Periodic Review Report: August 6, 2018 to August 6, 2019 NYSDEC BCP Site No. C828134

Location:

Former Steve Joy's Sunoco 3865 & 3875 West Henrietta Road Town of Henrietta, Monroe County, New York

Prepared for:

RJ Dorschel Corporation 3817 West Henrietta Road Rochester, New York 14623

LaBella Project No. 219395

September 5, 2019

Table of Contents

1.0 INTROD	UCTION
	onmental History
2.0 PURPOS	SE AND SCOPE OF WORK
	MONITORING
3.1 Groun	ndwater Monitoring4
3.2 Sub-S	Slab Depressurization System (SSDS) Monitoring
3.3 Devia	itions from SMP
	RY OF GROUNDWATER MONITORING
4.2 Sumr	nary of Groundwater Results
	ALUATION
	TIONAL AND ENGINEERING CONTROLS CERTIFICATION
Figure 1 Figure 2 Figure 3 Figure 4A Figure 4B	Site Location Map Site Plan and Surrounding Properties Groundwater Monitoring Well Locations and Location of Sub-Slab Depressurization Fan October 2011 Groundwater Contours July 2012 Groundwater Contours
Table 1	Groundwater Monitoring Results - VOCs
APPENDICES Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Groundwater Sampling Logs Laboratory Analytical Report Site Inspection Form and Photograph As-Built Drawings of SSDS at 3865 & 3875 West Henrietta Road Buildings Graphs of Total VOCs over Time Institutional Controls/Engineering Controls Certification Form

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report (PRR) for the Former Steve Joy's Sunoco property, located at 3865 and 3875 West Henrietta Road (NYS Route 15) (hereinafter referred to as the "Site"), under the New York State (NYS) Brownfield Cleanup Program (BCP), as administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #B8-0719-06-06, Site # C828134. A Site Location Map is included as Figure 1.

The Site is located in the Town of Henrietta, County of Monroe, New York and is comprised of the following two (2) parcels of land:

- 3865 West Henrietta Road, an approximate 1-acre parcel identified as Block 161.15-1 and Lot 20.1; and
- 3875 West Henrietta Road, an approximate 1.5-acre parcel identified as Block 161.19-1 and Lot 9.

The Site is improved with the following structures:

- A 4,692± square foot building on the 3865 West Henrietta Road parcel; and
- A 12,968 ± square foot building (including the ±500 square foot addition to this building constructed in 2017) on the 3875 West Henrietta Road parcel.

The properties surrounding the Site are commercial properties. The properties directly adjacent to the Site and their current occupants are as follows:

- North 3861 West Henrietta Road, Pizza Hut Restaurant:
- East West Henrietta Road Right-of-way (ROW), then 3870 West Henrietta Road, Lewis General Tire, Inc.;
- South 3883 West Henrietta Road, an auto dealership; and
- West overflow parking lots associated with the 3883 West Henrietta Road property.

A Site Plan (included as Figure 2), illustrates the Site boundaries and the adjacent properties.

1.1 Environmental History

Previous environmental investigations (Pre-BCP work) at the Site identified the nature and extent of contamination to be limited to petroleum contamination in soil, groundwater, and soil vapor. The apparent source of the petroleum impacts was from six (6) petroleum underground storage tanks (USTs) and five hydraulic lifts.

The Pre-BCP and BCP Investigation work at the Site included: advancing 73 soil borings; excavating nine (9) test pits; installing sixteen (16) groundwater monitoring wells; the installation of sub-slab soil vapor sampling points; and collecting samples of soil, groundwater, sub-slab vapor, and indoor/outdoor air. Based on the work completed, it was determined that the predominant contaminants at the Site were petroleum-related volatile organic compounds (VOCs) in soil and groundwater.

Petroleum-related semi-volatile organic compounds (SVOCs), chlorinated solvents, and metals were also detected in groundwater, along with a limited area of metals in surface soils. Based on these findings, the following specific areas of contamination were identified:

- Petroleum impacted soil and groundwater between the 3865 Parcel Building and West Henrietta Road, in the area of the former pump islands, was identified at concentrations above the NYSDEC Part 375-6 Restricted Commercial Use Soil Cleanup Objectives (SCOs) and the NYSDEC Part 703 Groundwater Standards;
- Petroleum impacted soil directly north of the central portion of the 3875 Building associated with a UST was identified in the field as impacted;
- Petroleum impacts in soil around hydraulic lifts within the western portion of the 3875
 Building was identified in field observations;
- An area of surface soils along West Henrietta Road impacted with the metals (arsenic and barium) was identified at concentrations above the NYSDEC Part 375-6 Restricted Commercial Use SCOs;
- Concentrations of VOCs in the sub-slab soil vapor and indoor air at both buildings at the Site were identified; and
- VOCs and metals in groundwater on the 3875 Parcel were identified at concentrations above the NYSDEC Part 703 Groundwater Standards.

The Remedial Measures completed at the Site have included two (2) Interim Remedial Measures (IRMs) consisting of the removal of USTs and soil. The soil removed during the IRM was transported to an off-site location for treatment in a bio-cell. In addition, a final remedy at the Site consisted of the removing hydraulic lifts, soil and groundwater. The remedies and Areas of Concern (AOC) designation from the Remedial Action Work Plan (RAWP) are summarized below:

- Removal and bioremediation of approximately 1,740 cubic yards of petroleum-impacted soils from AOC #1. This resulted in removing all soils above the NYSDEC Part 375-6.8(b)
 Protection of Groundwater SCOs with the exception of two areas due to underground utilities, the West Henrietta Road ROW and the on-site building.
- Removal and disposal of six USTs and their contents, which consisted of approximately 8,000 gallons of petroleum impacted waters and 600 gallons of waste oil.
- Removal and disposal of five hydraulic lifts (AOC #2) and removal and off-site disposal of approximately 85 tons of petroleum-impacted soil from seven hydraulic lift locations [i.e., two (2) former locations and the five (5) lifts removed as part of the IRM].
- Removal and disposal of surface soils impacted with heavy metals, excavated from an area
 measuring 5 feet by 5 feet and 1 foot in depth. The heavy metals were identified during the
 RI in surface soil sample SS-1 located along the eastern edge of the 3865 West Henrietta
 property boundary and was identified as AOC #5.
- Installation of a sub-slab depressurization system (SSDS) to mitigate the potential for vapor intrusion within (AOC #3) the existing building at the 3865 West Henrietta Road parcel. Pressure field extension testing was completed on each of the monitoring points after the installation of the SSDS, and confirmed the system influences the entire slab area. An SSDS was also installed at the 3875 Parcel building during redevelopment of the Mini Cooper dealership in 2012, and this SSDS was expanded to extend beneath the ±500 square foot addition to this building in 2017.

- An Environmental Easement was executed and recorded to restrict land use and prevent future exposure to any contamination remaining at the Site.
- Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for:
 - Institutional and Engineering Controls;
 - o Monitoring;
 - o Operation and Maintenance; and
 - o Reporting.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of this report is to present the monitoring work completed at the Site during the time period of August 6, 2018 to August 6, 2019. This work was completed in general accordance with the provisions identified in the SMP. As required in the SMP, this report includes the following information:

- Identification, assessment and certification of all Engineering Controls/Institutional Controls (ECs/ICs) required by the remedy for the Site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the Site during the reporting period in electronic format (included in report);
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media, including: a list of all compounds analyzed; applicable regulatory standards, with all exceedances highlighted: and a presentation of past data as part of an evaluation of contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A Site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the Site-specific RAWP;
 - Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

3.0 ANNUAL MONITORING

The original SMP identified the ongoing monitoring of the performance of the remedy, via semi-annual sampling of two (2) existing groundwater monitoring wells (3865 Parcel: MW-7 and 3875 Parcel: MW-3R). The original SMP indicated that monitoring the overall reduction in contamination on-site would be conducted for the first two (2) years, with the frequency thereafter to be determined by NYSDEC. The NYSDEC approved annual monitoring of the two (2) wells for VOCs only in a letter dated July 22, 2013. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals.

The original SMP also required a semi-annual inspection of the SSDS and semi-annual monitoring of the biocell soils. In their July 22, 2013 letter, the NYSDEC also approved discontinuing monitoring of the biocell soils.

The current monitoring program is summarized in the following table and was included in the June 2014 SMP update.

Schedule of Monitoring/Inspections

Monitoring Program	Frequency*	Matrix	Analysis				
Groundwater Monitoring	Annual	Groundwater	VOCs using USEPA Method 8260 (NYSDEC CP-51 list for 3865 parcel wells and TCL VOCs for 3875 parcel wells)				
Sub-Slab Depressurization System Inspection	Annual	Sub-Slab Vapor	None				

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.1 Groundwater Monitoring

Groundwater monitoring for this PRR was conducted in July 2019. Monitoring wells MW-3R (replacement well) and MW-7 were sampled on July 2, 2019. The locations of these wells are shown on Figure 3.

Static water levels (SWLs) were collected during the July 2, 2019 groundwater sampling event. The groundwater samples were collected using a modified low-flow sampling procedure with a bladder pump.

During the sampling event, field measurements of water quality parameters were collected using a Horiba U-52-2 water quality meter equipped with an in-line "flow-thru" cell. During the sampling event, the following field measurements were collected:

- pH;
- Conductivity;
- Temperature;
- Oxygen Reduction Potential (ORP);

- · Turbidity; and
- Dissolved Oxygen (DO).

During the sampling event, water quality parameter readings were recorded at regular time intervals prior to the collection of groundwater samples. Water quality stabilization criteria are summarized in the following table.

Measurement	Maximum Variability for 3 Consecutive Readings
рН	+/- 0.1 standard units
Conductivity	+/- 3 %
ORP	+/- 10 mV
Turbidity	+/- 10 %
DO	+/- 10 %

During the sampling event, the required criteria were met prior to sample collection at MW-3R. In addition, the SWL in MW-3R was monitored during the sampling event to confirm that drawdown in the well was minimized.

Due to limited water volume in MW-7, MW-7 was purged "dry", and the well was allowed to recharge and a groundwater sample was collected from after sufficient water recharged into the well. Water quality measurements were also collected in connection with the groundwater sample collected from MW-7. Groundwater sampling logs that include the in-field parameter measurements are included as Appendix A.

Pace Analytical of Mt. Juliet, Tennessee (ESC) analyzed the groundwater samples collected during the groundwater monitoring event. ESC is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The samples were analyzed for NYSDEC CP-51-list and United States Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs using USEPA Method 8260. A copy of the laboratory analytical report is provided in Appendix B.

3.2 Sub-Slab Depressurization System (SSDS) Monitoring

This section discusses the SSDS monitoring performed on July 28, 2018 in the two (2) on-site buildings.

3865 West Henrietta Road Building

The SSDS in the 3865 West Henrietta Road building was monitored on July 2, 2019 in order to verify proper operation of the system. Because the manometer installed on this SSDS is now located within the wall of the women's restroom and is accessible via a removable wall panel, NYSDEC requested in October 2015 that an alarm be installed on the SSDS. The purpose of the alarm is to monitor proper operation of the SSDS; this alarm was installed in late 2015.

The location of the SSDS venting point/fan that operates the SSDS for the 3865 Building is shown on Figure 3, and an as-built drawing of the SSDS is included in Appendix D. At the fan location, the following inspections were made:

- the in-line U-tube manometer on the suction side of the piping system was observed to
 determine a pressure differential of approximately 2.5 inches of water column which is
 consistent with historic readings and indicates the SSDS is operating properly;
- the condition of the piping was observed to determine if any portion of the piping required repair;
- the fan was working properly; and
- labeling of the system was intact.

Based upon the inspections, the SSDS appeared to be in good working order (i.e., the manometer indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). Copies of the inspection form and photographs from the inspection are included in Appendix C.

3875 West Henrietta Road Building

The SSDS in the 3875 West Henrietta Road building was monitored on July 2 and 9, 2019 in order to verify proper operation of the system. The SSDS for the 3875 Building is shown in the as-built drawings included in Appendix D. At the fan location, the following inspections were made:

sub-slab monitoring points, including the two (2) new monitoring points installed during
construction of the recent addition to this building, were measured with a VelociCalc® Model
9565 Multi-Function Ventilation Meter, to determine the pressure differential between the
sub-slab and indoor air. The results of this monitoring are summarized in the following table.

	July 28, 2018 M	onitoring Event
Location	Valve 1 Measurement (inches of H₂O)	Valve 2 Measurement (inches of H₂O)
Customer Reception Area (referred to as "Northern Point" in 2017 PRR)	- 0.597	- 0.057
Service Area (referred to as "Southern Point" in 2017 PRR)	- 0170	- 0.007
2017 Building Addition	- 0.072	- 0.065

- the condition of the piping was observed to determine if any portion of the piping required repair;
- the fan was working properly; and
- labeling of the system was intact.

Based upon the inspections, the SSDS appeared to be in good working order (i.e., the micromanometer readings indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). A copy of the inspection form is included in Appendix C.

3.3 Deviations from SMP

No deviations were encountered during this monitoring period.

4.0 SUMMARY OF GROUNDWATER MONITORING

4.1 Groundwater Flow Direction

Although static water level measurements were collected during the June 2018 groundwater monitoring event, this sampling event included only two (2) monitoring wells. Historic monitoring information previously presented to the NYSDEC describes the groundwater flow regime at the Site. For informational purposes, groundwater contour maps from October 2011 and July 2012 are included as Figures 4A and 4B, respectively.

4.2 Summary of Groundwater Results

Groundwater monitoring was performed in July 2019 and included two (2) existing groundwater monitoring wells (3865 Parcel: MW-7 and 3875 Parcel: MW-3R), as shown on Figure 3.

The results of the groundwater monitoring are summarized in Table 1 (VOCs) and are compared to the NYSDEC Part 703 groundwater standards. As summarized in the attached Table 1 and the following table, VOCs were reported above NYSDEC Part 703 groundwater standards in the groundwater samples collected during the July 2019 groundwater monitoring event.

Well ID	Site Parcel	VOC(s) above Part 703 Groundwater Standards
MW-7	3865 Parcel	Benzene; Ethylbenzene; sec-Butylbenzene; n-Propylbenzene; lsopropylbenzene; n-Butylbenzene; Naphthalene; Toluene; 1,2,4-Trimethylbenzene; 1,3,5-Trimethylbenzene; and Xylenes
MW-3R	3875 Parcel	Chlorobenzene

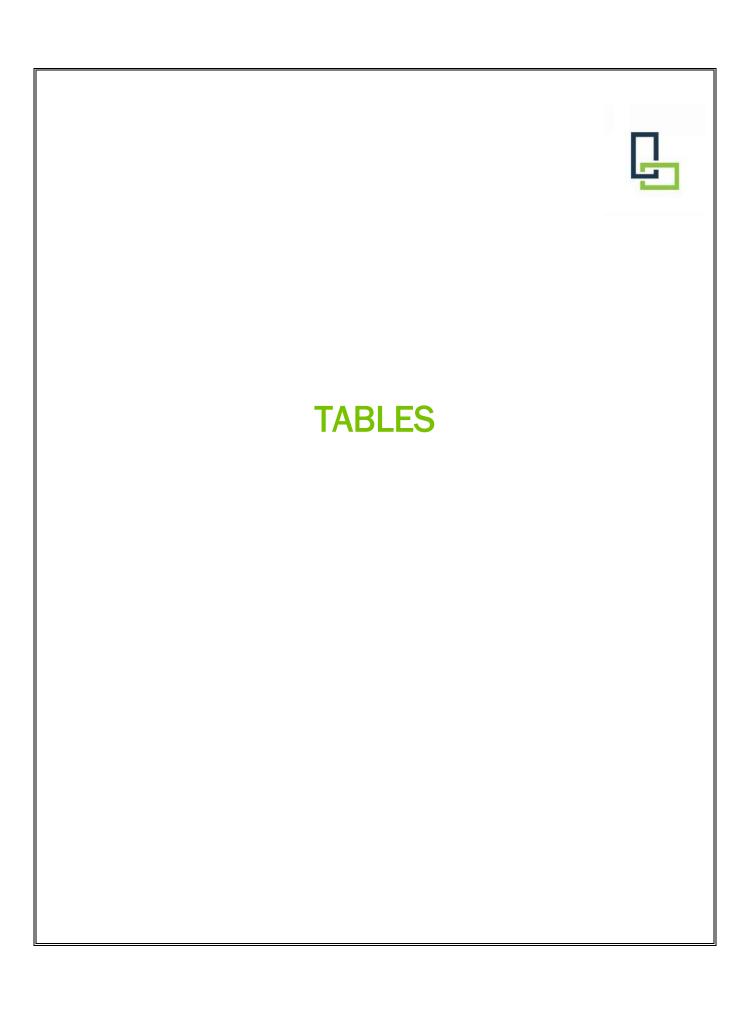
5.0 SITE EVALUATION

The annual monitoring work conducted from August 6, 2018 to August 6, 2019 was completed in accordance with the SMP, with any exceptions noted in Section 3.3.

Groundwater Monitoring

Most of the previously existing groundwater monitoring wells at the Site have been destroyed or paved over during the redevelopment activities at the Site.

The analytical results from the July 2019 groundwater sampling event indicate that VOC concentrations appear relatively stable in samples collected from MW-7 and MW-3R, as shown in the graphs included in Appendix E. Although an overall slightly increasing trend in the data from both wells may be extrapolated, recent concentrations of Total VOC concentrations in groundwater are consistent with historic levels. In addition, with regard to MW-3R, the reported VOC concentrations are relatively low and only Chlorobenzene exceeds the Part 703 Groundwater Standard.


Based on the above, no changes to the current monitoring program are proposed.

The remedial program outlined in the SMP has effectively achieved progress toward meeting the remedial objectives for the Site. Continued monitoring of the SSDS and the implementation of the SMP should ultimately achieve the remedial objectives for the Site. The next groundwater sampling event is scheduled for Spring 2020.

