

Periodic Review Report: August 6, 2017 to August 6, 2018 NYSDEC BCP Site No. C828134

Location:

Former Steve Joy's Sunoco 3865 & 3875 West Henrietta Road Town of Henrietta, Monroe County, New York

Prepared for:

RJ Dorschel Corporation 3817 West Henrietta Road Rochester, New York 14623

LaBella Project No. 209395

August 2018

Table of Contents

			Page
1.0	INTRO	DDUCTION	1
	1.1	Environmental History	1
2.0	PURF	OSE AND SCOPE OF WORK	3
3.0	ANNU	JAL MONITORING	4
	3.1	Groundwater Monitoring	4
	3.2	Sub-Slab Depressurization System Monitoring	6
	3.3	Environmental Monitoring Associated with Recent Change of Use	7
	3.4	Deviations from SMP	8
4.0	GROU	JNDWATER FLOW CONTOURS	8
5.0	SUMI	MARY OF GROUNDWATER MONITORING	9
6.0	SITE	EVALUATION	9
7.0	INSTI	TUTIONAL AND ENGINEERING CONTROLS CERTIFICATION	10

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Surrounding Properties
Figure 3	Groundwater Monitoring Well Locations and Location of Sub-Slab Depressurization Fan
Figure 4A Figure 4B	October 2011 Groundwater Contours July 2012 Groundwater Contours

TABLES

Table 1 Groundwater Monitoring Results - VOCs

APPENDICES

Appendix A	Groundwater Sampling Logs
Appendix B	Data Usability Summary Report (DUSR)
Appendix C	Site Inspection Form and Photograph
Appendix D	As-Built Drawings of SSDS at 3865 & 3875 West Henrietta Road Buildings
Appendix E	Graphs of Total VOCs over Time
Appendix F	Institutional Controls/Engineering Controls Certification Form
Appendix G	Change of Use (±500 Square Foot Building Addition) Documentation

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report (PRR) for the Former Steve Joy's Sunoco property, located at 3865 and 3875 West Henrietta Road (NYS Route 15) (hereinafter referred to as the "Site"), under the New York State (NYS) Brownfield Cleanup Program (BCP), as administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #B8-0719-06-06, Site # C828134. A Site Location Map is included as Figure 1.

The Site is located in the Town of Henrietta, County of Monroe, New York and is comprised of the following two (2) parcels of land:

- 3865 West Henrietta Road, an approximate 1-acre parcel identified as Block 161.15-1 and Lot 20.1; and
- 3875 West Henrietta Road, an approximate 1.5-acre parcel identified as Block 161.19-1 and Lot 9.

The Site is improved with the following structures:

- A 4,692± square foot building on the 3865 West Henrietta Road parcel; and
- A 12,968 ± square foot building (including the ±500 square foot addition to this building constructed in 2017) on the 3875 West Henrietta Road parcel.

The properties surrounding the Site are commercial properties. The properties directly adjacent to the Site and their current occupants are as follows:

- North 3861 West Henrietta Road, Pizza Hut Restaurant;
- East West Henrietta Road Right-of-way (ROW), then 3870 West Henrietta Road, Lewis General Tire, Inc.;
- South 3883 West Henrietta Road, an auto dealership; and
- West overflow parking lots associated with the 3883 West Henrietta Road property.

A Site Plan (included as Figure 2), illustrates the Site boundaries and the adjacent properties.

1.1 Environmental History

Previous environmental investigations (Pre-BCP work) at the Site identified the nature and extent of contamination to be limited to petroleum contamination in soil, groundwater, and soil vapor. The apparent source of the petroleum impacts was from six (6) petroleum underground storage tanks (USTs) and five hydraulic lifts.

The Pre-BCP and BCP Investigation work at the Site included: advancing 73 soil borings; excavating nine (9) test pits; installing sixteen (16) groundwater monitoring wells; the installation of sub-slab soil vapor sampling points; and collecting samples of soil, groundwater, sub-slab vapor, and

indoor/outdoor air. Based on the work completed, it was determined that the predominant contaminants at the Site were petroleum-related volatile organic compounds (VOCs) in soil and groundwater.

Petroleum-related semi-volatile organic compounds (SVOCs), chlorinated solvents, and metals were also detected in groundwater, along with a limited area of metals in surface soils. Based on these findings, the following specific areas of contamination were identified:

- Petroleum impacted soil and groundwater between the 3865 Parcel Building and West Henrietta Road, in the area of the former pump islands, was identified at concentrations above the NYSDEC Part 375-6 Restricted Commercial Use Soil Cleanup Objectives (SCOs) and the NYSDEC Part 703 Groundwater Standards;
- Petroleum impacted soil directly north of the central portion of the 3875 Building associated with a UST was identified in the field as impacted;
- Petroleum impacts in soil around hydraulic lifts within the western portion of the 3875
 Building was identified in field observations;
- An area of surface soils along West Henrietta Road impacted with the metals (arsenic and barium) was identified at concentrations above the NYSDEC Part 375-6 Restricted Commercial Use SCOs;
- Concentrations of VOCs in the sub-slab soil vapor and indoor air at both buildings at the Site were identified; and
- VOCs and metals in groundwater on the 3875 Parcel were identified at concentrations above the NYSDEC Part 703 Groundwater Standards.

The Remedial Measures completed at the Site have included two (2) Interim Remedial Measures (IRMs) consisting of the removal of USTs and soil. The soil removed during the IRM was transported to an off-site location for treatment in a bio-cell. In addition, a final remedy at the Site consisted of the removing hydraulic lifts, soil and groundwater. The remedies and Areas of Concern (AOC) designation from the Remedial Action Work Plan (RAWP) are summarized below:

- Removal and bioremediation of approximately 1,740 cubic yards of petroleum-impacted soils from AOC #1. This resulted in removing all soils above the NYSDEC Part 375-6.8(b)
 Protection of Groundwater SCOs with the exception of two areas due to underground utilities, the West Henrietta Road ROW and the on-site building.
- Removal and disposal of six USTs and their contents, which consisted of approximately 8,000 gallons of petroleum impacted waters and 600 gallons of waste oil.
- Removal and disposal of five hydraulic lifts (AOC #2) and removal and off-site disposal of approximately 85 tons of petroleum-impacted soil from seven hydraulic lift locations [i.e., two (2) former locations and the five (5) lifts removed as part of the IRM].
- Removal and disposal of surface soils impacted with heavy metals, excavated from an area measuring 5 feet by 5 feet and 1 foot in depth. The heavy metals were identified during the RI in surface soil sample SS-1 located along the eastern edge of the 3865 West Henrietta property boundary and was identified as AOC #5.
- Installation of a sub-slab depressurization system (SSDS) to mitigate the potential for vapor intrusion within (AOC #3) the existing building at the 3865 West Henrietta Road parcel.

Pressure field extension testing was completed on each of the monitoring points after the installation of the SSDS, and confirmed the system influences the entire slab area. An SSDS was also installed at the 3875 Parcel building during redevelopment of the Mini Cooper dealership in 2012, and this SSDS was expanded to extend beneath the ± 500 square foot addition to this building in 2017.

- An Environmental Easement was executed and recorded to restrict land use and prevent future exposure to any contamination remaining at the Site.
- Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for:
 - Institutional and Engineering Controls;
 - o Monitoring;
 - Operation and Maintenance; and
 - o Reporting.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of this report is to present the monitoring work completed at the Site during the time period of August 6, 2017 to August 6, 2018. This work was completed in general accordance with the provisions identified in the SMP. As required in the SMP, this report includes the following information:

- Identification, assessment and certification of all Engineering Controls/Institutional Controls (ECs/ICs) required by the remedy for the Site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the Site during the reporting period in electronic format (included in report);
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media, including: a list of all compounds analyzed; applicable regulatory standards, with all exceedances highlighted: and a presentation of past data as part of an evaluation of contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A Site evaluation, which includes the following:
 - o The compliance of the remedy with the requirements of the Site-specific RAWP;
 - o Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - o The overall performance and effectiveness of the remedy.

3.0 ANNUAL MONITORING

The original SMP identified the ongoing monitoring of the performance of the remedy, via semi-annual sampling of two (2) existing groundwater monitoring wells (3865 Parcel: MW-7 and 3875 Parcel: MW-3R). The original SMP indicated that monitoring the overall reduction in contamination on-site would be conducted for the first two (2) years, with the frequency thereafter to be determined by NYSDEC. The NYSDEC approved annual monitoring of the two (2) wells for VOCs only in a letter dated July 22, 2013. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals.

The original SMP also required a semi-annual inspection of the SSDS and semi-annual monitoring of the biocell soils. In their July 22, 2013 letter, the NYSDEC also approved discontinuing monitoring of the biocell soils.

The current monitoring program is summarized in the following table and was included in the June 2014 SMP update.

Schedule of Monitoring/Inspections

Monitoring Program	Frequency*	Matrix	Analysis
Groundwater Monitoring	Annual	Groundwater	VOCs using USEPA Method 8260 (NYSDEC STARS-list for 3865 parcel wells and TCL VOCs for 3875 parcel wells)
Sub-Slab Depressurization System Inspection	Annual	Sub-Slab Vapor	None

 $^{^{\}star}$ The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.1 Groundwater Monitoring

Groundwater monitoring for this PRR was conducted in June 2018. Monitoring wells MW-3R (replacement well) and MW-7 were sampled on June 18, 2018 and June 19, 2018, respectively. The locations of these wells are shown on Figure 3.

Static water levels (SWLs) were collected during the June 2018 groundwater sampling event. The groundwater samples were collected using a modified low-flow sampling procedure with a peristaltic pump. During the sampling event, disposable tubing was utilized between wells, and, as such, decontamination of equipment was not required.

During the sampling event, field measurements of water quality parameters were collected using a Horiba U-52-2 water quality meter equipped with an in-line "flow-thru" cell. During the sampling

event, the following field measurements were collected:

- pH;
- Conductivity;
- Temperature;
- Oxygen Reduction Potential (ORP);
- Turbidity; and
- Dissolved Oxygen (DO).

During the sampling event, water quality parameter readings were recorded at regular time intervals prior to the collection of groundwater samples. Water quality stabilization criteria are summarized in the following table.

Measurement	Maximum Variability for 3 Consecutive Readings
рН	+/- 0.1 standard units
Conductivity	+/- 3 %
ORP	+/- 10 mV
Turbidity	+/- 10 %
DO	+/- 10 %

During the sampling event, the required criteria were met prior to sample collection at MW-3R. In addition, the SWL in MW-3R was monitored during the sampling event to confirm that drawdown in the well was minimized.

Due to limited water volume in MW-7, on June 18, 2018, MW-7 was purged "dry", and the well was allowed to recharge overnight. A groundwater sample was collected from MW-7 the next day, on June 19, 2018. Water quality measurements were also collected in connection with the groundwater sample collected from MW-7. Groundwater sampling logs that include the in-field parameter measurements are included as Appendix A.

Environmental Science Corporation of Mt. Juliet, Tennessee (ESC) analyzed the groundwater samples collected during the groundwater monitoring event. ESC is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The samples were analyzed for NYSDEC CP-51-list and United States Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs using USEPA Method 8260.

The laboratory data from the groundwater monitoring event were reported in an Analytical Services Protocol (ASP) Category B Deliverable and a Data Usability Summary Report (DUSR) was prepared for the data. The DUSR is included as Appendix B. As previously requested by the NYSDEC, the ASP Category B laboratory analytical report will be provided separately.

3.2 Sub-Slab Depressurization System (SSDS) Monitoring

This section discusses the SSDS monitoring performed on July 28, 2018 in the two (2) on-site buildings.

3865 West Henrietta Road Building

The SSDS in the 3865 West Henrietta Road building was monitored on July 28, 2018 in order to verify proper operation of the system. Because the manometer installed on this SSDS is now located within the wall of the women's restroom and is accessible via a removable wall panel, NYSDEC requested in October 2015 that an alarm be installed on the SSDS. The purpose of the alarm is to monitor proper operation of the SSDS; this alarm was installed in late 2015.

The location of the SSDS venting point/fan that operates the SSDS for the 3865 Building is shown on Figure 3, and an as-built drawing of the SSDS is included in Appendix D. At the fan location, the following inspections were made:

- the in-line U-tube manometer on the suction side of the piping system was observed to
 determine a pressure differential of approximately 2.5 inches of water column which is
 consistent with historic readings and indicates the SSDS is operating properly;
- the condition of the piping was observed to determine if any portion of the piping required repair;
- the fan was working properly; and
- labeling of the system was intact.

Based upon the inspections, the SSDS appeared to be in good working order (i.e., the manometer indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). Copies of the inspection form and photographs from the inspection are included in Appendix C.

3875 West Henrietta Road Building

The SSDS in the 3875 West Henrietta Road building was monitored on July 28, 2018 in order to verify proper operation of the system. The SSDS for the 3875 Building is shown in the as-built drawings included in Appendix D. At the fan location, the following inspections were made:

sub-slab monitoring points, including the two (2) new monitoring points installed during
construction of the recent addition to this building, were measured with a VelociCalc® Model
9565 Multi-Function Ventilation Meter, to determine the pressure differential between the
sub-slab and indoor air. The results of this monitoring are summarized in the following table.

	July 28, 2018 Monitoring Event				
Location	Valve 1 Measurement (inches of H ₂ O)	Valve 2 Measurement (inches of H ₂ O)			
Customer Reception Area (referred to as "Northern Point" in 2017 PRR)	- 0.591	- 0.010			
Service Area (referred to as "Southern Point" in 2017 PRR)	- 0176	- 0.007			
2017 Building Addition	- 0.074	- 0.072			

- the condition of the piping was observed to determine if any portion of the piping required repair:
- the fan was working properly; and
- labeling of the system was intact.

Based upon the inspections, the SSDS appeared to be in good working order (i.e., the micromanometer readings indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). A copy of the inspection form is included in Appendix C.

3.3 Environmental Monitoring Associated with Recent Change of Use

Redevelopment activities at 3875 West Henrietta Road parcel of the Site included the construction of a ± 500 square foot building addition to the western end of the 3875 West Henrietta Road building. The intent of this building addition was to expand the existing auto service area.

On September 11, 2017, an "L-shaped" excavation was completed to allow for the construction of a new footer/foundation for the ±500 square foot building addition. A LaBella representative was onsite to during excavation activities to assess the excavated material for detectable VOCs with a photoionization detector (PID) and to implement a New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). [i.e., two (2) air monitoring locations, one (1) upwind and one (1) downwind from the excavation activities, were set up during ground-intrusive work].

The "L-shaped" footer/foundation excavation was approximately 5 feet wide by approximately 4 feet deep and approximately 45 feet in overall length (see drawings and additional information provided in Appendix G). Therefore, approximately 35 cubic yards of soil and fill material was excavated for this "L-shaped" footer/foundation excavation. As anticipated (based upon previously advanced nearby soil borings RITB-4 and RITB-9), some minor petroleum impacts were noted in dark gray coarse-grained fill material excavated from atop the native clayey soils. PID readings in the range of 25 parts per million (ppm) were noted in connection with these impacted fill materials, and the highest PID reading noted was approximately 125 ppm. Native soils beneath the fill material did not exhibit petroleum odors or elevated PID readings. No dewatering of this excavation was necessary.

Petroleum impacted soil/fill was temporarily staged on-site, characterized, and ultimately transported and disposed at High Acres Landfill, a NYSDEC Part 360-permitted facility. On September 20, 2017, some of the clean soil was used as backfill on the exterior side of the footer/foundation wall. Previously excavated clean soil was used as backfill to a depth of approximately 1 foot below grade, and imported #2 Stone (coarse gravel) was used as backfill atop this material. Imported #2 Stone (coarse gravel) was used as backfill on the interior side of the footer/foundation wall (i.e., inside the building addition, below the concrete floor slab).

On October 2, 2017, the petroleum-impacted soils and the remainder of the excavated clean material (i.e., not used as backfill on the exterior side of the footer/foundation wall) was transported to High Acres Landfill for disposal. Three (3) dump truck loads of material (totaling 52.95 tons) were disposed at High Acres Landfill on October 2, 2017 (see Appendix G for disposal documentation). Material excavated within the footprint of the building addition (i.e., excavated for an interior footer and for SSDS piping) was also staged on-site and ultimately transported to High Acres Landfill for disposal. Transportation and disposal of a single dump truck load (4.07 tons) of this material occurred on December 21, 2017 (see Appendix G for disposal documentation).

As noted previously, an SSDS was installed beneath the 3875 West Henrietta Road building during redevelopment of this structure in 2012. In order to expand the SSDS to include the area beneath the ±500 square foot building addition, additional sub-slab perforated piping and vapor barrier were installed beneath floor slab installed during construction of the addition. The new sub-slab perforated piping was connected to existing sub-slab piping in the southwestern portion of the building. In addition, two (2) new SSDS monitoring points were constructed in the SSDS expansion area.

Documentation regarding the environmental monitoring (including landfill disposal documentation) performed in connection with this change of use is provided in Appendix G.

3.4 Deviations from SMP

No deviations were encountered during this monitoring period.

4.0 GROUNDWATER FLOW CONTOURS

Although static water level measurements were collected during the June 2018 groundwater monitoring event, this sampling event included only two (2) monitoring wells. Historic monitoring information previously presented to the NYSDEC describes the groundwater flow regime at the Site. For informational purposes, groundwater contour maps from October 2011 and July 2012 are included as Figures 4A and 4B, respectively.

5.0 SUMMARY OF GROUNDWATER MONITORING

Groundwater monitoring was performed in June 2018 and included two (2) existing groundwater monitoring wells (3865 Parcel: MW-7 and 3875 Parcel: MW-3R), as shown on Figure 3.

The results of the groundwater monitoring are summarized in Table 1 (VOCs) and are compared to the NYSDEC Part 703 groundwater standards. As summarized in the attached Table 1 and the following table, VOCs were reported above NYSDEC Part 703 groundwater standards in the groundwater samples collected during the June 2018 groundwater monitoring event.

Well ID	Site Parcel	VOC(s) above Part 703 Groundwater Standards
MW-7	3865 Parcel	Benzene; Ethylbenzene; sec-Butylbenzene; n-Propylbenzene; lsopropylbenzene; p-Isopropyltoluene; n-Butylbenzene; Naphthalene; Toluene; 1,2,4-Trimethylbenzene; 1,3,5-Trimethylbenzene; Xylenes; Cyclohexane; and Methylcyclohexane
MW-3R	3875 Parcel	Chlorobenzene

6.0 SITE EVALUATION

The annual monitoring work conducted from August 6, 2017 to August 6, 2018 was completed in accordance with the SMP, with any exceptions noted in Section 4.4.

Groundwater Monitoring

Most of the previously existing groundwater monitoring wells at the Site have been destroyed or paved over during the redevelopment activities at the Site.

The analytical results from the June 2018 groundwater sampling event indicate that VOC concentrations appear relatively stable in samples collected from MW-7 and MW-3R, as shown in the graphs included in Appendix E. Although an overall slightly increasing trend in the data from both wells may be extrapolated, recent concentrations of Total VOC concentrations in groundwater are consistent with historic levels. In addition, with regard to MW-3R, the reported VOC concentrations are relatively low and only Chlorobenzene exceeds its associated Part 703 Groundwater Standard.

Based on the above, no changes to the current monitoring program are proposed.

The remedial program outlined in the SMP has effectively achieved progress toward meeting the remedial objectives for the Site. Continued monitoring of the SSDS and the implementation of the SMP should ultimately achieve the remedial objectives for the Site. The next groundwater sampling event is scheduled for Spring 2019.

7.0	INSTITUTIONAL AND ENGINNERING CONTROLS CERTIFICATION									
The completed NYSDEC Institutional and Engineering Controls Certification Form is included in Appendix F.										

J:\RJ DORSCHEL CORP\209395 - 3865 3875 W HENRIETTA RD REM ACT\REPORTS\2018 PRR\RPT_2018_08_28_ Periodic Review

Report_RJ Dorschel.docx

FIGURES

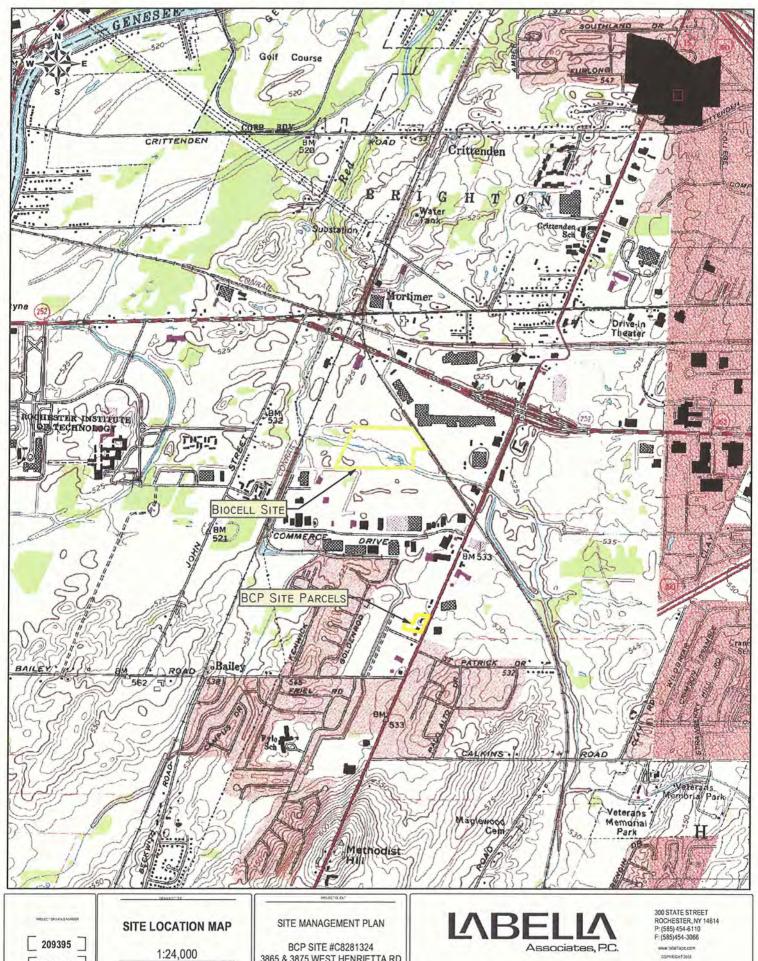


FIGURE 1

DESCRIPTION BON DENNISON DEN

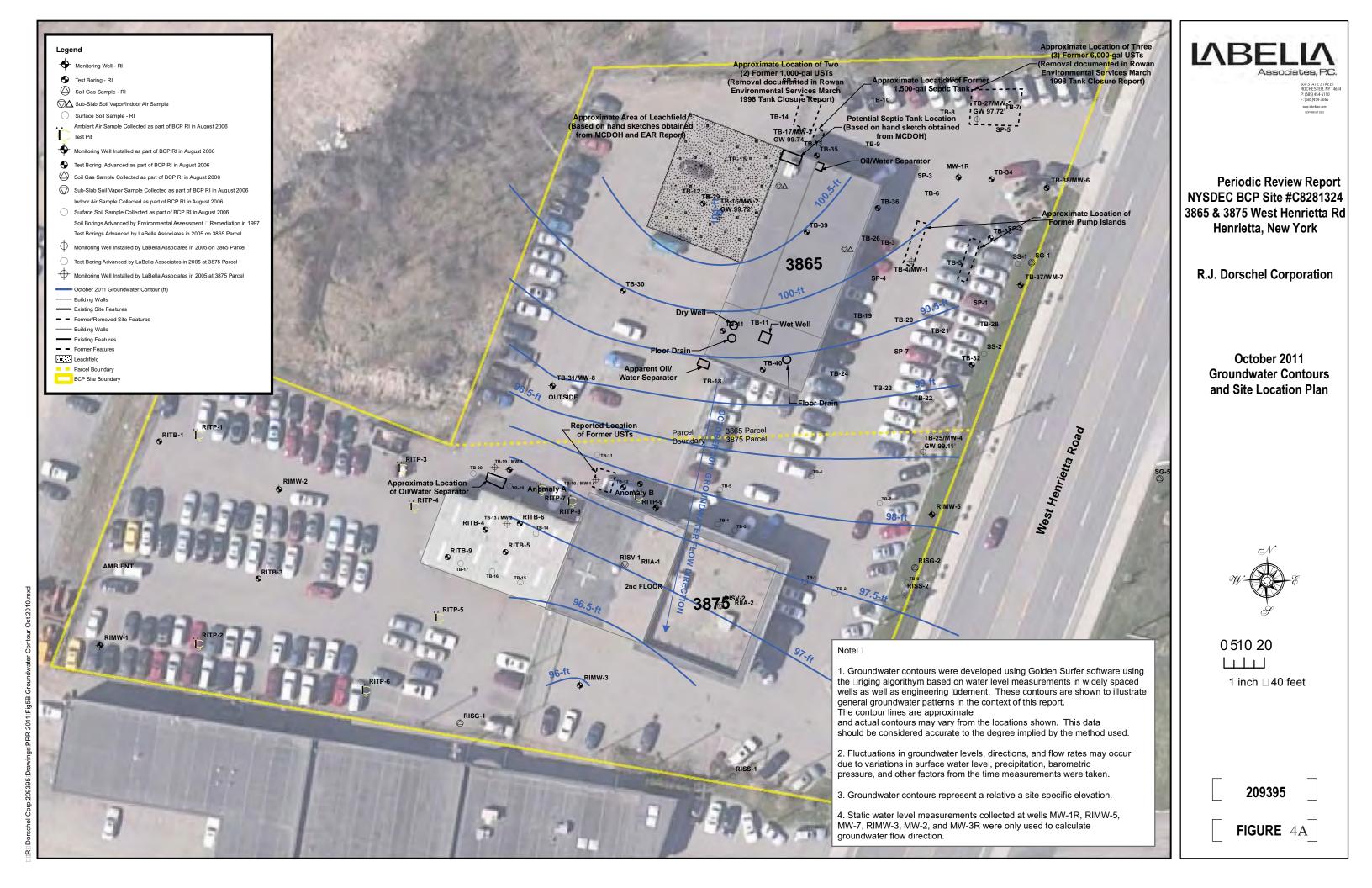
3865 & 3875 WEST HENRIETTA RD ROCHESTER, NY 14623

ROCHESTER, NY 14 P: (585) 454-6110 F: (585) 454-3066 www.labelapc.com

Periodic Review Report NYSDEC BCP Site #C8281324 3865 & 3875 West Henrietta Rd Henrietta, New York

R.J. Dorschel Corporation

Site Plan and Surrounding Properties



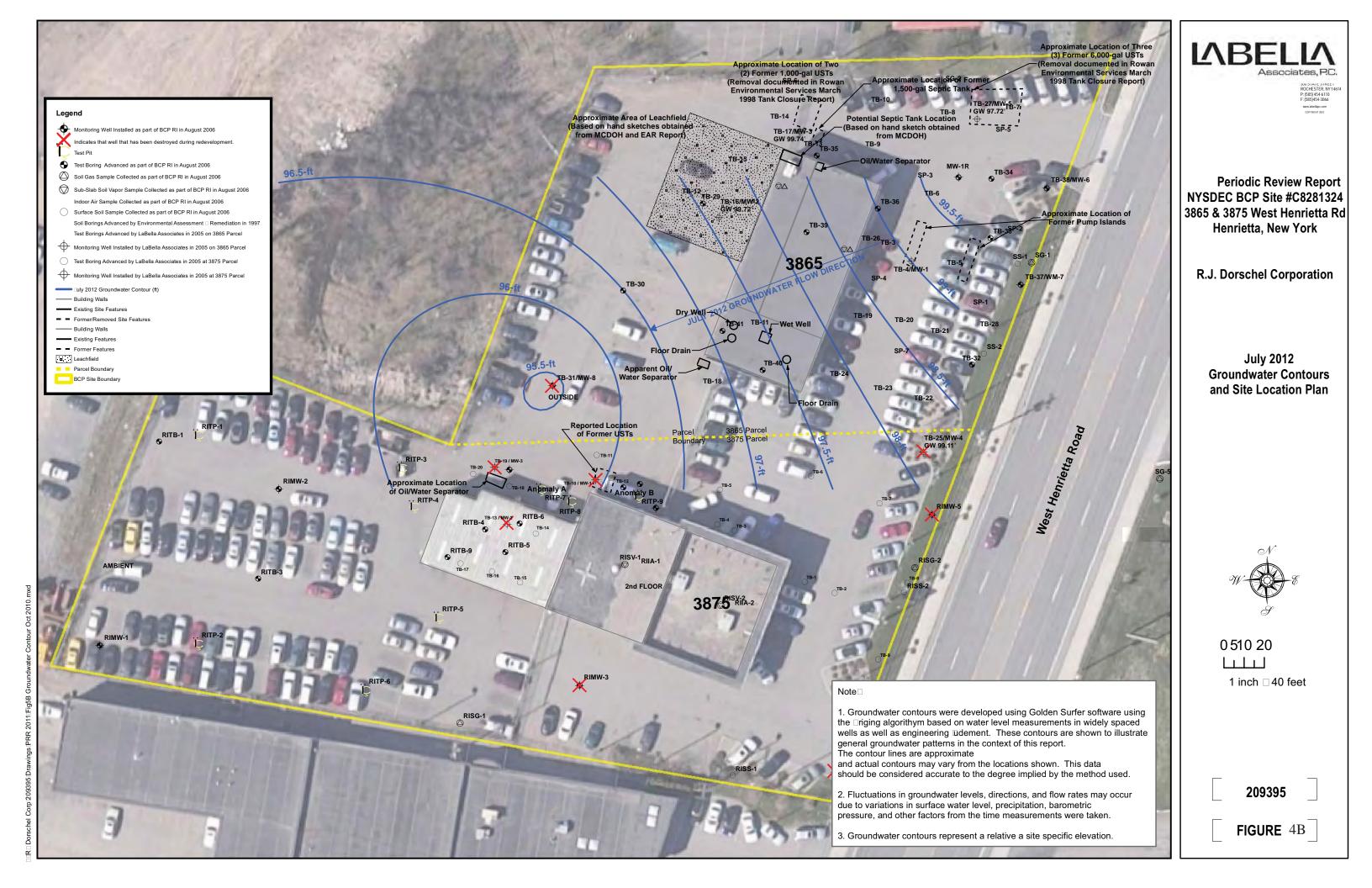

209395

FIGURE 2

Y-\R.I Dorschel Corn\2009395\Drawings\PRR 2011\Fig3 \Well 1 ocs

TABLE 1

GROUNDWATER MONITORING RESULTS -VOCs

Table 1

Groundwater Monitoring 3865 & 3875 West Henrietta Road, Henrietta, New York NYSDEC Brownfield Cleanup Program ID No. C828134

Summary of Detected Volatile Organic Compounds (VOCs) in Groundwater Test Results in Micrograms per Liter (µg/L) or Parts Per Billion (ppb)

