Periodic Review Report: August 7, 2019 to August 8, 2022 NYSDEC BCP Site No. C828134

Location:

Former Steve Joy's Sunoco 3865 & 3875 West Henrietta Road Town of Henrietta, Monroe County, New York

Prepared for:

BJADM LLC & BJADMC LLC 3817 West Henrietta Road Rochester, New York 14623

LaBella Project No. 2223592

September 5, 2022

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

Table of Contents

1.0	INTRODUCTION	.1
1.1		
2.0	PURPOSE AND SCOPE OF WORK	.3
3.0	ANNUAL MONITORING	.4
3.1	Groundwater Monitoring	.4
3.2	Sub-Slab Depressurization System (SSDS) Monitoring	.5
3.3	Deviations from SMP	.6
4.0	SUMMARY OF GROUNDWATER MONITORING	.7
4.1	Groundwater Flow Direction	.7
4.2	Summary of Groundwater Results	.7
5.0	SITE EVALUATION	.7
	INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION	

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Surrounding Properties
Figure 3	Groundwater Monitoring Well Locations and Location of Sub-Slab Depressurization Fan
Figure 4A Figure 4B	October 2011 Groundwater Contours July 2012 Groundwater Contours

TABLES

Table 2Groundwater Monitoring Results - VOCs

APPENDICES

- Appendix A Groundwater Sampling Logs
- Appendix B Laboratory Analytical Report
- Appendix C Site Inspection Form
- Appendix D As-Built Drawings of SSDS at 3865 & 3875 West Henrietta Road Buildings
- Appendix E Institutional Controls/Engineering Controls Certification Form
- Appendix F MW-7 Closure Log and MW-7R Construction Log

1.0 INTRODUCTION

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report (PRR) for the Former Steve Joy's Sunoco property, located at 3865 and 3875 West Henrietta Road (NYS Route 15) (hereinafter referred to as the "Site"), under the New York State (NYS) Brownfield Cleanup Program (BCP), as administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #B8-0719-06-06, Site # C828134. A Site Location Map is included as Figure 1.

This report encompasses the monitoring work between the following period: August 7, 2019 to August 8, 2022.

The Site is located in the Town of Henrietta, County of Monroe, New York and is comprised of the following two (2) parcels of land:

- 3865 West Henrietta Road, an approximate 1-acre parcel identified as Block 161.15-1 and Lot 20.1; and
- 3875 West Henrietta Road, an approximate 1.5-acre parcel identified as Block 161.19-1 and Lot 9.

The Site is improved with the following structures:

- A 4,692[±] square foot building on the 3865 West Henrietta Road parcel; and
- A 12,968 ± square foot building (including the ±500 square foot addition to this building constructed in 2017) on the 3875 West Henrietta Road parcel.

The properties surrounding the Site are commercial properties. The properties directly adjacent to the Site and their current occupants are as follows:

- North 3861 West Henrietta Road, vacant parking lot;
- East West Henrietta Road Right-of-way (ROW), then 3870 West Henrietta Road, Lewis General Tire, Inc.;
- South 3883 West Henrietta Road, an auto dealership; and
- West overflow parking lots associated with the 3883 West Henrietta Road property.

A Site Plan (included as Figure 2), illustrates the Site boundaries and the adjacent properties.

1.1 Environmental History

Previous environmental investigations (Pre-BCP work) at the Site identified the nature and extent of contamination to be limited to petroleum contamination in soil, groundwater, and soil vapor. The apparent source of the petroleum impacts was from six (6) petroleum underground storage tanks (USTs) and five hydraulic lifts.

The Pre-BCP and BCP Investigation work at the Site included: advancing 73 soil borings; excavating nine (9) test pits; installing sixteen (16) groundwater monitoring wells; the installation of sub-slab soil vapor sampling points; and collecting samples of soil, groundwater, sub-slab vapor, and indoor/outdoor air. Based on the work completed, it was determined that the predominant contaminants at the Site were petroleum-related volatile organic compounds (VOCs) in soil and groundwater.

Petroleum-related semi-volatile organic compounds (SVOCs), chlorinated solvents, and metals were also detected in groundwater, along with a limited area of metals in surface soils. Based on these findings, the following specific areas of contamination were identified:

- Petroleum impacted soil and groundwater between the 3865 Parcel Building and West Henrietta Road, in the area of the former pump islands, was identified at concentrations above the NYSDEC Part 375-6 Restricted Commercial Use Soil Cleanup Objectives (SCOs) and the NYSDEC Part 703 Groundwater Standards;
- Petroleum impacted soil directly north of the central portion of the 3875 Building associated with a UST was identified in the field as impacted;
- Petroleum impacts in soil around hydraulic lifts within the western portion of the 3875 Building was identified in field observations;
- An area of surface soils along West Henrietta Road impacted with the metals (arsenic and barium) was identified at concentrations above the NYSDEC Part 375-6 Restricted Commercial Use SCOs;
- Concentrations of VOCs in the sub-slab soil vapor and indoor air at both buildings at the Site were identified; and
- VOCs and metals in groundwater on the 3875 Parcel were identified at concentrations above the NYSDEC Part 703 Groundwater Standards.

The Remedial Measures completed at the Site have included two (2) Interim Remedial Measures (IRMs) consisting of the removal of USTs and soil. The soil removed during the IRM was transported to an off-site location for treatment in a bio-cell. In addition, a final remedy at the Site consisted of the removing hydraulic lifts, soil and groundwater. The remedies and Areas of Concern (AOC) designation from the Remedial Action Work Plan (RAWP) are summarized below:

- Removal and bioremediation of approximately 1,740 cubic yards of petroleum-impacted soils from AOC #1. This resulted in removing all soils above the NYSDEC Part 375-6.8(b) Protection of Groundwater SCOs with the exception of two areas due to underground utilities, the West Henrietta Road ROW and the on-site building.
- Removal and disposal of six USTs and their contents, which consisted of approximately 8,000 gallons of petroleum impacted waters and 600 gallons of waste oil.
- Removal and disposal of five hydraulic lifts (AOC #2) and removal and off-site disposal of approximately 85 tons of petroleum-impacted soil from seven hydraulic lift locations [i.e., two (2) former locations and the five (5) lifts removed as part of the IRM].
- Removal and disposal of surface soils impacted with heavy metals, excavated from an area measuring 5 feet by 5 feet and 1 foot in depth. The heavy metals were identified during the RI in surface soil sample SS-1 located along the eastern edge of the 3865 West Henrietta property boundary and was identified as AOC #5.
- Installation of a sub-slab depressurization system (SSDS) to mitigate the potential for vapor intrusion within (AOC #3) the existing building at the 3865 West Henrietta Road parcel.

Pressure field extension testing was completed on each of the monitoring points after the installation of the SSDS, and confirmed the system influences the entire slab area. An SSDS was also installed at the 3875 Parcel building during redevelopment of the Mini Cooper dealership in 2012, and this SSDS was expanded to extend beneath the \pm 500 square foot addition to this building in 2017.

- An Environmental Easement was executed and recorded to restrict land use and prevent future exposure to any contamination remaining at the Site.
- Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for:
 - Institutional and Engineering Controls;
 - o Monitoring;
 - Operation and Maintenance; and
 - Reporting.

2.0 PURPOSE AND SCOPE OF WORK

The purpose of this report is to present the monitoring work completed at the Site during the time period of August 7, 2019 and August 8, 2022. This work was completed in general accordance with the provisions identified in the SMP. As required in the SMP, this report includes the following information:

- Identification, assessment and certification of all Engineering Controls/Institutional Controls (ECs/ICs) required by the remedy for the Site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the Site during the reporting period in electronic format (included in report);
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media, including: a list of all compounds analyzed; applicable regulatory standards, with all exceedances highlighted: and a presentation of past data as part of an evaluation of contaminant concentration trends;
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A Site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the Site-specific RAWP;
 - Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - \circ $\;$ The overall performance and effectiveness of the remedy.