6.0 INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION

The completed NYSDEC Institutional and Engineering Controls Certification Form is included in Appendix F.

 $\label{locality} \mbox{J:RJ DORSCHEL CORP} \mbox{209395 - 3865 3875 W HENRIETTA RD REM ACT\REPORTS} \mbox{2019 PRR\RPT.2019-09-05.2019 PRR FORMER STEVE JOYS SUNOCO.DOCX}$

Table 1

Groundwater Monitoring 3865 & 3875 West Henrietta Road, Henrietta, New York NYSDEC Brownfield Cleanup Program ID No. C828134

Summary of Detected Volatile Organic Compounds (VOCs) in Groundwater Test Results in Micrograms per Liter (µg/L) or Parts Per Billion (ppb)

						3875	Parcel								
Constituent		MW-3R													
	May 2007	June 2010	October 2010	May 2011	October 2011	April 2014	May 2015	October 2015	June 2016	June 2017	June 2018	July 2019	Standard		
Petroleum-Related Volatile Organ	nic Compounds				<u> </u>			1							
Benzene	ND<5.0	2.3 J	2.8 J	3.1 J	31.7	ND<0.7	ND<50	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1		
Ethyl ether					ND<1.0		ND<1.0						Not Available		
Ethylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	5.2	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
sec-Butylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
n-Propylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
Isopropylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
p-lsopropyltoluene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
n-Butylbenzene						ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
Naphthalene	ND<5.0	1.4 BJ	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	10		
Toluene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	1.7	ND<2.0	ND<5.0	ND<5.00	ND<5.00	ND<1.00	ND<1.00	ND<1.00	5		
1,2,4-Trimethylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	1.3	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
1,3,5-Trimethylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
m,p-Xylene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	2.2	ND<2.0	2.1	ND<2.00	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5		
o-Xylene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	3.9	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
Tert-amyl methyl ether				-	3.4					_			Not Available		
Tert-butanol / butyl alcohol				_	12.8					_		_	Not Available		
Methyl-tert-Butyl Ether	2 J	ND<5.0	ND<5.0	1.2 J	22.5	2.97	2.5	1.56	2.25 J	1.35	1.38	1.24	10		
Solvent-Related Volatile Organic	Compounds														
Acetone	ND<5.0	42		ND<5.0	ND<10.0	ND<10.0	ND<50	ND <50.0	ND <50.0	ND <50.0	ND <50.0	ND <50.0	50		
2-Butanone	ND<5.0	8.1		ND<5.0	ND<10.0	ND<10.0	ND<10	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	50		
Cyclohexane	ND<5.0	ND<5.0		ND<5.0	Not Tested	ND<10.0	ND<1.0	ND<1.00	ND<1.00 R	ND<1.00	ND<1.00	ND<1.00	5		
Chlorobenzene	11 J	3.9 J		9.1	ND<1.0	67.3	120	106	103 J	130	118	109	5		
Dichlorodifluorormethane					ND<2.0	ND<2.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00 J0	ND<5.00	ND<5.00	5		
1,2-Dichlorobenzene	ND<5.0	ND<5.0		ND<5.0	ND<10.0	1.4	2.7	2.42	2.41 J	2.80	2.72	2.84	3		
1,4-Dichlorobenzene	ND	ND	Not Tested	ND	ND	ND	ND	ND	ND	ND	1.34 U	ND<1.00	3		
cis-1,2-Dichloroethene	1 J	ND<5.0		4.4 J	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
1,1-Dichloroethane	1 J	ND<5.0		ND<5.0	1.2	ND<2.0	1.2	ND<1.00	1.24 J	ND<1.00	ND<1.00	ND<1.00	5		
Methylcyclohexane	ND<5.0	ND<5.0		ND<5.0	Not Tested	ND<2.0	ND<1.0	ND<1.00	ND<1.00 R	ND<1.00	ND<1.00	ND<1.00	5		
Methylene Chloride	ND<5.0	ND<5.0		ND<5.0	ND<2.0	ND<5.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	5		
trans-1,2-Dichloroethene	ND<5.0	ND<5.0		ND<5.0	ND<1.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5		
Vinyl Chloride	3 J	ND<5.0		6.3	1.8	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	2		
Total VOCs	18	57.7	2.8 J	24.1 J	86.4	71.67	129.8	109.98	108.90	134.15	122.10	113.08			
Total VOC TICs	ND	ND	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Available		
Total VOCs and VOC TICs	18	57.7	2.8	24.1	86.4	71.7	129.8	109.98	108.9	134.15	122.1	113.08	<u> </u>		

Notes

VOC analysis by USEPA Method 8260B TCL.

Bold Type denotes that the detected value exceeds its associated NYSDEC Part 703 Groundwater Standard.

ND<5.0 denotes compound not detected above the method detection limits.

J denotes an estimated value; the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample.

JO denotes that the laboratory's ca

D denotes that the compound was identified in a secondary dilution performed on the sample.

 $^{{\}sf E}\ {\sf denotes}\ {\sf that}\ {\sf the}\ {\sf concentration}\ {\sf of}\ {\sf the}\ {\sf compound}\ {\sf was}\ {\sf found}\ {\sf to}\ {\sf exceed}\ {\sf the}\ {\sf calibration}\ {\sf range}\ {\sf for}\ {\sf the}\ {\sf instrument}.$

U is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "interpreted as undetected."

R is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "rejected".

Table 1

Groundwater Monitoring 3865 & 3875 West Henrietta Road, Henrietta, New York NYSDEC Brownfield Cleanup Program ID No. C828134

Summary of Detected Volatile Organic Compounds (VOCs) in Groundwater Test Results in Micrograms per Liter (µg/L) or Parts Per Billion (ppb)

							38	65 Parcel							
Constituent								MW-7							NYSDEC Part 703: Groundwater
	September 2006	May 2007	June 2010	October 2010	May 2011	October 2011	July 2012	March 2014	May 2015	October 2015	June 2016	June 2017	June 2018	July 2019	Standard
Petroleum-Related Volatile Organ	nic Compounds			•											•
Benzene	370	410	740 E	750 D	ND<5.0	730	870	1,150	1,200	816	848	675	862	1130	1
Ethyl ether															Not Available
Ethylbenzene	880	790 E	250 E	620 D	ND<5.0	266	610	1050	950	786	258	332	502	642	5
sec-Butylbenzene	ND <50	23	3 J	5.6	ND<5.0	ND<100	11	ND<40.0	7.7	7.89	6.29	ND<10.0	6.68 J	ND<20.0	5
n-Propylbenzene	ND <50	260 E	13	36	ND<5.0	ND<100	86	108	110	89.1	18.2	22.0	29.8 J	66.7	5
Isopropylbenzene	78	91	13	33	ND<5.0	ND<100	44	49.9	49	43.0	21.0	18.3	26.3 J	36.5	5
p-Isopropyltoluene	ND <50	22	ND<5.0		ND<5.0	ND<100	ND<5.0	ND<40.0	7.1	7.27	6.71	ND<10.0	8.99 J	ND<20.0	5
n-Butylbenzene						ND<100	32	28.8 J	12	11.0	4.16	ND<10.0	5.62 J	ND<20.0	5
Naphthalene	ND <50	1,100 E	240 BE	330 DJ	ND<5.0	419	480	478	600	423	620	642	699	329	10
Toluene	980 D	690 E	260 E	180	ND<5.0	106	35	156	120	73.9	71.9	67.6	58.5 J	53	5
1,2,4-Trimethylbenzene	ND <50	1,100 E	620 E	730 D	ND<5.0	1,400	1,200	1,390	1,300	1,380	1,540	1,750	1,760	872	5
1,3,5-Trimethylbenzene	ND <50	630 E	210 E	190 DJ	ND<5.0	422	320	322	200	196	197	290	196 J	37.7	5
m,p-Xylene	ND <50	2,100 E	2,300 E	4,700 D	ND<5.0	6,190	2,800	4,190	2,900	2,620	3,220	3,610	3,690	1,460	5
o-Xylene	ND <50	760 E	450 E	690 D	ND<5.0	502	35	363	230	143	332	319	324	66.6	5
Tert-amyl methyl ether															Not Available
Tert-butanol / butyl alcohol															Not Available
Methyl-tert-Butyl Ether	ND <10	ND<5	2.4 J	2.4 J	5.6	ND<100	18	ND<40.0	ND<1.0	ND<1.0 U	ND<1.00	ND<10.0	1.49 UJ	ND<20.0	10
Solvent-Related Volatile Organic	Compounds														
Acetone	40 J	ND<5						ND<200	140	ND <50.0	ND <50.0	ND <500	ND <50.0		50
2-Butanone	ND<50	ND<5						ND<200	ND<10	ND <10.0	ND <10.0	ND <100	ND <10.0	1	50
Cyclohexane	140	ND<5						190 J	100	113	82.3 R	79.5	91.0 J		5
Chlorobenzene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00		5
Dichlorodifluorormethane								ND<40.0	ND<5.0	ND<5.00	ND<5.00	ND<50.0	ND<5.00		5
1,2-Dichlorobenzene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00		3
1,4-Dichlorobenzene			Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	ND	ND	ND	ND	ND	ND<1.00	Not Tested	3
cis-1,2-Dichloroethene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00		5
1,1-Dichloroethane	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00		5
Methylcyclohexane	59	ND<5						63.2	120	ND<20 U	37.6 R	44.8 U	55.6 J	_	5
Methylene Chloride	ND<36	ND<5						ND<100	ND<5.0	ND<5.00	ND<5.00	ND<50.0	ND<5.00	_	5
trans-1,2-Dichloroethene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	_	5
Vinyl Chloride	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00		2
Total VOCs	2,547	7,976	5,101	8,267 D,J	5.6	10,035	6,541	9,286	8,046	6,709	7,143.26	7,805.40	8,316.98	4,693.50	
Total VOC TICs	9,980	5,795	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Available
Total VOCs and VOC TICs	12,527	13,771	5,101	8,267	5.6	10,035	6,541	9,286	8,046	6,709	7,143.26	7,805.40	8,316.98	4,693.50	

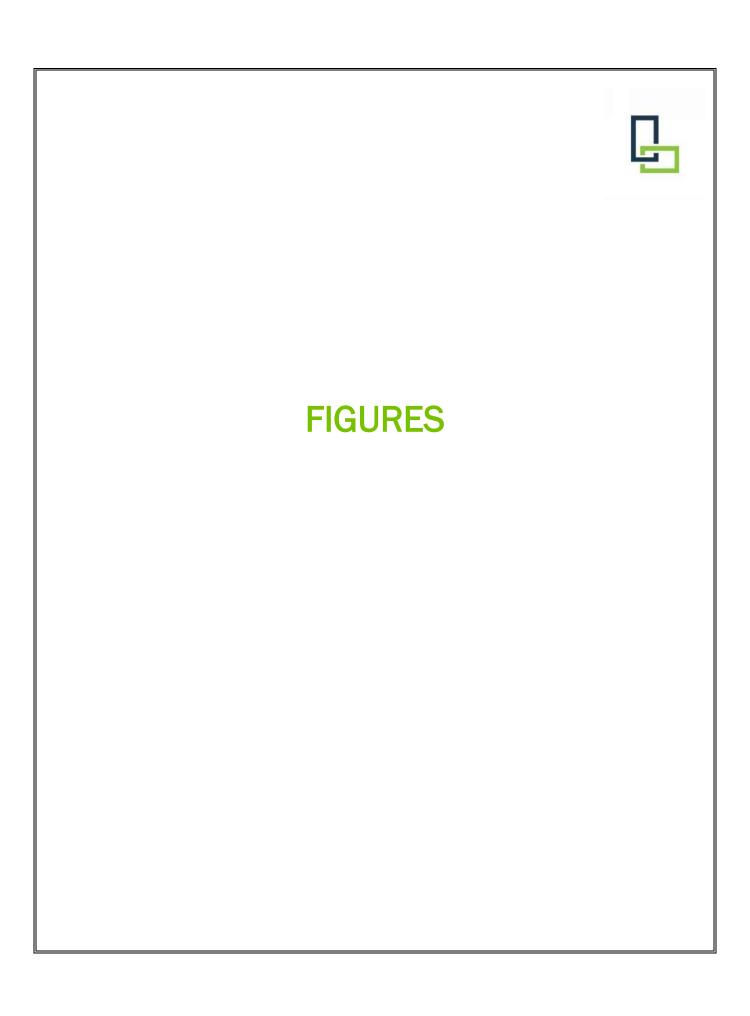
Notes:

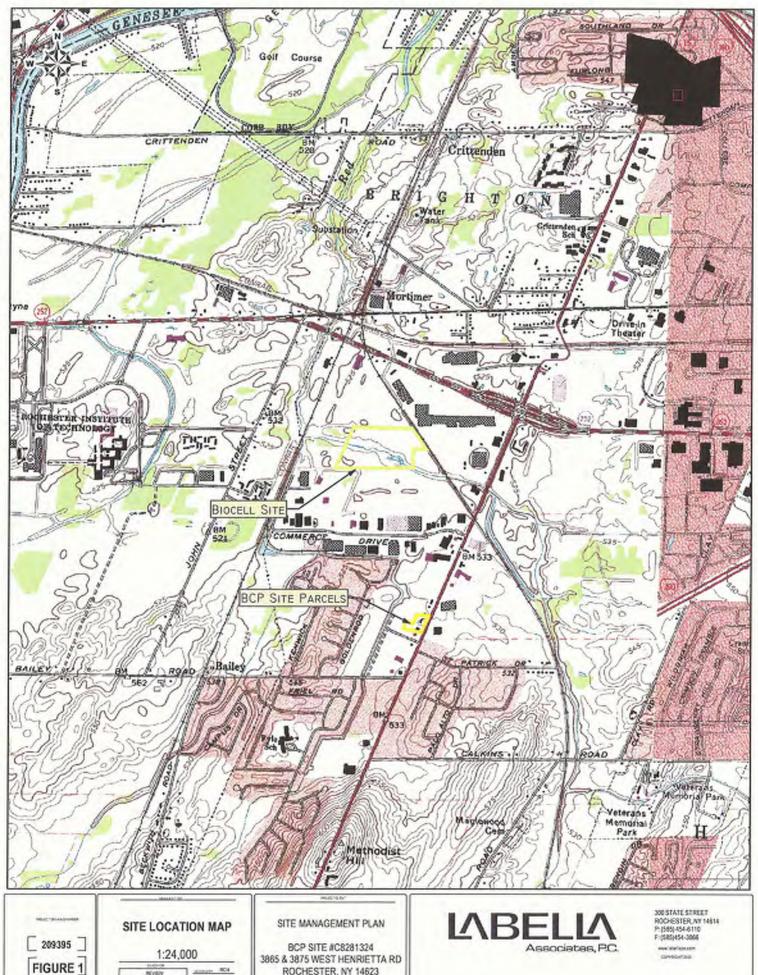
VOC analysis by USEPA Method 8260B TCL.

Bold Type denotes that the detected value exceeds its associated NYSDEC Part 703 Groundwater Standard.

ND<5.0 denotes compound not detected above the method detection limits.

D denotes that the compound was identified in a secondary dilution performed on the sample.


J denotes an estimated value; the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample.


 $^{{\}tt JO\ denotes\ that\ the\ laboratory's\ calibration\ verification\ was\ outside\ of\ acceptance\ limits.\ Result\ is\ estimated.}$

E denotes that the concentration of the compound was found to exceed the calibration range for the instrument.

U is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "interpreted as undetected."

R is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "rejected".