	1													1											
	3865 Parcel							3875 Parcel																	
G																									NYSDEC Part 703:
Constituent							MW-7												MW-3R						Groundwater
																									Standard
	September 2006	May 2007	June 2010	October 2010	May 2011	October 2011	July 2012	March 2014	May 2015	October 2015	June 2016	June 2017	June 2018	May 2007	June 2010	October 2010	May 2011	October 2011	April 2014	May 2015	October 2015	June 2016	June 2017	June 2018	1
Petroleum-Related Volatile Organ	nic Compounds	1				1	1	1				ı	1						1	ı	1	ı		ı	
Benzene	370	410	740 E	750 D	ND<5.0	730	870	1,150	1,200	816	848	675	862	ND<5.0	2.3 J	2.8 J	3.1 J	31.7	ND<0.7	ND<50	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1
Ethyl ether																		ND<1.0		ND<1.0					Not Available
Ethylbenzene	880	790 E	250 E	620 D	ND<5.0	266	610	1050	950	786	258	332	502	ND<5.0	ND<5.0	ND<5.0	ND<5.0	5.2	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
sec-Butylbenzene	ND <50	23	3 J	5.6	ND<5.0	ND<100	11	ND<40.0	7.7	7.89	6.29	ND<10.0	6.68 J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
n-Propylbenzene	ND <50	260 E	13	36	ND<5.0	ND<100	86	108	110	89.1	18.2	22.0	29.8 J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
Isopropylbenzene	78	91	13	33	ND<5.0	ND<100	44	49.9	49	43.0	21.0	18.3	26.3 J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
p-Isopropyltoluene	ND <50	22	ND<5.0		ND<5.0	ND<100	ND<5.0	ND<40.0	7.1	7.27	6.71	ND<10.0	8.99 J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
n-Butylbenzene						ND<100	32	28.8 J	12	11.0	4.16	ND<10.0	5.62 J						ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
Naphthalene	ND <50	1,100 E	240 BE	330 DJ	ND<5.0	419	480	478	600	423	620	642	699	ND<5.0	1.4 BJ	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00	ND<5.00	10
Toluene	980 D	690 E	260 E	180	ND<5.0	106	35	156	120	73.9	71.9	67.6	58.5 J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	1.7	ND<2.0	ND<5.0	ND<5.00	ND<5.00	ND<1.00	ND<1.00	5
1,2,4-Trimethylbenzene	ND <50	1,100 E	620 E	730 D	ND<5.0	1,400	1,200	1,390	1,300	1,380	1,540	1,750	1,760	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	1.3	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
1,3,5-Trimethylbenzene	ND <50	630 E	210 E	190 DJ	ND<5.0	422	320	322	200	196	197	290	196 J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
m,p-Xylene	ND <50	2,100 E	2,300 E	4,700 D	ND<5.0	6,190	2,800	4,190	2,900	2,620	3,220	3,610	3,690	ND<5.0	ND<5.0	ND<5.0	ND<5.0	2.2	ND<2.0	2.1	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
o-Xylene	ND <50	760 E	450 E	690 D	ND<5.0	502	35	363	230	143	332	319	324	ND<5.0	ND<5.0	ND<5.0	ND<5.0	3.9	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
Tert-amyl methyl ether																		3.4							Not Available
Tert-butanol / butyl alcohol																		12.8							Not Available
Methyl-tert-Butyl Ether	ND <10	ND<5	2.4 J	2.4 J	5.6	ND<100	18	ND<40.0	ND<1.0	ND<1.0 U	ND<1.00	ND<10.0	1.49 UJ	2 J	ND<5.0	ND<5.0	1.2 J	22.5	2.97	2.5	1.56	2.25 J	1.35	1.38	10
Solvent-Related Volatile Organic	Compounds																								
Acetone	40 J	ND<5						ND<200	140	ND <50.0	ND <50.0	ND <500	ND <50.0	ND<5.0	42		ND<5.0	ND<10.0	ND<10.0	ND<50	ND <50.0	ND <50.0	ND <50.0	ND <50.0	50
2-Butanone	ND<50	ND<5						ND<200	ND<10	ND <10.0	ND <10.0	ND <100	ND <10.0	ND<5.0	8.1		ND<5.0	ND<10.0	ND<10.0	ND<10	ND <10.0	ND <10.0	ND <10.0	ND <10.0	50
Cyclohexane	140	ND<5						190 J	100	113	82.3 R	79.5	91.0 J	ND<5.0	ND<5.0		ND<5.0	Not Tested	ND<10.0	ND<1.0	ND<1.00	ND<1.00 R	ND<1.00	ND<1.00	5
Chlorobenzene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	11 J	3.9 J		9.1	ND<1.0	67.3	120	106	103 J	130	118	5
Dichlorodifluorormethane								ND<40.0	ND<5.0	ND<5.00	ND<5.00	ND<50.0	ND<5.00					ND<2.0	ND<2.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00 J0	ND<5.00	5
1,2-Dichlorobenzene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	ND<5.0	ND<5.0		ND<5.0	ND<10.0	1.4	2.7	2.42	2.41 J	2.80	2.72	3
1,4-Dichlorobenzene			Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	ND	ND	ND	ND	ND	ND<1.00	ND	ND	Not Tested	ND	ND	ND	ND	ND	ND	ND	1.34 U	3
cis-1,2-Dichloroethene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	1 J	ND<5.0		4.4 J	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
1,1-Dichloroethane	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	1 J	ND<5.0		ND<5.0	1.2	ND<2.0	1.2	ND<1.00	1.24 J	ND<1.00	ND<1.00	5
Methylcyclohexane	59	ND<5	1					63.2	120	ND<20 U	37.6 R	44.8 U	55.6 J	ND<5.0	ND<5.0		ND<5.0	Not Tested	ND<2.0	ND<1.0	ND<1.00	ND<1.00 R	ND<1.00	ND<1.00	5
Methylene Chloride	ND<36	ND<5	1					ND<100	ND<5.0	ND<5.00	ND<5.00	ND<50.0	ND<5.00	ND<5.0	ND<5.0]	ND<5.0	ND<2.0	ND<5.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00	ND<5.00	5
trans-1,2-Dichloroethene	ND<50	ND<5	4			1		ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	ND<5.0	ND<5.0	1	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
Vinyl Chloride	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	3 J	ND<5.0		6.3	1.8	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	2
Total VOCs	2,547	7,976	5,101	8,267 D,J	5.6	10,035	6,541	9,286	8,046	6,709	7,143.26	7,805.40	8,316.98	18	57.7	2.8 J	24.1 J	86.4	71.67	129.8	109.98	108.90	134.15	122.10	1
Total VOC TICs	9,980	5,795	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	ND	ND	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Available
Total VOCs and VOC TICs	12,527	13,771	5,101	8,267	5.6	10,035	6,541	9,286	8,046	6,709	7,143.26	7,805.40	8,316.98	18	57.7	2.8	24.1	86.4	71.7	129.8	109.98	108.9	134.15	122.1	

Notes:

VOC analysis by USEPA Method 8260B TCL.

Bold Type denotes that the detected value exceeds its associated NYSDEC Part 703 Groundwater Standard.

ND<5.0 denotes that the detected above the method detection limits.

J denotes an estimated value; the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample.

J0 denotes that the laboratory's calibration verification was outside of acceptance limits. Result is estim

D denotes that the compound was identified in a secondary dilution performed on the sample.

E denotes that the concentration of the compound was found to exceed the calibration range for the instrument.

U is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "interpreted as undetected."

R is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "rejected".

APPENDIX A

GROUNDWATER SAMPLING LOGS

300 State Street

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066 Project Name: RJ Dorschel Groundwater Monitoring

Location: 3865 & 3875 West Henrietta Road

Project No.: 209395

Sampled By: K R Miller

Date: 6/18 & 19/2018

WELL I.D.: MW-7

WFII	SAMPI	ING	INFOR	RMATION	ı
**			1141 01		

Well Diameter: 1-inch Static Water Level: 2.05 feet Below Top of Casing (BTOC)

Depth of Well: 7.5 feet Length of Well Screen: 5 feet

Measuring Point: Top of Casing (TOC) Depth to Top of Pump: Tubing inlet ±6 BTOC

Pump Type: Geopump - Peristaltic Tubing Type: Poly

FIELD PARAMETER MEASUREMENT

	TIELD PARAMIETER MEASUREMENT											
Date	Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved	Redox	Water	Comments	
			Purged		۰C	(mS/cm)	(NTU)	02	(mV)	Level		
								(mg/L)				
				+/-		+/- 3%		+ 10%	+/- 10	(Feet		
				0.1					mV	below		
										TOC)		
	19:28	<0.2 l/min									Flow thru cell filling	
6/18	19:32	<0.2 l/min		6.84	21.42	1.22	38.6	1.17	41		Water level not measured	
0/10	19:35	<0.2 l/min		6.76	19.12	1.26	25.9	0.87	46		during purging, well diameter	
	19:38	<0.2 l/min		6.80	20.28	1.27	24.1	1.37	40		too small.	
6/19	19:30	<0.2 l/min		6.99	19.75	1.04	32.9	3.30	17	1.83	_	

Total ± 0.1 Gallons Purged

Purge Time Start: 19:28 Purge Time End: 19:38 Final Static Water Level:

OBSERVATIONS

Purged water primarily clear, but last purged water brownish-gray color with petroleum odor observed. Sample collected at 19:30 on 6/19/2018.

300 State Street

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066 Project Name: RJ Dorschel Groundwater Monitoring

Location: 3865 & 3875 West Henrietta Road

Project No.: 209395

Sampled By: K R Miller

Date: 6/18/2018

WELL I.D.: MW-3R

WFII	SAMPI	ING I	INFORM	ATION

Well Diameter: 2-inch Static Water Level: 2.91 feet Below Top of Casing (BTOC)

Depth of Well: 15 feet Length of Well Screen: 5 feet

Measuring Point: Top of Casing (TOC) Depth to Top of Pump: Tubing inlet ±13 BTOC

Pump Type: Geopump - Peristaltic Tubing Type: Poly

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved	Redox	Water	Comments
	, , , , , ,	Purged		°C	(mS/cm)	(NTU)	02	(mV)	Level	
					, , ,	, ,	(mg/L)	, ,		
			+/-		+/- 3%		+ 10%	+/- 10	(Feet	
			0.1					mV	below	
									TOC)	
17:37	<0.2 l/min									Flow thru cell filling
17:45	<0.2 l/min		6.48	21.03	3.86	97.1	0.52	79		
17:50	<0.2 I/min		6.48	20.14	3.92	72.1	0.47	78	5.60	
17:55	<0.2 I/min		6.50	19.97	3.91	46.7	0.43	67	5.75	
18:00	<0.2 I/min		6.50	20.09	3.89	39.9	0.44	65	5.70	
18:05	<0.2 l/min		6.51	20.46	3.86	39.2	0.44	59	5.7	
18:10	<0.2 l/min		6.52	20.56	3.87	25.2	0.44	49	5.7	
18:15	<0.2 I/min		6.52	20.68	3.88	19.4	0.43	38	5.7	

Total ± 2 Gallons Purged

Purge Time Start: 17:37 Purge Time End: 18:15 Final Static Water Level: 5.7

OBSERVATIONS

Purged water fairly clear with no odors observed	. Sample collected at 18:20.
--	------------------------------

APPENDIX B

DATA USABILITY SUMMARY REPORT (DUSR)

DATA USABILITY SUMMARY REPORT

for

LABELLA ASSOCIATES, P.C.

300 State Street

Rochester, NY 14614

3865 & 3875 WEST HENRIETTA ROAD Project 209395 SDG: L1003174 Sampled 6/18/2018 and 6/19/2018

VOLATILE ORGANICS

MW-3R (L1003174-01) MW-7 (L1003174-02)

DATA ASSESSMENT

An ASP Category B data package containing analytical results for two groundwater samples was received from Labella Associates, P.C. on 17Jul18. The deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 3865 and 3875 West Henrietta Road site, were identified by Chain of Custody documents and traceable through the work of ESC Lab Sciences, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8260C, addressed determinations of volatile organics. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP NO. HW-33, Rev. #3, March 2013, Low/Medium Volatile Data Validation) was used as a technical reference.

The results reported from the undiluted sample of MW-7 have been qualified as estimations due to a low surrogate standard recovery.

The presence of 1,4-dichlorobenzene in MW-3R and MTBE in MW-7 could not be confirmed, based on the mass spectra references included in the raw data. These analytes should be considered undetected in the affected samples.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J", "U" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed strict QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin

_ Date: 22 Jul 18

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation, or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the time of sample collection. Samples must remain chilled to 4±2°C between the time of collection and the time of analysis. Acid preserved VOC samples must be analyzed within 14 days, unpreserved VOC samples within 7 days. The holding time for VOC soils is 14 days. Aqueous semivolatile organics, pesticide and PCB samples must be extracted within seven days of collection. Soils must be extracted within 14 days. The extracts must then be analyzed within forty days of extraction. holding times for cyanide and mercury samples are 14 and 28 days, respectively. Metals samples must be analyzed within six months.

This delivery group contained two groundwater samples that were collected from the 3865 and 3875 West Henrietta Road Site on 18Jun18 and 19Jun18. The samples were shipped to the laboratory, via FedEx, on 19Jun18 and were received the following morning. Although the sample cooler was found to be intact at the time of receipt, a cooler temperature of 9.5°C was recorded by the laboratory. Proper sample preservation was documented in the field custody record and verified at the time of analysis. These checks verified that both program samples were properly stabilized at a pH<2. Data has not been qualified due to the elevated cooler temperature because the samples were properly acidified and were analyzed within the holding time for unpreserved saples.

VOLATILE ORGANICS

This group of samples was analyzed for VOC 22Jun18 and 25Jun18. The SW-846 holding time requirements were satisfied.

Blanks

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination exceeding the laboratory's reporting limit.

MS Tuning

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of BFB was analyzed prior to each analytical sequence that included samples from this program. An Instrument Performance Check Form is present for each BFB evaluation. The BFB tunes associated with the analysis of this group of samples satisfied the program acceptance criteria.

Calibrations

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

Initial instrument calibrations were performed on 10Jun18 and 20Jun18. Calibration standards of 0.25, 0.50, 1.0, 2.0, 5.0, 25, 75, 100 and 200 µg/l were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during both calibrations.

Calibration check standards were analyzed on 22Jun18 and 25Jun18, prior to the 12-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability during both calibration checks.

Surrogates

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared, based on the laboratory's statistical acceptance criteria. When compared to the ASP requirements, however, an unacceptably low recovery was reported for the toluene-d8 (83.8%) addition to the undiluted sample of MW-7. The VOC results reported from this sample have been qualified as estimations due to the indication of negative bias. The results from the diluted sample of MW-7 remain unqualified.

Internal Standards

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than a factor of two. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to this criteria, acceptable performance was demonstrated by each internal standard addition to this group of smaples.

Matrix Spikes

Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

Although a sample from this project was not selected for matrix spiking, a pair of spiked blanks (LCS/LCSD) was analyzed with this group of samples. The recoveries reported from this pair of LCS samples demonstrated acceptable levels of measurement precision and accuracy.

Duplicates

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. The results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

A duplicate sample was not included in this delivery group. It is noted, however, that the previously addressed LCS/LCSD samples demonstrated an acceptable level of measurement precision.

Reported Analytes

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was found in this group of samples. Tentatively Identified Compounds (TIC) were not reported.

The presence of 1,4-dichlorobenzene in MW-3R and MTBE in MW-7 could not be confirmed, based on the mass spectra references included in the raw data. These analytes should be considered undetected in the affected samples.

SUMMARY OF QUALIFIED DATA

3865/3875 HENRIETTA STREET

SAMPLED: 6/18/2018 and 6/19/2018

		SURROGATE	SPECTRA ID 1,4-DICHLOROBENZENE	SPECTRA ID MTBE	
MW-7 DF=1	(L917097-01) (L917097-02) (L917097-02)	ALL J/UJ	1.34U	1.49U	

ONE LAB. NATIONWIDE.

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

SAMPLE NO .: MW-3R

ESC Sample ID: Client Sample ID:

MW-3R Lab File ID: 0622_18 Instrument ID: VOCMS32 Analytical Batch: WG1128307

L1003174-01

8260C

GW

Dilution Factor: Analytical Method: Matrix:

Total Solids (%):

Collected Date/Time: Received Date/Time:

Preparation Date/Time: Analysis Date/Time: Prep Method:

Sample Vol Used: Initial Wt/Vol:

Final Wt/Vol:

L1003174

06/18/18 18:20 06/20/18 08:45

06/22/18 14:45 06/22/18 14:45

8260C

5 mL

5 mL

Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l	Gadiner	ug/l	ug/l
Acetone	67-64-1	3.11	ND		10.0	50.0
Benzene	71-43-2	0	ND		0.331	1.00
Bromochloromethane	74-97-5	0	ND		0.520	1.00
Bromodichloromethane	75-27-4	0	ND		0.380	1.00
Bromoform	75-25-2	0	ND		0.469	1.00
Bromomethane	74-83-9	0	ND		0.866	5.00
Carbon disulfide	75-15-0	0	ND		0.275	1.00
Carbon tetrachloride	56-23-5	0	ND		0.379	1.00
Chlorobenzene _	108-90-7	6.49	118		0.348	1.00
Chlorodibromomethane	124-48-1	0	ND		0.327	1.00
Chloroethane	75-00-3	0	ND		0.453	5.00
Chloroform	67-66-3	0	ND		0.324	5.00
Chloromethane	74-87-3	1.88	ND		0.276	2.50
Cyclohexane	110-82-7	0	ND		0.390	1.00
1,2-Dibromo-3-Chloropropane	96-12-8	0	ND		1.33	5.00
1,2-Dibromoethane	106-93-4	0	ND		0.381	1.00
1,2-Dichlorobenzene -	95-50-1	8.06	2.72		0.349	1.00
1,3-Dichlorobenzene	541-73-1	7.89	ND		0.220	1.00
1,4-Dichlorobenzene	106-46-7	7.92	1.34 🕖		0.274	1.00
Dichlorodifluoromethane	75-71-8	1.69	ND		0.551	5.00
1,1-Dichloroethane	75-34-3	3.54	ND		0.259	1.00
1,2-Dichloroethane	107-06-2	0	ND		0.361	1.00
1,1-Dichloroethene	75-35-4	0	ND		0.398	1.00
cis-1,2-Dichloroethene	156-59-2	3.84	ND		0.260	1.00
trans-1,2-Dichloroethene	156-60-5	0	ND		0.396	1.00
1,2-Dichloropropane	78-87-5	0	ND		0.306	1.00
cis-1,3-Dichloropropene	10061-01-5	0	ND		0.418	1.00
trans-1,3-Dichloropropene	10061-02-6	0	ND		0.419	1.00
Ethylbenzene	100-41-4	0	ND		0.384	1.00
2-Hexanone	591-78-6	0	ND		3.82	10.0
Isopropylbenzene	98-82-8	0	ND		0.326	1.00
2-Butanone (MEK)	78-93-3	0	ND		3.93	10.0
Methyl Acetate	79-20-9	0	ND		4.30	20.0
Methyl Cyclohexane	108-87-2	0	ND		0.380	1.00
Methylene Chloride	75-09-2	0	ND		1.00	5.00
4-Methyl-2-pentanone (MIBK)	108-10-1	0	ND		2.14	10.0
Methyl tert-butyl ether	1634-04-4	3.23	1.38		0.367	1.00
Naphthalene	91-20-3	0	ND		1.00	5.00
Styrene	100-42-5	0	ND		0.307	1.00
1,1,2,2-Tetrachloroethane	79-34-5	0	ND		0.130	1.00
Tetrachloroethene	127-18-4	0	ND		0.372	1.00
Toluene	108-88-3	5.50	ND		0.412	1.00
1,2,3-Trichlorobenzene	87-61-6	0	ND	1	0.230	1.00

ACCOUNT: LaBella Associates, P.C. PROJECT: 209395

SDG: L1003174

DATE/TIME: 06/29/18 07:18

PAGE: 28 of 248

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

ONE LAB. NATIONWIDE. SAMPLE NO.:

MW-3R

ESC Sample ID: Client Sample ID: Lab File ID:

Instrument ID:

Analytical Batch:

Analytical Method:

Dilution Factor:

Total Solids (%):

Matrix:

L1003174-01 MW-3R 0622_18 VOCMS32 WG1128307

WG11283 1 8260C GW SDG:

Collected Date/Time: Received Date/Time: Preparation Date/Time: Analysis Date/Time:

Prep Method: Sample Vol Used:

Initial Wt/Vol: Final Wt/Vol: L1003174

5 mL

06/18/18 18:20 06/20/18 08:45

06/22/18 14:45 06/22/18 14:45 8260C

5 mL

Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/I
1,2,4-Trichlorobenzene	120-82-1	0	ND		0.355	1.00
1,1,1-Trichloroethane	71-55-6	0	ND		0.319	1.00
1,1,2-Trichloroethane	79-00-5	0	ND		0.383	1.00
Trichloroethene	79-01-6	0	ND		0.398	1.00
Trichlorofluoromethane	75-69-4	0	ND		1.20	5.00
1,1,2-Trichlorotrifluoroethane	76-13-1	0	ND		0.303	1.00
Vinyl chloride	75-01-4	0	ND		0.259	1.00
o-Xylene	95-47-6	0	ND		0.341	1.00
m&p-Xylenes	1330-20-7	6.58	ND		0.719	2.00
n-Butylbenzene	104-51-8	0	ND		0.361	1.00
sec-Butylbenzene	135-98-8	0	ND		0.365	1.00
tert-Butylbenzene	98-06-6	0	ND		0.399	1.00
1,2,4-Trimethylbenzene	95-63-6	0	ND		0.373	1.00
1,3,5-Trimethylbenzene	108-67-8	0	ND		0.387	1.00
n-Propylbenzene	103-65-1	0	ND		0.349	1.00
p-Isopropyltoluene	99-87-6	0	ND		0.350	1.00

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

ONE LAB. NATIONWIDE. SAMPLE NO .: MW-7

ESC Sample ID: L1003174-02 Client Sample ID: MW-7 Lab File ID: 0625_24 Instrument ID: VOCMS13 Analytical Batch: WG1129462 Dilution Factor: Analytical Method: 8260C Matrix: GW

Total Solids (%):

L1003174 Collected Date/Time: Received Date/Time: Preparation Date/Time: Analysis Date/Time: Prep Method: Sample Vol Used: 5 mL Initial Wt/Vol:

06/19/18 19:30 06/20/18 08:45 06/25/18 19:14 06/25/18 19:14 8260C

5 mL Final Wt/Vol:

Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/I	ug/l
Benzene –	71-43-2	4.27	862		16.6	50.0
Ethylbenzene 🚄	100-41-4	6.43	502		19.2	50.0
Naphthalene -	91-20-3	8.59	699		50.0	250
o-Xylene –	95-47-6	6.83	324		17.0	50.0
m&p-Xylenes -	1330-20-7	6.52	3690		36.0	100
1,2,4-Trimethylbenzene -	95-63-6	7.68	1760		18.6	50.0

Total Solids (%):

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

ONE LAB. NATIONWIDE. SAMPLE NO .:

MW-7

ESC Sample ID: L1003174-02 Client Sample ID: MW-7 Lab File ID: 0622_19 Instrument ID: VOCMS32 Analytical Batch: WG1128307 **Dilution Factor:** Analytical Method: 8260C Matrix: GW

SDG: Collected Date/Time: Received Date/Time: Preparation Date/Time: Analysis Date/Time: Prep Method: Sample Vol Used: Initial Wt/Vol:

Final Wt/Vol:

L1003174 06/19/18 19:30 06/20/18 08:45 06/22/18 15:04 06/22/18 15:04 8260C 5 mL

5 mL

Acetone 67-64-1 0 ND 10.0 50.0 Bromodchloromethane 74-97-5 0 ND 0.520 1.00 Bromodchloromethane 75-27-4 0 ND 0.380 1.00 Bromoferm 75-25-2 0 ND 0.469 1.00 Bromomethane 74-83-9 0 ND 0.866 5.00 Carbon disulfide 75-15-0 2.78 ND 0.379 1.00 Carbon disulfide 75-15-0 2.78 ND 0.379 1.00 Carbon disulfide 75-15-0 2.78 ND 0.379 1.00 Carbon disulfide 75-07-3 0 ND 0.348 1.00 Chloromethane 75-07-3 0 ND 0.327 1.00 Chloromethane 76-66-3 0 ND 0.324 5.00 Chloromethane 106-12-8 0 ND 0.381 1.00 12-Dichlorobethane 106-93-4 0 ND	Analyte	CAS	RT	Result	Qualifier	MDL	RDL
Bromoclichromethane				ug/l		ug/l	ug/I
Bromodichloromethane 75-27-4 0 NO 0,380 1.00 Bromoform 75-25-2 0 ND 0,469 1.00 Bromoform 75-25-2 0 ND 0,469 1.00 Carbon disulfide 75-15-0 2,78 ND 0,866 5.00 Carbon disulfide 75-15-0 2,78 ND 0,379 1.00 Carbon disulfide 75-15-0 0 ND 0,348 1.00 Chlorodenzene 108-90-7 0 ND 0,348 1.00 Chlorodenzene 108-90-7 0 ND 0,327 1.00 Chlorodenzene 75-00-3 0 ND 0,327 1.00 Chlorodenae 75-00-3 0 ND 0,453 5.00 Chloromethane 74-87-3 0 ND 0,324 5.00 Chloromethane 74-87-3 0 ND 0,276 2.50 Chloromethane 74-87-3 0 ND 0,324 5.00 Chloromethane 74-87-3 0 ND 0,324 5.00 Chloromethane 74-87-3 0 ND 0,324 5.00 1,2-Dichloromethane 166-93-4 0 ND 1,33 5.00 1,2-Dichlorobenzene 96-12-8 0 ND 1,33 5.00 1,2-Dichlorobenzene 95-50-1 0 ND 0,349 1.00 1,2-Dichlorobenzene 95-50-1 0 ND 0,349 1.00 1,2-Dichlorobenzene 166-46-7 0 ND 0,349 1.00 1,2-Dichloromethane 175-78-8 0 ND 0,351 5.00 1,1-Dichloroethane 75-78-3 0 ND 0,259 1.00 1,1-Dichloroethane 175-78-5 0 ND 0,361 1.00 1,1-Dichloroethene 156-59-2 0 ND 0,361 1.00 1,1-Dichloroethene 156-59-2 0 ND 0,361 1.00 1,1-Dichloropenzene 106-10-5 0 ND 0,398 1.00 1,1-Dichloropenzene 106-10-5 0 ND 0,398 1.00 1,1-Dichloropenzene 106-10-5 0 ND 0,361 1.00 1,1-Dichloropenzene 106-10-5 0							
Bromoform 75-25-2 0 ND 0.469 1.00 Bromomethane 74-83-9 0 ND 0.866 5.00 Carbon disulfide 75-15-0 2.78 ND 0.275 1.00 Carbon tetrachloride 56-23-5 0 ND 0.379 1.00 Chlorodenzene 108-90-7 0 ND 0.339 1.00 Chlorodenzene 124-48-1 0 ND 0.337 1.00 Chlorodenzene 75-00-3 0 ND 0.327 1.00 Chloroform 67-66-3 0 ND 0.324 5.00 Chloroform 67-66-3 0 ND 0.276 2.50 Cyclohexane 108-27 3.96 91.0 0.390 1.00 Cyclohexane 108-27 3.96 91.0 0.390 1.00 1.2-Dichlorodenzene 106-93-4 0 ND 0.381 1.00 1.2-Dichlorodenzene 95-50-1 0 ND 0.381 1.00 1.2-Dichlorodenzene 106-46-7 0 ND 0.349 1.00 1.3-Dichlorodenzene 106-46-7 0 ND 0.220 1.00 1.4-Dichlorodenzene 106-46-7 0 ND 0.259 1.00 1.2-Dichlorodenzene 106-65-2 0 ND 0.259 1.00 1.2-Dichlorodenzene 156-59-2 0 ND 0.361 1.00						0.520	1.00
Bromomethane						0.380	1.00
Carbon idsulfide 75-15-0 2.78 ND 0.379 1.00 Carbon tetrachloride 55-23-5 0 ND 0.379 1.00 Chlorocheracene 108-90-7 0 ND 0.348 1000 Chlorodibromomethane 124-48-1 0 ND 0.327 1.00 Chlorocheracene 75-00-3 0 ND 0.453 5.00 Chlorocheracene 75-00-3 0 ND 0.453 5.00 Chloromethane 74-87-3 0 ND 0.324 5.00 Chloromethane 96-12-8 0 ND 0.339 1.00 1.2-Dibriomo-3-Chloropropane 96-12-8 0 ND 1.33 5.00 1.2-Dibriomo-3-Chloropropane 96-12-8 0 ND 0.381 1.00 1.2-Dibriomoethane 106-93-4 0 ND 0.381 1.00 1.2-Dibriomoethane 106-93-4 0 ND 0.381 1.00 1.2-Dibriomoethane 106-46-7 0 ND 0.349 1.00 1.3-Dichloroberacene 55-10-1 0 ND 0.349 1.00 1.3-Dichloroberacene 55-10-1 0 ND 0.349 1.00 1.3-Dichloroberacene 106-46-7 0 ND 0.274 1.00 Dichlorodifluoromethane 75-71-8 0 ND 0.551 5.00 1.1-Dichloroethane 175-34-3 0 ND 0.255 1.00 1.1-Dichloroethane 175-35-4 0 ND 0.255 1.00 1.1-Dichloroethane 156-60-5 0 ND 0.398 1.00 1.2-Dichloroethane 156-60-5 0 ND 0.396 1.00 1.2-Dichloropropane 18-87-5 0 ND 0.396 1.00 1.2-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.2-Dichloropr			0			0.469	1.00
Carbon tetrachloride 56-23-5 0 ND 0.379 1.00 Chlorobenzene 108-90-7 0 ND 0.348 1.00 Chlorodibromomethane 124-48-1 0 ND 0.327 1.00 Chloroform 67-66-3 0 ND 0.324 5.00 Chloroform 74-87-3 0 ND 0.276 2.50 Cyclohexane 110-82-7 3.96 91.0 0.390 1.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 0.331 1.00 1.2-Dibromo-3-Chloropropane 95-50-1 0 ND 0.349 1.00 1.2-Dichlorobenzene 54-73-1 0 ND 0.220 1.00 1.2-Dichlorobenzene	Bromomethane	74-83-9	0			0.866	5.00
Chlorobenzene 108-90-7 0 ND 0,348 100 Chlorodibromomethane 124-48-1 0 ND 0,327 100 Chlorodibromomethane 75-00-3 0 ND 0,327 5,000 Chloromethane 75-00-3 0 ND 0,324 5,000 Chloromethane 74-87-3 0 ND 0,276 2,50 Chloromethane 74-87-3 0 ND 0,276 2,50 Chloromethane 106-92-8 0 ND 1,33 5,00 1,2-Dichlorophane 96-12-8 0 ND 1,33 5,00 1,2-Dichlorobenzene 95-50-1 0 ND 0,381 1,00 1,2-Dichlorobenzene 95-50-1 0 ND 0,349 1,00 1,3-Dichlorobenzene 95-50-1 0 ND 0,220 1,00 1,4-Dichlorobenzene 95-50-1 0 ND 0,220 1,00 1,4-Dichlorobenzene 106-46-7 0 ND 0,220 1,00 1,4-Dichlorobenzene 106-46-7 0 ND 0,220 1,00 1,4-Dichlorobenzene 106-46-7 0 ND 0,259 1,00 1,1-Dichloroethane 75-34-3 0 ND 0,259 1,00 1,1-Dichloroethane 75-34-3 0 ND 0,259 1,00 1,1-Dichloroethane 107-06-2 0 ND 0,259 1,00 1,1-Dichloroethane 107-06-2 0 ND 0,259 1,00 1,1-Dichloroethane 156-60-5 0 ND 0,398 1,00 1,2-Dichloroethene 156-60-5 0 ND 0,398 1,00 1,2-Dichlorophane 78-87-5 0 ND 0,396 1,00 1,2-Dichlorophane 78-87-5 0 ND 0,396 1,00 1,2-Dichlorophane 78-87-5 0 ND 0,306 1,00 1,2-Dichlorophane 10061-0,2-6 0 ND 0,396 1,00 1,00 1,2-Dichlorophane 10061-0,2-6 0 ND 0,396 1,00 1,00 1,2-Dichlorophane 10061-0,2-6 0 ND 0,396 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	Carbon disulfide	75-15-0	2.78	ND > U J		0.275	1.00
Chlorodibromomethane 124.48-1 0 ND 0.327 1.00 Chloroethane 75-00-3 0 ND 0.453 5.00 Chloromethane 75-00-3 0 ND 0.453 5.00 Chloromethane 74-87-3 0 ND 0.276 2.50 Cyclohexane 110-82-7 3.96 91.0 0.390 1.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.33 5.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.33 5.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.33 5.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.33 1.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.3-Dibromo-4-Chloropropane 96-12-8 0 ND 1.3-Dibromo-4-Chloropropane 96-12-8 0 ND 1.3-Dibromo-4-Chloropropane 96-12-8 0 ND 0.349 1.00 1.3-Dibromo-4-Chloropropane 96-12-8 0 ND 0.220 1.00 1.3-Dichloropropane 106-6-6-7 0 ND 0.220 1.00 1.3-Dichloropropane 106-6-7 0 ND 0.251 5.00 1.1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1.1-Dichloroethane 107-06-2 0 ND 0.351 5.00 1.1-Dichloroethane 107-06-2 0 ND 0.361 1.00 1.3-Dichloropropane 156-59-2 0 ND 0.396 1.00 1.3-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.3-Dichloropropane 1006-10-5 0 ND 0.396 1.00 1.3-Dichloropropane 1006-10-5 0 ND 0.396 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Carbon tetrachloride	56-23-5	0	ND		0.379	1.00
Chloroethane 75-00-3 0 ND 0.453 5.00 Chloroform 67-66-3 0 ND 0.324 5.00 Chloroform 67-66-3 0 ND 0.324 5.00 Chloromethane 74-87-3 0 ND 0.324 5.00 Cyclohexane 110-82-7 3.96 91.0 0.390 1.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.33 5.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 0.381 1.00 1.2-Dibromo-3-Chloropropane 95-50-1 0 ND 0.349 1.00 1.3-Dichlorobenzene 95-50-1 0 ND 0.349 1.00 1.3-Dichlorobenzene 106-46-7 0 ND 0.220 1.00 1.4-Dichlorobenzene 106-46-7 0 ND 0.254 1.00 1.2-Dichlorothane 175-71-8 0 ND 0.551 5.00 1.1-Dichlorothane 175-34-3 0 ND 0.551 5.00 1.1-Dichlorothane 175-34-3 0 ND 0.551 5.00 1.1-Dichlorothane 175-34-3 0 ND 0.396 1.00 1.2-Dichlorothene 156-59-2 0 ND 0.396 1.00 1.2-Dichlorothene 156-59-2 0 ND 0.396 1.00 1.2-Dichlorothene 156-60-5 0 ND 0.396 1.00 1.2-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.3-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.3-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.3-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.00 1.3-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.2-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.00 1.2-Dichloropropane 156-60-5 0 ND 0.396 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Chlorobenzene	108-90-7	0	ND		0.348	1.00
Chloroform 67-66-3 0 ND 0.324 5.00 Chloromethane 74-87-3 0 ND 0.276 2.50 Chloromethane 74-87-3 0 ND 0.276 2.50 Cyclohexane 110-82-7 3.96 91.0 0.390 1.00 1.2-Dichloromethane 106-93-4 0 ND 0.381 1.00 1.2-Dichlorobenzene 95-10 ND 0.381 1.00 1.2-Dichlorobenzene 95-50-1 0 ND 0.381 1.00 1.2-Dichlorobenzene 106-46-7 0 ND 0.220 1.00 1.4-Dichlorobenzene 106-46-7 0 ND 0.220 1.00 1.4-Dichlorodifluoromethane 75-71-8 0 ND 0.551 5.00 1.1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1.1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1.1-Dichloroethane 107-06-2 0 ND 0.361 1.00 1.1-Dichloroethane 156-59-2 0 ND 0.361 1.00 1.1-Dichloroethane 156-60-5 0 ND 0.398 1.00 1.2-Dichloropropane 78-87-5 0 ND 0.396 1.00 1.2-Dichloropropane 78-87-5 0 ND 0.396 1.00 1.2-Dichloropropane 10061-01-5 0 ND 0.396 1.00 1.2-Dichloropropane 10061-01-5 0 ND 0.396 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.396 1.00	Chlorodibromomethane	124-48-1	0	ND		0.327	1.00
Chloromethane 74-87-3 0 ND 0.276 2,50 Cyclohexane 110-82-7 3,96 91.0 J 0.390 1.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 0.381 1.00 1.2-Dibromo-thane 106-93-4 0 ND 0.381 1.00 1.2-Dichlorobenzene 95-50-1 0 ND 0.381 1.00 1.3-Dichlorobenzene 541-73-1 0 ND 0.349 1.00 1.3-Dichlorobenzene 106-46-7 0 ND 0.220 1.00 1.4-Dichlorobenzene 106-46-7 0 ND 0.274 1.00 Dichlorodenzene 106-46-7 0 ND 0.551 5.00 1.1-Dichloroethane 75-71-8 0 ND 0.551 5.00 1.1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1.1-Dichloroethane 107-06-2 0 ND 0.361 1.00 1.1-Dichloroethane 107-06-2 0 ND 0.361 1.00 1.1-Dichloroethene 156-59-2 0 ND 0.398 1.00 1.2-Dichloroethene 156-60-5 0 ND 0.396 1.00 1.2-Dichloropropane 78-87-5 0 ND 0.396 1.00 1.2-Dichloropropane 10061-01-5 0 ND 0.306 1.00 1.2-Dichloropropane 10061-01-5 0 ND 0.306 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.348 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.348 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.361 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.366 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.382 1.00 1.2-Dichloropropane 10061-02-6 0 ND 0.382 1.00 1.3-Dichloropropane 10061-02-6 0 ND 0.382 1.00 1.3-Dichloropropane 10061-02-6 0 ND 0.349 1.00 1.3-Dichloropropane 10061-02-6 0 ND 0.366 1.00 1.3-Dichloropropane 10061-02-6 0 ND 0.367 1.00 1.3-Dichloropropane 10061-02-6 0 ND 0.367 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Chloroethane	75-00-3	0	ND		0.453	5.00
Cyclohexane 110-82-7 3.96 91.0 0.390 1.00 1.2-Dibromo-3-Chloropropane 96-12-8 0 ND 1.33 5.00 1.2-Dibromo-3-Chloropropane 106-93-4 0 ND 0.381 1.00 1.2-Dichlorobenzene 95-50-1 0 ND 0.349 1.00 1.3-Dichlorobenzene 106-46-7 0 ND 0.274 1.00 1.4-Dichloroethane 75-71-8 0 ND 0.259 1.00 1.1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1.2-Dichloroethane 107-06-2 0 ND 0.361 1.00 1.1-Dichloroethene 75-35-4 0 ND 0.398 1.00 1.1-Dichloroethene 156-59-2 0 ND 0.396 1.00 1.2-Dichloropropane 78-87-5 0 ND 0.306 1.00 1.2-Dichloropropane 78-87-5 0 ND 0.306 1.00 1.2-Dichloropropane	Chloroform	67-66-3	0	ND		0.324	5.00
1,2-Dibromo-3-Chloropropane 96-12-8 0 ND 1,33 5,00 1,2-Dibromoethane 106-93-4 0 ND 0,381 1,00 1,2-Dichlorobenzene 95-50-1 0 ND 0,220 1,00 1,3-Dichlorobenzene 541-73-1 0 ND 0,274 1,00 1,4-Dichlorobenzene 106-46-7 0 ND 0,274 1,00 Dichlorodifluoromethane 75-71-8 0 ND 0,259 1,00 1,2-Dichloroethane 107-06-2 0 ND 0,361 1,00 1,2-Dichloroethane 75-35-4 0 ND 0,398 1,00 1,1-Dichloroethane 156-59-2 0 ND 0,396 1,00 1,1-Dichloroethane 156-59-2 0 ND 0,396 1,00 1,1-Dichloroptopane 18-6-59-2 0 ND 0,396 1,00 1,2-Dichloroptopane 78-87-5 0 ND 0,306 1,00 1,3-Dichloroptopene	Chloromethane	74-87-3	0	ND		0.276	2.50
1,2-Dibromoethane 106-93-4 0 ND 0,381 1,00 1,2-Dichlorobenzene 95-50-1 0 ND 0,349 1,00 1,3-Dichlorobenzene 106-46-7 0 ND 0,220 1,00 1,4-Dichlorobenzene 106-46-7 0 ND 0,274 1,00 Dichlorodifluoromethane 75-71-8 0 ND 0,2551 5,00 1,1-Dichloroethane 107-06-2 0 ND 0,361 1,00 1,1-Dichloroethane 107-06-2 0 ND 0,361 1,00 1,1-Dichloroethene 75-35-4 0 ND 0,361 1,00 1,1-Dichloroethene 156-59-2 0 ND 0,398 1,00 cis-1,2-Dichloroethene 156-60-5 0 ND 0,396 1,00 trans-1,3-Dichloropropene 10061-01-5 0 ND 0,418 1,00 cis-1,3-Dichloropropene 10061-02-6 0 ND 0,419 1,00 2-Hexanone 591-78-6 0 ND 3,82 10.0 Isopropyli	Cyclohexane -	110-82-7	3.96	91.0 J		0.390	1.00
1,2-Dichlorobenzene 95-50-1 0 ND 0,349 1,00 1,3-Dichlorobenzene 541-73-1 0 ND 0,220 1,00 1,4-Dichlorobenzene 106-46-7 0 ND 0,274 1,00 0,1-Dichlorodifluoromethane 75-71-8 0 ND 0,259 1,00 1,1-Dichloroethane 75-34-3 0 ND 0,259 1,00 1,2-Dichloroethane 107-06-2 0 ND 0,361 1,00 1,1-Dichloroethene 75-35-4 0 ND 0,398 1,00 1,1-Dichloroethene 156-59-2 0 ND 0,260 1,00 1,2-Dichloroethene 156-60-5 0 ND 0,396 1,00 1,2-Dichloropropane 78-87-5 0 ND 0,306 1,00 1,2-Dichloropropane 10061-01-5 0 ND 0,418 1,00 2-Hexanone 591-78-6 0 ND 0,418 1,00 1-Eybichloropropene 100	1,2-Dibromo-3-Chloropropane	96-12-8	0	ND		1.33	5.00
1,3-Dichlorobenzene 541-73-1 0 ND 0.220 1.00 1,4-Dichlorobenzene 106-46-7 0 ND 0.274 1.00 Dichlorodifluoromethane 75-71-8 0 ND 0.551 5.00 1,1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1,2-Dichloroethane 107-06-2 0 ND 0.361 1.00 1,1-Dichloroethene 75-35-4 0 ND 0.398 1.00 cis-1,2-Dichloroethene 156-59-2 0 ND 0.398 1.00 cis-1,2-Dichloroethene 156-60-5 0 ND 0.396 1.00 trans-1,2-Dichloropropane 78-87-5 0 ND 0.396 1.00 cis-1,3-Dichloropropane 10061-01-5 0 ND 0.418 1.00 cis-1,3-Dichloropropane 10061-02-6 0 ND 0.418 1.00 2-Hexanone 591-78-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 Septrapolyb	1,2-Dibromoethane	106-93-4	0	ND		0.381	1.00
1,4-Dichlorobenzene 106-46-7 0 ND 0.274 1.00 Dichlorodifluoromethane 75-71-8 0 ND 0.551 5.00 1,1-Dichloroethane 75-34-3 0 ND 0.259 1.00 1,2-Dichloroethane 107-06-2 0 ND 0.361 1.00 1,1-Dichloroethene 75-35-4 0 ND 0.398 1.00 cis-1,2-Dichloroethene 156-59-2 0 ND 0.398 1.00 cis-1,2-Dichloroethene 156-60-5 0 ND 0.396 1.00 1,2-Dichloropropane 78-87-5 0 ND 0.306 1.00 1,2-Dichloropropane 1006-101-5 0 ND 0.418 1.00 1,2-Dichloropropene 1006-101-5 0 ND 0.418 1.00 trans-1,3-Dichloropropene 1006-101-5 0 ND 0.418 1.00 2-Hexanone 591-78-6 0 ND 0.418 1.00 1sopropylbenzene 98-82-8 7.10 26.3 0.326 1.00 2-Buta	1,2-Dichlorobenzene	95-50-1	0	ND		0.349	1.00
Dichlorodifluoromethane 75-71-8	1,3-Dichlorobenzene	541-73-1	0	ND		0.220	1.00
1,1-Dichloroethane 75-34-3 0 ND 0,259 1,00 1,2-Dichloroethane 107-06-2 0 ND 0,361 1,00 1,1-Dichloroethene 75-35-4 0 ND 0,398 1,00 cis-1,2-Dichloroethene 156-59-2 0 ND 0,260 1,00 trans-1,2-Dichloroethene 156-60-5 0 ND 0,396 1,00 cis-1,3-Dichloropropane 78-87-5 0 ND 0,306 1,00 cis-1,3-Dichloropropene 10061-01-5 0 ND 0,418 1,00 2-Hexanone 591-78-6 0 ND 0,419 1,00 2-Hexanone 591-78-6 0 ND 3,82 10.0 Isopropylbenzene 98-82-8 7,10 26.3 3 0,326 1,00 2-Butanone (MEK) 78-93-3 0 ND 3,93 10.0 Methyl Acetate 79-20-9 0 ND 4,30 20.0 Methyl-2-pentanone (MIBK) 108-87-2 4,64 55.6 3 0,380 1,00 <	1,4-Dichlorobenzene	106-46-7	0	ND		0.274	1.00
1,2-Dichloroethane 107-06-2 0 ND 0.361 1.00 1,1-Dichloroethene 75-35-4 0 ND 0.398 1.00 cis-1,2-Dichloroethene 156-59-2 0 ND 0.260 1.00 trans-1,2-Dichloroethene 156-60-5 0 ND 0.396 1.00 1,2-Dichloropropane 78-87-5 0 ND 0.306 1.00 cis-1,3-Dichloropropene 10061-01-5 0 ND 0.418 1.00 trans-1,3-Dichloropropene 10061-02-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 Isopropylbenzene 98-82-8 7.10 26.3 3 0.326 1.00 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 0.367	Dichlorodifluoromethane	75-71-8	0	ND		0.551	5.00
1,1-Dichloroethene 75-35-4 0 ND 0.398 1.00 cis-1,2-Dichloroethene 156-59-2 0 ND 0.260 1.00 trans-1,2-Dichloroethene 156-60-5 0 ND 0.396 1.00 1,2-Dichloropropane 78-87-5 0 ND 0.306 1.00 cis-1,3-Dichloropropene 10061-01-5 0 ND 0.418 1.00 trans-1,3-Dichloropropene 10061-02-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 15opropylbenzene 98-82-8 7.10 26.3 1 0.326 1.00 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Actate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0	1,1-Dichloroethane	75-34-3	0	ND		0.259	1.00
cis-1,2-Dichloroethene 156-59-2 0 ND 0.260 1.00 trans-1,2-Dichloroethene 156-60-5 0 ND 0.396 1.00 1,2-Dichloropropane 78-87-5 0 ND 0.306 1.00 cis-1,3-Dichloropropene 10061-01-5 0 ND 0.418 1.00 cis-1,3-Dichloropropene 10061-02-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 1.49 0.367 1.00 Styrene	1,2-Dichloroethane	107-06-2	0	ND		0.361	1.00
trans-1,2-Dichloroethene 156-60-5 0 ND 0.396 1.00 1,2-Dichloropropane 78-87-5 0 ND 0.306 1.00 cis-1,3-Dichloropropene 10061-01-5 0 ND 0.418 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 Tetrachloroethane 79-34-5 0 ND 0.372 1.00 Toluene 108-88-3	1,1-Dichloroethene	75-35-4	0	ND YUJ		0.398	1.00
1,2-Dichloropropane 78-87-5 0 ND 0.306 1.00 cis-1,3-Dichloropropene 10061-01-5 0 ND 0.418 1.00 trans-1,3-Dichloropropene 10061-02-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 Isopropylbenzene 98-82-8 7.10 26.3 0.326 1.00 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 Tetrachloroethane 79-34-5 0 ND 0.372 1.00 Toluene	cis-1,2-Dichloroethene	156-59-2	0	ND		0.260	1.00
cis-1,3-Dichloropropene 10061-01-5 0 ND 0.418 1.00 trans-1,3-Dichloropropene 10061-02-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 isopropylbenzene 98-82-8 7.10 26.3 0.326 1.00 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Styrene 100-42-5 0 ND 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 Tetrachloroethane 79-34-5 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene	trans-1,2-Dichloroethene	156-60-5	0	ND		0.396	1.00
trans-1,3-Dichloropropene 10061-02-6 0 ND 0.419 1.00 2-Hexanone 591-78-6 0 ND 3.82 10.0 Isopropylbenzene 98-82-8 7.10 26.3 0.326 1.00 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,1,2,2-Tetrachloroethane 79-34-5 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.355 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319	1,2-Dichloropropane	78-87-5	0	ND		0.306	1.00
2-Hexanone 591-78-6 0 ND 3.82 10.0 Isopropylbenzene 98-82-8 7.10 26.3 0.326 1.00 2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 Tetrachloroethane 79-34-5 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-	cis-1,3-Dichloropropene	10061-01-5	0	ND		0.418	1.00
Sopropylbenzene	trans-1,3-Dichloropropene	10061-02-6	0	ND		0.419	1.00
2-Butanone (MEK) 78-93-3 0 ND 3.93 10.0 Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 1.49 0 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	2-Hexanone	591-78-6	0	ND		3.82	10.0
Methyl Acetate 79-20-9 0 ND 4.30 20.0 Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.319 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Isopropylbenzene -	98-82-8	7.10	26.3 [0.326	1.00
Methyl Cyclohexane 108-87-2 4.64 55.6 0.380 1.00 Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	2-Butanone (MEK)	78-93-3	0	ND SITT		3.93	10.0
Methylene Chloride 75-09-2 0 ND 1.00 5.00 4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Methyl Acetate	79-20-9	0	ND /		4.30	20.0
4-Methyl-2-pentanone (MIBK) 108-10-1 0 ND 2.14 10.0 Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Methyl Cyclohexane —	108-87-2	4.64	55.6 🧻		0.380	1.00
Methyl tert-butyl ether 1634-04-4 3.23 149 0.367 1.00 Styrene 100-42-5 0 ND 0.307 1.00 1,1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Methylene Chloride	75-09-2	0	ND ()		1.00	5.00
Styrene 100-42-5 0 ND 0.307 1.00 1,1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	4-Methyl-2-pentanone (MIBK)	108-10-1	0	ND		2.14	10.0
1,1,2,2-Tetrachloroethane 79-34-5 0 ND 0.130 1.00 Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Methyl tert-butyl ether	1634-04-4	3.23	149		0.367	1.00
Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene — 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Styrene	100-42-5	0	ND \		0.307	1.00
Tetrachloroethene 127-18-4 0 ND 0.372 1.00 Toluene — 108-88-3 5.50 58.5 0.412 1.00 1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	1,1,2,2-Tetrachloroethane	79-34-5	0	ND)UJ		0.130	1.00
1,2,3-Trichlorobenzene 87-61-6 0 ND 0.230 1.00 1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00		127-18-4	0	ND		0.372	1.00
1,2,4-Trichlorobenzene 120-82-1 0 ND 0.355 1.00 1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	Toluene —	108-88-3	5.50	58.5 J		0.412	1.00
1,1,1-Trichloroethane 71-55-6 0 ND 0.319 1.00	1,2,3-Trichlorobenzene	87-61-6	0	ND.		0.230	1.00
	1,2,4-Trichlorobenzene	120-82-1	0	ND		0.355	1.00
1,1,2-Trichloroethane 79-00-5 0 ND 0.383 1.00	1,1,1-Trichloroethane	71-55-6	0	ND/		0.319	1.00
	1,1,2-Trichloroethane	79-00-5	0	ND		0.383	1.00

SAMPLE RESULT SUMMARY ORGANIC ANALYSIS DATA SHEET

ONE LAB. NATIONWIDE. SAMPLE NO.:

MW-7

ESC Sample ID:
Client Sample ID:
Lab File ID:
Instrument ID:
Analytical Batch:
Dilution Factor:

Analytical Method:

Total Solids (%):

Matrix:

L1003174-02 MW-7 0622_19 VOCMS32 WG1128307 1 8260C

GW

SDG: Collected Date/Time: Received Date/Time:

Received Date/Time: Preparation Date/Time: Analysis Date/Time: Prep Method:

Sample Vol Used: Initial Wt/Vol: Final Wt/Vol: L1003174 06/19/18 19:30 06/20/18 08:45

06/20/18 08:45 06/22/18 15:04 06/22/18 15:04 8260C

5 mL

5 mL

Analyte	CAS	RT	Result	Qualifier	MDL	RDL
			ug/l		ug/l	ug/l
Trichloroethene	79-01-6	0	ND		0.398	1.00
Trichlorofluoromethane	75-69-4	0	ND (i)		1.20	5.00
1,1,2-Trichlorotrifluoroethane	76-13-1	0	ND		0.303	1.00
Vinyl chloride	75-01-4	0	ND		0.259	1.00
n-Butylbenzene -	104-51-8	7.99	5.62 - [0.361	1.00
sec-Butylbenzene -	135-98-8	7.78	6.68		0.365	1.00
tert-Butylbenzene	98-06-6	7.69	ND - UJ		0.399	1.00
1,3,5-Trimethylbenzene -	108-67-8	7.49	196		0.387	1.00
n-Propylbenzene -	103-65-1	7.38	29.8		0.349	1.00
p-Isopropyltoluene	99-87-6	7.84	8.99		0.350	1.00

SURROGATE RECOVERY

製

Analytical	Method:
Matrix:	

8260C GW SDG:

L1003174

Sample ID	ESC Sample ID	Instrument	File ID	DMC-1	DMC-2	DMC-3	DMC-4	TOT Out
				% Rec.	% Rec./	% Rec.	% Rec. /	
MW-3R	L1003174-01	VOCMS32	0622_18	102	103 🗸	98.4	95.0	0
MW-7	L1003174-02	VOCMS32	0622_19	83.8	97.3	99.3	95.6	0
MW-7	L1003174-02	VOCMS13	0625_24	109	91.0	101	90.1	0
BLANK	R3320727-3	VOCMS13	0625_07	105	91.0	100	94.0	0
BLANK	R3320093-4	VOCMS32	0622_06	94.5	96.3	102	97.4	0
LCS	R3320727-1	VOCMS13	0625_02LCS	102	95.1	99.9	91.3	0
LCS	R3320093-1	VOCMS32	0622_02LCS	101	96.0	100	95.6	0
LCSD	R3320727-2	VOCMS13	0625_03	105	92.5	98.8	90.6	0
LCSD	R3320093-2	VOCMS32	0622_03	97.2	95.9	99.3	95.0	0
	Parm Abbreviation	Paramete	r			QC LIMIT	rs	
	DMC-1	Toluene-d	8			-80.0 - 12	988-11	0
	DMC-2	Dibromofle	uoromethane			76.0 - 123	3	
	DMC-3	a,a,a-Triflu	orotoluene			80.0 - 12	0	
	DMC-4	4-Bromoflu	uorobenzene			80.0 - 120	0	

^{*:} Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY

L1003174-01,02

ONE LAB. NATIONWIDE. SAMPLE NO.:
R3320093-1
R3320093-2

LCS Sample / File ID: LCSD Sample / File ID:

Instrument ID:

Analytical Method:

R3320093-1 / 0622_02LCS

R3320093-2 / 0622_03 VOCMS32

8260C

SDG: Analytical Batch: L1003174 WG1128307

Dilution Factor: Matrix:

GW

Analyte	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	RPD	RPD Limit
	ug/l	ug/l	ug/l	% 🗸	%	%	%	%
Acetone	125	113	112	90.3	89.5	10.0 - 160	0.839	23
Benzene	25.0	24.8	24.4	99.4 /	97.6	69.0 - 123	1.80	20
Bromodichloromethane	25.0	23.2	23.7	92.7	94.8	76.0 - 120	2.22	20
Bromoform	25.0	24.0	23.7	96.0	94.7	67.0 - 132	1.36	20
Bromomethane	25.0	24.1	22.3	96.2	89.2	18.0 - 160	7.58	20
Carbon disulfide	25.0	23.4	21.6	93.7	86.5	55.0 - 127	7.97	20
Carbon tetrachloride	25.0	24.0	23.0	96.2	92.0	63.0 - 122	4.44	20
Chlorobenzene	25.0	24.8	24.1	99.3	96.4	79.0 - 121	2.95	20
Chlorodibromomethane	25.0	25.4	24.9	101	99.6	75.0 - 125	1.90	20
Chloroethane	25.0	22.9	22.4	91.6	89.4	47.0 - 152	2.41	20
Chloroform	25.0	23.8	23.6	95.4	94.3	72.0 - 121	1.18	20
Bromochloromethane	25.0	24.7	24.2	98.9	96.9	76.0 - 122	2.02	20
Chloromethane	25.0	21.8	20.7	87.2	82.8	48.0 - 139	5.15	20
1,2-Dibromo-3-Chloropropane	25.0	22.8	22.1	91.3	88.4	64.0 - 127	3.23	20
1,2-Dibromoethane	25.0	25.5	25.2	102	101	77.0 - 123	1.06	20
n-Butylbenzene	25.0	26.0	25.4	104	102	72.0 - 126	2.26	20
sec-Butylbenzene	25.0	25.1	24.7	100	98.8	74.0 - 121	1.64	20
1,2-Dichlorobenzene	25.0	24.7	24.5	98.9	98.0	80.0 - 120	0.935	20
tert-Butylbenzene	25.0	24.4	23.7	97.4	94.9	75.0 - 122	2.62	20
1,3-Dichlorobenzene	25.0	23.9	23.3	95.7	93.4	72.0 - 123	2.39	20
1,4-Dichlorobenzene	25.0	23.6	23.8	94.5	95.0	77.0 - 120	0.518	20
1,1-Dichloroethane	25.0	24.5	23.9	98.2	95.8	70.0 - 126	2.46	20
1,2-Dichloroethane	25.0	23.7	23.1	94.7	92.2	67.0 - 126	2.59	20
1,1-Dichloroethene	25.0	24.3	23.3	97.2 🗸	93.3	64.0 - 129	4.08	20
cis-1,2-Dichloroethene	25.0	23.7	24.2	94.9	96.7	73.0 - 120	1.79	20
Cyclohexane	25.0	24.9	24.0	99.8	96.2	70.0 - 130	3.68	20
trans-1,2-Dichloroethene	25.0	25.6	24.8	102	99.4	71.0 - 121	2.82	20
1,2-Dichloropropane	25.0	24.5	24.6	97.9	98.5	75.0 - 125	0.672	20
cis-1,3-Dichloropropene	25.0	24.8	24.4	99.2	97.5	79.0 - 123	1.70	20
trans-1,3-Dichloropropene	25.0	24.6	23.9	98.3	95.7	74.0 - 127	2.66	20
Dichlorodifluoromethane	25.0	20.9	21.1	83.7	84.2	49.0 - 155	0.616	20
Ethylbenzene	25.0	25.6	24.4	102	97.6	77.0 - 120	4.79	20
2-Hexanone	125	126	121	101	96.5	58.0 - 147	4.49	20
Methyl Acetate	125	115	113	92.2	90.5	70.0 - 130	1.92	20
2-Butanone (MEK)	125	116	115	92.5	92.3	37.0 - 158	0.258	20
Methylene Chloride	25.0	23.4	22.7	93.6	91.0	66.0 - 121	2.84	20
4-Methyl-2-pentanone (MIBK)	125	119	115	95.2	91.6	59.0 - 143	3.83	20
Methyl tert-butyl ether	25.0	23.5	21.9	93.9	87.8	64.0 - 123	6.70	20
Naphthalene	25.0	23.4	23.5	93.7	93.9	62.0 - 128	0.217	20
Styrene	25.0	25.8	24.6	103	98.3	78.0 - 124	4.79	20
1,1,2,2-Tetrachloroethane	25.0	23.6	23.3	94.5	93.3	71.0 - 122	1.20	20
Tetrachloroethene	25.0	24.6	23.4	98.2	93.7	70.0 - 127	4.71	20

^{*:} Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE **RECOVERY**

L1003174-01,02

ONE LAB. NATIONWIDE. SAMPLE NO .: R3320093-1 R3320093-2

LCS Sample / File ID: LCSD Sample / File ID:

Instrument ID:

Analytical Method:

R3320093-1/0622_02LCS R3320093-2 / 0622_03

VOCMS32 8260C

SDG:

Analytical Batch: WG1128307

Dilution Factor: Matrix:

GW

L1003174

Analyte	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	RPD	RPD Limit
	ug/l	ug/l	ug/l	% /	%	%	%	%
Isopropylbenzene	25.0	24.9	24.2	99.5	96.9	75.0 - 120	2.70	20
p-Isopropyltoluene	25.0	26.0	24.8	104	99.4	74.0 - 126	4.70	20
Toluene	25.0	25.1	24.1	100 /	96.4	77.0 - 120	3.83	20
1,1,2-Trichlorotrifluoroethane	25.0	24.1	21.3	96.3	85.3	61.0 - 136	12.1	20
Methyl Cyclohexane	25.0	26.2	25.9	105	104	70.0 - 130	1.09	20
1,1,1-Trichloroethane	25.0	24.9	23.7	99.7	95.0	68.0 - 122	4.88	20
1,1,2-Trichloroethane	25.0	24.7	24.2	98.7	96.6	78.0 - 120	2.09	20
Trichloroethene	25.0	24.3	23.7	97.0	94.9	78.0 - 120	2.26	20
n-Propylbenzene	25.0	24.8	23.9	99.1	95.5	79.0 - 120	3.71	20
o-Xylene	25.0	26.1	25.1	104	100	78.0 - 120	3.66	20
Vinyl chloride	25.0	24.5	23.6	98.1	94.3	64.0 - 133	3.94	20
m&p-Xylenes	50.0	50.5	48.7	101	97.4	77.0 - 120	3.60	20
1,2,3-Trichlorobenzene	25.0	23.2	23.4	92.7	93.5	61.0 - 133	0.853	20
1,2,4-Trichlorobenzene	25.0	23.5	23.0	93.8	92.0	69.0 - 129	1.97	20
Trichlorofluoromethane	25.0	23.4	21.9	93.6	87.6	56.0 - 137	6.61	20
1,2,4-Trimethylbenzene	25.0	24.6	24.1	98.5	96.4	75.0 - 120	2.12	20
1,3,5-Trimethylbenzene	25.0	25.4	24.8	102	99.1	75.0 - 120	2.64	20

^{*:} Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

ONE LAB. NATIONWIDE.

