yes	<u> </u>	_ 828131A-MW07012 828131A-MW07012
X X	CO2: Alka		<u>300 </u>		<u> </u>		16 _	Yes	NO	828131A-4W07012
x	Sulfide	x11111111111	376.				500ml	Yes_	NO	828131 A - MW07012
X Fe, Mn GOIOB NO					<u> </u>	003	Sooml	Ye s	<i>N</i> 0	828131A-MW07012
X	TOC		415.1		H2:		100 ml	<u>Yes</u>	<u> </u>	828131A-MW07012
PURGE OB	SERVATIONS	ES NO	NUMBER OF GALL	יי ריג אוס	. 1	KETCH/NOTES				
CONTAINE			GENERATED	~ 2.5	3 oz ,					
NO-PURGE UTILIZED	METHOD Y	ES NO	If yes, purged approxing to sampling or	ately 1 standing volume pri mL for this sample loca	or tion.			Mem		
1	12	-	Jeri L.	Kiburz						
Sampler Sign	nature:	$\overline{}$.	Print Name:		İ					
Checked Por	Ren	8/22/1	Date: 8	2-11						
Adler		- - 						1033	EI ON CRC	FIGURE 4.1
	VLA(JIE								UNDWATER SAMPLING RECORE LITY ASSURANCE PROJECT PLAN
511 Congr	ess Street, Portlar	nd Maine 04101	_							

	PROJECT NAME		LOW	FLOW GROU	LOC	ATION ID	DAT	E		
	Offsite		ge Clear	ver S	Om A	MW-5 RT TIME	END	8-2-1	l	
	PROJECT NUMBI		(02.1)			0955		1115		
	SAMPLE ID	med 1	SAMI	PLE TIME	SITE	NAME/NUMBER	28131A	E OF	1	·
. [1-MW05	0104	1105						WELL INTEGRITY
WELL DIAM	ETER (INCHES)		24			OTHER			CAP	YES NO N/A
TUBING ID (I	INCHES)] 1/4 3/8	1/2	5/8	OTHER			CASING LOCKED	<u>*</u> <u>*</u> =
MEASUREMI	ENT POINT (MP)	TOP OF		TOP OF CASING (OTHER			COLLAR TOC/TOR	
INITIAL DTW (BMP) FINAL DTW (BMP) 7.81						T. CASING CKUP (AGS)	NA	FT	DIFFERENCE	
WELL DEP (BMP)	TH 1 -	1.65 FT	SCREEN LENGTH	-10	FT AMI	BIENT AIR	0.0	РРМ	REFILL TIME SETTING	NA SEC
WATER COLUMN	(ე.%(ს _{FT}	DRAWDOWN VOLUME (initial DTW- final DT	ZO.	JAL MOI	WELL UTH		РРМ	DISCHARGE TIMER SETTI	ing <u>A/A</u> sec
CALCULAT GAL/VOL	TED O.	28 GAL	TOTAL VOL. PURGED	N2.25	DRA GAL TOT	WDOWN/ CAL PURGED	20.1	0.0004)	PRESSURE TO PUMP	NA PSI
(column X w	ell diameter squared	X 0.041)		minutes X 0.00026 gal/1 A (AS LISTED IN THE	nL)				-	
TIME	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)		PUMP INTAKE	COMMENTS
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	DEPTH (ft)	
1015	BEGIN PURC	GING	1			 	1	1	1	T
1020	7.81	250	18.25	1.725	6.83	0.64	4.19	70.4	12	
1025	7.81	225	18.04	1.726	6.84	0-38	3,48	56.1	12	
1030	7.81	200	18.14	1.738	6.84	0.34	1.73	47.6	12	
1035	7.81	200	18.18	1,746	6.84	0.40	2.19	48.2	12	
1040	7.81	200	18.08	1.745	6.84	0.54	1,37	46.8	12	
1045	7.81	200	18.09	1,752	6.84	0.49	1.68	45.2	12	
1050	7,81	200	18.01	1.750	6.84	0.42	0.94	46.2	12	
1055	7.81	260	18.06	1.756	6.84	0.37	1.08	44.3	12	
1100	7.81	200	18.03	1.752	6.84	0.36	0.73	44.1	12	
				Rem			<u> </u>	<u> </u>	<u> </u>	
	<u> </u>	INAL STABIL	ZED EIELD PAR	AMETERS (to appr	opriate signi	 ficant figures(S)	F1)	<u> </u>	COND.: 3 SF max	grec (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
				1.75	1	0.4	0.7	44	pH: nearest tenth (e DO; nearest tenth (e TURB: 3 SF max. t	ex. 5.53 = 5.5) ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
ROUIPMENT	DOCUMENTATION	pen	18	1.13	6.8	0.7	0.7	177	ORP: 2 SF (44.1 =	44, 191 = 190)
1_	TYPE OF PUMP		DECON FLUIDS USED	SILICON TU		UMP/BLADDER MA	<u>TERIALS</u> EL PUMP MATERIAL		▼ WLME	EQUIPMENT USED TER
	FALTIC ERSIBLE	I	JQUINOX DEIONIZED WATER POTABLE WATER	TEFLON TU		PVCP	UMP MATERIAL ROBE SCREEN		X PID WOME	TER YST
WATT		;	RITRIC ACID HEXANE	HDPE TUBB	NG		ON BLADDER		WQME TURB. N PUMP	
OTHE	R		METHANOL OTHER	OTHER		OTHE	R		OTHER FILTERS	
	AL PARAMETER			FIELD	npece	RVATION '	VOLUME S	SAMPLE	QC	SAMPLE BOTTLE ID
	PARAM		METHOD NUMBER	FILTERED	ME	THOD R	EOUIRED CO	LLECTED	COLLECTED	NUMBERS
X		(OB	<u> </u>	<u> </u>			<u>-40mluids</u> 500ml	<u>Yes</u> Yes	NO	<u>828131A-4W050</u> /2 828131 <u>A-4W050</u> /2
X	CO2		<u>5M45</u> 310.1	NO NO			00ml	Yes_	200	828131A-MW05012
×	Chlori		300				500 ML	Yes	NO	828131A-MWUSO12
	Chilotti	<u></u>								
							·			
	SERVATIONS			 	T s	KETCH/NOTES				
PURGE WA	TER Y	ES NO	NUMBER OF GALI	ons ~2.	25gcil.	, and the state of				
CONTAINE NO-PURGE	_	ES NO	GENERATED If yes, purged approxin	ately I standing volume pri	·			_		
UTILIZED										
ے غیر ا	1 y		Jeci Print Name:	L. Kiburz						_
10										
Checked By:	1 mm	122/11	Date: 8	-2-11						FIGURE 4.1
	MAC	TF	C							UND WATER SAMPLING RECOR JITY ASSURANCE PROJECT PLAI
511 Congr	ess Street. Portla	nd Mame U41U1	<u> </u>					111		

			LOW	FLOW GROU	INDWAT	ER SAMPL	ING RECO	RD (S. 1974)		시간에 보는 사람이 있는데 있는데
Ī	PROJECT NAME	<u> </u>	01		roc	ATION ID	DAT		,,	
	Offsite (erriage	Clearers	· · · · · ·	STAI	MW-2 RT TIME	END	8-2- TIME		
	361210		<u>02.1)</u>		CITTO	0836 NAME/NUMBER	PAG	0955		
	828131A	- MW02	N. C.	LE TIME 920	SILE	OSCC >	8281314	l of	1	
١ '					8	OTHER				WELL INTEGRITY YES NO N/A
l	ETER (INCHES)] 2 4		5/8				CAP CASING	× – –
TUBING ID (I		1/8		TOP OF CASING (OTHER			LOCKED	$\frac{\overline{x}}{\overline{y}}$
	ENT POINT (MP)		-	TOP OF CASING (T. CASING			TOC/TOR	
INITIAL DT (BMP)	<u> </u>	GA FT	FINAL DTW (BMP)			CKUP (AGS)	NA	FT	DIFFERENCE REFILL TIME	0.35 FT
WELL DEP (BMP)	TH 14	.30 _{FT}	SCREEN LENGTH	~10	FT AME	BIENT AIR WELL	0.0		SETTING DISCHARGE	₩A sec
WATER COLUMN	ا ا	.68 FT	DRAWDOWN VOLUME	W X well diam. squared	GAL MO		19.7	РРМ	TIMER SETTI	NG NA SEC
CALCULAT	TED O. 3	27 GAL	TOTAL VOL. PURGED		DRA	WDOWN/ AL PURGED			PRESSURE TO PUMP	NA PSI
	ell diameter squared	X 0.041)	(mL per minute X total	minutes X 0.00026 gal/r	nL)	ABTOROSS				
	METERS WITH P DTW (FT)	PURGE RATE		(AS LISTED IN THE SP. CONDUCTANCE	QAPP) pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP	COLUMNIA COL
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 nm)		INTAKE DEPTH (ft)	COMMENTS
0842	BEGIN PURG	ING							,	
0844	7.63	210	16.50	1.494	6.82	0,76	37.2	- 9.9	12	
0849	7.63	200	16.38	1,702	6.82	0.58	6.14	-19.0	12	
0854	7.62	200	16.40	1.734	6.83	0,43	4.24	- 23.8	12	
0859	7.63	200	16.37	1.738	6.83	0.32	2,43	-23.5	12	
0904	7.63	200	16,36	1.740	(6.83	0.30	2,12	-24.1	12	
		205	16.36	1.743	6.83	0.29	2.76	-27.7	12	
0909	7.63				6.83	0.26	2.09	-21.3	12	
0914	7.63	205	16.42	1.747		0.25	2.21	- 22.6	12	
0918	7.62	210	16.34	1.745	6.83	0.25	0.01	χα. (9	1	
	ļ	-		Ro	_	 	-			
	ļ				7		1		1	
	F	INAL STABILI	 ZED FIELD PAR	AMETERS (to appr	opriate signi	ficant figures[SI	<u> </u> F])		COND.: 3 SF max	gree (ex. 10.1 = 10) (ex. 333 = 3330, 0.696 = 0.696)
	<u>-</u>		1/	175	6.8		2.2	-23		ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO	ON .	16	(.12	ψ. ο	U. 3	<u> </u>	_ 4 2	ORP: 2 SF (44.1 =	44, 191 = 190)
	TYPE OF PUMP TALTIC		DECON FLUIDS USED	SILICON TU		UMP/BLADDER MAT	<u>TERIALS</u> EL PUMP MATERIAL		X WL MET	EQUIPMENT USED TER
	ERSIBLE	I	DEIONIZED WATER POTABLE WATER	TEFLON TU		PVCPI	UMP MATERIAL ROBE SCREEN		X PID X WQ MET	TER
WATT		1	NITRIC ACID HEXANE	HDPE TUBI	NG		ON BLADDER		X TURB. N	
OTHE	R		METHANOL OTHER	OTHER OTHER		ОТНЕ	R		OTHER FILTERS	S NO. TYPE
<u> </u>	AL PARAMETERS		METHOD	FIELD	DDECE			AMPLE	QC .	SAMPLE BOTTLE ID
[EZ	PARAM	ETER	NUMBER	FILTERED	ME	THOD R	EQUIRED CO	LLECTED	COLLECTED	
X	VOC Methone Et	han Ethan	<u>8260E</u> 2 RSK175				40mluials 40mluials	<u>Yes</u> Yes	162	828131A - MW020
	Methode C			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)A	16	Yes_	200	828131A - MW0201
X	Sulfide	Chlo					500ml	yes.	.00	828131A - MWO2012
X	TOC		415.1	<u>No</u>			500 ml _	<u>Yes</u> Yes	<u>0U,</u>	<u>828131A-MW020</u> 12 828131A-MW02012
<u> </u>	Fe & Mr.		310,135MG			<u> 503</u> JA	<u> 1L</u>	yes Yes	NO	828131A-MW02012
PURGE OB	SERVATIONS	3,	~1~1132/1		S	KETCH/NOTES				
PURGE WA		S NO	NUMBER OF GALI GENERATED	.ons <u>2.5</u> 9	al.	Duplica	te son	ale co	ollected	d for
NO-PURGE UTILIZED			If yes, purged approxim to sampling or	ately i standing volume pri mL for this sample loca		•	160B ou			
Sampler Sig	1.76			L. Kiburz			28131 A -	•		
1 ()	W.m	8/22/	Print Name: Date:	8-2-11						
Checked By		925	Date:	0 00 11						FIGURE 4.1
	MA(JTE	\mathbf{C}							UNDWATER SAMPLING RECOR JTY ASSURANCE PROJECT PLA
511 Congr	ress Street, Portlar	d Maine 04101								

		<u> 18 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 </u>	LOW	FLOW GRO	UNDWAT	ER SAMPL	ING RECO	RD		
	PROJECT NAME	^	<u> </u>		LOCA	ATION ID	DAT	8-2-1	,	
	Offsite PROJECT NUMBE		je Cleoner.	<u>S</u>	STAF	MW-6M	END	TIME	. [
	361219		02.1)	LE TIME	CPTE	0720 NAME/NUMBER	PAG	0830 E		
	828131A	- MWGA		820	OS		81314	OF	1	
_	ETER (INCHES)]2	6]8	OTHER				WELL INTEGRITY YES NO N/A
] 1/4 3/8			OTHER .			CAP CASING	$\frac{x}{x} = $
TUBING ID (I		X 1/8	RISER (TOR)	TOP OF CASING	_	OTHER			LOCKED COLLAR	$\frac{1}{2} \frac{\overline{X}}{X} = 1$
	ENT POINT (MP)		FINAL DTW			T. CASING			TOC/TOR	
INITIAL DT (BMP)	7.	53 FT	(BMP)	7.73		KUP (AGS)	NA	FT	DIFFERENCE	0.35 FT
WELL DEP (BMP)	тн 38	.85 FT	SCREEN LENGTH	~10		HENT AIR	O	РРМ	REFILL TIME SETTING	NA SEC
WATER COLUMN	31.	32 FT	DRAWDOWN VOLUME	20.1	GAL MOT	WELL JTH	344	РРМ	DISCHARGE TIMER SETTI	NG NA SEC
CALCULAT			(initial DTW- final DTV TOTAL VOL.	W X well diam. squared	X 0.041) DRA	WDOWN/	1011	0.003	PRESSURE	
GAL/VOL	vell diameter squared	28 _{GAL}	PURGED	2.5 minutes X 0.00026 gal		AL PURGED	20.10		TO PUMP	NA PSI
FIELD PARA	METERS WITH P	ROGRAM STABI	LIZATION CRITERIA	(AS LISTED IN THE	QAPP)				PUMP	
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)	(+/- 10 mv)	INTAKE DEPTH (ft)	COMMENTS
0735	BEGIN PURG	ING					1		1	
0738	7,85	260.	15,66	2.078	6.73	0.41	16.6	-2-2	35	
0743	7.86	265	15,61	1.752	6.75	6.47	19.8	-15.2	35	Slowed purge rate
0748	7,79	190	15.75	1.765	6.78	o.50	10.7	-19.0	35	
0753	7.76	185	15.84	1.772	6.79	0.33	10.4	-21.1	35	
0758	7.77	195	15.88	1.780	6.80	6.34	10.1	-36.9	35	
0803	7,77	190	15.88	1.783	6.81	0.29	9.8	-21.9	35	
০১০১	7.75	185	15.86	1.787	6.81	0.26	10.6	-28.4	35	
0813	7,74	180	15.85	1.789	6.82	0.25	8-98	-32.6	35	
			15.87	1.789	6.85	0.24	7.23	- 35.9	35	
8180	7.73	185	13.01		6.02	0.21	7.20	32.1		
				Rim						
	F	INAL STABIL	IZED FIELD PARA	METERS (to app	ropriate signi	ficant figures[SI	<u> </u> F])		TEMP.: nearest de COND.: 3 SF max pll: nearest tenth (s	gree (ex. 10.1 = 10) (ex. 3335 × 3330, 0.696 = 0.696) xx. 5.53 = 5.5)
		Rim	16	1.79	6.9	0.2	7.2	-36	DO; nearest tenth (ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT	DOCUMENTATIO							<u></u>	ORC : 2 SF (44.7.4	
	TYPE OF PUMP TALTIC	×	<u>DECON FLUIDS USED</u> LIQUINOX	SILICON T	UBING		EL PUMP MATERIAL		X WLME	FER
SUBMI BLADI	ersible Der	∞ :	DEIONIZED WATER POTABLE WATER		NED TUBING	GEOPI	UMP MATERIAL ROBE SCREEN		X PID X WQME X TURB.N	
☐ WATT			NITRIC ACID HEXANE	HDPE TUB		OTHE			X) TURB. N X) PUMP OTHER	ALLE IN COLUMN TO THE PARTY OF
OTHE			METHANOL OTHER	OTHER		OTHE			FILTER	§ NO. TYPE
ANALYTIC	AL PARAMETERS		METHOD	FIELD	PRESE			AMPLE	QC	SAMPLE BOTTLE ID
X	VOC.	EIER	NUMBER 8260		MET HC		EQUIRED CO -40 m∫ vials	LLECTED Yes 082	COLLECTED	NUMBERS 828131A - 6 ωωωμο
						 -				
1										
1	SERVATIONS		MINADES OF C	ONE	l l	KETCH/NOTES				
PURGE WA		S NO	NUMBER OF GALL GENERATED	.ons <u>~2.5</u>	gal.			1		
NO-PURGE UTILIZED	METHOD YE	S NO	If yes, purged approximate to sampling or	ately 1 standing volume pr mL for this sample loc				Ru	~	
Dic	17		Jer: Print Name:	L. Kiburz						
Sampler Sig	1	1-2/1		2 11						
Checked By	:K(M &	122/11	Date: 8	-2-11						
Checked By	K(M 8	72411	Date: 8	-d-11	L			TUM	FI.OW CPO	FIGURE 4.17 UND WATER SAMPLING RECORD

LOW FLOW GROUNDWA	ATER SAMPLING RECORD	
PROJECT NAME Offsite LARAINGE Cleavers	MW-12 DATE 8/2	/11
PROJECT NUMBER 36/2/02/68	TART TIME O 951 1130	2
SAMPLE TIME S	TE NAME/NUMBER PAGE OF	
WELL DIAMETER (INCHES) 1 1 1 1 2 1 4 1 6 1 8	OTHER	WELL INTEGRITY YES NO N/A
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8	OTHER	CAP CASING — —
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	OTHER	COLLAR
	TICKUP (AGS) FT	TOC.TOR DIFFERENCE O.30 FT
WELL DEPTH 58.38 FT SCREEN LENGTH FT (6.00)		REFILL TIMER SETTING SEC
WATER DRAWDOWN	моитн РРМ	DISCHARGE TIMER SETTING SEC
CALCULATED 8.73 GAL TOTAL VOL. 2.73 GAL		PRESSURE TO PUMP PSI
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL) FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP)		
TIME		PUMP COMMENTS DEPTH (ft)
/025 BEGIN PURGING	10-20-0	
1030 5.16 210 15.02 2.212 6.9	7 2.00 876 80.1	
10/0 5/1 7/6 1/93 7 220 69	6 0.39 363 61.7 5 0.29 143 49.3	32
10116 11 210 1411 7231 19	6 0.27 70.6 41.2	
1050 5.16 210 14.69 2.231 6.9	7 0,27 35.4 33.0	
1055 5.16 210 14.84 2.227 6.9	7 0.26 16.3 25.2	
1100 5.16 210 14.99 2.224 6.9		
1105 5.16 210 14.97 2.222 6.9	9 0.24 5,36 14.7	
1110 5.16 210 15.03 2.218 7.00		
1115 5.16 210 14.96 2.206 7.0		7051
1122 SAMPLES Collected	Acr	TEMP: nearest degree (ex. 10.1 = 10)
FINAL STABILIZED FIELD PARAMETERS (to appropriate si		COND.: 3 SF max (ex. 3333 = 3330, 0.696 = 0.696) pH; nearest tenth (ex. 5.53 = 5.5) DO; nearest tenth (ex. 3.51 = 3.5)
15 2.210 7.0	0.2 4.0 /	TURB: 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101) ORP: 2 SF (44.1 = 44, 191 = 190)
The state of the s	NG/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL	WL METER SO GN ST
PERISTALTIC ZIQUINOX SILICON TUBING SUBMERSIBLE DEIONIZED WATER TEFLON LINED TUBING BLADDER POTABLE WATER TEFLON LINED TUBIN	PVC PUMP MATERIAL	WOMETER YSL SSG MP3
NITRIC ACID HDPE TUBING WATTERA HEXANE LDPE TUBING	TEFLON BLADDER OTHER ADDIAG	PUMP (SCOPUR) - PINE
OTHER	OTHER OTHER	OTHER
	ESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED.	QC SAMPLE BOTTLE ID COLLECTED NUMBERS
V VOC SZGOB W	HG(3)40ml	<u> </u>
/ 		
	TOUR TOUR DOTTE	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 72.591	SKETCH/NOTES	
CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately I standing volume prior	See Fig	mes.1
	1.	
Sampler Signature Print Name: Ryan Markon's Checked By: Brint on Shaw Date: August 22,	/c ·	
Checked By: Brind on Shaw Date: August 22,	2011	FIGURE 4.1
MACTEC		FLOW GROUNDWATER SAMPLING RECORD SDEC QUALITY ASSURANCE PROJECT PLAI
511 Congress Street. Portland Mame U41U1	MIS	ZZZ ZOMENT I MODOLONI KORDOL I DAN

LOW FLOW GROUN	DWATER SAMPLING RECORD
PROJECT NAME OFFSITE CARRIAGE CLEANERS	LOCATION ID P-15 DATE 8/2/11
PROJECT NUMBER 3612102168	START TIME END TIME 0930
SAMPLE ID 8281319 - DP15013 SAMPLE TIME 0921	SITE NAME/NUMBER 0566 PAGE OF)
	WELL INTEGRITY
WELL DIAMETER (INCHES)	OTHER YES NO N/A CAP OTHER CASING
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC)	LOCKED
INITIAL DTW 423	PROT. CASING STICKUP (AGS) FT DIFFERENCE O.40 FT
(BMP) 7. / FT (BMP) 7. C) FT	STICKUP (AGS) FT DIFFERENCE FT PID REFILL TIMER
(BMP) [6.0 L FT] LENGTH FT	AMBIENT AIR PPM SETTING SEC
WATER COLUMN II.85 FT ORAWDOWN CO. 1 GAL (initial DTW. final DTW.X well diam. squared X 0.0	MOUTH PPM 5 TIMER SETTING SEC
CALCULATED 6.49 GAL PURGED 2.34 GAL	DRAWDOWN/ TOTAL PURGED CO. 1 (6.001) PRESSURE TO PUMP PSI
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.0026 gal/mL) FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAI	P)
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pt (ms/cm) (+/-	I (units) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) NTAKE COMMENTS
3-5 Minutes Drawdown (mL/min) (+/- 3 degrees) (+/- 3%) (+/- 3%) OS2 5- BEGIN PURGING	0.1 drills) (+7-10%) (+7-10% 17 ma) (17-10 ms) DEPTH (ft)
	.83 2.00 /18 37.3
0635 4.23 200 13.85 1.722 6	.85 0.43 42.8 36.6
0840 4,23 200 14.08 1.755 6	.90 0.39 43.7 32.3
	.86 0.23 12.8 32.4
0000 7.20 200 7.000	.85 0.19 7.64 32.3
	.84 0.18 5.68 32.1
	.83 0.16 4.69 32.7
	.82 0.15 2.74 32.4 \\ .82 0.16 3.35 32.3 \\
	2121
0921 SAMPKIS COXTOCOD	Ren 273 Bton
FINAL STABILIZED FIELD PARAMETERS (to appropri	TEMP:: nearen degree (ex. 10.1 = 10) ate significant figures(SF)
14 1.770	618 0.7 2 4 3 7 DO: nearest tenth (e.g. 3.51 = 3.5) TURB: 3 SF mex, nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATION	[UKF 2-37 (see, 17) = 988, 171 = 170]
PERISTALTIC X LIQUINOX Y SILICON TUBINO	S. STEEL PUMP MATERIAL V. WL METER 5014:57
SUBMERSIBLE C DEIONIZED WATER TEFLON TUBING BLADDER POTABLE WATER TEFLON LINED 1 MITRIC ACID HDPE TUBING	
WATTERA HEXANE LDPE TUBING OTHER OTHER	OTHER OTHER OTHER
OTHER OTHER OTHER OTHER	OTHER FILTERS NO TYPE
PARAMETER METHOD FIELD NUMBER FILTERED	PRESERVATION VOLUME SAMPLE QC SAMPLE BOTTLE ID METHOD REQUIRED COLLECTED COLLECTED NUMBERS
V VOC 5260B V Vonions V	Various Various
1995	
PURGE OBSERVATIONS	SKETCH/NOTES
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED V SERVET OF GALLONS CONTAINERIZED OF GENERATED	, , , , , , , , , , , , , , , , , , , ,
NO-PURGE METHOD YES NO If yes, purged approximately i standing volume prior to sampling or Ni-mL for this sample location.	
	a. Ski
Sampler Signature: Bollow Print Name: Ryan Marke	- J-0
Checked BB Vand on Shaw Date: type 72,	2 71 FIGURE 4.17
MACTEC	LOW FLOW GROUNDWATER SAMPLING RECORD
511 Congress Street. Portland Mame 04101	NYSDEC QUALITY ASSURANCE PROJECT PLAN

		LOCATION ID A DAT		
PROJECT NAME OFFSITE L	mainge Cloner	DP-27	8/2/11	
PROJECT NUMBER 36 (210 21 6	=	START TIME END	TIME 1505	
SAMPLE ID 828/3/4-1) PZ	2015 SAMPLE TIME	SITE NAME/NUMBER 0560 > 82913(A	E OF 1	
		OTHER OTHER		WELL INTEGRITY YES NO N/A
WELL DIAMETER (INCHES) 1/8 1/8	1/4 3/8 1/2 5/8	OTHER	CAP CASII	×
TUBING ID (INCHES) 1/8 MEASUREMENT POINT (MP) TOP OF R		OTHER	LOCK COLL	ED =
Maraostania (Taris (Taris)	FINAL DTW 7 40	PROT. CASING	TOC/TOR	
	BMP) 1,77 FT	STICKUP (AGS)	FT DIFFERE	NCE FI
	CREEN C. C.4 FT	\	PPM SETTING	SEC
COLUMN II. O LET V	DRAWDOWN VOLUME Initial DTW- final DTW X well diam. squared X 0.041)	MOUTH S,	DISCHAR TIMER SE	
	FOTAL VOL. PURGED 2.6 GAL	DRAWDOWN/ TOTAL PURGED < 0.1	PRESSUR TO PUMP	
(column X well diameter squared X 0.041) (FIELD PARAMETERS WITH PROGRAM STABILITY	mL per minute X total minutes X 0.00026 gal/mL)			
TIME DTW (FT) PURGE RATE	TEMP. (°C) SP. CONDUCTANCE pH (u	nits) DISS. O ₂ (mg/L) TURBIDITY (ntu)		
3-5 Minutes 0.0-0.33 ft (mL/min)	(+/- 3 degrees) (113/cm) (+/- 0.1	units) (+/- 10%) (+/- 10% <10 ntu)	(+/- 10 mv) DEPTH (
1406: BEGIN PURGING	1/1/1/2 1/2/20 7	0 65: 700	671 .	
1413 7,48 200	14.42 1.899 7.0		87.1	
1418 7,48 200	13.89 1.878 7.1	2 0.45 1.34	70.3	
1423 7.49 200	15.75 1.872 1.0	01 0.26 1.15	46.1	
1428 7,49 200		92 0.23 1.49	27.0	
1433 7.49 200	13.67 1.858 6.1	64 0,20 1.33	15.1	
1438 7.49 200	14,05 1,845 6.	47 0.20 Z.95	10.3	
1443 7.49 200	14.14 1.843 6.5	56 0.20 4.19	5.6	
1448 7.49 200	14.10 1.845 6:	72 0.20 1.48	2.6	
1453 7.49 200	14.25 1.839 6.	76 0.21 3.11	0.7	
1458 7.49 200	14,22 1,837 6.	82 0.21 1.32	-0.6	
1500 SAMALOS CO	Mecha	Ke	215	Bon
	ED FIELD PARAMETERS (to appropriate	e significant figures[SF])	COND.:3 SF	est degree (ex. 10.1 = 10) max (ex. 3333 = 3330, 0.696 = 0.696) mith (ex. 5.53 = 5.5)
	14 1,840 6,	8 012 113	DO: nearest to	enth (ex. 3.51 = 3.5) max, nearest tenth (6.19 = 6.2, 101 = 101) (4.1 = 44, 191 = 190)
EQUIPMENT DOCUMENTATION			, <u>Mai</u>	EQUIPMENT USED
PERISTALTIC V LIQ	QUINOX SILICON TUBING	BING/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL	WL	METER Solarist
BLADDER POT	TABLE WATER TEFLON TUBING TABLE WATER TEFLON LINED TUB	PVC PUMP MATERIAL GEOPROBE SCREEN TEFLON BLADDER	₹ wo	METER YOU SSG MPS RB. METER HACK 2100P
WATTERA HE	TRIC ACID HDPE TUBING XANE LDPE TUBING	C OTHER INDIAN	PU	
	HER OTHER	OTHER OTHER		TERS NO TYPE
ANALYTICAL PARAMETERS PARAMETER			AMPLE QC	SAMPLE BOTTLE ID
NOC.	NUMBER FILTERED	METHOD REQUIRED CO	LECTED COLLEC	
PURGE OBSERVATIONS PURGE WATER YES NO	NUMBER OF GALLONS 2.600	SKETCH/NOTES	D. 4 11.	
CONTAINERIZED	GENERATED	1 -Now Tubin	a Twomile	U
UTILIZED YES NO	If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	<u> </u>		
Sampler Signature:	Print Name: Ryn Make Date: August 22,	insk.		
Checked By Ryandan Sha	Noate: August 22,	211		
MILLOTE		•	LOW FLOW GI	FIGURE 4.1 ROUNDWATER SAMPLING RECORI
511 Congress Street. Portland Maine 04101			NYSDEC QU	ALITY ASSURANCE PROJECT PLAI
Tara Congress Street I Striame Manie 07101				

LOW FLOW GROUNDWATER SAMPLING RECORD
PROJECT NAME CARRIAGE Clareas LOCATION ID DATE 8/2/11
PROJECT NUMBER START TIME // 2 5 END TIME 2
SAMELE TIME SITE NAMENIMER PAGE
8281314-DP2 3015 1213 0566-3828131A 1 OF 1
WELL DIAMETER (INCHES) 1 1 2 4 6 8 OTHER YES NO N/A
TUBING ID (INCHES) 1/8 3/8 1/2 5/8 OTHER CASING LOCKED
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER COLLAR
INITIAL DTW (BMP) FINAL DTW (BMP) S. 04 FT PROT. CASING STICKUP (AGS) FT TOC/TOR DIFFERENCE 0.35 FT
WELL DEPTH 20,50ft SCREEN AND FT AMBIENT AIR SETTING SEC
WATER COLUMN 15.46 FT DRAWDOWN VOLUME GAL MOUTH 24.7 / 5/1/1) WATER COLUMN GAL MOUTH PPM TIMER SETTING SEC
(initial DTW- final DTWX well diam. squared X 0.041) CALCULATED 7 5 1 DRAWDOWN/ PRESSURE TOTAL VOL. 7 1 DRAWDOWN/ PRESSURE
(column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP) TIME DTW.(FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE PH (units) DISS. O2 (mg/L) TURBIDITY (ntu) REDOX (mv) PUMP NTAKE COMMENTS
1/ME 0.0-0.33 ft 0
1/37. BEGIN PURGING
1140 5.04 150 15.55 1.674 6.85 0.47 16.3 6.8
1773 3.01 3.01 3.01 3.00 6.20 6.20 6.20 6.20
[130 2:04 130 130 1.610 6:03 0.30 1.11
1155 5.04 150 15.34 1.653 6.85 6.25 8.94 6.5
1200 5.04 150 15.32 1.660 6.86 0.25 7,97 -0.1
1205 5.04 150 15.26 1.667 6.85 0.26 7.52 -0.7 V
1213 Samples Collector
Reg
TEM!*::::::::::::::::::::::::::::::::::::
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF]) COND.:3 SF max (ex. 3333 = 3330, 0.696 = 0.696) pil: nonexis tent (ex. 5.53 = 5.5) 1D0: nonexis tent (ex. 5.53 = 3.5)
TURB: 3 SF max, newest tenth (6.19 - 6.2, 101 - 101) ORP: 2 SF (4.4, 1-4.4, 19) = 190)
EQUIPMENT DOCUMENTATION TYPE OF PLMP DECON FLUIDS USED TUBING/PUMP/BLADDER MATERIALS EQUIPMENT USED TUBING/PUMP/BLADDER MATERIALS
PERISTALTIC LIQUINOX SILICON TUBING S. STEEL PUMP MATERIAL PVC PUMP MATERIAL PUC PUMP MATERIAL PUC PUMP MATERIAL PLO
BLADDER POLABLE WALER HOPE TURING TEFLON BLADDER TURB. METER HORA SLOOP
OTHER OTHER OTHER OTHER OTHER OTHER
OTHER OTHER OTHER
PARAMETER NUMBER FILTERED METHOD REQUIRED COLLECTED COLLECTED NUMBERS
70000
M NA VANIOUS N VANIOUS
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS 37 5 SKETCH/NOTES PURGE WATER YES NO NUMBER OF GALLONS 37 5 SKETCH/NOTES
CONTAINERIZED GENERATED
VITILIZED YES NO If yes, purged approximately 1 standaring volume prior to sampling ormL for this sample location.
Sampler Signature Print Name: Ryan Markon 5/c. Checked By: Brandon Shaw Date: Augs + 22, 2011 FIGURE 4
Checked By: Brandon Shaw Date: Augst 22, 2011
LOW FLOW GROUNDWATER SAMPLING RECO
NYSDEC QUALITY ASSURANCE PROJECT PL
511 Congress Street, Portland Maine 04101

		LOW	ILOW GROU			DAT		/	
PROJECT NAME	Ffsite U	MARINGE C	leavens		ationid P-2	7	8/2	[11	
PROJECT NUMBE		68		STAF	SII	END	IME S Z	3	
SAMPLE ID	14-700	SAMP	LE TIME 549		NAME/NUMBER	SIZIA PAG		j	
825131	7 VI C	<u> </u>	-	_		ואוכוט	1 0		WELL INTEGRITY
WELL DIAMETER (INCHES)		2 4			OTHER			CAP	YES NO N/A
TUBING ID (INCHES)	_ /*	1/4 3/8			OTHER			CASING LOCKED COLLAR	- - - -
MEASUREMENT POINT (MP)	TOP OF	_	TOP OF CASING (OTHER		 .	TOC/TOR	<u> </u>
INITIAL DTW 7.5		FINAL DTW (BMP)	7,56		KUP (AGS)			DIFFERENCE	0,35 _{FT}
WELL DEPTH 17,		SCREEN LENGTH		— ,	EENT AIR	0.0	PPM \	REFILL TIME SETTING	SEC SEC
water COLUMN 70	, LOFT	DRAWDOWN VOLUME		MOU	WELL ITH		PPM	DISCHARGE TIMER SETTI	ING SEC
CALCULATED 1.	17	TOTAL VOL. PURGED	1 212	DRA	WDOWN/ AL PURGED	< 0.1 G		PRESSURE TO PUMP	PSI
GAL/VOL (column X well diameter squared)	X 0.041)	(mL per minute X total	minutes X 0.00026 gal/n	nL)		-			
FIELD PARAMETERS WITH PE	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (mu)		PUMP INTAKE	COMMENTS
3-5 Minutes 0.0-0.33 ft Drawdown	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)	(+/- 10 mv)	DEPTH (ft)	
15/2 BEGIN PURG	1/ ~	17 61	1 100	117	105	21.2	-/3.6		
1515 7.56	165	13.81	1.176	6.69	1,05 D.44	12.8	-14.6	}	
1520 7.56		13,47	1.140	(71	0.34	8.88	-14.9		
1525 7.56	115	137/	1.140	172	0.29	5.78	-15.0		,
1530 7.36	110	13.29	1.138	6,73	0,28	5.09	~141		
1540 751	165	13.29	1.139	6.73	0.29	3.95	~15.6		
1545 7.56	165	13.23	1.139	6.74	0.30	2.64	~16.3	1	
1273 1.06 1549 ZAMA	1.	(loctor)	1.131	011	0.00		1.0.7	~/5z	7. 10
1311 77 91	63 Co	1100101					<u> </u>	7 , 3 %	l or
			7.	con					
			- el	2					
F	INAL STABILI	ZED FIELD PARA	METERS (to appro	opriate signif	ficant figures[SF	r])		COND.: 3 SF max	grec (ex. 10.1 = 10) (ex. 3333 = 3330, 0.696 = 0.696)
		13	1.140	6.7	0, 7	7.6	-16	pII: nearest tenth (c DO: nearest tenth (TURB: 3 SF max.	ex. 3.51 = 3.5) nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATIO		-1 	/11/0			<u> </u>		ORP: 2 SF (44.1 =	
TYPE OF PUMP PERISTALTIC	المر 🔽	DECON FLUIDS USED IQUINOX	SILICON TU	BING		<u>'ERIALS</u> EL PUMP MATERIAL JMP MATERIAL		WL ME	FER Solwist
SUBMERSIBLE BLADDER	P0	EIONIZED WATER OTABLE WATER ITRIC ACID	TEFLON TUI TEFLON LIN HDPE TUBIN	ED TUBING	GEOPE	OBE SCREEN N BLADDER		WQ ME	
WATTERA OTHER	н	EXANE ETHANOL	LDPE TUBIN		OTHER	_ hand	<u>. </u>	PUMP OTHER	GEOPUMP PING
OTHER ANALYTICAL PARAMETERS		THER	OTHER		OTHER			FILTER	
PARAME	ETER	METHOD NUMBER	FIELD FILTERED	MET	THOD R	EQUIRED CO	AMPLE LLECTED	QC COLLECTED	
VOC	<u>C</u>	8260			61 (3)	14021 _	V	\underline{v}	Sea Ahove
	A					· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	95								
H / -	1								
PURGE OBSERVATIONS		MIRADED OF CALL	ons ~1.5		KETCH/NOTES		- ·	11 \	
PURGE WATER YE CONTAINERIZED		NUMBER OF GALL		7	Now	Tubing	Inst	411m	
NO-PURGE METHOD YE UTILIZED	S NO	If yes, purged approximate to sampling or	ntely I standing volume pric mL for this sample locat	ion.		J			
Sampler Signature:		Print Name:	Eyn Ank	Fousk					
Checked By: Brinds	n Shar	Date: Au	eust 22, 2	011					
MIN TAC			J ' -				LOWI	LOW GRO	FIGURE 4.1 UNDWATER SAMPLING RECOR
MINI	JIE								ITY ASSURANCE PROJECT PLA
511 Congress Street, Portian	d Maine 04101								

PROJECT NAME - CO / LOCATION ID > A - CC DATE CL /	
Offsite LANAINGE Clarens DP-28 8/2	-/11
PROJECT NUMBER 36 12 102 168 START TIME 0700 END TIME 8	10
SAMPLE ID SAMPLE TIME SITE NAME/NUMBER PAGE	,
828131A-DP28018 0808 OSLL-> 8281314 1 OF	WELL INTEGRITY
WELL DIAMETER (INCHES) 1 1 2 4 6 8 OTHER	YES NO N/A
TUBING ID (INCHES) 1/8 1/4 3/8 1/2 5/8 OTHER	CASING LOCKED
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER	COLLAR Z
INITIAL DTW 93 FT (BMP) 9.37 FT STICKUP (AGS) FT	TOC/TOR DIFFERENCE O. 25 FT
(BMP)	REFILL TIMER
WELL DEFIN 23.59 FT LENGTH ID FT AMBIENT AIR PPM	SETTING SEC
WATER 147-6 DRAWDOWN (O. (8.004) PID WELL	DISCHARGE TIMER SETTING SEC
(initial DTW- final DTW X well diam. squared X 0.041)	PRESSURE
CALCULATED Z.34 GAL PURGED 1.95 GAL TOTAL VOL. 1.95 GAL TOTAL PURGED (mL per injute X total minutes X 0.00026 gal/mL)	TO PUMP PSI
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE OAPP)	
TIME DTW (FT) PURGE RATE TEMP. (°C) SP. CONDUCTANCE pH (units) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) (+/- 10 mv) (+/- 10 mv) (+/- 10 mv) (+/- 10 mv) (+/- 10 mv)	INTAKE COMMENTS
070 8 BEGIN PURGING (#7-3 degrees) (+7-3%) (***	DEPTH (ft)
0000 1000 11000 17711 1177 7 7 7 1 22 7 1700	*
)
0728 9.37 150 15.80 1.758 6.73 0.42 8.14 57.4	
0733 9.37 150 15.82 1.751 6.74 0.37 6.84 16.1	
6738 9.37 150 15.78 1.747 2502 0.30 5.02 4.2	
0743 9.37 150 15.68 1.745 6.76 0.29 4.04 -19.8	
0748 9.37 150 15.70 1.738 6.77 0.30 4.21 -26.7	
0753 9.37 150 15.72 1.736 6.77 0.29 4.02 -33.6	
0758 9.37 150 15.74 1.734 6.77 0.31 3.41 -36.5	
0808 SAMPlos Gollecter Rem	218 Bron
FINAL STABILIZED FIELD PARAMETERS (to appropriate significant figures[SF])	TEMP.: nearus degree (ex. 10.1 = 10) COND.: 3 SF max (ex. 3333 = 3330, 0.696 = 0.696) p11; nearest tenth (ex. 5.53 = 5.5)
11. 1.721 68 0.3 3.4 -37	DO; nearest tenth (ex. 3.51 = 3.5) TURB; 3 SF max, nearest tenth (6.19 = 6.2, 101 = 101)
EQUIPMENT DOCUMENTATION	ORP: 2 SF (44.1 = 44, 191 = 190)
TYPE OF PUMP DECON FLUIDS USED TUBING/PUMP/BLADDER MATERIALS PERISTALTIC JUQUINOX SILICON TUBING S. STEEL PUMP MATERIAL	VI WI METER Solge'S
SUBMERSIBLE DEIONIZED WATER TEFLON TUBING PVC PUMP MATERIAL BLADDER POTABLE WATER TEFLON LINED TUBING GEOPROBE SCREEN	PID WOMETER YST SSG -4775
WATTERA HEXANE HOPE TUBING TEFLON BLADDER OTHER OTHER	V TURB. METER HALH 2000 V PUMP GEO PUMP ~ PINE
OTHER METHANOL OTHER OTHER OTHER OTHER	OTHER FILTERS NO. TYPE
ANALYTICAL PARAMETERS METHOD FIELD PRESERVATION VOLUME SAMPLE	QC SAMPLE BOTTLE ID
NUMBER FILTERED METHOD REQUIRED COLLECTED	COLLECTED NUMBERS
826017 N HEI	MS/MSO RE MASTER
	· · · · · · · · · · · · · · · · · · ·
PURGE OBSERVATIONS SKETCH/NOTES	
PURGE WATER YES NO NUMBER OF GALLONS & 1.85g - Collector MS/	M3D 1/00g w/ Somp/
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior UTILIZED TO Sampling or MA ml. for this sample location.	· dottle total
Sampler Signature Ryn Markowsk Now Tubing	MSD 1/6mg m/ 5mp/
Checked By: RMALON Shaw Date: August 22,2011	
MANA CTEC	FIGURE 4.17 FLOW GROUNDWATER SAMPLING RECORD
	SDEC QUALITY ASSURANCE PROJECT PLAN

APPENDIX C-6

PORE WATER SAMPLING RECORDS

GROUNDWATER/ PORE WA	TER GRAB SAMPLING RECORD
MACTEC 511 Congress Street, Portland Maline 04101 PROJECT NAME Off-Site Carriage C PROJECT NUMBER	START TIME 1215 END TIME
3612102168 SAMPLE ID 82813 A - PSO) to	SAMPLE TIME SITE NAME/NUMBER PAGE OF
SAMPLE TYPE VGRAB WELL/PIEZOMETER GEOPROBE V PORE WATER WELL DIAMETER (INCHES) 1 2 4 6 8 TUBING ID (INCHES) 1/8 1/14 1/3/8 1/2 5/8	OUTFALL OTHER WELL INTEGRITY YES NO NATA CAP CASING OTHER LOCKED
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) INITIAL DTW FINAL DTW (BMP) FT (BMP) FT	PROT. CASING STICKUP (AGS) FT DIFFERENCE FT
WELL DEPTH SCREEN LENGTH FT LENGTH FT DRAWDOWN	PID REFILL TIMER AMBIENT AIR PPM SETTING SEC PID WELL DISCHARGE SEC
COLUMN FT VOLUME (ipitfal DTW- final DTW X well diam. squared X 0.041 TOTAL VOL. PURGED GAL (column X well diameter squared X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	MOUTH PPM TIMER SETTING SEC) DRAWDOWN/ TOTAL PURGED TO PUMP PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) SP. CONDUCTANCE (mS/cm) PH (u	PUMP nits) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 1.20 141 - 16.5 \(\times 2 \) 88 0.53 \(\times 202 \) - 18.9 \(\times 20.1 \) 87 0.29 \(94.9 \) - 20.1 \(\times 20.1 \) \(\times 210.54 \) 87 0.29 \(\times 24.9 \) - 20.1 \(\times 20.1 \)
1240 Cilceted que Source e PS-1 1245 7.23 1.269 84	10. 13.93 1.74 -10.5 ~1' Surface water par
SAMPLE OBSERVATIONS: CLEAR COLORED 1.2.7 CLOUDY 8. EQUIPMENT DOCUMENTATION	4 13.9 1.7 -11 2 OTHER (see notes)
TYPE OF PUMP	NG/PUMP/BLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL BING GEOPROBE SCREEN TEFLON BLADDER OTHER OTHER OTHER OTHER OTHER FILTERS NO. TYPE
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVATI METHOD X Volatile Organic Compound 8620B HCI	ON VOLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS 1 / x 40 mL
NOTES	SKETCH
Top of Bank of stream and approx.	
Top of Bank of stream and approx.	
- Lollvited me ms bene also purge OBSERVATIONS	828131A-PSOIOI
PURGE WATER CONTAINERIZED VES NO PURGE METHOD YES NO UTILIZED VIES NO If yes, purged approximately 1 standing volume prior to sampling or Methods in the sample location.	
Sampler Signatures Print Name: Print Name:	FIGURE 4-10
Checked By: KCM Date: 9/13/11	GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

	GROUNDWATER/ PORE WATER (GRAB SAMPLING RECORD	D. 对各种的 1. 10 1. 10 1. 14 2. 14
MACTEC 511 Congress Street, Portland Maine 04101	PROJECT NAME Off-Site Carriage Cleaners PROJECT NUMBER 3612102168	sample location PSO 2 D START TIME 2:15	DATE II 16 10 END TIME 16 21
		SITE NAME/NUMBER	PAGE
SAMPLE TYPE GRAB WELL/PIEZOME	TER GEOPROBE PORE WATER OL	JTFALL OTHER	WELL INTEGRITY YES NO NAME
WELL DIAMETER (INCHES) 11		THER 1 4 11 CAP CASIN	$=$ $=$ \mathbb{A}
Toping is (mories)		THER LOCK COLL	
	INAL DTW PROT.	CASING TOC/TOR	
	BMP) FT STICKU	UP (AGS) FT DIFFEREN	
(BMP) FT L	ENGTH FT AMBIE	NT AIR PPM SETTING	SEC
COLUMNFT	RAWDOWN PID WE GAL MOUTH INITIAL DTW X well diam. squared X 0.041)		
CALCULATED GAL/VOL (column X well diameter squared X 0.041)	OTAL VOL. DRAWI	DOWN PRESSURI PURGED TO PUMP	PSI
FIELD PARAMETERS TIME DTW (FT) PURGE RATE	TEMP. (°C) SP. CONDUCTANCE pH (units)	PUMP DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE	COMMENTS
BEGIN PURGING	(inscin)	DEPTH (f)
3:45 - 250	9.02 1.800 6.95	<u> </u>	the odor & s heen
3:55 - 150	2 / - / - / - / - / - / - / - / - / - /	0,30 425 -113,2 11	odov, sheen
4:05 - 150	- 100 1111	0,20 202 -1/6,9 "	odor, Sheen
4:06 collect sampl	2 828/3/A-P502 7.60 1.191 8,29	15.29 1.94 -109.1	Surface Parameter
	8 1.19 CLOUDY 8,3	15.3 1.9 -110 NO	
EQUIPMENT DOCUMENTATION		P/BLADDER MATERIALS	EQUIPMENT USED
X PERISTALTIC X LI SUBMERSIBLE X D	QUINOX X SILICON TUBING EIONIZED WATER TEFLON TUBING	S. STEEL PUMP MATERIAL W. PVC PUMP MATERIAL PII	ATER LEVEL METER
WATTERA H	OTABLE WATER TEFLON LINED TUBING ITRIC ACID HDPE TUBING EXANE X LDPE TUBING	TEFLON BLADDER OTHER PORT WHEN PL	RB. METER PRACH 2100 P
OTHERO	ETHANOL OTHER OTHER		TERS NO. TYPE
ANALYTICAL PARAMETERS PARAMETER	METHOD NUMBER PRESERVATION	VOLUME REQUIRED SAMPLE QC	SAMPLE BOTTLE ID
X Volatile Organic Compound	##ETHOD METHOD	2/x 40 mL COLLECTED COLLECTION	See above
	•		
NOTES and sheen not	red on povementer sk	OLD PRINTE LD P.D.	P. 611
oder and sheen not (approx. 2 below as	ek water level)	Partiet	Penfield Rai.
		878131A-PS0201	
	·	1118006	- FIOW
· .		- SUDEQUO	T/12
PURGE OBSERVATIONS		I RONDE QUO CREEK	111
PURGE WATER YES NO	NUMBER OF GALLONS	11	
CONTAINERIZED	GENERATED		
NO-PURGE METHOD YES NO UTILIZED	If yes, purged approximately 1 standing volume prior to sampling ormL for this sample location.	1, 1	111
Sampler Signature: for Exiz Detiveil	er print Name: Eric Detweiler		FIGURE 4-10
Checked By: RCM	Date: 9//3/11		ER GRAB SAMPLING RECORD Y ASSURANCE PROJECT PLAN

			GROUNE	DWATER/ POR	E WATE	R GRAB SA	MPLING RE	CORD		
200 N A	ΛCT	EC	PROJECT NA	AME				E LOCATION	bank	DATE
1VI.				Off-Site Carri	age Clean	ers	12503	then the	d.crk.	11/16/10
511 Cong	ress Street, Portland	a Maine 04101	PROJECT N		02168		STAR	14:30		END TIME 17:30
			SAMPLE ID 82813	1A-PS03	01	SAMPLE TIME	SITEN	AME/NUMBER	`A-	PAGE OF OF
SAMPLE TYPE	≣ ∏GRAB	WELL/PIEZO	METER GEO	PROBE PORE W	ATER	OUTFALL	OTHER			WELL INTEGRITY
WELL DIAMET		 1] 2		8 📆	OTHER 14	61		CAP	YES NO N/A
TUBING ID (IN	CHES)	1/8	1/4 3/8	1/2	5/8 .	OTHER			CASING LOCKED	
MEASUREME	NT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	тос)	OTHER			COLLAR	
INITIAL DT (BMP)	w	FT	FINAL DTW (BMP)		FT PRO	OT. CASING CKUP (AGS)			TOC/TOR DIFFERENCE	; ; FÎ
WELL DEP (BMP)	тн	FT	SCREEN LENGTH		_	BIENT ÀIR		PPM	REFILL TIME! SETTING	R SEC
WATER COLUMN'		FT	DRAWDOWN VOLUME	TW X well diam. squared	GAL MOI	WELL UTH			DISCHARGE TIMER SETTI	NG . SEC
CALCULAT GAL/VOL (column X v	TED well diameter square	GAL ed X 0:041)	TOTAL VOL. PURGED		DRA GAL TOT	AWDOWN/ AL PURGED			PRESSURE TO PUMP	PSI
FIELD PARA	METERS								PUMP	
TIME	DTW (FT) BEGIN PUR	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)	COMMENTS
16:50	BEGIN FOR	2.50	8.39	1.575	6.58	1.12	559	-91.2		1
17:00		250	8.35	1.578	7.48	0.61	266	-98:2		light odor
17:10		250	8.33	1.575	7.42	0.65	214	-102.4		light odor
17:15		250	8.32	1.574	7,39	0.68	198	-104.6		light odor
17:21		200	7.92	1.085	8.18	15.74	2.7	-107.8		Surface parameter
SAMPLE OBSERV	ATIONS: CLE	AR	_COLORED	7.09 CLOUDY	8:2	/5.7 TURBID	2.7	0DOR	Rim	OTHER (see notes)
X PERIS	TERA ER	X DE	CON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER		UBING UBING INED TUBING BING	PVC GEO	PUMP MATERIAL PROBE SCREEN ON BLADDER ER POTE		WATE PID WQ M TURE PUMF OTHE	EQUIPMENT USED ER LEVEL METER METER YSE 556 METER Hach 200 P CRES NO. TYPE
ANALYTICAL	L PARAMETERS PARAME Volatile Organ	ETER	METHOD NUN 8620B		ERVATION ETHOD	VOLUME RE		SAMPLE DLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS SEL Above
NOTES TOO day not a	Le outsi	de to ob	oserve u spresen	shether or		SKETCH N	30301 De-351	47 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -		
PURGE OBSER PURGE WATER CONTAINERIZE NO-PURGE ME UTILIZED	R YES			imately 1 standing volume _mL for this sample Io		Fronts Cr	EQUOTT 2001	-WJA RO		FLOW
	for End	Detweiler	Print Name:	nic Detwe	Cinj	,	GROUND			FIGURE 4-10 R GRAB SAMPLING RECORD ASSURANCE PROJECT PLAN

5,8 % (3 44 <u>-</u>			GROUNI	DWATER/ POR	E WATE	R GRAB SAI	MPLI	NG RE	CORD		
MIN T	ACTI	EC .	PROJECT N					1	E LOCATION	<u>-</u> -	DATE
	ress Street, Portland		PROJECT N	Off-Site Carri	age Clean	ers		PSO4			END TIME
3 i Cong	, 233 Guest, Politalia		, NOUZOT N		02168				6 \$ 3		
			SAMPLE ID	MA		SAMPLE TIME		SITE N	AME/NUMBER	₹	PAGE OF 7
		·							· ·		<u> </u>
SAMPLE TYPE WELL DIAMET		WELL/PIEZOM	2	PROBE FOREW.	8 -	OUTFALL OTHER	-		· ·	CAP	WELL INTEGRITY YES NO N/A
TUBING ID (IN			1/4 3/8		5/8	OTHER				CASING	
•	NT POINT (MP)	TOP OF F	RISER (TOR)	TOP OF CASING (TOC)	OTHER				COLLAI	
INITIAL DT (BMP)	rw		FINAL DTW (BMP)			OT, CASING CKUP (AGS)				TOC/TOR DIFFERENC	E FT
WELL DEP	тн		SCREEN		PID ·				$\overline{}$	REFILL TIM	ER
(BMP)			LENGTH			BIENT AIR				SETTING	SEC
WATER COLUMN		FT	DRAWDOWN VOLUME (initial DTW- final D	TW X well diam. squared	GAL MOI	WELL UTH				DISCHARGE TIMER SET	
CALÇULA [.] GALVOL	_ ·	GAL	TOTAL VOL. PURGED		GAL TOT	AWDOWN/ TAL PURGED				PRESSURE TO PUMP	PSI
	well diameter squared			otal minutes X 0.00026 ga							
TIME	DTW (FT)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE	pH (units)	DISS. O ₂ (mg/L)	TURB	DITY (ntu)	REDOX (mv)	PUMP	COMMENTS
	BEGIN PURG	(mL/min)		(mS/cm)	· · · ·					DEPTH (ft)	
10:07		300	9.33	0,698	7.04	9,44	2	4.0	228,5	2,51	(+/-)
10:07		300	8.75	0.631	7.21	9.79	5		218.4	и	Do too mah.
. , , ,					·						abandon sample
							<u> </u>				
SAMPLE OBSERV	CLEA		COLORED	CLOUDY		TURBID			ODOR		OTHER (see notes)
	PE OF PUMP	DEC	ON FLUIDS USED			MP/BLADDER MAT					EQUIPMENT USED
	STALTIC MERSIBLE	X	JQUINOX DEIONIZED WATER POTABLE WATER			PVC	PUMP N	MP MATER IATERIAL SCREEN	RIAL	PID	TER LEVEL METER METER
WATT		🗆 N	ITRIC ACID IEXANE	HDPE TUE	BING		ON BLA				B. METER
OTHE	ER		METHANOL OTHER	OTHER OTHER		отні отні	ER				
ANALYTICA	L PARAMETERS										
*	PARAME	TER	METHOD NUM		ERVATION ETHOD	VOLUME RE	QUIRE		SAMPLE PLLECTED	QC COLLECTED	SAMPLE BOTTLE ID NUMBERS
X	Volatile Organi	c Compound	8620B	HCI	· · · · · · · · · · · · · · · · · · ·	3 x 40 mL					
H		· · · · · · · · · · · · · · · · · · ·							<u> </u>		
								<u> </u>			
NOTES						SKETCH					
Do	15 to	nia	h, abo	and e	٠.						
5	is to		المالية					<i>></i> -	- -		
	a surprise	•						-	7		
,		_					P	3 030	31 a	J	
		-							- V	ej av	}
									· }		
PURGE OBSE	RVATIONS								1		
PURGE WATE	:R YES	NO	NUMBER OF GAL	LONS				P.	50401-Y	5 9	and the same of th
CONTAINERIZ	"`		GENERATED		·				~0401 ~ 1		\sim
NO-PURGE ME	ETHOD YES	NO	If you primed and	vimataly 1 atom div - · · · l· ·	prior	•				~	•
UTILIZED			If yes, purged approx to sampling or	ximately 1 standing volume mL for this sample to							~
Damet : 2'			Danie.								FIGURE 4.45
Sampler Signature	:		Print Name:				GR	OUNDV	VATER/ PO	RE WATE	FIGURE 4-10 R GRAB SAMPLING RECORD
Checked By:			Date:			<u> </u>					ASSURANCE PROJECT PLAN

GROUNDWATER/ PORE WAT	ER GRAB SAMPLI	NG RECORD	
MACTEC 511 Congress Street, Portland Maine 04101 PROJECT NUMBER 3612102168/02.02	ners	SAMPLE LOCATION PS-04 START TIME 55	DATE 07-2011 END TIME 1 1 0 0 4
82813 A - PS6402	SAMPLE TIME	SITE NAME/NUMBER 828131A	PAGE 1 OF 1
TUBING ID (INCHES)			
	PROT. CASING STICKUP (AGS)	/ FT TOC/TOR	DE NA FT
	PID AMBIENT AIR	/ REFILL TIN	MER NA SEC
WATER	PID WELL MOUTH DRAWDOWN/ TOTAL PURGED	/ DISCHARGE TIMER SET	E NA SEC
FIELD PARAMETERS PURGE RATE THE SP. CONDUCTANCE AN AUTHOR	,	PUMP	
TIME DTW (FT) (mL/min) TEMP. (*C) (mS/cm) PT (unit	s) DISS. O ₂ (mg/L) TURE	BIDITY (ntu) REDOX (mv) INTAKE DEPTH (ff	COMMENTS
1038 — 350 4.29 1.14 7.13 1038 — 350 4.46 1.17 7.6 1048 — 350 4.52 1.18 7.6	1 1 100 2	1.8 6.3 7.9 6.3	DL840 DO12.8mp/L
1050 - Collecter 00re mater	50000		
1052 pump of 4 1.12 7.1	1.0 5	7.9 1.9	Ren 2/4/11
SAMPLE OBSERVATIONS: CLEAR COLORED CLOUDY	TURBID	ODOR	OTHER (see notes)
CONTINUE	ING PVC PUMP IIII GEOPROBE	UMP MATERIAL	EQUIPMENT USED ATER LEVEL METER D ppD ThermOVM 580B METER YSI 556 RB. METER HACH 2100P MF Geopmip HER UQ. XCI C D C METER TERS NO. NA TYPE
ANALYTICAL PARAMETERS PRESERVATION PRESERVATION	N	SAMPLE QC	SAMPLE BOTTLE ID
PARAMETER METHOD NUMBER METHOD X Volatile Organic Compounds 8620B HCL	VOLUME REQUIRE 2 X 40ml	COLLECTED COLLECTE	
rollected from -3 into stream Lank PID: 20,111-	SKETCH	headings:	Q1055
Stream Do: 14.4mg/L w/ DR 890	100 (or 89	10): 14.4 m	\$1L
pore nater Do: 2.8 mg/L Confirmed	Turkdity:	3.03 1 De): 14, 14 mg/L.
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS / CONTAINERIZED X GENERATED /	pt : 7.	799	
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior	Temp 0.0		
by and on Skay	OFF: 21.	٠٢	//,
Sampler Signature: Print Name:	GF		FIGURE 4-15 ER GMB SAMPLING RECOF Y ASSWANCE PROJECT P'

MACTEC PROJECT MANNE OF SHEET AND CONTRACT										
### STITE OF PRINCE OF PRI	MMAC	TEC	PROJECT NA		iage Class	ėre.	SAI	WPLE LOCATION		
SAPPLE TOPE	511 Congress Street, Por	tland Maine 04101	PROJECT NU		age Clean	ers	- STA	ART TIME		1111
SAMPLE TIPE GRADE WILLIAM SCHOOL SAMPLE TIME SAMPLE TIPE GRADE WILLIAM SCHOOL SAMPLE SCHOOL SAMPLE TIPE SCH	·		I NOOLOT NO		102168					
SAPILE TYPE GROPE WELL-PEZOVETRE GEOPERCIE GEO			SAMPLE ID		001		SIT		R	· · · · · · · · · · · · · · · · · · ·
THEN OF DECRETED IN THE PROPERTY FORT POPE OF PROPERTY OF THE PROPERTY FORT POPE OF PROPERTY OF THE PROPERTY FORT POPE OF PROPE OF PROPERTY OF THE PROPERTY FORT POPE OF PROPERTY OF THE PROPERTY FORT POPE OF PROPERTY OF THE PROPERTY FORT POPE OF PROPERTY OF THE PROPERTY FORT POPE OF PROPERTY OF THE PRO	•		628	1314-120	501	11:41		828131	A	OF J
WELL CAMPETER (INC-RES) 1 2 3 5 5 5 5 5 5 5 5 5	SAMPLE TYPE GRAF	WELL/PIEZOME	TER GEOF	PROBE 4 POREW	ATER -	OUTFALL	1 OTHER			WELL INTEGRITY
TUBENS 10 (NOTES) 18 18 19 19 19 19 19 19	, 				. =	114				
DEPOSITION OF THE DEPOSITION OF STREET TOO TO PERSON TOO TO PERSON TO THE PROPERTY OF THE PROP									CASING	
PROPERTY PROPERTY	,				' =		-	<u>_</u> _		
WELL DEPTH PROCESS ORDERS TO SCREEN PROCESS ORDERS TO PROCESS ORDERS TO PROCESS ORDERS TO PROCESS ORDERS TO PROCESS ORDERS ORDERS ORDERS ORDERS ORDERS ORDERS ORDERS ORDERS ORDERS ORDERS ORDER ORDERS				TOP OF CASING						
WATER COLUMN POWEL PROVIDED SECONDATE OF THE PARTY OF THE								FT		F
NOVER POLICIA TO COLUMN PRODUCT TO PLANE SETTING SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUCT TO PLANE SECOND PRODUC										
COLLIMA COLLINE CALCULATE CALCULATE CALCULATE CALCULATE CALCULATE CALCULATE CALCULATE CALCULATE CALCULATE COLLINE CALCULATE CALCULATE CALCULATE COLLINE CALCULATE COLLINE CALCULATE COLLINE CALCULATE COLLINE	(BMP)`			B47	_FT_ AMS	BIENT AIR		PPM	SETTING	SE
CALMATID CALAV								PPM		NG SE
COLUMN C				W X well diam. squared		WDOWN/				-
FIELD PARAMETERS THE DTW (FT) PURGERATE (CILIMIN) TEMP. (C) SP. CONCINCTANCE (MISSING) DIES. O. (MISSING) D	GAL/VOL	GAL P	URGED		GAL TOT					P
Time		GG. GG. G. G-1) (II	r per minute ∧ tota		air i l llaj		•	-		
			TEMP (°C)	SP. CONDUCTANCE	pH (units)	DISS, O ₂ (mg/L)	TURBIDITY (ntu) REDOX (mv)		COMMENTS
1.06				(mS/cm)	F(
1.56	BEGIN PI		- 6 -	,	···	Γ =	T		г т	*
ANALYTICAL PARAMETER PARAMETER PARAMETER PARAMETER METHOD NUMBER OF GALLONS SCONTANERIZED NO-PURGE OBSERVATIONS PURGE O	11:06 -		8.91	1.825	6.7	2.17	71000	<u> -64.3</u>	~	
TOTHER DECONMENTATION DECONDENSITY OF THE PROPERTY OF THE PROP	11:16 -	250	8.91	1.864	6.66	2.19	740	71,4		
AMPLE OSSERVATIONS CLEAR COLORED OCCUPY 1.8 1.2 53.7 SUNFACE WISHING OTHER (Now notice) TURBING 31.2 53.7 SUNFACE WISHING OTHER (Now notice) OTHER (Now notice) OTHER (Now notice) TURBING USE NOTICE (P. PUMP) DECON PLUDS USED LUCINOS TURBING PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO POTHER DECON PLUDS USED LUCINOS TO TURBING SLOOM TURBING DEF MATERIALS SUPPLIES MATERIAL POTHER DECON PLUDS USED LUCINOS TURBING DEF MATERIALS POTHER DECON PLUDS USED LUCINOS TURBING DEF MATERIALS POTHER DECON PLUDS USED LUCINOS TURBING DEFENDENCE VIOLENTE OTHER DECON PLUDS USED LUCINOS TURBING DEFENDENCE PURSE VIOLENTE DESON DEFENDENCE NO METER DECON PLUDS USED LUCINOS TURBING DEFENDENCE PURSE VIOLENTE DESON DEFENDENCE VIOLENTE DESON DEFENDENCE PURSE WATER METHOD NUMBER PRESERVATION METHOD OTHER VIOLENTE DECON PLUDS USED LUCINOS TURBING DEFENDENCE OTHER DECON PLUDS USED WISH LEVEL WE TEND	1125 -	250	8,78	11827	Calolo	2.46		2 -72,2		
AMPLE OSSERVATIONS CLEAR COLORED OCCUPY 1.8 1.2 53.7 SUNFACE WISHING OTHER (Now notice) TURBING 31.2 53.7 SUNFACE WISHING OTHER (Now notice) OTHER (Now notice) OTHER (Now notice) TURBING USE NOTICE (P. PUMP) DECON PLUDS USED LUCINOS TURBING PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO PERISTALTO POTHER DECON PLUDS USED LUCINOS TO TURBING SLOOM TURBING DEF MATERIALS SUPPLIES MATERIAL POTHER DECON PLUDS USED LUCINOS TURBING DEF MATERIALS POTHER DECON PLUDS USED LUCINOS TURBING DEF MATERIALS POTHER DECON PLUDS USED LUCINOS TURBING DEFENDENCE VIOLENTE OTHER DECON PLUDS USED LUCINOS TURBING DEFENDENCE PURSE VIOLENTE DESON DEFENDENCE NO METER DECON PLUDS USED LUCINOS TURBING DEFENDENCE PURSE VIOLENTE DESON DEFENDENCE VIOLENTE DESON DEFENDENCE PURSE WATER METHOD NUMBER PRESERVATION METHOD OTHER VIOLENTE DECON PLUDS USED LUCINOS TURBING DEFENDENCE OTHER DECON PLUDS USED WISH LEVEL WE TEND	11235 -	200	8,68	1,794	6.67	2,53	18.0	-73.3		
DECONFEUDO COLORED COORED COUNTY STORED STREET TURBID STATE OF THE Rose notes) EQUIPMENT DOCUMENTATION DECONFEUDOS SILUCON TURBING STEEL PLAMP MATERIAL SUBMERSIBLE SILUCON TURBING SILUCON TURBING POPRASE WATER POTABLE WATER TECHNI LINED TURBING POPRASE WATER POTABLE WATER THEON LINED TURBING POPRASE WATER POTABLE WATER THEON LINED TURBING POPRASE WATER POTABLE WATER THEON LINED TURBING POPRASE WATER POTABLE WATER THEON LINED TURBING POPRASE WATER POTABLE WATER THEON LINED TURBING POPRASE WATER POTABLE WATER POPRASE WATER POPR	11:44 -	NΑ	8.121	0.693	7.83	16,29	31,2	-53.7		Surface worter
EQUIPMENT DOCUMENTATION TYPE OF PLANE PERSON FLUIDS USED LICUNIOX PERSON FLUIDS USED LICUNIOX PERSON FLUIDS USED LICUNIOX PERSON FLUIDS USED LICUNIOX SAMPLE POTABLE WATER POTA	SAMPI E OBSERVATIONS:	 	9		7.8		31.2	-54	nen	/
PERISTALTIC SUDUNDOX SUBMERSIBLE BLADDER SUDON TUBING SULCON TUBING TEFLON TUBING TEFLON TUBING THEON TUBING										
SUMMARISE BLOODER BLOODER STATE ON USE THE CONTROL OF THE STATE OF THE	X PERISTALTIC	XLIC	UINOX		TUBING	S. S1	TEEL PUMP MA		WATE	R LEVEL METER
OTHER OTHER		☐ PC	TABLE WATER	TEFLON L	INED TUBING	GEO	PROBE SCREE	N	WQ M	ET,ER 151
OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER ELLEBS NO. TYPE ANALYTICAL PARAMETERS PARAMETER WETHOD NUMBER PRESERVATION METHOD NUMBER COLLECTED VOLUME REQUIRED COLLECTED COLLECTED SAMPLE COLLECTED COLLECTED SAMPLE BOTTLE ID NUMBERS SEE HOWE NOTES NO TYPE ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVATION WETHOD VOLUME REQUIRED COLLECTED COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE COLLECTED SAMPLE SEE THOUSE SEE THO		HE HE	XANE	X LDPE TUE				initr	PUMP	·
PARAMETER METHOD NUMBER PRESERVATION VOLUME REQUIRED COLLECTED SAMPLE OC COLLECTED SAMPLE BOTTLE ID NUMBERS SEE ALVOYE NOTES NOTES NOTES PURGE OBSERVATIONS PURGE WATER CONTAINERIZED OR GENERATED SEE NO GENERATED OF GALLONS GENERATED OF MALTON TO Sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sampling of MALTON This sample location.								upier		
NOTES NO	ANALYTICAL PARAMETI	RS							-	
NOTES No oder or sheen on Sample / purged whaten PURGE OBSERVATIONS PURGE WATER CONTAINERIZED OF SNO GENERATED GENERATED GENERATED OF STANDARD SERVED OF STANDARD	PAR	AMETER	METHOD NUME			VOLUME RE	EQUIRED			
NOTES No oder or sheen on sample / purged water PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or NA-mil. for this sample location.	Volatile O	ganic Compound	8620B			7 1/2 40 ml		COLLECTED	COLLECTED	See Above
No oder or sheen on Sample / purged water PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or 1 Am. for this sample location.	X Volatile O	gante compound	00200			- 1/2×40 IIIE		v		7 - 100.0
No oder or sheen on Sample / purged water PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or 1 Am. for this sample location.										
No oder or sheen on Sample / purged water PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or 1 Am. for this sample location.										
No odor or sheen on sample / purged water PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or 11 Am. for this sample location.					· ·					
No odor or sheen on sample / purged water PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or 11 Am. for this sample location.										
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS CONTAINERIZED GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.		01				SKEICH ~~				
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.	11000	on er zi	wen c	ž.	-					- NIA Dan L
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.	Sav	uple/pun	sed w	nsto						OIGI EN TI
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.			3					floa	$-\Gamma B$	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.]]	7	
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.								V	1 ,7	T. 1
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS GENERATED NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or MA mL for this sample location.						N		}	· (E-	vonc.
PURGE WATER CONTAINERIZED NO-PURGE METHOD UTILIZED VES NO NUMBER OF GALLONS GENERATED S28131A-13:0561						j			10	reek
CONTAINERIZED GENERATED NO-PURGE METHOD UTILIZED GENERATED GENERATED SZEIZIA-IS: 050; Which is sample location.	PURGE OBSERVATIONS					A		1	_	
CONTAINERIZED GENERATED NO-PURGE METHOD UTILIZED GENERATED GENERATED SZEIZIA-IS: 050; Which is sample location.	PUD OF WALLET	YES 'NO / N	IUMBER OF GALL	ONS —	-				<u> </u>	
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling or 11 Am. In this sample location.	. –	/							\rightarrow	>
OTICIZED to sampling or the sample location.	·					Q.	98100	1 .n. >6	Ā	٠
OTICIZED to sampling or the sample location.	NO-1 ONGE WIETTIOD		yes, purged approxim	mately 1 standing volume	prìor	2	U) 15/1	1-12,0°24	\sim	
Tric Dehus ler		<u>- </u>								
Sampler Signature: for Thi Detwei Print Name: Pet New 120		5 5	w D	ic Detwei	1er					
/ / GROUNDWATER/ PORE WATER GRAB SAMPLING RE	Checked By: RCM.		Date: 9/	, , (GROUN			R GRAB SAMPLING R

GROUNDWATER/ PORE WATER GRA	B SAMPLING RECORD
MACTEC PROJECT NAME Off-Site Carriage Cleaners	SAMPLE LOCATION DATE
511 Congress Street, Portland Maine 04101 PROJECT NUMBER 3612102168/02.02	START TIME 73/2 / 125 END TIME 1330
SAMPLE ID SAMPLI	TIME SITE NAME/NUMBER PAGE
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE X PORE WATER OUTFALL WELL DIAMETER (INCHES) 1 2 4 6 8 X OTHER	YES NO N/A
TUBING ID (INCHES) 1/8 X 1/4 X 3/8 1/2 5/8 OTHER	CASING X LOCKED X COLLAR X
MEASUREMENT POINT (MP) TOP OF RISER (TOR) TOP OF CASING (TOC) OTHER	
INITIAL DTW / FINAL DTW / PROT. CASIN (BMP) / FT STICKUP (AG	
WELL DEPTH / SCREEN / PID (BMP) / FT LENGTH / FT AMBIENT AIR	REFILL TIMER NA SEC
WATER / DRAWDOWN / PID WELL COLUMN / FT VOLUME / GAL MOUTH	/ DISCHARGE NA SEC
CALCULATED	
FIELD PARAMETERS PURGE RATE SP. CONDUCTANCE ALLOWED DIES CO.	PUMP
TIME DTW (F1) (mL/min) TEMP. (*C) (mS/cm) pri (urits) DISS. C	2 ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS DEPTH (ft)
1330 BEGIN PURGING 4.05 1.073 7.68 0.	70 64.6 -86.5 AZ DA890 DUE/6
791	36 53.6 -88.6
	20 26.0 -92. 2
1312 - Coffeetod Samples	
Ran	1/
SAMPLE OBSERVATIONS: CLEAR COLORED TUP EQUIPMENT DOCUMENTATION	RBIDODOROTHER (see notes)
TYPE OF PUMP	DER MATERIALS S. STEEL PUMP MATERIAL WATER LEVEL METER PIO pub ThermooVM 560B GEOPROBE SCREEN X WQ METER YSI 556 TEFLON BLADDER X TURS. METER HACH 2100P TURS. METER HACH 2100
OTHER OTHER OTHER OTHER	OTHER OTHER OTHER FILTERS NO. NA TYPE
ANALYTICAL PARAMETERS	DANDIE OG DANDIEDOTTIE ID
METHOD	DLUME REQUIRED SAMPLE QC SAMPLE BOTTLE ID NUMBERS
X Volatile Organic Compounds 8620B HCL 2	X 40ml See Above
	STROOM PARANTAS
- STROAM DO= 15,9 ng/2 - PORE Water DO= 1.6 ng/L	Forp: 0.27°C
- PORE WATER DO= 1.6 mg/L	[356: 1.79] ns/sn
J.	\ \[\begin{align*} \
	Diss 02= 15.83 m/
	L) REPOK = -23.3 my
PURGE OBSERVATIONS	
PURGE WATER YES NO NUMBER OF GALLONS /	/ PED= 7PP6
No. No.	
NO-PURGE METHOD YES NO UTILIZED X If yes, purged approximately 1 standing volume prior to sampling or NA ml. for this sample location.	
Sampler Signature Print Name: Ryw Markovsk	FIGURE 4-10 GROUNDWATER/ PORE WATER GRAB SAMPLING RECORD
Shaw 52-28-2011	NYSDEC OLIALITY ASSLIBANCE PROJECT PLAN

GROUNDWATER/ PORE WATE	ER GRAB SAMPLING RECORD
PROJECT NAME Off-Site Carriage Cleane PROJECT NUMBER 3612102168/02.02 SAMPLE ID SAMPLE ID	START TIME 0745 SAMPLE TIME SITE NAME/NUMBER PAGE
828131A-PS0802	0945 828131A 1 OF 1
SAMPLE TYPE GRAB WELL/PIEZOMETER GEOPROBE X PORE WATER	OUTFALL OTHER WELL INTEGRITY YES: NO N/A
	OTHER 1/4" CAP X CASING X LOCKED X COLLAR
TUBING ID (INCHES)	OTHER LOCKED X COLLAR X
INITIAL DTW / PINAL DTW / P	ROT, CASING / TOC/TOR NA
WELL DEPTH / SCREEN / P	TICKUP (AGS) / FT DIFFERENCE FT ID REFILL TIMER NA 050
WATER / DRAWDOWN / P	ID WELL / DISCHARGE
(initial DTW- final DTW X well diam. squared X 0.041) CALCULATED / TOTAL VOL. / D	RAWDOWN/ / PRESSURE
GAL/VOL	OTAL PURGED / TO PUMP PSI
FIELD PARAMETERS PURGE RATE SP. CONDUCTANCE	PUMP) DISS. O ₂ (mg/L) TURBIDITY (ntu) REDOX (mv) INTAKE COMMENTS
TIME DTW (F1) (mL/min) TEMP. (*C) (mS/cm) PH (units	DEPTH (ft)
0920 BEGIN PURGING	3 5.00 35.7 -3.2 22'
0932 \ 225 1.79 1.812 6.8	
0937 \ 225 1.72 1.809 6.8	
0945 SAMPLES COLLECTED RES	
progr	1/21/1.
SAMPLE OBSERVATIONS: CLEAR COLORED Brown 3 1/2 CLOUDY V	TURBID ODOR OTHER (see nots)
	PUMP/BLADDER MATERIALS
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER PRESERVATION METHOD X Volatile Organic Compounds 8820B HCL	VOLUME REQUIRED COLLECTED NMBERS 2 X 40ml Se Above
NOTES 14.5 mg/L	Staron Panametrs
- StreamBO = 14.5 mg/L colonimoter - port water DO = 5.8 mg/L	Strong Panametris Potomp= 0.05°C Posc= 1.990 ns/cm PopH= 7.71 Diss 0= 14.21mg/L
PURGE OBSERVATIONS	To Tunb = D.D not take
CONTAINERIZED X GENERATED	73 DOS = 97.8 TO ORP = 1.5
NO-PURGE METHOD YES NO If yes, purged approximately 1 standing volume prior to sampling orNAmL for this sample location.	LI PID -> DID NOT TAKE
sampler Signature: A A Print Name: Ryn Mrkowsh	FIGURE 4-10
Checked By: BY WIN Shaw Date: 02-28 2011	GROUNDWATER/ PORE WATER GRAB SIPLING RECORD NYSDEC QUALITY ASSURAN©PROLIECT PLAN

APPENDIX C-7

EXTERIOR SOIL VAPOR SAMPLING RECORDS

		SOIL VA	POR SAM	APLING RECO	RD		
PROJECT NAME:	Off-	-Site Carriage Cleaners				SV-04 DATE: 11/2	29/10
PROJECT NO./TAS	SK NO.:	3612102168-02.0	1		NYSDEC		=1/10
PROJECT LOCATI	ION:	Penfield, New York		SAMPLER NAM		ic Detweiler	
WEATHER COND	ITIONS (AM)):NA-		SAMPLER SIGN		fin Defin)
WEATHER COND	TTIONS (PM)	: partly cloudy, u	vindy 42°			DATE: 12	-01-2010.
	 			Record Information			
SOT VAROR	C A B ATOT YE				· · · · · · · · · · · · · · · · · · ·		
SOIL VAPOR S	SAMPLE	SOIL VAPOR S	SAMPLE	SOIL VAPOR S	AMPLE	SOIL VAPOR S	SAMPLE
Flow Regulator No:	2675	Flow Regulator No:	2659	Flow Regulator No:	2710	Flow Regulator No:	2714
Flow Rate (mL/min);	33	Flow Rate (mL/min);	33	Flow Rate (mL/min):	33	Flow Rate (mL/min):	33
Canister Serial No:	321	Canister Serial No:	311	Canister Serial No:	310	Canister Serial No:	318
Start Date/Time:	11/29/2010	Start Date/Time:	11/29/2010 15:05	Start Date/Time:	11/29/2010	Start Date/Time:	11/29/2010
Start Pressure ("Hg):	-30	Start Pressure ("Hg):	- 28	Start Pressure ("Hg):	-28.5	Start Pressure ("Hg):	-29.5
Stop Date/Time:	11/29/2010	Stop Date/Time;	16:11	Stop Date/Time:	11/29/2010	Stop Date/Time:	11/29/2010
Stop Pressure ("Hg):	-30	Stop Pressure ("Hg):	-28	Stop Pressure ("Hg):	-5	Stop Pressure ("Hg):	-3
Sample ID: @28131A	GV0101°	Sample ID: 828131A	-GV0201	Sample ID: 828131A	-GV0301	Sample ID: 828/3/ 4	-GV0401
		Oti	her Samplin	g Information:		<u> </u>	
Property Type	Commercia	Property Type	commercial	Property Type	Commercial	Property Type	Commercial
Helium Test Conducted?	No	Helium Test Conducted?	NO	Helium Test Conducted?	No	Helium Test Conducted?	No
Potential Vapor Entry Points:	NA	Potential Vapor Entry Points:	AN	Potential Vapor Entry Points:	ΑÚ	Potential Vapor Entry Points:	NA
Ground Surface:	asphalt	Ground Surface:	asphalt	Ground Surface:	grass	Ground Surface:	grass
Noticable Odor:	No	Noticable Odor:	No	Noticable Odor:	No	Noticable Odor:	NO
PID Reading (ppb):	O Oppm	PID Reading (ppb):	0.0 ppm	PID Reading (ppb):	pugeair 1.2 ppm	PID Reading (ppb):	purge air
Intake Depth;	~6'	Intake Depth:	1 .7 1	Intake Depth:	~ 5. ¹	Intake Depth:	MNKNOWE
Commens: tight soi	Is? sample . dvavi	Commens: tight 500	13? Sample v draw	Commens: Sample Slowly (lim	collected ited flow)	Commens: NO San vestvic	
Comments/Location SV-01 and	n Sketch: SV-02	locations wo	ton blux	t draw air/v	apor Ctiz		
15V-03 dreu	u sampl	e stowly (limit	ited ainf	(mu)	1 - 0		.,,
154-04 dren	s Sampl	e as normal	CwHhin 1	1/2 hr)		M3	
₩ Did not S	ع الم س طد.	Summa Sample	es to	lab for and	dress.	12-01-6	610.
#M/	AC	ΓΕС΄	1.5		•		URE 4-19
511 Congress Sta	reet, Portland	i, ME 04101	NY	SO SDEC QUALIT		R SAMPLING I	

	SOIL VAPOR IMPLANT SAMPLING RECORD												
:21 :48		NΛ	Δ		٦٢	קר	\overline{C}	Project N	Name:	Off-Site Carr	age Cleaners		Boring ID: SV-01
ALE		LAT	7 3	L	ال ار	سلا		Project L		Penfield, New	York_		Page No.
<u> </u>	511 C	ongress S						Project N		3612102168	Client:	NYSDEC	of:
Borit	ng Loc	eation:				516		Refusal l		<u> </u>	Total Depth:	<u>, ' </u>	Bore Hole ID/OD: 2"
Weat	her:	4				m-		Soil Dril			Method:	Direct Push	Casing Size: ヘン"
Subc	ontrac				nagle			P.I.D (e)		10.8	Protection Level:	D	Sampler: BAS
Drill		tet	45					Date Sta		15-211	Date Completed:		Sampler ID/OD:
		Model:			0 01			Logged 1	Ву:	BAS			Hammer Wt/Fall:
1		Elevatio		WN	Kine			Water La	evel: 🛷 🐧	tys	Time:	NR BS	Hammer Type:
		rough %		741				Initial H	e%: 🤊		Final He %:	1 1 5 111	
	 _	le Inforn	nation	l		Monitor					Qye	erburden Drilling	Notes:
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace Lab Sample	Collected Lab Sample ID	JUSCA Group	Soil Vapor Diagram	* genh	ed water 20	v-e e .3	15'to f'bys-
10											Soil Vapo	r Point Constru	ction Notes:
												1	The word book.
						.				/ car	constructions	Letea W	14h road book.
lì													
<u> </u>							İ			Y		;	
1	i i		1		. 	\dashv				Š		:	
-					\vdash	\dashv				Ì		· ·	,
12								1		X	•	:	
15							ĺ					•	
1										ایم	rd 4" to	ution tot	my with red cap.
<u> </u>	-		•				1			, , , , , , , , , , , , , , , , , , ,		- 1	
										Š		:	, · · · ·
<u> </u>						_					•	i	
3											ated ben	mite.	
<u> </u>	1								図 叢 🛭	/hydr	ated ben		·
									图整	1 / 1			•
4	1									∦ /	•		,
() /			
-	-									∛/			·
1						\vdash		0.5-		¥			(40,5)
<u> </u>	-							,,,		c/m	inless 8	rel 30	ren (~0,5')
15										/ 717			
Ľ					ļ	\square							
										/			
		1								Ž	1		•
	1						1	5 -		8	ass bead	→	
1								} -	Www.XW	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	1							1					
						 			William (M		9	_
-	-	1				\vdash			Winni Winni	اردحه سسيه	pendi bre	speel	port
					_			l ia			Charles Co	1	
7 7	dalate 			<u> </u>	<u> </u>	<u> </u>			MARKAN N	M			
MO	TES:	⑻.	1		٠.	<i>ale</i>							FIGURE 4-11
		W	4	to	N	<u>ت را</u> س					SOI	L VAPOR IMI	PLANT SAMPLING RECORD
													SURANCE PROGRAM PLAN

SOIL BORING LOG												
	Project Name: Off-Site Carriage Cleaners	Boring ID: 5V-0/										
MIACIEC	Project Location: Penfield, New York	Page No.										
511 Congress Street, Portland Maine 04101	Project No.: 3612102168 Client: NYSDEC	of:										
Boring Location: North of Soft	Refusal Depth: NA Total Depth:	Bore Hole ID/OD: 2"										
Weather: 42°E, sunny.	Soil Drilled: 6 Method: Direct Push	Casing Size: NA										
Subcontractor: Nothnagle	P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS										
Driller: teff &	Date Started: - 15 - 18 Date Completed: 11-15-10	Sampler ID/OD:										
Rig Type/Model: 660 DT	1 2 1 1 2 1	Hammer Wt/Fall:										
Reference Elevation: Monitoring Sample Information Monitoring	Water Level: WMKNewn Time: 0930	Hammer Type:										
Sample Number Sample Number Penetration/ Recovery (feet) PID Field Scan PID Headspace Lab Tests Performed Lab Sample ID	Sample Description and Classification	USCS Group Symbol Remarks										
2 3 4	fine SAND of some course sand, dump; poorly graded, in Dense, sp 2-35 light gray clean fine sand, down to met, some course sand, Poorly graded, sp, in Dense 3.5-4; Saturated fine SAND; poorly graded, sp, trace soit;	F1										
5 2.5 /2.0	to the grey; find SANDY SILT; poorly graded, damy to dry, loose to mouse, trace a course sand, NP - 157.	SM Sm										
NOTES	KA											
NOTES;	NYSDEC QUALITY A	FIGURE 4-4 SOIL BORING LOG SSURANCE PROGRAM PLAN										

	SOIL VAPOR IMPLANT SAMPLING RECORD																
الأينية الأينية	AM -	N A			71	ריח		7	Project N			riage Cleaners			Boring 1D:	SV-	-02
	3	LVI	\mathcal{L}	Ŋ	لر	ĿĿ		ار	Project L	ocation:	Penfield, Ne	w York			Page No.	ì	
	511 C	ongress S	Street,	Portla	nd Ma	ine 04	101		Project N		3612102168			NYSDEC	of:	<u>`</u>	
Bori	ng Lo	cation:	NN	0	[ile	١		Refusal I	** ;		Total Depth:	b		Bore Hole ID	/OD:	24
Wear		49.		•	ww				Soil Dril			Method:		Direct Push	Casing Size:		24
Subc	ontra	ctor:			nagle	-,-			P.I.D (eV	/):	10.8	Protection Lev	el:	D	Sampler:		BAS
Drill	er:	1	26	ĵ.	5-				Date Star	rted: -	5-2010	Date Complete	ed:	1-15-2010	Sampler ID/C	D:	
Rig 1	l'ype/	Model:		60	10	DT	·		Logged E	Ву:	BAS	Checked By: (3575	11/24/10	Hammer Wt/	Fall:	,
		Elevatio		W.	y KA	· ~~	سب		Water Le		Sum	Time: 10	00	,	Hammer Typ	e:	
	_	hrough ?							Initial He	%: -	• · γ···	Final He %:	~				
<u> </u>	Samp	le Inform	nation	1		Mon	itoring		_				Overl	burden Drilling	Notes:		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	SPT Blows/6"	N Value	PID Field Scan	PID Headspace	Lab Sample Collected	Lab Sample ID	USCS Group	Soil Vapor Diagram							
-		<u> </u>	,		4	_		-	1		<u> </u>	Sail V	anor	Point Constru	rtion Notes		
١.			ľ														:
-											/ Cov	ionele w	·H	Read	30%		
١,																	
Į.	'																
1								ľ			9			:			
<u> </u>								ļ.			Š				•		
ĺ											3			1			
L]		}				-							i	• •		
							-							*			
1											Soli	d tetlon	tul	sing with	red cap		
	1													J			•
							-	ļ,						•			
-	┧.																
1						<u> </u>											
	1					· · ·					hre	trated be	m f	onte	. :		
					<u> </u>				· ·		/"			•			
<u> </u>	-				<u> </u>						1 /						:
						<u> </u>					1 /						
	1	•				<u> </u>	·	1			∛/			•			
1			1					1			\mathbb{V}						
									05-		Á		دوعدا	Comingo	ا سر مر ــ		
	1										12/0	inless 81		30100	(4.5)		
		•	1				1										
	1										§ /						
5	1				<u> </u>	-			•		3						
置	1	ļ.				-	1		ح		8	مينا وري	اد اير.				
					-						1 /91	ass bea	موس روس				,
	-				<u> </u>	-	1							•			
						<u> </u>	-		1		8						
<u> </u>	-				<u> </u>	<u> </u>			-		Ň .						
1					<u></u>						ex	rend ble	4	el borns	ا		
<u> </u>							<u> </u>		6-		X	·		. 1	-		
	TES:								-								
1 /	(A)	net	مار	o_wr	ا م	10	S	بانتدي	عه				OIT	WANCH YAY	ስ ልእነው ቀላል		IGURE 4-11
'	بن	NO L	CAT		-									VAPOR IMP			
							•					TA K ON THE	⊸ V	UALITY ASS	プロスタスプしか よ	NUG	MANUTLAN

.

		SOIL BORING LOG	
WNIAC	TEC	Project Name: Off-Site Carriage Cleaners	Boring ID: 5V-02
	TIC	Project Location: Penfield, New York	Page No. i
511 Congress Street, Portland	i Maine 04101	Project No.: 3612102168 Client: NYSDEC	of:
Boring Location: NW 6.	t sate	Refusal Depth: NA Total Depth:	Bore Hole ID/OD: ~2"
Weather: 49 F	Summ	Soil Drilled: Method: Direct Push	Casing Size: NA
Subcontractor: Nothna		P.I.D (eV): 10.8 Protection Level: D	Sampler: BAS
Driller: Tothe S.	•	Date Started: 1 -15 - 2016 Date Completed: 11-15 - 2016	Sampler ID/OD: ——
Rig Type/Model:	610DT,	Logged By: BAS Checked By: おうち いんしん	Hammer Wt/Fall:
	Know	Water Level; WN Known Time: 1000	Hammer Type:
Sample Information	Monitoring		
Sample Number Sample Number Penetration/ Recovery (feet)	PID Field Scan PID Headspace Lab Tests Performed Lab Samplo ID	Sample Description and Classification	USCS Group Symbol Remarks
	0.1	6.5-3 Lt tan / Ltp/Na Brown fine SAND. Withace A course sand, poorly graded, damp Stand; Luce 3-4 Light gray / Light olive gray fine SAND or some stat, poorly graded, damp, St, whense	
5 2.1	۷۰.۱	4-6 grey to olive grey fine SAND of SILT, poorly graded i domp to dry; whense to Dense, sp; some moisture or he'	SM
2.0			
		PAS	
NOTES:		NYSDEC QUALITY A	FIGURE 4-4 SOIL BORING LOG SSURANCE PROGRAM PLAN

SOIL VAPOR IMPLANT SAMPLING RECORD												
WN/ACTEO	Project Name:	Off-Site Carriage Cleaners Boring ID: 5V-03										
	Project Location:	Penfield, New York Page No.										
511 Congress Street, Portland Maine 04101	Project No.:	3612102168 Client: NYSDEC of:										
Boring Location: NW of Sale		A Total Depth: 6 Bore Hole ID/OD: 21										
Weather: 36't, daudy,		Method: Direct Push Casing Size: 2 **										
Subcontractor: Nothnagle	P.I.D (eV):	10.8 Protection Level: D Sampler: BAS										
Driller: Jeff Sy	Date Started:	6-2010 Date Completed: - 6- 0 Sampler ID/OD:										
Rig Type/Model: (661 pr	Logged By:	BAS Checked By: \$55 \\ \2\ Hammer Wt/Fall: -										
Reference Elevation:	Water Level: WW	Enown Time: - NR - 855 11/24 Hammer Type: -										
He Breakthrough %: Sample Information Monitoring	Initiat Fig 76:	Final He %: Overburden Drilling Notes:										
- · · · · · · · · · · · · · · · · · · ·		Overburger Diffining Notes.										
Deptil (feet bgs) Sample Number Penetration/ Recovery (feet) SPT Blows/6" N Value PID Field Scan PID Headspace Lab Sample Collected	Lab Sample ID Soil About Diagram Soil Vapor Diagram											
		Soil Vapor Point Construction Notes:										
		/ Concrete with 4" Alumhum Road Bol										
		/										
		<i>:</i>										
5	0.5°	- solid 1/4" letter tubing with cap. Impliated bentanite Stainless steel screen (-0.5")										
NOTIES:	5.5	Trans beads - expendible sheel point										
Dhot drawn to	Scale	FIGURE 4-11 SOIL VAPOR IMPLANT SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN										

							SOIL BORING LOG				
الكلان		NAA	<u>ار (</u>	ויי		_	Project Name: Off-Site Carriage Cleaners	Boring II	D: 5V-03		
		IVL/AC	ا بر	ĿJ	巴	اب	Project Location: Penfield, New York	Page No.			
	 511 C	ongress Street, Portla	nd Ma	ine 04	101		Project No.: 3612102168 Client: NYSDEC	of:			
		cation: NW 5				•	Refusal Depth: NA Total Depth; V		le ID/OD: u 2 11		
Veat	·	36.F. 00					Soil Drilled: Method: Direct Push	Casing S			
Subc	ontrac	etor: Noti	nagle				P.I.D (eV): 10.8 Protection Level: D	Sampler:			
Orille	er:	Jeff >	-				Date Started: 11-16-2010 Date Completed: 11-16-610	Sampler	ID/OD; —		
tig T	[ype/N	Model: 661	01	7			Logged By: BAS Checked By: BS Val 10	Hammer	Wt/Fall: —		
efer	rence l	Elevation: 6	<u>. K.</u>	_			Water Level: Time:	Hammer	Type: —		
- 1	Sampl	le Information		Mot	nitoring						
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	PID Field Scan	PID Headspace	Lab Tests Performed	Lab Sample ID	Sample Description and Classification	USCS Group Symbol	Remarks		
<u> </u>			Zo.	ì			D-1:5 Rram to Dt Brown cromfine SAND, damp, with some to little Still, poorly graded, touse; sp	ĦII			
2		1-2/4.0					1.5 - & et temmer clean fine SAND, damp, louse, ND, poorly graited.				
4			Loi,				4-5 same as 115-4				
5		2-2/2.0					5-5.5 Lt grey to Brack Fill marterial, SAND with Ash and wood fragments, West graded, damp, MP, moense 5-5-6 Reddish Brown fine to a course SAND, poorly gradel, NP, dump to moss. Sound to little fires	Fr'l			
							MS				

FIGURE 4-4 SOIL BORING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN

APPENDIX D

SLUG TEST AND HYDRAULIC CONDUCTIVITY DATA

NYSDEC - Site No. C828131A

MACTEC Engineering and Consulting, P.C., Project No. 3612102168

Appendix D: Summary of Hydraulic Conductivity Test Results

Location	Well	Hvorslev	Bouwer-Rice	Springer-Gelhar	K values				
Identification	Type	(ft/day)	(ft/day)	(ft/day)	Geometric				
						V = Ki/n (ft/day)	V (ft/year)	Geometric mean	
DP-22*	Overburden 10 PSI - RHT	8.1	6.2		7.1	0.028	10	4	=V (ft/year)
Screening	Overburden 10 PSI - RHT	3.7	3.0		3.3	0.013	5		
Interval:	Overburden 20 PSI - RHT	2.3	2.0		2.2	0.009	3		
18' - 22' bgs	Overburden 30 PSI - RHT	1.4	1.2		1.3	0.005	2		
10 22 053	Overburden 30 PSI - RHT	1.4	1.2		1.3	0.005	2		
	Overburden 10 PSI - RHT	13.9	11.2		12.5	0.050	18	15	=V (ft/year)
	Overburden 10 PSI - RHT	11.9	9.2		10.5	0.042	15		
<u>DP-30*</u>	Overburden 20 PSI - RHT	9.6	7.8		8.6	0.035	13		
Screening	Overburden 20 PSI - RHT	10.0	7.9		8.9	0.035	13		
Interval:	Overburden 30 PSI - RHT	8.8	7.2		7.9	0.032	12		
18' - 22' bgs	Overburden 30 PSI - RHT	11.6	9.5		10.5	0.042	15		
	Overburden 38 PSI - RHT	12.7	10.0		11.3	0.045	16		
	Overburden 37 PSI - RHT	14.6	12.5		13.5	0.054	20		
	Overburden 10 PSI - RHT	9.9	7.5		8.6	0.035	13	21	=V (ft/year)
DP-31*	Overburden 10 PSI - RHT	22.8	17.2		19.8	0.079	29		
Screening	Overburden 20 PSI - RHT	13.2	10.7		11.9	0.048	17		
Interval:	Overburden 20 PSI - RHT	25.4	18.0		21.4	0.085	31		
18' - 22' bgs	Overburden 30 PSI - RHT	16.2	11.9		13.9	0.055	20		
	Overburden 30 PSI - RHT	16.6	12.5		14.4	0.058	21		
DP-22**	MW - FHT-1	11.6	8.2		9.8	0.039	14	18	=V (ft/year)
Screening	MW - FHT-2	13.7	10.3		11.9	0.047	17		
Interval:	MW - RHT-1	17.6	11.5		14.2	0.057	21		
9.6' - 19.6' bgs	MW - RHT-2	16.6	10.7		13.3	0.053	19		
DP-23**	MW - FHT-1		32.9	41.7	37.1	0.148	54	45	=V (ft/year)
Screening	MW - FHT-2		32.8	40.0	36.2	0.145	53		•
Interval:	MW - RHT-1		16.2	23.0	19.3	0.077	28		
10.8' - 20.8' bgs	MW - RHT-2		28.9	38.7	33.4	0.134	49		
DP-28**	MW - FHT-1	4.6	3.6		4.0	0.016	6	7	=V (ft/vear)
Screening	MW - FHT-2	4.9	3.7		4.3	0.017	6		(10,5001)
Interval:	MW - RHT-1	6.3	4.6		5.4	0.022	8		
13.6' - 23.6' bgs	MW - RHT-2	5.4	4.0		4.7	0.019	7		
MW-11**	MW - FHT-1	5.1	1.0	191	191	0.915	334	222	=V (ft/vear)
Screening	MW - FHT-2			159	159	0.762	278	222	= v (it/year)
Interval:								1	
49.9' - 59.9' bgs	MW - RHT-1 MW - RHT-2	1		101 84	101 84	0.486 0.403	177 147	-	
				_	_			220	\$7 (Pd)
<u>MW-12**</u>	MW - FHT-1			159	159	0.765	279	238	=V (ft/year)
Screening	MW - FHT-2			170	170	0.817	298	1	
Interval:	MW - RHT-1			111	111	0.530	194		
48.6' - 58.6' bgs	MW - RHT-2			114	114	0.545	199		

Notes:

cm/sec = centimeters per seconds MW = monitoring well

FHT = Falling Head Test

RHT = Rising Head Slug Test

ft/day = feet per day ft/year = feet per year

K = hydraulic conductivity

V = velocity (in either ft/day or ft/year)

Notes (Continued):

Geometric Mean of Shallow Overburden = Geometric Mean of Deep Overburden =

13 ft/year 230 ft/year

n = porosity, using assumed porosity of 0.25 for the overburden locations

bgs = below ground surface

^{*} indicates results were obtained through pneumatic slug testing of 1" direct push explorations, conducted by MACTEC in January 20

^{**} indicates results were obtained through solid slug testing on five 2-inch ID monitoring wells by MACTEC in August 2011

Off-Site Carriage Cleaners Site - Penfield, NY Hydraulic Gradient Calculations

(Change in Head)

 $i = \overline{\text{(Shortest distance between observed or interpreted heads)}}$

Hydraulic Gradient (i) calculations from 8/2011 contour data.

Deeper Overburden

MW-11 to MW-12

1.19 = difference in head

1025 = distance between wells (feet)

i = 0.0012

Geometric Mean of Overburden Gradient

i = 0.0010

Shallow Overburden

DP-23 to DP-28

0.2 = difference in head

290 = distance between wells (feet)

i = 0.0007

Shallow Overburden

DP-15 to DP-23

0.79 = difference in head

710 = distance between wells (feet)

i = 0.0011

Shallow Overburden

DP-28 to DP-27

0.68 = difference in head

800 = distance between wells (feet)

i = 0.0009

Shallow Overburden

DP-10 to DP-23

1.32 = difference in head

1025 = distance between wells (feet)

i = 0.0013

Shallow Overburden

DP-12 to DP-23

1.08 = difference in head

990 = distance between wells (feet)

i = 0.0011

Created by: BAS 11/1/11 Checked by: CRS 12/1/11

Appendix D: Pneumatic Slug Test Information

Location ID	Screening Interval	Depth to Water	Pressure within the rods	Number of Tests
DP-22	18' to 22'	7.3' bgs	10 psi	4
DP-22	18' to 22'	7.3' bgs	20 psi	1
DP-22	18' to 22'	7.3' bgs	30 psi	2
DP-30	18' to 22'	9.1' bgs	10 psi	4
DP-30	18' to 22'	9.1' bgs	20 psi	2
DP-30	18' to 22'	9.1' bgs	30 psi	2
DP-30	18' to 22'	9.1' bgs	38 psi	2
DP-31	18' to 22'	13.1' bgs	10 psi	5
DP-31	18' to 22'	13.1' bgs	20 psi	3
DP-31	18' to 22'	13.1' bgs	38 psi	3

SETUP	DATE	AQUIFER TEST NO. 19-27-6. PERFORMED BY: 845
MONITORING WELL ID	01-77-201	
DATE OF TEST	01-77-2011	
TYPE OF TEST	pneumatic	
HERMIT TYPE/SERIAL#		
TEST#	bp-22-6	
DATA COLLECTION RATE	169	
THANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR ·		
OFFSET		
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	7.3'	
WELL DEPTH (FT./TOC)	~ 22' bgs	
XD DEPTH (FT.TOC)	-12' gr	
INITIAL XD REFERENCE	- '	
SLUG DEPTH (FT./TOC)	·	
TIME OF SLUG PLACEMENT	1	:
TIME OF WL EQUILIBRATION	NA	
NEW XD REFERENCE)	
START TIME OF TEST	1541	
END TIME OF TEST	1545	
NOTES:		

SETUP	DATE	AQUIFER TEST NO. 10-72-10 PERFORMED BY: 2/15
MONITORING WELL ID	DP-22	
DATE OF TEST	01-17-2011	
TYPE OF TEST	pnehmutic	
HERMIT TYPE/SERIAL#		
TEST#	DP-22-10	
DATA COLLECTION RATE	10%	,
TRANSDUCER		
SERIAL#	12345	·
PSIG .	10	
SCALE FACTOR		
OFFSET	-	·
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	7.31 bys	
WELL DEPTH (FT./TOC)	~22° by	
XD DEPTH (FT.TOC)	-12' Has	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	_	
NEW XD REFERENCE	-	
START TIME OF TEST	1549	
END TIME OF TEST	155	
NOTES:		· ·

SETUP	.DATE	AQUIFER TEST NO 1 22-10-1
MONITORING WELL ID	DP-22	
DATE OF TEST	01-17-2011	
TYPE OF TEST	pheumatic	
HERMIT TYPE/SERIAL#		
TEST#	18-2210-1	
DATA COLLECTION RATE	100	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	·
SCALE FACTOR	-	
OFFSET	-	
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-7.3' bys	,
WELL DEPTH (FT./TOC)	~ 12' to ge	
XD DEPTH (FT.TOC)	-12' bas	
INITIAL XD REFERENCE	_ /	
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE		
START TIME OF TEST	1542	
END TIME OF TEST	1554	
NOTES:		•

SETUP	DATE	AQUIFER TEST NO. 18211 - 2 PERFORMED BY: 245
MONITORING WELL ID	DP-22	
DATE OF TEST	01-17-201	
TYPE OF TEST	pneumatio	
HERMIT TYPE/SERIAL#		
TEST#	DP2210-Z	
DATA COLLECTION RATE	log	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	>	
OFFSET	-	
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	173 bgs	
WELL DEPTH (FT./TOC)	~ 22' bys	
XD DEPTH (FT.TOC)	~12' bgg	,
INITIAL XD REFERENCE	_ 0	
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT	•	
TIME OF WL EQUILIBRATION	, ,	
NEW XD REFERENCE	_	·
START TIME OF TEST	1554	
END TIME OF TEST	1554	
NOTES:		

SET⊎P	DATÉ	AQUIFER TEST NO. DPZ210-3 PERFORMED BY: PAS
MONITORING WELL ID	DP-22	
DATE OF TEST	61-17-11	
TYPE OF TEST	pneumatic	
HERMIT TYPE/SERIAL#		
TEST #	DP2210-3	
DATA COLLECTION RATE	lôq	
TRANSDUCER		
SERIAL #	12345	
PSIG .	10	
SCALE FACTOR	-	
OFFSET		
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-7.3 634	
WELL DEPTH (FT./TOC)	" 22' 15q's	
XD DEPTH (FT.TOC)	~12'by	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	_	
START TIME OF TEST	1556	
END TIME OF TEST	1557	
NOTES:		

SETUP	DATE	AQUIFER TEST NO 1022 10-4 PERFORMED BY: DAS
MONITORING WELL ID	bp-22	
DATE OF TEST	01-17-11	
TYPE OF TEST	pneumatiz	
HERMIT TYPE/SERIAL#		
TEST#	DP2210-4	
DATA COLLECTION RATE	109	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR		
OFFSET		
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	7.3 hus	
WELL DEPTH (FT./TOC)	-221	
XD DEPTH (FT.TOC)	12 bgs	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT		·
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	,	
START TIME OF TEST	1602	
END TIME OF TEST	1604	
NOTES:		

SETUP	DATE	AQUIFER TEST NO 17-22- PERFORMED BY: 745
MONITORING WELL ID	DP-22	
DATE OF TEST	01-17-211	
TYPE OF TEST	pneumatiz	
HERMIT TYPE/SERIAL#	_	
TEST#	DP-22-7	, , A = 1, a - 1
DATA COLLECTION RATE	166	
THANSDUCER	0	
SERIAL#	12345	
PSIG	~ 20	
SCALE FACTOR	-	
OFFSET		
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	7.3 54	
WELL DEPTH (FT./TOC)	~22' beys	
XD DEPTH (FT.TOC)	-12° 251	
INITIAL XD REFERENCE	_	
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE		
START TIME OF TEST	1545	
END TIME OF TEST	1549	

SETUP	DATE	AQUIFER TEST NO. 12220-1 PERFORMED BY: 1245
MONITORING WELL ID	DP-22	
DATE OF TEST	01-17-2011	
TYPE OF TEST	pneumatic	
HERMIT TYPE/SERIAL#		
TEST#	D02220-1	
DATA COLLECTION RATE	loq	
TBANSDUCER		
SERIAL#	12345	
PSIG	70	
SCALE FACTOR		
OFFSET		·
. INPUT CHANNEL	-	
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-7.3 by	
WELL DEPTH (FT./TOC)	~22'bsk	
XD DEPTH (FT.TOC)	~12'bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE		
START TIME OF TEST	1604	·
END TIME OF TEST	1606	
NOTES:	· .	

SETÜP	DATE	AQUIFER TEST NO. 1 22-30-1 PERFORMED BY:
MONITORING WELL ID	DP-22	
DATE OF TEST	01-17-11	
TYPE OF TEST	pneumatin	
HERMIT TYPE/SERIAL#		
TEST#	DP2230-1	
DATA COLLECTION RATE	109	
TRANSDUCER		
SERIAL#	12345	
PSIG	30	
SCALE FACTOR		
OFFSET		
INPUT CHANNEL	—	
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~7.3° m	
WELL DEPTH (FT./TOC)	-22' by	
XD DEPTH (FT.TOC)	-12' by	
INITIAL XD REFERENCE		·
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE		
START TIME OF TEST	1557	
END TIME OF TEST	1601	
NOTES:		·

SETUP	DATE	AQUIFER TEST NO 12230- 2 PERFORMED BY:
MONITORING WELL ID	bp-22	
DATE OF TEST	01-17-11	·
TYPE OF TEST	pneumatic	
HERMIT TYPE/SERIAL#		
TEST#	DP 2230-2	
DATA COLLECTION RATE	109	
TRANSDUCER"		
SERIAL#	12345	
PSIG	3 0	·
SCALE FACTOR	-	
OFFSET		
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	47.31 bas	
WELL DEPTH (FT./TOC)	-22 by	
XD DEPTH (FT.TOC)	-/2 bgs	
INITIAL XD REFERENCE	- 1	
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT		·
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE		V
START TIME OF TEST	1606	
END TIME OF TEST	1610	
NOTES:		

SETUP	DATE	AQUIFER TEST NO. DP 3010 -1. PERFORMED BY:
MONITORING WELL ID	10-20	
DATE OF TEST	01-20-11	·
TYPE OF TEST	11-20-11 phelimatic	
HERMIT TYPE/SERIAL#		
TEST#	NP3010-1	
DATA COLLECTION RATE	ી હતું	
TRANSDUCER	Ò	
SERIAL#	12345	·
PSIG	18	
SCALE FACTOR	-	·
OFFSET		
INPUT CHANNEL	_	
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	·
STATIC WATER LEVEL (FT./TOC)	~9.1 bas	
WELL DEPTH (FT./TOC)	-22'bg	
XD DEPTH (FT.TOC)	151 bes	
INITIAL XD REFERENCE	_ '	
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	_	
START TIME OF TEST	1148	
END TIME OF TEST	1152	
NOTES:		

SETUP	DATE	AQUIFER TEST NO. Nois-2. PERFORMED BY: PA
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	pneumativ	
HERMIT TYPE/SERIAL#	_	
TEST#	DP3010-2	
DATA COLLECTION RATE	lop	
THANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	400	
OFFSET	_	
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	•
STATIC WATER LEVEL (FT./TOC)	~9.11 bgs	
WELL DEPTH (FT./TOC)	-22" -91	
XD DEPTH (FT.TOC)	-15 bgs	
INITIAL XD REFERENCE	_	
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE		
START TIME OF TEST	152	
END TIME OF TEST	1152	
NOTES:	·	

SET⊎P	DATE	AQUIFER TEST NO. 103010-3
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	pntumativ	·
HERMIT TYPE/SERIAL#	_	
TEST#	DP3010-3	
DATA COLLECTION RATE	lop	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	_	
OFFSET		·
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11bgs	
WELL DEPTH (FT./TOC)	-22 1 mgs	
XD DEPTH (FT.TOC)	-15 bgs	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	-	
START TIME OF TEST	1154	
END TIME OF TEST	1155	

SET⊎P	DATE	AQUIFER TEST NO. DE NO. 4
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	pneumativ	
HERMIT TYPE/SERIAL#		
TEST#	DP3010-4	The state of the s
DATA COLLECTION RATE	109	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	,	
OFFSET		
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11bgs	
WELL DEPTH (FT./TOC)	-22 1 mg	
XD DEPTH (FT.TOC)	~15 bg1	
INITIAL XD REFERENCE	- "	
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	-	
START TIME OF TEST	1155	
END TIME OF TEST	1156	

SETUP	.DATE	AQUIFER TEST NO. DP3020-1
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	preumativ	
HERMIT TYPE/SERIAL#	_	
TEST#	DP3020-1	- I with a same desired in a s
DATA COLLECTION RATE	109	
TRANSDUCER		
SERIAL#	12345	
PSIG	70	·
SCALE FACTOR		
OFFSET	-	
INPUT CHANNEL	_	
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11bgs	1
WELL DEPTH (FT./TOC)	-22' mgs	
XD DEPTH (FT.TOC)	-15 bgs	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	. •	
NEW XD REFERENCE		
START TIME OF TEST	1157	
	1158	

SETUP	DATE	AQUIFER TEST NO. 103020 2 PERFORMED BY: 345
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	pneumativ	
HERMIT TYPE/SERIAL#	-	
TEST#	DP3020-2	
DATA COLLECTION RATE	lop	
TRANSDUCER		
SERIAL#	12345	
PSIG	20	
SCALE FACTOR	_	
OFFSET		
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	2
STATIC WATER LEVEL (FT./TOC)	~9.11bgs	
WELL DEPTH (FT./TOC)	-22' Lg!	·
XD DEPTH (FT.TOC)	~15 bgs	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE		
START TIME OF TEST	1158	
END TIME OF TEST	1200	

SETUP	DATE	AQUIFER TEST NO. 113030-1 PERFORMED BY: 445
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	pneumativ	,
HERMIT TYPE/SERIAL#	_	
TEST #	DP3030-1	
DATA COLLECTION RATE	lop	
TRANSDUCER		
SERIAL#	12345	
PSIG	30	
SCALE FACTOR		
OFFSET		·
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11bys	
WELL DEPTH (FT./TOC)	-221491	
XD DEPTH (FT.TOC)	-15 bg1	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE		·
START TIME OF TEST	1200	
END TIME OF TEST	1202	

SETUP	DATE	AQUIFER TEST NO. DP30 30-2 PERFORMED BY: B45
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
. TYPE OF TEST	pntumativ	
HERMIT TYPE/SERIAL#	_	
TEST #	DP3030-2	
DATA COLLECTION RATE	lop	
TRANSDUCER		
SERIAL#	12345	
PSIG	30	
SCALE FACTOR	_	
OFFSET		
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11 bgs	
WELL DEPTH (FT./TOC)	-22 1 291	
XD DEPTH (FT.TOC)	-15 bg1	
INITIAL XD REFERENCE	-	
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	·	
START TIME OF TEST	1202	
OTATT TIME OF TEOT	1204	

SETUP	DATE	AQUIFER TEST NO DP XXX -1 PERFORMED BY: 1944
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	pntumativ	
HERMIT TYPE/SERIAL#		
TEST#	DP30XX-1	
DATA COLLECTION RATE	lop	
TRANSDUCER		
SERIAL#	12345	
PSIG	38	
SCALE FACTOR	_	
OFFSET		
INPUT CHANNEL	_	
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11bgs	
WELL DEPTH (FT./TOC)	-22 1 291	
XD DEPTH (FT.TOC)	-15 bgs	
INITIAL XD REFERENCE	_	
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE		
START TIME OF TEST	1204	
END TIME OF TEST	1205	

SET⊎P	DATE	AQUIFER TEST NO. DP30X-2 PERFORMED BY: 245
MONITORING WELL ID	DP-30	
DATE OF TEST	01-20-11	
TYPE OF TEST	preumativ	
HERMIT TYPE/SERIAL#		
TEST#	DP30X-2	The second secon
DATA COLLECTION RATE	lop	
THANSDUCER		
SERIAL#	12345	
PSIG	37	
SCALE FACTOR	_	
OFFSET		
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	~9.11 bgs	
WELL DEPTH (FT./TOC)	-22 -4	
XD DEPTH (FT.TOC)	-15 bg1	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	-	
START TIME OF TEST END TIME OF TEST NOTES: MAXIMM PRIM	1205	·
END TIME OF TEST	1207	

SETUP	DATE	AQUIFER TEST NO. 19116-1
MONITORING WELL ID	DP-21	
DATE OF TEST	DP-21 01-20-11	
TYPE OF TEST	pneumatic	
HERMIT TYPE/SERIAL#		
TEST#	De2110-1	The second secon
DATA COLLECTION RATE	109/	
TRANSDUCER	/	
SERIAL#	12345	
PSIG	10	
SCALE FACTOR		
OFFSET		
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 by	
WELL DEPTH (FT./TOC)	-221 bgs	
XD DEPTH (FT.TOC)	-17 bgs	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	-	
START TIME OF TEST	1302	
END TIME OF TEST	1305	
NOTES:		

SETUP	DATE:	AQUIFER TEST NO 1310-2 PERFORMED BY: 273
MONITORING WELL ID	DP-31	
DATE OF TEST	01-20-11	·
TYPE OF TEST	preumatic	
HERMIT TYPE/SERIAL#	_	
TEST#	DP2110-2	
DATA COLLECTION RATE	169/	
TRANSDUCER	•	
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	-	
OFFSET	-	
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground shr face	
STATIC WATER LEVEL (FT./TOC)	-13.1 "bys	
WELL DEPTH (FT./TOC)	-221 bgs	
XD DEPTH (FT.TOC)	17 by	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	_	·
NEW XD REFERENCE		
START TIME OF TEST	1305	
END TIME OF TEST	1306	·
NOTES:		

SETUP	DATE	AQUIFER TEST NO: 007110-3 PERFORMED:BY: B43
MONITORING WELL ID	DP-21	
DATE OF TEST	01-20-11	• •
TYPE OF TEST	pneumatic	
HERMIT TYPE/SERIAL#		
TEST#	D12110-3	
DATA COLLECTION RATE	169/	
THANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	_	
OFFSET		
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 " bys	
WELL DEPTH (FT./TOC)	-221 bg/	·
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	-	
START TIME OF TEST	1306	
END TIME OF TEST	1308	
NOTES:	1708	

SETUP	DATE	AQUIFER TEST NO. 11-1 10-4
MONITORING WELL ID	DP-21	
DATE OF TEST	01-20-11	·
TYPE OF TEST	pneamatic	
HERMIT TYPE/SERIAL#		
TEST#	DP2110-4	
DATA COLLECTION RATE	169/	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	_	
OFFSET	_	
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 " bys	
WELL DEPTH (FT./TOC)	-221 bgs	
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	-	·
START TIME OF TEST	1308	
END TIME OF TEST	1309	
NOTES:	•	

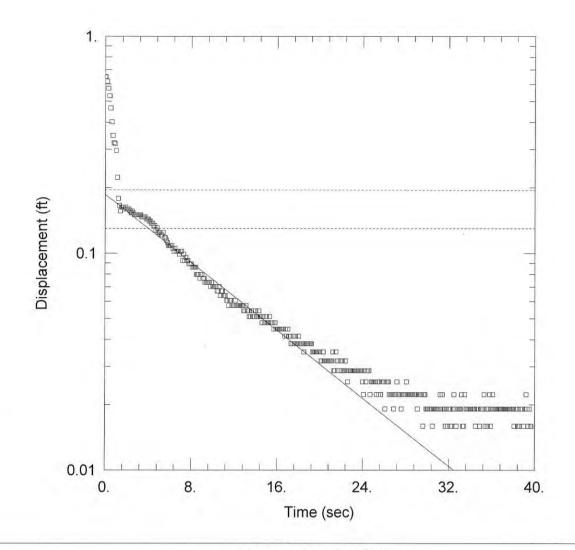
SETUP	DATE	AQUIFER TEST NO. DF3110-5 PERFORMED BY: P45
MONITORING WELL ID	DP-21	
DATE OF TEST	01-20-11	·
TYPE OF TEST	pneumatic	· —
HERMIT TYPE/SERIAL#	_	
TEST#	Dry110-5	·
DATA COLLECTION RATE	109/	
TRANSDUCER		
SERIAL#	12345	
PSIG	10	
SCALE FACTOR	-	
OFFSET	-	
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 " by	
WELL DEPTH (FT./TOC)	-221 bgs	
XD DEPTH (FT.TOC)	-17 by	
INITIAL XD REFERENCE		•
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION		
NEW XD REFERENCE	-	
START TIME OF TEST	1310	
END TIME OF TEST	131	
NOTES:		

SETUP	DATE	AQUIFER TEST NO. 0/3120-1
MONITORING WELL ID	DP-21	
DATE OF TEST	01-20-11	
TYPE OF TEST	preumatio	,
HERMIT TYPE/SERIAL#	-	
TEST#	D12120-1	
DATA COLLECTION RATE	104/	
TRANSDUCER		
SERIAL#	12345	
PSIG	70	
SCALE FACTOR	_	
OFFSET	-	
INPUT CHANNEL		
TEST DATA:		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 " by	
WELL DEPTH (FT./TOC)	-221 bgs	
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	_	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	_	
START TIME OF TEST	1312	
END TIME OF TEST	1313	
NOTES:		

ETUP	DATE	AQUIFER TEST NO. DP3/20-2 PERFORMED BY: 945
MONITORING WELL ID	DP-31	
DATE OF TEST	01-20-11	
TYPE OF TEST	preumatic	
HERMIT TYPE/SERIAL#	-	
TEST#	DF 2120-2	
DATA COLLECTION RATE	109	
RANSDUCER		
SERIAL#	12345	
PSIG	70	
SCALE FACTOR	_	
OFFSET	-	
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 by	·
WELL DEPTH (FT./TOC)	-22 bgs	
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)	-	
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE		
START TIME OF TEST	1313	
END TIME OF TEST	1314	

SETUP	DATE	AQUIFER TEST NO: DP3 20-3
MONITORING WELL ID	DP-M	
DATE OF TEST	01-20-11	
TYPE OF TEST	preumatic	
HERMIT TYPE/SERIAL#	-	
TEST#	Dry120-3	:
DATA COLLECTION RATE	164/	
TRANSDUCER	•	
SERIAL#	12345	
PSIG	20.	
SCALE FACTOR	-	
OFFSET	-	
INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 "HK	
WELL DEPTH (FT./TOC)	-22 1 bgs	
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT	-	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	-	
START TIME OF TEST	1315	
END TIME OF TEST	1317	
NOTES:		

rface
age .
٨
9.5
_



SETUP	DATE	AQUIFER TEST NO. 193130-2. PERFORMED BY: 473
MONITORING WELL ID	DP-31	
DATE OF TEST	01-20-11	·
TYPE OF TEST	preumatic	
HERMIT TYPE/SERIAL#		
TEST #	Dry	
DATA COLLECTION RATE	164/	
TRANSDUCER"		
SERIAL#	12345	
PSIG	30	
SCALE FACTOR	-	
OFFSET	-	
INPUT CHANNEL	-	
TEST DÄπΆ		
INPUT MODE (TOC/SUR)	ground surfac	e
STATIC WATER LEVEL (FT./TOC)	-13.1 mgs	
WELL DEPTH (FT./TOC)	-221 bgs	
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE		
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT		
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	-	
START TIME OF TEST	1319	
END TIME OF TEST	1321	
NOTES:		

SETUP	DATE	AQUIFER TEST NO. 103130-3
MONITORING WELL ID	DP-21	
DATE OF TEST	01-20-11	
TYPE OF TEST	preamatic	
HERMIT TYPE/SERIAL#		
TEST #	Dray	
DATA COLLECTION RATE	104	
TRANSDUCER		
SERIAL#	12345	
PSIG	30	
SCALE FACTOR	_	
OFFSET	-	
. INPUT CHANNEL		
TEST DATA		
INPUT MODE (TOC/SUR)	ground surface	
STATIC WATER LEVEL (FT./TOC)	-13.1 "mgs	
WELL DEPTH (FT./TOC)	-22 bgs	
XD DEPTH (FT.TOC)	-17 bys	
INITIAL XD REFERENCE	_	
SLUG DEPTH (FT./TOC)		
TIME OF SLUG PLACEMENT	_	
TIME OF WL EQUILIBRATION	-	
NEW XD REFERENCE	<u> </u>	
START TIME OF TEST	1321	
END TIME OF TEST	1323	
NOTES:		

Data Set: P:\...\OCC DP22 10PSI 1.aqt

Date: 11/29/11 Time: 14:37:09

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-22
Test Date: 1/17/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)

Initial Displacement: 0.65 ft

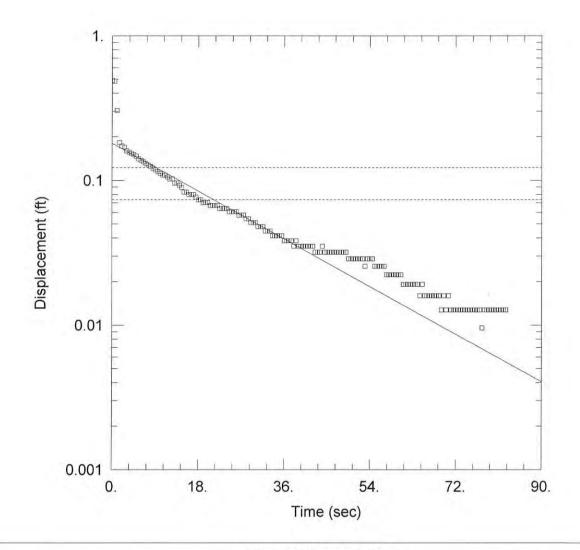
Total Well Penetration Depth: 14.7 ft

Casing Radius: 0.042 ft

Static Water Column Height: 12.9 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 6.199 ft/day

Solution Method: Bouwer-Rice

y0 = 0.1863 ft

Data Set: P:\...\OCC DP22 10PSI 4.aqt

Date: 11/29/11 Time: 14:37:22

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-22
Test Date: 1/17/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)

Initial Displacement: 0.49 ft

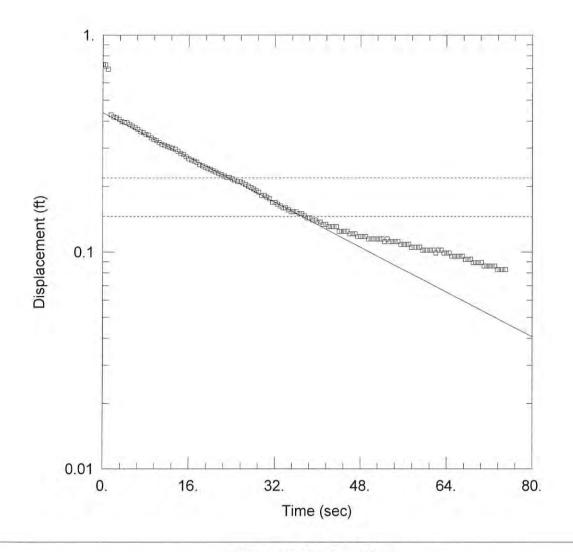
Total Well Penetration Depth: 14.7 ft

Casing Radius: 0.042 ft

Static Water Column Height: 14.7 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 3.657 ft/day

Solution Method: Hvorslev

y0 = 0.1796 ft

Data Set: P:\...\OCC DP22 20PSI 1.aqt

Date: 11/29/11

Time: 14:37:31

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-22
Test Date: 1/17/11

AQUIFER DATA

Saturated Thickness: 80. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)

Initial Displacement: 0.73 ft

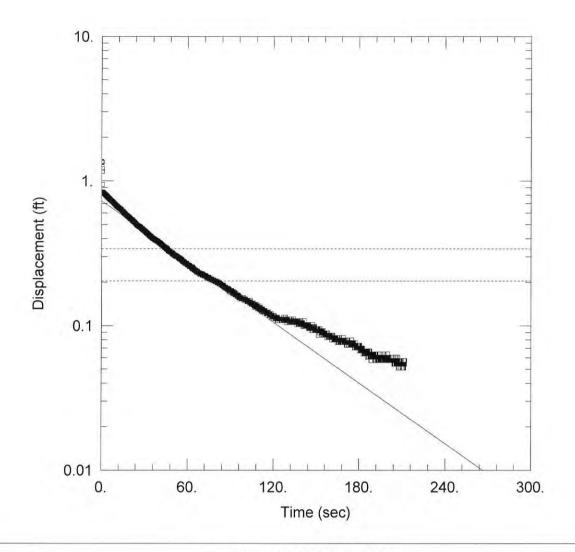
Total Well Penetration Depth: 14.7 ft

Casing Radius: 0.042 ft

Static Water Column Height: 14.7 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 2.042 ft/day