3.0 ANNUAL MONITORING

The original SMP identified the ongoing monitoring of the performance of the remedy, via semiannual sampling of two (2) existing groundwater monitoring wells (3865 Parcel: MW-7 and 3875 Parcel: MW-3R). The original SMP indicated that monitoring the overall reduction in contamination on-site would be conducted for the first two (2) years, with the frequency thereafter to be determined by NYSDEC. The NYSDEC approved annual monitoring of the two (2) wells for VOCs only in a letter dated July 22, 2013. Trends in contaminant levels in groundwater in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals.

The original SMP also required a semi-annual inspection of the SSDS and semi-annual monitoring of the biocell soils. In their July 22, 2013 letter, the NYSDEC also approved discontinuing monitoring of the biocell soils.

The current monitoring program is summarized in the following table and was included in the June 2014 SMP update.

Monitoring Program	Frequency*	Matrix	Analysis				
Groundwater Monitoring	Annual	Groundwater	VOCs using USEPA Method 8260 (NYSDEC CP-51 list for 3865 parcel wells and TCL VOCs for 3875 parcel wells)				
Sub-Slab Depressurization System Inspection	Annual	Pressure Field Extension Readings	None				

Schedule of Monitoring/Inspections

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.1 Groundwater Monitoring

Groundwater monitoring for this PRR was conducted on the following dates:

- June 22, 2020 Monitoring wells MW-3R and MW-7 were sampled
- May 28, 2021 Monitoring well MW-3R was sampled
- June 10, 2021 Monitoring Well MW-7R (replacement well) was sampled
- August 8, 2022 Monitoring Well MW-3R and MW-7R were sampled

The location of the wells are shown on Figure 3.

Static water levels (SWLs) were collected during each groundwater sampling event. The groundwater samples were collected using a modified low-flow sampling procedure with a bladder pump or peristaltic pump.

During the sampling event, field measurements of water quality parameters were collected using a water quality meter equipped with an in-line "flow-thru" cell. During the sampling event, the following field measurements were collected:

- pH;
- Conductivity;
- Temperature;
- Oxygen Reduction Potential (ORP);
- Turbidity; and
- Dissolved Oxygen (DO).

During the sampling event, water quality parameter readings were recorded at regular time intervals prior to the collection of groundwater samples. Water quality stabilization criteria are summarized in the following table.

Measurement	Maximum Variability for 3 Consecutive Readings
рН	+/- 0.1 standard units
Conductivity	+/- 3 %
ORP	+/- 10 mV
Turbidity	+/- 10 %
DO	+/- 10 %

During the sampling events, the required criteria were met prior to sample collection. In addition, the SWL was monitored during the sampling event to confirm that drawdown in the well was minimized. Groundwater sampling logs that include the in-field parameter measurements are included as Appendix A.

Groundwater samples collected during the groundwater monitoring events were submitted to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory. The samples were analyzed for NYSDEC CP-51-list and/or United States Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs using USEPA Method 8260. A copy of the laboratory analytical reports are provided in Appendix B.

3.2 Sub-Slab Depressurization System (SSDS) Monitoring

This section discusses the SSDS monitoring performed on July 10, 2020, May 28, 2021, and August 8, 2022 in the two (2) on-site buildings.

3865 West Henrietta Road Building

The SSDS in the 3865 West Henrietta Road building was monitored on July 10, 2020, May 28, 2021, and August 8, 2022 in order to verify proper operation of the system. Because the manometer installed on this SSDS is now located within the wall of the women's restroom and is accessible via a removable wall panel, NYSDEC requested in October 2015 that an alarm be installed on the SSDS. The purpose of the alarm is to monitor proper operation of the SSDS; this alarm was installed in late 2015.

The location of the SSDS venting point/fan that operates the SSDS for the 3865 Building is shown on Figure 3, and an as-built drawing of the SSDS is included in Appendix D. At the fan location, the following inspections were made:

- the in-line U-tube manometer on the suction side of the piping system was observed to determine a pressure differential of approximately 2.6 or 2.7 inches of water column which is consistent with historic readings and indicates the SSDS is operating properly;
- the condition of the piping was observed to determine if any portion of the piping required repair;
- the fan was working properly; and
- labeling of the system was intact.

Based upon the inspections, the SSDS appeared to be in good working order (i.e., the manometer indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). Copies of the inspection forms are included in Appendix C.

3875 West Henrietta Road Building

The SSDS in the 3875 West Henrietta Road building was monitored on July 10, 2020, May 28, 2021, and August 8, 2022 in order to verify proper operation of the system. The SSDS for the 3875 Building is shown in the as-built drawings included in Appendix D. At the fan location, the following inspections were made:

- sub-slab monitoring points were measured with a VelociCalc[®] Model 9565 Multi-Function Ventilation Meter, to determine the pressure differential between the sub-slab and indoor air. The results of this monitoring are included as Table 1.
- the condition of the piping was observed to determine if any portion of the piping required repair;
- the fan was working properly; and
- labeling of the system was intact.

Based upon the inspections, the SSDS appeared to be in good working order (i.e., the micromanometer readings indicated the SSDS was working, the fan was observed to be working, and the piping appeared in good condition). A copy of the inspection form is included in Appendix C.

3.3 Deviations from SMP

The following deviations occurred during the reporting period from August 7, 2019 to August 8, 2022:

- On May 28, 2021 well MW-7 was observed to be damaged and unusable. This information
 was provided to the NYSDEC in an email correspondence. A replacement well (i.e. MW-7R)
 was installed and well MW-7 was closed in accordance with NYSDEC Commissioner Policy
 43. A copy of the MW-7 closure log and MW-7R installation logs as well as the community air
 monitoring information is included as Appendix F.
- The June 2021 sample from MW-7R had been indicated on the chain of custody to be sampled for CP-51 VOCs however, the sample was analyzed for TCL VOCs by the laboratory.
- Groundwater monitoring was conducted on August 8, 2022, 2 days after the reporting period ended. As such, the certification date, will adjusted to August 8, 2022.

4.0 SUMMARY OF GROUNDWATER MONITORING

4.1 Groundwater Flow Direction

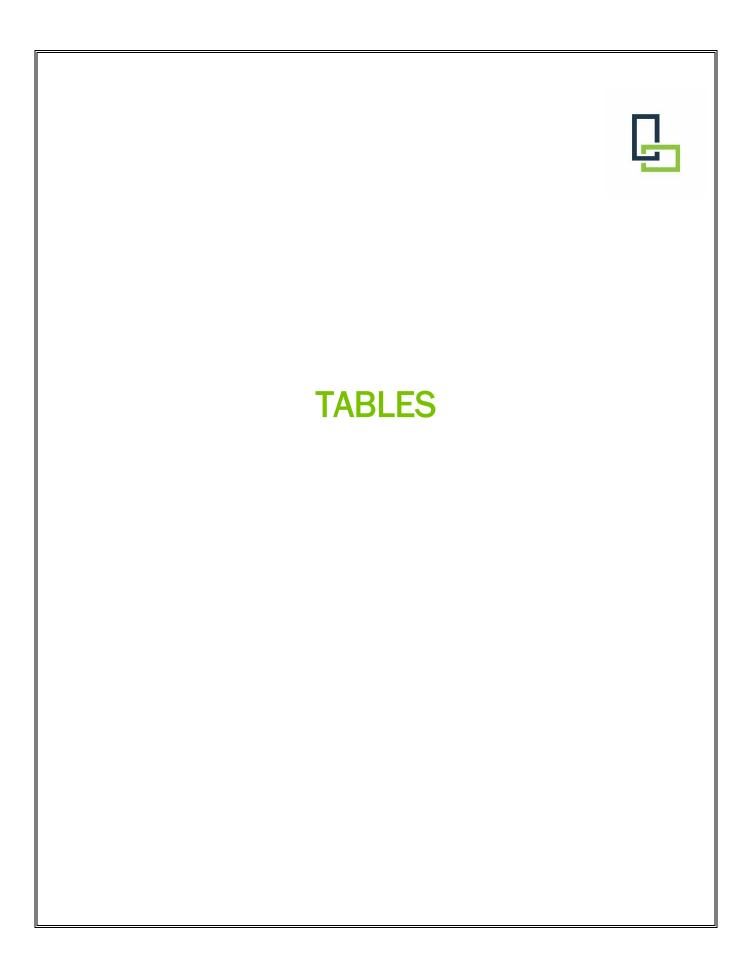
Although static water level measurements were collected during the groundwater monitoring event and are included on the sampling forms. The monitoring work only includes two (2) monitoring wells. Historic monitoring information previously presented to the NYSDEC describes the groundwater flow regime at the Site. For informational purposes, groundwater contour maps from October 2011 and July 2012 are included as Figures 4A and 4B, respectively.