LABORATORY CONTROL SAMPLE LABORATORY CONTROL SAMPLE DUPLICATE RECOVERY L1003174-02

SAMPLE NO.: R3320727-1 R3320727-2

LCS Sample / File ID: LCSD Sample / File ID: R3320727-1 / 0625_02LCS R3320727-2 / 0625_03

25.0

23.7

Instrument ID: VOCMS13
Analytical Method: 8260C

1,2,4-Trimethylbenzene

SDG:

Matrix:

95.6

L1003174

0.725

20

Analytical Batch: Dilution Factor: WG1129462 1 GW

75.0 - 120

Analyte	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	RPD	RPD Limit
	ug/l	ug/l	ug/l	% /	%	%	%	%
Benzene	25.0	23.2	22.6	92.7	90.6	69.0 - 123	2.30	20
Ethylbenzene	25.0	24.9	25.5	99.6	102	77.0 - 120	2.46	20
Naphthalene	25.0	25.6	26.1	103	105	62.0 - 128	1.96	20
o-Xylene	25.0	24.9	25.3	99.8	101	78.0 - 120	1.35	20
m&p-Xylenes	50.0	48.9	49.6	97.8	99.2	77.0 - 120	1.33	20

94.9

23.9

^{*:} Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

METHOD BLANK

ONE LAB. NATIONWIDE.

SAMPLE NO.: R3320727-3

ESC Sample ID: Lab File ID:

Analytical Batch:

Analytical Method:

Instrument ID:

R3320727-3 0625_07 VOCMS13 WG1129462

8260C

SDG:

L1003174

Preparation Date/Time: Analysis Date/Time: 06/25/18 11:40 06/25/18 11:40

Dilution Factor: Matrix: 1 GW

Sample ID	ESC Sample ID	Instrument	File ID	Analysis date/time
LCS	R3320727-1	VOCMS13	0625_02LCS	06/25/18 09:55
LCSD	R3320727-2	VOCMS13	0625_03	06/25/18 10:16
MW-7	L1003174-02	VOCMS13	0625_24	06/25/18 19:14

METHOD BLANK

ONE LAB. NATIONWIDE.

SAMPLE NO .: R3320093-4

ESC Sample ID: Lab File ID:

R3320093-4 0622_06

Instrument ID: Analytical Batch: Analytical Method:

VOCMS32 WG1128307 8260C

SDG:

L1003174

Preparation Date/Time: Analysis Date/Time:

06/22/18 10:20 06/22/18 10:20

Dilution Factor: Matrix:

GW

Sample ID	ESC Sample ID	Instrument	File ID	Analysis
				date/time
LCS	R3320093-1	VOCMS32	0622_02LCS	06/22/18 09:02
LCSD	R3320093-2	VOCMS32	0622_03	06/22/18 09:22
MW-3R	L1003174-01	VOCMS32	0622_18	06/22/18 14:45
MW-7	L1003174-02	VOCMS32	0622_19	06/22/18 15:04

Lab File ID:

Instrument ID: Analysis Date/Time: 0610_02-1 VOCMS13 06/10/18 13:56

Analytical Method:

L1003174

8260C

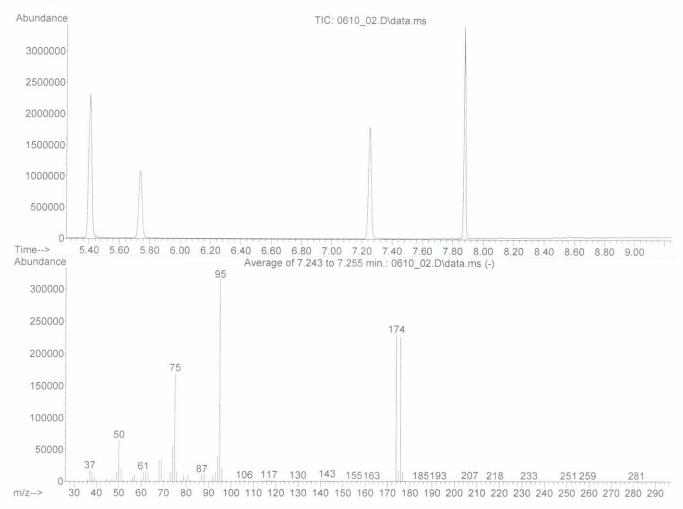
Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance
50	95	15	40	20 🗸
75	95	30	60	54
95	95	100	100	100
96	95	5	9	7
173	174	0	2	0
174	95	50	100	72
175	174	5	9	7
176	174	95	101	98
177	176	5	9	6

Sample ID	ESC Sample ID	File ID	Analysis date/time
STD-0.25	0.25	0610_03	06/10/18 14:17
STD-0.5	0.5	0610_04	06/10/18 14:38
STD-1	1	0610_05	06/10/18 14:59
STD-2	2	0610_06	06/10/18 15:20
STD-5.0	5.0	0610_07	06/10/18 15:42
STD-25	25	0610_08	06/10/18 16:03
STD-75	75	0610_09	06/10/18 16:24
STD-100	100	0610_10	06/10/18 16:45
STD-200	200	0610_11	06/10/18 17:06

Data Path : C:\msdchem\1\data\061018\

Data File : 0610 02.D

Acq On : 10 Jun 2018 1:56 pm


: 605 Operator : INSTBLK Sample Misc : water

ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINTLRH.P

: C:\msdchem\1\methods\V813F10R.M Method

Title : Env. Science Corp. 8260B/6210D/624 - VOCMS13 Last Update : Mon Jun 11 10:11:09 2018

AutoFind: Scans 1177, 1178, 1179; Background Corrected with Scan 1171

1	Target Mass	1	Rel. to Mass		Lower Limit%		Upper Limit%		Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	1
ī	50	1	95	1	15	1	40	Ī	20.4		64757	1	PASS	Ī
i	75	i	95	i	30	i	60	Î	53.5	i	169683	i	PASS	Ĺ
i	95	i	95	İ	100	i	100	i	100.0	i	317461	i	PASS	ì
1	96	1	95	1	5	Î	9	ï	6.6	ì	20929	Ì	PASS	Î
i	173	i.	174	Ĩ	0.00	i	2	i	0.4	i	856	Ï	PASS	İ
i	174	i	95	i	50	i	100	i	72.5	i	230080	i	PASS	İ
1	175	i	174	1	5	i	9	i	7.4	i	17034	Ĩ	PASS	Î
i	176	i	174	İ	95	i	101	Î	98.2	ì	225941	Î	PASS	İ
İ	177	İ	176	İ	5	1	9		6.5		14707	ĺ	PASS	İ

Lab File ID:

0610_16-1

SDG:

L1003174

Instrument ID: Analysis Date/Time: VOCMS13 06/11/18 10:41 Analytical Method:

8260C

Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance
50	95	15	40	20 /
75	95	30	60	51
95	95	100	100	100
96	95	5	9	6
173	174	0	2	0
174	95	50	100	81
175	174	5	9	7
176	174	95	101	95
177	176	5	9	7

Sample ID SSCV ESC Sample ID

VOCMS130610180610_17-1451237

File ID 0610_17-1 Analysis date/time

Data Path : C:\msdchem\1\data\061018\

Data File : 0610 16.D

Acq On : 11 Jun 2018 10:41 am

Operator : 605 Sample : INSTBLK


Misc : water IS/SURR 18E02586 ALS Vial : 16 Sample Multiplier: 1

Integration File: RTEINTLRH.P

Method : C:\msdchem\1\methods\V813F10R.M

Title : Env. Science Corp. 8260B/6210D/624 - VOCMS13

Last Update : Mon Jun 11 10:11:09 2018

AutoFind: Scans 1178, 1179, 1180; Background Corrected with Scan 1172

1	Target Mass		Rel. to Mass	1	Lower Limit%	1	Upper Limit%	1	Rel. Abn%		Raw Abn	1	Result Pass/Fail	
ī	50	1	95	1	15	1	40	1	20.4	1	60165	-	PASS	1
i	75	j	95	i	30	i	60	i	51.4	i	151757	i	PASS	i
ï	95	Ĩ.	95	ĺ	100	1	100	Î	100.0	ï	295488	- Î	PASS	ĺ
1	96	Î	95	Ì	5	İ	9	Ĺ	6.5	i	19215	Ī	PASS	1
i	173	i	174	ĺ	0.00	i	2	i	0.4		890	i	PASS	į
i	174	ï	95	ì	50	1	100	Ì	80.7	ĺ	238421	i	PASS	1
i	175	Î	174	İ	5	İ	9	Ì	7.0		16683	Ĭ.	PASS	Ì
i	176	ï	174	ï	95	İ	101	i	95.2	i	226923	i	PASS	İ
i	177	i	176	i	5	i	9	i	6.8	i	15459	i	PASS	i

Lab File ID:

Instrument ID: Analysis Date/Time: 0618_51-1

VOCMS13 06/19/18 07:09

Analytical Method:

L1003174

8260C

Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance
50	95	15	40	23
75	95	30	60	55
95	95	100	100	100
96	95	5	9	6
173	174	0	2	0
174	95	50	100	74
175	174	5	9	7
176	174	95	101	95
177	176	5	9	7

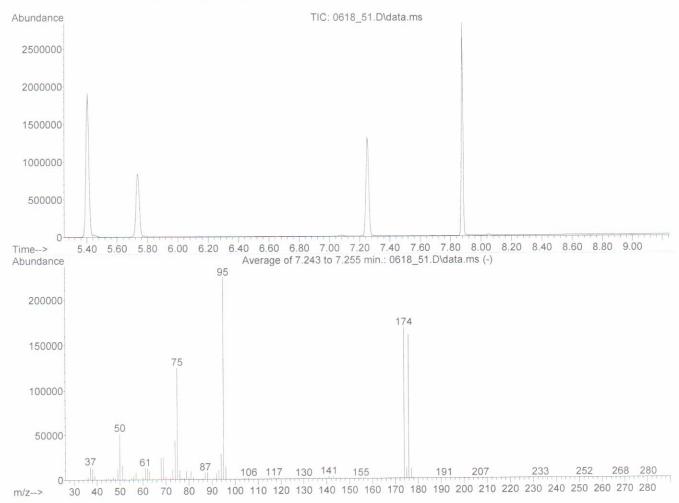
Sample ID	ESC Sample ID	File ID	Analysis date/time
STD-1A	1A	0618_53	06/19/18 07:52
STD-5A	5A	0618_54	06/19/18 08:13
STD-10A	10A	0618_55	06/19/18 08:34
STD-15A	15A	0618_56	06/19/18 08:55
STD-20A	20A	0618_57	06/19/18 09:16
STD5	.5	0618_62	06/19/18 11:01
STD-1	1	0618_63	06/19/18 11:22
STD-2	2	0618_64	06/19/18 11:44
STD-5.0	5.0	0618_65	06/19/18 12:05
STD-10	10	0618_66	06/19/18 12:26
STD-20	20	0618_67	06/19/18 12:47

Data Path : C:\msdchem\1\data\061818\

Data File : 0618 51.D

Acq On : 19 Jun 2018 7:09 am

Operator : 605 Sample : INSTBLK Misc : water


Misc : water
ALS Vial : 51 Sample Multiplier: 1

Integration File: RTEINTLRH.P

Method : C:\msdchem\1\methods\V813F18R.M

Title : Env. Science Corp. 8260B/6210D/624 - VOCMS13

Last Update : Tue Jun 19 12:59:58 2018

AutoFind: Scans 1177, 1178, 1179; Background Corrected with Scan 1171

Target Mass	1	Rel. to Mass	1	Lower Limit%	1	Upper Limit%	1	Rel. Abn%	1	Raw Abn		Result Pass/Fail	1
50 75 95 96 173 174 175 176		95 95 95 95 174 95 174 174		15 30 100 5 0.00 50 5 95		40 60 100 9 2 100 9		22.8 55.3 100.0 6.3 0.1 74.5 7.1 95.4 6.9		51557 125013 225877 14326 135 168371 12017 160557 11086		PASS PASS PASS PASS PASS PASS PASS PASS	

Lab File ID: Instrument ID:

Analysis Date/Time:

0625_02T-1 VOCMS13 06/25/18 09:55

SDG:

L1003174

Analytical Method:

8260C

Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance
50	95	15	40	23
75	95	30	60	54
95	95	100	100	100
96	95	5	9	6
173	174	0	2	0
174	95	50	100	75
175	174	5	9	8
176	174	95	101	97
177	176	5	9	6

Sample ID	ESC Sample ID	File ID	Analysis date/time
ICV	VOCMS130625180625_02-1451237	0625_02-1	06/25/18 09:55
LCS	R3320727-1	0625_02LCS	06/25/18 09:55
LCSD	R3320727-2	0625_03	06/25/18 10:16
BLANK	R3320727-3	0625_07	06/25/18 11:40
MW-7	L1003174-02	0625_24	06/25/18 19:14

Data Path : C:\msdchem\1\data\062518\

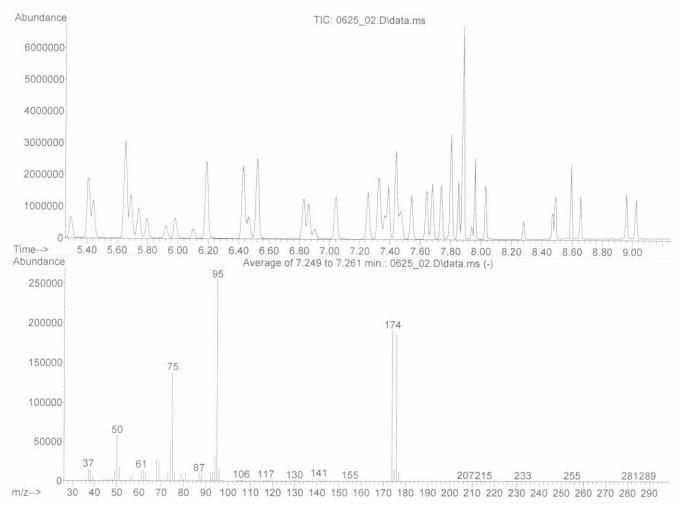
Data File : 0625 02.D

Acq On : 25 Jun 2018 9:55 am

Operator : 605

Sample : ICVLCS VMS 25 ppb

Misc : water


ALS Vial : 2 Sample Multiplier: 1

Integration File: RTEINTLRH.P

Method : C:\msdchem\1\methods\V813F18R.M

Title : Env. Science Corp. 8260B/6210D/624 - VOCMS13

Last Update : Tue Jun 19 12:59:58 2018

AutoFind: Scans 1178, 1179, 1180; Background Corrected with Scan 1171

	Target Mass	1	Rel. to Mass	1	Lower Limit%		Upper Limit%	1	Rel. Abn%	1	Raw Abn	1	Result Pass/Fail	
Ī	50	ï	95	Ī	15		40	Ī	22.7		58331	Ī	PASS	1
Ì	75	İ	95	Î	30	ĺ	60	Î	53.7	i	138048	î	PASS	i
į	95	Ì	95	ì	100	İ	100	i	100.0	i	257109	i	PASS	i
Î	96	ĺ	95	Î	5	Î	9	1	6.3	Î	16191	1	PASS	1
Î	173	Ï	174	Ï	0.00	Ì	2	Ĭ	0.3	- Î	554	Î	PASS	- j
Ì	174	ĺ	95	į.	50	İ	100	İ	74.6	i	191744	i	PASS	i
i	175	İ	174	Î	5	Ì	9	i	7.7	i	14805	î	PASS	- j
Î	176	I	174	Î	95	ĺ	101	1	97.2	i	186283	î	PASS	i
Ì	177	1	176	Ì	5	ĺ	9	Ì	6.3	1	11760	Ì	PASS	ĺ

Lab File ID: Instrument ID:

Analysis Date/Time:

0620_01A-1 VOCMS32 06/20/18 17:20 SDG:

Analytical Method:

L1003174

ethod: 8260C

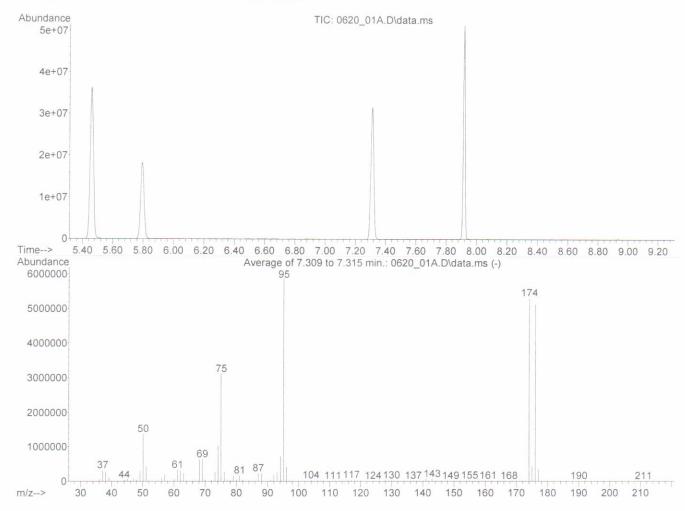
Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance
50	95	15	40	23
75	95	30	60	53
95	95	100	100	100
96	95	5	9	7
173	174	0	2	0
174	95	50	100	90
175	174	5	9	8
176	174	95	101	96
177	176	5	9	7

Sample ID	ESC Sample ID	File ID	Analysis date/time
STD-0.25	0.25	0620_02A	06/20/18 17:40
STD-0.5	0.5	0620_03A	06/20/18 17:59
STD-1	1	0620_04A	06/20/18 18:19
STD-2	2	0620_05A	06/20/18 18:39
STD-5.0	5.0	0620_06A	06/20/18 18:58
STD-25	25	0620_07A	06/20/18 19:17
STD-75	75	0620_08A	06/20/18 19:36
STD-100	100	0620_09A	06/20/18 19:55
STD-200	200	0620_10A	06/20/18 20:14
SSCV	VOCMS32062018A0620_13A-1451361	0620_13A-1	06/20/18 21:11
STD-1A	1A	0620_16A	06/20/18 22:08
STD-5A	5A	0620_17A	06/20/18 22:28
STD-10A	10A	0620_18A	06/20/18 22:47
STD-15A	15A	0620_19A	06/20/18 23:06
STD-20A	20A	0620_20A	06/20/18 23:26

Data Path : C:\msdchem\1\data\062018A\

Data File : 0620 01A.D

Acq On : 20 Jun 2018 5:20 pm


Operator : 605 : INSTBLK Sample Misc : water

: 1 ALS Vial Sample Multiplier: 1

Integration File: RTEINTLRH.P

Method : C:\msdchem\1\methods\V832F20R.M

Title : Env. Science Corp. 8260B/6210D/624 - VOCMS32 Last Update : Thu Jun 21 08:51:25 2018

AutoFind: Scans 2245, 2246, 2247; Background Corrected with Scan 2231

1	Target Mass	1	Rel. to Mass	1	Lower Limit%	1	Upper Limit%	1	Rel. Abn%	1	Raw Abn		Result Pass/Fail	1
1	50	1	95	1	15	1	40	1	23.2	1	1361920	1	PASS	-
ì	75	ì	95	î	30	i	60	i	52.9	i	3113131	i	PASS	i
ï	95	i	95	î	100	i	100	i	100.0	i	5881685	î	PASS	i
İ	96	i	95	Î	5	İ	9	ĺ	7.0	i	409579	1	PASS	Ì
i	173	i	174	î	0.00	ì	2	i	0.0	i	0	i	PASS	i
Ĥ	174	i	95	İ	50	İ	100	Î	90.5	i	5320533	İ	PASS	İ
i	175	İ	174	Î	5	İ	9	ĺ.	8.1	Î	428757	ĺ	PASS	Ì
Ì	176	Î	174	Î	95	Ï	101	1	96.4		5130240	1	PASS	
Î	177	ĺ	176	Ì	5	İ	9	Ì	6.9	1	352875	1	PASS	
_														

Lab File ID:

Instrument ID:

Analysis Date/Time:

0622_02T-2

VOCMS32 06/22/18 09:02 SDG.

Analytical Method:

L1003174

8260C

Target Mass (m/e)	Relative Mass	Low Limit	High Limit	% Relative Abundance
50	95	15	40	25
75	95	30	60	51
95	95	100	100	100
96	95	5	9	6
173	174	0	2	0
174	95	50	100	88
175	174	5	9	8
176	174	95	101	97
177	176	5	9	6

Sample ID	ESC Sample ID	File ID	Analysis date/time
ICV	VOCMS320622180622_02-2451361	0622_02-2	06/22/18 09:02
LCS	R3320093-1	0622_02LCS	06/22/18 09:02
LCSD	R3320093-2	0622_03	06/22/18 09:22
BLANK	R3320093-4	0622_06	06/22/18 10:20
MW-3R	L1003174-01	0622_18	06/22/18 14:45
MW-7	L1003174-02	0622_19	06/22/18 15:04

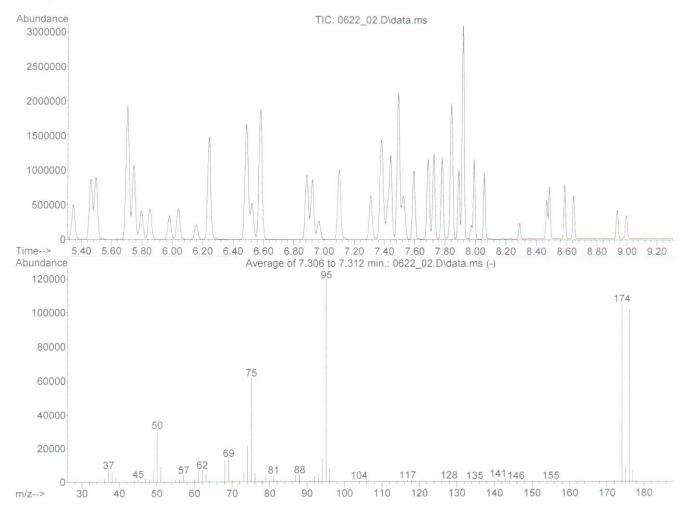
Data Path: C:\msdchem\1\data\062218\

Data File : 0622 02.D

: 22 Jun 2018 Acq On 9:02 am

Operator : 605

Sample : ICVLCS VMS 25 ppb


Misc : water

ALS Vial Sample Multiplier: 1

Integration File: RTEINTLRH.P

: C:\msdchem\1\methods\V832F20R.M Method

Title : Env. Science Corp. 8260B/6210D/624 - VOCMS32 Last Update : Thu Jun 21 09:11:48 2018

AutoFind: Scans 2244, 2245, 2246; Background Corrected with Scan 2232

	Target Mass		Rel. to Mass		Lower Limit%		Upper Limit%		Rel. Abn%		Raw Abn	1	Result Pass/Fail	1
1	50	1	95	1	15		40		25.3		30368	1	PASS	Ī
- 1	75	İ	95	1	30	-	60	-	51.1		61392		PASS	1
ĺ	95	ï	95	ĺ	100	Ì	100	-	100.0		120093		PASS	1
i	96	İ	95	ĺ	5	ì	9	- [6.5		7858	- [PASS	1
i	173	i	174	i	0.00	İ	2	1	0.0	1	0		PASS	Ĭ
- 1	174	i	95	i	50	i	100	1	87.6	ĺ	105227	1	PASS	1
Ť	175	i	174	i	5	ì	9	Ì	8.1	i	8493	Ì	PASS	1
i	176	i	174	i	95	ì	101	ï	96.8	ĺ	101845	Î	PASS	Î
Î	177	İ	176	İ	5	İ	9	İ	6.3	ĺ	6390	1	PASS	1

INTERNAL STANDARD AND RETENTION TIME

SDG:

L1003174

Instrument ID: Std File: VOCMS13 0625_02-1 Analytical Method:

Calibration Start Date: Calibration End Date:

Std Analysis Date:

8260C

06/10/18 14:17

06/19/18 12:47 06/25/18 09:55

Sample ID	File ID	1,4-DCB		DFB		BCP		PFB	
		Response	RT	Response	RT	Response	RT	Response	RT
STANDARD		376267	7.88	795964	4.59	137945	5.74	533032	4.27
UPPER LIMIT		752534		1591928		275890		1066064	
LOWER LIMIT		188134	/	397982	/	68973		266516	/
LCS R3320727-1 WG1129462 1x	0625_02LC S	376267 V	7.88	795964 🗸	4.59	137945	5.74	533032 V	4.27
LCSD R3320727-2 WG1129462 1x	0625_03	367644	7.88	819088	4.59	134904	5.74	545515	4.27
BLANK R3320727-3 WG1129462 1x	0625_07	348967	7.88	811351	4.59	132887	5.74	541968	4.27
L1003174-02 WG1129462 50x	0625_24	333996	7.88	758530	4.59	121448	5.74	505724	4.27

1,4-DCB - 8260-1,4-DICHLOROBENZENE-D4 BCP - 8260-2-BROMO-1-CHLOROPROPANE DFB - 8260-1,4-DIFLUOROBENZENE PFB - 8260-PENTAFLUOROBENZENE

^{*:} Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

INTERNAL STANDARD AND RETENTION TIME

SDG: Instrument ID:

Std File:

L1003174 VOCMS32 0622_02-2

Analytical Method:

Calibration Start Date: Calibration End Date: Std Analysis Date: 8260C

06/20/18 17:40 06/20/18 23:26 06/22/18 09:02

Sample ID	File ID	1,4-DCB		DFB			BCP		PFB	
		Response	RT	Response	RT	Response	RT	Response	RT	
STANDARD		147635	7.92	382538	4.64	58599	5.79	279870	4.32	
UPPER LIMIT		295270		765076		117198		559740		
LOWER LIMIT		73818	1	191269	1	29300	1	139935	1	
LCS R3320093-1 WG1128307 1x	0622_02LC S	147635	7.92	382538	4.64	58599	5.79	279870 V	4.32	
LCSD R3320093-2 WG1128307 1x	0622_03	149746	7.92	379054	4.64	60161	5.80	279180	4.32	
BLANK R3320093-4 WG1128307 1x	0622_06	145229	7.92	386441	4.64	62929	5.80	285454	4.32	
L1003174-01 WG1128307 1x	0622_18	132787	7.92	349763	4.64	52763	5.80	250703	4.32	
L1003174-02 WG1128307 1x	0622_19	129419	7.92	341120	4.64	63560	5.80	252092	4.31	

1,4-DCB - 8260-1,4-DICHLOROBENZENE-D4 BCP - 8260-2-BROMO-1-CHLOROPROPANE DFB - 8260-1,4-DIFLUOROBENZENE PFB - 8260-PENTAFLUOROBENZENE

^{*:} Value outside the established quality control limits.

D: Surrogate recovery cannot be used for control limit evaluation due to dilution.