Solution Method: Bouwer-Rice

y0 = 0.4369 ft

Data Set: P:\...\OCC DP22 30PSI 1.aqt

Date: 11/29/11 Time: 14:37:43

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-22
Test Date: 1/17/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)

Initial Displacement: 1.36 ft

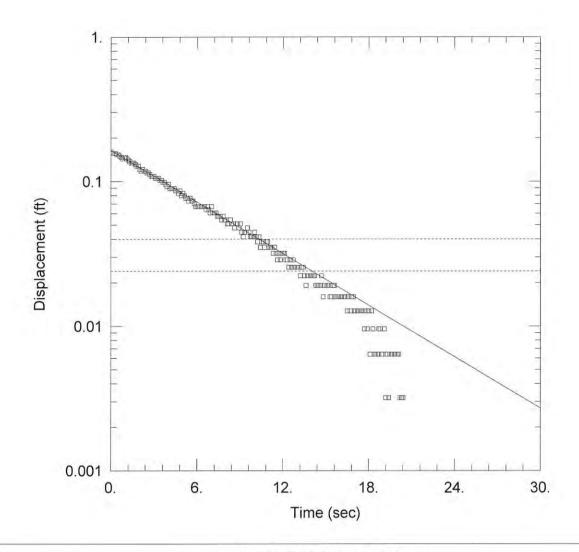
Total Well Penetration Depth: 14.7 ft

Casing Radius: 0.042 ft

Static Water Column Height: 14.7 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 1.398 ft/day

Solution Method: Hvorslev

y0 = 0.7278 ft

Data Set: P:\...\OCC DP-30 10PSI 4.aqt

Date: 11/29/11 Time: 14:40:10

PROJECT INFORMATION

Company: MACTEC Project: 3612102168 Test Well: DP-30 Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30 10PSI)

Initial Displacement: 0.16 ft

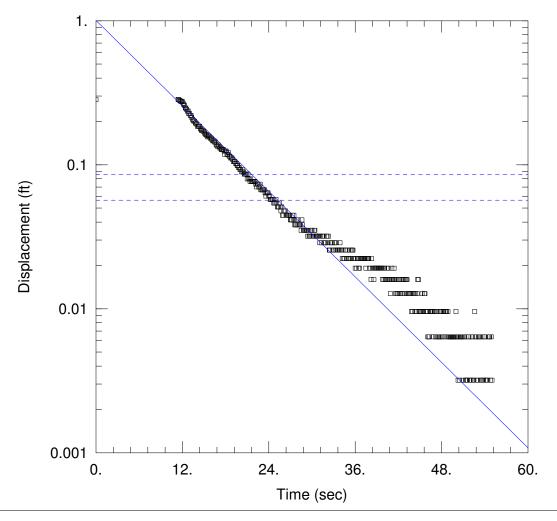
Total Well Penetration Depth: 12.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 12.9 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 11.88 ft/day

Solution Method: Hvorslev

y0 = 0.1637 ft

Data Set: C:\NYSDEC\CarClean\Copy of Slug Data\OCC DP-30 20PSI 1.aqt

Date: 12/18/11 Time: 20:25:51

PROJECT INFORMATION

Company: MACTEC
Project: 3612102168
Test Well: DP-30
Test Date: 1/20/2011

AQUIFER DATA

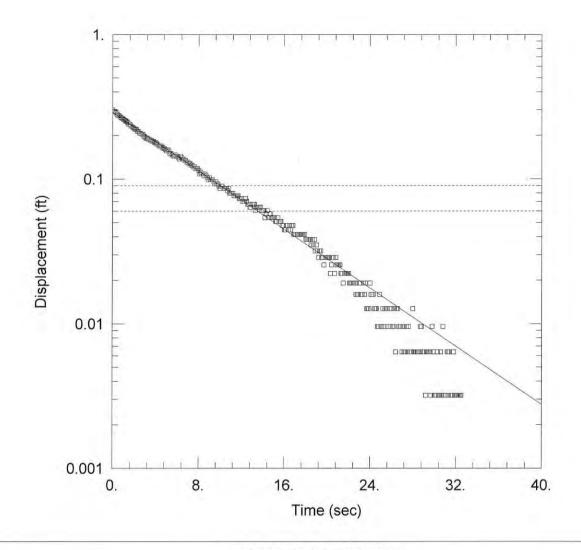
Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30)

Initial Displacement: 0.2838 ft

Total Well Penetration Depth: 12.9 ft

Casing Radius: 0.042 ft


Static Water Column Height: 12.9 ft

Screen Length: 4. ft Well Radius: 0.042 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 7.718 ft/day y0 = 1.007 ft

Data Set: P:\...\OCC DP-30 20PSI 2.aqt

Date: 11/29/11 Time: 14:40:23

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-30
Test Date: 1/20/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30)

Initial Displacement: 0.3 ft

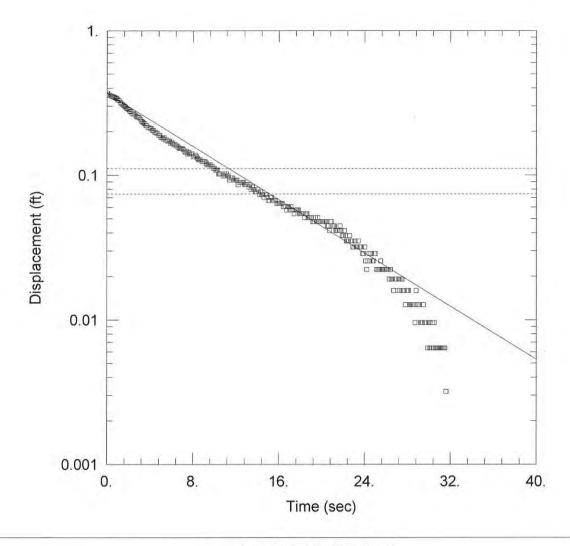
Total Well Penetration Depth: 12.9 ft

Casing Radius: 0.042 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft

Static Water Column Height: 12.9 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 7.87 ft/day

y0 = 0.288 ft

Data Set: P:\...\OCC DP30 30PSI 1.aqt

Date: 11/29/11

Time: 14:40:29

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-30
Test Date: 1/20/11

AQUIFER DATA

Saturated Thickness: 80. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30)

Initial Displacement: 0.37 ft

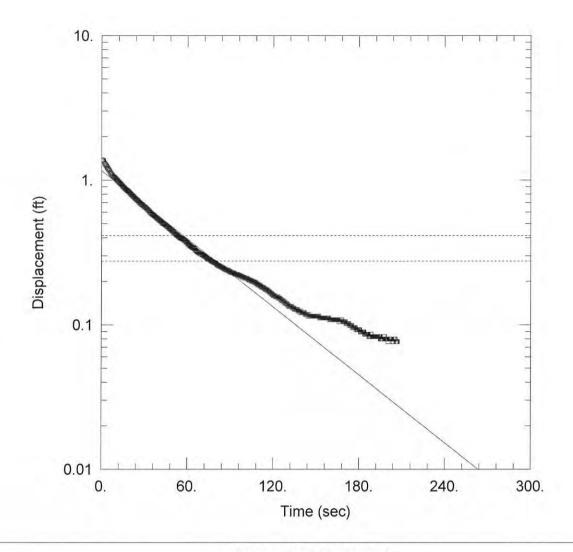
Total Well Penetration Depth: 12.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 12.9 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 7.17 ft/day

Solution Method: Bouwer-Rice

y0 = 0.3679 ft

Data Set: P:\...\OCC DP22 30PSI 2.aqt

Date: 11/29/11

Time: 14:39:51

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-22
Test Date: 1/17/11

AQUIFER DATA

Saturated Thickness: 80. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)

Initial Displacement: 1.38 ft

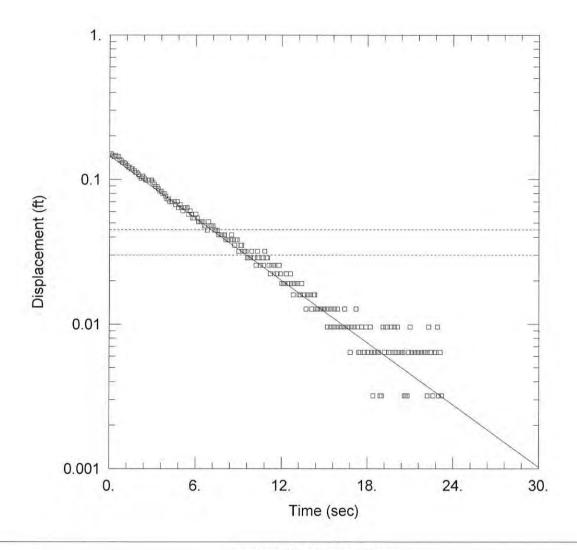
Total Well Penetration Depth: 14.7 ft

Casing Radius: 0.042 ft

Static Water Column Height: 14.7 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 1.241 ft/day

Solution Method: Bouwer-Rice

y0 = 1.158 ft

Data Set: P:\...\OCC DP-30 10PSI 3.aqt

Date: 11/29/11 Time: 14:40:04

PROJECT INFORMATION

Company: MACTEC
Project: 3612102168
Test Well: DP-30
Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30 10PSI)

Initial Displacement: 0.15 ft

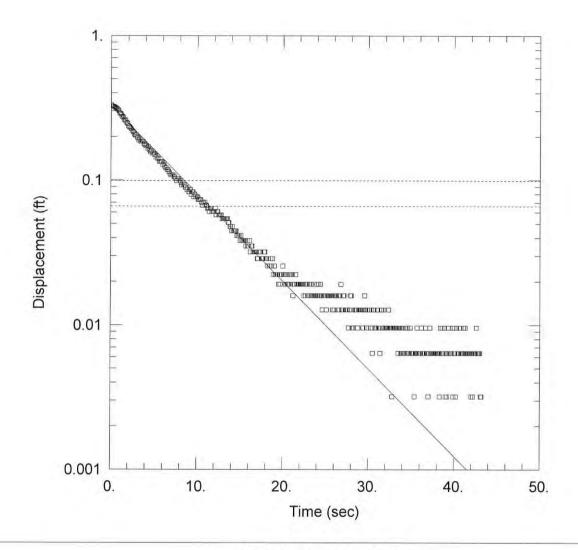
Static Water Column Height: 12.9 ft

Total Well Penetration Depth: 12.9 ft

Screen Length: 4. ft

Casing Radius: 0.042 ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 11.19 ft/day

y0 = 0.1451 ft

Data Set: P:\...\OCC DP30 30PSI 2.aqt

Date: 11/29/11

Time: 14:40:35

PROJECT INFORMATION

Company: MACTEC Test Well: DP-30 Test Date: 1/20/11

AQUIFER DATA

Saturated Thickness: 80. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30)

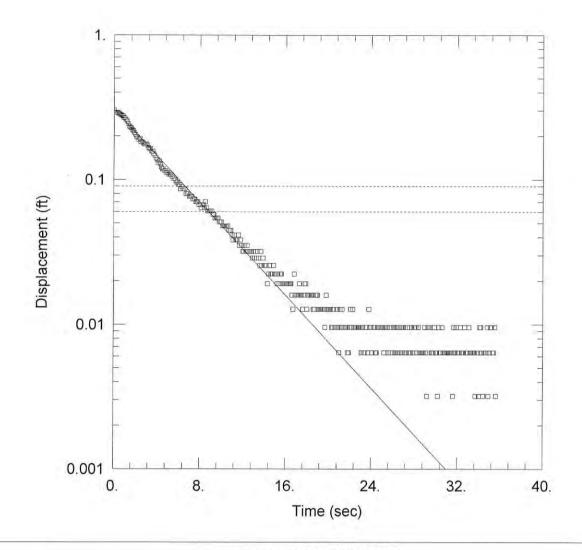
Initial Displacement: 0.33 ft

Static Water Column Height: 12.9 ft

Total Well Penetration Depth: 12.9 ft Casing Radius: 0.042 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 9.439 ft/day

y0 = 0.3247 ft

Data Set: P:\...\OCC DP30 37PSI-2.aqt

Date: 11/29/11 Time: 14:40:40

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-30
Test Date: 1/20/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30)

Initial Displacement: 0.3 ft

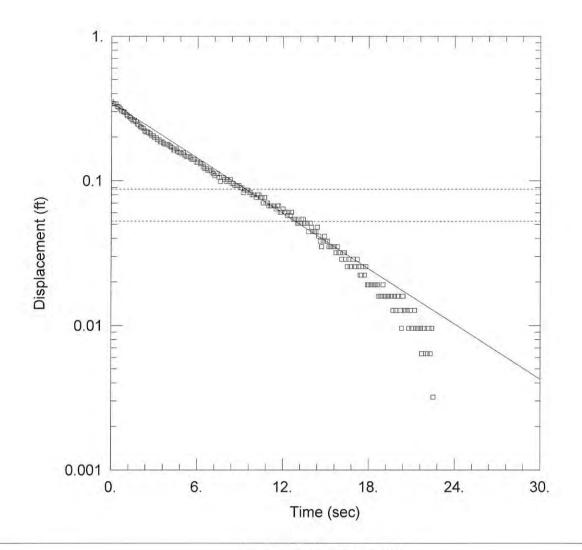
Total Well Penetration Depth: 12.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 12.9 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 12.5 ft/day

Solution Method: Bouwer-Rice

y0 = 0.3046 ft

Data Set: P:\...\OCC DP30 38PSI-1.aqt

Date: 11/29/11 Time: 14:46:56

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-30
Test Date: 1/20/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-30)

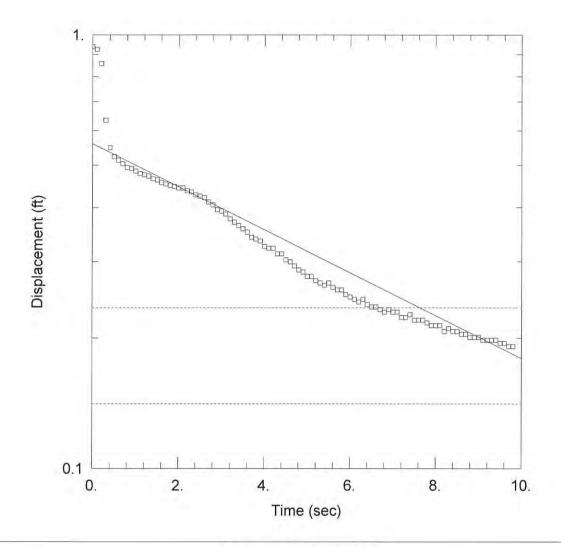
Initial Displacement: 0.35 ft

Static Water Column Height: 12.9 ft

Total Well Penetration Depth: 12.9 ft

Screen Length: 4. ft
Wellbore Radius: 0.042 ft

Casing Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 12.73 ft/day

y0 = 0.3448 ft

Data Set: P:\...\OCC DP31 10PSI 2.aqt

Date: 11/29/11 Time: 14:47:02

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-22
Test Date: 1/17/11

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-31)

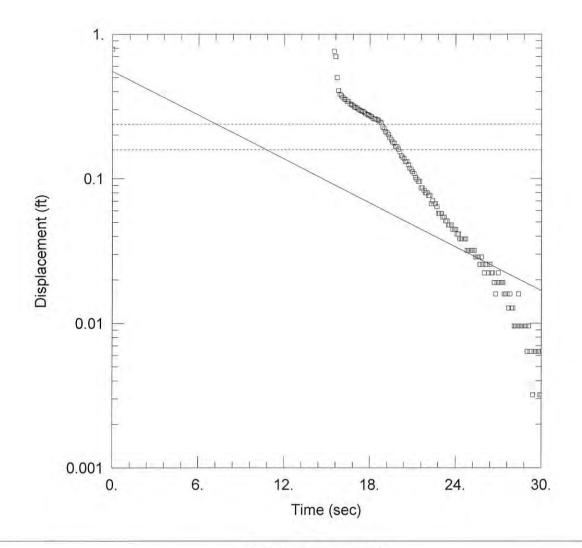
Initial Displacement: 0.94 ft

94 ft Static Water Column Height: 8.9 ft

Total Well Penetration Depth: 8.9 ft

Screen Length: 4. ft
Wellbore Radius: 0.042 ft

Casing Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 9.878 ft/day

y0 = 0.56 ft

Data Set: P:\...\OCC DP31 10PSI 3.aqt

Date: 11/29/11 Time: 14:47:08

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-31
Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-31)

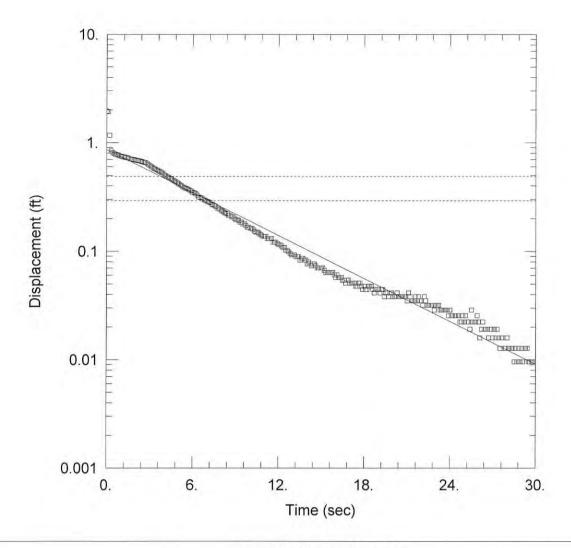
Initial Displacement: 0.79 ft

Static Water Column Height: 8.9 ft

Total Well Penetration Depth: 8.9 ft

Screen Length: 4. ft Wellbore Radius: 0.042 ft

Casing Radius: 0.042 ft


SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 7.525 ft/day

y0 = 0.551 ft

Data Set: P:\...\OCC DP31 20PSI 1.aqt

Date: 11/29/11 Time: 14:47:14

PROJECT INFORMATION

Company: MACTEC Test Well: DP-31 Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-31)

Initial Displacement: 1.95 ft

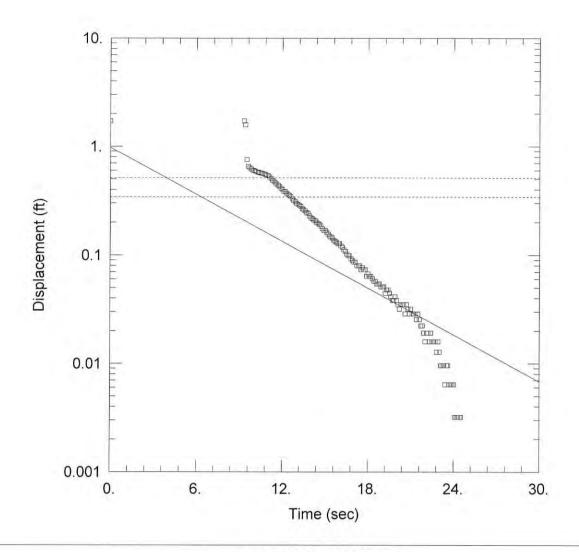
Total Well Penetration Depth: 8.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 8.9 ft

Screen Length: 4. ft

Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 13.17 ft/day

y0 = 0.8602 ft

Data Set: P:\...\OCC DP31 20PSI 3.aqt

Date: 11/29/11 Time: 14:47:21

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-31
Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-31)

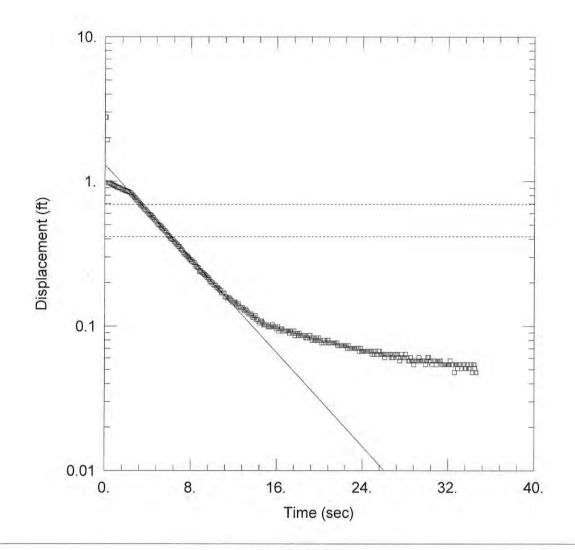
Initial Displacement: 1.71 ft

Total Well Penetration Depth: 8.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 8.9 ft

Screen Length: 4. ft Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 10.71 ft/day

Solution Method: Bouwer-Rice

y0 = 0.9744 ft

Data Set: P:\...\OCC DP31 30PSI 1.aqt

Date: 11/29/11 Time: 14:47:28

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-31
Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-31)

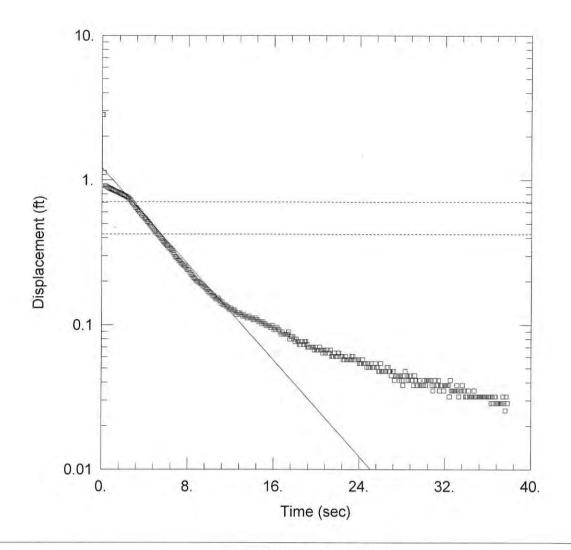
Initial Displacement: 2.77 ft

Total Well Penetration Depth: 8.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 8.9 ft

Screen Length: 4. ft Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 16.2 ft/day

Solution Method: Hvorslev

y0 = 1.297 ft

Data Set: P:\...\OCC DP31 30PSI 3.aqt

Date: 11/29/11 Time: 14:47:34

PROJECT INFORMATION

Company: MACTEC
Test Well: DP-31
Test Date: 1/20/2011

AQUIFER DATA

Saturated Thickness: 80. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-31)

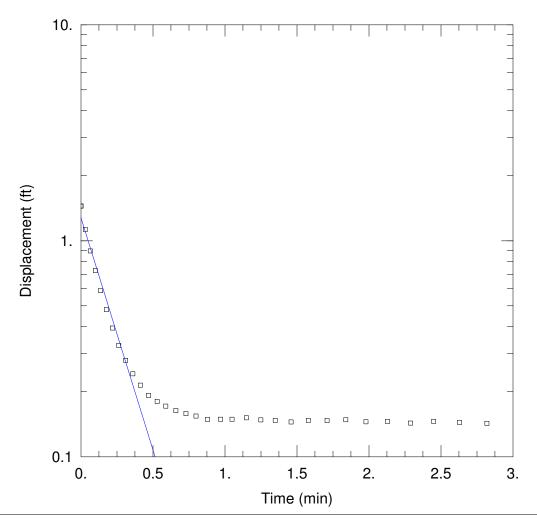
Initial Displacement: 2.82 ft

Total Well Penetration Depth: 8.9 ft

Casing Radius: 0.042 ft

Static Water Column Height: 8.9 ft

Screen Length: 4. ft Wellbore Radius: 0.042 ft


SOLUTION

Aquifer Model: Unconfined

K = 16.6 ft/day

Solution Method: Hvorslev

y0 = 1.209 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 FHT1.aqt

Date: 12/18/11 Time: 18:46:52

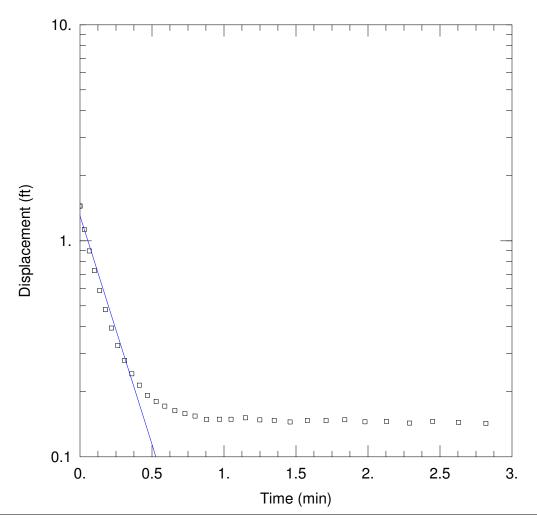
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 1.45 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 8.215 ft/day y0 = 1.278 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 FHT1.aqt

Date: 12/18/11 Time: 18:48:23

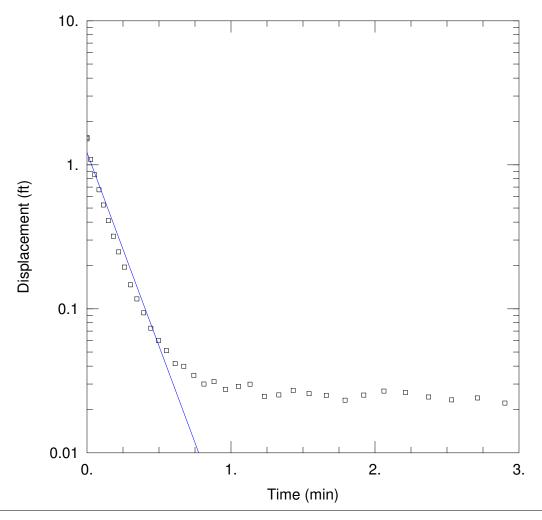
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 1.45 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 11.58 ft/day y0 = 1.306 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 FHT2.aqt

Date: 12/18/11 Time: 19:09:45

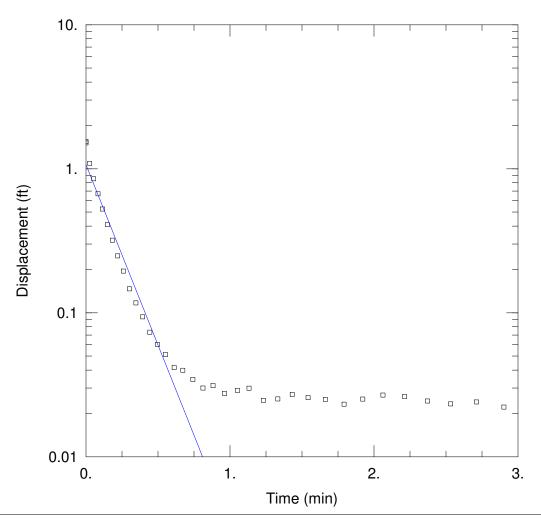
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 11/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 1.55 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 10.26 ft/day y0 = 1.216 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 FHT2.aqt

Date: 12/18/11 Time: 19:08:42

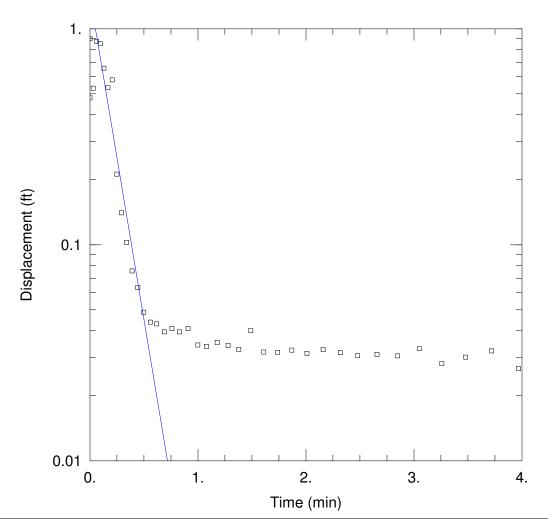
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 11/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 1.55 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 13.7 ft/day y0 = 1.066 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 RHT1.aqt

Date: 12/18/11 Time: 19:04:38

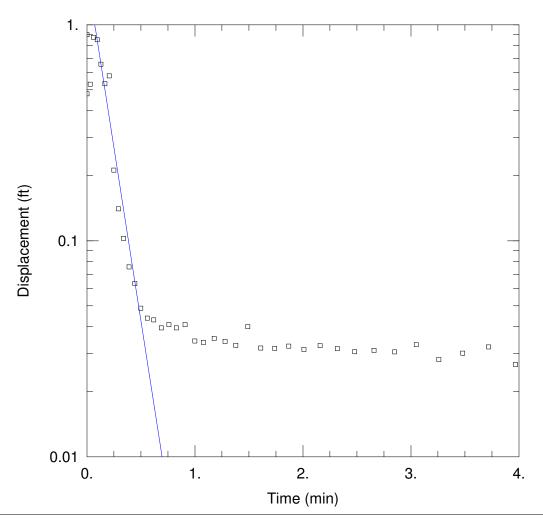
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 0.9 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 11.46 ft/day y0 = 1.423 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 RHT1.aqt

Date: 12/18/11 Time: 19:06:05

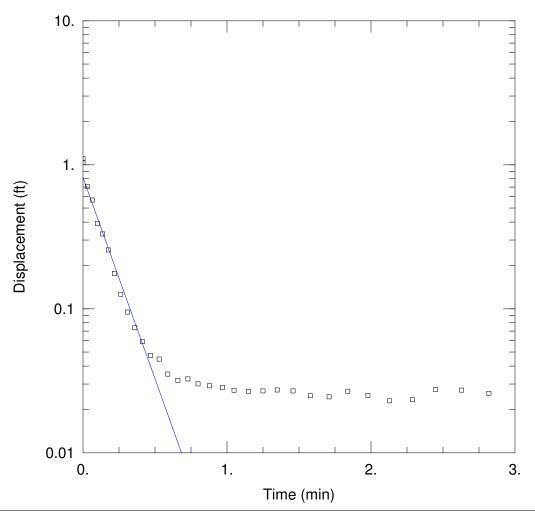
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 0.9 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 17.57 ft/day y0 = 1.708 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 RHT2.aqt

Date: 12/18/11 Time: 19:12:11

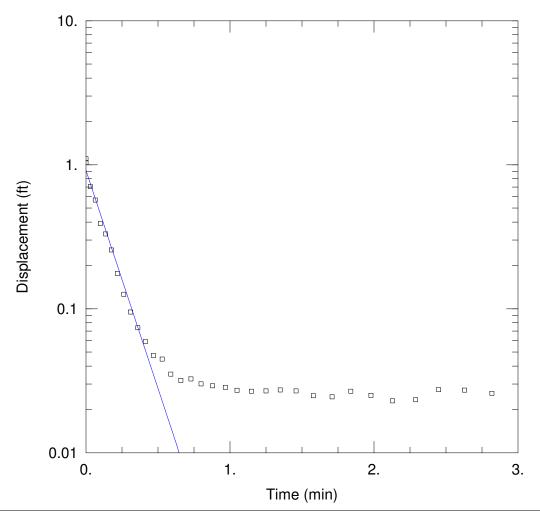
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 1.1 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: $\underline{12.8}$ ft Screen Length: $\underline{10.}$ ft Well Radius: $\underline{0.083}$ ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 10.67 ft/day y0 = 0.8152 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP22 RHT2.aqt

Date: 12/18/11 Time: 19:13:56

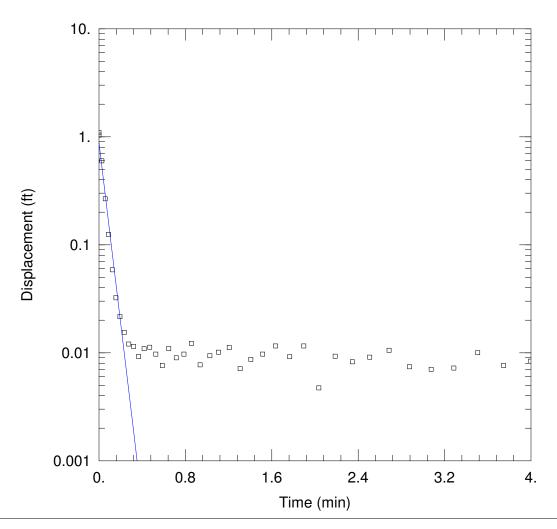
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-22
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-22)


Initial Displacement: 1.1 ft Static Water Column Height: 12.8 ft

Total Well Penetration Depth: 12.8 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 16.56 ft/day y0 = 0.9123 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 FHT1.aqt

Date: 12/18/11 Time: 19:32:30

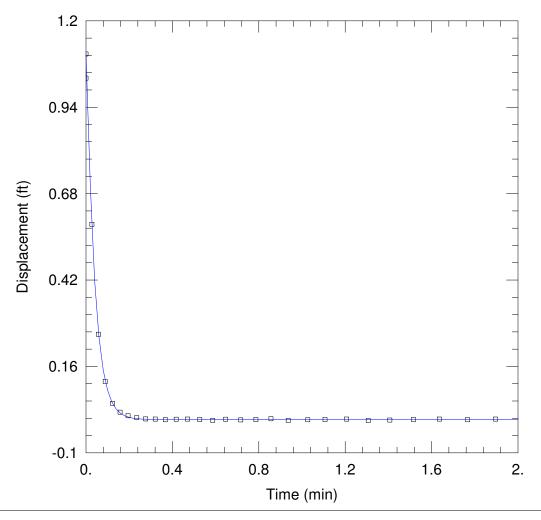
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)


Initial Displacement: 1.1 ft Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 32.94 ft/day y0 = 0.88 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 FHT1.aqt

Date: 12/18/11 Time: 19:29:56

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

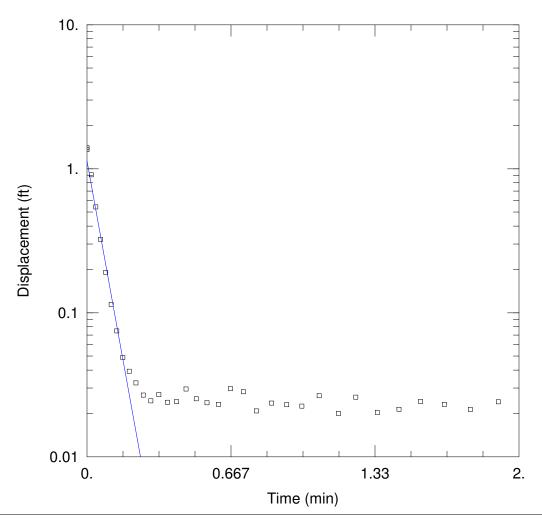
Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)

Initial Displacement: 1.1 ft

Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft


Screen Length: 10. ft Well Radius: 0.083 ft

Casing Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 41.71 ft/day Le = 12.02 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 FHT2.aqt

Date: 12/18/11 Time: 19:37:19

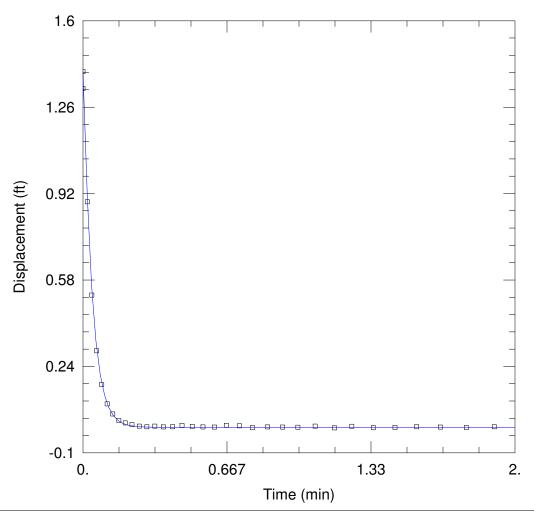
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)


Initial Displacement: 1.4 ft Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 32.79 ft/day y0 = 1.132 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 FHT2.aqt

Date: 12/18/11 Time: 19:41:22

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

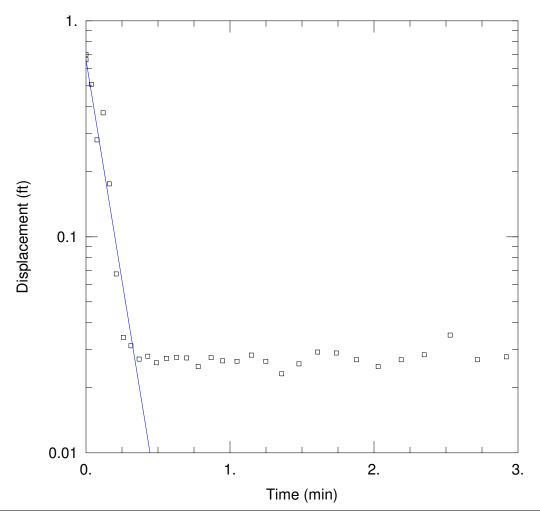
Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)

Initial Displacement: 1.4 ft

Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft


Screen Length: 10. ft Well Radius: 0.083 ft

Casing Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 40.02 ft/day Le = 10.96 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 RHT1.aqt

Date: 12/18/11 Time: 19:43:28

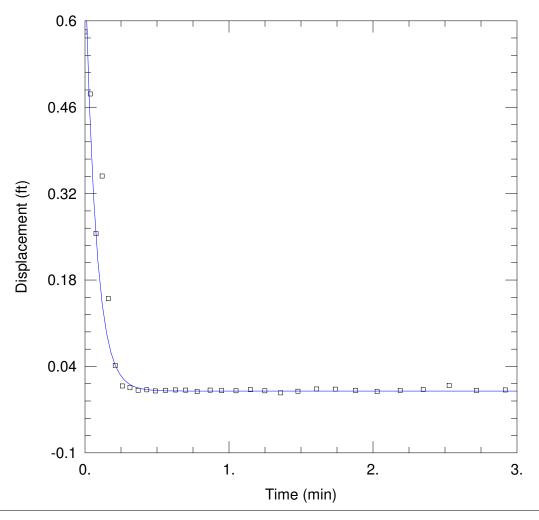
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)


Initial Displacement: 0.7 ft Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 16.18 ft/day y0 = 0.6611 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 RHT1.aqt

Date: 12/18/11 Time: 19:49:00

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)

Initial Displacement: <u>0.7</u> ft

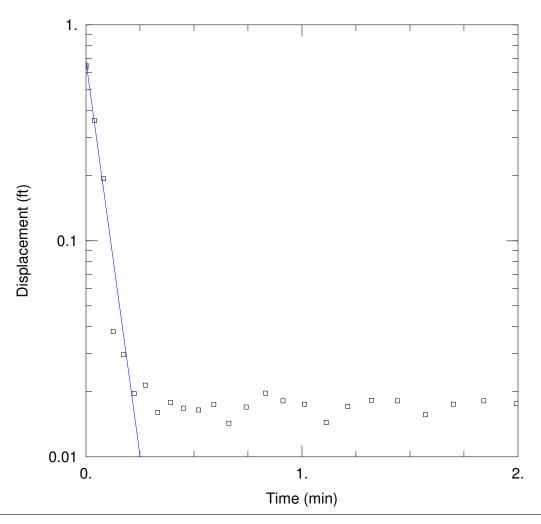
Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft

Screen Length: 10. ft

Casing Radius: 0.083 ft

Well Radius: 0.083 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Springer-Gelhar

K = 23.03 ft/day

Le = 1. ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 RHT2.aqt

Date: 12/18/11 Time: 19:55:46

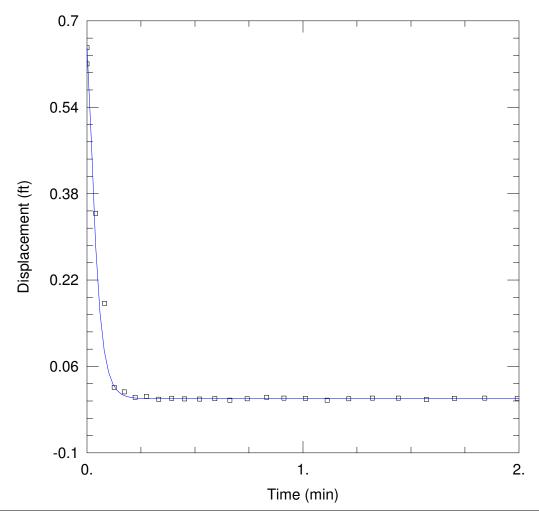
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)


Initial Displacement: 0.65 ft Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 28.86 ft/day y0 = 0.6786 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP23 RHT2.aqt

Date: 12/18/11 Time: 19:59:17

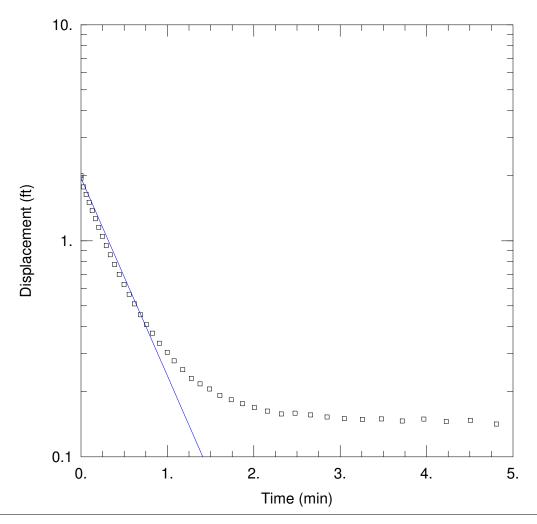
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-23
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-23)


Initial Displacement: 0.65 ft Static Water Column Height: 16.4 ft

Total Well Penetration Depth: 16.4 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 38.66 ft/day Le = 41.69 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 FHT1.aqt

Date: 12/18/11 Time: 20:16:54

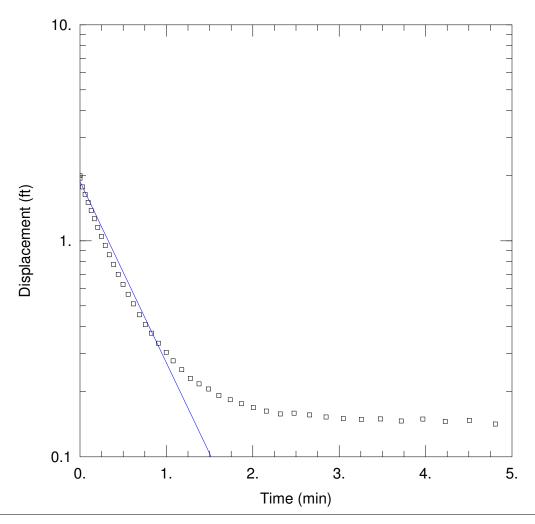
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)


Initial Displacement: 2. ft Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 3.571 ft/day y0 = 1.954 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 FHT1.aqt

Date: 12/18/11 Time: 20:15:57

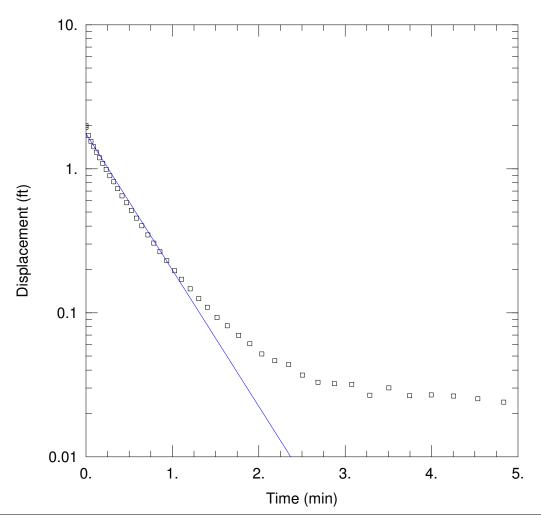
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)


Initial Displacement: 2. ft Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 4.593 ft/day y0 = 1.88 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 FHT2.aqt

Date: 12/18/11 Time: 20:04:31

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)


Initial Displacement: 2. ft Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 3.692 ft/day y0 = 1.752 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 FHT2.aqt

Date: 12/18/11 Time: 20:06:18

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

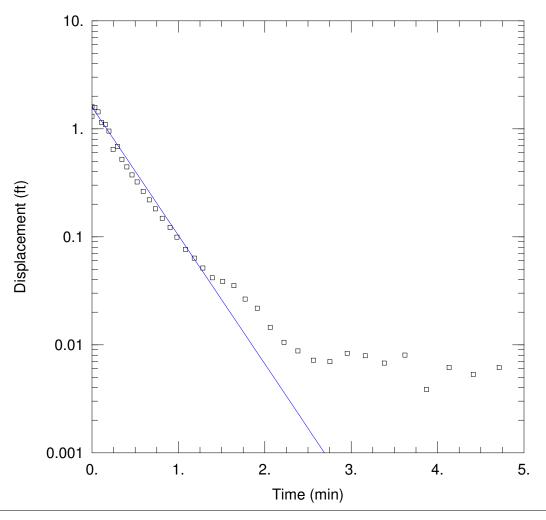
Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)

Initial Displacement: <u>2.</u> ft

Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft


Screen Length: 10. ft Well Radius: 0.083 ft

Casing Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 4.92 ft/day y0 = 1.749 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 RHT1.aqt

Date: 12/18/11 Time: 20:08:25

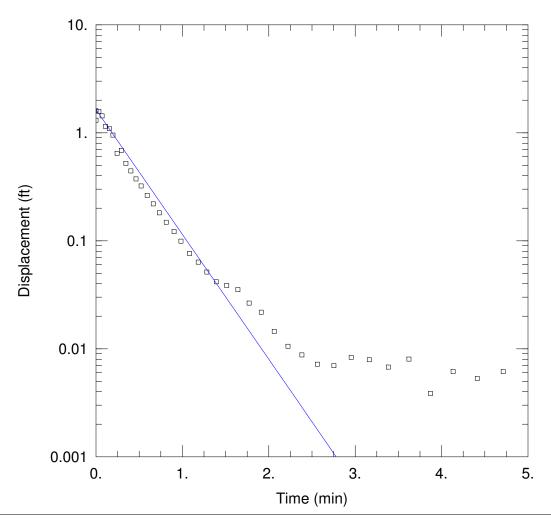
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)


Initial Displacement: 1.6 ft Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 4.638 ft/day y0 = 1.591 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 RHT1.aqt

Date: 12/18/11 Time: 20:09:18

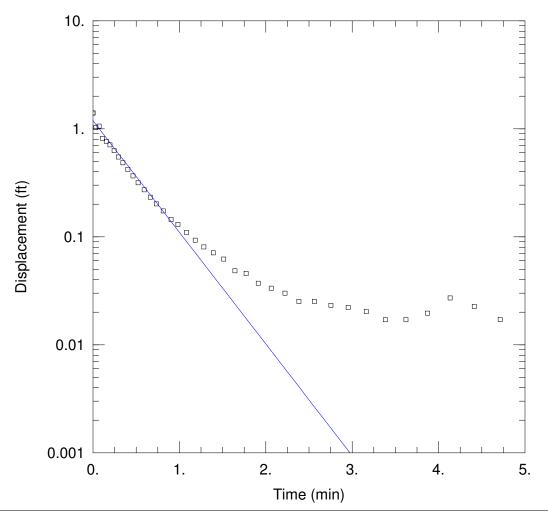
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)


Initial Displacement: 1.6 ft Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft Screen Length: 10. ft Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 6.325 ft/day y0 = 1.636 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 RHT2.aqt

Date: 12/18/11 Time: 20:11:57

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

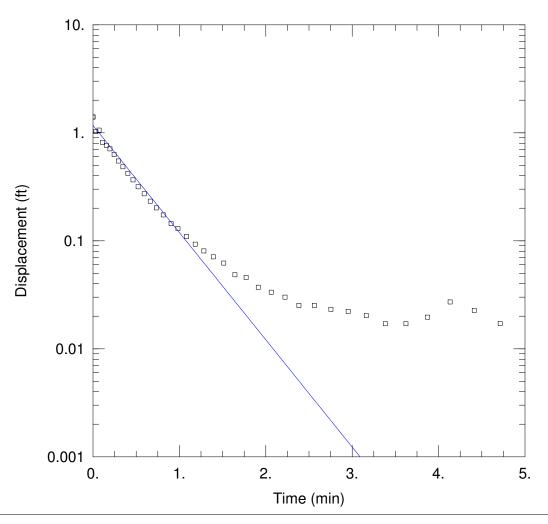
Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)

Initial Displacement: 1.4 ft

Total Well Penetration Depth: 14.81 ft

Casing Radius: 0.083 ft


Static Water Column Height: 14.81 ft

Screen Length: 10. ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 4.029 ft/day y0 = 1.186 ft

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC DP28 RHT2.aqt

Date: 12/18/11 Time: 20:12:58

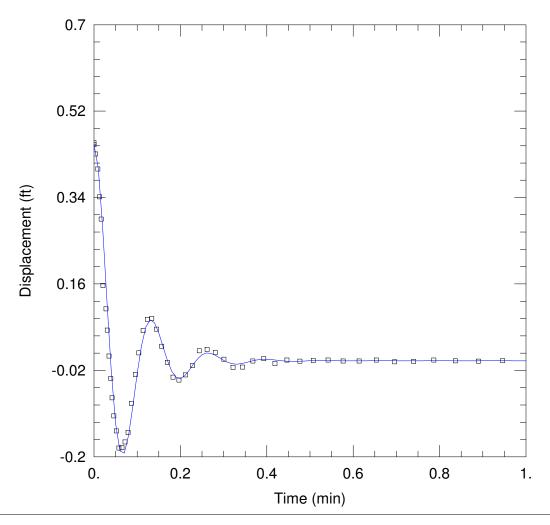
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: DP-28
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (DP-28)


Initial Displacement: 1.4 ft Static Water Column Height: 14.81 ft

Total Well Penetration Depth: 14.81 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 5.43 ft/day y0 = 1.17 ft

MW-11 FALLING HEAD TEST #1

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW11 FHT1.aqt

Date: 12/16/11 Time: 12:17:35

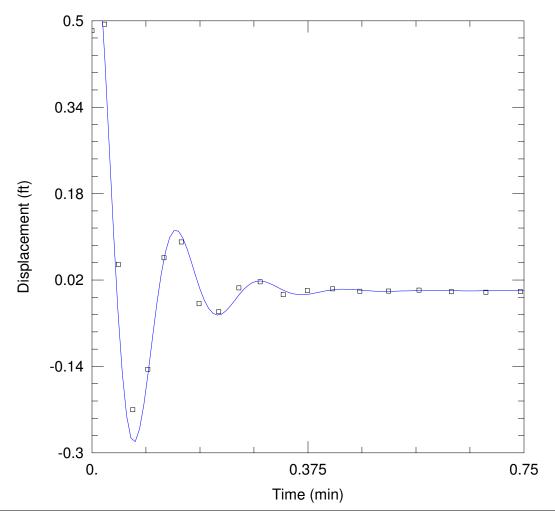
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-11
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)


Initial Displacement: 0.45 ft Static Water Column Height: 52.4 ft

Total Well Penetration Depth: 52.4 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 190.6 ft/day Le = 47.59 ft

MW-11 FALLING HEAD TEST #2

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW11 FHT2.aqt

Date: 12/16/11 Time: 12:30:20

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-11
Test Date: 8/3/2011

AQUIFER DATA

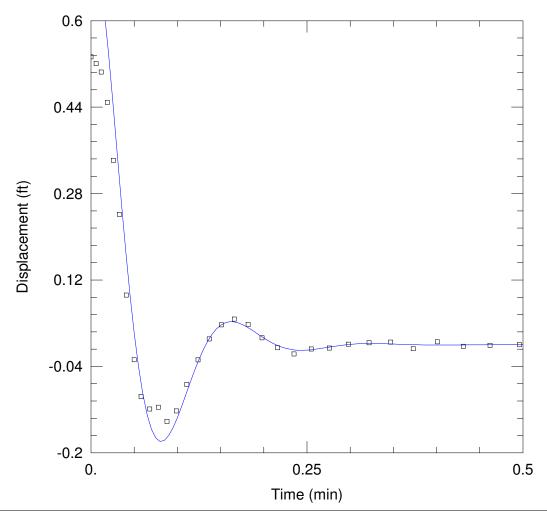
Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)

Initial Displacement: 0.7 ft

Static Water Column Height: 52.4 ft

Total Well Penetration Depth: 52.4 ft


Screen Length: 10. ft Well Radius: 0.083 ft

Casing Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 158.8 ft/day Le = 57.27 ft

MW-11 RISING HEAD TEST #1

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW11 RHT1.aqt

Date: 12/16/11 Time: 12:35:56

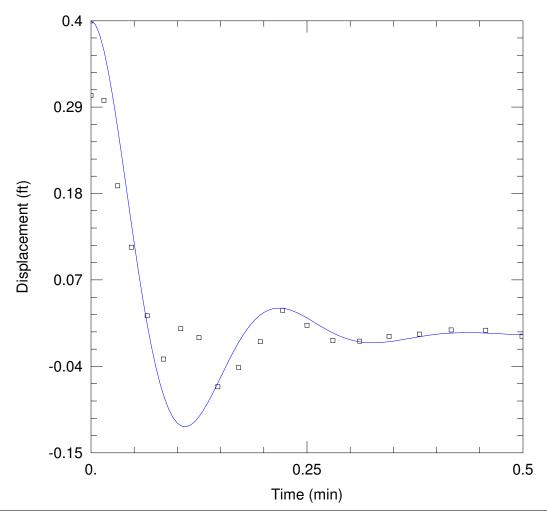
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-11
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)


Initial Displacement: 0.75 ft Static Water Column Height: 52.4 ft

Total Well Penetration Depth: 52.4 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 101.2 ft/day Le = 64. ft

MW-11 RISING HEAD TEST #2

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW11 RHT2.aqt

Date: 12/16/11 Time: 12:41:44

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-11
Test Date: 8/3/2011

AQUIFER DATA

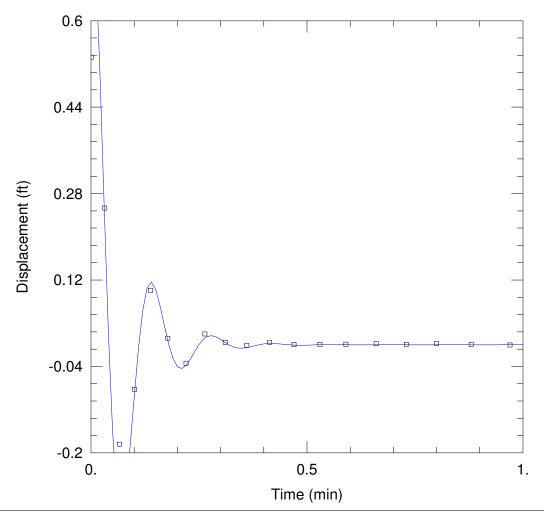
Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-11)

Initial Displacement: 0.4 ft

Static Water Column Height: 52.4 ft

Total Well Penetration Depth: 52.4 ft


Screen Length: 10. ft Well Radius: 0.083 ft

Casing Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 83.96 ft/day Le = 120.4 ft

MW-12 FALLING HEAD TEST #1

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW12 FHT1.aqt

Date: 12/16/11 Time: 12:31:39

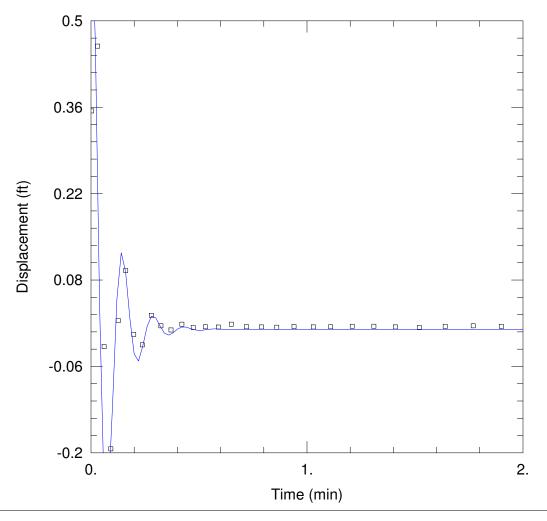
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-12
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)


Initial Displacement: 0.8 ft Static Water Column Height: 52.83 ft

Total Well Penetration Depth: 52.83 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 159.3 ft/day Le = 51.65 ft

MW-12 FALLING HEAD TEST #2

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW12 FHT2.aqt

Date: 12/05/11 Time: 15:43:52

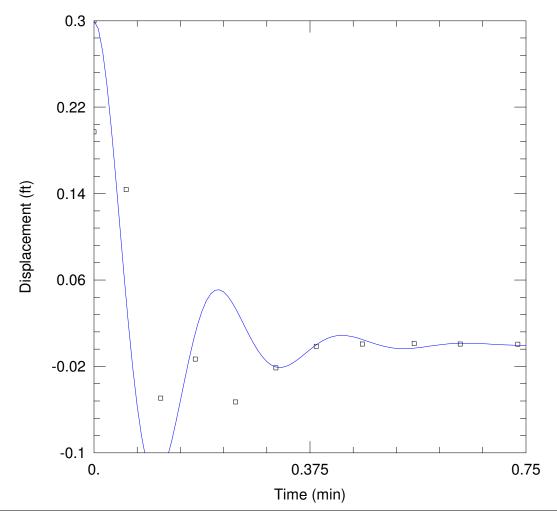
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-12
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)


Initial Displacement: 0.7 ft Static Water Column Height: 52.83 ft

Total Well Penetration Depth: 52.83 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 170.2 ft/day Le = 55.79 ft

MW-12 RISING HEAD TEST #1

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW12 RHT1.aqt

Date: 12/16/11 Time: 12:52:44

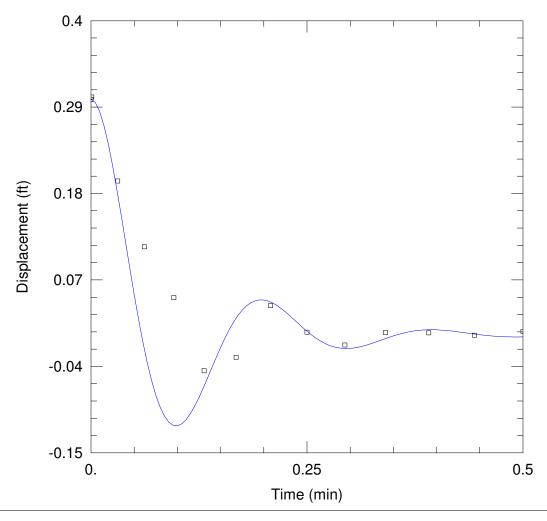
PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-12
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)


Initial Displacement: 0.3 ft Static Water Column Height: 52.83 ft

Total Well Penetration Depth: 52.83 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 110.5 ft/day Le = 125.8 ft

MW-12 RISING HEAD TEST #2

Data Set: C:\NYSDEC\CarClean\Slug Test Data August 2011\OSCC MW12 RHT2.aqt

Date: 12/16/11 Time: 12:54:40

PROJECT INFORMATION

Company: MACTEC
Client: NYS DEC
Project: 3612102168
Location: Penfield, NY
Test Well: MW-12
Test Date: 8/3/2011

AQUIFER DATA

Saturated Thickness: 100. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-12)

Initial Displacement: 0.3 ft Static Water Column Height: 52.83 ft

Total Well Penetration Depth: 52.83 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Springer-Gelhar

K = 113.6 ft/day Le = 104.1 ft

APPENDIX E

SOIL GRAIN SIZE DATA

Cover Page

Order ID :	C1178	
Project ID :	Carriage Cleantown	
Client :	MACTEC Inc.	
Lab Sample	e Number	Client Sample Number
C1178-01		828131A-DP028015
for completeness, for other t		nditions of the contract, both technically and se of the data contained in this hard copy lesignee, as verified by the following
Signature :		

SIEVE DATA SHEET

Project Information:

Project: C1178 Client: Borehole ID: Descrip

Borehole ID: Description:
Sample ID: C1178-01 Location:
Test ID: ASTM D422 Source:
Test Date: 1/27/2011 Northing:

 Test Date:
 1/27/2011
 Northing:
 0

 Easting:
 0

Collected By: User Defined:

Specifications Data:

Specimen ID: Specimen Name:

Agency: Description:

Sieve Data:

 Wet Sample & Pan Wt.(g):
 578.08

 Dry Sample & Pan Wt.(g):
 504.72

 Pan Weight(g):
 10.51

 Dry Sample Wt.(g):
 494.21

 Percent Moisture:
 14.84

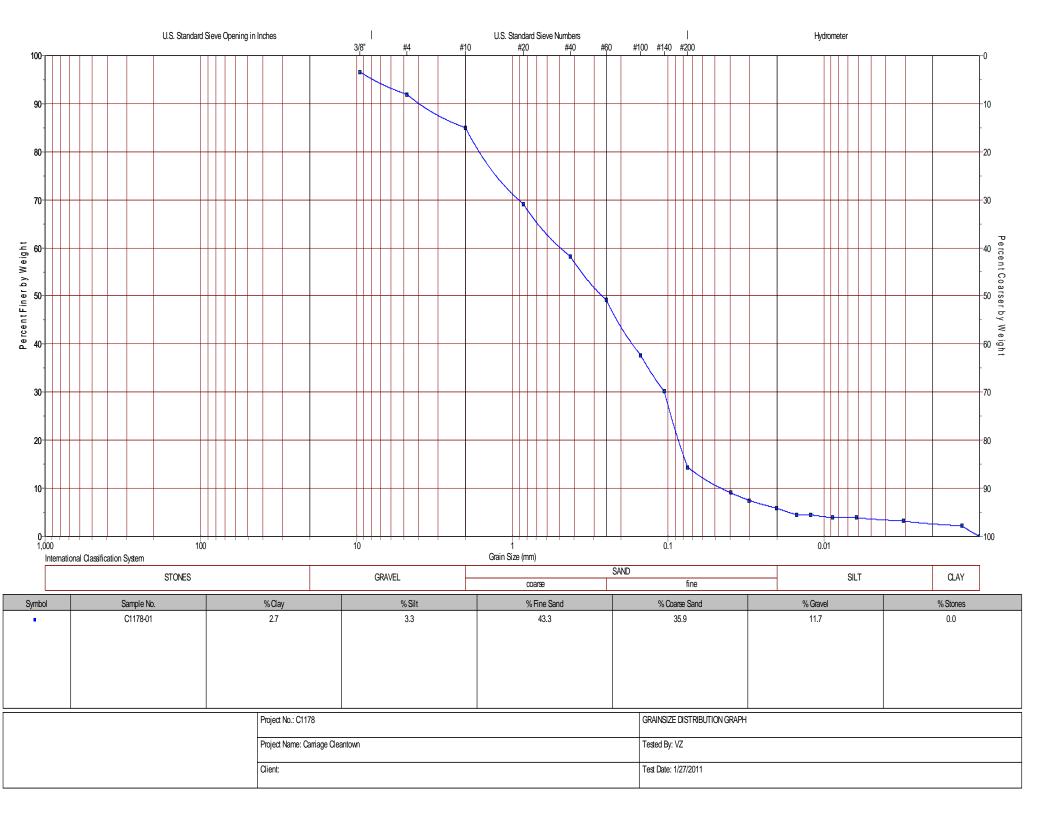
 Split Sample:
 No

Split Sieve Size:

Hydrometer Data

Hydroscopic Data

Dry Sample & Pan Wt.(g):577.08Dry Sample Wt.(g):503.72Loss of Moisture(g):73.36Percent Moisture:14.56


Weight Data:

Sample & Pan Wt(g): 504.72
Pan Weight: 10.51
Sample Weight: 494.21
Weight Retained of Total Sample: 74.06
Specific Gravity: 2.5
Hydrometer Type: 151H

Sieve	Size (mm)	Weight Retained	Cumulative Weight	Specs	% Passing
3/8"	9.5	16.76	16.76		96.61
#4	4.75	23.06	39.82		91.94
#10	2	34.24	74.06		85.01
#20	0.85	78.46	152.52		69.14
#40	0.425	53.65	206.17		58.28
#60	0.25	44.86	251.03		49.21
#100	0.15	56.94	307.97		37.68
#140	0.106	36.87	344.84		30.22
#200	0.075	78.16	423		14.41
Pan		71.21			

Hydrometer Data

Time	Reading	Temperature	Soil Diameter (mm)	% Passing
1	1.028	26	0.0397	9.1
2	1.023	26	0.0301	7.5
5	1.018	26	0.0202	5.9
10	1.014	26	0.0149	4.5
15	1.014	26	0.0122	4.5
30	1.012	26	0.0088	3.9
60	1.012	26	0.0062	3.9
250	1.01	26	0.0031	3.2
1440	1.007	27	0.0013	2.2

END OF ANALYTICAL RESULTS

APPENDIX F

DUSR AND VALIDATED LABORATORY RESULTS

DATA USABILITY SUMMARY REPORT JANUARY 2011 WATER SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

1.0 INTRODUCTION

Water samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in January 2011 and submitted for off-site laboratory analysis. Samples were analyzed by Chemtech located in Mountainside, New Jersey. Results were reported in the following Sample Delivery Groups (SDGs): C1166 and C1167.

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions). Tentatively Identified Compounds (TICs) are presented in Table 4. Samples were analyzed by the following method:

• Volatile organic compounds (VOCs) by USEPA Method 8260B

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 QC limits were used during the data evaluation unless noted otherwise (USEPA, 2006). The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit
J = concentration is estimated
UJ = target analyte is not detected at the reported detection limit and is estimated
D = concentration is from a diluted analysis of the sample

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOCS – METHOD 8260B

Matrix Spikes/Matrix Spike Duplicates (MS/MSDs)

SDG C1167

MS/MSD analyses were performed on sample 828131A-DP2907X. Relative percent differences (RPDs) between percent recoveries for the following target analytes were above the Region 2 control limit of 20:

Analyte	MS/MSD RPD
Bromomethane	25
Carbon Tetrachloride	24
Methylcyclohexane	26
Toluene	22
cis-1,3-Dichloropropene	21
Chlorobenzene	22

These analytes were not detected in sample 828131A-DP2907X and quantitation limits were qualified as estimated (UJ).

Field Duplicates

SDG C1166

Inconsistent results were reported for acetone in sample 828131A-DP2407X and field duplicate 828131A-DP2407XDUP. Acetone was not detected in sample 828131A-DP2407X, but was detected above the reporting limit at a concentration of 5.6 ug/L in the field duplicate. The positive and non-detected results for acetone in 828131A-DP2407X and 828131A-DP2407XDUP were qualified as estimated (J/UJ).

Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported by the laboratory for SDGs C1166 and C1167. TICs being reported as final results in samples are presented in Table 4. If a sample is not listed, no TICs were reported in the sample, or the TICs were removed as blank contaminants or artifacts of the GC/MS instrument system.

Reference:

New York State Depar tment of Environ mental Conservation (NYSDEC), 2005. "Analytical Ser vices Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Validating Volatile O rganic Compounds by Gas Chro matography/Mass Spectrometry SW-846 Method 8260B"; SOP # HW -24, Revision 2, Hazardous W aste Support Branch; October 2006.

Data Validator: Julie Ricardi Julii Muares

Date: 3/3/11

Reviewed by Quality Assurance Officer Chris Ricardi, NRCC-EAC

Cluris Ricardi, NRCC-EAC

Date: 3/29/11

					Class	VOC
				Analy	sis Method	
					Fraction	Т
SDG			Sample ID	Sample Date	Qc Code	
C1166	GW	DP-21	828131A-DP2110X	1/20/2011	FS	Χ
C1166	GW	DP-21	828131A-DP2120X	1/20/2011	FS	Χ
C1166	GW	DP-22	828131A-DP2207X	1/17/2011	FS	Χ
C1166	GW	DP-22	828131A-DP2220X	1/17/2011	FS	Χ
C1166	GW	DP-23	828131A-DP2307X	1/18/2011	FS	Χ
C1166	GW	DP-23	828131A-DP2320X	1/18/2011	FS	Χ
C1166	GW	DP-24	828131A-DP2407X	1/18/2011	FS	Χ
C1166	GW	DP-24	828131A-DP2407XDUP	1/18/2011	FD	Χ
C1166	GW	DP-24	828131A-DP2420X	1/18/2011	FS	Χ
C1166	GW	DP-25	828131A-DP2507X	1/18/2011	FS	Χ
C1166	GW	DP-25	828131A-DP2520X	1/18/2011	FS	Χ
C1166	GW	DP-26	828131A-DP2607X	1/18/2011	FS	Χ
C1166	GW	DP-26	828131A-DP2620X	1/18/2011	FS	Χ
C1166	GW	DP-27	828131A-DP2707X	1/19/2011	FS	Χ
C1166	GW	DP-27	828131A-DP2720X	1/19/2011	FS	Χ
C1166	GW	DP-28	828131A-DP2807X	1/19/2011	FS	Χ
C1166	GW	DP-28	828131A-DP2807XDUP	1/19/2011	FD	Χ
C1167	GW	DP-28	828131A-DP2820X	1/19/2011	FS	Χ
C1167	GW	DP-29	828131A-DP2907X	1/19/2011	FS	Χ
C1167	GW	DP-29	828131A-DP2920X	1/19/2011	FS	Χ
C1167	GW	DP-30	828131A-DP3007X	1/20/2011	FS	Χ
C1167	GW	DP-30	828131A-DP3020X	1/20/2011	FS	Χ
C1167	GW	DP-31	828131A-DP3120X	1/20/2011	FS	Χ
C1167	GW	DP-32	828131A-DP3215X	1/20/2011	FS	Χ
C1167	BW	QC	828131A-TB1RM	1/17/2011	TB	Χ
C1167	PW	PS-04	828131A-PS0402	1/17/2011	FS	Χ
C1167	PW	PS-06	828131A-PS0602	1/17/2011	FS	Х
C1167	PW	PS-07	828131A-PS0702	1/21/2011	FS	Х

FOOTNOTES:

QC CODE

FS = field sample, FD = field duplicate, TB = trip blank

Media

GW = groundwater, BW = blank water, PW = purge water

Prepared by: BJS 2/16/2011

Checked by JAR 3/2/2011

	Sample Deliv				C11		C11		C11		C1166	C1166	C1166	C1166	C116	
		Location	DP-		DP-:		DP-		DP-		DP-23	DP-23	DP-24	DP-24	DP-2	
		mple Date	1/20/2		1/20/2		1/17/2		1/17/2		1/18/2011	1/18/2011	1/18/2011	1/18/2011	1/18/2	
											828131A-DP2320X			828131A-DP2407X		
		Qc Code			FS		FS		FS		FS	FS	FS	FS	FD	
	Param Name	Units	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifie		Result Qualifier			Qualifier
	Tetrachloroethene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Trichloroethene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,1,1-Trichloroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,1,2,2-Tetrachloroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,1,2-Trichloroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,1-Dichloroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,1-Dichloroethene	ug/l		U		U		U		U	1.9	1 U	1 U	1 U		U
	1,2,4-Trichlorobenzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,2-Dibromo-3-chloropropane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,2-Dibromoethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,2-Dichlorobenzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,2-Dichloroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,2-Dichloropropane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,3-Dichlorobenzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	1,4-Dichlorobenzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	2-Butanone	ug/l		U		U		U		U	5 U	5 U	5 U	5 U		U
	2-Hexanone	ug/l		U		U		U		U	5 U	5 U	5 U	5 U		U
	4-Methyl-2-pentanone	ug/l		U		U		U		U	5 U	5 U	5 U	5 U		U
	Acetic acid, methyl ester	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
SW8260B		ug/l	6.6		7.6		5.7		6.2		4.2 J	5 U	5.9	5 UJ	5.6	
SW8260B		ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Bromodichloromethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Bromoform	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Bromomethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Carbon disulfide	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Carbon tetrachloride	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Chlorobenzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Chlorodibromomethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Chloroethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
SW8260B		ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Chloromethane	ug/l	0.83	-		U		U		U	1 U	1 U	0.59 J	1 U		U
	Cis-1,2-Dichloroethene	ug/l		U		U		U		U	920 D	30	220 D	40	50	
	cis-1,3-Dichloropropene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Cyclohexane	ug/l		U	0.54			U		U	1 U	1 U	1 U	1 U		U
	Dichlorodifluoromethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Ethyl benzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Isopropylbenzene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Methyl cyclohexane	ug/l		U	0.66	_		U		U	1 U	1 U	1 U	1 U		U
	Methyl Tertbutyl Ether	ug/l		U		U	0.8	_		U	1 U	1 U	1 U	1 U		U
	Methylene chloride	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
SW8260B		ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
SW8260B		ug/l		U	0.55			U		U	1 U	1 U	1 U	1 U		U
	trans-1,2-Dichloroethene	ug/l		U		U	0.56			U	31	1 U	2.2	0.94 J		U
	trans-1,3-Dichloropropene	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Trichlorofluoromethane	ug/l		U		U		U		U	1 U	1 U	1 U	1 U		U
	Vinyl chloride	ug/l		U		U	260		43		110 D	3.3	24	2.4	3.8	
	Xylene, m/p	ug/l		U		U		U		U	2 U	2 U	2 U	2 U		U
SW8260B Notes:	Xylene, o	ug/l	1	U	1	U	1	U	1	U	1 U	1 U	1 U	1 U	1 1	U

Notes:

ug/L = microgram per liter

Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

D = result is from a diluted analysis

QC Code-

Sample Deliv	, .	C1166	C1166	C1166		C1166	C11		C11		C11		C11		C11	
	Location	DP-25	DP-25	DP-26		DP-26	DP-		DP-		DP-		DP-		DP-	
	mple Date	1/18/2011	1/18/2011	1/18/2011		1/18/2011	1/19/2		1/19/2		1/19/2		1/19/2		1/19/2	
		828131A-DP252	0X 828131A-DP250	7X 828131A-DP26	20X 828								28131A-DP			
	Qc Code	FS	FS	FS		FS	F	S	FS	-	FS	3	F)	FS	3
Analysis Param Name	Units	Result Qua			alifier Re	sult Qualifie		Qualifier		Qualifier		Qualifier		Qualifier	Result	Qualifier
SW8260B Tetrachloroethene	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U	1.1	
SW8260B Trichloroethene	ug/l	1 U	1 U	1 U		1 U		I U		U	0.98		0.82		2.6	
SW8260B 1,1,1-Trichloroethane	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U		1 U		I U	<u> </u>	U		U		U		U
SW8260B 1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,1-Dichloroethane	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,1-Dichloroethene	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,2-Dibromoethane	ug/l	1 U	1 U	1 U		1 U		I U		U		-		U		U
SW8260B 1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1,2-Dichloroethane	ug/l	1 U	1 U	1 U		1 U 1 U		I U		U		U		U		U
SW8260B 1,2-Dichloropropane SW8260B 1,3-Dichlorobenzene	ug/l	1 U 1 U	1 U 1 U	1 U		1 U		I U		U		U		U		U
SW8260B 1.4-Dichlorobenzene	ug/l	1 U	10	1 U		1 U		ı lu		U		U		U		U
SW8260B 2-Butanone	ug/l ug/l	5 U	5 U	5 U		5 U		5 U		i U		U	2.8			U
SW8260B 2-Hexanone	- 3	5 U	5 U	5 U		5 U		5 U		i U		U		U		U
SW8260B 4-Methyl-2-pentanone	ug/l ug/l	5 U	5 U	5 U		5 U		5 U		iU		U		U		U
SW8260B Acetic acid, methyl ester	ug/l	1 U	1 U	1 U		1 U		I U		U		U		U		U
SW8260B Acetone	ug/l	6.1	5.2	4.8 J		6.1	5.6	_	9.1	•	15	_	19	1-		U
SW8260B Benzene	ug/l	1 U	1 U	4.8 J		1 U		ı U		U		U		U		U
SW8260B Bromodichloromethane	ug/l	1 U	1 U	1 U		1 U		ılu		U		U		U		U
SW8260B Bromoform	ug/l	1 U	1 U	10		1 U		ı U		U		U		U		U
SW8260B Bromomethane	ug/l	1 U	1 U	1 U		1 U		i U		U		U		U		U
SW8260B Carbon disulfide	ug/l	1 U	1 U	1 U		1 U		i U		U		U		U		U
SW8260B Carbon tetrachloride	ug/l	1 U	1 U	1 U		1 U		i U	<u> </u>	U		Ü	<u> </u>	U		U
SW8260B Chlorobenzene	ug/l	1 U	1 U	1 U		1 U		i U		Ū		Ü		Ü		Ü
SW8260B Chlorodibromomethane	ug/l	1 U	1 U	1 U		1 U		I U		U		U		Ü		Ü
SW8260B Chloroethane	ug/l	1 U	1 U	1 U		1 U	1	Ū	1	Ü	1	Ū	1	Ü	1	Ü
SW8260B Chloroform	ug/l	1 U	1 U	1 U		1 U	1	Ū	1	U	1	Ū	1	U	1	U
SW8260B Chloromethane	ug/l	1.1	1 U	1 U		0.86 J	0.54	l J	0.61	J	1	Ū	1	U	1	U
SW8260B Cis-1,2-Dichloroethene	ug/l	1 U	1 U	110 D		4.1	1.3	3	1	U	59		46		210	D
SW8260B cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U		1 U	1	I U	1	U	1	U	1	U	1	U
SW8260B Cyclohexane	ug/l	1 U	1 U	1 U		1 U	1	I U	1	U	1	U	1	U	1	U
SW8260B Dichlorodifluoromethane	ug/l	1 U	1 U	1 U		1 U	1	I U	1	U	1	U	1	U	1	U
SW8260B Ethyl benzene	ug/l	1 U	1 U	1 U		1 U	1	I U	1	U	1	U	1	U	1	U
SW8260B Isopropylbenzene	ug/l	1 U	1 U	1 U		1 U		l U		U		U		U		U
SW8260B Methyl cyclohexane	ug/l	1 U	1 U	1 U		1 U		U		U		U		U		U
SW8260B Methyl Tertbutyl Ether	ug/l	1 U	1 U	1 U		1 U		l U	1	U		U	1	U	1	U
SW8260B Methylene chloride	ug/l	1 U	1 U	1 U		1 U		U		U		U		U		U
SW8260B Styrene	ug/l	1 U	1 U	1 U		1 U		l U		U		U		U		U
SW8260B Toluene	ug/l	1 U	1 U	1 U		1 U		U	<u> </u>	U		U	1	U		U
SW8260B trans-1,2-Dichloroethene	ug/l	1 U	1 U	2.6		1 U		U		U		U		U		U
SW8260B trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U		1 U		U		U		U		U		U
SW8260B Trichlorofluoromethane	ug/l	1 U	1 U	1 U		1 U		U		U		U		U		U
SW8260B Vinyl chloride	ug/l	1 U	1 U	3.4		3.5	1.3			U	0.85		0.57		22	
SW8260B Xylene, m/p	ug/l	2 U	2 U	2 U		2 U		2 U		U		U		U		U
SW8260B Xylene, o	ug/l	1 U	1 U	1 U		1 U	1	U	1	U	1	U	1	U	1	U

Notes:

ug/L = microgram per liter

Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

D = result is from a diluted analysis

QC Code-

Sample Deliv	ery Group	C1167	C1167	C1167	C1167	C1167	C1167	C1167	C1167	C1167
	Location	DP-29	DP-29	DP-30	DP-30	DP-31	DP-32	PS-04	PS-06	PS-07
Sa	mple Date	1/19/2011	1/19/2011	1/20/2011	1/20/2011	1/20/2011	1/20/2011	1/17/2011	1/17/2011	1/21/2011
	Sample ID	828131A-DP2920X	828131A-DP2907X	828131A-DP3020X	828131A-DP3007X	828131A-DP3120X	828131A-DP3215X	828131A-PS0402	828131A-PS0602	828131A-PS0702
	Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B Tetrachloroethene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Trichloroethene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,1,1-Trichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,1-Dichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,1-Dichloroethene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,2-Dibromoethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,2-Dichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,2-Dichloropropane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 1,4-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B 2-Butanone	ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B 2-Hexanone	ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B 4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B Acetic acid, methyl ester	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Acetone	ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B Benzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Bromodichloromethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Bromoform	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Bromomethane	ug/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Carbon disulfide	ug/l	1 U	1 U	1 U	1.1	1 U	1 U	1 U	1 U	1 U
SW8260B Carbon tetrachloride	ug/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Chlorobenzene	ug/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Chlorodibromomethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Chloroethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Chloroform	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Chloromethane	ug/l	1 U	0.63 J	1 U	1 U	1 U	1 U	1 U	0.58 J	1 U
SW8260B Cis-1,2-Dichloroethene	ug/l	1 U	1 U	3.5	2.6	0.96 J	1 U	1 U	1 U	1 U
SW8260B cis-1,3-Dichloropropene	ug/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Cyclohexane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Dichlorodifluoromethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Ethyl benzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Isopropylbenzene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Methyl cyclohexane	ug/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Methyl Tertbutyl Ether	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Methylene chloride	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Styrene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Toluene	ug/l	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B trans-1,2-Dichloroethene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Trichlorofluoromethane	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B Vinyl chloride	ug/l	1 U	1 U	1.1	1 U	7.8	1 U	1 U	1 U	1 U
SW8260B Xylene, m/p	ug/l	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
SW8260B Xylene, o	ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Notes:	ug/i	. 10	, , io	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	. 'I		. [0	. 0	. 10

Notes:

ug/L = microgram per liter

Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

D = result is from a diluted analysis

QC Code-

	Sample Delive	ery Groun	C11	67
	Cample Deliv	Location	QC	
	Sa	mple Date		
		Sample ID		
	·	Qc Code	TE	
Δnalysis	Param Name	Units		Qualifier
	Tetrachloroethene	ug/l		U
	Trichloroethene	ug/l		Ū
	1,1,1-Trichloroethane	ug/l		Ü
	1,1,2,2-Tetrachloroethane	ug/l	1	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1	U
	1,1,2-Trichloroethane	ug/l	1	Ü
	1,1-Dichloroethane	ug/l	1	Ū
SW8260B	1,1-Dichloroethene	ug/l	1	U
	1,2,4-Trichlorobenzene	ug/l	1	U
SW8260B	1,2-Dibromo-3-chloropropane	ug/l	1	U
	1,2-Dibromoethane	ug/l	1	U
SW8260B	1,2-Dichlorobenzene	ug/l	1	U
SW8260B	1,2-Dichloroethane	ug/l	1	U
SW8260B	1,2-Dichloropropane	ug/l	1	U
SW8260B	1,3-Dichlorobenzene	ug/l	1	U
	1,4-Dichlorobenzene	ug/l	1	U
SW8260B	2-Butanone	ug/l		
SW8260B	2-Hexanone	ug/l	5	
	4-Methyl-2-pentanone	ug/l	5	
SW8260B	Acetic acid, methyl ester	ug/l		U
SW8260B		ug/l	5	U
SW8260B		ug/l		U
	Bromodichloromethane	ug/l	1	U
	Bromoform	ug/l	1	U
	Bromomethane	ug/l	1	U
	Carbon disulfide	ug/l	1	U
	Carbon tetrachloride	ug/l	1	U
	Chlorobenzene	ug/l		U
	Chlorodibromomethane	ug/l	1	U
	Chloroethane	ug/l	1	U
	Chloroform	ug/l	1	U
	Chloromethane	ug/l	1	U
	Cis-1,2-Dichloroethene	ug/l	1	U
	cis-1,3-Dichloropropene	ug/l	1	
	Cyclohexane	ug/l	1	U
	Dichlorodifluoromethane	ug/l	1	U
	Ethyl benzene	ug/l	1	U
	Isopropylbenzene	ug/l		
	Methyl cyclohexane	ug/l	1	U
	Methyl Tertbutyl Ether	ug/l	<u>1</u>	U
	Methylene chloride	ug/l	1	U
SW8260B SW8260B		ug/l	1	U
	trans-1,2-Dichloroethene	ug/l ug/l	1	U
	trans-1,3-Dichloropropene	ug/I ug/I	1	U
	Trichlorofluoromethane	ug/I ug/I	1	U
	Vinyl chloride	ug/I ug/I		U
	Xylene, m/p	ug/I ug/I	2	U
SW8260B	Xylene o	ug/l ug/l		U
Notes:	Aylone, U	uy/i		0

Notes:

ug/L = microgram per liter

Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

D = result is from a diluted analysis

QC Code-

SDG	Lab Sample Id	Analysis Method	Field Sample ID	Paramater Name	Lab Result	Lab Qualifier	Validated Result	Validation Qualifier	Val Reason Cod	le Result Units	Lab Id
C1166	C1166-08	SW8260B	828131A-DP2407X	Acetone	5	U	5	UJ	FD	ug/l	CCGE
C1166	C1166-09	SW8260B	828131A-DP2407XDUP	Acetone	5.6		5.6	J	FD	ug/l	CCGE
C1167	C1167-02	SW8260B	828131A-DP2907X	Bromomethane	1	U	1	UJ	MS-RPD	ug/l	CCGE
C1167	C1167-02	SW8260B	828131A-DP2907X	Carbon tetrachloride	1	U	1	UJ	MS-RPD	ug/l	CCGE
C1167	C1167-02	SW8260B	828131A-DP2907X	Chlorobenzene	1	U	1	UJ	MS-RPD	ug/l	CCGE
C1167	C1167-02	SW8260B	828131A-DP2907X	cis-1,3-Dichloropropene	1	U	1	UJ	MS-RPD	ug/l	CCGE
C1167	C1167-02	SW8260B	828131A-DP2907X	Methyl cyclohexane	1	U	1	UJ	MS-RPD	ug/l	CCGE
C1167	C1167-02	SW8260B	828131A-DP2907X	Toluene	1	U	1	UJ	MS-RPD	ug/l	CCGE

Notes:

Validation Qualifiers-

J = estimated concentration

U = not detected

Validation Reason Codes-

MS-RPD = relative percent difference between matrix spike/matrix spike duplicate results exceeds limit

FD = field duplicate results exceed limit

Page 1 of 1

Prepared by: BJS 3/16/2011 Checked by: JAR 3/17/2011

TABLE 4 SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS DATA USABILITY SUMMARY REPORT JANUARY 2011 WATER SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

	SDG	Sample ID	Lab Sample ID	Analytical Method	CAS Number	Compound	Final Result (ug/L)	Qualifier	Analysis Date
ſ	C1167	828131A-DP3215X	C1167-09	SW846 8260B	UNKNOWN9.46	unknown9.46	50	JN	1/26/2011

FOOTNOTES:

Qualifiers

JN = estimated value with presumptive evidence that the compound is present in the sample

VOCs

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD
Project: Carnage Clean hour
Method: <u>SW-846 8260B</u>
Laboratory and SDG(s): Chemtech SDG# C1166 Date: 2 121/11
Reviewer: Julie Kinardi
Review Level X NYSDEC DUSR USEPA Region II Guideline
SEE ATMCHED SAMPLE LIST
1.
Were problems noted? Or problems noted as cummanized below) acctone max cone in
Were problems noted? Of problems noted >5 Comments is continuously declarated analyses? (VES) NO (circle one) Tracis 50 (2)
2. Holding time and Sample Collection due to saturation of
All samples were analyzed within the 14 day holding time. Yes Will assemble the defector (3)
3. PQC Blanks impact since all
Are method blanks free of contamination? (YES) NO (circle one)
Are Trip blanks free of contamination? YES NO (circle one) NIA Are Rinse blanks free of contamination? YES NO (NA (circle one)
The first of the of the first o
Instrument Tuning
Were all results were within method criteria. (YES NO (circle one)
Instrument Calibration Were all results within criteria? YES NO (circle one)
Initial Calibration %RSD = 20% (except 30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, and
Vinyl Chloride)
Continuing Calibration %D = 20% All OK
☐ Surrogate Recovery
Were all results were within laboratory limits? (YES) NO (circle one)
Internal Standards: All OK Matrix Spike
Were MS/MSDs submitted/analyzed? YES NO
Wasa all sacreta avera within laborators limited MEC NO ALA
Were all results were within laboratory limits? YES NO(NA)(circle one)
☑ Duplicates/replicates
Were Field Duplicates submitted/analyzed? YES NO
D12451 X/XDUP: Accton ND / 5.6 49/ (RL = 5.5 19) (G/45) backlos
Were Field Duplicates submitted/analyzed? YES NO DP2457 X / X 1) UP: Acchoration No / 5.6 49/2 (RL = 5.5 42) 1. (Flut based on Were all results were within criteria. YES NO NA (circle one) PP2467 X / X DUP: All OK Professional judgment
D Laboratory Control Sample Results 75-130
Were all results were within laboratory limits? (YES NO (circle one)
The statement of the st
Raw Data Review and Calculation Checks
See 506, CITED for calculation cheeks. 5. DElectronic Data Review and Edits
Does the EDD match the Form I's? YES NO (circle one)
5. File Tic Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Tic's).
Did lab report TICs? None detected in samples (rew data checked)