200020 MOI 20010 MOI 101000 OFI DATE SOLD

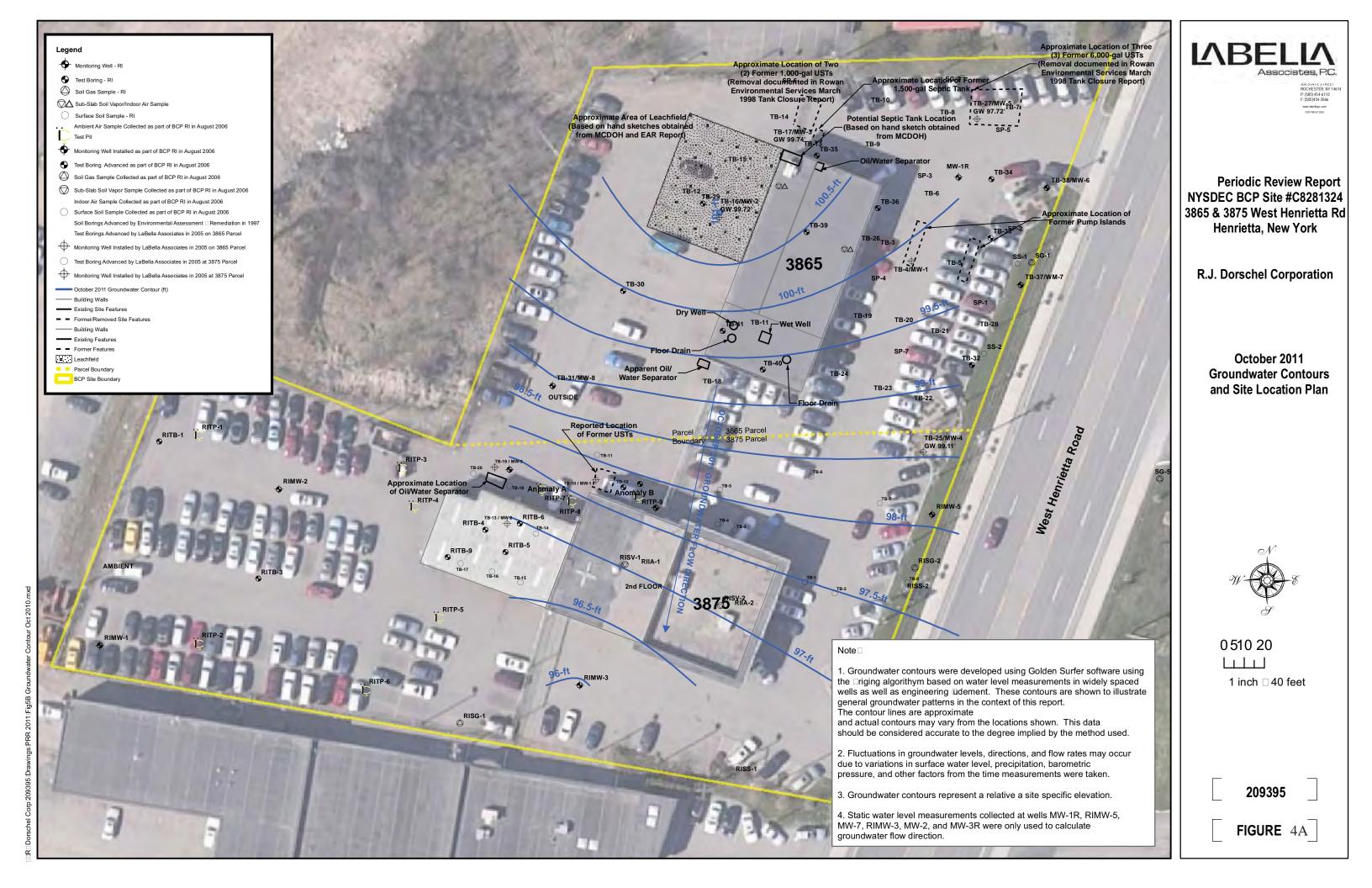
ROCHESTER, NY 14623

P (SE) EN EUR P (SE) EN EUR P (PE) EN EUR P (PE) EN EUR

Periodic Review Report NYSDEC BCP Site #C8281324 3865 & 3875 West Henrietta Rd Henrietta, New York

R.J. Dorschel Corporation

Site Plan and Surrounding Properties



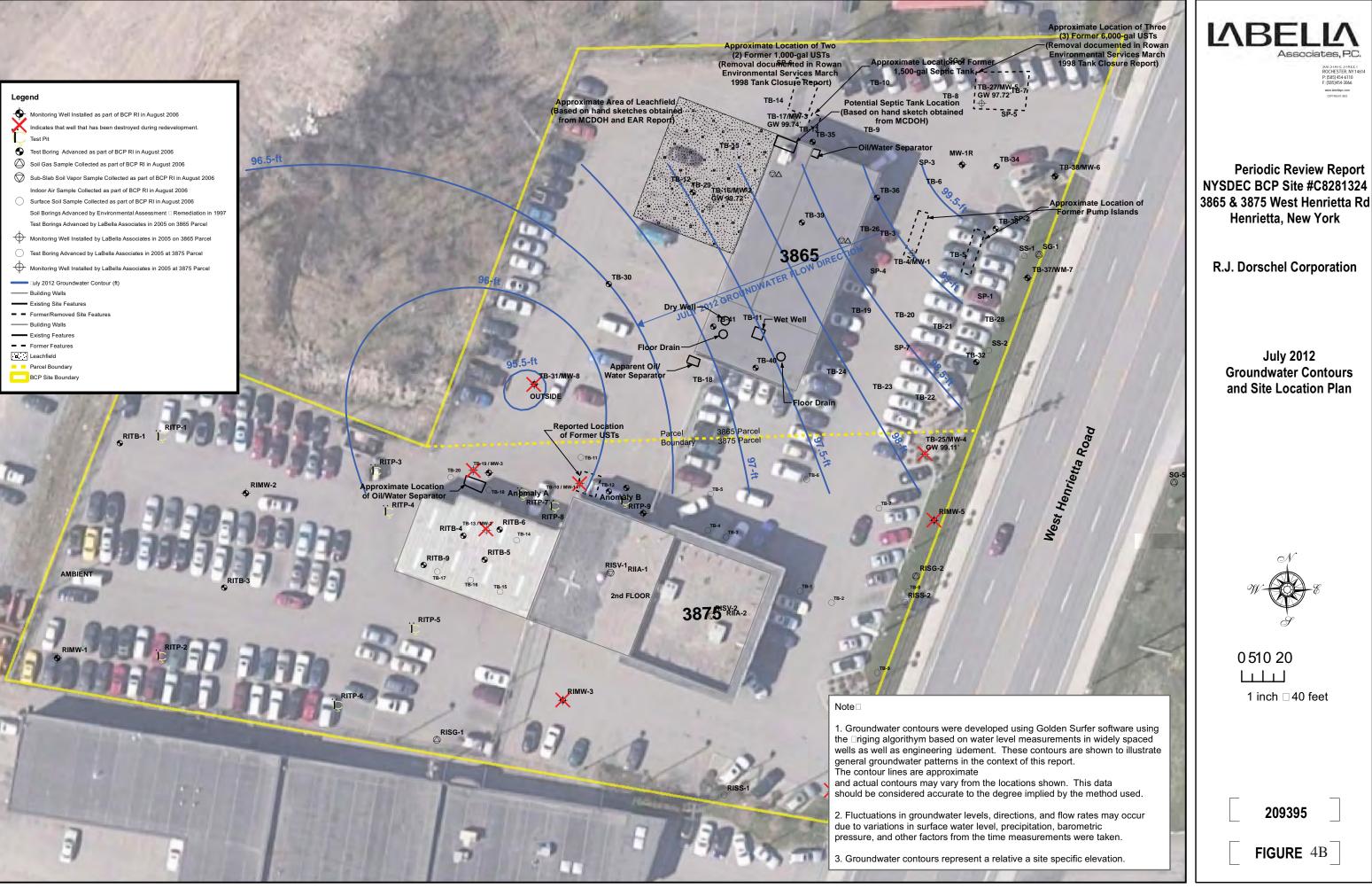

209395

FIGURE 2

Y-\R.I Dorschel Com\209395\Drawings\PRR 2011\Fig3 \Well I

Periodic Review Report

300 State Street

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066 Project Name: RJ Dorschel Groundwater Monitoring

Location: 3865 & 3875 West Henrietta Road

Project No.: 209395

Sampled By: Alexander daSilva

Date: 7/2/2019

WELL I.D.: MW-3R

WELL SAMPLING INFORMATION

Well Diameter: 2-inch Static Water Level: 2.3 feet Below Top of Casing (BTOC)

Depth of Well: 15.18 feet Length of Well Screen: 5 feet

Measuring Point: Top of Casing (TOC) Depth to Top of Pump: ±12 BTOC

Pump Type: Bladder Pump Tubing Type: Poly

FIELD PARAMETER MEASUREMENT

		\								
Time	Pump Rate	Gallons	рН	Temp	Conductivity	Turbidity	Dissolved	Redox	Water	Comments
		Purged		٥C	(mS/cm)	(NTU)	02	(mV)	Level	
							(mg/L)			
			+/-		+/- 3%		+ 10%	+/- 10	(Feet below	
			0.1					mV	TOC)	
1305			6.47	26.3	5.635	76.5	3.23	-5.0	2.55	Yellowish tint to water
1310			6.37	24.5	5.538	62.4	2.22	3.4	2.63	
1315			6.29	23.6	5.495	48.4	1.00	14.5	2.73	
1320			6.28	23.5	5.492	45.2	0.69	16.5	2.82	
1325			6.28	23.5	5.490	43.0	0.52	17.2	2.92	
1330			6.28	23.6	5.493	42.3	0.47	17.3	2.95	
1335		0.25	6.28	23.7	5.516	37.0	0.40	17.0	2.98	
1340			6.29	23.9	5.530	32.3	0.35	18.2	3.01	
1345			6.29	23.9	5.536	28.7	0.32	18.3	3.02	
1350			6.29	23.8	5.546	26.1	0.29	18.3	3.05	
1355	0.5 gal / hour	0.5	6.29	23.8	5.553	23.3	0.28	18.3	3.06	Sample collected @ 1355

Total 0.5 Gallons Purged

Purge Time Start: 1305 Purge Time End: 1355 Final Static Water Level: 3.06 '

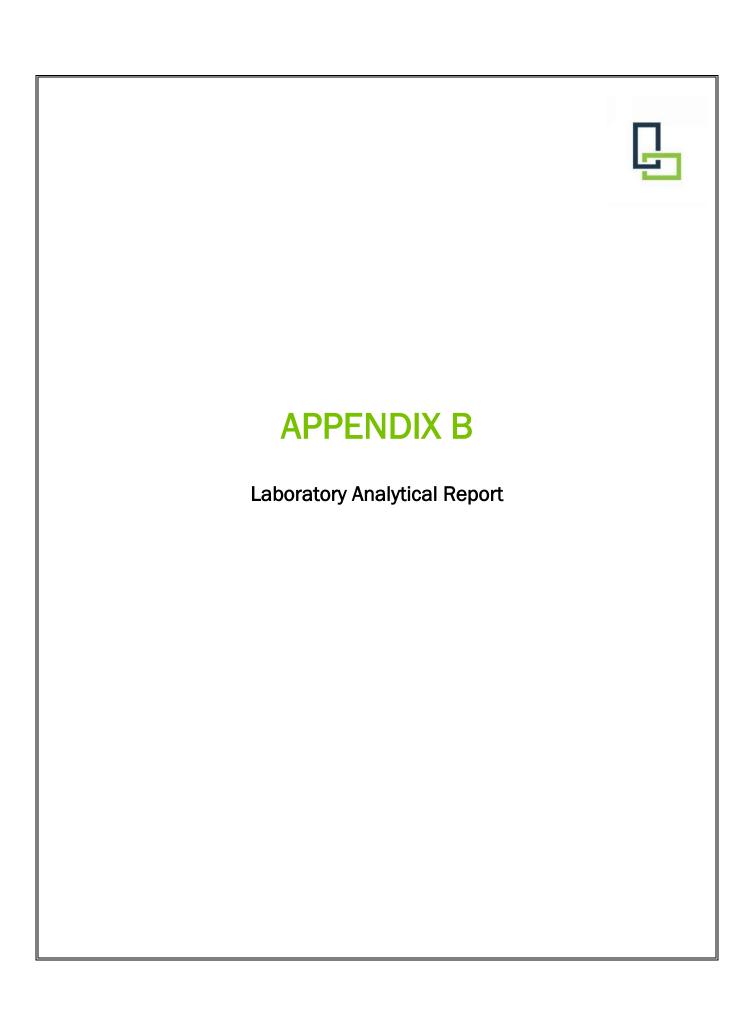
OBSERVATIONS

- MS
- MSD
- DUPE (DUPE-070219)
- Missing part within bladder pump. Had to call eco rental. Was able to fix pump and make it work without the piece. Slowed time of sampling by an hour.

300 State Street

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

Project Name: RJ Dorschel Groundwater Monitor


Location: 3865 & 3875 West Henrietta Road

Project No.: 209395

Sampled By: Alexander daSilva

7/2/2019 Date:

	WELL I.D.	<u>.:</u>	<u>MW-7</u>							
WELL SAM	IPLING INFORMA	TION								
Well Diameter:1-inchStatic Water Level:2.69 feet BelowDepth of Well:7.5 feetLength of Well Screen:5 feetMeasuring Point:Top of Casing (TOC)Depth to Top of Pump:±6 BTOCPump Type:Bladder PumpTubing Type:Poly										p of Casing (BTOC)
FIELD PAR	AMETER MEASU	REMENT								
Time	Pump Rate	Gallons Purged	pH	Temp °C	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (mg/L)	Redox (mV)	Water Level	Comments
			+/- 0.1		+/- 3%		+ 10%	+/- 10 mV	(Feet below TOC)	
1020	100 ml / min		6.47	22.5	1.172	83.3	0.70	-81.7	4.42	Yellowish water
1025			6.48	23.3	1.167	68.6	0.38	-80.6	4.45	
1030			6.50	24.8	1.156	68.2	0.59	-81.0	4.65	Well dried up. Bladder pump lowered down as far as it would go. Collected sample at 1100 after 0.5 hours of recharge.
										recharge.
Purge Time	Total Start: 1020	1 well volume	Gallons P	Purged Purge Time	e End: 10	930		Final Stat	tic Water Level:	4.65 '
OBSERVAT	TIONS									

ANALYTICAL REPORT

LaBella Associates, P.C.

Sample Delivery Group: L1115659

Samples Received: 07/03/2019

Project Number: 209395

NYSDEC BCP Site No. C828134 3865 & 3875 West Description:

Henrietta Rd.

Report To: Mr. Mike Pelychaty

300 State Street, Suite 201

Rochester, NY 14614

Entire Report Reviewed By:

T. Alan Harvill

Harrill.

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-7-070219 L1115659-01	5
MW-3R-070219 L1115659-02	6
DUPE-070219 L1115659-03	8
TRIP BLANK L1115659-04	10
Qc: Quality Control Summary	12
Volatile Organic Compounds (GC/MS) by Method 8260C	12
GI: Glossary of Terms	21
Al: Accreditations & Locations	22
Sc: Sample Chain of Custody	23

			Collected by	Collected date/time	Received da	nte/time
MW-7-070219 L1115659-01 GW			Alexander DaSilva	07/02/19 11:00	07/03/19 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1309059	20	07/10/19 17:10	07/10/19 17:10	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
MW-3R-070219 L1115659-02 GW			Alexander DaSilva	07/02/19 13:55	07/03/19 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1309059	1	07/10/19 21:15	07/10/19 21:15	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	nte/time
DUPE-070219 L1115659-03 GW			Alexander DaSilva	07/02/19 14:30	07/03/19 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1309059	1	07/10/19 17:31	07/10/19 17:31	ADM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
TRIP BLANK L1115659-04 GW			Alexander DaSilva	07/02/19 07:00	07/03/19 08	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260C	WG1309794	1	07/11/19 15:06	07/11/19 15:06	JAH	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Hamill.

Project Manager

²T -

²Tc

DATE/TIME:

07/11/19 19:31

(S) 1,2-Dichloroethane-d4

Collected date/time: 07/02/19 11:00

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

L1115659

Volatile Organic Compounds (GC/MS) by Method 8260C

99.3

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Benzene	1130		20.0	20	07/10/2019 17:10	WG1309059
n-Butylbenzene	ND		20.0	20	07/10/2019 17:10	WG1309059
sec-Butylbenzene	ND		20.0	20	07/10/2019 17:10	WG1309059
tert-Butylbenzene	ND		20.0	20	07/10/2019 17:10	WG1309059
Ethylbenzene	642		20.0	20	07/10/2019 17:10	WG1309059
Isopropylbenzene	36.5		20.0	20	07/10/2019 17:10	WG1309059
p-Isopropyltoluene	ND		20.0	20	07/10/2019 17:10	WG1309059
Methyl tert-butyl ether	ND		20.0	20	07/10/2019 17:10	WG1309059
Naphthalene	329		100	20	07/10/2019 17:10	WG1309059
n-Propylbenzene	66.7		20.0	20	07/10/2019 17:10	WG1309059
1,2,4-Trimethylbenzene	872		20.0	20	07/10/2019 17:10	WG1309059
1,3,5-Trimethylbenzene	37.7		20.0	20	07/10/2019 17:10	WG1309059
Toluene	53.0		20.0	20	07/10/2019 17:10	WG1309059
o-Xylene	66.6		20.0	20	07/10/2019 17:10	WG1309059
m&p-Xylenes	1460		40.0	20	07/10/2019 17:10	WG1309059
(S) Toluene-d8	96.8		80.0-120		07/10/2019 17:10	WG1309059
(S) 4-Bromofluorobenzene	91.9		77.0-126		07/10/2019 17:10	WG1309059

07/10/2019 17:10

70.0-130

WG1309059

ONE LAB. NATIONWIDE.

Collected date/time: 07/02/19 13:55

Volatile Organic Compounds (GC/MS) by Method 8260C

SAMPLE	RESULTS - 02
	11115659

¹ Cp	
2_	

MW-3R-070219

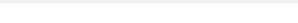
SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 07/02/19 13:55

Volatile Organic Compounds (GC/MS) by Method 8260C

voidine Organie Con	.pourius (oc	5/1110/ by 111	011100002			
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
n-Propylbenzene	ND	<u>J3</u>	1.00	1	07/10/2019 21:15	WG1309059
1,2,4-Trimethylbenzene	ND	<u>J3</u>	1.00	1	07/10/2019 21:15	WG1309059
1,3,5-Trimethylbenzene	ND	<u>J3</u>	1.00	1	07/10/2019 21:15	WG1309059
(S) Toluene-d8	92.5		80.0-120		07/10/2019 21:15	WG1309059
(S) 4-Bromofluorobenzene	86.1		77.0-126		07/10/2019 21:15	WG1309059
(S) 1,2-Dichloroethane-d4	99.5		70.0-130		07/10/2019 21:15	WG1309059



SAMPLE RESULTS - 03

Collected date/time: 07/02/19 14:30

ONE LAB. NATIONWIDE.