APPENDIX C

SITE INSPECTION FORM AND PHOTOGRAPH

300 State Street

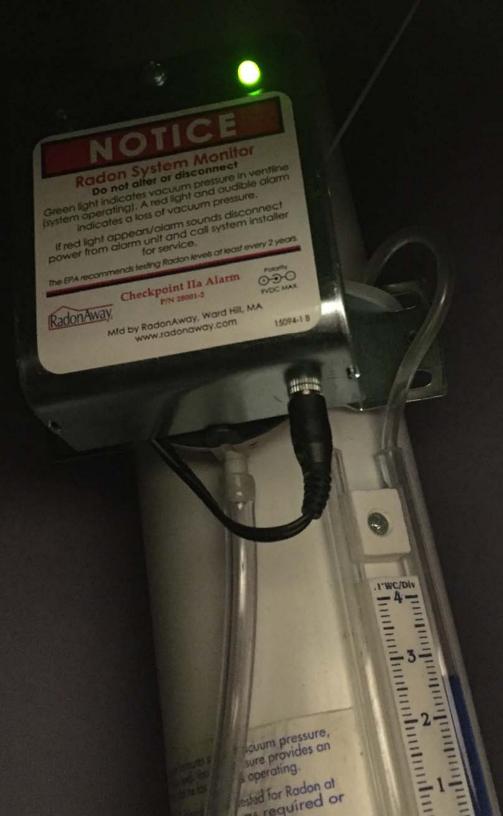
Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066

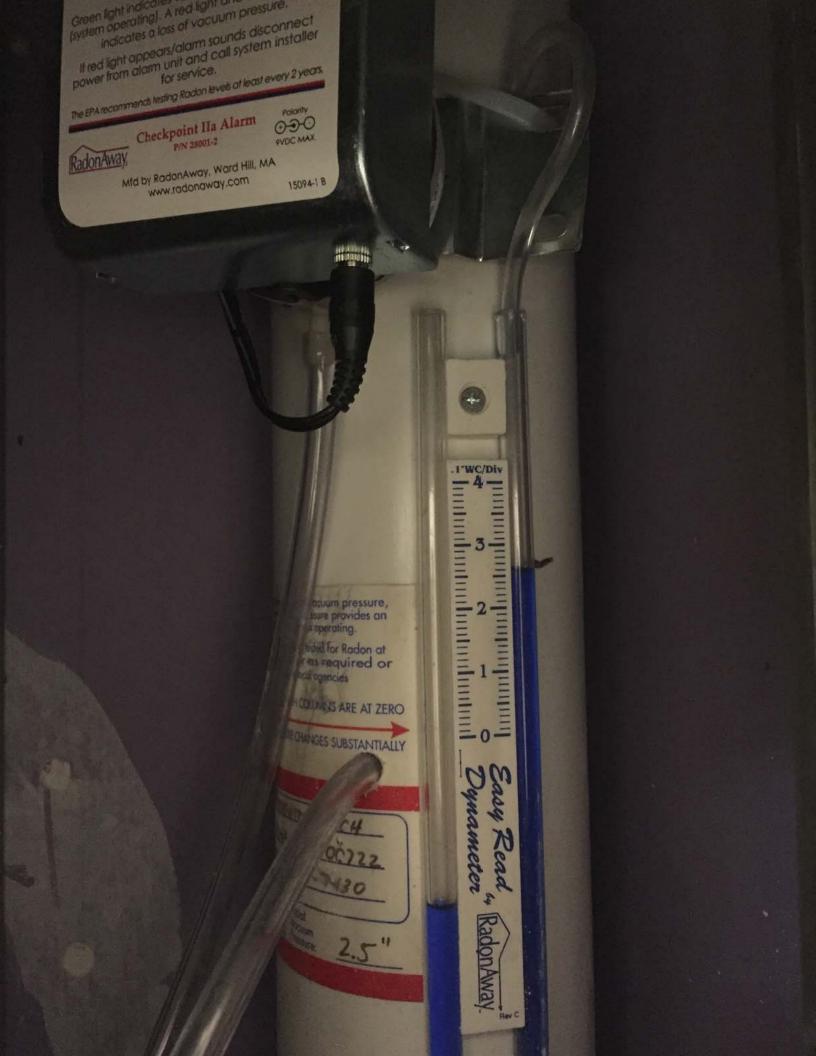
SITE-WIDE INSPECTION FORM

Project Name: NYSDEC BCP Site No. C828134

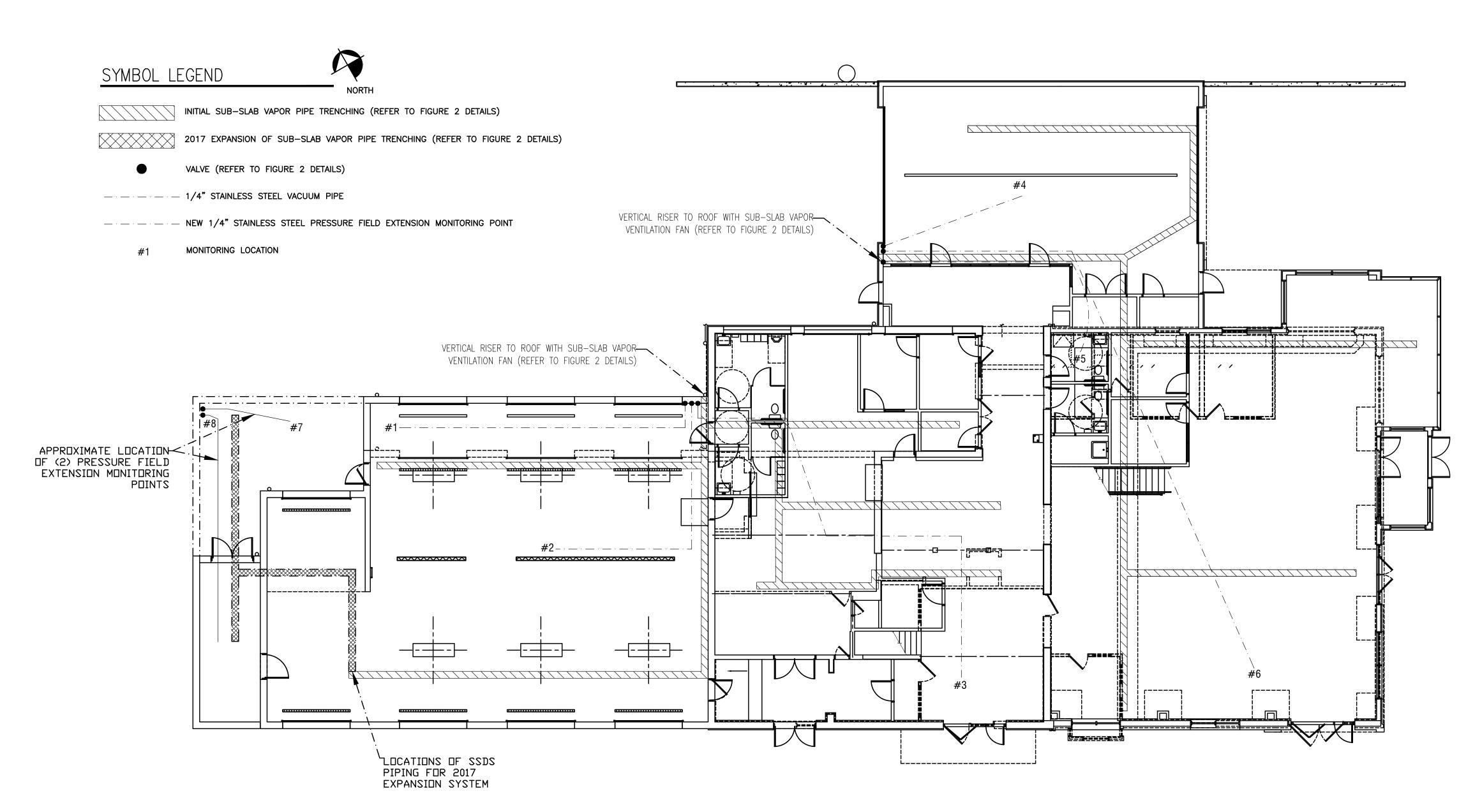
Location: 3865 & 3875 West Henrietta Road, Rochester, New York

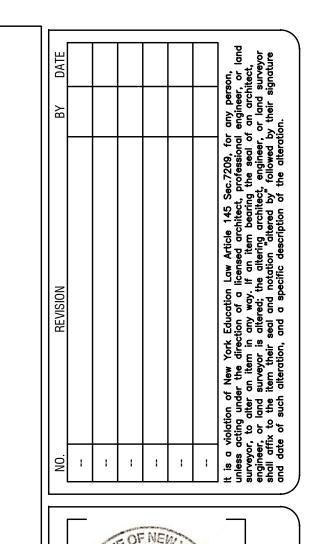
Project No.: 209395 Inspected By: K R Miller


Date of Inspection: 07/28/2018
Weather Conditions: sunny, ±75° F


INSPECTION FINDINGS

3865 Building SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN		
Fan located in Women's Restroom, behind wall panel.	Yes. U-tube manometer reading ±2.5 H ₂ 0"	Yes	System running. No actions taken.		
3875 Building SSDS VENT FAN & GENERAL LOCATION	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READINGS (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN		
Customer Reception Area (referred to as "Northern Point" in 2017 PRR)	- 0.591 H ₂ 0" & - 0.010 H ₂ 0"				
Service Area (referred to as "Southern Point" in 2017 PRR)	Fan and alarm located here, yes 0176 H ₂ 0" & - 0.007 H ₂ 0"	Yes	System running. No actions taken.		
2017 Building Addition	- 0.074 H ₂ 0" & - 0.072 H ₂ 0"				
GENERAL SITE CONDITIONS	CURRENT USE OF SITE (COMMERCIAL/ RESIDENTIAL/ETC.)	SITE RECORDS UP TO DATE (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN		
Similar to previous years. 3875 Building addition is complete and operational as an auto service area.	Commercial automobile sales and service.	Yes	No actions taken.		




APPENDIX D

AS-BUILT DRAWINGS OF SSDSs AT 3865 & 3875 WEST HENRIETTA ROAD BUILDINGS

NOTE:
BASE DRAWING ADAPTED FROM TY LIN INTERNATIONAL
DRAWING TITLED "SANITARY SEWER PLUMBING PLAN"
DATED NOVEMBER 8, 2011.

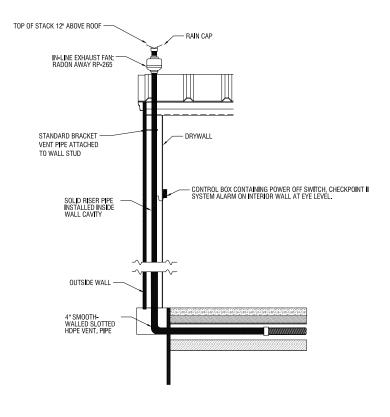
300 STATE STREET ROCHESTER, NY 1461 P: (585) 454-6110

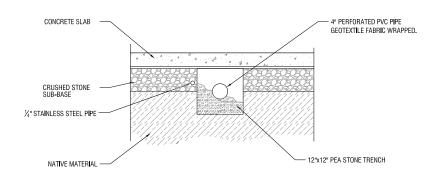
, west Henrietta Koa enrietta, New York

LE: 1:50

WN BY: HMS/RCN

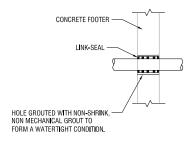
EWED BY: DPN

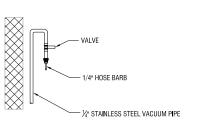

AS-BUILT SUB-SLA PRESSURIZATION SY


ISSUED FOR
AS-BUILT

PROJECT/DRAWING NUMBER

20939


FIG



MATERIAL PROFILE

REAR ENDWALL

PROFILE AT PENETRATION

PROFILE AT GAUGE POINT

NOTES:

1. PERFORATED CAP INSTALLED AT EACH VAPOR COLLECTION PIPE TERMINATION.

2. HEADER PIPE SLOPED UP 1/4-INCH PER FOOT FROM CONNECTION WITH VAPOR COLLECTION

3. ALL SUB-SLAB VAPOR COLLECTION PIPING IS GEOTEXTILE-WRAPPED 4-INCH PERFORATED DUAL-WALLED CORRUGATED EXTERIOR SMOOTH INTERIOR HDPE.

4. HEADER PIPING SHOWN IS 4-INCH SCHEDULE 40 PVC.

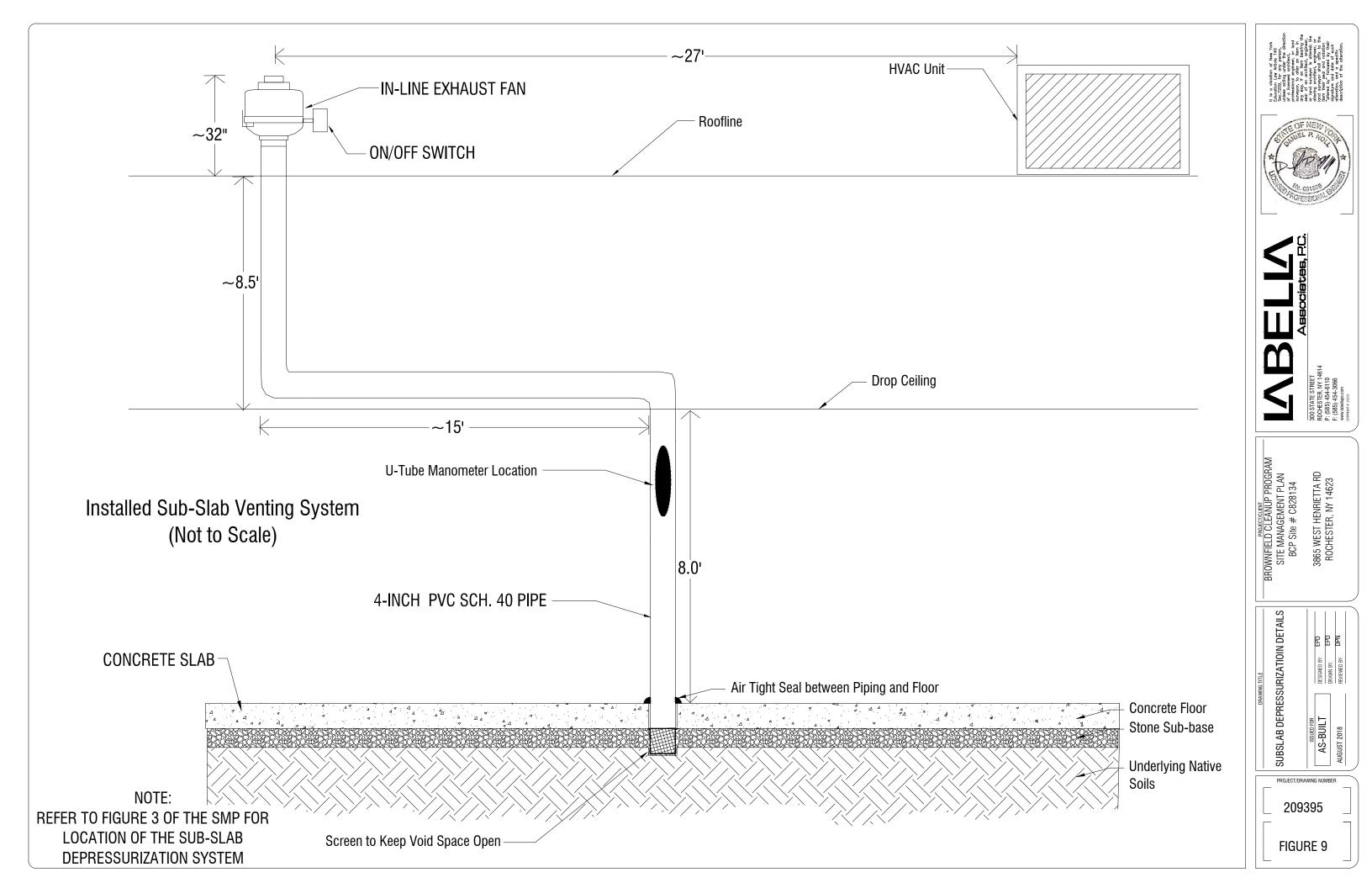
5. PROFILE SEQUENCE MAY VARY BASED ON SPECIFIC LOCATIONS.

6. PEA STONE CONSISTS OF MATERIAL THAT WILL PASS THROUGH A 2-INCH SIEVE AND BE RETAINED BY A 1/4-INCH SIEVE.

7. ALL PENETRATIONS AND GAPS SEALED WITH AN ELASTOMERIC JOINT SEALANT.

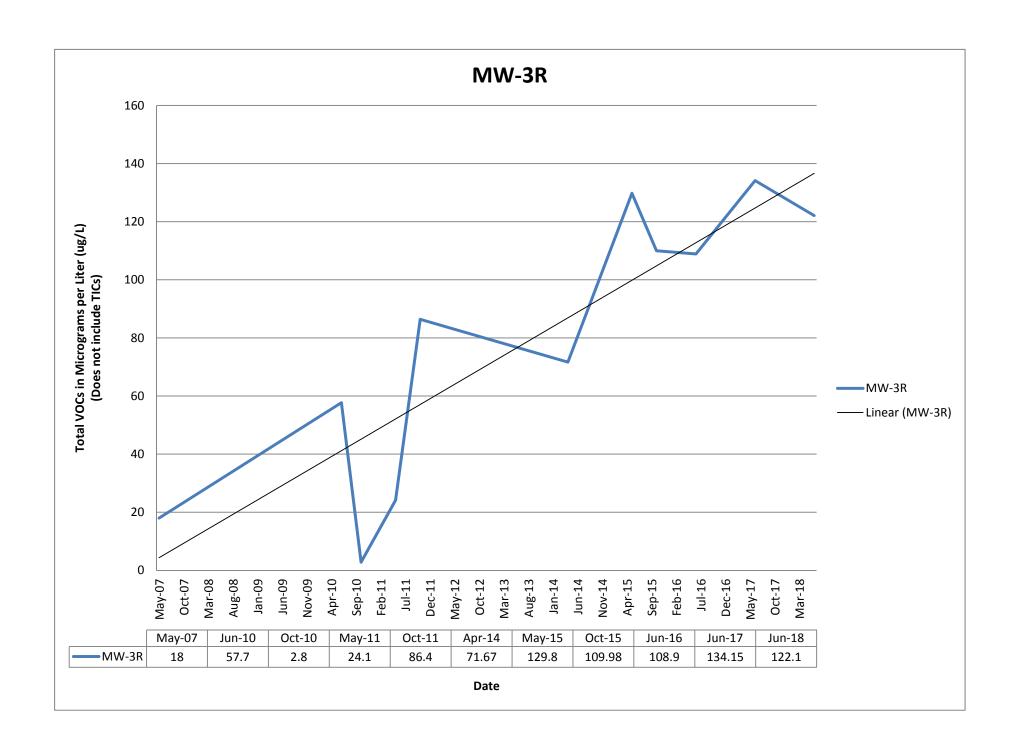
8. RISER PIPING INSIDE WALL CAVITIES TO HAVE PRESSURE GAUGES AND ALARMS MOUNTED ON INTERIOR WALL IN A VISIBLE LOCATION.

9. RADONAWAY EASY READ DYNAMETER U-TUBE MANOMETER MONITOR INSTALLED ON VACUUM SIDE OF FAN FOR PRESSURE GAUGE. RADONAWAY CHECKPOINT II AUDIBLE SYSTEM ALARM INSTALLED ON VACUUM SIDE OF FAN FOR ALARM. ALARM INSTALLED ON A SEPARATE CIRCUIT FROM THE FAN.


10. STAINLESS STEEL TUBING OPEN AT THE END WITH FILTER FABRIC OVER THE END AND FIXED WITH TAPE 6-INCHES FROM THE END.

3875 West Henrietta Road Henrietta, New York RJ Dorschel Corp.

SUB-SLAB DEPRESSURIZATION SYSTEM AS-BUILT


PROJECT/DRAWING NUMBER 209395

APPENDIX E

GRAPHS OF TOTAL VOCs OVER TIME

MW-7 [without outlier (May 2011 sample results)] 12,000 10,000 Total VOCs in Micrograms per Liter (ug/L) (Does not include TICs) 8,000 6,000 MW-7 - Linear (MW-7) 4,000 2,000 Sep-06 Sep-07 Sep-08 Sep-09 Sep-10 Sep-11 Sep-12 Sep-13 Sep-14 Sep-15 Sep-16 Sep-17 Sep-06 May-07 Jun-10 Oct-10 Oct-11 Jul-12 Mar-14 May-15 Oct-15 Jun-16 Jun-18 Jun-17 2,547 7,976 5,101 8,267 10,035 6,541 9,286 8,046 6,709 7,143.26 7805.4 8316.98 MW-7 Date

APPENDIX F

INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No.	Site Details C828134	Box 1	7.40				
Site Name	Former Steve Joy's Sunoco						
Site Addres City/Town: County: Mor Site Acreag	nroe						
Reporting P	Period: August 06, 2017 to August 06, 2018						
9		YES	NO				
1. Is the in	formation above correct?	X	ם				
If NO, ir	nclude handwritten above or on a separate sheet.						
	me or all of the site property been sold, subdivided, merged, or undergone a pamendment during this Reporting Period?	0	X				
	ere been any change of use at the site during this Reporting Period IYCRR 375-1.11(d))?	X	D				
for or at If you a that do	ny federal, state, and/or local permits (e.g., building, discharge) been issued the property during this Reporting Period? TA(T) Certificate ef Compliance of the compliance		1/5/18				
5. Is the si	ite currently undergoing development?	<u> </u>	X				
	- 10 miles						
		Box 2					
		YES	МО				
	urrent site use consistent with the use(s) listed below? Proial and Industrial	X	0				
7. Are all l	Cs/ECs in place and functioning as designed?	X	E				
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.							
A Corrective Measures Work Plan must be submitted along with this form to address these issues.							
Signature of	Owner, Remedial Party or Designated Representative Date						

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

9. Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)

If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

Box 3

Description of Institutional Controls

Parcel 161.15-1-20.1 Owner

R.J. Dorschel Corp.

Institutional Control

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

Ground Water Use Restriction

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential,etc.) use without additional remediation and amendment of the Environmental

Easement, as approved by the NYSDEC;

- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The existing sub-slab depressurization system at the 3865 West Henrietta Road property will be monitored and maintained in accordane with the SMP;
- The existing biocell will be monitored and maintained in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;
- Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

- Vegetable gardens and farming on the Site are prohibited; and
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time

that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

161.19-1-9

R.J. Dorschel Corp.

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Monitoring Plan
Site Management Plan
IC/EC Plan

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential, etc.) use without additional remediation and amendment of the Environmental

Easement, as approved by the NYSDEC;

- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP:
- The existing biocell will be monitored and maintained in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;
- Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in

accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

• A SSDS will be designed and installed/started prior to occupancy of the existing 3875 West Henrietta Road building. The SSDS will be designed and installed in

accordance with the State's most recent guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

· Vegetable gardens and farming on the Site are prohibited; and

• The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time

that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

<u>Parce</u>

Engineering Control

161.15-1-20.1

Vapor Mitigation

161.19-1-9

Vapor Mitigation

Periodic Review Report (PRR) Certification Statements

1	. 1	certify	by	checking	"YES"	below	that:
---	-----	---------	----	----------	-------	-------	-------

- a) the Periodic Réview report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- 2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C828134

Box 6

Rendering Certification

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LABELLA ASSOCIATES print business address

am certifying as a Qualified Environmental Professional for the

OWNER NEL P. C. Remedial Party)

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification

(Required for PE)

APPENDIX G

CHANGE OF USE (±500 SQUARE FOOT BUILDING ADDITION)

DOCUMENTATION

CERTIFICATE OF COMPLIANCE #C2017-0083

3875 West Henrietta Rd Rochester, NY 14623-3703

This concludes the work performed by the permit applicant below, acting as agent to, the above address. The applicant or owners agent noted below has demonstrated substantial compliance with the approved plans and specifications filed with the Town of Henrietta - Office of Building and Fire Prevention. All final testing and acceptance paperwork conform with the requirements of the codes and reference standards adopted by New York State.

PERMIT ISSUED TO:

Dorschel Mini Cooper of Rochester 3875 W. Henrietta road Rochester, NY 14623

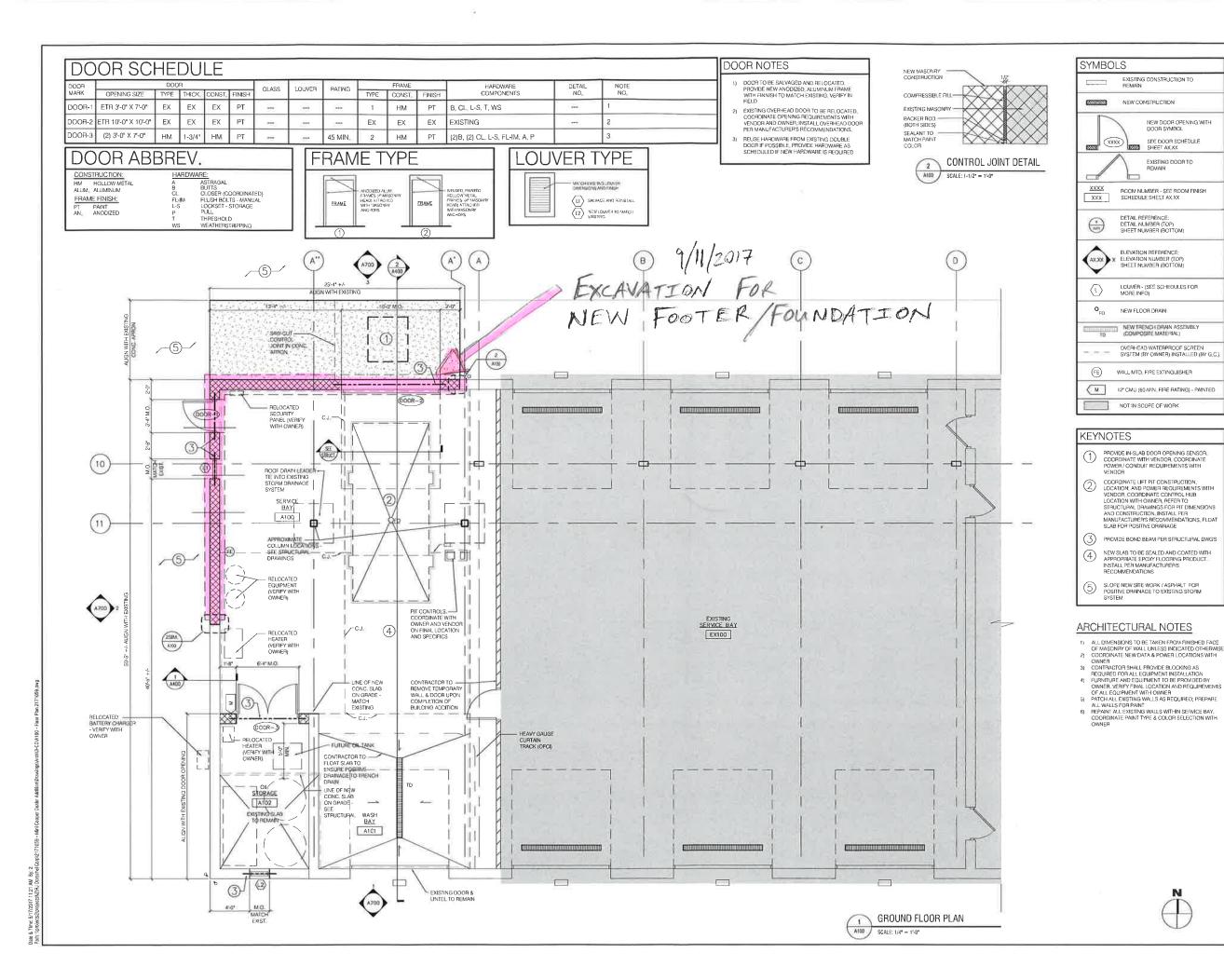
NARRATIVE: THIS CERTIFICATE DOES NOT CERTIFY WORKMANSHIP OR QUALITY OF MATERIALS

DESCRIPTION: 550 Sq. Ft. addition

PERMIT INFORMATION

Property Tax ID #: 161.19-1-9.1 Permit Issue Date: 07/20/2017 Permit Type: Com: Addition

Construction Type: Sprinkler System:


Occupancy Classification:

Permit Number: C2017-0083 Certificate of Compliance Date: 01/05/18

Subdivision: Lot #

Director of Building and Fire Prevention

Tuy L. Sharel

LABELIA

300 State Street | Engineering Suite 201 Architecture
Rochester, NY 14614 Environmental P: (585) 454-6110 | Planning

EXISTING CONSTRUCTION TO REMAIN

ROOM NUMBER - SEE ROOM FINISH SCHEDULE SHEET AX,XX

DETAIL REFERENCE: DETAIL NUMBER (TOP) SHEET NUMBER (BOTTOM)

ELEVATION REFERENCE:

NEW FLOOR DRAIN

NOT IN SCOPE OF WORK

ELEVATION NUMBER (TOP) SHEET NUMBER (BOTTOM)

LOUVER - (SES SCHEOULES FOR MORE INFO)

OVERHEAD WATERPROOF SCREEN SYSTEM (BY OWNER) INSTALLED (BY G.C.

NEW CONSTRUCTION

www.labellapc.com

It is a violation of New York Education Law Article 145 Sec, 7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an Item in any way, if an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or fand surveyor shall affix to the Item their seal and notation "altered by followed by their significant and date of such alteration," and expectific description of the alteration,

© 2017 LaBella Associates

DORSCHEL MINI OF ROCHESTER

3875 WEST HENRIETTA ROAD ROCHESTER, NY 14623

SERVICE BAY ADDITION & ALTERATION

clear, simple, different,

	-	=		
	-	-		
-		-		
-	1.64	-		
100	100			
N2:	DATE:	DESCRIPTION		
REVISIONS				
PROJECT NU	IMBER:	2171059		
DRAWN BY:		CD		
REVIEWED 8	IY:	SM		
ISSUED FOR: CONSTRUCTION				

5/17/2017

GROUND FLOOR PLAN

DRAWING NUMBER:

ISSUED DATE

DRAWING NAME:

 $Looking\ Northeast\ at\ the\ Eastern\ End\ of\ the\ ``L-shaped"\ Excavation\ for\ the\ New\ Footer/Foundation.$

Note dark gray soil fill (petroleum odors) atop native reddish-brown silty clay soils.

300 State Street, Suite 201 | Rochester, NY 14614 | p 585.454.6110 | f 585.454.3066 | www.labellapc.com

September 9, 2017

Mr. Frank Sowers, P.E.
New York State Department of Environmental Conservation, Region 8
Division of Environmental Remediation
6274 East Avon-Lima Road
Avon, New York 14414

RE: Request to Import #2 Stone

BCP Site #C828134, Former Steve Joy's Sunoco, 3875 West Henrietta Road Parcel

Town of Henrietta, Monroe County LaBella Project Number 209395

Dear Mr. Sowers,

LaBella Associates, D.P.C. (LaBella) is submitting this letter on behalf of RJ Dorschel Corporation in order to request approval to import backfill material to the property known as 3875 West Henrietta Road. Please refer to the attached request form. This request is specific to #2 Stone to be imported from the Dolomite Products Co. Inc. (Dolomite) Gates, NY quarry.

The construction activities will occur at the Former Steve Joy's Sunoco New York State (NYS) Brownfield Cleanup Program (BCP) Site (#C828134), located at 3865 and 3875 West Henrietta Road (hereinafter referred to as the "Site"). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #B8-0719-06-06, Site # C828134.

According to the owner's construction contractor (Spoleta Construction of Rochester, New York), the upcoming construction activities (±500 Square Foot Building Addition) will require the use of #2 Crusher Run, #1 Stone, and #2 Stone, to be obtained from Dolomite. Again, the attached request is specific to #2 Stone. LaBella is awaiting additional information from Dolomite regarding #2 Crusher Run and #1 Stone. If you have any questions, please do not hesitate to contact me at (585) 216-7635.

Sincerely,

LABELLA ASSOCIATES, D.P.C.

Kyle R. Miller

Sr. Environmental Analyst

Attachment: Request to Import/Reuse Fill or Soil Form

J:\RJ Dorschel Corp\209395 - 3865 3875 W Henrietta Rd Rem Act\2017 MINI Bldg. Change of Use\2017_09_09_No2Stone Import Cover Letter.doc

ATTACHMENT

Request to Import/Reuse Fill or Soil Form

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING			
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):			
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.			
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.			
SECTION 4 – SOURCE OF FILL			
Name of person providing fill and relationship to the source:			
Location where fill was obtained:			
Identification of any state or local approvals as a fill source:			
Identification of any state or local approvals as a fill source:			
Identification of any state or local approvals as a fill source: If no approvals are available, provide a brief history of the use of the property that is the fill source:			
If no approvals are available, provide a brief history of the use of the property that is the fill source:			
If no approvals are available, provide a brief history of the use of the property that is the fill source:			

The information provided on this form is accurate and complete.

Signature

9/09/2017

Date

Kyle R. Miller

Print Name

LaBella Associates, DPC

Firm

THE DOLOMITE GROUP

DOLOMITE PRODUCTS COMPANY, INC MANITOU CONSTRUCTION COMPANY, INC ROCHESTER ASPHALT MATERIALS IROQUOIS ROCK PRODUCTS NORTHRUP MATERIALS

MATERIAL SUBMITTAL

1150 Penfield Road Rochester, N.Y. 14625 Phone: (585) 381-7010 Fax : (585) 381-0208

DATE: 9/8/2017 TO: Kyle Miller
PAGE: 1 of 1 OF: Labella Associates

PROJECT: 3875 W Henrietta Road

CRUSHED STONE: Gates Plant NYSDOT Source #: 4-6R
Current NYSDOT Test #: 99 AR 55S

This is to certify that the Crushed Stone to be used on the above referenced project will be produced in accor with the most current New York State Department of Transportation's, "Standard Specifications" and Addenda. All stone properties conform to sections 703.0201, 203, 304, 605 and 620 of the Specification. Specific values are listed below.

PROPERTY	VALUE	SPEC.
Mag. Sulfate Loss	13	18 max.
ASTM C 131 Loss	20	45 max.
Flat and Elongated Pieces - 3:1	1	30 max.
5:1	0	10 max.
Crushed Particles	100	n.a.
Deleterious Materials	0	2 max.

TYPICAL GRADATIONS (All Values are % Passing)						
SIEVE	CRUSHER	CRUSHER	#2 STONE	#1 STONE	WASHED	WASHED
SIZE	RUN #2	RUN #1			2 STONE	1 STONE
4" (100 mm)						
2" (50)	100					
1 1/2" (37.5)	93		100		100	
1" (25)	87	100	96		96	
1/2" (12.5)	73		15	100	13	100
1/4" (6.3)	54	54	2	91	1	91
#40 (0.425)	13	15				
#200 (0.075)	7	8	0.5	0.5	0.3	0.3
Typical	203			CA 2		605.0901
Item	304			ASTM 57		
Numbers						

Notes:

Proctor Density typically runs at approx 140 +/-2 pcf
 at 6-8% Moisture. (For Crusher Run products only)

Miller, Kyle

From: Sowers, Frank (DEC) <frank.sowers@dec.ny.gov>

Sent: Monday, September 11, 2017 9:11 AM

To: Miller, Kyle

Cc: Noll, Dan; Al Baronas; Kirk Olsen

Subject: RE: Request to Import #2 Stone to Former Steve Joy's BCP Site, 3875 West Henrietta

Road parcel

Kyle,

The #2 Stone from the Dolomite Gates Quarry is acceptable for import. Please include a copy of the sieve analysis, this approval, and the Bills of Lading documenting that only approved materials from approved sources were imported.

Please let me know if you have any questions.

Frank Sowers, P.E.