	Lab	Lab Sample Id	C1166-02 DP-21	C1166-03	C1166-04 DP-22	C1166-05	C1166-05DL	C1166-06	C1166-07 DP-23	C1166-07DL
			ì	1	DF-22				7-73	2
	i i i	Sample Date	1/20/2011	1/20/2011	1/17/2011	1/17/2011	UP-22	1/18/2011	1/18/2011	1/18/2011
	*	Sample ID	828131A-DP2110X	828131A-DP2120X	X 02	828131A-DP2220X	828131A-DP2220X	828131A-DP2307X	320X	828131A-DP2320X
Analysis F	Param Name	Units	Result Oualifier	Result Oralifier	Result Ousifier	Result Oualifier	FS Result Ouslifier	Restrit Ottalifier	FS FS	FS Paseut Oustrier
_	1.1.Trichloroethane	/42	-	-	7	-	L	+	-	ı
	1,1,2,2-Tetrachloroethane	- P			2 -					
	1,1,2-Trichloro-1,2,2-Triffuoroethane	l/gn	10		1 0	10		10	 	
-	1,1,2-Trichloroethane	l/Ĝn) -	5	10) t			ם ר	
	f,1-Dichloroethane	ng/l))	2	10	→		10	- -	
~~~	1,1-Dichloroethene	ng/l	<u>۔</u> ت		1	~-	*	) T	9;	
	1,2,4-Trichlorobenzene	l/gu	<u>ت</u>	J.	> -	÷		) t		
SW8260B 11	1,2-Dibromo-3-chloropropane	l/gu	, )	<b>→</b>	1.	~ ⊃			, , , , , , , , , , , , , , , , , , ,	-
	1,2-Dibromoethane	l/gn	<del>~</del>	10	⊃	, 5		10		
	1,2-Dichlorobenzene	ng/l	1 C	10	J.C.	<u></u>		2	101	
	1,2-Dichloroethane	l/gn	) )		2 7	- -		- T		
	1,2-Dichloropropane	ng/l		<u></u>	10	٦ ·		16	10	-
	1,3-Dichlarobenzene	l/gh			10	, )		10	- n	
	1,4-Dichlorobenzene	ng/l		<u> </u>	₽			 	10	
-	2-Butanone	yg⊓		ے دو	ى ت			5 C	2 ∩	
	Z-rexanone	Pg.			 ⊡ :				2 ∩	•
SVV8ZBUE 4	4-Wetnyl-z-pentanone	) D	⊃ : o ·		 			⊃ :	 •	
7.	Acetic acid, metnyl ester	m (d	 			 		<del>-</del>		
SW8Z6UB A	Acetone	<u> </u>	3.7	99.	9.5	5.7		ລ: ເຄົ	L 24	
	Derizerre	l/6m		) : - ·	> ;	) : c		2 :	<u> </u>	
	Brontouchornemane	ž, n	) : : :	 	<b>D</b> :	) : 		) )		-
SWOZOUB IB	Brombrom	B)	 	- ·	- ·	) ;			<u> </u>	•
	Diomonaculare	) G	) : - `	) :  -	⇒ ;	⊋:		 ⊃ :		
SW8ZDUB	Carbon distilline	Š	<b>&gt;</b> :	 	⊃ ;			⊃:		•
	Calcol terracing rue	<u> </u>	) ;		2 :			2:	) ; - ,	
	Chlorodibromomethane	/67	2 -	 	2 =	- ÷		) =		
	Chloroethane	) (i		) <u>-</u>	2 =	- <del>-</del>		) = 	) =	
	Chloroform	/on	· ·		2 =	- <del>-</del>		> ==		
	Chloromethane	/gn	יי	0.83	<u> </u>	, n		. ~	· ·	
	Cis-1,2-Dichloroefhene	[/Bn	), (	- -	1 U			88		920 D
	cis-1,3-Dichloropropene	ng/	<b>&gt;</b>	 ∵	⊋	⊋		u t	- -	•
	Cyclonexane	r@/		<b>→</b> :	<b>-</b>			<b>→</b>	<b>→</b>	
	Dichlorodifluoromethane	rig/	 		: :	<u> </u>		<b>D</b> :	<u> </u>	
3,482005	Entyl Denzene	S 1	> :		> =	·		 ⊃ :	- ·	
	Mothy methodom	i c	- w	2 5	- ·	) = - •		D =	- ·	
	Metryl Cycloledgile	Ď.	0.00	> :	- ·	- 6	-	) - 1		
-	Meshylone oblesion	in in	- ·	) = T	) = - •	20.5		) : - +	) : - •	
	Shacoo	n b	) <u> </u>		> =			o =	o =	•
5.1.	Fetrachloroefhene	, To	- <del>-</del>	- <del>-</del>	> ==	> =		> =		
4.	Toluene	705	0.55 J	> =	) III	> =		=======================================		
	rans-1,2-Dichloroethene	ng'	2	, <del>,</del>	2	0.56 J			3	
SW8260B tr	trans-1,3-Dichloropropene	l/gu	10	2	<b>1</b>	10		10	- -	
SW8260B Tr	Lrichloroethene	ng/l	J.C.	٦ -	10			1 C	5	
	Trichiorofluoromethane	l/gn	- -	<b>→</b>	 U			10	٦ -	
<u></u>	Vinyl chloride	ngvj	<u></u>	J.C.	<b>₹</b>		260 D	3.3		110 D
-,	χylene, π/p	l/gn	2 ∪	2 U	2 U	2 ∪		2 U	2.0	
SW8260B X	Xylene, o	ng/l	10	D	10	1 0		1.0		

Revinued by

Line   Lab Sample   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Critico   Crit		Sample Delivery Group	ery Group	C1166	C1166	C1166	C1186	C1166	C1166	C1166	C1168
Partial Name         Cocks         Section Section (Cocks)         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         Cocks         <		Cab	Sample Id	C1166-08	C1166-09	C1156-10	C1166-10DL	C1166-11	C1168-12	C1166-13	C1166-14
Face of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control		ä	Tocation	1/18/2011	1/18/2011	DP-24	17-74 17-87974	DP-25	DP-25	DP-26	DP-26
1.1.4. Tribitocontenter		3,	Sample ID	828131A-DP2407X	128131A-DP2407XDU	828131A-DP2420X	828131A-DP2420X	828131A-DP2507X	1/15/2011 828131A-DP2520X	1/18/2011 828131A-DP2607X	1/18/2011 828131A-DP2620X
1.1. Triplicocrature			Oc Code	S		87	£8		FS	S.	FS
1.1.2. Trinshortentane upf   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	Analysis	Param Name	Units			ı	ŀ		- 1	Result Qualifier	Result Qualifier
1.15 Trianco-state	SW8Z60B	1,1,1-Inchloroethane	/b) !	- ·		<b>5</b>			D :	<b>&gt;</b> ;	D:
1.2 Trickletocreterer   1.9   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	SWRZEGB	1, 1, 2, 2-1 eu avanor ceusaite 11 1 2-Trichloro-1 9 2-Triffromethene		- <del>-</del>		2 =		> =	> = +		0 =
11-Debtroceterane	SW8260B	1,1,2-Trichloroethane	n d		2 2	> =			) == 	2 =	> =
1.1.Deformediative   ugh   1   1   1   1   1   1   1   1   1	SW8260B	1,1-Dichloroethane	ng	· >	-	, <del>,</del>		 > ⊃			) =
12-bifcrobersories	SW8260B	1,1-Dichloroethene	, (g)	בּי	10	÷			) <u></u>		
2. Disconvocatione   agi   10   10   10   10   10   10   10   1	SW8260B	1,2,4-Trichlorobenzene	/ôn	, T	j t	<b>→</b>		10	, ,	<u> </u>	
2. Definitioned trainers   19   10   10   10   10   10   10   10	SW8260B	1,2-Dibromo-3-chloropropane	/gn	10	10	10		10	- -	5	
2. Dichicoceptene   ug/    10   10   10   10   10   10   10	SW8260B	1,2-Dibromoethane	/gn	⊃ -	10	10			J C	חר	n +
1.2. Diction complaine   ught   10   10   10   10   10   10   10   1	SW8260B	1,2-Dichlorobenzene	/gn	<u>~</u>	<b>-</b> ∶	<b>D</b>		J .	<u></u>		 ⊃
Continue proposeries   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue	SW8260B	1,2-Dichloroethane	/bn	<u> </u>	<b>D</b>	÷		_ 	10	D _	D
1Chalchordentearine uply 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5	SW8260B	1,2-Dichloropropane	ßn :	) : - '	 	<b>□</b>		> :	) )		<b>→</b>
2. Factoring before the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t	CAMOZOUD	A Prioritoroporation	ja j	⊃ = - √	- ·	<b>&gt;</b> :		)  -  -	) : - '	); ;	) : -
2-Hearanne         ug/l         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U <th< th=""><th>STARSEOR</th><th>2-Britanona</th><th>) i</th><th></th><th>2 =</th><th></th><th></th><th>⊃ = - ʁ</th><th><b>5</b> ;;</th><th>&gt; = - 4</th><th>) - u</th></th<>	STARSEOR	2-Britanona	) i		2 =			⊃ = - ʁ	<b>5</b> ;;	> = - 4	) - u
Advectory 42-pentatorne   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Unit   Un	SWISSEUR	2-Hayapone	2		) <u>-</u>			) = ) (			) <u>-</u>
Acetic acid, insertly ester   ugil   1	SW8260B	4-Methyl-2-pentanone	) b		) iii			) = ) (c			
Acetone   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Brown   Br	SW8260B	Acetic acid, methyl ester	na/		) T	2 0					) <del>-</del>
Benzense   Benzense   Benzense   Benzense	SW8260B	Acetone	757			5.0.0			٠.		. 60
Broundichloromerhane         ug/l         1 U         1 U         1 U           Broundichloromethane         ug/l         1 U         1 U         1 U           Broundommethane         ug/l         1 U         1 U         1 U           Carbon distulde         ug/l         1 U         1 U         1 U           Chloroberzene         ug/l         1 U         1 U         1 U           Chloroberzene         ug/l         1 U         1 U         1 U           Chloroperpane         ug/l         1 U         1 U         1 U           Syrane         ug/l         1 U         1 U         1 U           Methydene chloride         ug/l         1 U         1 U         1 U	SW8260B	Велхеле	/bn	, D	-	10			_	7	
Bromotemn   Ug/A   1   1   1   1   1   1   1   1   1	SW8260B	Bromodichioromethane	/bn	) -	- -	10		- T	10	7	, ,
Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenner   Brownentenne	SVV8260B	Bromoform	l/ĝn	<u></u>	- -	<b>↑</b>		٠ -	10	10	1 U
Carbon distrificie   ug/l   1	SW8260B	Bromomethane	ng/f	ייי	) t	<b>↑</b>			- C	- T	) t
Carabot transchorte   ug/l   1	SW8260B	Carbon disulfide	ng.	<u> </u>		7		10		יי סר	↑ D
Chlorocethrane ug/l 10 10 10 10 10 10 10 10 10 10 10 10 10	SW8Z60B	Carbon tetrachlonde	ngy	); ; ;	⇒ : ~ ·	⊋:		<b></b> -	<b>→</b>	<u> </u>	<u> </u>
Childrocathane ug/l 10 10 10 10 10 10 10 10 10 10 10 10 10	SW8Z60B	Chiorobertzene	) Din	 	— ; — ;	<b>&gt;</b> :		) 	<u> </u>		
Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Ug/l 10 10 0.59 J 10 110 110 110 110 110 110 110 110 110	SWASSOB	Chlorothan	j 1	- ·	) : - •	) : :		) : - ,	2 5		 
Chicomethane ug/l 10 10 0.89 J 220 D 10 11 Chicomethane ug/l 10 10 10 10 10 10 10 10 10 10 10 10 10	SW8260B	Chloriform	j (	2 =	- <del>-</del> -	> =		) = 	) = 		
Cis-1,2-Dichloroethene         ug/l         40         60           cis-1,2-Dichloroethene         ug/l         1 U         1 U         1 U           Cyclobioxane         ug/l         1 U         1 U         1 U           Dichloroptropene         ug/l         1 U         1 U         1 U           Ethyl benzene         ug/l         1 U         1 U         1 U           Ethyl benzene         ug/l         1 U         1 U         1 U           Metryl enzene         ug/l         1 U         1 U         1 U           Metryl septime         ug/l         1 U         1 U         1 U           Metryl septime         ug/l         1 U         1 U         1 U           Metryl septime         ug/l         1 U         1 U         1 U           Metryl septime         ug/l         1 U         1 U         1 U           Syrane         ug/l         1 U         1 U         1 U           Toluene         ug/l         1 U         1 U         1 U           Trans-1,2-Dichloroethene         ug/l         1 U         1 U         1 U           Trichloroethene         ug/l         1 U         1 U         1 U           <	SWB260B	Chloromethane	) P	> =		5 650		0 =		- 880	> =
cis-1,3-Dichloropropene         ug/l         1 U         1 U         1 U         1 U           Dyckobraxane         ug/l         1 U         1 U         1 U         1 U           Ethyl borzone         ug/l         1 U         1 U         1 U         1 U           Ethyl borzone         ug/l         1 U         1 U         1 U         1 U           I sopropylberzene         ug/l         1 U         1 U         1 U         1 U           Metryl Terburk Ether         ug/l         1 U         1 U         1 U         1 U           Metryl Terburk Ether         ug/l         1 U         1 U         1 U         1 U           Styrene         ug/l         1 U         1 U         1 U         1 U           Styrene         ug/l         1 U         1 U         1 U         1 U           Toluene         ug/l         1 U         1 U         1 U         1 U           Tricklorochtene         ug/l         1 U         1 U         1 U         1 U           Tricklorochtene         ug/l         1 U         1 U         1 U         1 U           Tricklorochtene         ug/l         1 U         1 U         1 U         1 U	SW8260B	Cis-1,2-Dichloroethene	'n		200	+	220 D	1 0	) t	4	
Cyclohexane         ug/l         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U <t< th=""><th>SW8260B</th><th>cis-1,3-Dichloropropene</th><th>/bn</th><th>) L</th><th>٠ -</th><th>٠, د</th><th></th><th>10</th><th>1 U</th><th>10</th><th>10</th></t<>	SW8260B	cis-1,3-Dichloropropene	/bn	) L	٠ -	٠, د		10	1 U	10	10
Dischlorordination   1	SW8260B	Cyclohexane	ηδη	J	<b>→</b>	÷:		¬ ¬	<b>→</b>	_ 	
Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Style   Styl	SW8260B	Dichlorodifluoromethane	lg,	⊃ :	<b>→</b> :	<b>&gt;</b> ;		⊋ :	⊋ ;	<u> </u>	<b>→</b>
Methylandscape         ug/l         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U	SVVSZBOB	Emy perzene	) D			> =			) = - ·	→ ÷	
Methyl Terbunk Ether         ug/l         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U         T U	SWRZGOB	Methy Colonexane	5 2			o ==		) =	2 =	) = 	 
Methylene chloride         ug/l         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U	SW8260B	Methy Terbuty Ether	/on	, D		, <del>,</del>		) ⊃	. t	- <del>-</del>	
Styrene         ug/l         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1	SW8260B	Methylene chloride	ng/l	,	1 C	1		<u> </u>	, T		. T
Tetrachloroethene         ug/l         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U	SW8260B	Styrene	/bn	- 1 C	- -	ů.		1 U	) t	2	, T
Toluene   Ug/l   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	SW8260B	Tetrachloroethene	/bn	ַ יח ר		÷		10	1 C	<b>-</b>	יי ה
transe1,2-Dichloroethene         ug/l         1.0         2.2         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <th>SW8Z60B</th> <th>Toluene</th> <th>/g₂</th> <th></th> <th><b>→</b></th> <th><b>=</b></th> <th></th> <th><u>~</u></th> <th><b>□</b></th> <th><u> </u></th> <th>⊃</th>	SW8Z60B	Toluene	/g ₂		<b>→</b>	<b>=</b>		<u>~</u>	<b>□</b>	<u> </u>	⊃
Transcript-Ligatinopropene ug/l 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1	SW8260B	trans-1,2-Dichloroethene	/g/					);	<b>∵</b>	<b>)</b>	2.6
Trichlorefuence   10	SW8Z60B	trans-1,3-Dichloropropene	) i	⊃ :	 				) )	- ·	- ·
Virginization of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	SVVOZGUD	Trichtonfluoromathona	) N	- <del>-</del>		<b>5</b>			- T	) <u>-</u>	 
Xylene, mp 20 20 20 20 Xylene, mp 111 111 111 111 111	SWRZ60B	Vind chloride			- 00	24				- 10 - 10	9 4
C duesty.	SW8260B	Xylene, m/o	ng/		N	7		2 0	. 5 . C	7 0 7	
	SW8260B	Xylene, o	/on						) -	10	

Sar	Continu	DP-26	DP-27	DP-27	DP-28	45.46
Sac	Location.	********				27-78
ν,	Sample Date	1/18/2011 826131A-DP2620X	1/19/2011 828131A-DP2707X	1/19/2011 828131A-DP2720X	1/19/2011 828131A-DP2807X	1/19/2011 28131A-DP2807XDU
	Oc Code	ŝ	ŝ	ŝ	Z.	윤 '
Paran Name	Cures	Kesult Quamer	Result Qualifier	Result Qualitier	Result Qualifier	Result Qualifier
1,1,1-1 monoroemane	Š) į			) = 	) : - •	2 5
1.1.2-Trichloro-1.2.2-Trifluoroethane	j		) = - \-	) = - (-	- +-	> =
.1.2-Trichloroethane	(10%)		) =	. *-	) =	
1-Dichloroethane	72		. =			2
1-Dichloroethere	7 9		· =		> =	
2 4-Trichlombenzene	/01			> =		> =
2-Dihomo-3-chiomnonane	) E		- <del>-</del>	> =	> =	> =
2. Dibromosthana	à i		> =	> =	> =	7
2,4-DIO OHIOGUSI IN			) : - v	2 :	- <b>,</b>	) i
	S S		) : - •	> ;	o ;	o :
	/Bm			<b>&gt;</b>	-	<u> </u>
,2-Dichloropropane	/6n		2	<u> </u>		<u></u>
,3-Dichlorobenzene	/Sn			~ ⊃	10	→ □
,4-Dichlorobenzene	ngvi		J.	<b>∩</b>	, ,	
2-Butanone	no.i		10	2 🗆	2 2 1	80
-Hexanone	/11/			) =   	) [	; =
Mother of postagons	j (	-		> =		
per light of the	<u></u>		o :	) : 0 :	) : 0 :	) (
Acetic acid, metnyl ester	rg/		<u> </u>	2		
	/bn		6.1	5.6	ib.	49
	/gn		_ _	ے ت	- - -	~ ⊃
Bromodichloromethane	ncy			1 U	~ ⊃	, ,
Вготобот	/gn		10	<u></u>	5	-
Bromomethane	130/8	•		11 +	2	111
Jachon disulfida	ò		-	-	-	-
Sathon tetrachloride	101		) <u>=</u>	) =	? =	> =
Caron regarding	go i			> =	) = ·	2 5
Shind Order (Carical	n i		0 :	> =	) : - `	2 0
	<u> </u>		> :	) : - ,	o :	) : -
Chloroethane	γĝη				0	5
Chloroform	ηδη		5	٦ ۲	1 N	<u></u>
Chloromethane	ng/i		0.61 J	0.54 J	<b>↓</b>	בי
Cis-1,2-Dichloroethene	//Sn	110 D	10	5.	59	46
cis-1,3-Dichloropropene	ng/i				בי די	<u> </u>
Simplexage	701		=	=	*	
Dicklorodiffuoromethana	, C.		, <del>-</del>	=	) =	) :::
Third bondone	n i		=======================================		> =	) =
9			o :	) : - ;	) : - ,	>:
and characterise	D)		) : 	ສ :	o :	: c
wetnyl cyclonexane	ng/i			- -	<b>→</b>	<u> </u>
Wethyl Tertbutyl Ether	/bn			<b>→</b>	<u>-</u> ت	1 U
Wethylene chloride	lig/l			D.	<u> </u>	
	l'on			10	2	
Fetrachloroethene	no.					
	ò		=======================================			
	9		) : - •	> =	) :	) :
rans-1,z-thanoremene	Sa T		o :	> :	) : - ,	0:
trans-1,3-Dichloropropene	rg/		<u> </u>	⊃ :	) ·	0
richloroethene	l/gn			÷ ⊃	0.98 J	0.82 J
Frichtoroffuoromethane	/Sn			10	~~ ⊃	ב
Vinyi chioride	navi			5.7	0.85 J	0.57 J
cym euerocycl	12.0			116	2116	2.11
	9	•	7 *		> =	) -



284 Sheffield Street, Mountainside, New Jersey 07092 Phone: 908 789 8900 Fax: 908 789 8922

## **Cover Page**

Order ID:

C1166

Project ID:

Carriage Cleantown

Client:

MACTEC Inc.

Lab Sample Number	Client Sample Number
C1166-02	828131A-DP2110X
C1166-03	828131A-DP2120X
C1166-04 .	828131A-DP2207X
C1166-05	828131A-DP2220X
C1166-06	828131A-DP2307X
C1166-07	828131A-DP2320X
C1166-08	828131A-DP2407X
C1166-09	828131A-DP2407XDUP
C1166-10	828131A-DP2420X
C1166-11	828131A-DP2507X
C1166-12	828131A-DP2520X
C1166-13	828131A-DP2607X
C1166-14	828131A-DP2620X
C1166-15	828131A-DP2707X
C1166-16	828131A-DP2720X
C1166-17	828131A-DP2807X
C1166-18	828131A-DP2807XDUP

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Hedred VReys

Mildred V. Reyes, QA/QC Supervisor 2011.02.03 16:10:01 -05'00'

Signature:

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	СНЕМТЕСН			Contract:	MACT03		
Lab	Code:	СНЕМ	Case No.:	C1166	SAS No.:	C1166	SDG NO.:	C1166
Lab	File ID:	VG032703.D	_		BFB Injection	Date:	01/25/2011	
Inst	trument ID:	MSVOAG			BFB Injection	Time:	13:43	
GC (	Column: RT	X-VMS ID: 0.18	(mm)		Heated Purge:	Y/N	N	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.3
75	30.0 - 60.0% of mass 95	42.1
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.0 ( 0.0 ) 1
174	50.0 - 100.0% of mass 95	67.4
175	5.0 - 9.0% of mass 174	4.9 ( 7.2 ) 1
176	95.0 ~ 101.0% of mass 174	65.4 ( 96.9 ) 1
177	5.0 - 9.0% of mass 176	4.8 ( 7.4 ) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VG032704.D	01/25/2011	14:15
VBG0125W2	VBG0125W2	VG032706.D	01/25/2011	15:29
BSG0125W3	BSG0125W3	VG032707.D	01/25/2011	15:58
828131A-DP2110X	C1166-02	VG032714.D	01/25/2011	19:18
828131A-DP2120X	C1166-03	VG032715.D	01/25/2011	19:47
828131A-DP2207X	C1166-04	VG032716.D	01/25/2011	20:15
828131A-DP2220X	C1166-05	VG032717.D	01/25/2011	20:44
828131A-DP2320X	C1166-07 OK, no CO	VG032719.D	01/25/2011	21:41
828131A-DP2407XDUP	C1166-09	VG032721.D	01/25/2011	22:38
828131A-DP2420X	C1166-10	VG032722.D	01/25/2011	23:07
828131A-DP2507X	C1166-11 OK, 10 CO	VG032723.D	01/25/2011	23:35
828131A-DP2520X	C1166-12	VG032724.D	01/26/2011	00:04
828131A-DP2607X	C1166-13	VG032725.D	01/26/2011	00:33
828131A-DP2620X	C1166-14	VG032726.D	01/26/2011	01:01
828131A-DP2707X	C1166-15 OK, no CO	VG032727.D	01/26/2011	01:30

CCAL! All OK

C.O. = corry over evidence; none apparent in any samples



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	СНЕМТЕСН			Contract:	MACT03		
Lab	Code:	CHEM	Case No.:	C1166	SAS No.:	C1166	SDG NO.:	C1166
Lab	File ID:	VG032738.D			BFB Injection	Date:	01/26/2011	
Inst	trument ID:	MSVOAG			BFB Injection	Time:	11:24	<u> </u>
GC (	Column: R	TX-VMS ID: 0.18	(mm)		Heated Durge:	v/N	N	

ı⊭\ə	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	21.7
75	30.0 - 60.0% of mass 95	43.1
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.5
173	Less than 2.0% of mass 174	0.0 ( 0.0 ) 1
174	50.0 - 100.0% of mass 95	63.3
175	5.0 - 9.0% of mass 174	4.5 ( 7 ) 1
176	95.0 - 101.0% of mass 174	62.4 ( 98.5 ) 1
177	5.0 - 9.0% of mass 176	4.1 ( 6.6 ) 2
·		

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VG032739.D	01/26/2011	12:47
VBG0126W1	VBG0126W1	VG032741.D	01/26/2011	13:57
BSG0126W1	B8G0126W1	VG032742.D	01/26/2011	14:26
828131A-DP2220XDL	C1166-05DL	VG032744.D	01/26/2011	15:23
828131A-DP2620XDL	C1166-14DL	VG032745.D	01/26/2011	15:52
828131A-DP2307X	C1166-06	VG032747.D	01/26/2011	16:50
B28131A-DP2407X	C1166-0B	VG032748.D	01/26/2011	17:18
828131A-DP2720X	C1166-16	VG032749.D	01/26/2011	17:47
828131A-DP2807X	C1166-17	VG032750.D	01/26/2011	18:16
828131A-DP2420XDL	C1166-10DL	VG032751.D	01/26/2011	18:45
828131A-DP2807XDUP	C1166-18	VG032752.D	01/26/2011	19:14
828131A-DP2320XDL	C1166-07DL	VG032753.D	01/26/2011	19:42
13SW-5MS	C1185-02MS	VG032759.D	01/26/2011	22:34
13sW-5MSD	C1185-03MSD	VG032760.D	01/26/2011	23:03

CCAL! All OK

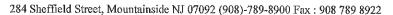


#### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	СНЕМТЕСН			Contract:	MACT03		
Lab	Code:	CHEM	Case No.:	C1166	SAS No.:	C1166	SDG NO.:	C1166
Lab	File ID:	VG032626,D	<del></del>		BFB Injection	n Date:	01/20/2011	
Inst	rument ID:	MSVOAG			BFB Injection	n. Time:	11:10	
GC (	Column: RT	X-VMS ID: 0.18	(mm)		Heated Purge	: Y/N	N	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	21.1
75	30.0 - 60.0% of mass 95	43.3
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.5
173	Less than 2.0% of mass 174	0.0 ( 0.0 ) 1
174	50.0 - 100.0% of mass 95	65.8
175	5.0 - 9.0% of mass 174	4.7 ( 7.2 ) 1
176	95.0 - 101.0% of mass 174	64.6 ( 98.2 ) 1
177	5.0 - 9.0% of mass 176	3.9 ( 6 ) 2

1-Value is % mass 69


2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD001	1 PPB ICC	VG032627.D	01/20/2011	12:02
VSTD005	5 PPB ICC	VG032628.D	01/20/2011	12:30
VSTD010	10 PPB ICC	VG032629.D	01/20/2011	12:59
VSTD050	50 PPB ICC	VG032631.D	01/20/2011	13:56
VSTD100	100 PPB ICC	VG032632.D	01/20/2011	14:25
VSTD020	20 PPB ICC	VG032633.D	01/20/2011	16:38

All ok

All sequences checked for possible caryoner; all OK
22





Report of Analysis

Client: MACTEC Inc. Date Collected: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2110X SDG No.: C1166 Lab Sample ID: C1166-02 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 иL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032714.D 1 01/25/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U ·	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	7.6		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	$\mathbf{U}$	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	0.54	J	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5 .	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane .	0.66	J	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	0.55	J	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2110X SDG No.: C1166 Lab Sample ID: C1166-02 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mL Final Vol: 5000

Soil Aliquot Vol: иL VOC-TCLVOA-10 Test:

File ID/Qc Batch: Prep Date Dilution: Date Analyzed Prep Batch ID VG032714.D 1 01/25/11

CAS Number Parameter Conc. Qualifier MDL LOD LOQ Units 127-18-4 Tetrachloroethene 1 U 0.27 0.5 1 ug/L 108-90-7 Chlorobenzene U 1 0.49 0.5 1 ug/L 100-41-4 Ethyl Benzene 1 U 0.2 0.5 1 ug/L m/p-Xylenes 2 179601-23-1 U 0.95 2 1 ug/L 95-47-6 o-Xylene 1 U 0.43 0.5 1 ug/L 100-42-5 Styrene 1 U 0.36 0.5 1 ug/L 75-25-2 Bromoform 1 U 0.47 0.5 1 ug/L 98-82-8 Isopropylbenzene U 0.45 0.5 1 ug/L 1,1,2,2-Tetrachloroethane 79-34-5 U 0.31 0.5 1 ug/L 541-73-1 1,3-Dichlorobenzene U 0.43 0.5 1 ug/L 106-46-7 1,4-Dichlorobenzene 1 U 0.32 0.5 ug/L 95-50-1 1,2-Dichlorobenzene U 1 0.45 0.5 ug/L 96-12-8 1,2-Dibromo-3-Chloropropane 1 U 0.46 0.5 1 ug/L 120-82-1 1,2,4-Trichlorobenzene 1 U 0.2 0.5 1 ug/L SURROGATES 1,2-Dichloroethane-d4 17060-07-0 48.2 66 - 15096% SPK: 50 1868-53-7 Dibromoflyoromethane 51.1 76 - 130102% SPK: 50 2037-26-5 Toluene-d8 47.3 78 - 121 95% SPK: 50 460-00-4 4-Bromofluorobenzene 51.8 70 - 131104% SPK: 50 INTERNAL STANDARDS 363-72-4 Pentafluorobenzene 707925 3.85 540-36-3 1,4-Difluorobenzene 1304870 4.65 3114-55-4 Chlorobenzene-d5 1156190 9.62 3855-82-1 1.4-Dichlorobenzene-d4 467443 13.34

VG012511

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2120X SDG No.: C1166 Lab Sample ID: C1166-03 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol:  $\boldsymbol{m}\boldsymbol{L}$ 5000 uL Soil Aliquot Vol: цL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032715.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.83	J	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1.	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	. 6.6		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	υ	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	.5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
				–		-	



01/20/11

01/22/11

C1166

WATER

Report of Analysis

Client: MACTEC Inc. Date Collected:

Project: Carriage Cleantown Date Received:

Client Sample ID: 828131A-DP2120X SDG No.:

Lab Sample ID: C1166-03 Matrix:

Analytical Method: SW8260B % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032715.D 1 01/25/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	TU ·	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1.	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	3						
17060-07-0	1,2-Dichloroethane-d4	47.5		66 - 150	C	95%	SPK: 50
1868-53-7	Dibromofluoromethane	52.2		76 - 13	O	104%	SPK: 50
2037-26-5	Toluene-d8	46.1		78 - 12	1	92%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.9		70 - 13	1	100%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	716532	3.85				
540-36-3	1,4-Difluorobenzene	1292100	4.65				
3114-55-4	Chlorobenzene-d5	1117680	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	450657	13.33				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

 $E = \mbox{Value Exceeds Calibration Range}$ 

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2207X SDG No.: C1166 Lab Sample ID: C1166-04 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: 5 mLFinal Vol: 5000 иL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032716.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	43		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1 .	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	6.2		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1 .	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	.1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	·1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



### Report of Analysis

Client: MACTEC Inc. Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2207X SDG No.: C1166 Lab Sample ID: C1166-04 Matrix: WATER SW8260B Analytical Method: % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032716.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	. 1	U .	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							•
17060-07-0	1,2-Dichloroethane-d4	48.2		66 - 15	0	96%	SPK: 50
1868-53-7	Dibromofluoromethane	50.8		76 - 13	0	102%	SPK: 50
2037-26-5	Toluene-d8	42.8		78 - 12	1	86%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.9	-	70 - 13	1	100%	SPK: 50
INTERNAL ST.	ANDARDS						
363-72-4	Pentafluorobenzene	721953	3.85				
540-36-3	1,4-Difluorobenzene	1284650	4.65				
3114-55-4	Chlorobenzene-d5	1101330	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	442474	13.34				

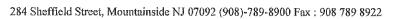
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



**CHEMITECH** 

Report of Analysis

Client: MACTEC Inc. Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2220X SDG No.: C1166 Lab Sample ID: C1166-05 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uLSoil Aliquot Vol: иL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032717.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl-Chloride	210	BSce DI	L 0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5.7		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	0.8	J	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1 .	ug/L
156-60-5	trans-1,2-Dichloroethene	0.56	J	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2220X SDG No.: C1166 Lab Sample ID: C1166-05 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 Soil Aliquot Vol: Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032717.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.5		66 - 150	)	97%	SPK: 50
1868-53-7	Dibromofluoromethane	51.2		76 - 130	)	102%	SPK: 50
2037-26-5	Toluene-d8	44.8		78 - 12	l	90%	SPK: 50
460-00-4	4-Bromofluorobenzene	50		70 - 131	1	100%	SPK: 50
INTERNAL STA	NDARDS						
363-72-4	Pentafluorobenzene	709370	3.85				
540-36-3	1,4-Difluorobenzene	1294230	4.65				
3114-55-4	Chlorobenzene-d5	1118850	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	444017	13.33				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2220XDL SDG No.: C1166 Use only for Vinyl Chloride Lab Sample ID: C1166-05DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: Final Vol: 5000 uL Soil Aliquot Vol: Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032744.D

10

01/26/11

vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							· · · · · · · · · · · · · · · · · · ·
75-71-8	Dichlorodifluoromethane	10	U	2	5	10	ug/L
74-87-3	Chloromethane	10	U	2	5	10	ug/L
75-01-4	Vinyl Chloride	260	D	3.4	5	10	ug/L
74-83-9	Bromomethane	10	U	2	5	10	ug/L
75-00-3	Chloroethane	10	U	2	5	10	ug/L
75-69-4	Trichlorofluoromethane	10	U	3.5	5	10	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	10	U	4.5	5	10	ug/L
75-35-4	1,1-Dichloroethene	10	U	4.7	5	10	ug/L
67-64-1	Acetone	50	U	5	25	50	ug/L
75-15-0	Carbon Disulfide	10	U	2	5	10	ug/L
1634-04-4	Methyl tert-butyl Ether	10	U	3.5	5	10	ug/L
79-20-9	Methyl Acetate	10	Ü.	2	5	10	ug/L
75-09-2	Methylene Chloride	10	Ü	4.1	5	10	ug/L
156-60-5	trans-1,2-Dichloroethene	10	U	4.1	5	10	ug/L
75-34-3	1,1-Dichloroethane	10	U	3.6	5	10	ug/L
110-82-7	Cyclohexane	10	U	2	5	10	ug/L
78-93-3	2-Butanone	50	U	13	25	50	ug/L
56-23 <b>-</b> 5	Carbon Tetrachioride	10	U	2	5	10	ug/L
156-59-2	cis-1,2-Dichloroethene	10	U	3.5	5	10	ug/L
67-66-3	Chloroform	10	U	3.4	5	10	ug/L
71-55-6	1,1,1-Trichloroethane	10	U	4	5	10	ug/L
108-87-2	Methylcyclohexane	10	U	2	5	10	ug/L
71-43-2	Benzene	10	U	3.2	5	10	ug/L
107-06-2	1,2-Dichloroethane	10	\ U	4.8	5	10	ug/L
79-01-6	Trichloroethene	10	Ų	2.8	5	10	ug/L
78-87-5	1,2-Dichloropropane	10	υ\	4.6	5	10	ug/L
75-27-4	Bromodichloromethane	10	U \	3.6	5	10	ug/L
108-10-1	4-Methyl-2-Pentanone	50	U	21	25	50	ug/L
108-88-3	Toluene	10	U	3.7	5	10	ug/L
10061-02-6	t-1,3-Dichloropropene	10	U	2.9	5	10	ug/L
10061-01-5	cis-1,3-Dichloropropene	10	U	3.1	5	10	ug/L
79-00-5	1,1,2-Trichloroethane	10	U	3.8	3	10	ug/L
591-78-6	2-Hexanone	50	U	19	25	50	ug/L
124-48-1	Dibromochloromethane	10	U	2	5	10	ug/L
106-93-4	1,2-Dibromoethane	10	U	4.1	5	10	ug/L

82 2 1 21 Ju



#### Report of Analysis

Client: MACTEC Inc. Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2220XDL SDG No.: C1166 Lab Sample ID: C1166-05DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol: mL5000 uL Soil Aliquot Vol: иL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032744.D

10

01/26/11

vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	rod	LOQ	Units
127-18-4	Tetrachloroethene	10	U	2.7	5	10	ug/L
108-90-7	Chlorobenzene	10	U	4.9	5	10	ug/L
100-41-4	Ethyl Benzene	10	U	2	5	10	ug/L
179601-23-1	m/p-Xylenes	20	U	9.5	10	20	ug/L
95-47-6	o-Xylene	10	U	4.3	5	10	ug/L
100-42-5	Styrene	10	U	3.6	5	10	ug/L
75-25-2	Bromoform	10	U	4.7	5	10 .	ug/L
98-82-8	Isopropylbenzene	10	U	4.5	5	10	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	10	U	3.1	5	10	ug/L
541-73-1	1,3-Dichlorobenzene	10	U	4.3	5	10	ug/L
106-46-7	1,4-Dichlorobenzene	10	U	3.2	5	10	ug/L
95-50-1	1,2-Dichlorobenzene	10	U	4.5	5	10	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	10	U	4.6	5	10	ug/L
120-82-1	1,2,4-Trichlorobenzene	10	U	2	5	10	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.7		66 - 150	)	97%	SPK: 50
1868-53-7	Dibromofluoromethane	51.9		76 - 130	)	104%	SPK: 50
2037-26-5	Toluene-d8	47.1		78 - 123	1	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.8		70 - 13	1	104%	SPK: 50
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	667602	3.87				
540-36-3	1,4-Difluorobenzene	1249430	4.67				
3114-55-4	Chlorobenzene-d5	1089200	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	447755	13.35				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2307X SDG No.: C1166 Lab Sample ID: C1166-06 Matrix: · WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol: mL5000 uLSoil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032747.D

1

01/26/11

vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	. 1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	3.3		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	$\mathbf{U}$ .	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2,5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	30		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	$\Pi$ .	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	$\mathbf{U}$	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2307X SDG No.: C1166 Lab Sample ID: C1166-06 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: VOC-TCLVOA-10 Test:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032747.D

1

01/26/11

vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.3		66 - 150	)	97%	SPK: 50
1868-53-7	Dibromofluoromethane	50.4		. 76 - 130	)	101%	SPK: 50
2037-26-5	Toluene-d8	46.4		78 - 121	L	93%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.6		70 - 131	1	101%	SPK: 50
INTERNAL STA	ANDARDS						•
363-72-4	Pentafluorobenzene	690597	3.88				
540-36-3	1,4-Difluorobenzene	1265830	4.67		•		
3114-55-4	Chlorobenzene-d5	1082740	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	439618	13.36				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2320X SDG No.: C1166 Lab Sample ID: C1166-07 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032719.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	roo	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	-Vinyl-Chloride	1-1-0	E≲cc ))'	L 0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chioroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1 .	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1.9		0.47	0.5	1	ug/L
67-64-1	Acetone	4.2	J	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	31		0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	650	——E50c D	- 0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
							A~

Dr. 121111



Report of Analysis

Client: MACTEC Inc. Project: Carriage Cleantown

828131A-DP2320X

Lab Sample ID: Analytical Method: C1166-07 SW8260B

Sample Wt/Vol: Soil Aliquot Vol:

Client Sample ID:

Units:

mLuL

Date Collected:

Date Received:

01/18/11 01/22/11

SDG No.:

C1166

Matrix:

WATER % Moisture:

100

Final Vol:

5000

VOC-TCLVOA-10

File ID/Qc Batch:

VG032719.D

Dilution:

Prep Date

Date Analyzed

Test:

Prep Batch ID

иL

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	47.6		66 - 15	0	95%	SPK: 50
1868-53-7	Dibromofluoromethane	52.4		76 - 13	0	105%	SPK: 50
2037-26-5	Toluene-d8	43.3		78 - 12	1	87%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.1	•	70 - 13	1	104%	SPK: 50
INTERNAL ST.	ANDARDS						
363-72-4	Pentafluorobenzene	664662	3.85				
540-36-3	1,4-Difluorobenzene	1221220	4.65				
3114-55-4	Chlorobenzene-d5	1090770	9.62				
3855-82-1	1,4-Dichlorobenzene-d4	429266	13.34				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2320XDL SDG No.; C1166 Use only for Vingl chloride and Lab Sample ID: C1166-07DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100 mL Cis-1,2-DCS Units: Final Vol: Sample Wt/Vol: 5 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032753.D

20

01/26/11

VG012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	20	U	4	10	20	ug/L
74-87-3	Chloromethane	20	U	4	10	20	ug/L
75-01-4	Vinyl Chloride	110	D	6.8	10	20	ug/L
74-83-9	Bromomethane	20	U	4	10	20	ug/L
75-00-3	Chloroethane	20	U	4	10	20	ug/L
75-69 <b>-</b> 4	Trichlorofluoromethane	20	U	7	10	20	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	20	U	9	10	20	ug/L
75-35-4	1,1-Dichloroethene	20	U	9.4	10	20	ug/L
67-64-1	Acetone	100	U	10	50	100	ug/L
75-15-0	Carbon Disulfide	20	U	4	10	20	ug/L
1634-04-4	Methyl tert-butyl Ether	20	U	7	10	20	ug/L
79-20-9	Methyl Acetate	20	U	4	10	20	ug/L
75-09-2	Methylene Chloride	20	U.	8.2	10	20	ug/L
156-60-5	trans-1,2-Dichloroethene	20	U	8.2	10	20	ug/L
75-34-3	1,1-Dichloroethane	20	U	7.2	10	20	ug/L
110-82-7	Cyclohexane	20	U	4	10	20	ug/L
78-93-3	2-Butanone	100	Ū	26	50	100	ug/L
56-23-5	Carbon Tetrachioride	20	U	<b>~</b> 4	10	20	ug/L
156-59-2	cis-1,2-Dichloroethene	920	D	7	10	20	ug/L
67-66-3	Chloroform	20	U	6.8	10	20	ug/L
71-55-6	1,1,1-Trichloroethane	20	U	8	10	20	ug/L
108-87-2	Methylcyclohexane	20	U	4	10	20	ug/L
71-43-2	Benzene	20	U	6.4	10	20	ug/L
107-06-2	1,2-Dichloroethane	20	U	9.6	10	20	ug/L
79-01-6	Trichloroethene	20	U	5.6	10	20	ug/L
78-87-5	1,2-Dichloropropane	20	U	9.2	10	20	ug/L
75-27-4	Bromodichloromethane	20	U	7.2	10	20	ug/L
108-10-1	4-Methyl-2-Pentanone	100	U	42	50	100	ug/L
108-88-3	Toluene	20	U	7.4	10	20.	ug/L
10061-02-6	t-1,3-Dichloropropene	20	U	5.8	10	20	ug/L
10061-01-5	cis-1,3-Dichloropropene	. 20	Ū	6.2	10	20	ug/L
79-00-5	1,1,2-Trichloroethane	20	U	7.6	10	20	ug/L
591-78-6	2-Hexanone	100	U	32	50	100	ug/L
124-48-1	, Dibromochloromethane	20	U	4	10	20	ug/L
106-93-4	1,2-Dibromoethane	20	U	8.2	10	20	ug/L
							20

Or LILLIA



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2320XDL SDG No.: C1166 Lab Sample ID: C1166-07DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100

Sample Wt/Voi: 5 Units: mL Final Voi: 5000 uL

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032753.D 20 01/26/11 VG012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	20	U	5.4	10	20	ug/L
108-90-7	Chlorobenzene	20	U	9.8	10	20	ug/L
100-41-4	Ethyl Benzene	20	U	4	10	20	ug/L
179601-23-1	m/p-Xylenes	40	U	19	20	40	ug/L
95-47-6	o-Xylene	20	U	8.6	10	20	ug/L
100-42-5	Styrene	20	U	7.2	10	20	ug/L
75-25-2	Bromoform	20	U	9.4	10	20	ug/L
98-82-8	Isopropylbenzene	20	U	9	10	20	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	20	U	6.2	10	20	ug/L
541-73-1	1,3-Dichlorobenzene	20	U	8.6	10	20	ug/L
106-46-7	1,4-Dichlorobenzene	20	U	6.4	10	20.	ug/L
95-50-1	1,2-Dichlorobenzene	20	U	9	10	20	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	20	U	9.2	10	20	ug/L
120-82-1	1,2,4-Trichlorobenzene	20	Ũ	4	10	20	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.1		66 - 150	)	98%	SPK: 50
1868-53-7	Dibromofluoromethane	51.6		76 - 130	)	103%	SPK: 50
2037-26-5	Toluene-d8	46.9		78 - 123	t	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.1		70 - 13	1	104%	SPK: 50
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	652677	3,88				
540-36-3	1,4-Difluorobenzene	1228860	4,69				
3114-55-4	Chlorobenzene-d5	1106670	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	440896	13.36				•

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



Client:	MACTEC Inc.	Date Collected:	01/18/11
Project:	Carriage Cleantown	Date Received:	01/22/11
Client Sample ID:	828131A-DP2407X	SDG No.:	C1166
Lab Sample ID:	C1166-08	Matrix:	WATER
Analytical Method:	SW8260B	% Moisture:	100
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG032748.D 1 01/26/11 vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	i	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	2.4		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	UJ	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	0,94	J	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1,3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	40		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	υ	0.36	0,5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2,5	5	ug/L
108-88-3	Toluene	T.	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	Ū	1,9	2.5	5	ug/L
124-48-1	Dibromochloromethane	t	U	0.2	0,5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2407X SDG No.: C1166 Lab Sample ID: C1166-08 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution:

Prep Date

Date Analyzed

Prep Batch ID

1 VG032748.D

01/26/11

vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	. 2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U .	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.9		66 - 15	0	100%	SPK: 50
1868-53-7	Dibromofluoromethane	50.8		76 - 13	0	102%	SPK: 50
2037-26-5	Toluene-d8	46.8		78 - 12	1	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.4		70 - 13	1	103%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	660956	3.88				
540-36-3	1,4-Difluorobenzene	1232020	4.68				•
3114-55-4	Chlorobenzene-d5	1085110	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	428087	13.36				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Date Received: Project: Carriage Cleantown 01/22/11 Client Sample ID: 828131A-DP2407XDUP SDG No.: C1166 Lab Sample ID: WATER C1166-09 Matrix: Analytical Method: SW8260B% Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL5000 υL Test: Soil Aliquot Vol: uL VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032721.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS					-		
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	3.8		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	. 1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	ت 5.6		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	. 1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	50		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
							20



Report of Analysis

Client:

MACTEC Inc.

Date Collected:

01/18/11

Project:

Carriage Cleantown

Date Received:

01/22/11

Client Sample ID:

828131A-DP2407XDUP

SDG No.:

C1166

Lab Sample ID:

C1166-09

Matrix:

WATER

Analytical Method:

SW8260B

1110011111

WALE

Sample Wt/Vol:

W 0200D

% Moisture:

100

Soil Aliquot Vol:

Units: mL

цL

Final Vol: Test: 5000 uL VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032721.D

1

Pentafluorobenzene

1,4-Difluorobenzene

1,4-Dichlorobenzene-d4

Chlorobenzene-d5

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	Ù	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	3						
17060-07-0	1,2-Dichloroethane-d4	47.9		66 - 150	C	96%	SPK: 50
1868-53-7	Dibromofluoromethane	50.4		76 - 130	C	101%	SPK: 50
2037-26-5	Toluene-d8	46.4		78 - 12	1	93%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.6		70 - 13	1	101%	SPK: 50
INTERNAL ST	ANDARDS						

U = Not Detected

363-72-4

540-36-3

3114-55-4

3855-82-1

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

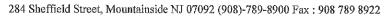
* = Values outside of QC limits

3.85

4.65

9.63

13.34


D = Dilution

723519

1324420

1143350

464196





Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2420X SDG No.: C1166 Lab Sample ID: C1166-10 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units:  $\boldsymbol{m}\boldsymbol{L}$ Final Vol: 5000 иL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032722.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.59	J	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	24		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5.9		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	. 1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	2.2		0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0,5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	.5	Ü	1,3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	$\mathbf{U}^{-1}$	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Diehloroethene	160	Esec D	€ 0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	Ŭ	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	Ü	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	Ü	0.41	0.5	1	ug/L ug/L
	•	-	_		0.0	•	45/11 8~



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2420X SDG No.: C1166 Lab Sample ID: C1166-10 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032722.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	. 1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.9		66 - 150	)	98%	SPK: 50
1868-53-7	Dibromofluoromethane	48.7		76 - 130	)	97%	SPK: 50
2037-26-5	Toluene-d8	45		78 - 12	1	90%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.6		70 - 13	1	99%	SPK: 50
INTERNAL ST.	ANDARDS						
363-72-4	Pentafluorobenzene	707729	3.86				
540-36-3	1,4-Difluorobenzene	1336390	4.66				
3114-55-4	Chlorobenzene-d5	1129880	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	452902	13.34				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2420XDL SDG No.: C1166 Use only for cis-1,2-1)cs Lab Sample ID: C1166-10DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: Final Vol: 5000 uL Soil Aliquot Vol: Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032751.D 10 01/26/11 VG012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	10	U	2	5	10	ug/L
74-87-3	Chloromethane	10	U	2	5	10	ug/L
75-01-4	Vinyl Chloride	30	D	3.4	5	10	ug/L
74-83-9	Bromomethane	10	U	2	5	10	ug/L
75-00-3	Chloroethane	10	U	2	5	10	ug/L
75-69-4	Trichlorofluoromethane	. 10	U	3.5	5	10	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	10	U ·	4.5	5	10	ug/L
75-35-4	1,1-Dichloroethene	10	U	4.7	5	10	ug/L
67-64-1	Acetone	50	U	5	25	50	ug/L
75-15-0	Carbon Disulfide	10	U	2	5	10	ug/L
1634-04-4	Methyl tert-butyl Ether	70_	U	3.5	5	10	ug/L
79-20-9	Methyl Acetate	10	U	2	5	10	ug/L
75-09-2	Methylene Chloride	10	U	4.1	5	10	ug/L
156-60-5	trans-1,2-Dichloroethene	10	Ū,	4.1	5	10	ug/L
75-34-3	1,1-Dichloroethane	10	U	3.6	5	10	ug/L
110-82-7	Cyclohexane	10	U	2	5	10	ug/L
78-93-3	2-Butanone	50	U	13	25	50	ug/L
56-23-5	Carbon Tetrachloride	10	U	2	5	10	ug/L
156-59-2	cis-1,2-Dichloroethene	220	D	3.5	5	10	ug/L
67-66-3	Chloroform	10	U	3.4	5	10	ug/L
71-55-6	1,1,1-Trickloroethane	10	U	4	5	10	ug/L
108-87-2	Methylcyclohexane	10	U	2	5	10	ug/L
71-43-2	Benzene	10	U	3.2	5	10	ug/L
107-06-2	1,2-Dichloroethane	10	U	4.8	5	10	ug/L
79-01-6	Trichloroethene	10	U	2.8	5	10	ug/L
78-87-5	1,2-Dichloropropane	10	U	4.6	5	10	ug/L
75-27-4	Bromodichloromethane	10	U	3.6	5	10	ug/L
108-10-1	4-Methyl-2-Pentanone	50	U	21	25	50	ug/L
108-88-3	Toluene	10	U	3.7	5	10	ug/L
10061-02-6	t-1,3-Dichloropropene	10	Ú	2.9	5	10	ug/L
10061-01-5	cis-1,3-Dichloropropene	10	U	3.1	5	10	ug/L
79-00-5	1,1,2-Trichloroethane	10	U	3.8	5	10	ug/L
591-78-6	2-Hexanone	50	U	19	25	50	ug/L
124-48-1	Dibromochloromethane	. 10	U	2	5	10	ug/L
106-93-4	1,2-Dibromoethane	10	U	4.1	5	10	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2420XDL SDG No.: C1166 Lab Sample ID: C1166-10DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: m LFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032751.D

10

01/26/11

VG012611

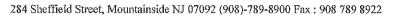
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachioroethene	10	U	2.7	5	10	ug/L
108-90-7	Chlorobenzene	10	U	4.9	5	10	ug/L
100-41-4	Ethyl Benzene	10	U	2	5	10	ug/L
179601-23-1	m/p-Xylenes	20	U	9.5	10	20	ug/L
95-47-6	o-Xylene	10	U	U 4.3 5		10	ug/L
100-42-5	Styrene	10	U	3.6	5	10	ug/L
75-25-2	Bromoform	10	U	4.7	5	10	ug/L
98-82-8	Isopropylbenzene	10	U	4.5	5	10	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	10	U	3.1	5	10	ug/L
541-73-1	1,3-Dichlorobenzene	10	Ų	4.3	5	10	ug/L
106-46-7	1,4-Dichlorobenzene	10	U	3.2	5	10	ug/L
95-50-1	1,2-Dichlorobenzene	10	U	4.5	5	10	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	10	U	4.6	5	10	ug/L
120-82-1	1,2,4-Trichlorobenzene	10	U	2	3	10	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	47.7		66 - 150	)	95%	SPK: 50
1868-53-7	Dibromofluoromethane	51.5		76 - 130	)	103%	SPK: 50
2037-26-5	Toluene-d8	46.5	•	78 - 12	1	93%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.8		70 - 13	1	108%	SPK: 50
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	658012	3.88				
540-36-3	1,4-Difluorobenzene	1201640	4.68				
3114-55-4	Chlorobenzene-d5	1065610	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	428672	13.36				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits





Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2507X SDG No.: C1166 Lab Sample ID: C1166-11 Matrix: WATER Analytical Method: SW8260B% Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032723.D

1

01/25/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5.2		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	. 1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	. 1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	. 1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
							t



Sample Wt/Vol:

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: SDG No.: 828131A-DP2507X C1166 Lab Sample ID: C1166-11 Matrix: WATER

Analytical Method: SW8260B % Moisture: 100

Units:

mL

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

Final Vol:

5000

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032723.D 1 01/25/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.2		66 - 15	0	98%	SPK: 50
1868-53-7	Dibromofluoromethane	53.4		76 - 13	0	107%	SPK: 50
2037-26-5	Toluene-d8	45.9		78 - 12	1	92%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.3		70 - 13	1	103%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	704936	3.85				
540-36-3	1,4-Difluorobenzene	1269140	4.65				
3114-55-4	Chlorobenzene-d5	1131530	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	446071	13.34				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2520X SDG No.: C1166 Lab Sample ID: C1166-12 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units:  $\mathbf{m}\mathbf{L}$ Final Vol: 5000 uLSoil Aliquot Vol: uLTest: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032724.D

1

01/26/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1.1		0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	6.1		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	· U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2520X SDG No.: C1166 Lab Sample ID: C1166-12 Matrix: WATER % Moisture: Analytical Method: SW8260B 100 Sample Wt/Vol: Units:  $\boldsymbol{m}\boldsymbol{L}$ Final Vol: 5000 иL Soil Aliquot Vol:  $\mathbf{u}$ L Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032724.D 1 01/26/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1 .	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1,	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.1		66 - 150	)	98%	SPK: 50
1868-53-7	Dibromofluoromethane	52		76 - 130	)	104%	SPK: 50
2037-26-5	Toluene-d8	43.5		78 - 12	1	87%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.1		70 - 13	1	106%	SPK: 50
INTERNAL ST.	ANDARDS						
363-72-4	Pentafluorobenzene	682783	3.86				
540-36-3	1,4-Difluorobenzene	1245080	4.66				
3114-55-4	Chlorobenzene-d5	1084600	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	441630	13.34		•		

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2607X SDG No.: C1166 Lab Sample ID: C1166-13 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032725.D

1

01/26/11

VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS					***		
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.86	J	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	3.5		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	. 1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	· 1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	6.1		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	4.1		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Carriage Cleantown Project: Date Received: 01/22/11 Client Sample ID: 828131A-DP2607X SDG No.: C1166 Lab Sample ID: C1166-13 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed VG032725,D 1 01/26/11

Prep Batch ID

01/26/11 VG012511

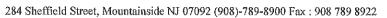
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chiorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	. 1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U ,	0.2	0.5	1	ug/L
SURROGATES	3						
17060-07-0	1,2-Dichloroethane-d4	48.8		66 - 15	0	98%	SPK: 50
1868-53-7	Dibromofluoromethane	49.8		76 - 13	0	100%	SPK: 50
2037-26-5	Toluene-d8	46.2		78 - 12	1	92%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.4		70 - 13	1	103%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	682648	3.86				
540-36-3	1,4-Difluorobenzene	1283350	4.66				
3114-55-4	Chlorobenzene-d5	1140520	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	462137	13,34				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



## **CHEMIECH**

Report of Analysis

1	DE COMPANY (MERCO) O PROPER A POSTO AND AND TO PERSON A SING MET OF A TOPE O A DOTAL AND AND AND AND AND AND A TOPE OF A POSTO AND AND AND AND AND AND AND AND AND AND	Ristriagéssténedestementasagideet	r'adminiment bitilinging	PRESIDENT OF COURS OF BEHAVIOR FOR A SERVICE OF CORRECT OF COST AND CONTROL OF COST AND CONTROL OF CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CON	mmin character i i i i i i i i i i i i i i i i i i i	ALTERNATURE SPANNES TO SELECT SPANNES SPANNES AND A COMMERCIAL SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES SPANNES	BARAMAGRAGA CARDO CO PRESENTANTO
C) spragger	Client:	MACTEC	Inc.	:	Date Collected:	01/18/11	- existing of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the
MANAGE W	Project:	Carriage C	Cleantown		Date Received:	01/22/11	3
	Client Sample ID:	828131A-	DP2620X		SDG No.:	C1166	**************************************
	Lab Sample ID:	C1166-14			Matrix:	WATER	
	Analytical Method:	SW8260B			% Moisture:	100	7.
BUT TO THE STATE OF	Sample Wt/Vol:	5	Units:	mL	Final Vol:	5000	uL
e Morros	Soil Aliquot Vol:			uL	Test:	VOC-TCLVC	A-10
1640 1640							

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG032726.D 1 01/26/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	3.4		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	4.8	J	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0,2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	2.6		0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	.cis-1,2-Dichloroethene	100	——BScc ()	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0,4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	. U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	· U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	.1	ug/L



Report of Analysis

MACTEC Inc. Client: Project:

Carriage Cleantown

Client Sample ID:

828131A-DP2620X

Lab Sample ID:

C1166-14 SW8260B

Analytical Method: Sample Wt/Vol: Soil Aliquot Vol:

Units:

mL

Matrix:

% Moisture: Final Vol:

SDG No.:

Date Collected:

Date Received:

100 5000

01/18/11

01/22/11

C1166

WATER

uL

uL

Test:

VOC-TCLVOA-10 

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032726.D

1

01/26/11

VG012511

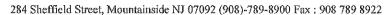
Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
Tetrachloroethene	1	U	0.27	0.5	1	ug/L
Chlorobenzene	1	U	0.49	0.5	1	ug/L
Ethyl Benzene	1	U	0.2	0.5	1	ug/L
m/p-Xylenes	2	U	0.95	1	2	ug/L
o-Xylene	1	U	0.43	0.5	1	ug/L
Styrene	1	U	0.36	0.5	1	ug/L
Bromoform	1	U	0.47	0.5	1	ug/L
Isopropylbenzene	1	U	0.45	0.5	1	ug/L
1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
1,2-Dichloroethane-d4	48.6		66 - 150	C	97%	SPK: 50
Dibromofluoromethane	51.9		76 - 130	0	104%	SPK: 50
Toluene-d8	45.7		78 - 12	1	91%	SPK: 50
4-Bromofluorobenzene	50.6		70 - 13	1	101%	SPK: 50
NDARDS						
Pentafluorobenzene	699951	3.86				
1,4-Difluorobenzene	1243160	4.66				
Chlorobenzene-d5	1081190	9.63				
1,4-Dichlorobenzene-d4	429830	13.34				
	Tetrachloroethene Chlorobenzene Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene 1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene NDARDS Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5	Tetrachloroethene         1           Chlorobenzene         1           Ethyl Benzene         1           m/p-Xylenes         2           o-Xylene         1           Styrene         1           Bromoform         1           Isopropylbenzene         1           1,1,2,2-Tetrachloroethane         1           1,3-Dichlorobenzene         1           1,4-Dichlorobenzene         1           1,2-Dichlorobenzene         1           1,2-Dibromo-3-Chloropropane         1           1,2-Dichloroethane-d4         48.6           Dibromofluoromethane         51.9           Toluene-d8         45.7           4-Bromofluorobenzene         50.6           NDARDS           Pentafluorobenzene         699951           1,4-Difluorobenzene-d5         1081190	Tetrachloroethene         1         U           Chlorobenzene         1         U           Ethyl Benzene         1         U           m/p-Xylenes         2         U           o-Xylene         1         U           Styrene         1         U           Bromoform         1         U           Isopropylbenzene         1         U           1,2,2-Tetrachloroethane         1         U           1,3-Dichlorobenzene         1         U           1,4-Dichlorobenzene         1         U           1,2-Dichlorobenzene         1         U           1,2-Dibromo-3-Chloropropane         1         U           1,2-Trichlorobenzene         1         U           1,2-Trichlorobenzene         1         U           1,2-Dichloroethane-d4         48.6         U           Dibromofluoromethane         51.9         Toluene-d8           4-Bromofluorobenzene         50.6         N           NDARDS         Pentafluorobenzene         699951         3.86           1,4-Difluorobenzene         1243160         4.66           Chlorobenzene-d5         1081190         9.63	Tetrachloroethene         1         U         0.27           Chlorobenzene         1         U         0.49           Ethyl Benzene         1         U         0.2           m/p-Xylenes         2         U         0.95           o-Xylene         1         U         0.43           Styrene         1         U         0.36           Bromoform         1         U         0.47           Isopropylbenzene         1         U         0.45           1,1,2,2-Tetrachloroethane         1         U         0.43           1,3-Dichlorobenzene         1         U         0.43           1,4-Dichlorobenzene         1         U         0.45           1,2-Dichlorobenzene         1         U         0.45           1,2-Dichlorobenzene         1         U         0.46           1,2,4-Trichlorobenzene         1         U         0.2           1,2-Dichloroethane-d4         48.6         66 - 15           Dibromofluoromethane         51.9         76 - 13           Toluene-d8         45.7         78 - 12           4-Bromofluorobenzene         50.6         70 - 13           NDARDS	Tetrachloroethene         1         U         0.27         0.5           Chlorobenzene         1         U         0.49         0.5           Ethyl Benzene         1         U         0.2         0.5           m/p-Xylenes         2         U         0.95         1           o-Xylene         1         U         0.43         0.5           Styrene         1         U         0.36         0.5           Bromoform         1         U         0.47         0.5           Isopropylbenzene         1         U         0.47         0.5           Isopropylbenzene         1         U         0.45         0.5           1,1,2,2-Tetrachloroethane         1         U         0.45         0.5           1,3-Dichlorobenzene         1         U         0.43         0.5           1,4-Dichlorobenzene         1         U         0.43         0.5           1,2-Dichlorobenzene         1         U         0.45         0.5           1,2-Dibromo-3-Chloropropane         1         U         0.46         0.5           1,2-Dichloroethane-d4         48.6         66 - 150           Dibromofluoromethane         5	Tetrachloroethene         1         U         0.27         0.5         1           Chlorobenzene         1         U         0.49         0.5         1           Ethyl Benzene         1         U         0.2         0.5         1           m/p-Xylenes         2         U         0.95         1         2           o-Xylene         1         U         0.43         0.5         1           Styrene         1         U         0.36         0.5         1           Bromoform         1         U         0.47         0.5         1           Isopropylbenzene         1         U         0.47         0.5         1           Isopropylbenzene         1         U         0.47         0.5         1           Isopropylbenzene         1         U         0.47         0.5         1           Isopropylbenzene         1         U         0.45         0.5         1           Isopropylbenzene         1         U         0.45         0.5         1           I,1,2,2-Tetrachloroethane         1         U         0.43         0.5         1           I,3-Dichlorobenzene         1         U

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits





Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2620XDL SDG No.: C1166 Use only for cis-1,2-Dec Lab Sample ID: C1166-14DL Matrix: WATER SW8260B Analytical Method: % Moisture: 100 Sample Wt/Vol: 5 Final Vol: 5000 Units: uLSoil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG032745.D

10

01/26/11

vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	10	U	2	5	10	ug/L
74-87-3	Chloromethane	10	U	2	5	10	ug/L
75-01-4	Vinyl Shloride	10	U	3.4	5	10	ug/L
74-83-9	Bromomethane	10	U	2	5	10	ug/L
75-00-3	Chloroethane	10	U	2	5	10	ug/L
75-69-4	Trichlorofluoromethane	10	U	3.5	5	10	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	10	U	4.5	5	10	ug/L
75-35-4	1,1-Dichloroethene	10	U	4.7	5	10	ug/L
67-64-1	Acetone	50	U	5	25	50	ug/L
75-15-0	Carbon Disulfide	10	U	2	5	10	ug/L
1634-04-4	Methyl tert-butyl Ether	10	U	3.5	5	10	ug/L
79-20-9	Methyl Acetate	10	U	2	5	10	ug/L
75-09-2	Methylene Chloride	10	U	4.1	5	10	ug/L
156-60-5	trans-1,2-Dichloroethene	10	U	4.1	5	10	ug/L
75-34-3	1,1-Dichloroethane	10	U	3.6	5	10	ug/L
110-82-7	Cyclohexane	10	Ų	2	5	10	ug/L
78-93-3	2-Butanone	50	U	13	25	50	ug/L
56-23-5	Carbon Tetrachloride	10	U	2	5	10	ug/L
156-59-2	cis-1,2-Dichloroethene	110	D	3.5	5	10	ug/L
67-66-3	Chloroform	10	U	3.4	5	10	ug/L
71-55-6	1,1,1-Trichloroethane	10	U	4	5	10	ug/L
108-87-2	Methylcyolohexane	10	U	2	5	10	ug/L
71-43-2	Benzene	10	U	3.2	5	10	ug/L
107-06-2	1,2-Dichloroethane	10	U	4.8	.5	10	ug/L
79-01-6	Trichloroethene	10	U	2.8	5	10	ug/L
78-87-5	1,2-Dichloropropane	10	U	4.6	5	10	ug/L
75-27-4	Bromodichloromethane	10	U	3.6	5	10	ug/L
108-10-1	4-Methyl-2-Pentanone	50	U	21	25	50	ug/L
108-88-3	Toluene	10	U	3.7	5	10	ug/L
10061-02-6	t-1,3-Dichloropropene	10	U	2.9	5	10	ug/L
10061-01-5	cis-1,3-Dichloropropene	10	Ũ	3.1	5	10	ug/L
79-00-5	1,1,2-Trichloroethane	10	U	3.8	5	10	ug/L
591-78-6	2-Hexanone	50	U	19	25	50	ug/L
124-48-1	Dibromochloromethane	10	U	2	5	10	ug/L
106-93-4	1,2-Dibromoethane	10	U	4.1	5	10	ug/L
							gr.

8212114



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/18/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2620XDL SDG No.: C1166 Lab Sample ID: C1166-14DL Matrix: WATER Analytical Method: % Moisture: SW8260B 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL

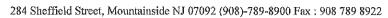
Soil Aliquot Vol: uLTest: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032745.D 10 01/26/11 vg012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	10	U	2.7	5	10.	ug/L
108-90-7	Chlorobenzene	10	U	4.9	5	10	ug/L
100-41-4	Ethyl Benzene	10	U	2	5	10	ug/L
179601-23-1	m/p-Xylenes	20	U	9.5	10	20	ug/L
95-47-6	o-Xylene	10	U	4.3	5	10 ·	ug/L
100-42-5	Styrene	10	U	3,6	5	10	ug/L
75-25-2	Bromoform	10	U	4.7	5	10	ug/L
98-82-8	Isopropylbenzene	10	U	4.5	5	10	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	10	U	3.1	5	10	ug/L
541-73-1	1,3-Dichlorobenzene	10	U	4.3	5	10	ug/L
106-46-7	1,4-Dichlorobenzene	10	Ü	3.2	5	10	ug/L
95-50-1	1,2-Dichlorobenzene	10	U	4.5	5	10	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	10	U	4.6	5	10	ug/L
120-82-1	1,2,4-Trichlorobenzene	10	U	2	5	10	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.7		66 - 150	)	97%	SPK: 50
1868-53-7	Dibromofluoromethane	50.1		76 - 130	)	100%	SPK: 50
2037-26-5	Toluene-d8	46.8		78 - 12	1	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.3		70 - 13	1	105%	SPK: 50
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	694177	3.87				
540-36-3	1,4-Difluorobenzene	1274700	4.68				
3114-55-4	Chlorobenzene-d5	1155780	9.64				
3855-82-1	1,4-Dichlorobenzene-d4	450411	13.35				

LOQ = Limit of Quantitation

MDL = Method Detection Limit


LOD = Limit of Detection

E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits





And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	to of the second order and leading a personal Language and Company	SEDELS GALLET CALLETY FEET	Proposition of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co	TITE STEERING TO STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	ensamente with the President Constitution of Constitution (Constitution Constitution)	THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	Course Contribution Will Shart South
Client:	MACT	EC Inc.			Date Collected:	01/19/11	e pri sudir e andire
Project:	Carriag	e Cleantown			Date Received:	01/22/11	o.t. was in Cooking
Client Sample ID:	828131	A-DP2707X			SDG No.:	C1166	occurra, a.s.
Lab Sample ID:	C1166-	15			Matrix:	WATER	Edeline v volume
Analytical Method	l: SW826	0B			% Moisture:	100	A Section Associated and Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associated Associat
Sample Wt/Vol:	5	Units:	mL		Final Vol:	5000	uL
Soil Aliquot Vol:			uL		Test:	VOC-TCLVO	A-10
POLICIO NI CICO XI DI NI DE DE DECENDA CINDA CONTRACTOR		A DUNING SANDON	REALISTA CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO		Contributed by the color of the company of the state of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of t		arandaran kanada kanada da kanada da kanada da kanada da kanada da kanada da kanada da kanada da kanada da kan

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG032727.D 1 01/26/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS		•					
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.61	J	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	9.1		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	. 1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1 .	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	$\mathbf{U}$	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	Ü	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2,5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2707X SDG No.: C1166 Lab Sample ID: C1166-15 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

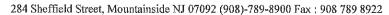
File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG032727.D 1 01/26/11 VG012511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	. 1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	, 1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	8						
17060-07-0	1,2-Dichloroethane-d4	48.1		66 - 15	0	96%	SPK: 50
1868-53-7	Dibromofluoromethane	51.2		76 - 13	0	102%	SPK: 50
2037-26-5	Toluene-d8	46.8		78 - 12	1	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.8		70 - 13	1	102%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	716694	3.86				
540-36-3	1,4-Difluorobenzene	1272790	4.66				
3114-55-4	Chlorobenzene-d5	1126490	9.63				
3855-82-1	1,4-Dichlorobenzene-d4	433859	13.34				

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution





Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown 01/22/11 Date Received: Client Sample ID: 828131A-DP2720X SDG No.: C1166 Lab Sample ID: C1166-16 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL5000 иL Soil Aliquot Vol: uLTest: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032749.D 1 01/26/11 VG012611

	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.54	J	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1.3		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	υ	0.47	0.5	1	ug/L
67-64-1	Acetone	5.6		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1.3		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0,5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1 .	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0,38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	. 1	U	0.41	0.5	1	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2720X SDG No.: C1166 Lab Sample ID: C1166-16 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol:

Soil Aliquot Vol: uLTest: VOC-TCLVOA-10

Prep Date File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID VG032749.D 1 01/26/11 VG012611

mL

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	Ų .	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	S						÷
17060-07-0	1,2-Dichloroethane-d4	47.3		66 - 15	0	95%	SPK: 50
1868-53-7	Dibromofluoromethane	52.5		76 - 13	0	105%	SPK: 50
2037-26-5	Toluene-d8	45.4		78 - 12	1	91%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		70 - 13	1	106%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	624237	3.88				
540-36-3	1,4-Difluorobenzene	1130900	4.68				
3114-55-4	Chlorobenzene-d5	1005680	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	401067	13.36				

5000

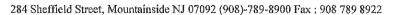
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution





Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2807X SDG No.: C1166 Lab Sample ID: C1166-17 WATER Matrix: Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL VOC-TCLVOA-10 Test:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG032750.D 1 01/26/11 VG012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	0.85	J	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1 .	U	0.47	0.5	1	ug/L
67-64-1	Acetone	. 15		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1 .	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
<b>7</b> 8-93-3	2-Butanone	5	U	1.3	2.5	5 .	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	_ug/L
156-59-2	cis-1,2-Dichloroethene	59		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane.	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	0.98	J	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0,46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



## Report of Analysis

MACTEC Inc. Client: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2807X SDG No.: C1166 Lab Sample ID: C1166-17 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: Units: 5000 Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Du/26/11 VG012611

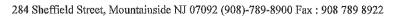
Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
Tetrachloroethene	1	U	0.27	0.5	. 1	ug/L
Chlorobenzene	1	U	0.49	0.5	1	ug/L
Ethyl Benzene	- 1	U	0.2	0.5	1	ug/L
m/p-Xylenes	2	Ù	0.95	1	2	ug/L
o-Xylene	1	U	0.43	0.5	1	ug/L
Styrene	1	U	0.36	0.5	1	ug/L
Bromoform	1	U.	0.47	0.5	1	ug/L
Isopropylbenzene	1	U	0.45	0.5	1	ug/L
1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
1,3-Dichlorobenzene	1	· U	0.43	0.5	1	ug/L
1,4-Dichlorobenzene	. 1	U	0.32	0.5	1	ug/L
1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
1,2,4-Trichiorobenzene	1	U	0.2	0.5	1	ug/L
1,2-Dichloroethane-d4	49.9		66 - 150	0	100%	SPK: 50
Dibromofluoromethane	50.1		76 - 130	0 ·	100%	SPK: 50
Toluene-d8	46.4		78 - 12	1	93%	SPK: 50
4-Bromofluorobenzene	54.2		70 - 13	1	108%	SPK: 50
ANDARDS		•				
Pentafluorobenzene	651161	3.88			-	
1,4-Difluorobenzene	1239930	4.68				
Chlorobenzene-d5	1108060	9,65				
1,4-Dichlorobenzene-d4	466846	13.36				
	Tetrachloroethene Chlorobenzene Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene 1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 1,4-Difluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5	Tetrachloroethene       1         Chlorobenzene       1         Ethyl Benzene       1         m/p-Xylenes       2         o-Xylene       1         Styrene       1         Bromoform       1         Isopropylbenzene       1         1,1,2,2-Tetrachloroethane       1         1,3-Dichlorobenzene       1         1,4-Dichlorobenzene       1         1,2-Dichlorobenzene       1         1,2-Dibromo-3-Chloropropane       1         1,2,4-Trichlorobenzene       1         1,2-Dichloroethane-d4       49.9         Dibromofluoromethane       50.1         Toluene-d8       46.4         4-Bromofluorobenzene       54.2         XNDARDS         Pentafluorobenzene       651161         1,4-Difluorobenzene       1239930         Chlorobenzene-d5       1108060	Tetrachloroethene         1         U           Chlorobenzene         1         U           Ethyl Benzene         1         U           m/p-Xylenes         2         U           o-Xylene         1         U           Styrene         1         U           Bromoform         1         U           Isopropylbenzene         1         U           1,2,2-Tetrachloroethane         1         U           1,3-Dichlorobenzene         1         U           1,4-Dichlorobenzene         1         U           1,2-Dichlorobenzene         1         U           1,2-Dichlorobenzene         1         U           1,2-Trichlorobenzene         1         U           1,2-Dichloroethane-d4         49.9         U           Dibromofluoromethane         50.1         U           Toluene-d8         46.4         44.4           4-Bromofluorobenzene         54.2         U           NDARDS         Sentafluorobenzene         651161         3.88           1,4-Difluorobenzene         1239930         4.68           Chlorobenzene-d5         1108060         9.65	Tetrachloroethene         1         U         0.27           Chlorobenzene         1         U         0.49           Ethyl Benzene         1         U         0.2           m/p-Xylenes         2         U         0.95           o-Xylene         1         U         0.43           Styrene         1         U         0.36           Bromoform         1         U         0.47           Isopropylbenzene         1         U         0.45           1,1,2,2-Tetrachloroethane         1         U         0.45           1,3-Dichlorobenzene         1         U         0.43           1,4-Dichlorobenzene         1         U         0.45           1,2-Dichlorobenzene         1         U         0.45           1,2-Dichloroethane-d4         49.9         66 - 150           Dibromofluoromethane         50.1         76 - 130           Toluene-d8         46.4         78 - 12           4-Bromofluorobenzene         54.2         70 - 13           NDARDS           Pentafluorobenzene         651161         3.88           1,4-Difluorobenzene         1239930         4.68           Chlorobenzene-d5	Tetrachloroethene         1         U         0.27         0.5           Chlorobenzene         1         U         0.49         0.5           Ethyl Benzene         1         U         0.2         0.5           m/p-Xylenes         2         U         0.95         1           o-Xylene         1         U         0.43         0.5           Styrene         1         U         0.36         0.5           Bromoform         1         U         0.47         0.5           Isopropylbenzene         1         U         0.47         0.5           Isopropylbenzene         1         U         0.45         0.5           1,1,2,2-Tetrachloroethane         1         U         0.45         0.5           1,3-Dichlorobenzene         1         U         0.43         0.5           1,4-Dichlorobenzene         1         U         0.32         0.5           1,2-Dichlorobenzene         1         U         0.45         0.5           1,2,4-Trichlorobenzene         1         U         0.46         0.5           1,2-Dichloroethane-d4         49.9         66 - 150           Dibromofluoromethane         50.1	Tetrachloroethene         1         U         0.27         0.5         1           Chlorobenzene         1         U         0.49         0.5         1           Ethyl Benzene         1         U         0.2         0.5         1           m/p-Xylenes         2         U         0.95         1         2           o-Xylene         1         U         0.43         0.5         1           Styrene         1         U         0.36         0.5         1           Bromoform         1         U         0.47         0.5         1           Isopropylbenzene         1         U         0.47         0.5         1           Isopropylbenzene         1         U         0.45         0.5         1           Isopropylbenzene         1         U         0.45         0.5         1           Isopropylbenzene         1         U         0.45         0.5         1           Isopropylbenzene         1         U         0.45         0.5         1           1,1,2,2-Tetrachloroethane         1         U         0.43         0.5         1           1,2-Dichlorobenzene         1         U

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits





Client: MACTEC Inc. Date Collected: 01/19/11 Carriage Cleantown Date Received: Project: 01/22/11 Client Sample ID: 828131A-DP2807XDUP SDG No.: C1166 Lab Sample ID: C1166-18 Matrix: WATER SW8260B Analytical Method: % Moisture: 100 Sample Wt/Vol: 5 Final Vol: 5000 Units: mLuL Soil Aliquot Vol: uLTest: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032752.D 1 01/26/11 VG012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	Ŭ	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	0.57	J	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	19		0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	2.8	J	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	$\mathbf{U}$	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	46		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L .
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	0.82	J	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U .	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
			•				***



## Report of Analysis

Client: MACTEC Inc. 01/19/11 Date Collected: Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2807XDUP SDG No.: C1166 Lab Sample ID: C1166-18 Matrix: WATER Analytical Method: SW8260B% Moisture: 100 Sample Wt/Vol: Units: Final Vol: 5000 mL uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG032752.D 1 01/26/11 VG012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1 .	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	. 1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	. 1	U	0.2	0.5	1	ug/L
SURROGATES	8	•					
17060-07-0	1,2-Dichloroethane-d4	50.6		66 - 150		101%	SPK: 50
1868-53-7	Dibromofluoromethane	51	51		76 - 130		SPK: 50
2037-26-5	Toluene-d8	46.8		78 - 12	1	94%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.1		70 - 13	1	102%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	681272	3.88				
540-36-3	1,4-Difluorobenzene	1263060	4.68				
3114-55-4	Chlorobenzene-d5	1093820	9.65				
3855-82-1	1,4-Dichlorobenzene-d4	458449	13,36				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits



Checked for completeness of parameters requested.

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908  $\overline{\ 789}\ 8922$ 

gr 2/21/11

# ANALYTICAL RESULTS SUMMARY

**PROJECT NAME: CARRIAGE CLEANTOWN** 

MACTEC INC.

1105 Lakewood Parkway

Suite 300

Alpharetta , GA - 30009

Phone No: 7703600600

ORDER ID: C1166

ATTENTION: Tige Cunningham







## VOCs

	SDEC DUSR PROJECT CHEMIST REVIEW RECORD
IVIe	oject: Carriage Ckan town thod: <u>SW-846 8260B</u> boratory and SDG(s): Chemtech SDG# C1167
Da Rev	te: 2   2 i   11 viewer: Julia   2 i card i view Level   X   NYSDEC DUSR
1.	Were problems noted? QC problems noted? QC problems noted? QC problems noted to samples on the COC analyzed for the requested analyses? YES NO (circle one)
2.	Holding time and Sample Collection All samples were analyzed within the 14 day holding time. Yes
3.	QC Blanks Are method blanks free of contamination? (YES)NO (circle one) Are Trip blanks free of contamination? (YES)NO (circle one) \$2.8131A - TB11ZM: [N]) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
	Instrument Tuning Were all results were within method criteria YES NO (circle one)
	Instrument Calibration Were all results within criteria YES NO (circle one) Initial Calibration %RSD = 20% (except 30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, and
	Vinyl Chiloride) Continuing Calibration %D = 20% All OK
	☐ Surrogate Recovery
	Were all results were within laboratory limits? YES NO (circle one)  Internal Standards: All OK  Matrix Spike  1) P 2907 X MS/MSD
	Were MS/MSDs submitted/analyzed YES NO
	Were all results were within laboratory limits? YES NO NA (circle one)  See affected some of for God) to DP 2900 X  Duplicates/replicates  Were Field Duplicates submitted/analyzed? YES NO
	Were all results were within criteria. YES NO NA (circle one)
	Were all results were within laboratory limits? YES NO (circle one)
4.	P Raw Data Review and Calculation Checks
5,	Electronic Data Review and Edits  Does the EDD match the Form I's? YES NO (circle one)
6.	TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (TIC's).  Did lab report TICs? None detected in Samples (rew data chedical)
	except 1 unknown in -9 ok

Sample Delivery Group	ny Group	C1167	C1167	C1167	C1167	C1167	C1167	C1157
Z CEL	Lab Sample id	C1167-01	C1167-01DL	C1167-02	C1167-05	C1167-06	C1167-07	C1167-08
o o	Location Sample Date	7.49,704.4	2F-28	1(40/0044	DF-28	DP-30	DP-30	DP-31
S	Sample ID	828131A-DP2820X	828131A-DP2820X	828131A-DP2907X	828131A-DP2920X	828131A-DP3807X	828131A-DP3020X	1/20/2011 828131A-DP3120X
	Oc Code	FS	7.5	FS.	FS	RS.	FS	82
Analysis Param Name	Chits	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8250B 1, 1,1-1 inchioroethane	/60 S	÷ ;		- ·	⊃ : ~ ·	) ;	_ ;	<b>=</b> ;
	, ion	, - ) ⊃		- <del>-</del>	- <del>-</del> -		) ) )	
	l/Sn	<u></u>		2	. 그	1		2
SW8260B 1,1-Dichloroethane	ng/l	10		1 C	J.	5	1 D	J. C.
	y6n	<u>-</u>		J .	10	1 C	- -	10
SW8250B 1,2,4-Trichlorobenzene	ηĠη			J L	<u>,                                     </u>	5	D.	J L
	ng/	<b>→</b> :	•	<b>→</b>	<u>.</u>	⊃ :		10
SW8250B 1,2-Dipromoethane	y6n	- ·		<b>:</b>		<b>-</b> :	<b>-</b> ;	
SWAZOUR 1,2-Dichlonethane	jo jo	) <u>-</u>		- ·	- ·	) - T	) - ·	- ·
SW8260B 1,2-Dichloropropane	S D			2 =	) D	- T	) =	- <del>-</del>
SW8260B 1,3-Dichlorobenzene	ng,	1.0		, n	, <del>-</del>	, <del>, ,</del>	) )	. ~
SW8260B 1,4-Dichlorobenzene	VBn	<b>-</b>			5	<u>.</u>		10
SW8260B Z-Butanone	/gn						200	⊃ : 'a
SVVSZBUB Z-nexanone	- T	  		) :	⊃ :	ا ا		ے در
SW8260B Apelo acid methyl ester	50		•		o ←	) = -	o -	o +
SW8260B Acetone	γĠη	) ⊃		ر د د	. vo	- w	o ⊃	2 - 22
SW8260B Benzene	ng/							) T
	rā⁄l	) )		10	5	J.	10	<u></u>
	/gn	- , - ;	•••	> ·	<b>-</b> ;	<b>&gt;</b> :	) )	<b>D</b> :
SW8250B Bromomethane	/6n			3 =	)  -	- <u>-</u>	<b>→</b>	- ·
SW8260B Carbon tetrachloride	500	2 5		. B	, - ) ⊃	2	) )	- <del>-</del>
	yôn	<u>-</u> ت		1 W	J U	5	, ,	J.
	yôn '			, <u>, , , , , , , , , , , , , , , , , , </u>		<b>D</b> :	<b>⊃</b> :	D :
SW8280B Chloroform	#6n	- <i>-</i> -	•	2 =	2 2	) 	 - = C	
	l/gu	) ⊃		0.63 J	, <u>–</u>	. =		
SW8260B Cis-1,2-Dichloroethene	ng/l		210 D	٦. ص	<del>-</del>	2.6	3.5	0.96 3
SW8250Blcis-1,3-Dichloropropene	lg s	_ ; ⊃ :		3 =	- ·	~~ ·	<u>`</u> ;	5 :
	5 70	) ]		) <u>_</u>	) D	- T	) )	2 =
	ngy	, D				ם	5	10
SW8260B Isopropylbenzene	yōn	<u> </u>		10	<u>-</u> ⊃	ລຸ	10	) r
SW8260B Methyl cyclohexane	l/gu	<u> </u>	•	3 :	<del>-</del> -	- ·	> : - ·	
SV96ZGUB Memyi lenburyi Emer Siarsend Moffwigna chionda	ygn :	 		) = - +	) : - T	- T	- ÷	 
SW8260B Siviene	5 25	- <del>-</del>	********	0 0	) ) )	) ::	) <u>;</u>	) <u>_</u>
SW8260B Tetrachloroethene	/bn			. 7-		) ⊃	) 7	, T
SW8250B Toluene	l/Sn			1 03	J +	J.	<u>.</u>	u r
SW8250B trans-1,2-Dichloroethene	ng/l			<del>-</del> -	<u> </u>	D:	5.	<b>5</b>
	ng/	0 6		<b>D</b> :	) ; ;	D :	2 :	
SW8250B Inchlorgusomethane	VGn	0.7		2 5	- <del>-</del>	- <del>-</del>	0 =	- <del>-</del>
	l'bn	. 23	-				·	2,8
SW8260B Xylene, m/p	/bn	2 0		20.	2 3	22.	20.	2 0
SW8Z5UB Aylens, 0	ng/							

Revived by

	cample pervery cloud	C116/	) C.1	C1167	C1167	701.0
Lab	Lab Sample to	C1167-09 DP-32	C176/-10 PS-04	C116/-11 PS-06	C1167-12 PS-07	C1167-13
S	Sample Date	1/20/2011	1/17/2011	1/17/2011	1/21/2011	1/17/2011
	Sample ID	828131A-DP3215X FS	828131A-PS0402	828131A-PS0602	828131A-PS0702	828131A-TB1RM
Analysis Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B 1,1,1-Trichloroethane	l/gn	12	12	1	2	12
SW8260B 1,1,2,2-Tetrachloroethane	/bn	5	٦ ٦	10	J.	1 C
SW8260B 1,1,2-Trichloro-1,2,2-Trifluoroethane	/bn	> ;	- r	; c	~ ,	⊃ ;
Sylvesoco 1, 1,z=1 (retrologitario	V T	- ·	) ;	) - •	) 	) - '
SW8260B 1.1-Dichlorethene	50	 - =	> =	) = 		5 =
SW8260B 1,2,4-Trichlorobenzene	ng in			> -		, — D
SW8260B 1,2-Dibromo-3-chloropropane	νĝη		7.	, <del>-</del>		, T
	ng/	⊃	5	٠ -	, D	1 U
SW8260B 1,2-Dichlorobenzene	/Gn	<del>-</del>	ם ר	۰, د	<u>ا</u>	<b>→</b>
SW8250B 1.2-Dichloroethane	/gn	) D	<b>⊃</b>	1 U	10	7.
SW8260B11,2-Dichloropropane	/gn	- ·	) :	) )	) )	<u>.</u>
SW8Z5UB 1, S-DIGNIOTOBENZERE	νδη.	- ·	<u> </u>	⇒ :	) : 	D :
SW8Z60B 1,4-Dichlobenzene	150n	) : - u	) :: :- u	)   	) = - u	= u
					D =	)    -
SWS260B 4-Methyl-2-neptanone	n lo	) <u>_</u>			D :::	
SW8250B Acetic acid, methyl ester	ligh.		) <del>-</del>			
SW8260B Acetone	/bn	2 0	2 ∩ 6	20.00	- 49	- 10
SW8260B Benzene	/bn	ב	J U			
SW8260B Bromodichloromethane	l/gu	10	) L	7	7	J .
SW8260B Bromoform	l/Sn	D.	1.0	10	10	<u>+</u>
SW8260B Bromomethane	//Bn			_ 	 ⊃	J. U.
SW8260B Carbon disuffide	lgu,	⊃ :	<b>ə</b> :	Ţ.	<u>-</u>	<b>1</b> 5
SAVSZOUD Carbon remachione	l fa		- ;	) : - v	o :	<b>∵</b> .
SW6Z6UD Unioropenzene SWRO50B Chorolibromomethene	9	) :: - <del>-</del>	<b>&gt;</b> =	) <u>-</u>	) <u>-</u>	- ·
SW8260B Chloroethane	9 5	·	- T	- <del>-</del>	) =	o =
SW8260B Chloroform	ng/j	2.5		. 5	) ⊃	 5 D
SW8260B Chloromethane	/gn		٦.	0.58 J	Ü	100
SW8260B Cis-1,2-Dichloroethene	√gn	10	□	<b>1</b> ∪	J.	J C
SW8260B cis-1,3-Dichloropropene	ng⁄l	<u>, -</u>	<u>~</u>	<u> </u>	<u></u>	10
SW8260B Cyclohexane	/Bn	⇒ ;		— ; ⊃ ;	 	<b>&gt;</b> -
SW8260B Ethyl henzene	3 2	2 =	= <del>-</del>		> =	- <del>-</del>
SW8260B (sopropylbenzene	, pa	) = T		, <u> </u>	) =	, <del>, ,</del>
	//Din	, 5	, <del>, ,</del>		, <u> </u>	 ) ⊃
SW8260B Methyl Tertbutyl Ether	γôn	10	<del>-</del>	10	7	J.
SW8260B Methylene chloride	/gu	- -	5	- -	10	1 U
	ng/l		<u></u>	J .	<u>,</u>	<u></u>
SW8260B Tetrachloroethene	ng/	<b>⊋</b> :	<b>D</b> :	<b>→</b> :	<b>D</b> :	<u>۔</u> ت
SW8260B Toluene	ng/l	<u> </u>	<u> </u>	<u> </u>	<del>-</del> -	D :
SW8260B trans-1,2-Dichloroethene	/g	- ·		<u> </u>	) : - ·	) = - ·
OVIGOROUS HIGHS I, S-DICHIOLOGICOPHIC	, g	) = 	 	> -	) = - `	O =
OVOCOUR Inchesionations	/6n		- ÷	> =	= ==	) <u>:</u>
SW8260B Vival chloride	100	2 =	2 =	) =		- <del>-</del>
SW8260BiXvlene, m/p	l'an	2.0	2.0	2 .0	2 C	2 . 0
CM/8080B Vylene o	100				- 1	



284 Sheffield Street, Mountainside, New Jersey 07092 Phone: 908 789 8900 Fax: 908 789 8922

**Client Sample Number** 

828131A-TB1RM

# **Cover Page**

Order ID: C1167

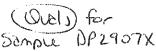
C1167-13

Project ID: Carriage Cleantown

> Client: MACTEC Inc.

### Lab Sample Number

# C1167-01 828131A-DP2820X


C1167-02 828131A-DP2907X C1167-03 C1167-02MS C1167-02MSD C1167-04 C1167-05 828131A-DP2920X 828131A-DP3007X C1167-06 C1167-07 828131A-DP3020X C1167-08 828131A-DP3120X 828131A-DP3215X C1167-09 C1167-10 828131A-PS0402 828131A-PS0602 C1167-11 C1167-12 828131A-PS0702

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following

I down v Reys

Mildred V. Reyes, QA/QC Supervisor 2011.02.03 16:07:51 -05'00'





### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	CHEMTECH			Client:	MACTEC Inc.		
Lab Code:	СНЕМ	_ Cas No:	C1167	SAS No:	C1167	SDG No:	C1167

EPA SW846 8260 Matrix Spike - EPA Sample No: C1167-04 Analytical Method: Datafile: VH039394.D SPIKE 70-130 MSD MSD ADDED CONCENTRATION % % **OC LIMITS** COMPOUND (ug/L) (ug/L) (ug/L) RPD REC Dichlorodifluoromethane (24-175)Chloromethane (29-190)Vinyl Chloride (39-171)25* Bromomethane (34-167)Chloroethane (38-170)Trichlorofluoromethane (38-171)1,1,2-Trichlorotrifluoroethane (47-152)1,1-Dichloroethene (47-149)Acetone (28-181)Carbon Disulfide (34-160)Methyl tert-butyl Ether (39-166)Methyl Acetate (29-176)Methylene Chloride (48-149)trans-1,2-Dichloroethene (53-143)1,1-Dichloroethane (57-150)Cyclohexane (42-159)(47-160)2-Butanone 24* Carbon Tetrachloride (38-158)cis-1,2-Dichloroethene (41-160)(56-152)Chloroform 1,1,1-Trichioroethane (57-148)26* Methylcyclohexane (41-152)Benzene (59-140)1,2-Dichloroethane (56-151)Trichloroethene (49-146)1,2-Dichloropropane (63-140)Bromodichloromethane (60-144)4-Methyl-2-Pentanone (51-160)22* Toluene (60-139)t-1.3-Dichloropropene (51-148)cis-1,3-Dichloropropene L-21*) (53-143)1,1,2-Trichloroethane (65-138)2-Hexanone (44-170)

RPD: 11 Out of 89 outside limits

Spike Recovery: 6 Out of 178 outside limits

8~214/4

[#] Column to be used to flag recovery and RPD values with an asterisk

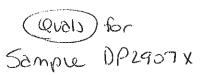
^{*} Values outside of QC limits



Bromoform

Isopropylbenzene

1,1,2,2-Tetrachloroethane


1,2-Dibromo-3-Chloropropane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichiorobenzene



### WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

CHEMTECH Client: MACTEC Inc. Lab Name: C1167 SAS No: SDG No: Lab Code: CHEM Cas No: C1167 C1167 Matrix Spike - EPA Sample No: C1167-04 Analytical Method: EPA SW846 8260 Datafile: VH039394.D Reg 2 70-13/ SPIKE MSD MSD ADDED CONCENTRATION % **QCLIMITS** % COMPOUND (ug/L) RPD REC (ug/L) (ug/L) Dibromochloromethane 59 118 20 50 13 (56-146)50 57 114 17 20 1,2-Dibromoethane (63-142)Tetrachloroethene 50 45 90 17 20 (23-148)(22* Chlorobenzene J 50 56 112 20 (57-136)Ethyl Benzene 50 53 106 20 (49-146)100 20 m/p-Xylenes 110 110 18 (51-140)20 50 56 112 20 o-Xylene (54-139)50 52 104 14 20 Styrene (48-141)

57

49

50

48

48

50

51

49

50

50

50

50

50

50

50

50

D2/21/11

114

98

100

96

96

100

102

98

19

11

15

13

11

11

15

18

20

20

20

20

20

20

20

20

(48-141)

(48-143)

(52-151)

(63-129)

(57-134)

(57-136)

(46-157)

(53-137)

RPD: 11 Out of 89 outside limits

Spike Recovery: 6 Out of 178 outside limits

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Quantitation Report (QT Reviewed)

Data File: VH039382.D

Acq On : 26 Jan 2011 15:32

Operator : NS

Sample : C1167-01 Misc : 5mL MSVOA_H

ALS Vial: 7 Sample Multiplier: 1

Quant Time: Jan 26 17:58:04 2011

Quant Method: W:\HPCHEM1\MSVOA H\METHOD\82H012511W.M

Quant Title : SW846 8260

QLast Update : Wed Jan 26 13:13:16 2011

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits Dev	(Min)
35) 1,4-Difluorobenzene 64) Chlorobenzene-d5	4.09 4.61 7.96	114 117	1828832 2755005 2347274	50.00 50.00		0.00 0.01 0.00
73) 1,4-Dichlorobenzene-d4	10.45	152	1135821	50.00	ug/l	0.00
System Monitoring Compounds						
34) 1,2-Dichloroethane-d4	4.12	65	1300298	48.16	ug/l	0.00
Spiked Amount 50.000	Range 66	- 150	Recove	ery =	96.32%	
36) Dibromofluoromethane	3.65	113	1037598	51.45	ug/l	0.00
Spiked Amount 50.000	Range 76	- 130	Recove	ery =	102.90%	
49) Toluene-d8 Spiked Amount 50.000			3049479			0.01
	Range 78					
63) 4-Bromofluorobenzene	9.38	95	1183180	49.35	ug/l	0.00
Spiked Amount 50.000	Range 70	- 131	Recove	ery =	98.70%	
Target Compounds					037	alue
4) Vinyl Chloride	1.21	62	723613	(22.24		98
28) cis-1,2-Dichloroethene	3.24		5726699		ug/1	
44) Trichloroethene			52474		ug/1 #	
65) Tetrachloroethene			19215		ug/1 #	95

(*) = qualifier out of range (m) = manual integration (+) = signals summed

Conc Vinyl Chloride = 
$$\frac{723613}{1828832} \times \frac{50}{1890} = 22.2343$$

OK

3/13/u

Quantitation Report (QT Reviewed)

Data Path: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_H\DATA\VH012611\\
Data File: \\PHO38396 D

Data File: VH039396.D

: 26 Jan 2011 22:43 Acq On

Operator : NS

Sample : C1167-01DL 5X : 5mL MSVOA H Misc

ALS Vial: 21 Sample Multiplier: 1

Quant Time: Jan 27 05:02:02 2011

44) Trichloroethene

Quant Method: W:\HPCHEM1\MSVOA_H\METHOD\82H012511W.M

Quant Title : SW846 8260

QLast Update : Wed Jan 26 13:13:16 2011 Response via : Initial Calibration

Internal Standards R.T. QIon Response Conc Units Dev (Min) 1) Pentafluorobenzene 4.11 168 1885141  $50.00 \, \text{ug/l}$ 4.62 114 2776367 7.98 117 2356899 35) 1,4-Difluorobenzene 64) Chlorobenzene-d5  $50.00 \, \text{ug/l}$ 0.02 50.00 ug/1 0.02 10.46 152 1240729 50.00 ug/l 73) 1,4-Dichlorobenzene-d4 0.01 System Monitoring Compounds 34) 1,2-Dichloroethane-d4 4.14 65 1337364 48.06 ug/l 0.02 Range 66 - 150 Recovery = 96.12%Spiked Amount 50.000 3.67 113 1070110 52.66 ug/l 36) Dibromofluoromethane 0.02 Range 76 - 130 Recovery = 105.32% Spiked Amount 50.000 6.10 98 3081579 48.22 ug/l 49) Toluene-d8 0.03 Spiked Amount 50.000 Range 78 - 121 Recovery = 96.44%9.39 95 1187472 49.15 ug/l 63) 4-Bromofluorobenzene 0.01 Spiked Amount 50.000 Range 70 - 131 Recovery = 98.30% Target Compounds 1.21 62 149320 4.45 ug/l thene 3.26 96 1209772 (42.69 ug/l 4.58 130 10798 0.53 ug/l # 4) Vinyl Chloride 28) cis-1,2-Dichloroethene

(#) = qualifier out of range (m) = manual integration (+) = signals summed

4.58 130 10798

0.53 ug/l #

1

Data Path : \\TERASTORAGE\\VOASRV\\HPCHEM1\MSVOA_H\DATA\\V#C12611\

Data File : VH039393 D

Acq On : 26 Jan 2011 21:11

Matrix Spike

Operator : NS

sample : C1167-03MS Misc : 5ml MSVOA H

ALS Vial : 18 Sample Multiplier: 1

Quant Time: Jan 27 04:55:29 2011

Quant Method: W:\HPCHEM1\MSVOA H\METHOD\82H012511W.M

Quant Title : SW846 8260 QLast Update : Wed Jan 26 13:13:16 2011

Response via : Initial Calibration

nternal Standards	R.T.	QIon	Response	Conc Ui	nits Dev	(Min)
1) Pentafluorobenzene	4.10	168	1599877	50.00	ug/I	0.00
35) 1,4-Difluorobenzene	4.62	114	2665422	50.00	ua/l	0.02
64) Chlorobenzene-d5	7.98	117	2238784	50.00	ug/l	0.02
64) Chlorobenzene-d5 73) 1,4-Dichlorobenzene-d4	10.46	152	1179915	50.00	ug/l	0.01
ystem Monitoring Compounds						
34) 1,2-Dichloroethane-d4	4.13	65	1395902	59.68	ug/l	0.02
Spiked Amount 50.000	Range 66	- 150	Recove	ry =	117.368	
		113		50.70	ug/l	0.01
Spiked Amount 50.000	Range 76	- 130	Recove	<b>τ</b> λ =	101.40%	5
49) Toluene-d8	6.09	98	3179061	51.82	ug/l	0.02
	Range 78	- 121	Recove	ry =	103.64%	š
63) 4-Bromofluorobenzene	9.38	95	1160849	50.04	uq/l	0.00
Spiked Amount 50.000	Range 70	- 131	Recove	ry =	100.089	;
arget Compounds					Qv	alue
2) Dichlorodifluoromethane	1.10	85	987773	53.92	ug/l	100
3) Chloromethane	1.17	50	1933926	57.31	ug/l	98
<ul><li>3) Chloromethane</li><li>4) Vinyl Chloride</li></ul>	1.22	62	1933926 1669813	58.66	ug/l	99
5) Bromomethane 6) Chloroethane	1.40	94	705049	52.11	ug/l	99
6) Chloroethane	1.47	64	879088	58.17	ug/l	98
?) Trichlorofluoromethane	1.57	101	1145228m	56.74	ug/l	
6) Chloroethane 7) Trichlorofluoromethane 8) Tert butyl alcohol 9) Diethyl Ethor	2.52	59	1110443	317.03	ug/l #	95
NI DICTUAT DENET	1.10	7 %	806054			99
10) Diisopropyl ether	2.73	45	5197669	56.38	ug/l	99
10) Diisopropyl ether 11) 1,1-Dichloroethene 12) Methyl Iodide 13) Acrolein	1.82	96	5197669 949666	52.34	ug/l	92
12) Methyl Iodide	1.91	142		52.60	ua/l	
13) Acrolein	2.04	56				98
14) 1,1,2-Trichlorotrifluoro	et 1.89	101	876012			99
15) Acrylonitrile	2.83		3557609			99
16) Allyl Chloride	2.14	41	2749608			98
17) Acetone	2.24	43	2784924			98
17) Acetone 18) Carbon Disulfide	1.84	76	3757994	57.21	ug/l	99
19) Methyl Acetate	2 3.4	12	3757994 2297790	55.24	ug/l	99
20) Methyl tert-butyl Ether	2,42	73		53.36	ug/l	98
21) Methylene Chloride '22) trans-1,2-Dichloroethene	2.22	84	1120231	53.49	ug/l	97
22) trans-1,2-Dichloroethene	2.34	96	1120231 956159	53.98	ug/l	93
24) Vinyl Acetate	3.02	4.3	16155467	354.04	ua/1	98
25) 1,1-Dichloroethane			2251582			97
26) 2-Butanone	3.76	43		244.10		100
27) 2,2-Dichloropropane	3.33	77	1004163	53.54		100
28) cis-1,2-Dichloroethene	3.26	96	1213366	50.45		92
29) Bromochloromethane	3.43	128	490488	48.52		92
30) Chloroform	3.50	83	1772526	56.58		96
31) Ethyl Acetate	3.62	43	2601774		ug/1 #	98
32) Cyclohexane	3.43	56	1884660	52.55		94
33) 1,1,1-Trichloroethane	3.66	97	1236307	55.52		98
37) 1,1-Dichloropropene	3.78	75	1538200	50.76		96
38) Carbon Tetrachloride	3.60	117	1130713			
39) Benzene	4.00	78		47.51		95
23) peuseile	4.00	78	4184270	47.85	ug/l	98

82H012511W.M Thu Jan 27 16:03:45 2011 VOA

Vlnyl Chloride 1599877  $\times \frac{50}{.89} = 58.64 \frac{45}{.50} \frac{56 = 58.64}{.50}$ Conc

Page: 1

274

(repried 118) = 1172 OK

Data Path : \TERASTORAGE\VOASRV\HPCHEM1\MSVOA_H\DATA\VH012611\

Data File : VH039380 D

Acq On : 26 Jan 2011 14:30 1.45

Operator : MS

Sample : BSH0126W1 Misc : 5mL MSVCA H

ATS Vial : 5 Sample Multiplier: 1

Quant Time: Jan 26 16:34:35 2011

Quant Method: W:\HPCHEM1\MSVOA H\METHOD\82H012511W.M

Quant Title : SW846 6260

QLast Update : Wed Jan 26 13:13:16 2011

Response via : initial Calibration

Internal Standards	В.Т.	QTon	Response	Conc U	nits Dev	(Min)	
1) Pentafluorobenzene 35) 1,4-Difluorobenzene 64) Chlorobenzene-d5							
35) 1,4-Difluorobenzene	4.61	114	2386896	50.00	ug/l	0.01	
64) Chlorobenzene-d5	7.96	117	1994041	50.00	ug/l	0.00	
73) 1,4-Dichlorobenzane-d4	10.44	152	1103348	50.00	ug/l	0.00	
System Monitoring Compounds							
34) 1,2-Dichloroethane-d4	4.12	65	1105996	46.14	ug/l	0.00	
Spiked Amount 50.000	Range 66	- 150	Recove	ery =	92.28%		
36) Dibromofluoromethane	3.65	113	910236	52.10	ug/l	0.00	
Spiked Amount 50.000	Range 76	- 130	Recove	\$ <b>r</b> \dot =	104.20%		
49) Toluene-d8 Spiked Amount 50.000	6.08	98	2779797	50.60	ug/l	0.00	
Spiked Amount 50.000	Range 78	- 121	Recove	ery =	101.20%		
63) 4-Bromofluorobenzene	9.37	95	1017877	49.00	ug/l	0.00	
Spiked Amount 50.000	Range 70	- 131	Recove	ery =	98.00%		
Target Compounds					Q٧،	alue	
2) Dichlorodifluoromethane	1.09	85	261960	15.69	ug/l	91	
3) Chloromethane 4) Vinyl Chloride 5) Bromomethane 6) Chloroethane	1.15	50	529190	15.45	ug/l	9.8	
4) Vinyl Chloride	1.20	62	486377				
5) Bromomethane	1.38	94	258929	18.85	ug/l	92	
6) Chloroethane	1.46	64	258929 291135	18.98	uq/l	93	
/) Trichlorofiluoromethane	1.55	101	392165m	19.14	ug/l		
<ol><li>Tert butyl alcohol</li></ol>	2,52	59	358423	100.82	ug/1 #	96	
<ul><li>8) Tert butyl alcohol</li><li>9) Diethyl Ether</li><li>10) Diisopropyl ether</li></ul>	1.69	74	358423 282318	19.65	ug/l	98	
10) Diisopropyl ether	2.72	45	1855758	19.83	ug/1	99	
11) 1,1-Dichloroethene	1.81	96	326756	17.74	na/l	89	
11) 1,1-Dichloroethene 12) Methyl Iodide 13) Acrolein	1.90	142	626260m	18.48	ug/1	0 3	
13) Acrolein	2.03	56	594658	107.19		100	
14) 1.1.2-Trichlorotrifluor	coet 1.88	101	342685			97	
15) Acrylonitrile	2.82	53	1294589			99	
15) Acrylonitrile 16) Allyl Chloride 17) Acetone	2.13	41	984760	18.51	ug/1	95	
17) Acetone	2.24	4.3	984760 1053 <b>6</b> 33	79.47	ua71	100	
18) Carbon Disulfide	1.83	76	1054100	15.81	nd/1 #	93	
19) Methyl Acetate	2.34	43	903517	21.40	ug/l	98	
18) Carbon Disulfide 19) Methyl Acetate 20) Methyl tert-butyl Ether	2.42	73	903517 1204634	19.85	ug/1	97	
21) Methylene Chloride	2.21	84	425790	20.03	ua/1	98	
22) trans-1,2-Dichloroether			353197	19.65	ua/1	98	
24) Vinvl Acetate	3 ሰብ	43	6138337	107.13	ug/I	97	
25) 1.1-Dichloroethane	2.79	63	6138337 837442	20.49	ug/1	99	
25) 1,1-Dichloroethane 26) 2-Butanone	3.75	43	2341476	97.85	ug/1	99	
27) 2,2-Dichloropropane	3.32	77	408639	21.47		99	
28) cis-1,2-Dichloroethene	3.24	96	474581	19.44		99	
29) Bromochloromethane	3.41	128	235328	22.94		98	
30) Chloroform .	3.49	83	667711	21.00		99	Sp.
31) Ethyl Acetate	3.61	43	923120		ug/l #	98	Salveli
32) Cyclohexane	3.41	56	675269	18.55		94	
33) 1,1,1-Trichloroethane	3.65	97	455927	20.17		99	
37) 1,1-Dichloropropene	3.77	75	544907	20.08	-	98	
38) Carbon Tetrachloride	3.60	117	439121	20.60		90	
39) Benzene	3.99	78	1496375	19.11		99	268
M010511T M TO TO TO TO					- 3 / -		200

82H012511W.M Thu Jan 27 15:46:06 2011 VOA

Conc = 486377 x 50 = 16.83 45 OK Sor = 16.83 Vinyl Chlorida 1623900 ,89 (reported \$5) = 847. OK

Data Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA H\DATA\VH012611\

Dana Pala - SHIRARIA

Acg On : 26 Jan 2011 13:56 Operator : 70

Sample : VBH0126W1

Method Blank

mide : Ski movem n

ALS Viol : A Samplo Multiplior: 1

Quant Time: Jan 26 15:25:00 2011

Quant Method: W:\HPCHEMI\MSVOA H\METHOD\8ZHU1Z511W,M

Quant Fitle : 5W046 6260

QLast Update: Wed Jan 26 13:13:16 2011

Response via : Initial Calibration

Internal Standards	io T	QTon	Beabonse	Conc H	nits Do	ਬਾ/Minj
1) Pentafluorobenzens	4.09	168	1672003	50.00	ug/l	0.00
35) 1,4-Difluorobenzene	4 61	114	2608221	50.00	1101/1	0 00
64) Chlorobenzene-d5	7.95	117	2365756	50.00	uq/l	0.00
73) 1,4-Dichlorobenzene-d4	10.45	152	1167604	50.00		0.00
System Monitoring Compounds						
34) 1,2-Dichloroethane-d4	4.12	65	1246880	50.52	uq/l	0.00
Spiked Amount 50.000	Range 65		Recove		-	
36) Dibromofluoromethane	3.65	113	989388	51.82	ug/l	0.00
Spiked Amount 50.000	Range 76	- 130	Recove	ry =	103.64	8
49) Toluene-d8	6.08	98	3053738	\$50.87	ug/l	0.00
Spiked Amount 50.000	Range 78	- 121	- Recove			Q.
63) 4-Bromofluorobenzene	9.38	95	1177369	51.87	ug/l	0.00
Spiked Amount 50.000	Range 70	- 131	Recove	ry -	$1\bar{0}3.74$	8
Target Compounds	(N))	OR. NOTE EAST 20th AND SOUL OF		48b had 514 http://www.uses.uses	C	value

(#) = qualifier out of range (m) = manual integration (+) = signals summed

$$\frac{750}{55} = \frac{55.86}{101.7} \approx 101.7 \%$$
 OK

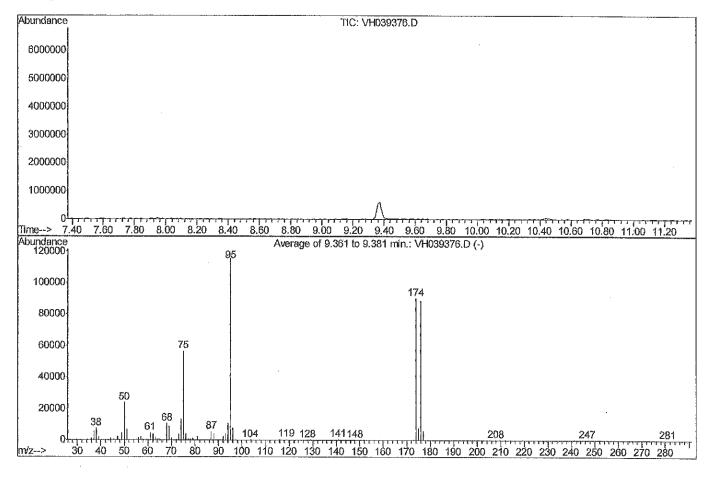
Data Path: W:\HPCHEM1\Msvoa H\Data\VH012611\

Data File: VH039376.D

: 26 Jan 2011 11:28 Aca On

Operator : NS

Sample : BFB TUNE CHECK Misc : 5mL MSVOA H


ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

: W:\HPCHEM1\MSVOA H\METHOD\82H012511W.M

: SW846 8260

Last Update : Wed Jan 26 10:22:31 2011



AutoFind: Scans 879, 880, 881; Background Corrected with Scan 874

	Target	-	Rel. to		Lower	1	Upper		Rel.		Raw	1	Result	
<u></u> -	Mass 	 	Mass 	 	Limit%	 	Limit%	 	Abn%	- 	Abn 	)	Pass/Fail	 
	50	1	95	1	15	-	40	1	20.7		23853	1	PASS	1
	75	1	95		30		60	- }	49.0	1	56557	1	PASS	1
	95		95	]	100	1	100	1	100.0		115397	1	PASS	
ľ	96		95	J	5	1	9	1	6.7	1	7782	1	PASS	Ĩ
1	173		174		0.00		2	1	0.5		440	1	PASS	Ĺ
	174		95	1	50	-	100	1	78.1		90114	1	PASS	- 1
	175		174	1	5	1	9	1	8.4	1	7590	j	PASS	Ĺ
	176	-	174	1	95	1	101	1	98.3	i	88554	j	PASS	Ĺ
	177		176	ļ	5	1	9		6.4	İ	5666	Ì	PASS	İ

$$m_{12} = \frac{50}{95} = \frac{23853}{115397} = 20.67$$
 OK

W.M Wed Jan 26 12:18:56 2011 RPT1

 $3/12/11$ 

82H012511W.M Wed Jan 26 12:18:56 2011 RPT1

### Evaluate Continuing Calibration Report

Data Path : W:\HPCHEM1\MSVOA H\DATA\VH012611\ CCAL

Data File: VH039377.D

Acq On : 26 Jan 2011 12:48

Operator : NS

Sample : 50 PPB CCC Misc : 5mL MSVOA H

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jan 26 13:12:43 2011

Ouant Method: W:\HPCHEM1\MSVOA_H\METHOD\82H012511W.M

Quant Title : SW846 8260

QLast Update : Wed Jan 26 10:22:31 2011

Response via : Initial Calibration

500 VC = 129 - 1.020 = - 14.6%.

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 20% Max. Rel. Area : 150%

		Compound	AvqRF	CCRF	%Dev Area%	Dev(min)	
1 I	 [	Pentafluorobenzene Dichlorodifluoromethane	1.000	1.000	0.0 92	0.00	
2 T	2	Dichlorodifluoromethane	0.511	0.661	-29.4# 108	0.00	
3 P	?	Chloromethane	1.055	1.165	-10.4 101	0.00	
4 C	CM	Vinvl Chloride	0.890	1.020	-14.6# 109	0.00	
5 T	2	Bromomethane	0.423	0.432	-2.1 93	0.00	
6 T	Ţ.	Chloroethane	0.472	0.551	-16.7 106	0.00	
7 T	P*	Trichlorofluoromethane	0.631	0.737	-16.8 101	0.00	
8 T	ľ	Tert butyl alcohol	0.109	0.125	-14.7 96	0.00	
9 T	Ľ	Diethvl Ether	0.442	0.490	-10.9 95	0.00	
10 T	ľ	Diisopropyl ether	2.881	3.061	-6.2 101	0.00	
11 C		1.1-Dichloroethene Methyl Iodide Acrolein	0.567	0.634	-11.8# 104	0.00	
12 T		Methyl Iodide	1.044	1.111	-6.4 97	0,00	
13 T		Acrolein	0.214	0.162	24.3# 96	0.00	
14 T		1,1,2-Trichlorotrifluoroeth	0.535	0.620	-15.9 108	0.00	
15 T		Acrylonitrile	0.383	0.425	-11.0 102	0.00	
1.6 T		Allyl Chloride	1.995	1.558	21.9# 94	0.00	
17 T		Acrylonitrile Allyl Chloride Acetone Carbon Disulfide Methyl Acetate	0.399	0.354	11.3 90	0.00	
18 T		Carbon Disulfide	2.053	2.264	-10.3 99	0.00	
19 T		Methyl Acetate	1.300	1.303	-0,2 103	0.00	
20 T		Methyl tert-butyl Ether	1.868	1.973	-5.6 99		
21 T		Methylene Chloride	0.654	0.720	-10.1 102	0.00	
22 T		trans-1,2-Dichloroethene	0.554	0.597	-7.8 98		
23 T		Acetonitrile Vinyl Acetate 1,1-Dichloroethane 2-Butanone	0.000	0.000		# -2.56#	
24 T		Vinvl Acetate	1.600	1.840	-15.0 106	0.00	
25 P		1.1-Dichloroethane	1.258	1.354	-7.6 103	0.00	
26 T		2-Butanone	0.737	0.733	0.5 102	0.00	
27 T		z,z-bichioropropane	0.586	0.619	-5.6 108	0.00	
28 T		cis-1,2-Dichloroethene	0.752	0.802	-6.6 98	0.00	
29 T		cis-1,2-Dichloroethene Bromochloromethane Chloroform Ethyl Acetate Cyclohexane	0.316	0.285	9.8 86		
30 C		Chloroform	0.979	1.108	-13.2# 103	0.00	
31 T		Ethvi Acetate	1.469	1.519	-3.4 103	0.00	
32 T		Uvcionexane	1.121	1.213	-8.2 103	0.00	
33 T		1,1,1-Trichloroethane 1,2-Dichloroethane-d4	0.696	0.754	-8.3 99		
34 S	0	1,2-Dichioroethane-d4	0.738	0.681	7.7 95	0.00	
35 I	Ι	1,4-Difluorobenzene	1.000	1.000	0.0 92	0.00	
36 S	5	Dibromofluoromethane 1,1-Dichloropropene Carbon Tetrachloride Benzene	0.366	0.348	4.9 91		
37 T	ľ	1,1-Dichloropropene	0.568	0.623	-9.7 102		0
38 T	ľM	Carbon Tetrachloride	0.446	0.480	-7.6 101		0~
39 T	ľM	Benzene	1.640	1.688	-2.9 97		3/1/4
40 T	ľ	Methacrylonitrile	0.463	0.499	-7.8 102		2~ 3/14/14
41 T	ľM	Methacrylonitrile 1,2-Dichloroethane Isobutyl Alcohol Isopropyl Acetate Trichloroethene	0.535	0.560	-4.7 99		
42 T	ľ	Isobutyl Alcohol	0.000	0.000		# -4.31#	
43 T	ľ	Isopropyl Acetate	1.259	1.376	-9.3 106		
	ľM	Trichloroethene	0.367	0,399	-8.7 96		
45 T	ľ.	Methylcyclohexane	0.500	0.471	5.8 97		

82H012511W.M Wed Jan 26 15:35:56 2011 RPT1

 $= \frac{1867322}{1831291} \times \frac{50}{50} = 1.0197 OK$ KRF Vinyl chlorida

Page: 1

Data Path : W:\HPCHEM1\MSVOA H\DATA\VH012611\

Acg On : 26 Jan 2011 12:48 Operator : NS

Sample : 50 PPB CCC Misc : 5mL MSVOA H

ALS Vial : 2 Sample Multiplier: 1

Ouant Time: Jan 26 13:12:43 2011

Ouant Method: W:\HPCHEM1\MSVOA H\METHOD\82H012511W.M

Quant Title : SW846 8260 QLast Update : Wed Jan 26 10:22:31 2011 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Pentafluorobenzene	4.09	168	1831291	50.00	ua/1		0.02
35) 1,4-Difluorobenzene	4.60	114					0.01
64) Chlorobenzene-d5	7.96	117		50.00			0.03
73) 1,4-Dichlorobenzene-d4	10.44			50.00			0.02
•							
System Monitoring Compounds							
34) 1.2-Dichloroethane-d4	4.11						0.01
Spiked Amount 50.000	Range 66	- 150	Recove	rv =	92.	24%	
36) Dibromofluoromethane	3.65	113	972608	47.53	ug/l		0.02
Spiked Amount 50.000	Range 76	- 130	Recove	rv =	95.	06%	
49) Toluene-d8	6.07		2997189	46.58	ua/l		0.02
	Range 78	- 121	Recove	rv =	93.	16%	
	9.37			44.33			0.02
Spiked Amount 50.000	Range 70	- 131	Recove	ry =	88.	668	
Target Compounds							alue
2) Dichlorodifluoromethane	1.09	85	1209752				97
3) Chloromethane	1.16	50	2132869	55.21	uq/l		98
4) Vinyl Chloride	1.21	62	1867322	57 30	1107/1		98
5) Bromomethane	1.39	94					98
6) Chloroethane	1.46	64	1009136	58.34	uq/l		93
7) Trichlorofluoromethane		101	1349946 1140139	58.44	uq/l	并	70
8) Tert butyl alcohol	2.52	59	1140139	284.38	uq/l		97
9) Diethyl Ether	1.69		897582	55.39	ug/l		91
10) Diisopropyl ether	2.72	45	5605489	53.12			99
11) 1,1-Dichloroethene	1.82	96	1161284	55.92			97
12) Methyl Iodide	1.91	142	2034613m				
13) Acrolein	2.02	56	1487776	259.57	ug/1		99
14) 1,1,2-Trichlorotrifluoro		101	1134642	57.91	ug/1		94
<pre>15) Acrylonitrile 16) Allyl Chloride</pre>	2.82	53	3889036	277.20			100
17) Acetone	2.12 2.23	41	2853962				94
18) Carbon Disulfide	1.87	43 76	3242493				99
19) Methyl Acetate	2.33	43	4146646 2387005	55.15 $50.14$	uq/1		98
20) Methyl tert-butyl Ether	2.41	73	3613816	52.81	uq/1		98 99
21) Methylene Chloride	2.20	84	1319292	55.04	ua/I		96
22) trans-1,2-Dichloroethene		96	1092724	53.04	uq/1		98
24) Vinyl Acetate	3.01	<b>1</b> 3	16844731	210.06	uq/1		100
25) 1,1-Dichloroethane	2.79	63					99
26) 2-Butanone	3.75	43	6709239	248.62			98
27) 2,2-Dichloropropane	3.32		1133986				98
28) cis-1,2-Dichloroethene	3.24	96	1467876	53.32			98
29) Bromochloromethane	3.41	128	521842	45.10			93
30) Chloroform	3.49	83	2028754	56.58			93
31) Ethyl Acetate	3.61	43	2781906	51.72			99
32) Cyclohexane	3.41	56	2221346	54.11			99
33) 1,1,1-Trichloroethane	3.65	97	1380600	54.17			96
37) 1,1-Dichloropropene	3.77	75	1740510	54.76			98
38) Carbon Tetrachloride	3.59	117	1342145	53.77			87
39) Benzene	3.99	78	4719071	51.45			98
/	0.22	, ,	1,10011	27.13	ug/1		20

Data Path : W:\HPCHEM1\MSVOA H\DATA\VH012511\

Data File : VH039364.D

Acq On : 25 Jan 2011 14:04

Operator : NS

Sample : 20 PPB ICC Misc : 5mL MSVOA H

ALS Vial : 5 Sample Multiplier: 1

Ouant Time: Jan 25 16:13:38 2011

Ouant Method: W:\HPCHEM1\MSVOA_H\METHOD\82H012511W.M

Quant Title : SW846 8260 QLast Update : Tue Jan 25 15:55:42 2011 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ui	nits	Dev(Min)
1) Pentafluorobenzene	4.08	168	1852534	50.00	uq/1	0.00
35) 1,4-Difluorobenzene	4.59	114	2831636	50.00		
64) Chlorobenzene-d5	7.93	117	2290989	50.00		
73) 1,4-Dichlorobenzene-d4	10.43	152	1157359	50.00	ug/l	0.00
System Monitoring Compounds						
34) 1.2-Dichloroethane-d4	4.10	65	609660	25.91	ua/1	0.00
		- 150				82%#
36) Dibromofluoromethane	3.63	113	465236	23.97		
	Range 76		Recove	atA =	47.	948#
49) Toluene-d8	6.06	98	1387505	23.49		
	Range 78		Recove			988#
63) 4-Bromofluorobenzene	9.36			23.98		
Spiked Amount 50.000	Range 70	- 131	Recove	ery =	47.	968#
Target Compounds						Qvalue
<ol><li>Dichlorodifluoromethane</li></ol>	1.08	85	293714	18.15	uq/1	92
3) Chloromethane	1.15	50	673674	22.40		
4) Vinyl Chloride	1.20	62	593534	22.54	uq/l	. 98
5) Bromomethane	1.38	9.4	273797	21.83	uq/l	100
6) Chloroethane	1.46	64	360052	24.40	uq/1	. 90
7) Trichlorofluoromethane	1.56	101	461235m	22.46	ug/l	i
<ol><li>8) Tert butyl alcohol</li></ol>	2.50	59	436580	115.03	uq/1	. 99
9) Diethyl Ether	1.68	74	339580	22.98	ug/I	. 95
10) Diisopropyl ether	2.71	45	2126638	23.14	ug/l	. 99
11) 1,1-Dichloroethene	1.81	96	394056	21.65	ug/l	# 37
12) Methvl Iodide	1.94	142	696909	21.04		
13) Acrolein	2.01		691409	252.19	ua/1	95
14) 1.1.2-Trichlorotrifluoro		101	373423	21.21	uq/l	. 98
15) Acrylonitrile	2.80	53	1461504	113.59	ua/l	. 98
16) Allyl Chloride	2.11	41	1181990	23.95	ug/1	. 92
17) Acetone	2.22	43	1498209	123.24	ug/l	98
18) Carbon Disulfide	1.86	76	1250276	21.24	ug/1	100
19) Methvl Acetate	2.32	43	1000654	24.00		
20) Methyl tert-butyl Ether	2.41	73	1402340	22.30		
21) Methylene Chloride	2.19		468942	22.64		
22) trans-1,2-Dichloroethene	2.31		368517	20.20		
24) Vinyl Acetate	2.99		6572140	129.08		
25) 1,1-Dichloroethane	2.77		924475	23.28		
26) 2-Butanone	3.73	43	2763746	121.47	uq/l	. 96
27) 2,2-Dichloropropane	3.30	77	418106	21.65		
28) cis-1,2-Dichloroethene	3.22	96	530907	21.40		
29) Bromochloromethane	3.39	128	233215	20.76		
30) Chloroform	3.47	83	738915	22.35		
31) Ethyl Acetate	3.59	43	1070830	23.74		
32) Cyclohexane	3.39	56	737152	21.88		
33) 1,1,1-Trichloroethane	3.63	97	511415	22.28		
37) 1.1-Dichloropropene	3.74	75	590765	21.01		
38) Carbon Tetrachloride 39) Benzene	3.58 3.96	117 78	504247	21.00 21.70		
			1716357			. 99

Page: 1

82H012511W.M Wed Jan 26 12:38:09 2011 RPT1

RRF Vinyl Chloride 1852534 X = 0.80098 OK

Method Path: W:\HPCHEMI\MSVOA_H\METHOD\ IZAL

Method File: 82H012511W.M Title: SW846 8260

Last Update : Wed Jan 26 05:57:50 2011

82H012511W.M Wed Jan 26 07:13:12 2011 VOA

Response Via: Initial Calibration

Calibration Files

5 =VH039363.D 1 =VH039362.D 20 =VH039364.D 50 =VH039368.D 100 =VH039366.D 150 =VH039367.D

		Compound	5	1	20	50	100	150	Avg	%RSD
		Dt-61								
1)	I	Pentafluorobenzene								
2) 3)	T P	Dichlorodifluorom								18.90
		Chloromethane	1.141	1.049	0.909	2.054	1.139	1.037	1.055	8.06
	CM T	Vinyl Chloride	0.939	0.903	0.80.0	0.862	0.972	0.861	0.890	6.92#
5)	T	Bromomethane	0.480	0.437	07369	0.426	0.408	0.416	0.423	8.58
7)	T	Trichlorofluorome	0.611	0.514	0.622	0.671	0.688	0.679	0.631	10.36
8)	T	Tert butyl alcoho								10.47
9)	T	Diethyl Ether		0.388						7.00
10)	T	Diisopropyl ether								6.45
11)		1,1-Dichloroethen								6.14#
12)		Methyl Iodide	1.035	1.090	0.940	1.056	1.070	1.072	1.044	5.15
13)		Acrolein		0.397						44.99
14)		1,1,2-Trichlorotr								5.49
15)		Acrylonitrile	0.399	0.369	0.394	0.384	0.386	0.367	0.383	3.44
16)		Allyl Chloride		3.974						50.58
17)		Acetone	0.502	0.443	0.404	0.362	0.368	0.317	0.399	16.47
18)		Carbon Disulfide								9.97
19)		Methyl Acetate		1.604						12.79
20)		Methyl tert-butyl	1.971	1.894	1.892	1.827	1.874	1.751	1.868	3.94
21)		Methylene Chlorid								2.28
22)		trans-1,2-Dichlor	0.594	0.549	0.497	0.561	0.562	0.557		5.71
23)		Acetonitrile							0.000	-1.00
24)	T'	Vinyl Acetate		2.098						28.33
25)		1,1-Dichloroethan							1.258	5.21
26)		2-Butanone		0.789						14.31
27)	T	2,2-Dichloropropa								12.80
28) 29)	un Ju	cis-1,2-Dichloroe								5.31
30)		Bromochloromethan Chloroform	0.332	0.286	0.313	0.303	1 012	0.314	0.316	7.05
31)	T									3.58#
32)	T	Ethyl Acetate Cyclohexane		1.637 1.340						10.07
33)		1,1,1-Trichloroet								10.92
34)		1,2-Dichloroethan	0.731	0.002	0.030	0.090	0.003	n 659	0.090	4.06 12.34
0.7	D			0.072	0.025	0.000	0.075	0.000	0.750	12.34
35)		1,4-Difluorobenzer								
36)		Dibromofluorometh	0.380	0.331	0.411	0.354	0.369	0.350	0.366	7.55
37)		1,1-Dichloroprope								5.87
38)	TM	Carbon Tetrachlor								8.68
39)	TM	Benzene	1.834	1.785	1.515	1.603	1.617	1.488	1.640	8.58
40)		Methacrylonitrile	0.473	0.510	0.458	0.453	0.456	0.430	0.463	5.79
41)	TM	1,2-Dichloroethan	0.578	0.496		0.524	0.551	0.520	0.535	5.35
42)	T	Isobutyl Alcohol			0.043				0.043	0.00
43)		Isopropyl Acetate								3.93
44)		Trichloroethene		0.271						13.88
45)	T	Methylcyclohexane	0.518	0.797	0.407	0.448	0.423	0.407	0.500	30.24
46)		1,2-Dichloropropa								5.24#
47)		Dibromomethane		0.169						14.62
48)		Bromodichlorometh								3.81
49)		Toluene-d8	1.120	1.283	1.225	1,097	1.118	1.062	1.151	7.36
50)		4-Methyl-2-Pentan								13.67
51)		Toluene		0.665						8.99#
52)	$\mathbf{T}$	t-1,3-Dichloropro	0.553	0.514	0.575	0.553	0.588	0.562	0.558	4.52

178

Page: 1

CHEMTECH Instrument: H Initial Calibration File ID:

VH039362.D, VH039363.D, VH039364.D, VH039366.D, VH039367.D, VH039368.D

Hillar Campiation File ID.		39363.D, VH039364.D, VH03		
Parameter :	CASNO.	Initial Calibration Pass 15% Criteria	Regressions Acceptable	Comment in Case Namative ²²
1,1,1,2-Tetrachloroethane	630-20-6	Pass	LANDARDS BONDON SERVICE FOR	THE ELECTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O
1,1,1-Trichloroethane	71-55-6	Pass		
1,1,2,2-Tetrachloroethane	79-34-5	Pass		
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	Pass		
1,1,2-Trichloroethane	79-00-5	Pass		· · · · · · · · · · · · · · · · · · ·
1,1-Dichloroethane	75-34-3	Pass		
1,1-Dichloroethene	75-35-4	Pass		
1,1-Dichloropropene	563-58-6	Pass		
1,2,3-Trichlorobenzene	87-61-6	Fail	LR, r^2=0.997	
1,2,3-Trichloropropane	96-18-4	Pass		
1,2,4,5-tetramethylbenzene	67-56-1	N/A	not reported	
1,2,4-Trichlorobenzene	120-82-1	Pass	nocropolica	
1,2,4-Trimethylbenzene	95-63-6	Pass		
1,2-Dibromo-3-chloropropane	96-12-8	Fail	LR, r^2=0.999	
1,2-Dibromoethane	106-93-4	Fail	LR, r^2=0.999	
1,2-Dichlorobenzene	95-50-1	Pass	LIN, 1 2-0.000	
1,2-Dichloroethane	107-06-2	Pass		
1,2-Dichloropropane	78-87-5	Pass		
1,3,5-Trimethylbenzene	108-67-8	Pass		
1,3-Dichlorobenzene	541-73-1	Pass		
1,3-Dichloropropane	142-28-9	Pass		
1,4-Dioxane	142-20-9	Fail	QR, r^2=0.997	
1,4-Dichlorobenzene	106-46-7	Pass	QIN, 1 2-0.991	
2,2-Dichloropropane	594-20-7	Pass		·
2-Butanone	78-93-3	Pass		
2-Chloroethyl vinyl ether	110-75-8	Fail		foil for your local
2-Chlorotoluene	95-49-8	Pass	· · · · · · · · · · · · · · · · · · ·	fail for method
2-Hexanone	591-78-6	Pass		
4-Chlorotoluene	106-43-4	Pass		
4-Methyl-2-Pentanone	108-10-1	Pass		
Acetone	67-64-1	Fass Fail	LD -42-0 004	
Acetonitrile	75-05-8	N/A	LR, r^2=0.991	
Acrolein	107-02-8	Fail	not reported	
Acrylonitrile	107-02-8		LR, r^2=0.999	
Benzene	71-43-2	Pass Pass		
Bromobenzene	108-86-1	Pass		
Bromochloromethane	74-97-5			
Bromodichloromethane	75-27-4	Pass		
Bromoform	75-25-2	Pass		
Bromomethane	74-83-9	Pass		
Carbon Disulfide	75-15-0	Pass		
Carbon Tetrachloride	56-23-5	Pass		
Chlorobenzene	108-90-7	Pass		
Chloroethane	75-00-3	Pass		
Chloroform	67-66-3	Pass		
Chloromethane	74-87-3	Pass		
cis-1,2-dichloroethene	74-87-3 156-59-2	Pass		
		Pass		
cis-1,3-dichloropropene	10061-01-5	Pass		
Cyclohexane Dibromochloromethane	110-82-7	Pass		
Dibromochioromethane  Dibromomethane	124-48-1	Pass		
Profofficiale	74-95-3	Pass		l ,

#### CHEMTECH

Initial Calibration File ID:

VH039362.D, VH039363.D, VH039364.D, VH039366.D, VH039367.D, VH039368.D

Parameter	CAS No	Initial Calibration		
		Pass 15% Criteria		Narrative ²
Dichlorodifluoromethane	75-71-8	Fail	LR, r^2=0.998	,
Diethyl Ether	60-29-7	Pass	LIN, 1 Z-0.000	
Diisopropyl ether	108-20-3	Pass		
Ethyl Acetate	141-78-6	Pass		
Ethyl Methacrylate	97-63-2	Pass		
Ethylbenzene	100-41-4	Pass		
Hexachlorobutadiene	87-68-3	Fail	LR, r^2=0.995	
Hexachloroethane	67-72-1	Pass	LI (, 1 L 0.000	<del>4 </del>
Hexachloroethane	67-72-1	Pass		<del></del>
Isobutyl Alcohol	78-83-1	N/A	not reported	
Isopropyl Acetate	108-21-4	Pass	110110001100	William
Isopropylbenzene	98-82-8	Pass		
m&p-Xylene	1330-20-7	Pass		
Methacrylonitrile	126-98-7	Pass		
Methyl Acetate	79-20-9	Pass		1001000-74
Methyl Iodide	74-88-4	Pass		
Methyl Methacrylate	80-62-6	Pass		
Methyl Tert-butyl Ether	1634-04-4	Pass		
Methylcyclohexane	108-87-2	Fail	LR, r^2=0.999	
Methylene Chloride	75-09-2	Pass		<del></del>
n-Amyl Acetate	628-63-7	Pass		
Naphthalene	91-20-3	Fail	LR, r^2=0.998	
n-Butylbenzene	104-51-8	Pass		
N-propylbenzene	103-65-1	Pass		
o-Xylene	95-47-6	Pass		
p-diethylbenzene	105-05-5	N/A	not reported	
p-ethyltoluene	622-96-8	N/A	not reported	
p-Isopropyltoluene	99-87-6	Pass		
Sec-butylbenzene	135-98-8	Pass		
Styrene	100-42-5	Pass		
t-1,3-Dichloropropene	10061-02-6	Pass		
Tert butyl alcohol	75-65-0	Pass		
tert-Butylbenzene	98-06-6	Pass		
Tetrachloroethene	127-18-4	Pass		
Toluene	108-88-3	Pass		
trans-1,2-Dichloroethene	156-60-5	Pass		·
trans-1,4-Dichloro-2-Butene	110-57-6	Fail	LR, r^2=0.999	
Trichloroethene	79-01-6	Pass	1	
Trichlorofluoromethane	75-69-4	Pass		
Vinyl Acetate	108-05-4	Fail	QR, r^2=1.000	
Vinyl Chloride	75-01-4	Pass		
Allyl Chloride		Fail	LR, r^2=0.995	

- $1 \quad \ \ \text{Indicate a response for each compound using a Pass/Fail or Yes/No system}$
- 2 Only mark response in the affirmative for those compounds that qualify
- 3 At a minimum, this column must indicate a response for compound that did not pass the 15% and regression



#### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: CHEMTECH Contract: MACT03

Lab Code: CHEM Case No.: C1167 SAS No.: C1167 SDG NO.: C1167

Lab File ID: VH039361.D BFB Injection Date: 01/25/2011

Instrument ID: MSVOAH BFB Injection Time: 12:27

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: Y/N N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.2
75	30.0 - 60.0% of mass 95	43.4
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	5.4
173	Less than 2.0% of mass 174	0.3 ( 0.4 ) 1
174	50.0 - 100.0% of mass 95	79.3
175	5.0 - 9.0% of mass 174	5,9 ( 7.4 ) 1
176	95.0 - 101.0% of mass 174	75.9 ( 95.8 ) 1
177	5.0 - 9.0% of mass 176	4.5 ( 6 ) 2
<u> </u>		

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD001	1 PPB ICC	VH039362.D	01/25/2011	13:02
VSTD005	5 PPB ICC	VH039363.D	01/25/2011	13:33
VSTD020	20 PPB ICC	VH039364.D	01/25/2011	14:04
VSTD100	100 PPB ICC	VH039366.D	01/25/2011	15:06
VSTD150	150 PPB ICC	VH039367.D	01/25/2011	15:37
VSTD050	50 PPB ICC	VH039368.D	01/25/2011	16:49



# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	CHEMTECH	<u></u>		Contract: _	MACT03		
Lab	Code:	CHEM	Case No.:	C1167	SAS No.:	C1167	SDG NO.:	C1167
Lab	File ID:	VH039376.D	<del></del>		BFB Injection	Date:	01/26/2011	
Insi	trument ID:	MSVOAH			BFB Injection	Time:	11:28	
GC (	Column: R	IX-VMS ID: 0.18	(mm)		Heated Purce:	Y/N	N.	

ш/ө	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.7
75	30.0 - 60.0% of mass 95	49
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.7
173	Less than 2.0% of mass 174	0.4 ( 0.5 ) 1
174	50.0 - 100.0% of mass 95	78.1
175	5.0 - 9.0% of mass 174	6.6 ( 8.4 ) 1
176	95.0 - 101.0% of mass 174	76.7 ( 98.3 ) 1
177	5.0 - 9.0% of mass 176	4.9 ( 6.4 ) 2

1-Value is % mass 69

2-Value is % mass 442

# THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	Lab Sample ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VH039377.D	01/26/2011	12:48
VBH0126W1	VBH0126W1	VH039379.D	01/26/2011	13:56
BSH0126W1	BSH0126W1	VH039380.D	01/26/2011	14:30
828131A-DP2820X	C1167-01	VH039382.D	01/26/2011	15:32
828131A-DP2920X	C1167-05 OK	VH039383.D	01/26/2011	16:03
828131A-DP3007X	C1167-06	VH039384.D	01/26/2011	16:34
828131A-DP3020X	C1167-07	VH039385.D	01/26/2011	17:04
828131A-DP3120X	C1167-08	VH039386.D	01/26/2011	17:35
828131A-DP3215X	C1167-09	VH039387.D	01/26/2011	18:06
828131A-PS0402	C1167-10	VH039388.D	01/26/2011	18:37
828131A-PS0602	C1167-11	VH039389.D	01/26/2011	19:08
828131A-PS0702	C1167-12	VH039390.D	01/26/2011	19:39
828131A-TB1RM	C1167-13	VH039391.D	01/26/2011	20:09
B28131A-DP2907X	C1167-02	VH039392.D	01/26/2011	20:40
828131A-DP2907XMS	C1167-03MS	VH039393.D	01/26/2011	21:11
828131A-DP2907XMSD	C1167-04MSD	VH039394.D	01/26/2011	21:42
828131A-DP2820XDL	C1167-01DL	VH039396.D	01/26/2011	22:43





Report of Analysis

01/19/11 Client: MACTEC Inc. Date Collected: Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2820X SDG No.: C1167 Lab Sample ID: C1167-01 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: 5000 Units: mLuL Soil Aliquot Vol: uLTest: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039382.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	22		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U ,	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Diehloroethene	210	—Escel	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	2.6		0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	Ü	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2820X SDG No.: C1167 Lab Sample ID: C1167-01 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 иL Soil Aliquot Vol: иL VOC-TCLVOA-10 Test:

File ID/Qc Batch; Dilution: Prep Date Date Analyzed Prep Batch ID
VH039382.D 1 01/26/11 VH012611

CAS Number	Parameter	C	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene		1.1		0.27	0.5	1	ug/L
108-90-7	Chlorobenzene		1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene		1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes		2	U	0.95	1	2	ug/L
95-47-6	o-Xylene		1	U	0.43	0.5	1	ug/L
100-42-5	Styrene		1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform		1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene		1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane		1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene		1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene		1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene		1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane		1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene		1	U	0.2	0.5	1	ug/L
SURROGATES								
17060-07-0	1,2-Dichloroethane-d4		48.2		66 - 150	)	96%	SPK: 50
1868-53-7	Dibromofluoromethane		51.4		76 - 130	)	103%	SPK: 50
2037-26-5	Toluene-d8		48.1		78 - 12	I	96%	SPK: 50
460-00-4	4-Bromofluorobenzene		49.4		70 - 13	1	99%	SPK: 50
INTERNAL STA	ANDARDS							
363-72-4	Pentafluorobenzene		1828830	4.09				
540-36-3	1,4-Difluorobenzene		2755010	4.61				
3114-55-4	Chlorobenzene-d5		2347270	7.96				
3855-82-1	1,4-Dichlorobenzene-d4		1135820	10.45				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2820XDL SDG No.: C1167 Lab Sample ID: C1167-01DL Matrix: WATER Use only for cis-1,2-Dec % Moisture: Analytical Method: SW8260B 100 Final Vol: Sample Wt/Vol: mLUnits: 5000  $\mathfrak{u} L$ иL Soil Aliquot Vol: Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VH039396.D 5 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS					•		
75-71-8	Dichlorodifluoromethane	5	U	1	2.5	5	ug/L
74-87-3	Chloromethane	5	U	1	2.5	5	ug/L
75-01-4	Vinyl Chloride	22	D	1.7	2.5	5.	ug/L
74-83-9	Bromomethane	. 5	U	1	2.5	5	ug/L
75-00-3	Chloroethane	5	U	1	2.5	5	ug/L
75-69-4	Trichlorofluoromethane	5	U	1.8	2.5	5	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	5	U	2.2	2.5	5	ug/L
75-35-4	1,1-Dichloroethene	5	U	2.4	2.5	5	ug/L
67-64-1	Acetone	25	U	2.5	12.5	25	ug/L
75-15-0	Carbon Disulfide	5	U	1	2.5	5	ug/L
1634-04-4	Methyl tert-butyl Ether	5	U	1.8	2.5	5	ug/L
79-20-9	Methyl Acetate	5	U	1	2.5	5	ug/L
75-09-2	Methylene Chloride	5	U.	2	2.5	5	ug/L
156-60-5	trans-1,2-Dichloroethene	5	U	2	2.5	5	ug/L
75-34-3	1,1-Dichloroethane	5	U	1.8	2.5	5	ug/L
110-82-7	Cyclohexane	5	D_	1	2.5	5	ug/L
78-93-3	2-Butanone	25	U	6.6	12.5	25	ug/L
56-23-5	Carbon Tetrachloride	5	U	1	2.5	5	ug/L
156-59-2	cis-1,2-Dichloroethene	210	D	1.8	2.5	5	ug/L
67-66-3	Chloroform	5	U	1.7	2.5	5	ug/L
71-55-6	1,1,1-Trichloroethane	5	U	2	2.5	5	ug/L
108-87-2	Methylcyclohexane	5	U	1	2.5	5	ug/L
71-43-2	Benzene	5	U	1.6	2.5	5	ug/L
107-06-2	1,2-Dichloroethane	5	U	2.4	2.5	5	ug/L
79-01-6	Trichloroethene	2.6	JD	1.4	2.5	5	ug/L
78-87-5	1,2-Dichloropropane	5	U	2.3	2.5	5	ug/L
75-27-4	Bromodichloromethane	5	U	1.8	2.5	5	ug/L
108-10-1	4-Methyl-2-Pentanone	25	U	10	12.5	25	.ug/L
108-88-3	Toluene	5	U	1.8	2.5	5	ug/L
10061-02-6	t-1,3-Dichloropropene	5	U	1.4	2.5	5	ug/L
10061-01-5	cis-1,3-Dichloropropene	5	Ų	1.6	2.5	5	ug/L
79-00-5	1,1,2-Trichloroethane	5	U	1.9	2.5	5	ug/L
591-78-6	2-Hexanone	25	U	9.7	12.5	25	ug/L
124-48-1	Dibromochloromethane	5	U	1	2.5	5	ug/L
106-93-4	1,2-Dibromoethane	5	U	2	2.5	5	ug/L



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 SDG No.: Client Sample ID: 828131A-DP2820XDL C1167 C1167-01DL WATER Lab Sample ID: Matrix: SW8260B % Moisture: 100 Analytical Method: Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uLTest: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VH039396.D 5 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	5	U	1.4	2.5	5	ug/L
108-90-7	Chlorobenzene	5	U	2.4	2.5	5	ug/L
100-41-4	Ethyl Benzene	5	U	1	2.5	5	ug/L
179601-23-1	m/p-Xylenes	10	U	4.8	5	10	ug/L
95-47-6	o-Xylene	5	U	2.2	2.5	5	ug/L
100-42-5	Styrene	5	U	1.8	2.5	5	ug/L
75-25-2	Bromoform	5	U	2.4	2.5	5	ug/L
98-82-8	Isopropylbenzene	5	U	2.2	2.5	5	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	5	U	1.6	2.5	5	ug/L
541-73-1	1,3-Dichlorobenzene	5	U	2.2	2.5	5	ug/L
106-46-7	1,4-Dichlorobenzene	5	F	1.6	2.5	5	ug/L
95-50-1	1,2-Dichlorobenzene	5	U _	2.2	2.5	5	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	5	U	2.3	2.5	5	ug/L
120-82-1	1,2,4-Trichlorobenzene	5	U	1	2.5	5	ug/L
SURROGATES	S						
17060-07-0	1,2-Dichloroethane-d4	48.1		66 - 15	0	96%	SPK: 50
1868-53-7	Dibromofluoromethane	52.7		76 - 13	0	105%	SPK: 50
2037-26-5	Toluene-d8	48.2		78 - 12	1	96%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.2		70 - 13	1	98%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	1885140	4.11				
540-36-3	1,4-Difluorobenzene	2776370	4.62				
3114-55-4	Chlorobenzene-d5	2356900	7.98				
3855-82-1	1,4-Dichlorobenzene-d4	1240730	10.46				

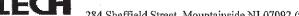
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: SDG No.: 828131A-DP2907X C1167 Lab Sample ID: C1167-02 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VH039392.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.63	J	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	UJ	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1 3~	χŪ	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	. 1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U.	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	UJ	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	UJ	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	Uブ	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L

82/21/11



# Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2907X SDG No.: C1167 Lab Sample ID: C1167-02 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5000 Units: Final Vol: mL uLVOC-TCLVOA-10 Soil Aliquot Vol: uL Test:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

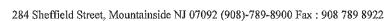
VH039392.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	UJ	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	. 2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U ,	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	· ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	•		•				
17060-07-0	1,2-Dichloroethane-d4	54.7		66 - 150	)	109%	SPK: 50
1868-53-7	Dibromofluoromethane	53		76 - 13	)	106%	SPK: 50
2037-26-5	Toluene-d8	49.9		78 - 12	1	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.3		70 - 13	1	103%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	1561660	4.11				
540-36-3	1,4-Difluorobenzene .	2553060	4.62				
3114-55-4	Chlorobenzene-d5	2144850	7.98				
3855-82-1	1,4-Dichlorobenzene-d4	1054650	10.46				

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution



# **CHEMITECH**

Report of Analysis

01/19/11 Client: MACTEC Inc. Date Collected: Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2920X SDG No.: C1167 Lab Sample ID: C1167-05 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: 5000 Units: mLuL VOC-TCLVOA-10 Soil Aliquot Vol: uLTest:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VH039383.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	$\mathbf{U}$	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L

8-2/21/11



### Report of Analysis

Client: MACTEC Inc. Date Collected: 01/19/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP2920X SDG No.: C1167 Lab Sample ID: C1167-05 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000  $\mathfrak{u} L$ Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039383.D

1

01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	$\mathbf{U}$ .	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	Ū	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	S						
17060-07-0	1,2-Dichloroethane-d4	47		66 - 150	0	94%	SPK: 50
1868-53-7	Dibromofluoromethane	51.2		76 - 130	0	102%	SPK: 50
2037-26-5	Toluene-d8	48.4		78 - 12	1	97%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.1		70 - 13	1	102%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	1794760	4.1				
540-36-3	1,4-Difluorobenzene	2604460	4.61				
3114-55-4	Chlorobenzene-d5	2152430	7.96				
3855-82-1	1,4-Dichlorobenzene-d4	1055410	10.44				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

MACTEC Inc. Client: Date Collected: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP3007X SDG No.: C1167 C1167-06 Lab Sample ID: Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000  $\mathbf{u}\mathbf{L}$ Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039384.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							-
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1.1		0.2	0.5	. 1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	2.6		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1 '	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	υ	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	υ	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
							or.



Report of Analysis

MACTEC Inc. Client: Carriage Cleantown Project:

Date Received: 01/22/11 SDG No.: C1167

Date Collected:

Client Sample ID: 828131A-DP3007X Lab Sample ID: C1167-06

Matrix: WATER

Analytical Method: SW8260B

100 % Moisture:

Sample Wt/Vol: Units: Soil Aliquot Vol:

VOC-TCLVOA-10 Test:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Final Vol:

Prep Batch ID

uL

01/20/11

VH012611

5000

1 01/26/11 VH039384.D

mL

иL

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	46.7		66 - 15	0	93%	SPK: 50
1868 <b>-</b> 53-7	Dibromofluoromethane	52.7		76 - 13	0	105%	SPK: 50
2037-26-5	Toluene-d8	50.1		78 - 12	1	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		70 - 13	1	106%	SPK: 50
INTERNAL ST.	ANDARDS						
363-72-4	Pentafluorobenzene	1429910	4.09				
540-36-3	1,4-Difluorobenzene	2141310	4.62				
3114-55-4	Chlorobenzene-d5	1866400	7.96				
3855-82-1	1,4-Dichlorobenzene-d4	993050	10.45				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client:	MACTE	C Inc.		Date Collected:	01/20/11	
Project:	Carriage	Cleantown	ı	Date Received:	01/22/11	
Client Sample ID:	8281317	A-DP3020X		SDG No.:	C1167	
Lab Sample ID:	C1167-0	)7		Matrix:	WATER	
Analytical Method:	SW8260	)B		% Moisture:	100	
Sample Wt/Vol:	5	Units:	mL	Final Vol:	5000	uL
Soil Aliquot Vol:			uL	Test:	VOC-TCLV	VOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VH039385.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1.1		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0,2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93 <i>-</i> 3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	3.5		0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
. 10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



## Report of Analysis

Client: MACTEC Inc. Date Collected: 01/20/11 Carriage Cleantown Project: Date Received: 01/22/11 Client Sample ID: 828131A-DP3020X SDG No.: C1167 Lab Sample ID: C1167-07 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol:  $\mathfrak{u}L$ Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VH039385.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	. U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	. 1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES				-			
17060-07-0	1,2-Dichloroethane-d4	42.7		66 - 15	0	85%	SPK: 50
1868-53-7	Dibromofluoromethane	47.4		76 - 13	0	95%	SPK: 50
2037-26-5	Toluene-d8	48.6		78 - 12	1	97%	SPK: 50
460-00-4	4-Bromofluorobenzene	46.5		70 - 13	1	93%	SPK: 50
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	1690630	4.11				
540-36-3	1,4-Difluorobenzene	2482860	4.62				
3114-55-4	Chlorobenzene-d5	2112930	7.97				
3855-82-1	1,4-Dichlorobenzene-d4	1041760	10.45				

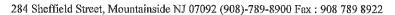
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution





Report of Analysis

Client: MACTEC Inc. Date Collected: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP3120X SDG No.: C1167 Lab Sample ID: C1167-08 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VH039386.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	7.8		0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0,5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.96	J	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	Ū	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



# Report of Analysis

MACTEC Inc. Date Collected: Client: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP3120X SDG No.: C1167 Lab Sample ID: C1167-08 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: Units: 5000 mLuLVOC-TCLVOA-10 Soil Aliquot Vol: uL Test:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VH039386.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12 <b>-</b> 8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	8						
17060-07-0	1,2-Dichloroethane-d4	51.7		66 - 150	0	103%	SPK: 50
1868-53-7	Dibromofluoromethane	52.5		76 - 130	)	105%	SPK: 50
2037-26-5	Toluene-d8	50.6		78 - 12	1	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.5		70 - 13	1	107%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	1342830	4.1				
540-36-3	1,4-Difluorobenzene	2070360	4.61				
3114-55-4	Chlorobenzene-d5	1879940	7.96				
3855-82-1	1,4-Dichlorobenzene-d4	996429	10.45				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. Date Collected: 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP3215X SDG No.: C1167 Lab Sample ID: C1167-09 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol: mL5000 uL Soil Aliquot Vol:  $\mathsf{u}\mathsf{L}$ Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039387.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS			7				
75-71-8	Dichlorodifluoromethane	1	Ų	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	Ū	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	.5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1 -	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	$\mathbf{U}$	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	Ū	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1 ·	ug/L
591-78-6	2-Hexanone	5	$\mathbf{U}$	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0,41	0.5	1	ug/L
							60-



Report of Analysis

Date Collected: Client: MACTEC Inc. 01/20/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-DP3215X SDG No.: C1167 Lab Sample ID: C1167-09 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL5000 иL

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VH039387.D 1 01/26/11 VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1 .	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATE	S						
17060-07-0	1,2-Dichloroethane-d4	50.6		66 - 15	0	101%	SPK: 50
1868-53-7	Dibromofluoromethane	57		76 - 13	0 .	114%	SPK: 50
2037-26-5	Toluene-d8	50.6		78 - 12	1	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.8		70 - 13	1	100%	SPK: 50
INTERNAL ST	TANDARDS						
363-72-4	Pentafluorobenzene	1696860	4.1				
540-36-3	1,4-Difluorobenzene	2526060	4.62				
3114-55-4	Chlorobenzene-d5	2173810	7.97				
3855-82-1	1,4-Dichlorobenzene-d4	1073650	10.45				
TENTITIVE II	DENTIFIED COMPOUNDS						
	unknown9.46	50	J			9.46	ug/L

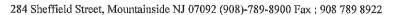
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

B = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution





Report of Analysis

MACTEC Inc. Client: Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-PS0402 SDG No.: C1167 Lab Sample ID: C1167-10 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL VOC-TCLVOA-10 Soil Aliquot Vol: uL Test:

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039388.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	. 1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1.	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
<b>79-2</b> 0-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	. 1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	Ū	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

#### Report of Analysis

MACTEC Inc. Client: Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-PS0402 SDG No.: C1167 Matrix: WATER Lab Sample ID: C1167-10 Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: 5000 Units: mL uL uL Test: VOC-TCLVOA-10 Soil Aliquot Vol:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VH039388.D 1 01/26/11 VH012611

108-90-7         Chlorobenzene         1         U         0.49         0.5         1           100-41-4         Ethyl Benzene         1         U         0.2         0.5         1           179601-23-1         m/p-Xylenes         2         U         0.95         1         2           95-47-6         o-Xylene         1         U         0.43         0.5         1           100-42-5         Styrene         1         U         0.36         0.5         1           75-25-2         Bromoform         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           196-12-1         1,3-Dichlorobenzene         1         U	Units	LOQ	LOD	MDL	Qualifier	Conc.	Parameter	CAS Number
108-90-7         Chlorobenzene         1         U         0.49         0.5         1           100-41-4         Ethyl Benzene         1         U         0.2         0.5         1           179601-23-1         m/p-Xylenes         2         U         0.95         1         2           95-47-6         o-Xylene         1         U         0.43         0.5         1           100-42-5         Styrene         1         U         0.36         0.5         1           75-25-2         Bromoform         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           19-24-17-3-1         I,3-2-Dichlorobenzene         1         U	ug/L	1	0.5	0.27	U	1	Tetrachloroethene	127-18-4
179601-23-1       m/p-Xylenes       2       U       0.95       1       2         95-47-6       o-Xylene       1       U       0.43       0.5       1         100-42-5       Styrene       1       U       0.36       0.5       1         75-25-2       Bromoform       1       U       0.47       0.5       1         98-82-8       Isopropylbenzene       1       U       0.45       0.5       1         79-34-5       1,1,2,2-Tetrachloroethane       1       U       0.31       0.5       1         541-73-1       1,3-Dichlorobenzene       1       U       0.43       0.5       1         106-46-7       1,4-Dichlorobenzene       1       U       0.43       0.5       1         95-50-1       1,2-Dichlorobenzene       1       U       0.45       0.5       1         96-12-8       1,2-Diblorome-3-Chloropropane       1       U       0.46       0.5       1         120-82-1       1,2,4-Trichlorobenzene       1       U       0.2       0.5       1         848-63-3-7       Dibromofluorobenzene       51.8       76 - 130       104%         2037-26-5       Toluene-d8       48	ug/L	1	0.5	0.49	U	1	Chlorobenzene	108-90-7
179601-23-1   m/p-Xylenes   2   U   0.95   1   2	ug/L	1	0,5	0.2	U	1	Ethyl Benzene	100-41-4
95-47-6         o-Xylene         1         U         0.43         0.5         1           100-42-5         Styrene         1         U         0.36         0.5         1           75-25-2         Bromoform         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           79-34-5         1,1,2,2-Tetrachloroethane         1         U         0.31         0.5         1           541-73-1         1,3-Dichlorobenzene         1         U         0.43         0.5         1           106-46-7         1,4-Dichlorobenzene         1         U         0.32         0.5         1           95-50-1         1,2-Dichlorobenzene         1         U         0.45         0.5         1           96-12-8         1,2-Dichlorobenzene         1         U         0.46         0.5         1           120-82-1         1,2,4-Trichlorobenzene         1         U         0.2         0.5         1           SURROGATES         1         U         0.2         0.5         1           1868-53-7         Dibromofluorobenzene         51.8         76 -	ug/L	2	1	0.95	U	2	m/p-Xylenes	179601-23-1
75-25-2         Bromoform         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           79-34-5         1,1,2,2-Tetrachloroethane         1         U         0.31         0.5         1           541-73-1         1,3-Dichlorobenzene         1         U         0.43         0.5         1           106-46-7         1,4-Dichlorobenzene         1         U         0.32         0.5         1           95-50-1         1,2-Dichlorobenzene         1         U         0.45         0.5         1           96-12-8         1,2-Dichlorobenzene         1         U         0.46         0.5         1           120-82-1         1,2,4-Trichlorobenzene         1         U         0.2         0.5         1           SURROGATES         17060-07-0         1,2-Dichloroethane-d4         46         66 - 150         92%           1868-53-7         Dibromofluoromethane         51.8         76 - 130         104%           2037-26-5         Toluene-d8         48.6         78 - 121         97%           460-00-4         4-Bromofluorobenzene         51.1         70 - 131	ug/L	1	0.5	0.43	U	1	o-Xylene	95-47-6
75-25-2         Bromoform         1         U         0.47         0.5         1           98-82-8         Isopropylbenzene         1         U         0.45         0.5         1           79-34-5         1,1,2,2-Tetrachloroethane         1         U         0.31         0.5         1           541-73-1         1,3-Dichlorobenzene         1         U         0.43         0.5         1           106-46-7         1,4-Dichlorobenzene         1         U         0.32         0.5         1           95-50-1         1,2-Dichlorobenzene         1         U         0.45         0.5         1           96-12-8         1,2-Dichlorobenzene         1         U         0.46         0.5         1           120-82-1         1,2,4-Trichlorobenzene         1         U         0.2         0.5         1           SURROGATES         1         U         0.2         0.5         1           1868-53-7         Dibromofluoromethane         46         66 - 150         92%           1868-53-7         Dibromofluoromethane         51.8         76 - 130         104%           2037-26-5         Toluene-d8         48.6         78 - 121         97%	ug/L	1	0.5	0.36	U	1	Styrene	100-42-5
79-34-5         1,1,2,2-Tetrachloroethane         1         U         0.31         0.5         1           541-73-1         1,3-Dichlorobenzene         1         U         0.43         0.5         1           106-46-7         1,4-Dichlorobenzene         1         U         0.32         0.5         1           95-50-1         1,2-Dichlorobenzene         1         U         0.45         0.5         1           96-12-8         1,2-Dichloropenzene         1         U         0.46         0.5         1           120-82-1         1,2,4-Trichlorobenzene         1         U         0.2         0.5         1           SURROGATES         1         U         0.2         0.5         1           1868-53-7         Dibromofluoromethane         51.8         76 - 130         104%           2037-26-5         Toluene-d8         48.6         78 - 121         97%           460-00-4         4-Bromofluorobenzene         51.1         70 - 131         102%           INTERNAL STANDARDS	ug/L	1	0.5	0.47	U	1	Bromoform	75-25-2
79-34-5         1,1,2,2-Tetrachloroethane         1         U         0.31         0.5         1           541-73-1         1,3-Dichlorobenzene         1         U         0.43         0.5         1           106-46-7         1,4-Dichlorobenzene         1         U         0.32         0.5         1           95-50-1         1,2-Dichlorobenzene         1         U         0.45         0.5         1           96-12-8         1,2-Dichloropropane         1         U         0.46         0.5         1           120-82-1         1,2,4-Trichlorobenzene         1         U         0.2         0.5         1           SURROGATES         1         U         0.2         0.5         1           1868-53-7         Dibromofluoromethane         51.8         76 - 130         104%           2037-26-5         Toluene-d8         48.6         78 - 121         97%           460-00-4         4-Bromofluorobenzene         51.1         70 - 131         102%           INTERNAL STANDARDS	ug/L	1	0.5	0.45	U	1	Isopropylbenzene	98-82-8
541-73-1       1,3-Dichlorobenzene       1       U       0.43       0.5       1         106-46-7       1,4-Dichlorobenzene       1       U       0.32       0.5       1         95-50-1       1,2-Dichlorobenzene       1       U       0.45       0.5       1         96-12-8       1,2-Dibromo-3-Chloropropane       1       U       0.46       0.5       1         120-82-1       1,2,4-Trichlorobenzene       1       U       0.2       0.5       1         SURROGATES         17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51.8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51.1       70 - 131       102%         INTERNAL STANDARDS	ug/L	1	0.5	0.31	U	1	1,1,2,2-Tetrachloroethane	79-34-5
106-46-7       1,4-Dichlorobenzene       1       U       0.32       0.5       1         95-50-1       1,2-Dichlorobenzene       1       U       0.45       0.5       1         96-12-8       1,2-Dibromo-3-Chloropropane       1       U       0.46       0.5       1         120-82-1       1,2,4-Trichlorobenzene       1       U       0.2       0.5       1         SURROGATES         17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51.8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51.1       70 - 131       102%         INTERNAL STANDARDS	ug/L	1	0.5	0.43	U	1	1,3-Dichlorobenzene	541-73-1
95-50-1       1,2-Dichlorobenzene       1       U       0.45       0.5       1         96-12-8       1,2-Dibromo-3-Chloropropane       1       U       0.46       0.5       1         120-82-1       1,2,4-Trichlorobenzene       1       U       0.2       0.5       1         SURROGATES         17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51,8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51,1       70 - 131       102%         INTERNAL STANDARDS	ug/L	1	0.5	0.32	U	1	1,4-Dichlorobenzene	106-46-7
96-12-8       1,2-Dibromo-3-Chloropropane       1       U       0.46       0.5       Î         120-82-1       1,2,4-Trichlorobenzene       1       U       0.2       0.5       1         SURROGATES         17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51,8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51,1       70 - 131       102%         INTERNAL STANDARDS	ug/L	1	0.5	0.45	U	1	1,2-Dichlorobenzene	95-50-1
120-82-1       1,2,4-Trichlorobenzene       1       U       0.2       0.5       1         SURROGATES         17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51,8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51,1       70 - 131       102%         INTERNAL STANDARDS	ug/L	ì	0.5	0.46	U	1	1,2-Dibromo-3-Chloropropane	96-12-8
17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51,8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51,1       70 - 131       102%         INTERNAL STANDARDS	ug/L	1	0.5	0.2	U	1	1,2,4-Trichlorobenzene	120-82-1
17060-07-0       1,2-Dichloroethane-d4       46       66 - 150       92%         1868-53-7       Dibromofluoromethane       51,8       76 - 130       104%         2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51,1       70 - 131       102%         INTERNAL STANDARDS								SURROGATES
2037-26-5       Toluene-d8       48.6       78 - 121       97%         460-00-4       4-Bromofluorobenzene       51.1       70 - 131       102%         INTERNAL STANDARDS	SPK: 50	92%	)	66 - 150		46	1,2-Dichloroethane-d4	
460-00-4 4-Bromofluorobenzene 51.1 70 - 131 102% INTERNAL STANDARDS	SPK: 50	104%	)	76 - 130		51.8	Dibromofluoromethane	1868-53-7
INTERNAL STANDARDS	SPK: 50	97%		78 - 121		48.6	Toluene-d8	2037-26-5
	SPK: 50	102%	Ü.	70 - 131		51.1	4-Bromofluorobenzene	460-00-4
363-72-4 Pentafluorobenzene 1508850 4.1							NDARDS	INTERNAL STA
505 / 2 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1					4.1	1508850	Pentafluorobenzene	363-72-4
540-36-3 1,4-Difluorobenzene 2313000 4.62					4.62	2313000	1,4-Difluorobenzene	540-36-3
3114-55-4 Chlorobenzene-d5 1885410 7.97					7.97	1885410	Chlorobenzene-d5	3114-55-4
3855-82-1 1,4-Dichlorobenzene-d4 1028760 10.45					10.45	1028760	1,4-Dichlorobenzene-d4	3855-82-1

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Report of Analysis

Client: MACTEC Inc. 01/17/11 Date Collected: Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-PS0602 SDG No.: C1167 Lab Sample ID: C1167-11 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol: 5000 mL uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VH039389.D I 01/26/11 VH012611

CAS Number	Parameter	Cone,	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	0.58	Ĵ	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L,
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0,5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2,5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0,5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	(1)	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	(1)	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2,5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

01/17/11

Project:

Carriage Cleantown

Date Received:

01/22/11

Client Sample ID:

828131A-PS0602

Units:

иL

SDG No.:

C1167

Lab Sample ID:

C1167-11

Matrix:

WATER

Analytical Method: .

SW8260B

% Moisture:

100

5000

Sample Wt/Vol:

Final Vol:

uL

Soil Aliquot Vol:

Test:

VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039389.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	50		66 - 15	0	100%	SPK: 50
1868-53-7	Dibromofluoromethane	52.5		76 - 13	0	105%	SPK: 50
2037-26-5	Toluene-d8	49.5		78 - 12	1	99%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.6		70 - 13	1	103%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	1751800	4.1				
540-36-3	1,4-Difluorobenzene	2768300	4.62				
3114-55-4	Chlorobenzene-d5	2338290	7.97				
3855-82-1	1,4-Dichlorobenzene-d4	1169920	10.45				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution





Report of Analysis

Client: MACTEC Inc. Date Collected: 01/21/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-PS0702 SDG No.: C1167 Lab Sample ID: C1167-12 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: 5000 Units: mLuL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039390.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	-1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	Ŭ .	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	. 1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	ń	0.41	0.5	1	ug/L

D2/21/11



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Project:

Carriage Cleantown

Client Sample ID:

828131A-PS0702

Lab Sample ID:

C1167-12 SW8260B

Analytical Method:

_

Units:

mL

иL

Sample Wt/Vol: Soil Aliquot Vol:

Date Collected:

Date Received:

01/21/11 01/22/11

SDG No.:

C1167

Matrix:

WATER

% Moisture:

100

Final Vol:

5000

uL

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Test:

Prep Batch ID

VOC-TCLVOA-10

VH039390.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1 ,	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.7		66 - 150	O	99%	SPK: 50
1868-53-7	Dibromofluoromethane	50.5		76 - 130	O	101%	SPK: 50
2037-26-5	Toluene-d8	49.9		78 - 12	1	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.7		70 - 13	1	101%	SPK: 50
INTERNAL STA	ANDARDS						
363-72-4	Pentafluorobenzene	1828740	4.1				
540-36-3	1,4-Difluorobenzene	2774290	4.62				
3114-55-4	Chlorobenzene-d5	2246430	7.97				
3855-82-1	1,4-Dichlorobenzene-d4	1194230	10.46				

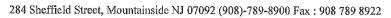
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution





Report of Analysis

Client: MACTEC Inc. Date Collected: 01/17/11 Project: Carriage Cleantown Date Received: 01/22/11 Client Sample ID: 828131A-TB1RM SDG No.: C1167 Lab Sample ID: C1167-13 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 . uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VH039391.D

1

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
TARGETS	· ——————						
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.5	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.5	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	0.5	1 .	ug/L
74-83-9	Bromomethane	1	U	0.2	0.5	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	0.5	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	0.5	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	0.5	1	ug/L
67-64-1	Acetone	5	U	0.5	2.5	5	ug/L
75-15-0	Carbon Disulfide	1	υ	0.2	0.5	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1.	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	0.5	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	0.5	1	ug/L
75-34-3	1,1-Dichloroethane	1	. U	0.36	0.5	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.5	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.5	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.34	0.5	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	0.5	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.5	1	ug/L
71-43-2	Benzene	1	U	0.32	0.5	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	0.5	1	ug/L
79-01-6	Trichloroethene	. 1	U	0.28	0.5	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	0.5	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	0.5	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	2.5	5	ug/L
108-88-3	Toluene	1	U	0.37	0.5	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	0.5	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	0.5	1	ug/L
79-00-5	1,1,2-Trichloroethane	1	U	0.38	0.5	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.5	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	0.5	1	ug/L
	•						2

2/21/11



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Project:

Carriage Cleantown

Client Sample ID:

828131A-TB1RM

Lab Sample ID:

C1167-13

Analytical Method: Sample Wt/Vol:

SW8260B

mLuL

Date Collected:

01/17/11

Date Received:

01/22/11 C1167

WATER

SDG No.: Matrix:

% Moisture: Final Vol:

100

5000 VOC-TCLVOA-10

иL

Soil Aliquot Vol:

File ID/Qc Batch:

Units:

Prep Date

Date Analyzed

Test:

Prep Batch ID

VH039391.D

1

Dilution:

01/26/11

VH012611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ	Units
127-18-4	Tetrachloroethene	1	U	0.27	0.5	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	0.5	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.5	1	ug/L
179601-23-1	m/p-Xylenes	. 2	U	0.95	1	2	ug/L
95-47-6	o-Xylene	1	U	0.43	0.5	1	ug/L
100-42-5	Styrene	1	U	0.36	0.5	1	ug/L
75-25-2	Bromoform	1	U	0.47	0.5	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	0.5	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	0.5	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	0.5	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	0.5	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	0.5	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	0.5	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.5	1	ug/L
SURROGATES	5						
17060-07-0	1,2-Dichloroethane-d4	47		66 - 15	D	94%	SPK: 50
1868-53-7	Dibromofluoromethane	51.9		76 - 13	0	104%	SPK: 50
2037-26-5	Toluene-d8	50.1		78 - 12	1	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.4		70 - 13	1	101%	SPK: 50
INTERNAL ST	ANDARDS						
363-72-4	Pentafluorobenzene	1463210	4.11				
540-36-3	1,4-Difluorobenzene	2188130	4.62				
3114-55-4	Chlorobenzene-d5	1791330	7.97				
3855-82-1	1,4-Dichlorobenzene-d4	952135	10.46				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution



Checked for completeness 284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922 of parameters requested.

## **ANALYTICAL RESULTS SUMMARY**

**PROJECT NAME: CARRIAGE CLEANTOWN** 

MACTEC INC. 1105 Lakewood Parkway Suite 300 Alpharetta, GA - 30009

Phone No: 7703600600

**ORDER ID:** C1167

**Tige Cunningham ATTENTION:** 

Tige Cunningham DN: CN = Tige Cunningham DN: CN = Tige Cunningham, C = US, O = MACTEC Location: Scanned by Tige Date: 2011.03.31 07:58:39 -04'00'







**DoD ELAP** 

#### DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP WATER SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

#### 1.0 INTRODUCTION

Sump water samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in April 2011 and submitted for volatile organic compound (VOC) analysis by USEPA Method 8260B. Samples were analyzed by Chemtech, located in Mountainside, New Jersey. Results were reported in Sample Delivery Group (SDG) C2041.

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions).

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 quality control (QC) limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

E = analyte concentration exceeds the calibrated range of the instrument

D = analyte concentration is the result of a diluted sample analysis

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections

#### **2.0 VOCS – METHOD 8260B**

Initially, a single sump sample was collected for analysis. During validation, it was determined that sample vials were filled from separated sources draining into the collection sump. One vial was filled from each of the drains. Field sample identification was adjusted to account for different sample collection locations.

#### **Initial Calibration**

#### **SDG C2041**

In the initial calibration, the relative percent standard deviation for 1,2-dibromo-3-chloropropane (29) exceeded the QC limit of 20. The result for 1,2-dibromo-3-chloropropane was not detected in the associated samples and the reporting limits were qualified estimated (UJ).

#### Continuing Calibration

In the continuing calibration associated with a subset of samples, the percent difference for bromomethane (-24), chloroethane (-24), acetone (-32), and methyl acetate (-21) exceeded the QC limit of 20. The associated sample result for bromomethane, chloroethane, acetone, and methyl acetate was not detected and the reporting limits were qualified estimated (UJ).

In the continuing calibration associated with a subset of samples, the percent difference for dichlorodifluoromethane (-23) and 1,2-dibromo-3-chloropropane (24) exceeded the QC limit of 20. The associated sample result for dichlorodifluoromethane and 1,2-dibromo-3-chloropropane was not detected and the reporting limits were qualified estimated (UJ).

#### Laboratory Control Samples (LCS)

For a subset of samples, the LCS percent recovery of dichlorodifluoromethane (60) was below the minimum QC limit of 70. Dichlorodifluoromethane was not detected in the associated sample and the sample result was qualified estimated at the reporting limit (UJ).

#### Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

Data Validator: Michael Washburn

Date: 6/30/11

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Date: 6/30/11

# TABLE 1 SUMMARY OF SAMPLES DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

Prepared by / Date: KJC 05/26/11

Checked by / Date: MJW 06/29/11

						Class	VOC
					Analys	is Method	SW8260B
						Fraction	Т
SDG	Media	Location	Lab ID	Sample ID	Sample Date	QC Code	
C2041	NA-L	SW-15A	Chemtech	828131A-SW1501A	4/27/2011	FS	49
C2041	NA-L	SW-15B	Chemtech	828131A-SW1501B	4/27/2011	FS	49
C2041	BW	QC	Chemtech	TRIPBLANK	4/26/2011	FS	49

Notes: QC CODE FS = field sample Media NA-L = Not Available BW = Blank Water

# TABLE 2 DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

	Location	SW-15A	SW-15B
S	ample Date	4/27/2011	4/27/2011
	Sample ID	828131A-SW1501A	828131A-SW1501B
	Qc Code	FS	FS
Parameter	Units	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	μg/L	1 U	5 U
1,1,2,2-Tetrachloroethane	μg/L	1 U	5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	μg/L	1 U	5 U
1,1,2-Trichloroethane	μg/L	1 U	5 U
1,1-Dichloroethane	μg/L	1 U	5 U
1,1-Dichloroethene	μg/L	1 U	5 U
1,2,4-Trichlorobenzene	μg/L	1 U	5 U
1,2-Dibromo-3-chloropropane	μg/L	1 UJ	5 UJ
1,2-Dibromoethane	μg/L	1 U	5 U
1,2-Dichlorobenzene	μg/L	1 U	5 U
1,2-Dichloroethane	μg/L	1 U	5 U
1,2-Dichloropropane	μg/L	1 U	5 U
1,3-Dichlorobenzene	μg/L	1 U	5 U
1,4-Dichlorobenzene	μg/L	1 U	5 U
2-Butanone	μg/L	5 U	25 U
2-Hexanone	μg/L	5 U	25 U
4-Methyl-2-pentanone	μg/L	5 U	25 U
Acetic acid, methyl ester	μg/L	1 UJ	5 U
Acetone	μg/L	5 UJ	25 U
Benzene	μg/L	1 U	5 U
Bromodichloromethane	μg/L	1 U	5 U
Bromoform	μg/L	1 U	5 U
Bromomethane	μg/L	1 UJ	5 U
Carbon disulfide	μg/L	1 U	5 U
Carbon tetrachloride	μg/L	1 U	5 U
Chlorobenzene	μg/L	1 U	5 U
Chlorodibromomethane	μg/L	1 U	5 U
Chloroethane	μg/L	1 UJ	5 U
Chloroform	μg/L	1 U	5 U
Chloromethane	μg/L μg/L	1 U	5 U
Cis-1,2-Dichloroethene	μg/L μg/L	170 EJ	17 D
cis-1,3-Dichloropropene	μg/L	170 L3	5 U
Cyclohexane	μg/L μg/L	1 U	5 U
Dichlorodifluoromethane	μg/L μg/L	1 U	5 UJ
Ethyl benzene		1 U	5 U
Isopropylbenzene	μg/L	1 U	5 U
Methyl cyclohexane	μg/L μg/L	1 U	5 U
Methyl Tertbutyl Ether		1 U	5 U
Methylene chloride	μg/L	1 U	5 U
Styrene	μg/L	1 U	5 U
Tetrachloroethene	µg/L		5 U
Toluene	μg/L	5.6	
	μg/L	1 U	5 U
trans-1,2-Dichloroethene	μg/L	4.6	5 U
trans-1,3-Dichloropropene	μg/L	1 U	5 U
Trichloroethene	μg/L	37	5 U
Trichlorofluoromethane	μg/L	1 U	5 U
Vinyl chloride	μg/L	41	17 D
Xylene, o	μg/L	1 U	5 U
Xylenes (m&p) Notes:	μg/L	2 U	10 U

Qualifier: U = not detected, J = estimated result

D = result from a dilution analysis, E = analyte concentration exceeds the calibrated range of the instrument

QC Code: FS = Field Sample ug/L = microgram per liter

P:\Projects\nysdec1\Contracts D004434 and D004444\projects\Off-Site Carriage Cleaners RI-

FS\3.0_Site_Data\3.4_Test_Results\DUSR\

Table_2_April_2011_Sump_Data.xls

Page 1 of 1 Produced by: BJS 6/29/11 Checked by: MJW 6/29/11

# TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP WATER SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

SDG	Lab Sample Id	Analysis Method	Field Sample ID	l Analyte Name	Lab Resul	Lab Oual	Validated Result	Validation Oualifier	Val Reason Code	Result Units	Lab Id
C2041	C2041-01	SW8260B	828131A-SW1501A	1,2-Dibromo-3-chloropropane	1	U	1	UJ	ICVRSD	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Acetic acid, methyl ester	1	U	1	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Acetone	5	U	5	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Bromomethane	1	U	1	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Chloroethane	1	U	1	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Cis-1,2-Dichloroethene	170	Е	170	EJ	Е	μg/L	Chemtech
C2041	C2041-01DL	SW8260B	828131A-SW1501B	1,2-Dibromo-3-chloropropane	5	U	5	UJ	ICVRSD, CCV%D, LCS-L	μg/L	Chemtech
C2041	C2041-01DL	SW8260B	828131A-SW1501B	Dichlorodifluoromethane	5	U	5	UJ	CCV%D, LCS-L	μg/L	Chemtech

Prepared by: MJW 6/29/2011

Checked by: WDC 6/30/2011

Notes:

#### **Validation Qualifiers:**

U = not detected, value is the detection limit

J = value is estimated

E = exceeds the calibrated range of the instrument

#### **Validation Reason Codes:**

LCS-L = LCS recovery low

E = result exceeds calibration range

CCV%D = Continuing calibration percent difference exceeds the goal

ICVRSD = Initial calibration relative percent standard deviatoim exceeds the limit



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax ; 908 789 8922

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-SW1501A

Lab Sample ID: C2041-01

Analytical Method: SW8260B

Sample Wt/Vol: 5

Units: mL

Soil Aliquot Vol:

GC Column:

RTX-VMS

цL ID: 0.18 Date Collected:

Date Received:

04/29/11 C2041

04/27/11

SDG No.:

Matrix: WATER

% Moisture:

100

Final Vol:

цL

Test:

VOC-TCLVOA-10

Level:

LOW

5000

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG034685.D

1

05/06/11

VG050611

CAS Number Parameter Conc. **Qualifier** MDL LOQ / CRQL Units **TARGETS** 75-71-8 Dichlorodifluoromethane 1 U 0.2 1 ug/L 74-87-3 Chloromethane 1 U 0.2 1 ug/L Vinyl Chloride 75-01-4 41 0.34 ug/L 74-83-9 Bromomethane UJ. 0.2 ug/L 75-00-3 Chloroethane 1 0.2  $\Pi$ 7 1 ug/L 75-69-4 Trichlorofluoromethane U 0.35 1 1 ug/L 76-13-1 1,1,2-Trichlorotrifluoroethane U 1 0.45 1 ug/L 75-35-4 1.1-Dichloroethene 1 IJ 0.47 1 ug/L 67-64-1 Acetone 5 U**)** 0.5 5 ug/L 75-15-0 Carbon Disulfide 1 U 0.2 1 ug/L 1634-04-4 Methyl tert-butyl Ether 1 U 0.35 1 ug/L 79-20-9 Methyl Acetate 1  $U_{7}$ 0.2 1 ug/L 75-09-2 Methylene Chloride 1 U 0.41 1 ug/L trans-1,2-Dichloroethene 156-60-5 4.6 0.41 1 ug/L 75-34-3 1,1-Dichloroethane Ū 1 0.36 1 ug/L 110-82-7 Cyclohexane 1 U 0.2 1 ug/L 78-93-3 2-Butanone 5 IJ 1.3 5 ug/L 56-23-5 Carbon Tetrachloride 1 U 0.2 1 ug/L 156-59-2 cis-1.2-Dichloroethene 170 E 7 0.35 1 ug/L 67-66-3 Chloroform 0.34 1 U ug/L 1,1,1-Trichloroethane 71-55-6 1 U 0.4 ug/L 108-87-2 Methylcyclohexane 1 U 0.2 ug/L 71-43-2 Benzene U 0.32 1 ug/L 107-06-2 1,2-Dichloroethane 1 U 0.48 ug/L 79-01-6 Trichloroethene 37 0.28 ug/L 78-87-5 1,2-Dichloropropane 1 U 0.46 ug/L 75-27-4 Bromodichloromethane 1 U 0.36 ug/L 108-10-1 4-Methyl-2-Pentanone 5 U 2.1 5 ug/L 108-88-3 Toluene 1 U 0.37 ug/L 10061-02-6 t-1,3-Dichloropropene 1 U 0.29 ug/L 10061-01-5 cis-1,3-Dichloropropene U 0.31 ug/L

MW 6/24/11

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client: Project: MACTEC Inc.

Carriage Cleantown

Client Sample ID:

828131A-SW1501A

Lab Sample ID:

C2041-01 SW8260B

Analytical Method: Sample Wt/Vol:

Units:

Soil Aliquot Vol:

GC Column:

VG034685.D

RTX-VMS

иL ID: 0.18

mL

Date Collected:

Date Received:

04/27/11 04/29/11

SDG No.:

C2041

Matrix:

Final Vol:

Test:

Level:

WATER

% Moisture:

100

5000

VOC-TCLVOA-10

LOW

иL

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed Prep Batch ID

05/06/11

VG050611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	. 1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	5.6		0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	υ <b>)</b>	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	55		66 - 150	110%	SPK: 50
1868-53-7	Dibromofluoromethane	51.8		76 - 130	104%	SPK: 50
2037-26-5	Toluene-d8	45.3		78 - 121	91%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.1		70 - 131	104%	SPK: 50
INTERNAL ST	CANDARDS					
363-72-4	Pentafluorobenzene	467503	3.89			
540-36-3	1,4-Difluorobenzene	857548	4.68			
3114-55-4	Chlorobenzene-d5	707823	9.65			
3855-82-1	1,4-Dichlorobenzene-d4	253960	13.36			

m/m/24/11



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-SW1501DL B

Lab Sample ID: C2041-01DL

Analytical Method: SW8260B

Sample Wt/Vol:

Units:

Soil Aliquot Vol:

GC Column:

RTX-VMS ID: 0.18

mL

uL

Date Collected:

Date Received:

04/27/11 04/29/11 C2041

SDG No.:

WATER

% Moisture:

100

Final Vol:

Matrix:

5000

VOC-TCLVOA-10

uL

Test: Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG034737.D

5

05/10/11

vg051011

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	5	<b>U</b>	1	5	ug/L
74-87-3	Chloromethane	5	U	1	5	ug/L
75-01-4	Vinyl Chloride	17	D	1.7	5	ug/L
74-83-9	Bromomethane	5	U	1	5	ug/L
75-00-3	Chloroethane	5	U	1	5	ug/L
75-69-4	Trichlorofluoromethane	5	U	1.8	5	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	5	U	2,2	5	ug/L
75-35-4	1,1-Dichloroethene	5	U	2.4	5	ug/L
67-64-1	Acetone	25	U	2.5	25	ug/L
75-15-0	Carbon Disulfide	5	U	1	5	ug/L
1634-04-4	Methyl tert-butyl Ether	5	υ	1.8	5	ug/L
79-20-9	Methyl Acetate	5	υ	1	5	ug/L
75-09-2	Methylene Chloride	5	U	2 .	5	ug/L
156-60-5	trans-1,2-Dichloroethene	5	U	2	5	ug/L
75-34-3	1,1-Dichloroethane	5	U	1.8	5	ug/L
110-82-7	Cyclohexane	5	U	1	5	ug/L
78-93-3	2-Butanone	25	U	6.6	25	ug/L
56-23-5	Carbon Tetrachloride	5	U	1	5	ug/L
156-59-2	cis-1,2-Dichloroethene	. 17	-D'STET	1.8	5	ug/L
67-66-3	Chloroform	5	U	1.7	5	ug/L
71-55-6	1,1,1-Trichloroethane	5	U	2	5	ug/L
108-87-2	Methylcyclohexane	5	U	1	5	ug/L
71-43-2	Benzene	5	U	1.6	5	ug/L
107-06-2	1,2-Dichloroethane	5	U	2.4	5	ug/L
79-01-6	Trichloroethene	5	U	1.4	5	ug/L
78-87-5	1,2-Dichloropropane	5	U	2.3	5	ug/L
75-27-4	Bromodichloromethane	5	U	1.8	5	ug/L
108-10-1	4-Methyl-2-Pentanone	25	U	10	25	ug/L
108-88-3	Toluene	5	U	1.8	5	ug/L
10061-02-6	t-1,3-Dichloropropene	5	U	1.4	5	ug/L
10061-01-5	cis-1,3-Dichloropropene	5	U	1.6	5	ug/L
						. ,

MJW 6/24/11 GC Column:

RTX-VMS

ID: 0.18

#### Report of Analysis

Client: MACTEC Inc. Date Collected: 04/27/11 Project: Carriage Cleantown Date Received: 04/29/11 828131A-SW1501DL B Client Sample ID: SDG No.: C2041 Lab Sample ID: C2041-01DL Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: иL Test; VOC-TCLVOA-10

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG034737.D 5 05/10/11 vg051011

Level:

LOW

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	5	υ	1.9	5	ug/L
591-78-6	2-Hexanone	25	U	9.7	25	ug/L
124-48-1	Dibromochloromethane	5	U	1	5	ug/L
106-93-4	1,2-Dibromoethane	5	U	2	5	ug/L
127-18-4	Tetrachloroethene	5	U	1.4	5	ug/L
108-90-7	Chlorobenzene	5	U	2.4	5	ug/L
100-41-4	Ethyl Benzene	5	U	1	5	ug/L
179601-23-1	m/p-Xylenes	10	U	4.8	10	ug/L
95-47-6	o-Xylene	5	υ	2.2	5	ug/L
100-42-5	Styrene	5	U	1.8	5	ug/L
75-25-2	Bromoform	5	U	2.4	5	ug/L
98-82-8	Isopropylbenzene	5	U	2.2	5	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	5	U	1.6	5	ug/L
541-73-1	1,3-Dichlorobenzene	5	U	2.2	5	ug/L
106-46-7	1,4-Dichlorobenzene	5	U	1.6	5	ug/L
95-50-1	1,2-Dichlorobenzenc	5	U	2.2	5	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	5	U <b>)</b>	2.3	5	ug/L
120-82-1	1,2,4-Trichlorobenzene	5	U	1	5	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	51.1		66 - 150	102%	SPK: 5
1868-53-7	Dibromofluoromethane	46.6		76 - 130	93%	SPK: 5
2037-26-5	Toluene-d8	44.2		78 - 121	88%	SPK: 5
460-00-4	4-Bromofluorobenzene	46.3		70 - 131	93%	SPK: 5
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	540849	3.87			
540-36-3	1,4-Difluorobenzene	1013910	4.68			
3114-55-4	Chlorobenzene-d5	816719	9.64			
3855-82-1	1,4-Dichlorobenzene-d4	299422	13.35			

MSW 6/24/11

### **VOCs**

Pro Med Lab Dat Rev	ject thoc ora e: J view	EC DUSR PROJECT CHEMIST REVIEW RECORD:  1: SW-846 8260B  tory and SDG(s): Chemtech SDG# C2041  une 24, 2011  er: Mike Washburn  Level X NYSDEC DUSR   USEPA Region II Guideline
1.		Case Narrative Review and COC/Data Package Completeness  Were problems noted? Yes, see comments in sections below.  Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
2.		Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
3.		QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one)
4.		Instrument Tuning Were all results were within method criteria. YES NO (circle one)
5.		Instrument Calibration Were all results within criteria? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% IC - %RSD for 1,2-dibromo-3-chloropropane at 29, not detected qualified UJ. CC (5/6/11) - %D for bromomethane (-24), chloroethane (-24), acetone (-32) and methyl acetate (-21) above limit of 20. Not detected qualified UJ. CC (5/10/11) - %D for dichlordifluoromethane (-23) and 1,2-dibromo-3-chloropropane (24) above limit of 20. Not detected qualified UJ.
6.		Internal Standards (Area Limits = -50% to +100%, RT's within 30 seconds of mid point cal Std) Were all results within criteria? (YES) NO (circle one)
7.		Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)
		Were all results were within Region II limits YES NO (circle one)
8.		Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)
		Were MS/MSDs submitted/analyzed? YES NO
		Were all results were within the Region II limits? YES NO NA (circle one)
9.		Duplicates/replicates - Region II Limits (water RPD 50, soil RPD 100)
		Were Field Duplicates submitted/analyzed? YES NO
		Were all results were within Region II Limits? YES NO NA circle one)
10.		Laboratory Coutrol Sample Results - Region II (Water and soil 70-130%)
11.	<u>[]</u>	Were all results were within Region II control limits? YES NO (circle one) 5/6/11-Acetone (150) above upper control limit of 130. No action required, acetone not detected. 5/10/11-Acetone (150) above upper control limit of 130. No action required, acetone not detected. Dichlorodifluoromethane (60) below lower control limit of 70. Dichlorodifluoromethane not detected, qualified estimate at reporting limit (UJ).  Raw Data Review and Calculation Checks

Completed.

12. 

Electronic Data Review and Edits
Does the EDD match the Form I's? 

YES NO (circle one)

13. 

TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). 
Did lab report TICs? YES NO (circle one)

1 5 10 20 50 100 Avg

Compound

Method Path: W:\HPCHEM1\MSVOA_G\METHOD\
Method File: 82G042211W.M
Title: SW846 8260
Last Update: Mon Apr 25 04:45:10 2011
Response Via: Initial Calibration

Calibration Files

1 =VG034387.D 5 =VG034388.D 10 =VG034389.D 20 =VG034390.D 50 =VG034391.D 100 =VG034392.D

		Compound	1	J	10	20	50	100	Avg	4 LOD
1)	т	Pentafluorobenzene	,			ISTI	D			
2)		Dichlorodifluorom							0 474	4.84
3)		Chloromethane					0.837			8.38
4)		Vinyl Chloride							0.884	
5)	T	Bromomethane							0.576	10.06
6)	Т	Chloroethane							0.467	14.15
7)	$\mathbf{T}$	Trichlorofluorome								1.79
8)	$\mathbf{T}$	Diethyl Ether	0.737	0.546	0.594	0.590	0.530	0.518	0.586	13.71
9)	T	1,1,2-Trichlorotr	0.789	0.682	0.657	0.644	0.603	0.584	0.660	11.00
10)	$\mathbf{T}$	Methyl Iodide					1.374			6.44
11)	$\mathbf{T}$	Tert butyl alcoho								9.45
12)	CM	1,1-Dichloroethen								10.37#
13)		Acrolein X							0.118	(25.41)
14)	T	Allyl chloride					0.912			14.02
15)	T	Acrylonitrile					0.263			8.47
16)	T T	Acetone					0.143			16.56
17) 18)	_	Carbon Disulfide Methyl Acetate					2.136 0.715			10.50
19)	T	Methyl tert-butyl								8.36 9.72
20)	T	Methylene Chlorid								19.74
21)	T	trans-1, 2-Dichlor								5.96
22)	T	Acetonitrile	0.020	0.011	0.000	0.011	0,705	0.740	0.000	-1.00
23)	T	Diisopropyl ether	2.630	2.406	2,293	2,209	2.034	1.873		11.99
24)	T	Vinyl Acetate					0.971			11.95
25)		1,1-Dichloroethan	1.538							7.82
26)		2-Butanone							0.448	11.69
27)	T	2,2-Dichloropropa								14.80
28)	T	cis-1,2-Dichloroe	1.255	1.143	1.142	1.098	1.052	1.015	1.117	7.53
29)		Bromochloromethan								9.00
30)		Chloroform	1.339						1.176	8.25#
31)		Cyclohexane	1.247						1.022	12.53
32)		1,1,1-Trichloroet								8.50
33)	S	1,2-Dichloroethan	0.673	0.568	0.563	0.574	0.488	0.482	0.558	12.47
34)	Ι	1,4-Difluorobenze				тем:	_			
35)		Dibromofluorometh								
36)	T	1,1-Dichloroprope								9.27
37)		Ethyl Acetate								10.78
38)	T	Carbon Tetrachlor								13.90
39)		Methylcyclohexane								7.30
40)		Benzene					1.519			6.57
41)	$\mathbf{T}$	Methacrylonitrile								9.83
42)		1,2-Dichloroethan								7.63
43)	T	Isopropyl Acetate								9.44
44)	$\mathbf{T}$	Isobutyl alcohol							0.000	-1.00
45)	TM	Trichloroethene	0.366	0.422	0.429	0.410	0.400	0.383	0.402	5.96
46)	C	1,2-Dichloropropa								/ 5 <b>.</b> 17# /
47)		Dibromomethane							م 288 م مع	7.87
48)		Bromodichlorometh								6.95
49)		Methyl methacryla								7.44
50)		1,4-Dioxane							0.004	
51)		Toluene-d8							1.153	11.73
52)	$\mathbf{T}$	4-Methyl-2-Pentan	0.426	0.383	0.399	0.382	0.349	0.339	0.380	8.44

&RSD

Page: 1

Method Path: W:\HPCHEM1\MSVOA_G\METHOD\
Method File: 82G042211W.M
Title: SW846 8260
Last Update: Mon Apr 25 04:45:10 2011
Response Via: Initial Calibration

Calibration Files

1 =VG034387.D 5 =VG034388.D 10 =VG034389.D 20 =VG034390.D 50 =VG034391.D 100 =VG034392.D

53) CM Toluene 0.931 0.900 0.872 0.883 0.814 0.799 0.867 5.85# 54) T t-1,3-Dichloropro 0.583 0.544 0.555 0.532 0.534 0.533 0.547 3.65 55) T cis-1,3-Dichlorop 0.717 0.650 0.689 0.672 0.663 0.627 0.670 4.66 56) T 1,1,2-Trichloroet 0.341 0.364 0.356 0.333 0.306 0.310 0.335 7.00 57) T Ethyl methacrylat 0.539 0.541 0.575 0.550 0.520 0.504 0.538 4.53 58) T 1,3-Dichloropropa 0.656 0.691 0.676 0.631 0.604 0.593 0.642 6.09 59) T 2-Chloroethyl Vin 0.252 0.225 0.188 0.181 0.159 0.154 0.193 19.97 60) T 2-Hexanone 0.249 0.229 0.277 0.266 0.219 0.228 0.245 9.40 61) T Dibromochlorometh 0.333 0.363 0.390 0.363 0.354 0.351 0.359 5.24 62) T 1,2-Dibromoethane 0.355 0.361 0.373 0.350 0.342 0.332 0.352 4.15 63) S 4-Bromofluorobenz 0.525 0.377 0.396 0.387 0.333 0.324 0.390 18.52 64) I Chlorobenzene 1.093 1.106 1.076 1.056 0.993 0.969 1.049 5.29 66) PM Chlorobenzene 1.093 1.106 1.076 1.056 0.993 0.969 1.049 5.29 67) T 1,1,1,2-Tetrachlo 0.404 0.376 0.381 0.375 0.346 0.351 0.372 5.66 68) C Ethyl Benzene 1.882 1.799 1.910 1.818 1.637 1.649 1.782 6.47# 69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11 72) P Bromoform 0.243 0.250 0.272 0.264 0.250 0.265 0.257 4.41
65) T Tetrachloroethene 0.328 0.360 0.404 0.391 0.359 0.366 0.368 7.29 66) PM Chlorobenzene 1.093 1.106 1.076 1.056 0.993 0.969 1.049 5.29 67) T 1,1,1,2-Tetrachlo 0.404 0.376 0.381 0.375 0.346 0.351 0.372 5.66 68) C Ethyl Benzene 1.882 1.799 1.910 1.818 1.637 1.649 1.782 6.47# 69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
65) T Tetrachloroethene 0.328 0.360 0.404 0.391 0.359 0.366 0.368 7.29 66) PM Chlorobenzene 1.093 1.106 1.076 1.056 0.993 0.969 1.049 5.29 67) T 1,1,1,2-Tetrachlo 0.404 0.376 0.381 0.375 0.346 0.351 0.372 5.66 68) C Ethyl Benzene 1.882 1.799 1.910 1.818 1.637 1.649 1.782 6.47# 69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
66) PM Chlorobenzene 1.093 1.106 1.076 1.056 0.993 0.969 1.049 5.29 67) T 1,1,1,2-Tetrachlo 0.404 0.376 0.381 0.375 0.346 0.351 0.372 5.66 68) C Ethyl Benzene 1.882 1.799 1.910 1.818 1.637 1.649 1.782 6.47# 69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
67) T 1,1,1,2-Tetrachlo 0.404 0.376 0.381 0.375 0.346 0.351 0.372 5.66 68) C Ethyl Benzene 1.882 1.799 1.910 1.818 1.637 1.649 1.782 6.47# 69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
68) C Ethyl Benzene 1.882 1.799 1.910 1.818 1.637 1.649 1.782 6.47# 69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
69) T m/p-Xylenes 0.651 0.726 0.743 0.689 0.652 0.648 0.685 6.09 70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
70) T o-Xylene 0.658 0.654 0.735 0.671 0.624 0.617 0.660 6.40 71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
71) T Styrene 1.175 1.119 1.178 1.095 1.018 0.992 1.096 7.11
72) P Bromoform 0.243 0.250 0.272 0.264 0.250 0.265 0.257 4.41
73) I 1,4-Dichlorobenzene-dISTD
74) T Isopropylbenzene 4.764 4.246 4.287 4.204 3.851 3.646 4.166 9.29
75) T N-amyl acetate 2.201 2.209 2.187 2.091 2.010 1.903 2.100 5.90
76) P 1,1,2,2-Tetrachlo 1.516 1.351 1.417 1.339 1.257 1.209 1.348 8.18
77) T 1,2,3-Trichloropr 1.018 1.052 1.058 1.031 0.957 0.925 1.007 5.35
78) T Bromobenzene 1.079 1.080 1.095 1.043 1.018 0.982 1.050 4.14
79) T n-propylbenzene 5.061 4.664 4.919 4.700 4.515 4.192 4.675 6.55
80) T 2-Chlorotoluene 2.723 2.801 2.962 2.869 2.635 2.523 2.752 5.80
81) T 1,3,5-Trimethylbe 3.202 2.962 2.928 2.831 2.716 2.571 2.868 7.59
82) T trans-1,4-Dichlor 0.651 0.496 0.522 0.523 0.517 0.523 0.539 10.42
83) T 4-Chlorotoluene 2.931 2.832 2.935 2.665 2.697 2.602 2.777 5.12
84) T tert-Butylbenzene 3.153 2.926 2.977 2.890 2.679 2.602 2.871 7.03
85) T 1,2,4-Trimethylbe 3.072 2.738 2.917 2.857 2.705 2.602 2.815 5.98
86) T sec-Butylbenzene 3.906 3.518 3.871 3.655 3.427 3.316 3.615 6.61
87) T p-Isopropyltoluen 3.111 2.848 2.935 2.841 2.709 2.600 2.841 6.25 88) T 1,3-Dichlorobenze 1.802 1.688 1.859 1.738 1.731 1.628 1.741 4.70
89) T 1,4-Dichlorobenze 1.608 1.681 1.735 1.664 1.636 1.618 1.657 2.84 90) T n-Butylbenzene 2.976 2.735 2.885 2.708 2.513 2.536 2.726 6.76
91) T Hexachloroethane 0.670 0.671 0.734 0.674 0.624 0.631 0.668 5.88
92) T 1,2-Dichlorobenze 1.605 1.563 1.622 1.623 1.494 1.471 1.563 4.26
93) T 1,2,4,5-Tetrameth 0.000 -1.00
94) T 1, 2-Dibromo-3-Chl 0.270 0.158 0.157 0.158 0.141 0.145 0.172 28.58
95) T 1,2,4-Trichlorobe 0.770 0.759 0.809 0.835 0.759 0.781 0.786 3.91
96) T Hexachlorobutadie 0.181 0.250 0.311 0.293 0.271 0.279 0.264 17.25
97) T Naphthalene 2.001 1.994 2.258 2.220 2.125 2.102 2.117 5.15
98) T 1,2,3-Trichlorobe 0.539 0.612 0.669 0.669 0.621 0.663 0.629 8.06
99) T p-ethyltoluene 0.000 -1.00
100) T p-diethylbenzene 0.000 -1.00

^{(#) =} Out of Range

$$RF_{10} = \frac{120563(50)}{630247(10)} = 0.956474$$
  $RF_{20} = \frac{219562(50)}{594538(20)} = 0.923246$ 

$$RF_{10} = \frac{66733(50)}{1128695(10)} = 0.29562$$
  $RF_{20} = \frac{117703(50)}{1091370(20)} = 0.269622$ 

(65) 
$$RF_{1} = \frac{\frac{5962}{7547 (50)}}{\frac{909499}{(1)}} = 0.327763$$
  $RF_{5} = \frac{32754(50)}{910251(5)} = 0.359835$ 

# Initial Calibration Calculation

		•				_		_	
6.55	5.06086   4.664304   4.918971   4.700412   4.515344   4.191735   4.675271   0.306008   6.55	4.675271	4.191735	4.515344	4.700412	4.918971	4.664304	5.06086	n-propylbenzene
7.29	0.327763   0.359835   0.404136   0.390763   0.35901   0.365775   0.36788   0.026815	0.36788	0.365775	0.35901	0.390763	0.404136	0.359835	0.327763	Tetrachloroethene
7.87	0.327838   0.288652   0.29562   0.269622   0.277641   0.26632   0.287616   0.022626   7.87	0.287616	0.26632	0.277641	0.269622	0.29562	0.288652	0.327838	Dibromomethane
6.50	0.900326   0.893543   0.956474   0.923246   0.826109   0.806524   0.88437   0.057452   6.50	0.88437	0.806524	0.826109	0.923246	0.956474	0.893543	0.900326	Vinyl Chloride
%RSD	SD	Average	<u> </u>	<	2	≡	=	_	

M3W 6123/11

Data Path : W:\HPCHEM1\Msvoa G\Data\VG051011\

Data File : VG034726.D

: 10 May 2011 11:33 Acq On

Operator : PS

Sample : 50 PPB CCC Misc : 5mL MSVOA G

ALS Vial : 2 Sample Multiplier: 1

Quant Time: May 10 12:10:41 2011
Quant Method : \TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G042211W.M

Quant Title : SW846 8260

QLast Update : Fri May 06 11:21:35 2011

Response via : Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0 0 87 -0.01
 2 Т	Dichlorodifluoromethane	0.474	0.581	-22.6#\)104\ 0.00
3 P	Chloromethane	0.900	1.023	-13.7 106 0.00
4 C	Vinyl Chloride	0.884	0.962	-8.8# 101 0.00
5 T	Bromomethane	0.576	0.664	-15.3 105 0.00
6 T	Chloroethane	0.467	0.540	-15.6 105 0.00
7 T	Trichlorofluoromethane	0.690	0.755	-9.4 96 0.00
8 T	Diethyl Ether	0.586	0.600	-2.4 99 0.00
9 T	1,1,2-Trichlorotrifluoroeth	0.660	0.707	-7.1 102 0.00
10 Т	Methyl Iodide	1.493	1,502	-0.6 95 0.00
11 Т	Tert butyl alcohol	0.068	0.066	2.9 94 0.00
12 CM	1,1-Dichloroethene	0.776	0.793	-2.2# 95 0.00
13 Т	Acrolein	0.118	0.110	6.8 109 0.00
14 T	Allyl chloride	0.951	0.906	4.7 87 0.00
15 Т	Acrylonitrile	0.284	0.285	-0.4 94 0.00
16 Т	Acetone	0,170	0.181	-6.5 110 0.00
17 T	Carbon Disulfide	2.349	2.393	-1.9 98 0.00
18 Т	Methyl Acetate	0.762	0.829	-8.8 101 0.00
19 T	Methyl tert-butyl Ether	2.097	2.120	-1.1 99 0.00
20 T	Methylene Chloride	0.974	0.913	6.3 96 0.00
21 T	trans-1,2-Dichloroethene	0.815	0.892	-9.4 99 0.00
22 T	Acetonitrile	0.000	0.000	0.0 0# -2.09#
23 T	Diisopropyl ether	2.241	2.168	3.3 93 0.00
24 T	Vinyl Acetate	1.065	1.113	-4.5 100 0.00
25 P	1,1-Dichloroethane	1.419	1.515	-6.8 99 0.00
26 T	2-Butanone	0.448	0.426	4.9 96 0.00
27 T	2,2-Dichloropropane	0.585	0.524	10.4 89 0.00
28 Т	cis-1,2-Dichloroethene	1.117	1.197	-7.2 99 0.00
29 T	Bromochloromethane	0.634	0.622	1.9 95 0.00
30 C	Chloroform .	1.176	1,146	2.6# 91 0.00
31 T	Cyclohexane	1.022	1.038	-1.6 99 0.00
32 T	1,1,1-Trichloroethane	0.658	0.655	0.5 94 0.00
33 S	1,2-Dichloroethane-d4	0.558	0.581	-4.1 104 0.00
34 I	1,4-Difluorobenzene	1.000	1.000	0.0 90 0.00
35 S	Dibromofluoromethane	0.394	0.381	3.3 99 0.00
36 T	1,1-Dichloropropene	0.578	0.522	9.7 90 0.00
37 <b>T</b>	Ethyl Acetate	0.528	0.485	8.1 94 0.00
38 T	Carbon Tetrachloride	0.440	0.401	8.9 93 0.00
39 T	Methylcyclohexane	0.555	0.499	10.1 85 0.00
40 TM	Benzene	1.624	1.545	4.9 92 0.00
41 T	Methacrylonitrile	0.267	0.241	9.7 91 0.00
42 <b>TM</b>	1,2-Dichloroethane	0.373	0.390	-4.6 100 0.00
43 T	Isopropyl Acetate	0.756	0.702	7.1 90 0.00
44 T	Isobutyl alcohol	0.000	0.000	0.0 0# -4.25#
45 TM	Trichloroethene	0.402	0.395	1.7 89 0.00

Data Path : W:\HPCHEM1\Msvoa G\Data\VG051011\

Data File : VG034726.D

Acq On : 10 May 2011 11:33

Operator : PS

Sample : 50 PPB CCC
Misc : 5mL MSVOA_G

ALS Vial : 2 Sample Multiplier: 1

Quant Time: May 10 12:10:41 2011

Quant Method: \TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G042211W.M

Quant Title : SW846 8260

QLast Update: Fri May 06 11:21:35 2011 Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev Are	ea% l	Dev(min)
90	 Т	n-Butylbenzene	2.726	2.523	7.4	92	0.00
91	Ţ	Hexachloroethane	0.668	0.599	10.3	88	0.00
92	T	1,2-Dichlorobenzene	1.563	1.503	3.8	92	0.00
93	$\mathbf{T}$	1,2,4,5-Tetramethylbenzene	0.000	0.000	0.0	0#	-15.10#
94	$\mathbf{T}$	(,2-Dibromo-3-Chloropropane)	0.172	0.131	23.8#	85	0.00
95	${f T}$	1,2,4-Trichlorobenzene	0.786	0.684	13.0	82	0.00
96	Т	Hexachlorobutadiene	0.264	0.239	9.5	81	0.00
97	T	Naphthalene	2.117	1.694	20.0	73	-0.01
98	T	1,2,3-Trichlorobenzene	0.629	0.518	17.6	76	0.00
99	T	p-ethyltoluene	0.000	0.000	0.0	0#	-11.89#
100	T	p-diethylbenzene	0.000	0.000	0.0	0#	-13.90#

^{(#) =} Out of Range

SPCC's out = 0 CCC's out = 6

Data Path : W:\HPCHEM1\Msvoa G\Data\VG050611\

Data File : VG034671.D

: 6 May 2011 10:36 Acq On

Operator : PS

Sample : 50 PPB CCC Misc : 5mL MSVOA G

ALS Vial : 2 Sample Multiplier: 1

Quant Time: May 06 11:09:32 2011
Quant Method : \TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G042211W.M

Quant Title : SW846 8260

QLast Update : Thu May 05 18:09:28 2011 Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0.0 85 0.00
2 T	Dichlorodifluoromethane	0.474	0.560	-18,1 98 0.00
3 P	Chloromethane	0.900	1.056	17.3 108 -0.01
4 C	Vinyl Chloride	0.884	1.014 ✓	-14.7 105 0.00
5 T	Bromomethane	0.576	0.714	-24.0# <b>)</b> 111 0.00
6 T	Chloroethane /	0.467	0.577	-23.6# 110 0.00
7 T	Trichlorofluoromethane	0.690	0.791	-14.6 99 $-0.01$
8 T	Diethyl Ether	0.586	0.647	-10.4 104 -0.01
9 T	1,1,2-Trichlorotrifluoroeth	0.660	0.727	-10.2 103 0.00
10 T	Methyl Iodide	1.493	1.564	-4.8 97 0.00
11 T	Tert butyl alcohol	0.068	0.076	-11.8 105 -0.01
12 CM	1,1-Dichloroethene	0.776	0.820	-5.7# 96 0.00
13 T	Acrolein	0.118	0.126	-6.8 122 -0.01
14 T	Allyl chloride	0.951	1.025	-7.8 96 0.00
15 T	Acrylonitrile	0.284	0.317	-11.6 103 0.00
16 T	Acetone	0.170	0.224	(-31.8) 134 $(-0.01)$
17 T	Carbon Disulfide	2.349	2.457	-4.6 98 0.00
18 T	Methyl Acetate	0.762	0.918	-20.5 110 0.00
19 T	Methyl tert-butyl Ether	2.097	2.330	-11.1 106 0.00
20 T	Methylene Chloride	0.974	0.883	9.3 91 -0.01
21 T	trans-1,2-Dichloroethene	0,815	0.939	-15.2 102 0.00
22 T	Acetonitrile	0,000	0.000	0.0 0# -2.09#
23 T	Diisopropyl ether	2.241	2.314	-3.3 97 -0.01
24 T	Vinyl Acetate	1.065	1.252	-17.6 110 0.00
25 P	1,1-Dichloroethane	1.419	1.637	-15.4 105 0.00
26 T	2-Butanone	0.448	0.482	-7.6 106 -0.01
27 T	2,2-Dichloropropane	0.585	0.581	0.7 97 -0.01
28 T	cis-1,2-Dichloroethene	1.117	1.272	-13.9 103 -0.01
29 T	Bromochloromethane	0.634	0.703	-10.9 105 -0.01
30 C	Chloroform	1.176	1.254	-6.6# 98 0.00
31 T	Cyclohexane	1.022	1.087	-6.4  102  -0.01
32 T	1,1,1-Trichloroethane	0.658	0.722	-9.7 102 0.00
33 S	1,2-Dichloroethane-d4	0.558	0.591	-5.9 104 0.00
34 I	1,4-Difluorobenzene	1.000	1.000	0.0 89 -0.02
35 S	Dibromofluoromethane	0.394	0.378	4.1 97 -0.01
36 T	1,1-Dichloropropene	0.578	0.574	0.7 98 0.00
37 T	Ethyl Acetate	0.528	0.548	-3.8 105 0.00
38 T	Carbon Tetrachloride	0.440	0.449	-2.0 $102$ $-0.01$
39 T	Methylcyclohexane	0.555	0.512	7.7 87 -0.02
40 TM		1.624	1.683	-3.6 99 -0.01
41 T	Methacrylonitrile	0.267	0.271	-1.5 100 0.00
42 TM		0.373	0.425	-13.9 108 0.00
43 T	Isopropyl Acetate	0.756	0.776	-2.6 98 0.00
44 T	Isobutyl alcohol	0.000	0.000	0.0 0# -4.25#
45 TM	I Trichloroethene	0.402	0.430	-7.0 96 0.00

M/m 6/23/11

Data Path : W:\HPCHEM1\Msvoa_G\Data\VG050611\

Data File : VG034671.D

Acq On : 6 May 2011 10:36

Operator : PS

Sample : 50 PPB CCC Misc : 5mL MSVOA_G

ALS Vial : 2 Sample Multiplier: 1

Quant Time: May 06 11:09:32 2011
Quant Method : \TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G042211W.M

Quant Title : SW846 8260

QLast Update: Thu May 05 18:09:28 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