4.2 Summary of Groundwater Results

Groundwater monitoring was performed in June 2020, May 2021, June 2021, and August 2022 and included groundwater monitoring wells (3865 Parcel: MW-7 and MW-7R and 3875 Parcel: MW-3R), as shown on Figure 3.

The results of the groundwater monitoring are summarized in Table 2 (VOCs) and are compared to the NYSDEC Part 703 groundwater standards. As summarized in the attached Table 2 and the following table, VOCs were reported above NYSDEC Part 703 groundwater standards in the groundwater samples collected during each monitoring event.

5.0 SITE EVALUATION


The annual monitoring work conducted between August 7, 2019 and August 8, 2022 was completed in accordance with the SMP, with any exceptions noted in Section 3.3. The analytical results from the groundwater sampling events summarized on Table 2 indicate that VOC concentrations appear relatively stable in samples collected from wells MW-7/MW-7R and MW-3R. Based on the above, no changes to the current monitoring program are proposed.

The remedial program outlined in the SMP has effectively achieved progress toward meeting the remedial objectives for the Site. Continued monitoring of the SSDS and the implementation of the SMP should ultimately achieve the remedial objectives for the Site. The next groundwater sampling event is scheduled for spring 2023.

6.0 INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION

The completed NYSDEC Institutional and Engineering Controls Certification Form is included in Appendix E.

I:\BOB JOHNSON AUTO\2223592 - 3865 3875 W HENRIETTA RD\11_REPORTS\2022 PRR\RPT.2022-08-22.2019 TO 2022 PRR FORMER STEVE JOYS SUNOCO DRAFT.DOCX

TABLE 1

Pressire Field Extension Readings

Former Steve Joy's Sunoco, NYSDEC BCP Site No. C828134

3865 & 3875 West Henrietta Road, Henrietta, New York

Location	Units	Valve #		Date						
Location	Units	Valve #	6/22/2020	5/28/2021	8/8/2022					
Customer Reception Area	IWC	1	-0.072	-1.525	-0.613					
	IWC	2	-1.126	-0.838	-0.580					
	IWC	3	-0.675	-0.370	-0.124					
Eastern Side of Service Area	IWC	1	-0.799	-0.446	-0.202					
	IWC	2	-0.764	-0.351	-0.172					
	IWC	3	-0.588	-0.052	-0.009					
Western Side of Service Area	IWC	1	-0.662	-0.134	-0.064					
	IWC	2	-0.661	-0.101	-0.063					

Note:

IWC - Inches of Water Column

											3875 Par	rcel										
Constituent		MW-3R																NYSDEC Part 703: Groundwater				
	May 2007	June 2010	October 2010	May 2011	October 2011	May 2007	June 2010	June 2010 Blind Duplicate	May 2011	October 2011	July 2012	April 2014	May 2015	October 2015	June 2016	June 2017	June 2018	July 2019	June 2020	May 2021	August 2022	Standard
Petroleum-Related Volatile Or	ganic Compounds										·											
Benzene	ND<5.0	2.3 J	2.8 J	3.1 J	31.7	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<0.7	ND<50	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<0.50	ND<1.00	1
Ethyl ether		2.0 3	210 5	0.1	ND<1.0								ND<1.0									Not Available
Ethylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	5.2	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<2.50	ND<5.00	5
sec-Butylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00			5
n-Propylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00			5
sopropylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<2.50	ND<5.00	5
p-Isopropyltoluene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00			5
n-Butylbenzene										ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00			5
Naphthalene	ND<5.0	1.4 BJ	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00			10
Foluene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	1.7	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<5.0	ND<5.00	ND<5.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<2.50	ND<5.00	5
1,2,4-Trimethylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	2.1 J	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	1.3	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00			5
1,3,5-Trimethylbenzene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00			5
n,p-Xylene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	2.2	ND<5.0	3.9 J	ND<5.0	ND<5.0	ND<2.0	ND<5.0	ND<2.0	2.1	ND<2.00	ND<2.00	ND<2.00	ND<2.00	ND<2.00	ND<2.00	ND<2.50	ND<5.00	5
p-Xylene	ND<5.0	ND<5.0	ND<5.0	ND<5.0	3.9	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<2.50	ND<5.00	5
Fert-amyl methyl ether					3.4																	Not Available
Tert-butanol / butyl alcohol					12.8																	Not Available
Methyl-tert-Butyl Ether	2 J	ND<5.0	ND<5.0	1.2 J	22.5	11	1.4 J	1.3 J	ND<5.0	ND<2.0	24	2.97	2.5	1.56	2.25 J	1.35	1.38	1.24	1.1 J	ND<2.50	ND<5.00	10
Solvent-Related Volatile Organ	nic Compounds																					
Acetone	ND<5.0	42		ND<5.0	ND<10.0	16	ND<5.0	ND<5.0	ND<5.0	ND<10.0	6.1	ND<10.0	ND<50	ND <50.0	ND <50.0	ND <50.0	ND <50.0	ND <50.0	ND <50.0	ND <50.0	ND <10.0	50
2-Butanone	ND<5.0	8.1		ND<5.0	ND<10.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10.0	ND<5.0	ND<10.0	ND<10	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	ND <10.0	50
Cyclohexane	ND<5.0	ND<5.0] [ND<5.0	Not Tested	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<10.0	ND<1.0	ND<1.00	ND<1.00 R	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND < 1.00	ND <20.0	5
Chlorobenzene	11 J	3.9 J		9.1	ND<1.0	2 J	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	67.3	120	106	103 J	130	118	109	120	100	130	5
Dichlorodifluorormethane] [ND<2.0					ND<2.0		ND<2.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00 J0	ND<5.00	ND<5.00	1 J	1.4	ND<5.00	5
1,2-Dichlorobenzene	ND<5.0	ND<5.0] [ND<5.0	ND<10.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<10.0		1.4	2.7	2.42	2.41 J	2.80	2.72	2.84	3.3	3.2	5.1	3
1,4-Dichlorobenzene	ND	ND	Not Tested	ND	ND							ND	ND	ND	ND	ND	1.34 U	ND<1.00	1.6 J	4.1	6.2	3
cis-1,2-Dichloroethene	1 J	ND<5.0] [4.4 J	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<5.00	5
1,1-Dichloroethane	1 J	ND<5.0	ļ	ND<5.0	1.2	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	1.2	ND<1.00	1.24 J	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	5
Vlethylcyclohexane	ND<5.0	ND<5.0	ļ	ND<5.0	Not Tested	ND<5.0	ND<5.0	ND<5.0	ND<5.0		ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00 R	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND <20.0	Not Available
Methylene Chloride	ND<5.0	ND<5.0	ļ	ND<5.0	ND<2.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<2.0	ND<5.0	ND<5.0	ND<5.0	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	ND<5.00	5
rans-1,2-Dichloroethene	ND<5.0	ND<5.0	ļ	ND<5.0	ND<1.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<5.00	5
/inyl Chloride	3 J	ND<5.0		6.3	1.8	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<1.0	ND<5.0	ND<2.0	ND<1.0	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<2.00	2
Fotal VOCs	18	57.7	2.8 J	24.1 J	86.4	29	7.4	1.3	ND	ND	30.1	71.67	129.8	109.98	108.90	134.15	122.10	113.08	125.40	104.60	141.30	
Total VOC TICs	ND	ND	Not Tested	Not Tested	Not Tested	ND	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Available
Total VOCs and VOC TICs	18	57.7	2.8	24.1	86.4	29	7.4	1.3	ND	ND	30.1	71.7	129.8	109.98	108.9	134.15	122.1	113.08	125.40	104.60	141.30	

Notes:

VOC analysis by USEPA Method 8260B TCL.