Professional Engineer 1, Division of Environmental Remediation

New York State Department of Environmental Conservation 6274 East Avon-Lima Rd, Avon, NY 14414 P: (585) 226-5357 | F: (585) 226-8139 | frank.sowers@dec.ny.gov

www.dec.ny.gov |

From: Miller, Kyle [mailto:kmiller@LaBellaPC.com]
Sent: Sunday, September 10, 2017 8:35 PM

To: Sowers, Frank (DEC) <frank.sowers@dec.ny.gov>

Cc: dnoll@LABELLAPC.com; Al Baronas ABaronas@dorschel.com; Kirk Olsen KOlsen@spoleta.com>
Subject: Request to Import #2 Stone to Former Steve Joy's BCP Site, 3875 West Henrietta Road parcel

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Frank,

Hello, please find attached a request for approval of the import of some backfill for construction activities at 3875 West Henrietta Road.

As noted in the letter, I'm in the process of trying to obtain more detailed gradation information with regard to the #2 Crusher Run and #1 Stone that will be needed as backfill on this project.

Thank you, Kyle

Kyle R. Miller

MAIN OFFICE 1150 PENFIELD RD. ROCHESTER, NY 14625 585-381-7010

GATES 585-235-9292 MANCHESTER 315-462-2752 MENDON 585-624-2430

WALWORTH 315-524-2771 PALMYRA LEROY **OGDEN**

BROCKPORT 585-637-6834 315-331-2360 HOWARD 585-768-7295 607-776-4460 BATH 585-352-0460

Ticket No.: COPY 1

Gross

Tare

Net

Ordered

Received

Remaining

Grand Total:

Total:

Today:

240481

0.00

0.00

0.00

0.00

0.00

1

9/12/2017

7:11:12AM

585-586-2567 Stone - Gates Main

Customer: 901750 Order:

SPOLETA CONSTRUCTION

P.O. :

Product:

00077 2 STONE

20.22 TON

dorschel mini cooper Deliver To

Tax Status TX 2605

Haul Code IX Zone Units

Vehicle Loads Daily Total

Vehicle: 21RE RICELLI #21 13 FREIGHT

20.22

Todate

21.77 Stacy603543

20.22

<u>Tons</u>

34.94

14.72

20.22

Loads:

<u>Tons</u>

34.94

14.72

20.22

Received:

Weighmaster:

Pounds **Pounds**

69,880

29,440

40,440

Pounds Pounds

69.880

29,440

40,440

IT IS THE RESPONSIBILITY OF EACH CUSTOMER, AND EACH DRIVER, HAULING PRODUCT FROM OUR FACILITY TO COMPLY WITHHIGHWAY LOAD LIMIT LAWS. TAX EXEMPTIONS, TAX JURISDICTIONS, AND SPECIAL TAX HANDLING NOT INCORPORATED INTO A SPECIFIC QUOTE OR REPORTED AT TIME OF TICKETING WILL BETHE CUSTOMER'S RESPONSIBILITY TO RESOLVE WITH THE TAXING JURISDICTIONS. PRICING ISSUES MUST BE REPORTED WITHIN 15 DAYS OF INVOICE DATE. CORRECTED INVOICES REMAIN DUE ON ORIGINAL DUE DATE. INCORPORATION OF THIS MATERIAL INTO A PROJECT SHALL BE CONSIDERED ACCEPTANCE BY THE CUSTOMER.

MAIN OFFICE 1150 PENFIELD RD. ROCHESTER, NY 14625 585-381-7010

GATES 585-235-9292 MANCHESTER 315-462-2752 MENDON 585-624-2430

LEROY 585-586-2567 **OGDEN**

WALWORTH 315-524-2771 PALMYRA 315-331-2360 585-768-7295 585-352-0460

BROCKPORT 585-637-6834 HOWARD 607-566-3422 607-776-4460

Ticket No.:

240481

0.00

0.00

0.00

0.00

0.00

1

9/12/2017

7:11:12AM

0

PENFIELD

Stone - Gates Main

Customer: 901750

SPOLETA CONSTRUCTION

Order:

P.O. :

Product:

00077 2 STONE

20.22 TON

Deliver To

dorschel mini cooper

Tax Status TX Haul Code Zone

Units Vehicle Loads Daily Total 1

Vehicle:

Received:

21RE

RICELLI #21 13 FREIGHT

20.22

Weighmaster:

Gross

Tare

Net

Ordered

Received

Remaining

Grand Total:

Total:

Today:

Todate:

Stacv603543

21.77

20.22 Loads:

IT IS THE RESPONSIBILITY OF EACH CUSTOMER, AND EACH DRIVER, HAULING PRODUCT FROM OUR FACILITY TO COMPLY WITHHIGHWAY LOAD LIMIT LAWS. TAX EXEMPTIONS, TAX JURISDICTIONS, AND SPECIAL TAX HANDLING NOT INCORPORATED INTO A SPECIFIC QUOTE OR REPORTED AT TIME OF TICKETING WILL BE THE CUSTOMER'S RESPONSIBILITY TO RESOLVE WITH THE TAXING JURISDICTIONS. PRICING ISSUES MUST BE REPORTED WITHIN 15 DAYS OF INVOICE DATE. CORRECTED INVOICES REMAIN DUE ON ORIGINAL DUE DATE. INCORPORATION OF THIS MATERIAL INTO A PROJECT SHALL BE CONSIDERED ACCEPTANCE BY THE CUSTOMER.

MAIN OFFICE 1150 PENFIELD RD. ROCHESTER, NY 14625 585-381-7010

585-235-9292 GATES MANCHESTER 315-462-2752 MENDON 585-624-2430 PENFIELD 585-586-2567

WALWORTH 315-524-2771 PALMYRA LEROY OGDEN

315-331-2360 585-768-7295 585-352-0460

BROCKPORT 585-637-6834 HOWARD 607-566-3422 BATH 607-776-4460

9/12/2017

7:11:12AM

Stone - Gates Main

Customer: 901750 0 SPOLETA CONSTRUCTION

Order: P.O.:

Product:

00077

2 STONE

20.22 TON

Deliver To

dorschel mini cooper

Tax Status TX Haul Code IX 2605 Zone

Units Vehicle Loads

Vehicle:

21RE

RICELLI #21 13 FREIGHT

20.22

Daily Total

Received:

Ticket No.: COPY 3

240481

0.00

1

Pounds Tons Gross 69.880 34.94 Tare 29,440 14.72 Net 40,440 20.22 Ordered 0.00 Received 0.00 Remaining 0.00 Total: 0.00

Grand Total: Today: Todate:

20.22 Loads: 21,77

Weighmaster:

Stacy603543

IT IS THE RESPONSIBILITY OF EACH CUSTOMER, AND EACH DRIVER, HAULING PRODUCT FROM OUR FACILITY TO COMPLY WITHHIGHWAY LOAD LIMIT LAWS. TAX EXEMPTIONS, TAX JURISDICTIONS, AND SPECIAL TAX HANDLING NOT INCORPORATED INTO A SPECIFIC QUOTE OR REPORTED AT TIME OF TICKETING WILL BE THE CUSTOMER'S RESPONSIBILITY TO RESOLVE WITH THE TAXING JURISDICTIONS. PRICING ISSUES MUST BE REPORTED WITHIN 15 DAYS OF INVOICE DATE. CORRECTED INVOICES REMAIN DUE ON ORIGINAL DUE DATE. INCORPORATION OF THIS MATERIAL INTO A PROJECT SHALL BE CONSIDERED ACCEPTANCE BY THE CUSTOMER.

MAIN OFFICE 1150 PENFIELD RD ROCHESTER, NY 14625 585-381-7010

GATES 585-235-9292 MANCHESTER 315-462-2752 PENFIELD 585-586-2567

WALWORTH 315-524-2771 315-331-2360 LEROY 585-768-7295

BROCKPORT 585-637-6834 HOWARD 607-566-3422 BATH 607-776-3357 Ticket No.:

Gross

Tare

Net

Ordered

Received

Total:

Today:

Todate:

Weighmaster:

Ticket No.:

Remaining

Grand Total:

Pounds

71.300

31,300

40,000

20.00

Michelle 540106

564.06

<u>Tons</u>

35.65

15.65

20.00

Loads:

COPY 1

275909

0.00

0.00

0.00

0.00

0.00

275909

OGDEN 585-352-0460

9/15/2017 7:34:07AM Customer: 901750

00072

Stone - Penfield Main SPOLETA CONSTRUCTION

Order: P.O. :

Product:

Deliver To

SOUTHPOINT

2 STONE - PENFIELD 20.00 TON

Tax Status TX Haul Code 2605 Zone Units Vehicle Loads

Vehicle: 309R Riccelli

1 20.00

Daily Total

Received:

Test in Comment line

IT IS THE RESPONSIBILITY OF EACH CUSTOMER, AND EACH DRIVER, HAULING PRODUCT FROM OUR FACILITY TO COMPLY WITHHIGHWAY LOAD LIMIT LAWS. TAX EXEMPTIONS, TAX JURISDICTIONS, AND SPECIAL TAX HANDLING NOT INCORPORATED INTO A SPECIFIC QUOTE OR REPORTED AT TIME OF TICKETING WILL BE THE CUSTOMER'S RESPONSIBILITY TO RESOLVE WITH THE TAXING JURISDICTIONS. PRICING ISSUES MUST BE REPORTED WITHIN 16 DAYS OF INVOICE DATE. CORRECTED INVOICES REMAIN DUE ON ORIGINAL DUE DATE. INCORPORATION OF THIS MATERIAL INTO A PROJECT SHALL BE CONSIDERED ACCEPTANCE BY THE CUSTOMER.

MAIN OFFICE 1150 PENEIELD RD ROCHESTER, NY 14625 585-381-7010 585-235-9292 GATES WALWORTH 315-524-2771

MANCHESTER 315-462-2752 585-586-2567 PENFIELD

PALMYRA 315-331-2360 LEROY 585-768-7295

BROCKPORT 585-637-6834 HOWARD 607-566-3422 BATH 607-776-3357

Stone - Penfield Main

Customer: 901750 0

7:34:07AM

SPOLETA CONSTRUCTION

Order:

Product:

9/15/2017

P.O.:

00072 2 STONE - PENFIFLD TON 20.00

Deliver To SOUTHPOINT Tax Status TX Haul Code IX 2605 Zone

Units Vehicle Loads Daily Total Vehicle: 309R Riccelli 1 20.00

Test in Comment line

Received:

IT IS THE RESPONSIBILITY OF EACH CUSTOMER, AND EACH DRIVER, HAULING PRODUCT FROM OUR FACILITY TO COMPLY WITHHIGHWAY LOAD LIMIT LAWS. TAX EXEMPTIONS, TAX JURISDICTIONS, AND SPECIAL TAX HANDLING NOT INCORPORATED INTO A SPECIFIC QUOTE OR REPORTEDAT TIME OF TICKETING WILL BE THE CUSTOMER'S RESPONSIBILITY TO RESOLVE WITH THE TAXING JURISDICTIONS. PRICING ISSUES MUST BE REPORTED WITHIN 15 DAYS OF INVOICE DATE. CORRECTED INVOICES REMAIN DUE ON ORIGINAL DUE DATE. INCORPORATION OF THIS MATERIAL INTO A PROJECT SHALL BE CONSIDERED ACCEPTANCE BY THE CUSTOMER

MAIN OFFICE 1150 PENFIELD RD ROCHESTER, NY 14625 585-381-7010

GATES 585-235-9292 MANCHESTER 315-462-2752 PENFIELD 585-586-2567

WALWORTH 315-524-2771 PALMYRA 315-331-2360 LEROY 585-768-7295 OGDEN 585-352-0460

BROCKPORT 585-637-6834 HOWARD 607-566-3422 BATH 607-776-3357

Haul Code IX

20.00

Stone - Penfield Main

SPOLETA CONSTRUCTION

Order:

901750

P.O.:

Deliver To

9/15/2017

Customer:

Product: 00072

7:34:07AM

SOUTHPOINT

2 STONE - PENFIELD

Tax Status 2605

Zone Units Vehicle Loads

20.00 TON

TX

Vehicle:

309R

Riccelli

Daily Total 1

Received:

Test in Comment line

<u>Pounds</u> <u>Tons</u> Gross 71,300

35.65 Tare 31,300 15.65 Net 40,000 20.00 Ordered 0.00 Received 0.00 Remaining 0.00 Total: 0.00 Grand Total: 0.00 Today: 20.00 Loads: 1 Todate: 564.06

Weighmaster:

Michelle 540106

Ticket No.: 275909 COPY 3

Gross Tare Net	Pounds 71,300 31,300 40,000	<u>Tons</u> 35.65 15.65 20.00	
Ordered Received Remaining Total: Grand Total Today: Todate:			0.00 0.00 0.00 0.00 0.00 1
Weighmaster:	Michelle	540106	

IT IS THE RESPONSIBILITY OF EACH CUSTOMER, AND EACH DRIVER, HAULING PRODUCT FROM OUR FACILITY TO COMPLY WITHHIGHWAY LOAD LIMIT LAWS. TAX EXEMPTIONS, TAX JURISDICTIONS, AND SPECIAL TAX HANDLING NOT INCORPORATED INTO A SPECIFIC QUOTE OR REPORTED AT TIME OF TICKETING WILL BE THE CUSTOMER'S RESPONSIBILITY TO RESOLVE WITH THE TAXING JURISDICTIONS. PRICING ISSUES MUST BE REPORTED WITHIN 15 DAYS OF INVOICE DATE. CORRECTED INVOICES REMAIN DUE ON ORIGINAL DUE DATE. INCORPORATION OF THIS MATERIAL INTO A PROJECT SHALL BE CONSIDERED ACCEPTANCE BY THE CUSTOMER

Upwind CAMP Reports

Test 001

Instru	ıment	Data Prop	erties
Model	DustTrak II	Start Date	09/11/2017
Instrument S/N	8530143323	Start Time	07:21:00
		Stop Date	09/11/2017
		Stop Time	15:36:00
		Total Time	0:08:15:00
		Logging Interval	60 seconds

Statistics		
	AEROSOL	
Avg	0.009 mg/m^3	
Max	0.024 mg/m^3	
Max Date	09/11/2017	
Max Time	08:32:00	
Min	0.007 mg/m^3	
Min Date	09/11/2017	
Min Time	11:20:00	
TWA (8 hr)	0.009	
TWA Start Date	09/11/2017	
TWA Start Time	07:21:00	
TWA End Time	15:36:00	

Test 001

Instrument		Data Prop	erties
Model	DustTrak II	Start Date	10/02/2017
Instrument S/N	8530143607	Start Time	06:59:43
		Stop Date	10/02/2017
		Stop Time	08:19:43
		Total Time	0:01:20:00
		Logging Interval	60 seconds

Statistics		
	AEROSOL	
Avg	0.019 mg/m^3	
Max	0.034 mg/m^3	
Max Date	10/02/2017	
Max Time	08:15:43	
Min	0.015 mg/m^3	
Min Date	10/02/2017	
Min Time	07:01:43	
TWA (8 hr)	0.003	
TWA Start Date	10/02/2017	
TWA Start Time	06:59:43	
TWA End Time	08:19:43	

Test 002

Instrument		Data Prop	erties
Model	DustTrak II	Start Date	10/02/2017
Instrument S/N	8530143607	Start Time	09:13:05
		Stop Date	10/02/2017
		Stop Time	13:19:05
		Total Time	0:04:06:00
		Logging Interval	60 seconds

Statistics		
	AEROSOL	
Avg	0.009 mg/m^3	
Max	0.023 mg/m^3	
Max Date	10/02/2017	
Max Time	12:48:05	
Min	0.004 mg/m^3	
Min Date	10/02/2017	
Min Time	12:56:05	
TWA (8 hr)	0.005	
TWA Start Date	10/02/2017	
TWA Start Time	09:13:05	
TWA End Time	13:19:05	

Downwind CAMP Reports

Test 001

Instru	ment	Data Prop	erties
Model	DustTrak II	Start Date	09/11/2017
Instrument S/N	8530143324	Start Time	07:28:42
		Stop Date	09/11/2017
		Stop Time	15:36:42
		Total Time	0:08:08:00
		Logging Interval	60 seconds

Statistics			
	AEROSOL		
Avg	0.006 mg/m^3		
Max	0.043 mg/m^3		
Max Date	09/11/2017		
Max Time	10:17:42		
Min	0.003 mg/m^3		
Min Date	09/11/2017		
Min Time	12:09:42		
TWA (8 hr)	0.006		
TWA Start Date	09/11/2017		
TWA Start Time	07:28:42		
TWA End Time	15:36:42		

Datalog

Current Event:17/09/11 04:32

Summary

Unit Name MiniRAE 3000(PGM-7320)

Unit SN 592-912845 Unit Firmware Ver V1.20A

Running Mode Hygiene Mode
Measure Type Avg; Max; Real
Datalog Mode Continuous

Datalog Mode Continuou Datalog Type Auto Diagnostic Mode No

Stop Reason Power Down

Site ID 12345678 User ID 12345678

Begin 9/11/2017 04:32:28 End 9/11/2017 12:41:08

Sample Period(s) 60 Number of Records 488

Conservation | 1/0/2/2020

Sensor VOC(ppm) 100.000 Span Span 2 N/A Low Alarm 50.000 High Alarm 100.000 Over Alarm 15000.000 STEL Alarm 25.000 10.000 TWA Alarm Measurement Gas Isobutylene 9/8/2017 11:13 Calibration Time

 Peak
 0.838

 Min
 0.000

 Average
 0.449

<u>Sheet</u>

		VOC(ppm)	VOC(ppm)	VOC(ppm)
Index	Date/Time	(Avg)	(Max)	(Real)
001	9/11/2017 04:33:28	0.076	0.138	0.044
002	9/11/2017 04:34:28	0.024	0.043	0.007
003	9/11/2017 04:35:28	0.001	0.007	0.000
004	9/11/2017 04:36:28	0.000	0.000	0.000
005	9/11/2017 04:37:28	0.000	0.000	0.000
006	9/11/2017 04:38:28	0.000	0.000	0.000
007	9/11/2017 04:39:28	0.000	0.000	0.000
800	9/11/2017 04:40:28	0.000	0.000	0.000
009	9/11/2017 04:41:28	0.000	0.000	0.000
010	9/11/2017 04:42:28	0.000	0.000	0.000
011	9/11/2017 04:43:28	0.000	0.000	0.000
012	9/11/2017 04:44:28	0.000	0.000	0.000
013	9/11/2017 04:45:28	0.000	0.000	0.000
014	9/11/2017 04:46:28	0.000	0.000	0.000
015	9/11/2017 04:47:28	0.000	0.000	0.000
016	9/11/2017 04:48:28	0.000	0.000	0.000
017	9/11/2017 04:49:28	0.000	0.000	0.000
018	9/11/2017 04:50:28	0.000	0.001	0.000
019	9/11/2017 04:51:28	0.002	0.004	0.003
020	9/11/2017 04:52:28	0.005	0.008	0.007
021	9/11/2017 04:53:28	0.009	0.013	0.012
022	9/11/2017 04:54:28	0.013	0.015	0.014
023	9/11/2017 04:55:28	0.015	0.017	0.015
024	9/11/2017 04:56:28	0.016	0.020	0.019
025	9/11/2017 04:57:28	0.019	0.023	0.021
026	9/11/2017 04:58:28	0.025	0.039	0.026
027	9/11/2017 04:59:28	0.025	0.028	0.026
028	9/11/2017 05:00:28	0.028	0.031	0.029
029	9/11/2017 05:01:28	0.031	0.042	0.036
030	9/11/2017 05:02:28	0.053	0.081	0.037
031	9/11/2017 05:03:28	0.051	0.079	0.047
032	9/11/2017 05:04:28	0.040	0.064	0.040
033	9/11/2017 05:05:28	0.041	0.047	0.047
034	9/11/2017 05:06:28	0.047	0.058	0.048
035	9/11/2017 05:07:28	0.055	0.073	0.053
036	9/11/2017 05:08:28	0.060	0.091	0.076
037	9/11/2017 05:09:28	0.072	0.108	0.055
038	9/11/2017 05:10:28	0.059	0.067	0.064
039	9/11/2017 05:11:28	0.062	0.066	0.065
040	9/11/2017 05:12:28	0.065	0.067	0.067
041	9/11/2017 05:13:28	0.070	0.073	0.071
042	9/11/2017 05:14:28	0.071	0.074	0.071
043	9/11/2017 05:15:28	0.075	0.080	0.076
044	9/11/2017 05:16:28	0.076	0.080	0.079
045	9/11/2017 05:17:28	0.081	0.084	0.081
046	9/11/2017 05:18:28	0.084	0.088	0.088
047	9/11/2017 05:19:28	0.088	0.090	0.090
048	9/11/2017 05:20:28	0.090	0.097	0.097
049	9/11/2017 05:21:28	0.094	0.097	0.093
050	9/11/2017 05:22:28	0.096	0.098	0.098
051	9/11/2017 05:23:28	0.100	0.103	0.103
052	9/11/2017 05:24:28	0.105	0.110	0.108
053	9/11/2017 05:25:28	0.110	0.113	0.113
054	9/11/2017 05:26:28	0.112	0.116	0.113
055	9/11/2017 05:27:28	0.113	0.115	0.113
056	9/11/2017 05:28:28	0.116	0.120	0.119
057	9/11/2017 05:29:28	0.126	0.188	0.188
058	9/11/2017 05:30:28	0.161	0.213	0.137
059	9/11/2017 05:31:28	0.130	0.136	0.131
060	9/11/2017 05:32:28	0.131	0.134	0.133
061	9/11/2017 05:33:28	0.135	0.141	0.138

062	9/11/2017 05:34:28	0.141	0.154	0.154
063	9/11/2017 05:35:28	0.150	0.163	0.155
064	9/11/2017 05:36:28	0.151	0.181	0.162
065	9/11/2017 05:37:28	0.155	0.161	0.156
066	9/11/2017 05:38:28	0.154	0.164	0.155
067	9/11/2017 05:39:28	0.153	0.158	0.154
068	9/11/2017 05:40:28	0.159	0.167	0.163
069	9/11/2017 05:41:28	0.162	0.166	0.164
070	9/11/2017 05:42:28	0.164	0.166	0.163
071	9/11/2017 05:43:28	0.168	0.171	0.168
072	9/11/2017 05:44:28	0.173	0.180	0.174
_	• •			
073	9/11/2017 05:45:28	0.177	0.182	0.182
074	9/11/2017 05:46:28	0.184	0.188	0.180
075	9/11/2017 05:47:28	0.182	0.190	0.187
076	9/11/2017 05:48:28	0.185	0.194	0.188
077	9/11/2017 05:49:28	0.187	0.193	0.185
	• •			
078	9/11/2017 05:50:28	0.189	0.193	0.193
079	9/11/2017 05:51:28	0.193	0.213	0.187
080	9/11/2017 05:52:28	0.192	0.200	0.199
081	9/11/2017 05:53:28	0.192	0.202	0.188
082		0.193		
	9/11/2017 05:54:28		0.198	0.198
083	9/11/2017 05:55:28	0.203	0.210	0.204
084	9/11/2017 05:56:28	0.207	0.217	0.211
085	9/11/2017 05:57:28	0.212	0.220	0.213
086	9/11/2017 05:58:28	0.215	0.223	0.209
	• •		0.225	
087	9/11/2017 05:59:28	0.211		0.216
088	9/11/2017 06:00:28	0.219	0.224	0.222
089	9/11/2017 06:01:28	0.225	0.227	0.227
090	9/11/2017 06:02:28	0.231	0.239	0.228
091	9/11/2017 06:03:28	0.231	0.236	0.236
092	9/11/2017 06:04:28	0.239	0.250	0.239
093	9/11/2017 06:05:28	0.242	0.248	0.244
094	9/11/2017 06:06:28	0.245	0.248	0.247
095	9/11/2017 06:07:28	0.249	0.253	0.251
096	9/11/2017 06:08:28	0.254	0.257	0.254
097	9/11/2017 06:09:28	0.260	0.264	0.263
098	9/11/2017 06:10:28	0.266	0.272	0.272
099	9/11/2017 06:11:28	0.270	0.275	0.266
100	9/11/2017 06:12:28	0.267	0.277	0.265
101	9/11/2017 06:13:28	0.271	0.290	0.273
	• •			
102	9/11/2017 06:14:28	0.271	0.274	0.270
103	9/11/2017 06:15:28	0.276	0.281	0.280
104	9/11/2017 06:16:28	0.279	0.282	0.280
105	9/11/2017 06:17:28	0.279	0.282	0.279
106	9/11/2017 06:18:28	0.283	0.287	0.287
107	9/11/2017 06:19:28	0.288	0.292	0.290
108	9/11/2017 06:20:28	0.294	0.299	0.299
109	9/11/2017 06:21:28	0.300	0.304	0.300
110	9/11/2017 06:22:28	0.303	0.308	0.306
111	9/11/2017 06:23:28	0.308	0.313	0.310
112	9/11/2017 06:24:28	0.308	0.310	0.308
113	9/11/2017 06:25:28	0.312	0.330	0.309
114	9/11/2017 06:26:28	0.315	0.320	0.313
115	9/11/2017 06:27:28	0.322	0.331	0.330
116	9/11/2017 06:28:28	0.335	0.344	0.340
117	9/11/2017 06:29:28	0.340	0.346	0.342
118	9/11/2017 06:30:28	0.341	0.345	0.343
119	9/11/2017 06:31:28	0.344	0.346	0.346
120	9/11/2017 06:32:28	0.345	0.348	0.345
		0.346		
121	9/11/2017 06:33:28		0.350	0.346
122	9/11/2017 06:34:28	0.347	0.350	0.349
123	9/11/2017 06:35:28	0.352	0.356	0.356
124	9/11/2017 06:36:28	0.354	0.357	0.354
125	9/11/2017 06:37:28	0.356	0.360	0.352
			0.357	0.357
126	9/11/2017 06:38:28	0.353	0.337	0.557

127	9/11/2017 06:39:28	0.360	0.364	0.364
128	9/11/2017 06:40:28	0.366	0.371	0.369
129	9/11/2017 06:41:28	0.405	0.472	0.396
130	9/11/2017 06:42:28	0.384	0.398	0.382
	• •			
131	9/11/2017 06:43:28	0.379	0.382	0.379
132	9/11/2017 06:44:28	0.381	0.388	0.387
133	9/11/2017 06:45:28	0.389	0.397	0.396
134				
	9/11/2017 06:46:28	0.393	0.417	0.417
135	9/11/2017 06:47:28	0.400	0.422	0.395
136	9/11/2017 06:48:28	0.397	0.400	0.399
137	9/11/2017 06:49:28	0.400	0.404	0.402
	• •			
138	9/11/2017 06:50:28	0.403	0.407	0.404
139	9/11/2017 06:51:28	0.407	0.410	0.407
140	9/11/2017 06:52:28	0.408	0.411	0.410
			-	
141	9/11/2017 06:53:28	0.410	0.412	0.412
142	9/11/2017 06:54:28	0.412	0.417	0.414
143	9/11/2017 06:55:28	0.415	0.418	0.416
144				
	9/11/2017 06:56:28	0.416	0.419	0.419
145	9/11/2017 06:57:28	0.419	0.422	0.420
146	9/11/2017 06:58:28	0.423	0.429	0.429
147	9/11/2017 06:59:28	0.426	0.433	0.433
148	9/11/2017 07:00:28	0.431	0.433	0.433
149	9/11/2017 07:01:28	0.436	0.440	0.439
150	9/11/2017 07:02:28	0.440	0.444	0.443
	• •		_	
151	9/11/2017 07:03:28	0.441	0.451	0.439
152	9/11/2017 07:04:28	0.439	0.452	0.449
153	9/11/2017 07:05:28	0.441	0.448	0.440
	• •			
154	9/11/2017 07:06:28	0.439	0.448	0.439
155	9/11/2017 07:07:28	0.438	0.446	0.444
156	9/11/2017 07:08:28	0.446	0.459	0.451
157	9/11/2017 07:09:28	0.448	0.463	0.441
158	9/11/2017 07:10:28	0.444	0.451	0.446
159	9/11/2017 07:11:28	0.449	0.456	0.454
160	9/11/2017 07:12:28	0.447	0.453	0.451
	• •			
161	9/11/2017 07:13:28	0.453	0.455	0.455
162	9/11/2017 07:14:28	0.459	0.464	0.464
163	9/11/2017 07:15:28	0.463	0.467	0.463
164	9/11/2017 07:16:28	0.465	0.469	0.468
	• •			
165	9/11/2017 07:17:28	0.471	0.475	0.475
166	9/11/2017 07:18:28	0.474	0.477	0.475
167	9/11/2017 07:19:28	0.477	0.480	0.479
	• •	0.480		
168	9/11/2017 07:20:28		0.487	0.479
169	9/11/2017 07:21:28	0.476	0.486	0.473
170	9/11/2017 07:22:28	0.476	0.489	0.475
171	9/11/2017 07:23:28	0.472	0.477	0.468
172	9/11/2017 07:24:28	0.473	0.482	0.470
173	9/11/2017 07:25:28	0.473	0.481	0.472
174	9/11/2017 07:26:28	0.482	0.488	0.482
175	9/11/2017 07:27:28	0.480	0.488	0.487
176	9/11/2017 07:28:28	0.486	0.491	0.488
177	9/11/2017 07:29:28	0.487	0.495	0.492
178	9/11/2017 07:30:28	0.490	0.501	0.488
179	9/11/2017 07:31:28	0.481	0.489	0.485
180	9/11/2017 07:32:28	0.490	0.503	0.491
181	9/11/2017 07:33:28	0.495	0.508	0.508
		0.495		
182	9/11/2017 07:34:28		0.507	0.492
183	9/11/2017 07:35:28	0.496	0.504	0.501
184	9/11/2017 07:36:28	0.499	0.511	0.503
185	9/11/2017 07:37:28	0.512	0.525	0.511
186	9/11/2017 07:38:28	0.508	0.527	0.507
187	9/11/2017 07:39:28	0.512	0.528	0.507
188	9/11/2017 07:40:28	0.509	0.515	0.515
189	9/11/2017 07:41:28	0.517	0.522	0.518
190	9/11/2017 07:42:28	0.528	0.534	0.529
191	9/11/2017 07:43:28	0.529	0.539	0.539