~~~~	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
46 C	1,2-Dichloropropane	0.449	0.488	-8.7# 100	-0.01
47 T	Dibromomethane	0.288	0.301	-4.5 96	0.00
48 T	Bromodichloromethane	0.506	0.512	-1.2 96	-0.01
49 T	Methyl methacrylate	0.334	0.349	-4.5 101	0.00
50 T	1,4-Dioxane	0.004	0.003	25.0# 78	0.00
51 S	Toluene-d8	1.153	1.062	7.9 91	0.00
52 T	4-Methyl-2-Pentanone	0.380	0.407	-7.1 104	-0.01
53 CM	Toluene	0.867	0.896	-3.3# 98	0.00
54 T	t-1,3-Dichloropropene	0.547	0.555	-1.5 93	0.00
55 T	cis-1,3-Dichloropropene	0.670	0.687	-2.5 92	-0.01
56 T	1,1,2-Trichloroethane	0.335	0.379	-13.1 110	0.00
57 T	Ethyl methacrylate	0.538	0.563	-4.6 96	0.00
58 T	1,3-Dichloropropane	0.642	0.669	-4.2 98	0.00
59 T	(2-Chloroethyl Vinyl ether) X	0.193	0.114	(40.9#) 64	0.00
60 T	2-Nexanone	0.245	0.268	-9.4 109	-0.01
61 T	Dibromochloromethane	0.359	0.397	-10.6 100	
62 T	1,2-Dibromoethane	0.352	0.391	-11.1 102	-0.01
63 S	4-Bromofluorobenzene	0.390	0.369	5.4 99	
64 I	Chlorobenzene-d5	1.000	1.000	0.0 90	0.00
65 T	Tetrachloroethene	0.368	0.416	-13.0 104	0.00
66 PM	Chlorobenzene	1.049	1.176	-12.1 106	0.00
67 T	1,1,1,2-Tetrachloroethane	0.372	0.387	-4.0 100	0.00
68 C	Ethyl Benzene	1.782	1.813	-1.7# 100	0.00
69 T	m/p-Xylenes	0.685	0.722	-5.4 100	0.00
70 T	o-Xylene	0.660	0.712	-7.9 103	-0.01
71 T	Styrene	1.096	1.125	-2.6 99	0.00
72 P	Bromoform	0.257	0.252	1.9 91	0.00
73 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0 92	-0.01
74 T	Isopropylbenzene	4.166	4.223	-1.4 101	-0.01
75 T	N-amyl acetate	2.100	2.212	-5.3 101	0.00
76 P	1, 1, 2, 2-Tetrachloroethane	1.348	1.424	-5.6 104	
77 T	1,2,3-Trichloropropane	1.007	1.067	-6.0 103	0.00
78 T	Bromobenzene	1.050	1.105	-5.2 100	0.00
79 T	n-propylbenzene	4.675		-0.9 🗸 96	
80 T	2-Chlorotoluene	2,752	2.821	-2.5 99	
81 T	1,3,5-Trimethylbenzene	2.868	2.784	2.9 94	
82 T	trans-1,4-Dichloro-2-butene	0.539	0.503	6.7 90	
83 T	4-Chlorotoluene	2.777	2.913	-4.9 99	
84 T	tert-Butylbenzene	2.871	3.077	-7.2 106	
85 T	1,2,4-Trimethylbenzene	2.815	2.908	-3.3 99	
86 T	sec-Butylbenzene	3.615	3.753	-3.8 101	
87 T	p-Isopropyltoluene	2.841	2.853	-0.4 97	
88 T	1,3-Dichlorobenzene	1.741	1.789	-2.8 95	
89 T	1,4-Dichlorobenzene	1.657	1.775	-7.1 100	
	•				·

Coninuing Calibration Calculations

	Ave RF	CCRF	%D
Vinyl Chloride	0.884	1.01391	-14.7
Dibromomethane	0.288	0.301024	-4.5
Chlorobenzene	1.049	1.17577	-12.1
n-Propylbenzene	4.675	4.714808	-0.9

M) 6/23/11

Data Path: \Terastorage\VOASRV\HPCHEM1\Msvoa G\Data\VG051011\

Data File: VG034737.D

Acq On : 10 May 2011 18:11

Operator : PS

Sample : C2041-01DL 5XMisc : 5mL MSVOA G

ALS Vial: 13 Sample Multiplier: 1

Quant Time: May 10 19:18:11 2011
Quant Method : \TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G042211W.M

Quant Title : SW846 8260

QLast Update: Tue May 10 15:02:55 2011

Response via: Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
Internal Standards						
 Pentafluorobenzene 	3.873	168	540849	50.00	ug/l	0.01
34) 1,4-Difluorobenzene	4.676	114	1013909	50.00	ug/l	0.00
64) Chlorobenzene-d5	9.645	117	816719	50.00	ug/l	0.00
73) 1,4-Dichlorobenzene-d4	13.348	152	299422	50.00	ug/l	0.00
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4	3.862	65	308191	51.06	ug/l	0.01
Spiked Amount 50.000					102.12%	
35) Dibromofluoromethane	3.224	113	372259	46.60	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	93.20%	
51) Toluene-d8	7.136	98	1034219	44.23	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	88.46%	
63) 4-Bromofluorobenzene	11.606	95	312644	46.31	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	92.62%	
Target Compounds					Qv	alue
4) Vinyl Chloride	0.896	62	32646	3.41	ug/1 🗸	94
28) cis-1,2-Dichloroethene	2.731	96	41214		ug/1 🗸	96

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : \\Terastorage\voasrv\HPCHEM1\Msvoa_G\Data\VG050611\

Data File: VG034685.D

Acq On : 6 May 2011 19:04

Operator : PS

Sample : C2041-01 Misc : 5mL MSVOA G

ALS Vial : 16 Sample Multiplier: 1

Quant Time: May 07 02:24:45 2011

Quant Method : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G042211W.M

Quant Title : SW846 8260

QLast Update : Fri May 06 11:21:35 2011 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits Dev	(Min)
Internal Standards						
 Pentafluorobenzene 	3.885	168	467503	50.00	ug/l	0.01
34) 1,4-Difluorobenzene	4.681	114	857548		ug/l	0.02
64) Chlorobenzene-d5	9.654	117	707823		ug/l	0.02
73) 1,4-Dichlorobenzene-d4	13.360	152	253960		ug/l	0.01
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4	3.875	65	286841	54.98	ug/l	0.02
Spiked Amount 50.000			Recove		109.96%	
35) Dibromofluoromethane	3.223	113	349756	51.76	ug/l	0.01
Spiked Amount 50.000			Recove	ry =	103.52%	
51) Toluene-d8	7.155	98	896532	45.34	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	90.68%	
63) 4-Bromofluorobenzene	11.609	95	296041	52.08	ug/l	0.00
Spiked Amount 50.000			Recove	ery =	104.16%	
Target Compounds					Qv	alue
Vinyl Chloride	0.907	62	337936	40.87	ug/1	98
21) trans-1,2-Dichloroethene	1.848	96	35030		ug/l	. 97
28) cis-1,2~Dichloroethene	2.742	96	1761981		ug/1	98
45) Trichloroethene	4.565	130	253837		ug/l	
65) Tetrachloroethene	7.840	164	29089		ug/l	91

(#) = qualifier out of range (m) = manual integration (+) = signals summed

CHEMIECH

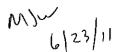
WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН		C	lient: MACTEC Inc.		
Lab Code:	СНЕМ	Cas No:	C2041 SAS N	o: <u>C2041</u>	SDG No: <u>C204</u>	<u> </u>
Matrix Spike	- EPA Sample No :	BSG0506W1	Analytical Method:	EPA SW846 8260	Datafile :	VG034673.D
		SPIKE ADDED	CONCENTRATIO	LCS ON CONCENTRAT	LC:	-
СОМІ	POUND	(ug/L)	(ug/L)	(ug/L)	TON % REC	LIMITS # REC
Dichlorodifl	uoromethane	20	(-g-/	18	90	(35-124)
Chlorometh	ane	20		21	105	(40-125)
Vinyl Chlori	ide	20			110 1	
Bromometh		20		25	125	(44-145)
Chloroethan	ie	20		26	130	(60-135)
Trichloroflu	oromethane	20		22	110	(60-137)
	protrifluoroethane	20		21	105	(52-142)
1,1-Dichloro	ethene	20		21	105	(70-130)
Acctone		100		150	(150*)	(50-140)
Carbon Dist	ılfide	20		20	100	(36-155)
Methyl tert-	butyl Ether	20		22	110	(65-125)
Methyl Acet	ate	20		25	125	(51-158)
Methylene (Chloride	20		21	105	(61-138)
trans-1,2-Di	chloroethene	20		21	105	(60-137)
1,1-Dichloro	ethane	20		23	115	(70-135)
Cyclohexano	9	20		20	100	(56-141)
2-Butanone		100		100	100	(56-150)
Carbon Teta	rachloride	20		18	90	(65-138)
cis-1,2-Dichl	oroethene	20		22	110	(70-125)
Chloroform		20		20	100	(67-135)
1,1,1-Trichle	oroethane	20		21	105	(65-130)
Methylcyclo	hexane	20		16	80	(56-137)
Benzene		20			95	(80-120)
1,2-Dichloro	ethane	20		21	105	(70-130)
Trichloroetl	iene	20		19	95	(70-125)
1,2-Dichlore	propane	20		20	100	(75-125)
Bromodichl	oromethane	20		18	90	(75-120)
4-Methyl-2-	Pentanone	100		99	99	(63-135)
Toluene		20		19	95	(75-120)
t-1,3-Dichlor	ropropenc	20		18	90	(66-135)
cis-1,3-Dich	loropropene	20		18	90	(70-130)
1,1,2-Trichle	oroethane	20		20	100	(75-125)
2-Hexanone		100		110	110	(56-130)
Dibromochl	oromethane	20		19	95	(64-135)

RPD: 0	Out of 0	outside l	imits
Spike Recove	ery: 5	Out of 90	outside limits

Comments:		

MSW 6/23/11


[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

CHEMITECH

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH		Clid	ent: MACTEC Inc.	
Lab Code: CHEM	Cas No:	C2041 SAS No	: <u>C2041</u> SDG	No: C2041
Matrix Spike - EPA Sample No :	BSG0506W1	Analytical Method:	EPA SW846 8260	Datafile: VG034673.D
	SPIKE ADDED	CONCENTED A TYON	LCS	LCS QC
COMPOUND	ADDED (ug/L)	CONCENTRATION (ug/L)	CONCENTRATION (ug/L)	% LIMITS REC# REC
1,2-Dibromoethane	20	, , , , , , , , , , , , , , , , , , ,	21	105 (80-120)
Tetrachloroethene	20		21 🗸	105 (45-178)
Chlorobenzene	20		20	100 (80-120)
Ethyl Benzene	20		19	95 (75-125)
m/p-Xylenes	40		38	95 (75-130)
o-Xylene	20		20	100 (80-120)
Styrene	20		19	95 (65-135)
Bromoform	20		17	85 (70-130)
Isopropylbenzene	20		19	95 (75-125)
1,1,2,2-Tetrachloroethane	20		19	95 (65-130)
1,3-Dichlorobenzene	20		19	95 (75-125)
1,4-Dichlorobenzene	20		19	95 (75-125)
1,2-Dichlorobenzene	20	<u>, j</u>	19	95 (70-120)
1,2-Dibromo-3-Chloropropane	20		17	85 (54-130)
1,2,4-Trichlorobenzene	20		17	85 (65-133)
Cone = 23241= 5353637 Vinyl chlorit CONC = 206	(0.170) e	0) = 21.	8°5/20 = 1	09.02%
PCE 1274 COAC = # Column to be used to flag recovery * Values outside of QC limits RPD: 0 Out of 0 outside lin Spike Recovery: 5 Out of 90 Comments:	nits	0194 (0.368) > h an asterisk	21.05/20	=105.29%

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Clie	ent: MACTEC Inc.			
Lab Code:	СНЕМ	Cas No:	C2041	SAS No	: <u>C2041</u>	SDG N	No: <u>C2041</u>	
Matrix Spike -	EPA Sample No:	BSG0510W1	Analyti	cal Method:	EPA SW846 8260		Datafile : 🔝	G034729,D
	OUND	SPIKE ADDED (ug/L)	СО	NCENTRATION (ug/L)	(ug/L)		REC#	QC LIMITS REC
	oromethane	20					(60)	(35-124)
Chlorometha		20			17		85	(40-125)
Vinyl Chlori		20			1.9		95	(50-144)
Bromomeths		20			21		105	(44-145)
Chloroethan		20			20		100	(60-135)
Trichloroflu		20					95	(60-137)
	rotrifluoroethane	20			20		100	(52-142)
1,1-Dichloro	ethene	20					95	(70-130)
Acetone		100			15		(150*)	(50-140)
Carbon Disu		20	<u> </u>		18		90	(36-155)
Methyl tert-l		20			20		100	(65-125)
Methyl Acet		20		 			110	(51-158)
Methylene C		. 20			24		120	(61-138)
trans-1,2-Die		20			21		105	(60-137)
1,1-Dichloro		20					110	(70-135)
Cyclohexane	:	20			19		95	(56-141)
2-Butanone		100			10		100	(56-150)
Carbon Tetr	achloride	20			1′	1	85	(65-138)
cis-1,2-Dichl	oroethene	20			20)	100	(70-125)
Chloroform		20			19)	95	(67-135)
1,1,1-Trichlo	roethane	20			19)	95	(65-130)
Methylcyclo	hexane	20			1′	7	85	(56-137)
Benzene		20			1.8	3	90	(80-120)
1,2-Dichloro	ethane	20			19)	95	(70-130)
Trichloroeth	ene	20			18	3	90	(70-125)
1,2-Dichloro	propane	20			20)	100	(75-125)
Bromodichlo	romethane	20		<u> </u>	1′	7	85	(75-120)
4-Methyl-2-1	Pentanone	100			98	3	98	(63-135)
Toluene		20			18	3	90	(75-120)
t-1,3-Dichlor	opropene	20			1'	7	85	(66-135)
cis-1,3-Dichl	oropropene	20			1'	7	85	(70-130)
1,1,2-Trichle	roethane	20			19)	95	(75-125)
2-Hexanone		100			10	0	100	(56-130)
Dibromochlo	oromethane	20	l		1)	95	(64-135)

RPD: 0 Out of 0 outside limits				
Spike Recovery: 6	Out of 90 outside limits			
Comments:				

MJW 10/24/11

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

CHEMITECH

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: CHEMTECH Contract: MACT03 C2041 Lab Code: Case No.: SAS No.: C2041 SDG NO.: C2041 VG034670.D Lab File ID: 05/06/2011 BFB Injection Date: Instrument ID: MSVOAG BFB Injection Time: 10:03 ID: 0.18 GC Column: RTX-VMS (mm) Heated Purge: Y/N N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	15.5
75	30.0 - 60.0% of mass 95	40.6
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.2
173	Less than 2.0% of mass 174	0.6 (0.8) 1
174	50.0 - 100.0% of mass 95	80.5
175	5.0 - 9.0% of mass 174	5.8 (7.2) 1
176	95.0 - 101.0% of mass 174	79.6 (98.9 / 1
177	5.0 - 9.0% of mass 176	5.4 (6.8) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VG034671.D	05/06/2011	10:36
VBG0506W1	VBG0506W1	VG034672.D	05/06/2011	12:35
BSG0506W1	BSG0506W1	VG034673.D	05/06/2011	13:10
TRIPBLANK	C2041-02	VG034684.D	05/06/2011	18:35
828131A-SW1,501	C2041-01	VG034685.D	05/06/2011	19:04

$$M/e_{50} = 7653/49481 \cdot 100 = 16,5%$$
 $M/e_{75} = 20102/44488 \cdot 100 = 40.6%$
 $M/e_{96} = 3078/49488 \cdot 100 = 6.2\%$
 $M/e_{174} = 39824/49488 \cdot 100 = 68.5\%$
 $M/e_{174} = 39394/79294 \cdot 100 = 98.9\%$
 $M/e_{174} = 2686/39394 \cdot 100 = 6.8\%$

MSW 6/23/11

DATA USABILITY SUMMARY REPORT JULY AND AUGUST 2011 SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

1.0 INTRODUCTION

Groundwater and soil samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in July and August 2011 and submitted to Chemtech, located in Mountainside, New Jersey for analysis. Analytical results were reported in the following Sample Delivery Groups (SDGs): C3028 and C3214. Groundwater samples were analyzed for one or more of the following parameters:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260B
- Dissolved Gases (methane, ethane, ethane) by RSK-175
- Anions (chloride, nitrate, nitrite, sulfate) by EPA Method 300
- Total Alkalinity (as CaCO₃) by Standard Methods SM2320
- Carbon dioxide by Standard Methods SM2320
- Sulfide by Standard Methods SM4500
- Total Organic Carbon(TOC) by Standard Methods SM5310B
- Iron and manganese by USEPA Method 6010B

In addition, two soil samples were analyzed for TOC using the Lloyd Kahn method.

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions). Tentatively Identified Compounds (TICs) are presented in Table 4.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 quality control (QC) limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

E = analyte concentration exceeds the calibrated range of the instrument

D = analyte concentration is the result of a diluted sample analysis

N = reported as a tentatively identified compounds with uncertainty in the identification

P:\Projects\nysdec1\Contracts D004434 and D004444\projects\Off-Site Carriage Cleaners RI-FS\3.0_Site_Data\3.4_Test_Results\DUSR\Off-

Site Carriage OSCC DUSR C3028 C3214 July 2011.doc

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOLATILE ORGANIC COMPOUNDS (VOCs) – METHOD 8260B

Blanks

The laboratory qualified VOC results with a B if the compound was detected in the associated method blank. During validation, the B qualifier was removed from the final data set if the result was qualified not detected (U).

SDG C3214

The aqueous method blank (VBG0815W1) analyzed on August 15, 2011 had a detection of 1,1,1-trichloroethane at 7.6 μ g/L. An action level (38 μ g/L) was established at five times the reported blank concentration and was compared to associated sample results. 1,1,1-Trichloroethane was reported at 8.6 μ g/L in sample 828131A-MW05012 and was qualified as not detected (U).

Surrogates

Surrogate percent recoveries in aqueous samples were evaluated based on limits of 80 - 120 percent for surrogates dibromofluoromethane (DBFM), 1,2-dichloroethane-d4 (DCE), toluene-d9 (TOL), and bromofluorobenzene (BFB).

SDG C3214

The following samples had surrogate recoveries that were outside the QC limits:

Field Sample ID	Surrogate	Percent Recovered
828131A-DP10013	DCE	142
828131A-MW07012 (50X dilution)	DCE	48
828131A-MW07012 (50X dilution)	DBFM	50
828131A-MW07012 (50X dilution)	TOL	49
828131A-MW07012 (50X dilution)	BFB	42

The results for detected compounds in sample 828131A-DP10013 were qualified estimated (J). The result for cis-1,2-dichloroethene (reported from the 50X dilution analysis) in sample 828131A-MW07012 was qualified estimated (J).

Continuing Calibration

SDG C3214

Cyclohexane (23) had a percent difference (%D) above the control limit of 20 in the continuing calibration analyzed on August 12, 2011 at 17:48. Cyclohexane was not detected in the associated sample (828131A-MW02012) and the reporting limit was qualified estimated (UJ).

The following compounds had a %D above the control limit of 20 in the continuing calibration analyzed on August 15, 2011 at 10:39: vinyl chloride (-35), chloroethane (-28), trichlorofluoromethane (-32), and carbon disulfide (-25). These compounds were qualified estimated (J/UJ) in 828131A-DP28018 and 828131A-DP15013.

The following compounds had a %D above the control limit of 20 in the continuing calibration analyzed on August 16, 2011 at 10:31: vinyl chloride (-22) and trichlorofluoromethane (-21). These compounds were not detected in the associated sample (828131A-MW6035) and the reporting limit was qualified estimated (UJ).

Laboratory Control Samples (LCS)

The percent recoveries of the laboratory control spikes were evaluated based on the USEPA Region 2 limits of 70 - 130 percent and a RPD of 20 for aqueous samples.

SDG C3214

The percent recoveries of the following compounds were above the upper control limit in the LCS (BSG0815W1) analyzed on August 15, 2011: 1,1,1-trichloroethane (145) and tetrachloroethene (135). 1,1,1-trichloroethane was not detected and no qualification was necessary. Tetrachloroethene in the following associated samples and results were qualified estimated (J): 828131A-DP10013, 828131A-MW05012, 828131A-MW07012, and 828131A-MW12055.

The percent recoveries of the following compounds were above the upper control limit in the LCS (BSR0815W1) analyzed on August 15, 2011: vinyl chloride (145) and tetrachloroethene (145). These compounds were detected in one or more of the following associated samples and results were qualified estimated (J): 828131A-DP15013 (1X, 50X dilution) 828131A-DP28018, 828131A-MW02012 (100X dilution), and 828131A-MW02012DUP (100X dilution).

Matrix Spike (MS/MSD)

The percent recoveries of the matrix spikes were evaluated based on the USEPA Region 2 limits of 70 - 130 percent and a RPD of 20 for aqueous samples.

SDG C3214

Sample 828131A-DP28018 was spiked for MS/MSD analysis. The percent recoveries of acetone (68), carbon disulfide (50 and 52), and styrene (32 and 42) were below the lower control limit. These compounds were not detected in the unspiked sample and the reporting limits were qualified estimated (UJ) in the final data set.

Internal Standards

SDG C3214

Three of the four internal standards in sample 828131A-MW07012 (50X dilution) had area counts that were below the lower control limit. Cis-1,2-dichloroethene was the only compound reported from the 50X dilution analysis. The internal standard (pentafluorobenzene) used to

P:\Projects\nysdec1\Contracts D004434 and D004444\projects\Off-Site Carriage Cleaners RI-FS\3.0_Site_Data\3.4_Test_Results\DUSR\Off-Site Carriage OSCC DUSR C3028 C3214 July 2011.doc

quantify the concentration of cis-1,2-dichloroethene had an area count below the lower control limit and cis-1,2-dichloroethene was qualified estimated (J) in the final data set.

Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported by the laboratory if detected during the VOC analysis. TICs being reported as final results in samples are presented in Table 4. If a sample is not listed, no TICs were reported in the sample, or the TICs were removed as blank contaminants or artifacts of the GC/MS instrument system.

3.0 METALS (IRON AND MANGANESE) - METHOD 6010B

Blanks

SDG C3028

Iron (32 μ g/L) was detected in the method blank associated with samples in SDG C3028. Professional judgment was used to establish a 5X action level at 160 μ g/L and qualify samples. A detection of iron at 121 μ g/L was qualified as not detected (U) in sample 828131A-DP15013.

4.0 TOTAL ORGANIC CARBON – METHOD LLOYD KAHN

Data Reporting

SDG C3028

The results for TOC exceeded the upper end of the calibration line (3200 mg/kg) in samples 828131A-MW11 (4500 mg/kg) and 828131A-MW12 (4900 mg/kg) and results were reported with an "E" qualifier by the laboratory. The laboratory was unable to analyze a mass of sample smaller than 50 milligrams. TOC results were qualified estimated (EJ) in the final data set.

5.0 ANIONS – METHOD 300

Data Reporting

SDG C3028

Chloride analysis by method 300 was requested on the chain of custody for field sample 828131A-MW05012. The laboratory reported results for nitrate, nitrite, sulfate, and chloride for 828131A-MW05012. The nitrate, nitrite, and sulfate results were not removed from the final data set.

NYSDEC Off-Site Carriage Cleaners NYSDEC Site No. C828131A MACTEC Engineering and Consulting, P.C.

Project No. 3612102168

Data Validator: Tige Cunningham

Date: 9/15/11

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Date: 9/26/11

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

	Sample Delivery Group C3028 C3028 C3028 C3214 C3214 C3214												
	Sample Delivery Group	C3028	C3028	C3028	C3214	C3214							
1	Location	DP-33	DP-34	QC	DP-10	DP-12	DP-15						
	Sample Date	7/13/2011	7/13/2011	6/27/2011	8/2/2011	8/2/2011	8/2/2011						
	Sample ID	828131A-DP3325X	828131A-DP3225X	828131A-TRIPBLANK	828131A-DP10013	828131A-DP12013	828131A-DP15013						
	Qc Code	FS	FS.	TB	FS	FS	FS ₄						
A I ! .	Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l						
Analysis SW8260B	Parameter 1,1,1-Trichloroethane	Result Qualifier 1 U	Result Qualifier 1 U	Result Qualifier 1 U	Result Qualifier 1 U	Result Qualifier 1 U	Result Qualifier 1 U						
SW8260B	1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,1,2-Trichloro-1,2,2-Trifluoroethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,1-Dichloroethene	1 U	1 U	1 U	1.9 J	1 U	1.8						
SW8260B	1,2,4-Trichlorobenzene	1 U	1 U	1 U	1.9 J	1 U	1.0 1 U						
SW8260B	1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U						
SW8260B	2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U						
SW8260B	4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U						
SW8260B	Acetic acid, methyl ester	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Acetone	5 U	5 U	5 U	5 U	5 U	5 U						
SW8260B	Benzene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Bromoform	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Bromomethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Carbon disulfide	1 U	1 U	1 U	1 U	1 U	1 UJ						
SW8260B	Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Chlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Chlorodibromomethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Chloroethane	1 U	1 U	1 U	1 U	1 U	1 UJ						
SW8260B	Chloroform	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Chloromethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Cis-1,2-Dichloroethene	1 U	47	1 U	410 D	0.82 J	1100 D						
SW8260B	cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Cyclohexane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Dichlorodifluoromethane	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Ethyl benzene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Isopropylbenzene	1 U	1 U 1 U	1 U	1 U	1 U	1 U						
SW8260B	Methyl Cathytyl Ethan	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U						
SW8260B SW8260B	Methyl Tertbutyl Ether Methylene chloride	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U						
SW8260B SW8260B	Styrene	1 U	1 U	1 U	1 U	1 U	1 U						
SW8260B	Tetrachloroethene	1 U	3.2	1 U	2.2 J	1 U	330 DJ						
SW8260B	Toluene	1 U	3.2 1 U	1 U	2.2 J 1 U	1 U	330 DJ 1 U						
SW8260B	trans-1,2-Dichloroethene	1 U	0.94 J	1 U	15 J	1 U	8.6						
SW8260B	trans-1,3-Dichloropropene	1 U	0.94 J 1 U	1 U	13 3 1 U	1 U	0.0 1 U						
10110200D	trans-1,0-Diomoroproperie	1 0	1 0	10	1.0	1 0	1 10 1						

Checked by: TLC 09/20/11

	Sample Delivery Group	C3028	C3028	C3028	C3214	C3214	C3214
	Location	DP-33	DP-34	QC	DP-10	DP-12	DP-15
	Sample Date	7/13/2011	7/13/2011	6/27/2011	8/2/2011	8/2/2011	8/2/2011
	Sample ID	828131A-DP3325X	828131A-DP3225X	828131A-TRIPBLANK	828131A-DP10013	828131A-DP12013	828131A-DP15013
	Qc Code	FS	FS	TB	FS	FS	FS
	Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Analysis	Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B	Trichloroethene	1 U	3.5	1 U	70 D	1 U	610 D
SW8260B	Trichlorofluoromethane	1 U	1 U	1 U	1 U	1 U	1 UJ
SW8260B	Vinyl chloride	1 U	2.1	1 U	86 D	2.7	7.9 J
SW8260B	Xylene, o	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Xylenes (m&p)	2 U	2 U	2 U	2 U	2 U	2 U
RSK175	Ethane				5 U		5 U
RSK175	Ethene				5 U		5 U
RSK175	Methane				13.56		4.1 J

Notes:

Qualifier: U = not detected, J = estimated result
D = result from a dilution analysis

QC Code: FS = Field Sample, TB = Trip Blank,

FD = Field Duplicate

ug/L = microgram per liter

	PENFIELD, NEW YORK											
	Sample Delivery Group	C3214	C3214	C3214	C3214	C3214	C3214					
	Location	DP-22	DP-23	DP-27	DP-28	IDW	MW-11					
	Sample Date	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011					
	Sample ID	828131A-DP22015	828131A-DP23015	828131A-DP27015	828131A-DP28018	828131A-MW-11-MW-12	828131A-MW11055					
	Qc Code	FS	FS	FS	FS	FS	FS					
	Units	ug/l	ug/l	ug/l	ug/l	ug/kg	ug/l					
Analysis	Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier					
SW8260B	1,1,1-Trichloroethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,1,2-Trichloro-1,2,2-Trifluoroethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,1-Dichloroethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,1-Dichloroethene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,2-Dibromoethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,2-Dichloroethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,2-Dichloropropane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	2-Butanone	5 U	5 U	5 U	5 U	29 U	5 U					
SW8260B	2-Hexanone	5 U	5 U	5 U	5 U	29 U	5 U					
SW8260B	4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	29 U	5 U					
SW8260B	Acetic acid, methyl ester	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Acetone	5 U	5 U	5 U	5 UJ	29 U	5 U					
SW8260B	Benzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Bromodichloromethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Bromoform	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Bromomethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Carbon disulfide	1 U	1 U	1 U	1 UJ	5.8 U	1 U					
SW8260B	Carbon tetrachloride	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Chlorobenzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Chlorodibromomethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Chloroethane	1 U	1 U	1 U	1 UJ	5.8 U	1 U					
SW8260B	Chloroform	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Chloromethane	0.69 J	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Cis-1,2-Dichloroethene	1 U	240 D	1 U	5.1	32	1.9					
SW8260B	cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Cyclohexane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Dichlorodifluoromethane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Ethyl benzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Isopropylbenzene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Methyl cyclohexane	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Methyl Tertbutyl Ether	1 U	0.54 J	1 U	1 U	5.8 U	1 U					
SW8260B	Methylene chloride	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	Styrene	1 U	1 U	1 U	1 UJ	5.8 U	1 U					
SW8260B	Tetrachloroethene	1 U	1 U	1 U	1 U	4.4 J	1 U					
SW8260B	Toluene	1 U	1 U	1 U	1 U	5.8 U	1 U					
SW8260B	trans-1,2-Dichloroethene	1 U	8.1	1 U	1 U	5.8 U	1 U					
SW8260B	trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	5.8 U	1 U					

	Sample Delivery Group	C3214	C3214	C3214	C3214	C3214	C3214	
	Location	DP-22	DP-23	DP-27	DP-28	IDW	MW-11	
	Sample Date	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011	
	Sample ID	828131A-DP22015	828131A-DP23015	828131A-DP27015	828131A-DP28018	828131A-MW-11-MW-12	828131A-MW11055	
	Qc Code	FS	FS	FS	FS	FS	FS	
	Units	ug/l	ug/l	ug/l	ug/l	ug/kg	ug/l	
Analysis	Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260B	Trichloroethene	1 U	1 U	1 U	1 U	4.2 J	1 U	
SW8260B	Trichlorofluoromethane	1 U	1 U	1 U	1 UJ	5.8 U	1 U	
SW8260B	Vinyl chloride	130	120	1 U	4.5 J	4.3 J	1 U	
SW8260B	Xylene, o	1 U	1 U	1 U	1 U	5.8 U	1 U	
SW8260B	Xylenes (m&p)	2 U	2 U	2 U	2 U	12 U	2 U	
RSK175	Ethane		5 U				5 U	
RSK175	Ethene		5 U				5 U	
RSK175	Methane		16.85				3.59 J	

Notes:

Qualifier: U = not detected, J = estimated result
D = result from a dilution analysis

QC Code: FS = Field Sample, TB = Trip Blank,

FD = Field Duplicate

ug/L = microgram per liter

	Sample Delivery Group	C3214	C3214	C3214	C3214	C3214	C3214
		MW-12	MW-2	MW-2	MW-5		MW-7
	Location Sample Date	8/2/2011	8/2/2011	8/2/2011	8/2/2011	MW-6M 8/2/2011	8/2/2011
	Sample Date Sample ID	828131A-MW12055	828131A-MW02012	828131A-MW02012DUP	828131A-MW05012	828131A-MW6035	828131A-MW07012
	Qc Code	FS	626131A-WW02012 FS	FD	FS	FS	FS
	Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Analysis	Parameter	ug/i Result Qualifier	Result Qualifier	Result Qualifier	ug/i Result Qualifier	ug/i Result Qualifier	ug/i Result Qualifier
SW8260B	1,1,1-Trichloroethane	1 U	1 U	1 U	8.6 U	1 U	1 U
SW8260B	1,1,2,2-Tetrachloroethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,1,2-Trichloro-1,2,2-Trifluoroethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,1,2-Trichloroethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,1-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,1-Dichloroethene	1 U	2.5	3.2	1 U	1 U	7.6
SW8260B	1,2,4-Trichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,2-Dibromo-3-chloropropane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,2-Dibromoethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,2-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,2-Dichloroethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,2-Dichloropropane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,3-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	1,4-Dichlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B	2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B	4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B	Acetic acid, methyl ester	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Acetone	5 U	5 U	5 U	5 U	5 U	5 U
SW8260B	Benzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Bromodichloromethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Bromoform	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Bromomethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Carbon disulfide	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Carbon tetrachloride	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Chlorobenzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Chlorodibromomethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Chloroethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Chloroform	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Chloromethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Cis-1,2-Dichloroethene	130	1400 D	1500 D	0.81 J	1 U	2500 DJ
SW8260B	cis-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Cyclohexane	1 U	1 UJ	1 U	1 U	1 U	1 U
SW8260B	Dichlorodifluoromethane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Ethyl benzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Isopropylbenzene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Methyl cyclohexane	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Methyl Tertbutyl Ether	1.1	1 U	1 U	1 U	1 U	1 U
SW8260B	Methylene chloride	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Styrene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Tetrachloroethene	0.98 J	1300 DJ	1300 DJ	14 J	1 U	11 J
SW8260B	Toluene	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	trans-1,2-Dichloroethene	4.2	47	31	1 U	1 U	32
SW8260B	trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U

	Sample Delivery Group	C3214	C3214	C3214	C3214	C3214	C3214
	Location	MW-12	MW-2	MW-2	MW-5	MW-6M	MW-7
	Sample Date	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011	8/2/2011
	Sample ID	828131A-MW12055	828131A-MW02012	828131A-MW02012DUP	828131A-MW05012	828131A-MW6035	828131A-MW07012
	Qc Code	FS	FS	FD	FS	FS	FS
	Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Analysis	Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260B	Trichloroethene	2.9	660 D	680 D	1.9	0.67 J	78
SW8260B	Trichlorofluoromethane	1 U	1 U	1 U	1 U	1 UJ	1 U
SW8260B	Vinyl chloride	110	63	71	1 U	1 UJ	89
SW8260B	Xylene, o	1 U	1 U	1 U	1 U	1 U	1 U
SW8260B	Xylenes (m&p)	2 U	2 U	2 U	2 U	2 U	2 U
RSK175	Ethane		5 U				5 U
RSK175 Ethene			5 U				5 U
RSK175	Methane		5.63				12.64

Notes:

Qualifier: U = not detected, J = estimated result
D = result from a dilution analysis

QC Code: FS = Field Sample, TB = Trip Blank,

FD = Field Duplicate

ug/L = microgram per liter

	Sample Delivery Group	C3214
	Location	QC
	Sample Date	8/2/2011
	Sample ID	TRIPBLANK
	Qc Code	ТВ
	Units	ug/l
Analysis	Parameter	Result Qualifier
SW8260B	1,1,1-Trichloroethane	1 U
SW8260B	1,1,2,2-Tetrachloroethane	1 U
SW8260B	1,1,2-Trichloro-1,2,2-Trifluoroethane	1 U
SW8260B	1,1,2-Trichloroethane	1 U
SW8260B	1,1-Dichloroethane	1 U
SW8260B	1,1-Dichloroethene	1 U
SW8260B	1,2,4-Trichlorobenzene	1 U
SW8260B	1,2-Dibromo-3-chloropropane	1 U
SW8260B	1,2-Dibromoethane	1 U
SW8260B	1,2-Dichlorobenzene	1 U
SW8260B	1,2-Dichloroethane	1 U
SW8260B	1,2-Dichloropropane	1 U
SW8260B	1,3-Dichlorobenzene	1 U
SW8260B	1,4-Dichlorobenzene	1 U
SW8260B	2-Butanone	5 U
SW8260B	2-Hexanone	5 U
SW8260B	4-Methyl-2-pentanone	5 U
SW8260B	Acetic acid, methyl ester	1 U
SW8260B	Acetone	5 U
SW8260B	Benzene	1 U
SW8260B	Bromodichloromethane	1 U
SW8260B	Bromoform	1 U
SW8260B	Bromomethane	1 U
SW8260B	Carbon disulfide	1 U
SW8260B	Carbon tetrachloride	1 U
SW8260B	Chlorobenzene	1 U
SW8260B	Chlorodibromomethane	1 U
SW8260B	Chloroethane	1 U
SW8260B	Chloroform	1 U
SW8260B	Chloromethane	1 U
SW8260B	Cis-1,2-Dichloroethene	1 U
SW8260B	cis-1,3-Dichloropropene	1 U
SW8260B	Cyclohexane	1 U
SW8260B	Dichlorodifluoromethane	1 U
SW8260B	Ethyl benzene	1 U
SW8260B	Isopropylbenzene	1 U
SW8260B	Methyl cyclohexane	1 U
SW8260B	Methyl Tertbutyl Ether	1 U
SW8260B	Methylene chloride	1 U
SW8260B	Styrene	1 U
SW8260B	Tetrachloroethene	1 U
SW8260B	Toluene	1 U
SW8260B	trans-1,2-Dichloroethene	1 U
SW8260B	trans-1,3-Dichloropropene	1 U

	Sample Delivery Group	C3214
	Location	QC
	Sample Date	8/2/2011
	Sample ID	TRIPBLANK
	Qc Code	TB
	Units	ug/l
Analysis	Parameter	Result Qualifier
SW8260B	Trichloroethene	1 U
SW8260B	Trichlorofluoromethane	1 U
SW8260B	Vinyl chloride	1 U
SW8260B	Xylene, o	1 U
SW8260B	Xylenes (m&p)	2 U
RSK175	Ethane	
RSK175	Ethene	
RSK175	Methane	

Notes:

Qualifier: U = not detected, J = estimated result

D = result from a dilution analysis
QC Code: FS = Field Sample, TB = Trip Blank,

FD = Field Duplicate

ug/L = microgram per liter

	Sample Delive	ry Group	C3	028	C3	028	C3	214	C3	214	C3:	214	C3	214	
		Location	MV	V-11	MW-12		DP-10		DP-15		DP-23		MW-11		
	San	nple Date	7/11	7/11/2011		/2011	8/2/2	8/2/2011		2011	8/2/2	2011	8/2/	2011	
	S	Sample ID	828131A-MW11		828131	A-MW12	828131A	-DP10013	828131A	-DP15013	828131A-	-DP23015	828131A-	MW11055	
		Qc Code	F	S	FS		F	S	F	S	F	S	F	S	
Analysis	is Parameter Units		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
SW6010B	Iron	ug/l					834		121	U	1450		254		
SW6010B	Manganese	ug/l					831		412	412		219		98.7	
E300.0	Chloride	mg/l					250 D		250 D		260 D		500 D		
E300.0	Nitrate as N	mg/l					0.1	U	0.1	U	0.1	U	0.1	U	
E300.0	Nitrite as N	mg/l			0.15 U		0.15 U		0.15 U		0.15 U				
E300.0	Sulfate	mg/l					280 D		150 D		71 D		88	D	
Lloyd Kahn	Total Organic Carbon	mg/kg	4,500	EJ	4,900	EJ									
SM5310B	Total Organic Carbon	mg/l					2		3.7		3.9		2.9		
SM 2320 B	Total Alkalinity, as CaCO3	mg/l					520		400		420		400		
SM2320 B	Carbon Dioxide	mg/l					540		400		400 420			390	
SM4500 S	Sulfide	mg/l					1	U	1	U	1	U	1	U	

Notes:

Qualifier: U = not detected, J = estimated result

D = result from a dilution analysis

E = result exceeded the calibration of the instrument

QC Code: FS = Field Sample, TB = Trip Blank,

FD = Field Duplicate ug/L = microgram per liter

mg/L = milligram per liter

mg/kg = milligram per kilogram

	Sample Delive	ry Group	C32	214	C3	C3214		214
		Location	MW-2		MW-5		MV	V-7
	San	nple Date	8/2/2011		8/2/2011		8/2/2011	
	S	828131A-l	MW02012	828131A	-MW05012	828131A-	MW07012	
		F	S	F	S	F	S	
Analysis	Parameter	Result	Qualifier	Result	Qualifier	Result	Qualifier	
SW6010B	Iron ug/l		1920				728	
SW6010B	Manganese	ug/l	564				711	
E300.0	Chloride	mg/l	350 D		320 D		350	D
E300.0	Nitrate as N	mg/l	0.1	0.1 U		0.1 U		U
E300.0	Nitrite as N	mg/l	0.15	U	0.15 U		0.15	U
E300.0	Sulfate	mg/l	120	D	120 D		130 D	
Lloyd Kahn	Total Organic Carbon	mg/kg						
SM5310B	'		4.9				4	
SM 2320 B Total Alkalinity, as CaCO3 mg/l		420	420		420			
SM2320 B	SM2320 B Carbon Dioxide mg/l		440		430		440	
SM4500 S	Sulfide	mg/l	1	U			1 U	

Notes:

Qualifier: U = not detected, J = estimated result

D = result from a dilution analysis

E = result exceeded the calibration of the instrument QC Code: FS = Field Sample, TB = Trip Blank,

FD = Field Duplicate

ug/L = microgram per liter mg/L = milligram per liter

mg/kg = milligram per kilogram

									NA Parameters	NA Parameters	NA Parameters	NA Parameters	NA Parameters	NA Parameters
					Class	VOC	Metals	TOC	Anions	CO2	Alkalinity	Sulfide	Dissolved Gases	TOC
				Analysis N	1ethod	SW8260B	SW6010B	Lloyd Kahn	E300.0	SM 2320 B	SM2320 B	SM4500 S	RSK175	SM5310B
				F	raction	T	T		T	T	T	T	T	T
SDG	Location	Sample Date	Sample ID	Qc Code										
C3028	DP-32	7/13/2011	828131A-DP3225X	FS	GW	X								
C3028	DP-33		828131A-DP3325X	FS	GW	X								
C3028	MW-11		828131A-MW11	FS	SOIL			X						
C3028	MW-12	7/13/2011	828131A-MW12	FS	SOIL			X						
C3028	QC	7/14/2011	828131A-TRIPBLANK	TB	GW	X								
C3214	DP-10	8/2/2011	828131A-DP10013	FS	GW	X	X		X	X	X	X	X	X
C3214	DP-12	8/2/2011	828131A-DP12013	FS	GW	X								
C3214	DP-15	8/2/2011	828131A-DP15013	FS	GW	X	X		X	X	X	X	X	X
C3214	DP-22	8/2/2011	828131A-DP22015	FS	GW	X								
C3214	DP-23	8/2/2011	828131A-DP23015	FS	GW	X	X		X	X	X	X	X	X
C3214	DP-27	8/2/2011	828131A-DP27015	FS	GW	X								
C3214	DP-28	8/2/2011	828131A-DP28018	FS	GW	X								
C3214	MW-11	8/2/2011	828131A-MW11055	FS	GW	X	X		X	X	X	X	X	X
C3214	MW-12	8/2/2011	828131A-MW12055	FS	GW	X								
C3214	MW-2	8/2/2011	828131A-MW02012	FS	GW	X	X		X	X	X	X	X	X
C3214	MW-2	8/2/2011	828131A-MW02012DUP	FD	GW	X								
C3214	MW-5	8/2/2011	828131A-MW05012	FS	GW	X			X	X	X			
C3214	MW-6M	8/2/2011	828131A-MW6035	FS	GW	X								
C3214	MW-7	8/2/2011	828131A-MW07012	FS	GW	X	X		X	X	X	X	X	X
C3214	QC	8/2/2011	TRIPBLANK	TB	BW	X								·
C3214	IDW	8/2/2011	828131A-MW-11-MW-12	FS	SOIL	X								

Notes:

FS = field sample

FD = field duplicate

TB = trip blank

GW = groundwater

BW = blank water

IDW = investigation derived waste sample

QC = quality control

Produced by: BJS 8/25/11 Checked by: TLC 9/15/11

SDG	Lab Sample Id	Analysis Method	Field Sample ID	Paramater Name	Lab Result	Lab Qualifier	Validated Result	Validation Qualifier	Val Reason Code	Result Units	Lab Id
C3028	C3028-03	Lloyd Kahn	828131A-MW11	Total Organic Carbon	3200	U	4,500		E	mg/kg	CCGE
C3028	C3028-04	Lloyd Kahn	828131A-MW12	Total Organic Carbon	3200	U	4,900	EJ	E	mg/kg	CCGE
C3214	C3214-12	SW6010B	828131A-DP15013	Iron	121		121	U	BL1	ug/l	CCGE
C3214	C3214-04	SW8260B	828131A-MW05012	1,1,1-Trichloroethane	8.6	В	8.6	U	BL-1	ug/l	CCGE
C3214	C3214-07	SW8260B	828131A-DP10013	1,1-Dichloroethene	1.9		1.9	J	SS-H	ug/l	CCGE
C3214	C3214-14	SW8260B	828131A-DP28018	Acetone	5	U	5	UJ	MS-L		CCGE
C3214	C3214-12	SW8260B	828131A-DP15013	Carbon disulfide	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-14	SW8260B	828131A-DP28018	Carbon disulfide	1	U	1	UJ	MS-L, CCV%D	ug/l	CCGE
C3214	C3214-12	SW8260B	828131A-DP15013	Chloroethane	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-14	SW8260B	828131A-DP28018	Chloroethane	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-05DL	SW8260B	828131A-MW07012	Cis-1,2-Dichloroethene	2500	D	2,500	DJ	SS-L, IS-L	ug/l	CCGE
C3214	C3214-02	SW8260B	828131A-MW02012	Cyclohexane	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-14	SW8260B	828131A-DP28018	Styrene	1	U	1	UJ	MS-L	ug/l	CCGE
C3214	C3214-02DL	SW8260B	828131A-MW02012	Tetrachloroethene	1300	D	1,300	DJ	LCS-H	ug/l	CCGE
C3214	C3214-03DL	SW8260B	828131A-MW02012DUP	Tetrachloroethene	1300	D	1,300	DJ	LCS-H	ug/l	CCGE
C3214	C3214-04	SW8260B	828131A-MW05012	Tetrachloroethene	14		14	J	LCS-H	ug/l	CCGE
C3214	C3214-05	SW8260B	828131A-MW07012	Tetrachloroethene	11		11	J	LCS-H	ug/l	CCGE
C3214	C3214-07	SW8260B	828131A-DP10013	Tetrachloroethene	2.2		2.2	J	SS-H, LCS-H		CCGE
C3214	C3214-09	SW8260B	828131A-MW12055	Tetrachloroethene	0.98	J	0.98	J	LCS-H	ug/l	CCGE
C3214	C3214-12DL	SW8260B	828131A-DP15013	Tetrachloroethene	330	D	330	DJ	LCS-H	ug/l	CCGE
C3214	C3214-07	SW8260B	828131A-DP10013	trans-1,2-Dichloroethene	15		15	J	SS-H	ug/l	CCGE
C3214	C3214-01	SW8260B	828131A-MW6035	Trichlorofluoromethane	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-12	SW8260B	828131A-DP15013	Trichlorofluoromethane	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-14	SW8260B	828131A-DP28018	Trichlorofluoromethane	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-01	SW8260B	828131A-MW6035	Vinyl chloride	1	U	1	UJ	CCV%D	ug/l	CCGE
C3214	C3214-12	SW8260B	828131A-DP15013	Vinyl chloride	7.9		7.9	J	LCS-H, CCV%D	ug/l	CCGE
C3214	C3214-14	SW8260B	828131A-DP28018	Vinyl chloride	4.5		4.5	J	LCS-H, CCV%D	ug/l	CCGE

Notes:

Val Reason Code

E = Result exceeds calibration reange

BL-1 = method blank qualifier

CCV%D = continuing calibration %D exceeds goal

LCS-H = LCS recovery is high

MS-L = Matrix spike recover is low

Qualifier: U = not detected, J = estimated result

D = result from a dilution analysis

E = result exceeded the calibration of the instrument

ug/L = microgram per liter

mg/kg = milligram per kilogram

Checked by: TLC 09/20/11

				sample_type	Lab_Del_G			result_		result_	
sample_name	sys_sample_code	sample_date	lab_sample_id		roup		chemical_name	value	Final Qual	unit	analysis_date
828131A-MW-11-MW-12	828131A-MW-11-MW-12	8/2/2011	C3214-17	FS	C3214	110-54-3	Hexane	8.9	JN	ug/kg	8/4/2011

VOCs

	·NO-Quale
Pro Me Lab	SDEC DUSR PROJECT CHEMIST REVIEW RECORD ject: Off-site Carriage Cleavers thod: SW-846 8260B and TOC by Lloyd Kahn poratory and SDG(s): (3028 SDG# Lab = Chemtech
Dat	ie: 9-12-11
Rev	viewer: Tige Cuaninghar view Level X NYSDEC DUSR USEPA Region II Guideline
1.	Were problems noted? Where all the samples on the COC analyzed for the requested analyses? (YES) NO (circle one)
2.	Molding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
3.	QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one)
4.	Instrument Tuning Were all results were within method criteria. YES NO (circle one)
5.	Instrument Calibration Were all results within criteria? YES NO (circle one) Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Continuing Calibration %D = 20%
6.	Internal Standards (Area Limits = -50% to +100%, RT's within 30 seconds of mid point cal Std) Were all results within criteria? YES NO (circle one)
7.	Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)
	Were all results were within Region II limits? (YES)NO (circle one)
8.	Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35)
	Were MS/MSDs submitted/analyzed? YES NO Not Submitted
	Were all results were within the Region II limits? YES NO (NA)(circle one)
9.	Duplicates/replicates - Region II Limits (water RPD 50, soil RPD 100)
	Were Field Duplicates submitted/analyzed? YES NO
	Were all results were within Region Il Limits? YES NO(NA) (circle one)
10.	Laboratory Control Sample Results - Region II (Water and soil 70-130%)
11.	Were all results were within Region II control limits? YES (NO) (circle one) 7-Hexanue @ 140% No defeations Machine W Raw Data Review and Calculation Checks
12.	Raw data Reviewed for Cis DIEE on Sample 828131A-DP3225X Electronic Data Review and Edits Does the EDD match the Form I's? YES NO (circle one)
13.	TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs? YES NO (circle one)
	Codes), Table 4 (TIC's). Did lab report TICs? YES NO (circle one) Results for TO C TI (s not regrested (circle one) Results for TO C Results Over Calibration and Results Over facility.

Report of Analysis

MACTEC Inc. Date Collected: 07/13/11 Client: Carriage Cleantown Date Received: 07/15/11 Project: Client Sample ID: 828131A-DP3225X SDG No.: C3028 Lab Sample ID: C3028-01 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Final Vol: Units: mL 5000 Test: VOC-TCLVOA-10 Soil Aliquot Vol: uL GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG036177.D 1 07/15/11 VG071511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units	
TARGETS					 		
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L	
74-87-3	Chloromethane	1	U	0.2	1	ug/L	
75-01-4	Vinyl Chloride	2.1		0.34	1	ug/L	
74-83-9	Bromomethane	1	U	0.2	1	ug/L	
75-00-3	Chloroethane	1	U	0.2	1	ug/L	
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U ·	0.45	1	ug/L	
75-35-4	1,1-Diehloroethene	1	U	0.47	1	ug/L	
67-64-1	Acetone	5	U	0.5	5	ug/L	
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L	
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L	
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L	
75-09-2	Methylene Chioride	1	U	0.41	1	ug/L	
156-60-5	trans-1,2-Dichloroethene	0.94	J	0.41	1	ug/L	
75-34-3	1,1-Dichloroethane	1	υ	0.36	1	ug/L	
110-82-7	Cyclohexane	1	U	0.2	1	ug/L	
78-93-3	2-Butanone	5	U	1.3	5	ug/L	
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L	
156-59-2	cis-1,2-Dichloroethene	47		0.35	1	ug/L	
67-66-3	Chloroform	1	· U	0.34	1	ug/L	
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L	
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L	
71-43-2	Велгеле	1	U	0.32	1	ug/L	
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L	
79-01-6	Trichloroethene	3.5		0.28	1	ug/L	
78-87 - 5	1,2-Dichloropropane	1	υ	0.46	1	ug/L	
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L	
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L	
108-88-3	Toluene	1	U	0.37	1	ug/L	
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L	
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L	

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-DP3225X

Lab Sample ID: C3028-01 Analytical Method: SW8260B

Sample Wt/Vol:

Units: Soil Aliquot Vol:

GC Column:

RTX-VMS

uL

mL

ID: 0.18

Date Collected:

Date Received:

07/13/11

07/15/11

SDG No.:

Matrix:

C3028 WATER

% Moisture:

100

Final Vol:

5000

VOC-TCLVOA-10

uL

Test: Level:

LOW

File ID/Qc Batch:

VG036177.D

Dilution:

1

Prep Date

Date Analyzed

07/15/11

Prep Batch ID

VG071511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units	
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L	
591-78-6	2-Hexanone	5	U	1.9	5	ug/L	
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L	
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L	
127-18-4	Tetrachloroethene	3.2		0.27	1	ug/L	
108-90-7	Chlorobenzene	1 .	U	0.49	1	ug/L	
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L	
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L	
95-47-6	o-Xylene	1	U	0.43	1	ug/L	
100-42-5	Styrene	1	U	0.36	1	ug/L	
75-25-2	Bromoform	1	U	0.47	1	ug/L	
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L	
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L	
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L	
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L	
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L	
SURROGATES	S						
17060-07-0	1,2-Dichloroethane-d4	44.3		66 - 150	89%	SPK: :	
1868-53-7	Dibromofluoromethane	47.9		76 - 130	96%	SPK:	
2037-26-5	Toluene-d8	48		78 - 121	96%	SPK:	
460-00-4	4-Bromofluorobenzene	50.4		70 - 131	101%	SPK:	
INTERNAL ST							
363-72-4	Pentafluorobenzene	373812	3.91				
540-36-3	1,4-Difluorobenzene	660181	4.72				
3114-55-4	Chlorobenzene-d5	479719	9.68				
3855-82-1	1,4-Dichlorobenzene-d4	216137	13.4				

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-DP3325X

Lab Sample ID:

Analytical Method: SW8260B

Sample Wt/Vol:

5

C3028-02

Units: mL

Soil Aliquot Vol:

RTX-VMS

1

uL ID: 0.18 Date Collected:

Date Received:

07/13/11 07/15/11

vca. 07/1.

SDG No.: C3028

WATER

% Moisture:

Final Vol:

100 5000

VOC-TCLVOA-10

Test: Level :

Matrix:

LOW

File ID/Qc Batch:

VG036179.D

GC Column:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

07/16/11

VG071511

AS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3.	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0,2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	\mathbf{U}	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	υ	0.46	1 .	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

TCalistu

Report of Analysis

Client: MACTEC Inc. Date Collected: 07/13/11 Project: Carriage Cleantown Date Received: 07/15/11 Client Sample ID: 828131A-DP3325X SDG No.: C3028 Lab Sample ID: C3028-02 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 Soil Aliquot Vol:

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID VG036179.D 07/16/11 VG071511

Test:

VOC-TCLVOA-10

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroetbane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	48.1		66 - 150	96%	SPK: 50
1868-53-7	Dibromofluoromethane	49.9		76 - 130	100%	SPK: 50
2037-26-5	Toluene-d8	51.1		78 - 121	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	48.1		70 - 131	96%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	389032	3.91			
540-36-3	1,4-Difluorobenzene	668131	4.72			
3114-55-4	Chlorobenzene-d5	510172	9.69			
3855-82-1	1,4-Dichlorobenzene-d4	224049	13.39			

Soil Aliquot Vol:

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax : 908 789 8922

Report of Analysis

Client: MACTEC Inc. Date Collected: 06/27/11 Project: Carriage Cleantown Date Received: 07/15/11 Client Sample ID: 828131A-TRIPBLANK SDG No.: C3028 Lab Sample ID: C3028-05 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: шL Final Vol: 5000

Test:

VOC-TCLVOA-10

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

Terra is the leavest the leave

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VG036176.D 1 07/15/11 VG071511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS	•					<u> </u>
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	υ	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc.

Carriage Cleantown

Client Sample ID:

828131A-TRIPBLANK

Lab Sample ID:

Project:

C3028-05

Analytical Method: Sample Wt/Vol:

SW8260B

Units: mL

Soil Aliquot Vol:

иL

GC Column:

460-00-4

RTX-VMS

ID: 0.18

Date Collected:

06/27/11

Date Received:

07/15/11

SDG No.:

C3028 WATER

Matrix:

% Moisture:

100 5000

Final Vol:

VOC-TCLVOA-10

иL

Test: Level:

Low

1

1

103%

91%

103%

99%

70 - 131

File ID/Qc Batcl VG036176.D	h: Dilution:	Dilution: Prep Date				Prep Batch ID VG071511	1
CAS Number	гления продолжения при выправности в при выправности в при выправности в при	2017年18日12日12日12日12日12日12日12日12日12日12日12日12日12日	Conc.	07/15/11 Augustus of the second of the seco	MDL	LOQ/CRQL	Units
79-00-5	1,1,2-Trichloroethane		1	U	0.38	1	ug/L
591-78-6	2-Hexanone		5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	•	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane		1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene		1	U	0.27	1	u g /L
108-90-7	Chlorobenzene		1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene		1	ŢŢ	0.2	1	ng/I

100-41-4 Ethyl Benzene 0.2 ug/L 2 179601-23-1 m/p-Xylenes U 0.95 2 ug/L 95-47-6 o-Xylene 1 U 0.43 1 ug/L 100-42-5 Styrene U 0.36 1 ug/L 75-25-2 Bromoform U 0.47 1 ug/L 98-82-8 Isopropylbenzene U 0.45 1 ug/L 79-34-5 1,1,2,2-Tetrachloroethane U 0.31 1 ug/L 541-73-1 1.3-Dichlorobenzene U 0.43 ug/L 1,4-Dichlorobenzene 106-46-7 U 0.32 ug/L

49.5

95-50-1 1,2-Dichlorobenzene U 0.45 96-12-8 1,2-Dibromo-3-Chloropropane U 0.46 U 120-82-1 1,2,4-Trichlorobenzene 1 0.2 SURROGATES 1.2-Dichloroethane-d4 17060-07-0 51.6 66 - 150 1868-53-7 Dibromofluoromethane 45.6 76 - 130 2037-26-5 Toluene-d8 51.3 78 - 121

INTERNAL STANDARDS Pentafluorobenzene 434709 363-72-4 3.91 540-36-3 1,4-Difluorobenzene 772735 4.73 Chlorobenzene-d5 3114-55-4 604864 9.69 1,4-Dichlorobenzene-d4 3855-82-1 257495 13,39

4-Bromofluorobenzene

ug/L

ug/L

ug/L

SPK: 50

SPK: 50

SPK: 50

SPK: 50

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

07/11/11

Project:

Carriage Cleantown

Date Received:

07/15/11

Client Sample ID:

828131A-MW11

SDG No.:

C3028

Lab Sample ID:

C3028-03

Matrix:

SOIL

% Solid:

87.9

Parameter	Conc. Qua.	DF	MDL	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.
TOC	4500 E J. ORS.)1	100	100	mg/Kg	07/19/11	07/19/11	Lloyd Kahn

Comments:

T(aliz/11

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

07/13/11

Project:

Carriage Cleantown

Date Received:

07/15/11

Client Sample ID:

828131A-MW12

SDG No.:

C3028

Lab Sample ID:

C3028-04

Matrix:

SOIL

% Solid:

86.7

Parameter	Conc. Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
TOC	4900 ETOR	1	100	100	mg/Kg	07/19/11	07/19/11	Lloyd Kalın

9/12/11 TC

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

CHAIN OF CUSTODY RECORD

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH PROJECT NO. QUOTE NO.

083112 COC Number.

CLIENT BILLING INFORMATION	#Od		STATE: ZIP:	PHONE	ANALYSIS		7 8 9	COMMENTS	+- Specify Preservatives A - HCI B - HNO,	7 8 9 E-ICE F-Other											Non Complant Cooler Temp.		CLIENT: CHAND DELIVERED MOVERNIGHT SHipmont Complete: CHEMTECH: CH	сору
	BIL TO	ADDRESS:	CITY:	ATTENTION:			2007	PRESERVATIVES		4. 5 6											ON INCLUDING COUP	MeOH extraction requires an additional 4 bz jar for percent solid. Comments:		PINK - SAMPLER COPY
TION	Clowing	LOCATION: PENTENDED IN	Straffes	racke, com		1 1	sp.w. 626000		4 6	1 2 3	ĸ	X	X	3	*						HANGE POSSESSI	ires an additional 4 6	SHIPPED VIA:	YELLOW - CHEMTECH COPY
CLIENT PROJECT INFORMATION	NAME OFFICE OF SECTIONS Cleaner		9	The wanter & marker Com	FAX	DATA DELIVERABLE INFORMATION	☐ USEPA CLP R New York State ASP 'B' CED ☐ New York State ASP 'A' ☐ Other ☐ Other		COLLECTION	DATE TIME &	2/13/11 1/53K 3	7/19/11 14/5 3	7/11/11 1930 1	7/13/11 1655 1	6/24/11 11/46/2						BELOW EACH TIME SAMPLES CHANGE PUSSESSION INCLUDING COUNIER DELIVERY	MeOH extraction requ	Page / of	ETURN TO CLIENT YELLOW-
Ö	PHO JECT NAME:	PROJECT NO.	PROJECT MANAGE				□ RESULTS ONLY □ RESULTS + OC □ Now Jersey REDUCED □ □ Now Jersey CLP □ Now Jersey CLP □ Now Jersey CLP		≝⊱⊢	COM	60 V	6 W	So. 1 V	5011 1/10	n mess				:			13852 2680	Mar	
CLIENT INFORMATION	REPORT TO BE SENT TO	Consumes Str Robus 7050	STATE:	Tes Curamolada	19/2 EAX 21/162	UND INFORMATION	AX: ARD COPY: DD: DAYS: DAYS: DAYS: DAYS: DAYS: SPEAPPROVED TAT: D YES DAYS STANDARD THRMAROLIND TIME IS 10 RUSINESS DAYS		PROJECT		4-003225X	828131A-003335X	11mm - VIELES	CLEISIA-MWIZ	828131A-Trip Clark				-		SAMPLE CUSTODY MUST BE DOCUMENTED DAJECTIME: RECEIVED BY: CONT. CAN ALL.	16.40	DATECTINE. RECEIVED FOR LAB 8 7.4/5-4/1 920 3.	WHITE - CHEMTECH COPY FOR R
CLIE	COMPANY. W M TES	7.17	13	ATTENTION (%)	4 Y	DATATURN	FAX: HARD COPY: PDEAPPROVED TAT: D STANDARD THRMAROUM		CHEMTECH SAMPLE	 <u></u>	A1818C8									0.	A PAINOUISHED AN SAMPLER!	1 Sound Killery / Comment in the comment of the com	RELINGUISHED BY 3.	evísion 8/2007
		r. 4	., .	4 44	., 11		<u> </u>		-	Lance of		2.	69	4	LG	9	.2	∞	6	10	7	<u>-1# °</u>		_((_

```
Method Path : \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA G\METHOD\
 Method File: 82G071511W.M
         : SW846 8260
 Last Update : Fri Jul 15 15:59:34 2011
 Response Via: Initial Calibration
                                                                     Initial (a)
 Calibration Files
     =VG036160.D
                       =VG036161.D
                                     20 =VG036162.D
                                                                           Check
                   100 =VG036164.D
    =VG036163.D
                                     150 = VG036165.D
                                       20
                                             50
                                                   100
                                                         150
       Compound
 1) I
        Pentafluorobenzene
                              -----ISTD-----
 2) T
        Dichlorodifluorom 0.344 0.409 0.300 0.436 0.488 0.448 0.404
                                                                       17.30
        Chloromethane 0.859 0.891 0.739 0.842 0.869 0.804 0.834
 3) P
                                                                        6.57
        Vinyl Chloride
 4) C
                          0.716 0.758 0.594 0.691 0.751 0.681 0.699
                                                                        8.59#
 5) T
        Bromomethane
                          0.720 0.644 0.465 0.501 0.530 0.435 0.549
                                                                       20.12
 6) T
        Chloroethane
                          0.477 0.477 0.390 0.417 0.345 0.267 0.395
                                                                       20.41
 7) T
        Trichlorofluorome 0.742 0.771 0.721 0.801 0.884 0.828 0.791
                                                                        7.54
 8) T
        Diethyl Ether
                          0.457 0.425 0.405 0.430 0.451 0.440 0.435
                                                                        4.36
                                                                               CIS-12DCE check
 9) T
        1,1,2-Trichlorotr 0.611 0.617 0.488 0.533 0.587 0.565 0.567
                                                                        8.72
10) T
        Methyl Iodide
                          1.073 1.253 1.103 1.283 1.336 1.384 1.239
                                                                       10.11
        Tert butyl alcoho 0.056 0.056 0.057 0.058 0.061 0.063 0.059
11) T
                                                                        4.81
                                                                        6.21# 10038 (50)
12) CM
        1,1-Dichloroethen 0.617 0.602 0.546 0.609 0.661 0.629 0.611
                          0.096 0.095 0.062 0.080 0.080 0.075 0.081
13)
   Т
        Acrolein
                                                                       15.73
        Allyl chloride 1.064 1.103 0.884 0.916 0.936 0.848 0.959 Acrylonitrile 0.223 0.208 0.210 0.209 0.212 0.199 0.210
14) T
                                                                       10.65
                                                                                   G 21917
15) T
                                                                        3.61
        Acetone
                          0.404 0.283 0.213 0.223 0.223 0.200 0.258
16) T
                                                                       29.93
        Carbon Disulfide 2.227 1.974 1.806 2.099 2.146 1.978 2.038
17) T
                                                                              ().8070
                                                                        7.37
18) T
        Methyl Acetate 0.568 0.768 0.719 0.678 0.662 0.628 0.671
                                                                       10.45
19) T
        Methyl tert-butyl 1.484 1.591 1.349 1.462 1.483 1.464 1.472
20) T
        Methylene Chlorid 0.960 0.745 0.703 0.710 0.711 0.710 0.756
                                                                       13.33
21) T
        trans-1,2-Dichlor 0.662 0.667 0.538 0.611 0.631 0.626 0.622
                                                                        7.48
22) T
                                                                                     572224(5)
        Acetonitrile
                                                                       -1.00
23) T
        Diisopropyl ether 2.073 2.076 1.843 1.907 1.854 1.701 1.909
                                                                       7.61
24) T
        Vinyl Acetate 1.300 1.209 1.084 1.099 0.972 0.871 1.089
                                                                       14.22
                                                                               0.8290
25) P
        1,1-Dichloroethan 1.462 1.270 1.135 1.215 1.169 1.129 1.230
                                                                       10.20
26) T
                          0.410 0.416 0.341 0.344 0.316 0.294 0.353
                                                                       14.04
27)_T
        2,2-Dichloropropa 0.811 0.736 0.602 0.586 0.586 0.551 0.645-
                                                                       -1-6--03-
        cis-1,2-Dichloroe 0.807 0.829 0.795 0.804 0.797 0.827 0.810
                                                                        1.83
    T
         Bromochloromethan 0.595 0.526 0.524 0.483 0.468 0.432 0.505
29)
                                                                       11.28
30) C
                          1.215 1.228 1.061 1.107 1.079 1.059 1.125
        Chloroform
                                                                                     593125 (20)
                                                                        6.85#
31) T
                          1.039 0.913 0.807 0.867 0.831 0.774 0.872
        Cyclohexane
                                                                       10.91
32) T
        1,1,1-Trichloroet 0.795 0.734 0.651 0.712 0.683 0.692 0.711
                                                                        6.98
                                                                               0,7948
        1,2-Dichloroethan 0.991 0.558 0.561 0.574 0.588 0.549 0.637
33) S
                                                                       27.32
34) I
         1,4-Difluorobenzene
                              -----ISTD-----
                                                                              50ppb
35) s
        Dibromofluorometh 0.465 0.367 0.396 0.395 0.380 0.390 0.399
                                                                        8.57
                                                                                    472349 (50)
36) T
         1,1-Dichloroprope 0.537 0.542 0.482 0.498 0.488 0.481 0.505
                                                                        5.46
                                                                                    587707154
37) T
         Ethyl Acetate 0.588 0.486 0.425 0.429 0.384 0.377 0.448
                                                                       17.59
38) T
         Carbon Tetrachlor 0.337 0.422 0.430 0.422 0.416 0.437 0.411
                                                                       8,96
39) T
         Methylcyclohexane 0.570 0.560 0.458 0.476 0.467 0.451 0.497
                                                                       10.70
                                                                                0.803715
40) TM
                          1.567 1.527 1.415 1.395 1.343 1.310 1.426
                                                                        7.10
41) T
         Methacrylonitrile 0.299 0.224 0.208 0.206 0.194 0.189 0.220
                                                                       18.46
42) TM
        1,2-Dichloroethan 0.459 0.439 0.406 0.402 0.409 0.413 0.421
                                                                       5.40
                                                                        9.24 100
43) T
         Isopropyl Acetate 0.675 0.629 0.613 0.591 0.545 0.526 0.597
44) T
         Isobutyl alcohol
                                                               0.000
                                                                       -1.00
45) TM
        Trichloroethene
                          0.324 0.387 0.372 0.383 0.384 0.387 0.373
                                                                       6.61
46) C
         1,2-Dichloropropa 0.490 0.359 0.345 0.352 0.340 0.328 0.369
                                                                       16.34#
                                                                                 602269
47) T
        Dibromomethane 0.237 0.237 0.236 0.235 0.239 0.231 0.236
                                                                        1.18
48) T
        Bromodichlorometh 0.380 0.414 0.396 0.418 0.423 0.407 0.406
                                                                        3.93
                                                                       20.88. 0.79749
49) T
        Methyl methacryla 0.397 0.266 0.264 0.268 0.249 0.237 0.280
                          0.002 0.003 0.004 0.004 0.003 0.003 0.003
50) T
        1,4-Dioxane
                                                                       16.08
51) S
        Toluene-d8
                          0.940\ 0.786\ 0.823\ 0.832\ 0.846\ 0.787\ 0.836
                                                                        6.74
                                                                             150
         4-Methyl-2-Pentan 0.374 0.366 0.350 0.341 0.316 0.297 0.341
                                                                        8.66
                                               TC 9/12/11
82G071511W.M Fri Jul 15 16:04:21 2011 S
```

0.8274

Data Path: W:\HPCHEM1\MSVOA G\DATA\VG071511\

Data File: VG036177.D

Acq On : 15 Jul 2011 23:36

Operator : PS

Sample : C3028-01 Misc : 5mL MSVOA G

ALS Vial: 11 Sample Multiplier: 1

Quant Time: Jul 16 02:36:24 2011

Quant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G071511W.M

Quant Title : SW846 8260

QLast Update : Sat Jul 16 01:53:50 2011

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits D	ev	(Min)
1) Pentafluorobenzene	3,91	168	373812	50.00	ug/l		0.00
34) 1,4-Difluorobenzene	4.72	114	660181	50.00			0.00
64) Chlorobenzene-d5	9.68	117	479719	50.00	ug/l		0.00
73) 1,4-Dichlorobenzene-d4	13.40	152	216137	50.00	ug/l		0.00
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4	3.90	65	188570	44.31	ug/l		0.00
Spiked Amount 50.000			Recove	ery =	88.6	528	
35) Dibromofluoromethane	3.25	113	252187	47.92	ug/l		0.00
Spiked Amount 50.000			Recove	ery =	95.8	148	
51) Toluene-d8	7.18	98	529859	48.01	ug/l		0.00
Spiked Amount 50.000			Recove	ery =	96.0)28	
63) 4-Bromofluorobenzene	11.65	95	227784	50.43	ug/1		0.00
Spiked Amount 50,000			Recove	ery =	100.8	868	
Target Compounds						Qva	alue
4) Vinyl Chloride	0.92	62	11164	2.14	ug/l		98
21) trans-1,2-Dichloroethene	1.86	96	4383	0.94	ug/l	#	74
28) cis-1,2-Dichloroethene	2.77	96	283434	46.81	ug/l		100
45) Trichloroethene	4.60	130	17309	3.52	ug/l		97
65) Tetrachloroethene	7.87	164	9612		ug/l		78

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Sample Calculation check 1,2-DCE

Surrogate 4-BFB

$$0.342 = \frac{227}{479749} (50) = \frac{50.443}{500}$$
2G071511W.M Mon Jul 18 13:20:09 2011 50181

alızlu TC 3 Data Path: W:\HPCHEM1\MSVOA G\DATA\VG071511\

Data File: VG036168.D
Acq On: 15 Jul 2011 18:09
Operator: PS

Sample : 50 PPB CCC Misc : 5mL MSVOA_G

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jul 15 18:37:46 2011

Quant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G071511W.M Quant Title: SW846 8260 QLast Update: Fri Jul 15 15:59:34 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

			Compound	Amount	Calc.	%Dev Area%	Dev(min)	
			Danka 61, 2002 by 2002					
		I T	Pentafluorobenzene Dichlorodifluoromethane	50.000	50.000	0.0 109	0.00	
		P	Chloromethane	50.000 50.000	49.666 50.982	0.7 111 -2.0 110	-0.01	
		C	Viny1 Chloride	50.000			0.00	
•		T	Bromomethane	50.000		-2.5# 113	0.00	
		T	Ch1oroethane			6.1 113	0.00	
		T	Trichlorofluoromethane	50.000		2,6 106	-0.01	
		\mathbf{T}		50.000		2.3 105	0.00	
		T'	Diethyl Ether 1,1,2-Trichlorotrifluoroeth		46.421	7.2 103	0.00	
	10		Methyl Iodide			3.2 113	0.00	
	11		Tert butyl alcohol	250.000	47,350	5.3 100	0.00	
		C M	1,1 Dichloroethene			8.9 100	0.00	
	13				44.817	10.4# 98	0.00	
			Acrolein	250,000		13.3 91	0.00	
	14 15		Allyl chloride Acrylonitrile		43.490	13.0 100	0.00	
	16		Actionicitie	250.000		8.6 100	0.00	
	17			250.000		15.9 89	0.00	
			Carbon Disulfide		46.994	6.0 100	0.00	
	18		Methyl Acetate	50,000		4.2 103	0.00	
	19		Methyl tert-butyl Ether	50.000		9.3 100	0.00	
	20 21		Methylene Chloride	50.000		16.5 97	0.00	
			trans-1,2-Dichloroethene		45.850	8.3 102	0.00	
	22		Acetonitrile	50.000	0.000	100.0# 0	-2.08#	
	23		Diisopropyl ether	50.000		9,9 99	0.00	
	24		Vinyl Acetate	250.000		8.1 100	0.00	
	25		1,1-Dichloroethane	50.000	44.463	11,1 98	0.00	ris 12 Dec
	26		2-Butanone	250.000		10.6 100	0.00	C 12 10 20 6
	27		2,2-Dichloropropane	50.000	49.722	0.6 107	0.00	
	28		Cis-1.2-Dichloroethene	50.000	46.515	7.0 102	0.00	C is 12 DCE 484152 (50)
	29		Bromochloromethane	50.000		11.2 101	0.00 50	3
	30		Chloroform	50,000	46.477	7.0# 103	0.00	042590 (X)
	31		Cyclohexane	50.000		10.8 98	0.00	
	32		1,1,1-Trichloroethane	50.000		7.1 102	0.00	RF: 0.7534
	33	3	1,2-Dichloroethane-d4	50.000	49.639	0.7 107	0,00	
	34	I	1,4-Difluorobenzene	50.000	50.000	0.0 107	0.00	Ola Ilana a fast
	35		Dibromofluoromethane	50.000		4.6 103	0.00	.810: 484 <i>152 (sd</i>)
	36	Ť	1,1-Dichloropropene	50.000	49.686	0.6 108	0.00	**************************************
	37	\mathbf{T}	Ethyl Acetate	50.000	52.070	-4.1 102	0.00	G42590 (x1"
	38	T	Carbon Tetrachloride	50,000	49.152	1.7 102	0.00	
	39	T	Methylcyclohexane	50,000	46.118	7.8 103	0.00	46.50
	40	TM	Benzene	50,000	48.380	3.2 106	0.00 %	= 698
	41	\mathbf{T}	Methacrylonitrile	50.000	50.855	-1.7 103	0.00	50
	42	TM	1,2-Dichloroethane	50.000	49.129	1.7 110	0.00	50 = 6.98 OK
	13	\mathbf{T}	Isopropyl Acetate	50.000	47.934	4.1 103	0.00	OKU
	14	\mathbf{T}	Isobutyl alcohol	50.000	0.000	100.0# 0	-4.34#	OF-
	15	$\mathbb{T} M$	Trichloroethene	50.000	54.074	-8.1 112	0.00	0/12/11 115
						-		9114111
	2G(0715	11W.M Fri Jul 15 18:38:55 2013	1 S				Page: 1
								IC

Data Path : W:\HPCHEM1\MSVOA_G\DATA\VG071511\

Data File : VG036171.D

: 15 Jul 2011 20:11 Acq On

Operator : PS

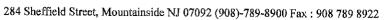
Sample : BSG0715W1 Misc : 5mL MSVOA_G

ALS Vial: 5 Sample Multiplier: 1

Quant Time: Jul 16 02:09:51 2011

Quant Method: \\TERASTORAGE\VOASRV\HPCHEM1\MSVOA_G\METHOD\82G071511W.M Quant Title: SW846 8260

QLast Update : Sat Jul 16 01:53:50 2011


Response via : Initial Calibration

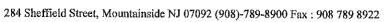
Internal Standards	R.T.	QIon	Response	Conc U	nits De v	(Min)	
1) Pentafluorobenzene	3.91	168	620010	50.00		0.00	
34) 1,4-Difluorobenzene	4.73	1 14	1041735	50.00		0.00	
64) Chlorobenzene-d5	9.69	117	739625	50.00		0.00	
73) 1,4-Dichlorobenzene-d4	13.39	152	327 1 58	50.00	ug/l	0.00	
System Monitoring Compounds							
33) 1,2-Dichloroethane-d4	3.90	65	363629	5 1. 68	ug/l	0.00	
Spiked Amount 50.000			Recove		103.36%		
35) Dibromofluoromethane	3.25	1 1 3	396609	47.76	ug/l	0.00	
Spiked Amount 50.000			Recove		95.52%		
51) Toluene-d8	7.19	98	905497	52.00	ug/l	0.00	
Spiked Amount 50.000			Recove		104.00%	•	
63) 4-Bromofluorobenzene	11.65	95	331030	46.45	ug/l	0.00	
Spiked Amount 50.000			Recove	ery =	92.90%	i	
Target Compounds					Qν	alue	
2) Dichlorodifluoromethane	0.80	85	75726	15.08		100	
3) Chloromethane	0.87	50	192817	18.64		100	
4) Vinyl Chloride	0.92	62	150976	17.43		97	
5) Bromomethane	1.06	94	123648	18.05		96	
6) Chloroethane	1.12	64	100908	18.23	uq/1	98	
7) Trichlorofluoromethane	1.17	101	174019	17.74		95	
8) Diethyl Ether	1.32	74	95750	17.77	ug/l	98	
9) 1,1,2-Trichlorotrifluoroet	1.47	101	126603	18.01		100	
10) Methyl Iodide	1,50	142	261214	17.01	ug/l	97	
11) Tert butyl alcohol	2.05	59	69192		ug/1 #	93	
12) 1,1-Dichloroethene	1.42	96	123672	16.33	ug/l	91	
13) Acrolein	1.62	56	66323	68.24	ug/l	95	
14) Allyl chloride	1.69	41	193789	16.30	ug/l	98	
15) Acrylonitrile	2.35	53	236125	90.59	ug/l	98	
16) Acetone	1.80	43	244078	83.53	ug/l	98	
17) Carbon Disulfide	1.44	76	40725 1	16.11	ug/l	98	
18) Methyl Acetate	1.88	43	171579	20.63	ug/l	98	
19) Methyl tert-butyl Ether	1.95	73	325124	17.81	ug/l	93	
20) Methylene Chloride	1.76	84	156892	16.73	ug/l	92	165
21) trans-1,2-Dichloroethene	1.86	96	127566	16.53	ug/l	96	
23) Diisopropyl ether	2.22	45	428296	18.09	ug/l	98	Calc Check
24) Vinyl Acetate	2.53	43	1 251766	92.69	ug/l	99	(all lively
25) l,1-Dichloroethane	2.29	63	272283	17.85		97	
26) 2-Butanone	3.45	43	409879	93.53		94	
27) 2,2-Dichloropropane	2.86	77	116 1 35	14.97		99	A 810- 170775 (cd
(28) cis-1,2-Dichloroethene	2.76	96	179775	17.90		97	0.810: 179775 (50)
29) Bromochloromethane	2.95	49	123751	19.77		97	(2001 /Y)
30) Chloroform	3.05	83	255835	18.34		99	@ C0010 (^)
31) Cyclohexane	2.93	56	189696	17.54		97	620010(X)
32) 1,1,1-Trichloroethane	3.24	97	156727	17.78		99	17094
36) 1,1-Dichloropropene	3.39	75	202150	19.23		99	1.0 17 PAS
37) Ethyl Acetate	3.24	43	169887		ug/l #	100	50
38) Carbon Tetrachloride	3.16	117	161908m	18.93			79%
39) Methylcyclohexane	4,53	83	180168	17,40	ug/l	93	OK/ 136 9%1
071511W.M Mon Jul 18 13:16:53 20)11 S				TO	al	Page: 1

TC 9/12/11 Page: 1

VOCs

	Project: Off Site (atriage Cleaners Method: SW-846 8260B Laboratory and SDG(s): Chemtech SDG# C 3214 Date: 9-13-11 Reviewer: Tipe Cumuinsham Review Level X NYSDEC DUSR USEPA Region II Guideline
	1. Case Narrative Review and COC/Data Package Completeness Were problems noted? Yes a will had been. Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
	2. Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
*	Are method blanks free of contamination? YES NO (circle one) 111TCA @ 7.6711. (U) Grall Are Trip blanks free of contamination? YES NO (circle one) Sumple MU05012 @ Are Rinse blanks free of contamination? YES NO NA (circle one) 8.671.
	4. Instrument Tuning Were all results were within method criteria. YES NO (circle one)
	Instrument Calibration Were all results within criteria? YES NO (circle one) See affected Initial Calibration %RSD = 20% (30% for 1,1-DCE, chloroform, 1,2-DCP, toluene, ethylbenzene, VC) Initial Avg RRF and Continuing RRF should be ≥ 0.05 and 0.10 for Chloromethane, 1,1-Dichloroethane, Bromoform and 0.30 for Chlorobenzene and 1,1,2,2-Tetrachloroethane Continuing Calibration %D = 20% Calc checks done on I-cal line 8/5/4
*	6. Internal Standards (Area Limits = -50% to +100%, RT's within 30 seconds of mid point cal Std) Were all results within criteria? YES NO (circle one) 8 28 13 (A-MW07012 (50 X) Penta fluorole Out 10w. (J) Que!
*	7. Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%)
,	Were all results were within Region II limits? YES (NO) (circle one) See attacked from
\mathbb{X}	8. Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Were MS/MSDs submitted/analyzed? (YES) NO Sawfu 828131A - DP 28018
•	Were all results were within the Region II limits? YES (NO) NA (circle one) See affect hed Form)
	9. Duplicates/replicates - Region II Limits (water RPD 50, soil RPD 100)
	Were Field Duplicates submitted/analyzed? (YES) NO
	Were all results were within Region II Limits? (YES) NO NA (circle one)
	10. Laboratory Control Sample Results - Region II (Water and soil 70-130%)
	Were all results were within Region II control limits? YES NO (circle one)
	11. Raw Data Review and Calculation Checks 49 compounds × 16 = 784 ok
	12. V Electronic Data Review and Edits Does the EDD match the Form I's? YES NO (circle one)
	13. TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs? YES NO (circle one)

Report of Analysis


Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW6035 SDG No.: C3214 Lab Sample ID: C3214-01 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: $\mathbf{m}\mathbf{L}$ Final Vol: 5000 Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.25

Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VR000371.D -1 08/16/11 VR081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS		, , , , , , , , , , , , , , , , , , , ,		-		
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chioride	1	υ ℤ	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0,2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U Z	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	. 5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	Ū	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	Ū	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	Ü	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	0.67	J	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	Ū	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	Ū	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	Ü	2.1	5	ug/L
108-88-3	Toluene	1	Ü	0.37	1	ug/L ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L ug/L

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW6035 SDG No.: C3214 Lab Sample ID: C3214-01 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VR000371.D 1 08/16/11 VR081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Diehlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES						••
17060-07-0	1,2-Dichloroethane-d4	56.3		61 - 141	113%	SPK: 50
1868-53-7	Dibromofluoromethane	60.3		69 - 133	121%	SPK: 5
2037-26-5	Toluene-d8	57.5		65 - 126	115%	SPK: 5
460-00-4	4-Bromofluorobenzene	54.2		58 - 135	108%	SPK: 5
INTERNAL ST	· · · · · · · · · · · · · · · · · · ·					
363-72-4	Pentafluorobenzene	975344	8.19			
540-36-3	1,4-Difluorobenzene	1653810	9.07			
3114-55-4	Chlorobenzene-d5	1483670	11.81	-		
3855-82-1	1,4-Dichlorobenzene-d4	754530	13.73		•	

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW6035

Units:

SDG No.:

C3214

Lab Sample ID:

C3214-01

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

5

mL

Final Vol:

5000

uL

Soil Aliquot Vol:

,

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR000371.D

.