		C/MS) by M				
Analista	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
Acetone	ND		50.0	1	07/10/2019 17:31	WG1309059
Benzene	ND		1.00	1	07/10/2019 17:31	WG1309059
Bromochloromethane	ND		1.00	1	07/10/2019 17:31	WG1309059
Bromodichloromethane	ND		1.00	1	07/10/2019 17:31	WG1309059
Bromoform	ND		1.00	1	07/10/2019 17:31	WG1309059
Bromomethane	ND		5.00	1	07/10/2019 17:31	<u>WG1309059</u>
Carbon disulfide	ND		1.00	1	07/10/2019 17:31	WG1309059
Carbon tetrachloride	ND		1.00	1	07/10/2019 17:31	WG1309059
Chlorobenzene	109		1.00	1	07/10/2019 17:31	WG1309059
Chlorodibromomethane	ND		1.00	1	07/10/2019 17:31	WG1309059
Chloroethane	ND		5.00	1	07/10/2019 17:31	WG1309059
Chloroform	ND		5.00	1	07/10/2019 17:31	WG1309059
Chloromethane	ND	<u>J0</u>	2.50	1	07/10/2019 17:31	WG1309059
Cyclohexane	ND		1.00	1	07/10/2019 17:31	<u>WG1309059</u>
1,2-Dibromo-3-Chloropropane	ND		5.00	1	07/10/2019 17:31	WG1309059
1,2-Dibromoethane	ND		1.00	1	07/10/2019 17:31	WG1309059
1,2-Dichlorobenzene	2.84		1.00	1	07/10/2019 17:31	WG1309059
1,3-Dichlorobenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,4-Dichlorobenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
Dichlorodifluoromethane	ND	<u>J0 J4</u>	5.00	1	07/10/2019 17:31	WG1309059
1,1-Dichloroethane	ND		1.00	1	07/10/2019 17:31	WG1309059
1,2-Dichloroethane	ND		1.00	1	07/10/2019 17:31	WG1309059
1,1-Dichloroethene	ND		1.00	1	07/10/2019 17:31	WG1309059
cis-1,2-Dichloroethene	ND		1.00	1	07/10/2019 17:31	WG1309059
trans-1,2-Dichloroethene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,2-Dichloropropane	ND		1.00	1	07/10/2019 17:31	WG1309059
cis-1,3-Dichloropropene	ND		1.00	1	07/10/2019 17:31	WG1309059
trans-1,3-Dichloropropene	ND		1.00	1	07/10/2019 17:31	WG1309059
Ethylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
2-Hexanone	ND		10.0	1	07/10/2019 17:31	WG1309059
Isopropylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
2-Butanone (MEK)	ND		10.0	1	07/10/2019 17:31	WG1309059
Methyl Acetate	ND		20.0	1	07/10/2019 17:31	WG1309059
Methyl Cyclohexane	ND		1.00	1	07/10/2019 17:31	WG1309059
Methylene Chloride	ND		5.00	1	07/10/2019 17:31	WG1309059
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	07/10/2019 17:31	WG1309059
Methyl tert-butyl ether	1.20		1.00	1	07/10/2019 17:31	WG1309059
Naphthalene	ND		5.00	1	07/10/2019 17:31	WG1309059
Styrene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,1,2,2-Tetrachloroethane	ND		1.00	1	07/10/2019 17:31	WG1309059
Tetrachloroethene	ND		1.00	1	07/10/2019 17:31	WG1309059
Toluene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,2,3-Trichlorobenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,2,4-Trichlorobenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,1,1-Trichloroethane	ND		1.00	1	07/10/2019 17:31	WG1309059
1,1,2-Trichloroethane	ND		1.00	1	07/10/2019 17:31	WG1309059
Trichloroethene	ND		1.00	1	07/10/2019 17:31	WG1309059
Trichlorofluoromethane	ND		5.00	1	07/10/2019 17:31	WG1309059
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	07/10/2019 17:31	WG1309059
Vinyl chloride	ND		1.00	1	07/10/2019 17:31	WG1309059
o-Xylene	ND		1.00	1	07/10/2019 17:31	WG1309059
m&p-Xylenes	ND		2.00	1	07/10/2019 17:31	WG1309059
n-Butylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
sec-Butylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
tert-Butylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
p-Isopropyltoluene	ND		1.00	1	07/10/2019 17:31	WG1309059

Ss

Cn

Gl

Sc

DUPE-070219

SAMPLE RESULTS - 03

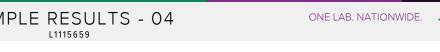
ONE LAB. NATIONWIDE.

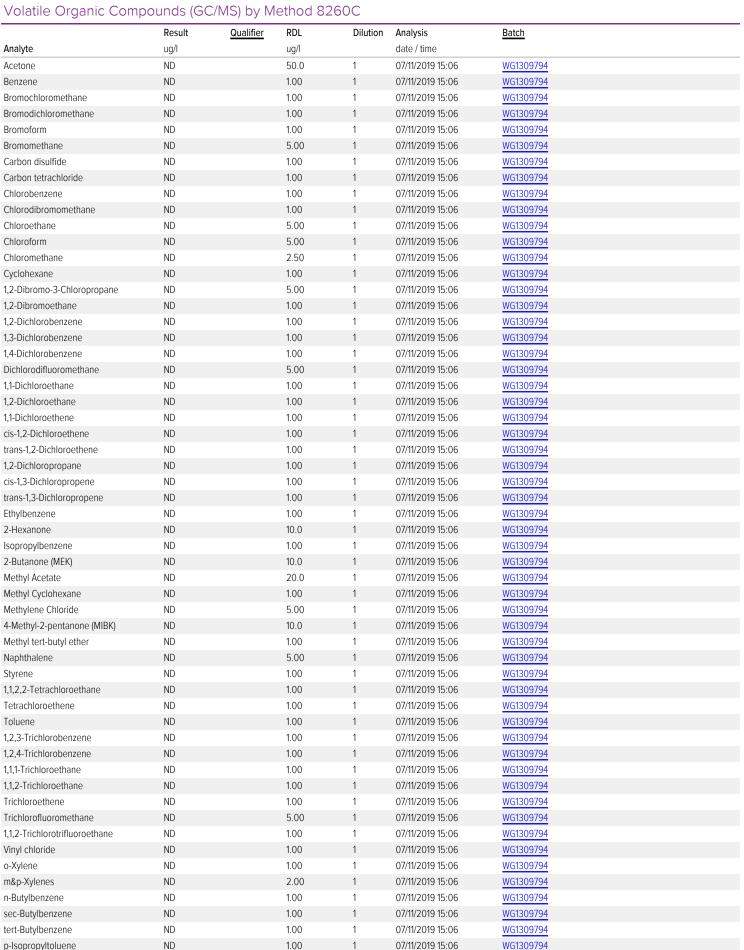
Collected date/time: 07/02/19 14:30

L1115659

Volatile Organic Compounds (GC/MS) by Method 8260C

3	1 (- / - /				
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
n-Propylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,2,4-Trimethylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
1,3,5-Trimethylbenzene	ND		1.00	1	07/10/2019 17:31	WG1309059
(S) Toluene-d8	89.7		80.0-120		07/10/2019 17:31	WG1309059
(S) 4-Bromofluorobenzene	83.4		77.0-126		07/10/2019 17:31	WG1309059
(S) 1,2-Dichloroethane-d4	96.9		70.0-130		07/10/2019 17:31	WG1309059





SAMPLE RESULTS - 04

Collected date/time: 07/02/19 07:00

TRIP BLANK

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

L1115659

Collected date/time: 07/02/19 07:00

Volatile Organic Compounds (GC/MS) by Method 8260C

· ciatile cigaine com		<i>5, 5,</i>				
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
n-Propylbenzene	ND		1.00	1	07/11/2019 15:06	WG1309794
1,2,4-Trimethylbenzene	ND		1.00	1	07/11/2019 15:06	WG1309794
1,3,5-Trimethylbenzene	ND		1.00	1	07/11/2019 15:06	WG1309794
(S) Toluene-d8	99.4		80.0-120		07/11/2019 15:06	WG1309794
(S) 4-Bromofluorobenzene	94.8		77.0-126		07/11/2019 15:06	WG1309794
(S) 1,2-Dichloroethane-d4	93.0		70.0-130		07/11/2019 15:06	WG1309794

PAGE:

11 of 23

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-01,02,03

Method Blank (MB)