Bold Type denotes that the detected value exceeds its associated NYSDEC Part 703 Groundwater Standard.

ND<5.0 denotes compound not detected above the method detection limits.

J denotes an estimated value; the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample. JO denotes that the laboratory's c

D denotes that the compound was identified in a secondary dilution performed on the sample.

E denotes that the concentration of the compound was found to exceed the calibration range for the instrument.

U is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "interpreted as undetected." R is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "rejected".

Table 2

Groundwater Monitoring 3865 & 3875 West Henrietta Road, Henrietta, New York NYSDEC Brownfield Cleanup Program ID No. C828134

Summary of Detected Volatile Organic Compounds (VOCs) in Groundwater Test Results in Micrograms per Liter (µg/L) or Parts Per Billion (ppb)

Summary of Detected Volatile Organic Compounds (VOCs) in Groundwater Test Results in Micrograms per Liter (µg/L) or Parts Per Billion (ppb)

		3865 Parcel																
Constituent		MW-7														MW-7R		NYSDEC Part 703: Groundwater
	September 2006	May 2007	June 2010	October 2010	May 2011	October 2011	July 2012	March 2014	May 2015	October 2015	June 2016	June 2017	June 2018	July 2019	June 2020	June 2021	August 2022	Standard
Petroleum-Related Volatile O	Inganic Compounds																	
Benzene	370	410	740 E	750 D	ND<5.0	730	870	1,150	1,200	816	848	675	862	1130	780	21	22	1
Ethyl ether																		Not Available
Ethylbenzene	880	790 E	250 E	620 D	ND<5.0	266	610	1050	950	786	258	332	502	642	920	34	30	5
sec-Butylbenzene	ND <50	23	3 J	5.6	ND<5.0	ND<100	11	ND<40.0	7.7	7.89	6.29	ND<10.0	6.68 J	ND<20.0	9.5	-	8.1	5
n-Propylbenzene	ND <50	260 E	13	36	ND<5.0	ND<100	86	108	110	89.1	18.2	22.0	29.8 J	66.7	120	-	140	5
Isopropylbenzene	78	91	13	33	ND<5.0	ND<100	44	49.9	49	43.0	21.0	18.3	26.3 J	36.5	52	31	49	5
p-Isopropyltoluene	ND <50	22	ND<5.0		ND<5.0	ND<100	ND<5.0	ND<40.0	7.1	7.27	6.71	ND<10.0	8.99 J	ND<20.0	6.2	-	ND<10.0	5
n-Butylbenzene						ND<100	32	28.8 J	12	11.0	4.16	ND<10.0	5.62 J	ND<20.0	14	-	14	5
Naphthalene	ND <50	1,100 E	240 BE	330 DJ	ND<5.0	419	480	478	600	423	620	642	699	329	560	-	510	10
Toluene	980 D	690 E	260 E	180	ND<5.0	106	35	156	120	73.9	71.9	67.6	58.5 ^J	53	57	7.3	3.8 J	5
1,2,4-Trimethylbenzene	ND <50	1,100 E	620 E	730 D	ND<5.0	1,400	1,200	1,390	1,300	1,380	1,540	1,750	1,760	872	830	-	9.9	5
1,3,5-Trimethylbenzene	ND <50	630 E	210 E	190 DJ	ND<5.0	422	320	322	200	196	197	290	196 J	37.7	70	-	4.8 J	5
m,p-Xylene	ND <50	2,100 E	2,300 E	4,700 D	ND<5.0	6,190	2,800	4,190	2,900	2,620	3,220	3,610	3,690	1,460	1700	38	46	5
o-Xylene	ND <50	760 E	450 E	690 D	ND<5.0	502	35	363	230	143	332	319	324	66.6	98	2.4 J	ND<10.0	5
Tert-amyl methyl ether Tert-butanol / butyl alcohol																		Not Available Not Available
Methyl-tert-Butyl Ether	ND <10	ND<5	2.4 J	2.4 J	5.6	ND<100	18	ND<40.0	ND<1.0	ND<1.0 U	ND<1.00	ND<10.0	1.49 UJ	ND<20.0	ND			10
Solvent-Related Volatile Orga		ND<5	2.7 5	2.4 9	0.0	ND<100	10	110 40.0	110 11.0	110 110 0	110 11.00	110 10.0	1.40 05	110 .20.0	NB			10
Acetone		ND<5						ND<200	140	ND <50.0	ND <50.0	ND <500	ND <50.0	<u> </u>	ND <50.0	ND <2.9	T	50
2-Butanone	ND<50	ND<5						ND<200	ND<10	ND <10.0	ND <10.0	ND <100	ND <10.0	4	ND <10.0	ND <3.9	-	50
Cyclohexane	140	ND<5						190 J	100	113	82.3 R	79.5	91.0 J	4	140	110	-	5
Chlorobenzene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	1	ND<1.00	ND<1.4	1	5
Dichlorodifluorormethane								ND<40.0	ND<5.0	ND<5.00	ND<5.00	ND<50.0	ND<5.00	1	ND<5.00	ND<2	1	5
1,2-Dichlorobenzene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00	1	ND<1.00	ND<1.4	1	3
1,4-Dichlorobenzene			Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	ND	ND	ND	ND	ND	ND<1.00	Not Tested	ND<1.00	ND<1.4	Not Tested	3
cis-1,2-Dichloroethene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00]	ND<1.00	ND<1.4]	5
1,1-Dichloroethane	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00]	ND<1.00	ND<1.4]	5
Methylcyclohexane	59	ND<5						63.2	120	ND<20 U	37.6 R	44.8 U	55.6 J]	59	59]	5
Methylene Chloride	ND<36	ND<5						ND<100	ND<5.0	ND<5.00	ND<5.00	ND<50.0	ND<5.00]	ND<5.00	1.4 J		5
trans-1,2-Dichloroethene	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00]	ND<1.00	ND<1.4	_	5
Vinyl Chloride	ND<50	ND<5						ND<40.0	ND<1.0	ND<1.00	ND<1.00	ND<10.0	ND<1.00		ND<1.00	ND<0.14		2
Total VOCs	2,547	7,976	5,101	8,267 D,J	5.6	10,035	6,541	9,286	8,046	6,709	7,143.26	7,805.40	8,316.98	4,693.50	5,415.70	304.10	837.60	
Total VOC TICs	9,980	5,795	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Tested	Not Available
Total VOCs and VOC TICs	12,527	13,771	5,101	8,267	5.6	10,035	6,541	9,286	8,046	6,709	7,143.26	7,805.40	8,316.98	4,693.50	5,415.70	304.10	837.60	

Notes:

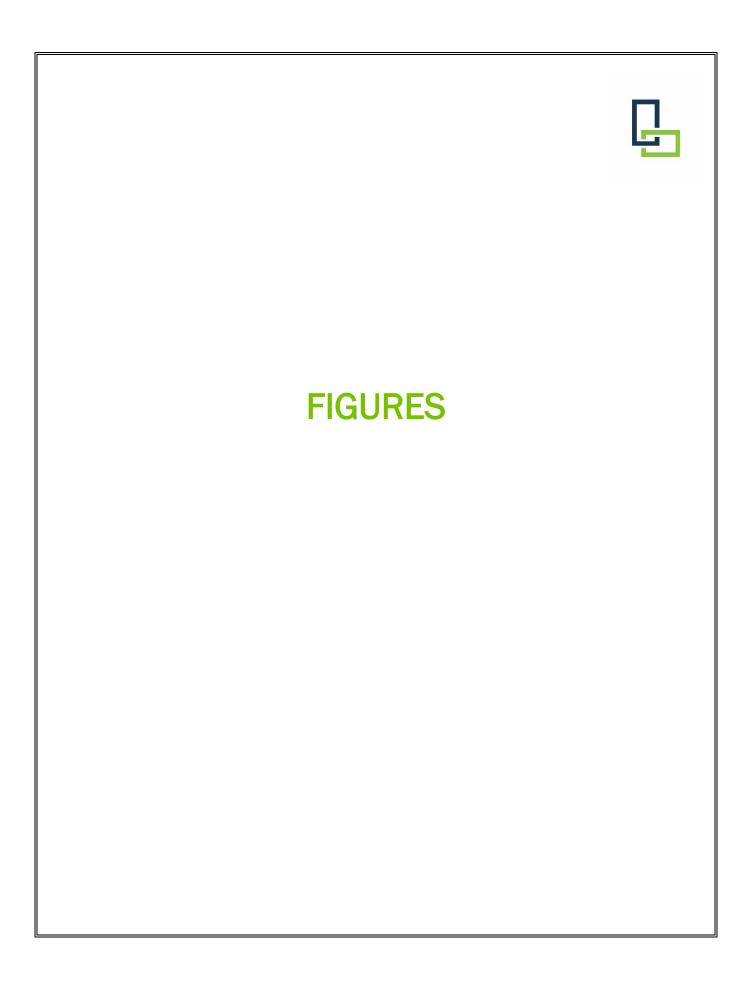
VOC analysis by USEPA Method 8260B TCL.

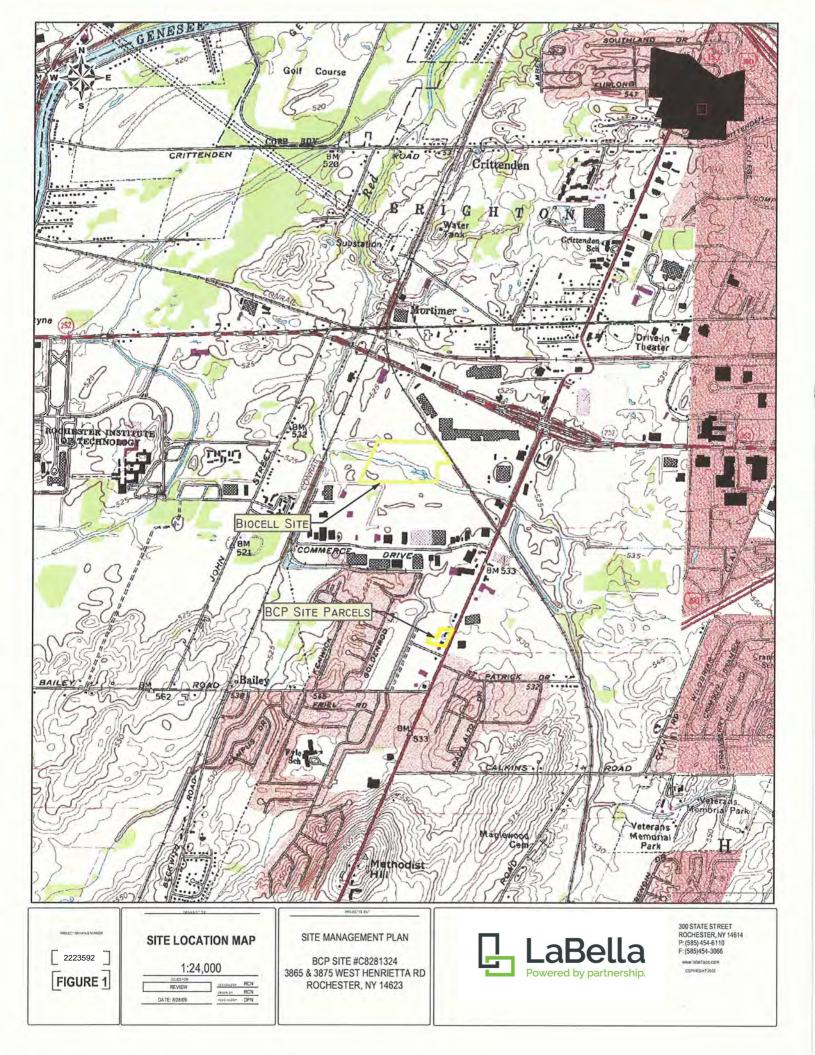
Bold Type denotes that the detected value exceeds its associated NYSDEC Part 703 Groundwater Standard.

ND<5.0 denotes compound not detected above the method detection limits.

J denotes an estimated value; the analyte was positively identified, but the associated numerical value is the approximate concentration of the analyte in the sample. JO denotes that the laboratory's calibration verification was outside of acceptance limits. Result is estimated.

D denotes that the compound was identified in a secondary dilution performed on the sample.