08/16/11

VR081611

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client: MACTEC Inc. Project: Carriage Cleantown

Client Sample ID: 828131A-MW02012

Lab Sample ID: C3214-02 Analytical Method: SW8260B

Sample Wt/Vol:

Units: mL

Soil Aliquot Vol:

RTX-VMS

uL ID: 0.25 Date Collected:

Date Received:

SDG No.:

08/02/11

5000

08/03/11 C3214

Matrix: WATER

% Moisture: 100

Final Vol:

VOC-TCLVOA-10

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Test:

Prep Batch ID

VR000317.D

GC Column:

1

08/13/11

VR081211

CAS Number	Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS							
75-71 - 8	Dichlorodifluoromethane		1	U	0.2	1	ug/L
74-87-3	Chloromethane		1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride		63		0.34	1	ug/L
74-83-9	Bromomethane		1	U	0.2	1	ug/L
75-00-3	Chloroethane		1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane		1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane		1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene		2.5		0.47	1	ug/L
67-64-1	Acetone		5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide		1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether		1	U	0.35	1	ug/L
79-20-9	Methyl Acetate		1	U	0.2	1	ug/L
75-09-2	Methylene Chloride		1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene		47		0.41	1	ug/L
75-34-3	1,1-Dichloroethane		1	U	0.36	1	ug/L
110-82-7	Cyclohexane		1	υ J	0.2	1	ug/L
78-93-3	2-Butanone		5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride		1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1400	-1-500-	Æ D	0.35	1	ug/L /00)
67 - 66-3	Chloroform	-	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane		1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane		1	U	0.2	1	ug/L
71-43-2	Benzene		1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane		1	U	0.48	1	ug/L
79-01-6	Trichloroethene	660	670-	FD	0.28	1	ug/L (00)
78-87-5	1,2-Dichloropropane		1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane		1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone		5	U	2.1	5	ug/L
108-88-3	Toluene		1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene		1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene		1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Project: Carriage Cleantown

828131A-MW02012

Client Sample ID: Lab Sample ID:

C3214-02 SW8260B

Analytical Method: Sample Wt/Vol:

5

Units: mL

Soil Aliquot Vol:

uL

GC Column:

RTX-VMS

ID: 0.25

Date Collected:

Date Received:

08/02/11 08/03/11

C3214

SDG No.: Matrix:

WATER

% Moisture:

100

Final Vol: Test:

5000

VOC-TCLVOA-10

uL

Level:

LOW

File ID/Qc Batch:

VR000317.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

08/13/11

VR081211

* TROUBLING	Total the year of the Control of the		SCHOOL STAND CONTRACTOR AND ADDRESS OF THE SCHOOL OF THE S			TICOVIDA I	
CAS Number	Parameter	ne de en la completa de la completa de la completa de la completa de la completa de la completa de la completa	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	-	1	U	0.38	1	ug/L
591-78-6	2-Hexanone		5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane		1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane		1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1300	1-1-00	₽ DJ	0.27	1	ug/L /00)
108-90-7	Chlorobenzene		1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene		1	U	0.2	1	цg/L
179601-23-1	m/p-Xylenes		2	U	0.95	2	ug/L
95-47-6	o-Xylene		1	U	0.43	1 .	ug/L
100-42-5	Styrene		1	U	0.36	1	ug/L
75-25-2	Bromoform		1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene		1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane		1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene		1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene		1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene		1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane		1.	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene		1	U	0.2	1	ug/L
SURROGATES 17060-07-0	1,2-Dichloroethane-d4		47.3		61 - 141	95%	SPK: 50

INTERNAL STANDARDS

1868-53-7

2037-26-5

460-00-4

3855-82-1

363-72-4 Pentafluorobenzene 1,4-Difluorobenzene 540-36-3 3114-55-4 Chlorobenzene-d5

Dibromofluoromethane

4-Bromofluorobenzene

1,4-Dichlorobenzene-d4

Toluene-d8

1088310 1828310 1630420

51.3

46.1

46.2

815556

8.19 9.07 11.81 69 - 133

65 - 126

58 - 135

103%

92%

92%

13.73

SPK: 50

SPK: 50

SPK: 50

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW02012

SDG No.:

C3214

Lab Sample ID:

C3214-02

Matrix:

WATER

Analytical Method:

SW8260B

r mary trout iviousou.

% Moisture:

100

Sample Wt/Vol:

Units: mL

Final Vol:

5000 uL

Soil Aliquot Vol:

υL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR081211

VR000317.D

1

08/13/11

en kelekuaria kelekuaria kelekuaria kelekuaria kelekuaria kelekuaria kelekuaria kelekuaria kelekuaria kelekuar

on the second second second second second second second second second second second second second second second

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

alial k

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW02012DUP SDG No.: C3214 Lab Sample ID: C3214-03 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mL Final Vol: 5000 цL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VR000329.D 1 08/13/11 VR081211

CAS Number	Parameter		Conc.	Qualifier	MDL	LOQ/CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane		1	U	0.2	1	ug/L
74-87-3	Chloromethane		1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride		71		0.34	1	ug/L
74-83-9	Bromomethane		1	U	0.2	1	ug/L
75-00-3	Chloroethane		1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane		1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane		1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene		3.2		0.47	1	ug/L
67-64-1	Acetone		5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide		1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether		1	U	0.35	1	ug/L
79-20-9	Methyl Acetate		1	U	0.2	1	ug/L
75-09-2	Methylene Chloride		1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene		31		0.41	1	ug/L
75-34-3	1,1-Dichloroethanc		1	U	0.36	1	ug/L
110-82-7	Cyclohexane		1	U	0.2	1	ug/L
78-93-3	2-Butanone		5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride		1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1500	1600-	-B- D	0.35	1	ug/L
67-66-3	Chloroform	•	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane		1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane		1	U	0.2	1	ug/L
71-43-2	Benzene		1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane		1	U	0.48	1	ug/L
79-01-6	Trichloroethene	680	6 90—	-∄ 👃	0.28	1	ug/L
78-87 - 5	1,2-Dichloropropane		1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane		1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone		5	U	2.1	5	ug/L
108-88-3	Toluene		1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene		1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene		1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW02012DUP SDG No.: C3214 Lab Sample ID: C3214-03 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VR000329.D 1 08/13/11 VR081211

CAS Number	Parameter		Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane		1	U	0.38	1	ug/L
591-78-6	2-Hexanone		5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane		1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane		1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1300	1200	₹ 4	0.27	1	ug/L
108-90-7	Chlorobenzene		1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene		1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes		2	U	0.95	2	ug/L
95-47-6	o-Xylene		1	U	0.43	1	ug/L
100-42-5	Styrene		1	U	0.36	1	ug/L
75-25-2	Bromoform		1	Ü	0.47	1	ug/L
98-82-8	Isopropylbenzene		1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane		1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene		1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene		1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene		1	U	0.45	1 .	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane		1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene		1	U	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4		48.3		61 - 141	97%	SPK: 5
1868-53-7	Dibromofluoromethane		50.7		69 - 133	101%	SPK: 5
2037-26-5	Toluene-d8		48.5		65 - 126	97%	SPK: 5
460-00-4	4-Bromofluorobenzene		45.4		58 - 135	91%	SPK: 5
INTERNAL ST		•					
363-72-4	Pentafluorobenzene		1012550	8.19			
540-36-3	1,4-Difluorobenzene	-	1743140	9.07			
3114-55-4	Chlorobenzene-d5		1541840	11.81			
3855-82-1	1,4-Dichlorobenzene-d4		776823	13.73			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW02012DUP

Units:

SDG No.:

C3214

Lab Sample ID:

C3214-03

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

mL

Final Vol:

5000

Soil Aliquot Vol:

υL

Test:

VOC-TCLVOA-10

GC Column;

RTX-VMS

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR000329.D

08/13/11

VR081211

uL

CAS Number

Parameter

Qualifier

MDL

Conc.

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client Sample ID:

Sample Wt/Vol;

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

08/02/11

08/03/11

C3214

5000

uL

Final Vol:

Report of Analysis

Client: MACTEC Inc. Date Collected: Project: Carriage Cleantown Date Received:

Units; mL

828131A-MW05012 SDG No.:

Lab Sample ID: C3214-04 Matrix: WATER Analytical Method: SW8260B % Moisture: 100

VOC-TCLVOA-10 Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS Level: LOW ID: 0.18

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG036665.D 1 08/15/11 VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ/CRQL	Units
TARGETS						**
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.81	J	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	8.6	上一〇	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1.9		0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID:

828131A-MW05012

Lab Sample ID:

C3214-04

Analytical Method:

SW8260B

Units: mL

Sample Wt/Vol: Soil Aliquot Vol:

uL

GC Column:

RTX-VMS

ID: 0.18

Date Collected:

Date Received:

08/02/11

08/03/11 C3214

SDG No.: Matrix:

WATER

% Moisture:

100

Final Vol:

5000

VOC-TCLVOA-10

Test: Level:

LOW

File ID/Qc Batch:

VG036665.D

Dilution:

1

Prep Date

Date Analyzed

08/15/11

Prep Batch ID

VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	14	J	0.27	1	ug/L
108-90-7	Chlorobenzene	1	Ü	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	lsopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	59.3		61 - 141	119%	SPK: 50
1868-53-7	Dibromofluoromethane	56,5		69 - 133	113%	SPK: 50
2037-26-5	Toluene-d8	49.6		65 - 126	99%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.2		58 - 135	106%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	695438	3.93			
540-36-3	1,4-Difluorobenzene	1003050	4.75			
3114-55-4	Chlorobenzene-d5	984636	9.7			
3855-82-1	1,4-Dichlorobenzene-d4	437436	13.4			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW05012

SDG No.:

C3214

Lab Sample ID:

C3214-04

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Units:

Final Vol:

5000

Sample Wt/Vol: Soil Aliquot Vol: $\mathbf{m}\mathbf{L}$ uL

Test:

VOC-TCLVOA-10

GC Column;

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG036665.D

08/15/11

VG081511

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

LOD = Limit of Detection

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Project:

Carriage Cleantown

Client Sample ID:

828131A-MW07012

Lab Sample ID: Analytical Method: C3214-05 SW8260B

Sample Wt/Vol:

Units: mL

uL

Soil Aliquot Vol: GC Column;

RTX-VMS

ID: 0.18

Date Collected:

Date Received:

08/02/11 08/03/11

SDG No.: C3214

Matrix:

WATER

% Moisture:

Final Vol:

Test:

100

5000

VOC-TCLVOA-10

uL

Level: LOW

File ID/Qc Batch:

VG036666.D

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

08/15/11

VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS		·				
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	u g/ L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	89		0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1 .	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	7.6		0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	\mathbf{U}	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	32		0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	2500 1000-	₽ DJ	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	78		0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Project: Carriage Cleantown

828131A-MW07012

Client Sample ID: Lab Sample ID:

C3214-05 SW8260B

Analytical Method:

Sample Wt/Vol:

Units: mL

Soil Aliquot Vol:

GC Column:

RTX-VMS

υL ID: 0.18 Date Collected:

Date Received:

08/02/11 08/03/11

C3214

SDG No.: Matrix:

WATER

% Moisture:

Final Vol:

100

5000

Test:

VOC-TCLVOA-10

uL

Level:

LOW

File ID/Qc Batch:

VG036666.D

Dilution:

Prep Date

Date Analyzed

08/15/11

Prep Batch ID

VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	11	7	0.27	1	ug/L
108-90-7	Chlorobenzene	1	Ü	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U ·	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1 .	ug/L
98-82-8	lsopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	υ	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	8					
17060-07-0	1,2-Dichloroethane-d4	60.2		61 - 141	120%	SPK: 5
1868-53-7	Dibromofluoromethane	57.5		69 - 133	115%	SPK: 5
2037-26-5	Toluene-d8	51.5		65 - 126	103%	SPK: 5
460-00-4	4-Bromofluorobenzene	54		58 - 135	108%	SPK: 5
INTERNAL ST						
363-72-4	Pentafluorobenzene	688131	3.94			
540-36-3	1,4-Difluorobenzene	961013	4.75			
3114-55-4	Chlorobenzene-d5	986994	9.7			
3855-82-1	1,4-Dichlorobenzene-d4	450307	13.4			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW07012

SDG No.:

C3214

Lab Sample ID:

C3214-05

Matrix:

WATER

Analytical Method:

SW8260B

mL

% Moisture:

100

LOW

Sample Wt/Vol:

Units:

Final Vol:

5000 uL

Soil Aliquot Vol:

GC Column:

RTX-VMS

иL ID: 0.18 Test: Level: VOC-TCLVOA-10

File ID/Qc Batch:

Dilution:

Date Analyzed

Prep Batch ID

VG036666.D

1

Prep Date

08/15/11

VG081511

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-DP12013 SDG No.: C3214 Lab Sample ID: C3214-06 Matrix: WATER

Analytical Method: SW8260B % Moisture: 100

Sample Wt/Voi: 5 Units: mL Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: ZB-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VE023452.D 1 · 08/16/11 VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS	· · · · · · · · · · · · · · · · · · ·					
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	2.7		0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	Ü	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	. ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carhon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	0.82	J	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-DP12013

Lab Sample ID: C3214-06 SW8260B

Analytical Method:

Sample Wt/Vol:

Units:

Soil Aliquot Vol:

GC Column:

ZB-624

uL ID: 0.25

mL

Date Collected:

Date Received:

08/02/11

08/03/11 C3214

SDG No.: Matrix:

WATER

% Moisture:

Final Vol:

100

5000 uL

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VE023452.D

Dilution:

1

Prep Date

Date Analyzed

08/16/11

Prep Batch ID

VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	60.9		61 - 141	122%	SPK: 5
1868-53-7	Dibromofluoromethane	55.9		69 - 133	112%	SPK: 5
2037-26-5	Toluene-d8	54.7		65 - 126	109%	SPK: 5
460-00-4	4-Bromofluorobenzene	54.3		58 - 135	109%	SPK: 5
INTERNAL ST	· · · · · · · · · · · · · · · · · · ·			,		
363-72-4	Pentafluorobenzene	1212770	9.35			
540-36-3	1,4-Difluorobenzene	2478290	10.44			
3114-55-4	Chlorobenzene-d5	2283960	14.85			
3855-82-1	1,4-Dichlorobenzene-d4	874015	18.64			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP12013

SDG No.:

C3214

Lab Sample ID:

C3214-06

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

Sample Wt/Vol:

mL

Units:

Final Vol:

100

uL

5000

Soil Aliquot Vol:

GC Column:

ZB-624

ID: 0,25

Test: Level: VOC-TCLVOA-10

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VE023452.D

08/16/11

VE081611

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ/CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-DP10013 SDG No.: C3214 Lab Sample ID: C3214-07 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mLFinal Vol: 5000 Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG036670.D 1 08/15/11 VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS			•	·		
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	86 -1-80-	Æδ	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1.9	7	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	15	J	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	Ū	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	410 720	- ₽ (0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0,2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	70 15 0	<i>-</i> ₽ ⊅	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	цg/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	цg/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Project: Carriage Cleantown Client Sample ID:

828131A-DP10013

Lab Sample ID:

C3214-07 SW8260B

Analytical Method: Sample Wt/Vol:

Units: mL

Soil Aliquot Vol:

GC Column:

RTX-VMS

uL ID: 0.18 Date Collected:

Date Received:

08/02/11 08/03/11

SDG No.:

C3214

Matrix:

Final Vol:

WATER

% Moisture:

100

5000

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batch:

VG036670,D

Dilution:

Prep Date

Date Analyzed

08/15/11

Prep Batch ID

VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trìchloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	· 1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	2.2	7	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	υ	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	70.9	*	61 - 141	142%	SPK: 50
1868-53-7	Dibromofluoromethane	65.3		69 - 133	131%	SPK: 50
2037-26-5	Toluene-d8	55		65 - 126	110%	SPK: 5
460-00-4	4-Bromofluorobenzene	57		58 - 135	114%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	320447	3.93			
540-36-3	1,4-Difluorobenzene	458033	4.75			
3114-55-4	Chlorobenzene-d5	447155	9.71			
3855-82-1	1,4-Dichlorobenzene-d4	197460	13.41			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP10013

SDG No.:

C3214

Lab Sample ID:

C3214-07

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

WIXILIC

Sample Wt/Vol;

_

mL

Final Vol:

100 5000

Soil Aliquot Vol:

цL

Units:

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG036670.D

- 1

08/15/11

VG081511

CAS Number

Parameter

Conc.

Qualifier

MDL LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW11055 SDG No.: C3214 Lab Sample ID: C3214-08 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Final Vol: Sample Wt/Vol: Units: mL5000

Test:

Soil Aliquot Vol: VOC-TCLVOA-10

GC Column: ZB-624 ID: 0.25 Level: LOW

цL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VE023450.D 1 08/16/11 VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS	·					
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	\mathbf{U}	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	\mathbf{U}	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1.9		0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	Ű	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	\mathbf{U}	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	Ü	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW11055 SDG No.: C3214 Lab Sample ID: C3214-08 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: mL Final Vol: 5000 Soil Aliquot Vol: **u**L Test: VOC-TCLVOA-10 GC Column: ID: 0.25 Level: LOW ZB-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VE023450.D 1 08/16/11 - VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	8					
17060-07-0	1,2-Dichloroethane-d4	59.3		61 - 141	119%	SPK: 50
1868-53-7	Dibromofluoromethane	55.6		69 - 133	111%	SPK: 50
2037-26-5	Toluene-d8	53.8		65 - 126	108%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.8		58 - 135	108%	SPK: 50
INTERNAL ST	CANDARDS					
363-72-4	Pentafluorobenzene	1290910	9.35			
540-36-3	1,4-Difluorobenzene	2613920	10.44			
3114-55-4	Chlorobenzene-d5	2378410	14.85			
3855-82-1	1,4-Dichlorobenzene-d4	916187	18.64			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW11055

Units:

SDG No.:

C3214

Lab Sample ID:

C3214-08

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

mL

Final Vol:

5000

uL

Soil Aliquot Vol:

υL

Test:

VOC-TCLVOA-10

GC Column:

ZB-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VE023450.D

1

x Sp 2 acc

08/16/11

VE081611

T1-- /4--

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection E = Value Exceeds Calibration Range J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Soil Aliquot Vol:

284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

08/02/11

08/03/11

C3214

VOC-TCLVOA-10

uL

Report of Analysis

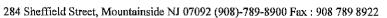
Client: MACTEC Inc. Date Collected: Project:

Carriage Cleantown Date Received:

Client Sample ID: 828131A-MW12055 SDG No.: Lab Sample ID: C3214-09 Matrix:

иL

WATER Analytical Method: SW8260B % Moisture: 100


Sample Wt/Vol: Units: Final Vol: 5000 mL

GC Column: RTX-VMS ID: 0.18 LOW Level:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VG036672.D į 08/15/11 VG081511

Test:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS		· · · · · · · · · · · · · · · · · · ·				
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	110		0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0,5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1.1		0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	4.2		0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	٠Ū	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	130		0.35	1 .	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	2.9		0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	. 1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW12055 SDG No.: C3214 Lab Sample ID: C3214-09 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed VG081511 .

VG036672.D 1 08/15/11 VG081511 .

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	· U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	υ	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	0.98	J	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	lsopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Dichloroethane-d4	60.9		61 - 141	122%	SPK: 50
1868-53-7	Dibromofluoromethane	55.6		69 - 133	111%	SPK: 50
2037-26-5	Toluene-d8	48.1		65 - 126	96%	SPK: 50
460-00-4	4-Bromofluorobenzene	54.2		58 - 135	108%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	670318	3.94			
540-36-3	1,4-Difluorobenzene	982858	4.75			
3114-55-4	Chlorobenzene-d5	974393	9.71			
3855-82-1	1,4-Dichlorobenzene-d4	455612	13.41			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW12055

SDG No.:

C3214

Lab Sample ID:

C3214-09

Matrix:

SW8260B

WATER

Analytical Method:

% Moisture:

100

Sample Wt/Vol:

mL

Final Vol:

5000

Soil Aliquot Vol:

uL

Units:

Test:

иL

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG036672.D

1

08/15/11

VG081511

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-DP27015

Lab Sample ID: C3214-10

Analytical Method: SW8260B

Sample Wt/Vol;

Units: mL

Soil Aliquot Vol:

GC Column;

VE023451.D

ι

ZB-624

цL

ID: 0.25

Date Collected:

Date Received:

Matrix:

Test:

08/02/11 08/03/11 C3214

SDG No.:

WATER

% Moisture;

100

Final Vol:

5000 uL VOC-TCLVOA-10

Level: LOW

File ID/Qc Batch:

Dilution:

1

Prep Date

Date Analyzed

Prep Batch ID

08/16/11

VE081611

CAS Number	Parameter ·	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS				•		
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	. 1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifiuoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	Ŭ	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	υ	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

TC 9119111

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP27015

SDG No.:

C3214

Lab Sample ID:

C3214-10

Matrix:

WATER

Analytical Method:

SW8260B

Sample Wt/Vol:

% Moisture:

100

Units: mL Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

uL

GC Column:

ZB-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VE023451.D

1

08/16/11

VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ/CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	. 1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	60.4		61 - 141	121%	SPK: 50
1868-53-7	Dibromofluoromethane	56.6		69 - 133	113%	SPK: 50
2037-26-5	Toluene-d8	54.1		65 - 126	108%	SPK: 50
460-00-4	4-Bromofluorobenzene	54.6		58 - 135	109%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	1243520	9.35			
540-36-3	1,4-Difluorobenzene	2518850	10.45			
3114-55-4	Chiorobenzene-d5	2317850	14.85			
3855-82-1	1,4-Dichlorobenzene-d4	897751	18.65			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP27015

SDG No.:

C3214

Lab Sample ID:

C3214-10

Matrix:

WATER

Analytical Method:

SW8260B

MIGHIA.

WAICK

rinniy noar momou.

_

% Moisture:

100

Sample Wt/Vol:

mL

Final Vol:

5000 u

Soil Aliquot Vol:

Units:

uL

Test:

VOC-TCLVOA-10

GC Column:

ZB-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VE023451.D

1

rep Date

08/16/11

. A.o. I. both VA. Hillow Ro.

VE081611

__ .

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

LOD = Limit of Detection

 $\mathbf{MDL} = \mathbf{Method\ Detection\ Limit}$

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11

Project: Carriage Cleantown Date Received: 08/03/11
Client Sample İD: 828131A-DP22015 SDG No.: C3214

Lab Sample ID: C3214-11 Matrix: WATER

Analytical Method: SW8260B % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uI
Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: ZB-624 ID: 0.25 Level; LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VE023453.D 1 08/16/11 VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	u g/ L
74-87-3	Chloromethane	0.69	J	0.2	1	ug/L
75-01-4	Vinyl Chloride	130		0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1 .	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	u g/ L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U .	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP22015

SDG No.:

C3214

Lab Sample ID:

C3214-11

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

Sample Wt/Vol:

mL

Final Vol:

5000

Soil Aliquot Vol:

uL

Units:

Test:

VOC-TCLVOA-10

GC Column:

ZB-624

ID: 0.25

Level:

LOW

100

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VE023453.D

1

08/16/11

VE081611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
5 91 -7 8 - 6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	lsopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	S					
17060-07-0	1,2-Diehloroethane-d4	60.3		61 - 141	121%	SPK: 5
1868-53-7	Dibromofluoromethane	56.6		69 - 133	113%	SPK: 5
2037-26-5	Toluene-d8	54.8		65 - 126	110%	SPK: 5
460-00-4	4-Bromofluorobenzene	54.1		58 - 135	108%	SPK: 5
INTERNAL ST						
363-72-4	Pentafluorobenzene	1195850	9.35			
540-36-3	1,4-Difluorobenzene	2412570	10.45			
3114-55-4	Chlorobenzene-d5	2206940	14.84			
3855-82-1	1,4-Dichlorobenzene-d4	851249	18.65			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP22015

SDG No.:

C3214

Lab Sample ID:

C3214-11

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

5000

Sample Wt/Vol:

mL

Final Vol:

Soil Aliquot Vol:

Units:

Test:

VOC-TCLVOA-10

uL

GC Column;

ZB-624

 \mathbf{u} L ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VE023453.D

1

08/16/11

VE081613

CAS Number

Parameter

Conc.

Qualifier

MDL LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Carriage Cleantown Date Received: 08/03/11 Project: SDG No.: Client Sample ID: 828131A-DP15013 C3214 Lab Sample ID: C3214-12 WATER Matrix: Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol: 5000 Soil Aliquot Vol; υL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VR000356.D 1 08/15/11 VR081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	7.9	\mathcal{I}	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	n 🗘	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	υĴ	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1.8		0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	υJ	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	8.6		0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1000~ \\00	N K D	0.35	1	ug/L
67-66-3	Chloroform	1	υ	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	υ	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	:1	U	0.48	1	ug/L
79-01-6	Trichloroethene	-520 6 /0	$\mathbb{Z} \mathcal{D}$	0.28	. 1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	υ	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

TC 9(19/11

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-DP15013

Lab Sample ID:

Analytical Method: SW8260B

Sample Wt/Vol;

5

C3214-12

Units: mL

Soil Aliquot Vol:

uL·

GC Column: RTX-VMS ID: 0.25

Date Collected:

Date Received:

08/02/11

eived: 08/03/11

SDG No.:

C3214

Matrix:

WATER

% Moisture:

100

Final Vol:

5000

Test:

VOC-TCLVOA-10

Level:

LOW

File ID/Qc Batcb:

VR000356.D

Dilution:

1 -

Prep Date

Date Analyzed

08/15/11

Prep Batch ID

VR081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1 .	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	-2 70- 33 0	T	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	•					
17060-07-0	1,2-Dichloroethane-d4	50.6		61 - 141	101%	SPK: 50
1868-53-7	Dibromofluoromethane	55.9		69 - 133	112%	SPK: 50
2037-26-5	Toluene-d8	53.8		65 - 126	108%	SPK: 50
460-00-4	4-Broinofluorobenzene	49.6		58 - 135	99%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	1031450	8.19			
540-36-3	1,4-Difluorobenzene	1719010	9.07			
3114-55-4	Chlorobenzene-d5	1538840	11.81			
3855-82-1	1,4-Dichlorobenzene-d4	776282	13.73			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP15013

Units:

SDG No.:

C3214

Lab Sample ID:

C3214-12

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

mL

Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR000356.D

1

op Bato

08/15/11

VR081511

1001511

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11

Project: Carriage Cleantown Date Received: 08/03/11
Client Sample ID: 828131A-DP23015 SDG No.: C3214

Lab Sample ID: C3214-13 Matrix: WATER

Analytical Method: SW8260B % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 ut
Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column; RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VG036668.D 1 08/15/11 VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ/CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	120		0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	. U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	0.54	J	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	8.1		0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	Ŭ	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	23 0 2 €	6 × D	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1 .	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc.

Project: Carriage Cleantown

Client Sample ID: 828131A-DP23015

Lab Sample ID: C3214-13

Analytical Method:

Sample Wt/Vol: 5

Uı

Units: mL

Soil Aliquot Vol:

GC Column:

RTX-VMS

SW8260B

uL ID: 0.18 Date Collected:

Date Received:

08/02/11 08/03/11

WATER

SDG No.:

C3214

Matrix:

% Moisture:

100

0 11101010101

Final Vol:

5000

VOC-TCLVOA-10

иL

Test: Level:

LOW

File ID/Qc Batch:

VG036668.D

Dilution:

1

Prep Date

Date Analyzed

08/15/11

Prep Batch ID

VG081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	Ŭ	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	60.9		61 - 141	122%	SPK: :
1868-53-7	Dibromofluoromethane	56.8		69 - 133	114%	SPK: 3
2037-26-5	Toluene-d8	48.2		65 - 126	97%	SPK:
460-00-4	4-Bromofluorobenzene	52.1		58 - 135	104%	SPK:
INTERNAL ST						
363-72-4	Pentafluorobenzene	689957	3.92			
540-36-3	1,4-Difluorobenzene	1006240	4.74			
3114-55-4	Chlorobenzene-d5	996080	9.7			
3855-82-1	1,4-Dichlorobenzene-d4	453272	13.4			

Report of Analysis

Client:

Project:

MACTEC Inc.

Carriage Cleantown

Client Sample ID:

828131A-DP23015

Lab Sample ID:

C3214-13

Analytical Method:

SW8260B

Sample Wt/Vol:

Units: mL

Soil Aliquot Vol:

GC Column:

RTX-VMS

uL

ID: 0.18

Date Collected:

Date Received:

08/03/11

08/02/11

C3214

SDG No.: Matrix:

WATER

Final Vol:

Test:

Level:

% Moisture:

100

5000

VOC-TCLVOA-10

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG036668.D

08/15/11

VG081511

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

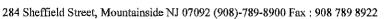
Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection


E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-DP28018 SDG No.: C3214 Lab Sample ID: C3214-14 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: 5 Units: Final Vol: 5000 mL Soil Aliquot Vol: uLTest: VOC-TCLVOA-10 GC Column; RTX-VMS ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VR000362.D - 1 08/15/11 VR081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	<u>U .</u>	0.2	1	ug/L
75-01-4	Vinyl Chloride	4.5	7	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	սյ	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	υĴ	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U J	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	リナ	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34 - 3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	5.1		0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	Ŭ	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-DP28018 SDG No.: C3214 Lab Sample ID: C3214-14 Matrix: WATER Analytical Method: SW8260B % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-TCLVOA-10

GC Column: RTX-VMS ID: 0.25 Level: LOW

在企业中的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是 一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是一个专家的企业,但是

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VR000362.D 1 08/15/11 VR081511

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0,38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	υJ	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	47.6		61 - 141	95%	SPK: 50
1868-53-7	Dibromofluoromethane	49.1		69 - 133	98%	SPK: 50
2037-26-5	Toluene-d8	45		65 - 126	90%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.6		58 - 135	85%	SPK: 50
INTERNAL ST	·-					
363-72-4	Pentafluorobenzene	660946	8.19			
540-36-3	1,4-Difluorobenzene	1140170	9.07			
3114-55-4	Chlorobenzene-d5	1022820	11.81			
3855-82-1	1,4-Dichlorobenzene-d4	509609	13.73			

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP28018

SDG No.:

C3214

Lab Sample ID:

C3214-14

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

Units: mL Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

uL

GC Column:

RTX-VMS

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR000362,D

08/15/11

VR081511

CAS Number

Parameter

Conc.

Qualifier

LOQ / CRQL

Units

U = Not Detected LOO = Limit of Quantitation MDL = Method Detection Limit LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW-11-MW-12 SDG No.: C3214 Lab Sample ID: C3214-17 Matrix: SOIL Analytical Method: SW8260B % Moisture: 14 Sample Wt/Vol: 4.98 Units: Final Vol: 5000 Soil Aliquot Vol: uL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF028073.D 1 08/04/11 VF080411

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	5.8	U	0.76	5.8	ug/Kg
74-87-3	Chloromethane	5.8	U	1	5.8	ug/Kg
75-01-4	Vinyl Chloride	4.3	J	1.4	5.8	ug/Kg
74-83-9	Bromomethane	5.8	U	2.9	5.8	ug/Kg
75-00-3	Chloroethane	5.8	U	1.6	5.8	ug/Kg
75-69-4	Trichlorofluoromethane	5.8	U	1.5	5.8	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	5.8	U	1.6	5.8	ug/Kg
75-35-4	1,1-Dichloroethene	5.8	U	1.7	5.8	ug/Kg
67-64-1	Acetone	29	U	3.5	29	ug/Kg
75-15-0	Carbon Disulfide	5.8	U	1.2	5.8	ug/Kg
1634-04-4	Methyl tert-butyl Ether	5.8	U	1.1	5.8	ug/Kg
79-20-9	Methyl Acetate	5.8	U	1.8	5.8	ug/Kg
75-09-2	Methylene Chloride	5.8	.U	1.7	5.8	ug/Kg
156-60-5	trans-1,2-Dichloroethene	5.8	U	0.81	5.8	ug/Kg
75-34-3	1,1-Dichloroethane	5.8	U	1.1	5.8	ug/Kg
110-82-7	Cyclohexane	5.8	U	1.2	5.8	ug/Kg
78-93-3	2-Butanone	29	U	3.6	29	ug/Kg
56-23-5	Carbon Tetrachloride	5.8	U ·	1.2	5.8	ug/Kg
156-59-2	cis-1,2-Dichloroethene	32		1	5.8	ug/Kg
67-66-3	Chloroform	5.8	Ŭ	0.86	5.8	ug/Kg
71-55-6	1,1,1-Trichloroethane	5.8	U	1	5.8	ug/Kg
108-87-2	Methylcyclohexane	5.8	U	1.2	5.8	ug/Kg
71-43-2	Benzene	5.8	\mathbf{U}	0.44	5.8	ug/Kg
107-06-2	1,2-Dichloroethane	5.8	U	0.75	5.8	ug/Kg
79-01-6	Trichloroethene	4.2	J	1	5.8	ug/Kg
78-87-5	1,2-Dichloropropane	5.8	\mathbf{U}	0.3	5.8	ug/Kg
75-27-4	Bromodichloromethane	5.8	\mathbf{U}	0.72	5.8	ug/Kg
108-10-1	4-Methyl-2-Pentanone	29	Ŭ	3.4	29	ug/Kg
108-88-3	Toluene	5.8	U	0.75	5.8	ug/Kg
10061-02-6	t-1,3-Dichloropropene	5.8	U	0.92	5.8	ug/Kg
10061-01-5	cis-1,3-Dichioropropene	5.8	\mathbf{U}	0.84	5.8	ug/Kg

Report of Analysis

MACTEC Inc. Client: Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: 828131A-MW-11-MW-12 SDG No.: C3214 Lab Sample ID: C3214-17 Matrix: SOIL Analytical Method: SW8260B % Moisture: 14 Sample Wt/Vol: 4.98 Units: Final Vol: 5000 Soil Aliquot Vol: υL Test: VOC-TCLVOA-10 GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF028073.D 1 08/04/11 VF080411

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	5.8	U	1.1	5.8	ug/Kg
591-78-6	2-Hexanone	29	U	4.6	29	ug/Kg
124-48-1	Dibromochloromethane	5.8	U	0.63	5.8	ug/Kg
106-93-4	1,2-Dibromoethane	5.8	Π .	0.75	5.8	ug/Kg
127-18-4	Tetrachloroethene	4.4	J	1.2	5.8	ug/Kg
108-90-7	Chlorobenzene	5.8	U	0.58	5.8	ug/Kg
100-41-4	Ethyl Benzene	5.8	U	0.72	5.8	ug/Kg
179601-23-1	m/p-Xylenes	12	U	0.84	12	ug/Kg
95-47-6	o-Xylene	5.8	U	0.79	5.8	ug/Kg
100-42-5	Styrene	5.8	U	0.53	5.8	ug/Kg
75-25-2	Bromoform	5.8	U	0.86	5.8	ug/Kg
98-82-8	Isopropylbenzene	5.8	U	0.56	5.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	5.8	U	0.54	5.8	ug/Kg
541-73-1	1,3-Dichlorobenzene	5.8	U	0.43	5.8	ug/Kg
106-46-7	1,4-Dichlorobenzene	5.8	U	0.48	5.8	ug/Kg
95-50-1	1,2-Dichlorobenzene	5.8	U	0.72	5.8	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.8	U	1	5.8	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	5.8	U	0.82	5.8	ug/Kg
SURROGATES						
17060-07-0	1,2-Dichloroethane-d4	40.5		56 - 120	81%	SPK: 50
1868-53-7	Dibromofluoromethane	51.1		57 - 135	102%	SPK: 50
2037-26-5	Toluene-d8	49		67 - 123	98%	SPK: 50
460-00-4	4-Bromofluorobenzene	47.3		33 - 141	95%	SPK: 50
INTERNAL ST						
363-72-4	Pentafluorobenzene	684487	3.19		-	
540-36-3	1,4-Difluorobenzene	1037520	3.79			
3114-55-4	Chlorobenzene-d5	897032	7.12			
3855-82-1	1,4-Dichlorobenzene-d4	539647	9			
	DENTIFIED COMPOUNDS					
000110-54-3	Hexane	8.9	3		1.77	ug/Kg

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW-11-MW-12

SDG No.:

C3214

Lab Sample ID:

C3214-17

Matrix:

Analytical Method:

SW8260B

SOIL

% Moisture:

14

Sample Wt/Vol;

4.98

Units:

Final Vol: Test:

5000 uL VOC-TCLVOA-10

Soil Aliquot Vol: GC Column:

RTX-VMS

ID: 0.18

цL

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF028073.D

08/04/11

VF080411

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

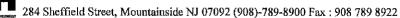
U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range


J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client: MACTEC Inc. Date Collected: 08/02/11 Project: Carriage Cleantown Date Received: 08/03/11 Client Sample ID: TRIPBLANK SDG No.: C3214 Lab Sample ID: C3214-18 Matrix: WATER Analytical Method: SW8260B % Moisture: 100 Sample Wt/Vol: Units: Final Vol: 5000 mLSoil Aliquot Vol: Test: uL VOC-TCLVOA-10

GC Column: RTX-VMS ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VR000304.D 1 08/12/11 VR081211

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	1	U	0,28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

TRIPBLANK

SDG No.:

C3214

Lab Sample ID:

C3214-18

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

_

mL

Units:

Final Vol:

1

Soil Aliquot Vol:

)

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.25

Level:

LOW

5000

File ID/Qc Batch:

Dilution:

1,4-Dichlorobenzene-d4

Prep Date

Date Analyzed

Prep Batch ID

VR000304.D

3855-82-1

1

08/12/11

VR081211

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	, U	0.41	1	ug/L
127-18-4	Tetrachloroethene	1	Ù	0.27	1	ug/L
108-90-7	Chlorobenzene	1	Ù	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	\cdot \mathbf{U}	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	· .					
17060-07-0	1,2-Dichloroethane-d4	48.3		61 - 141	97%	SPK:
1868-53-7	Dibromofluoromethane	48.7		69 - 133	97%	SPK:
2037-26-5	Toluene-d8	50.2		65 - 126	100%	SPK:
460-00-4	4-Bromofluorobenzene	46.8		58 - 135	94%	SPK:
INTERNAL ST						
363-72-4	Pentafluorobenzene	1307410	8.19			
540-36-3	1,4-Difluorobenzene	2237750	9.07			
3114-55-4	Chlorobenzene-d5	1991950	11.81			

986577

13.73

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

TRIPBLANK

SDG No.:

C3214

Lab Sample ID:

C3214-18

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

mL

Final Vol:

5000

Soil Aliquot Vol:

Units:

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

uLID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VR000304.D

1

08/12/11

VR081211

CAS Number

Parameter

Conc.

Qualifier

MDL

LOQ / CRQL

Units

U = Not Detected LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Cover Page

Order ID:

C3214

Project ID:

Carriage Cleantown

Client:

MACTEC Inc.

Lab Sample Number

C3214-01 C3214-02 C3214-03 C3214-04 C3214-05 C3214-06 C3214-07 C3214-08 C3214-09 C3214-10

Client Sample Number

828131A-MW6035 828131A-MW02012 🗸 828131A-MW02012DUP 🗸 828131A-MW05012 -828131A-MW07012 < 828131A-DP12013 🗸 828131A-DP10013 ~ 828131A-MW11055 ~ 828131A-MW12055 🗸 828131A-DP27015 🗸 828131A-DP22015 -828131A-DP15013 V 828131A-DP23015 V 828131A-DP28018 -C3214-14-MS C3214-14-MSD 828131A-MW-11-MW-12 1

C3214-11 C3214-12 C3214-13 C3214-14 C3214-15 C3214-16 C3214-17 C3214-18

TRIPBLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature. Hildred V Reys

Signature:

Mildred V. Reyes, QA/QC Supervisor 2011.08.22 15:25:17 -04'00'

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

Cunningham, Tige

From:

mildred V. Reyes [mildred@chemtech.net]

Sent:

Thursday, September 15, 2011 4:51 PM

To:

Cunningham, Tige

Cc:

Divya Mehta; Kurt Hummler; Pickett, Jeffrey; Staples, Charles; Ricardi, Christian

Subject:

RE: NYSDEC Offsite Carriage Cleaners: Cover page for C3214 and batching samples

Good Afternoon:

We have review the data and found that the sample matrix cause the discrepancies in the samples affecting the internal standard.

The original analysis of the samples yield lower recoveries for the Internal Standard due to the sample matrix effect. The samples results were higher due to this.

When the samples were diluted the matrix effect was also diluted and recoveries for the internal standard were closer to the CCC results for the internal standard, therefore the sample results are more accurate.

The Internal Standard limits have a wide QC criteria (±50%). On both analysis the Internal Standard met the requirement.

Please do not hesitate to contact Divya Mehta if you require further information.

Regards,

Mildred V. Reyes QA/QC

Direct Line:

(908) 728-3153

284 Shelfield Street, Mountainside, New Jersey 0709: Phone: (908) 789 8900

Fax: (908) 789 8922

Chemtech is an equal opportunity employer

Notice: The information transmitted in this e-mail message and in any attachments is intended Solely for the attention and use of the named addressee(s) and may contain confidential and/or privileged material. Any review, retransmission, dissemination or other use of, or taking of any action in reliance upon, this information by persons or entities other than the intended recipient is strictly prohibited and may be unlawful. If you have

received this transmission in error, please notify us immediately by return e-mail, and permanently delete this transmission, including attachments if any, from any computer.

From: Cunningham, Tige [mailto:TLCunningham@mactec.com]

Sent: Wednesday, September 14, 2011 4:28 PM

To: mildred@chemtech.net

Cc: Divya Mehta; Kurt Hummler; Pickett, Jeffrey; Staples, Charles; Ricardi, Christian

Subject: RE: NYSDEC Offsite Carriage Cleaners: Cover page for C3214 and batching samples

Hi Mildred

Can you please check the following analytical runs by 8260B. The 10X dilution analysis on this sample does not seem to match the original run at 1X. The concentrations from the 10X seem to be around half of the concentrations in the 1X. The upper level of the calibration line was 150ppb and the 10X result of vinyl chloride was 86ppb, which should have been within calibration on the 1X.

Thank you for the help.

Tige

						T
field_sample_id	qc_code	lab_sample_id	analysis_method	param_name	final_result	final_c
828131A-DP10013	FS	C3214-07	SW8260B	Cis-1,2-Dichloroethene	790	-
828131A-DP10013	FS	C3214-07DL	SW8260B	Cis-1,2-Dichloroethene	410]
828131A-DP10013	FS	C3214-07	SW8260B	Trichloroethene	150	
828131A-DP10013	FS	C3214-07DL	SW8260B	Trichloroethene	70	J
828131A-DP10013	FS	C3214-07	SW8260B	Vinyl chloride 180		
828131A-DP10013	FS	C3214-07DL	SW8260B	Vinyl chloride	86]

Tige Cunningham, NRCC EAC

Project Scientist

AMEC Environment & Infrastructure

511 Congress Street, Suite 200

Portland Maine 04101

Tel 207-828-3415 Cell 207-329-0164 (personal)

Fax 207-772-4762

The information contained in this e-mail message is intended only for the personal and confidential use of the recipient(s) named above.

From: mildred V. Reyes [mailto:mildred@chemtech.net]

Sent: Wednesday, September 14, 2011 10:29 AM

To: Cunningham, Tige

Cc: Divya Mehta; Kurt Hummler; Pickett, Jeffrey; Staples, Charles

Subject: RE: NYSDEC Offsite Carriage Cleaners: Cover page for C3214 and batching samples

field sample id	qc code	lab sample id	analysis method	param name	final result	final qualifier
828131A-DP10013	FS	C3214-07	SW8260B	Cis-1,2-Dichloroethene	790	E
828131A-DP10013	FS	C3214-07DL	SW8260B	Cis-1,2-Dichloroethene	410	D
828131A-DP10013	FS	C3214-07	SW8260B	Trichloroethene	150	E
828131A-DP10013	FS	C3214-07DL	SW8260B	Trichloroethene	70	D
828131A-DP10013	FS	C3214-07	SW8260B	Vinyl chloride	180	E
828131A-DP10013	FS	C3214-07DL	SW8260B	Vinyl chloride	86	D
828131A-DP15013	FS	C3214-12	SW8260B	Cis-1,2-Dichloroethene	1000	E
828131A-DP15013	FS	C3214-12DL	SW8260B	Cis-1,2-Dichloroethene	1100	D
828131A-DP15013	FS	C3214-12	SW8260B	Tetrachloroethene	270	EJ
828131A-DP15013	FS	C3214-12DL	SW8260B	Tetrachloroethene	330	DJ
828131A-DP15013	FS	C3214-12	SW8260B	Trichloroethene	520	Е
828131A-DP15013	FS	C3214-12DL	SW8260B	Trichloroethene	610	D
828131A-DP23015	FS	C3214-13	SW8260B	Cis-1,2-Dichloroethene	230	Е
828131A-DP23015	FS	C3214-13DL	SW8260B	Cis-1,2-Dichloroethene	240	D
828131A-DP23015	FS	C3214-13	SW8260B	Vinyl chloride	120	
828131A-DP23015	FS	C3214-13DL	SW8260B	Vinyl chloride	120	D
828131A-MW02012	FS	C3214-02	SW8260B	Cis-1,2-Dichloroethene	1500	E
828131A-MW02012	FS	C3214-02DL	SW8260B	Cis-1,2-Dichloroethene	1400	D
828131A-MW02012	FS	C3214-02	SW8260B	Tetrachloroethene	1100	E
828131A-MW02012	FS	C3214-02DL	SW8260B	Tetrachloroethene	1300	DJ
828131A-MW02012	FS	C3214-02	SW8260B	Trichloroethene	670	E
828131A-MW02012	FS	C3214-02DL	SW8260B	Trichloroethene	660	D
828131A-MW02012	FS	C3214-02	SW8260B	Vinyl chloride	63	
828131A-MW02012	FS	C3214-02DL	SW8260B	Vinyl chloride	77	DJ
828131A-MW02012DUP	FD	C3214-03	SW8260B	Cis-1,2-Dichloroethene	1600	E
828131A-MW02012DUP	FD	C3214-03DL	SW8260B	Cis-1,2-Dichloroethene	1500	D
828131A-MW02012DUP	FD	C3214-03	SW8260B	Tetrachloroethene	1200	Е
828131A-MW02012DUP	FD	C3214-03DL	SW8260B	Tetrachloroethene	1300	DJ
828131A-MW02012DUP	FD	C3214-03	SW8260B	Trichloroethene	690	E
828131A-MW02012DUP	FD	C3214-03DL	SW8260B	Trichloroethene	680	D
828131A-MW02012DUP	FD	C3214-03	SW8260B	Vinyl chloride	71	
828131A-MW02012DUP	FD	C3214-03DL	SW8260B	Vinyl chloride	80	DJ
828131A-MW07012	FS	C3214-05	SW8260B	Cis-1,2-Dichloroethene	1000	E
828131A-MW07012	FS	C3214-05DL	SW8260B	Cis-1,2-Dichloroethene	2500	DJ
828131A-MW07012	FS	C3214-05	SW8260B	Trichloroethene	78	
828131A-MW07012	FS	C3214-05DL	SW8260B	Trichloroethene	140	DJ
828131A-MW07012	FS	C3214-05	SW8260B	Vinyl chloride	89	
828131A-MW07012	FS	C3214-05DL	SW8260B	Vinyl chloride	210	DJ

Area 100

IS = 50ppb = 100 200 Asample (50) Area IS (X)

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

CHEMTECH

Contract: MACT03

Lab Code:

CHEM

Case No.:

ID: 0.18

C3214

(mm)

SAS No.:

C3214

SDG NO.:

C3214

Lab File ID:

VG036661.D

Date Analyzed:

08/15/2011

Instrument ID:

MSVOAG

Time Analyzed:

11:15

GC Column:

.....

RTX-VMS

Heated Purge: (Y/N)

N

	IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	587267	3.93	819747	4.73	797338	9.69
UPPER LIMIT	1174534	4.43	1639494	5.23	1594676	10,19
LOWER LIMIT	293633.5	3.43	409873.5	4.23	398669	9.19
EPA SAMPLE NO.		.].				
BSG0815W1	624396	3.92	921010	4.74	911789	9.70
828131A-MW05012	695438	3.93	1003049	4.75	984636	9.70
828131A-MW07012	688131	3.94	961013	4.75	986994	9.70
828131A-DP10013)	320447	3.93	458033	4.75	447155	9.71
828131A-DP10013DL	669879	3.94	967087	4.75	987561	9.70
828131A-MW12055	670318	3.94	982858	4.75	974393	9.71
828131A-DP23015	689957	3.92	1006239	4.74	996080	9.70
828131A-DP23015DL	685455	3.93	983353	4.75	973117	9.70
VBG0815W1	642077	3.93	943900	4.74	903500	9.69

IS1 = Pentafluorobenzene

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Data Path : W:\HPCHEM1\MSVOA G\DATA\VG081511\

Data File: VG036670.D

Acq On : 15 Aug 2011 17:56

Operator : PS

Sample : C3214-07 Misc : 5mL MSVOA G

ALS Vial: 11 Sample Multiplier: 1

Ouant Time: Aug 16 08:58:26 2011

Ouant Method: W:\HPCHEM1\MSVOA_G\METHOD\82G080511W.M

Quant Title : SW846 8260

65) Tetrachloroethene

QLast Update : Tue Aug 16 07:18:52 2011 Response via : Initial Calibration

Internal Standards R.T. QIon Response Conc Units Dev(Min) 320447 1) Pentafluorobenzene 3.93 168 $50.00 \, \text{ug/l}$ 4.75 114 458033 50.00 uq/1 9.71 117 447155 50.00 uq/1 34) 1,4-Difluorobenzene 64) Chlorobenzene-d5 0.04 0.02 13.41 152 197460 50.00 ug/l 73) 1,4-Dichlorobenzene-d4 0.02 System Monitoring Compounds 3.92 65 215839 70.86 ug/l 33) 1,2-Dichloroethane-d4 0.02 Recoverv = 141.72% Spiked Amount 50.000 35) Dibromofluoromethane 3.27 113 202517 65.33 ug/l 0.02 Spiked Amount 50.000 Recovery = 130.66% 51) Toluene-d8 7.21 98 594801 54.97 ug/l 0.03 Spiked Amount 50.000 Recovery = 109.94% 63) 4-Bromofluorobenzene 11.66 95 242848 57.00 ug/1 0.02 Spiked Amount 50.000 Recovery = 114.00% Target Compounds 0.94 62 594257 175.89 ug/l 4) Vinvl Chloride 12) 1,1-Dichloroethene 12) 1,1-Dichloroethene 1.43 96 5830 1.89 ug/l
21) trans-1,2-Dichloroethene 1.87 96 45855 14.53 ug/l
28) cis-1,2-Dichloroethene 2.78 96 3331443 792.78 ug/l 95 99 45) Trichloroethene 4.63 130 550345 152.73 ug/l 98

7.89 164 · 11669 2.25 ug/l

^(*) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : W:\HPCHEM1\MSVOA G\DATA\VG081511\

Data File : VG036671.D

Acq On : 15 Aug 2011 18:25

Operator : PS

Sample : C3214-07DL 10X Misc : 5mL MSVOA G

ALS Vial : 12 Sample Multiplier: 1

Ouant Time: Aug 16 09:00:41 2011

Ouant Method: W:\HPCHEM1\MSVOA_G\METHOD\82G080511W.M

Quant Title : SW846 8260

QLast Update: Tue Aug 16 07:18:52 2011

Response via : Initial Calibration

Internal Standards	В.Т.	QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	3.94	168	669879	50.00	uq/l	0.03
34) 1,4-Difluorobenzene	4.75	114	967087	50.00	ug/l	0.04
64) Chlorobenzene-d5	9.70	117	987561	50.00	uq/l	0.02
73) 1,4-Dichlorobenzene-d4	13.41	152	452213	50.00	ug/l	0.02
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4	3.92	65	383345	60.54	uq/l	0.02
Spiked Amount 50.000			Recove	rv =	121.08%	
35) Dibromofluoromethane	3.26	113	371413	56.88	uq/l	0.02
Spiked Amount 50.000			Recove	rv =	113.76%	
51) Toluene-d8	7.21	98	1126971	49.37	uq/l	0.03
Spiked Amount 50.000			Recove	rv =	98.74%	
63) 4-Bromofluorobenzene	11.66	95	482343	53.66	ua/l	0.01
Spiked Amount 50.000			Recove	ry =	107.32%	
Target Compounds					Qv	alue
4) Vinyl Chloride	0.94	62	60650	8.59	ug/l	96
28) cis-1,2-Dichloroethene	2.78	96	363977	41.43	ug/l	97
45) Trichloroethene	4.63	130	53600	7.04	uq/l	93

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:

CHEMTECH

Client:

MACTEC Inc.

Lab Code:

CHEM

CASE No.:

C3214

SAS No.:

C3214

_ SDG NO.:

C3214

Analytical Method:

EPA SW846 8260

	Lab Sample ID.	Client Sample NO.	SMC1 (DCE) #	SMC2 (DBFM) #	SMC3 (TOL)#	SMC4 (BFB) #	TOT OUT
01	VBG0815W1	VBG0815W1	136	126	105	111	0
02	BSG0815W1	BSG0815W1	137	119	106	114	0
03	C3214-04	828131A-MW05012	119	113	99	106	0
04	C3214-05	828131A-MW07012	120	115	103	108	0
05	C3214-13	828131A-DP23015	122	114	97	104	0
06	C3214-13DL	828131A-DP23015DL	120	113	99	106	0
07	C3214-07	828131A-DP10013	142 *) 131	110	114	1
08	C3214-07DL	828131A-DP10013DL	121	114	99	107	0
09	C3214-09	828131A-MW12055	122	111	96	108	0

J Qual all hits

QC LIMITS

SMC1 (DCE) = 1,2-Dichloroethane-d4

(61~141)

SMC2 (DBFM) =Dibromofluoromethane

(69-133)

SMC3 (TOL) =Toluene-d8

(65~126)

SMC4 (BFB) =4-Bromofluorobenzene

(58-135)

Column to be used to flag recovery values

* Values outside of contract required QC Limits

TC 9/13/11/

HD3JM3+

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name:

CHEMTECH

Client:

MACTEC Inc.

Lab Code:

CHEM

CASE No.:

C3214

SAS No.:

C3214

____ SDG NO.:

C3214

Analytical Method:

EPA SW846 8260

			<u> </u>	T .			
	Lab Sample ID.	Client Sample NO.	SMC1 (DCE) #	SMC2 (DBFM)#	SMC3 (TOL)#	SMC4 (BFB) #	TOT OUT
01	VBR0812W1	VBR0812W1	98	99	101	95	0
02	BSR0812W1	BSR0812W1	99	102	101	98	0
03	C3214-18	TRIPBLANK	97	97	100	94	0
04	C3214-02	828131A-MW02012	95	103	92	92	0
05	C3214-15MS	828131A-DP28018MS	96	104	97	96	0
06	C3214-16MSD	828131A-DP28018MSD	97	103	98	97	0
07	VBR0812W2	VBR0812W2	98	97	98	90	_ 0
08	BSR0812W3	BSR0812W3	96	102	101	96	0
09	C3214-03	828131A-MW02012DUP	97	101	97	91	0
10	VBR0815W1	VBR0815W1	99	104	102	93	0
11	BSR0815W1	BSR0815W1	95	105	103	98	0
12	C3214-03DL	828131A-MW02012DUPDL	86	94	90	83	0
13	C3214-02DL	828131A-MW02012DL	93	100	98	90	0
14	C3214-12	828131A-DP15013	101	112	108	99	0
15	C3214-12DL	828131A-DP15013DL	89	95	94	85	0
16	C3214-14	828131A-DP28018	95	98	90	85	0
17	VBR0816W2	VBR0816W2	85	88	88	79	0
18	BSR0816W1	BSR0816W1	92	99	99 —	92	0
19	C3214-05DL	828131A-MW07012DL	48 *	50 *	49	42 *	4
20	C3214-01	828131A-MW6035	113	121	T15	108	0

QC LIMITS

SMC1 (DCE) = 1,2-Dichloroethane-d4 (61-141)

SMC2 (DBFM) =Dibromofluoromethane (69-133)

SMC3 (TOL) =Toluene-d8 (65-126)

SMC4 (BFB) =4-Bromofluorobenzene (58-135)

Column to be used to flag recovery values

* Values outside of contract required QC Limits

J Qual all results used from this dilution run

TC 9/13/11

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Lab Code: CHEM Cas No: C3214 SAS No: C3214 SDG No: C3214

Matrix Spike - EPA Sample No: C3214-15 Analytical Method: EPA SW846 8260 Datafile: VR000319.D

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS (ug/L)	MS % REC#	QC
Dichlorodifluoromethane	50	(ug/L)	42	84	REC (47-161)
Chloromethane	50	0	51	102	(53-157)
Vinyl Chloride	50	3.2	51	96	(57-149)
Bromomethane	50	0	44	88	(45-165)
Chloroethane	50	0	51	102	(47-166)
Trichlorofluoromethane	50	0	51	102	(51-165)
1,1,2-Trichlorotrifluoroethane	50	0	43	86	(61-145)
1,1-Dichloroethene	50	0	41	82	(55-148)
Acetone	250	0	170	(68)	(11-159)
Carbon Disulfide	50	0	25	50	(13-149)
Methyl tert-butyl Ether	5.0	0	43	86	(60-145)
Methyl Acetate	50	0	42	84	(27-167)
Methylene Chloride	50	0	50	100	(56-146)
trans-1,2-Dichloroethene	50	0.74	45	89	(60-141)
1,1-Dichloroethane	50	0	47	94	(61-144)
Cyclohexane	50	0	45	90	(57-142)
2-Butanone	250	0	230	92	(42-145)
Carbon Tetrachloride	50	0	49	98	(60-140)
cis-1,2-Dichloroethene	50	9	53	88	(48-156)
Chloroform	50	0	47	94	(63-140)
1,1,1-Trichloroethane	50	0	46	92	(65-140)
Methylcyclohexane	50	0	41	82	(62-128)
Benzene	50	0	47	94	(62-134)
1,2-Dichloroethane	50	0	46	92	(67-136)
Trichloroethene	50	3	50	94	(64-131)
1,2-Dichloropropane	50	0	48	96	(69-130)
Bromodichloromethane	50	0	46	92	(66-132)
4-Methyl-2-Pentanone	250	0	240	96	(57-148)
Toluene	50	0	45	90	(68-129)
t-1,3-Dichloropropene	50	0	45	90	(54-136)
cis-1,3-Dichloropropene	50	0	47	94	(56-133)
1,1,2-Trichloroethane	50	0	49	98	(68-134)
2-Hexanone	250	0	210	84	(46-158)

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 Out of 0 outside limits

Spike Recovery: 1 Out of 49 outside limits

* UI in unspiked sample

9/13/11

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Lab Code: CHEM Cas No: C3214 SAS No: C3214 SDG No: C3214

Matrix Spike - EPA Sample No: C3214-15 Analytical Method: EPA SW846 8260 Datafile: VR000319.D

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS (ug/L)	MS % REC#	QC REC
Dibromochloromethane	50	0	47	94	(59-136)
1,2-Dibromoethane	50	0	49	98	(65-138)
Tetrachloroethene	50	5.8	44	76	(29-137)
Chlorobenzene	50	0	48	96	(68-126)
Ethyl Benzene	50	0	44	88	(61-131)
m/p-Xylenes	100	0	74	74	(64-125)
o-Xylene	50	0	39	78_	(65-126)
Styrene	50	0	16	(32*)	(40-140)
Bromoform	50	0	37	74	(42-134)
Isopropylbenzene	50	0	45	90	(58-132)
1,1,2,2-Tetrachloroethane	50	0	50	100	(61-136)
1,3-Dichlorobenzene	50	0	48	96	(63-125)
1,4-Dichlorobenzene	50	0	48	96	(64-124)
1,2-Dichlorobenzene	50	0	48	96	(64-126)
1,2-Dibromo-3-Chloropropane	50	0	47	94	(57-139)
1,2,4-Trichlorobenzene	50	. 0	48	96	(57-130)

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 Out of 0 outside limits

Spike Recovery: 1 Out of 49 outside limits

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Lab Code: CHEM Cas No: C3214 SAS No: C3214 SDG No: C3214

Matrix Spike - EPA Sample No: C3214-16 Analytical Method: EPA SW846 8260 Datafile: VR000320.D

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % % (ug/L)	QC LIMITS RPD REC
Dichlorodifluoromethane	50	42	84 0	20 (47-161)
Chloromethane	50	52	104 2	20 (53-157)
Vinyl Chloride	50	52	98 2	20 (57-149)
Bromomethane	50	49	98 11	20 (45-165)
Chloroethane	50	51	102 0	20 (47-166)
Trichlorofluoromethane	50.	51	102 0	20 (51-165)
1,1,2-Trichlorotrifluoroethane	50	42	84 2	20 (61-145)
1,1-Dichloroethene	50	42	84 2	20 (55-148)
Acetone	250	180	72 6	20 (11-159)
Carbon Disulfide	50	26	(52) 4	20 (13-149)
Methyl tert-butyl Ether	50	44	88 2	20 (60-145)
Methyl Acetatc	50	44	88 5	20 (27-167)
Methylene Chloride	50	50	100 0	20 (56-146)
trans-1,2-Dichloroethene	50	45	89 0	20 (60-141)
1,1-Dichloroethane	50	47	94 0	20 (61-144)
Cyclohexane	50	44	88 2	20 (57-142)
2-Butanone	250	240	96 4	20 (42-145)
Carbon Tetrachloride	50	48	96 2	20 (60-140)
cis-1,2-Dichloroethene	50	53	88 [0	20 (48-156)
Chloroform	50	48	96 2	20 (63-140)
1,1,1-Trichloroethane	50	46	92 0	20 (65-140)
Methylcyclohexane	50	40	80 2	20 (62-128)
Велгеле	50	47	94 0	20 (62-134)
1,2-Dichloroethane	50	46	92 0.	20 (67-136)
Trichloroethene	50	48	90 4	20 (64-131)
1,2-Dichloropropane	50	48	96 0	20 (69-130)
Bromodichloromethane	50	45	90 2	20 (66-132)
4-Methyl-2-Pentanone	250	240	96 0	20 (57-148)
Toluene	50	45	90 0	20 (68-129)
t-1,3-Dichloropropene	50	45	90 0	20 (54-136)
cis-1,3-Dichloropropene	50	46	92 2	20 (56-133)
1,1,2-Trichloroethane	50	48	96 2	20 (68-134)
2-Hexanone	250	210	84 0	20 (46-158)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 Out of 49 outside limits

Spike Recovery: 0 Out of 49 outside limits

9/13/11

^{*} Values outside of QC limits

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Lab Code: CHEM Cas No: C3214 SAS No: C3214 SDG No: C3214

Matrix Spike - EPA Sample No: C3214-16 Analytical Method: EPA SW846 8260 Datafile: VR000320.D

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % % (ug/L)	QC LIMITS RPD REC
Dibromochloromethane	50	46	92 2	20 (59-136)
1,2-Dibromoethane	50	48	96 2	20 (65-138)
Tetrachloroethene	50	43	74 3	20 (29-137)
Chlorobenzene	50	48	96 0	20 (68-126)
Ethyl Benzene	50	45	90 2	20 (61-131)
m/p-Xylenes	100	79	79 7	20 (64-125)
o-Xylene	50	41	82 5	20 (65-126)
Styrene	50	21	(42) 27*	20 (40-140)
Bromoform	50	37	74 0	20 (42-134)
Isopropylbenzene	50	45	90 0	20 (58-132)
1,1,2,2-Tetrachloroethane	50	48	96] 4	20 (61-136)
1,3-Dichlorobenzene	50	47	94 2	20 (63-125)
1,4-Dichlorobenzene	50	47	94 2	20 (64-124)
1,2-Dichlorobenzene	50	47	94 2	20 (64-126)
1,2-Dibromo-3-Chloropropane	50	47	94 0	20 (57-139)
1,2,4-Trichlorobenzene	50	48	96 0	20 (57-130)

RPD: 1 Out of 49 outside limits

Spike Recovery: 0 Out of 49 outside limits

9/13/1

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Lab Code: CHEM Cas No: C3214 SAS No: C3214 SDG No: C3214

Matrix Spike - EPA Sample No: C3219-12 Analytical Method: EPA SW846 8260 Datafile: VF028085.D

COMPOUND	SPIKE ADDED	SAMPLE CONCENTRATION	MS	MS %	QC	
Dichlorodifluoromethane	(ug/Kg) 68	(ug/Kg)	(ug/Kg)	REC#	REC	
		0	53	78	(42-135)	
Chloromethane	68	0	57	84	(50-130)	
Vinyl Chloride	68	0	51	75	(60-125)	
Bromomethane	68	0	60	88	(40-154)	
Chloroethane	68	0	63	93	(40-155)	
Trichlorofluoromethane	68	0	65	96	(46-159)	ı
1,1,2-Trichlorotrifluoroethane	68	0	58	85	(59-140)	
1,1-Dichloroethene	68	0	73	107	(65-135)	
Acetone	338	10	230	65)	(31-158)	1
Carbon Disulfide	68	0	65	96	(45-144)	
Methyl tert-butyl Ether	68	0	56	82	(56-146)	
Methyl Acetate	68	0	69	101	(16-205)	
Methylene Chloride	68	0	73	107	(55-140)	
trans-1,2-Dichloroethene	68	0	66	97	(65-135)	1
1,1-Dichloroethane	68	0	62	91	(75-125)	1
Cyclohexane	. 68	0	71	104	(51-136)	1
2-Butanone	338	0	270	80	(40-157)	
Carbon Tetrachloride	68	0	63	93	(65-135)	1
cis-1,2-Dichloroethene	68	0	60	88	(65-125)	1
Chloroform	68	0	62	91	(70-125)	1
1,1,1-Trichloroethane	68	0	59	87	(70-135)	
Methylcyclohexane	68	0	69	101	(43-133)	1
Benzene	68	0	63	93	(75-125)	
1,2-Dichloroethane	68	0	58	85	(70-135)	1
Trichloroethene	68	0	62	91	(75-125)	1
1,2-Dichloropropane	68	0	60	88	(70-120)	1
Bromodichloromethane	68	0	59	87	(70-130)	1
4-Methyl-2-Pentanone	338	0	290	86	(53-145)	
Toluene	68	0	65	96	(70-125)	
t-1,3-Dichloropropene	68	0	59	87	(65-125)	1
cis-1,3-Dichloropropene	68	0	58	85	(70-125)	1
1,1,2-Trichloroethane	68	0	58	85	(67-125)	1
2-Hexanone	338	0	310	92	(45-145)	1

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 Out of 0 outside limits

Spike Recovery: 0 Out of 49 outside limits

Not spiked on a sample from the Site [No Action]

^{*} Values outside of QC limits

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH Client: MACTEC Inc.

Lab Code: CHEM Cas No: C3214 SAS No: C3214 SDG No: C3214

Matrix Spike - EPA Sample No: C3219-13 Analytical Method: EPA SW846 8260 Datafile: VF028086.D

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % % (ug/Kg)	QC LIMITS RPD REC	
Dichlorodifluoromethane	68	44	(65) 18	20 (42-135)	 ×
Chloromethane	68	54	79 6	20 (50-130)	_
Vinyl Chloride	. 68	56	82 9	20 (60-125)	_
Bromomethane	68	64	94 7	20 (40-154)	_
Chloroethane	68	64	94 1	20 (40-155)	
Trichlorofluoromethane	68	61	90 [6	20 (46-159)	_
1,1,2-Trichlorotrifluoroethane	68	60	88 3	20 (59-140)	
1,1-Dichloroethene	68	72	106 1	20 (65-135)	_
Acetone	338	240	(68) 5	20 (31-158)	<u> </u>
Carbon Disulfide	68	68	100 4	20 (45-144)	— ′``
Methyl tert-butyl Ether	68	63	93 13	20 (56-146)	_
Methyl Acetate	68	76	112 10	20 (16-205)	_
Methylene Chloride	68	81	119 11	20 (55-140)	
trans-1,2-Dichloroethene	68	69	101 4	20 (65-135)	_
1,1-Dichloroethane	68	65	96 5	20 (75-125)	_
Cyclohexane	68	75	110 6	20 (51-136)	_
2-Butanone	338	280	83 4	20 (40-157)	
Carbon Tetrachloride	68	63	93 0	20 (65-135)	
cis-1,2-Dichloroethene	68	66	97 10	20 (65-125)	
Chloroform	68	65	96 5	20 (70-125)	_
1,1,1-Trichloroethane	68	61	90 3	20 (70-135)	_
Methylcyclohexane	68	71	104 3	20 (43-133)	_
Benzene	68	66	97 4	20 (75-125)	_
1,2-Dichloroethane	68	61	90 6	20 (70-135)	_
Trichloroethene	68	61	90 1	20 (75-125)	_
1,2-Dichloropropane	68	64	94 7	20 (70-120)	
Bromodichloromethane	68	64	94 8	20 (70-130)	_
4-Methyl-2-Pentanone	338	300	89 3	20 (53-145)	_
Toluene	68	66	97 1	20 (70-125)	_
t-1,3-Dichloropropene	68	65	96 10	20 (65-125)	
cis-1,3-Dichloropropene	68	63	93 9	20 (70-125)	_
1,1,2-Trichloroethane	68	62	91 7	20 (67-125)	
2-Hexanone	338	320	95 3	20 (45-145)	

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 Out of 49 outside limits

Spike Recovery: 0 Out of 49 outside limits

*Not a sample From the Site NDACTION alisty

20

^{*} Values outside of QC limits

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH				Client	t: MACTEC Inc.	ic.		
Lab Code:	СНЕМ	Cas No:	C3214	SAS No:	<u>C3214</u>	SDG No:	C3214	
Matrix Spike -	EPA Sample No :	BSG0815W1	Analytical N	lethod: E	PA SW846 8260	Datai	file: VG036663	D.

	SPIKE		LCS	LCS	QC
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ng/L)	REC#	REC
Dichlorodifluoromethane	20		30	(150*)	(46-139)
Chloromethane	20		23	115	(58-139)
Vinyl Chloride	20		24	120	(65-137)
Bromomethane	20		28	(140)	(50-162)
Chloroethane	20		30	(150)	(54-160)
Trichlorofluoromethane	20		30	(150*)	(67-143)
1,1,2-Trichlorotrifluoroethane	20		26	130	(71-136)
1,1-Dichloroethene	20		24	120	(69-134)
Aeetone	100		150	(150)	(41-181)
Carbon Disulfide	20		25	125	(63-138)
Methyl tert-butyl Ether	20		25	125	(72-136)
Methyl Acetate	20		21	105	(51-158)
Methylene Chloride	20		26	130	(67-138)
trans-1,2-Dichloroethene	20		23	115	(72-132)
1,1-Dichloroethane	20		25	125	(74-135)
Cyclohexane	20		23	115	(67-132)
2-Butanone	100		120	120	(64-146)
Carbon Tetrachloride	20		24	120	(71-134)
cis-1,2-Dichloroethene	20		23	115	(74-130)
Chloroform	20		26	130	(74-134)
1,1,1-Trichloroethane	20		. 29	(145*)	(74-133)
Methylcyclohexane	20		22	110	(71-125)
Benzene	20		23	115	(75-125)
1,2-Dichloroethane	20		28	(140*)	(76-130)
Trichloroethene	. 20		23	115	(73-127)
1,2-Dichloropropane	20	·	23	115	(76-125)
Bromodichloromethane	20		23	115	(78-127)
4-Methyl-2-Pentanone	100		110	110	(71-140)
Tolucne	20		21	105	(74-125)
t-1,3-Dichloropropene	20		22	110	(74-131)
cis-1,3-Dichloropropene	20		21	105	(74-128)
1,1,2-Trichloroethane	20		22	110	(75-129)
2-Hexanone	100		100	100	(62-153)
Dibromochloromethane	20		22	110	(74-131)

* Values outside of QC limits	
RPD: 0 Out of 0 outside limits	* = Associated Sample has this compound
Spike Recovery:4 Out of49 outside limits	* = Associated sample has this compound detected and was estimated (T)
Comments:	

9/13/4

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name: CHEMTECH			Clien				
Lab Code:	СНЕМ	_ Cas No:	C3214	SAS No:	C3214	SDG No:	C3214
Matrix Spike -	EPA Sample No:	BSG0815W1	Analytica	l Method:	EPA SW846 8260	Data	file: VG036663.D

	SPIKE		LCS	LCS	\mathbf{QC}
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC#	REC
1,2-Dibromoethane	20	1	23	115	(74-129)
Tetrachloroethene	20		27	(135)	(46-157)
Chlorobenzene	20		23	115	(76-123)
Ethyl Benzene	20		23	115	(75-126)
m/p-Xylenes	40		46	115	(74-126)
o-Xylene	20		22	110	(73-127)
Styrene	20		23	115	(75-126)
Bromoform	20		18	90	(66-130)
Isopropylbenzene	20		24	120	(70-127)
1,1,2,2-Tetrachloroethane	20		22	110	(66-131)
1,3-Dichlorobenzene	20		23	115	(70-125)
1,4-Dichlorobenzene	20		23	115	(71-124)
1,2-Dichlorobenzene	20		22	110	(71-126)
1,2-Dibromo-3-Chloropropane	20		21	105	(62-134)
1,2,4-Trichlorobenzene	20		22	110	(62-129)

* = Associated saugh has this compound detected and was estimated (T).

Column to be used to flag recovery	and RPD values with an asterisk
------------------------------------	---------------------------------

* Values outside of QC limits

RPD: 0 Out of 0 outside limits

Spike Recovery: 4 Out of 49 outside limits

Comments:			
		 	

glisty TC

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

 Lab Name:
 CHEMTECH
 Client:
 MACTEC Inc.

 Lab Code:
 CHEM
 Cas No:
 C3214
 SAS No:
 C3214
 SDG No:
 C3214

 Matrix Spike - EPA Sample No:
 BSR0815W1
 Analytical Method:
 EPA SW846 8260
 Datafile:
 VR000351.D

	 	<u> </u>			
	SPIKE		LCS	LCS	QC
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC#	REC
Dichlorodifluoromethane	20	<u></u>	29	/145*	(46-139)
Chloromethane	20		31	155*	(58-139)
Vinyl Chloride	20		29	145*	(65-137)
Bromomethane	20		25	125	(50-162)
Chloroethane	20		28	140	(54-160)
Trichlorofluoromethane	20		28	140	(67-143)
1,1,2-Trichlorotrifluoroethane	20		22	110	(71-136)
1,1-Dichloroethene	20		22	110	(69-134)
Acetone	100		110	110	(41-181)
Carbon Disulfide	20		25	125	(63-138)
Methyl tert-butyl Ether	20		19	95	(72-136)
Methyl Acetate	20		20	100	(51-158)
Methylene Chloride	20		24	120	(67-138)
trans-1,2-Dichloroethene	20		23	115	(72-132)
1,1-Dichloroethane	20		22	110	(74-135)
Cyclohexane	20		22	110	(67-132)
2-Butanone	100		110	110	(64-146)
Carbon Tetrachloride	20		23	115	(71-134)
cis-1,2-Dichloroethene	20		22	110	(74-130)
Chloroform	20		21	105	(74-134)
1,1,1-Trichloroethane	20		21	105	(74-133)
Methylcyclohexane	20		21	105	(71-125)
Benzene	20		22	110	(75-125)
1,2-Dichloroethane	20		22	110	(76-130)
Trichlorocthene	20		24	120	(73-127)
1,2-Dichloropropane	20		22	110	(76-125)
Bromodichloromethane	20		22	110	(78-127)
4-Methyl-2-Pentanone	100		110	110	(71-140)
Toluene	20		22	110	(74-125)
t-1,3-Dichloropropene	20		21	105	(74-131)
cis-1,3-Dichloropropene	20		21	105	(74-128)
1,1,2-Trichloroethane	20		22	110	(75-129)
2-Hexanone	100		100	100	(62-153)
Dibromochloromethane	20		24	120	(74-131)

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 Out of 0 outside limits

Spike Recovery: 3 Out of 49 outside limits

Comments:				

A Associated sample has this compound detected and was estimated (J)

9/13/11

^{*} Values outside of QC limits

WATER VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Clie	nt: MACTEC Inc.		
Lab Code:	СНЕМ	Cas No:	C3214	SAS No:	C3214	SDG No:	C3214
Matrix Spike	- EPA Sample No :	BSR0815W1	Analytical	Method:	EPA SW846 8260	_ Data	file: VR000351.D

	SPIKE		LCS	LCS	QC
COMPOUND	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPONE	(ug/L)	(ug/L)	(ug/L)	REC#	REC
1,2-Dibromoethane	20		23	115	(74-129)
Tetrachloroethene	20		29	(145)	(46-157)
Chlorobenzene	20		23	115	(76-123)
Ethyl Benzene	20		22	110	(75-126)
m/p-Xylenes	40		45	113	(74-126)
o-Xylene	20		22	110	(73-127)
Styrene	20		22	110	(75-126)
Bromoform	20		22	110	(66-130)
Isopropylbenzene	20		21	105	(70-127)
1,1,2,2-Tetrachloroethane	20		22	110	(66-131)
1,3-Dichlorobenzene	20		23	115	(70-125)
1,4-Dichlorobenzene	20		22	110	(71-124)
1,2-Dichlorobenzene	20		22	110	(71-126)
1,2-Dibromo-3-Chloropropane	20		20	100	(62-134)
1,2,4-Trichlorobenzene	20		23	115	(62-129)

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 Out of 0 outside limits

Spike Recovery: 3 Out of 49 outside limits

Comments:

* Associated Sample has this compound 9/13/ defected and was estimated (T) 33

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

CHEMTECH

Contract: MACT03

Lab Code:

CHEM

Case No.:

C3214

SAS No.:

C3214

SDG NO.:

C3214

Lab File ID:

VR000364.D

Date Analyzed:

08/16/2011

Instrument ID:

MSVOA R

Time Analyzed:

10:31

GC Column:

RTX-VMS

ID: 0.25 (mm) Heated Purge: (Y/N)

N

	IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	1182139	8.19	1962034	9.07	1789602	11.81
UPPER LIMIT	2364278	8,69	3924068	9.57	3579204	12.31
LOWER LIMIT	591069.5	7.69	981017	8.57	894801	11.31
EPA SAMPLE NO.						
BSR0816W1	1095227	8.19	1845604	9.07	1672958	11.81
828131A-MW6035	975344	8.19	1653810	9.07	1483665	11.81
828131A-MW07012DL	580718 *	8.19	998336	9.07	873309 *	11.81
VBR0816W2	1072603	8.19	1832253	9.07	1630860	11.81

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

J Qual (is 120 CE reported from the 50x dilution.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Contract: MACT03

Lab Code:

CHEM

Case No.: C3214

SAS No.:

C3214

SDG NO.:

C3214

Lab File ID:

VR000364.D

Date Analyzed:

08/16/2011

Instrument ID:

MSVOA R

Time Analyzed:

10:31

GC Column:

RTX~VMS

ID: 0.25 (mm)

Heated Purge: (Y/N)

/ht\

Ň

	IS4 AREA #	RT #		
12 HOUR STD	935833	13.73		
UPPER LIMIT	1871666	14.23		
LOWER LIMIT	467916.5	13.23		
EPA SAMPLE NO.				
BSR0916W1	862498	13.73		
828131A-MW6035	754530	13.73		
828131A-MW07012DL	(438009 *	13.73		
VBR0816W2	813716	13.73		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

Method Path : W:\HPCHEM1\MSVOA G\METHOD\

Method File: 82G080511W.M

```
: SW846 8260
 Title
                                                                               I-(al
Calculation
Checks chloride
Vinyl
 Last Update : Sat Aug 06 01:22:44 2011
 Response Via: Initial Calibration
 Calibration Files
 1 =VG036440.D 5 =VG036441.D
                                      20 = VG036442.D
 50 = VG036443.D 100 = VG036444.D 150 = VG036445.D
                               5
       Compound
                                      20
                                             50
                                                   100
                                                         150
                                                               Avq
                                                                        %RSD
 1) I
         Pentafluorobenzene
                              ----ISTD-----
 2) T
         Dichlorodifluorom 0.324 0.363 0.324 0.356 0.340 0.335 0.340
                                                                        4.72
 3) P
         Chloromethane 0.886 0.778 0.685 0.683 0.636 0.622 0.715
                                                                       13.99
 (4) C
         Vinyl Chloride 0.633 0.555 0.517 0.508 0.477 0.473 0.527
                                                                       11.31#
                                                                                     6475 (50)
        Bromomethane 0.344 0.328 0.306 0.293 0.233 0.268 0.362 0.270 0.290 0.265 0.225 0.198 0.268 0.362 0.270 0.290 0.265 0.255 0.605
 6) T
                                                                       21.11
                                                                                    51175 3 (1)
 7) T
        Trichlorofluorome 0.692 0.628 0.582 0.604 0.572 0.552 0.605
                                                                        8.28
 8) T
       Diethyl Ether 0.361 0.292 0.281 0.297 0.293 0.286 0.302
                                                                        9.79
                                                                                   0.0326
        1,1,2-Trichlorotr 0.428 0.394 0.359 0.376 0.367 0.360 0.381
 9) T
                                                                        7.01
10) T
                           1.093 0.982 0.889 0.895 0.863 0.849 0.928
        Methyl Iodide
                                                                        9.99
11) T
         Tert butyl alcoho 0.066 0.061 0.056 0.058 0.056 0.055 0.059
                                                                        7.39
                                                                       12.95# 5pc
                                                                                     29022 (50)
12) CM
        1,1-Dichloroethen 0.594 0.513 0.449 0.464 0.442 0.429 0.482
13) T
                           0.085 0.069 0.039 0.043 0.040 0.041 0.053
        Acrolein
                                                                       36.21
        Allyl chloride 0.929 1.027 0.905 0.936 0.895 0.866 0.926 Acrylonitrile 0.196 0.187 0.181 0.193 0.183 0.187
14) T
                                                                                    5 22904 (5)
                                                                        5.97
15) T
                                                                        3.20
16) T
                           0.205 0.200 0.150 0.164 0.160 0.154 0.172
        Acetone
                                                                       13.97
                                                                                   0.5550
17) T
        Carbon Disulfide 1.738 1.627 1.465 1.494 1.398 1.341 1.511
                                                                        9.77
        Methyl Acetate
18) T
                           0.890 0.722 0.655 0.682 0.662 0.654 0.711
                                                                       12.88
         Methyl tert-butyl 1.383 1.377 1.265 1.296 1.253 1.240 1.302
19) T
                                                                       4.84 20 pb 108396 (50) =
20) T
         Methylene Chlorid 0.678 0.589 0.499 0.504 0.479 0.472 0.537
21) T
         trans-1,2-Dichlor 0.579 0.525 0.470 0.474 0.457 0.450 0.492
                                                                       10.19
                                                                                    523933 (20)
22) T
         Acetonitrile
                                                               0.000
                                                                       -1.00
 23) T
         Diisopropyl ether 2.100 1.989 1.861 1.873 1.796 1.743 1.894
                                                                        6.89
                                                                                   0.51722
 24) T
         Vinyl Acetate 1.017 0.932 0.883 0.853 0.829 0.775 0.881
                                                                        9.58
 25) P
        1,1-Dichloroethan 1.141 1.005 0.930 0.935 0.923 0.893 0.971
                                                                        9.37
         2-Butanone 0.490 0.447 0.326 0.321 0.301 0.293 0.363
 26) T
                                                                       23.12 50ppb
 27) T
         2,2-Dichloropropa 0.625 0.534 0.472 0.490 0.460 0.443 0.504
                                                                                    253 785 (50) 3
28) T
         cis-1,2-Dichloroe 0.712 0.708 0.619 0.653 0.624 0.618 0.656
                                                                        6.68
                                                                                   499920 (50)
 29) T
         Bromochloromethan 0.540 0.499 0.248 0.467 0.442 0.362 0.426
                                                                        24.84
30) C
        Chloroform 1.046 0.939 0.853 0.870 0.839 0.817 0.894
                                                                        9.53#
31) T
         Cyclohexane
                           0.938 0.863 0.711 0.750 0.708 0.694 0.777
                                                                       12.87
                                                                                  0.50765
32) T
         1,1,1-Trichloroet 0.861 0.749 0.662 0.673 0.649 0.633 0.705
                                                                        12.29
33) s
        1,2-Dichloroethan 0.446 0.470 0.292 0.488 0.477 0.485 0.443
                                                                                    489870(50)
 34) I
         1,4-Difluorobenzene
                             -----ISTD-----
 35) S
         Dibromofluorometh 0.377 0.361 0.229 0.363 0.340 0.341 0.335
                                                                       16.09
 36) T
         1,1-Dichloroprope 0.556 0.507 0.474 0.473 0.440 0.441 0.482
                                                                        9.14
                                                                                   512191
 37) T
         Ethyl Acetate 0.645 0.546 0.477 0.476 0.446 0.430 0.503
                                                                       15.89
 38) T
         Carbon Tetrachlor 0.605 0.578 0.512 0.501 0.481 0.471 0.525
                                                                        10.37
 39) T
         Methylcyclohexane 0.525 0.521 0.468 0.483 0.454 0.439 0.482
                                                                        7.34
                                                                                  0.47723
 40) TM
                           1.572 1.394 1.301 1.280 1.218 1.205 1.328
                                                                        10.34
 41) T
         Methacrylonitrile 0.314 0.340 0.250 0.256 0.236 0.235 0.272
                                                                        16.35
         1,2-Dichloroethan 0.416 0.434 0.418 0.427 0.421 0.419 0.423
 42) TM
                                                                        1.60 150
                                                                                   732 (89 (50)
 43) T
         Isopropyl Acetate 0.882 0.791 0.755 0.735 0.673 0.660 0.749
                                                                        10.89
 44) T
         Isobutyl alcohol
                                                                        -1.00
                                                                                   516008 (150)
 45) TM
                           0.447 0.435 0.381 0.378 0.359 0.361 0.393
         Trichloroethene
                                                                         9.62
 46) C
         1,2-Dichloropropa 0.423 0.363 0.357 0.358 0.337 0.336 0.362
                                                                         8.80#
                        0.285 0.267 0.235 0.239 0.231 0.231 0.248
 47) T
         Dibromomethane
                                                                         9.01
 48) T
         Bromodichlorometh 0.509 0.518 0.457 0.458 0.441 0.438 0.470
                                                                         7.38
 49) T
         Methyl methacryla 0.456 0.405 0.365 0.348 0.329 0.330 0.372
                                                                        13.31
                                                                               RSD=6.113074
         1,4-Dioxane 0.004 0.004 0.004 0.004 0.003 0.004 Toluene-d8 1.430 1.295 0.822 1.292 1.202 1.172 1.202
 50) T
                                                                        3.51
 51) S
                                                                       17.19
 52) T
         4-Methyl-2-Pentan 0.549 0.525 0.479 0.458 0.408 0.388 0.468
                                                                                       Page: 1
500
82G080511W.M Sat Aug 06 01:23:31 2011 VOA
                                                              TC 9/14/1
```

Evaluate Continuing Calibration Report

Data Path : W:\HPCHEM1\MSVOA_R\DATA\VR081211\

Data File : VR000298.D

Acq On : 12 Aug 2011 17:48

Operator : PS

Sample : 50 PPB CCC Misc : 5 ml 8260

ALS Vial : 3 Sample Multiplier: 1

Quant Time: Aug 12 18:23:11 2011

Quant Method: W:\HPCHEM1\MSVOA_R\METHOD\82R081211W.M

Quant Title : SW846 8260

QLast Update : Fri Aug 12 15:45:25 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)	V.C. calc check
1 I	Pentafluorobenzene	1.000	1.000	0.0 98	0.00	1398475 (50)
2 T	Dichlorodifluoromethane	0.540	0.467	13.5 97	0.00	\
3 P	Chloromethane	0.695	0.621	10.6 97	0.00	a 67920 (50)
4 C	Vinyl Chloride	0.757	0.697	7.9# 98	0.00 75	1 46/8 20 63
5 T	Bromomethane	0.426	0.365	14.3 95	0.00 . 433	:
6 T	Chloroethane	0.477	0.444	6.9 97	0.00	1388475 (50) 4603 - 92%
7 T	Trichlorofluoromethane	0.958	0.890	7.1 97	0.00	
8 T	Diethyl Ether	0.432	0.404	6.5 99	0.00	11.0.67
9 Т	1,1,2-Trichlorotrifluoroeth	0.545	0.506	7.2 100	0.00	4603 926
10 T	Methyl Iodide	0.465	0.532	-14.4 102	0.00	1 (0,0
11 T	Tert butyl alcohol	0.041	0.045	-9.8 114	0.00	(0
12 CM	1,1-Dichloroethene	0.542	0.519	4.2# 104	0.00	ク・
13 T	Acrolein	0.055	0.045	18.2 91	0,00	
14 T	Allyl chloride	0.922	0.911	1.2 100	0.00	
15 Т	Acrylonitrile	0.185	0.183	1.1 101	0.00	
16 T	Acetone	0.225	0.180	20.0# 101	0.00	
17 T	Carbon Disulfide	1.539	1.485	3.5 98	0.00	
18 T	Methyl Acetate	0.626	0.618	1.3 104	0.00	
19 Т	Methyl tert-butyl Ether	1.688	1.637	3.0 99	0.00	
20 T	Methylene Chloride	0.629	0.565	10.2 100	0.00	
21 T	trans-1,2-Dichloroethene	0.538	0.502	6.7 100	0.00	
22 T	Acetonitrile	0.000	0.000	0.0	# -4.55#	
23 T	Diisopropyl ether	1.972	1.936	1.8 100	0.00	
24 T	Vinyl Acetate	1.189	1.183	0.5 97	0.00	
25 P	1,1-Dichloroethane	1.150	1.103	4.1 99	0.00	
26 T	2-Butanone	0.035	0.032	8.6 102	0.00	
27 T	2,2-Dichloropropane	1.056	1.024	3.0 97	0.00	
28 T	cis-1,2-Dichloroethene	0.749	0.723	3.5 100	0.00	•
29 T	Bromochloromethane	0.452	0.493	-9.1 102	0.00	
30 C	Chloroform	1.159	1.119	3.5# 100	0.00	1
31 Т	Cyclohexane	1.368	1.045	23.6# 98	00	W Associated
32 T	1,1,1-Trichloroethane	1.027	1.000	2.6 99	0.00	00 1700 = - 1
33 S	1,2-Dichloroethane~d4	0.751	0.757	-0.8 100	0.00	
34 I	1,4-Difluorobenzene	1.000	1.000	0.0 98	0.00	
35 S	Dibromofluoromethane	0.294	0.299	-1.7 98	0.00	
36 T	1,1-Dichloropropene	0.571	0.549	3.9 98	0.00	
37 T	Ethyl Acetate	0.788	0.700	11.2 101	0.00	
38 T	Carbon Tetrachloride	0.437	0.446	-2.1 97	0.00	
39 T	Methylcyclohexane	0.735	0.669	9.0 97	0.00	
40 TM	Benzene	1.600	1.528	4.5 99	0.00	•
41 T	Methacrylonitrile	0.197	0.196	0.5 102	0.00	
42 TM	1,2-Dichloroethane	0.540	0,519	3.9 100	0.00	4
43 T	Isopropyl Acetate	0.537	0.531	1.1 99	0.00	1.1
44 T	Isobutyl alcohol	0.000	0.000		# -6.21#	a141 II
45 TM	Trichloroethene	0.347	0.327	5.8 99	0.00	q(u/11
82R08123	11W.M Fri Aug 12 18:25:53 2011	S				Page: 1TC

J-EMIEC

VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBG0815W1	

Lab Name:

CHEMTECH

Contract: MACT03

Lab Code:

CHEM

C3214 Case No.:

SAS No.: C3214

SDG NO.: C3214

Lab File ID:

VG036662.D

Lab Sample ID:

VBG0815W1

Date Analyzed:

08/15/2011

Time Analyzed:

12:47

GC Column:

RTX-VMS

ID: 0.18

(mm)

Heated Purge: (Y/N)

Instrument ID:

MSVOAG

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
B9G0815W1	BSG0815W1	VG036663.D	08/15/2011
828131A-MW05012	C3214-04	VG036665.D	08/15/2011
828131A-MW07012	C3214-05	VG036666.D	08/15/2011
828131A-DP23015	C3214-13	VG036668.D	08/15/2011
828131A-DP23015DL	C3214-13DL	VG036669.D	08/15/2011
828131A-DP10013	C3214-07	VG036670.D	08/15/2011
828131A-DP10013DL	C3214-07DL	VG036671.D	08/15/2011
828131A-MW12055	C3214-09	VG036672.D	08/15/2011

(J) Qual detections of 111 TCA & PCE: LCS 1

	9/14			
Comments:		TC		

VOLATILE METHOD BLANK SUMMARY

	EPA SAMPLE NO.
	VBR0815W1
Lab Name: CHEMTECH	Contract: MACTO3
Lab Code: CHEM Case No.: C3214	SAS No.: C3214 SDG NO.: C3214
Lab File ID: VR000350,D	Lab Sample ID: VBR0815W1
Date Analyzed: 08/15/2011	Time Analyzed: 11:43
GC Column: RTX-VMS ID: 0.25 (mm)	Heated Purge: (Y/N) N
Instrument ID: MSVOA R	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	
BSR0815W1	BSR0815W1	VR000351.D	08/15/2011	
828131A-MW02012DUPDL	C3214-03DL	VR000354.D	08/15/2011	
828131A-MW02012DL	C3214-02DL	VR000355.D	08/15/2011	
828131A-DP15013	C3214-12	VR000356.D	08/15/2011	
828131A-DP15013DL	C3214-12DL	VR000357.D	08/15/2011	
828131A-DP28018	C3214-14	VR000362.D	08/15/2011	

Vinyl Chloride : PCE Qualified J: 1 LCS

	9	[14]	ij
COMMENTS:		1	r
		1,	_

R.T. QIon Response Conc Units Dev(Min)

Data Path : W:\HPCHEM1\MSVOA R\data\VR081211\

Data File : VR000324.D

Acq On : 13 Aug 2011 5:59

Operator : PS

Sample : 50 PPB CCC Misc : 5 ml 8260

ALS Vial : 29 Sample Multiplier: 1

Ouant Time: Aug 16 04:03:13 2011

Ouant Method: W:\HPCHEM1\MSVOA R\METHOD\82R081211W.M

Quant Title : SW846 8260

Internal Standards

QLast Update: Fri Aug 12 15:45:25 2011 Response via: Initial Calibration

Internal Standards	к.т.	ΔτΟΠ	response	Conc or	iics bev	(PIII)	
1) Pentafluorobenzene	8.19	168	1061890	50.00	ug/l	0.00	
·					ug/l	0.00	
64) Chlorobenzene-d5						0.00	
73) 1,4-Dichlorobenzene-d4	13.73		846688	50.00 50.00		0.00	
,					~g/ =	0.00	
System Monitoring Compounds							·
33) 1.2-Dichloroethane-d4	8.53	65	772246	48.43	uq/l	0.00	
Spiked Amount 50.000			Recove	erv =	96.86%		-
35) Dibromofluoromethane	8.11	113	545379	50.63	uq/l	0.00	
Spiked Amount 50.000			Recove	erv =	101.26%		
51) Toluene-d8	10.53	98	2496301	50.22	ug/l	0.00	
Spiked Amount 50.000			Recove	erv =	100.44%		
63) 4-Bromofluorobenzene	12.79	95	953194	48.23	uq/l	0.00	
Spiked Amount 50.000			Recove	ery =	96.46%		
Tangat Companya					0-		
Target Compounds 2) Dichlorodifluoromethane	1.90	85	425501	41.31	-	alue 98	•
3) Chloromethane	2.13		678204			99	
4) Vinyl Chloride	2.27		795645			98	7as(.45 62
5) Bromomethane	2.70	94	403013			97	1,130
6) Chloroethane	2.87		519979	51.30		99	757: - (1090 (X)
7) Trichlorofluoromethane	3.24		1043249	51.26		99	10618 1000
8) Diethyl Ether	3.70	74		53.00		96	•
9) 1,1,2-Trichlorotrifluoroet	4.11			42.28		99	, i
10) Methyl Iodide	4.31			50.32		97	ua ua aala
11) Tert butyl alcohol	5.34	59	148813	169.83		99	49,99
12) 1.1-Dichloroethene	4.07	96		44.04		98	Fie
13) Acrolein	3.92	56	160363	158.52		97	50
14) Allvl chloride	4.77	41		41.99		96	<u> </u>
15) Acrylonitrile	5.51	53	927919	235.86		99	
16) Acetone	4.18	43	846155	219.94		98	
17) Carbon Disulfide	4.42	76	1407827	43.07		100	
18) Methvl Acetate	4.79			47.51		99	
19) Methvl tert-butvl Ether	5.59			42.71		99	
20) Methvlene Chloride	5.04	84				99	
	5.58	96	594530 528516	46.21		96	
23) Diisopropyl ether	6.52		1959175	46.77	ug/l	99	
24) Vinyl Acetate	6.45		5149659m				
25) 1,1-Dichloroethane	6.39		1139922	46.66		99	
26) 2-Butanone	7.74	43	157527	231.97		89	
27) 2,2-Dichloropropane	7.36	77	782629			96	
28) cis-1,2-Dichloroethene	7.36	96	751886	47.24		95	
29) Bromochloromethane	7.72	49	530075	52.75		98	
30) Chloroform	7.89	83	1161672	47.18		97	
31) Cyclohexane	8.17	56	1026349	44.67		98	
32) 1,1,1-Trichloroethane	8.09	97	1008525	46.24		99	
36) 1,1-Dichloropropene	8.30	75	961637	46.06		100	
37) Ethvl Acetate	7.37	43	1164649	45.09		100	
38) Carbon Tetrachloride	8.28	117	781874	48.92	ug/l	99	
39) Methylcyclohexane	9.55	83	1079088m	40.10	ug/1		9(14(1
							V

Evaluate Continuing Calibration Report

Data Path : W:\HPCHEM1\MSVOA R\data\VR081511\

Data File : VR000348.D

Acq On : 15 Aug 2011 10:39

Operator : PS

Sample : 50 PPB CCC

Misc : 5 ml ALS Vial : 2

Quant Time: Aug 16 07:51:47 2011

Quant Method: W:\HPCHEM1\MSVOA R\METHOD\82R081211W.M

Sample Multiplier: 1

Quant Title : SW846 8260

QLast Update : Fri Aug 12 15:45:25 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	%Dev Are	a%	Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0.0	86	0,00
2 T	Dichlorodifluoromethane	0.540	0.703	-30.2# 1		0.00 LR
3 P	Chloromethane	0.695	0.932	<u>-34.</u> 1# 1		0.00 L.Z.
4 C	Vinyl Chloride	0.757	1.029	(-35.9 #)1	26	0.00 米
5 T	Bromomethane	0.426	0.518	-21.6# 1		0.001-2
6 Т	Chloroethane	0.477	0.611	-28.1#1		0.00*
7 T	Trichlorofluoromethane	0.958	1.271	(-32.7#)1	21	0.00%
Т 8	Diethyl Ether	0.432	0.460	-6.5	98	0.00
9 T	1,1,2-Trichlorotrifluoroeth	0.545	0.590	-8.3 1	.02	0.00
10 T	Methyl Iodide	0.465	0.643	-38.3# 1	.08	0.00
11 T	Tert butyl alcohol	0.041	0.038		84	0.00
12 CM	1,1-Dichloroethene	0.542	0.563		99	0.00
13 T	Acrolein	0.055	0.040	27.3#	71	0.00 Not Report
14 T	Allyl chloride	0.922	0.942	-2.2	90	0.00
15 T	Acrylonitrile	0.185	0.192	-3.8	93	0.00
16 T	Acetone	0.225	0.191		94	0.00
17 T	Carbon Disulfide	1.539	1.936	-25.84)1		0.00 💥
18 T	Methyl Acetate	0.626	0.610	2.6	90	0.00
19 T	Methyl tert-butyl Ether Methylene Chloride	1.688	1.614		86	0.00
20 T		0.629	0.632	~0.5	97	0.00
21 T	trans-1,2-Dichloroethene	0.538	0.569	-5.8	99	0.00
22 T	Acetonitrile	0.000	0.000	0.0		-4.55#
23 T	Diisopropyl ether	1.972	2.052	-4.1	93	0.00
24 T	Vinyl Acetate	1.189	1.123	5.6	81	0.00
25 P	1,1-Dichloroethane	1.150	1.190	-3.5	93	0.00
26 T	2-Butanone	0.035	0.034	2.9	95	0.00
27 T	2,2-Dichloropropane	1.056	1.051	0.5	87	0.00
28 T	cis-1,2-Dichloroethene Bromochloromethane	0.749	0.782	-4.4	94	0.00
29 T		0.452	0.481	-6.4	87	0.00
30 C	Chloroform	1.159	1.184	-2.2#	92	0.00
31 T	Cyclohexane	1.368	1.207	11.8	99	0.00
32 T	1,1,1-Trichloroethane	1.027	1.040	-1.3	90	0.00
33 S	1,2-Dichloroethane-d4	0.751	0.701	6.7	81	0.00
34 I	1,4-Difluorobenzene	1.000	1.000	0.0	83	0.00
35 S	Dibromofluoromethane	0.294	0.304	-3.4	84	0.00
36 T	1,1-Dichloropropene	0.571	0.632	-10.7	95	0.00
37 T	Ethyl Acetate	0.788	0.755	4.2	92	0.00
38 T	Carbon Tetrachloride	0.437	0.517	-18.3	95	0.00
39 T	Methylcyclohexane	0.735	0.789	-7.3	96	0.00
40 TM	Benzene	1.600	1.706	-6.6	94	0.00
41 T	Methacrylonitrile	0.197	0.206	-4.6	90	0.00
42 TM	1,2-Dichloroethane	0.540	0.561	-3.9	91	0.00
43 T	Isopropyl Acetate	0.537	0.546	-1.7	86	0.00
44 T	Isobutyl alcohol	0.000	0.000	0.0	0#	-6.21#
45 TM	Trichloroethene	0.347	0.389	-12.1	99	0.00
						_

*= J/UT in associated

9 (14) 198: _1

Evaluate Continuing Calibration Report

Data Path: W:\HPCHEM1\MSVOA R\data\VR081511\

Data File: VR000348.D

Acq On : 15 Aug 2011 10:39

Operator : PS

Sample : 50 PPB CCC

Misc : 5 ml

ALS Vial : 2 Sample Multiplier: 1

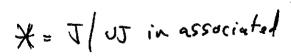
Quant Time: Aug 16 07:51:47 2011

Quant Method: W:\HPCHEM1\MSVOA_R\METHOD\82R081211W.M

Quant Title : SW846 8260

QLast Update : Fri Aug 12 15:45:25 2011

Response via: Initial Calibration


Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

		Compound	AvgRF	CCRF	%Dev Area	dev(min)
90 1 91 1 92 1 93 1 94 1 95 1 96 1 97 1	r r r r r	n-Butylbenzene Hexachloroethane 1,2-Dichlorobenzene 1,2,4,5-Tetramethylbenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	2.079 0.550 1.544 0.000 0.152 1.014 0.459 2.149 0.914	2.193 0.664 1.638 0.000 0.165 1.142 0.512 2.504 1.006	$ \begin{array}{c} -5.5 & 96 \\ -20.7 & 96 \\ -6.1 & 96 \end{array} $	0 0.00 5 0.00 6 0.00 0 -14.63# 9 0.00 9 0.00 3 0.00 3 0.00
99 7	Γ	p-ethyltoluene p-diethylbenzene	0.000	0.000	0.0	0# -10.06# 0# -12.13#

(#) = Out of Range

SPCC's out = 0 CCC's out = 6

Evaluate Continuing Calibration Report

Data Path : W:\HPCHEM1\MSVOA R\data\VR081611\

Data File : VR000364.D

Acq On : 16 Aug 2011 10:31

Operator : PS

Sample : 50 PPB CCC

Misc : 5 ml

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Aug 16 11:07:52 2011

Quant Method: W:\HPCHEM1\MSVOA_R\METHOD\82R081211W.M

Quant Title : SW846 8260

QLast Update : Fri Aug 12 15:45:25 2011

Response via: Initial Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 150%

*** but but also be	Compound	AvgRF	CCRF	%Dev Area% Dev(min)
1 I	Pentafluorobenzene	1.000	1.000	0.0 84 0.00
2 T	Dichlorodifluoromethane	0.540	0.625	-15.7 111 0.00
3 P	Chloromethane	0.695	0.842	<u>-21.2#</u> 112 0.00 LR
4 C	Vinyl Chloride	0.757	0.929	-22.7 # 111 0.00
5 T	Bromomethane	0.426	0.490	-15.0 108 0.00
6 T	Chloroethane	0.477	0.566	- <u>18.7</u> 106 0.00
7 T	Trichlorofluoromethane	0.958	1.160	€ 21.1 #) 108 0.00 ¾
8 T	Diethyl Ether	0.432	0.364	15.7 76 0.00
9 T	1,1,2-Trichlorotrifluoroeth	0.545	0.536	1.7 90 0.00
10 T	Methyl Iodide ,	0.465	0.571	-22.8# 93 0.00
11 T	Tert butyl alcohol	0.041	0.031	24.4# 67 -0.02
12 CM	1,1-Dichloroethene	0.542	0.506	6.6# 87 0.00
13 T	Acrolein	0.055	0.034	38.2# 60 0.00
14 T	Allyl chloride	0.922	0.828	10.2 77 0.00
15 T	Acrylonitrile	0.185	0.176	4.9 82 0.00
16 T	Acetone	0.225	0.171	24.0# 82 0.00 LR
17 T	Carbon Disulfide	1.539	1.593	-3.5 89 0.00 `
18 T	Methyl Acetate	0.626	0.564	9.9 81 0.00
19 T	Methyl tert-butyl Ether	1.688	1.413	16.3 73 0.00
20 T	Methylene Chloride	0.629	0.579	7.9 87 0.00
21 T	trans-1,2-Dichloroethene	0.538	0.514	4.5 87 0.00
22 T	Acetonitrile	0.000	0.000	0.0 0# -4.55#
23 T	Diisopropyl ether	1.972	1.851	6.1 81 0.00
24 T	Vinyl Acetate	1.189	1.156	2.8 81 0.00
25 P	1,1-Dichloroethane	1.150	1.073	6.7 82 0.00
26 T	2-Butanone	0.035	0.030	14.3 82 0.00
27 T	2,2-Dichloropropane	1.056	0.911	13.7 73 0.00
28 T	cis-1,2-Dichloroethene	0.749	0.711	5.1 84 0.00
29 T	Bromochloromethane	0.452	0.434	4.0 77 0.00
30 C	Chloroform	1.159	1.072	7.5# 81 0.00
31 T	Cyclohexane	1.368	1.071	21.7# 85 0.00 L R
32 T	1,1,1-Trichloroethane	1.027	0.933	9.2 79 0.00
33 S	1,2-Dichloroethane-d4	0.751	0.672	10.5 75 0.00
34 I	1,4-Difluorobenzene	1.000	1.000	0.0 81 0.00
35 S	Dibromofluoromethane	0.294	0.292	0.7 79 0.00
36 T	1,1-Dichloropropene	0.571	0.566	0.9 84 0.00
37 T	Ethyl Acetate	0.788	0.684	13.2 82 0.00
38 T	Carbon Tetrachloride	0.437	0.453	-3.7 82 0.00
39 Т	Methylcyclohexane	0.735	0.707	3.8 84 0.00
40 TM	Benzene	1.600	1.551	3.1 83 0.00
41 T	Methacrylonitrile	0.197	0.188	4.6 81 0.00
42 TM	1,2-Dichloroethane	0.540	0.502	7.0 80 0.00
43 T	Isopropyl Acetate	0.537	0.476	11.4 74 0.00
44 T	Isobutyl alcohol	0.000	0.000	0.0 0# -6.21#
45 TM	Trichloroethene	0.347	0.348	-0.3 87 0.00

82R081211W.M Tue Aug 16 11:14:00 2011 S

* UJ in associated sample

7(14/11 9(14/11

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: CHEMTECH Contract: MACT03 Lab Code: CHEM C3214 Case No.: C3214 SAS No.: SDG NO.: C3214 Lab File ID: VE023443.D BFB Injection Date: 08/16/2011 Instrument ID: MSVOAE BFB Injection Time: 12:56

GC Column: ZB-624 ID: 0.25 (mm) Heated Purge: Y/N N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	22.8
75	30.0 - 60.0% of mass 95	45.7
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	61.5
175	5.0 - 9.0% of mass 174	4.2 (6.9) 1
176	95.0 - 101.0% of mass 174	59.9 (97.4) 1
177	5.0 - 9.0% of mass 176	3.9 (6.4) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VE023444.D	08/16/2011	13:39
VBE0816W1	VBE0816W1	VE023446.D	08/16/2011	15:18
BSE0816W1	BSE0816W1	VE023447.D	08/16/2011	16:05
828131A-MW11055	C3214-08	VE023450.D	08/16/2011	17:51
828131A-DP27015	C3214-10	VE023451.D	08/16/2011	18:25
828131A-DP12013	C3214-06	VE023452.D	08/16/2011	18:59
828131A-DP22015	C3214~11	VE023453.D	08/16/2011	19:34

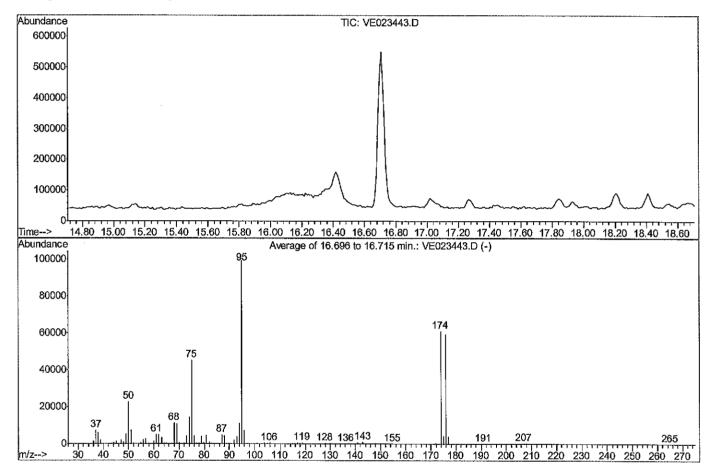
Data Path : W:\HPCHEM1\Msvoa E\Data\VE081611\

Data File: VE023443.D

Acq On : 16 Aug 2011 12:56

Operator : NS

Sample : BFB TUNE CHECK Misc : 5mL, MSVOA E


ALS Vial : 1 Sample Multiplier: 1

Integration File: RTEINT.P

Method : W:\HPCHEM1\MSVOA_E\METHOD\82E081211W.M

Title : SW846 8260

Last Update : Fri Aug 12 17:55:10 2011

AutoFind: Scans 1427, 1428, 1429; Background Corrected with Scan 1420

1	Target Mass		Rel. to		Lower Limit%	 	Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	
1	50		95		15]	40		22.8	1	22663	1	PASS	
1	75	1	95	ı	30		60	Ĺ	45.7	İ	45400	İ	PASS	i
1	95	1	95	-	100	Ì	100	Ĺ	100.0	İ	99362	i	PASS	i
- [96		95	-	5	Ī	9	l	7.2	i	7113	i	PASS	Ì
	173	-	174	-	0.00		2	i	0.0	- 1	0	Ĺ	PASS	1
- 1	174	-	95	-	50	11	100	1	61.5	- 1	61112	Ĺ	PASS	Ĺ
- 1	175	-1	174	-	5	1	9	1	6.9	-	4203	Ĺ	PASS	Ĺ
- 1	176	1	174	-	95	Ì	101	Ì	97.4	Ì	59541	Ĺ	PASS	Ĺ
	177	1	176		5	1	9	1	6.4	1	3839	Ì	PASS	İ

Tune Calc Check

174 G1112 = G1.50% /

9/14/4 TC

82E081211W.M Fri Aug 19 09:31:28 2011 RPT1

GC Column: RTX-VMS

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	CHEMTECH			Contract:	MACT03		
Lab	Code:	СНЕМ	Case No.:	C3214	SAS No.:	C3214	SDG NO.:	C3214
Lab	File ID:	VR000296.D			BFB Injecti	on Date:	08/12/2011	<u> </u>
Inst	trument ID:	MSVOA R			BFB Injecti	on Time.	16.40	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	19.6
75	30.0 - 60.0% of mass 95	54.9
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.1
173	Less than 2.0% of mass 174	0.2 (0.4) 1
174	50.0 - 100.0% of mass 95	61.5
175	5.0 - 9.0% of mass 174	4.6 (7.4) 1
176	95.0 - 101.0% of mass 174	60.8 (98.9) 1
177	5.0 - 9.0% of mass 176	3.7 (6.1) 2

Heated Purge: Y/N

1-Value is % mass 69

ID: 0.25 (mm)

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VR000298.D	08/12/2011	17:48
VBR0812W1 (\ear	VBR0812W1	VR000299.D	08/12/2011	19:13
BSR0812W1	BSR0812W1	VR000300,D	08/12/2011	19:52
TRIPBLANK	C3214-18	VR000304.D	08/12/2011	21:32
828131A-MW02012	C3214-02	VR000317.D	08/13/2011	03:03
828131A-DP28018MS	C3214-15MS	VR000319,D	08/13/2011	03:54
828131A-DP28018MSD	C3214-16MSD	VR000320.D	08/13/2011	04:19

Cycloberane %00 = 23.6 UT and samples

TC / aliula 50

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: CHEMTECH Contract: MACT03

Lab Code: CHEM Case No.: C3214 SAS No.: C3214 SDG NO.: C3214

VR000323,D Lab File ID: BFB Injection Date: 08/13/2011

Instrument ID: MSVOA R BFB Injection Time: 05:34

GC Column: RTX-VMS ID: 0.25 (mm) Heated Purge: Y/N

n/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE		
50	15.0 - 40.0% of mass 95	20,1		
75	30.0 - 60.0% of mass 95	54.5		
95	Base Peak, 100% relative abundance	100		
96	5.0 - 9.0% of mass 95	7,1		
173	Less than 2.0% of mass 174	0.2 (0.3) 1		
174	50.0 - 100.0% of mass 95	64.6		
175	5.0 - 9.0% of mass 174	4.8 (7.5) 1		
176	95.0 - 101.0% of mass 174	62.6 (96.8) 1		
177	5.0 - 9.0% of mass 176	4.1 (6.5) 2		

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VR000324.D	08/13/2011	05:59
VBR0812W2 C/20x	VBR0812W2	VR000326.D	08/13/2011	06:50
BSR0812W3	BSR0812W3	VR000327.D	08/13/2011	07:15
828131A-MW02012DUP	C3214-03	VR000329.D	08/13/2011	08:05

PCE @ %0 = -24.> Jata took from this (un.

Instrument ID:

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

BFB Injection Time:

Lab Name: CHEMTECH Contract: MACT03

Lab Code: C3214 CHEM Case No.: SAS No.: C3214 SDG NO.: C3214

Lab File ID: VR000347.D BFB Injection Date: 08/15/2011

GC Column: RTX-VMS ID: 0.25 N (mm) Heated Purge: Y/N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	19.9
75	30.0 - 60.0% of mass 95	54.7
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.3 (0.5) 1
174	50.0 - 100.0% of mass 95	66.5
175	5.0 - 9.0% of mass 174	4.9 (7.4) 1
176	95.0 - 101.0% of mass 174	65.4 (98.2) 1
177	5.0 - 9.0% of mass 176	4.1 (6.3) 2

1-Value is % mass 69

MSVOA R

2-Value is % mass 442

09:04

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VR000348.D	08/15/2011	10:39
VBR0815W1 Clean	VBR0815W1	VR000350.D	08/15/2011	11:43
BSR0815W1	BSR0815W1	VR000351.D	08/15/2011	12:30
828131A-MW02012DUPDL	C3214-03DL	VR000354.D	08/15/2011	14:25
828131A-MW02012DL	C3214-02DL	VR000355.D	08/15/2011	15:21
828131A-DP15013	C3214-12	VR000356.D	08/15/2011	15:59
828131A-DP15013DL	C3214-12DL	VR000357.D	08/15/2011	16:24
828131A-DP28018	C3214-14	VR000362.D	08/15/2011	19:18

J/UT associated

Chlorothane -29
Trichloroflummshane -32
CS2 -25
Herachloroellum -20,

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: CHEMTECH Contract: MACT03

Lab Code: CHEM Case No.: C3214 SAS No.: C3214 SDG NO.: C3214

VR000363.D Lab File ID: BFB Injection Date: 08/16/2011

Instrument ID: MSVOA R BFB Injection Time: 09:10 GC Column: RTX-VMS ID: 0.25 (mm) Heated Purge: Y/N N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	19.7
75	30.0 - 60.0% of mass 95	56.2
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.4
173	Less than 2.0% of mass 174	. 0.5 (0.7) 1
174	50.0 - 100.0% of mass 95	66.9
1 75	5.0 - 9.0% of mass 174	5.2 (7.8) 1
176	95.0 - 101.0% of mass 174	63.7 (95.2) 1
177	5.0 - 9.0% of mass 176	4.1 (6.4) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
->VSTD050	50 PPB CCC	VR000364.D	08/16/2011	10:31
VBROB16W2 Clean	VBR0816W2	VR000366.D	08/16/2011	11:53
BSR0816W1	BSR0816W1	VR000367.D	08/16/2011	12:20
828131A-MW07012DL	C3214-05DL	VR000369.D	08/16/2011	13:21
828131A-MW6035	C3214-01	VR000371.D	08/16/2011	14:24

VC -22 J/W associated samples
Tricklar of lumbethane -21

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

 Lab Name:
 CHEMTECH
 Contract:
 MACT03

 Lab Code:
 CHEM
 Case No.:
 C3214
 SAS No.:
 C3214
 SDG No.:
 C3214

 Lab File ID:
 VG036660.D
 BFB Injection Date:
 08/15/2011

Instrument ID: MSVOAG BFB Injection Time: 09:47

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: Y/N N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	20.8
7 5	30.0 - 60.0% of mass 95	45.6
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	89.5
175	5.0 - 9.0% of mass 174	6.2 (7) 1
1.76	95.0 - 101.0% of mass 174	85.6 (95.7) 1
177	5.0 - 9.0% of mass 176	5.7 (6.6) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD020	20 PPB CCC	VG036661.D	08/15/2011	11:15
VBG0815W1	VBG0815W1	VG036662.D	08/15/2011	12:47
BSG0815W1	BSG0815W1	VG036663.D	08/15/2011	13:15
828131A-MW05012	C3214-04	VG036665.D	08/15/2011	15:20
828131A-MW07012	C3214-05	VG036666.D	08/15/2011	15:48
828131A-DP23015	C3214-13	VG036668.D	08/15/2011	16:59
828131A~DP23015DL	C3214-13DL	VG036669.D	08/15/2011	17:28
828131A-DP10013	C3214-07	VG036670.D	08/15/2011	17:56
828131A-DP10013DL	C3214-07DL	VG036671.D	08/15/2011	18:25
828131A-MW12055	C3214-09	VG036672.D	08/15/2011	18:53

> 111TCAe 2.6 K5= 38 w/L

9/14/4

Data Path : W:\HPCHEM1\MSVOA G\DATA\VG081511\

Data File : VG036666.D

Acq On : 15 Aug 2011 15:48

Operator : PS

Sample : C3214-05 Misc : 5mL MSVOA G

ALS Vial: 7 Sample Multiplier: 1

Ouant Time: Aug 16 08:23:26 2011

Ouant Method: W:\HPCHEM1\MSVOA G\METHOD\82G080511W.M

Quant Title : SW846 8260

QLast Update : Tue Aug 16 07:18:52 2011

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	3.94	168	688131		ug/l	0.03
•	4.75	114	961013		uq/l	
64) Chlorobenzene-d5			986994		ug/l	
73) 1,4-Dichlorobenzene-d4	13.40	152	450307	50.00	ug/l	0.02
System Monitoring Compounds		٠				
33) 1,2-Dichloroethane-d4	3.92	65	391197	60.15	ug/l	0.02
Spiked Amount 50.000			Recove	erv =	120.308	5
35) Dibromofluoromethane	3.26	113	373253	57.52	ua/l	0.02
Spiked Amount 50.000			Recove	erv =	115.048	5
51) Toluene-d8	7.20	98	1168823	51.51	ug/l	0.03
Spiked Amount 50.000			Recove	erv =	103.028	5
63) 4-Bromofluorobenzene	11.66	95	482007	53.95	uq/l	0.01
Spiked Amount 50.000			Recove	ery =	107.90%	Ė
Target Compounds					70	alue
4) Vinyl Chloride	0.94	62	643602	88.71	_	98
12) 1,1-Dichloroethene	1.43	96		7.63		73
21) trans-1,2-Dichloroethene	1.87	96	214632		ug/l	89
	2.77	96	9164928	1015.62		
45) Trichloroethene	4.63	130	589749			
65) Tetrachloroethene	7.89		123322			95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Sample Calculation check

V.C.

$$0.527 = \frac{643602(50)}{688131(x)} = 88.737_{115}$$

0K/

9/14/4

Data Path: W:\HPCHEM1\MSVOA G\DATA\VG081511\

Data File : VG036671.D

: 15 Aug 2011 18:25 Acq On

Operator : PS

Sample : C3214-07DL 10X Misc : 5mL MSVOA G

ALS Vial : 12 Sample Multiplier: 1

Ouant Time: Aug 16 09:00:41 2011

Ouant Method: W:\HPCHEM1\MSVOA G\METHOD\82G080511W.M

Quant Title : SW846 8260

QLast Update: Tue Aug 16 07:18:52 2011 Response via: Initial Calibration

Internal Standards	Α,Τ,	QIon	Response	Conc Ur	nits Dev	(Min)
1) Pentafluorobenzene	3.94	168	669879	50.00	uq/l	0.03
34) 1,4-Difluorobenzene	4.75	114	967087	50.00	uq/l	0.04
64) Chlorobenzene-d5	9.70	117	987561	50.00	uq/l	0.02
73) 1,4-Dichlorobenzene-d4	13.41	152	452213	50.00	ug/l	0.02
System Monitoring Compounds						
33) 1,2-Dichloroethane-d4	3.92	65	383345	60.54	ua/l	0.02
Spiked Amount 50.000			Recove	erv =	121.08%	
35) Dibromofluoromethane	3.26	113	371413	56.88	ua/l	0.02
Spiked Amount 50.000			Recove	erv =	113.76%	
51) Toluene-d8	7.21	98	1126971	49.37	uq/l	0.03
Spiked Amount 50.000			Recove	erv =	98.74%	
63) 4-Bromofluorobenzene	11.66	95	482343	53.66	ua/l	0.01
Spiked Amount 50.000			Recove	ery =	107.32%	
Target Compounds					Qv	alue
4) Vinvl Chloride	0.94	62	60650	8.59	uq/l	96
28) cis-1,2-Dichloroethene	2.78	96	363977	41.43	ua/l	97
45) Trichloroethene	4.63	130	53600	7.04	uq/l	93

⁽#) = qualifier out of range (m) = manual integration (+) = signals summed

Sample Calculation Check
V.C.

Data Path: W:\HPCHEM1\MSVOA G\DATA\VG081511\

Data File: VG036672.D

Acg On : 15 Aug 2011 18:53 Operator : PS

: C3214-09 Sample Misc : 5mL MSVOA G

ALS Vial : 13 Sample Multiplier: 1

Ouant Time: Aug 16 09:08:01 2011

Ouant Method: W:\HPCHEM1\MSVOA G\METHOD\82G080511W.M

Quant Title : SW846 8260

QLast Update : Tue Aug 16 07:18:52 2011

Response via: Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc Ur	nits Dev	(Min)
	3.94	168			uq/l	0.03
34) 1,4-Difluorobenzene	4.75	114	982858	50.00	uq/l	0.04
64) Chlorobenzene-d5	9.71	117	974393	50.00	uq/l	0.02
73) 1,4-Dichlorobenzene-d4	13.41	152	455612	50.00	ug/l	0.02
System Monitoring Compounds						
33) 1.2-Dichloroethane-d4	3.93	65	385694	60.86	ug/l	0.03
Spiked Amount 50.000			Recove	erv =	121.72%	
35) Dibromofluoromethane	3.28	113	368707	55.59	ug/l	0.03
Spiked Amount 50.000			Recove	erv =	111.18%	
51) Toluene-d8	7.21	98	1115533	48.10	ug/l	0.03
Spiked Amount 50.000			Recove	erv =	96.20%	
63) 4-Bromofluorobenzene	11.67	95	495501	54.23	ug/l	0.02
Spiked Amount 50.000			Recove	ery =	108.46%	
Target Compounds					Qv	alue
4) Vinyl Chloride	0.94	62	778058	110.09	uq/l	95
19) Methyl tert-butyl Ether	1.96	73	19804	1.13	uq/1 #	87
21) trans-1,2-Dichloroethene	1.87	96	28031	4.25	uq/l	96
28) cis-1,2-Dichloroethene	2.78	96	1177425	133.95	uq/l	98
45) Trichloroethene	4.63	130	22597	2.92	ug/l	99
65) Tetrachloroethene	7.88	164		0.98		

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed

Sample Calculation Check

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

Project:

Carriage Cleantown

Date Received:

SDG No.:

Matrix:

Client Sample ID:

VBG0815W1

Lab Sample ID:

VBG0815W1

C3214

Analytical Method:

SW8260B

WATER

Sample Wt/Vol:

mL

% Moisture: 100

uL

Soil Aliquot Vol:

uL

Units:

Final Vol: Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

5000

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG036662.D

1

08/15/11

VG081511

CAS Number	Parameter	Cone	. Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.34	1	ug/L
74-83-9	Bromomethane	1	U	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0,2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.35	1	ug/L
67-66-3	Chloroform	· <u>-1</u>	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	7.6		0.4	1	ug/L
108-87-2	Methylcyclohexane	7-1	U	0.2	1	ug/L
71-43-2	Benzene		U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	/ 1	U	0.48	1	ug/L
79-01-6	Trichloroethene	/ 1	U	0.28	1	·ug/L
78-87-5	1,2-Dichloropropane	/ 1	U	0,46	1	ug/L
75-27-4	Bromodichloromethane	/ 1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	/ 1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	, U.	0.31	1	ug/L
	Me flood Black	V 5 X5=3	8		9/14/ TC	6 90

METALS

NYSDEC DUST PROJECT CHEMIST REVIEW RECORD Project: Off Site (arriage (leane 5) Method: 6010 B Laboratory and SDG(s): C 3 214 Date: 9-14-11 Reviewer: Tige (Unningham)
Review Level X NYSDEC DUSR USEPA Region II Guideline
 Case Narrative Review and Data Package Completeness Where all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
3. Holding time and Sample Collection Were all samples were all prepped and analyzed with the holding time (6 month). YES NO (circle one)
4. © QC Blanks Are method blanks clean? YES NO (circle one) Fe @ 32.58 Action level @ 5x. 162 A Are Initial and continuing calibration blanks clean? YES NO (circle one) Low level Fe @ 21.6ppb x5 = 108ppb No Samples Qualified Interference Check Standard OK Instrument Calibration Little addition of the investor of the method 1975 NO (circle one)
Initial calibration criteria met for the method? YES NO (circle one) 90-110% (80-120% Hg) recovery on continuing calibration standards met YES NO (circle one)
Serial Dilutions Were all results were within the control limit of 10% (for values > 50X MDL)? Yes Fe was @ 18.8% but value was < 50X MOL :. Not evalue to the Laboratory Control Sample Results Were all results were within 80-120% limits? YES NO (circle one)
Matrix Spike Were MS/MSDs submitted/analyzed? YES NO however lab Spiked DP10013 and analyzed as a MS/MSD Were all results were within 75-125% limits? YES NO NA (circle one)
Duplicates/replicates Were Field Duplicates submitted/analyzed? YES NO Aqueous RPD within limit? (50%) YES NO NA (circle one) Soil RPD within limit? (100%) YES NO NA (circle one)
Was the lab dup RPD <20% for values > 5X the CRQL (or \pm CRQL) Yes
Were both Total and Dissolved metals reported? YES NO NA (circle one) If the dissolved concentration is > 20% of the total concentration then estimate (J) both results
Percent solids < 50% for any soil/sediment sample? YES NO NA (circle one) If yes, estimate all results.
5. Raw Data Review and Calculation Checks
6. Electronic Data Review and Edits. Does the EDD match the Form I's? YES NO (circle one)
7. DUSR Tables: Table 1 (sample Listing), Table 2 (results summary), Table 3 (Reason Codes). Were all tables produced? VES NO (circle one)

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Date Received:

08/03/11

Client Sample ID:

Carriage Cleantown 828131A-MW02012

SDG No.:

C3214

Lab Sample ID:

C3214-02

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6 7439-96-5	Iron Manganese	1920 564		1	20.4 1.7	50 10	ug/L ug/L	08/04/11 08/04/11	08/05/11 08/05/11	SW6010B SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW07012

SDG No.:

C3214

Lab Sample ID:

C3214-05

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6	Iron	728		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	711		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Date Received:

08/03/11

Client Sample ID:

Carriage Cleantown 828131A-DP10013

SDG No.:

C3214

Lab Sample ID:

C3214-07

Matrix:

WATER

Level (low/med):

low

% Solid:

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6	Iron	834		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	831		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW11055

SDG No.:

C3214

Lab Sample ID:

C3214-08

Matrix:

WATER

Level (low/med):

low

% Solid:

lid: 0

Cas	Parameter	Cone.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6	Iron	254		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	98.7		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

TC 9/14/11

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11 C3214

Client Sample ID:

828131A-DP15013

SDG No.:

Lab Sample ID:

C3214-12

Matrix:

WATER

Level (low/med):

low

% Solid:

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6 7439-96-5	Iron Manganese	121 412	V	1	20.4 1.7	50 10	ug/L ug/L	08/04/11 08/04/11	08/05/11 08/05/11	SW6010B SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP23015

SDG No.:

C3214

Lab Sample ID:

C3214-13

Matrix:

WATER

Level (low/med):

low

% Solid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6	Iron	1450		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	219		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Metals - 3b PREPARATION BLANK SUMMARY

Client:

MACTEC Inc.