192	9/11/2017 07:44:28	0.524	0.539	0.529
193	9/11/2017 07:45:28	0.532	0.539	0.537
194	9/11/2017 07:46:28	0.526	0.537	0.517
195	9/11/2017 07:47:28	0.512	0.531	0.506
196	9/11/2017 07:48:28	0.519	0.530	0.530
	•			
197	9/11/2017 07:49:28	0.526	0.535	0.526
198	9/11/2017 07:50:28	0.526	0.536	0.523
199	9/11/2017 07:51:28	0.514	0.537	0.509
200	9/11/2017 07:52:28	0.512	0.530	0.512
201	9/11/2017 07:53:28	0.516	0.521	0.517
202	9/11/2017 07:54:28	0.519	0.524	0.520
203	9/11/2017 07:55:28	0.523	0.526	0.521
204	9/11/2017 07:56:28	0.524	0.531	0.527
205	9/11/2017 07:57:28	0.530	0.537	0.528
206	9/11/2017 07:58:28	0.532	0.537	0.536
207	9/11/2017 07:59:28	0.536	0.545	0.530
208	9/11/2017 08:00:28	0.532	0.538	0.526
209	9/11/2017 08:01:28	0.532	0.540	0.537
210	9/11/2017 08:02:28	0.538	0.544	0.542
211	9/11/2017 08:03:28	0.544	0.547	0.547
212	9/11/2017 08:04:28	0.546	0.549	0.549
213	9/11/2017 08:05:28	0.551	0.559	0.548
_				
214	9/11/2017 08:06:28	0.550	0.567	0.546
215	9/11/2017 08:07:28	0.542	0.552	0.541
216	9/11/2017 08:08:28	0.542	0.545	0.544
217	9/11/2017 08:09:28	0.548	0.552	0.552
218	9/11/2017 08:10:28	0.548	0.563	0.545
219	9/11/2017 08:11:28	0.546	0.560	0.547
220	9/11/2017 08:12:28	0.549	0.569	0.547
221	9/11/2017 08:13:28	0.538	0.547	0.541
222	9/11/2017 08:14:28	0.546	0.560	0.549
223	9/11/2017 08:15:28	0.545	0.551	0.547
224	9/11/2017 08:16:28	0.551	0.575	0.575
225	9/11/2017 08:17:28	0.545	0.575	0.533
_	• •		0.554	
226	9/11/2017 08:18:28	0.539		0.532
227	9/11/2017 08:19:28	0.534	0.544	0.533
228	9/11/2017 08:20:28	0.537	0.543	0.543
229	9/11/2017 08:21:28	0.545	0.550	0.550
230	9/11/2017 08:22:28	0.550	0.554	0.552
	• •			
231	9/11/2017 08:23:28	0.554	0.556	0.555
232	9/11/2017 08:24:28	0.557	0.559	0.558
233	9/11/2017 08:25:28	0.559	0.562	0.562
234	9/11/2017 08:26:28	0.561	0.564	0.564
235	9/11/2017 08:27:28	0.560	0.564	0.562
236	9/11/2017 08:28:28	0.563	0.592	0.551
237	9/11/2017 08:29:28	0.553	0.558	0.558
238	9/11/2017 08:30:28	0.560	0.563	0.563
	9/11/2017 08:31:28	0.565		
239			0.571	0.567
240	9/11/2017 08:32:28	0.566	0.579	0.568
241	9/11/2017 08:33:28	0.555	0.568	0.556
242	9/11/2017 08:34:28	0.564	0.587	0.572
243	9/11/2017 08:35:28	0.558	0.566	0.564
244	9/11/2017 08:36:28	0.570	0.582	0.570
245	9/11/2017 08:37:28	0.575	0.603	0.566
246	9/11/2017 08:38:28	0.569	0.576	0.575
247	9/11/2017 08:39:28	0.573	0.584	0.569
248	9/11/2017 08:40:28	0.577	0.585	0.579
249	9/11/2017 08:41:28	0.580	0.584	0.583
250	9/11/2017 08:42:28	0.585	0.615	0.575
251	9/11/2017 08:43:28	0.575	0.614	0.557
252	9/11/2017 08:44:28	0.563	0.569	0.569
253	9/11/2017 08:45:28	0.572	0.577	0.577
254	9/11/2017 08:46:28	0.576	0.581	0.579
255	9/11/2017 08:47:28	0.578	0.587	0.578
256	9/11/2017 08:48:28	0.584	0.594	0.592
230	JI 11/201/ 00:40.20	0.504	0.554	0.332

257	9/11/2017 08:49:28	0.583	0.589	0.582
258	9/11/2017 08:50:28	0.583	0.588	0.580
	9/11/2017 08:51:28			0.581
259		0.578	0.587	
260	9/11/2017 08:52:28	0.588	0.592	0.591
261	9/11/2017 08:53:28	0.593	0.596	0.595
262	9/11/2017 08:54:28	0.597	0.600	0.598
263	9/11/2017 08:55:28	0.600	0.603	0.599
264	9/11/2017 08:56:28	0.602	0.607	0.606
265	9/11/2017 08:57:28	0.607	0.612	0.606
266	9/11/2017 08:58:28	0.606	0.608	0.606
267	9/11/2017 08:59:28	0.607	0.611	0.610
268	9/11/2017 09:00:28	0.610	0.615	0.610
269	9/11/2017 09:01:28	0.608	0.610	0.608
270	9/11/2017 09:02:28	0.611	0.614	0.612
271	9/11/2017 09:03:28	0.611	0.615	0.609
272	9/11/2017 09:04:28	0.610	0.612	0.610
273	9/11/2017 09:05:28	0.610	0.613	0.609
274	9/11/2017 09:06:28	0.608	0.610	0.607
275	9/11/2017 09:07:28	0.607	0.610	0.606
276	9/11/2017 09:08:28	0.606	0.608	0.606
277	9/11/2017 09:09:28	0.605	0.608	0.605
278	9/11/2017 09:10:28	0.606	0.610	0.605
279	9/11/2017 09:11:28	0.607	0.610	0.610
280	9/11/2017 09:12:28	0.608	0.611	0.608
281	9/11/2017 09:13:28	0.607	0.609	0.607
282	9/11/2017 09:14:28	0.605	0.608	0.608
283	9/11/2017 09:15:28	0.603	0.607	0.605
284	9/11/2017 09:16:28	0.609	0.619	0.610
285	9/11/2017 09:17:28	0.608	0.616	0.604
286	9/11/2017 09:18:28	0.605	0.607	0.605
287		0.606	0.614	0.607
	9/11/2017 09:19:28			
288	9/11/2017 09:20:28	0.609	0.619	0.614
289	9/11/2017 09:21:28	0.610	0.617	0.605
290	9/11/2017 09:22:28	0.604	0.608	0.606
291	9/11/2017 09:23:28	0.606	0.610	0.604
292	9/11/2017 09:24:28	0.604	0.607	0.604
293	9/11/2017 09:25:28	0.603	0.605	0.603
294	9/11/2017 09:26:28	0.601	0.603	0.602
295	9/11/2017 09:27:28	0.600	0.603	0.599
296	9/11/2017 09:28:28	0.596	0.600	0.598
297	9/11/2017 09:29:28	0.598	0.600	0.600
298	9/11/2017 09:30:28	0.602	0.606	0.606
299	9/11/2017 09:31:28	0.604	0.606	0.606
300	9/11/2017 09:32:28	0.605	0.609	0.606
301	9/11/2017 09:33:28	0.609	0.613	0.612
302	9/11/2017 09:34:28	0.612	0.616	0.615
303	9/11/2017 09:35:28	0.616	0.619	0.617
304	9/11/2017 09:36:28	0.617	0.621	0.619
305	9/11/2017 09:37:28	0.621	0.625	0.622
306	9/11/2017 09:38:28	0.624	0.628	0.625
307	9/11/2017 09:39:28	0.626	0.628	0.628
308	9/11/2017 09:40:28	0.626	0.630	0.627
309	9/11/2017 09:41:28	0.625	0.628	0.625
310	9/11/2017 09:42:28	0.624	0.629	0.622
311	9/11/2017 09:43:28	0.623	0.627	0.622
312	9/11/2017 09:44:28	0.621	0.623	0.619
313	9/11/2017 09:45:28	0.617	0.620	0.618
314	9/11/2017 09:46:28	0.617	0.620	0.620
315	9/11/2017 09:47:28	0.619	0.622	0.618
316	9/11/2017 09:48:28	0.620	0.625	0.624
317	9/11/2017 09:49:28	0.623	0.626	0.619
318	9/11/2017 09:50:28	0.620	0.624	0.617
319	9/11/2017 09:51:28	0.620	0.624	0.621
320	9/11/2017 09:52:28	0.620	0.621	0.621
321	9/11/2017 09:53:28	0.623	0.633	0.633
	•			

322	9/11/2017 09:54:28	0.627	0.635	0.626
323	9/11/2017 09:55:28	0.628	0.633	0.627
324	9/11/2017 09:56:28	0.628	0.633	0.631
325	9/11/2017 09:57:28	0.627	0.630	0.626
326	9/11/2017 09:58:28	0.626	0.629	0.627
327	9/11/2017 09:59:28	0.631	0.642	0.622
328	9/11/2017 10:00:28	0.623	0.632	0.620
329	9/11/2017 10:01:28	0.619	0.622	0.618
330	9/11/2017 10:02:28	0.617	0.619	0.619
331	9/11/2017 10:02:28	0.615	0.620	0.612
332	9/11/2017 10:04:28	0.612	0.615	0.613
333	9/11/2017 10:05:28	0.615	0.618	0.614
334	9/11/2017 10:06:28	0.614	0.618	0.615
335	9/11/2017 10:07:28	0.613	0.617	0.616
336	9/11/2017 10:08:28	0.615	0.619	0.616
337	9/11/2017 10:09:28	0.616	0.631	0.616
338	9/11/2017 10:10:28	0.613	0.618	0.613
339	9/11/2017 10:11:28	0.613	0.627	0.624
340	9/11/2017 10:12:28	0.618	0.624	0.618
341	9/11/2017 10:13:28	0.612	0.619	0.615
342	9/11/2017 10:14:28	0.612	0.622	0.609
343	9/11/2017 10:15:28	0.610	0.611	0.610
344	9/11/2017 10:16:28	0.609	0.612	0.609
345	9/11/2017 10:17:28	0.617	0.632	0.625
-				
346	9/11/2017 10:18:28	0.626	0.636	0.621
347	9/11/2017 10:19:28	0.621	0.629	0.615
348	9/11/2017 10:20:28	0.625	0.639	0.621
349	9/11/2017 10:21:28	0.616	0.621	0.616
350	9/11/2017 10:22:28	0.615	0.617	0.616
351	9/11/2017 10:23:28	0.614	0.617	0.613
352	9/11/2017 10:24:28	0.617	0.624	0.610
353		0.609		
	9/11/2017 10:25:28		0.615	0.610
354	9/11/2017 10:26:28	0.606	0.610	0.607
355	9/11/2017 10:27:28	0.608	0.618	0.608
356	9/11/2017 10:28:28	0.605	0.611	0.602
357	9/11/2017 10:29:28	0.606	0.621	0.611
358	9/11/2017 10:30:28	0.604	0.612	0.600
359	9/11/2017 10:31:28	0.599	0.602	0.598
360	9/11/2017 10:32:28	0.596	0.604	0.595
361	9/11/2017 10:33:28	0.591	0.596	0.588
362	9/11/2017 10:34:28	0.588	0.591	0.586
363	9/11/2017 10:35:28	0.585	0.590	0.583
364	9/11/2017 10:36:28	0.584	0.587	0.582
365	9/11/2017 10:37:28	0.581	0.588	0.586
366	9/11/2017 10:38:28	0.577	0.584	0.577
367	9/11/2017 10:39:28	0.574	0.580	0.572
368	9/11/2017 10:40:28	0.573	0.582	0.582
369	9/11/2017 10:41:28	0.576	0.590	0.571
370	9/11/2017 10:42:28	0.576	0.582	0.575
371	9/11/2017 10:43:28	0.575	0.578	0.576
372	9/11/2017 10:44:28	0.576	0.586	0.581
373	9/11/2017 10:45:28	0.579	0.585	0.581
374	9/11/2017 10:46:28	0.582	0.592	0.576
375	9/11/2017 10:47:28	0.573	0.580	0.577
376	9/11/2017 10:48:28	0.572	0.578	0.569
377	9/11/2017 10:49:28	0.568	0.577	0.574
378	9/11/2017 10:50:28	0.573	0.580	0.574
379	9/11/2017 10:51:28	0.569	0.578	0.568
380	9/11/2017 10:52:28	0.570	0.574	0.571
381	9/11/2017 10:53:28	0.571	0.573	0.570
382	9/11/2017 10:53:28	0.572	0.579	0.575
383	9/11/2017 10:54:28		0.581	
		0.573		0.574
384	9/11/2017 10:56:28	0.571	0.594	0.565
385	9/11/2017 10:57:28	0.565	0.568	0.565
386	9/11/2017 10:58:28	0.570	0.575	0.572

387	9/11/2017 10:59:28	0.572	0.584	0.570
388	9/11/2017 11:00:28	0.579	0.597	0.585
389	9/11/2017 11:01:28	0.588	0.623	0.595
390	9/11/2017 11:02:28	0.574	0.591	0.584
391	9/11/2017 11:03:28	0.570	0.589	0.566
392	9/11/2017 11:04:28	0.570	0.587	0.572
393	9/11/2017 11:05:28	0.567	0.590	0.567
394	9/11/2017 11:06:28	0.567	0.581	0.577
395	9/11/2017 11:07:28	0.566	0.605	0.550
396	9/11/2017 11:08:28	0.552	0.561	0.550
397	9/11/2017 11:09:28	0.549	0.557	0.548
398	9/11/2017 11:10:28	0.550	0.559	0.557
399	9/11/2017 11:11:28	0.546	0.567	0.542
400	9/11/2017 11:12:28	0.544	0.548	0.546
401	9/11/2017 11:13:28	0.548	0.551	0.551
402	9/11/2017 11:14:28	0.552	0.555	0.554
_	• •			
403	9/11/2017 11:15:28	0.553	0.557	0.553
404	9/11/2017 11:16:28	0.554	0.558	0.557
405	9/11/2017 11:17:28	0.555	0.563	0.554
406	9/11/2017 11:18:28	0.551	0.556	0.556
407	9/11/2017 11:19:28	0.552	0.562	0.546
408	9/11/2017 11:20:28	0.545	0.547	0.547
409	9/11/2017 11:21:28	0.547	0.552	0.552
410	9/11/2017 11:22:28	0.551	0.559	0.551
411	9/11/2017 11:23:28	0.555	0.572	0.557
412	9/11/2017 11:24:28	0.552	0.566	0.549
413	9/11/2017 11:25:28	0.550	0.551	0.550
414	9/11/2017 11:26:28	0.549	0.554	0.554
415	9/11/2017 11:27:28	0.550	0.560	0.553
416	9/11/2017 11:28:28	0.554	0.565	0.552
417	9/11/2017 11:29:28	0.552	0.556	0.552
418	9/11/2017 11:30:28	0.552	0.555	0.550
419	9/11/2017 11:31:28	0.553	0.562	0.562
420	9/11/2017 11:32:28	0.553	0.561	0.552
421	9/11/2017 11:33:28	0.553	0.556	0.553
422	9/11/2017 11:34:28	0.560	0.585	0.585
				0.569
423	9/11/2017 11:35:28	0.587	0.632	
424	9/11/2017 11:36:28	0.560	0.573	0.559
425	9/11/2017 11:37:28	0.559	0.561	0.560
426	9/11/2017 11:38:28	0.565	0.586	0.577
427	9/11/2017 11:39:28	0.561	0.574	0.559
428	9/11/2017 11:40:28	0.558	0.560	0.558
429	9/11/2017 11:41:28	0.560	0.583	0.562
430	9/11/2017 11:42:28	0.561	0.569	0.564
431	9/11/2017 11:43:28	0.566	0.598	0.598
432	9/11/2017 11:44:28	0.592	0.623	0.561
433	9/11/2017 11:45:28	0.562	0.566	0.560
		0.562		
434	9/11/2017 11:46:28		0.582	0.582
435	9/11/2017 11:47:28	0.567	0.590	0.568
436	9/11/2017 11:48:28	0.561	0.569	0.560
437	9/11/2017 11:49:28	0.559	0.561	0.558
438	9/11/2017 11:50:28	0.559	0.562	0.560
439	9/11/2017 11:51:28	0.628	0.759	0.581
440	9/11/2017 11:52:28	0.560	0.581	0.560
441	9/11/2017 11:53:28	0.561	0.575	0.560
442	9/11/2017 11:54:28	0.582	0.838	0.838
443	9/11/2017 11:55:28	0.660	0.937	0.556
444	9/11/2017 11:56:28	0.548	0.555	0.551
445	9/11/2017 11:57:28	0.547	0.551	0.550
446	9/11/2017 11:58:28	0.546	0.550	0.546
447	9/11/2017 11:59:28	0.545	0.555	0.545
448	9/11/2017 12:00:28	0.549	0.569	0.555
449	9/11/2017 12:00:28	0.552	0.574	0.539
450	9/11/2017 12:02:28	0.537	0.552	0.531
451	9/11/2017 12:03:28	0.531	0.534	0.534

452	9/11/2017 12:04:28	0.536	0.554	0.538
453	9/11/2017 12:05:28	0.538	0.557	0.545
454	9/11/2017 12:06:28	0.539	0.548	0.533
455	9/11/2017 12:07:28	0.543	0.562	0.534
456	9/11/2017 12:08:28	0.530	0.532	0.532
457	9/11/2017 12:09:28	0.530	0.533	0.529
458	9/11/2017 12:10:28	0.532	0.540	0.538
459	9/11/2017 12:11:28	0.532	0.538	0.533
460	9/11/2017 12:12:28	0.537	0.545	0.530
461	9/11/2017 12:13:28	0.529	0.535	0.527
462	9/11/2017 12:14:28	0.531	0.547	0.532
463	9/11/2017 12:15:28	0.528	0.533	0.533
464	9/11/2017 12:16:28	0.537	0.559	0.529
465	9/11/2017 12:17:28	0.531	0.538	0.534
466	9/11/2017 12:18:28	0.532	0.534	0.533
467	9/11/2017 12:19:28	0.533	0.539	0.531
468	9/11/2017 12:20:28	0.533	0.545	0.531
469	9/11/2017 12:21:28	0.529	0.533	0.530
470	9/11/2017 12:22:28	0.531	0.535	0.529
471	9/11/2017 12:23:28	0.528	0.531	0.527
472	9/11/2017 12:24:28	0.526	0.532	0.524
473	9/11/2017 12:25:28	0.523	0.526	0.524
474	9/11/2017 12:26:28	0.528	0.534	0.533
475	9/11/2017 12:27:28	0.528	0.533	0.529
476	9/11/2017 12:28:28	0.526	0.530	0.526
477	9/11/2017 12:29:28	0.529	0.537	0.532
478	9/11/2017 12:30:28	0.528	0.532	0.526
479	9/11/2017 12:31:28	0.527	0.529	0.525
480	9/11/2017 12:32:28	0.526	0.530	0.527
481	9/11/2017 12:33:28	0.530	0.533	0.531
482	9/11/2017 12:34:28	0.537	0.550	0.531
483	9/11/2017 12:35:28	0.526	0.531	0.526
484	9/11/2017 12:36:28	0.523	0.528	0.522
485	9/11/2017 12:37:28	0.529	0.549	0.537
486	9/11/2017 12:38:28	0.521	0.532	0.529
487	9/11/2017 12:39:28	0.524	0.552	0.518
488	9/11/2017 12:40:28	0.520	0.529	0.529
Peak		0.660	0.937	0.838
Min		0.000	0.000	0.000
Average		0.448	0.457	0.449

TWA/STEL

		VOC(ppm)	VOC(ppm)
Index	Date/Time	(TWA)	(STEL)
001	9/11/2017 04:33:28	0.000	
002	9/11/2017 04:34:28	0.000	
003	9/11/2017 04:35:28	0.000	
004	9/11/2017 04:36:28	0.000	
005	9/11/2017 04:37:28	0.000	
006	9/11/2017 04:38:28	0.000	
007	9/11/2017 04:39:28	0.000	
800	9/11/2017 04:40:28	0.000	
009	9/11/2017 04:41:28	0.000	
010	9/11/2017 04:42:28	0.000	
011	9/11/2017 04:43:28	0.000	
012	9/11/2017 04:44:28	0.000	
013	9/11/2017 04:45:28	0.000	
014	9/11/2017 04:46:28	0.000	
015	9/11/2017 04:47:28	0.000	0.003
016	9/11/2017 04:48:28	0.000	0.003
017	9/11/2017 04:49:28	0.000	0.000
018	9/11/2017 04:50:28	0.000	0.000
019	9/11/2017 04:51:28	0.000	0.000
020	9/11/2017 04:52:28	0.000	0.001
021	9/11/2017 04:53:28	0.000	0.001
022	9/11/2017 04:54:28	0.000	0.002
023	9/11/2017 04:55:28	0.000	0.003
024	9/11/2017 04:56:28	0.000	0.005
025	9/11/2017 04:57:28	0.000	0.006
026	9/11/2017 04:58:28	0.000	0.008
027	9/11/2017 04:59:28	0.000	0.010
028 029	9/11/2017 05:00:28	0.000 0.001	0.011 0.014
030	9/11/2017 05:01:28 9/11/2017 05:02:28	0.001	0.014
030	9/11/2017 05:02:28	0.001	0.016
032	9/11/2017 05:04:28	0.001	0.019
033	9/11/2017 05:05:28	0.001	0.025
034	9/11/2017 05:06:28	0.001	0.028
035	9/11/2017 05:07:28	0.001	0.032
036	9/11/2017 05:08:28	0.001	0.036
037	9/11/2017 05:09:28	0.001	0.039
038	9/11/2017 05:10:28	0.002	0.043
039	9/11/2017 05:11:28	0.002	0.046
040	9/11/2017 05:12:28	0.002	0.049
041	9/11/2017 05:13:28	0.002	0.052
042	9/11/2017 05:14:28	0.002	0.055
043	9/11/2017 05:15:28	0.002	0.059
044	9/11/2017 05:16:28	0.002	0.062
045	9/11/2017 05:17:28	0.003	0.065
046	9/11/2017 05:18:28	0.003	0.069
047	9/11/2017 05:19:28	0.003	0.071
048	9/11/2017 05:20:28	0.003	0.075
049	9/11/2017 05:21:28	0.003	0.078
050	9/11/2017 05:22:28	0.004	0.082
051	9/11/2017 05:23:28	0.004	0.085
052	9/11/2017 05:24:28	0.004	0.087
053	9/11/2017 05:25:28	0.004	0.091
054	9/11/2017 05:26:28	0.004	0.094
055	9/11/2017 05:27:28	0.005	0.097
056	9/11/2017 05:28:28	0.005	0.101
057	9/11/2017 05:29:28	0.005	0.109
058	9/11/2017 05:30:28	0.006	0.113
059	9/11/2017 05:31:28	0.006	0.117
060	9/11/2017 05:32:28	0.006	0.120
061	9/11/2017 05:33:28	0.006	0.124

062	9/11/2017 05:34:28	0.007	0.129
063	9/11/2017 05:35:28	0.007	0.133
	9/11/2017 05:36:28		
064		0.007	0.137
065	9/11/2017 05:37:28	0.008	0.141
066	9/11/2017 05:38:28	0.008	0.145
067	9/11/2017 05:39:28	0.008	0.149
068	9/11/2017 05:40:28	0.009	0.152
069	9/11/2017 05:41:28	0.009	0.156
070	9/11/2017 05:42:28	0.009	0.159
071	9/11/2017 05:43:28	0.010	0.163
072	9/11/2017 05:44:28	0.010	0.166
073	9/11/2017 05:45:28	0.010	
			0.166
074	9/11/2017 05:46:28	0.011	0.169
075	9/11/2017 05:47:28	0.011	0.173
076	9/11/2017 05:48:28	0.012	0.176
077	9/11/2017 05:49:28	0.012	0.179
078	9/11/2017 05:50:28	0.012	0.182
079	9/11/2017 05:51:28	0.013	0.184
080	9/11/2017 05:52:28	0.013	0.187
081	9/11/2017 05:53:28	0.014	0.189
082	9/11/2017 05:54:28	0.014	0.192
083	9/11/2017 05:55:28	0.014	0.195
084	9/11/2017 05:56:28	0.015	0.198
085	9/11/2017 05:57:28	0.015	0.201
086	9/11/2017 05:58:28	0.016	0.204
087	9/11/2017 05:59:28	0.016	0.208
088	9/11/2017 06:00:28	0.017	0.211
089	9/11/2017 06:01:28	0.017	0.214
090	9/11/2017 06:02:28	0.018	0.217
091	9/11/2017 06:03:28	0.018	0.220
092	9/11/2017 06:04:28	0.019	0.224
093	9/11/2017 06:05:28	0.019	0.228
094	9/11/2017 06:06:28	0.020	0.231
095	9/11/2017 06:07:28	0.020	0.235
096	9/11/2017 06:08:28	0.021	0.239
097	9/11/2017 06:09:28	0.021	0.244
098	9/11/2017 06:10:28	0.022	0.249
099	9/11/2017 06:11:28	0.022	0.253
100	9/11/2017 06:12:28	0.023	0.257
101	9/11/2017 06:13:28	0.024	0.261
102	9/11/2017 06:14:28	0.024	0.265
103	9/11/2017 06:15:28	0.025	0.269
104	9/11/2017 06:16:28	0.025	0.273
105	9/11/2017 06:17:28	0.026	0.276
106	9/11/2017 06:18:28	0.026	0.280
107	9/11/2017 06:19:28	0.027	0.284
108	9/11/2017 06:20:28	0.028	0.288
109	9/11/2017 06:21:28	0.028	0.292
110	9/11/2017 06:22:28	0.029	0.296
111	9/11/2017 06:23:28	0.030	0.300
112	9/11/2017 06:24:28	0.030	0.303
113	9/11/2017 06:25:28	0.031	0.306
114	9/11/2017 06:26:28	0.032	0.309
115	9/11/2017 06:27:28	0.032	0.313
116	9/11/2017 06:28:28	0.033	0.318
117	9/11/2017 06:29:28	0.034	0.323
118	9/11/2017 06:30:28	0.034	0.328
119	9/11/2017 06:31:28	0.035	0.332
120	9/11/2017 06:32:28	0.036	0.336
121	9/11/2017 06:33:28	0.036	0.341
122	9/11/2017 06:34:28	0.037	0.345
123	9/11/2017 06:35:28	0.038	0.349
124	9/11/2017 06:36:28	0.039	0.353
125	9/11/2017 06:37:28	0.039	0.357
126	9/11/2017 06:38:28	0.040	0.360

127	9/11/2017 06:39:28	0.041	0.364
128	9/11/2017 06:40:28	0.042	0.368
_			
129	9/11/2017 06:41:28	0.043	0.373
130	9/11/2017 06:42:28	0.043	0.378
131	9/11/2017 06:43:28	0.044	0.381
132	9/11/2017 06:44:28	0.045	0.384
133	9/11/2017 06:45:28	0.046	0.388
134	9/11/2017 06:46:28	0.047	0.393
135	9/11/2017 06:47:28	0.047	0.396
136	9/11/2017 06:48:28	0.048	0.400
137	9/11/2017 06:49:28	0.049	0.404
138	9/11/2017 06:50:28	0.050	0.407
139	9/11/2017 06:51:28	0.051	0.411
140	9/11/2017 06:52:28	0.052	0.414
141	9/11/2017 06:53:28	0.053	0.418
142	9/11/2017 06:54:28	0.053	0.422
143	9/11/2017 06:55:28	0.054	0.426
_	• •		
144	9/11/2017 06:56:28	0.055	0.429
145	9/11/2017 06:57:28	0.056	0.431
146	9/11/2017 06:58:28	0.057	0.434
147	9/11/2017 06:59:28	0.058	0.437
148	9/11/2017 07:00:28	0.059	0.440
149	9/11/2017 07:01:28	0.060	0.443
150		0.061	0.445
	9/11/2017 07:02:28		
151	9/11/2017 07:03:28	0.061	0.448
152	9/11/2017 07:04:28	0.062	0.451
153	9/11/2017 07:05:28	0.063	0.454
154	9/11/2017 07:06:28	0.064	0.456
155	9/11/2017 07:07:28	0.065	0.459
156	9/11/2017 07:08:28	0.066	0.461
157	9/11/2017 07:09:28	0.067	0.463
-			
158	9/11/2017 07:10:28	0.068	0.465
159	9/11/2017 07:11:28	0.069	0.468
160	9/11/2017 07:12:28	0.070	0.470
161	9/11/2017 07:13:28	0.071	0.472
162	9/11/2017 07:14:28	0.072	0.475
163	9/11/2017 07:15:28	0.073	0.477
164	9/11/2017 07:16:28	0.074	0.479
165	9/11/2017 07:17:28	0.075	0.481
166	9/11/2017 07:18:28	0.076	0.484
167	9/11/2017 07:19:28	0.077	0.486
168	9/11/2017 07:20:28	0.078	0.488
169	9/11/2017 07:21:28	0.079	0.490
170	9/11/2017 07:22:28	0.080	0.493
171	9/11/2017 07:23:28	0.081	0.494
172	9/11/2017 07:24:28	0.082	0.496
173	9/11/2017 07:25:28	0.083	0.498
174	9/11/2017 07:26:28	0.084	0.500
175	9/11/2017 07:27:28	0.085	0.502
176	9/11/2017 07:28:28	0.086	0.505
177	9/11/2017 07:29:28	0.087	0.507
178	9/11/2017 07:30:28	0.088	0.509
179	9/11/2017 07:31:28	0.089	0.510
180	9/11/2017 07:32:28	0.090	0.512
181	9/11/2017 07:33:28	0.091	0.514
182	9/11/2017 07:34:28	0.092	0.515
183	9/11/2017 07:35:28	0.093	0.517
184	9/11/2017 07:36:28	0.094	0.518
185	9/11/2017 07:37:28	0.095	0.521
186	9/11/2017 07:38:28	0.096	0.523
187	9/11/2017 07:39:28	0.097	0.526
188	9/11/2017 07:40:28	0.098	0.529
189	9/11/2017 07:41:28	0.099	0.532
190	9/11/2017 07:41:28	0.100	0.532
191	9/11/2017 07:43:28	0.101	0.538

192	9/11/2017 07:44:28	0.102	0.541
193	9/11/2017 07:45:28	0.104	0.544
194	9/11/2017 07:46:28	0.105	0.546
			0.547
195	9/11/2017 07:47:28	0.106	
196	9/11/2017 07:48:28	0.107	0.550
197	9/11/2017 07:49:28	0.108	0.551
198	9/11/2017 07:50:28	0.109	0.553
199	9/11/2017 07:51:28	0.110	0.554
200	9/11/2017 07:52:28	0.111	0.554
201	9/11/2017 07:53:28	0.112	0.555
202	9/11/2017 07:54:28	0.113	0.556
203	9/11/2017 07:55:28	0.114	0.557
203	9/11/2017 07:56:28		
-		0.115	0.557
205	9/11/2017 07:57:28	0.117	0.558
206	9/11/2017 07:58:28	0.118	0.558
207	9/11/2017 07:59:28	0.119	0.558
208	9/11/2017 08:00:28	0.120	0.558
209	9/11/2017 08:01:28	0.121	0.558
210	9/11/2017 08:02:28	0.122	0.559
211	9/11/2017 08:03:28	0.123	0.562
212	9/11/2017 08:04:28	0.124	0.563
213	9/11/2017 08:05:28	0.126	0.565
_			
214	9/11/2017 08:06:28	0.127	0.566
215	9/11/2017 08:07:28	0.128	0.568
216	9/11/2017 08:08:28	0.129	0.571
217	9/11/2017 08:09:28	0.130	0.573
218	9/11/2017 08:10:28	0.131	0.575
219	9/11/2017 08:11:28	0.132	0.576
220	9/11/2017 08:12:28	0.134	0.578
221	9/11/2017 08:13:28	0.135	0.579
222	9/11/2017 08:14:28	0.136	0.579
223	9/11/2017 08:15:28	0.137	0.581
224	9/11/2017 08:16:28	0.138	0.584
225	9/11/2017 08:17:28	0.139	0.584
226	9/11/2017 08:17:28	0.139	0.583
227	9/11/2017 08:19:28	0.141	0.582
228	9/11/2017 08:20:28	0.143	0.582
229	9/11/2017 08:21:28	0.144	0.582
230	9/11/2017 08:22:28	0.145	0.582
231	9/11/2017 08:23:28	0.146	0.583
232	9/11/2017 08:24:28	0.147	0.584
233	9/11/2017 08:25:28	0.148	0.585
234	9/11/2017 08:26:28	0.150	0.586
235	9/11/2017 08:27:28	0.151	0.587
236	9/11/2017 08:28:28	0.152	0.587
237	9/11/2017 08:29:28	0.153	0.588
238	9/11/2017 08:30:28	0.154	0.589
			0.591
239	9/11/2017 08:31:28	0.155	
240	9/11/2017 08:32:28	0.157	0.590
241	9/11/2017 08:33:28	0.158	0.592
242	9/11/2017 08:34:28	0.159	0.594
243	9/11/2017 08:35:28	0.160	0.596
244	9/11/2017 08:36:28	0.161	0.598
245	9/11/2017 08:37:28	0.162	0.599
246	9/11/2017 08:38:28	0.164	0.601
247	9/11/2017 08:39:28	0.165	0.602
248	9/11/2017 08:40:28	0.166	0.603
249	9/11/2017 08:41:28	0.167	0.604
250	9/11/2017 08:42:28	0.168	0.605
251	9/11/2017 08:42:28	0.108	0.605
252	9/11/2017 08:43:28	0.170	0.606
253	9/11/2017 08:45:28	0.172	0.607
254	9/11/2017 08:46:28	0.173	0.608
255	9/11/2017 08:47:28	0.174	0.609
256	9/11/2017 08:48:28	0.176	0.611