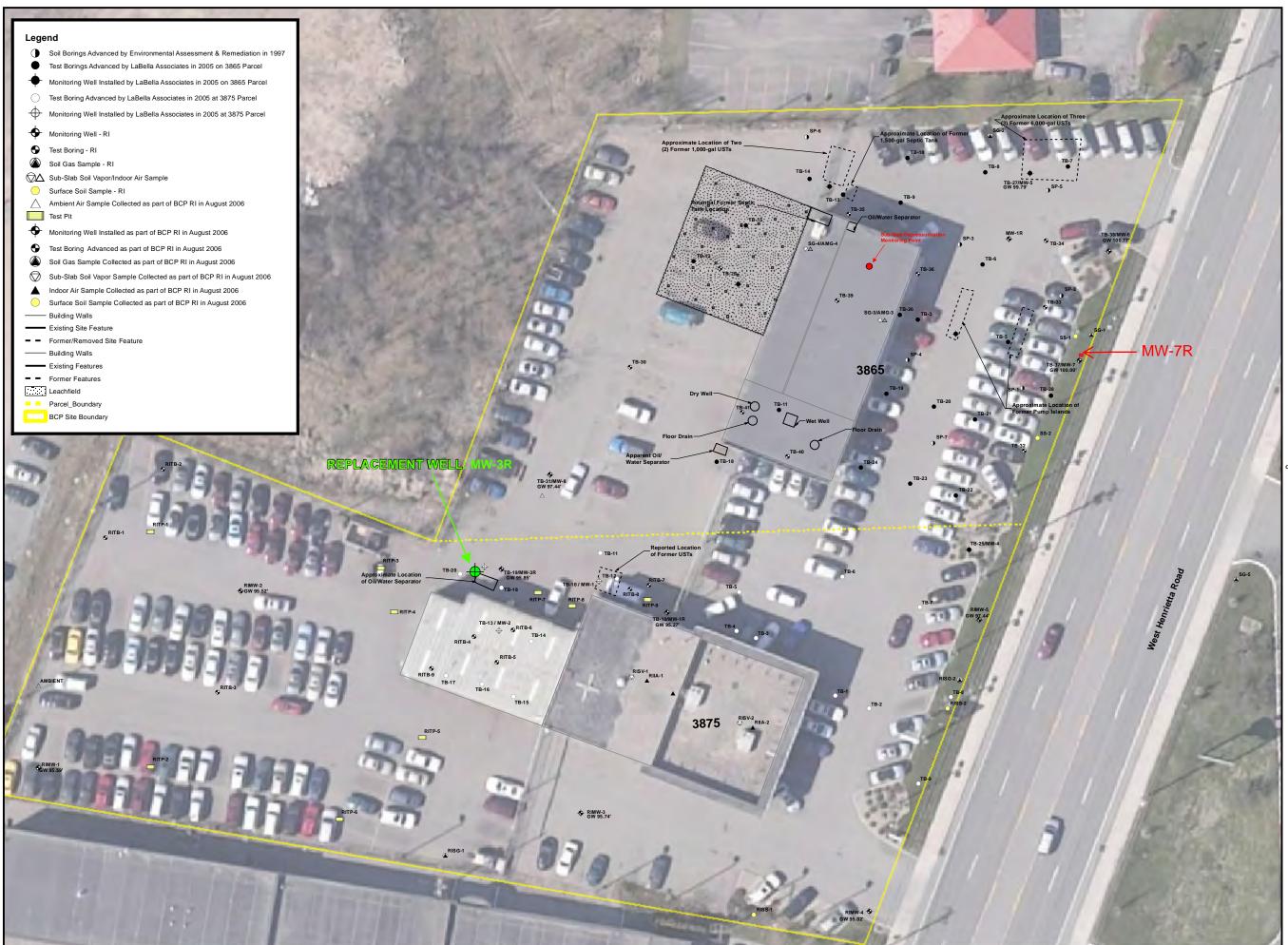

E denotes that the concentration of the compound was found to exceed the calibration range for the instrument.


U is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "interpreted as undetected."

R is a data qualifier indicating that during data validation, it was determined that the concentration reported by the laboratory should be "rejected".

Table 2

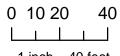
Groundwater Monitoring 3865 & 3875 West Henrietta Road, Henrietta, New York NYSDEC Brownfield Cleanup Program ID No. C828134



Periodic Review Report NYSDEC BCP Site #C8281324 3865 & 3875 West Henrietta Rd Henrietta, New York

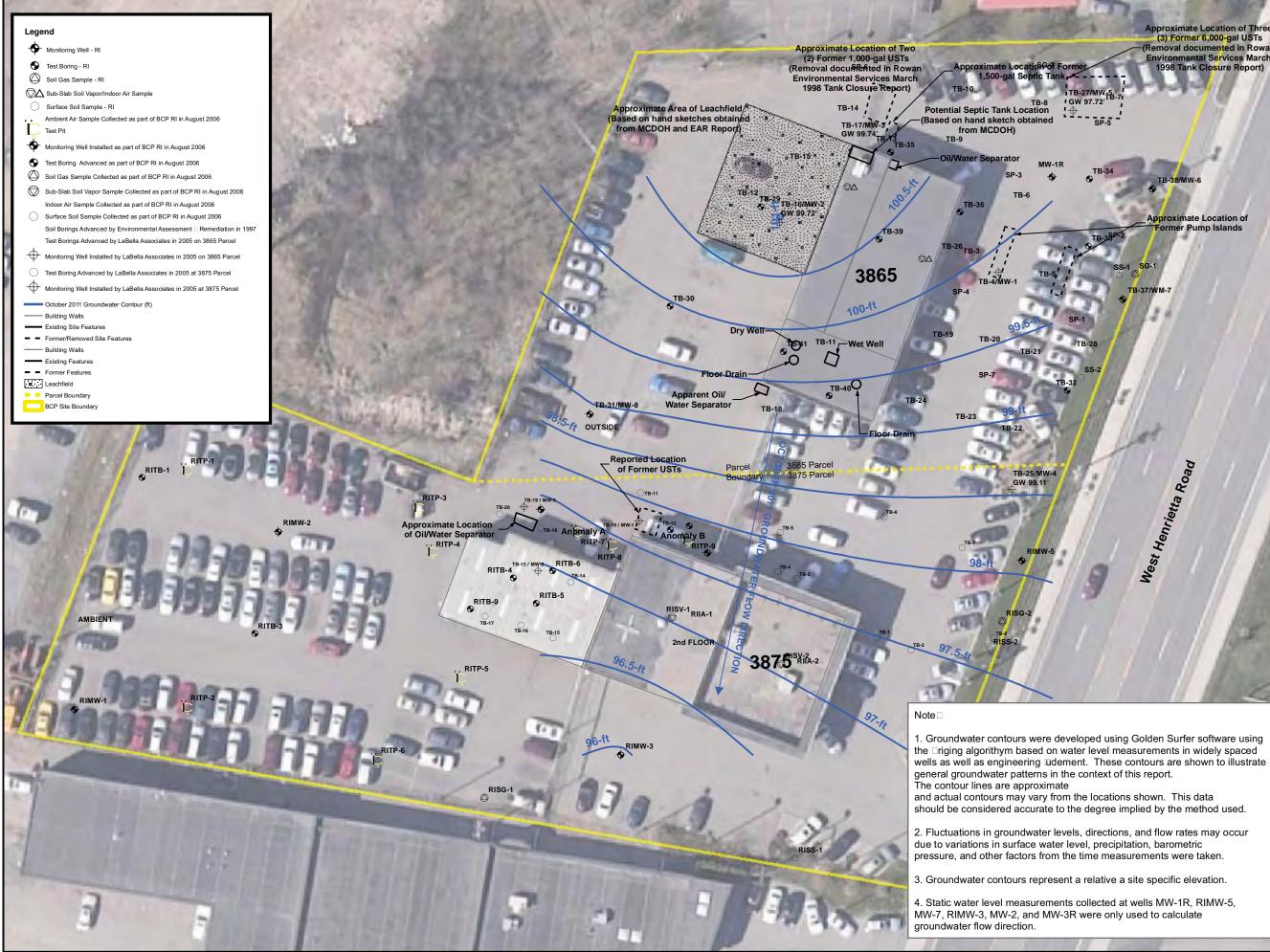
Site Plan and Surrounding Properties

	2223592	
-		
_		
	FIGURE 2	



Periodic Review Report NYSDEC BCP Site #C8281324 3865 & 3875 West Henrietta Rd Henrietta, New York

Groundwater Monitoring Well Locations and Location of Sub-Slab Depressurization Fan



1 inch = 40 feet

2223592

FIGURE 3

pproximate Location of Three (3) Former 6,000-gal USTs moval documented in Rowan nvironmental Services March 1998 Tank Closure Report)