SDG No.:

C3214

Instrument:

Ρ4

Sample ID	Analyte	Result (ug/L)	Acceptance Limit	Conc Qual	MDL ug/L	CRQL ug/L	M	Analysis Date	Analysis Time	Run
PB57196BL		WATER	_	Batch Num	ber: P	B57196		Prep Date:	08/04/20	11
	Iron	32.580	> <50.000	J	20.400	50,000	P	08/05/2011	13:53	LB56297
	Manganese	1.700	<10,000	U	1.700	10.000	P	08/05/2011	13:53	LB56297

Iron 32.58×5= 1631Pb

(U) Qual Fe@ 121 in

DP15013

CHEMITECH

Metals

- 3ล -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client:	MACTEC Inc.			SDG No.:	<u>C3214</u>	
Contract:	MACT03	Lab Code:	CHEM	Case No.:	C3214	SAS No.: <u>C3214</u>

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
					ē					
ICB01	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/05/2011	13:14	LB56297
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/05/2011	13:14	LB56297
CCB01	Iron	20,4	+/-50.0	U	20.4	50.0	P	08/05/2011	13:32	LB56297
	Manganese	1.7	+/-10.0	U_	1.7	10.0	P	08/05/2011	13:32	LB56297
CCB02	Iron	21.6	+/-50.0	1	20.4	50,0	P	08/05/2011	14:08	LB56297
	Manganese	1-7	+/-10.0	0	1.7	10.0	P	08/05/2011	14:08	LB56297
ССВ03	lron	20.4	+/-50.0	υ \	20.4	50.0	P	08/05/2011	14:45	LB56297
	Manganese	1. 7	+/-10.0	υ	1.7	10.0	P	08/05/2011	14: 4 5	LB56297
ССВ04	Iron	20.4	+/-50,0	υ \	20.4	50.0	P	08/05/2011	14:54	LB56297
	Manganese	1.7	+/-10.0	υ \	1.7	10,0	P	08/05/2011	14:54	LB56297

21.6x5: 10899b

Not affective samples

Sample Name: CCB

Acquired: 8/5/2011 14:45:06

Type: Unk

Method: P4 (v248)

Mode: CONC

Corr. Factor: 1.000000

User: admin

Custom ID1:

Custom ID2:

Custom ID3:

Comment:

Elem	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.00228	.00776	.00145	.00797	.00385	.01985	00259	00015	
Stddev	.00366	.00172	.00482	.00557	.00268	.00638	.00005	.00017	
%RSD	160.75	22.194	332.79	69.941	69.814	32.125	2.0349	116.53	
#1	00031	.00898	00196	.00403	.00195	.02436	00263	00027	
#2	.00486	.00655	.00486	.01191	.00574	.01534	00256	00003	
Elem	Cd2265	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790	
Units	ppm	ppm	ppm	ppm	ppm	ppm \	\ ppm \	ppm	
Avg	.00011	00058	.00016	00080	.00104	.00521	.00083	.10108	
Stddev	.00022	.01119	.00041	.00024	.00017	.01905	00124 \	.05314	
%RSD	212.06	1937.0	255.79	30.185	16.709	365.42	149.61	52.576	
						\	1	}	
#1	00005	00849	.00045	00097	.00091	.01868 /	00005	.06350	
#2	.00026	.00734	00013	00063	.00116	\00826	.00171	.13865	
Elem	Ni2316	Ag3280	Na5895	V 2924	Zn2062	K 7664	Mo2020	B_2496	
Units	ppm	ppm	ppm	_		, —	I		
Avg	00018	.00079	.02362	ppm .00057	ppm 00060	/ ppm 00242	ppm \ 00500 \	ppm .00461	
Stddev	.00126	.00073	.02302	.00037	.00048	.04169	.00008	.00401	
%RSD	705.98	34.053	4.9864	33.341	80.694	1722.3	19.560	49.356	
701100	700.00	04.000	4.0004	30.541	00.054	1722.5	13.500	49.000	
#1	00107	.00060	.02279	.00044	00026	.02706	.00569	.00300	
#2	.00071	.00098	.02445	.00071	00094	03190	.00431	.00621	
		•				1		1	
Elem	S_1820	Si2881	Sn1899	Ti3361	Li6707	1		1	
Units	ppm	ppm	ppm	ppm	ppm	1	У	1	
Avg	.00282	01965	.00038	00086	.00087	1	,	` /	
Stddev	.00119	.03194	.00187	.00045	.00051	\	\mathcal{N}	DV	
%RSD	42.193	162.50	495.96	52.319	59.375	\	•		
						1			
#1	.00198	.00293	.00170	00118	.00050	1			
#2	.00367	04224	00094	00054	.00123	1			
						Ψ			
						•		1 - 11/	. /
						57		1.6 OK	- /
						υ. υ		ι•Ψ	

To glisty

Sample Name: CCV

Acquired: 8/5/2011 14:42:16

Type: Unk

Method: P4 (v248)

Mode: CONC

Corr. Factor: 1.000000

User: admin

Custom ID1:

Custom ID2:

Custom ID3:

Comment:

Elem	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348	Cd2265
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	5.2237	5.0557	4.9818	5.2529	5.3334	10.085	10.993	.24430	2.4381
Stddev	.0853	.0990	.1044	.0909	.0987	.006	.087	.00036	.0429
%RSD	1.6321	1.9580	2.0948	1.7300	1.8497	.06160	.79402	.14674	1.7601
#1	5.1634	4.9857	4.9080	5.1886	5.2637	10.081	10.931	.24455	2.4077
#2	5.2839	5.1257	5.0556	5.3172	5.4032		11.055	.24405	2.4684
Elem	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790	Ni2316	Ag3280
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	25.172	.95708	2.5061	1.2654	5.0641	2.4923	25.540	2.4993	1.1918
Stddev	.151	.00608	.0476	.0012	.0461	.0295	.028	.0427	.0082
%RSD	.59810	.63536	1.8997	.09572	.91105	1.1842	.11136	1.7081	.68628
#1	25.065	.96138	2.4724	1.2646	5.0315	2.4714	25.560	2.4691	1.1975
#2	25.278	.95278	2.5397	1.2663	5.0967	2.5132	25.520	2.5295	1.1860
Elem	Na5895	V_2924	Zn2062	K_7664	Mo2020	B_2496	S_1820	Si2881	Sn1899
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	27.148	2.5140	2.5372	27.486	5.2660	4.8491	4.9306	5.2697	4.9792
Stddev	.193	.0000	.0466	.156	.0839	.0125	.0884	.0626	.0931
%RSD	.70948	.00144	1.8386	.56677	1.5931	.25862	1.7937	1.1881	1.8701
#1	27.011	2.5140	2.5042	27.376	5.2067	4.8579	4.8681	5.2254	4.9134
#2	27.284	2.5139	2.5702	27.597	5.3254	4.8402	4.9931	5.3139	5.0451
Elem Units Avg Stddev %RSD	Ti3361 ppm 5.3375 .0401 .75215	Li6707 ppm 5.5141 .0423 .76641			CC	u ch	ecK		
#1 #2	5.3091 5.3659	5.4842 5.5440	÷						

9/14/11

Sample Name: PB57196BS A

Acquired: 8/5/2011 13:56:52

Type: Unk

Method: P4 (v248)

Mode: CONC

Corr. Factor: 1.000000

User: admin

Custom ID1:

Custom ID2:

Custom ID3:

Comment:

Elem									
Units	Elem	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348
Avg .82179 1.9969 .98888 2.0762 .83485 2.0177 .22450 .20533 Stddev .02147 .0437 .02597 .0453 .01941 .0026 .00007 .00013 %RSD 2.6121 2.1888 2.6232 2.1816 2.3244 .13078 .03323 .06376 #1 .83697 2.0279 1.0082 2.1082 .84857 2.0196 .22444 .20527 #2 .80661 1.9660 .97152 2.0441 .82112 2.0158 .22455 .20545 Elem Cd2265 Ca3736 Cr2677 Co2286 Cu2247 Fe2598 Mn2576 ppm pp	Units	ppm							
#1	Avg								
#1	Stddev	.02147	.0437	.02597	.0453	.01941	.0026	.00007	.00013
#2	%RSD	2.6121	2.1888	2.6232	2.1816	2.3244	.13078	.03323	.06376
#2	#1	83697	2 0279	1 0082	2 1082	84857	2 0196	22444	20527
Elem Cd2265 Ca3736 Cr2677 Co2286 Cu2247 Fe2598 Mn2576 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp									
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	'' <i>E</i>	.00001	1.0000	.07102	2.0111	.02112	2.0100	.22400	.20040
Avg .20200 1.0926 .41084 .20570 .32389 3.2033 .21191 2.1668 Stddev .00389 .0420 .00399 .00542 .00288 .0123 .00003 .0157 %RSD 1.9272 3.8437 .97045 2.6342 .89048 .38384 .01342 .72361 #1 .20476 1.1223 .40802 .20953 .32593 3.1946 .21193 2.1557 #2 .19925 1.0629 .41366 .20187 .32185 3.2120 .21189 2.1779 Elem Ni2316 Ag3280 Na5895 V_2924 Zn2062 K_7664 Mo2020 B_2496 Units ppm <td< td=""><td>Elem</td><td>Cd2265</td><td>Ca3736</td><td>Cr2677</td><td>Co2286</td><td>Cu2247 /</td><td>Fe2598</td><td>Mn2576</td><td>Mg2790</td></td<>	Elem	Cd2265	Ca3736	Cr2677	Co2286	Cu2247 /	Fe2598	Mn2576	Mg2790
Avg .20200 1.0926 .41084 .20570 .32389 3.2033 .21191 2.1668 Stddev .00389 .0420 .00399 .00542 .00288 .0123 .00003 .0157 %RSD 1.9272 3.8437 .97045 2.6342 .89048 .38384 .01342 .72361 #1 .20476 1.1223 .40802 .20953 .32593 3.1946 .21193 2.1557 #2 .19925 1.0629 .41366 .20187 .32185 3.2120 .21189 2.1557 Elem Ni2316 Ag3280 Na5895 V_2924 Zn2062 K_7664 Mo2020 B_2496 Units ppm 209918 .00756 1.0752	Units		ppm	ppm	ppm	ppm	ppm	∖ ppm \	ppm
#1	Avg	.20200	1.0926	.41084	.20570	.32389	3.2033	.21191	
#1	Stddev	.00389	.0420	.00399	.00542	.00288 \	.0123	.00003	.0157
#2	%RSD	1.9272	3.8437	.97045	2.6342	.89048	.38384	.01342	.72361
#2						'	1	N	
Elem Ni2316 Ag3280 Na5895 V_2924 Zn2062 K_7664 Mo2020 ppm ppm ppm ppm ppm ppm ppm ppm ppm pp				.40802	.20953	.32593	3.1946	.21193	2.1557
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	#2	.19925	1.0629	.41366	.20187	.32185	∖ 3.2120	/\ .21189	2.1779
Units ppm ppm ppm ppm ppm ppm ppm ppm ppm pp								1	
Avg .52218 .07530 3.1955 .32171 .20986 10.728 .43291 .29918 Stddev .01278 .00052 .0204 .00005 .00256 .062 .00756 .00336 %RSD 2.4475 .69359 .63701 .01510 1.2190 .57827 1.7452 1.1218 #1 .53122 .07493 3.1811 .32167 .21167 10.772 .43825 .29681 #2 .51315 .07567 3.2099 .32174 .20806 10.684 .42757 .30156 Elem S_1820 Si2881 Sn1899 Ti3361 Li6707 Li6707 Li0684 .42757 .30156 Avg F.01260 1.0111 .72175 .21217 .21454 .21454 .2000 .21333 .2004			•				K_7664	Mo2020	∖ B_2496
Stddev .01278 .00052 .0204 .00005 .00256 .062 .00756 .00336 %RSD 2.4475 .69359 .63701 .01510 1.2190 .57827 1.7452 1.1218 #1 .53122 .07493 3.1811 .32167 .21167 10.772 .43825 .29681 #2 .51315 .07567 3.2099 .32174 .20806 10.684 .42757 .30156 Elem S_1820 Si2881 Sn1899 Ti3361 Li6707 Li6707 Units ppm ppm ppm ppm ppm ppm Avg F.01260 1.0111 .72175 .21217 .21454 .21454 .2040 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
%RSD 2.4475 .69359 .63701 .01510 1.2190 .57827 1.7452 1.1218 #1 .53122 .07493 3.1811 .32167 .21167 10.772 .43825 .29681 #2 .51315 .07567 3.2099 .32174 .20806 10.684 .42757 .30156 Elem S_1820 Si2881 Sn1899 Ti3361 Li6707 Li6707 Li070 Li070 21454 .21454	-							1	_
#1									.00336
#2 .51315 .07567 3.2099 .32174 .20806 10.684 .42757 .30156 Elem S_1820 Si2881 Sn1899 Ti3361 Li6707 Units ppm ppm ppm ppm ppm Avg F.01260 1.0111 .72175 .21217 .21454 Stddev .00043 .0021 .01246 .00399 .00171 %RSD 3.4531 .20543 1.7270 1.8795 .79504 #1 .01290 1.0125 .73057 .20935 .21333 3 3 2 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%RSD	2.4475	.69359	.63701	.01510	1.2190	.57827	1.7452	1.1218
#2 .51315 .07567 3.2099 .32174 .20806 10.684 .42757 .30156 Elem S_1820 Si2881 Sn1899 Ti3361 Li6707 Units ppm ppm ppm ppm ppm Avg F.01260 1.0111 .72175 .21217 .21454 Stddev .00043 .0021 .01246 .00399 .00171 %RSD 3.4531 .20543 1.7270 1.8795 .79504 #1 .01290 1.0125 .73057 .20935 .21333 3 3 2 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	444	E2122	07400	2 1011	20107	04407	40.770	40005	1,00004
Elem S_1820 Si2881 Sn1899 Ti3361 Li6707 Units ppm ppm ppm ppm ppm ppm Avg F.01260 1.0111 .72175 .21217 .21454 Stddev .00043 .0021 .01246 .00399 .00171 %RSD 3.4531 .20543 1.7270 1.8795 .79504 #1 .01290 1.0125 .73057 .20935 .21333 3 203 #2 .01229 1.0096 71294 .21499 .21574								ľ	1
Units ppm ppm ppm ppm ppm ppm ppm ppm Stddev .00043 .0021 .01246 .00399 .00171 Stddev 3.4531 .20543 1.7270 1.8795 .79504	#2	.51515	.07367	3.2099	.32174	.20806	10.684	.42/5/	1.30156
Units ppm ppm ppm ppm ppm ppm ppm ppm Stddev .00043 .0021 .01246 .00399 .00171 Stddev 3.4531 .20543 1.7270 1.8795 .79504	Elem	S 1820	Si2881	Sn1899	Ti3361	Li6707			V
Avg F.01260 1.0111 .72175 .21217 .21454 Stddev .00043 .0021 .01246 .00399 .00171 %RSD 3.4531 .20543 1.7270 1.8795 .79504 #1 .01290 1.0125 .73057 .20935 .21333 3 203 #2 .01229 1.0096 .71294 .21499 .21574	Units	_						1	2119
Stddev .00043 .0021 .01246 .00399 .00171									
%RSD 3.4531 .20543 1.7270 1.8795 .79504 V 106 #1 .01290 1.0125 .73057 .20935 .21333 3 203 #2 .01229 1.0096 71294 .21499 .21574	•	.00043	.0021	.01246	.00399		1	1)	∵ −
#2 01229 1,0096 71294 21499 21574 - A > d/	%RSD	3.4531	.20543				,	/	106%
#2 01229 1,0096 71294 21499 21574 - A > d/									
#2 .01229 1.0096 .71294 .21499 .21574 3000 = 10 > %	#1	.01290	1.0125	.73057	.20935	.21333	57	ره.	_
3000	#2	.01229	1.0096	.71294	.21499	.21574			1070/
							30	ග	10/10

9/14/4

Sample Name: C3214-02

Acquired: 8/5/2011 14:11:57

Type: Unk

Method: P4 (v248)

Mode: CONC

Corr. Factor: 1.000000

User: admin

Custom ID1:

Custom ID2:

Custom ID3:

Comment:

Elem	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00254	.00767	.00190	.00464	00078	.03576	.30972	00028
Stddev	.00318	.00068	.00528	.00182	.00024	.00482	.00204	.00006
%RSD	124.97	8.8642	278.08	39.267	31.038	13.488	.65763	22.757
#1	.00479	.00719	.00563	.00593	00061	.03917	.31116	00033
#2	.00030	.00815	00183	.00336	00095	.03235	.30828	00024
Elem	Cd2265	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00004	168.90	00483	00125	.00254	1.9241	56409	49.331
Stddev	.00027	2.55	.00059	.00010	.00142	.0100	00016	.467
%RSD	670.10	1.5069	12.279	8.1604	55.849	.52094	02763	.94692
#1	00015	170.70	00441	00132	.00154	1.9312	.56398	49.661
#2	.00023	167.10	00525	00118	.00355	1.9170	.56420	49.001
Elem	Ni2316	Ag3280	Na5895	V_2924	Zn2062	K_7664	Mo2020	B_2496
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00133	00064	183.40	.00100	.00925	2.2917	.00107	.03011
Stddev	.00152	.00039	1.83	.00002	.00028	.0634	.00044	.00029
%RSD	114.67	61.699	.99720	1.9797	2.9724	2.7656	40.708	.96032
#1	00240	00036	184.69	.00099	.00945	2.3365	.00076	.03032
#2	00025	00092	182.10	.00102	.00906	2.2469	.00138	.02991
Elem Units Avg Stddev %RSD	S_1820 ppm 36.073 .493 1.3666	Si2881 ppm 8.4846 .1907 2.2480	Sn1899 ppm .00259 .00161 62.147	Ti3361 ppm 00393 .00042 10.784	Li6707 ppm .00679 .00011 1.6631			
#1 #2	36.421 35.724	8.6195 8.3498	.00372 .00145	00423 00363	.00671 .00687			

Sample Name: PB57196BL Acquired: 8/5/2011 13:53:48

Type: Unk

Method: P4 (v248)

Mode: CONC

Corr. Factor: 1.000000

User: admin

Custom ID1:

Custom ID2:

Custom ID3:

Comment:

Elem	As1937	TI1908	Pb2203	Se1960	Sb2068	Al3082	Ba4934	Be2348
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00250	.00384	.00063	.00568	.00485	.01659	00274	00010
Stddev	.00186	.00008	.00105	.00004	.00103	.00094	.00002	.00003
%RSD	74.347	2.0062	168.16	.69746	21.293	5.6604	.69362	30.364
#1	.00382	.00379	00012	.00565	.00558	.01593	00272	00012
#2	.00119	.00390	.00137	.00571	.00412	.01725	00275	00008
Elem	Cd2265	Ca3736	Cr2677	Co2286	Cu2247	Fe2598	Mn2576	Mg2790
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.00013	00854	00089	.00020	.00098	.03258	00112	.11149
Stddev	.00019	.00749	.00046	.00018	.00009	.04406	.00013	.03169
%RSD	153.40	87.796	51.422	87.036	9.2306	135.25	11.385	28.426
#1	00001	00324	00056	.00033	.00092	.00142	/.00103	.13390
#2	.00026	01383	00121	.00008	.00104	.06374	.00122	
Elem	Ni2316	Ag3280	Na5895	V_2924	Zn2062	K_7664	Mo2020	B_2496
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	00087	00016	00245	.00081	.00055	02614	.00012	00313
Stddev	.00091	.00039	.00457	.00054	.00015	.00481	.00044	.00255
%RSD	105.17	251.22	186.51	66.795	27.869	18.416	355.68	81.341
#1	00151	.00012	00568	.00119	.00066	02955	.00044	00493
#2	00022	00043	.00078	.00043	.00044	02274	00019	00133
Elem Units Avg Stddev %RSD	S_1820 ppm 00448 .00123 27.399	Si2881 ppm 00861 .01236 143.51	Sn1899 ppm .00060 .00062 101.97	Ti3361 ppm 00249 .00183 73.255	Li6707 ppm 00368 .00051 13.958			
#1 #2	00361 00534	01735 .00013	.00017 .00104	00120 00379	00404 00332			

Dissolved Gases, Anions, Solfide, (O2, TOC, Alkalindy NYSDEC DUST PROJECT CHEMIST REVIEW RECORD
Project Name: Off-5; te (arrive (leavers Method: Laboratory and SDG(s): Chemtech SDF # (3214) Date: 9-15-11 Reviewer: Time (un air cham)
Reviewer: Tige Conning law Review Level B/CLP DUSR USEPA Validation
1. Case Narrative Review and COC/Data Package Completeness COMMENTS
OK
2. PHolding time and Sample Collection RSX-175-14days Met Suffide 7days Alkalinity 14days Anious No. /No. 48hrs met TOC 28days
History No. 1 No. 48hrs met TOC 28 days.
3. P QC Blanks R S K - 175 - Chean / TOC - OK / ML Hood 300 - OK / Alk OK / Instrument Tuning
N/A
Instrument Calibration RSK-175 OK
TOC - OKV Surrogate Recovery
N/A
Matrix Spike RSK-175: Not Analyzed Sulfate on MW11055 @ 32% but sample was Sulfate whin limits 75-125% Sulfate on MW11055 @ 32% but sample was Above calibration @ 98 mg/L so no Duplicates/replicates
Duplicates/replicates Lab Dup for method 300 - OK while RPD of 20 Sulfide: Alkalinity: Coz OK
Laboratory Control Sample Results RSK-175- Win Linits set by Lab 70-130% Toc Win lab limits 84-118%
Alkalinity Win Lob limits of 80-120% Alkalinity Win Lob limits of 80-120% For TIC Review and DUSR Table Reporting Anions win 90-110% limits Coa Win 80-120 Limits
N/A
4. Raw Data Review and Calculation Checks
Anicas Sulfide Disselved Gas TOC Alkalinity
828131A-MWO5012 was analyted for nitrate/Nitrite/Sulfate
but not requested on the COC. Data was reported and not refused, per Chuck
DUSR-chemist.doc Chuck Starks

Tabulated Analytical Results Gases

CLIENT: MACTEC Inc.

MATRIX: AQUEOUS

PROJECT: Carriage Cleantown

SAMPLE ID: 828131A-MW02012

ANALYST: UA

LAB ID: C3214-02

DILUTION: 1

FILENAME: FA000281.D

DATE ANALYZED: 8/10/2011

LAB PROJECT: C3214

CAS#	COMPOUNDS	RESULTS (ug/l)	QUALIFIER	LOQ (ug/l)	MDL (u/l)	LOD (ug/l)
74-84-0	ETHANE	< 5.0	Ų	5.0	2.6	3.0
74-85-1	ETHYLENE	< 5.0	U	5.0	2.6	3.0
74-82-8	METHANE	5.63	<u> </u>	5.0	2.6	3.0

MDL ≈ METHOD DETECTION LIMIT

U =UNDETECTED BELOW MDL/LOD

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

J = ESTIMATED VALUE

LOD = LIMIT OF DETECTION

Tabulated Analytical Results Gases

CLIENT: MACTEC Inc.

MATRIX: AQUEOUS

PROJECT: Carriage Cleantown

SAMPLE ID: 828131A-MW07012

ANALYST: UA

LAB ID: C3214-05

DILUTION: 1

FILENAME: FA000282.D

DATE ANALYZED: 8/10/2011

LAB PROJECT: C3214

CAS#	<u>COMPOUNDS</u>	RESULTS (ug/l)	QUALIFIER	LOQ (ug/l)	MDL (u/l)	LOD (ug/l)
74-84-0	ETHANE	< 5.0	U	5.0	2.6	3.0
74-85-1	ETHYLENE	< 5.0	U	5.0	2.6	3.0
74-82-8	METHANE	12.64		5.0	2.6	3.0

MDL = METHOD DETECTION LIMIT

U =UNDETECTED BELOW MDL/LOD

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

J = ESTIMATED VALUE

LOD = LIMIT OF DETECTION

Tabulated Analytical Results Gases

CLIENT: MACTEC Inc.

MATRIX: AQUEOUS

PROJECT: Carriage Cleantown

SAMPLE ID: 828131A-DP10013

ANALYST: UA

LAB ID: C3214-07

DILUTION: 1

FILENAME: FA000283.D

DATE ANALYZED: 8/10/2011

LAB PROJECT: C3214

CAS#	COMPOUNDS	RESULTS (ug/l)	QUALIFIER	LOQ (ug/l)	MDL (u/I)	LOD (ug/l)
74-84-0	ETHANE	< 5,0	U	5.0	2.6	3.0
74-85-1	ETHYLENE	< 5.0	U	5.0	2.6	3.0
74-82-8	METHANE	13.56		5.0	2.6	3.0

MDL = METHOD DETECTION LIMIT

U =UNDETECTED BELOW MDL/LOD

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

J = ESTIMATED VALUE

LOD = LIMIT OF DETECTION

Tabulated Analytical Results Gases

CLIENT: MACTEC Inc.

MATRIX: AQUEOUS

PROJECT: Carriage Cleantown

SAMPLE ID: 828131A-MW11055

ANALYST: UA

LAB ID: C3214-08

DILUTION: 1

FILENAME: FA000284.D

DATE ANALYZED: 8/10/2011

LAB PROJECT: C3214

CAS#	COMPOUNDS	RESULTS (ug/l)	QUALIFIER	LOQ (ug/l)	MDL (u/l)	LOD (ug/l)
74-84-0	ETHANE	< 5.0	U	5.0	2.6	3.0
74-85-1	ETHYLENE	< 5.0	U	5.0	2.6	3.0
74-82-8	METHANE	3.59	J	5.0	2.6	3.0

MDL = METHOD DETECTION LIMIT

U =UNDETECTED BELOW MDL/LOD

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

J = ESTIMATED VALUE

LOD = LIMIT OF DETECTION

CHEMTECH

GC Volatiles DETECTOR: FID

Tabulated Analytical Results Gases

CLIENT: MACTEC Inc.

MATRIX: AQUEOUS

PROJECT: Carriage Cleantown

SAMPLE ID: 828131A-DP15013

ANALYST: UA

LAB ID: C3214-12

DILUTION: 1

FILENAME: FA000285.D

DATE ANALYZED: 8/10/2011

LAB PROJECT: C3214

CAS#	<u>COMPOUNDS</u>	RESULTS (ug/l)	QUALIFIER	LOQ (ug/l)	MDL (u/l)	LOD (ug/l)
74-84-0	ETHANE	< 5.0	U	5.0	2.6	3.0
74-85-1	ETHYLENE	< 5.0	U	5.0	2.6	3.0
74-82-8	METHANE	4.10	J	5.0	2.6	3.0

MDL = METHOD DETECTION LIMIT

· U =UNDETECTED BELOW MDL/LOD

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

J = ESTIMATED VALUE

LOD = LIMIT OF DETECTION

Tabulated Analytical Results Gases

CLIENT: MACTEC Inc.

MATRIX: AQUEOUS

PROJECT: Carriage Cleantown

SAMPLE ID: 828131A-DP23015

ANALYST: UA

LAB ID: C3214-13

DILUTION: 1

FILENAME: FA000286.D

DATE ANALYZED: 8/10/2011

LAB PROJECT: C3214

CAS#	<u>COMPOUNDS</u>	RESULTS (ug/l)	QUALIFIER	LOQ (ug/l)	MDL (u/l)	LOD (ug/l)
74-84-0	ETHANE	< 5.0	U	5.0	2.6	3.0
74-85-1	ETHYLENE	< 5.0	U	5.0	2.6	3.0
74-82-8	METHANE	16.85		5.0	2.6	3.0

MDL = METHOD DETECTION LIMIT

U =UNDETECTED BELOW MDL/LOD

B = PRESENT IN THE ASSOCIATED BLANK

E = EXCEEDED CALIBRATION RANGE, DILUTION TO FOLLOW

D = DILUTION

J = ESTIMATED VALUE

LOD = LIMIT OF DETECTION

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11 C3214

Client Sample ID:

828131A-MW02012

SDG No.:

WATER

Lab Sample ID:

C3214-02

Matrix:

Level (low/med):

low

% Solid:

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6	Iron	1920		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	564		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW07012

SDG No.:

C3214

Lab Sample ID:

C3214-05

Matrix:

WATER

Level (low/med):

low

% Solid:

olid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6 7439-96-5	Iron Manganese	728 711		1	20.4 1.7	50 10	ug/L ug/L	08/04/11 08/04/11	08/05/11 08/05/11	SW6010B SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

828131A-DP10013

SDG No.:

C3214

Client Sample ID: Lab Sample ID:

C3214-07

Matrix:

WATER

Level (low/med):

low

% Solid: 0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6	Iron	834		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	831		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Coloriess

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW11055

SDG No.:

C3214

Lab Sample ID:

C3214-08

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6 7439-96-5	Iron Manganese	254 98.7	•	1	20.4 1.7	50 10	ug/L ug/L	08/04/11 08/04/11	08/05/11 08/05/11	SW6010B SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received;

08/03/11

Client Sample ID:

828131A-DP15013

SDG No.:

C3214

Lab Sample ID:

C3214-12

Matrix:

WATER

Level (low/med):

low

% Solid:

.

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439- 8 9-6	Iron	121		1	20.4	50	ug/L	08/04/11	08/05/11	SW6010B
7439-96-5	Manganese	412		1	1.7	10	ug/L	08/04/11	08/05/11	SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP23015

SDG No.:

C3214

Lab Sample ID:

C3214-13

Matrix:

WATER

Level (low/med):

low

% Solid:

0

Cas	Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7439-89-6 7439-96-5	Iron Manganese	1450 219		1	20.4 1.7	50 10	ug/L ug/L	08/04/11 08/04/11	08/05/11 08/05/11	SW6010B SW6010B

Color Before:

Colorless

Clarity Before:

Clear

Texture:

Color After:

Colorless

Clarity After:

Clear

Artifacts:

Comments:

Metals Group3

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW02012

SDG No.:

C3214

Lab Sample ID:

C3214-02

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	420		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
·Chloride	480-	-ΘR-	-1	-0:075	-0-1-5	mg/L	08/03/1-1 -	08/03/11	_E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Sulfate -		-0R-	-1	0.132	0.75	mg/L	-08/0 3/ 1-1	08/0 3/ 1-1	E300
Carbon Dioxide	440		1	2	2	mg/L	08/04/11	08/04/11	SM2320B
Sulfide	1	U	1	1 .	1	mg/L	08/05/11	08/05/11	SM4500 S E or F
TOC	4.9		1	0.08	0.5	mg/L	08/05/11	08/05/11	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW02012DL

SDG No.:

C3214

Lab Sample ID:

C3214-02DL

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CF	RQL Units	Prep Date	Date Ana.	Ana Met.
Chloride	350	D	50	3.8	7.5	mg/L	08/04/11	08/04/11	E300
Sulfate	120	D	5	0.66	3.8	mg/L	08/04/11	08/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW05012

SDG No.:

C3214

Lab Sample ID:

C3214-04

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CR	QL Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	420		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
Chioride	440	OR-	-1	-0:07 5	0 :1·5	mg/L	-08/0 3/1- 1	08/03/1-1	E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Sulfate	140	OR	-1-	0.132	—0 :75	mg/I	-08/03/1-1	08/03/1-1	—E300———
Carbon Dioxide	430		1	2	2	mg/L	08/04/11	08/04/11	SM2320B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

TC alid v

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW05012DL

SDG No.:

C3214

Lab Sample ID:

C3214-04DL

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CR	QL Units	Prep Date	Date Ana.	Ana Met.
Chloride	320	D	50	3.8	7.5	mg/L	08/04/11	08/04/11	E300
Sulfate	120	D	5	0.66	3,8	mg/L	08/04/11	08/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

OR = Over Range

TC alielu

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW07012

SDG No.:

C3214

Lab Sample ID:

C3214-05

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	430		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
Chloride Christian Christi	480	OR-	1	0.075	0.15	mg/L	-08/0 3 /1-1	08/0 3/1 -1-	E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Sulfate	140	⊙R-	- 1	-0-1-32	0:75	-mg/L	-08/03/1-1	08/03/1-1-	-E300-
Carbon Dioxide	440		1	2	2	mg/L	08/04/11	08/04/11	SM2320B
Sulfide	1	U	1	1	1	mg/L	08/05/11	08/05/11	SM4500 S E or F
TOC	4		1	0.08	0.5	mg/L	08/05/11	08/05/11	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW07012DL

SDG No.:

C3214

Lab Sample ID:

C3214-05DL

Matrix:

WATER

% Solid:

Ω

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQI	Units	Prep Date	Date Ana.	Ana Met.
Chloride	350	D	50	3.8	7.5	mg/L	08/04/11	08/04/11	E300
Sulfate	130	D	5	0.66	3.8	mg/L	08/04/11	08/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP10013

SDG No.:

C3214

Lab Sample ID:

C3214-07

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	520		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
Chloride	340	—QR-	1	-0.07-5	0.15	mg/I 	-08/03/1-1	08/03/1-1	E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Julfate	330	—ΘR~		-0 .132	-0.75	-mg/I	08/0 3/ 1-1	08/03/11	E300
Carbon Dioxide	540		1	2	2	mg/L	08/04/11	08/04/11	SM2320B
Sulfide	1	U	1	1	1	mg/L	08/05/11	08/05/11	SM4500 S E or F
TOC	2		1	0.08	0.5	mg/L	08/05/11	08/05/11	SM5310B

Comments:

U = Not Detected LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N =Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP10013DL

SDG No.:

C3214

Lab Sample ID:

C3214-07DL

Matrix: % Solid: WATER

Parameter	Conc.	Qua.	DF	MDL	LOQ / CI	RQL Units	Prep Date	Date Ana.	Ana Met.
Chloride	250	D	50	3.8	7.5	mg/L	08/04/11	08/04/11	E300
Sulfate	280	D	5	0,66	3.8	mg/L	08/04/11	08/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW11055

SDG No.:

C3214

Lab Sample ID:

C3214-08

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana,	Ana Met.
Alkalinity	400		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
Ghloride	680	-or-	<u> </u>	0.075	0.15	mg/L	08/03/1-1	08/03/-1-1	-E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Sulfate	98	—ΘR-	—1	-0 -132-	0.75	mg/L-	08/03/1-1	08/03/1-1	-E300-
Carbon Dioxide	390		1	2	2	mg/L	08/04/11	08/04/11	SM2320B
Sulfide	1	U	1	1	1	mg/L	08/05/11	08/05/11	SM4500 S E or F
ŤOC	2.9		1	0.08	0.5	mg/L	08/05/11	08/05/11	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

በፄ/በኃ/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-MW11055DL

SDG No.:

C3214

Lab Sample ID:

C3214-08DL

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CR	QL Units	Prep Date	Date Ana.	Ana Met.
Chloride	500	D	50	3.8	7.5	ıng/L	08/04/11	08/04/11	E300
Sulfate	88	D	2	0.264	1.5	mg/L	08/04/11	08/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP15013

SDG No.:

% Solid:

C3214

Lab Sample ID:

C3214-12

Matrix:

WATER 0

Parameter	Conc.	Qua.	DF	MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	400		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
Ghloride	340-	⊙R	1	-0:07 5 -	0,15	-mg/L	08/03/1-1	-08/03/11-	E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Sulfate	180	—OR-		-0 .132 -	0 :75	mg/L	08/03/1-1	08/03/17	E300
Carbon Dioxide	400		1	2	2	mg/L	08/04/11	08/04/11	SM2320B
Sulfide	1	U	i	1	1	mg/L	08/05/11	08/05/11	SM4500 S E or F
TOC	3.7		1	0.08	0.5	mg/L	08/05/11	08/05/11	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP15013DL

SDG No.:

C3214

Lab Sample ID:

C3214-12DL

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CRO	QL Units	Prep Date	Date Ana.	Ana Met.
Chloride	250	D	50	3.8	7.5	mg/L	08/04/11	08/04/11	E300
Sulfate	150	D	5	0.66	3.8	mg/L	08/04/11	08/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP23015

SDG No.:

C3214

Lab Sample ID:

C3214-13

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	420		1	0.4	2	mg/L	08/04/11	08/04/11	SM2320 B
Chloride	350-	—ΘR—	_1	-0:075	0 , 15	mg/L	08/03/1-1	08/03/11_	E300
Nitrite	0.15	U	1	0.022	0.15	mg/L	08/03/11	08/03/11	E300
Nitrate	0.1	U	1	0.027	0.1	mg/L	08/03/11	08/03/11	E300
Sulfate	76	—ΘR–	_1	-0-132-	0.75	-mg/L	08/0 3/ 1-1	08/0 3 /1·1	E300
Carbon Dioxide	420		1	2	2	mg/L	08/04/11	08/04/11	SM2320B
Sulfide	1	U	1	1	1	mg/L	08/05/11	08/05/11	SM4500 S E or F
TOC .	3.9		1	0.08	0.5	mg/L	08/05/11	08/05/11	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

08/02/11

Project:

Carriage Cleantown

Date Received:

08/03/11

Client Sample ID:

828131A-DP23015DL

SDG No.:

C3214

Lab Sample ID:

C3214-13DL

Matrix:

WATER

% Solid:

id: 0

Parameter	Conc.	Qua.	DF M	ID L	LOQ / CRQI	Units	Prep Date	Date Ana.	Ana Met.
Chloride Sulfate	260	D D	50 3. 2 0.	.8 .264	7.5	mg/L mg/L	08/04/11 08/04/11	08/04/11 08/04/11	E300
Junac	/ 1	D	Z 0.	.204	1.5	mg/r	06/04/11	06/04/11	E300

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

E = Value Exceeds Calibration Range

1.53	3.48	3.53	Cal Fac 1	50 ppm	8/10/2011						
1.60	3.69	3.74	Cal Fac 2	100 ppm							
1.70	3.89	3.93	Cal Fac 3	200 ppm	1000	500	200	100	50	Std	
1.34	3.00	3.02	Cal Fac 3 Cal Fac 4	500 ppm	1000 FA000273.D	500 FA000274.D	200 FA000275.D	100 FA000276.D	50 FA000277.D	Filename	
1.01	2.23	2.23	Cal Fac 5 Ave CF	1000 ppm							•
1.43	3.26	3.29									
0.3	0.7	0.7	Std Dev % RSD								
19	20	21	1								
l			핆								

COEFF

0.98660 0.99404 0.98798

Analyte ETHANE

Date Analyzed

METHANE METHANE

Methane: 1010974 > 101097

South = 1339 08

36243 : 1524

339276 = 1696. 159635 = 1596.

X 1433,17

* Denotes outside control criteria: 30% RSD for initial calibration 25% drift for continuing calibration (When calibration factor fails correlation coeficient is used as per RSK-175)

Quantitation Report (QT Reviewed)

Data Path : P:\HPCHEM1\FID A\Data\FA081011\

Data File : FA000281.D Signal(s) : FID1A.CH

Acq On : 10 Aug 2011 15:33 Operator : UA

Sample : C3214-02

Misc

ALS Vial : 9 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Aug 10 19:34:44 2011

Quant Method: P:\HPCHEM1\FID A\GASES\Method\FA081011.M

Quant Title :

QLast Update : Wed Aug 10 13:24:21 2011

Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : RT-U Plot Signal Info : $30M \times 0.32mm$

Target Compounds		Compound	R.T.	Response	Conc Units
3) Methane 4.403 114005 79.528 ug/mlm	_	Compounds Methane	4.403	114005	79.528 ug/mlm

(f)=RT Delta > 1/2 Window

(m)=manual int.

(QT Reviewed)

Data Path : P:\HPCHEM1\FID_A\Data\FA081011\

Data File : FA000286.D Signal(s) : FID1A.CH

Acq On : 10 Aug 2011 18:37

Operator : UA

Sample : C3214-13

Misc

ALS Vial: 14 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 10 19:35:45 2011

Quant Method: P:\HPCHEM1\FID A\GASES\Method\FA081011.M

Quant Title :

QLast Update: Wed Aug 10 13:24:21 2011

Response via: Initial Calibration

Integrator: ChemStation

Volume Inj. :

Signal Phase : RT-U Plot Signal Info : 30M x 0.32mm

Compound	R.T.	Response	Conc Units
Target Compounds 3) Methane	4.414	341304	238.087 ug/mlm

(f) = RT Delta > 1/2 Window

(m)=manual int.

16.83

Page: 34¹
9(15(1)

				Methane Gases Calculation	ation
		,			
Concentration (or in-Weie				
	Raw Data	Density Factor	Vol. Head space	Dilution Factor	
	238.087	0.5228	4	1	
		Vol. of water:	36		
COMO IN WELST	(81e)				
	13.83021				
Concentral	Concentration in Head St	Space			
	Raw Data	200	Molecular weight	Dilution Factor	
	238.087	55.5	16	1	
		Henry's Constant:	70100		
Cene in HS					
	3.015995				
Final Conc					
	16.8462				

TC 9/15/11

CHEMITECH

Matrix Spike Summary

Client:

MACTEC Inc.

SDG No.:

C3214

Project:

Carriage Cleantown

Sample ID:

C3214-08

Client ID:

828131A-MW11055S

Percent Solids for Spike Sample:

Analyte	Units	Acceptance Limit %R	Spiked Result	c	Sample Result	C	Spike Added	Dilution Factor	% Rec	Qual	Analysis Date
Nitrate+Nitrite	mg/L	80-120	12.20		0.25	U	13.20	1	92		08/03/2011
Chloride	mg/L	80-120	520.00		680		7.50	1	-2133		08/03/2011
Nitrite	mg/L	80-120	7.00		0.022	U	7.60	1	92		08/03/2011
Nitrate	mg/L	80-120	5,30		0.027	U	5.60	1	95		08/03/2011
Sulfate	mg/L	80-120	110.00		98		37.50	1	(32)		08/03/2011

Concentration of UN-spiked sough was over the instrument calibration at 98 mg/L No action taken on 32% Recovery

Chemtech Consulting Group

Analytical Review Report

Date Printed:

Analyst:

Data File :

8/10/11

lb56361,MDB

SIS

Approved By :
Approved Date :
Worksheet # :

Maila

Lab Sample ID	Client ID	Raw Amt	Dil	Matrix	A. Date	Prep Method	Analy Meth	•			Line 1
Parameter		PPB	Fin	al Conc	%Rec	LCL	UCL	RPD ·	Max RPD	Units	Line 2
Carbon Dioxide LB56361BLW Carbon Dioxide	LB56361BLW PASS	0.80	0	W 0.80	8/4/11		+/-2.0000			mg/L	
LB56361BSW Carbon Dioxide	LB56361BSW PASS	54.80	0	W 54.80	8/4/11 110.0	80	120			mg/l.	
C3214-02 Carbon Dioxide	828131A-MW02012 PASS	438.46	1 0	W 440	8/4/11				-	mg/L	
C3214-04 Carbon Dioxide	828131A-MW05012 PASS	432.13	1 0	W 430	8/4/11					mg/L	
C3214-05 Carbon Dioxide	828131A-MW07012 PASS	440,21	1 0	W 440	8/4/11					mg/L	
C3214-07 Carbon Dioxide	828131A-DP10013 PASS	538.81	1 0	W 540	8/4/11					mg/L	
C3214-08 Carbon Dioxide	828131A-MW11055 PASS	386.50	1 · 0	W 390	8/4/11					mg/L	
C3214-12 Carbon Dioxide	828131A-DP15013 PASS	395,98	1	W 400	8/4/11				•	mg/L	
C3214-13 Carbon Dioxide	828131A-DP23015 PASS	418.18	1 30	W 420	8/4/11					mg/L	
C3214-13D Carbon Dloxide	828131A-DP23015D PASS	429,40	1	W 430.00	8/4/11			2.4	20	mg/L	

alistu

TitriSoft Report

ldent	Amount	DateTime	Alkalinity	Initial pH (sample)	slope	offset	CO2
LB56361BLW	100	04/08/2011 17:09	0.80	4.76	97.8	6.72	Ny/c
LB56361BSW	100	04/08/2011 17:11	54.80	9.68	97.8	6.72	1071
- G3209-01	50	04/08/2011 17:17	73:28	6.95	97.8	.0.7 2	, .
C3209-02	50	04/08/2011 17:21	70.08	8.70	97.8	6.72	
C3209-03	50	04/08/2011 17:25	77.84	7.20	97.8	6.72	
C3209-04	50	-04/08/2011-17:30	72.80	8.43	97.8	6.72	
C3214-02	50	04/08/2011 17:34	417.76	7.07	97.8	6.72	438.46
C3214-04	50	04/08/2011 17:41	420.56	7.13	97.8	6.72	432.13
C3214-05	50	04/08/2011 17:47	425.52	7.11	97.8	6.72	440.21
C3214-07	50	04/08/2011 17:54	515.28	7.08	97.8	6.72	538.81
C3214-08	50	04/08/2011 18:00	399.20	7.35	97.8	6.72	386 - 50
C3214-12	50	04/08/2011 18:06	399.36	7.25	97.8	6.72	395.98
C3214-13	50	04/08/2011 18:12	420.64	7.24	97.8	6.72	418.18
C3214-13D	50	04/08/2011 18:20	427.12	7.20	97.8	6.72	429.40

Magazia

917

TC alist

Report date:

8/8/2011 9:03:24 AM

Printed by:

wet

Ident:

C3214-02 50X

Analysis from:

8/4/2011 4:26:40 AM v8040426.chw

File:

Modified! Manual peaks!

Method:

ANIONS 08-01-11.mtw

Run operator:

wet

Analysis number:

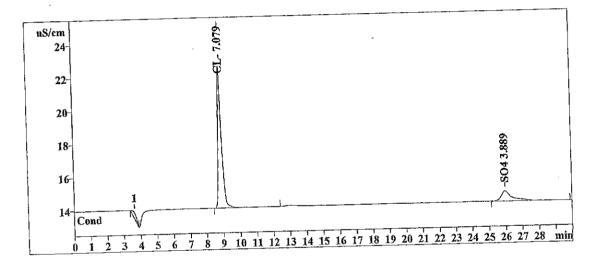
29599

SAMPLE:

Vial number:

29

20.0 pL


1.00

Volume: Dilution: Amount:

1.0000

Last save: 8/4/2011 4:56:28 AM

Last save: 8/3/2011 1:46:26 PM

Quantitation method: Custom

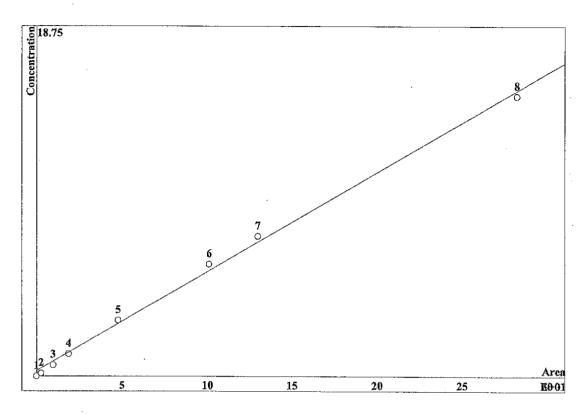
Quantr	Cacton mocion		Height	Height	Area	Area	:
No 1 2 3 4 5 6 7	Retention min 0.00 8.84 0.00 0.00 0.00 0.00 25.97	width/2 min 0.000 0.207 0.000 0.000 0.000 0.000 0.553	uS/cm 0.00 8.58 0.00 0.00 0.00 0.00	% 0.00 89.78 0.00 0.00 0.00 0.00 0.00	0.000 127.862 0.000 0.000 0.000 0.000 0.000 28.439	0.00 78.61 0.00 0.00 0.00 0.00 17.48	0. 0. 0. 0.
7	30.00	0.109	9.19	96.16	156.301	96.10	0.

This report has been created by IC Net METROHM LTD

Calcobeck dom on excel

Final = 350 mg/L

138


Page 2; v8031232.chw; 03/08/2011 14:01:25

CALIBRATION OF COMPONENT CL-

Method: ANIONS 08-01-11.mtw

Equation: $Q = 1.06349 \cdot A + 5.59094$

RSD: 6.391 % Correlation coefficient: 0.998613

K3 = 0 K2 = 0 K1 = 1.06349 K0 = 5.59094

Base: Area Ref.channel: Cond

ISTD:

Formula: Linear

Weight: 1

Level	Height	Area Conc.	Vol/Dil Retenti	ion Used File		
1	0	0	0	0	0	No
2	0.2425	2.873	0.15	20	9.31	Yes
3	0.8421	9,826	0.6	20	9.31	Yes
4	1.614	18.82	1.2	20	9.31	Yes
5	4.165	47.7	3	20	9.31	Yes
6	8.936	100.9	· 6	20	9.31	Yes
7	11.52	129.9	7.5	20	9.31	Yes
8	24.79	.282.2	15	20	9.31	Yes

Calculation check
done on excel sheet

9/15/4 TC
70 Report date: Printed by:

8/8/2011 9:01:42 AM

wet W356330 BLW2

Ident:

Analysis from:

MBW 8/4/2011 1:09:15 AM

v8040109.chw

Last save: 8/8/2011 8:36:58 AM

File:

ANIONS 08-01-11.mtw

Run operator:

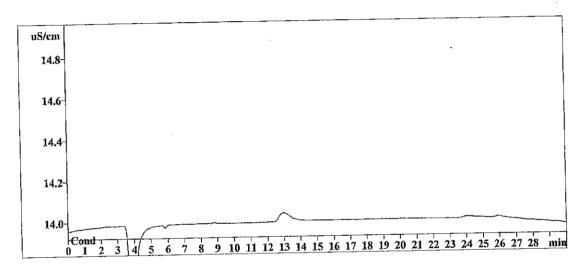
Analysis number:

wet 29593 Last save: 8/3/2011 1:46:26 PM

SAMPLE:

Method:

Vial number:


Volume:

Dilution:

20.0 µL

1.00

1.0000 Amount:

Quantitation method: Custom

No peaks

This report has been created by IC Net METROHM LTD

Blank verified on Row data

Report date: Printed by:

8/8/2011 9:01:50 AM

wet

LCSW

Ident:

Analysis from:

File:

8/4/2011 1:42:09 AM

v8040142.chw

Last save: 8/4/2011 2:11:58 AM

Last save: 8/3/2011 1:46:26 PM

Method:

Run operator: Analysis number: ANIONS 08-01-11.mtw

wet 29594

SAMPLE:

Vial number: Volume:

Dilution: Amount:

20.0 μL 1.00 1.0000

Custom Quantitation method:

No 1 2 3 4 5 6 7	Retention min 5.88 8.80 10.45 13.11 14.70 23.80 25.84	width/2 min 0.186 0.221 0.266 0.307 0.370 0.617 0.578	Height uS/cm 10.11 8.42 16.33 9.08 10.83 3.77 10.18	Height 14.63 12.18 23.63 13.14 15.68 5.45 14.73	Area uS/cm*sec 134.611 (127.425 293.540 191.167 267.607 166.607 446.458	8.19 7.75 17.86 11.63 16.28 10.14 27.16	0. 0. 0. 0.
7	30.00	0,363	68.72	99.44	1627.415	99.02	0.

This report has been created by IC Net METROHM LTD

LCS calculated on excel

to 7.03 mg/L

7.06 reported 9/1

on Form

Report date: Printed by:

8/8/2011 9:02:40 AM

wet

Ident:

Analysis from:

C3214-12 5X

8/4/2011 3:20:51 AM

v8040320.chw

Last save: 8/4/2011 3:50:40 AM

File:

ANIONS 08-01-11.mtw

Last save: 8/3/2011 1:46:26 PM

Run operator: Analysis number:

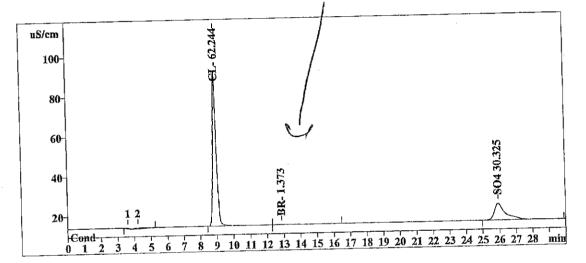
wet 29597

SAMPLE:

Method:

Vial number:

Volume: Dilution: Amount:


26

20.0 µL

1.00 1.0000

wording Identification

8/8/U

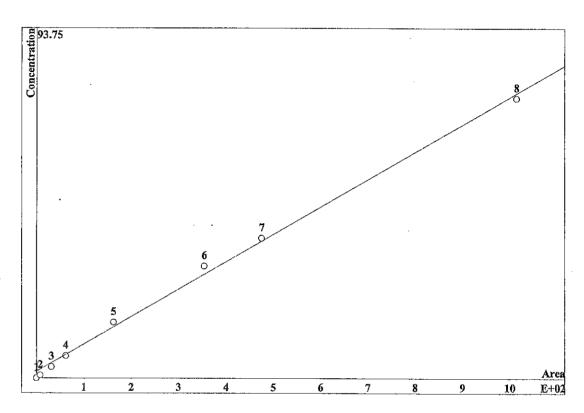
Custom Quantitation method:

2012						n	
No	Retention min	Width/2 min	Height uS/cm	Height %	Area uS/cm*sec	Area % 0.00	0.
1	0.00	0.000	0.00	0.00	0.000	73.68	0.
2	8.93	0.217	78.16	89.55	1165.296 0.000	0.00	0.
3	0.00	0.000	0.00	0.00	6.717	0.42	Ö.
4	12.85	0.775	0.12 0.00	$0.14 \\ 0.00$	0.000	0.00	0.
5	0.00	0.000	0.00	0.00	0.000	0.00	0.
6	0.00	0.000 0.577	8.42	9.64	388.591	24.57	0.
7	25.93	0.577	9115				^
	30.00	0.224	86.70	99.34	1560 605	98.67	0.

This report has been created by IC Net METROHM LTD

30.00

Sulfate Sample Sulfate Check Check Congil 45=150m/L 133


Page 7; v8031232.chw; 03/08/2011 14:01:25

CALIBRATION OF COMPONENT SO4

Method: ANIONS 08-01-11.mtw

Equation: $Q = 1.46804 \cdot A + 36.0307$

RSD: 6.750 % Correlation coefficient: 0.998453

K3 = 0 K2 = 0 K1 = 1.46804 K0 = 36.0307

Base: Area Ref.channel: Cond

ISTD:

Formula: Linear

Weight: 1

Level Height Vol/Dil Retention Used File Area Conc. 0 Ō No 2 7.781 0.2159 0.75 20 27.04 Yes 3 0.8721 31.43 3 20 27.04 Yes 4 1.676 61.32 20 27.04 Yes 162.6 5 4.493 20 27.04 Yes 9.808 3.5.3...6-20 27.04 Yes 12.97 474.9 20 27.04 Yes 27.17 1015 20 27.04 Yes

30mg/L = 357.6

515

Sample Results Report Print Date/Time: 2011/08/09 12:45:26

Sample ID	Result	Std.	Dev.	RSD	Mode	ALT	SMS310D
ICV	10.0491				TOC	<u> </u>	
ICB	0.3155				TOC		ø
CCV	8.9734				TOC		M
CCB.,,	. 0.2493		•		.TOC		•
LB56299BLW	0.1705	0.0	0105	6.14	TOC		
LB56299BSW	9.5301	0.3	3043	3.19	TOC		
<u>C3214-02</u>	. 4 <u>.93</u> 18	. 0.5	5877.	. 11.92.	TOC		
C3214-05)	4.0185	0.6	6266	15.59	TOC		
C3214-07	(2.0247)	2.3	3581	116.47	TOC		
C3214-08	2.8747	. 0.6	6059.	. 21,08.	.TOC		
C3214-12	3.7275	0.5	5629	15.10	TOC		
C3214-13	3.8573	0.5	5859	15.19	TOC		•
C3260-01	. 6.1194	. 0.0	0955.	. 1.56.	TOC		
C3260-01D	6.4301	0.0	0167	0.26	TOC		
C3260-01S	15.0297		0585	0.39	TOC		
CCV	. 10.4180				TOC		
CCB	0.3843				TOC		

NO Raw area amounts
Provided to theck concentrations reforted 161

Analytical Summary Report

Analysis Method:

SM4500 S E or F Sulfide

ANALYST :

REVIEWED BY:

Parameter:

Sulfide LB56288

Run Number: Instrument:

Titroline Alpha Titrator

SWD Lot #: WP13026 Concentration

Titrant 1 =

Standard Type:

Todine Som

Titrant 2 = Normality 2 =

Socium Thio Sulphot

Normality 1 = Constant =

16000

Formula = ((Titrant 1 * Normality 1) - (Titrant 2 * Normality 2)) * Constant / ml of Sample

Seq	Lab ID	Sample Type	mL of Sample	mL Titrant 1	Normality 1	mL/ Titrant 2	Normality 2	Time	Analytical Date
_ 1	LB56288BLW	MB	50	5	100250	5.00	0.0357)	11:25 AM	8-5-2011
2	LB56288BSW	LCS		1	1	1.99	1	11:28	1
3	LB56288BSWD	LCSD				1.98		11:31	
4	C3214-02	SAM				5.00		11:34	
5	C3214-05	SAM				5.00		1:37	
6	C3214-07	SAM				5.00		11:40	
7	C3214-08	SAM				4.96		11:43	· /
8	C3214-12	SAM				4.99		1:46	
9	C3214-13	SAM				5.00		11:/49	
10	C3214-13DUP	SAM		_ }		5.00	,	1:52.1	
11	C3214-13MS	SAM	V	U		1.84		1:65	

Samples are all ND

Page # ____ of __&

Analytical Summary Report

Analysis Method:

SM4500 S E or F Sulfide

ANALYST RUN: REVIEWED BY:

Parameter: Run Number: Sulfide LB56288

Instrument:

Titroline Alpha Titrator

Standard Type:	LCSW LCSWD Lot #:	WP13020	Concentration:	25 PPM.
Titrant 1 =	Isline Som	Titrant 2 =	Sodium Th	iosulphate
Normality 1 =	0.0250N	Normality 2 =	0.02501	

Formula = ((Titrant 1 * Normality 1) - (Titrant 2 * Normality 2)) * Constant / ml of Sample

Seq	Lab ID	Sample Type	mL of Sample	Titrant 1	Normality 1	Titrant 2	Normality 2	Result ppm/ppb	Analytical Date
1	LB56288BLW	MB	50.0	5.00	0.025	5.00	0.025	0.000	8/5/11
2	LB56288BSW	LCS	50.0	5.00	0.025	1.99	0.025	24.080	8/5/11
3	LB56288BSWD	LCSD	50.0	5.00	0.025	1.98	0.025	24.160	8/5/11
4	C3214~02	SAM	50.0	5.00	0.025	5.00	0.025	0.000	8/5/11
5	C3214-05	SAM	50.0	5.00	0.025	5.00	0.025	0.000	8/5/11
6	C3214-07	SAM	50.0	5.00	0.025	5.00	0.025	0.000	8/5/11
7	C3214-08	SAM	50.0	5.00	0.025	. 4.96	0.025	0.320	8/5/11
8	C3214-12	SAM	50.0	5.00	0.025	4.99	0.025	0.080	8/5/11
9	C3214-13	SAM	50.0	5.00	0.025	5.00	0,025	0.000	8/5/11
10	C3214~13D	DUP	50.0	5.00	0.025	5.00	0.025	0.000	8/5/11
11	C3214-13S	MS	50.0	5.00	0.025	1.84	0.025	25.280	8/5/11

Matrix Spike Calculated

$$\frac{0.125}{(5.0 \times .025) - (1.84 \times 0.025)} \frac{0.046}{16000} = 25.28$$

9/15/4

ldent	Amount	DateTime	Alkalinity	Initial pH (sample)	slope	offset
LB56280BLW	100 jnd	04/08/2011 17:09	0.80	4.76	97.8	6.72
LB56280BSW	100	04/08/2011 17:11	54.80	9.68	97.8	6.72
C3209-01	50	04/08/2011 17:17	73.28	6.95	97.8	6.72
C3209-02	50	04/08/2011 17:21	70.08	8.70	97.8	6.72
C3209-03	50	04/08/2011 17:25	77.84	7,20	97.8	6.72
C3209-04	50	04/08/2011 17:30	72.80	8.43	97.8	6.72
C3214-02	50	04/08/2011 17:34	417.76	7.07	97.8	6.72
C3214-04	50	04/08/2011 17:41	420.56	7.13	97.8	6.72
C3214-05	50	04/08/2011 17:47	425.52	7.11	97.8	6.72
C3214-07	50	04/08/2011 17:54	(515.28	7.08	97.8	6.72
C3214-08	50	04/08/2011 18:00	399.20	7.35	97.8	6.72
C3214-12	50	04/08/2011 18:06	399.36	7.25	97.8	6.72
C3214-13	50	04/08/2011 18:12	420.64	7.24	97.8	6.72
C3214-13D	50 v	04/08/2011 18:20 -	427.12	7.20	97.8	6.72

520 Mg/L reported on form

TC alistu

Date: 8/4/11 6:26:22 PM

Page: 1

SDG C3214	Chloride Line from 8/9/11		
Std Level	Cl. Std Conc (mg/l)	Avg Response Cl-	
1	0.15	3	
0	0	0	
2	9.0	10	
E	1.2	19	
4	3	48	
9	7.5	129	
7	15	282	
5	9	100	
	y	X	
	chloride		
slope	0.053579455	0.228298426	intercept
- +	0.001229528	0.143451759	*+
r2	0.996850357	0.314322905	[s(y)
	1898.977784	9	degrees of freedom
regression ss	187.6168942	0.59279333	residual ss
	828131A-MW02012 50X		
ฮ่			
Response (uS/cm*sec)	127		
Amount Found (mg/l)	7.033	Address of the second s	
Final Amount (mg/l)	351.6444631	A. M. William Company of the Company	
Reported on Form I (mg/l)	350		
Percent Diff. (%)	0.47		

DATA USABILITY SUMMARY REPORT NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

1.0 INTRODUCTION

Air samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in November 2010 and January 2011 and submitted for off-site laboratory analysis. Samples were analyzed by Enalytic, LLC, located in East Syracuse, New York, and Air Toxics, LTD, located in Folsom, California. Results were reported in the following Sample Delivery Groups (SDGs): E1012003 and E1101003 (Enalytic), and 1102123 (Air Toxics).

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions). Tentatively Identified Compounds (TICs) are presented in Table 4. Samples were analyzed by one or more of the following methods:

- Volatile organic compounds (VOCs) by USEPA Method TO-15
- Volatile organic compounds (VOCs) by USEPA Method TO-17

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit J = concentration is estimated UJ = target analyte is not detected at the reported detection limit and is estimated R = result is rejected

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOCS – METHOD TO-15

Sample Collection

SDG E1012003

Per the narrative and based on review of the sample chain of custody documentation, sampling personnel did not sign the chain of custody to receive or relinquish samples 828131A-GV0301 and 828131A-GV0401. Custody of the samples was confirmed via e-mail with the sampler, and the chain of custody was subsequently signed by the sampler on 3/7/2011.

<u>Blanks</u>

SDG E1012003

Isopropanol (2-propanol) $[0.8 \ \mu g/m^3]$ was reported in the method blank. An action level was calculated at five times the blank concentration and then was compared to sample results. The low level detection of isopropanol in sample 828131A-GV0401 was below the action level and was qualified as non-detected (U).

SDG E1101003

Acetone ($1.7 \mu g/m^3$) and an unknown tentatively identified compound (TIC) were reported in the method blank associated with a subset of samples. Action levels were calculated at ten times the blank concentration for acetone and five times the blank concentration for the unknown TIC, and then action levels were compared to sample results. Low level detections of acetone in samples 828131A-IA0901, 828131A-AA0301, and 828131A-IA0501 were below the action level and were qualified as non-detected (U). The low level detection of the unknown TIC reported in sample 828131A-IA06A01 was below the action level and was rejected from the final results for this sample.

Initial Calibration

SDG E1012003

In the initial calibration associated with all samples of SDG E1012003 (analyzed 12/15/2010) the percent relative standard deviations (RSDs) between relative response factors (RRFs) for a subset of target analytes were above the Region 2 control limit of 30:

Analyte	%RSD	Qualifier
1,1,2,2-Tetrachloroethane	33	UJ
1,2,4-Trichlorobenzene	50	UJ
1,2,4-Trimethylbenzene	46	UJ
1,2-Dichlorobenzene	53	UJ
1,3,5-Trimethylbenzene	68	J/UJ
1,3-Dichlorobenzene	45	UJ
1,4-Dichlorobenzene	41	UJ
4-Ethyltoluene	42	UJ
Benzyl chloride	33	UJ
Bromoform	31	UJ

m,p-Xylene	31	J
o-Xylene	38	J/UJ

Positive and non-detected results for the above listed analytes were qualified as estimated (J/UJ) in all samples of SDG E1012003 as indicated in the table.

Continuing Calibration

A subset of sample results was qualified due to continuing calibration quantitation limit standard recoveries that were outside control limits. Qualified results are summarized on Table 3 with reason codes QLS-H or QLS-L. Qualification actions are described in the following sections.

SDG E1012003

In the continuing calibration, a low concentration standard (run at the quantitation limit and called the CRQL standard) associated with all samples of SDG E1012003 (analyzed 12/15/2010) percent recoveries for a subset of target analytes were outside the laboratory control limits of 65-135. The following analytes were qualified:

Analyte	%R	Qualifier
1,4-Dioxane	0	UJ
Acetone	560	J
Benzene	140	J
m,p-Xylene	170	J
Methylene chloride	140	J
o-Xylene	140	J
Styrene	150	J
Tetrahydrofuran	150	J

1,4-Dioxane was not detected in associated samples 828131A-GV0301 and 828131A-GV0401. The initial calibration was in control for 1,4-dioxane, and LCS/LCSD recoveries were also within control limits. Based on professional judgment the reporting limits for 1,4-dioxane in 828131A-GV0301 and 828131A-GV0401 were not qualified as rejected but were instead qualified as estimated (UJ). Positive detections of acetone, benzene, m,p-xylene, methylene chloride, o-xylene, styrene, and tetrahydrofuran in one or both of the samples were qualified as estimated (J) and may be biased high.

SDG E1101003

In the continuing calibration CRQL standard associated with a subset of samples in SDG E1101003 (analyzed 2/2/2011) percent recoveries for a subset of target analytes were outside the laboratory control limits of 65-135. The following analytes were qualified:

Analyte	%R	Qualifier
Acetone	320	J
Hexane	140	J
Isopropanol	880	J
m,p-Xylene	140	J

Positive detections of acetone, hexane, isopropanol, and m,p-xylene in one or more of the following samples were qualified as estimated (J) and may be biased high.

828131A-IA0101
828131A-AA0101
828131A-IA0201
828131A-IA0301
828131A-IA0401
828131A-IA06A01

In the continuing calibration CRQL standard associated with a subset of samples in SDG E1101003 (analyzed 2/3/2011) percent recoveries for a subset of target analytes were outside the laboratory control limits of 65-135. The following analytes were qualified:

Analyte	%R	Qualifier
Acetone	300	J
Isopropanol	900	J

Positive detections of acetone and isopropanol in one or more of the following samples were qualified as estimated (J) and may be biased high:

828131A-IA06B01	828131A-SS0101DUP
828131A-IA0801	828131A-SS0801
828131A-IA0901	828131A-SS1001
828131A-IA1001	828131A-SS0901
828131A-AA0301	828131A-SS0401
828131A-AA0201	828131A-SS06A01
828131A-IA0501	828131A-SS06B01
828131A-SS0101	828131A-SS0701

Positive detections of isopropanol in samples 828131A-SS0201 and 828131A-SS0301 were qualified as estimated (J) and may be biased high:

In the continuing calibration CRQL standard associated with acetone results for samples 828131A-SS0201 and 828131A-SS0301 (analyzed 2/4/2011), the percent recovery for acetone (340) was above the laboratory control limits of 65-135 indicating a potential high bias. Positive detections of acetone in samples 828131A-SS0201 and 828131A-SS0301 were qualified as estimated (J) and may be biased high:

Laboratory Control Samples (LCS)

SDG E1012003

In the LCS associated with samples 828131A-GV0301 and 828131A-GV0401 percent recoveries for a subset of target analytes were below the Region 2 control limits of 70-130:

Analyte	%R	Qualifier
1,1,2,2-Tetrachloroethane	69	UJ
1,2,4-Trichlorobenzene	58	UJ

1,2,4-Trimethylbenzene	53	UJ
1,2-Dichlorobenzene	60	UJ
1,3,5-Trimethylbenzene	50	J/UJ
1,3-Dichlorobenzene	64	UJ
1,4-Dichlorobenzene	64	UJ
2-Hexanone	65	UJ
4-Ethyltoluene	57	UJ
4-Methyl-2-pentanone	68	UJ
Benzyl chloride	62	UJ
Ethyl benzene	68	J/UJ
Hexachlorobutadiene	49	UJ
o-Xylene	69	J/UJ
Tetrachloroethene	67	J

Positive and/or non-detected results for the above target analytes in samples 828131A-GV0301 and 828131A-GV0401 were qualified as estimated (J/UJ) as indicated in the table.

SDG E1101003

In the LCS associated with a subset of samples (analyzed 2/2/2011) percent recoveries for 1,4-dichlorobenzene (68) and trans-1,3-dichloropropene (68) were below the Region 2 control limits of 70-130 indicating potential low biases. 1,4-Dichlorobenzene and trans-1,3-dichloropropene were not detected in the associated samples and quantitation limits were qualified as estimated (UJ) in the following samples:

828131A-IA0101
828131A-AA0101
828131A-IA0201
828131A-IA0301
828131A-IA0401
828131A-IA06A01

Surrogate Recovery

The recovery of surrogate bromofluorobenzene (BFB) [325%] in sample 828131A-GV0301 was greater than the control limit of 70-130 percent. The sample was reanalyzed with similar surrogate recovery. All results for positive detections in this sample were qualified estimated (J).

Lab Duplicate

In the laboratory duplicate analysis of sample 828131A-GV0301, there was a detection reported in the original sample (2.6 $\,\mu g/m^3$) above the quantitation limit and no detection in the lab duplicate (1.0 U). The result for dichlorodifluoromethane in the original sample was qualified estimated (J).

Field Duplicates

SDG E1101003

The RPD between results for 2-butanone in sample 828131A-SS0101 (6.7 $\mu g/m^3$) and field duplicate 828131A-SS0101DUP (12 $\mu g/m^3$) was above the Region 2 control limit. Positive detections of 2-butanone in sample 828131A-SS0101 and field duplicate 828131A-SS0101DUP were qualified as estimated (J).

Internal Standards

SDG E1101003

Responses for all internal standards associated with sample 828131A-SS0901 were above control limits. Internal standard responses for the reanalysis of sample 828131A-SS0901 were within control limits; however, the laboratory elected to report only the initial analysis. The RPDs between target analyte concentrations in both sample analyses were less than 25. Based on professional judgment the initial analysis was reported for sample 828131A-SS0901 and positive and non-detected results were qualified as estimated (J/UJ).

Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported by the laboratory for SDGs E1012003 and E1101003. TICs being reported as final results in samples are presented in Table 4. If a sample is not listed, no TICs were reported in the sample, or the TICs were removed as blank contaminants or artifacts of the GC/MS instrument system.

3.0 VOCS – METHOD TO-17

Laboratory Control Samples (LCS)

SDG 1102123

Percent recoveries for 1,4-dichlorobenzene (59, 58), ethanol (51, 59), and styrene (44, 46) were below Region 2 control limits of 70-130. Percent recoveries for naphthalene (7.8, 7.8) were below 70-130 and less than 10. Positive and non-detected results for 1,4-dichlorobenzene, ethanol, and styrene in samples 828131A-IA11A01 and 828131A-IA11B01 were qualified as estimated (J/UJ) and may represent potential low biases. Naphthalene was not detected in the samples, and results were qualified as rejected (R) based on percent recoveries below 10 in the LCS/LCSD.

Reference:

New York State Dep artment of Environmental Conservation (NYSDEC), 2 005. "An alytical Services Protocols"; July 2005.

New York State Depart ment of Env ironmental Conservation (NYSDEC), 2 010. "Tech nical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Valid ating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

NYSDEC Off-Site Carriage Cleaners NYSDEC Site No. C828131A MACTEC Engineering and Consulting, P.C.

Project No. 3612102168

Data Validator: Julie Ricardi

Date: 3/7/11

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Clus Occards

Date: 3/28/11

TABLE 1 SUMMARY OF SAMPLES AND ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT NOV 2010 AND JAN 2011 AIR SAMPLING PROGRAM

OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

						Class	VOC	VOC
					Analys	is Method	EPA TO-15	
								Passive S.E
						Fraction	Т	Т
SDG	Media	Location	Lab Id	Sample ID	Sample Date	Qc Code		
1102123	AIR	IA-11A	AT	828131A-IA11A01	1/20/2011	FS		X
1102123	AIR	IA-11B	AT	828131A-IA11B01	1/20/2011	FS		Х
E1012003	SV	GV-03	Enalytic	828131A-GV0301	11/29/2010	FS	X	
E1012003	SV	GV-04	Enalytic	828131A-GV0401	11/29/2010	FS	X	
E1101003	AIR	AA-01	Enalytic	828131A-AA0101	1/18/2011	FS	X	
E1101003	AIR	AA-02	Enalytic	828131A-AA0201	1/19/2011	FS	X	
E1101003	AIR	AA-03	Enalytic	828131A-AA0301	1/20/2011	FS	X	
E1101003	AIR	IA-01	Enalytic	828131A-IA0101	1/18/2011	FS	X	
E1101003	AIR	IA-02	Enalytic	828131A-IA0201	1/19/2011	FS	X	
E1101003	AIR	IA-03	Enalytic	828131A-IA0301	1/19/2011	FS	X	
E1101003	AIR	IA-04	Enalytic	828131A-IA0401	1/19/2011	FS	X	
E1101003	AIR	IA-05	Enalytic	828131A-IA0501	1/19/2011	FS	X	
E1101003	AIR	IA-06A	Enalytic	828131A-IA06A01	1/19/2011	FS	X	
E1101003	AIR	IA-06B	Enalytic	828131A-IA06B01	1/19/2011	FS	X	
E1101003	AIR	IA-07	Enalytic	828131A-IA0701	1/19/2011	FS	X	
E1101003	AIR	IA-08	Enalytic	828131A-IA0801	1/20/2011	FS	X	
E1101003	AIR	IA-09	Enalytic	828131A-IA0901	1/20/2011	FS	X	
E1101003	AIR	IA-10	Enalytic	828131A-IA1001	1/20/2011	FS	X	
E1101003	SV	SS-01	Enalytic	828131A-SS0101	1/18/2011	FS	X	
E1101003	SV	SS-01	Enalytic	828131A-SS0101DUP	1/18/2011	FD	X	
E1101003	SV	SS-02	Enalytic	828131A-SS0201	1/19/2011	FS	X	
E1101003	SV	SS-03	Enalytic	828131A-SS0301	1/19/2011	FS	X	
E1101003	SV	SS-04	Enalytic	828131A-SS0401	1/19/2011	FS	X	
E1101003	SV	SS-05	Enalytic	828131A-SS0501	1/19/2011	FS	X	
E1101003	SV	SS-06A	Enalytic	828131A-SS06A01	1/19/2011	FS	X	
E1101003	SV	SS-06B	Enalytic	828131A-SS06B01	1/19/2011	FS	Χ	
E1101003	SV	SS-07	Enalytic	828131A-SS0701	1/19/2011	FS	Χ	
E1101003	SV	SS-08	Enalytic	828131A-SS0801	1/20/2011	FS	Χ	
E1101003	SV	SS-09	Enalytic	828131A-SS0901	1/20/2011	FS	Χ	
E1101003	SV	SS-10	Enalytic	828131A-SS1001	1/20/2011	FS	Х	

FOOTNOTES: QC CODE

FS = field sample, FD = field duplicate

Media

SV = soil vapor

Prepared by: BJS 3/10/2011 Checked by: JAR 3/14/2011

TABLE 2 SUMMARY OF ANALYTICAL RESULTS NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

	Sample Delive	ery Group	E1012003	E1012003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003
	•	Location	GV-03	GV-04	AA-01	AA-02	AA-03	IA-01	IA-02	IA-03	IA-04	IA-05
	San	nple Date	11/29/2010	11/29/2010	1/18/2011	1/19/2011	1/20/2011	1/18/2011	1/19/2011	1/19/2011	1/19/2011	1/19/2011
		Sample ID		828131A-GV0401	828131A-AA0101	828131A-AA0201	828131A-AA0301	828131A-IA0101	828131A-IA0201	828131A-IA0301	828131A-IA0401	828131A-IA0501
	1=	Qc Code	FS	FS	FS	FS	FS	FS	FS	FS	FS	FS
Analysis	Param Name	Units	Result Qualifier	Result Qualifier		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
EPA TO-15 EPA TO-15	Tetrachloroethene	UG/M3 UG/M3	2.3 J	2.8 J	1.4 U 0.22 U	1.4 U 0.22 U	1.4 U 0.22 U	1.4 U 0.22 U	1.4 U 0.22 U	0.22 U	1.4 U 0.22 U	1.4 U 0.22 U
EPA TO-15	Trichloroethene 1,1,1-Trichloroethane	UG/M3	2 J 1.1 U	1.1 U	1.1 U			1.1 U		1.1 U		
EPA TO-15	1,1,2,2-Tetrachloroethane	UG/M3	1.4 UJ	1.1 UJ	1.4 U	1.1 U 1.4 U	1.1 U 1.4 U	1.4 U	1.1 U 1.4 U	1.1 U	1.1 U 1.4 U	1.1 U 1.4 U
EPA TO-15	1.1.2-Trichloro-1.2.2-Trifluoroethane	UG/M3	1.6 U	1.4 U	1.6 U	1.6 U	1.6 U	1.6 U	1.4 U	1.4 U	1.6 U	1.6 U
EPA TO-15	1.1.2-Trichloroethane	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
EPA TO-15	1,1-Dichloroethane	UG/M3	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
EPA TO-15	1,1-Dichloroethene	UG/M3	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U
EPA TO-15	1,2,4-Trichlorobenzene	UG/M3	1.5 UJ	1.5 UJ	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
EPA TO-15	1,2,4-Trimethylbenzene	UG/M3	1 UJ	1 UJ	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
	1,2-Dibromoethane	UG/M3	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
EPA TO-15	1,2-Dichloro-1,1,2,2-tetrafluoroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
EPA TO-15	1,2-Dichlorobenzene	UG/M3	1.2 UJ	1.2 UJ	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
EPA TO-15	1,2-Dichloroethane	UG/M3	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
EPA TO-15	1,2-Dichloropropane	UG/M3	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U
EPA TO-15	1,3,5-Trimethylbenzene	UG/M3	1 UJ	1.4 J	1 U	1 U	1 U	1.5	1 U	1 U	1 U	1.2
EPA TO-15 EPA TO-15	1,3-Butadiene	UG/M3 UG/M3	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
EPA TO-15	1,3-Dichlorobenzene 1,4-Dichlorobenzene	UG/M3 UG/M3	1.2 UJ 1.2 UJ	1.2 UJ 1.2 UJ	1.2 U 1.2 UJ	1.2 U 1.2 U	1.2 U 1.2 U	1.2 U 1.2 UJ	1.2 U 1.2 UJ	1.2 U 1.2 UJ	1.2 U 1.2 UJ	1.2 U 1.2 U
EPA TO-15	1,4-Dichlorobenzene 1,4-Dioxane	UG/M3	0.73 UJ	0.73 UJ	1.2 UJ 1.5 U	1.2 U	1.2 U	1.2 UJ	1.2 UJ 1.5 U	1.2 UJ 1.5 U	1.2 UJ 1.5 U	1.2 U
EPA TO-15	2-Butanone	UG/M3	0.75 U	57	1.6	1.6	3.5	3.2	0.6 U	3.4	1.6	3.1
EPA TO-15	2-Hexanone	UG/M3	0.83 UJ	0.83 UJ	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
EPA TO-15	2-Propanol	UG/M3	5 U	5 U	5.2 J	8.4 J	11 J	36 J	18 J	10 J	23 J	4 J
EPA TO-15	4-Ethyltoluene	UG/M3	1 UJ	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1	1 U
EPA TO-15	4-Methyl-2-pentanone	UG/M3	0.83 UJ	0.83 UJ	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
EPA TO-15	Acetone	UG/M3	16 J	180 J	11 J	17 J	12 U	17 J	13 J	16 J	11 J	8.9 U
EPA TO-15	Benzene	UG/M3	3.8 J	0.65 U	1.5	1.1	0.65 U	1.6	2.2	1.2	1.2	1.1
EPA TO-15	Benzyl chloride	UG/M3	1.1 UJ	1.1 UJ	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
EPA TO-15	Bromodichloromethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
EPA TO-15	Bromoform	UG/M3	2.1 UJ	2.1 UJ	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
EPA TO-15	Bromomethane	UG/M3	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U
EPA TO-15	Carbon disulfide	UG/M3 UG/M3	69 J	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U
EPA TO-15 EPA TO-15	Carbon tetrachloride Chlorobenzene	UG/M3	1.3 U 0.94 U	1.3 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U	0.26 U 0.94 U
EPA TO-15	Chlorodibromomethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
EPA TO-15	Chloroethane	UG/M3	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U
EPA TO-15	Chloroform	UG/M3	0.99 U	2.1	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U
EPA TO-15	Chloromethane	UG/M3	0.42 U	0.42 U	1.3	1.3	1.2	0.42 U	1.2	1.2	1.2	1.2
EPA TO-15	Cis-1,2-Dichloroethene	UG/M3	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	1.3	0.81 U
EPA TO-15	cis-1,3-Dichloropropene	UG/M3	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U
EPA TO-15	Cyclohexane	UG/M3	7.1 J	0.7 U	0.7 U	0.7 U	0.7 U	1.4	0.7 U	0.7 U	0.7 U	0.7 U
EPA TO-15	Dichlorodifluoromethane	UG/M3	2.6 J	2.3	2.3	2.5	2.5	1 U	2.4	2.3	2.2	2.4
EPA TO-15	Ethyl benzene	UG/M3	0.88 UJ	3.6 J	0.88 U	0.88 U	0.88 U	1.2	0.88 U	0.88 U	0.88 U	0.88 U
EPA TO-15	Heptane	UG/M3	21 J	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
EPA TO-15	Hexachlorobutadiene	UG/M3	2.2 UJ	2.2 UJ	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
EPA TO 15	Hexane Methyd Tasthythd Ethan	UG/M3	120 J	0.72 U	0.72 U	0.72 U 0.73 U	0.72 U	2.3 J	1 J	0.72 U	0.72 U	0.75 0.73 U
EPA TO-15 EPA TO-15	Methyl Tertbutyl Ether Methylene chloride	UG/M3 UG/M3	0.73 U 0.71 U	0.73 U 0.78 J	0.73 U 0.71 U	0.73 U 0.71 U	0.73 U 0.71 U	0.73 U 1.7	0.73 U 0.71 U	0.73 U 0.71 U	0.73 U 0.71 U	0.73 U 0.71 U
EPA TO-15	Styrene	UG/M3	0.71 U 0.87 U	0.78 J 3.9 J	1.3 U	1.3 U	1.3 U	1.7	1.3 U	1.3 U	1.3 U	1.3 U
EPA TO-15	Tetrahydrofuran	UG/M3	4.9 J	1700	0.6 U	0.6 U	1.6	0.6 U	0.6 U	5.5	0.6 U	0.6 U
EPA TO-15	Toluene	UG/M3	20 J	2.7	2.2	1.6	0.8	6.2	2.4	2.1	2.5	2.2
EPA TO-15	trans-1,2-Dichloroethene	UG/M3	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U
EPA TO-15	trans-1,3-Dichloropropene	UG/M3	0.92 U	0.92 U	0.92 UJ	0.92 U	0.92 U	0.92 UJ	0.92 UJ	0.92 UJ	0.92 UJ	0.92 U
EPA TO-15	Trichlorofluoromethane	UG/M3	1.1 U	1.1 U	1.3	1.1 U	1.3	2	1.3	1.2	1.3	1.3
EPA TO-15	Vinyl acetate	UG/M3	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U	0.72 U
EPA TO-15	Vinyl chloride	UG/M3	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U	0.52 U
	Xylene, m/p	UG/M3	6.5 J	13 J	2.6 U	2.6 U	2.6 U	3.1 J	2.6 U	2.6 U	2.6 U	2.6 U
	Xylene, o	UG/M3	0.88 UJ	4 J	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U
Notes:												

Notes: ug/m3 = microgram per cubic meter Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

QC Code-

FS = Field Sample, FD = field duplicate

TABLE 2 SUMMARY OF ANALYTICAL RESULTS NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE

PENFIELD, NEW YORK

	Sample Delive	ry Group	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003
		Location	IA-06A	IA-06B	IA-07	IA-08	IA-09	IA-10	SS-01	SS-01	SS-02	SS-03
		nple Date	1/19/2011	1/19/2011	1/19/2011	1/20/2011	1/20/2011	1/20/2011	1/18/2011	1/18/2011	1/19/2011	1/19/2011
		ample ID		828131A-IA06B01	828131A-IA0701	828131A-IA0801	828131A-IA0901	828131A-IA1001	828131A-SS0101	328131A-SS0101DUF		828131A-SS0301
		Qc Code	FS	FS	FS	FS	FS	FS	FS	FD	FS	FS
Analysis	Param Name	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
EPA TO-15	Tetrachloroethene	UG/M3	2.7	2.1	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4	1.4 U
EPA TO-15	Trichloroethene	UG/M3	0.22 U	0.22 U	0.22 U	0.22 U	0.93	0.22 U	1.1 U	1.1 U	1.1 U	1.1 U
EPA TO-15	1,1,1-Trichloroethane	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
EPA TO-15	1,1,2,2-Tetrachloroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U 1.6 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U 1.6 U	1.4 U
EPA TO-15	1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/M3	1.6 U 1.1 U	1.6 U	1.6 U		1.6 U 1.1 U	1.6 U 1.1 U	1.6 U	1.6 U	1.6 U	1.6 U
EPA TO-15 EPA TO-15	1,1,2-Trichloroethane	UG/M3 UG/M3	0.82 U	1.1 U 0.82 U	1.1 U 0.82 U	1.1 U 0.82 U	0.82 U	0.82 U	1.1 U 0.82 U	1.1 U 0.82 U	0.82 U	1.1 U 0.82 U
EPA TO-15	1,1-Dichloroethane	UG/M3	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U 0.81 U	0.82 U	0.82 U 0.81 U	0.82 U 0.81 U	0.82 U 0.81 U	0.82 U
EPA TO-15	1,1-Dichloroethene 1,2,4-Trichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
EPA TO-15	1,2,4-Trimethylbenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	7.2	7	1.5 U	1.5 U
	1,2-Dibromoethane	UG/M3	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
EPA TO-15		UG/M3	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
	1,2-Dichlorobenzene	UG/M3	1.2 U	1.4 U	1.4 U	1.4 U	1.2 U	1.4 U	1.4 U	1.4 U	1.4 U	1.2 U
EPA TO-15	1,2-Dichloroethane	UG/M3	0.82 U	0.82 U	1.2	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
EPA TO-15	1,2-Dichloropropane	UG/M3	0.82 U	0.82 U	0.94 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
EPA TO-15	1,3,5-Trimethylbenzene	UG/M3	1 U	1 U	111	1 U	1 U	1 U	17	17	1.6	1.9
EPA TO-15	1,3-Butadiene	UG/M3	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U
	1,3-Dichlorobenzene	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
	1,4-Dichlorobenzene	UG/M3	1.2 UJ	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
EPA TO-15	1,4-Dioxane	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	0.73 U	0.73 U	0.73 U	0.73 U
EPA TO-15	2-Butanone	UG/M3	5.5	5.6	1.9	6	1.1	1.5	6.7 J	12 J	9.7	9.8
EPA TO-15	2-Hexanone	UG/M3	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U
EPA TO-15	2-Propanol	UG/M3	14 J	19 J	11 J	660 J	65 J	35 J	11 J	6.1 J	13 J	6.9 J
EPA TO-15	4-Ethyltoluene	UG/M3	1 U	1 U	1 U	1 U	1 U	1 U	7.1	7.3	1.7	1.1
EPA TO-15	4-Methyl-2-pentanone	UG/M3	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	0.83 U	5.1	4	1.2	0.83 U
EPA TO-15	Acetone	UG/M3	130 J	170 J	24 J	170 J	11 U	35 J	230 J	220 J	330 J	150 J
EPA TO-15	Benzene	UG/M3	1.1	1.3	1.4	2.6	0.84	0.84	4.7	4.7	0.65 U	0.68
EPA TO-15	Benzyl chloride	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
EPA TO-15	Bromodichloromethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
EPA TO-15	Bromoform	UG/M3	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
EPA TO-15	Bromomethane	UG/M3	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U
EPA TO-15	Carbon disulfide	UG/M3	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	0.63 U	6.2	6	7	2.6
EPA TO-15	Carbon tetrachloride	UG/M3	0.26 U	5.8	0.26 U	0.51	0.26 U	0.26 U	1.3 U	1.3 U	1.3 U	1.3 U
EPA TO-15	Chlorobenzene	UG/M3	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U
EPA TO-15	Chlorodibromomethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
EPA TO-15	Chloroethane	UG/M3	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U	0.54 U
EPA TO-15	Chloroform	UG/M3	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U
EPA TO-15	Chloromethane	UG/M3	1.2	1.4	0.42 U	1.6	1.3	1.4	0.42 U	0.42 U	0.42 U	0.42 U
EPA TO-15		UG/M3	0.81 U	0.81 U	0.81 U	0.81 U	1.7	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U
EPA TO-15	cis-1,3-Dichloropropene	UG/M3	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U
EPA TO-15	Cyclohexane	UG/M3	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	6.7	6.5	0.7 U	0.7 U
EPA TO-15	Dichlorodifluoromethane	UG/M3	2.5	2.6	2.4	2.3	2.5	2.5	3.5	3.3	2.3	2.5
EPA TO-15	Ethyl benzene	UG/M3	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	0.88 U	4.2	4.8	2.3	1.1
EPA TO-15	Heptane	UG/M3	0.83 U	3.1	0.83 U	0.83 U	0.83 U	0.87	21	21	2.5	2.6
EPA TO-15	Hexachlorobutadiene	UG/M3	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
EPA TO-15	Hexane	UG/M3	0.72 U	1.1	0.72 U	0.72 U	0.72 U	0.86	14	14	1.2	1.6
EPA TO-15	Methyl Tertbutyl Ether	UG/M3	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U	0.73 U
EPA TO-15	Methylene chloride	UG/M3	0.71 U	0.71 U	0.71 U	0.71 U	0.71 U	1.2	0.71 U	0.71 U	0.71 U	0.71 U
EPA TO-15	Styrene	UG/M3	1.3 U	3.8	1.3 U	1.3 U	1.3 U	1.3 U	0.87 U	0.87 U	3.9	0.87 U
EPA TO-15	Tetrahydrofuran	UG/M3	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
EPA TO-15	Toluene	UG/M3	2	3.3	3.5	2.9	2	2.6	61	65	170	50
EPA TO-15	trans-1,2-Dichloroethene	UG/M3	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U	0.81 U
EPA TO-15	trans-1,3-Dichloropropene	UG/M3	0.92 UJ	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U
EPA TO-15	Trichlorofluoromethane	UG/M3	1.3	1.4	1.4	3.7	1.1 U	1.4	1.3	1.3	1.2	1.3
EPA TO 15	Vinyl ablasida	UG/M3	0.72 U	0.72 U	0.72 U 0.52 U	0.72 U 0.52 U	0.72 U 0.52 U	0.72 U 0.52 U	0.72 U	0.72 U 0.52 U	0.72 U 0.52 U	0.72 U
EPA TO-15	Vinyl chloride	UG/M3 UG/M3	0.52 U 2.6 U	0.52 U 2.6 U	0.52 U 2.6 U	0.52 U 2.6 U		0.52 U 2.6 U	0.52 U 29	0.52 U 26	0.52 U 8.8	0.52 U 5.1
EPA TO-15 EPA TO-15	Xylene, m/p	UG/M3 UG/M3	2.6 U 0.97	2.6 U	2.6 U 0.88 U	0.88 U	2.6 U 0.88 U	0.88 U	9.9	7.3	8.8 1.8	1.8
Notes:	Ayidio, U	JG/IVI3	0.87	1.0	0.00	0.00	0.00 0	0.00 0	3.3	1.3	1.0	1.0

Notes:
ug/m3 = microgram per cubic meter
Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

QC Code-

FS = Field Sample, FD = field duplicate

TABLE 2 SUMMARY OF ANALYTICAL RESULTS NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

EPATO-16 1.2-Disconnenthane		Sample Delive	ery Group	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003	E1101003
Sumple Dec D		•	Location	SS-04							SS-10
Analysis											
Analysis		S									
EPATOTS Freichforoethere		In					_				
ERY TOTS 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1											
EPATO 11,1-Printhroombane											
EPATO-15 1,1,2,2 Februshoveshame											
EPATO-15 1,2-2 Freshoored pane UGMS 1,6 U 1,6 U 1,6 U 1,6 U 1,6 U 1,6 U 1,6 U 1,6 U 1,6 U 1,7 U 1,											
EPATO-15 1.1-2 Trichtorochane											
EPATO-15 1.1-Dichtocrethane											
EPATO-15 1.3-Circloroseneme UGAMS 1.5 U 1.5		7.7									
PRATO-16 12,4-Printentybenzenee											
EPATO-15 12-4 Trimethylpharamen											
EPA TO-16 1.2-Disconnechane UGMS 1.6 U	EPA TO-15	1.2.4-Trimethylbenzene	UG/M3	1 U		2.2	5.9	1 U	1.1	1.1 J	1.6
EPA TO-16 1.2-Cubriorephane UGMS 1.2 U U 1.2 U U U U U U U U U	EPA TO-15			1.6 U	1.6 U			1.6 U	1.6 U		
EPATO-15 1.2-Dichloroentennee	EPA TO-15	1,2-Dichloro-1,1,2,2-tetrafluoroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 UJ	1.4 U
EPATO-15 1.2-Dichtkorgrapeane UGMS 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.94 U 0.95	EPA TO-15		UG/M3		1.2 U			1.2 U			
EPA TO-15	EPA TO-15	1,2-Dichloroethane									
EPATO-15 3-blundeme	EPA TO-15	1,2-Dichloropropane			0.94 U		0.94 U	0.94 U			
EPA TO-15 1,3-Dichlorobenzene	EPA TO-15										
EPA TO-15 1.4-Dischorobervene		7-									
EPA TO-15	EPA TO-15										
EPA TO-15 2-Elutanone	EPA TO-15										
EPA TO-15 2-Hevanone	EPA TO-15										
EPA TO-15 Z-Propanol UGAMS 14 J 5.2 J 5 U 15 J 5 U 14 J 15 J 8.4 J											
EPAT TO-15 A-Ethyltouene											
EPA TO-15 A-Methyl-2-pentanone UGM3 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.85 U 0.							15 J				
EPA TO-15 Acetone UGMS 170 J 240 J 110 J 150 J 150 J 120 J 230 J 160 J 160 J 170 J 160 J 170 J 160 J 170 J 160 J 170 J 1							5				
EPA TO-15 Benzene											
EPA TO-15 Benzy Inforder UGM3 1.1 U											
EPA TO-15 Bromodinbromethane											
EPA TO-15 Bromoferm U.G.M.S 2.1 U U 2.1 U U U U U U U U U											
EPA TO-15 Bromomethane UGM3 0.79 U 0.70 U											
EPA TO-15 Carbon issulfide											
EPA TO-15 Carbon tetrachloride											
EPA TO-15 Chlorobenzene											
EPA TO-15 Chlorodibromomethane UG/M3 1.7 U 0.54 U											
EPA TO-15 Chloroethane UG/M3 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.55 U 0.55 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.59 U 0.55 U											
EPA TO-15 Chloroform UG/M3 0.99 U 7.4 0.99 U 25 0.99 U 0.9											
EPA TO-15 Chloromethane UG/M3	EPA TO-15										
EPA TO-15 Cis-1,3-Dichloropene											
EPA TO-15 cis-1,3-Dichloropropene UG/M3 0.92 U 0.92<	EPA TO-15										
EPA TO-15 Dichlorodiffuoromethane UG/M3 2.3 2.5 2.5 9.8 2.3 2.3 2.5 J 2.5 EPA TO-15 Ethyl benzene UG/M3 0.88 U 0.88 U 1.5 J 7.4 EPA TO-15 Heptane UG/M3 4.5 0.83 U 5.9 17 1.2 2.9 4.7 J 20 EPA TO-15 Hexachlorobutadiene UG/M3 2.2 U <td>EPA TO-15</td> <td>-</td> <td>UG/M3</td> <td>0.92 U</td> <td>0.92 U</td> <td>0.92 U</td> <td>0.92 U</td> <td>0.92 U</td> <td>0.92 U</td> <td>0.92 UJ</td> <td>0.92 U</td>	EPA TO-15	-	UG/M3	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 U	0.92 UJ	0.92 U
EPA TO-15 Ethyl benzene UG/M3 0.88 U 0.88 U 1 2.3 0.88 U 0.88 U 1.5 J 7.4 EPA TO-15 Heptane UG/M3 4.5 0.83 U 5.9 17 1.2 2.9 4.7 J 20 EPA TO-15 Hexachlorobutadiene UG/M3 2.2 U	EPA TO-15	Cyclohexane				4					
EPA TO-15 Heptane UG/M3 4.5 0.83 U 5.9 17 1.2 2.9 4.7 J 20 EPA TO-15 Hexachlorobutadiene UG/M3 2.2 U <t< td=""><td>EPA TO-15</td><td>Dichlorodifluoromethane</td><td></td><td></td><td></td><td>2.5</td><td></td><td></td><td></td><td>2.5 J</td><td></td></t<>	EPA TO-15	Dichlorodifluoromethane				2.5				2.5 J	
EPA TO-15 Hexachlorobutadiene UG/M3 2.2 U 2.2	EPA TO-15					1					
EPA TO-15 Hexane UG/M3 4.1 1.3 4.7 12 7.8 2.1 3.5 J 13 EPA TO-15 Methyl Tertbutyl Ether UG/M3 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.71 U 0.81 U	EPA TO-15										
EPA TO-15 Methyl Tertbutyl Ether UG/M3 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.73 U 0.71 </td <td>EPA TO-15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EPA TO-15										
EPA TO-15 Methylene chloride UG/M3 0.71 U 0.72 U 0.87 U 0.87 U 0.87 U 0.87 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81	EPA TO-15										
EPA TO-15 Styrene UG/M3 0.87 U 0.80 U 0.60 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
EPA TO-15 Tetrahydrofuran UG/M3 0.6 U 0.2 0.2 0.2 0.8 U 0.8 U 0.8 U 0.8 U 0.8 U 0.8 U 0.8 U 0.9 0.8 U 0.9 0.8 0.9 0.8 U 0.9 0.9 0.9 0.8 0.9 0.8 0.9 0.9 <td></td> <td> ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		,									
EPA TO-15 Toluene UG/M3 35 44 26 35 2.3 19 46 J 360 EPA TO-15 trans-1,2-Dichloroethene UG/M3 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.81 U 0.92 U											
EPA TO-15 trans-1,2-Dichloroethene UG/M3 0.81 U 0.82 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U 0.72 U 0.72 U 0.72 U 0.72											
EPA TO-15 trans-1,3-Dichloropropene UG/M3 0.92 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
EPA TO-15 Trichlorofluoromethane UG/M3 1.2 1.3 1.3 1.3 1.1 2.5 1.3 J 1.3 EPA TO-15 Viryl acetate UG/M3 0.72 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
EPA TO-15 Vinyl acetate UG/M3 0.72 U 0.72											
EPA TO-15 Vinyl chloride UG/M3 0.52 U 0.52 U 0.52 U 0.52 U 1.4 0.52 U 1.8 J 0.52 U EPA TO-15 Xylene, m/p UG/M3 3.4 3.2 9.6 19 0.88 U 4.1 6 J 24 EPA TO-15 Xylene, o UG/M3 1.1 1.3 2.4 5.9 0.88 U 1.3 1.6 J 5.7											
EPA TO-15 Xylene, m/p UG/M3 3.4 3.2 9.6 19 0.88 U 4.1 6 J 24 EPA TO-15 Xylene, o UG/M3 1.1 1.3 2.4 5.9 0.88 U 1.3 1.6 J 5.7											
EPA TO-15 Xylene, o UG/M3 1.1 1.3 2.4 5.9 0.88 U 1.3 1.6 J 5.7											
	Notes:	Aylette, 0	UG/IVI3	1.11	1.3	2.4	5.8	U.00 U	1.3	1.0]J	5.7

Notes:
ug/m3 = microgram per cubic meter
Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

QC Code-

FS = Field Sample, FD = field duplicate

TABLE 2 SUMMARY OF ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

	Sample Delive	ery Group	1102	123	1102	123
		Location	IA-1		IA-1	1B
	Sai	mple Date	1/20/2	:011	1/20/2	011
		Sample ID	828131A-I	A11A01	828131A-I	A11B01
		Qc Code	FS	3	FS	3
Analysis	Param Name	Units	Result	Qualifier	Result	Qualifier
EPA TO-17	Tetrachloroethene	UG/M3	0.084	U	0.084	U
EPA TO-17	Trichloroethene	UG/M3	0.072	U	0.082	
EPA TO-17	1,1,1-Trichloroethane	UG/M3	0.08	U	0.08	
EPA TO-17	1,2-Dichloroethane	UG/M3	0.064	U	0.064	U
EPA TO-17	1,4-Dichlorobenzene	UG/M3	0.097	UJ	0.097	UJ
EPA TO-17	2-Butanone	UG/M3	0.41		0.52	
EPA TO-17	2-Propanol	UG/M3	3.7		17	
EPA TO-17	4-Methyl-2-pentanone	UG/M3	0.15		0.16	
EPA TO-17	Acetone	UG/M3	3.5		7.9	
EPA TO-17	Benzene	UG/M3	0.75		0.89	
EPA TO-17	Carbon tetrachloride	UG/M3	0.41		0.48	
EPA TO-17	Chlorobenzene	UG/M3	0.073	U	0.073	U
EPA TO-17	Chloroform	UG/M3	0.2		0.24	
EPA TO-17	Cyclohexane	UG/M3	0.27		0.44	
EPA TO-17	Ethanol	UG/M3	17	J	64	J
EPA TO-17	Ethyl acetate	UG/M3	0.44		0.56	
EPA TO-17	Ethyl benzene	UG/M3	0.16		0.22	
EPA TO-17	Heptane	UG/M3	0.64		1.9	
EPA TO-17	Hexane	UG/M3	0.5		0.53	
EPA TO-17	Methyl Tertbutyl Ether	UG/M3	0.076	U	0.076	U
EPA TO-17	Naphthalene	UG/M3		R		R
EPA TO-17	Propylbenzene	UG/M3	0.087	U	0.095	
EPA TO-17	Styrene	UG/M3	0.13	J	0.3	J
EPA TO-17	Toluene	UG/M3	0.94		1.4	
EPA TO-17	Xylene, m/p	UG/M3	0.39		0.59	
EPA TO-17	Xylene, o	UG/M3	0.2		0.29	

Notes:

ug/m3 = microgram per cubic meter

Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

R = result is rejected

QC Code-

FS = Field Sample

Prepared by: BJS 3/16/2011 Checked by: JAR 3/17/2011

TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS

DATA USABILITY SUMMARY REPORT

NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM

OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

				PENFIELD, NEW Y		Lab					
		Analysis			Lab	Qualifie	Validated	Validation		Result	
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	2-Propanol	2	J	5	U	BL1	UG/M3	Enalytic
E1101003	E1101003-012A	EPA TO-15	828131A-IA0501	Acetone	8.9		8.9	U	BL1	UG/M3	Enalytic
E1101003	E1101003-022A	EPA TO-15	828131A-IA0901	Acetone	11		11		BL1	UG/M3	Enalytic
E1101003	E1101003-025A	EPA TO-15	828131A-AA0301	Acetone	12		12	U	BL1	UG/M3	Enalytic
E1101003	E1101003-001A	EPA TO-15	828131A-SS0101	2-Butanone	6.7		6.7	J	FD	UG/M3	Enalytic
E1101003	E1101003-002A	EPA TO-15	828131A-SS0101DUP	2-Butanone	12		12	J	FD	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Bromoform	2.1	U	2.1	UJ	ICVRSD	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Bromoform	2.1	U	2.1	UJ	ICVRSD	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,1,2,2-Tetrachloroethane	1.4			UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,2,4-Trimethylbenzene	1	U	1	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,2,4-Trimethylbenzene	1	U		UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,2-Dichlorobenzene	1.2	U	1.2	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,2-Dichlorobenzene	1.2	U	1.2	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,3,5-Trimethylbenzene	1	U	1	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,3,5-Trimethylbenzene	1.4		1.4	J	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,3-Dichlorobenzene	1.2	U	1.2	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,3-Dichlorobenzene	1.2	U	1.2	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,4-Dichlorobenzene	1.2	U		UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,4-Dichlorobenzene	1.2	U	1.2	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	4-Ethyltoluene	1	U	1	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	4-Ethyltoluene	1	U	1	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Benzyl chloride	1.1	U	1.1	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Benzyl chloride	1.1	U	1.1	UJ	ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Xylene, o	0.88	U	0.88		ICVRSD, LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Xylene, m/p	13		13	J	ICVRSD, QLS-H	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Xylene, o	4		4	J	ICVRSD, QLS-H, LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Xylene, m/p	6.5		6.5	J	ICVRSD, QLS-H, SS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,1,1-Trichloroethane	1.1	U	1.1	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,1,2-Trichloro-1,2,2-Trifluoroethane	1.6	U	1.6	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,1,2-Trichloroethane	1.1	U	1.1	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,1-Dichloroethane	0.82	U	0.82	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,1-Dichloroethene	0.81	U	0.81	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2,4-Trimethylbenzene	1.1		1.1	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2-Dibromoethane	1.6	U	1.6	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.4	U	1.4	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2-Dichlorobenzene	1.2	U	1.2	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2-Dichloroethane	0.82	U	0.82	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,2-Dichloropropane	0.94	U	0.94	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,3,5-Trimethylbenzene	2.6		2.6		IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,3-Butadiene	0.45	U	0.45	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,3-Dichlorobenzene	1.2			UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,4-Dichlorobenzene	1.2			UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	1,4-Dioxane	0.73	U	0.73	UJ	IS-H	UG/M3	Enalytic

TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS

DATA USABILITY SUMMARY REPORT

NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM

OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

						Lab					
		Analysis			Lab	Qualifie	Validated	Validation		Result	
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	2-Butanone	3.6		3.6	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	2-Hexanone	0.83	U	0.83	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	4-Ethyltoluene	1.6		1.6	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	4-Methyl-2-pentanone	0.83	U	0.83	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Benzene	1.7		1.7	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Benzyl chloride	1.1	U	1.1	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Bromodichloromethane	1.4	U	1.4	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Bromoform	2.1	U	2.1	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Bromomethane	0.79	U	0.79	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Carbon disulfide	3.4		3.4	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Carbon tetrachloride	1.3	U	1.3	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Chlorobenzene	0.94	U	0.94	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Chlorodibromomethane	1.7	U	1.7	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Chloroethane	0.54	U	0.54	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Chloroform	0.99	U	0.99	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Chloromethane	0.42	U	0.42	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	cis-1,3-Dichloropropene	0.92	U	0.92	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Cyclohexane	1.7		1.7	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Dichlorodifluoromethane	2.5		2.5	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Ethyl benzene	1.5		1.5	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Heptane	4.7		4.7	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Hexachlorobutadiene	2.2	U	2.2	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Hexane	3.5		3.5	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Methyl Tertbutyl Ether	0.73	U	0.73	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Methylene chloride	0.71	U	0.71	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Styrene	0.87		0.87	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Tetrachloroethene	650		650	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Tetrahydrofuran	0.6	U	0.6	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Toluene	46		46	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	trans-1,2-Dichloroethene	6.9		6.9	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	trans-1,3-Dichloropropene	0.92	U	0.92	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Trichlorofluoromethane	1.3		1.3	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Vinyl acetate	0.72	U	0.72	UJ	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Vinyl chloride	1.8		1.8	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Xylene, m/p	6		6	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	Xylene, o	1.6		1.6	J	IS-H	UG/M3	Enalytic
E1101003	E1101003-003A	EPA TO-15	828131A-IA0101	1,4-Dichlorobenzene	1.2	U	1.2	UJ	LCS-L	UG/M3	Enalytic
E1101003	E1101003-004A	EPA TO-15	828131A-AA0101	1,4-Dichlorobenzene	1.2		1.2	UJ	LCS-L	UG/M3	Enalytic
E1101003	E1101003-006A	EPA TO-15	828131A-IA0201	1,4-Dichlorobenzene	1.2			UJ	LCS-L	UG/M3	Enalytic
E1101003	E1101003-008A	EPA TO-15	828131A-IA0301	1,4-Dichlorobenzene	1.2	U	1.2	UJ	LCS-L	UG/M3	Enalytic
E1101003	E1101003-010A	EPA TO-15	828131A-IA0401	1,4-Dichlorobenzene	1.2	U	1.2	UJ	LCS-L	UG/M3	Enalytic
E1101003	E1101003-014A	EPA TO-15	828131A-IA06A01	1,4-Dichlorobenzene	1.2	U	1.2	UJ	LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	2-Hexanone	0.83	U	0.83	UJ	LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	2-Hexanone	0.83		0.83		LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	4-Methyl-2-pentanone	0.83	U	0.83	UJ	LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	4-Methyl-2-pentanone	0.83	U	0.83	UJ	LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Ethyl benzene	0.88		0.88		LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Ethyl benzene	3.6		3.6	J	LCS-L	UG/M3	Enalytic

TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS

DATA USABILITY SUMMARY REPORT

NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE

PENFIELD, NEW YORK

				PENFIELD, NEW 1		Lab					$\overline{}$
		Analysis			Lab		Validated	Validation		Result	
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Hexachlorobutadiene	2.2	U		UJ	LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Hexachlorobutadiene	2.2			UJ	LCS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Tetrachloroethene	2.8		2.8		LCS-L	UG/M3	Enalytic
E1101003	E1101003-003A	EPA TO-15	828131A-IA0101	trans-1,3-Dichloropropene	0.92	U	0.92		LCS-L	UG/M3	Enalytic
E1101003	E1101003-004A	EPA TO-15	828131A-AA0101	trans-1,3-Dichloropropene	0.92		0.92		LCS-L	UG/M3	Enalytic
E1101003	E1101003-006A	EPA TO-15	828131A-IA0201	trans-1,3-Dichloropropene	0.92	Ū	0.92	UJ	LCS-L	UG/M3	Enalytic
	E1101003-008A	EPA TO-15	828131A-IA0301	trans-1,3-Dichloropropene	0.92		0.92		LCS-L	UG/M3	Enalytic
E1101003	E1101003-010A	EPA TO-15	828131A-IA0401	trans-1,3-Dichloropropene	0.92		0.92		LCS-L	UG/M3	Enalytic
E1101003	E1101003-014A	EPA TO-15	828131A-IA06A01	trans-1,3-Dichloropropene	0.92		0.92		LCS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Tetrachloroethene	2.3		2.3		LCS-L, SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Dichlorodifluoromethane	2.6		2.6		LD, SS-H	UG/M3	Enalytic
E1101003	E1101003-001A	EPA TO-15	828131A-SS0101	2-Propanol	11		11		QLS-H	UG/M3	Enalytic
E1101003	E1101003-002A	EPA TO-15		2-Propanol	6.1		6.1		QLS-H	UG/M3	Enalytic
E1101003	E1101003-002A	EPA TO-15	828131A-IA0101	2-Propanol	36		36		QLS-H	UG/M3	Enalytic
E1101003	E1101003-003A	EPA TO-15	828131A-AA0101	2-Propanol	5.2		5.2		QLS-H	UG/M3	Enalytic
E1101003	E1101003-004A	EPA TO-15	828131A-SS0201	2-Propanol	13		13		QLS-H	UG/M3	Enalytic
E1101003	E1101003-005A	EPA TO-15	828131A-IA0201	2-Propanol	18		18		QLS-H	UG/M3	Enalytic
E1101003	E1101003-000A	EPA TO-15	828131A-SS0301	2-Propanol	6.9		6.9		QLS-H	UG/M3	Enalytic
E1101003	E1101003-007A	EPA TO-15	828131A-IA0301	2-Propanol	10		10		QLS-H	UG/M3	Enalytic
E1101003	E1101003-000A	EPA TO-15	828131A-SS0401	2-Propanol	14		14		QLS-H	UG/M3	Enalytic
E1101003	E1101003-009A	EPA TO-15	828131A-IA0401	2-Propanol	23		23		QLS-H	UG/M3	Enalytic
E1101003	E1101003-010A	EPA TO-15	828131A-SS0501	2-Propanol	5.2		5.2		QLS-H	UG/M3	Enalytic
E1101003	E1101003-011A	EPA TO-15	828131A-IA0501	2-Propanol	4			J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-012A	EPA TO-15	828131A-IA06A01	2-Propanol	14	J	14		QLS-H	UG/M3	Enalytic
E1101003	E1101003-014A	EPA TO-15	828131A-SS06B01	2-Propanol	15		15		QLS-H	UG/M3	Enalytic
E1101003	E1101003-015A	EPA TO-15	828131A-IA06B01	2-Propanol	19		19		QLS-H	UG/M3	Enalytic
E1101003	E1101003-016A	EPA TO-15		2-Propanol	11		19		QLS-H	UG/M3	Enalytic
E1101003	E1101003-018A	EPA TO-15	828131A-IA0701 828131A-SS0801	2-Propanol	14		14		QLS-H	UG/M3	Enalytic
E1101003	E1101003-019A		828131A-IA0801		660		660		QLS-H	UG/M3	
E1101003	E1101003-020A E1101003-022A	EPA TO-15 EPA TO-15		2-Propanol 2-Propanol	65		65		QLS-H	UG/M3	Enalytic
E1101003			828131A-IA0901		8.4				QLS-H		Enalytic
	E1101003-023A	EPA TO-15	828131A-SS1001	2-Propanol			8.4 35			UG/M3	Enalytic
E1101003	E1101003-024A	EPA TO-15	828131A-IA1001	2-Propanol	35 11				QLS-H	UG/M3	Enalytic
E1101003	E1101003-025A	EPA TO-15	828131A-AA0301	2-Propanol			11		QLS-H	UG/M3	Enalytic
E1101003	E1101003-026A	EPA TO-15	828131A-AA0201	2-Propanol	8.4 180		8.4		QLS-H	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Acetone			180 230		QLS-H	UG/M3	Enalytic
E1101003	E1101003-001A	EPA TO-15	828131A-SS0101	Acetone	230				QLS-H	UG/M3	Enalytic
E1101003	E1101003-002A	EPA TO-15	828131A-SS0101DUP	Acetone	220		220		QLS-H	UG/M3	Enalytic
E1101003	E1101003-003A	EPA TO-15	828131A-IA0101	Acetone	17		17		QLS-H	UG/M3	Enalytic
E1101003	E1101003-004A	EPA TO-15	828131A-AA0101	Acetone	11		11		QLS-H	UG/M3	Enalytic
E1101003	E1101003-005A	EPA TO-15	828131A-SS0201	Acetone	330		330		QLS-H	UG/M3	Enalytic
E1101003	E1101003-006A	EPA TO-15	828131A-IA0201	Acetone	13	}	13		QLS-H	UG/M3	Enalytic
E1101003	E1101003-007A	EPA TO-15	828131A-SS0301	Acetone	150		150		QLS-H	UG/M3	Enalytic
E1101003	E1101003-008A	EPA TO-15	828131A-IA0301	Acetone	16		16		QLS-H	UG/M3	Enalytic
E1101003	E1101003-009A	EPA TO-15	828131A-SS0401	Acetone	170		170		QLS-H	UG/M3	Enalytic
E1101003	E1101003-010A	EPA TO-15	828131A-IA0401	Acetone	11		11		QLS-H	UG/M3	Enalytic
E1101003	E1101003-011A	EPA TO-15	828131A-SS0501	Acetone	240		240		QLS-H	UG/M3	Enalytic
E1101003	E1101003-013A	EPA TO-15	828131A-SS06A01	Acetone	110		110		QLS-H	UG/M3	Enalytic
E1101003	E1101003-014A	EPA TO-15	828131A-IA06A01	Acetone	130		130	J	QLS-H	UG/M3	Enalytic

TABLE 3

SUMMARY OF DATA VALIDATION ACTIONS

DATA USABILITY SUMMARY REPORT

NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE

PENFIELD, NEW YORK

						Lab					
		Analysis			Lab	Qualifie	Validated	Validation		Result	
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1101003	E1101003-015A	EPA TO-15	828131A-SS06B01	Acetone	150		150		QLS-H	UG/M3	Enalytic
	E1101003-016A	EPA TO-15	828131A-IA06B01	Acetone	170		170	-	QLS-H	UG/M3	Enalytic
	E1101003-017A	EPA TO-15	828131A-SS0701	Acetone	180		180		QLS-H	UG/M3	Enalytic
E1101003	E1101003-018A	EPA TO-15	828131A-IA0701	Acetone	24		24		QLS-H	UG/M3	Enalytic
E1101003	E1101003-019A	EPA TO-15	828131A-SS0801	Acetone	120		120	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-020A	EPA TO-15	828131A-IA0801	Acetone	170		170	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-023A	EPA TO-15	828131A-SS1001	Acetone	160		160	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-024A	EPA TO-15	828131A-IA1001	Acetone	35		35	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-026A	EPA TO-15	828131A-AA0201	Acetone	17		17	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-003A	EPA TO-15	828131A-IA0101	Hexane	2.3		2.3	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-006A	EPA TO-15	828131A-IA0201	Hexane	1		1	J	QLS-H	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Methylene chloride	0.78		0.78	J	QLS-H	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	Styrene	3.9		3.9	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-003A	EPA TO-15	828131A-IA0101	Xylene, m/p	3.1		3.1	J	QLS-H	UG/M3	Enalytic
E1101003	E1101003-021A	EPA TO-15	828131A-SS0901	2-Propanol	15		15	J	QLS-H, IS-H	UG/M3	Enalytic
	E1101003-021A	EPA TO-15	828131A-SS0901	Acetone	230		230	J	QLS-H, IS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Acetone	16		16	J	QLS-H, SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Benzene	3.8		3.8	J	QLS-H, SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Tetrahydrofuran	4.9		4.9	J	QLS-H, SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	1,4-Dioxane	0.73	U	0.73	UJ	QLS-L	UG/M3	Enalytic
E1012003	E1012003-002A	EPA TO-15	828131A-GV0401	1,4-Dioxane	0.73	U	0.73	UJ	QLS-L	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Carbon disulfide	69		69	J	SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Cyclohexane	7.1		7.1	J	SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Heptane	21		21	J	SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Hexane	120		120	J	SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Toluene	20		20	J	SS-H	UG/M3	Enalytic
E1012003	E1012003-001A	EPA TO-15	828131A-GV0301	Trichloroethene	2		2	J	SS-H	UG/M3	Enalytic
1102123	1102123-01A	EPA TO-17	828131A-IA11A01	1,4-Dichlorobenzene	0.097	U	0.097	UJ	LCS-L	UG/M3	AT
1102123	1102123-02A	EPA TO-17	828131A-IA11B01	1,4-Dichlorobenzene	0.097	U	0.097	UJ	LCS-L	UG/M3	ΑT
1102123	1102123-01A	EPA TO-17	828131A-IA11A01	Ethanol	17		17	J	LCS-L	UG/M3	AT
1102123	1102123-02A	EPA TO-17	828131A-IA11B01	Ethanol	64		64	J	LCS-L	UG/M3	AT
1102123	1102123-01A	EPA TO-17	828131A-IA11A01	Naphthalene	0.2	U		R	LCS-L	UG/M3	AT
1102123	1102123-02A	EPA TO-17	828131A-IA11B01	Naphthalene	0.2	U		R	LCS-L	UG/M3	AT
1102123	1102123-01A	EPA TO-17	828131A-IA11A01	Styrene	0.13		0.13	J	LCS-L	UG/M3	AT
	1102123-02A	EPA TO-17	828131A-IA11B01	Styrene	0.3		0.3		LCS-L	UG/M3	AT
NOTES:	i	•		• •		•	•			-	•

Validation Qualifiers-

U = result is non-detected or qualified as non-detect due to blank contamination

J = estimated value

R = result is rejected

Validation Qualifier Reason Codes-

BL1 = method blank contamination

ICVRSD = initial calibration relative standard deviation exceeds control limit

QLS-L = quantitation limit standard recovery below control limits

QLS-H = quantitation limit standard recovery above control limits

LCS-L = laboratory control sample recovery below control limits

SS-H = surrogate recovery above control limits

IS-H = internal standard recovery above control limits

TABLE 3

SUMMARY OF DATA VALIDATION ACTIONS

DATA USABILITY SUMMARY REPORT

NOVEMBER 2010 AND JANUARY 2011 AIR SAMPLING PROGRAM

OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

Ī							Lab					
			Analysis			Lab	Qualifie	Validated	Validation		Result	
	SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id

LD = laboratory duplicate results exceed control limit

FD = field duplicate results exceed control limit

TABLE 4
SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS
DATA USABILITY SUMMARY REPORT
NOV 2010 AND JAN 2011 AIR SAMPLING PROGRAM
OFF-SITE CARRIAGE CLEANERS SITE
PENFIELD, NEW YORK

SDG	Sample ID	Lab Sample ID	Analytical Method	Compound	Final Result (ppbv)	Qualifier	Analysis Date
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	1-Propene, 2-methyl-	250	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	Cyclohexane, 1,2,3-trimethyl-, (1.	180	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	Cyclohexane, 1,2,4-trimethyl-, (1.	160	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	Isobutane	290	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	Pentane	450	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	unknown	110	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	unknown hydrocarbon (11.485)	130	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	unknown hydrocarbon (11.916)	120	JN	12/15/2010
E1012003	828131A-GV0301	E1012003-001A	EPA TO-15	unknown hydrocarbon (12.807)	130	JN	12/15/2010
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	Butane, 2-methyl-	7.5	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	Cyclohexane, methyl-	8.2	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	Nonane	8.2	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	Octane	7	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	Propane	11	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	Propene, hexafluoro-	49	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	unknown hydrocarbon (4.476)	8.1	JN	02/03/2011
E1101003	828131A-SS0101	E1101003-001A	EPA TO-15	unknown hydrocarbon (4.614)	13	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	Butane, 2-methyl-	6.9	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	Cyclohexane, methyl-	7.9	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	Nonane	7.8	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	Octane	7.4	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	Propane	12	JN	02/03/2011
	828131A-SS0101DUP	E1101003-002A	EPA TO-15	Propene, hexafluoro-	38	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	unknown	4.6	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	unknown hydrocarbon (4.473)	8.2	JN	02/03/2011
E1101003	828131A-SS0101DUP	E1101003-002A	EPA TO-15	unknown hydrocarbon (4.614)	13	JN	02/03/2011
E1101003	828131A-IA0101	E1101003-003A	EPA TO-15	Ethane, 1,1-difluoro-	19	JN	02/02/2011
E1101003	828131A-IA0101	E1101003-003A	EPA TO-15	Isobutane	28	JN	02/02/2011
E1101003	828131A-IA0101	E1101003-003A	EPA TO-15	unknown (14.096)	5.3	JN	02/02/2011
E1101003	828131A-IA0101	E1101003-003A	EPA TO-15	unknown (5.505)	36	JN	02/02/2011
	828131A-IA0101	E1101003-003A	EPA TO-15	unknown hydrocarbon (4.273)	11	JN	02/02/2011
E1101003	828131A-IA0101	E1101003-003A	EPA TO-15	unknown hydrocarbon (4.611)	25	JN	02/02/2011
E1101003	828131A-IA0101	E1101003-003A	EPA TO-15	unknown hydrocarbon (5.058)	3.8	JN	02/02/2011
E1101003	828131A-SS0201	E1101003-005A	EPA TO-15	1-Propene, 2-methyl-	11	JN	02/03/2011
E1101003	828131A-SS0201	E1101003-005A	EPA TO-15	Cyclopentane	2.6	JN	02/03/2011
E1101003	828131A-SS0201	E1101003-005A	EPA TO-15	Octane	2	JN	02/03/2011
E1101003	828131A-SS0201	E1101003-005A	EPA TO-15	unknown	5.9	JN	02/03/2011
E1101003	828131A-SS0201	E1101003-005A	EPA TO-15	unknown hydrocarbon (10.939)	1.4	JN	02/03/2011

Prepared by: JAR 3/14/2011 Checked by: TLC 3/28/2011

TABLE 4
SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS
DATA USABILITY SUMMARY REPORT
NOV 2010 AND JAN 2011 AIR SAMPLING PROGRAM
OFF-SITE CARRIAGE CLEANERS SITE
PENFIELD, NEW YORK

E1101003 828131A-SS0201	E1101003-005A	EPA TO-15	unknown hydrocarbon (12.897)	3	JN	02/03/2011
E1101003 828131A-SS0201	E1101003-005A	EPA TO-15	unknown hydrocarbon (5.595)	5.6	JN	02/03/2011
E1101003 828131A-SS0301	E1101003-007A	EPA TO-15	Cyclopropanecarboxamide	1.5	JN	02/03/2011
E1101003 828131A-SS0301	E1101003-007A	EPA TO-15	unknown hydrocarbon (10.939)	1.4	JN	02/03/2011
E1101003 828131A-SS0301	E1101003-007A	EPA TO-15	unknown hydrocarbon (4.476)	1.2	JN	02/03/2011
E1101003 828131A-SS0301	E1101003-007A	EPA TO-15	unknown hydrocarbon (4.617)	4.4	JN	02/03/2011
E1101003 828131A-SS0401	E1101003-009A	EPA TO-15	Butane, 2-methyl-	2.8	JN	02/03/2011
E1101003 828131A-SS0401	E1101003-009A	EPA TO-15	Cyclopropanecarboxamide	2.6	JN	02/03/2011
E1101003 828131A-SS0401	E1101003-009A	EPA TO-15	unknown	3.3	JN	02/03/2011
E1101003 828131A-SS0401	E1101003-009A	EPA TO-15	unknown hydrocarbon (4.476)	3.5	JN	02/03/2011
E1101003 828131A-SS0401	E1101003-009A	EPA TO-15	unknown hydrocarbon (4.611)	6.4	JN	02/03/2011
E1101003 828131A-IA0501	E1101003-012A	EPA TO-15	Ethyl alcohol	3.2	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	Butane, 2-methyl-	3.6	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	Cyclohexane, methyl-	4.2	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	Octane	2.1	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	Propane	3.2	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	unknown hydrocarbon (4.473)	3.9	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	unknown hydrocarbon (4.617)	4.2	JN	02/03/2011
E1101003 828131A-SS06A01	E1101003-013A	EPA TO-15	unknown hydrocarbon (5.933)	2.3	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Butane	7.1	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Butane, 2-methyl-	5.5	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Cyclohexane, methyl-	8.8	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Cyclohexanol	9.6	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Isobutane	5.2	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Nonane	8.2	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	Octane	5.6	JN	02/03/2011
E1101003 828131A-SS06B01	E1101003-015A	EPA TO-15	unknown	8.4	JN	02/03/2011
E1101003 828131A-IA06B01	E1101003-016A	EPA TO-15	1RalphaPinene	3	JN	02/03/2011
E1101003 828131A-IA06B01	E1101003-016A	EPA TO-15	Butane, 2-methyl-	2.2	JN	02/03/2011
E1101003 828131A-IA06B01	E1101003-016A	EPA TO-15	Hexanal	5.6	JN	02/03/2011
E1101003 828131A-IA06B01	E1101003-016A	EPA TO-15	unknown (11.713)	2.5	JN	02/03/2011
E1101003 828131A-IA06B01	E1101003-016A	EPA TO-15	unknown (5.508)	2.9	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	Butane, 2-methyl-	26	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	Cyclopentane	3.2	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	Cyclopentane, methyl-	5.8	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	Isobutane	40	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	Pentane, 2-methyl-	5.9	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	Propane	36	JN	02/03/2011
E1101003 828131A-SS0701	E1101003-017A	EPA TO-15	unknown	2.7	JN	02/03/2011

Prepared by: JAR 3/14/2011 Checked by: TLC 3/28/2011

TABLE 4
SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS
DATA USABILITY SUMMARY REPORT
NOV 2010 AND JAN 2011 AIR SAMPLING PROGRAM
OFF-SITE CARRIAGE CLEANERS SITE
PENFIELD, NEW YORK

E1101003 828131A-SS0	701 E1101003-017A	EPA TO-15	unknown hydrocarbon	1.2	JN	02/03/2011
E1101003 828131A-IA0	701 E1101003-018A	EPA TO-15	Butane	5.4	JN	02/03/2011
E1101003 828131A-IA0	701 E1101003-018A	EPA TO-15	Ethyl alcohol	19	JN	02/03/2011
E1101003 828131A-IA0	701 E1101003-018A	EPA TO-15	Isobutane	200	JN	02/03/2011
E1101003 828131A-IA0	701 E1101003-018A	EPA TO-15	Propane	21	JN	02/03/2011
E1101003 828131A-SS0	801 E1101003-019A	EPA TO-15	Butane, 2-methyl-	1.2	JN	02/03/2011
E1101003 828131A-SS0	801 E1101003-019A	EPA TO-15	unknown (14.093)	10	JN	02/03/2011
E1101003 828131A-SS0	801 E1101003-019A	EPA TO-15	unknown (6.99)	1.2	JN	02/03/2011
E1101003 828131A-SS0	801 E1101003-019A	EPA TO-15	unknown hydrocarbon (10.935)	1.1	JN	02/03/2011
E1101003 828131A-SS0	E1101003-019A	EPA TO-15	unknown hydrocarbon (4.473)	1.8	JN	02/03/2011
E1101003 828131A-SS0	801 E1101003-019A	EPA TO-15	unknown hydrocarbon (4.614)	1.8	JN	02/03/2011
E1101003 828131A-IA0	B01 E1101003-020A	EPA TO-15	Ethyl alcohol	83	JN	02/03/2011
E1101003 828131A-IA0	B01 E1101003-020A	EPA TO-15	Isobutane	180	JN	02/03/2011
E1101003 828131A-IA0	B01 E1101003-020A	EPA TO-15	Propane	13	JN	02/03/2011
E1101003 828131A-IA0	B01 E1101003-020A	EPA TO-15	unknown	34	JN	02/03/2011
E1101003 828131A-IA0	B01 E1101003-020A	EPA TO-15	unknown hydrocarbon (13.414)	6.5	JN	02/03/2011
E1101003 828131A-IA0	B01 E1101003-020A	EPA TO-15	unknown hydrocarbon (13.627)	8.4	JN	02/03/2011
E1101003 828131A-IA0		EPA TO-15	unknown hydrocarbon (14.62)	6.7	JN	02/03/2011
E1101003 828131A-SS0	901 E1101003-021A	EPA TO-15	Propane	2.8	JN	02/03/2011
E1101003 828131A-SS0	901 E1101003-021A	EPA TO-15	unknown	3.7	JN	02/03/2011
E1101003 828131A-SS0	901 E1101003-021A	EPA TO-15	unknown hydrocarbon	3.2	JN	02/03/2011
E1101003 828131A-IA09	901 E1101003-022A	EPA TO-15	Ethyl alcohol	7.3	JN	02/03/2011
E1101003 828131A-IA09	901 E1101003-022A	EPA TO-15	unknown hydrocarbon	4.5	JN	02/03/2011
E1101003 828131A-SS1		EPA TO-15	1-Pentene	8.4	JN	02/03/2011
E1101003 828131A-SS1		EPA TO-15	Cyclohexane, methyl-	9.4	JN	02/03/2011
E1101003 828131A-SS1		EPA TO-15	Decane, 2,2,8-trimethyl-	24	JN	02/03/2011
E1101003 828131A-SS1		EPA TO-15	unknown hydrocarbon (13.447)	47	JN	02/03/2011
E1101003 828131A-SS1		EPA TO-15	unknown hydrocarbon (13.63)	11	JN	02/03/2011
E1101003 828131A-SS1	001 E1101003-023A	EPA TO-15	unknown hydrocarbon (4.614)	15	JN	02/03/2011
E1101003 828131A-SS1	001 E1101003-023A	EPA TO-15	unknown hydrocarbon (5.598)	7.8	JN	02/03/2011
E1101003 828131A-IA1		EPA TO-15	Ethyl alcohol	67	JN	02/03/2011
E1101003 828131A-IA1	001 E1101003-024A	EPA TO-15	unknown	9.3	JN	02/03/2011
E1101003 828131A-AA0	301 E1101003-025A	EPA TO-15	unknown hydrocarbon	2.6	JN	02/03/2011
E1101003 828131A-AA0	201 E1101003-026A	EPA TO-15	unknown	10	JN	02/03/2011

FOOTNOTES:

Qualifiers

JN = estimated value with presumptive evidence that the compound is present in the sample

Prepared by: JAR 3/14/2011 Checked by: TLC 3/28/2011

828131A-GV0301

Lab Name: Enalytic, LLC Contract: MACTEC

Lab Code: 11920

Case No.: ____

SAS No.: SDG No.: MT001

Matrix: (soil/water/air) Air

Lab Sample ID:

E1012003-001A

Sample wt/vol: 5

(g/mL) <u>G</u>

Lab File ID:

EN4400.D

Level: (low/med)

LOW

Date Received:

12/2/2010

% Moisture: not dec.