257	9/11/2017 08:49:28	0.177	0.612
258	9/11/2017 08:50:28	0.178	0.613
259	9/11/2017 08:51:28	0.179	0.614
260	9/11/2017 08:52:28	0.181	0.616
261	9/11/2017 08:53:28	0.182	0.617
262	9/11/2017 08:54:28	0.183	0.619
263			0.621
	9/11/2017 08:55:28	0.184	
264	9/11/2017 08:56:28	0.186	0.623
265	9/11/2017 08:57:28	0.187	0.624
266	9/11/2017 08:58:28	0.188	0.626
267	9/11/2017 08:59:28	0.189	0.630
268	9/11/2017 09:00:28	0.191	0.633
269	9/11/2017 09:01:28	0.192	0.635
270	9/11/2017 09:02:28	0.193	0.637
271	9/11/2017 09:03:28	0.194	0.639
272	9/11/2017 09:04:28	0.196	0.640
273	9/11/2017 09:05:28	0.197	0.642
274	9/11/2017 09:06:28	0.198	0.644
275	9/11/2017 09:07:28	0.199	0.645
276	9/11/2017 09:08:28	0.201	0.646
277	9/11/2017 09:09:28	0.202	0.647
278	9/11/2017 09:10:28	0.203	0.648
279	9/11/2017 09:10:28	0.205	0.648
280	9/11/2017 09:11:28	0.205	0.648
			0.649
281	9/11/2017 09:13:28	0.207	
282	9/11/2017 09:14:28	0.208	0.649
283	9/11/2017 09:15:28	0.210	0.648
284	9/11/2017 09:16:28	0.211	0.648
285	9/11/2017 09:17:28	0.212	0.648
286	9/11/2017 09:18:28	0.213	0.648
287	9/11/2017 09:19:28	0.215	0.647
288	9/11/2017 09:20:28	0.216	0.648
289	9/11/2017 09:21:28	0.217	0.647
290	9/11/2017 09:22:28	0.218	0.647
291	9/11/2017 09:23:28	0.220	0.647
292	9/11/2017 09:24:28	0.221	0.647
293	9/11/2017 09:25:28	0.222	0.647
294	9/11/2017 09:26:28	0.223	0.647
295	9/11/2017 09:27:28	0.225	0.646
296	9/11/2017 09:28:28	0.226	0.645
297	9/11/2017 09:29:28	0.227	0.645
298	9/11/2017 09:30:28	0.228	0.645
299	9/11/2017 09:31:28	0.230	0.645
300	9/11/2017 09:32:28	0.231	0.645
301	9/11/2017 09:33:28	0.232	0.645
302	9/11/2017 09:33:28		
		0.234	0.646
303	9/11/2017 09:35:28	0.235	0.646
304	9/11/2017 09:36:28	0.236	0.647
305	9/11/2017 09:37:28	0.237	0.648
306	9/11/2017 09:38:28	0.239	0.649
307	9/11/2017 09:39:28	0.240	0.651
308	9/11/2017 09:40:28	0.241	0.652
309	9/11/2017 09:41:28	0.243	0.654
310	9/11/2017 09:42:28	0.244	0.655
311	9/11/2017 09:43:28	0.245	0.657
312	9/11/2017 09:44:28	0.247	0.658
313	9/11/2017 09:45:28	0.248	0.659
314	9/11/2017 09:46:28	0.249	0.660
315	9/11/2017 09:47:28	0.250	0.661
316	9/11/2017 09:48:28	0.252	0.662
317	9/11/2017 09:49:28	0.253	0.663
318	9/11/2017 09:50:28	0.254	0.663
319	9/11/2017 09:51:28	0.256	0.663
320	9/11/2017 09:52:28	0.257	0.663
321	9/11/2017 09:53:28	0.258	0.664
J_1	-,, 05.55.20	5.250	5.557

322	9/11/2017 09:54:28	0.259	0.664
323	9/11/2017 09:55:28	0.261	0.664
324	9/11/2017 09:56:28	0.262	0.664
325	9/11/2017 09:57:28	0.263	0.664
326	9/11/2017 09:58:28	0.265	0.665
327	9/11/2017 09:59:28	0.266	0.665
328	9/11/2017 10:00:28	0.267	0.665
329	9/11/2017 10:01:28	0.269	0.665
330	9/11/2017 10:02:28	0.270	0.665
331	9/11/2017 10:03:28	0.271	0.664
332	9/11/2017 10:04:28	0.272	0.663
333	9/11/2017 10:05:28	0.274	0.663
334	9/11/2017 10:06:28	0.275	0.663
335	9/11/2017 10:07:28	0.276	0.663
336	9/11/2017 10:08:28	0.278	0.662
337	9/11/2017 10:09:28	0.279	0.661
338	9/11/2017 10:03:28	0.280	0.660
339	9/11/2017 10:10:28	0.281	0.660
340	9/11/2017 10:11:28	0.283	0.659
341	9/11/2017 10:12:28	0.284	0.659
342	9/11/2017 10:13:28	0.285	0.657
343	9/11/2017 10:14:28	0.287	0.657
344	9/11/2017 10:15:28	0.288	0.656
345	9/11/2017 10:10:28	0.289	0.656
346	9/11/2017 10:17:28	0.289	0.656
347	9/11/2017 10:18:28	0.290	0.657
348	9/11/2017 10:19:28	0.292	0.657
349	9/11/2017 10:20:28	0.293	0.657
350	9/11/2017 10:21:28	0.294	0.657
351		0.290	0.657
352	9/11/2017 10:23:28	0.297	0.657
353	9/11/2017 10:24:28 9/11/2017 10:25:28	0.298	0.656
354		0.299	0.656
355	9/11/2017 10:26:28 9/11/2017 10:27:28	0.301	0.655
356	9/11/2017 10:27:28	0.302	0.654
357	9/11/2017 10:28:28	0.303	0.654
358	9/11/2017 10:29:28	0.304	0.653
359	9/11/2017 10:30:28	0.300	0.652
360	9/11/2017 10:31:28	0.307	0.651
361	9/11/2017 10:32:28	0.308	0.649
362	9/11/2017 10:33:28	0.303	0.646
363	9/11/2017 10:34:28	0.311	0.644
364	9/11/2017 10:35:28	0.312	0.642
	9/11/2017 10:36:28	0.313	0.640
365			
366 367	9/11/2017 10:38:28 9/11/2017 10:39:28	0.315 0.317	0.637 0.634
368	9/11/2017 10:40:28	0.318 0.319	0.632 0.630
369	9/11/2017 10:41:28	0.319	0.628
370	9/11/2017 10:42:28		0.626
371	9/11/2017 10:43:28	0.321	
372	9/11/2017 10:44:28	0.323	0.624
373	9/11/2017 10:45:28	0.324	0.622 0.621
374	9/11/2017 10:46:28	0.325	
375	9/11/2017 10:47:28 9/11/2017 10:48:28	0.326 0.327	0.619 0.617
376			0.617
377	9/11/2017 10:49:28	0.329	
378	9/11/2017 10:50:28	0.330	0.616
379	9/11/2017 10:51:28	0.331	0.615
380 381	9/11/2017 10:52:28	0.332 0.333	0.614 0.613
382	9/11/2017 10:53:28 9/11/2017 10:54:28	0.335	0.613
383	9/11/2017 10:55:28	0.336	0.613
384	9/11/2017 10:56:28	0.337	0.612
385 386	9/11/2017 10:57:28 9/11/2017 10:58:28	0.338 0.339	0.611 0.611
300	J/ 11/ 201/ 10.J0.20	0.333	0.011

387	9/11/2017 10:59:28	0.341	0.611
388	9/11/2017 11:00:28	0.342	0.611
389	9/11/2017 11:01:28	0.343	0.612
390	9/11/2017 11:01:28	0.344	0.613
391	9/11/2017 11:02:28	0.344	0.612
392	9/11/2017 11:04:28	0.347	0.612
393	9/11/2017 11:05:28	0.348	0.612
394	9/11/2017 11:06:28	0.349	0.612
395	9/11/2017 11:07:28	0.350	0.611
396	9/11/2017 11:08:28	0.351	0.609
397	9/11/2017 11:09:28	0.352	0.608
398	9/11/2017 11:10:28	0.354	0.606
399	9/11/2017 11:11:28	0.355	0.604
400	9/11/2017 11:12:28	0.356	0.603
401	9/11/2017 11:13:28	0.357	0.602
402	9/11/2017 11:14:28	0.358	0.601
403	9/11/2017 11:15:28	0.359	0.600
404	9/11/2017 11:16:28	0.360	0.598
405	9/11/2017 11:17:28	0.362	0.595
406	9/11/2017 11:18:28	0.363	0.593
407	9/11/2017 11:19:28	0.364	0.592
408	9/11/2017 11:20:28	0.365	0.590
409	9/11/2017 11:20:28	0.366	0.589
410	9/11/2017 11:21:28	0.367	0.588
-			
411	9/11/2017 11:23:28	0.368	0.588
412	9/11/2017 11:24:28	0.370	0.588
413	9/11/2017 11:25:28	0.371	0.588
414	9/11/2017 11:26:28	0.372	0.588
415	9/11/2017 11:27:28	0.373	0.589
416	9/11/2017 11:28:28	0.374	0.589
417	9/11/2017 11:29:28	0.375	0.589
418	9/11/2017 11:30:28	0.377	0.589
419	9/11/2017 11:31:28	0.378	0.589
420	9/11/2017 11:32:28	0.379	0.589
421	9/11/2017 11:33:28	0.380	0.589
422	9/11/2017 11:34:28	0.381	0.591
423	9/11/2017 11:35:28	0.382	0.593
424	9/11/2017 11:36:28	0.384	0.593
425	9/11/2017 11:37:28	0.385	0.594
426	9/11/2017 11:38:28	0.386	0.596
427	9/11/2017 11:39:28	0.387	0.596
428	9/11/2017 11:40:28	0.388	0.596
429	9/11/2017 11:41:28	0.389	0.597
430	9/11/2017 11:42:28	0.391	0.598
431	9/11/2017 11:42:28	0.392	0.601
432	9/11/2017 11:43:28	0.393	0.601
433	9/11/2017 11:44:28	0.393	0.602
434			
	9/11/2017 11:46:28	0.395	0.604
435	9/11/2017 11:47:28	0.397	0.604
436	9/11/2017 11:48:28	0.398	0.605
437	9/11/2017 11:49:28	0.399	0.605
438	9/11/2017 11:50:28	0.400	0.604
439	9/11/2017 11:51:28	0.401	0.604
440	9/11/2017 11:52:28	0.402	0.605
441	9/11/2017 11:53:28	0.404	0.605
442	9/11/2017 11:54:28	0.405	0.622
443	9/11/2017 11:55:28	0.407	0.622
444	9/11/2017 11:56:28	0.408	0.621
445	9/11/2017 11:57:28	0.409	0.620
446	9/11/2017 11:58:28	0.410	0.619
447	9/11/2017 11:59:28	0.411	0.616
448	9/11/2017 12:00:28	0.412	0.615
449	9/11/2017 12:01:28	0.413	0.614
450	9/11/2017 12:02:28	0.414	0.611
451	9/11/2017 12:03:28	0.416	0.608

452	9/11/2017 12:04:28	0.417	0.607
453	9/11/2017 12:05:28	0.418	0.606
454	9/11/2017 12:06:28	0.419	0.604
455	9/11/2017 12:07:28	0.420	0.601
456	9/11/2017 12:08:28	0.421	0.599
457	9/11/2017 12:09:28	0.422	0.597
458	9/11/2017 12:10:28	0.423	0.577
459	9/11/2017 12:11:28	0.425	0.576
460	9/11/2017 12:12:28	0.426	0.574
461	9/11/2017 12:13:28	0.427	0.573
462	9/11/2017 12:14:28	0.428	0.572
463	9/11/2017 12:15:28	0.429	0.571
464	9/11/2017 12:16:28	0.430	0.569
465	9/11/2017 12:17:28	0.431	0.569
466	9/11/2017 12:18:28	0.432	0.569
467	9/11/2017 12:19:28	0.433	0.569
468	9/11/2017 12:20:28	0.434	0.568
469	9/11/2017 12:21:28	0.436	0.567
470	9/11/2017 12:22:28	0.437	0.567
471	9/11/2017 12:23:28	0.438	0.567
472	9/11/2017 12:24:28	0.439	0.566
473	9/11/2017 12:25:28	0.440	0.566
474	9/11/2017 12:26:28	0.441	0.565
475	9/11/2017 12:27:28	0.442	0.565
476	9/11/2017 12:28:28	0.443	0.565
477	9/11/2017 12:29:28	0.444	0.565
478	9/11/2017 12:30:28	0.445	0.565
479	9/11/2017 12:31:28	0.447	0.564
480	9/11/2017 12:32:28	0.448	0.564
481	9/11/2017 12:33:28	0.449	0.564
482	9/11/2017 12:34:28	0.450	0.564
483	9/11/2017 12:35:28	0.451	0.563
484	9/11/2017 12:36:28	0.452	0.563
485	9/11/2017 12:37:28	0.453	0.563
486	9/11/2017 12:38:28	0.454	0.563
487	9/11/2017 12:39:28	0.455	0.563
488	9/11/2017 12:40:28	0.456	0.563

TrackPro Report Page 1 of 1

Test 001

Instrument		Data Prop	erties
Model	DustTrak II	Start Date 10/02/2017	
Instrument S/N	8530132706	Start Time	07:07:15
		Stop Date	10/02/2017
		Stop Time	08:18:15
		Total Time	0:01:11:00
		Logging Interval	60 seconds

Statistics				
	AEROSOL			
Avg	0.034 mg/m^3			
Max	0.613 mg/m^3			
Max Date	10/02/2017			
Max Time	08:18:15			
Min	0.014 mg/m^3			
Min Date	10/02/2017			
Min Time	07:10:15			
TWA (8 hr)	0.005			
TWA Start Date	10/02/2017			
TWA Start Time	07:07:15			
TWA End Time	08:18:15			

about:blank 8/21/2018

TrackPro Report Page 1 of 1

Test 002

Instrument		Data Prope	rties
Model	DustTrak II	Start Date 10/02/2017	
Instrument S/N	8530132706	Start Time	09:17:59
		Stop Date	10/02/2017
		Stop Time	13:26:59
		Total Time	0:04:09:00
		Logging Interval	60 seconds

Statistics				
	AEROSOL			
Avg	0.014 mg/m^3			
Max	0.058 mg/m^3			
Max Date	10/02/2017			
Max Time	11:27:59			
Min	0.011 mg/m^3			
Min Date	10/02/2017			
Min Time	10:44:59			
TWA (8 hr)	0.008			
TWA Start Date	10/02/2017			
TWA Start Time	09:17:59			
TWA End Time	13:26:59			

about:blank 8/21/2018

A	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID ** aber	[2	2. Page 1 of 3. E	mergency Respons	se Phone		Fracking Nu	mber
	5. Generator's Name and Mailir	ng Address		Gen	erator's Site Addres	ss (if different		o <u></u>	
	3875 West	the Corp. Henrietta	21.						
П	Generator's Phone:	Henrietta	NY 146	, 23					
	6. Transporter 1 Company Nam		Tr	V.la			U.S. EPA ID	Number 4	02
	7. Transporter 2 Company Nam	ne RICE Q I	1 1/44	FIVIG	=		U.S. EPA IC	Number	
П									
	8. Designated Facility Name an	Manageme 5) 223-61	cres La	ndfi	11		U.S. EPA ID	Number	
	40 Waste	Manageme	nt, Per	inton	, NY	1443	0		
Ш	Facility's Phone: (> 0)	5) 223-61	32		10. Con	tainers	11. Total	12, Unit	
	9, Waste Shipping Name	e and Description			No.	Туре	Quantity	Wt,/Vol.	
HO.	1.	1	1				22		
GENERATOR	Nøn	Hazardous s	001		1	DT	22	T	
GEN	2.								
Н	3.								
Ш									
Ш	4.								
Ш									
Ш	13. Special Handling Instruction	ns and Additional Information				Λ		1111	
Ш		Profile =	# 11	8314	NY				
		Irolite			,				
Ш	14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged,								
П	marked and labeled/placard	ded, and are in all respects in proper co		ding to applicable i	nternational and na				
¥	Generator's/Offeror's Printed/Typed Name KYLE R. MILLER/LaBella / Agrent Signature Month Day Year 18 2 17								
INT'L	15. International Shipments	Import to U.S.		Export from U.S.		entry/exit:			
	Transporter Signature (for expo 16. Transporter Acknowledgme				Date lea	aving U.S.:			
TRANSPORTER	Transporter 1 Printed/Typed Na	ame		Signature		10	1		Month Day Year
NSP	Transporter 2 Printed/Typed Na	ame s		Signature	di	Com	ea		Month Day Year
Ę									
A	17. Discrepancy 17a. Discrepancy Indication Sp.	ace	П-		П				Пета
П		Quantity	Туре		L Residue		Partial Re	ejection	Full Rejection
 -	17b. Alternate Facility (or Gene	erator)			Manifest Reference	Number:	U.S. EPA ID	Number	
SET		,					5¥		
ED FA	Facility's Phone: 17c. Signature of Alternate Fac	cility (or Generator)					.,,		Month Day Year
NATE									
DESIGNATED FACILITY									10 1113
lī									
	18. Designated Facility Owner of Printed/Type Name	or Operator: Certification of receipt of m	naterials covered by the ma	anifest except as n	oted in Item 17a	1			Month Day Year
V	Malak) (V		116	16 11/a	lokea			10/2/17
169	9-BLC-O 5 11977 (Rev	9/09)		11/	7 1/	1	ESIGNAT	ED FAC	ILITY TO GENERATOR
				10					

Fairport, NY, 14450 Phi: (585) 223-6132

Original Ticket# 1177438

Customer Name LABELLAPC-118314NY LABELLA AS Carrier RIC RICELLI TRUCKING

Ticket Date 10/02/2017 Vehicle# 21

Volume Payment Type Credit Account Container Manual Ticket# Driver

Hauling Ticket# Check#

Billing # 0007262 Route Gen EPA ID State Waste Code

Manifest 001 Grid CELL 11

Destination PO

Profile 118314NY (PETROLEUM CONTAMINATED SOIL)
Generator 190-RJDGRSCHEL RJ DGRSCHEL CORP.

67620 16 Scale Operator Inbound Time Gross In 10/02/2017 08:53 A_Scale_1 MM #260133 Out 10/02/2017 08:53 MM #260133 29480 15 Tare 38140 lb Net

Comments

Product	LD%	Qty	LIOM	Rate	Fee	Amount	Origin
1 Cont Soil Pet- 2 EVF-P-Standard 3 RCR-P-Regulator 4 LFS4-LANDFILL	Env 100 ry C 100	19.07	Tons % %		1		MON MON MON

. Total Fees Total Ticket

Tons

Driver's Signature

19.07

	l
1	1

A	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2, Page 1 of 3. E	mergency Response	e Phone	4. Waste T	racking Nun		
	5 Generator's Name and Mailion Address Generator's Site Address (if different than mailing address)								
	RJ Dorschel Cerp. 3875 West Henrietta Rd. Generator's Phone: Henrietta, NY 14623								
П									
6. Transporter 1 Company Name Riccalli Trucking U.S. EPA ID Number 7A-40Z								07	
7. Transporter 2 Company Name U.S. EPA ID Number									
	9 Designated English Name on	od Cito Addresse	IIS EDAID	Number					
8. Designated Facility Name and Site Address High Acres Landfill C/D Waste Management Perihton, NY 14450 Facility's Phone 585 223 - 6132 10. Containers 11 Total 12 Unit									
II	40 Waste Management Perinton, NY, 446								
			32	10. Cont	ainers	11. Total	12. Unit		
	9, Waste Shipping Name	e and Description		No.	Туре	Quantity	Wt./Vol.		
OB	Δ/.	- Hazardon:	()	1		22	7		
GENERATOR		- Matardon	> >011	-1-	01	66			
GEN	2.								
	3.								
II									
	4.								
Ш									
Н	13. Special Handling Instruction	^	. 1	071	1 41				
ı	Profile # 118314NY								
II		, ,							
14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged								e, and are classified, packaged,	
	Generator's/Offeror's Printed/T	yped Name	condition for transport according to applicable Signatur	11.77	tional governm	nental regulations		Month Day Year	
٧	KYLE R. M	ILLER/LaBe	11a Agent	19/0	M	n		10 2 17	
INT	15. International Shipments Transporter Signature (for expo	Import to U.S.	Export from U.S.	Port of e	ntry/exit: ving U.S.:			-	
-	16. Transporter Acknowledgme	ent of Receipt of Materials	100 Parameter		7			Marsh Day Vaca	
TRANSPORTER	Transporter 1 Printed/Typed Na	ame J	Signatur	In (lick			Month Day Year	
RANS	Transporter 2 Printed/Typed Na		Signatur	9				Month Day Year	
É	17. Discrepancy								
lî	17a. Discrepancy Indication Sp	pace Quantity	Туре	Residue		Partial Re	jection	Full Rejection	
		·		Manifest Reference	Number:				
Ė	17b. Alternate Facility (or Gene	erator)		VIAI III EST TIEI ETETICE	Trumber.	U.S. EPA ID	Number		
ACIL	Facility's Phone:					Ĩ			
	17c. Signature of Alternate Fac	cility (or Generator)						Month Day Year	
DESIGNATED FACILITY									
- DES									
	18. Designated Facility Owner	or Operator: Certification of receipt of	materials covered by the manifest except as	-	1				
	Printed/Typed Name	21101	Signatur	an N	1. 1.	0.1		Month Day Year	
169	9-BLC-O 5 11977 (Rev	. 9/09)	\	111	Jacob C	DESIGNAT	ED FAC	ILITY TO GENERATOR	

THE PERISE HE PRWY Fairport, NY, 14450 Ph: (585) 223-6132

Original Ticket# 1177564

Customer Name LABELLAPC-118314NY LABELLA AS Carrier -RIC RICELLI TRUCKING

Ticket Date 10/02/2017 Vehicle# 21 Volume

Payment Type Credit Account Container Manual Ticket# Driver Hauling Ticket# Check#

Billing # 0007262

Gen EPA ID State Waste Code

Manifest 002 Grid CELL 11

Destination PB

Route

Profile 11831ANY (PETROLEUM CONTAMINATED SOIL)
Generator 190-MJDORSCHEL RJ DORSCHEL CORR.

Scale Operator 69100 lb Inbound Bross. In 10/02/2017 11:31 A_Scale_1 MM #260133 Out 10/02/2017 11:31 MM #260133 Tare 29480 lb Out 10/02/2017 11:31 Net 39620 15 Tons 19, 81

Comments

Product	LD%	Qty	MOU	Rate	Fee	Amount	Origin
1 Cont Soil Pet-RGC- 2 EVF-P-Standard Env 3 RCR-P-Regulatory C 4 LFS4-LANDFILL FIXE	100	19.81	Tons 1/4 1/4 1/4			4	MON MON MON

Total Fees Total Ticket

Driver's Signature

	NON-HAZARDOUS Waste Anjeest	1. Generator ID Number	1	e 1 of 3. Emergency R	sponse Fhone		racking Numb	er
	S. Generator's Name and Mailir Generator's Phone.		e + ta RQ NY 1462	Generator's Site	Address (if differer	t than mailing addr	ess)	
10.00	6. Transporter 1 Company Nam	Riccell,	Truck	144		U.S. EPA ID	Number A –	402
	7. Transporter 2 Company Nam		THE PERSON NAMED IN	d		U.S. EPA ID	2 5 S	
	8. Designated Facility Name an	Ste Mana 5) 223-61	gement	lerin	ton,	VY 14	THE SHAPPING DAY	News, and
	Facility's Phone: 9. Waste Shipping Name			10 No), Containers	11. Total Quantity	12. Unit Wt./Vol.	
GENERATOR -	1. Non	+ Ha Enjado	us Soil	1 4 4 3	DT	12/2	17.4	/
- GENE	2.	HIS	- L	×			-	
	3,		a idenas					
	4.							
	13. Special Handling Instruction		that the contents of this consigni				nipping name, a	und are classified, packaged.
	marked and labeled/placard Generator's/Offeror's Printed/Ty	led, and are in all respects in proper co	ndition for transport according to	applicable international Signature	and national gover	nmental regulations		Month Day Year
Ī	15. International Shipments Transporter Signature (for expo	Import to U.S.	1 / -		ort of entry/exit: ate leaving U.S.:	(C ()+w.)		And the second of the second o
SPORTE	16. Transporter Acknowledgme Transporter 1 Printed/Typed Na Transporter 2 Printed/Typed Na	Adams		Signature Signature	ale	6	2-1	Month Day Year Month Day Year
	17. Discrepancy 17a. Discrepancy Indication Sp	ace Quantity	Туре	Resid	Je	Partial Re	jection	Full Rejection
ILITY	17b. Alternate Facility (or Gene			Manifest Ref	erence Number:	U.S. EPA ID	Number	
- H	Facility's Phone: 17c. Signature of Alternate Fac	vility (or Generator)	ate from the t		2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			Month Day Year
- DESIGN						*		
-	18. Designated Facility Owner of Printed/Typed Name	or Operator: Certification of receipt of m	naterials covered by the manifest	except as noted in Item Signature	17a	lones		Month Day Year

High Acres LF 425 Perinton Pkwy Fairport, NY, 14450 Phi (585) 223-6132

Original Ticket# 1177618

Customer Name LABELLAPC-118314NY LABELLA AS Carrier RIC RICELLI TRUCKING Ticket Date 10/02/2017 Vehicle# 21

Payment Type Credit Account

Manual Ticket#

Hauling Ticket#

Route

State Waste Code

Manifest 003

Destination

PO

Profile (118314NY (PETROLEUM CONTAMINATED SOIL) (Generator 190-RJDORSCHEL RJ DORSCHEL CORP.

Time Scale Operator

In 10/02/2017 13:59 A_Scale_1 MM #260133 But 10/02/2017 13:59 MM #260133

Check#

Inbound

Vehicle# 21 Volume

Container:

Billing # 0007262

Grid CELL 11.

Gen EPA ID

Gross

Tane Net

29480 15 28140 16 14.07

57620 lb

Tons

Comments

Product	LD%	Qty	NOM	Rate	Fee	Amount	Origin \
1 Cont Soil Pet-RSC- 2 EVF-P-Standard Env 3 RCR-P-Regulatory C 4 LFS4-LANDFILL FIXE	100	14.07	Tons % %	A CHARLES	- 5	ave e series	MON MON MON

Total Fees

Driver's Signature . ** * * * * * *

- PR							325	
NON-HAZARDOUS WASTE MANIFEST	Generator ID Number	2. Page 1 of 3.	. Emergency Response	Phone	4. Waste Tr	acking Num	ber	E
5. Generator's Name and Mailin 3875 Washington	t Herrietta RQ		enerator's Site Address	s (if different t	l han mailing addre	ess)	9	Ī
Transporter 1 Company Nam Transporter 2 Company Nam	RICCELLI Tru	LICha	(#3	25)	U.S. EPA ID	Number	402	
8. Designated Facility Name and GO Was 4. Facility's Phone: (58)	e Management 35) 223-6132	s La Per	ndfill	uy i	U.S. EPA ID	Number		
9. Waste Shipping Name			10. Conta	iners Type	11. Total Quantity	12. Unit Wt./Vol.		
Non-	- HAZARDOUS SOIL	·	1	DT	7-4	T		
2.								
3.								
4.								
13. Special Handling Instruction	Profile # 1	1831	14 NY					
14. GENERATOR'S/OFFEROR	I'S CERTIFICATION: I hereby declare that the contents of this led, and are in all respects in proper condition for transport according	consignment are for	ully and accurately des	scribed above	by the proper shi	pping name,	and are classified, package	d,
Generator's/Offeror's Printed/Ty 15. Infernational Shipments Transporter Signature (for expo	La Bella / Agent	Signati	ure //	AL a	M		Month Day	Year
Transporter Acknowledgmer Transporter 1 Printed/Typed Na	nt of Receipt of Materials	Signati	nore:				Mark Davi	V
Transporter 2 Printed/Typed Na	Mari ex	Signati	- " "				Month Day / 2 / / Month Day	Year Year
17. Discrepancy								-8
17a. Discrepancy Indication Spa	ace Quantity Type		Residue		Partial Rej	ection	Full Rejectio	in
17b. Alternate Facility (or General	rator)		Manifest Reference N	Number:	U.S. EPA ID N	Number		
Facility's Phone: 17c. Signature of Alternate Faci	lity (or Generator)						Month Day	Year

18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a

GENERATOR

INT

TRANSPORTER

DESIGNATED FACILITY

Printed/Typed Name

Month,

Year

High Acres LF 425 Perinton Pkwy Fairport, NY, 14450 Ph: (585) 223-6132

Original Ticket# 1193714

Customer Name LABELLAPC-118314NV LABELLA AS Carrier RIC RICELLI TRUCKING Vehicle# 325 Volume

Ticket Date 12/21/2017

Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route State Waste Code

Manifest NA

Profile 118314NY (PETROLEUM CONTAMINATED SOIL)

Gamerator 190-RJDORSCHEL RJ DORSCHEL CORP.

Scale Operator Inbound

Gross Tarre Net

37240 1b 29100 15 8140 15

4.07 Tons

Comments

Product	LD%	Qty	UOM		ee Amount	Origin
1 Cont Soil Pet-RGC- 2 RCR-P-Regulatory C 3 EVF-P14-Environmen 4 LFS4-LANDFILL FIXE	100 100 100	4.07	Tons % %	-		MON MON MON

Container

Gen EPA ID

Billing # 0007262

Grid CELL 11

Driver

Check#

Total Fees Total Ticket

Driver's Signature____

404WM