Mary Mary	Method Blank (MB)				
	(MB) R3429696-2 07/10/19	9 13:56			
Keetine U 50 50 Bransele U 0.30 10 Bromolchiorichine U 0.50 100 Bromolchiorichine U 0.50 100 Bromolchiorichine U 0.66 100 Bromolchiorichine U 0.86 500 Bromolchiorichine U 0.86 500 Bromolchiorichine U 0.86 100 Bec Bulyberce U 0.98 100 Carbon fiscalide U 0.99 100 Carbon fiscalide U 0.39 100 Chronolorichine U 0.38 100 Chronolorichine U 0.43 50 Chronolorichine U 0.43 50 Chronolorichine U 0.24 50 Chronolorichine U 0.25 50 Chronolorichine U 0.25 10 Laberbord U 0.38 10		MB Result	MB Qualifier	MB MDL	MB RDL
Binamediane U 0.330 100 Bromodifformethame V 0.320 100 Bromodifformethame U 0.520 100 Bromodifformethame V 0.620 100 Bromodifformethame U 0.686 5.00 Bebylioszner U 0.310 100 Ser-Bulybonzner U 0.390 100 Carbon distribé U 0.379 100 Chrobotazone U 0.450 100 Cyclosacia U 0.381 100 Li Dirionochare U 0.391 100 Li Dirionochare U 0.250 100	Analyte	ug/l		ug/l	ug/l
Romochloromethame U 0.30 100 Bomochloromethame U 0.480 100 Bomochloromethame U 0.480 500 Fallybebraceme U 0.361 100 Earlybebraceme U 0.361 100 Carbon desulfide U 0.390 100 Carbon desulfide U 0.379 100 Chronochareme U 0.379 100 Chronochareme U 0.379 100 Chronochareme U 0.379 100 Chronochareme U 0.479 500 Chronochareme U 0.479 500 Cyclobroame U 0.379 100 U-Pubronochareme U 0.390 100 U-Pubronochareme U 0.391 100 1-Pubronochareme U 0.391 100 1-Pubronochareme U 0.351 100 1-Pubronochareme U 0.351 <	Acetone	U		10.0	50.0
Bomechorm U 0.50 100 Bromoform U 0.469 100 Bromoferbane U 0.861 500 n Buylocarce U 0.365 100 set-Bullybeacree U 0.365 100 Carbon distilfel U 0.379 100 Chloroberane U 0.379 100 Chloroberane U 0.379 100 Chloroberane U 0.379 100 Chloroberane U 0.327 100 Chloroberane U 0.327 100 Chloroberane U 0.327 100 Chloroberane U 0.322 500 Chloroberane U 0.331 500 Chloroberane U 0.332 100 L2-Dichoroberane U 0.331 100 L2-Dichoroberane U 0.349 100 L2-Dichoroberane U 0.270 100	Benzene	U		0.331	1.00
Bromefore U 0.489 100 Britomomethane U 0.865 500 Britomomethane U 0.985 100 see-Bullybereare U 0.395 100 Carbon disulfide U 0.399 100 Carbon disulfide U 0.379 100 Chloridorium disulfide U 0.384 100 Chloridorium disulfide U 0.384 100 Chloridorium disulfide U 0.394 100 Chloridorium disulfide U 0.433 500 Chloridorium disulfide U 0.324 500 Chloridorium disulfide U 0.324 500 Chloridorium disulfide U 0.394 500 Chloridorium disulfide U 0.394 500 Li-Dichorderiane U 0.394 100 12-Dichorderiane U 0.294 100 U-Chloridoriene U 0.551 5.00 U-Chloridorien	Bromodichloromethane	U		0.380	1.00
Bromentachen U 0,866 500 Brutyfebrache U 0,361 100 ser-Butyfebrache U 0,399 100 Carbon Istlacklivide U 0,379 100 Carbon Istlacklivide U 0,379 100 Chlorochenence U 0,438 100 Chlorochenence U 0,437 500 Chlorochenence U 0,433 500 Chlorochenace U 0,237 100 Chlorochenace U 0,244 500 Chlorochenace U 0,236 500 Chlorochenace U 0,236 250 Cyclorochenace U 0,391 100 12-Dhromo-Shiderpropor U 1,331 100 12-Dhromo-Shiderpropor U 0,249 100 13-Dichlorochenace U 0,249 100 14-Dichlorochenace U 0,251 500 14-Dichlorochenace U <th< td=""><td>Bromochloromethane</td><td>U</td><td></td><td>0.520</td><td>1.00</td></th<>	Bromochloromethane	U		0.520	1.00
Authorazone U 0.361 100 see-Butybenzene U 0.359 100 Carbon desidifide U 0.379 100 Carbon desidifide U 0.348 100 Chloroderizene U 0.348 100 Chloroderizene U 0.438 100 Chloroderizene U 0.438 500 Chloroderizene U 0.349 500 Chloroderizene U 0.349 500 Chloroderizene U 0.349 500 Chloroderizene U 0.390 100 L2-Ditromod-Arloropopane U 0.391 100 L2-Ditromod-Brace U 0.381 100 L2-Ditromod-Brace U 0.349 100 L2-Ditromod-Brace U 0.274 100 Dichloroderizene U 0.274 100 Dichloroderizene U 0.361 100 L2-Dichloroderizene U 0.	Bromoform	U		0.469	1.00
see Butylbenzene U 0.395 1.00 Carbon distrified U 0.275 1.00 Carbon distrified U 0.379 1.00 Chilorochizene U 0.348 1.00 Chilorochizene U 0.453 5.00 Chilorochizene U 0.453 5.00 Chilorofizm U 0.324 5.00 Chilorofizm U 0.354 5.00 Chilorofizm U 0.354 5.00 Chilorofizm U 0.354 5.00 Chilorofizm U 0.354 1.00 1.2-Dichironocharon U 0.381 1.00 1.2-Dichironocharon U 0.349 1.00 1.2-Dichironocharon U 0.274 1.00 1.2-Dichironocharon U 0.255 1.00 1.2-Dichironocharon U 0.259 1.00 1.1-Dichironocharon U 0.250 1.00 1.2-Dichironocharon U	Bromomethane	U		0.866	5.00
tet Bulylbenzene U 0.399 100 Carbon delsulide U 0.275 100 Chlorobenzene U 0.348 100 Chlorobenzene U 0.348 100 Chloroform U 0.324 50 Chloroform U 0.324 50 Chloroform U 0.394 100 Chloromethane U 0.394 100 1,2-Dibromo-3-Chloroproame U 0.394 100 1,2-Dibromo-3-Chloroproame U 0.391 100 1,2-Dibromo-3-Chloroproame U 0.394 100 1,2-Dichlorobenzene U 0.394 100 1,3-Dichlorobenzene U 0.294 100 1,4-Dichlorobenzene U 0.594 100 1,4-Dichlorobenzene U 0.361 100 1,4-Dichlorobenzene U 0.361 100 1,4-Dichlorobenzene U 0.361 100 1,2-Dichlorobenzene	n-Butylbenzene	U		0.361	1.00
Carbon disulfide U 0.375 1.00 Carbon tertachioride U 0.348 1.00 Chlorodibrame U 0.327 1.00 Chlorodibrame U 0.453 5.00 Chlorodibrame U 0.374 5.00 Chloromethane U 0.376 2.50 Cyclohexane U 0.390 1.00 12-Dibromo-Shloropropane U 0.381 1.00 12-Dibromo-Shloropropane U 0.349 1.00 12-Dichriorofabrere U 0.224 1.00 14-Dichriorofabrere U 0.224 1.00 14-Dichriorofabrere U 0.259 1.00 14-Dichriorofabrere U 0.259 1.00 12-Dichriorofabrere U 0.361 1.00 12-Dichriorofabrere U 0.361 1.00 12-Dichriorofabrere U 0.361 1.00 12-Dichriorofabrere U 0.260 1.00 23-Dich	sec-Butylbenzene	U		0.365	1.00
Carbon tetrachloride U 0.379 1.00 Chlorodezenee U 0.348 1.00 Chlorodethane U 0.453 5.00 Chloroform U 0.324 5.00 Chloromethane U 0.390 1.00 12-Distromed-Schloropropane U 0.390 1.00 12-Distromed-Schloropropane U 0.349 1.00 12-Distromed-Schloropropane U 0.349 1.00 12-Distromed-Schloropropane U 0.349 1.00 12-Distromed-Schloropropane U 0.249 1.00 12-Distromed-Schloropropane U 0.249 1.00 12-Distromed-Schloropropane U 0.274 1.00 12-Distromed-Schloropropane U 0.259 1.00 12-Distromed-Schloropropane U 0.361 1.00 12-Distromed-Schloropropane U 0.396 1.00 12-Distromed-Schloropropane U 0.396 1.00 12-Distromed-Schloropropane	tert-Butylbenzene	U		0.399	1.00
Chlorodenzene U 0.348 1.00 Chlorodinomembane U 0.327 1.00 Chlorodina U 0.453 5.00 Chlorodina U 0.274 5.00 Chloromethane U 0.276 2.50 Cyclohexane U 0.390 1.00 12-Dibromo-Schloropropane U 0.381 1.00 12-Dibromo-Ehane U 0.349 1.00 12-Dichlorobenzene U 0.349 1.00 14-Dichlorobenzene U 0.274 1.00 14-Dichlorobenzene U 0.274 1.00 14-Dichlorobenzene U 0.255 5.00 14-Dichlorobenzene U 0.259 1.00 12-Dichlorobenzene U 0.361 1.00 12-Dichlorobenzene U 0.361 1.00 12-Dichlorobenzene U 0.360 1.00 12-Dichlorobenzene U 0.360 1.00 12-Dichlorobenzene	Carbon disulfide	U		0.275	1.00
Chlorodibromomethane U 0.327 1.00 Chloroderhane U 0.324 5.00 Chloromethane U 0.24 5.00 Chloromethane U 0.276 2.50 Cyclobexane U 0.39 1.00 12-Dibromo-Schloropropane U 0.381 1.00 12-Dibromoderlane U 0.349 1.00 13-Dichloroberzene U 0.274 1.00 13-Dichloroberzene U 0.274 1.00 14-Dichloroderlane U 0.251 5.00 14-Dichloroderlane U 0.251 5.00 14-Dichloroderlane U 0.259 1.00 14-Dichloroderlane U 0.259 1.00 14-Dichloroderlane U 0.250 1.00 14-Dichloroderlane U 0.260 1.00 14-Dichloroderlane U 0.260 1.00 14-Dichloroderlane U 0.260 1.00 12-Dichloroderla	Carbon tetrachloride	U		0.379	1.00
Chlorocethane U 0.453 5.00 Chlorocher U 0.224 5.00 Chloromethane U 0.276 2.50 Cyclohexare U 0.390 1.00 1.2-Dibromo-3-Chloropropane U 0.31 1.00 1.2-Dichlorodenzene U 0.349 1.00 1.3-Dichlorodenzene U 0.274 1.00 1.4-Dichlorodenzene U 0.274 1.00 1.4-Dichlorodenzene U 0.274 1.00 1.1-Dichlorodenzene U 0.259 1.00 1.2-Dichlorodenzene U 0.259 1.00 1.2-Dichlorodenzene U 0.259 1.00 1.2-Dichlorodenzene U 0.259 1.00 1.2-Dichlorodenzene U 0.260 1.00 1.2-Dichlorodenzene U 0.260 1.00 1.2-Dichlorodenzene U 0.296 1.00 1.2-Dichlorodenzene U 0.296 1.00 1.2-D	Chlorobenzene	U		0.348	1.00
Chlorofrom U 0.324 5.00 Chloromethane U 0.276 2.50 Cyclohexane U 0.390 1.00 1,2-Dibromo-3-Chloropropane U 0.381 5.00 1,2-Dichlorobenzene U 0.349 1.00 1,3-Dichlorobenzene U 0.220 1.00 1,4-Dichlorobenzene U 0.274 1.00 U. Chlorodifluoromethane U 0.251 5.00 1,1-Dichloroethane U 0.259 1.00 1,2-Dichloroethane U 0.361 1.00 1,1-Dichloroethane U 0.361 1.00 1,1-Dichloroethane U 0.361 1.00 1,1-Dichloroethane U 0.361 1.00 1,1-Dichloroptopene U 0.361 1.00 1,2-Dichloroptopene U 0.481 1.00 1,2-Dichloroptopene U 0.491 1.00 1,2-Dichloroptopene U 0.491 1.00 <t< td=""><td>Chlorodibromomethane</td><td>U</td><td></td><td>0.327</td><td>1.00</td></t<>	Chlorodibromomethane	U		0.327	1.00
Chloromethane U 0.276 2.50 Cyclobexane U 0.390 100 L2-Dibromo-3-Chloropropane U 0.381 100 1.2-Dibromethane U 0.381 100 1.3-Dichlorobenzene U 0.270 100 1.4-Dichlorobenzene U 0.274 100 Uchlorodriburomethane U 0.551 5.00 1,1-Dichlorothane U 0.361 1.00 1,2-Dichlorothane U 0.361 1.00 1,2-Dichlorothane U 0.360 1.00 1,2-Dichlorothane U 0.260 1.00 1,2-Dichlorothan	Chloroethane	U		0.453	5.00
Cyclohexane U 0.390 1.00 1.2-Dibromo-S-Chloropropane U 0.381 1.00 1.2-Dichlorobetznen U 0.349 1.00 1.3-Dichlorobenzene U 0.220 1.00 1.4-Dichlorobenzene U 0.274 1.00 Dichlorodfluoromethane U 0.259 1.00 1.1-Dichloroethane U 0.351 5.00 1.1-Dichloroethane U 0.351 1.00 1.1-Dichloroethane U 0.361 1.00 1.1-Dichloroethane U 0.398 1.00 1.2-Dichloroethane U 0.396 1.00 1.2-Dichloroethane U 0.396 1.00 1.2-Dichloroptane U 0.396 1.00	Chloroform	U		0.324	5.00
1,2-Dibromoe-3-Chloropropane U 3.33 5.00 1,2-Dibromoethane U 0.349 1.00 1,2-Dichlorobenzene U 0.220 1.00 1,4-Dichlorobenzene U 0.274 1.00 Dichlorodifluoromethane U 0.551 5.00 1,4-Dichloroethane U 0.361 1.00 1,2-Dichloroethane U 0.361 1.00 1,2-Dichloroethane U 0.361 1.00 1,2-Dichloroethane U 0.398 1.00 1,2-Dichloroethane U 0.398 1.00 1,2-Dichloroethane U 0.396 1.00 1,2-Dichloroethane U 0.396 1.00 1,2-Dichloroethane U 0.396 1.00 1,2-Dichloropthane U 0.396 1.00 1,2-Dichloropthane U 0.418 1.00 1,2-Dichloropthane U 0.418 1.00 1,2-Dichloropthane U 0.418 1.00 <t< td=""><td>Chloromethane</td><td>U</td><td></td><td>0.276</td><td>2.50</td></t<>	Chloromethane	U		0.276	2.50
1,2-Dibromethane U 0.381 1.00 1,2-Dichlorobenzene U 0.290 1.00 1,4-Dichlorobenzene U 0.274 1.00 Dichlorodfilloromethane U 0.551 5.00 1,1-Dichloroethane U 0.259 1.00 1,2-Dichloroethane U 0.361 1.00 1,1-Dichloroethene U 0.388 1.00 cis-1,2-Dichloroethene U 0.260 1.00 1,2-Dichloropropane U 0.396 1.00 1,2-Dichloropropane U 0.306 1.00 cis-1,3-Dichloropropane U 0.418 1.00 cis-1,3-Dichloropropane U 0.419 1.00 Ethylbenzne U 0.384 1.00 2-Hexanone U 0.384 1.00 2-Hexanone U 0.326 1.00 p-Isopropylbarzene U 0.326 1.00 p-Isopropylbarzene U 0.326 1.00 2-Hexanone W 0.326 1.00 2-Hexanone 0	Cyclohexane	U		0.390	1.00
1,2-Dichlorobenzene U 0.349 1.00 1,3-Dichlorobenzene U 0.274 1.00 Dichlorodifluoromethane U 0.551 5.00 1,1-Dichloroethane U 0.259 1.00 1,2-Dichloroethane U 0.361 1.00 1,1-Dichloroethene U 0.398 1.00 cis-1,2-Dichloroethene U 0.396 1.00 cis-1,2-Dichloroethene U 0.396 1.00 1,2-Dichloropropane U 0.396 1.00 1,2-Dichloropropane U 0.348 1.00 1,2-Dichloropropane U 0.418 1.00 1,2-Dichloropropene U 0.49 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 0.384 1.00 slopropylbraene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Hexanone U 0.350 1.00 2-Hexanone U 0.350 1.00 2-Hexanone U	1,2-Dibromo-3-Chloropropane	U		1.33	5.00
1,3-Dichlorobenzene U 0,220 1,00 1,4-Dichlorobenzene U 0,274 1,00 Dichlorodiffluoromethane U 0,551 5,00 1,1-Dichloroethane U 0,259 1,00 1,2-Dichloroethane U 0,361 1,00 1,1-Dichloroethane U 0,398 1,00 cis-1,2-Dichloroethane U 0,260 1,00 trans-1,2-Dichloroethane U 0,396 1,00 1,2-Dichloropropane U 0,316 1,00 1,2-Dichloropropane U 0,418 1,00 trans-1,3-Dichloropropene U 0,49 1,00 Ethylbenzene U 0,384 1,00 2-Hexanone U 0,326 1,00 p-Isopropyltoluene U 0,326 1,00 p-Isopropyltoluene U 0,326 1,00 p-Isopropyltoluene U 0,350 1,00 p-Isopropyltoluene U 0,350 1,00	1,2-Dibromoethane	U		0.381	1.00
1.4-Dichlorobenzene U 0.274 1.00 Dichlorodifluoromethane U 0.551 5.00 1,1-Dichloroethane U 0.259 1.00 1,2-Dichloroethane U 0.361 1.00 1,1-Dichloroethene U 0.398 1.00 trans-1,2-Dichloroethene U 0.396 1.00 trans-1,2-Dichloropropene U 0.306 1.00 1,2-Dichloropropene U 0.306 1.00 trans-1,3-Dichloropropene U 0.418 1.00 trans-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 0.326 1.00 Isopropylbenzene U 0.326 1.00 p-Isopropylbenzene U 0.326 1.00 p-Isopropylbenzene U 0.350 1.00 p-Isopropylbenzene U 0.350 1.00 p-Isopropylbenzene U 0.350 1.00 p-Isopropylbenzene U 0.350 1.00 <td< td=""><td>1,2-Dichlorobenzene</td><td>U</td><td></td><td>0.349</td><td>1.00</td></td<>	1,2-Dichlorobenzene	U		0.349	1.00
Dicklorodifluoromethane U 0.551 5.00 1,1-Dickloroethane U 0.259 1.00 1,2-Dickloroethane U 0.361 1.00 1,1-Dickloroethene U 0.398 1.00 cis-1,2-Dickloroethene U 0.396 1.00 trans-1,2-Dickloropropane U 0.306 1.00 cis-1,3-Dickloropropane U 0.418 1.00 cis-1,3-Dickloropropane U 0.418 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 1.00 Isopropylbenzene U 0.326 1.00 Isopropylbenzene U 0.326 1.00 Isopropylbenzene U 0.326 1.00 Isopropylbenzene U 0.350 1.00 Isopropylbenzene U 0.350 1.00 Isopropylbenzene U 0.350 1.00 Isopropylbenzene U 0.350 1.00 Iso	1,3-Dichlorobenzene	U		0.220	1.00
1,1-Dichloroethane U 0.259 1.00 1,2-Dichloroethane U 0.361 1.00 1,1-Dichloroethane U 0.398 1.00 cis-1,2-Dichloroethane U 0.396 1.00 1,2-Dichloropropane U 0.306 1.00 cis-1,3-Dichloropropane U 0.418 1.00 cis-1,3-Dichloropropane U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 1.00 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 1.00	1,4-Dichlorobenzene	U		0.274	1.00
1,2-Dichloroethane U 0.361 1.00 1,1-Dichloroethane U 0.398 1.00 cis-1,2-Dichloroethane U 0.260 1.00 trans-1,2-Dichloropropane U 0.396 1.00 1,2-Dichloropropane U 0.418 1.00 cis-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 1.00 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	Dichlorodifluoromethane	U		0.551	5.00
1,1-Dichloroethene U 0.398 1.00 cis-1,2-Dichloroethene U 0.396 1.00 1,2-Dichloropropane U 0.306 1.00 cis-1,3-Dichloropropene U 0.418 1.00 trans-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 1.00 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	1,1-Dichloroethane	U		0.259	1.00
cis-1,2-Dichloroethene U 0.260 1.00 trans-1,2-Dichloropropane U 0.396 1.00 1,2-Dichloropropane U 0.418 1.00 cis-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 1.00 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 1.00	1,2-Dichloroethane	U		0.361	1.00
trans-1,2-Dichloroethene U 0.396 1.00 1,2-Dichloropropane U 0.306 1.00 cis-1,3-Dichloropropene U 0.418 1.00 trans-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 10.0 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	1,1-Dichloroethene	U		0.398	1.00
1,2-Dichloropropane U 0.306 1.00 cis-1,3-Dichloropropene U 0.418 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 1.00 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	cis-1,2-Dichloroethene	U		0.260	1.00
cis-1,3-Dichloropropene U 0.418 1.00 trans-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 10.0 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	trans-1,2-Dichloroethene	U		0.396	1.00
trans-1,3-Dichloropropene U 0.419 1.00 Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 10.0 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	1,2-Dichloropropane	U		0.306	1.00
Ethylbenzene U 0.384 1.00 2-Hexanone U 3.82 10.0 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	cis-1,3-Dichloropropene	U		0.418	1.00
2-Hexanone U 3.82 10.0 Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	trans-1,3-Dichloropropene	U		0.419	1.00
Isopropylbenzene U 0.326 1.00 p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	Ethylbenzene	U		0.384	1.00
p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	2-Hexanone	U		3.82	10.0
p-Isopropyltoluene U 0.350 1.00 2-Butanone (MEK) U 3.93 10.0	Isopropylbenzene	U		0.326	1.00
2-Butanone (MEK) U 3.93 10.0		U		0.350	1.00
		U		3.93	10.0
inclini Accidic U 4.5U ZU.U	Methyl Acetate	U		4.30	20.0
Methyl Cyclohexane U 0.380 1.00		U		0.380	1.00
Methylene Chloride U 1.00 5.00		U		1.00	5.00
4-Methyl-2-pentanone (MIBK) U 2.14 10.0		U		2.14	10.0

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-01,02,03

Method Blank (MB)

(MB) R3429696-2 07/10/	19 13:56				L
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ug/l		ug/l	ug/l	² T
Methyl tert-butyl ether	U		0.367	1.00	<u></u>
Naphthalene	U		1.00	5.00	³S
n-Propylbenzene	U		0.349	1.00	
Styrene	U		0.307	1.00	4
1,1,2,2-Tetrachloroethane	U		0.130	1.00	⁴ C
Tetrachloroethene	U		0.372	1.00	\vdash
Toluene	U		0.412	1.00	⁵ S
1,1,2-Trichlorotrifluoroethane	U		0.303	1.00	Ľ
1,2,3-Trichlorobenzene	U		0.230	1.00	6
1,2,4-Trichlorobenzene	U		0.355	1.00	₆ C
1,1,1-Trichloroethane	U		0.319	1.00	,
1,1,2-Trichloroethane	U		0.383	1.00	⁷ G
Trichloroethene	U		0.398	1.00	
Trichlorofluoromethane	U		1.20	5.00	8
1,2,4-Trimethylbenzene	U		0.373	1.00	Α
1,3,5-Trimethylbenzene	U		0.387	1.00	<u> </u>
Vinyl chloride	U		0.259	1.00	⁹ S
o-Xylene	U		0.341	1.00	Ľ
m&p-Xylenes	U		0.719	2.00	
(S) Toluene-d8	103			80.0-120	
(S) 4-Bromofluorobenzene	95.5			77.0-126	
(S) 1,2-Dichloroethane-d4	99.7			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3429696-1 07/10)/19 13·15				
(200)	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Acetone	125	111	88.5	19.0-160	
Benzene	25.0	24.9	99.4	70.0-123	
Bromodichloromethane	25.0	24.1	96.3	75.0-120	
Bromochloromethane	25.0	23.2	92.8	76.0-122	
Bromoform	25.0	27.6	110	68.0-132	
Bromomethane	25.0	21.3	85.1	10.0-160	
n-Butylbenzene	25.0	23.5	93.9	73.0-125	
sec-Butylbenzene	25.0	22.6	90.6	75.0-125	
tert-Butylbenzene	25.0	23.5	93.9	76.0-124	
Carbon disulfide	25.0	26.2	105	61.0-128	
Carbon tetrachloride	25.0	27.5	110	68.0-126	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-01,02,03

Laboratory Control	Sample (Lo	CS)			
(LCS) R3429696-1 07/10/19	9 13:15				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Chlorobenzene	25.0	26.0	104	80.0-121	
Chlorodibromomethane	25.0	27.6	110	77.0-125	
Chloroethane	25.0	29.2	117	47.0-150	
Chloroform	25.0	24.2	97.0	73.0-120	
Chloromethane	25.0	16.6	66.2	41.0-142	
Cyclohexane	25.0	25.9	104	71.0-124	
1,2-Dibromo-3-Chloropropane	25.0	23.3	93.1	58.0-134	
1,2-Dibromoethane	25.0	26.6	107	80.0-122	
1,2-Dichlorobenzene	25.0	25.0	100	79.0-121	
1,3-Dichlorobenzene	25.0	23.9	95.8	79.0-120	
1,4-Dichlorobenzene	25.0	23.2	92.7	79.0-120	
Dichlorodifluoromethane	25.0	39.5	158	51.0-149	<u>J4</u>
1,1-Dichloroethane	25.0	24.9	99.7	70.0-126	
1,2-Dichloroethane	25.0	24.3	97.4	70.0-128	
1,1-Dichloroethene	25.0	26.7	107	71.0-124	
cis-1,2-Dichloroethene	25.0	25.3	101	73.0-120	
trans-1,2-Dichloroethene	25.0	26.9	108	73.0-120	
1,2-Dichloropropane	25.0	25.5	102	77.0-125	
cis-1,3-Dichloropropene	25.0	24.8	99.1	80.0-123	
trans-1,3-Dichloropropene	25.0	25.5	102	78.0-124	
Ethylbenzene	25.0	25.6	102	79.0-123	
2-Hexanone	125	126	101	67.0-149	
Isopropylbenzene	25.0	25.7	103	76.0-127	
p-Isopropyltoluene	25.0	24.8	99.4	76.0-125	
2-Butanone (MEK)	125	116	92.6	44.0-160	
Methyl Acetate	125	126	101	57.0-148	
Methyl Cyclohexane	25.0	25.1	100	68.0-126	
Methylene Chloride	25.0	25.7	103	67.0-120	
4-Methyl-2-pentanone (MIBK)	125	130	104	68.0-142	
Methyl tert-butyl ether	25.0	24.1	96.6	68.0-125	
Naphthalene	25.0	22.2	88.8	54.0-135	
n-Propylbenzene	25.0	23.1	92.3	77.0-124	
Styrene	25.0	27.0	108	73.0-130	
1,1,2,2-Tetrachloroethane	25.0	22.8	91.1	65.0-130	
Tetrachloroethene	25.0	26.4	106	72.0-132	
Toluene	25.0	24.5	97.9	79.0-120	
1,1,2-Trichlorotrifluoroethane	25.0	27.1	108	69.0-132	
1,2,3-Trichlorobenzene	25.0	25.2	101	50.0-138	
1,2,4-Trichlorobenzene	25.0	24.1	96.5	57.0-137	
1,1,1-Trichloroethane	25.0	26.2	105	73.0-124	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-01,02,03