Date Analyzed:

12/15/2010

GC Column: Rtx-VMS

ID: (mm) Dilution Factor: 1.00

Extract Volume:

(µl)

CONCENTRATION UNITS:

CAS NO.	. COMPOUND (ppbV or ug/m3)	<u>ug/m3</u>	Q	
71-55-6	1,1,1-Trichloroethane	1.1	υ	
79-34-5	1,1,2,2-Tetrachloroethane	1.4	Ü	דנר
79-00-5	1,1,2-Trichloroethane	1.1	ΰ	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (1.6	Ü	7
75-34-3	1,1-Dichloroethane	0.82	ΰ	٦
75-35-4	1,1-Dichloroethene	0.81	Ū	7
120-82-1	1,2,4-Trichlorobenzene	1.5	U	J
95-63-6	1,2,4-Trimethylbenzene	1.0	Ü	٦٥
106-93-4	1,2-Dibromoethane	1.6	U	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.4	Ū	
95-50-1	1,2-Dichlorobenzene	1.2	Ū	J
107-06-2	1,2-Dichloroethane	0.82	Ü	-
78-87-5	1,2-Dichloropropane	0.94	Ū	
108-67-8	1,3,5-Trimethylbenzene	1.0	U	ت
106-99-0	1,3-Butadiene	0.45	Ū	
541-73-1	1,3-Dichlorobenzene	1.2	Ŭ	IJ
106-46-7	1,4-Dichlorobenzene	1.2	Ū	J
123-91-1	1,4-Dioxane	0.73	Ū	
78-93-3	2-Butanone (MEK)	0.60	Ū	
591-78-6	2-Hexanone (*)	0.83	Ū	ב
622-96-8	4-Ethyltoluene (*)	1.0	Ū	J
108-10-1	4-Methyl-2-Pentanone (MIBK)	0.83	Ū	T
67-64-1	Acetone	16		
71-43-2	Benzene	3.8		J
100-44-7	Benzyl chloride	1.1	U	Ľ
75-27-4	Bromodichloromethane	1.4	Ü	
75-25-2	Bromoform	2.1	U	
74-83-9	Bromomethane	0.79	Ü	
75-15-0	Carbon disulfide	69		J
56-23-5	Carbon tetrachloride	1.3	Ū	
108-90-7	Chlorobenzene	0.94	Ū	
75-00-3	Chloroethane	0.54	Ū	
67-66-3	Chloroform	0.99	Ų	

Form 1

CLIENT SAMPLE NO.

828131A-GV0301

Lab Name: Enalytic, LLC

Contract: MACTEC

to the second of

SAS No.: _____ SDG No.: MT001

Matrix: (soil/water/air) Air

Lab Code: 11920 Case No.: ____

Lab Sample ID:

E1012003-001A

Sample wt/vol: 5

(g/mL) <u>G</u>

Lab File ID:

EN4400.D

Level: (low/med)

LOW

Date Received:

12/2/2010

% Moisture: not dec.

Date Analyzed:

12/15/2010

GC Column: Rtx-VMS ID:

(mm)

Dilution Factor: 1.00

Extract Volume:

(µ1)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ppbV or ug/m3)	<u>ug/m3</u>	Q	
74-87-3	Chloromethane		0.42	ט	
156-59-2	cis-1,2-Dichloroethene		0.81	ט	
10061-01-5	cis-1,3-Dichloropropene		0.92	U	
110-82-7	Cyclohexane		7.1		J
124-48-1	Dibromochloromethane		1.7	U	
75-71-8	Dichlorodifluoromethane (F:	reon 12)	2.6	٣	
100-41-4	Ethyl benzene		0.88	Ū	
87-68-3	Hexachlorobutadiene		2.2	Ū	_] I
110-54-3	Hexane		120	31 4 4 3 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 	
67-63-0	Isopropanol		5.0	U	
1330-20-7	m,p-Xylene		6.5		_]J
1634-04-4	Methyl tert-butyl ether (M	TBE)	0.73	ΰ	
75-09-2	Methylene chloride		0.71	Ū	
142-82-5	n-Heptane		21		J
95-47-6	o-Xylene		0.88	Ū	
100-42-5	Styrene	, .	0.87	Ü	
127-18-4	Tetrachloroethene		2.3		
109999	Tetrahydrofuran (*)		4,9]IJ
108-88-3	Toluene		20		J
156-60-5	trans-1,2-Dichloroethene		0.81	Ü	
10061-02-6	trans-1,3-Dichloropropene	·	0.92	U	
79-01-6	Trichloroethene		2.0		J
75-69-4	Trichlorofluoromethane (Fr	eon 11)	1.1	ט	
108-05-4	Vinyl acetate		0.72	ט	
75-01-4	Vinyl chloride		0.52	Ü	

Form 1 TIC

EPA TO-15 ANALYSIS DATA SHEET

errore and the contract of the contract section and the contract of the contra

CLIENT SAMPLE NO.

TENTATIVELY IDENTIFIED COMPOUNDS

828131A-GV0301

Lab Name: Enalytic, LLC

Contract: MACTEC

Lab Sample ID:

E1012003-001A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{G}

Matrix: (soil/water/air) Air

Lab File ID:

SAS No.: _____ SDG No.: MT001

EN4400.D

Level: LOW

Date Received: <u>12/2/2010</u>

% Moisture: not dec.

Date Analyzed: 12/15/2010

GC Column: Rtx-VMS ID: (mm)

Dilution Factor: 1.00

Extract Volume:

(µ1)

Number TICs found:

9

CONCENTRATION UNITS:

Vdqq

			The same of the sa	,
CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1.000075-28-5	Isobutane	4.38	290	
2.000115-11-7	1-Propene, 2-methy1-	4.52	250	
3,000109-66-0	Pentane	5.16	450	
4.007667-60-9	Cyclohexane, 1,2,4-trimethyl-,	10.54	160	
5.001678-81-5	Cyclohexane, 1,2,3-trimethyl-,	10.98	180	
6.	unknown hydrocarbon (11.485)	11.48	130	
7.	unknown	11.75	110	
8.	unknown hydrocarbon (11.916)	11.92	120	
9.	unknown hydrocarbon (12.807)	12.81	130	

B28131A-GV0401

Lab Name: Enalytic, LLC Contract: MACTEC

Matrix: (soil/water/air) Air Lab Sample ID: E1012003-002A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{G} Lab File ID: EN4401.D

Level: (low/med) LOW Date Received: 12/2/2010

% Moisture: not dec. Date Analyzed: 12/15/2010

GC Column: Rtx-VMS . ID: (mm) Dilution Factor: 1.00

Extract Volume: (p1) See attached dilution for THE

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ppb	V or ug/m3)	ug/m3	Q	
71-55-6	1,1,1-Trichloroethane		1,1	Ū]
79-34-5	1,1,2,2-Tetrachloroethane		1.4	U]エ
79-00-5	1,1,2-Trichloroethane		1.1	Ü	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichlo	roethane (1.6	Ū	
75-34-3	1,1-Dichloroethane		0.82	U	
75-35-4	1,1-Dichloroethene		0.81	Ū	
120-82-1	1,2,4-Trichlorobenzene		1,5	U	J
95-63-6	1,2,4-Trimethylbenzene		1.0	Ū	7.7
106-93-4	1,2-Dibromoethane		1.6	Ū	
76-14-2	1,2-Dichloro-1,1,2,2-tetraflue	oroethane	1.4	U	
95-50-1	1,2-Dichlorobenzene		1,2	Ū	J
107-06-2	1,2-Dichloroethane		0.82	U	
78-87-5	1,2-Dichloropropane		0.94	Ü	
108-67-8	1,3,5-Trimethylbenzene		1.4]
106-99-0	1,3-Butadiene		0.45	U	
541-73-1	1,3-Dichlorobenzene		1.2	Ū	J
106-46-7	1,4-Dichlorobenzene	,	1.2	Ū	
123-91-1	1,4-Dioxane		0.73	Ū	T
78-93-3	2-Butanone (MEK)		57		
591-78-6	2-Hexanone (*)		0,83	Ū	
622-96-B	4-Ethyltoluene (*)		1.0	Ū	Jσ
108-10-1	4-Methyl-2-Pentanone (MIBK)		0.83	Ü	J
67-64-1	Acetone		180		Ţ
71-43-2	Benzene		0.65	U	
100-44-7	Benzyl chloride		1.1	U	ゴ
75-27-4	Bromodichloromethane		1,4	Ü	_
75-25-2	Bromoform		2,1	U] I
74-83-9	Bromomethane		0.79	Ū	
75-15-0	Carbon disulfide		0.63	Ü	
56-23-5	Carbon tetrachloride		1.3	U]
108-90-7	Chlorobenzene		0.94	Ū	
75-00-3	Chloroethane		0.54	U	
67-66-3	Chloroform		2.1		1

FORM I VOA

EPA TO-15

CLIENT SAMPLE NO.

828131A~GV0401

Lab Name: Enalytic, LLC

Contract: MACTEC

green with the property of the test of the control of the test of the property of the test of the control of th

SAS No.: SDG No.: MT001 Case No.: Lab Code: 11920

Lab Sample ID:

Matrix: (soil/water/air) Air

Lab File ID:

EN4401.D

E1012003-002A

Sample wt/vol: 5

(g/mL) <u>G</u>

Level: (low/med)

LOW

Date Received:

12/2/2010

% Moisture: not dec.

Date Analyzed:

12/15/2010

GC Column: Rtx-VMS

ID: (mm)

Dilution Factor:

1.00

Extract Volume:

(µ1)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (1	opbV or ug/m3)	<u>ug/m3</u>	Q
74-87-3	Chloromethane		0.42	Ū
156-59-2	cis-1,2-Dichloroethene		0.81	Ũ
10061-01-5	cis-1,3-Dichloropropene		0.92	Ü
110-82-7	Cyclohexane		0.70	Ū
124-48-1	Dibromochloromethane	-	1.7	U
75-71-8	Dichlorodifluoromethane (Fr	reon 12)	2.3	
100-41-4	Ethyl benzene		3.6	
87-68-3	Hexachlorobutadiene		2.2	U
110-54-3	Hexane		0.72	Ū
67-63-0	Isopropanol		- 2.0	~ ~~
1330-20-7	m,p-Xylene		13	
1634-04-4	Methyl tert-butyl ether (M)	(BE)	0.73	Ü
75-09-2	Methylene chloride		0.78	
142-82-5	n-Heptane		0.83	ΰ
95-47-6	o-Xylene		4.0	
100-42-5	Styrene		3.9	
127-18-4	Tetrachloroethene		2.8	
108-88-3	Toluene		2.7	
156-60-5	trans-1,2-Dichloroethene		0.81	บ
10061-02-6	trans-1,3-Dichloropropene		0.92	Ū
79-01-6	Trichloroethene		1.1	Ū
75-69-4	Trichlorofluoromethane (Fre	eon 11)	1.1	ט
108-05-4	Vinyl acetate		0.72	υ
75-01-4	Vinyl chloride		0.52	Ü

Form 1

CLIENT SAMPLE NO.

828131A-GV0401

Lab Name: Enalytic, LLC

Contract: MACTEC

SAS No.: _____ SDG No.: MT001

Lab Code: <u>11920</u>

Matrix: (soil/water/air) Air

Case No.: ____

Lab Sample ID:

E1012003-002A

Sample wt/vol: 5

(g/mL) <u>G</u>

Lab File ID:

EN4409.D

TOM

.ID:

Date Received:

12/2/2010

Level: (low/med) % Moisture; not dec.

Date Analyzed:

12/16/2010

GC Column: Rtx-VMS

(mm)

Dilution Factor:

144.00

Extract Volume:

(µ1)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ppbV or ug/m3)

ug/m3

109-99-9

Tetrahydrofuran (*)

EPA TO-15

Form 1 TIC

EPA TO-15 ANALYSIS DATA SHEET

THE PROPERTY OF A STATE OF THE PROPERTY OF THE

CLIENT SAMPLE NO.

TENTATIVELY IDENTIFIED COMPOUNDS

828131A-GV0401

Lab Name: Enalytic, LLC

. Contract: MACTEC

Lab Code: 11920 Case No.:

SAS No.: _____ SDG No.: MT001

Matrix: (soil/water/air) Air

Lab Sample ID;

E1012003-002A

Sample wt/vol: $\underline{5}$ (g/mL) \underline{G}

Lab File ID:

EN4401.D

Level: LOW

Date Received: <u>12/2/2010</u>

% Moisture: not dec.

Date Analyzed: 12/15/2010

GC Column: Rtx-VMS ID: (mm)

Dilution Factor: 1.00

Extract Volume:

(µl)

Number TICs found: 1

CONCENTRATION UNITS:

Vdqq

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
000556-67-2	Cyclotetrasiloxane, octamethyl	12.09	23	
				 a
1 1 1				
r				
1				
1				
t 1			•	
1 1 1				
1				
1				
		,		:
1				
	·			
1				
1 F				
·	,			

FORM I TIC

4

EPA TO-15

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners Locatio

Project: 3612102168 Lab ID E1101003-001A Date 04-Feb-11

Client Sample ID 828131A-SS0101

Collection Date: 1/18/2011

Tag# 322/3958

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	ppi	οV	Data	ц]/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0,20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0,20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	1.4		1.00	7.2
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1,60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND ·
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	3.4		1.00	17
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0,20	ND		1,20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	2.2		0.60	6.7 J
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyitoluene (*)	1	03-Feb-11	0.20	1.4		1.00	7.1
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0,20	1.2		0.83	5.1
67-64-1	Acetone	1	03-Feb-11	2.0	95		4.80	230 🗇
71-43-2	Benzene	1	03-Feb-11	0.20	1.4		0.65	4.7
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	2,0		0.63	6.2
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1,30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0,20	ND		0.81	ND

Qualifiers:

- Certification not offered by NYS for this compound (*)
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits

Approved By

Date: 2/4/11 9-3/2/14

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-001A Date 04-Feb-11

Client Sample ID 828131A-SS0101

Collection Date: 1/18/2011

Tag # 322/3958

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	ppl	bV	Data	ug	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	1.9		0.70	6.7	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.69		1.00	3.5	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	0.95		0.88	4.2	
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	3,8		0.72	14	
67-63-0	Isopropanol	1	03-Feb-11	2.0	4.6		5.00	11 🗇	
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	6.7		0.88	29	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	5.1		0.83	21	
95-47-6	o-Xylene	1	03-Feb-11	0.20	2.2		0.88	9.9	
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	16		0.77	60	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.22		1.10	1.3	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	7.5		v 0.00	0	
	TIC: Cyclohexane, methyl-	1	03-Feb-11	0	8.2		9/00	0	
	TIC: Cyclotetrasiloxane, octamethyl-	1_	03-Feb-11	0	22		o. 0 6-		CIMS
	TIC: Cycletrisilexane, hexamethyl-	1	03-Eeb-1-1-	0	9.7		0-00-	/ θ·	artifects
	TIC: Nonane	1	03-Feb-11	0	8.2		0.00	\ 0	
	TIC: Octane	1	03-Feb-11	0	7.0	•	0.00	\ 0	
	TIC: Propane	1	03-Feb-11	0	11		0.00	/0	
	TIC: Propene, hexafluoro-	1	03-Feb-11	0	49		0.00	Ò	
	TIC: unknown hydrocarbon (4.476)	1	03-Feb-11	0	8.1		0.00	0\	
	TIC: unknown hydrocarbon (4.614)	1	03-Feb-11	0	13		0.00	0	
					PPEN				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Page 2 of 52

Approved By KLP

Date: 2/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-002A Date 04-Feb-11

Client Sample ID 828131A-SS0101D

Collection Date: 1/18/2011

Tag# 288/2672

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	ppi	bV	Data	ug	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0,20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11)	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	1.4		1.00	7.0
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-1 1	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	3.4		1.00	17
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND	•	1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	3.8		0.60	12 ブ
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	1.5		1.00	7.3
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	0.97		0.83	4.0
67-64-1	Acetone	1	03-Feb-11	2.0	92		4.80	كل 220
71-43-2	Benzene	1	03-Feb-11	0.20	1.4		0,65	4.7
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	1.9		0.63	6.0
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11 .	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chioroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0,20	ND		0.81	ND

Qualifiers:

- Certification not offered by NYS for this compound (*)
- Value above quantitation range Е
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Spike Recovery outside accepted recovery limits

Approved By KLP

Date: 2/4/11 8/3/2/14

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-002A Date 04-Feb-11

Client Sample ID 828131A-SS0101D

Collection Date: 1/18/2011

Tag # 288/2672 Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	pp	bV	Data	uį	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	1.8		0.70	6.5	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND -		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.65		1.00	3,3	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	1.1		88,0	4.8	
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	3.8		0.72	14	
67-63-0	Isopropanol	1	03-Feb-11	2.0	2.4		5.00	6.1 ブ	
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	5.9		0.88	26	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	5.2		0.83	21	
95-47-6	o-Xylene	1	03-Feb-11	0.20	1.6		0.88	7.3	
100-42-5	Styrene	1	03-Feb-11	0,20	ND		0.87	ND	
127-18 -4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	17		0.77	65	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0,20	ND	•	1.10	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	. 1	03-Feb-11	0.20	0.22		1.10	1.3	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	6.9		-0.00	0	
	TIC: Cyclohexane, methyl-	1	03-Feb-11	0	7.9	•	9/00	0	
	TIC: Cycletetrasiloxane, octamethyl-	4-	03-Feb-11	0	7.8 -	Marie Control (Oznaciona de la calente de la	0: b 0-	G L	IMS
	TIC: Nonane	1	03-Feb-11	0	7.8	•	90.0	0	IMS Or hitact
	TIC: Octane	1	03-Feb-11	0	7.4		0.00	. 0	•
	TIC: Propane	1	03-Feb-11	0	12		0.00	\ o	
	TIC: Propene, hexafluoro-	1	03-Feb-11	0	38		0.00	\ 0	
	TIC: unknown	1	03-Feb-11	0	4.6		0.00	\ 0	
	TIC: unknown hydrocarbon (4.473)	1	03-Feb-11	0	8.2		0,00	\0	
	TIC: unknown hydrocarbon (4.614)	1	03-Feb-11	0	13	•	0.00	P	
					Appro				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Approved By

Page 4 of 52

Date: 2/4///

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-003A Date 04-Feb-11

Client Sample ID 828131A-IA0101

Collection Date: 1/18/2011

Tag # 307/2716 **Matrix** AIR

TO-15 (V	I+TICS)	Dilution	Date	ppl	bV	Data	uį	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichioroethane	1	02-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	02-Feb-11	0,20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	02-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	02-Feb-11	0,20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	• 1	02-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	02-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	02-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	02-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	02-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	02-Feb-11	0.20	0.30		1.00	1.5
106-99-0	1,3-Butadiene	1	02-Feb-11	0.20	ND		0,45	ND
541-73-1	1,3-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND 🕽
123-91-1	1,4-Dioxane	1	02-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	02-Feb-11	0.20	1.1		0.60	3.2
591-78-6	2-Hexanone (*)	1	02-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	02-Feb-11	0.20	ND		1.00	ΝĐ
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	02-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	02-Feb-11	2.0	7.0		4.80	17 👅
71-43-2	Benzene	1	02-Feb-11	0.20	0.48		0.65	1.6
100-44-7	Benzyl chloride	1	02-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	02-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	02-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	02-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	02-Fe b -11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	02-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	02-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	02-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	02-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	02-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Date: 4411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-003A Date 04-Feb-11

Client Sample ID 828131A-IA0101

Collection Date: 1/18/2011

Tag # 307/2716

Matrix AIR

TO-15 (VI-	rTICS)	Dilution	Date	ppl	bV	Data	uį	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dîchloropropene	1	02-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	02-Feb-11	0.20	0.41		0.70	1.4	
124-48-1	Dibromochloromethane	1	02-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	02-Feb-11	0,20	ND		1.00	ND	
100-41 - 4	Ethyl benzene	1	02-Feb-11	0.20	0.27		0.88	1.2	
87-68-3	Hexachlorobutadiene	1	02-Feb-11	0.20	ND		2,20	ND	
110-54-3	Hexane	1	02-Feb-11	0,20	0.63		0.72	2.3	丁 /
67-63-0	Isopropanol	1	02-Feb-11	2.0	15		5.00	37	ブ /
1330-20-7	m,p-Xylene	1	02-Feb-11	0.60	0.70		2.60	3.1	ゴ /
1634-04-4	Methyl tert-butyl ether (MTBE)	1	02-Feb-11	0.20	ND		0.73	ND	~ /
75-09-2	Methylene chioride	1	02-Feb-11	0.20	0.47		0.71	1.7	
142-82-5	n-Heptane	1	02-Feb-11	0.20	ND		0.83	ND	
. 95-47-6	o-Xylene	1	02-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	02-Feb-11	0.30	0.31		1.30	1.3	
127-18-4	Tetrachloroethene	1	02-Feb-11	0.20	ND		1.40	·ND	
109-99-9	Tetrahydrofuran (*)	1	02-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	02-Feb -1 1	0.20	1.6		0.77	6.2	
156-60-5	trans-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND	J /
79-01-6	Trichloroethene	1	02-Feb-11	0.040	ND		0.22	ND	~
75-69-4	Trichlorofluoromethane (Freon 11)	1	02-Feb-11	0.20	0.35		1.10	2.0	-
108-05-4	Vinyl acetate	1	02-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	02-Feb-11	0,20	ND		0.52	ND	
	TIC: Cyclotetrasiloxane, octamethyl-	1-	02- Feb-14	0	7.4		Q :00-	0-	GUMS
	TIC: Cyclotrisiloxane, hexamethyl-		02- Feb-14	0	3:7		0,/00	——————————————————————————————————————	artifacts
	TIC: Ethane, 1,1-difluoro-	1	02-Feb-11	0	19		96.0	0	,,,,,
	TIC: Isobutane	1	02-Feb-11	0	28		60.0	0	
	TIC: unknown (14.096)	1	02-Feb-11	0	5.3	•	0.00	\ 0	
	TIC: unknown (5.505)	1	02-Feb-11	0	36		0.00	\ 0	
	TIC: unknown hydrocarbon (4.273)	1	02-Feb-11	0	11		0.00	\ o	
	TiC: unknown hydrocarbon (4.611)	1	02-Feb-11	0	25		0.00	\0	
	TIC: unknown hydrocarbon (5.058)	1	02-Feb-11	0	3.8		0.00	þ	
					14 p.d				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By LP

Page 6 of 52

Date: 24/11 8-31/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-004A Date 04-Feb-11

Client Sample ID 828131A-AA0101

Collection Date: 1/18/2011

Tag # 333/2658 Matrix AIR

TO-15 (V	+TICS)	Dilution	Date	pp	bV	Data	uç	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichioroethane	1	02-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	02-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11)	1	02-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	02-Feb-11	0.20	ND		1,50	ND
95-63-6	1,2,4-Trimethylbenzene	1	02-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	02-Feb-11	0.20	ND		1,60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	02-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	02-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	02-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	02-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND J
123-91-1	1,4-Dioxane	1	02-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	02-Feb-11	0.20	0.52		0.60	1.6
591-78-6	2-Hexanone (*)	1	02-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	02-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	02-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	02-Feb-11	2.0	4.7		4.80	11 🕽
71-43-2	Benzene	1	02-Feb-11	0.20	0.45		0,65	1.5
100-44-7	Benzyl chloride	1	02-Feb-11	0,20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	02-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	02-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	02-Feb-11	0,20	ND		0.79	ND
75-15-0	Carbon disulfide	1	02-Feb-11	0.20	ND		0.63	ND
56-23-5	. Carbon tetrachloride	1	02-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	02-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	02-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	02-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	. 1	02-Feb-11	0.20	0.62		0,42	1.3
156-59-2	cis-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 7 of 52

Date: Office

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-004A Date 04-Feb-11

Client Sample ID 828131A-AA0101

Collection Date: 1/18/2011

Tag # 333/2658 **Matrix** AIR

ro-15 (VI+Tics)		Dilution	Date	ppb∨		Data	ug/m3		
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1, 3- Dichloropropeпе	1	02-Feb-11	0.20	ND		0.92	ND	
10-82-7	Cyclohexane	1	02-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	02-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	02-Feb-11	0.20	0.46		1.00	2.3	
100-41-4	Ethyl benzene	1	02-Feb-11	0.20	ND		88.0	ND	
37-68-3	Hexachlorobutadiene	1	02-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	-1	02-Feb-11	0.20	ND		0.72	ND	
67-63-0	Isopropanol	1	02-Feb-11	2.0	2.1		5.00	5.2	7
1330-20-7	m,p-Xylene	1	02-Feb-11	0.60	ND		2.60	ND	-
1634-04-4	Methyl tert-butyl ether (MTBE)	1	02-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	02-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	02-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1	02-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	02-Feb-11	0.30	ND		1.30	ND	
127-18-4	Tetrachloroethene	1	02-Feb-11	0,20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	02-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	02-Feb-11	0.20	0.57		0,77	2.2	
156-60-5	trans-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND _	T /
79-01-6	Trichloroethene	1	02-Feb-11	0.040	ND		0.22	ND	~
75-69-4	Trichlorofluoromethane (Freon 11)	1	02-Feb-11	0.20	0.23		1.10	1.3	
108-05-4	Vinyl acetate	1	02-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	02-Feb-11	0.20	ND		0.52	ND	
	TIC: Cyclotetrasiioxane, octamethyl-		02-Feb-11 -	 0	13		0.00	-0	GUM
	TIC: Cyclotrisiloxane, hexamethyl-		02 -Feb-11	0	-5.4		0.00	0	artif

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By KLP

. .

Page 8 of 52

Date: 2/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-005A Date 04-Feb-11

Client Sample ID 828131A-SS0201

Collection Date: 1/19/2011

Tag# 326/3953

Matrix AIR

TO-15(SG+TICS)		Dilution	Date	ppbV		Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79 - 34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.33		1.00	1.6
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1,20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	3.2		0.60	9.7
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyitoluene (*)	1	03-Feb-11	0.20	0.34		1.00	1.7
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	0.30		0.83	1.2
67-64-1	Acetone	5	04-Feb-11	10	140		24.00	330 J
71-43-2	Benzene	1	03-Feb-11	0.20	ND		0.65	ND
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25 - 2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	2.2		0.63	7.0
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0,20	ND		0.54	ND
67 - 66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By KLP

Date: 2/4/11

Page 9 of 52

Analytical Report

Date 04-Feb-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-005A Client Sample ID 828131A-SS0201

Collection Date: 1/19/2011

Tag # 326/3953 Matrix AIR

TO-15(SG+TICS)		Dilution	Date	ppb∨		Data	ug/m3		
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.46		1.00	2.3	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	0.53		0.88	2.3	
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	0.33		0.72	1.2	
67-63-0	Isopropano!	1	03-Feb-11	2.0	5.3		5.00	13 🕽	5 /
1330-20-7	m, p- Xyleпе	1	03-Feb-11	0.20	2.0		0.88	8.8	•
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	0.60		0.83	2.5	
95-47-6	o-Xylene	1	03-Feb-11	0.20	0.40		0.88	1.8	
100-42-5	Styrene	1	03-Feb-11	0.20	0.89		0.87	3.9	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	0.20		1.40	1,4	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	43		0.77	170	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND	4	0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1,10	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.21		1.10	1.2	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	. 1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: 1-Propene, 2-methyl-	1	03-Feb-11	0	11		ର୍.୦୦	0	
	TIC: Cyclopentane	1	03-Feb-11	0	2.6		0,00	0	
	FIG: Cycletetrasiloxane, octamethyl-		-03=Feb=11-	0	29			 0 (INC
	TIC: Cyclotrisiloxane, hexamethyl-		03-Feb-14-	Θ	12		0.06		clas artifacts
	TIC: Octane	1	03-Feb-11	0	2.0		0.00	\ 0	91 1 ASC 1
	TIC: unknown	1	03-Feb-11	0	5.9		0.00	\ 0	
	TIC: unknown hydrocarbon (10.939)	1	03-Feb-11	0	1.4		0.00	\ 0	
	TIC: unknown hydrocarbon (12,897)	1.	03-Feb-11	0	3.0		0.00	\0	
	TIC: unknown hydrocarbon (5,595)	1	03-Feb-11	0	5.6		0.00	6	
	- , ,				ppbv			-	
					1 4				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By KLP

Page 10 of 52

Date: 2411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-006A Date 04-Feb-11

Client Sample ID 828131A-IA0201

Collection Date: 1/19/2011

Tag# 298 Matrix AIR

TO-15 (Vi	+TICS)	Dilution	Date	ppl	bV	Data	uş	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	02-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
76-13 -1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	02-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	02-Feb-11	0,20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	02-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	02-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	02-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	02-Feb-11	0.20	ND	-	1.20	ND
107-06-2	1,2-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	02-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	02-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	02-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND 🍼
123-91-1	1,4-Dioxane	1	02-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	02-Feb-11	0.20	ND		0.60	ND
591-78-6	2-Hexanone (*)	1	02-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	02-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	02-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	02-Feb-11	2.0	5.4		4.80	آل 13
71-43-2	Benzene	1	02-Fe b -11	0.20	0.69		0,65	2.2
100-44-7	Benzyl chloride	1	02-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	02-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	02-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	02-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	02-Feb-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	02-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	02-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	. 1	02-Feb-11	0.20	ND		0.54	ND .
67-66-3	Chloroform	1	02-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	02-Feb-11	0.20	0.56		0.42	1.2
156-59-2	cis-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range E
- Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Page 11 of 52

Analytical Report

Date 04-Feb-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-006A Client Sample ID 828131A-IA0201

Collection Date: 1/19/2011

Tag# 298 Matrix AIR

TO-15 (VI+	rTICS)	Dilution	Date	ppl	νV	Data	ц	J/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	02-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	02-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	02-Feb-11	0.20	0.47		1.00	2.4	
100-41-4	Ethyl benzene	1	02-Feb-11	0.20	ND		0.88	ND	
87-68-3	Hexachlorobutadiene	1	02-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	02-Feb-11	0.20	0.28		0.72	1.0 🕽	T (60°
67-63-0	Isopropanol	1	02-Feb-11	2.0	7.2		5.00	18 Ü	Γ ,
1330-20-7	m,p-Xylene	1	02-Feb-11	0.60	ND		2.60	ND	•
1634-04-4	Methyl tert-butyl ether (MTBE)	1	02-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	02-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	02-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1	02-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	02-Feb-11	0.30	ND		1.30	ND	
127-18-4	Tetrachloroethene	1	02-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	02-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	02-Feb-11	0.20	0.62		0.77	2,4	
156-60-5	trans-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND J	- /
79-01-6	Trichloroethene	1	02-Feb-11	0.040	ND		0.22	ND _	.,
75-69-4	Trichlorofluoromethane (Freon 11)	1	02-Feb-11	0.20	0.22		1.10	1.3	
108-05-4	Vinyl acetate	1	02-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	02-Feb-11	0.20	ND		0.52	ND	
	FIC: Cyclotetrasiloxane, octamethyl-	1	02-Feb-11-	Θ	1.9		000	0	GLIMS
	TIC: Cyclotrisilexane, hexamethyl-		-02=Feb=11	0	6:6		0: 00-	O	achifa.

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 12 of 52

Date: 2411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-007A Date 04-Feb-11

Client Sample ID 828131A-SS0301

Collection Date: 1/19/2011

Tag # 292/2663 **Matrix** AIR

TO-15(SG	+TICS)	Dilution	Date	ppl	bV	Data	uç	J/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13 - 1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35 -4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichiorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63 - 6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	· ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0,20	ND		0,82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.38		1.00	1.9
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	3.3		0.60	9.8
591-78 - 6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	0.23		1.00	1.1
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	5	04-Feb-11	10	64		24.00	. 150 🔰
71-43-2	Benzene	1	03-Feb-11	0.20	0.21		0.65	0.68
100-44-7	Benzyl chloride	1	03-Feb-11	0,20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	0.81		0.63	2.6
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0,99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND	LAGAL TO THE THE THE THE THE THE THE THE THE THE	0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 13 of 52

Date: 2411

g~3/2/4

Analytical Report

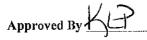
CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-007A

Date 04-Feb-11

Client Sample ID 828131A-SS0301


Collection Date: 1/19/2011

Tag # 292/2663 **Matrix** AIR

TO-15(SG	+TiCS)	Dilution	Date	ppi	b∨	Data	Ц	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1.00	2.5	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	0.26		0.88	1.1	
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	0.46		0.72	1.6	
67-6 3 -0	Isopropanol	1	03-Feb-11	2.0	2.8		5.00	6.9 3	5
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	1.2		0.88	5.1	-
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	0.63		0.83	2.6	
95-47-6	o-Xylene	1	03-Feb-11	0.20	0.41		, 0.88	1.8	
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND	
127-18-4	Tetrachioroethene	1	03-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-1 1	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-1 1	0.20	13		0.77	50	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.23		1.10	1.3	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: Cyclopropanecarboxamide	1	03-Feb-11	0	1.5		Q .00	0	
	TIC: Gyeletetrasilexane, octamethyl-	1	03-Feb-11	0	8.2		0;90-	05	CIMS
	TIC: Cycletrisilexane, hexamethyl-		03-Feb-1-1	Q	5:4		o ₋ oò-	0-	ar hifects
	TIC: unknown hydrocarbon (10.939)	1	03-Feb-11	0	1.4		0.00	\ 0	G. 1116213
	TIC; unknown hydrocarbon (4.476)	1	03-Feb-11	0	1.2		0.00	\ 0	
	TIC: unknown hydrocarbon (4.617)	1	03-Feb-11	0	4.4	•	0.00	\ ₀	
					ppbv				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

generated for substitution of the

Date: 24 1 gr 3/2

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners Locatio

Project: 3612102168 Lab ID E1101003-008A Date 04-Feb-11

Client Sample ID 828131A-IA0301

Collection Date: 1/19/2011

Tag # 263/3954 Matrix AIR

TO-15 (VI-	+TICS)	Dilution	Date	ppl	bV	Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	02-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11;	1	02-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
75 - 35- 4	1,1-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	02-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	02-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	02-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	02-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	02-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	02-Feb-11	0.20	ND	•	1.00	ND
106-99-0	1,3-Butadiene	1	02-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND J
123-91-1	1,4-Dioxane	1	02-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	02-Feb-11	0.20	1.1		0.60	3.4
591-78 - 6	2-Hexanone (*)	1	02-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltolueпе (*)	1	02-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanoпе (MIBK)	1	02-Feb-11	0.20	ND		0.83	ND
6 7-64- 1	Acetone	1	02-Feb-11	2.0	6.7		4.80	16 🍏
71-43-2	Benzene	1	02-Feb-11	0.20	0.38		0.65	1.2
100-44-7	Benzyl chloride	1	02-Feb-11	0,20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	02-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	02-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	02 _~ Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	02-Feb-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	02-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	02-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	02-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	02-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	02-Feb-11	0.20	0.56		0.42	1.2
156-59-2	cis-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- Certification not offered by NYS for this compound (*)
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Approved By KLP

Date: July

Page 15 of 52

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-008A Date 04-Feb-11

Client Sample ID 828131A-IA0301

Collection Date: 1/19/2011

Tag# 263/3954

Matrix AIR

TO-15 (VI+	-TICS)	Dilution	Date	ppt	υV	Data	ug	y/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	02-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	02-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	02-Feb-11	0.20	0.46		1.00	2.3	
100-41-4	Ethyl benzene	1	02-Feb-11	0.20	ND		0.88	ND	
87-68-3	Hexachlorobutadiene	1	02-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	02-Feb-11	0.20	ND		0.72	ND	,
67-63-0	Isopropanol	1	02-Feb-11	2.0	4.2		5.00	10	
1330-20-7	m, p- Xylene	1	02-Feb-11	0.60	ND		2.60	ND	•
1634-04-4	Methyl tert-butyl ether (MTBE)	1	02-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	02-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	02-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1	02-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	02-Feb-11	0.30	ND		1.30	ND	
127-18-4	Tetrachloroethene	1	02-Feb-11	0.20	0.44		1.40	3.0	
109-99-9	Tetrahydrofuran (*)	1	02-Feb-11	0.20	1.8		0.60	5.5	
108-88-3	Toluene	1	02-Feb-11	0.20	0.55		0.77	2.1	
156-60-5	trans-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND []	
79-01-6	Trichloroethene	1	02-Feb-11	0.040	ND		0.22	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	02-Feb-11	0.20	0.21		1.10	1.2	
108-05-4	Vinyl acetate	1	02-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	02-Feb-11	0.20	ND		0.52	ND	
	TIC: Cyclotetrasiloxane, octamethyl-		02-Feb-11	0	16		0.0 0	0- (acims
	TIC: Cyclotrisiloxene, hexamethyl-		02-Eeb-11-	0	7. 0		0:00-		artifact

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By KP

Page 16 of 52

ate: 411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-009A Date 04-Feb-11

Client Sample ID 828131A-SS0401

Collection Date: 1/19/2011

Tag # 325/2708 **Matrix** AIR

TO-15(SG	+TICS)	Dilution	Date	pp	ьν	Data	uç	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34- 3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethyibenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.27		1.00	1.3
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.84		0.60	2.5
591 -78- 6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	69		4,80	آت 170
71-43-2	Benzene	1	03-Feb-11	0.20	0.37		0.65	1.2
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-1 5-0	Carbon disulfide	1	03-Feb-11	0.20	0.54		0.63	1.7
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ИD		1,30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chioroethane	1	03-Feb-11	0.20	ND		0.54	ND
67 <i>-</i> 66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By KP

Page 17 of 52

Date: 24/11
9731NN

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners Locatio

Project: 3612102168 Lab ID E1101003-009A Date 04-Feb-11

Client Sample ID 828131A-SS0401

Collection Date: 1/19/2011

Tag # 325/2708 Matrix AIR

ΓO-15(SG	+TICS)	Dilution	Date	рÞ	bV	Data	นยู	₃/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	0.45		0.70	1.6
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.45		1.00	2.3
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		88,0	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	1.2		0.72	4.1
67-63 -0	Isopropanol	1	03-Feb-11	2.0	5.7		5.00	14 5 /
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	0.78		0.88	3.4
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	1.1		0.83	4.5
95-47 - 6	o-Xylene	1	03-Feb-11	0.20	0.26		0.88	1.1
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	1.	03-Feb-11	0.20	9.2		0.77	3 5
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.21		1.10	1.2
108-05-4	Vinyl acetate	1	03-Fe b -11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	2.8		0,00	0
	TIC: Cyclopropanecarboxamide	1	03-Feb-11	0	2.6		0,00	0
	TIC: Cyclotetrasiloxane, octamethyl-	1_	03-Feb-11	0	34		0.00	O GCIMS
	TIC: Cyclotrisilexane, hexamethyl-		-03-Feb-1 1-	— 0 —	2 9		0:00	10 SCIM2
	TIC: unknown	1	03-Feb-11	0	3.3		0.00	/ 0 GITIE
	TIC: unknown hydrocarbon (4.476)	1	03-Feb-11	0	3.5		0.00	\0
	TIC: unknown hydrocarbon (4,611)	1	03-Feb-11	0	6.4		0.00	b
	•				75 P			

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Page 18 of 52 Approved By

Date: 2411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-010A Date 04-Feb-11

Client Sample ID 828131A-IA0401

Collection Date: 1/19/2011

Tag # 297/3959

Matrix AIR

TO-15 (VI	+TICS)	Dilution	Date	ppl	bV	Data	u	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	02-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	02-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	02-Feb-11	0.20	ND		1.50	ND
95 -63- 6	1,2,4-Trimethylbenzene	1	02-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	02-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	02-Feb-11	0.20	ND		1,40	ND
95-50-1	1,2-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	02-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	02-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	02-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND 🧷
123-91-1	1,4-Dioxane	1	02-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	02-Feb-11	0.20	0.54		0.60	1.6
591-78-6	2-Hexanone (*)	1	02-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	02-Feb-11	0.20	0.21		1,00	1.0
108-10-1	4-Methyi-2-Pentanone (MIBK)	1	02-Feb-11	0,20	ND		0.83	ND
67-64-1	Acetone	1	02-Feb-11	2.0	4.4		4.80	11 <i>J</i> T
71-43-2	Benzene	1	02-Feb-11	0,20	0,38		0.65	1.2
100-44-7	Benzyl chloride	1	02-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	02-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	02-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	02-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	02-Feb-11	0.20	ND		0,63	ND
56-23-5	Carbon tetrachloride	1	02-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	02-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	02-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	02-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	02-Feb-11	0.20	0.56		0.42	1.2
156-59-2	cis-1,2-Dichloroethene	1	02-Feb-11	0.20	0.32		0.81	1.3

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 19 of 52

Approved By

Date: 24/11 gr31211

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-010A

Date 04-Feb-11

Client Sample ID 828I31A-IA0401

Collection Date: 1/19/2011

Tag# 297/3959

Matrix AIR

TO-15 (VI-	+TICS)	Dilution	Date	ppl	bV	Data	uç	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	02-Feb-11	0.20	ND	•	0.92	ND	
110-82-7	Cyclohexane	1	02-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	02-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	02-Feb-11	0.20	0.43		1.00	2.2	
100-41-4	Ethyl benzene	1	02-Feb-11	0.20	ND		0.88	ND	
87-68-3	Hexachlorobutadiene	1	02-Feb-11	0.20	ND		2,20	ND	
110-54-3	Hexane	1	02-Feb-11	0.20	ND		0.72	ND	
67-63-0	Isopropanol	1	02-Feb-11	2.0	9.1		5.00	23 .7	·
1330-20-7	m,p-Xylene	1	02-Feb-11	0.60	ND		2.60	ND	
1634-04-4	Methyl tert-butyl ether (MTBE)	1.	02-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chioride	1	02-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	02-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1.	02-Feb-11	0,20	ND		0.88	ND	
100-42-5	Styrene	1	02-Feb-11	0.30	ND		1.30	ND	
127-18-4	Tetrachloroethene	1	02-Feb-11	0.20	ND		1.40	ND	
109-99 -9	Tetrahydrofuran (*)	1	02-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	02-Feb-11	0.20	0.66		0.77	2,5	
156-60-5	trans-1,2-Dichloroethene	. 1	02-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND J	- /
79-01-6	Trichloroethene	1	02-Feb-11	0.040	ND		0.22	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	02-Feb-11	0.20	0,22		1.10	1.3	
108-05-4	Vinyl acetate	1	02-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	02-Feb-11	0.20	ND		0,52	ND	
	TIC: Cyclotetrasiloxane_octamethyl-		-0 2-F eb-11-	0	26		0 : 00-	0 (1145
	TIC: Cyclotriciloxane, hexamethyl-	1	_02-Feb-44	0	11		-0.00-	0	artitact

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Approved By KL

S Spike Recovery outside accepted recovery limits

Date: 2/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-011A

Date 04-Feb-11

Client Sample ID 828131A-SS0501

Collection Date: 1/19/2011

Tag # 279/2666 **Matrix** AIR

TO-15(SG	+TICS)	Dilution	Date	pp	bV	Data	ug	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Triffuoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1,60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1,50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1,20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0,94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1,20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.91		0.60	2.7
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND	•	1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2,0	100		4.80	240 🍞
71-43-2	Benzene	1	03-Feb-11	0.20	ND		0.65	ND
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25 - 2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	0.60		0.63	1.9
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND	•	0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0,20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	1.5⋅		0.99	7.4
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By KP

Page 21 of 52

Date: 2411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-011A Date 04-Feb-11

Client Sample ID 828131A-SS0501

Collection Date: 1/19/2011

Tag # 279/2666 Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	pp	bV	Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1,70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.50		1.00	2.5
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0,88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0,20	ND	•	2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	0.36		0.72	1,3
67-63-0	Isopropanol	1	03-Feb-11	2.0	2.1		5.00	5.2 J
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	0.72		0.88	3.2
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-1 1	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND
95-47-6	o-Xylene	. 1	03-Feb-11	0.20	0.29		0.88	1.3
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	. 1	03-Feb-11	0.20	11		0.77	44
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01 <i>-</i> 6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.23		1.10	1.3
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
NOTES:	•							

TICS: No compounds were detected.

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Page 22 of 52

Approved By KLP

Date: 2/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-012A Date 04-Feb-11

Client Sample ID 828131A-IA0501

Collection Date: 1/19/2011

Tag # 306/2712 **Matrix** AIR

71- 79- 79- 76- 75-	TO-15 (VI+TICS)		Dilution Date		₽₽bV		Data	ug/m3	
79- 79- 76- 75-	AS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
79- 76- 75-	-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76- 75-	34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1,40	ND
75-	-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
	13-1	1,1,2-Triffuoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-	34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
	35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120	0-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-	-63- 6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND
108	6-9 3- 4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-	-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-	-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107	7-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-	-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108	8-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.25		1.00	1.2
108	6-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541	1-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106	6-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123	3-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND
78-	-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.0		0.60	3.1
591	1-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622	2-96-8	4-Eth yl toluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108	B-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-	-641	Acetone	1	03-Feb-11	2.0	3.7		4.80	8.9 LL
71-	-43-2	Benzene	1	03-Feb-11	0.20	0.34		0,65	1.1
100	0-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-	-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-	-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-	-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-	-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0.63	ND
56-	-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	ND		0.26	ND
108	8-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-	-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0,54	ND
67-	-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-	-87-3	Chloromethane	1	03-Feb-11	0.20	0.58		0.42	1.2
156	6-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By <u>K/P</u>

Page 23 of 52

Date: 2/4/1/

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-012A

Date 04-Feb-11

Client Sample ID 828131A-IA0501

Collection Date: 1/19/2011

Tag # 306/2712 **Matrix** AIR

FO-15 (VI	-TICS)	Dilution	Date	ppl	bV	Data	ug	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0,70	ND
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.48		1.00	2.4
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	0.21		0.72	0.75
67-63-0	Isopropanol	1	03-Feb-11	2.0	2	J	5.00	4 J /
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-l-leptane	1	03-Feb-11	0.20	ND		0.83	ND
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1.30	ND.
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND:
108-88-3	Toluene	1	03-Feb-11	0.20	0.57		0.77	2.2
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0.22	ND [*]
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.22		1.10	1.3
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	IIC: Cyclotetrasiloxane, octamethyl-		03-Feb-1:1_	0	26		0: 00-	- GUMS
	TIC: Cyclotrisiloxane, hexamethyl-		03-Feb-11	0	14		0.00	- GCIMS - O artifact
	TIC: Ethyl alcohol	1	03-Feb-11	0	3.2		-0.00-	0- G110_50/L
				1	Spir			

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By KD

Page 24 of 52

Date: 2/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-013A Date 04-Feb-11

Client Sample ID 828131A-SS06A01

Collection Date: 1/19/2011

Tag # 245/2659

Matrix AIR

TO-15(SG	G+TICS)	Dilution	Date	pp	bV	Data	ц	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
7 9 -3 4- 5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00 -5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11)	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	0.44		1.00	2.2
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafiuoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.73		1.00	3.6
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.67		0.60	2.0
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND.
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	0.33		1.00	1.6
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	44		4.80	ال 110
71-43-2	Benzene	1	03-Feb-11	0.20	0.73		0.65	2.4
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	0.57		0.63	1.8
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	-1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Approved By

S Spike Recovery outside accepted recovery limits

Page 25 of 52

ate: 24/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-013A

Date 04-Feb-11

Client Sample ID 828131A-SS06A01

Collection Date: 1/19/2011

Tag # 245/2659 **Matrix** AIR

TO-15(SG	+TICS)	Dilution	Date	qq	bV	Data	u	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	•
110-82-7	Cyclohexane	1	03-Feb-11	0.20	1.2		0.70	4.0	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.50		1.00	2,5	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	0.23		88.0	1.0	
87-68 -3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	1.3		0.72	4.7	
67-63-0	Isopropanol	1	03-Feb-11	2.0	ND		5,00	ND	,
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	2.2		0.88	9.6	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	0 3- Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0,20	1.4		0.83	5.9	
95-47-6	o-Xylene	1	03-Feb-11	0.20	0.55		0.88	2.4	
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	0.25		1.40	1.7	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	6.8		0.77	26	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.22		1.10	1.3	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	3.6		Q.00	0	
	TIC: Cyclohexane, methyl-	1	03-Feb-11	0	4.2		0,00	0	
	TIC: Cyclotetrasiloxane, octamethyl-		03-Feb- 1 4	0	2 6		0:00/	0 6	CIMS
	TIC: Cyclotrisiloxane, hexamethyl=		-09-Feb-11-	0-	8.5			/ 0→ .	arhfacts
	TIC: Octane	1	03-Feb-11	0	2.1		0.00	\ 0	
	TIC: Propane	1	03-Feb-11	0	3,2		0.00	\ o	
	TIC: unknown hydrocarbon (4.473)	1	03-Feb-11	0	3.9		0.00	\ ₀	
	TIC: unknown hydrocarbon (4.617)	1	03-Feb-11	0	4.2		0.00	\0	
	TIC: unknown hydrocarbon (5.933)	1	03-Feb-11	0	PPB4		0.00	þ	

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

Page 26 of 52

Date: 24 11

9~12/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-014A

Date 04-Feb-11

Client Sample ID 828131A-IA06A01

Collection Date: 1/19/2011

Tag # 309/2715 **Matrix** AIR

TO-15 (V	I+TICS)	Dilution	Date	pp	bV	Data	uį	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	02-Feb-11	0.20	NĐ		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	02-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	02-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	02-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	02-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	02-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	02-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	02-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	02-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	02-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	02-Feb-11	0.20	ND		1,00	ND
106-99-0	1,3-Butadiene	1	02-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	02-Feb-11	0.20	ND		1.20	NDJ
123-91-1	1,4-Dioxane	1	02-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	02-Feb-11	0.20	1.8		0.60	5.5
591-78-6	2-Hexanone (*)	1	02-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	02-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	02-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	02-Feb-11	2.0	55		4.80	ات 130
71-43-2	Benzene	1	02-Feb-11	0.20	0.34		0.65	1.1
100-44-7	Benzyl chloride	1	02-Feb-11	0.20	ND		1:10	ND
75-27-4	Bromodichloromethane	1	02-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	02-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	02-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	02-Feb-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	02-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	02-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	02-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	02-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	02-Feb-11	0.20	0.57		0.42	1.2
156-59-2	cis-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

Page 27 of 52

Date: 2/4/11 97312/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-014A Date 04-Feb-11

Client Sample ID 828131A-IA06A01

Collection Date: 1/19/2011

Tag # 309/2715

Matrix AIR

TO-15 (VI	+TICS)	Dilution	Date	pp	bV .	Data	ug	ı/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	02-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochioromethane	1	02-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	02-Feb-11	0.20	0.49		1.00	2.5	
100-41-4	Ethyl benzene	1	02-Feb-11	0.20	ND		88.0	ND	
87-68 - 3	Hexachlorobutadiene	. 1	02-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	02-Feb-11	0.20	ND		0.72	ND	
67-63-0	Isopropanol	1	02-Feb-11	2.0	5.5		5.00	14 Ü √	
1330-20-7	m,p-Xylene	1	02-Feb-11	0.60	ND		2.60	ND	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	02-Feb-11	0.20	ND		0.73	ND	
75-09 - 2	Methylene chloride	1	02-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	02-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1	02-Feb-11	0.20	0.22		0.88	0.97	
100-42-5	Styrene	1	02-Feb-11	0.30	ND		1.30	ND	
127-18-4	Tetrachloroethene	1	02-Feb-11	0.20	0.39		1.40	2.7	
109-99-9	Tetrahydrofuraπ (*)	1	02-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	02-Feb-11	0.20	0.53		0.77	2.0	
156-60-5	trans-1,2-Dichloroethene	1	02-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	02-Feb-11	0.20	ND		0.92	NDJ /	
79-01-6	Trichloroethene	1	02-Feb-11	0.040	ND		0.22	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	02-Feb-11	0.20	0.23	-	1.10	1.3	
108-05-4	Vinyl acetate	1	02-Feb-11	0.20	ND		0.72	ND	
75-01-4	Viπyl chloride	1	02-Feb-11	0.20	ND		0.52	ND	
	TIC: Cyclotetrasiloxane, octamethyl-	1_	_02-Feb-11_	0	18		0.00-		
	TIC: Cyclotrislloxane, hexamethyl-		02-Feb-14	0	6.4		0:00-	3 GCIMS	
	TIC: Disiloxane, hexamethy!-		02-Feb-11	0	14		0.00	> &/ htal	ŀs
	TIC: unknown		02-Feb-11-	~~0 ~~	3: 0	В	0:00-	Blank	
	•							Contami	,
						•		COULTAMIN	<u>የ</u> ድላተ

Qualifiers:

- Certification not offered by NYS for this compound
- Value above quantitation range Е
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Page 28 of 52

Date: 2/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-015A Date 04-Feb-11

Client Sample ID 828131A-SS06B01

Collection Date: 1/19/2011

Tag # 324/2674

Matrix AIR

TO-15(SG	S+TICS)	Dilution	Date	ppl	bV	Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	0.28		1.10	1.6
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	· 1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND -		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND ·
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	1.2		1.00	5.9
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	2.3		1.00	11
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
7 8-9 3-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.2		0.60	3.6
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	· ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	1.0		1.00	5.0
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	64		4.80	150 T
71-43-2	Benzene	1	03-Feb-11	0.20	0.99		0.65	3.2
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	0.82		0.63	2.6
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	5.1		0.99	25
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Page 29 of 52

Approved By

Date: 2/4///

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-015A

Date 04-Feb-11

Client Sample ID 828131A-SS06B01

Collection Date: 1/19/2011

Tag # 324/2674

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	ppl	bV	Data	uį	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	2,4		0.70	8.5
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-7 1-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	1.9		1.00	9.8
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	0.53		0.88	2.3
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	3.3		0.72	12
67-63-0	Isopropanol	1	03-Feb-11	2.0	6.0		5.00	15 ブ /
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	4.3		0.88	19
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	4.2		0.83	17
95-47-6	o-Xylene	1	03-Feb-11	0.20	1.3		0.88	5.9
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	0.28		1,40	1.9
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	03-Feb-11	0.20	9.3		0.77	35
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01 - 6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.23		1.10	1.3
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	TIC: Butane	. 1	03-Feb-11	0	7.1		0.00	0
	TiC: Butane, 2-methyl-	1	03-Feb-11	0	5.5		9/00	0
	TiC: Cyclohexane, methyl-	1	03-Feb-11	0	8.8		0.60	0
	TIC: Cyclohexanol	1	03-Feb-11	0	9.6		0.00	. 0
	TIC: Cyclotetrasilexane-cetamethyl-	1	03-Feb-11-	0-			0:00	to-GCIMS
	TIC: isobutane	1	03-Feb-11	0	5,2		0.00	10 artifact
	TIC: Nonane	1	03-Feb-11	0	8.2		0.00	0
	TIC: Octane	1	03-Feb-11	0	5.6		0.00	\ o
	TIC: unknown	1	03-Feb-11	0	8.4		0.00	δ
					bbpa			,

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By KP

Page 30 of 52

Date: 2411

3/2/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-016A Date 04-Feb-11

Client Sample ID 828131A-IA06B01

Collection Date: 1/19/2011

Tag# 284/2664

Matrix AIR

TO-15 (VI-	TO-15 (VI+TICS)		Date	ppt	οV	Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0,20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	N D		0,94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Di ch lorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.9		0.60	5.6
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Eth y ltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67 -64- 1	Acetone	1	03-Feb-11	2.0	70		4.80	170 ブ
71-43-2	Benzene	1	03-Feb-11	0.20	0.41		0.65	1.3
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichioromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	0.90		0.26	5.8
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	0.65		0.42	1.4
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Page 31 of 52

Date: 2411

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-016A Date 04-Feb-11

Client Sample ID 828131A-IA06B01

Collection Date: 1/19/2011

Tag # 284/2664

Matrix AIR

'O-15 (VI+	·(1CS)	Dilution	Date	pp!	bV	Data	ug/m3		
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
0061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND	
24-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.52		1.00	2.6	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND	
37-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	0.32		0.72	1.1	
67 - 63-0	Isopropanol	1	03-Feb-11	2.0	7.6		5.00	19 J	
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	0.75		0.83	3.1	
95-47-6	o-Xylene	1	03-Feb-11	0.20	0.29		0.88	1.3	
100-42-5	Styrene	1	03-Feb-11	0.30	0.87		1.30	3.8	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	0.30		1.40	2.1	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	0.85		0.77	3.3	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0.22	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.25		1.10	1.4	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND	•	0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: 1Ralpha,-Pinene	1	03-Feb-11	0	3.0		Q.00	0	
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	2.2		00.00	0	
	TIC: Cyclotetrasilexane, octamethyl-		-03=Feb=4-1-	0	4.8	,	0.00	——————————————————————————————————————	
	TIC: Cyclotrisiloxane, hexamethyl-	· · · · · · · · · · · · · · · · · · ·	03-Feb-1-1-		4.3		0,00\	CICIA	42
	TJC:-Disiloxane-hexamethyl-		03-Feb-4-1	<u>—-</u> 0—	14		0,00_	1-0- art	as ifects
	TIC: Hexanal	1	03-Feb-11	0	5.6		0.00	\ 0	
	TIC: unknown (11.713)	1	03-Feb-11	0	2.5		0.00	\0	
	TIC: unknown (5.508)	1	03-Feb-11	0	2,9		0.00	6	

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

Page 32 of 52

Date: 24/1/

23/2/U

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-017A Date 04-Feb-11

Client Sample ID 828131A-SS0701

Collection Date: 1/19/2011

Tag # 277/2657 Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	ppl	bV	Data	uş	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	· ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dìchloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-9 3- 3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.91		0.60	2.7
591-78-6	2-Hexanoпe (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	74		4.80	180 J
71-43-2	Benzene	1	03-Feb-11	0.20	0.95		0.65	3,1
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1,40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	3.2		0.63	10
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1,30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0,20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	2.1		0.42	4.4
156-59-2	cls-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Approved By

Page 33 of 52

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-017A

Date 04-Feb-11

Client Sample ID 828131A-SS0701

Collection Date: 1/19/2011

Tag# 277/2657

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	pp	bV	Data	ug	ı/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	3.4		0.70	12
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.46		1.00	2.3
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	2.2		0.72	7.8
67-63-0	Isopropanol	1	03-Feb-11	2.0	ND		5.00	ND
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	ND		0.88	ND
1634-04- 4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0,20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	0.29		0.83	1.2
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	03-Feb-11	0.20	0.60		0.77	2.3
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloraethene	1	03-Feb-11	0.20	ND		1.10	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.20		1.10	1.1
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	0.55		0.52	1.4
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	26		Q.00	0
	TIC: Cyclopentane	1	03-Feb-11	0	3.2		09.0	0
	TIC: Cyclopentane, methyl-	1	03-Feb-11	0	5.8		0.00	0
	TIC: Isobutane	1	03-Feb-11	0	40		0.00	\ 0
	TIC: Pentane, 2-methyl-	1	03-Feb-11	0	5.9		0.00	\ 0
	TIC: Propane	1	03-Feb-11	0	36		0.00	\ 0
	TIC: unknown	1	03-Feb-11	0	2.7		0.00	\ 0
	TIC: unknown hydrocarbon	. 1	03-Feb-11	0	1.2		0.00	λ
	-				bbpa			

Qualifiers

Page 34 of 52

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

مايا .

Date: 2411

7/21214

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-018A **Date** 04-Feb-11

Client Sample ID 828131A-IA0701

Collection Date: 1/19/2011

Tag # 332/3956 Matrix AIR

ΓO-15 (V	I+TICS)	Dilution	Date	pp	bV	Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichtoroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11)	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dlbromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	0.29		0.82	1.2
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1,00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.65		0.60	1.9
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	10		4.80	24 .
71-43-2	Benzene	1	03-Feb-11	0.20	0.43		0,65	1.4
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1,10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2,10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND	•	0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0,54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cls-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By KLP

Page 35 of 52

Date: 2411

8/3/2/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-018A Date 04-Feb-11

Client Sample ID 828131A-IA0701

Collection Date: 1/19/2011

Tag# 332/3956

Matrix AIR

TO-15 (VI+TICS)		Dilution	Date	ppl	bV	Data	ug/m3		
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0,20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.48		1.00	2.4	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND	
87-68-3	Hexachlorobutadiene	· 1	03-Feb-11	0.20	ND		2,20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	ND		0,72	ND	
67-63-0	Isopropanol	1	03-Feb-11	2.0	4.4		5.00	11 J	
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1.30	'ND	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	0.91		0.77	3.5	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND ·		0.22	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.24		1.10	1.4	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	TIC: Butane	1	03-Feb-11	0	5.4		0.00	0	
	TIC: Cyclotetrasilexane, octamethyl-		03-Feb-1-1	——O	17		0.0 0-	——————————————————————————————————————	
	TIC: Cyclotrisiloxane, hexamethyl-		03=Feb=11	0			0.0	0	
	TIC: Ethyl alcohol	1	03-Feb-11	0	19		0.00	\ 0	
	TIC: Isobutane	1	03-Feb-11	0	200		0.00	\0	
	TIC: Propane	1	03-Feb-11	0	21		0.00	b	
					ppby				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

Page 36 of 52

Date: 2411

3/4/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-019A

Date 04-Feb-11

Client Sample ID 828131A-SS0801

Collection Date: 1/20/2011

Tag # 321/2665 Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	pp	bV	Data	υç	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	0.23		1.00	1.1
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1,40	ND
95-50-1	1,2-Dichlorobenzene	, 1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.49		1.00	2.4
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.2		0.60	3,6
591-78-6	2-Hexanone (*)	1,	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	0.24		1.00	1.2
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	52		4.80	120 ፓ 🕠
71-43-2	Benzene	1	03-Feb-11	0.20	0.26		0.65	0.84
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	0.58		0.63	1.8
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0,20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

Date: 2411

Page 37 of 52

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-019A Date 04-Feb-11

Client Sample ID 828131A-SS0801

Collection Date: 1/20/2011

Tag # 321/2665

Matrix AIR

TO-15(SG+TICS)		Dilution	Date	pp	ьν	Data	uç	₃/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	0.34		0.70	1.2
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.45		1.00	2.3
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	0.58		0.72	2.1
67-63-0	isopropanol	1	03-Feb-11	2.0	5.8		5.00	14 🛐
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	0,94		0.88	4.1
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	0.69		0.83	2.9
95-47-6	o-Xylene	1	03-Feb-11	0.20	0.30		0.88	1.3
100-42-5	Styrene	1	03-Feb-11	0.20	ND		0.87	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	03-Feb-11	0.20	4.9		0.77	19
1 56- 60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.43		1.10	2.5
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	TIC: Butane, 2-methyl-	1	03-Feb-11	0	1,2		100.00	0
	TIC: Cyclotetrasilexane, octamethyl-		03-Feb-11	0	 52		9/00-	0-
	TIC: Cyclotrisiloxane, hexamethyl-		03-Feb-11-	0	49		0.96	0
	TIC: unknown (14.093)	1	03-Feb-11	0	10		0.00	0
	TIC: unknown (6.99)	1	03-Feb-11	0	1.2		0.00	\ 0
	TIC: unknown hydrocarbon (10.935)	1	03-Feb-11	0	1.1		0.00	\ 0
	TIC: unknown hydrocarbon (4.473)	1	03-Feb-11	0	1.8		0.00	\ 0
	TIC: unknown hydrocarbon (4.614)	1	03-Feb-11	0	1.8		0.00	Ъ
					ppbv			

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Page 38 of 52

Approved By

Date: 2 4 11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-020A

Date 04-Feb-11

Client Sample ID 828131A-IA0801

Collection Date: 1/20/2011

Tag # 316/2662

Matrix AIR

TO-15 (VI+TICS)		Dilution	Date	ppbV		Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0,20	ND		1,10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87- 5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	2.0		0.60	6.0
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND .		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	5	03-Feb-11	10	69	•	24,00	170 J
71-43-2	Benzene	1	03-Feb-11	0.20	0.79		0.65	2.6
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	0.080		0.26	0.51
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND	•	0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	0.76		0.42	1.6
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By

Date: 24 11

Page 39 of 52

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-020A Date '04-Feb-11

Client Sample ID 828131A-IA0801

Collection Date: 1/20/2011

Tag # 316/2662

Matrix AIR

TO-15 (VI-	+TICS)	Dilution	Date	рр	bV	Data	ug	j/m3	4
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.46		1.00	2.3	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND	
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	ND		0.72	ND	
67-63-0	Isopropanoi	5	03-Feb-11	10	260		25.00	660 (y /
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1,30	ND	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	0.76		0.77	2.9	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Fe b -11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0.22	ND	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.64		1.10	3.7	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND	-	0.52	ND	
	TIC: Cyclotetrasiloxane, octamethyl-	1	_03_Eeb_11	-0			QQ		/ 36 as
	TIC: Cyclotriellexane, hexamethyl-	1	-03-Feb-11	0	11		_0\00_	0	CIMS
	TIC: Ethyl alcohol	1	03-Feb-11	0	83		0.00	0	ertifact
	TIC: Isobutane	1	03-Feb-11	0	180		0.00	0	
	TIC: Propane	. 1	03-Feb-11	0	13		0.00	\ 0	
	TIC: unknown	1	03-Feb-11	0	34		0.00	0	
	TIC: unknown hydrocarbon (13.414)	1	03-Feb-11	0	6.5		0.00	\0	
	TIC: unknown hydrocarbon (13.627)	1	03-Feb-11	0	8.4		0.00	à	
	TIC: unknown hydrocarbon (14.62)	1	03-Feb-11	0	6.7		0.00	9	
	• •				ppbv		_	-	
					11				

Qualifiers:

(*) Certification not offered by NYS for this compound

E Value above quantitation range

J Analyte detected below quantitation limits

Q Outlying QC recoveries were associated with this analyte

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Approved By KP

Page 40 of 52

Date: 2411

g~3/2/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-021A Date 04-Feb-11

Client Sample ID 828131A-SS0901

Collection Date: 1/20/2011

Tag# 312/2677

Matrix AIR

TO-15(SG+TICS)		Dilution	Date	ppl	ьν	Data	ug/m3		
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND J	
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND 1	
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND	
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND	
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND	
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	0.22		1.00	1.1	
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND .	
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1,20	ND	
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND	
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND	
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.53		1.00	2.6	
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND	
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND	
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.2		0.60	3.6	
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND	
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	0.32		1.00	1.6	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND	
67-64-1	Acetone	1	03-Feb-11	2.0	97		4.80	- 230	
71-43-2	Benzene	1	03-Feb-11	0,20	0.52		0.65	1.7	
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND	
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND	
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND	
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND	
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	1.1		0.63	3.4	
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND	
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND	
75-00-3	Chloroethane	1	03-Feb-11	0,20	ND		0.54	ND	
67-66-3	Chloroform	1	03-Feb-11	0,20	ND		0.99	ND	
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND 🚽	
156-59-2	cis-1,2-Dichloroethene	5) 04-Feb-11	1.0	180		4.00	720	

Qualifters:

- (*) Certification not offered by NYS for this compound
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- NDNot Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Approved By 🔏

Page 41 of 52

Date: 24/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-021A

Date 04-Feb-11

Client Sample ID 828131A-SS0901

Collection Date: 1/20/2011

Tag # 312/2677 Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	pp	Ь∨	Data	uį	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND J
110-82-7	Cyclohexane	1	03-Feb-11	0.20	0.49		0.70	1.7 į
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0,49		1.00	2.5
100-41-4	Ethyl benzene	1	03-Feb-11	0,20	0.33		88.0	1.5
87-68-3	Hexachlorobutadiene	1	03-Feb -1 1	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	0.97		0.72	3.5
67-63-0	Isopropano!	1	03-Feb-11	2.0	5.9		5.00	15
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	1.4		0.88	6.0
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-He p tane	1	03-Feb-11	0.20	1.1		0.83	4.7
95-47-6	o-Xylene	1	03-Feb-11	0.20	0.36		88.0	1.6
100-42-5	Styrene	1	03-Feb-11	0.20	0.20		0.87	0.87
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	94		1,40	650
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	03-Feb-11	0.20	12		0.77	46
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	1.7		0.81	6.9
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND 🕠
79-01-6	Trichloroethene	5	04-Feb-11	1.0	73	•	5.50	400
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.23		1.10	1.3
108-05-4	Vinyl acetate	1	03-Fe b -11	0.20	ND		0.72	ND ,
75-01 - 4	Vinyl chloride	1	03-Fe b -11	0.20	0.70		0.52	1.8 😾
	TIC: Cyclotetrasiloxane, octamethyl-		_03-Feb-11	0	18		0.00_	- Galus
	TIC: Propane	1	03-Feb-11	0	2.8		09,6	O SITIE
	TIC: unknown	1	03-Feb-11	0	3.7		0.00	<u>0</u>
	TIC: unknown hydrocarbon	1	03-Fe b -11	0	3.2		0.00	0
					ppby			

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Page 42 of 52

Approved By

Date: 2/4/11
83/2/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-022A Date 04-Feb-11

Client Sample ID 828131A-IA0901

Collection Date: 1/20/2011

Tag # 240/2620

Matrix AIR

TO-15 (VI	+TłCS)	Dilution	Date	pp	bV	Data	ug/m3		
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND	
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1,40	ND	
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND	
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND	
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	. ND		1.50	ND	
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND	
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND	
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND	
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND	
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND	
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND	
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND	
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.38		0.60	1.1	
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND	
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND	
67-64-1	Acetone	1	03-Feb-11	2.0	4.6		4.80	11 U	
71-43-2	Benzene	1	03-Feb-11	0.20	0.26		0.65	0.84	
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND	
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND	
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND	
74-83-9	Bromomethane	_ 1	03-Feb-11	0.20	ND		0.79	ND	
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0.63	ND	
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	ND		0.26	ND	
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND	
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND	
67-66-3	Chloroform	1	03-Feb-11	0.20	ND	·	0.99	ND	
74-87-3	Chloromethane	1	03-Feb-11	0.20	0.64	•	0.42	1.3	
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	0.41		0.81	1.7	

Qualifiers:

- Certification not offered by NYS for this compound (*)
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Approved By

Page 43 of 52

Date: 2/4///
3/2/W

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-022A Date 04-Feb-11

Client Sample ID 828131A-IA0901

Collection Date: 1/20/2011

Tag # 240/2620

Matrix AIR

TO-15 (VI+	-TICS)	Dilution	Date	pp	bV	Data	սջ	g/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1.00	2.5	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND	
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	ND		0.72	ND	
67-63-0	Isopropanol	1	03-Feb-11	2.0	26		5,00	65 ブ	
1330-20-7	m,p-Xylene	1	03-Feb-11	0,60	ND		2.60	ND	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND	
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND	
95-47-6	o-Xylene	1.	03-Feb-11	0.20	ND		0.88	ND	
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1.30	ND	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	1	03-Feb-11	0.20	0.51		0.77	2.0	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01 - 6	Trichloroethene	1	03-Feb-11	0.040	0.17		0.22	0.93	
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	ND		1,10	ND	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND	
	-TIC: Cyclotetrasiloxane, octamethyl-		03-Feb-11	0	14		0. 00-	0	Gara
	TIC: Cyclotrisiloxane; hexamethyl-		-03-Feb-11	0	7,2		0::00-	0	· Gully artifact
	TIC: Ethyl alcohol	1	03-Feb-11	0	7.3		0:90	0	ar nycer
	TIC; unknown hydrocarbon	1	03-Feb-11	0	4.5		0.00	Q	
					ppor			~	

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By K

Page 44 of 52

Date: 2/4///

23/2/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-023A **Date** 04-Feb-11

Client Sample ID 828131A-SS1001

Collection Date: 1/20/2011

Tag # 328/2709 **Matrix** AIR

TO-15(SG+TICS)		Dilution	Date	pp	bV	Deta	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers		Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79 -34- 5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND	•	1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND	•	0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.20	0.32		1.00	1.6
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0,20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1.	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	0.67		1.00	3.3
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.20	ND		0.73	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	4.3		0.60	13
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	0.70		1.00	3.5
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	5	03-Feb-11	10	67		24.00	
71-43-2	Benzene	1	03-Feb-11	0.20	1.8		0.65	5.7
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	11		0.63	36
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By K

Page 45 of 52

Date: 24/11

73/2/u

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-023A Date 04-Feb-11

Client Sample ID 828131A-SS1001

Collection Date: 1/20/2011

Tag # 328/2709

Matrix AIR

TO-15(SG-	+TICS)	Dilution	Date	pp	bV	Data	ug	J/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
110-82-7	Cyclohexane	1	03-Feb-11	0.20	2.4		0.70	8.6	
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND	
75-71-8	Dichlorodifiuoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1.00	2.5	
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	1.7		88.0	7.4	
87-68-3	Hexachtorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND	
110-54-3	Hexane	1	03-Feb-11	0.20	3.8		0.72	13	
67-63-0	Isopropanol	1	03-Feb-11	2.0	3.4		5.00	8.4 J	
1330-20-7	m,p-Xylene	1	03-Feb-11	0.20	5.5		88.0	24	
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND	
75-09-2	Methylene chloride	1	03-Feb-11	0,20	ND		0.71	ND	
142-82-5	n-He p tane	1	03-Feb-11	0.20	4.8		0.83	20	
95-47-6	o-Xylene	1	03-Feb-11	0.20	1.3		0.88	5.7	
100-42-5	Styrene	1	03-Feb-11	0.20	2.0		0.87	8.9	
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	0.55		1,40	3.8	
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND	
108-88-3	Toluene	5	03-Feb-11	1.0	94		3.80	360	
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND	
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND	
79-01-6	Trichloroethene	1	03-Feb-11	0.20	ND		1.10	ND	
75-69-4	Trichlorofiuoromethane (Freon 11)	1	03-Feb-11	0.20	0.22		1.10	1.3	
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND	
75-01-4	Vinyl chloride	1	03-Feb-11	0,20	ND		0,52	ND	
	TIC: 1-Pentene	1	03-Feb-11	0	8.4		.00. 0	_ 0	
	TIC: Cyclohexane, methyl-	1	03-Feb-11	0	9.4		0.00	2	
	TIC: Cyclotetrasiloxane, octamethyl-		03-Feb-11	0	2 9		0:00-	-o GCIMS	
	.TIC:-Cyclotrisiloxane,-hexamethyl	1-	03-Feb-11	0	33		0:00-	- o artifact	`
	TIC: Decane, 2,2,8-trimethyl-	1	03-Feb-11	0	24		ο.̂ο	0	
	TIC: unknown hydrocarbon (13.447)	1	03-Feb-11	0	47		0.00	\ 0	
	TIC: unknown hydrocarbon (13.63)	1	03-Feb-11	0	11		0,00	\ 0	
	TIC: unknown hydrocarbon (4.614)	1	03-Feb-11	0	15		0.00	\0	
	TIC: unknown hydrocarbon (5.598)	1	03-Feb-11	0	7.8		0.00	b	
					ppbv				

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By KP

Page 46 of 52

Date: 2411

8~312hu

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-024A

Date 04-Feb-11

Client Sample ID 828131A-IA1001

Collection Date: 1/20/2011

Tag# 295/2710

Matrix AIR

O-15 (VI+	TICS)	Dilution	Date	ppl	bV	Data	uç	J/m3
CAS#	Target Compound List	Factor	actor Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0,20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1,00	2.5
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		88.0	ND
37-68-3	Hexachlorobutadiene	1	03-Feb-11	0,20	ND		2.20	ND
110-54-3	Нехапе	1	03-Feb-11	0.20	0.24		0.72	0.86
67-63-0	isopropanol	1	03-Feb-11	2.0	14		5.00	35 J /
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND /
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	0.35		0.71	1.2
142-82-5	n-Heptane	1	03-Feb-11	0.20	0.21		0.83	0.87
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND -		88.0	ND
100-42-5	Styrene	1	03-Feb-11	0.30	ND.		1.30	ND
127-18-4	Tetrachioroethene	1	03-Feb-11	0.20	ND		1,40	ND
109-99-9	Tetrahydrofuraп (*)	1	03-Feb-11	0.20	ND		0,60	ND
108-88-3	Toluene	1	03-Feb-11	0.20	0.69		0.77	2.6
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0,92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0.22	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.24		1.10	1.4
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0,52	ND
	TJC; Cyclotetrasiloxane, octamethyl-	1	- 03-Feb-11	0	28		0.00	OCINS
	TIC: Cyclotrisiloxane, hexamethyl-	1	03-Feb-11-	0	14	and the Principle of States and S	0:0 0-	-o artifact
	TIC: Ethyl alcohol	1	03-Feb-11	0	67		Ò:0Q	0
	TIC: unknown	1	03-Feb-11	0	9.3		0.00	Q
				j	ophv			*

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 48 of 52

Date: 24/11

2 312 hi

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-025A Date 04-Feb-11

O per Coc. Client Sample ID 828131A-AA 301

Collection Date: 1/20/2011

Tag# 320

Matrix AIR

03/2/11

TO-15 (VI	+TICS)	Dilution	Date	ppl	ь∨	Data	uç	y/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachioroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1,50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.2		0.60	3.5
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	5.1		4.80	12 U
71-43-2	Benzene	1	03-Feb-11	0.20	ND		0.65	ND
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0,63	ND
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0,20	0.57		0.42	1.2
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Page 49 of 52

Approved By

Date: 24/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1101003-025A

Date 04-Feb-11

Client Sample ID 828131A-AA 301

Collection Date: 1/20/2011

Tag# 320

2~ 3/2/11

Matrix AIR

TO-15 (VH	-TICS)	Dilution	Date	ppl	bV	Data	ug	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Fab-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND .
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1.00	2.5
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	ND		0.72	ND
67-63-0	Isopropanol	1	03-Feb-11	2.0	4.4		5.00	11 T
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1,30	ND
127-18-4	Tetrachioroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	0.52		0.60	1.6
108-88-3	Toluene	1	03-Feb-11	0.20	0.21		0.77	0.80
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0.22	ND
75- 6 9-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.23		1.10	1.3
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01-4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	TIC: Cyclotetraeiloxane, octamethyl-		-03=Feb=11-	0	15		0:00-	- OGLIMS
	TIC: Cyclotrisiloxane, hexamethyl-		-03-Feb-11	—-O	3:1		0:00-	arhfe
	TIC: unknown hydrocarbon	1	03-Feb-11	0	2,6		<u>0-</u> 00	
	,				PPW/			

Qualifiers:

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Page 50 of 52

Date: 24/11
873/2/11

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1101003-026A Date 04-Feb-11

Client Sample ID 828131A-AA0201

Collection Date: 1/19/2011

Tag # 329

Matrix AIR

TO-15 (VI	+TICS)	Dilution	Date	ppl	bV	Data	นดู	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	. 1	03-Feb-11	0,20	ND		1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1,60	ND
76-14 - 2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND .		1.20	ND
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	03-Feb-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	0.52		0.60	1.6
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND		1.00	ND
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	03-Feb-11	2.0	7.2		4.80	17 ブ
71-43-2	Benzene	1	03-Feb-11	0.20	0.33		0.65	1.1
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND
75 - 25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	03-Feb-11	0.20	ND		0.63	ND
56 - 23-5	Carbon tetrachloride	1	03-Feb-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	03-Feb-11	0,20	ND		0.94	ND
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	03-Feb-11	0.20	0.61		0.42	1.3
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - S Spike Recovery outside accepted recovery limits

Approved By K

Page 51 of 52

Date: 2411

)~312lu

Analytical Report

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 **Lab ID** E1101003-026A Date 04-Feb-11

Client Sample ID 828131A-AA0201

Collection Date: 1/19/2011

Tag # 329 Matrix AIR

TO-15 (VI+	TICS)	Dilution	Date	ppi	bV	Data	ug	/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1.00	2.5
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	ND		0.72	ND
67-63 - 0	Isopropanol	1	03-Feb-11	2.0	3.4		5.00	8.4 ブ
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75 - 09-2	Methylene chloride	1	03-Feb-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1.30	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetrahydrofuran (*)	1	03-Feb-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	03-Feb-11	0.20	0.41		0.77	1.6
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0.22	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	ND		1.10	ND
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01 -4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	TIC: Cyclotetrasiloxane_octamethyl-		03-Feb-1-1	0	76 		0:00-	- OGLIMS
	TIC: Cycletrisilexane_hexamethyl-		03-Feb-11	Θ	36	The state of the s	0,00-	-0 3/16
	TIC: unknown	1	03-Feb-11	0	10		0.00-	
				ŕ	२० ७ √			

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By K

Page 52 of 52

Date: 2411

Analytical Report

Reissed Form 1 for

Date 04-Feb-11

AAOBOI; sample I)

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1101003-025A

Client Sample ID 828131A-AA0301 corrected

Collection Date: 1/20/2011

Tag # 320

Matrix AIR

3/2/11

TO-15 (VI	+TICS)	Dilution	Date	ppl	bV	Data	ug	₃ /m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result	
71-55-6	1,1,1-Trichloroethane	1	03-Feb-11	0.20	ND		1.10	ND	
79-34-5	1,1,2,2-Tetrachloroethane	1	03-Feb-11	0.20	ND		1.40	ND	
79-00-5	1,1,2-Trichlorcethane	1	03-Feb-11	0.20	ND		1.10	ND	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	03-Feb-11	0.20	ND		1.60	ND	
75-34-3	1,1-Dichloroethane	1	03-Feb-11	0.20	ND		0,82	ND	
75-35-4	1,1-Dichloroethene	1	03-Feb-11	0.20	ND .		0.81	ND	
120-82-1	1,2,4-Trichlorobenzene	1	03-Feb-11	0.20	ND		1.50	ND	
95-63-6	1,2,4-Trimethylbenzene	1	03-Feb-11	0.30	ND		1.50	ND	
106-93-4	1,2-Dibromoethane	1	03-Feb-11	0.20	ND		1.60	ND	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	03-Feb-11	0.20	ND		1,40	ND	
95-50-1	1,2-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
107-06-2	1,2-Dichloroethane	1	03-Feb-11	0.20	ND		0.82	ND	
78-87-5	1,2-Dichloropropane	· 1	03-Feb-11	0.20	ND		0.94	ND	
108-67-8	1,3,5-Trimethylbenzene	1	03-Feb-11	0.20	ND		1.00	ND	
106-99-0	1,3-Butadiene	1	03-Feb-11	0.20	ND		0.45	ND	
541-73-1	1,3-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
106-46-7	1,4-Dichlorobenzene	1	03-Feb-11	0.20	ND		1.20	ND	
123-91-1	1,4-Dioxane	1	03-Feb-11	0.40	ND		1.50	ND	
78-93-3	2-Butanone (MEK)	1	03-Feb-11	0.20	1.2		0.60	3.5	
591-78-6	2-Hexanone (*)	1	03-Feb-11	0.20	ND		0.83	ND	
622-96-8	4-Ethyltoluene (*)	1	03-Feb-11	0.20	ND	-	1.00	ND	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	03-Feb-11	0.20	ND		0.83	ND	
67-64-1	Acetone	1	03-Feb-11	2.0	5.1		4.80	12 U	
71-43-2	Benzene	1	03-Feb-11	0.20	ND		0.65	ND	
100-44-7	Benzyl chloride	1	03-Feb-11	0.20	ND		1.10	· ND	
75-27-4	Bromodichloromethane	1	03-Feb-11	0.20	ND		1.40	ND	
75-25-2	Bromoform	1	03-Feb-11	0.20	ND		2.10	ND	
74-83-9	Bromomethane	1	03-Feb-11	0.20	ND		0.79	ND	
75-15-0	Carbon disulfide	. 1	03-Feb-11	0.20	ND		0.63	ND	
56-23-5	Carbon tetrachloride	1	03-Feb-11	0.040	ND		0.26	ND	
108-90-7	Chlorobenzene .	1	03-Feb-11	0,20	ND		0.94	ND	
75-00-3	Chloroethane	1	03-Feb-11	0.20	ND		0.54	ND	
67-66-3	Chloroform	1	03-Feb-11	0.20	ND		0.99	ND	
74-87-3	Chloromethane	1	03-Feb-11	0.20	0.57		0.42	1.2	
156-59-2	cis-1,2-Dichloroethene	1	03-Feb-11	0,20	ND		0.81	ND	

Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 49 of 52

Date: 2/33/11 8~ 3/2/11

Analytical Report

Revised Form 1 for Date 04-Feb-11 (2000)

CLIENT MACTEC Engineering and Consulting, I

Off-Site Carriage Cleaners Locatio

Project: 3612102168

Lab ID E1101003-025A

Client Sample ID 828131A-AA0301

Collection Date: 1/20/2011 &~

Tag # 320

Matrix AIR

TO-15 (VI	+TICS)	Dilution	Date	pp	bV	Data	ug	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cis-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	03-Feb-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	03-Feb-11	0.20	ND		1.70	ND
75-71-B	Dichiorodifluoromethane (Freon 12)	1	03-Feb-11	0.20	0.49		1.00	2.5
100-41-4	Ethyl benzene	1	03-Feb-11	0.20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	03-Feb-11	0.20	ND		2.20	ND
110-54-3	Hexane	1	03-Feb-11	0.20	ND		0.72	ND
67-63-0	Isopropanol	1	03-Feb-11	2.0	4.4		5.00	11 J
1330-20-7	m,p-Xylene	1	03-Feb-11	0.60	ND		2.60	ND
1634-04-4	Methyl tert-butyl ether (MTBE)	1	03-Feb-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	03-Feb-11	0,20	ND		0.71	ND
142-82-5	n-Heptane	1	03-Feb-11	0.20	ND		0.83	ND
95-47-6	o-Xylene	1	03-Feb-11	0.20	ND		0.88	ND
100-42-5	Styrene	1	03-Feb-11	0.30	ND		1.30	ND
127-18-4	Tetrachloroethene	1	03-Feb-11	0.20	ND		1.40	ND
109-99-9	Tetranydrofuran (*)	1	03-Feb-11	0.20	0.52		0.60	1.6
108-88-3	Toluene	1	03-Feb-11	0.20	0.21		0.77	0.80
156-60-5	trans-1,2-Dichloroethene	1	03-Feb-11	0.20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	03-Feb-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	03-Feb-11	0.040	ND		0,22	ND
75-69-4	Trichlorofluoromethane (Freon 11)	1	03-Feb-11	0.20	0.23		1.10	1.3
108-05-4	Vinyl acetate	1	03-Feb-11	0.20	ND		0.72	ND
75-01 -4	Vinyl chloride	1	03-Feb-11	0.20	ND		0.52	ND
	«Surr: Bromofluorobenzene	1	03-Feb - 11-	- 65-13 5	—94 . 1		0:00	o Jorroseta
	TIC: Cyclotetrasiloxane, octamethyl-		03°Feb=11-	0	15		0:00-	o GCIMS
	IIC: Gyclotriciloxane, hexamethyl-		0 3=F eb-11	O	3,4		0:00	_
	TIC: unknown hydrocarbon	1	03-Feb-11	0	2.6	,	±0-00-	0-
				e	PPV			

Qualifiers:

- Certification not offered by NYS for this compound (*)
- Value above quantitation range Ε
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Page 50 of 52

Date: 2 23 11 312111

Reissued results 3/22/11

Client Sample ID: 828131A-IA11A01 Lab ID#: 1102123R1-01A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor: 10021108sim 1.00 Date of Collection: 1/20/11 1:59:00 PM . Date of Analysis: 2/11/11 01:13 PM

Date of Extraction: 2/11/11

Compound	Rpt. Limit (ug)	Rpt. Limit (ug/m3)	Amount (ug)	Amount (ug/m3)
1,1,1-Trichloroethane	0.10	0.080	Not Detected	Not Detected
1,2-Dichloroethane	0.10	0.064	Not Detected	Not Detected
1,4-Dichlorobenzene	0.10	0.097	Not Detected	Not Detected J
2-Butanone (Methyl Ethyl Ketone)	0.10	0.063	0.65	0.41
2-Propanol	0.20	0.19	3.9	3.7
4-Methyl-2-pentanone	0.20	0.15	0,20	0.15
Acetone	0.20	0.13	5.4	3.5
Benzene	0,20	0.12	1.2	0.75
Carbon Tetrachloride	0.10	0.074	0.55	0.41
Chlorobenzene	0.10	0.073	Not Detected	Not Detected
Chloroform	0.10	0.066	0.30	0.20
Cyclohexane	0.10	0.092	0.29	0.27
Ethanol	1.0	0.48	36	17 5
Ethyl Acetate	0.40	0.25	0.69	0.44
Ethyl Benzene	0.10	0.073	0.22	0.16
Heptane	0.10	0.085	0.75	0.64
Hexane	0.10	0.075	0.66	0.50
Methyl tert-butyl ether	0.10	0.076	Not Detected	Not Detected
Naphthalene	0.10	0.20	Not Detected	Not-Detected (
Propylbenzene	0.10	0.087	Not Detected	Not Detected
Styrene	0.10	0.081	0.16	0.13
Toluene	0.10	0.067	1.4	0.94
Tetrachloroethene	0.10	0.084	Not Detected	Not Detected
Trichloroethene	0.10	0.072	Not Detected	Not Detected
m,p-Xylene	0.10	0.071	0.56	0.39
o-Xylene	0.10	0.076	0.26	0.20

Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	105	70-130

Reissand results 3/22/11

Client Sample ID: 828131A-IA11B01 Lab ID#: 1102123R1-02A

VOCS BY PASSIVE SAMPLER - GC/MS

File Name: Dil. Factor: 10021109sim 1.00 Date of Collection: 1/20/11 2:23:00 PM Date of Analysis: 2/11/11 01:35 PM

Date of Extraction: 2/11/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug)	(ug/m3)	(ug)	(ug/m3)
1,1,1-Trichloroethane	0.10	0.080	Not Detected	Not Detected
1,2-Dichloroethane	0.10	0.064	Not Detected	Not Detected
1,4-Dichlorobenzene	0.10	0.097	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.10	0.063	0.83	0.52
2-Propanol	0.20	0.19	18	17
4-Methyl-2-pentanone	0.20	0.15	0.22	0.16
Acetone	0.20	0.13	12 [.]	7.9
Benzene	0.20	0.12	1.4	0.89
Carbon Tetrachloride	0.10	0.074	0.66	0.48
Chlorobenzene	0.10	0.073	Not Detected	Not Detected
Chloroform	0.10	0.066	0.36	0.24
Cyclohexane	0.10	0.092	0.48	0.44
Ethanol	1.0	0.49	130	64 "J
Ethyl Acetate	0.40	0.25	0.89	0.56
Ethyl Benzene	0.10	0.073	0.30	0.22
Heptane	0.10	0.085	2.2	1.9
Hexane	0.10	0.075	0.71	0.53
Methyl tert-butyl ether	0.10	0.076	Not Detected	Not Detected
Naphthalene	0.10	0.20	Not Detected	Not Detected 12
Propylbenzene	0.10	0.087	0.11	0.095
Styrene	0.10	0.081	0.37	0.30 T
Toluene	0.10	0.067	2.1	1.4
Tetrachloroethene	0.10	0.084	Not Detected	Not Detected
Trichloroethene	0.10	0.072	0.11	0.082
m,p-Xylene	0.10	0.071	0.83	. 0.59
o-Xylene	0.10	0.076	0.38	0.29

Container Type: Radiello 130 (Solvent)

		Method
Surrogates	%Recovery	Limits
Toluene-d8	106	70-130

DATA USABILITY SUMMARY REPORT MARCH 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

1.0 INTRODUCTION

Air samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in March 2011 and submitted for off-site laboratory analysis. Samples were analyzed by Enalytic, LLC, located in East Syracuse, New York. Results were reported in the following Sample Delivery Group (SDG): E1103006.

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions). Tentatively Identified Compounds (TICs) that were reported in samples are presented in Table 4. Samples were analyzed by the following method:

• Volatile organic compounds (VOCs) by USEPA Method TO-15

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), internal standard response, data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit
J = concentration is estimated
UJ = target analyte is not detected at the reported detection limit and is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOCS – METHOD TO-15

Blanks

Acetone (1.2 μ g/m3) was reported in the method blank. An action level was calculated at ten times the blank concentration and then compared to sample results. Low level detections of acetone in samples 828131A-AA1202 and 828131A-AA1402 were below the action level and were qualified as non-detected (U). Qualified results are summarized in Table 3 with validation reason code BL1.

Page 1 of 4

Initial Calibration

In the initial calibration associated with all samples (analyzed 03/28/2011) the percent relative standard deviations (RSDs) between relative response factors (RRFs) for a subset of target analytes were above the Region 2 control limit of 30:

Analyte	%RSD	Qualifier
1,2-Dichlorobenzene	34	UJ
1,3-Dichlorobenzene	32	UJ
1,4-Dichlorobenzene	30.4	J/UJ
Bromoform	30.3	UJ
Hexachlorobutadiene	49	UJ
Tetrachloroethene	45	J/UJ
Trichloroethene	39	J/UJ

Positive and non-detect results for the above listed analytes were qualified as estimated (J/UJ) in all samples. Qualified results are summarized in Table 3 with validation reason code ICVRSD.

Continuing Calibration

In the continuing calibration low concentration standard (run at the quantitation limit and called the CRQL standard) percent recoveries for a subset of target analytes were outside the laboratory control limits of 65-135. The following analytes were qualified:

Analyte	%R	Qualifier
1,1,1-Trichloroethane	140	J
1,3,5-Trimethylbenzene	140	J
1,4-Dichlorobenzene	160	J
4-Ethyltoluene	150	J
Benzene	140	J
Benzyl chloride	140	J
cis-1,2-Dichloroethene	190	J
Ethyl benzene	140	J
Isopropanol	260	J
Methylene chloride	140	J
n-Heptane	160	J
o-Xylene	160	J
Tetrachloroethene	220	J

Positive detections that were less than two times the reporting limit for the above analytes in one or more of the samples were qualified as estimated (J) and may be biased high. Qualified results are summarized in Table 3 with validation reason code QLS-H.

In the continuing calibration standard associated with all samples percent differences between the initial calibration average RRFs and continuing calibration RRFs for a subset of target analytes were outside the Region 2 control limit of 30. The following analytes were qualified:

Analyte	%D	Qualifier
1,1,2,2-Tetrachloroethane	35	UJ

1,2,4-Trimethylbenzene	37	J/UJ
1,3,5-Trimethylbenzene	39	J/UJ
1,4-Dioxane	33	UJ
2-Butanone	34	J/UJ
2-Hexanone	35	UJ
4-Ethyltoluene	35	J/UJ
4-Methyl-2-pentanone	37	J/UJ
Benzyl chloride	35	J/UJ
Hexachlorobutadiene	37	UJ
Vinyl acetate	36	UJ

Positive and non-detect results for the above listed analytes were qualified as estimated (J/UJ) in all samples. Qualified results are summarized in Table 3 with validation reason code CCV%D.

<u>Laboratory Control Samples (LCS)</u>

In the LCS associated with all samples percent recoveries for a subset of target analytes were below the Region 2 control limits of 70-130:

Analyte	%R	Qualifier
1,2,4-Trichlorobenzene	62	UJ
1,2,4-Trimethylbenzene	69	J/UJ
1,2-Dichlorobenzene	66	UJ
1,3,5-Trimethylbenzene	69	J/UJ
1,3-Dichlorobenzene	66	UJ
1,4-Dichlorobenzene	66	J/UJ
Hexachlorobutadiene	55	UJ

Positive and non-detect results for the above target analytes were qualified as estimated (J/UJ) in all samples. Qualified results are summarized in Table 3 with validation reason code LCS-L.

Internal Standards

The response for internal standard 1,4-difluorobenzene in sample 828131A-SS1302 was below control limits. The following target analytes are associated with this internal standard for quantitation:

- 1,2-Dichloropropane
- Bromodichloromethane
- 1,4-Dioxane
- cis-1,3-Dichloropropene
- Toluene
- 4-Methyl-2-pentanone
- trans-1,3-Dichloropropene
- 1,1,2-Trichloroethane
- Dibromochloromethane
- 1.2-Dibromoethane
- 2-Hexanone
- Ethylbenzene

Positive and non-detect results for the above analytes were qualified as estimated (J/UJ) in sample 828131A-SS1302. Qualified results are summarized in Table 3 with validation reason code IS-L.

Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported by the laboratory. TICs being reported as final results in samples are presented in Table 4. If a sample is not listed, no TICs were reported in the sample, or the TICs were removed as blank contaminants or artifacts of the GC/MS instrument system.

Data Reporting

The electronic data deliverable (EDD) contained two sets of results for sample 828131A-SS1402. Reported results were compared to the Form 1 and associated raw data to determine the appropriate set of results to select for final reporting.

A positive detection of 1,2,4-trimethylbenzene (1.0 J μ g/m³) was reported on the Form 1 for sample 828131A-SS1402, while this compound was reported non-detected in the EDD. In addition, incorrect reporting limits for 1,2,4-trimethylbenzene were reported on the Form 1 for sample 828131A-SS1402. Raw data were reviewed to determine that the positive detection of 1.0 J μ g/m³ (reporting limit 1.5 μ g/m³) was the correct result to report for 1,2,4-trimethylbenzene in sample 828131A-SS1402. The Form 1 and EDD were manually corrected during validation.

Reference:

New York State Depar tment of Environ mental Conservation (NYSDEC), 2005. "Analytical Ser vices Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

Data Validator: Julie Ricardi

Date: 05/05/2011

Reviewed by Chris Ricardi, NRCC-EAC Quality Assurance Officer

Date: 5/6/11

TABLE 1 SUMMARY OF SAMPLES AND ANALYTICAL METHODS DATA USABILITY SUMMARY REPORT MARCH 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

						Class	VOC
					Analys	sis Method	EPA TO-15
						Fraction	Т
SDG	Media	Location	Lab ID	Sample ID	Sample Date	QC Code	
E1103006	AIR	AA-12	Enalytic	828131A-AA1202	3/16/2011	FS	Х
E1103006	AIR	AA-14	Enalytic	828131A-AA1402	3/24/2011	FS	X
E1103006	AIR	IA-12	Enalytic	828131A-IA1202	3/16/2011	FS	Х
E1103006	AIR	IA-13	Enalytic	828131A-IA1302	3/16/2011	FS	Х
E1103006	AIR	IA-14	Enalytic	828131A-IA1402	3/24/2011	FS	X
E1103006	SV	SS-12	Enalytic	828131A-SS1202	3/16/2011	FS	Х
E1103006	SV	SS-13	Enalytic	828131A-SS1302	3/16/2011	FS	Х
E1103006	SV	SS-14	Enalytic	828131A-SS1402	3/24/2011	FS	Х

Page 1 of 1

FOOTNOTES:

QC CODE

FS = field sample

Media

SV = soil vapor

TABLE 2 SUMMARY OF ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT MARCH 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

		Location	AA-12	AA-14	IA-12	IA-13
		Sample Date	3/16/2011	3/24/2011	3/16/2011	3/16/2011
		Sample ID	828131A-AA1202	828131A-AA1402	828131A-IA1202	828131A-IA1302
		Qc Code	FS	FS	FS	FS
Analysis	Parameter	Units	Result Qualifier		Result Qualifier	Result Qualifier
EPA TO-15	Tetrachloroethene	ug/m3	1.5 J	1.4 UJ	6.2 J	29 J
EPA TO-15	Trichloroethene	ug/m3	1.0 U	0.22 UJ	7.9 J	42 J
EPA TO-15	1,1,1-Trichloroethane	ug/m3	1.1 U	1.1 U	1.6 J	1.1 U
EPA TO-15	1,1,2,2-Tetrachloroethane	ug/m3	1.4 UJ	1.4 UJ	1.4 UJ	1.4 UJ
EPA TO-15	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.6 U	1.6 U	1.6 U	1.6
EPA TO-15	1.1.2-Trichloroethane	ug/m3	1.1 U	1.1 U	1.1 U	1.1 U
EPA TO-15	1,1-Dichloroethane	ug/m3	0.82 U	0.82 U	0.82 U	0.82 U
EPA TO-15	1,1-Dichloroethene	ug/m3	0.81 U	0.81 U	0.81 U	0.81 U
EPA TO-15	1,2,4-Trichlorobenzene	ug/m3	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ
EPA TO-15	1,2,4-Trimethylbenzene	ug/m3	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ
EPA TO-15	1,2-Dibromoethane	ug/m3	1.6 U	1.6 U	1.6 U	1.6 U
EPA TO-15	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1.4 U	1.4 U	1.4 U	1.4 U
EPA TO-15	1,2-Dichlorobenzene	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
EPA TO-15	1,2-Dichloroethane	ug/m3	0.82 U	0.82 U	0.82 U	0.82 U
EPA TO-15	1,2-Dichloropropane	ug/m3	0.94 U	0.94 U	0.94 U	0.94 U
EPA TO-15	1,3,5-Trimethylbenzene	ug/m3	1 UJ	1 UJ	1 UJ	1.3 J
EPA TO-15	1,3-Butadiene	ug/m3	0.45 U	0.45 U	0.45 U	0.45 U
EPA TO-15	1,3-Dichlorobenzene	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
EPA TO-15	1,4-Dichlorobenzene	ug/m3	1.2 UJ	1.2 UJ	3.3 J	170 J
EPA TO-15	1,4-Dioxane	ug/m3	1.5 UJ	1.5 UJ	1.5 UJ	1.5 UJ
EPA TO-15	2-Butanone	ug/m3	1.8 J	0.6 UJ	2.6 J	3.4 J
EPA TO-15	2-Hexanone	ug/m3	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
EPA TO-15	2-Propanol	ug/m3	2 J	1 J	13	32
EPA TO-15	4-Ethyltoluene	ug/m3	1 UJ	1 UJ	1 UJ	1.1 J
EPA TO-15	4-Methyl-2-pentanone	ug/m3	0.83 UJ	0.83 UJ	0.83 UJ	0.96 J
EPA TO-15	Acetone	ug/m3	9.7 U	8.7 U	27	22
EPA TO-15 EPA TO-15	Benzene Benzyl chloride	ug/m3	0.88	0.65 J	1 1.1 UJ	1.2 1.1 J
EPA TO-15	Bromodichloromethane	ug/m3 ug/m3	1.1 UJ 1.4 U	1.1 UJ 1.4 U	1.1 UJ 1.4 U	1.1 J 1.4 U
EPA TO-15	Bromoform	ug/m3	2.1 UJ	2.1 UJ	2.1 UJ	2.1 UJ
EPA TO-15	Bromomethane	ug/m3	0.79 U	0.79 U	0.79 U	0.79 U
EPA TO-15	Carbon disulfide	ug/m3	0.63 U	0.63 U	0.63 U	0.63 U
EPA TO-15	Carbon tetrachloride	ug/m3	0.26 U	0.26 U	0.26 U	1.3
EPA TO-15	Chlorobenzene	ug/m3	0.94 U	0.94 U	0.94 U	0.94 U
EPA TO-15	Chlorodibromomethane	ug/m3	1.7 U	1.7 U	1.7 U	1.7 U
EPA TO-15	Chloroethane	ug/m3	0.54 U	0.54 U	0.54 U	0.54 U
EPA TO-15	Chloroform	ug/m3	0.99 U	0.99 U	0.99 U	0.99 U
EPA TO-15	Chloromethane	ug/m3	1.1	1.2	1.2	1.2
EPA TO-15	Cis-1,2-Dichloroethene	ug/m3	0.85 J	0.81 U	12	43
EPA TO-15	cis-1,3-Dichloropropene	ug/m3	0.92 U	0.92 U	0.92 U	0.92 U
EPA TO-15	Cyclohexane	ug/m3	0.7 U	0.7 U	0.7 U	0.7 U
EPA TO-15	Dichlorodifluoromethane	ug/m3	2.5	2.7	2.5	2.7
EPA TO-15	Ethyl benzene	ug/m3	0.88 U	0.88 U	1.9	1.4 J
EPA TO-15	Heptane	ug/m3	0.83 U	0.83 U	2.2	1.7 J
EPA TO-15	Hexachlorobutadiene	ug/m3	2.2 UJ	2.2 UJ	2.2 UJ	2.2 UJ
EPA TO-15	Hexane	ug/m3	0.72 U	0.72 U	0.72 U	0.72 U
EPA TO-15	Methyl Tertbutyl Ether	ug/m3	0.73 U	0.73 U	0.73 U	0.73 U
EPA TO-15	Methylene chloride	ug/m3	0.71 U	0.71 U	0.71 U	1 J
EPA TO-15	Styrene	ug/m3	1.3 U	1.3 U	1.3 U	1.3
EPA TO-15	Tetrahydrofuran	ug/m3	0.6 U	0.6 U	0.6 U	0.69
EPA TO-15	Toluene	ug/m3	1.3	2.6	15	6.7
EPA TO-15	trans-1,2-Dichloroethene	ug/m3	0.81 U	0.81 U	0.81 U	0.81 U
EPA TO-15	trans-1,3-Dichloropropene	ug/m3	0.92 U	0.92 U	0.92 U	0.92 U
EPA TO-15	Trichlorofluoromethane	ug/m3	1.6	1.5	1.5	2
EPA TO-15	Vinyl acetate	ug/m3	0.72 UJ	0.72 UJ	0.72 UJ	0.72 UJ
EPA TO-15	Vinyl chloride	ug/m3	0.52 U	0.52 U	0.86	2.1
EPA TO 15	Xylene, m/p	ug/m3	2.6 U	2.6 U	4.6	2.7
EPA TO-15 Notes:	Xylene, o	ug/m3	0.88 U	0.88 U	1.5 J	1.1 J

Notes:

ug/m3 = microgram per cubic meter

Qualifiers-

U = not detected at the reporting limit

J = estimated concentration

QC Code-

FS = Field Sample

TABLE 2 SUMMARY OF ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT MARCH 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

				22.12	22.12	22.11
		Location	IA-14	SS-12	SS-13	SS-14
		Sample Date	3/24/2011	3/16/2011	3/16/2011	3/24/2011
		Sample ID	828131A-IA1402	828131A-SS1202	828131A-SS1302	828131A-SS1402
A		Qc Code	FS	FS Contract	FS Contract	FS
	Parameter	Units	Result Qualifier		Result Qualifier	Result Qualifier
	etrachloroethene	ug/m3	1.4 UJ	610 J	21000 J	16 J
	richloroethene	ug/m3	0.22 UJ	3000 J	28000 J	17 J
	,1,1-Trichloroethane	ug/m3	3.4	1.1 U	1.1 U	2.7
	,1,2,2-Tetrachloroethane	ug/m3	1.4 UJ	1.4 UJ	1.4 UJ	1.4 UJ
	,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.6 U	1.6 U	1.6 U	1.6 U
	,1,2-Trichloroethane	ug/m3	1.1 U	1.1 U	1.1 UJ	1.1 U
	,1-Dichloroethane	ug/m3	0.82 U	0.82 U	0.82 U	0.82 U
	,1-Dichloroethene ,2,4-Trichlorobenzene	ug/m3	0.81 U 1.5 UJ	30 1.5 UJ	130 1.5 UJ	0.81 U 1.5 UJ
		ug/m3	1.5 UJ	2.3 J	2.1 J	1.5 UJ 1 J
	,2,4-Trimethylbenzene ,2-Dibromoethane	ug/m3 ug/m3	1.5 UJ 1.6 U	2.3 J 1.6 U	2.1 J 1.6 UJ	1.6 U
	,2-Dibromoethane ,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1.6 U 1.4 U	1.6 U 1.4 U	1.6 UJ 1.4 U	1.6 U 1.4 U
	,2-Dichlorobenzene	ug/m3	1.4 U 1.2 UJ	1.4 U 1.2 UJ	1.4 U 1.2 UJ	1.4 U 1.2 UJ
	,2-Dichloroethane	ug/m3	0.82 U	0.82 U	0.82 U	0.82 U
	,2-Dichloropropane	ug/m3	0.82 U 0.94 U	0.82 U 0.94 U	0.82 U 0.94 UJ	0.82 U 0.94 U
	,3,5-Trimethylbenzene	ug/m3	1.1 J	5.8 J	4.7 J	0.94 U 2 J
	,3-Butadiene	ug/m3	0.45 U	0.45 U	4.7 J 0.45 U	0.45 U
	,3-Dichlorobenzene	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
	.4-Dichlorobenzene	ug/m3	2.1 J	1.2 UJ	5.4 J	2.6 J
	,4-Dioxane	ug/m3	1.5 UJ	0.73 UJ	0.73 UJ	1.5 UJ
	2-Butanone	ug/m3	0.6 UJ	2.1 J	3.8 J	4.2 J
	2-Hexanone	ug/m3	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
	2-Propanol	ug/m3	12	5.8 J	5 U	23
	-Ethyltoluene	ug/m3	1 UJ	2.1 J	2.4 J	1.5 J
	-Methyl-2-pentanone	ug/m3	0.83 UJ	0.83 UJ	0.83 UJ	0.83 UJ
	Acetone	ug/m3	16	16	18	16
	Benzene	ug/m3	0.94	1.6	3.6	1.1
	Benzyl chloride	ug/m3	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
	Bromodichloromethane	ug/m3	1.4 U	1.4 U	1.4 UJ	1.4 U
	Bromoform	ug/m3	2.1 UJ	2.1 UJ	2.1 UJ	2.1 UJ
EPA TO-15 B	Bromomethane	ug/m3	0.79 U	0.79 U	0.79 U	0.79 U
EPA TO-15	Carbon disulfide	ug/m3	0.63 U	1.9	5	1.4
EPA TO-15	Carbon tetrachloride	ug/m3	0.26 U	1.3 U	1.3 U	0.26 U
EPA TO-15	Chlorobenzene	ug/m3	0.94 U	0.94 U	1.3	0.94 U
EPA TO-15	Chlorodibromomethane	ug/m3	1.7 U	1.7 U	1.7 UJ	1.7 U
EPA TO-15	Chloroethane	ug/m3	0.54 U	0.54 U	0.54 U	0.54 U
EPA TO-15	Chloroform	ug/m3	0.99 U	0.99 U	0.99 U	0.99 U
EPA TO-15	Chloromethane	ug/m3	0.42 U	0.42 U	0.42 U	0.42 U
EPA TO-15	Cis-1,2-Dichloroethene	ug/m3	0.81 U	8800	22000	17
	sis-1,3-Dichloropropene	ug/m3	0.92 U	0.92 U	0.92 UJ	0.92 U
	Cyclohexane	ug/m3	8.7	1.5	5.9	1.2
	Dichlorodifluoromethane	ug/m3	1 U	3.8	10	46
	Ethyl benzene	ug/m3	0.88 U	1.4 J	4.1 J	0.88 U
	leptane	ug/m3	3.2	4.1	14	2.6
	lexachlorobutadiene	ug/m3	2.2 UJ	2.2 UJ	2.2 UJ	2.2 UJ
	lexane	ug/m3	5.7	3	11	2.2
	Methyl Tertbutyl Ether	ug/m3	0.73 U	0.73 U	0.73 U	0.73 U
	Methylene chloride	ug/m3	0.99 J	0.71 U	0.71 U	0.71 U
	Styrene	ug/m3	1.3 U	0.87 U	1.3	1.3 U
	etrahydrofuran	ug/m3	0.6 U	0.6 U	0.6 U	0.6 U
	oluene	ug/m3	61	6.9	35 J	5.4
	rans-1,2-Dichloroethene	ug/m3	0.81 U	110	260	0.81 U
	rans-1,3-Dichloropropene	ug/m3	0.92 U	0.92 U	0.92 UJ	0.92 U
	richlorofluoromethane	ug/m3	1.7	1.4	1.6	1.5
	/inyl acetate	ug/m3	0.72 UJ	0.72 UJ	0.72 UJ	0.72 UJ
	/inyl chloride	ug/m3	0.52 U	410	2000	1.9
	(ylene, m/p	ug/m3	2.6 U	5.6	11	3.7
EPA TO-15 X Notes:	(ylene, o	ug/m3	0.88 J	2	3.5	1.2 J

Notes:

ug/m3 = microgram per cubic meter **Qualifiers-**

U = not detected at the reporting limit

J = estimated concentration

QC Code-

FS = Field Sample

TABLE 3
SUMMARY OF DATA VALIDATION ACTIONS
DATA USABILITY SUMMARY REPORT
MARCH 2011 AIR SAMPLING PROGRAM
OFF-SITE CARRIAGE CLEANERS SITE
PENFIELD, NEW YORK

						Lab					
		Analysis			Lab	Qualifie	Validated	Validation		Result	1
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	Acetone	9.7		9.7	U	BL1	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Acetone	8.7		8.7	U	BL1	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,1,2,2-Tetrachloroethane	1.4	U	1.4	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,4-Dioxane	1.5	U	1.5	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,4-Dioxane	1.5	U	1.5	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,4-Dioxane	1.5	U	1.5	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,4-Dioxane	1.5	U	1.5	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,4-Dioxane	1.5	U	1.5	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,4-Dioxane	0.73	U	0.73	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,4-Dioxane	1.5	U	1.5	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	2-Butanone	1.8		1.8	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	2-Butanone	0.6	U	0.6	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	2-Butanone	2.6		2.6	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	2-Butanone	3.4		3.4	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	2-Butanone	0.6	U	0.6	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	2-Butanone	2.1		2.1	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	2-Butanone	3.8		3.8	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	2-Butanone	4.2		4.2	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	2-Hexanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	4-Ethyltoluene	1	U	1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	4-Ethyltoluene	1	U	1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	4-Ethyltoluene	1	U	1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	4-Ethyltoluene	1	U	1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	4-Ethyltoluene	2.1		2.1	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	4-Ethyltoluene	2.4		2.4	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	4-Methyl-2-pentanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	4-Methyl-2-pentanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	4-Methyl-2-pentanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	4-Methyl-2-pentanone	0.96		0.96	J	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	4-Methyl-2-pentanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	4-Methyl-2-pentanone	0.83	U	0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	4-Methyl-2-pentanone	0.83		0.83	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic

TABLE 3
SUMMARY OF DATA VALIDATION ACTIONS
DATA USABILITY SUMMARY REPORT
MARCH 2011 AIR SAMPLING PROGRAM
OFF-SITE CARRIAGE CLEANERS SITE
PENFIELD, NEW YORK

						Lab					
		Analysis			Lab	Qualifie	Validated	Validation		Result	
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	Benzyl chloride	1.1	U	1.1	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	Vinyl acetate	0.72	U	0.72	UJ	CCV%D	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,4-Dioxane	0.73	U	0.73	UJ	CCV%D, IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	2-Hexanone	0.83	U	0.83	UJ	CCV%D, IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	4-Methyl-2-pentanone	0.83	-	0.83		CCV%D, IS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,2,4-Trimethylbenzene	1.5	U	1.5	UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,2,4-Trimethylbenzene	1.5			UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,2,4-Trimethylbenzene	1.5			UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,2,4-Trimethylbenzene	1.5			UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,2,4-Trimethylbenzene	1.5			UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,2,4-Trimethylbenzene	2.3		2.3		CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,2,4-Trimethylbenzene	2.1		2.1		CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,2,4-Trimethylbenzene	1.5			J	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,3,5-Trimethylbenzene		Ü		UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,3,5-Trimethylbenzene	1	Ü		UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,3,5-Trimethylbenzene	1	Ü		UJ	CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,3,5-Trimethylbenzene	5.8	_	5.8		CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,3,5-Trimethylbenzene	4.7	-	4.7		CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	4-Ethyltoluene	1.1		1.1		CCV%D, QLS-H	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	4-Ethyltoluene	1.5		1.5		CCV%D, QLS-H	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Benzyl chloride	1.1	-	1.1		CCV%D, QLS-H	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,3,5-Trimethylbenzene	1.3		1.3		CCV%D,QLS-H, LCS-L	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,3,5-Trimethylbenzene	1.1		1.1		CCV%D,QLS-H, LCS-L	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,3,5-Trimethylbenzene	2			J	CCV%D,QLS-H, LCS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-SS1202	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1302	Bromoform	2.1	-		UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1402	Bromoform	2.1			UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-AA1402	Tetrachloroethene	1.4	•		UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-IA1202	Tetrachloroethene	6.2		6.2		ICVRSD	ug/m3	Enalytic
E1103006 E1103006	E1103006-004A E1103006-002A	EPA TO-15	828131A-IA1302	Tetrachloroethene	29		29		ICVRSD	ug/m3	Enalytic
E1103006 E1103006	E1103006-002A	EPA TO-15	828131A-IA1402	Tetrachloroethene	1.4			UJ	ICVRSD	ug/m3	Enalytic

TABLE 3
SUMMARY OF DATA VALIDATION ACTIONS
DATA USABILITY SUMMARY REPORT
MARCH 2011 AIR SAMPLING PROGRAM
OFF-SITE CARRIAGE CLEANERS SITE
PENFIELD, NEW YORK

						Lab					1
		Analysis			Lab	Qualifie	Validated	Validation		Result	
SDG	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	Tetrachloroethene	610		610	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Tetrachloroethene	21000		21,000	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	Tetrachloroethene	16		16	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	Trichloroethene	1.1		1.1	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Trichloroethene	0.22	U	0.22	UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	Trichloroethene	7.9		7.9	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Trichloroethene	42		42	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Trichloroethene	0.22	U	0.22	UJ	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	Trichloroethene	3000		3,000	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Trichloroethene	28000		28,000	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	Trichloroethene	17		17	J	ICVRSD	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	Hexachlorobutadiene	2.2	U	2.2	UJ	ICVRSD, CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Hexachlorobutadiene	2.2	U	2.2	UJ	ICVRSD, CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	Hexachlorobutadiene	2.2	U	2.2	UJ	ICVRSD, CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Hexachlorobutadiene	2.2	U	2.2	UJ	ICVRSD, CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Hexachlorobutadiene	2.2			UJ	ICVRSD, CCV%D, LCS-L	.ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	Hexachlorobutadiene	2.2	U		UJ	ICVRSD, CCV%D, LCS-L	.ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Hexachlorobutadiene	2.2	-		UJ	ICVRSD, CCV%D, LCS-L		Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	Hexachlorobutadiene	2.2			UJ	ICVRSD, CCV%D, LCS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,2-Dichlorobenzene	1.2	<u> </u>		UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,2-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,3-Dichlorobenzene	1.2	•		UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,3-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,4-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,4-Dichlorobenzene	1.2			UJ	ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,4-Dichlorobenzene	3.3		3.3		ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,4-Dichlorobenzene	170		170		ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,4-Dichlorobenzene	1.2		1.2		ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1302	1,4-Dichlorobenzene	5.4	-	5.4		ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1402	1,4-Dichlorobenzene	2.6	-	2.6		ICVRSD, LCS-L	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-AA1202	Tetrachloroethene	1.5		1.5		ICVRSD, QLS-H	ug/m3	Enalytic
E1103006 E1103006	E1103006-005A	EPA TO-15	828131A-IA1402	1,4-Dichlorobenzene	2.1		2.1		ICVRSD, QLS-H, LCS-L	ug/m3	Enalytic
E1103006 E1103006	E1103006-007A	EPA TO-15	828131A-SS1302	1,1,2-Trichloroethane	1.1	-		UJ	IS-L	ug/m3	Enalytic
E1103006 E1103006		EPA TO-15		- ' '	1.1			UJ	IS-L		
E1103006 E1103006	E1103006-001A E1103006-001A	EPA TO-15	828131A-SS1302 828131A-SS1302	1,2-Dibromoethane 1,2-Dichloropropane	0.94		0.94		IS-L	ug/m3 ug/m3	Enalytic Enalytic

TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS DATA USABILITY SUMMARY REPORT MARCH 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

						Lab					
		Analysis			Lab	Qualifie	Validated	Validation		Result	
	Lab Sample Id	Method	Field Sample ID	Paramater Name	Result	r	Result	Qualifier	Val Reason Code	Units	Lab Id
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Bromodichloromethane	1.4		1.4		IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Chlorodibromomethane	1.7	U	1.7		IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	cis-1,3-Dichloropropene	0.92	U	0.92	UJ	IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Ethyl benzene	4.1		4.1	J	IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	Toluene	35		35	J	IS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	trans-1,3-Dichloropropene	0.92	J	0.92	UJ	IS-L	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	1,2,4-Trichlorobenzene	1.5	J	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	1,2,4-Trichlorobenzene	1.5	J	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-001A	EPA TO-15	828131A-SS1302	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	1,2,4-Trichlorobenzene	1.5	U	1.5	UJ	LCS-L	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	1,1,1-Trichloroethane	1.6		1.6	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	2-Propanol	2	J	2	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	2-Propanol	1	J	1	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	2-Propanol	5.8		5.8	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-008A	EPA TO-15	828131A-AA1402	Benzene	0.65		0.65	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-005A	EPA TO-15	828131A-AA1202	cis-1,2-Dichloroethene	0.85		0.85	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Ethyl benzene	1.4		1.4	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-003A	EPA TO-15	828131A-SS1202	Ethyl benzene	1.4		1.4		QLS-H	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Heptane	1.7		1.7	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Methylene chloride	1		1	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Methylene chloride	0.99		0.99	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-004A	EPA TO-15	828131A-IA1202	Xylene, o	1.5		1.5	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-002A	EPA TO-15	828131A-IA1302	Xylene, o	1.1		1.1	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-007A	EPA TO-15	828131A-IA1402	Xylene, o	0.88		0.88	J	QLS-H	ug/m3	Enalytic
E1103006	E1103006-006A	EPA TO-15	828131A-SS1402	Xylene, o	1.2		1.2	J	QLS-H	ug/m3	Enalytic

Notes:

Validation Qualifiers-

J = estimated concentration

U = not detected

Validation Reason Codes-

BL1 = method blank contamination

ICVRSD = initial calibration relative standard deviation exceeds control limit

CCV%D = continuing calibration percent difference exceeds control limit

QLS-H = quantitation limit standard recovery above control limits

LCS-L = laboratory control sample recovery below control limits

IS-L = internal standard recovery below control limits

TABLE 4 SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS DATA USABILITY SUMMARY REPORT MARCH 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

SDG	Sample ID	Lab Sample ID	CAS Number	Compound	Final Result (ppbv)	Qualifier	Analysis Date
E1103006	828131A-IA1302	E1103006-002A		Ethyl alcohol	2.5	JN	03/29/2011
E1103006	828131A-IA1302	E1103006-002A	66-25-1	Hexanal	1.8	JN	03/29/2011
E1103006	828131A-IA1302	E1103006-002A		unknown	1.5	JN	03/29/2011
E1103006	828131A-IA1202	E1103006-004A		Ethyl alcohol	3.4	JN	03/29/2011
E1103006	828131A-SS1402	E1103006-006A		Butane, 2-methyl-	1.4	JN	03/29/2011
E1103006	828131A-SS1402	E1103006-006A		Ethane, 2-chloro-1,1,1,2-tetrafluo	17	JN	03/29/2011
E1103006	828131A-SS1402	E1103006-006A		Propane	5.8	JN	03/29/2011
E1103006	828131A-SS1402	E1103006-006A		unknown	11	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		Difluorochloromethane	60	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		Hexane, 2-methyl-	2.7	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		Propane	130	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		unknown (4.537)	8.7	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		unknown (5.505)	16	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		unknown hydrocarbon (4.473)	7.1	JN	03/29/2011
E1103006	828131A-IA1402	E1103006-007A		unknown hydrocarbon (4.611)	1.8	JN	03/29/2011
E1103006	828131A-AA1402	E1103006-008A		unknown	2.4	JN	03/29/2011

Prepared by: BJS 05/04/2011

Checked by: JAR 05/05/2011

NOTES:

Qualifiers

JN = estimated value with presumptive evidence that the compound is present in the sample

Analytical Report

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID B1103006-001A Client Sample ID 828131A-SS1302