Laboratory Control Sample (LCS)

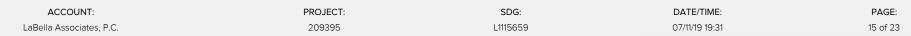
(LCS) R3429696-1 07/10/19 13:	:15	
-------------------------------	-----	--

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
1,1,2-Trichloroethane	25.0	23.7	94.8	80.0-120	
Trichloroethene	25.0	26.0	104	78.0-124	
Trichlorofluoromethane	25.0	32.8	131	59.0-147	
1,2,4-Trimethylbenzene	25.0	23.6	94.4	76.0-121	
1,3,5-Trimethylbenzene	25.0	22.7	90.9	76.0-122	
Vinyl chloride	25.0	27.4	109	67.0-131	
o-Xylene	25.0	24.9	99.8	80.0-122	
m&p-Xylenes	50.0	52.5	105	80.0-122	
(S) Toluene-d8			96.2	80.0-120	
(S) 4-Bromofluorobenzene			96.5	77.0-126	
(S) 1,2-Dichloroethane-d4			106	70.0-130	

L1115659-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1115659-02 07/10/19 21:15	 (MS) R3429696-3 	07/10/19 21:35 • (N	MSD) R3429696-4	07/10/19 21:56
---------------------------------	-------------------------------------	---------------------	-----------------	----------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Acetone	125	ND	42.7	63.7	34.2	50.9	1	10.0-160		<u>J3</u>	39.4	35
Benzene	25.0	ND	11.0	16.1	44.0	64.5	1	17.0-158		<u>J3</u>	37.9	27
Bromodichloromethane	25.0	ND	10.4	14.5	41.4	57.9	1	31.0-150		<u>J3</u>	33.3	27
Bromochloromethane	25.0	ND	11.5	15.0	46.0	60.2	1	38.0-142		<u>J3</u>	26.7	26
Bromoform	25.0	ND	9.18	13.6	36.7	54.4	1	29.0-150		<u>J3</u>	38.7	29
Bromomethane	25.0	ND	7.06	11.5	28.2	45.8	1	10.0-160		<u>J3</u>	47.5	38
n-Butylbenzene	25.0	ND	9.01	13.4	36.0	53.7	1	31.0-150		<u>J3</u>	39.4	30
sec-Butylbenzene	25.0	ND	9.01	13.1	36.0	52.3	1	33.0-155		<u>J3</u>	36.8	29
tert-Butylbenzene	25.0	ND	9.48	13.6	37.9	54.3	1	34.0-153		<u>J3</u>	35.4	28
Carbon disulfide	25.0	ND	12.4	17.5	49.4	70.1	1	10.0-156		<u>J3</u>	34.6	28
Carbon tetrachloride	25.0	ND	12.4	18.7	49.6	74.8	1	23.0-159		<u>J3</u>	40.6	28
Chlorobenzene	25.0	117	120	136	12.6	76.7	1	33.0-152	$\underline{\vee}$		12.5	27
Chlorodibromomethane	25.0	ND	9.57	14.4	38.3	57.6	1	37.0-149		<u>J3</u>	40.3	27
Chloroethane	25.0	ND	12.4	17.7	49.7	70.8	1	10.0-160		<u>J3</u>	35.0	30
Chloroform	25.0	ND	10.9	15.0	43.7	59.9	1	29.0-154		<u>J3</u>	31.1	28
Chloromethane	25.0	ND	7.16	10.9	28.7	43.7	1	10.0-160		<u>J3</u>	41.6	29
Cyclohexane	25.0	ND	11.7	16.9	46.9	67.6	1	19.0-160		<u>J3</u>	36.1	23
1,2-Dibromo-3-Chloropropane	25.0	ND	8.84	13.2	35.4	52.7	1	22.0-151		<u>J3</u>	39.4	34
1,2-Dibromoethane	25.0	ND	9.48	14.3	37.9	57.2	1	34.0-147		<u>J3</u>	40.5	27
1,2-Dichlorobenzene	25.0	2.78	12.3	17.4	38.1	58.5	1	34.0-149		<u>J3</u>	34.4	28
1,3-Dichlorobenzene	25.0	ND	9.82	13.8	39.3	55.4	1	36.0-146		<u>J3</u>	34.1	27
1,4-Dichlorobenzene	25.0	ND	9.98	14.6	39.9	58.5	1	35.0-142		<u>J3</u>	37.7	27



ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-01,02,03

L1115659-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

e Duplicate (MSD)	
7/10/19 21:56	

(OS) L1115659-02 07/10/19				MSD) R342969									
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	ľ
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Dichlorodifluoromethane	25.0	ND	18.1	26.4	68.1	101	1	10.0-160		<u>J3</u>	37.0	29	i.
1,1-Dichloroethane	25.0	ND	11.8	16.7	44.3	63.7	1	25.0-158		<u>J3</u>	34.2	27	
1,2-Dichloroethane	25.0	ND	10.4	14.7	41.5	58.9	1	29.0-151		<u>J3</u>	34.6	27	
1,1-Dichloroethene	25.0	ND	12.6	17.9	50.3	71.4	1	11.0-160		<u>J3</u>	34.8	29	Γ
cis-1,2-Dichloroethene	25.0	ND	11.5	16.2	45.8	64.9	1	10.0-160		<u>J3</u>	34.5	27	
trans-1,2-Dichloroethene	25.0	ND	12.4	18.2	49.4	72.7	1	17.0-153		<u>J3</u>	38.1	27	L
1,2-Dichloropropane	25.0	ND	10.6	15.1	42.5	60.6	1	30.0-156		<u>J3</u>	35.1	27	
cis-1,3-Dichloropropene	25.0	ND	9.11	13.5	36.4	53.9	1	34.0-149		<u>J3</u>	38.7	28	
trans-1,3-Dichloropropene	25.0	ND	8.40	13.0	33.6	51.8	1	32.0-149		<u>J3</u>	42.7	28	
Ethylbenzene	25.0	ND	10.1	15.4	40.6	61.5	1	30.0-155		<u>J3</u>	40.9	27	
2-Hexanone	125	ND	41.1	68.0	32.9	54.4	1	21.0-160		<u>J3</u>	49.3	29	,
Isopropylbenzene	25.0	ND	9.35	14.1	37.4	56.5	1	28.0-157		<u>J3</u>	40.6	27	
p-Isopropyltoluene	25.0	ND	9.58	13.9	38.3	55.7	1	30.0-154		<u>J3</u>	36.9	29	Ĺ
2-Butanone (MEK)	125	ND	43.5	65.1	34.8	52.0	1	10.0-160		<u>J3</u>	39.7	32	(
Methyl Acetate	125	ND	41.6	68.2	33.3	54.5	1	18.0-151		<u>J3</u>	48.4	30	
Methyl Cyclohexane	25.0	ND	10.8	15.5	43.1	62.0	1	11.0-160		<u>J3</u>	36.0	24	į.
Methylene Chloride	25.0	ND	11.6	15.7	46.3	62.8	1	23.0-144		<u>J3</u>	30.2	28	
4-Methyl-2-pentanone (MIBK)	125	ND	43.2	69.1	34.6	55.3	1	29.0-160		<u>J3</u>	46.1	29	
Methyl tert-butyl ether	25.0	1.24	10.6	14.6	37.4	53.5	1	28.0-150		<u>J3</u>	31.9	29	
Naphthalene	25.0	ND	7.41	11.8	29.6	47.0	1	12.0-156		<u>J3</u>	45.3	35	
n-Propylbenzene	25.0	ND	9.21	13.3	36.8	53.0	1	31.0-154		<u>J3</u>	36.1	28	
Styrene	25.0	ND	8.58	13.3	34.3	53.3	1	33.0-155		<u>J3</u>	43.4	28	
1,1,2,2-Tetrachloroethane	25.0	ND	8.85	12.5	35.4	50.1	1	33.0-150		<u>J3</u>	34.4	28	
Tetrachloroethene	25.0	ND	10.5	15.6	42.1	62.5	1	10.0-160		<u>J3</u>	38.9	27	
Toluene	25.0	ND	9.38	14.0	37.5	55.9	1	26.0-154		<u>J3</u>	39.4	28	
1,1,2-Trichlorotrifluoroethane	25.0	ND	12.7	17.7	50.7	70.6	1	23.0-160		<u>J3</u>	32.9	30	
1,2,3-Trichlorobenzene	25.0	ND	8.29	12.5	33.2	50.0	1	17.0-150		<u>J3</u>	40.6	36	
1,2,4-Trichlorobenzene	25.0	ND	8.54	13.3	34.2	53.3	1	24.0-150		<u>J3</u>	43.8	33	
1,1,1-Trichloroethane	25.0	ND	11.8	17.6	47.2	70.3	1	23.0-160		<u>J3</u>	39.4	28	
1,1,2-Trichloroethane	25.0	ND	8.89	13.2	35.6	52.6	1	35.0-147		<u>J3</u>	38.7	27	
Trichloroethene	25.0	ND	11.5	16.9	45.8	67.5	1	10.0-160		<u>J3</u>	38.3	25	
Trichlorofluoromethane	25.0	ND	13.9	20.8	55.5	83.1	1	17.0-160		<u>J3</u>	39.9	31	
1,2,4-Trimethylbenzene	25.0	ND	8.99	13.4	36.0	53.5	1	26.0-154		<u>J3</u>	39.2	27	
1,3,5-Trimethylbenzene	25.0	ND	9.10	13.3	36.4	53.3	1	28.0-153		<u>J3</u>	37.8	27	
Vinyl chloride	25.0	ND	13.1	18.3	52.4	73.2	1	10.0-160		<u>J3</u>	33.3	27	
o-Xylene	25.0	ND	9.04	13.5	36.1	54.1	1	45.0-144	<u>J6</u>	<u>J3</u>	39.8	26	
m&p-Xylenes	50.0	ND	19.6	30.0	39.2	60.0	1	43.0-146	<u>J6</u>	<u>J3</u>	42.0	26	
(S) Toluene-d8					89.1	92.9		80.0-120					
(S) 4-Bromofluorobenzene					86.2	91.1		77.0-126					
(S) 1,2-Dichloroethane-d4					103	103		70.0-130					
Δι	CCOUNT:			PRO	JECT:			SDG:		DATE/	TIME:	P	AGE:

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-04

Method Blank (MB)

(MB) R3429831-3 07/11/19	10:43				
,	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Acetone	U		10.0	50.0	
Benzene	U		0.331	1.00	
Bromodichloromethane	U		0.380	1.00	
Bromochloromethane	U		0.520	1.00	
Bromoform	U		0.469	1.00	
Bromomethane	U		0.866	5.00	
n-Butylbenzene	U		0.361	1.00	
sec-Butylbenzene	U		0.365	1.00	
tert-Butylbenzene	U		0.399	1.00	
Carbon disulfide	U		0.275	1.00	
Carbon tetrachloride	U		0.379	1.00	
Chlorobenzene	U		0.348	1.00	
Chlorodibromomethane	U		0.327	1.00	
Chloroethane	U		0.453	5.00	
Chloroform	U		0.324	5.00	
Chloromethane	U		0.276	2.50	
Cyclohexane	U		0.390	1.00	
1,2-Dibromo-3-Chloropropane	U		1.33	5.00	
1,2-Dibromoethane	U		0.381	1.00	
1,2-Dichlorobenzene	U		0.349	1.00	
1,3-Dichlorobenzene	U		0.220	1.00	
1,4-Dichlorobenzene	U		0.274	1.00	
Dichlorodifluoromethane	U		0.551	5.00	
1,1-Dichloroethane	U		0.259	1.00	
1,2-Dichloroethane	U		0.361	1.00	
1,1-Dichloroethene	U		0.398	1.00	
cis-1,2-Dichloroethene	U		0.260	1.00	
trans-1,2-Dichloroethene	U		0.396	1.00	
1,2-Dichloropropane	U		0.306	1.00	
cis-1,3-Dichloropropene	U		0.418	1.00	
trans-1,3-Dichloropropene	U		0.419	1.00	
Ethylbenzene	U		0.384	1.00	
2-Hexanone	U		3.82	10.0	
sopropylbenzene	U		0.326	1.00	
p-Isopropyltoluene	U		0.350	1.00	
2-Butanone (MEK)	U		3.93	10.0	
Methyl Acetate	U		4.30	20.0	
Methyl Cyclohexane	U		0.380	1.00	
Methylene Chloride	U		1.00	5.00	
4-Methyl-2-pentanone (MIBK)	U		2.14	10.0	

Ss

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-04

Method Blank (MB)

10:43					_
MB Result	MB Qualifier	MB MDL	MB RDL		r
ug/l		ug/l	ug/l		***************************************
U		0.367	1.00		
U		1.00	5.00		3
U		0.349	1.00		L
U		0.307	1.00		2
U		0.130	1.00		4
U		0.372	1.00		
U		0.412	1.00		5
U		0.303	1.00		L
U		0.230	1.00		6
U		0.355	1.00		
U		0.319	1.00		r
U		0.383	1.00		7
U		0.398	1.00		L
U		1.20	5.00		1
U		0.373	1.00		200
U		0.387	1.00		Ĺ.,
U		0.259	1.00		Ś
U		0.341	1.00		L
U		0.719	2.00		
104			80.0-120		
105			77.0-126		
93.7			70.0-130		
	MB Result ug/I U U U U U U U U U U U U U	MB Result ug/l U U U U U U U U U U U U U	MB Result ug/l MB Qualifier ug/l MB MDL ug/l U 0.367 U 1.00 U 0.349 U 0.307 U 0.130 U 0.372 U 0.412 U 0.230 U 0.355 U 0.383 U 0.398 U 1.20 U 0.373 U 0.387 U 0.259 U 0.341 U 0.719 104 105	MB Result ug/l MB Qualifier ug/l MB MDL ug/l MB RDL ug/l U 0.367 1.00 U 1.00 5.00 U 0.349 1.00 U 0.307 1.00 U 0.130 1.00 U 0.372 1.00 U 0.303 1.00 U 0.303 1.00 U 0.230 1.00 U 0.355 1.00 U 0.319 1.00 U 0.383 1.00 U 0.398 1.00 U 0.373 1.00 U 0.373 1.00 U 0.387 1.00 U 0.259 1.00 U 0.341 1.00 U 0.341 1.00 U 0.341 1.00 U 0.719 2.00 104 0.7126 77.0-126	MB Result MB Qualifier MB MD MB RDL ug/l ug/l ug/l U 50 100 U 100 500 U 0.349 100 U 0.390 100 U 0.391 100 U 0.392 100 U 0.412 100 U 0.432 100 U 0.393 100 U 0.393 100 U 0.395 100 U 0.398 100 U 0.398 100 U 10.399 100 U 1.00 500 U 0.379 100 U 0.399 100 U 0.399 100 U 0.259 100 U 0.259 100 U 0.240 20 U 0.270 20 U <td< td=""></td<>

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3429831-1 07/11/1	9 09:40 • (LCSD) R3429831-2	07/11/19 10:01							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Acetone	125	125	118	99.8	94.7	19.0-160			5.22	27
Benzene	25.0	24.5	25.5	97.9	102	70.0-123			4.15	20
Bromodichloromethane	25.0	23.6	23.9	94.4	95.6	75.0-120			1.20	20
Bromochloromethane	25.0	25.9	25.7	104	103	76.0-122			0.938	20
Bromoform	25.0	21.4	21.3	85.4	85.2	68.0-132			0.315	20
Bromomethane	25.0	30.8	30.0	123	120	10.0-160			2.76	25
n-Butylbenzene	25.0	23.6	26.2	94.3	105	73.0-125			10.4	20
sec-Butylbenzene	25.0	23.3	26.4	93.1	105	75.0-125			12.5	20
tert-Butylbenzene	25.0	23.9	27.2	95.6	109	76.0-124			13.0	20
Carbon disulfide	25.0	27.1	28.6	108	114	61.0-128			5.43	20
Carbon tetrachloride	25.0	28.0	26.6	112	106	68.0-126			5.33	20