Collection Date: 3/16/2011

Tag # 313/3953

Matrix AIR

79-00-5 1,1,2-Trichloroethane 1 29-Mar-11 0,20 ND 1,10 ND 76-13-1 1,1,2-Triffluoro-1,2,2-Trichloroethane (Freon 11: 1 29-Mar-11 0,20 ND 1,80 ND 75-34-3 1,1-Dichloroethane 1 29-Mar-11 0,20 ND 0,82 ND ND 75-35-4 1,1-Dichloroethane 1 29-Mar-11 0,20 ND 0,81 130 130 120-82-1 1,2,4-Trichlorobenzene 1 29-Mar-11 0,20 ND 1,50 ND 0 0 2,1 0 0 0 2,1 0									
71-58-6 1,1,1-Firlohrosthane 1 29-Mar-11 0,20 ND 1,10 ND 79-34-6 1,1,2,2-Fietrachloroethane 1 29-Mar-11 0,20 ND 1,140 ND 79-00-5 1,1,2-Fiflipror-1,2,2-Firlohroethane 1 29-Mar-11 0,20 ND 1,10 ND 76-13-1 1,1,2-Fiflipror-1,2,2-Firlohroethane (Freon 11: 1 29-Mar-11 0,20 ND 0,82 ND 0,83 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,84 ND 0,85 ND	TO-15(S	G+TICS)	Dilution	Date	pp	bV	Data	បច្ចុ	/m3
78-34-5	CAS#	Target Compound List	Factor	Analyzed	PQL	Result	ateililau D	PQL	Result
79-00-5	71-55-6	1,1,1-Trichloroethane	1	29-Mar-11	0,20	ND		1,10	ND
76-13-1 1,1,2-Triffluoro-1,2,2-Trichloroethane (Freon 11: 1 29-Mar-11 0.20 ND 0.82 ND 75-36-4 1,1-Dichloroethane 1 29-Mar-11 0.20 ND 0.82 ND 75-36-4 1,1-Dichloroethane 1 29-Mar-11 0.20 ND 1.50 ND 1.50 ND 75-36-4 1,1-Dichloroethane 1 29-Mar-11 0.20 ND 1.50 ND 75-36-6 1,2,4-Trimethylbenzene 1 29-Mar-11 0.20 ND 1.50 ND 75-63-6 1,2,4-Trimethylbenzene 1 29-Mar-11 0.20 ND 1.60 ND 75-64-2 1,2-Dichloro-1,1,2,2-tetraftuoroethane (Freon-1 1 29-Mar-11 0.20 ND 1.60 ND 75-64-2 1,2-Dichloroethane (Freon-1 1 29-Mar-11 0.20 ND 1	79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0,20	ND		1.40	C DN
76-34-3 1,1-Dichloroethane 1 29-Mar-11 0.20 ND 0.82 ND 75-36-4 1,1-Dichloroethane 1 29-Mar-11 0.20 31 0.81 130 120-82-1 1,2,4-Trichlorobenzene 1 29-Mar-11 0.20 ND 1.50 ND 95-63-6 1,2,4-Trichlorobenzene 1 29-Mar-11 0.20 0.42 1.00 2.1 1 106-93-4 1,2-Dichlorobanzene 1 29-Mar-11 0.20 ND 1.60 ND 76-14-2 1.2-Dichlorobenzene 1 29-Mar-11 0.20 ND 1.40 ND 95-60-1 1,2-Dichlorobenzene 1 29-Mar-11 0.20 ND 1.20 ND 0.82 ND 78-87-5 1,2-Dichlorobenzene 1 29-Mar-11 0.20 ND 0.94 ND 79-70 NB 0.94 ND 79-70 NB 1.3-Dichlorobenzene 1 29-Mar-11 0.20 ND 0.04 ND 79-70 NB 79	79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0.20	ND		1.10	ND J
75-36-4 1,1-Dichloroethene 1 29-Mar-11 0.20 31 0.81 130 120-82-1 1,2,4-Trimethylbenzene 1 29-Mar-11 0.20 ND 1.60 ND 7 95-83-6 1,2,4-Trimethylbenzene 1 29-Mar-11 0.20 ND 1.60 ND 7 1.60 ND	76-13-1	1,1,2-Trifluoro-1,2,2-Trichioroethane (Freon 11:	1	29-Mar-11	0.20	ND		1.60	ND
120-82-1	75-34-3	1,1-Dichloroethane	1	29-Mar-11	0.20	ND		0.82	ND
95-63-6 1,2,4-Trimethylbenzene 1 29-Mar-11 0,20 0,42 1,00 1,60 ND 76-14-2 1,2-Dibromoethane 1 29-Mar-11 0,20 ND 1,60 ND 76-14-2 1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1 1 29-Mar-11 0,20 ND 1,40 ND 70-65-60-1 1,2-Dichlorobenzene 1 29-Mar-11 0,20 ND 0,82 ND 1,2-Dichlorobenzene 1 29-Mar-11 0,20 ND 0,82 ND 1,2-Dichloropthane 1 29-Mar-11 0,20 ND 0,84 ND 78-87-5 1,2-Dichloropthane 1 29-Mar-11 0,20 ND 0,96 1,00 4,7 7 106-66-8 1,3,5-Trimethylbenzene 1 29-Mar-11 0,20 ND 0,44 ND 7106-69-0 1,3-Butadiane 1 29-Mar-11 0,20 ND 0,45 ND 0,45 ND 0,46 ND 0,47 ND 1,3-Dichlorobenzene 1 29-Mar-11 0,20 ND 0,45 ND 0,45 ND 0,46 ND 0	75-35-4	1,1-Dichloroethene	1	29-Mar-11	0.20	31		0.81	130
95-63-6 1,2,4-Trimethylbenzene 1 29-Mar-11 0,20 0,42 1,00 2,1 1,1 1,00 1,60 ND	120-82-1	1,2,4-Trichlorobenzene	1	29-Mar-11	0.20	ND		1.50	ND.T
108-93-4 1,2-Dibromosthane	95-63-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0,20	0.42		1,00	2.1 .5
76-14-2	106-93-4	1,2-Dibromoethane	1	29-Mar-11	0.20	ND		1.60	ND 5
107-06-2 1,2-Dichloroethane 1 29-Mar-11 0.20 ND 0,82 ND 78-87-5 1,2-Dichloropropane 1 29-Mar-11 0.20 ND 0.94 ND 70-9-10 108-67-8 1,35-Trimethylbenzene 1 29-Mar-11 0.20 0.96 1.00 4.7 70-108-67-8 1,3-Butadiane 1 29-Mar-11 0.20 ND 0.45 ND	76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0.20	ND		1.40	
78-87-5 1,2-Dichioropropane 1 29-Mar-11 0.20 ND 0.94 ND 7108-67-8 1,3,5-Trimethylbenzene 1 29-Mar-11 0.20 0.95 1,00 4.7 7108-98-0 1,3-Butadiene 1 29-Mar-11 0.20 ND 0.45 ND 541-73-1 1,3-Dichiorobenzene 1 29-Mar-11 0.20 ND 1.20 ND 54-57 1.20 ND 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 54-57 1.20 ND 3.88 37 1.20 ND 3.88 37 1.20 ND 3.88 37 1.20 ND 3.88 37 1.20	95-50-1	1,2-Diohlorobenzene	1	29-Mar-11	0.20	ND		1.20	T, dn
78-87-5 1,2-Dichioropropane 1 29-Mar-11 0.20 ND 0.94 ND 70-108-67-8 1,3,5-Trimethylbenzene 1 29-Mar-11 0.20 0.95 1,00 4.7 70-108-69-0 1,3-Butadiene 1 29-Mar-11 0.20 ND 0.48 ND 541-73-1 1,3-Dichiorobenzene 1 29-Mar-11 0.20 ND 1.20 ND 54-57 54-5	107-06-2	1,2-Dichloroethane	1	29-Mar-11	0.20	ND		0,82	_
108-67-8 1,3,5-Trimethylbenzene 1 29-Mar-11 0.20 0.96 1.00 4.7 J 106-99-0 1,3-Butadiene 1 29-Mar-11 0.20 ND 0.45 ND 0.45 ND 0.45 ND 0.46-73-1 1,3-Dichlorobenzene 1 29-Mar-11 0.20 ND 1.20 ND 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND J 1.20 ND 0.73 ND J 1.20 ND 0.73 ND J 1.20 ND 0.73 ND J 1.20 ND 0.73 ND J 1.20 ND 0.73 ND J 1.20 ND 0.88 ND J 1.20 ND 0.88 ND J 1.20 ND 0.88 ND J 1.20 ND 0.88 ND J 1.20 ND 0.88 ND J 1.20 ND 0.89 ND D 1.20 ND 0.89 ND	78-87-5	1,2-Dichioropropane	1	29-Mar-11	0.20	ND		0.94	ND. 7
108-99-0 1,3-Butadiene 1 29-Mar-11 0.20 ND 0.45 ND 541-73-1 1,3-Dichlorobenzene 1 29-Mar-11 0.20 ND 1.20 ND 5 108-46-7 1,4-Dichlorobenzene 1 29-Mar-11 0.20 ND 0.88 1.20 6.4 5 123-91-1 1,4-Dioxane 1 29-Mar-11 0.20 ND 0.73 ND 5 123-91-1 1,4-Dioxane 1 29-Mar-11 0.20 ND 0.88 ND 5 151-78-6 2-Hexanone (MEK) 1 29-Mar-11 0.20 ND 0.83 ND 5 151-78-6 2-Hexanone (*) 1 29-Mar-11 0.20 ND 0.83 ND 5 162-96-8 4-Elihyltouene (*) 1 29-Mar-11 0.20 ND 0.83 ND 5 108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 ND 0.83 ND 5 167-64-1 Acetone 1 29-Mar-11 0.20 ND 0.83 ND 5 167-64-1 Acetone 1 29-Mar-11 0.20 ND 0.65 3.6 100-44-7 Benzyl chloride 1 29-Mar-11 0.20 ND 1.10 ND 5 162-74 Bromodichloromethane 1 29-Mar-11 0.20 ND 1.40 ND 5 17-6-25-2 Bromoform 1 29-Mar-11 0.20 ND 1.40 ND 5 17-6-25-2 Bromoform 1 29-Mar-11 0.20 ND 0.79 ND 1.40 ND 5 168-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 0.63 5.0 66-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloromethane 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloromethane 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 0.48-7-3 Chloroform 1 29-Mar-11 0.20 ND 0.42 ND	108-67-8	1,3,5-Trimethylbenzene	1	29-Mar-11	0.20	0.95		1.00	
641-73-1 1,3-Dlchlorobenzene 1 29-Mar-11 0.20 ND 1.20 ND 5.4 J 106-46-7 1,4-Dlchlorobenzene 1 29-Mar-11 0.20 0.89 1.20 5.4 J 123-91-1 1,4-Dloxane 1 29-Mar-11 0.20 ND 0.73 ND J 76-93-3 2-Butanone (MEK) 1 29-Mar-11 0.20 ND 0.88 ND J 691-78-6 2-Hexanone (*) 1 29-Mar-11 0.20 ND 0.88 ND J 622-96-8 4-Ethyltoluene (*) 1 29-Mar-11 0.20 AD 0.83 ND J 108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 ND 0.83 ND J 67-64-1 Acetone 1 29-Mar-11 2.0 ND 0.83 ND J 76-24-1 Acetone 1 29-Mar-11 0.20 ND 1.10 ND J 76-27-4 Bromodlothloromethane 1 29-Mar-11 0.20	106-99-0	1,3-Butadiene	1	29-Mar-11	0.20	ND			
106-46-7 1,4-Dichlorobenzene 1 29-Mar-11 0.20 0.89 1,20 5.4 5.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	541-73-1	1,3-Dichlorobenzene	1	29-Mar-11	0.20	ND			
123-91-1 1,4-Dloxane 1 29-Mar-11 0.20 ND 0,73 ND 76-93-3 2-Butanone (MEK) 1 29-Mar-11 0.20 1.3 0.60 3.8 3 691-78-6 2-Hexanone (*) 1 29-Mar-11 0.20 ND 0.83 ND 3 622-96-8 4-Elhyltoluene (*) 1 29-Mar-11 0.20 0.49 1.00 2.4 3 108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 ND 0.83 ND 3 67-64-1 Acetone 1 29-Mar-11 0.20 ND 0.83 ND 3 71-43-2 Benzene 1 29-Mar-11 0.20 ND 1.10 ND 3 76-27-4 Bromodlohloromethane 1 29-Mar-11 0.20 ND 1.40 ND 3 76-25-2 Bromoform 1 29-Mar-11 0.20 ND 0.79 ND 76-15-0 Carbon disulfide 1 29-Mar-11 0.20 ND 0.63 5.0	108-46-7	1,4-Dichlorobenzene	1	29-Mar-11	0,20	98,0			
78-93-3 2-Butanone (MEK) 1 29-Mar-11 0.20 1.3 0.60 3.8 3 591-78-6 2-Hexanone (*) 1 29-Mar-11 0.20 ND 0.83 ND 7 622-96-8 4-Ethyltoluene (*) 1 29-Mar-11 0.20 0.49 1.00 2.4 7 108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 ND 0.83 ND 7 67-64-1 Acetone 1 29-Mar-11 0.20 ND 0.83 ND 7 74-43-2 Benzene 1 29-Mar-11 0.20 ND 1.10 ND 3 76-24-3 Benzyli chloride 1 29-Mar-11 0.20 ND 1.40 ND 3 76-27-4 Bromodichloromethane 1 29-Mar-11 0.20 ND 1.40 ND 3 76-25-2 Bromoferm 1 29-Mar-11 0.20 ND 0.79 ND 76-15-0 Carbon disulfide 1 29-Mar-11 0.20 ND 0.83 <t< td=""><td>123-91-1</td><td>1,4-Dloxane</td><td>1</td><td>29-Mar-11</td><td>0,20</td><td>ND</td><td></td><td></td><td></td></t<>	123-91-1	1,4-Dloxane	1	29-Mar-11	0,20	ND			
591-78-6 2-Hexanone (*) 1 29-Mar-11 0.20 NiD 0.83 NID J 622-96-8 4-Eihyltoluene (*) 1 29-Mar-11 0.20 0.49 1.00 2.4 J 108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 NID 0.83 NID J 67-64-1 Acetone 1 29-Mar-11 2.0 7.4 4.80 18 71-43-2 Benzene 1 29-Mar-11 0.20 NID 1.10 0.65 3.6 100-44-7 Benzyl chloride 1 29-Mar-11 0.20 NID 1.10 NID J 76-25-4 Bromodichloromethane 1 29-Mar-11 0.20 NID 1.40 NID J 76-25-2 Bromoferm 1 29-Mar-11 0.20 NID 0.79 NID 76-35-9 Bromomethane 1 29-Mar-11 0.20 NID 0.63 5.0 56-23-5 Carbon disulfide 1 29-Mar-11 0.20 NID 1.30 NID 108-90-7 Chlorobenzene 1 <td>78-93-3</td> <td>2-Butanone (MEK)</td> <td>1</td> <td>29-Mar-11</td> <td>0,20</td> <td>1.3</td> <td>•</td> <td></td> <td></td>	78-93-3	2-Butanone (MEK)	1	29-Mar-11	0,20	1.3	•		
622-96-8 4-Elhyltoluene (*) 1 29-Mar-11 0.20 0.49 1.00 2.4 J 108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 ND 0.83 ND J 67-64-1 Acetone 1 29-Mar-11 2.0 7.4 4.80 18 71-43-2 Benzene 1 29-Mar-11 0.20 ND 1.10 ND J 75-27-4 Bromodichloromethane 1 29-Mar-11 0.20 ND 1.40 ND J 75-25-2 Bromoform 1 29-Mar-11 0.20 ND 1.40 ND J 75-35-2 Bromomethane 1 29-Mar-11 0.20 ND 0.79 ND 75-15-0 Carbon disulfide 1 29-Mar-11 0.20 ND 0.79 ND 0.63 5.0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0.20 ND 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.59 ND 0.54 ND 0.74-87-3 Chloromethane 1 29-Mar-11 0.20 ND 0.99 ND 0.42 ND	591-78-6	2-Hexanone (*)	1	29-Mar-11	0.20				
108-10-1 4-Methyl-2-Pentanone (MIBK) 1 29-Mar-11 0.20 ND 0.83 ND 0.65 67-64-1 Acetone 1 29-Mar-11 2.0 7.4 4.80 18 71-43-2 Benzene 1 29-Mar-11 0.20 1.1 0.65 3.6 100-44-7 Benzyl chloride 1 29-Mar-11 0.20 ND 1.10 ND 76-27-4 Bromodlehloromethane 1 29-Mar-11 0.20 ND 1.40 ND 27 75-25-2 Bromomethane 1 29-Mar-11 0.20 ND 0.79 ND 74-83-9 Bromomethane 1 29-Mar-11 0.20 ND 0.79 ND 75-15-0 Carbon disulfide 1 29-Mar-11 0.20 ND 0.63 5.0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0.20 ND 0.54 ND 67-66-3 Chloroform 1	622-96-8	4-Elhyltoluene (*)	1	29-Mar-11	0.20	0.49			
67-64-1 Acetone 1 29-Mar-11 2.0 7.4 4.80 18 71-43-2 Benzene 1 29-Mar-11 0.20 1.1 0.65 3.6 100-44-7 Benzyl chloride 1 29-Mar-11 0.20 ND 1.10 ND 76-27-4 Bromodichloromethane 1 29-Mar-11 0.20 ND 1.40 ND 27 75-25-2 Bromoform 1 29-Mar-11 0.20 ND 0.79 ND 76-25-2 Bromomethane 1 29-Mar-11 0.20 ND 0.79 ND 0.79 ND 0.79 ND 0.79 ND 0.79 ND 0.79 ND 0.79 ND 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0 0.63 5.0	108-10-1	4-Methyl-2-Pentanone (MIBK)	1	29-Mar-11	0.20				
71-43-2 Benzene 1 29-Mar-11 0.20 1.1 0.65 3.6 100-44-7 Benzyl chloride 1 29-Mar-11 0.20 ND 1.10 ND 76-27-4 Bromodichloromethane 1 29-Mar-11 0.20 ND 1.40 ND 27 ND 75-25-2 Bromoform 1 29-Mar-11 0.20 ND 0.79 ND 76-16-0 ND 0.79 ND 0.79 ND 0.79 ND 76-15-0 Carbon disulfide 1 29-Mar-11 0.20 ND 1.30 ND 0.63 5.0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 1.30 ND 1.02 ND 1.30 ND 1.02 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND 1.30 ND	67-64-1	Acetone	1	29-Mar-11	2.0				
100-44-7 Benzyl chloride 1 29-Mar-11 0.20 ND 1.10 ND 75-27-4 Bromodichloromethane 1 29-Mar-11 0.20 ND 1.40 ND 75-25-2 Bromoform 1 29-Mar-11 0.20 ND 0.79 ND 75-25-2 ND 0.79 ND 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70	71-43-2	Benzene	1		0.20				
76-27-4 Bromodichloromethane 1 29-Mar-11 0,20 ND 1,40 ND 37 75-25-2 Bromoform 1 29-Mar-11 0,20 ND 2,10 ND 37 74-83-9 Bromomethane 1 29-Mar-11 0,20 ND 0,79 ND 75-15-0 Carbon disulfide 1 29-Mar-11 0,20 ND 0,83 5,0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0,20 ND 1,30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0,20 0,28 0,94 1,3 75-00-3 Chlorotethane 1 29-Mar-11 0,20 ND 0,54 ND 67-66-3 Chloroform 1 29-Mar-11 0,20 ND 0,99 ND 74-87-3 Chloromethane 1 29-Mar-11 0,20 ND 0,42 ND	100-44-7	Benzyl chloride	1	29-Mar-11	0.20				
75-25-2 Bromoform 1 29-Mar-11 0.20 ND 2.10 ND 74-83-9 Bromomethane 1 29-Mar-11 0.20 ND 0.79 ND 75-15-0 Carbon disulfide 1 29-Mar-11 0.20 1.6 0.63 5.0 5.0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0.20 0.28 0.94 1.3 0.54 ND 0.54 ND 0.54 ND 0.64 ND 0.64 ND 0.99 ND 0.42	75-27-4	Bromodlohloromethane	1	29-Mar-11	0,20	ND			_
74-83-9 Bromomethane 1 29-Mar-11 0.20 ND 0.79 ND 75-15-0 Carbon disulfide 1 29-Mar-11 0.20 1.6 0.63 5.0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0.20 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.54 ND 67-66-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 74-87-3 Chloromethane 1 29-Mar-11 0.20 ND 0.42 ND	75-25-2	Bromoform	1	29-Mar-11	0.20				
75-15-0 Carbon disulfide 1 29-Mar-11 0.20 1.6 0.63 5.0 56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0.20 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.54 ND 67-66-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 74-87-3 Chloromethane 1 29-Mar-11 0.20 ND 0.42 ND	74-83-9	Bromomethane	1	29-Mar-11	0.20	ND			
56-23-5 Carbon tetrachloride 1 29-Mar-11 0.20 ND 1.30 ND 108-90-7 Chlorobenzene 1 29-Mar-11 0.20 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.54 ND 67-66-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 74-87-3 Chloromethane 1 29-Mar-11 0.20 ND 0.42 ND	75-15-0	Carbon disulfide	1	29-Mar-11					
108-90-7 Chlorobenzene 1 29-Mar-11 0.20 0.28 0.94 1.3 75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.54 ND 67-66-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 74-87-3 Chloromethane 1 29-Mar-11 0.20 ND 0.42 ND	56-23-5	Carbon tetrachloride	1	29-Mar-11	0.20				
75-00-3 Chloroethane 1 29-Mar-11 0.20 ND 0.54 ND 67-66-3 Chloroform 1 29-Mar-11 0.20 ND 0.99 ND 74-87-3 Chloromethane 1 29-Mar-11 0.20 ND 0.42 ND	108-90-7	Chlorobenzene	1	29-Mar-11					
67-66-3 Chloroform 1 29-Mar-11 0,20 ND 0,99 ND 74-87-3 Chloromethane 1 29-Mar-11 0,20 ND 0,42 ND	75-00-3	Chloroethane	1	29-Mar-11					
74-87-3 Chloromethane 1 29-Маг-11 0,20 ND 0,42 ND	67-66-3	Chloroform	1	29-Mar-11					
	74-87-3	Chloromethane	1	29-Mar-11		•			
	156-59-2	cls-1,2-Dichloroethene	170						·=

Qualifiers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Deteoted at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 1 of 16

Date: 334 11

Analytical Report

Date 30-Mar-11

CLIENT	MACTEC Engineering and Consulting, I
~~~	THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF TH

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-001A

Client Sample ID 828131A-SS1302

Collection Date: 3/16/2011

Tag# 313/3953

Matrix AIR

			with Ad hour ways								
TO-15(SG	+TICS)	Dilution	Date	ppl	υV	Data	ug	/m3			
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result			
10081-01-5	cis-1,3-Dichloropropene	1	29-Mar-11	0,20	ND		0.92	ND.JT			
110-82-7	Cyclohexane	1	29-Mar-11	0,20	1.7		0.70	5,9			
124-48-1	Dibromochloromethane	1	29-Mar-11	0.20	ND		1.70	ND J			
75-71-8	Dichlorodifiuoromethane (Freon 12)	1	29-Mar-11	0,20	2.0		1.00	10			
100-41-4	Ethyl benzene	1	29-Mar-11	0.20	0.94		0.88	4.1 ${\cal J}$			
87-68-3	Hexachlorobutadiene	1	29-Mar-11	0.20	ND		2,20	ND J			
110-64-3	Hexane	1	29-Mar-11	0.20	2.9		0.72	11			
67-63-0	isopropanol	1	29-Mar-11	2.0	ND		5.00	ND			
1330-20-7	m,p-Xylene	1	29-Mar-11	0.20	2.6		0.88	11			
1634-04-4	Methyl tert-bulyl ether (MTBE)	1	29-Mar-11	0.20	ND		0.73	ND			
75-09-2	Methylene chloride	1	29-Mar-11	0,20	ND		0.71	ND			
142-82-5	n-Heptana	1	29-Mar-11	0.20	3.3		0.83	14			
95-47-6	o-Xylene	1	29-Mar-11	0.20	0.80		0.88	3,5			
100-42-5	Styrene	1	29-Mar-11	0,20	0.30		0.87	1.3			
127-18-4	Tetrachioroethene	170	29-Mar+11	34	3100		230,00	21000 🗇			
109-99-9	Tetrahydrofuran (*)	1	29-Mar-11	0.20	ND		0.60	ND			
108-88-3	Toluene	1	29-Mar-11	0.20	9.2		0,77	35 J			
156-60-5	trans-1,2-Dichloroethene	1	29-Mar-11	0.20	66		0.81	260			
10081-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0,20	ND		0.92	ND 🍮			
79-01-6	Trichloroethene	170	29-Mar-11	34	5200		190.00				
75-69-4	Trichlorofluoromethane (Freon 11)	1	29-Mar-11	0,20	0.28		1.10	1.6			
108-05-4	Vlnyl acetate	1	29-Mar-11	0,20	ŅD		0.72	C dn			
75-01-4	Vinyl ohloride	170	29-Mar-11	34	. 780		88,00	2000			
	Surr: Bromofluorobenzene	1	29-Mar-11	65-136	103		0.00	0			
	Surr: Bromofluorobenzene	170	29-Mar-11	65-136	101		0.00	0			
	TIC:-Cyclotetrasiloxane-octamethyl		29-Mar-1-1	0	10		0:00	0- 6~ 51			

GLIMS or hitact

#### Qualiflers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 2 of 16

Date: 3 30 11

## **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID B1103006-002A

Client Sample ID 828131A-IA1302

Collection Date: 3/16/2011

Tag # 292/3955

Matrix AIR

TO-15 (V	+TICS)	Dilution	Date	pp	bV	Data	ц	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-56-6	1,1,1-Trichloroethane	1	29-Mar-11	0,20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0.20	ND		1.40	ND J
79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0,20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	29-Mar-11	0.20	0,20		1.60	1.6
75-34-3	1,1-Dichloroethane	1	29-Mar-11	0.20	ND		0.82	ND
76-35-4	1,1-Diohloroethene	1	29-Mar-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	29-Mar-11	0.20	ND		1.50	ND J
95-63-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0,30	ND		1.50	ND J
106-93-4	1,2-Dibromoethane	1	29-Mar-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0,20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	29-Mar-11	0,20	ND		1.20	ТC ОИ
107-06-2	1,2-Dichiorcethane	1	29-Mar-11	0.20	ND		0.82	ND
78-87-6	1,2-Dichloropropane	1	29-Mar-11	0,20	ИD		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	29-Mar-11	0.20	0.27		1.00	1.3 🐠
106-99-0	1,3-Butadiene	1	29-Mar-11	0.20	ND		0.45	ND
641-73-1	1,3-D(oh)orobenzene	1	29-Mar-11	0.20	ND		1.20	ND J
105-45-7	1,4-Dichlorobenzene	1	29-Mar-11	0.20	27		1.20	170 🎝
123-91-1	1,4-Dloxane	1	29-Mar-11	0.40	ND		1.50	ND J
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0.20	1.1		0,60	3,4 5
691-78-B	2-Hexanone (*)	1	29-Mar-11	0,20	ND		0.83	Z DN
622-96-8	4-Ethyltoluene (*)	1	29-Mer-11	0.20	0.23		1.00	1.1 ブ
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	29-Mar-11	0,20	0.23		0.83	C 89.0
67-64-1	Acetone	1	29-Mar-11	2,0	9,2		4.80	22
71-43-2	Benzene	1	29-Mar-11	0,20	0.38		0.66	1.2 J
100-44-7	Benzyl chloride	1	29-Mar-11	0.20	0,20		1,10	1.1 二丁
75-27-4	Bromodiohloromethane	1	29-Mar-11	0.20	ND		1,40	ND
75-2 <b>5-2</b>	Bromoform	1	29-Mar-11	0.20	ND		2.10	ND J
74-83-9	Bromomethane	1	29-Mar-11	0.20	ND		0.79	ND
76-15-0	Carbon disulfide	1	29-Mar-11	0.20	ND		0.63	ND
56-23-5	Carbon tetrachloride	1	29-Mar-11	0.040	0.20		0.26	1.3
108-90-7	Chlorobenzene	1	29-Mar-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	29-Mar-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	29-Mar-11	0.20	ND		0,99	ND
74-87-3	Chloromethane	1	29-Mar-11	0.20	0.59		0.42	1,2
156-59-2	cis-1,2-Dichtorcethene	1	29-Mar-11	0,20	11	<del>.</del>	0.81	43

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 3 of 16

Date: 3 304

## Analytical Report

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-002A

Client Sample ID 828131A-IA1302

Collection Date: 3/16/2011

Tng# 292/3955

Matrix AIR

10-15 (VI	riics)	Dilution	Date	ppl	bV	Data	ug	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result
10061-01-5	cls-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0,92	ND
110-82-7	Cyclohexane	1	29-Mar-11	0.20	ND		0,70	ND
124-48-1	Dibromochloromethane	1	29-Mar-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	29-Mar-11	0.20	0.54		1.00	2.7
100-41-4	Ethyl benzene	1	29-Mar-11	0.20	0,32		0.88	1.4 🖱
37-68-3	Hexachtorobutadiene	1	29-Mar-11	0.20	ND		2,20	ND J
110-54- <b>3</b>	Hexane	1	29-Mar-11	0.20	ND		0.72	ND
37-63-0	Isopropanol	1	29-Mar-11	2.0	13		5.00	32
1330-20-7	m,p-Xylene	1	29-Mar-11	0.60	0.61		2.60	2.7
1834-04-4	Methyl tert-butyl ether (MTBE)	1	29-Mar-11	0.20	ND		0.73	ND
75-09-2	Methylene chloride	1	29-Mar-11	0.20	0.29		0.71	1.0 🍱
42-82-5	n-Heptane	1	29-Mar-11	0,20	0.42		0.83	1.7 .5
5-47-6	o-Xylene	1	29-Mar-11	0.20	0,25		0.88	1.1 T
100-42-5	Styrene	1	29-Mar-11	0.30	0.30		1.30	1.3
27-18-4	Tetrachloroethene	1	29-Mar-11	0.20	4.2		1.40	29 👉
09-99-9	Tetrahydrofuran (*)	1	29-Mar-11	0.20	0.23		0.60	0,69
08-88-3	Toluene	1	29-Mar-11	0.20	1.8		0.77	6.7
56-60-5	trans-1,2-Dichloroethene	1	29-Mer-11	0.20	ND		0.81	ND
0061-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0.92	ND
9-01-6	Trichlorcethene	1	29-Mar-11	0.040	7.6		0.22	42 5
<b>75-69-4</b>	Triohlorofiuoromethane (Freon 11)	1	29-Mar-11	0,20	0.35		1.10	2,0
08-05-4	Vinyl acetate	-1	29-Mar-11	0.20	,ND		0,72	T dn
<b>'5-01-4</b>	Vinyl chloride	1	29-Mar-11	0,20	0.80		0.62	2.1
	Surr: Bromofluorobenzene	1	29-Mar-11	65-135	95.9		0.00	0
	TIC: Cyclotetrasiloxane, octamethyl-		-29-Mar-11	0	10		0.00	6 GCIMS
	TIC: Cyclotrislloxane, hexamethyl-	1_	29-Mar-1-1-	0	2,8	<del></del>	0:00	-
	TIC: Ethyl alcohol	1	29-Mar-11	0	2.5		0.00	'n
	TIC: Hexanel	1	29-Mar-11	0	1,8		0.00	سم <del>ر</del> شم .
	TIG: unknown	1	29-Mar-11	0	1.6		0,00	0 213 H

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 4 of 16

Date: 3/30//

#### **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-003A

Client Sample ID 828131A-SS1202

Collection Date: 3/16/2011

Tag# 316/2665

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	pp	bV	Data	ug	/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflere	PQL	Result
71-65-6	1,1,1-Trichioroethane	1	29-Mar-11	0,20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0,20	ND		1.40	ND J
79-00-5	1,1,2-Trichtoroethane	1	29-Mar-11	0.20	ND		1.10	ND ON
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	29-Mar-11	0,20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	29-Mar-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	29-Mar-11	0,20	7.4		0.81	30
120-82-1	1,2,4-Trichlorobenzene	1	29-Mar-11	0.20	ND		1.50	C DN
95-63-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0.20	0.47		1.00	2.3 J
106-93-4	1,2-Dibromoethane	1	29-Mar-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0,20	ND		1.40	ND
95-60-1	1,2-Dichlorobenzene	1	29-Mar-11	0.20	ND		1,20	ND J
107-06-2	1,2-Dichlorosthane	1	29-Mar-11	0.20	ND		0,82	ND.
78-87-6	1,2-Diohioropropane	1	29-Mar-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	29-Mar-11	0.20	1.2		1.00	آل 5.8
106-99-0	1,3-Butadiene	1	29-Mar-11	0,20	ND		0.45	ND _
541-73-1	1,3-Dichlorobenzene	1	29-Mar-11	0.20	ND		1.20	ND J
108-46-7	1,4-Dichlorobenzene	1	29-Mar-11	0.20	ND		1,20	ND J
123-91-1	1,4-Dioxane	1	29-Mar-11	0.20	ND		0.73	ND J
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0,20	0.70		0,60	2.1 👉
591-7 <b>8-</b> 6	2-Hexanone (*)	1	29-Mar-11	0.20	ND		0.83	C DN
622-96-B	4-Ethyltoluene (*)	1	29-Mar-11	0.20	0.43		1.00	21 5
108-10-1	4-Methyl-2-Pentanona (MIBK)	1	29-Mar-11	0.20	ŅD		0,83	ND JT
67-64-1	Acetone	1	29-Mar-11	2.0	6.5		4,80	16
71-43-2	Benzene	1	29-Mar-11	0.20	0.50		0.65	1,6
100-44-7	Benzyl chloride	1	29-Mar-11	0.20	ND		1.10	ND J
75-27-4	Bromodiahloromethane	1	29-Mar-11	0.20	ND		1.40	ND
75-25-2	Bremoform	1	29-Mar-11	0.20	ND		2.10	JC DN
74-83-9	Bromomethane	1	29-Mar-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	29-Mar-11	0.20	0.60		0.63	1.9
<b>56-23-</b> 5	Carbon tetrachioride	1	29-Mar-11	0.20	ND		1.30	ND
108-90-7	Chlorobenzene	1	29-Mar-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	29-Mar-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	29-Mar-11	0,20	ND		0.99	ND
74-87-3	Chloromethane	1	29-Mar-11	0,20	ND		0.42	ND
156-59-2	cis-1,2-Diohloroethene	171	29-Mar-11	34	2200	_= .	140.00	8800

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Deteoted at the Reporting Limit
  - S Spike Recovery outside accepted recovery limits

Page 5 of 16

Approved By

Date: 33411

## **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-003A

Client Sample ID 828131A-SS1202

Collection Date: 3/16/2011

Tag # 316/2665

Matrix AIR

TO-15(SG	+TICS)	Dilution	Date	ppl	bV	Data	ug	/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result
10061-01-5	cls-1,3-Dichloropropane	1	29-Mar-11	0,20	ND .		0,92	ND
110-82-7	Cyclohexane	1	29-Mar-11	0.20	0.43		0.70	1.6
124-48-1	Dibromochloromethane	1	29-Mar-11	0.20	ND		1.70	ND
76-71-8	Dichlorodifluoromethane (Freon 12)	1	29-Mar-11	0.20	0.75		1.00	3,8
100-41-4	Ethyl benzene	1	29-Mar-11	0.20	0.31		0.88	1.4 🎵
87-68-3	Hexachlorobutadiene	1	29-Mar-11	0.20	ND		2.20	ND J
110-54-3	Нехапе	1	29-Mar-11	0,20	0.83		0.72	3.0
67-63-0	Isopropanol	1	29-Mar-11	2.0	2,3		5.00	5.8
1330-20-7	m,p-Xylene	1	29-Mar-11	0.20	1.3		0.88	6.6
1634-04-4	Methyl tert-butyl ether (MTBE)	1	29-Mar-11	0,20	ND		0.73	ND
75-09-2	Methylene chloride	1	29-Mar-11	0.20	ND		0.71	ND
142-82-5	π-Heptane	1	29-Mar-11	0.20	0.99		0.83	4.1
95-47-6	c-Xylene	1	29-Mar-11	0.20	0.45		0.88	2.0
100-42-5	Styrene	1	29-Mar-11	0.20	ND	•	0.87	ND
127-18-4	Tetrachloroethene	1	29-Mar-11	0.20	89		1.40	620 🍱
109-99-9	Tetrahydrofuran (*)	1	29-Mar-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	29-Mar-11	0.20	1.8		0.77	6.9
158-60-5	trans-1,2-Dichloroethene	1	29-Mar-11	0.20	28		0.81	110
10061-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0.92	ND
79-01 <b>-</b> 6	Triohioroethene	171	29-Mar-11	34	550		190,00	_
75- <del>6</del> 9-4	Trichloroflucromethane (Freon 11)	1	29-Mar-11	0,20	0.25		1.10	1.4
108-05-4	Vlnyl acetate	1	29-Mar-11	0.20	ND		0.72	ND J
75-01-4	Vinyl chloride	171	29-Mar-11	34 , .	160		88.00	410
	Surr: Bromofluorobenzene	1	29-Mar-11	66-135	102		0.00	0
	Surr: Bromofluorobenzene	171	29-Mar-11	65-135	103		0.00	0
	TIC:-Cyclotetrasiloxane-potamethyl	1	29-Mar-1-1-	0	68		0:00-	-0-6x1M

grain.

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitution range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 6 of 16

Approved By

Date: 3|30|1

## **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-004A

Client Sample ID 828131.A-IA1202

Collection Date: 3/16/2011

Tag# 287/2716

Matrix AIR

TO-15 (V	I+TICS)	Dilution	Date	pp	bγ	Dete	uį	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55- <del>6</del>	1,1,1-Trichloroethane	1	29-Mar-11	0,20	0.29		1.10	1.6ブ
79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0.20	ND		1,40	ND J
79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0.20	ND		1.10	ND O
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	29-Mar-11	0,20	ND		1,60	ND
75-34-3	1,1-Dichleroethane	1	29-Mar-11	0.20	ND		0,82	ND
75-35-4	1,1-Dichloroethene	1	29-Mar-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	29-Mar-11	0.20	ND		1,50	ND J
95-83-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0.30	ND		1.50	ND J
106-93-4	1,2-Dibromoethane	1	29-Mar-11	0.20	ND		1.60	ND_
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0.20	ND		1.40	ИD
95-50-1	1,2-Dichlorobenzene	1	29-Mar-11	0,20	ND		1,20	ND J
107-06-2	1,2-Diohloroethane	1	29-Mar-11	0.20	ND		0.82	ND
78-87-6	1,2-Dichloropropane	1	29-Mar-11	0.20	ND		0,94	ND
108-67-8	1,3,5-Trimethylbenzene	1	29-Mar-11	0.20	ND		1.00	ND J
106-99-0	1,3-Butadiene	1	29-Mar-11	0,20	ND		0,45	ND
541-73-1	1,3-Diohlorobenzene	1	29-Mar-11	0,20	ND		1.20	$\mathcal{T}$ dn
106-46-7	1,4-Dichlorobenzene	1	29-Mar-11	0,20	0,54		1.20	3.3 🖍
123-91-1	1,4-Dloxane	1	29-Mar-11	0.40	ND		1,50	C ON
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0.20	0.87		0.80	2.6 🔰
591-78-6	2-Hexanone (*)	1	29-Mar-11	0,20	ND		68,0	ND J
622-96-8	4-Ethyltoluene (*)	1	29-Mar-11	0.20	ND		1,00	ND J
108-10-1	4-Methyl-2-Pentenone (MIBK)	1	29-Mar-11	0.20	.ND		0.83	ND J
67-64-1	Acetone	1	29-Mar-11	2.0	. 11		4.80	27
71-43-2	Велхепе	1	29-Mar-11	0,20	0.32		0,65	آگ 1.0
100-44-7	Benzyl chloride	1	29-Mar-11	0.20	ND		1.10	ND J
75-27-4	Bromodichloromethane	.1	29-Mar-11	0,20	ND		1.40	ND
75-25-2	Bromoform	1	29-Mar-11	0,20	ND		2,10	ND 🍠
74-83-9	Bromomethane	1	29-Mar-11	0.20	ND		0.79	ND
75-16-0	Carbon disulfide	1	29-Mar-11	0.20	ND		0,63	ND
56-23-5	Carbon tetrachloride	1	29-Mar-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	29-Mar-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	29-Mar-11	0,20	ND		0.54	ND
67-66-3	Chloroform	1	29-Mar-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	29-Mar-11	0.20	0.55		0.42	1.2
156-59-2	cls-1,2-Dichloroethene	1	29-Mar-11	0.20	3.0		0,81	12

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Spike Recovery outside accepted recovery limits

Approved By KP

Page 7 of 16

Date: 3/30//_

## **Analytical Report**

Date 30-Mar-11

CLIENT	MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-004A

Client Sample ID 828131A-IA1202

Collection Date: 3/16/2011

Tag# 287/2716

Matrix AIR

TO-15 (VI	+TICS)	Dilution	Date	ppl	٧v	Data	ug	J/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	ols-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	29-Mar-11	0,20	ND		0.70	ND
124-48-1	Dibromochioromethane	1	29-Mar-11	0.20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	29-Mar-11	0.20	0.49		1.00	2.5
100-41-4	Ethyl benzene	1	29-Mar-11	0,20	0.42		0,88	1.9
87-68-3	Hexachlorobutadiene	1	29-Mar-11	0.20	ND		2,20	ND J
110-54-3	Hexane	1	29-Mar-11	0,20	ND		0,72	ND
6 <b>7-63-</b> 0	[sopropano]	1	29-Mar-11	2,0	5.1		5.00	13
1330-20-7	m,p-Xylenė	1	29-Mar-11	0.60	1.0		2,60	4.6
1634-04-4	Methyl tert-butyl ether (MTBE)	1	29-Mar-11	0.20	ND		0,73	ND
76-09-2	Methylene chloride	1	29-Mar-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	29-Mar-11	0.20	0.53		0.83	2,2
95-47-6	o-Xylene	1	29-Mar-11	0.20	0.35		0.88	1.5 5
100-42-5	Styrene	1	29-Mar-11	0.30	ND	_	1.30	ND
127-18-4	Tetrachloroethene	1	29-Mar-11	0.20	0.80		1.40	B.2 <b>3</b>
109-99-9	Tetrahydrofuran (*)	1	29-Mar-11	0.20	ND		0.60	ND
108-88-3	Toluene	1	29-Mar-11	0,20	4,0		0.77	15
156-60-5	trans-1,2-Dichloroethene	1	29-Mar-11	0,20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	29-Mar-11	0,040	1,4		0.22	7.9.5
75-69-4	Trichlorofluoromethane (Freen 11)	1	29-Mar-11	0.20	0.26		1.10	1,5
108-05-4	Vinyl acetate	1	29-Mar-11	0.20	.ND		0.72	C CN
75-01-4	Vinyl chloride	1	29-Mar-11	0.20	0,33		0.52	0.88
	Surr: Bromofluorobenzene	1	29-Mar-11	66-135	93.2		0.00	0
	-TIG: Gyolotetrasiloxane-octamethyl		-29=Mar-11-	0	12		0;00	-
	TIC: Cyclotrisiloxane hexamethyl-		-29-Mar-11-	<del>-</del>	5:4		0,00-	۸
	TiC: Ethyl alcohol	1	29-Mar-11	0	3.4		0.00	ar hitac
					٠.			д~ 5131 и

#### Qualffers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Spike Recovery outside accepted recovery limits

Page 8 of 16

Date: 3/30/1

2~513/11

#### **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-005A

Client Sample ID 828131A-AA1202

Collection Date: 3/16/2011

Tag# 299/2709

Matrix AIR

TO-15 (V	I+TICS)	Dilution	Date	pp.	bV	Data	uş	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichtoroethane	1	29-Mar-11	0,20	ND		1.10	ND
79-34-6	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0.20	ND		1.40	TC DN
79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0,20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	29-Mar-11	0.20	ND		1,60	ND
75-34-3	1,1-Dichloroethane	1	29-Mar-11	0.20	ND		0,82	ND
76-35-4	1,1-Dichloroethene	1	29-Mar-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	29-Mar-11	0.20	ND		1,50	C DN
95-63-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0.30	ND		1.50	ND J
106-93-4	1,2-Dibromoethane	1	29-Mar-11	0.20	ND		1.60	ND
78-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	29-Mar-11	0,20	ND		1.20	T. DN
107-06-2	1,2-Dichloroethane	1	29-Mar-11	0,20	ND		0.82	ND
78-87-5	1,2-Dlohloropropane	1	28-Mar-11	0.20	ND		0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	29-Mar-11	0,20	ND		1,00	ND 🧊
106-99-0	1,3-Butadiene	1	29-Mar-11	0.20	ND		0,45	ND
541-73-1	1,3-Dichlorobenzene	1	29-Mer-11	0.20	ND		1,20	ND T
106-46-7	1,4-Diohlorobenzene	1	29-Mar-11	0,20	ND	•	1.20	ND 3
123-91-1	1,4-Dioxane	1	29-Mar-11	0.40	ND		1,50	ND J
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0,20	0,60		0.60	1.8 5
591-78-6	2-Hexanone (*)	1	29-Mar-11	0.20	ND		0,83	ND J
622-96-8	4-Ethyltoluene (*)	1	29-Mar-11	0.20	ND		1.00	ND J
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	29-Mar-11	0.20	,ND	•	0,83	ND J
67-64-1	Acetone	1	28-Mar-11	2,0	4.0		4,80	9.7 U
71-43-2	Benzene	1	29-Mar-11	0.20	0.27		0,65	ى 0.88
100-44-7	Benzyl chloride	1	29-Mar-11	0,20	ND		1.10	ND Š
75-27-4	Bromodichioromethane	1	29-Mer-11	0,20	ND		1.40	ND
75-25-2	Bromoform	1	29-Mar-11	0.20	ND		2.10	ND J
74-83-9	Bromomethane	1	29-Mar-11	0.20	· ND		0,78	ND
75-15-0	Carbon disulfide	1	29-Mar-11	0.20	ND		0,63	ND
5 <b>6-23-</b> 5	Carbon tetrachioride	1	29-Mar-11	0.040	ND		0.26	ND
108-90-7	Chlorobenzene	1	29-Mar-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	29-Mar-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	28-Mar-11	0.20	ND		0,99	ND
74-87-3	Chloromethane	1	29-Mar-11	0.20	0.63		0.42	1,1
156-59-2	cls-1,2-Dichloroethene	1	29-Mar-11	0.20	0.21		0.81	0.85 🦪
	Δ	lifiare						

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 9 of 16

Date: 3/30/11

## **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-005A

Client Sample ID 828131A-AA1202

Collection Date: 3/16/2011

Tag# 299/2709

Matrix AIR

O-15 (VI	r1300)	Dilution	Date	ppl	oV	Data	u	J/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
0061-01-6	ols-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0,92	ND
10-82-7	Cyclohexane	1	29-Mar-11	0,20	ND		0.70	ND
24-48-1	Dibromochloromethane	1	29-Mar-11	0.20	ND		1.70	ND
5-71 <b>-8</b>	Dichlorodifluoromethane (Freon 12)	1	29-Mar-11	0.20	0,50		1.00	2,5
00-41-4	Ethyl benzene	1	29-Mar-11	0,20	ND		0.88	ND
7-68-3	Hexachlorobutadiene	1	29-Mar-11	0.20	ND		2,20	ND 5
10-54-3	Hexane	1	29-Mar-11	0.20	ND		0.72	ND .
7-63-0	Isopropanol	1	29-Mar-11	2.0	8,0	J	5.00	2 🛎
330-20-7	m,p-Xylene	1	29-Mar-11	0.60	ND		2.60	ND
634-04-4	Methyl tert-butyl ether (MTBE)	1	29-Mar-11	0.20	ND		0.73	ND
5-09-2	Methylene chloride	1	29-Mar-11	0,20	ND		0,71	ND
42-82-6	n-Heptene	1	29-Mar-11	0.20	ND		0.83	ND
5-47-6	o-Xylene	1	29-Mar-11	0.20	ND		0.88	ND
00-42-5	Styrene	1	29-Mar-11	0.30	ND		1,30	ND
27-18-4	Tetrachlorcethene	1	29-Mar-11	0.20	0.22		1.40	1.5 🗊
09-89-9	Tetrahydrofuran (*)	1	29-Mar-11	0,20	ND		0.60	ND
08-88-3	Toluene	1	29-Mar-11	0.20	0.35		0.77	1.3
56-60-5	trans-1,2-Dichioroethene	1	29-Mar-11	0.20	ND		0.81	ND
0061-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND	•	0.92	ND
9-01-6	Trichioroethene	1	29-Mar-11	0.040	0.20		0.22	آت 1.1
5-69-4	Trichlorofluoromethane (Freon 11)	1	29-Mar-11	0.20	0.28		1,10	1,8
08-05-4	Vinyl acetate	1	29-Mar-11	0.20	,ND	•	0.72	ND J
5-01-4	Vinyl chloride	1	29-Mar-11	0.20	ND		0.52	ND
	Surr: Bromofluorobenzene	1	29-Mar-11	65-136	98,8		0.00	0
	TIC:-Cyclotetraslloxane-cotamethyl		.29₌Mar₌1.1	0	-23			O- GLIMS
	TIC:-Cyclotrisiloxane, hexamethyl-	1	-29-Mar-11-	0	9:2	Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro	0:00	-o- arhif
							•	_
	•				. ,			д~ \$13 [и

#### Qualifiers:

- *) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By KLP

Page 10 of 16

Date: 3/30/11

## **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-006A

Client Sample ID 828131A-SS1402

Collection Date: 3/24/2011

Tag# 261-2715

Matrix AIR

TO-15(SG+TICS)		Dilution	lution Date		bV	Deta	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result
71-55-6	1,1,1-Trichloroethane	1	29-Mar-11	0.20	0.4B		1.10	2.7
79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0.20	ND		1.40	ב מא
79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0.20	ND		1,10	ND S
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethene (Freon 11)	1	29-Mar-11	0.20	ND		1,60	ND
75-34-3	1,1-Diohioroethane	1	29-Mar-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichloroethene	1	29-Mar-11	0.20	ND		0.B1	ND
120-82-1	1,2,4-Trichlorobenzene	1	29-Mar-11	0.20	. ND		1.50	T. DM
95-63-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0.20	3 _{0.21}	, 5	J 80	1.0 . 3
106-93-4	1,2-Dibromoethane	1	29-Mar-11	0.20	ND	1	1.80	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0,20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	29-Mar-11	0,20	ND		1,20	ND ."J
107-06-2	1,2-Dichloroethane	1	29-Mar-11	0.20	ND		0.82	ND ND
78-87-5	1,2-Dichloropropane	1	29-Mar-11	0.20	ND		0.94	ND
108-67-B	1,3,5-Trimethylbenzene	1	29-Mar-11	0,20	0.41		1.00	2,0 ე
106-99-0	1,3-Butadiene	1	29-Mar-11	0.20	ND		0.45	ND ND
541-73-1	1,3-Dichlorobenzene	1	29-Mar-11	0,20	ND		1,20	ND J
106-46-7	1,4-Dichlorobenzene	1	29-Mer-11	0,20	0.42		1,20	2.6
123-91-1	1,4-Dloxane	1	29-Mar-11	0,20	ND		0,73	ND J
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0.20	1.4		0.60	4.2 5
591-78-6	2-Hexanone (*)	1	29-Mar-11	0,20	ND		0.83	ND J
622-96-6	4-Ethyltoluene (*)	1	29-Mar-11	0.20	0.31		1.00	1.5 3
106-10-1	4-Methyl-2-Pentanone (MIBK)	1	29-Mar-11	0.20	ND		0.83	ND J
67-64-1	Acetone	1	29-Mar-11	2.0	6,5		4.80	16
71-43-2	Benzene	1	29-Mar-11	0.20	0,33		0.65	1.1 🛎
100-44-7	Benzyl chloride	1	29-Mar-11	0.20	ND		1.10	ND J
76-27-4	Bromodichioromethane	1	29-Mar-11	0.20	ND		1,40	ND
75-25-2	Bramoform	. 1	29-Mar-11	0.20	NÞ		2.10	ND J
74-83-9	Bromomelhane	1	29-Mar-11	0.20	·ND	•	0.79	ND
75-15-0	Carbon disulfide	1	29-Mar-11	0.20	0.44		0.63	1.4
56-23-5	Carbon tetrachloride	1	29-Mar-11	0.20	ND		1,30	ND
108-90-7	Chlorobenzene	- 1	29-Mar-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	29-Mar-11	0,20	ND		0.54	ND
67-66-3	Chloroform	1	29-Mar-11	0.20	ND		0,89	ND
74-87-3	Chloromethane	1	29-Mar-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichioroethene	1	29-Mar-11	0.20	4.3		0.81	17

#### Qualiflers:

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Black
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Spike Recovery outside accepted recovery limits

Approved By K

Page 11 of 16

Date: 3/30/1/

#### **Analytical Report**

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-006A

Client Sample ID 828131A-SS1402

Collection Date: 3/24/2011

Tag# 261-2715

Matrix AIR

TO-15(SG+TICS)		Dilution	Date	ppb∨		Data	ųį	<b>y/m</b> 3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
10061-01-5	cls-1,3-Dichloropropens	1	29-Mar-11	0.20	ND		0.92	ND
110-82-7	Cyclohexane	1	29-Mar-11	0.20	0,35		0.70	1.2
124-48-1	Dibromochloromethane	1	29-Mar-11	0.20	ND		1.70	ND
75-71 <b>-8</b>	Dichlorodifluoromethane (Freon 12)	1	29-Mar-11	0.20	9,2		1.00	46
100-41-4	Ethyl benzene	1	28-Mar-11	0,20	ND		0.88	ND
87-68-3	Hexachlorobutadiene	1	29-Mar-11	0,20	ND		2.20	ND J
110-54-3	Hexane	1	29-Mar-11	0.20	0,62		0.72	2.2
67-63-0	łaopropanol	1	29-Mar-11	2.0	9,0		5.00	23 🗸
1330-20-7	m,p-Xylene	1	29-Mer-11	0,20	0.83		0.88	3,7
1634-04-4	Methyl teri-butyl ether (MTBE)	1	29-Mar-11	0.20	ND		0.73	ND
75-0 <del>9</del> -2	Methylene chloride	1	29-Mar-11	0.20	ND		0.71	ND
142-82-5	n-Heptane	1	29-Mar-11	0,20	0.63		0,83	2.6
95-47-6	o-Xylene	1	29-Mar-11	0,20	0.28		0.88	1.2 5
100-42-5	Styrene	1	29-Mar-11	0,20	ND		0.87	ND
127-18-4	Tetrachloroethene	1	29-Mar-11	0.20	2,3		1,40	16 📺 📝
109-99-9	Tetrahydrofuran (*)	1	29-Mar-11	0,20	ND		0.60	NID ,
108-88-3	Toluene	í	29-Mar-11	0,20	1.4		0.77	5,4
156-60-5	trans-1,2-Dichloroethene	1	29-Mar-11	0,20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0,92	ND
79-01-6	Trichloroethene	√1	29-Mar-11	0.20	3.2		1.10	17.57
75-69-4	Trichlorofluoromethane (Freon 11)	1	29-Mar-11	0.20	0.27	•	1,10	1.5
108-05-4	Vinyl acetate	1	29-Mar-11	0,20	ND		0.72	UC CIV
75-01-4	Vinyi chloride	1	29-Mar-11	0.20	. 0.74		0,52	1.0
	Surr: Bromofluorobenzene	1	29-Mar-11	65-135	97.8		0.00	0
•	TIC: Butane, 2-methyl-	1	29-Mar-11	0	1.4		0.00	0
	TIC:-Cyololetrasiloxane-octamethyl	1	-29-Mar-11-	0	-36		0,00	-
	TIC:-Cyclotrisiloxane, hexamethyl-	1	-29-Mar-1:1	0	9.5		0.00-	V CIC 12-(2)
	TIC: Ethane, 2-ohloro-1,1,1,2-tetrafluo	1	29-Mar-11	0	· 17		0.00	o artifact
	TIC: Propane	1	29-Mar-11	0	5.8		0,00	o a~
	TIC:-teri-Butyldimethylsilanol-		-29-Mar-1-1-		2.4		-0.00	o 5/3/h
	TIC: unknown	1	29-Mar-11	0	11		0.00	0 3,2,1

#### Qualifters;

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Spike Recovery outside accepted recovery limits

Page 12 of 16

Approved By

Date: 3/30/11

## **Analytical Report**

Date 30-Mar-11

CLIENT	MACTEC Engineering and Consulting, I
--------	--------------------------------------

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-007A

Client Sample ID 828131A-IA1402

Collection Date: 3/24/2011

Tag# 338/2677

Matrix AIR

TO-15 (VI+TICS)		Dilution	Dale	pp	bV	Data	ug/m3		
CAS#	Target Compound List	Factor	tor Analyzed	PQL	Result	Qualifiers	PQL	Result	
71-55-8	1,1,1-Trichioroethane	1	29-Mar-11	0.20	0,61		1.10	3.4	
79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0.20	ND		1,40	ND J	
79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0.20	ND		1.10	ND	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11)	1	29-Mar-11	0.20	ND		1.60	ND	
75-34-3	1,1-Dichloroethane	1	29-Mar-11	0.20	ND		0.82	ND	
76-35-4	1,1-Dichloroethene	1	29-Mar-11	0.20	ND		0.81	ND	
120-82-1	1,2,4-Trichiorobenzene	1	29-Mar-11	0.20	ND		1,50	ND J	
95-63-6	1,2,4-Trimethylbenzene	1	29-Mar-11	0,30	ND		1,50	ND J	
106-93-4	1,2-Dibromoethane	1	20-Mar-11	0,20	ND		1.60	ND	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0.20	ND		1.40	ND	
95-50-1	1,2-Dichlorobenzene	1	29-Mar-11	0.20	ND		1.20	ND T	
107-06-2	1,2-Dichloroethane	1	29-Mar-11	0.20	ND	•	0.82	ND	
78-87 <b>-</b> 5	1,2-Dichloropropane	1	29-Mar-11	0,20	ND		0.94	ND	
108-67-8	1,3,5-Trimethylbenzene	1	29-Mar-11	0,20	0,22		1.00	1.1 5	
106-99-0	1,3-Butadiene	1	29-Mar-11	0.20	ND		0.46	ND	
541-73-1	1,3-Dichlorobenzene	1	29-Mar-11	0.20	ND		1.20	ND J	
106-46-7	1,4-Dichlorobeлzene	1	29-Mar-11	0,20	0,34		1,20	2.1 5	
123-91-1	1,4-Dioxane	1	29-Mar-11	0,40	ND		1.50	T DN	
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0.20	ND		0.60	ND J	
591-78-6	2-Hexanone (*)	1	29-Mar-11	0,20	ND		0,83	Č DN	
622-95-8	4-Ethyltoluene (*)	1	29-Mar-11	0,20	ND		1.00	J DA	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	29-Mar-11	0.20	,ND		0,83	NDJ	
67-84-1	Acetone	1	29-Mar-11	2.0 ,	6,6		4.80	16	
71-43-2	Benzene	1	29-Mar-11	0,20	0.29		0.65	0.94 ூ	
100-44-7	Benzyl chloride	1	29-Mar-11	0.20	ND		1,10	ND J	
75-27-4	Bromodichioromethane	1	29-Mar-11	0,20	ND	-	1,40	ND	
75-25-2	Bromoform	1	29-Mar-11	0,20	ND	,	2,10	ND ゴ	
74-83-9	Bromomethane	1	29-Mar-11	0,20	· ND		0,79	ND .	
75-15-0	Carbon disulfide	1	29-Mar-11	0.20	ND		0.63	ND	
56-23-5	Carbon tetrachloride	. 1	29-Mar-11	0,040	ND		0,26	ND	
108-90-7	Chlorobenzene	1	29-Mar-11	0.20	ND		0.94	ND	
75-00-3	Chloroethane	1	20-Mar-11	0.20	ND		0.54	ND	
67-66-3	Chloroform -	1	29-Mar-11	0.20	ND		0,99	ND	
74-87-3	Chloromethane	1	29-Mar-11	0.20	ND		0.42	ND	
156-59-2	cts-1,2-Dichloroethene	1	29-Mar-11	0.20	ND		0.81	ND	

#### Qualificre:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Splke Recovery outside accepted recovery limits

Approved By

Page 13 of 16

Date: 3/30/1/

5/3/11

## **Analytical Report**

Date 30-Mar-11

CLIENT 1	MACTEC	Engineering and	Consulting, I
----------	--------	-----------------	---------------

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-007A

Client Sample ID 828131A-IA1402

Collection Date: 3/24/2011

Tag # 338/2677

Matrix AIR

TO-15 (VI+TICS)		Dilution	Date			Data	<b>u</b> j	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result
10061-01-5	ois-1,3-Diohloropropene	.1	29-Mar-11	0,20	ND		0.92	ND
110-82-7	Cyclohexane	1	29-Mar-11	0,20	2.5		0.70	8.7
124-48-1	Dibromochloromethane	1	29-Mar-11	0.20	ND		1.70	ND
75-71-8	Dichtorodifluoromethane (Freon 12)	1	29-Mar-11	0.20	ND		1.00	ND
100-41-4	Ethyl benzene	1	29-Mer-11	0,20	ND		0.88	ND
87-68-3	Hexachlorobutadlene	1	29-Mar-11	0.20	ND		2.20	ND J
110-54-3	Hexane	1	29-Mar-11	0.20	1.6		0.72	
67-63-0	Isopropanol	1	29-Mar-11	2,0	4.9		5.00	12
1330-20-7	m,p-Xylene	1	29-Mar-11	0.60	ND		2.60	ND
1634-04-4	Methyl tert-butyl ether (MTBE)	1	29-Mar-11	0.20	ΝĐ		0.73	ND
75-09-2	Methylene chloride	1	29-Mar-11	0.20	0.28		0.71	0.99 🍮
142-82-5	n-Heptane	1	29-Mar-11	0.20	0.77		0,83	3,2
95-47-6	o-Xylene	1	29-Mer-11	0.20	0,20		0.88	0.88 万
100-42-5	Styrene	1	29-Mar-11	0.30	ND		1.30	ND
127-18-4	Tetrachioroethene	1	29-Mar-11	0.20	ND		1.40	ND J
109-99-9	Tetrahydrofuran (*)	1	29-Mar-11	0,20	ND		0.80	ND ON
108-88-3	Toluene	1	29-Mar-11	0.20	16		0.77	61
156-60-5	trans-1,2-Dichloroethene	1	29-Mar-11	0,20	ND		0,81	ND
10081-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0.92	ND
79-01-6	Trichloroethene	1	29-Mar-11	0.040	ND		0,22	JON
75-69-4	Trichloroflucromethane (Freon 11)	1	29-Mar-11	0.20	0,29		1,10	1,7
108-05-4	Vinyl acetate	1	29-Mar-11	0.20	ND		0.72	ND 37
75-01-4	Vinyl chloride	1	29-Mar-11	0.20	ND		0.52	ND ND
	Surr: Bromofluorobenzene	1	29-Mar-11	65-135	97.7		0.00	0
	TIC:-Cyclotetraelloxane; octamethyl:-		-29-Mar-11-		22			0 GCINS
	TIC: Cyclotrisiloxane, hexamethyi-	1	-29-Mar-1-1-	0		·····	0;00	
	TIC: Difluorochioromethane	1	29-Mar-11	0	60		0.00	o desistants
	TIC: Hexane, 2-methyl-	1	29-Mar-11	0	2.7		0,00	0 2~
	TIC: Propane	1	29-Mar-11	0	130		0.00	0 2(3)M
	TIC: unknown (4.537)	1	29-Mar-11	0	8,7		0,00	0
	TIC: unknown (6,505)	1	29-Mar-11	0	16		0,00	0
	TIC: unknown hydrocarbon (4.473)	1	29-Mar-11	Ō	7,1		0.00	0
	TIC: unknown hydrocarbon (4.611)	1	29-Mar-11	0	1.8		0.00	•

#### Qualifters

- (*) Certification not offered by NYS for this compound
- B Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - S Spike Recovery outside accepted recovery limits

Approved By

Page 14 of 16

Date: 3/30/1)

#### **Analytical Report**

1 Report Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168 Lab ID E1103006-008A Collection Date: 3/24/2011

Client Sample ID 828131A-AA1402

Tag # 262/2659

Matrix AIR

TO-15 (V	TO-15 (VI+TICS)		Date	ррЬV		Date	ц	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result	
71-55-6	1,1,1-Trichloroethane	1	29-Mar-11	0,20	ND		1.10	ND	
79-34-5	1,1,2,2-Tetrachloroethane	1	29-Mar-11	0.20	ND		1.40	ND 3	
79-00-5	1,1,2-Trichloroethane	1	29-Mar-11	0,20	ND		1,10	ND	
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11)	1	29-Mar-11	0,20	ND		1.60	ND	
75-34-3	1,1-Dichloroethane	1	29-Mar-11	0,20	ND		0.82	ND	
75 <b>-3</b> 5-4	1,1-Dichloroethene	1	29-Mar-11	0,20	ND		0.81	ND	
120-82-1	1,2,4-Trichiorobenzene	1	29-Mar-11	0.20	ND		1.60	ND "	
95-63-8	1,2,4-Trimethylbenzene	. 1	29-Mar-11	0.30	ND	•	1.50	ND J	
106-93-4	1,2-Dibromoethane	1	29-Mar-11	0,20	ND		1,60	ND	
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	29-Mar-11	0.20	ND		1,40	ND	
95-50-1	1,2-Dichlorobenzene	1	29-Mar-11	0,20	ND		1.20	ND D	
107-06-2	1,2-Dichloroethane	1	29-Mar-11	0.20	ND		0.82	ND	
78-87-5	1,2-Dichloropropane	1	29-Mar-11	0.20	ND		0.94	ND	
108-67 <b>-</b> 8	1,3,5-Trimethylbenzene	1	29-Mar-11	0.20	ND		1.00	ND J	
106-99-0	1,3-Butadiene	1	29-Mar-11	0.20	ND		0.45	ND	
641-73-1	1,3-Diohiorobenzene	1	29-Mar-11	0,20	ND		1.20	ND j	
106-46-7	1,4-Dichlorobenzene	1	29-Mar-11	0,20	ND		1.20	ND J	
123-91-1	1,4-Dloxane	1	29-Mar-11	0.40	ND		1.50	ND J	
78-93-3	2-Butanone (MEK)	1	29-Mar-11	0,20	ND		0.60	ND J	
591-78-6	2-Hexanone (*)	1	29-Mar-11	0,20	ND		0,83	T. DN	
622-96-8	4-Ethyltolueпе (*)	1	29-Mar-11	0.20	ND		1.00	ND J	
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	29-Mar-11	0.20	.ND		0,83	ND -J	
67 <b>-</b> 64-1	Acetone	1	29-Mar-11	2.0	3.6		4.80	8.7 U	
71-43-2	Benzene	1	29-Mar-11	0.20	0,20		0.65	ر کر 0.65	
100-44-7	Benzyl chloride	1	29-Mar-11	0.20	ND		1,10	ND J	
75-27-4	Bromodichloromethane	1	29-Mar-11	0.20	ND		1.40	ND	
76-25-2	Bromoform	1	29-Mar-11	0,20	ND		2.10	T DN	
74-83-9	Bromomethane	1	29-Mar-11	0.20	·ND		0.79	ND	
76-15-0	Carbon disulfide	1	29-Mar-11	0.20	ND		0.63	ND	
66-23-5	Carbon tetrachloride	1	29-Mar-11	0.040	ND		0.26	ND	
108-90-7	Chlorobenzene	1	29-Mar-11	0.20	ND		0.94	ND	
75-00-3	Chloroethane	1	29-Mar-11	0.20	ND		0.54	ND	
67-66-3	Chlaroform	1	29-Mar-11	0.20	ND		0.99	ND	
74-87-3	Chloromethane	1	29-Mar-11	0.20	0.65		0,42	1,2	
156-59-2	ols-1,2-Dichloroethene	1	29-Mar-11	0.20	ND		0.81	ND	

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
  - Spike Recovery outside accepted recovery limits

Approved By

Page 15 of 16

Date: 3311

#### Analytical Report

Date 30-Mar-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1103006-008A

Client Sample ID 828131A-AA1402

Collection Date: 3/24/2011

Tag# 262/2659

Matrix AIR

TO-15 (VI+TICS)		Dilution	Date	₽₽bV		Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result
10081-01-5	ois-1,3-Dichloropropene	1	29-Mar-11	0,20	ND		0,92	ND
110-82-7	Cyclohexane	1	29-Mar-11	0.20	ND		0,70	ND
124-48-1	Dibromochioromethane	1	29-Mar-11	0.20	ND		1.70	ND
75-71 <b>-</b> 8	Dichiorodifluoromethane (Freon 12)	1	29-Mar-11	0,20	0,63		1.00	2,7
100-41-4	Ethyl benzene	1	29-Mar-11	0.20	ND		0.88	ND
87- <del>6</del> 8-3	Hexachlorobutadiene	1	29-Mar-11	0,20	ND		2.20	ND 3
110-54-3	Hexane	1	29-Mar-11	0.20	ND		0.72	ND
67-63-0	isopropanol	1	29-Mar-11	2,0	0.4	J	5.00	1 🖸
1330-20-7	m,p-Xylene	1	29-Mar-11	0,60	ND		2.60	ND.
1634-04-4	Methyl tert-butyl ether (MTBE)	1	29-Mar-11	0,20	ND		0.73	ND
75-09-2	Methylene chloride	1	29-Mar-11	0.20	ND		0.71	ND
42-82-5	n-Heptane	1	29-Mar-11	0,20	ND		0.83	ND
95-47-6	o-Xylene	1	29-Mer-11	0.20	ND		0.68	ND
100-42-5	Styrene	1	29-Mar-11	0.30	ND		1.30	ND
127-18-4	Tetrachloroethene	1	29-Mar-11	0.20	ND		1,40	ND 、
109-99-9	Tetrahydrofuran (*)	i	29-Mar-11	0.20	ND		0.60	ND
08-88-3	Toluene	1	29-Mar-11	0,20	0.68		0.77	2.6
56-60-5	trans-1,2-Diohloroethene	1	29-Mar-11	0,20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	29-Mar-11	0.20	ND		0.92	ND
79-01-6	Trichioroethene	1	29-Mar-11	0.040	ND	•	0.22	ND ."
75-69-4	Trichlorofluoromethane (Freon 11)	1	29-Mar-11	0.20	0.27		1.10	1,5
08-05-4	Vinyl acetate	1	29-Mar-11	0.20	ND		0.72	ND .
'5-01 <del>-4</del>	Vinyl chloride	1	29-Mar-11	0.20			0.62	ND ~
	Sun; Bromofluorobenzene	1	29-Mar-11	65-136	93,2		0.00	0
	TIC: unknown	1	29-Mar-11	0	2.4		0.00	0

#### Qualifiers:

- Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
  - Spike Recovery outside accepted recovery limits

Page 16 of 16

Date: 3/3/11

#### DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP WATER SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

#### 1.0 INTRODUCTION

Sump water samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in April 2011 and submitted for volatile organic compound (VOC) analysis by USEPA Method 8260B. Samples were analyzed by Chemtech, located in Mountainside, New Jersey. Results were reported in Sample Delivery Group (SDG) C2041.

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions).

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 quality control (QC) limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

E = analyte concentration exceeds the calibrated range of the instrument

D = analyte concentration is the result of a diluted sample analysis

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections

#### **2.0 VOCS – METHOD 8260B**

Initially, a single sump sample was collected for analysis. During validation, it was determined that sample vials were filled from separated sources draining into the collection sump. One vial was filled from each of the drains. Field sample identification was adjusted to account for different sample collection locations.

#### **Initial Calibration**

#### **SDG C2041**

In the initial calibration, the relative percent standard deviation for 1,2-dibromo-3-chloropropane (29) exceeded the QC limit of 20. The result for 1,2-dibromo-3-chloropropane was not detected in the associated samples and the reporting limits were qualified estimated (UJ).

#### **Continuing Calibration**

In the continuing calibration associated with a subset of samples, the percent difference for bromomethane (-24), chloroethane (-24), acetone (-32), and methyl acetate (-21) exceeded the QC limit of 20. The associated sample result for bromomethane, chloroethane, acetone, and methyl acetate was not detected and the reporting limits were qualified estimated (UJ).

In the continuing calibration associated with a subset of samples, the percent difference for dichlorodifluoromethane (-23) and 1,2-dibromo-3-chloropropane (24) exceeded the QC limit of 20. The associated sample result for dichlorodifluoromethane and 1,2-dibromo-3-chloropropane was not detected and the reporting limits were qualified estimated (UJ).

#### Laboratory Control Samples (LCS)

For a subset of samples, the LCS percent recovery of dichlorodifluoromethane (60) was below the minimum QC limit of 70. Dichlorodifluoromethane was not detected in the associated sample and the sample result was qualified estimated at the reporting limit (UJ).

#### Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

Data Validator: Michael Washburn

Date: 6/30/11

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Date: 6/30/11

## TABLE 1 SUMMARY OF SAMPLES DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

Prepared by / Date: KJC 05/26/11

Checked by / Date: MJW 06/29/11

						Class	VOC
					Analys	is Method	SW8260B
						Fraction	Т
SDG	Media	Location	Lab ID	Sample ID	Sample Date	QC Code	
C2041	NA-L	SW-15A	Chemtech	828131A-SW1501A	4/27/2011	FS	49
C2041	NA-L	SW-15B	Chemtech	828131A-SW1501B	4/27/2011	FS	49
C2041	BW	QC	Chemtech	TRIPBLANK	4/26/2011	FS	49

Notes: QC CODE FS = field sample Media NA-L = Not Available BW = Blank Water

### TABLE 2 DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

	Location	SW-15A	SW-15B
S	ample Date	4/27/2011	4/27/2011
	Sample ID	828131A-SW1501A	828131A-SW1501B
	Qc Code	FS	FS
Parameter	Units	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	μg/L	1 U	5 U
1,1,2,2-Tetrachloroethane	μg/L	1 U	5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	μg/L	1 U	5 U
1,1,2-Trichloroethane	μg/L	1 U	5 U
1,1-Dichloroethane	μg/L	1 U	5 U
1,1-Dichloroethene	μg/L	1 U	5 U
1,2,4-Trichlorobenzene	μg/L	1 U	5 U
1,2-Dibromo-3-chloropropane	μg/L	1 UJ	5 UJ
1,2-Dibromoethane	μg/L	1 U	5 U
1,2-Dichlorobenzene	μg/L	1 U	5 U
1,2-Dichloroethane	μg/L	1 U	5 U
1,2-Dichloropropane	μg/L	1 U	5 U
1,3-Dichlorobenzene	μg/L	1 U	5 U
1,4-Dichlorobenzene	μg/L	1 U	5 U
2-Butanone	μg/L	5 U	25 U
2-Hexanone	μg/L	5 U	25 U
4-Methyl-2-pentanone	μg/L	5 U	25 U
Acetic acid, methyl ester	μg/L	1 UJ	5 U
Acetone	μg/L	5 UJ	25 U
Benzene	μg/L	1 U	5 U
Bromodichloromethane	μg/L	1 U	5 U
Bromoform	μg/L	1 U	5 U
Bromomethane	μg/L	1 UJ	5 U
Carbon disulfide	μg/L	1 U	5 U
Carbon tetrachloride	μg/L	1 U	5 U
Chlorobenzene	μg/L	1 U	5 U
Chlorodibromomethane	μg/L	1 U	5 U
Chloroethane	μg/L	1 UJ	5 U
Chloroform	μg/L	1 U	5 U
Chloromethane	μg/L μg/L	1 U	5 U
Cis-1,2-Dichloroethene	μg/L μg/L	170 EJ	17 D
cis-1,3-Dichloropropene	μg/L μg/L	170 L3	5 U
Cyclohexane	μg/L μg/L	1 U	5 U
Dichlorodifluoromethane	μg/L μg/L	1 U	5 UJ
Ethyl benzene		1 U	5 U
Isopropylbenzene	μg/L	1 U	5 U
Methyl cyclohexane	μg/L μg/L	1 U	5 U
Methyl Tertbutyl Ether		1 U	5 U
Methylene chloride	μg/L	1 U	5 U
Styrene	μg/L	1 U	5 U
Tetrachloroethene	µg/L		5 U
Toluene	μg/L	5.6	
	μg/L	1 U	5 U
trans-1,2-Dichloroethene	μg/L	4.6	5 U
trans-1,3-Dichloropropene	μg/L	1 U	5 U
Trichloroethene	μg/L	37	5 U
Trichlorofluoromethane	μg/L	1 U	5 U
Vinyl chloride	μg/L	41	17 D
Xylene, o	μg/L	1 U	5 U
Xylenes (m&p) Notes:	μg/L	2 U	10 U

Qualifier: U = not detected, J = estimated result

D = result from a dilution analysis, E = analyte concentration exceeds the calibrated range of the instrument

QC Code: FS = Field Sample ug/L = microgram per liter

P:\Projects\nysdec1\Contracts D004434 and D004444\projects\Off-Site Carriage Cleaners RI-

FS\3.0_Site_Data\3.4_Test_Results\DUSR\

Table_2_April_2011_Sump_Data.xls

Page 1 of 1 Produced by: BJS 6/29/11 Checked by: MJW 6/29/11

## TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS DATA USABILITY SUMMARY REPORT APRIL 2011 SUMP WATER SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

SDG	Lab Sample Id	Analysis Method	Field Sample ID	l Analyte Name	Lab Resul	Lab Oual	Validated Result	Validation Oualifier	Val Reason Code	Result Units	Lab Id
C2041	C2041-01	SW8260B	828131A-SW1501A	1,2-Dibromo-3-chloropropane	1	U	1	UJ	ICVRSD	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Acetic acid, methyl ester	1	U	1	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Acetone	5	U	5	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Bromomethane	1	U	1	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Chloroethane	1	U	1	UJ	CCV%D	μg/L	Chemtech
C2041	C2041-01	SW8260B	828131A-SW1501A	Cis-1,2-Dichloroethene	170	Е	170	EJ	Е	μg/L	Chemtech
C2041	C2041-01DL	SW8260B	828131A-SW1501B	1,2-Dibromo-3-chloropropane	5	U	5	UJ	ICVRSD, CCV%D, LCS-L	μg/L	Chemtech
C2041	C2041-01DL	SW8260B	828131A-SW1501B	Dichlorodifluoromethane	5	U	5	UJ	CCV%D, LCS-L	μg/L	Chemtech

Prepared by: MJW 6/29/2011

Checked by: WDC 6/30/2011

Notes:

#### **Validation Qualifiers:**

U = not detected, value is the detection limit

J = value is estimated

E = exceeds the calibrated range of the instrument

#### **Validation Reason Codes:**

LCS-L = LCS recovery low

E = result exceeds calibration range

CCV%D = Continuing calibration percent difference exceeds the goal

ICVRSD = Initial calibration relative percent standard deviatoim exceeds the limit



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

04/27/11

Project:

Carriage Cleantown

Date Received: 04/29/11

Client Sample ID:

828131A-SW1501A

SDG No.:

C2041

Lab Sample ID:

C2041-01 SW8260B Matrix:

WATER

Analytical Method:

mL

% Moisture: Final Vol:

100 5000

Sample Wt/Vol: Soil Aliquot Vol: Units:

Test:

VOC-TCLVOA-10

иL

GC Column:

RTX-VMS

uLID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG034685.D

05/06/11

VG050611

CAS	Number

Parameter	Conc.	•	DL LOQ/CRQL	Units

			· ,			
TARGETS						
75-71-8	Dichlorodifluoromethane	1	U	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	1	ug/L
75-01-4	Vinyl Chloride	41		0.34	1	ug/L
74-83-9	Bromomethane	1	U <b>)</b>	0.2	1	ug/L
75-00-3	Chloroethane	1	$\Pi$ 7	0.2	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.35	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.45	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.47	1	ug/L
67-64-1	Acetone	5	U <b>)</b>	0.5	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	1	ug/L
79-20-9	Methyl Acetate	1	$\Pi$ 7	0.2	1	ug/L
75-09-2	Methylene Chloride	1	U	0.41	1	ug/L
156-60-5	trans-1,2-Dichloroethene	4.6		0.41	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.36	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	170	E <b>)</b>	0.35	1	ug/L
67-66-3	Chloroform	1	U	0.34	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.4	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	1	ug/L
71-43-2	Benzene	1	U	0.32	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.48	1	ug/L
79-01-6	Trichloroethene	37		0.28	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.46	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.36	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	2.1	5	ug/L
108-88-3	Toluene	1	U	0.37	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.29	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.31	1	ug/L

M/W 6/24/11

Report of Analysis

Client:

MACTEC Inc.

Date Collected:

04/27/11

Project:

Carriage Cleantown

Date Received: SDG No.: 04/29/11

Client Sample ID:

828131A-SW1501 🐧

C2041

Lab Sample ID:

C2041-01

Matrix:

WATER

Analytical Method:

SW8260B

% Moisture:

100

Sample Wt/Vol:

Units: mL

Final Vol:

5000 uL

Soil Aliquot Vol:

uL

Test:

VOC-TCLVOA-10

GC Column:

RTX-VMS

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG034685.D

1

05/06/11

VG050611

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.38	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	. 1	U	0.41	1	ug/L
127-18-4	Tetrachloroethene	5.6		0.27	1	ug/L
108-90-7	Chlorobenzene	1	U	0.49	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	1 .	ug/L
179601-23-1	m/p-Xylenes	2	U	0.95	2	ug/L
95-47-6	o-Xylene	1	U	0.43	1	ug/L
100-42-5	Styrene	1	U	0.36	1	ug/L
75-25-2	Bromoform	1	U	0.47	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.45	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.31	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.43	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.32	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.45	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U <b>)</b>	0.46	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	1	ug/L
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	55		66 - 150	110%	SPK: 5
1868-53-7	Dibromofluoromethane	51.8		76 - 130	104%	SPK: 5
2037-26-5	Toluene-d8	45.3		78 - 121	91%	SPK: 5
460-00-4	4-Bromofluorobenzene	52.1		70 - 131	104%	SPK: 5
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	467503	3.89			
540-36-3	1,4-Difluorobenzene	857548	4.68			
3114-55-4	Chlorobenzene-d5	707823	9.65			
3855-82-1	1,4-Dichlorobenzene-d4	253960	13.36			

m/m/24/11



284 Sheffield Street, Mountainside NJ 07092 (908)-789-8900 Fax: 908 789 8922

Report of Analysis

Client:

MACTEC Inc.

Carriage Cleantown

Project:

828131A-SW1501DL B

Client Sample ID: Lab Sample ID:

Analytical Method:

Soil Aliquot Vol:

GC Column:

C2041-01DL SW8260B

Sample Wt/Vol:

Units: mL

иL

Date Collected: Date Received:

04/29/11 C2041

04/27/11

SDG No.:

Matrix:

WATER

% Moisture:

100

Final Vol:

5000

VOC-TCLVOA-10

υL

RTX-VMS

ID: 0.18

Test: Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VG034737.D

5

05/10/11

vg051011

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	5	<b>υ</b>	1	5	ug/L
74-87-3	Chloromethane	5	U	1	5	ug/L
75-01-4	Vinyl Chloride	17	D	1.7	5	ug/L
74-83-9	Bromomethane	5	U	1	5	ug/L
75-00-3	Chloroethane	5	U	1	5	ug/L
75-69-4	Trichlorofluoromethane	5	U	1.8	5	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	5	U	2.2	5	ug/L
75-35-4	1,1-Dichloroethene	5	U	2.4	5	ug/L
67-64-1	Acetone	25	U	2.5	25	ug/L
75-15-0	Carbon Disulfide	5	U	1	5	ug/L
1634-04-4	Methyl tert-butyl Ether	5	U	1.8	5	ug/L
79-20-9	Methyl Acetate	5	U	1	5	ug/L
75-09-2	Methylene Chloride	5	U	2	5	ug/L
156-60-5	trans-1,2-Dichloroethene	5	U	2	5	ug/L
75-34-3	1,1-Dichloroethane	5	U	1.8	5	ug/L
110-82-7	Cyclohexane	5	U	1	5	ug/L
78-93-3	2-Butanone	25	U	6.6	25	ug/L
56-23-5	Carbon Tetrachloride	5	U	1	5	ug/L
156-59-2	cis-1,2-Dichloroethene	. 17	-D-516T	1.8	5	ug/L
67-66-3	Chloroform	5	U	1.7	5	ug/L
71-55-6	1,1,1-Trichloroethane	5	U	2	5	ug/L
108-87-2	Methylcyclohexane	5	U	1	5	ug/L
71-43-2	Benzene	5	U	1.6	5	ug/L
107-06-2	1,2-Dichloroethane	5	U	2.4	5	ug/L
79 <b>-</b> 01-6	Trichloroethene	<b>5</b> .	U	1.4	5	ug/L
78-87-5	1,2-Dichloropropane	5	U	2.3	5	ug/L
75-27-4	Bromodichloromethane	5	U	1.8	5	ug/L
108-10-1	4-Methyl-2-Pentanone	25	U	10	25	ug/L
108-88-3	Toluene	5	U	1.8	5	ug/L
10061-02-6	t-1,3-Dichloropropene	5	U	1.4	5	ug/L
10061-01-5	cis-1,3-Dichloropropene	5	U	1.6	5	ug/L
						.,

MJW 6/24/11 Report of Analysis

Client: MACTEC Inc. Project: Carriage Cleantown

828131A-SW1501DL A

Client Sample ID: Lab Sample ID:

C2041-01DL

Analytical Method:

SW8260B

Sample Wt/Vol:

5

Units: mL

Soil Aliquot Vol:

GC Column:

RTX-VMS

uLID: 0.18 Date Collected:

Date Received:

04/29/11 C2041

04/27/11

SDG No.: Matrix:

WATER

% Moisture:

100

Final Vol: Test:

5000

VOC-TCLVOA-10

иL

Level:

LOW

File ID/Oc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

vg051011

VG034737.D

540-36-3

3114-55-4

3855-82-1

5

1,4-Difluorobenzene

1,4-Dichlorobenzene-d4

Chlorobenzene-d5

05/10/11

**CAS Number** Parameter Conc. Qualifier MDL LOQ / CRQL Units 79-00-5 5 1,1,2-Trichloroethane U 1.9 5 ug/L 591-78-6 2-Hexanone 25 U 9.7 25 ug/L 124-48-1 Dibromochloromethane 5 Ū 1 5 ug/L 106-93-4 1.2-Dibromoethane 5 U 2 5 ug/L 5 127-18-4 Tetrachloroethene U 1.4 5 ug/L 108-90-7 Chlorobenzene 5 U 2.4 5 ug/L 100-41-4 Ethyl Benzene 5 П 1 5 ug/L 179601-23-1 m/p-Xylenes 10 4.8 U 10 ug/L o-Xylene 95-47-6 5 IJ 2.2 5 ug/L 100-42-5 Styrene 5 U 1.8 5 ug/L 75-25-2 Bromoform 5 5 U 2.4 ug/L 98-82-8 Isopropylbenzene 5 U 2.2 5 ug/L 79-34-5 1,1,2,2-Tetrachloroethane 5 U 5 1.6 ug/L 541-73-1 1,3-Dichlorobenzene 5 U 5 2.2 ug/L 106-46-7 1.4-Dichlorobenzene 5 Ū 5 1.6 ug/L 95-50-1 1,2-Dichlorobenzene 5 IJ 2.2 5 ug/L 96-12-8 1.2-Dibromo-3-Chloropropane 5 2.3 5 U.J ug/L 120-82-1 1,2,4-Trichlorobenzene 5 U 1 5 ug/L **SURROGATES** 17060-07-0 1,2-Dichloroethane-d4 51.1 66 - 150 102% SPK: 50 Dibromofluoromethane 1868-53-7 46.6 76 - 13093% SPK: 50 2037-26-5 Toluene-d8 44.2 78 - 121 88% SPK: 50 460-00-4 4-Bromofluorobenzene 46.3 70 - 13193% SPK: 50 INTERNAL STANDARDS 363-72-4 Pentafluorobenzene 540849 3.87

1013910

816719

299422

4.68

9.64

13.35

#### DATA USABILITY SUMMARY REPORT APRIL 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

#### 1.0 INTRODUCTION

Air samples were collected at the Off-Site Carriage Cleaners Site (Site) in Penfield, New York, in April 2011 and submitted for TO-15 analysis. Samples were analyzed by Enalytic, LLC, located in East Syracuse, New York. Results were reported in Sample Delivery Group (SDG): E1105001.

A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. A summary of sample results qualified during this review is presented in Table 3 (Summary of Validation Actions). Tentatively Identified Compounds (TICs) are presented in Table 4. Samples were analyzed for Volatile organic compounds (VOCs) by USEPA Method TO-15.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2010). USEPA Region 2 QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification. The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

#### **2.0 VOCS – METHOD TO-15**

#### **Initial Calibration**

#### **SDG E1105001**

The relative percent standard deviation between the response factors was above the Region 2 control limit of 30 for methylene chloride (35) in the initial calibration analyzed on April 27, 2011. The results for methylene chloride were qualified estimated (J) in samples 828131A-IA1303 and 828131A-IA1503.

#### **SDG E1105001**

The percent difference (%D) between the initial calibration average RRF and the continuing calibration RRF was above the Region 2 control limit of 30 for bromoform (-50). Bromoform was not detected in the associated samples and the reporting limits were qualified estimated (UJ).

#### Quantitation Limit Check Standard (CRQL)

#### SDG E1105001

The CRQL check standard associated with both samples in SDG E1102001 had percent recoveries above the upper laboratory control limit of 135 for the following analytes:

Analyte	% Recovery
2-butanone (MEK)	150
Acetone	800
Cis-1,2-dichloroethene	440
Isopropanol	1100
Methylene chloride	140
Tetrachloroethene	170
Trichloroethene	170

Professional judgment was used to qualify only detections less than 2X the 0.2 ppbv CRQL spike concentration. Methylene chloride was qualified estimated (J) at 0.95  $\mu g/m^3$  (0.27 ppbv) in sample 828131A-IA-IA1503.

#### **Laboratory Control Samples (LCS)**

#### SDG E1105001

In the LCS associated with both samples, the following analytes had a percent recovery that was below the Region 2 control limit of 70:

Analyte	% Recovery
1,2,4-Trichlorobenzene	69
1,2-Dichloropropane	69
1,3-Butadiene	66
1,4-Dioxane	67
2-Butanone (MEK)	61
2-Hexanone	60
4-Methyl-2-pentanone (MIBK)	62
Acetone	64
Carbon disulfide	68
Hexachlorobutadiene	68
Methyl tert-butyl ether (MTBE)	69
Methylene chloride	60
n-Heptane	69
Tetrahydrofuran	65

Analyte	% Recovery
Trans-1,3-dichloropropene	69
Vinyl acetate	62
Vinyl chloride	69

The results for these compounds were qualified estimated (J/UJ) in samples 828131A-IA1303 and 828131A-IA1503.

#### Tentatively Identified Compounds

Tentatively identified compounds (TICs) were reported by the laboratory in SDG E1105001. TICs being reported as final results in samples are presented in Table 4. If a sample is not listed, no TICs were reported in the sample, or the TICs were removed as blank contaminants or artifacts of the GC/MS instrument system.

#### Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

Data Validator, Mike Washburn

Date: 6/27/11

Reviewed by Tige Cunningham, NRCC-EAC

Date: 6/29/11

# TABLE 1 SUMMARY OF SAMPLES DATA USABILITY SUMMARY REPORT APRIL 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

				Class	VOC
				Method	EPA TO-15
				Fraction	Т
Location	Sample Date	Sample ID	Qc Code	Media	
IA-13	4/28/2011	828131A-IA1303	FS	AIR	Х
IA-15	4/28/2011	828131A-IA1503	FS	AIR	X

Notes

QC CODE

FS = field sample

Prepared by: BJS 6/27/2011

Checked by: MJS 6/28/2011

#### TABLE 2 SUMMARY OF ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT APRIL 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

		Location	IA-13	IA-15
		Sample Date	4/28/2011	4/28/2011
		Sample ID	828131A-IA1303	828131A-IA1503
		Qc Code	FS	FS
Analysis	Parameter	Units	Result Qualifier	Result Qualifier
EPA TO-15	1,1,1-Trichloroethane	UG/M3	1.1 U	1.1 U
EPA TO-15	1,1,2,2-Tetrachloroethane	UG/M3	1.4 U	1.4 U
EPA TO-15	1,1,2-Trichloro-1,2,2-Trifluoroethane	UG/M3	1.6 U	1.6 U
EPA TO-15	1,1,2-Trichloroethane	UG/M3	1.1 U	1.1 U
EPA TO-15	1,1-Dichloroethane	UG/M3	0.82 U	0.82 U
EPA TO-15	1,1-Dichloroethene	UG/M3	0.81 U	0.81 U
EPA TO-15	1,2,4-Trichlorobenzene	UG/M3	1.5 UJ	1.5 UJ
EPA TO-15	1,2,4-Trimethylbenzene	UG/M3	5.3	1.5 U
EPA TO-15	1,2-Dibromoethane	UG/M3	1.6 U	1.6 U
EPA TO-15	1,2-Dichloro-1,1,2,2-tetrafluoroethane	UG/M3	1.4 U	1.4 U
EPA TO-15	1,2-Dichlorobenzene	UG/M3	1.2 U	1.2 U
EPA TO-15	1,2-Dichloroethane	UG/M3	0.82 U	1.1
EPA TO-15	1,2-Dichloropropane	UG/M3	0.94 UJ	0.94 UJ
EPA TO-15	1,3,5-Trimethylbenzene	UG/M3	25	1.6
EPA TO-15	1,3-Butadiene	UG/M3	0.45 UJ	0.45 UJ
EPA TO-15	1,3-Dichlorobenzene	UG/M3	1.2 U	1.2 U
EPA TO-15	1,4-Dichlorobenzene	UG/M3	1.2 U	1.2 U
EPA TO-15	1,4-Dioxane	UG/M3	1.5 UJ	1.5 UJ
EPA TO-15	2-Butanone	UG/M3	5.6 J	2.8 J
EPA TO-15	2-Hexanone	UG/M3	0.83 UJ	0.83 UJ
EPA TO-15	2-Propanol	UG/M3	5 U	8.8
EPA TO-15	4-Ethyltoluene	UG/M3	24	1.3
EPA TO-15	4-Methyl-2-pentanone	UG/M3	0.83 UJ	0.83 UJ
EPA TO-15	Acetone	UG/M3	41 J	27 J
EPA TO-15	Benzene	UG/M3	29	1.2
EPA TO-15	Benzyl chloride	UG/M3	1.1 U	1.1 U
EPA TO-15	Bromodichloromethane	UG/M3	1.4 U	1.4 U
EPA TO-15	Bromoform	UG/M3	2.1 UJ	2.1 UJ
EPA TO-15	Bromomethane	UG/M3	0.79 U	0.79 U
EPA TO-15	Carbon disulfide	UG/M3	0.63 UJ	0.63 UJ
EPA TO-15	Carbon tetrachloride	UG/M3	0.77	0.83
EPA TO-15	Chlorobenzene	UG/M3	0.94 U	0.94 U
EPA TO-15	Chlorodibromomethane	UG/M3	1.7 U	1.7 U
EPA TO-15	Chloroethane	UG/M3	0.54 U	0.54 U
EPA TO-15	Chloroform	UG/M3	0.99 U	0.99 U
EPA TO-15	Chloromethane	UG/M3	0.42 U	1.6
EPA TO-15	Cis-1,2-Dichloroethene	UG/M3	0.81 U	17
EPA TO-15	cis-1,3-Dichloropropene	UG/M3	0.92 U	0.92 U
EPA TO-15	Cyclohexane	UG/M3	0.7 U	0.7 U
EPA TO-15	Dichlorodifluoromethane	UG/M3	2.6	2.5
EPA TO-15	Ethyl benzene	UG/M3	25	1.2
EPA TO-15	Heptane	UG/M3	0.83 UJ	0.83 UJ
EPA TO-15	Hexachlorobutadiene	UG/M3	2.2 UJ	2.2 UJ
EPA TO-15	Hexane	UG/M3	23	0.72 U
EPA TO-15	Methyl Tertbutyl Ether	UG/M3	0.73 UJ	0.73 UJ
EPA TO-15	Methylene chloride	UG/M3	2.5 J	0.95 J
EPA TO-15	Styrene	UG/M3	1.3 U	1.3 U
EPA TO-15	Tetrachloroethene	UG/M3	1.4 U	5.8
EPA TO-15	Tetrahydrofuran	UG/M3	1 J	0.6 UJ

 $\label{lem:projects-loss} P:\operatorname{Projects-Nysdec1-Contracts} D004434 \ and \ D004444-\operatorname{projects-Off-Site} \ Carriage \ Cleaners \ RI-FS\3.0_Site_Data\3.4_Test_Results-DUSR\$ 

Prepared by: BJS 6/27/2011

Checked by: MJW 6/28/2011

#### TABLE 2 SUMMARY OF ANALYTICAL RESULTS DATA USABILITY SUMMARY REPORT APRIL 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

		Location	IA-1	3	IA-1	5
		<b>Sample Date</b> 4/28/2011		4/28/2011		
		Sample ID	828131A-	·IA1303	828131A-	·IA1503
		Qc Code	FS	3	FS	3
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier
EPA TO-15	trans-1,2-Dichloroethene	UG/M3	0.8	0.81 U		1 U
EPA TO-15	trans-1,3-Dichloropropene	UG/M3	0.9	2 UJ	0.9	2 UJ
EPA TO-15	Trichloroethene	UG/M3	0.2	2 U	2	0
EPA TO-15	Trichlorofluoromethane	UG/M3	1.	5	1.	4
EPA TO-15	Vinyl acetate	UG/M3	0.7	2 UJ	0.7	2 UJ
EPA TO-15	Vinyl chloride	UG/M3	0.5	0.52 UJ		5 J
EPA TO-15	Xylene, m/p	UG/M3	8	87		2
EPA TO-15	Xylene, o	UG/M3	3	1	1.	2

Notes:

UG/M3 = microgram per cubic meter

#### **Qualifiers-**

U = not detected at the reporting limit

J = estimated concentration

#### QC Code-

FS = Field Sample

Prepared by: BJS 6/27/2011

Checked by: MJW 6/28/2011

### TABLE 3 SUMMARY OF DATA VALIDATION ACTIONS DATA USABILITY SUMMARY REPORT APRIL 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

SDG	Lab Sample Id	Analysis Method	Field Sample ID Analyte Name	Lab Resul	Lab Qualifier	Validated Result Validation Qual		Result Uni	its Lab Id
MT004	E1105001-001A		828131A-IA1303 1,2,4-Trichlorobenzene	1.5		1.5 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 1,2-Dichloropropane	0.94	U	0.94 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 1,3-Butadiene	0.45	U	0.45 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 1,4-Dioxane	1.5	U	1.5 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 2-Butanone	5.6	Q	5.6 J	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 2-Hexanone	0.83	U	0.83 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 4-Methyl-2-pentanone	0.83	U	0.83 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Acetone	41		41 J	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Bromoform	2.1	UQ	2.1 UJ	CCV%D	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Carbon disulfide	0.63	U	0.63 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Heptane	0.83	U	0.83 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Hexachlorobutadiene	2.2	U	2.2 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Methyl Tertbutyl Ether	0.73	U	0.73 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Methylene chloride	2.5		2.5 J	ICVRSD, LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Tetrahydrofuran	1		1 J	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 trans-1,3-Dichloropropene	0.92	U	0.92 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Vinyl acetate	0.72	U	0.72 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-001A	EPA TO-15	828131A-IA1303 Vinyl chloride	0.52	U	0.52 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 1,2,4-Trichlorobenzene	1.5	U	1.5 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 1,2-Dichloropropane	0.94	U	0.94 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 1,3-Butadiene	0.45	U	0.45 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 1,4-Dioxane	1.5	U	1.5 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 2-Butanone	2.8	Q	2.8 J	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 2-Hexanone	0.83	U	0.83 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 4-Methyl-2-pentanone	0.83	U	0.83 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Acetone	27		27 J	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Bromoform	2.1	UQ	2.1 UJ	CCV%D	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Carbon disulfide	0.63	U	0.63 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Heptane	0.83	U	0.83 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Hexachlorobutadiene	2.2	U	2.2 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Methyl Tertbutyl Ether	0.73	U	0.73 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Methylene chloride	0.95		0.95 J	ICVRSD, QLS-H, LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Tetrahydrofuran	0.6	U	0.6 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 trans-1,3-Dichloropropend	0.92	U	0.92 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Vinyl acetate	0.72	U	0.72 UJ	LCS-L	UG/M3	Enalytic
MT004	E1105001-002A	EPA TO-15	828131A-IA1503 Vinyl chloride	8.5		8.5 J	LCS-L	UG/M3	Enalytic
Notes:									

Notes:

#### Validation Qualifiers-

J = estimated concentration

U = not detected

#### Validation Reason Codes-

LCS-L = LCS percent recovery is low

QLS-H = Quantitation recovery limit percent recovery is high

CCV%D = Continuing calibration percent difference exceeds the limit

ICVRSD = Initial calibration relative percent difference exceeds the limit

## TABLE 4 SUMMARY OF TENTATIVELY IDENTIFIED COMPOUNDS DATA USABILITY SUMMARY REPORT APRIL 2011 AIR SAMPLING PROGRAM OFF-SITE CARRIAGE CLEANERS SITE PENFIELD, NEW YORK

SDG	Sample ID	Lab Sample ID	Analytical Method	Compound	Final Result (ppbv)	Qualifier	Analysis Date
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	Butane	42	JN	5/11/2011
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	Butane, 2-methyl-	33	JN	5/11/2011
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	Hexane, 2-methyl-	5.4	JN	5/11/2011
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	Isobutane	18	JN	5/11/2011
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	Pentane, 2-methyl-	12	JN	5/11/2011
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	unknown	15	JN	5/11/2011
MT004	828131A-IA1303	E1105001-001A	EPA TO-15	unknown hydrocarbon	17	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	1-Butanol	30	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	Ethyl alcohol	9.3	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	unknown hydrocarbon (12.89)	26	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	unknown hydrocarbon (13.035)	8.4	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	unknown hydrocarbon (13.305)	4.2	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	unknown hydrocarbon (13.411)	22	JN	5/11/2011
MT004	828131A-IA1503	E1105001-002A	EPA TO-15	unknown hydrocarbon (13.624)	24	JN	5/11/2011

Notes:

#### Qualifiers

JN = estimated value with presumptive evidence that the compound is present in the sample

Prepared by: MJW 6/29/2011 Checked by: TLC 6/29/2011

#### **Analytical Report**

Date 16-May-11

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

**Project:** 3612102168

Lab ID E1105001-001A

Client Sample ID 828131A-IA1303

Collection Date: 4/28/2011

Tag # 321/2662

Matrix INDOOR AMBIENT

TO-15 (Vi	+TłCS)	Dilution	Date	. ppl	bV	Data	u	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Resul		PQL	Result
71-55-6	1,1,1-Trichloroethane	1	11-May-11	0.20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	11-May-11	0,20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	11-May-11	0,20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichioroethane (Freon 11:	1	11-May-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	11-May-11	0.20	ND		0.82	. ND
75-35-4	1,1-Dichloroethene	1	11-May-11	0,20	ND		0.81	ND
120-82-1	1,2,4-Trichiorobenzene	1	11-May-11	0.20	ND	us	1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	11-May-11	0.30	1.1		1.50	5.3
106-93-4	1,2-Dibromoethane	1	11-May-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	11-May-11	0.20	ND		1,40	ND
95-50-1	1,2-Dichlorobenzene	1	11-May-11	0.20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	11-May-11	0.20	ND		0.82	ND
78-87-5	1,2-Dichloropropane	1	11-May-11	0.20	ЙИ.	Vγ	0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	11-May-11	0.20	5.0	•	1.00	25
106-99-0	1,3-Butadiene	1	11-May-11	0.20	ND	N)	0.45	ND
541-73-1	1,3-Dichlorobenzene	1	11-May-11	0,20	ND	•	1.20	ND
106-46-7	1,4-Dichlorobenzene	1	11-May-11	0.20	ND		1.20	ND
123-91-1	1,4-Dioxane	1	11-May-11	0.40	ND	(V)	1.50	ND
78-93-3	2-Butanone (MEK)	1	11-May-11	0.20	1.9	1 A	0.60	5.6
591-78-6	2-Hexanone (*)	1	11-May-11	0.20	ND	W	0.83	ND
622-96-8	4-Ethyltoluene (*)	1	11-May-11	0.20	4.8	V 10	1.00	24
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	11-May-11	0.20	ND	WJ	0.83	ND
67-64-1	Acetone	1	11-May-11	2.0 .	17	ڒ	4.80	41
71-43-2	Benzene	1	11-May-11	0.20	9.0		0.65	29
100-44-7	Benzyl chioride	1	11-May-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	11-May-11	0.20	ND		1.40	ND
75-25-2	Bromoform	1	11-May-11	0.20	ND	NIA	2,10	ND
74-83-9	Bromomethane	1	11-May-11	0.20	ND		0.79	ND
75-15-0	Carbon disulfide	1	11-May-11	0.20	ND	W	0.63	ND
56-23-5	Carbon tetrachloride	1	11-May-11	0.040	0.12	•	0.26	0.77
108-90-7	Chlorobenzene	1	11-May-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	11-May-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	11-May-11	0.20	ND		0.99	ND
74-87-3	Chloromethane	1	11-May-11	0.20	ND		0.42	ND
156-59-2	cis-1,2-Dichloroethene	1	11-May-11	0.20	ND		0.81	, ND

#### Qualiflers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 1 of 6

M/m

Date: 5/16/11

Approved By

#### **Analytical Report**

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1105001-001A

Date 16-May-11

Client Sample ID 828131A-IA1303

Collection Date: 4/28/2011

Tag # 321/2662

Matrix INDOOR AMBIENT

Target Compound List   Factor   Analyzed   PQL   Result   Result	TO-15 (VI+TICS)		Dilution	Date	, ppt	٧	Data	ប្រ	y/m3
110-82-7   Cyclohexane	CAS#	Target Compound List	Factor	Analyzed	PQL	Result		PQL	Result
110-82-7   Cyclohexane	10061-01-5	cls-1,3-Dichloropropene	1	11-May-11	0.20	ND		0.92	ND
Total	110-82-7	Cyclohexane	1	11-May-11	0.20	ND		0.70	ND
110-41-4	124-48-1	Dibromochioromethane	1	11-May-11	0,20	ND		1.70	ND
Hexachlorobutadiene	76-71-8	Dichlorodifluoromethane (Freen 12)	1	11-May-11	0.20	0.61	,	1.00	2.6
110-64-3	100-41-4	Ethyl benzene	1	11-May-11	0.20	5.7		0.88	25
Sopropanol   1   11-May-11   2.0 ND   5.00 ND   1330-20-7 m,p-Xylene   1   11-May-11   0.80   20   2.80   87   1834-04-4   Methyl tert-butyl ether (MTBE)   1   11-May-11   0.20 ND	87-68-3	Hexachlorobutadiene	1	11-May-11	0.20	ND	ΝŚ	2.20	ND
1330-20-7 m,p-Xylene	110-54-3	Hexane	1	11-May-11	0.20	6.4		0.72	23
1634-04-4   Methyl tert-butyl ether (MTBE)	67-63-0	Isopropanol	1	11-May-11	2.0	ND		5.00	ND
75-09-2   Methylene chloride	1330-20-7	m,p-Xylene	1	11-May-11	0.60	20		2.60	87
75-09-2   Methylene chloride	1634-04-4	Methyl tert-butyl ether (MTBE)	1	11-May-11	0.20	ND	M7	0.73	ND
95-47-6   0-Xylene	75-09-2	Methylene chloride	1	11-May-11	0.20	0.71		0.71	2,5
100-42-5   Styrene	142-82-5	n-Heptane	1	11-May-11	0.20	ND	U)	0.83	ND
127-18-4   Tetrachloroethene	95-47-6	o-Xylene	1	11-May-11	0.20	7.1		0.88	31
Tetrahydrofuran (*)	100-42-5	Styrene	1	11-May-11	0.30	ND		1.30	ND .
108-88-3   Toluene	<b>1</b> 27-18-4	Tetrachloroethene	1	11-May-11	0.20	ND		1.40	ND
108-88-3   Toluene	109-99-9	Tetrahydrofuran (*)	1	11-May-11	0.20	0.35	7	0.60	1.0
10061-02-6   trans-1,3-Dichioropropene   1   11-May-11   0.20   ND   IA     0.92   ND	108-88-3	Toluene	1	11-May-11	0.20	334	•	0.77	130
79-01-6 Trichloroethene 1 11-May-11 0.040 ND 0.22 ND 75-69-4 Trichlorofluoromethane (Freon 11) 1 11-May-11 0.20 0.26 1.10 1.5 108-05-4 Vinyl acetate 1 11-May-11 0.20 ND 0.72 ND 75-01-4 Vinyl chloride 1 11-May-11 0.20 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.52 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.00 ND 0.	166-60-5	trans-1,2-Dichloroethene	1	11-May-11	0.20	ND		0.81	ND
Trichlorofluoromethane (Freon 11)	10061-02-6	trans-1,3-Dichloropropene	1	11-May-11	0.20	ND	N7	0.92	ND
108-05-4   Vinyl acetate   1   11-May-11   0.20   ND   VA	79-01-6	Trichloroethene	1	11-May-11	0.040	ND		0.22	ND
75-01-4 Vinyl chloride 1 11-May-11 0.20 ND	75-69-4	Trichlorofluoromethane (Freon 11)	1	11-May-11	0.20	0.26		1,10	1.5
Surr: Bromofluorobenzene       1       11-May-11       65-135       112       0.00       0         TIC: Butane       1       11-May-11       0       42       0.00       0         TIC: Butane, 2-methyl-       1       11-May-11       0       33       0.00       0         TIC: Gyclotetrasiloxane, roctamethyl-       1       11-May-11       0       4.2       0.00       0         TIC: Hexane, 2-methyl-       1       11-May-11       0       5.4       0.00       0         TIC: Isobutane       1       11-May-11       0       18       0.00       0         TIC: Pentane, 2-methyl-       1       11-May-11       0       12       0.00       0         TIC: unknown       1       11-May-11       0       15       0.00       0	108-05-4	Vinyl acetate	1	11-May-11	0.20	ND	N7	0.72	ND
Surr: Bromofluorobenzene       1       11-May-11       65-135       112       0.00       0         TIC: Butane       1       11-May-11       0       42       0.00       0         TIC: Butane, 2-methyl-       1       11-May-11       0       33       0.00       0         TIC: Gyclotetrasilloxane, nethyl-       1       11-May-11       0       4.2       0.00       0         TIC: Hexane, 2-methyl-       1       11-May-11       0       5.4       0.00       0         TIC: Isobutane       1       11-May-11       0       18       0.00       0         TIC: Pentane, 2-methyl-       1       11-May-11       0       12       0.00       0         TIC: unknown       1       11-May-11       0       16       0.00       0	75-01-4	Vinyl chloride	1	11-May-11	0.20	ND	W.7	0.52	ND
TIC: Butane, 2-methyl-  TIC: Butane, 2-methyl-  1 11-May-11 0 33 0.00 0  TIC: Gyclopentane, methyl-  1 11-May-11 0 4.2 0.00 0  TIC: Hexane, 2-methyl-  1 11-May-11 0 5.4 0.00 0  TIC: Isobutane  1 11-May-11 0 18 0.00 0  TIC: Pentane, 2-methyl-  1 11-May-11 0 12 0.00 0  TIC: unknown  1 11-May-11 0 15 0.00 0		Surr: Bromofluorobenzene	1	11-May-11	65-135	112		0.00	0
TIG: Gyclopentane; methyl- 1 11-May-11 0 4-2 0:00 0 TC  TIG: Gyclotetras/loxane, octamethyl- 1-11-May-11 0 12 0:00 0  TIC: Hexane, 2-methyl- 1 11-May-11 0 5.4 0:00 0  TIC: Isobutane 1 11-May-11 0 18 0:00 0  TIC: Pentane, 2-methyl- 1 11-May-11 0 12 0:00 0  TIC: unknown 1 11-May-11 0 15 0:00 0		·TIC: Butane	1	11-May-11	0	42		0.00	0
TiC: Hexane, 2-methyl-  TiC: Hexane, 2-methyl-  TiC: Isobutane  1 11-May-11 0 18 0.00 0  TiC: Pentane, 2-methyl-  1 11-May-11 0 18 0.00 0  TiC: Pentane, 2-methyl-  1 11-May-11 0 12 0.00 0  TiC: unknown  1 11-May-11 0 15 0.00 0		TIC: Butane, 2-methyl-	1	11-May-11	0	33		0.00	0
TIC: Hexane, 2-methyl-       1 11-May-11 0 5.4       0.00 0         TIC: Isobutane       1 11-May-11 0 18       0.00 0         TIC: Pentane, 2-methyl-       1 11-May-11 0 12       0.00 0         TIC: unknown       1 11-May-11 0 15       0.00 0		TIG: Gyclopentane, methyl-	1_	11-May-11	<u> </u>	4.2		0:00-	$-0$ $c$ $(T_c)$
TIC: Isobutane       1       11-May-11       0       18       0.00       0         TIC: Pentane, 2-methyl-       1       11-May-11       0       12       0.00       0         TIC: unknown       1       11-May-11       0       16       0.00       0		TIC: Cyclotetrasiloxane, octamethyl-		1-1-May-1-1	0	12		0.00	0 6 6
TIC: Pentane, 2-methyl- 1 11-May-11 0 12 0.00 0 TIC: unknown 1 11-May-11 0 15 0.00 0		TIC: Hexane, 2-methyl-	1	11-May-11	0	5.4		0.00	
TIC: unknown 1 11-May-11 0 15 0.00 0		TIC: Isobutane	1	11-May-11	0	18		0.00	0
• • • • • • • • • • • • • • • • • • • •		TIC: Pentane, 2-methyl-	1	11-May-11	0	12		0.00	0
TIC: unknown hydrocarbon 1 11-May-11 0 17 0.00 0		TIC: unknown	1	11-May-11	0	15		0.00	0
		TIC: unknown hydrocarbon	1	11-May-11	0	17		0.00	0

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blunk
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 2 of 6

Approved By

Date: 5/16/11

10/22/2011

#### **Analytical Report**

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1105001-002A

Date 16-May-11

Client Sample ID 828131A-IA1503

Collection Date: 4/28/2011

Tag # 261/2659

Matrix INDOOR AMBIENT

TO-15 (VI+TICS)		Dilution	Date	, <b>pp</b> ]	bV	Data	ug/m3	
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualifiers	PQL	Result
71-55-6	1,1,1-Trichioroethane	1	11-May-11	0,20	ND		1.10	ND
79-34-5	1,1,2,2-Tetrachloroethane	1	11-May-11	0.20	ND		1.40	ND
79-00-5	1,1,2-Trichloroethane	1	11-May-11	0.20	ND		1.10	ND
76-13-1	1,1,2-Trifluoro-1,2,2-Trichloroethane (Freon 11:	1	11-May-11	0.20	ND		1.60	ND
75-34-3	1,1-Dichloroethane	1	11-May-11	0.20	ND		0.82	ND
75-35-4	1,1-Dichioroethene	†	11-May-11	0.20	ND		0.81	ND
120-82-1	1,2,4-Trichlorobenzene	1	11-May-11	0,20	ND	u)	1.50	ND
95-63-6	1,2,4-Trimethylbenzene	1	11-May-11	0,30	ND	0.0	1,50	ND
106-93-4	1,2-Dibromoethane	1	11-May-11	0.20	ND		1.60	ND
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon-1	1	11-May-11	0.20	ND		1.40	ND
95-50-1	1,2-Dichlorobenzene	1	11-May-11	0,20	ND		1.20	ND
107-06-2	1,2-Dichloroethane	1	11-May-11	0.20	0.26		0.82	1.1
78-87-5	1,2-Dichloropropane	1	11-May-11	0.20	ND	NJ	0.94	ND
108-67-8	1,3,5-Trimethylbenzene	1	11-May-11	0.20	0.33	• • •	1,00	1.6
106-99-0	1,3-Butadiene	1	11-May-11	0.20	ND	ΝS	0.45	ND
541-73-1	1,3-Dichlorobenzene	1	11-May-11	0.20	ND		1,20	ND
106-46-7	1,4-Dichlorobenzene	1	11-May-11	0.20	ND		1,20	ND
123-91-1	1,4-Dioxane	1	11-May-11	0.40	ND	$\kappa_{7}$	1.50	ND
78-93-3	2-Butanone (MEK)	1	11-May-11	0.20	0.93	A ?	0.60	2.8
591~78-6	2-Hexanone (*)	1	11-May-11	0.20	ND	M7	0.83	ND
622-96-8	4-Ethyltoluene (*)	1	11-May-11	0,20	0.27		1.00	1.3
108-10-1	4-Methyl-2-Pentanone (MIBK)	1	11-May-11	0.20	ND		0.83	ND
67-64-1	Acetone	1	11-May-11	2.0	11	7	4.80	26
71-43-2	Benzene	1	11-May-11	0,20	0.36		0,65	1,2
100-44-7	Benzyl chloride	1	11-May-11	0.20	ND		1.10	ND
75-27-4	Bromodichloromethane	1	11-May-11	0,20	ND		1.40	ND
75-25-2	Bromoform	1	11-May-11	0.20	ND	N VS	2.10	ND
74-83-9	Bromomethane	1	11-May-11	0.20	ND	_	0.79	ND
75-15-0	Carbon disulfide	1	11-May-11	0.20	ND	ИJ	0.63	ND
56-23-5	Carbon tetrachloride	1	11-May-11	0.040	0.13		0,26	0.83
108-90-7	Chlorobenzene	1	11-May-11	0.20	ND		0.94	ND
75-00-3	Chloroethane	1	11-May-11	0.20	ND		0.54	ND
67-66-3	Chloroform	1	11-May-11	0,20	ND		0.99	ND
74-67-3	Chloromethane	1	11-May-11	0.20	0.78	,	0.42	1.6
156-59-2	cis-1,2-Dichloroethene	1	11-May-11	0.20	<b>4.</b> 1	A(TC)	0.81	. 17
	Qua	alifiers:		<del>/</del>		6/2/11		

- (*) Certification not offered by NYS for this compound
- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this analyte
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
  - Spike Recovery outside accepted recovery limits

Approved By

Page 3 of 5

Date: 5/16/11

#### **Analytical Report**

CLIENT MACTEC Engineering and Consulting, I

Locatio Off-Site Carriage Cleaners

Project: 3612102168

Lab ID E1105001-002A

Date 16-May-11

Client Sample ID 828131A-IA1503

Collection Date: 4/28/2011

Tag # 261/2659

Matrix INDOOR AMBIENT

TO-15 (VI-	+TICS)	Dilution	Date	, ppi	ρV	Data	u	g/m3
CAS#	Target Compound List	Factor	Analyzed	PQL	Result	Qualiflers	PQL	Result
10061-01-5	cie-1,3-Dichloropropene	1	11-May-11	0.20	ND		0,92	. ND
110-82-7	Cyclohexane	1	11-May-11	0.20	ND		0.70	ND
124-48-1	Dibromochloromethane	1	11-May-11	0,20	ND		1.70	ND
75-71-8	Dichlorodifluoromethane (Freon 12)	1	11-May-11	0.20	0.49		1.00	2,5
100-41-4	Ethyl benzene	1	11-May-11	0.20	0.28		0.88	1.2
87-68-3	Hexachlorobutadiene	1	11-May-11	0.20	ND	NS	2,20	ND
110-54-3	Hexane	1	11-May-11	0.20	ND		0.72	ND
67-63-0	isopropanol	1	11-May-11	2.0	3.5		5.00	8.8
1330-20-7	m,p-Xylene	1	11-May-11	0.60	0.72		2.60	3,2
1634-04-4	Methyl tert-butyl ether (MTBE)	1	11-May-11	0.20	ND	N)	0.73	ND
76-09-2	Methylene chloride .	1	11-May-11	0.20	0.27	کہ	0.71	0.95
142-82-5	n-Heptane	1	11-May-11	0.20	ND	WS	0.83	ND
95-47-6	o-Xylene	1	11-May-11	0,20	0.28	_	0.88	1.2
100-42-5	Styrene	1	11-May-11	0.30	ND	<i>1</i> 20	1.30	ND
127-18-4	Tetrachloroethene	1	11-May-11	0.20	0,84	X O	1.40	5.8
109-99-9	Tetrahydrofuran (*)	1	11-May-11	0.20	ND	Ĺλ	0,60	ND
108-88-3	Toluene	1	11-May-11	0,20	1.8		0.77	7.0
156-60-5	trans-1,2-Dichloroethene	1	11-May-11	0,20	ND		0.81	ND
10061-02-6	trans-1,3-Dichloropropene	1	11-May-11	0.20	ND	LΛ	0.92	ND
79-01-6	Trichloroethene	1	11-May-11	0,040	3.7	XO	0,22	20
75-69-4	Trichlorofluoromethane (Freon 11)	1	11-May-11	0.20	0.25	70	1,10	1.4
108-05-4	Vinyl acetate	1	11-May-11	0.20	ND	MZ	0.72	ND
75-01-4	Vinyl chloride	1	11-May-11	0.20	3.3	U	0.52	8.5
	Surr: Bromofluorobenzene	1	11-May-11	65-135	117	4	0,00	0
	TIC: 1-Butanoi	1	11-May-11	0	30		0.00	0
	TIC+Cyclotetraellexane, octamethyl	1-	1-1-May-1-1-	0	22		0:00-	
	-TIO: Gyclotrisilexane; hexamethyl-		11-May-1-1-	0	12	В	0,00	0-6
	TIC: Ethyl aicohol	1	11-May-11	0	9.3		0.00	
	TIC: unknown hydrocarbon (12.89)	1	11-May-11	0	26		0.00	0
	TIC: unknown hydrocarbon (13.035).	1	11-May-11	0	8.4		0.00	0
	TIC: unknown hydrocarbon (13.305)	1	11-May-11	0	4.2		0.00	0
	TIC: unknown hydrocarbon (13.411)	1	11-May-11	0	22		0.00	0
	TIC: unknown hydrocarbon (13.624)	1	11-May-11	0	24		0,00	0

#### Qualifiers:

- (*) Certification not offered by NYS for this compound
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this analyte
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Approved By

Page 4 of 4

Date: Slall

M25/5011

#### APPENDIX G

MONITORED NATURAL ATTENUATION SCREENING PROTOCOL FORMS

The following is taken from the USEPA protocol (USEPA, 1998)
The results of this scoring process have no regulatory

Strong evidence for anaerobic biodegradation* of chlorinated organics	>20
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Interpretation	Score

DP-10 Score: 12

The results of this scoring process have no regulatory significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table		
Analysis	Concentration in Most Contam. Zone	reductive dechlorination	Yes	No	Points Awarde	
Oxygen*	<0:5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3	
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0.	0		
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2	
ron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	.0	
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0	
Sulfide*	>1 mg/L	Reductive pathway possible	0		0	
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	• •	0	
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	)	1	
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	1.0	
oH*	.5 < pH < 9	Optimal range for reductive pathway	•	0	0	
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0	
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0.	•	0.	
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	-0	•	0	
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0	
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0	
Hydrogen	>1·nM	Reductive pathway possible, VC may accumulate	0	0		
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0		
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0	
PCE*		Material released	•	0	0	
TCE*		Daughter product of PCE ^{a/}	•	0	.2	
DCE*		Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{at} ; 1,1-DCE can be a chem. reaction product of TCA	•	O	2	
VC*		Daughter product of DCE ^{a/}	•	0	2	
1,1,1- Trichloroethane*		Material released	0	0		
DCA		Daughter product of TCA under reducing conditions	0	0		
Carbon Tetrachloride		Material released	O	0		
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0		
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0	
	>0.1 mg/L	Daughter product of VC/ethene	O	•	0	
Chloroform		Daughter product of Carbon Tetrachloride	О	0		
Dichloromethane		Daughter product of Chloroform	0	О		

(i.e., not a constituent of the source NAPL).

SCORE

Reset

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

The following is taken from the USEPA protocol (USEPA, 1998).

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20

DP-15 Score: 12

The results of this scoring procesignificance.	ess have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	0	
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	O	2
iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	-0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	( O )	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	O	1
Potential* (ORP)	<-100mV	Reductive pathway likely	. O.	•	0
pH*	5 <ph<9< td=""><td>Optimal range for reductive pathway</td><td>•</td><td>O</td><td>.0</td></ph<9<>	Optimal range for reductive pathway	•	O	.0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	o o	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	, 0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	₹0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	200
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0,	•	0
PCE*		Material released	•	0	0
TCE*		Daughter product of PCE ad	•	0	2
DCE*		Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a(} ; 1,1-DCE can be a chem. reaction product of TCA	•	O	2
VC*		Daughter product of DCE ^{at}	. •	0	2
1,1,1- Trichloroethane*		Material released	O	0	
DCA		Daughter product of TCA under reducing conditions	O	O	
Carbon Tetrachloride		Material released	O	0	is incomed the
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	О	•	0
Chloroform		Daughter product of Carbon Tetrachloride	0	0	
<ul> <li>1.00 (1.00 m) 10 (1.00 m) 10 (1.00 m)</li> </ul>	r - Francisco de la Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de Carlo de C	Daughter product of Chloroform	0	0	

(i.e., not a constituent of the source NAPL).

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

The following is taken from the USEPA protocol (USEPA, 1998).
The results of this scoring process have no regulatory:

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Ctrong outdones for an acrobic biodegradation* of chlorinated organics	>20

DP-23 Score: 13

The results of this scoring process have no regulatory significance.		Strong-evidence for anaerobic biodegradation* of chlorinated organics		Scroll to End of Table	
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	.3
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	0	
Nitrate*	<1.mg/L	At higher concentrations may compete with reductive pathway	•	0	2
ron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	/ O	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	⇒1 mg/L	Reductive pathway possible	0	•	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	- O	•	0.
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
оН*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
ГОС	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0 1	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	- 0	- O	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	. 0	.0
TCE*		Daughter product of PCE a/	0	•	.0
DCE*	Service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the servic	Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{al} , 1,1-DCE can be a chem. reaction product of TCA	•	0	2
vc*		Daughter product of DCE ^{ar}	•	0	2
1,1,1- Trichloroethane*		Material released	0	0	
DCA		Daughter product of TCA under reducing conditions	0	0	
Carbon Tetrachloride		Material released	0	0	
Chloroethane*		Daughter product of DCA or VC under reducing conditions	O	0	
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0:1 mg/L	Daughter product of VC/ethene	0	•	0
Chloroform		Daughter product of Carbon Tetrachloride	.0	0	
Dichloromethane		Daughter product of Chloroform	0	Го	

(i.e., not a constituent of the source NAPL).

SCORE

Reset

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

The following is taken from the USEPA protocol (USEPA::1998).
The results of this scoring process have no regulatory:
significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20

MW-2

Score: 15

significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table	
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	O	3
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	0	
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	. •	0.5	2
iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	.0
Sulfide*	>1 mg/L	Reductive pathway possible	-0	•	0
Methane*	>0,5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	• •	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	• •	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	О	- 0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0:1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Daughter product of PCE al	. •	0	.2
DCE*		Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{2l} ; 1,1-DCE can be a chem. reaction product of TCA	•	O	2
VC*		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	0,	O	
DCA		Daughter product of TCA under reducing conditions	О	O	
Carbon Tetrachloride		Material released	0	O.	
Chloroethane*		Daughter product of DCA or VC under reducing conditions	O	0	
Ethene/Ethane	>0:01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	Ο	<b>•</b>	0
Chloroform		Daughter product of Carbon Tetrachloride	0	0	
Dichloromethane		Daughter product of Chloroform	0	0	

(i.e., not a constituent of the source NAPL).

SCORE

Reset

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20

MW-7 Score: 12

The results of this scoring process have no regulatory significance:		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table	
Analysis	Concentration in Most Contam. Zone	† reductive dechlorination	Yes	No	Points Awarded
Dxygen*	<0:5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	0	
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	0	0	2
ron II*	.>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	О.	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
рН*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination, can be natural or anthropogenic	О	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0		0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	0	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1·nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PGE*		Material released	•	0	.0
TCE*		Daughter product of PCE at		0	2
DCE*		Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} : 1.1-DCE can be a chem, reaction product of TCA	•	O	2
VC*		Daughter product of DCE ^{al}	•	O	2
1,1,1- Trichloroethane*		Material released	0	0	
DCA		Daughter product of TCA under reducing conditions	0	- O	
Carbon Tetrachloride		Material released	0	'O	
Chloroethane*		Daughter product of DCA or VC under reducing conditions	.0	0	
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	О	•	0
	>0.1 mg/L	Daughter product of VC/ethene	О	•	0
Chloroform		Daughter product of Carbon Tetrachloride	0	0	
Dichloromethane		Daughter product of Chloroform	0	0	

(i.e., not a constituent of the source NAPL).

SCORE

a/Points awarded only if it can be shown that the compound is a daughter product

The following is taken from the USEPA protocol (USEPA, 1998).

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong avidance for apperable biodegradation* of chiprinated organics	>20

MW-11 Score: 10

The results of this scoring process have no regulatory significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table	
Analysis	Concentration in Most Contam, Zone	- reductive dechlorination	Yes	_No	Points Awarded
Dxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	. 0	3
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	O	0	
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
ron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	O	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	Ö	113
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
oH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	. 0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	.0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	/ O	0	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0.0	0
TCE*		Daughter product of PCE at	•	O	2
DCE*		Daughter product of TCE.  If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	: O	2
VC*		Daughter product of DCE ^{a/}	0	•	0
1,1,1-		Material released	0	0	
Trichloroethane* DCA		Daughter product of TCA under reducing conditions	0	0	
Carbon Tetrachloride		Material released	O	0	
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	. O	
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	0
Chloroform		Daughter product of Carbon Tetrachloride	0	0	
Dichloromethane		Daughter product of Chloroform	0	0	

(i.e., not a constituent of the source NAPL).

SCORE

Reset

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product