1,1,1-Trichloroethane

25.0

26.1

25.6

104

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-04

Laboratory Control	Sample (L	CS) • Labo	oratory Con	itrol Samp	le Duplicat	e (LCSD)					
(LCS) R3429831-1 07/11/19	09:40 • (LCSD) R3429831-2	07/11/19 10:01								
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Chlorobenzene	25.0	22.5	23.0	90.1	92.2	80.0-121			2.29	20	
Chlorodibromomethane	25.0	22.2	22.6	88.7	90.5	77.0-125			2.04	20	
Chloroethane	25.0	27.0	26.5	108	106	47.0-150			1.55	20	
Chloroform	25.0	25.0	25.9	100	104	73.0-120			3.43	20	
Chloromethane	25.0	26.5	26.1	106	104	41.0-142			1.71	20	
Cyclohexane	25.0	26.8	26.2	107	105	71.0-124			2.25	20	
1,2-Dibromo-3-Chloropropane	25.0	21.2	22.4	84.7	89.6	58.0-134			5.69	20	
1,2-Dibromoethane	25.0	22.2	23.3	88.9	93.1	80.0-122			4.57	20	
1,2-Dichlorobenzene	25.0	23.8	27.1	95.4	108	79.0-121			12.8	20	
1,3-Dichlorobenzene	25.0	25.4	28.3	102	113	79.0-120			11.0	20	
1,4-Dichlorobenzene	25.0	22.5	26.8	89.8	107	79.0-120			17.7	20	
Dichlorodifluoromethane	25.0	30.9	30.9	124	124	51.0-149			0.00579	20	
1,1-Dichloroethane	25.0	24.1	24.7	96.4	98.8	70.0-126			2.44	20	
1,2-Dichloroethane	25.0	22.4	23.1	89.5	92.5	70.0-128			3.30	20	
1,1-Dichloroethene	25.0	28.3	28.1	113	113	71.0-124			0.696	20	
cis-1,2-Dichloroethene	25.0	24.9	25.5	99.5	102	73.0-120			2.55	20	
trans-1,2-Dichloroethene	25.0	24.2	24.6	96.7	98.5	73.0-120			1.86	20	
1,2-Dichloropropane	25.0	23.5	24.2	94.0	96.9	77.0-125			2.95	20	
cis-1,3-Dichloropropene	25.0	20.9	23.2	83.7	93.0	80.0-123			10.5	20	
trans-1,3-Dichloropropene	25.0	21.9	23.5	87.6	94.1	78.0-124			7.19	20	
Ethylbenzene	25.0	23.9	24.8	95.6	99.3	79.0-123			3.83	20	
2-Hexanone	125	105	106	84.3	84.6	67.0-149			0.322	20	
Isopropylbenzene	25.0	26.0	25.7	104	103	76.0-127			1.09	20	
p-Isopropyltoluene	25.0	24.8	28.0	99.1	112	76.0-125			12.3	20	
2-Butanone (MEK)	125	114	113	91.6	90.7	44.0-160			0.984	20	
Methyl Acetate	125	120	117	95.9	93.3	57.0-148			2.75	20	
Methyl Cyclohexane	25.0	27.7	27.2	111	109	68.0-126			1.77	20	
Methylene Chloride	25.0	26.1	24.5	105	98.0	67.0-120			6.45	20	
4-Methyl-2-pentanone (MIBK)	125	111	110	88.9	87.9	68.0-142			1.11	20	
Methyl tert-butyl ether	25.0	25.7	23.8	103	95.2	68.0-125			7.69	20	
Naphthalene	25.0	21.5	23.2	85.9	92.9	54.0-135			7.91	20	
n-Propylbenzene	25.0	21.6	24.3	86.2	97.3	77.0-124			12.0	20	
Styrene	25.0	22.9	23.8	91.7	95.2	73.0-130			3.68	20	
1,1,2,2-Tetrachloroethane	25.0	22.3	24.3	89.0	97.4	65.0-130			8.96	20	
Tetrachloroethene	25.0	25.4	27.3	102	109	72.0-132			7.07	20	
Toluene	25.0	23.8	24.6	95.2	98.4	79.0-120			3.24	20	
1,1,2-Trichlorotrifluoroethane	25.0	28.9	29.7	116	119	69.0-132			2.62	20	
1,2,3-Trichlorobenzene	25.0	21.7	24.9	86.7	99.4	50.0-138			13.7	20	
1,2,4-Trichlorobenzene	25.0	23.3	25.3	93.2	101	57.0-137			8.31	20	
i,z, i ilicilorobelizelle	25.0	20.0	20.0	33.2	101	37.0 137			0.01	20	

PAGE:

73.0-124

1.79

20

102

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L1115659-04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

" CO' DO 1000011	07/44/40 00 40	(I COD) DO 100001 O	07/44/40 40 04
(LCS) R3429831-1	0//11/19 09:40	(LCSD) R3429831-2	0 //11/19 10:01

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
1,1,2-Trichloroethane	25.0	22.0	23.6	88.2	94.2	80.0-120			6.65	20
Trichloroethene	25.0	22.4	25.1	89.4	100	78.0-124			11.5	20
Trichlorofluoromethane	25.0	28.9	28.5	116	114	59.0-147			1.54	20
1,2,4-Trimethylbenzene	25.0	24.0	27.2	96.0	109	76.0-121			12.6	20
1,3,5-Trimethylbenzene	25.0	21.9	25.5	87.7	102	76.0-122			14.9	20
Vinyl chloride	25.0	28.0	27.0	112	108	67.0-131			3.65	20
o-Xylene	25.0	24.6	24.6	98.4	98.5	80.0-122			0.0682	20
m&p-Xylenes	50.0	48.6	50.8	97.3	102	80.0-122			4.32	20
(S) Toluene-d8				98.0	98.6	80.0-120				
(S) 4-Bromofluorobenzene				101	99.7	77.0-126				
(S) 1,2-Dichloroethane-d4				106	105	70.0-130				

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Appleviations and	d Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

JO	JO: The identification of the analyte is acceptable, but the reported concentration is an estimate. The calibration met method criteria.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

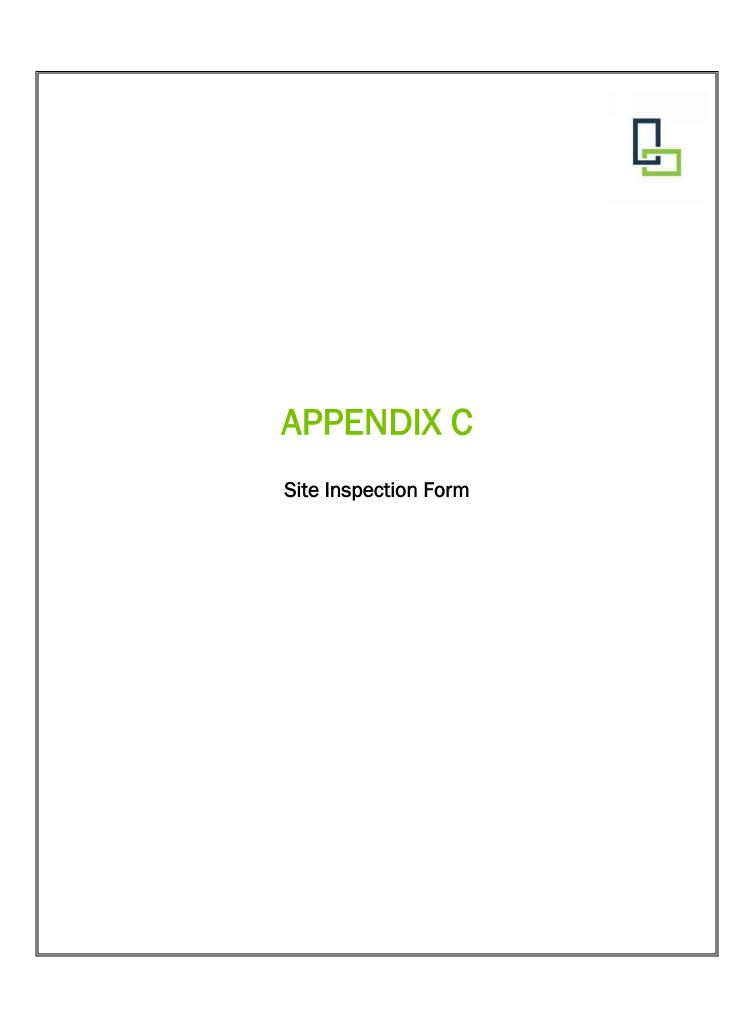
A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



PAGE:

22 of 23

The state of the s	Billing Information:				Analysis / Container / Pr						eservative Chain of Custody					
LaBella Associates, P.C. 300 State Street, Suite 201			Attn: Accounts Payable 300 State St., Ste. 201 Rochester, NY 14614			Pres Chk								Pace Al National Center	nalytical* or for Testing & Innovation	
Rochester, NY 14614														1		
Report to: Mike Pelydhat			Email To:	Email To: M pelychaty@Label/apero				8560						12065 Lebanon Rd Mount Juliet, TN 3712 Phone: 615-758-5858		
Project NYSDEC BCP 50 Description: 38 65 4 3875 V	west Hemr	828 134 rictta Rd.		P. C. Control	NY.	od 8260							Fax: 615-758-5859	Phone: 800-767-5859 Fax: 615-758-5859		
Phone: 585-454-6110 Fax:	Client Project # 209 395			Lab Project #			EPA Method	Method						C142	1115659	
Collected by (print): Alexander dasilva	Site/Facility II				1		FINA	EPA						Acctnum: LABR	NY	
Collected by (signature): Use a signature of the collected by (signature): Immediately Packed on Ice N Y		y 10 Da		Quote #	sults Needed	No.	STARS VOCS	1000						Template: Prelogin: TSR: 364 - T. Alan Harvil PB:		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	ST	727						Shipped Via:	Sample # (tab only)	
MW-7-070219	Grab	Gw	64	7/2/19	1100	12	X								-01	
mw-3R-070219	Grab	GW	12f+		1355	9		X						MS/WED	-02	
DUPE-070219	GRAB	GW	12	7/2/19	1430	3		X							-03	
TRIP BLANK	GRAB			7/2/19		1		X							-au	
	100															
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	+ NYS	EQUIS pH							COC Sign	Sample Receipt Checklist COC Seal Present/Intact: NP Y N COC Signed/Accurate: Y N Bottles arrive intact: Y N					
DW - Drinking Water OT - Other	Samples returned via: UPS				Tracking # Fedex 1023 1354				54 3					Bottles arrive intact: Y N Correct bottles used: Y N Sufficient volume sent: Y N If Applicable VOA Zero Headspace: Y N		
Relinquished by : (Signature) Date: 7/2 / Relinquished by : (Signature) Date:			Maria Caraca Car	Received by: (Sign	ture)		711.25	Trip E	Blank Red	eived Y	es No HCL / MeoH		RAD SCREEN: <	of the parties of the latest and the		
		_		1555	Received by: (Sign					TBR						
			Time:	iature)			400000000000000000000000000000000000000	Temp: °C Bottles Received: 3.3+.2=3.545 14				If preservation required by Login: Date/Time				
Relinquished by : (Signature) Date:			Time:	Received for lab by: (Signature)							Hold:		Condition:			

SITE-WIDE INSPECTION FORM

Project Name: NYSDEC BCP Site No. C828134

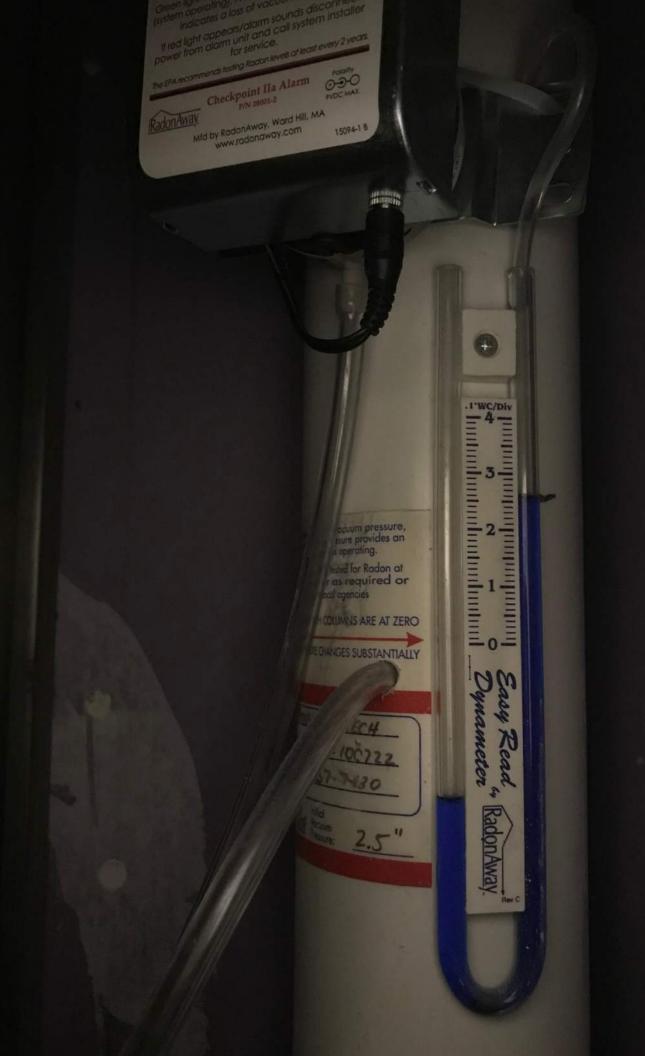
Location: 3865 & 3875 West Henrietta Road, Rochester, New York

Project No.: 209395
Inspected By: A. daSilva

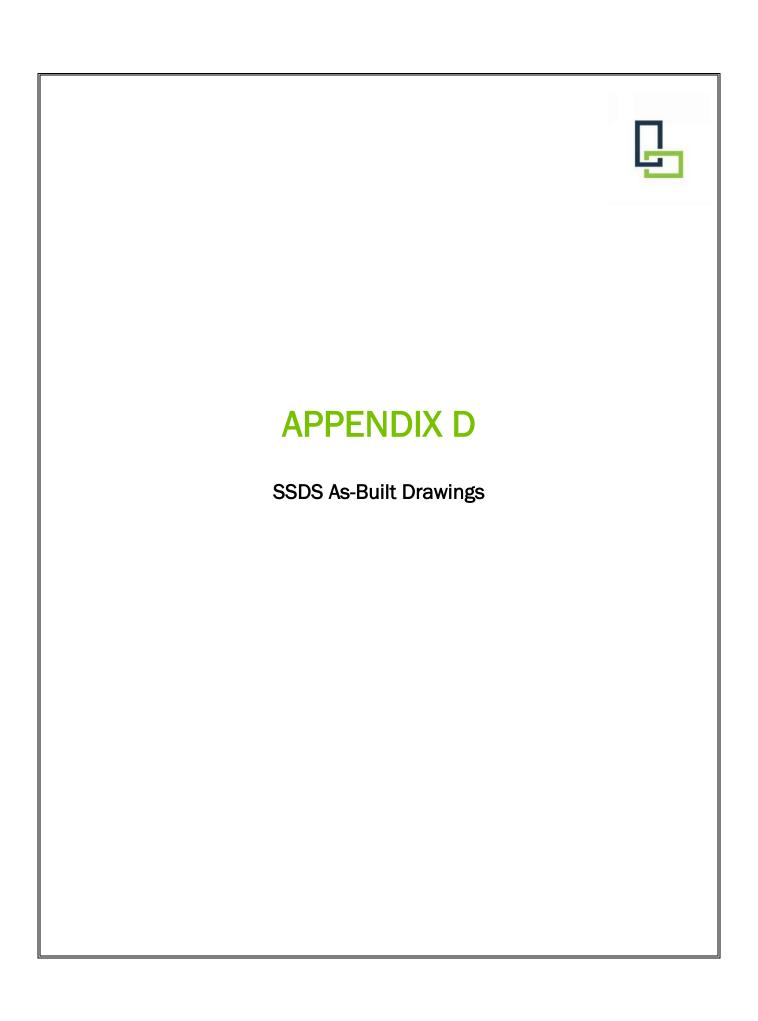
Date of Inspection: 7/2/2019 & 7/9/2019

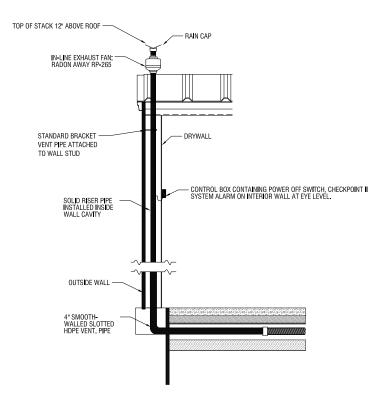
Weather Conditions: Overcast

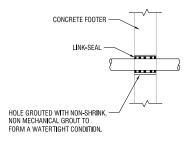
300 State Street

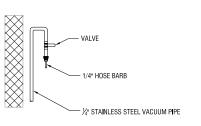

Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066

INSPECTION FINDINGS


3865 Building SSDS VENT FAN & GENERAL LOCATION 7/2/2019	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN	
Fan Located in Women's Restroom, behind wall panel.	Yes. U-tube manometer reading 2.5 H_2O "	YES	System Running. No actions taken.	
3875 Building SSDS VENT FAN & GENERAL LOCATION 7/9/2019	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN	
Customer Reception Area (referred to as "Northern Point" in 2017 PRR)	-0.597 H ₂ 0" & -0.057 H ₂ 0"	YES	System running. No actions taken.	
Service Area (referred to as "Southern Point" in 2017 PRR)	Fan and alarm located here - $0.170~\text{H}_2\text{O}"~\text{\&}$ -0.007 $\text{H}_2\text{O}"$	YES	System running. No actions taken.	
2017 Building Addition	-0.072 H ₂ O" & -0.065 H ₂ O"	YES	System running. No actions taken.	
GENERAL SITE CONDITIONS 7/2/2019	CURRENT USE OF SITE (COMMERCIAL/ RESIDENTIAL/ETC.)	SITE RECORDS UP TO DATE (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN	
Everything appears to be in good condition.	Commercial automobile sales and service.	YES	No action taken.	







CRUSHED STONE SUB-BASE X* STAINLESS STEEL PIPE NATIVE MATERIAL 4* PERFORATED PVC PIPE GEOTEXTILE FABRIC WRAPPED. 12"x12" PEA STONE TRENCH

MATERIAL PROFILE

REAR ENDWALL

PROFILE AT PENETRATION

PROFILE AT GAUGE POINT

NOTES:

1. PERFORATED CAP INSTALLED AT EACH VAPOR COLLECTION PIPE TERMINATION.

2. HEADER PIPE SLOPED UP 1/4-INCH PER FOOT FROM CONNECTION WITH VAPOR COLLECTION PIPING

3. ALL SUB-SLAB VAPOR COLLECTION PIPING IS GEOTEXTILE-WRAPPED 4-INCH PERFORATED DUAL-WALLED CORRUGATED EXTERIOR SMOOTH INTERIOR HDPE.

4. HEADER PIPING SHOWN IS 4-INCH SCHEDULE 40 PVC.

5. PROFILE SEQUENCE MAY VARY BASED ON SPECIFIC LOCATIONS.

 $6.\ PEA$ STONE CONSISTS OF MATERIAL THAT WILL PASS THROUGH A 2-INCH SIEVE AND BE RETAINED BY A 1/4-INCH SIEVE.

7. ALL PENETRATIONS AND GAPS SEALED WITH AN ELASTOMERIC JOINT SEALANT.

8. RISER PIPING INSIDE WALL CAVITIES TO HAVE PRESSURE GAUGES AND ALARMS MOUNTED ON INTERIOR WALL IN A VISIBLE LOCATION.

9. RADONAWAY EASY READ DYNAMETER U-TUBE MANOMETER MONITOR INSTALLED ON VACUUM SIDE OF FAN FOR PRESSURE GAUGE. RADONAWAY CHECKPOINT II AUDIBLE SYSTEM ALARM INSTALLED ON VACUUM SIDE OF FAN FOR ALARM. ALARM INSTALLED ON A SEPARATE CIRCUIT FROM THE FAN.

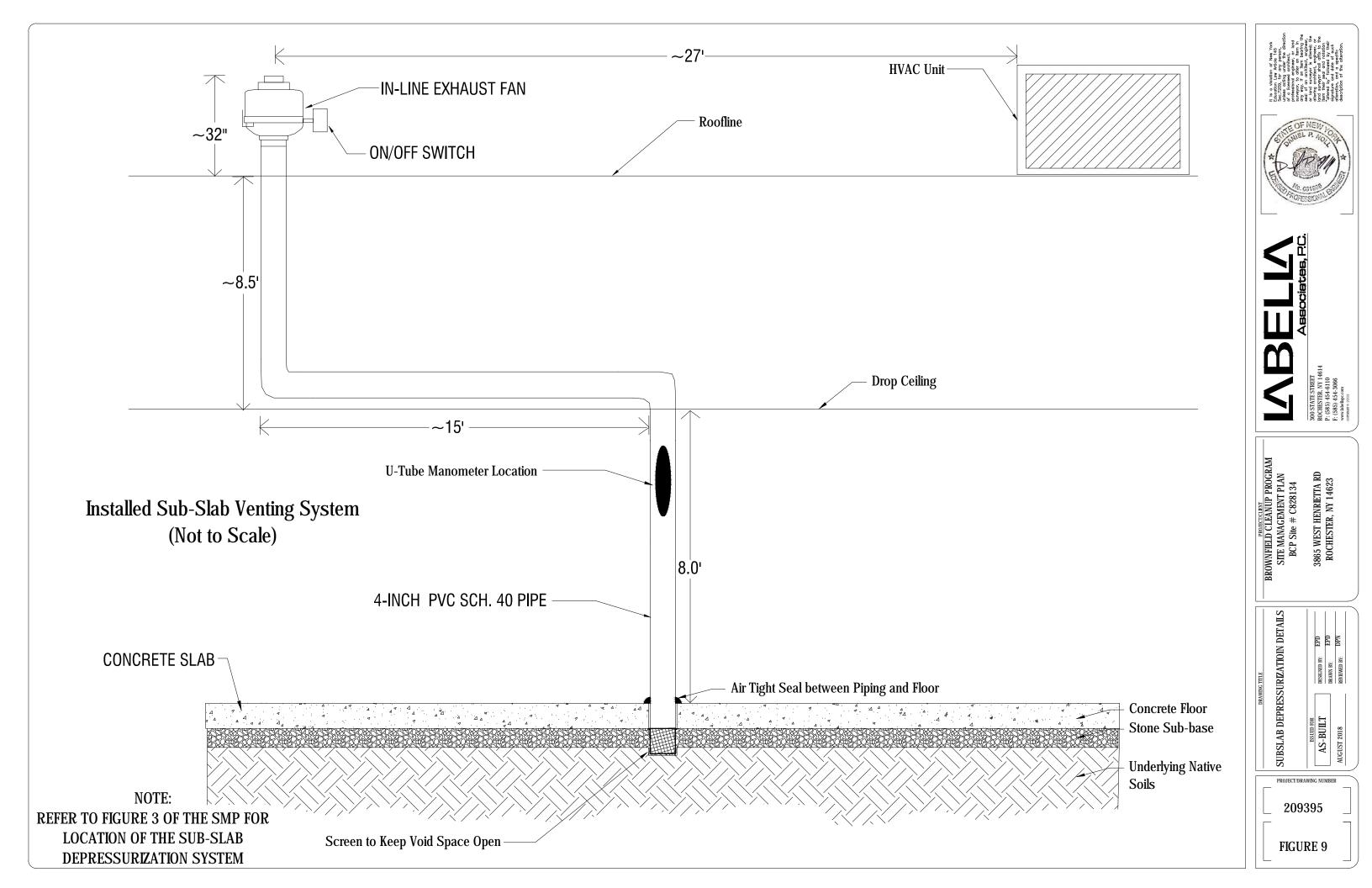
10. STAINLESS STEEL TUBING OPEN AT THE END WITH FILTER FABRIC OVER THE END AND FIXED WITH TAPE 6-INCHES FROM THE END.

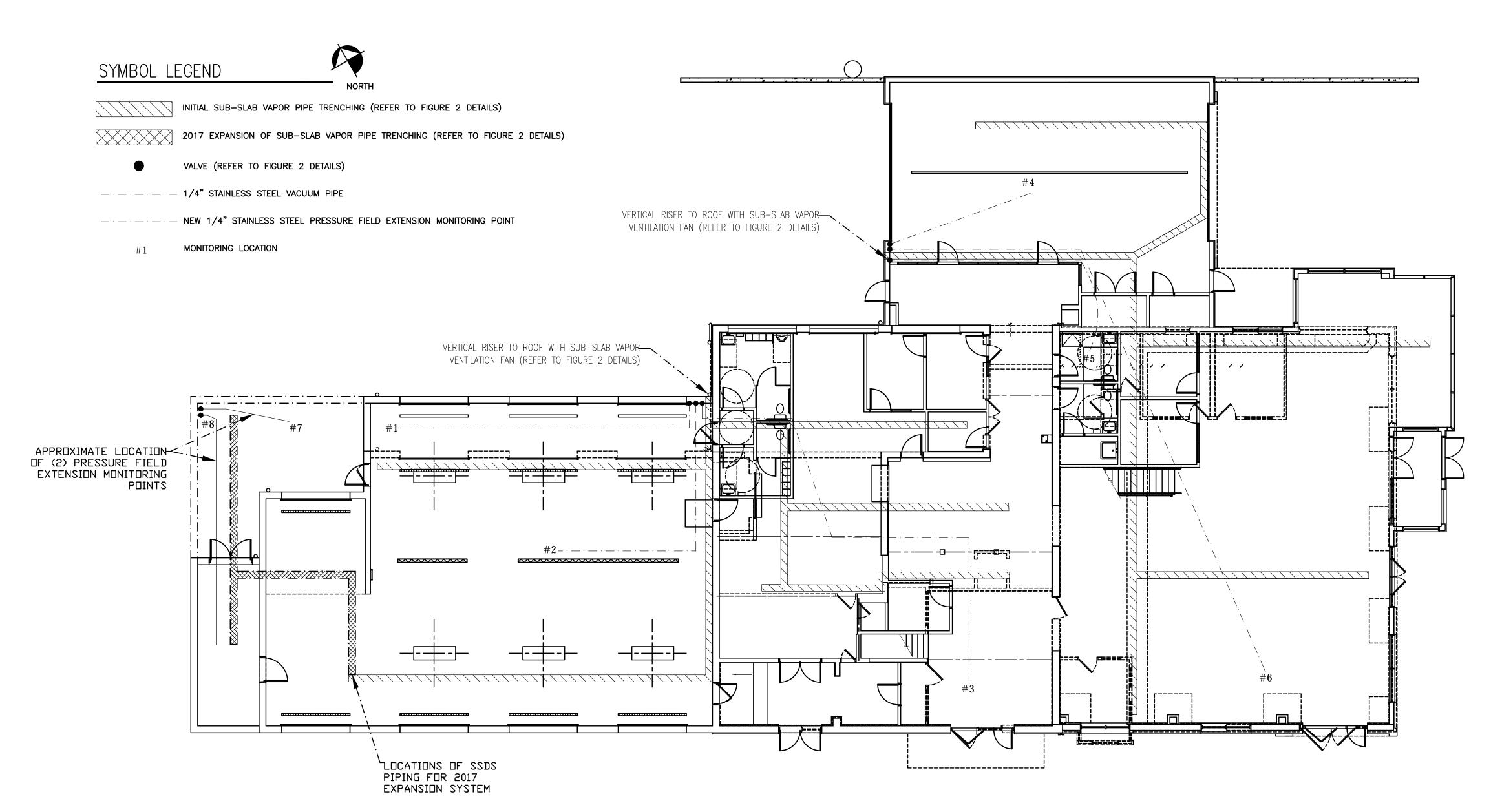
300 STATE ST ROCHESTER, I P. (585) 454-6 F. (585) 454-3

3875 West Henrietta Road Henrietta, New York RJ Dorschel Corp.

BUILT

E. NO SCALE
AN BY: HANSINGIN
WED BY: DPIN


SUB-SLAB DEPRESSURIZATION
SYSTEM AS-BUILT


ISSUED FOR
AS-BUILT

SOME
NOSS

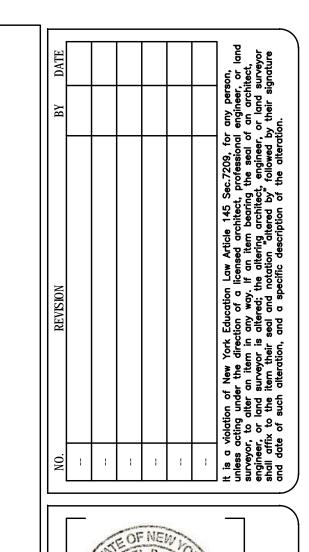

PROJECT/DRAWING NUMBER 209395

FIG 2

NOTE:
BASE DRAWING ADAPTED FROM TY LIN INTERNATIONAL
DRAWING TITLED "SANITARY SEWER PLUMBING PLAN"
DATED NOVEMBER 8, 2011.

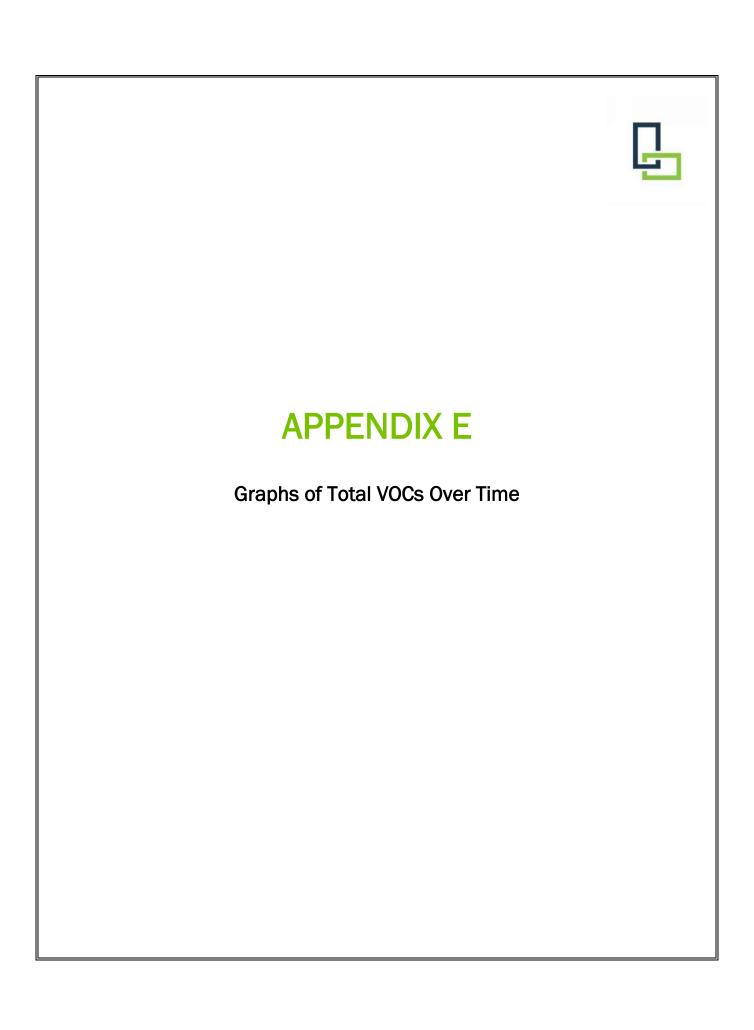
300 STATE STREET
ROCHESTER, NY 14614
P: (585) 454-6110
F: (585) 454-3066

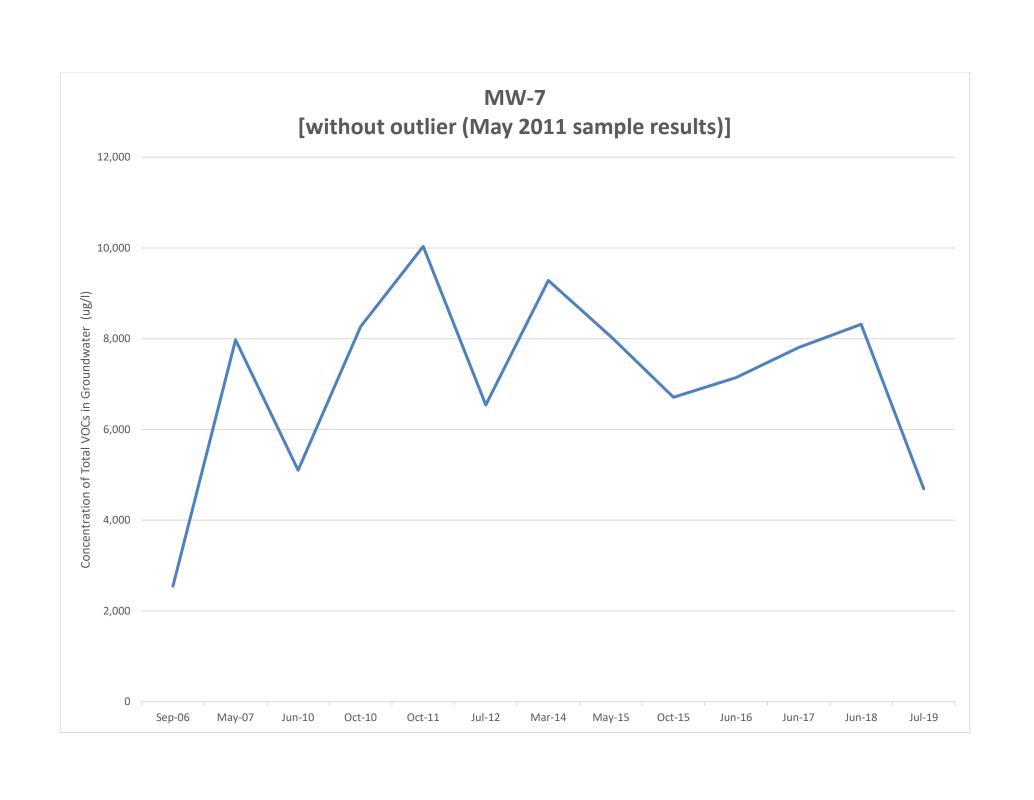
75 West Henrietta Roa Henrietta, New York

SCALE: 1:50

DRAWN BY: HMS/RCN

REVIEWED BY: DPN


AS-BUILT SUB-SLAB
DEPRESSURIZATION SYSTEM
ISSUED FOR


ISSUED FOR AS-BUILT


PROJECT/DRAWING NUMBER

209395

FIG

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. C828134	Box 1
Site Name Former Steve Joy's Sunoco	
Site Address: 3865 West Henrietta Road Zip Code: 14623 City/Town: Rochester County: Monroe Site Acreage: 2.500	
Reporting Period: August 06, 2018 to August 06, 2019	
	YES NO
Is the information above correct?	TES NO
If NO, include handwritten above or on a separate sheet.	
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 	п 🗸
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	0
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.	
5. Is the site currently undergoing development?	
	9 0
	Box 2 YES / NO
6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial	
7. Are all ICs/ECs in place and functioning as designed?	V 0
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd
A Corrective Measures Work Plan must be submitted along with this form to address the	ese issues.
Signature of Owner Remedial Party or Designated Representative	

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

9. Are the assumptions in the Qualitative Exposure Assessment still valid?

(The Qualitative Exposure Assessment must be certified every five years)

If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

SITE NO. C828134

Box 3

Parcel Owner Institutional Control
161.15-1-20.1 R.J. Dorschel Corp.

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

Ground Water Use Restriction

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential, etc.) use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;

- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The existing sub-slab depressurization system at the 3865 West Henrietta Road property will be monitored and maintained in accordane with the SMP;
- The existing biocell will be monitored and maintained in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;
- Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

- Vegetable gardens and farming on the Site are prohibited; and
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time

that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

161.19-1-9 R.J. Dorschel Corp.

Ground Water Use Restriction
Soil Management Plan
Landuse Restriction
Monitoring Plan
Site Management Plan
IC/EC Plan

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential,etc.) use without additional remediation and amendment of the Environmental

Easement, as approved by the NYSDEC;

- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP:
- The existing biocell will be monitored and maintained in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH:
- Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in

D	-
DOX.	a

Periodic Review Report (PRR) Certification Statements

- 1. I certify by checking "YES" below that:
 - a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
 - b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional
 or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the
 following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C828134

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Penal Law.	do a olado 11 illiodollidallari paras	
Richard J Dorschel	_{at} 3817 W Henrietta R	d Rochester NY 14623
print name	print business addre	988
am certifying as Owner's Representative		(Owner or Remedial Party)
for the Site named in the Site Details	Section of this form.	
	t RJ Dorschel Corp.	9/4/19
Signature of Owner, Remedial Party, Rendering Certification	or Designated Representative	Dale

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

DANIEL P. Noce at 300 STATE ST., ROCHESTER NY print name print business address

am certifying as a Qualified Environmental Professional for the

CWNER For Remedial Party)

Del MM

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification SENSIONAL FOR PE

Date