ate Location of

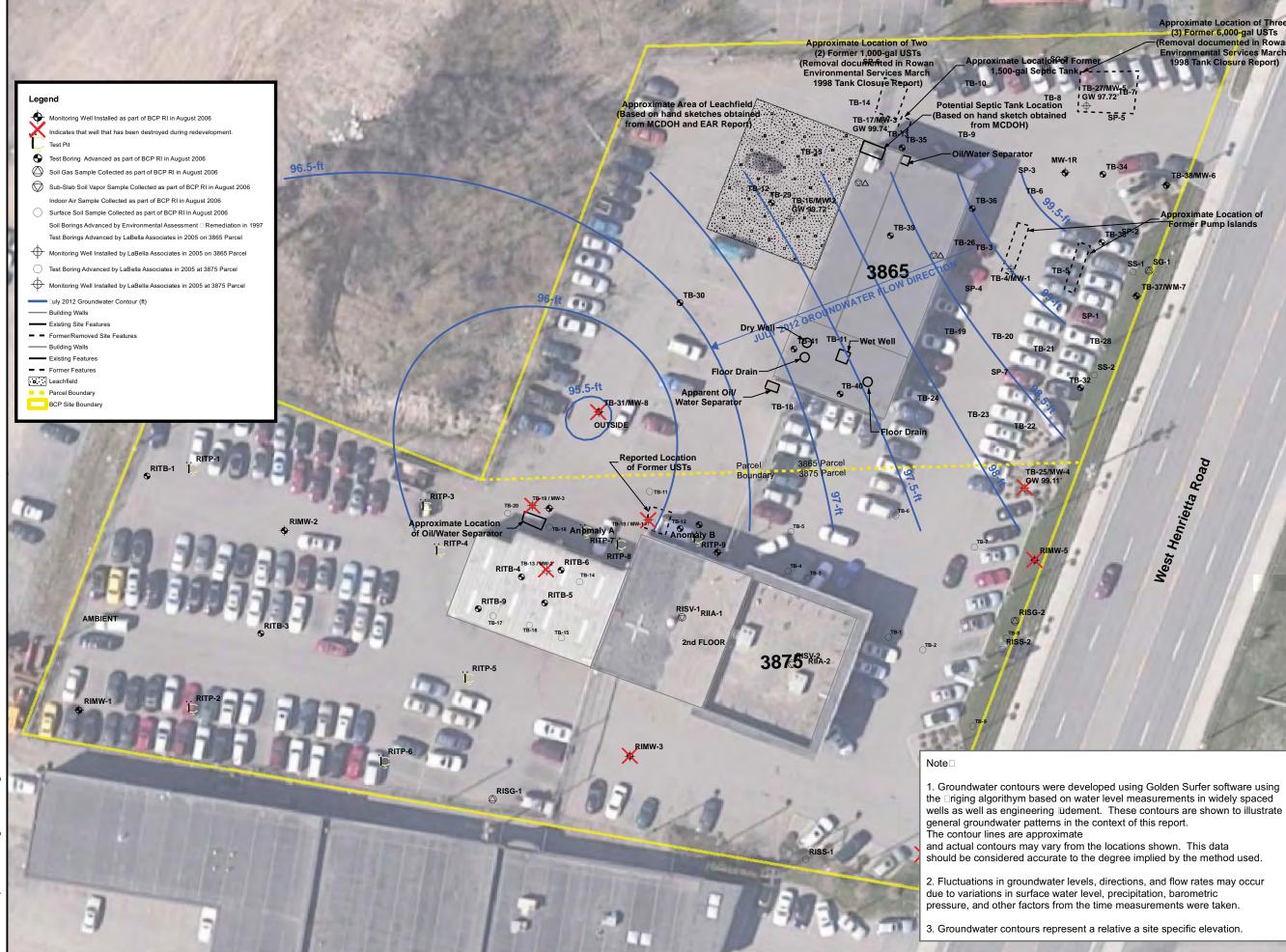
Pump Islands

Approxi

West Henrietta Road

TB-37/WM-7

Periodic Review Report NYSDEC BCP Site #C8281324 3865 & 3875 West Henrietta Rd Henrietta, New York


> October 2011 **Groundwater Contours** and Site Location Plan

051020 1 inch
40 feet

2223592

FIGURE 4A

proximate Location of Three (3) Former 6,000-gal USTs noval documented in Rowan vironmental Services March 998 Tank Closure Report)

ate Location of ormer Pump Islands

TB-37/WM-

West Henrietta Road

Periodic Review Report NYSDEC BCP Site #C8281324 3865 & 3875 West Henrietta Rd Henrietta, New York

> July 2012 **Groundwater Contours** and Site Location Plan

0 510 20 1 inch
40 feet

2223592

FIGURE 4B

APPENDIX A

Groundwater Sample Logs

	tate Street	Project Name:	Mini Coop Sampling
Powered by partnershi	d ip.	Location:	3875 W Henrietta Road
300 State Street		Project No.:	209395
Rochester, New York	14614	Sampled By:	E. Spirito
Telephone: (585) 45 Facsimile: (585) 454		Date:	6/22/2020
WELL I.D.:	MW-7	Weather:	90, Sunny, Scattered rain storms

WELL SAMPLING INFORMATION

Well Diameter:	1"	Static Water Level:	~3' (Issues with water level meter)
Depth of Well:	7.5	Length of Well Screen:	
Measuring Point:	TOC	Depth to Top of Pump:	
Pump Type:	Bladder	Tubing Type:	

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рН	Redox	Turbidity	Comments
		Purged	٥C	(mg/L)	(mS/cm)		(mV)	(NTU)	
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	
14:15	~60ml/min		20.2	0.81	1.37	7.53	-91	106.27	
14:20			19.7	078	1.295	7.18	-89	86.30	
14:25			19.5	0.87	1.208	7.01	-83	53.81	
14:30			19.3	1.72	1.190	7.01	-75.1	45.28	
14:35			19.9	2.81	1.249	6.92	-69.2	82.51	Well starting to dry up
14:40			21.1	2.80	1.329	7.0	-65	95.84	Turbidity increasing
14:45			21.9	2.78	1.339	7.03	-55.7	125.81	
14:50			21.6	2.85	1.345	7.02	-55.2	124.28	

Total Gallons Purged

Purge Time Start: 1415

Purge Time End:

Final Static Water Level:

OBSERVATIONS

Odor. Sampled at 14:50

		Project Name:	ne: Mini Coop Sampling
Powered by partnership).	Location:	3875 W Henrietta Road
300 State Street		Project No.:	209395
Rochester, New York	14614	Sampled By:	E. Spirito
Telephone: (585) 454 Facsimile: (585) 454		Date:	6/22/2020
WELL I.D.:	MW-3R	Weather:	90, Sunny, Scattered rain storms

WELL SAMPLING INFORMATION

Well Diameter:	2"	Static Water Level:	~10' (Issues with water level meter)
Depth of Well:	15.13	Length of Well Screen:	
Measuring Point:	TOC	Depth to Top of Pump:	
Pump Type:	Bladder	Tubing Type:	

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рН	Redox	Turbidity		Comments
		Purged	٥C	(mg/L)	(mS/cm)		(mV)	(NTU)		
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%		
11:40	~60ml/min		22.7	1.09	9.595	6.68	14.5	101.60		
11:45			22.2	0.78	9.207	658	18.3	56.34		
11:50			22.1	0.72	9.086	6.56	20	55.23		
11:55			22.9	0.65	8.839	6.51	16.7	54.23		
12:00			23.1	0.57	8.611	6.59	14.5	42.92		
12:05			22.9	0.59	8.425	7.1	12.6	43.60		
12:10			23.2	0.49	8.404	6.60	11.3	30.50		
12:15			23	0.49	8.411	6.60	10.9	30.23		
	Total Gallons Purged									

1415

Purge Time Start:

Purge Time End:

Final Static Water Level:

OBSERVATIONS

Odor. Sampled at 14:50

Telephone: (eet ew York 14614 585) 454-6110 85) 454-3066	1-7R		Project Name Location: Project No.: Sampled By: Date: Weather:	2i	Dorsc 05 + 3 09395 Spirit 0121 D°F	1. 1. 1. 1.	oundwat est Henri	er Mor etta	Rd	3
WELL SAM	IPLING INFORM	MATION	N. HEREIN				MARTER I.	1. Alexandre			
Well Diameter: 1:55 Depth of Well: 1:55 Measuring Point: TOC Pump Type: Peristal tic Static Water Level: Length of Well Screen: Depth to Top of Pump: Tubing Type: Poly											
FIELD PAR Time	Pump Rate		Terre	Dia 1 10	0.1.11.11			and a start		C. S. A.	
	(mL/min)	Gallons Purged	Temp ∘C	Dissolved O ₂ (mg/L) + 10%	Conductivity (mS/cm) +/- 3%	pH +/- 0.1	Redox (mV) +/- 10 mV	Turbidity (NTU) + 10%	Depth to Water Ft. BGS	SWE	Comments
11:35 11:40 11:50 11:55 11:55 12:00 12:05 12:05			18.7 18.4 18.6 18.0 18.0 18.0 18.1 18.0 18.0	1.04 0.58 0.58 0.58 0.58 0.53 0.557	1.195 1.181 1.181 1.183 1.188 1.188 1.195 1.195 1.195 1.195 1.195	6.65 6.60 6.60 6.62 6.63 6.63 6.63 6.63 6.63 6.63 6.63	-1944 -1367 1736 -174.9 -1799 -1799 -1882 -1882 -1882	273.04 220.01 43.62 40.51 47.14 73.39 78.28 76.24 60.5	2.2	22	YSE bubbles
Purge Time		*35	Gallons	Purged Purge Time E		2:15		E Margaret	tic Water Le	vel: <u>q</u>	56'
msl	Pupe colle	sted			Sar	mpled	. C	0	te su		

biochester, New York 14614 elephone: (585) 454-5010 assimile: (585) 454-3006 Sampled By: E. Spirito VELL I.D.: MW-SR Weather: Sampled By: Sampled By: <t< th=""><th></th></t<>							
300 State Street Opchester, New York 14614 Ideeptone: (S85) 454-6110 essemilie: (S85) 454-6111 essemilie: (S85) 454-61111 essemilie: (S85) 454-61111 essemilie: (S85) 454-61111 essemilie: (S85) 454-6111110 essemilie: (S85) 454-6111110 essemilie: (S85) 454-611110 essemilie:	ni Coop Sampling 875 W Henrietta Road						
300 Statist Street Openheader, new York 14614 Ideephone; (585) 454-6110 arsmine; (585) 454-6111 arsmine; (585) 454-61111 arsmine; (585) 454-61111 arsmine; (585) 454-611111 arsmine; (585) 454-611111 arsmine; (585) 454-6111111 arsmine; (585) 454-61111111 arsmine; (585) 454-611111111111111111111111111111111111	209395						
elephone: (585) 454-6110 acsimile: (585) 454-3066 Date: 5/28/2021 VELL J.D.: MW-3R Weather: Rain showers VELL SAMPLING INFORMATION Static Water Level: -3.02 Vell Diameter: 2" Length of Well Screen: -3.02 Joph of Well: 15.13 Length of Well Screen: -3.02 Joph of Well: TOC Depth to Top of Pump: Poly Pump Type: Peristaltic Dissolved 02 Conductivity PH Redox Turbidity Depth to Top of Pump: Time Pump Rate Gallons Temp Dissolved 02 Conductivity pH Redox Turbidity Depth to 10:20 ~60m/min 11.7 0.32 12.402 6.04 41.2 11.49 11.49 10:30 11.8 0.89 12.434 6.09 35.8 12.30 11.30 11.13 10.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.13 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14 11.14							
WELL I.D.: MW-3R Weather: Rain showers Well SampLing INFORMATION Static Water Level: -3.02 Weather: 15.13							
Depth of Well: 15.13 Length of Well Screen: 5.0 Yeasuring Point: TOC Depth to Top of Pump: Tubing Type: Tubing Type: Tubing Type: Tubing Type: 13.0 Peristaltic Depth to Top of Pump: Tubing Type: Tubin							
Vel Diameter: 2" Static Water Level: 3.02 bepth of Well: 15.13 TOC Depth to Top of Pump: 3.02 Turn Type: Peristaltic Depth to Top of Pump: Tubing Type: 3.02 TIME Pump Rate Gallons Term New Yell New Yell <td></td>							
Depth of Well: 15.13 Length of Well Screen: 5.0 Yump Type: Peristaltic Depth to Top of Pump: 13.0 TIME Peristaltic Dissolved 02 Conductivity pH Redox Turbidity Depth to TIME Pump Rate Gallons Temp Dissolved 02 Conductivity pH Redox Turbidity Depth to (mL/min) (mL/min) 11.7 2.32 12.179 5.99 38.3 4.70 3.02 10:20 ~60ml/min 11.7 0.32 12.402 6.04 41.2 11.49 10:30 11.8 0.89 12.444 6.11 35.9 27.26 11.1 10:40 11.7 0.74 9.927 6.27 35.1 51.01 11.1 10:45 11.7 0.74 9.927 6.27 35.1 51.01 11.1 10:40 11.8 0.46 8.323 6.41 -19.1 20.16 4.95 10:55 12.2 </td <td></td>							
Measuring Point: TOC Peristaltic Depth to Top of Pump: Tubing Type: 13.0 TIME Peristaltic Tot (mS/cm) Tubing Type: Poly TIME Pump Rate Gallons Temp (mS/cm) pH Redox (mV) Turbidity (NTU) Depth to Water 10:20 ~60ml/min 11.7 2.32 12.179 5.99 38.3 4.70 3.02 10:25 11.7 0.32 12.402 6.04 41.2 11.49 10:30 11.8 0.89 12.434 6.09 35.8 12.30 10:40 11.7 0.44 11.351 6.18 32.5 131.54 10:40 11.7 0.44 13.51 6.18 32.5 131.54 10:45 11.7 0.44 13.51 6.18 32.5 131.54 10:45 11.7 0.44 7.948 6.51 -34.4 45.72 11:00 11.2 0.42							
Pump Type: Peristaltic Tubing Type: Poly FIELD PARAMETER MEASUREMENT Time Pump Rate Gallons Temp O O O O O 11me Pump Rate Gallons Temp O Conductivity pH Redox Turbidity Depth to Water (mL/min) 0.20 ~60ml/min 11.7 2.32 12.179 5.99 38.3 4.70 3.02 0.02 10:20 ~60ml/min 11.7 0.32 12.402 6.04 41.2 11.49 0.01 10:35 11.3 0.95 12.444 6.11 35.9 27.26 0.01 <							
FIELD PARAMETER MEASUREMENT Time Pump Rate (mL/min) Gallons Purged (mL/min) Temp oc (mg/L) Dissolved 02 (mg/L) Conductivity (mS/cm) PH Redox (mV) Turbidity (NTU) Depth to Water 10:20 ~60ml/min 11.7 2.32 12.179 5.99 38.3 4.70 3.02 10:25 11.7 0.32 12.402 6.04 41.2 11.49 10.30 10:35 11.3 0.95 12.434 6.11 35.9 27.26 10.17 10:40 11.7 0.74 9.927 6.27 35.1 51.01 10.16 10:45 11.7 0.74 9.927 6.21 -34.4 45.72 11.00 10:55 12.2 0.46 7.792 6.51 -31.5 31.17 11.10 11.2 0.42 7.948 6.51 -32.4 38.32 10.15 11.17 11.2 0.42 7.972 6.51 -31.5 31.17 11.10 11.2 0.42 7.972 <t< td=""><td></td></t<>							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Comments						
(mL/min) + 10% +/- 3% +/- 0.1 +/- 10 mV + 10% Ft. BGS 10:20 ~60ml/min 11.7 2.32 12.179 5.99 38.3 4.70 3.02 10:25 11.7 0.32 12.402 6.04 41.2 11.49	comments						
10:20 ~60ml/min 11.7 2.32 12.179 5.99 38.3 4.70 3.02 10:25 11.7 0.32 12.402 6.04 41.2 11.49 10:30 11.8 0.89 12.434 6.09 35.8 12.30 10:35 11.3 0.95 12.444 6.11 35.9 27.26 10:40 11.7 0.44 11.351 6.18 32.5 131.54 10:45 11.7 0.74 9.927 6.27 35.1 51.01 10:50 11.8 0.46 8.323 6.44 -19.1 20.16 4.95 10:55 12.2 0.46 7.792 6.51 -34.4 45.72 1 11:00 11.2 0.42 7.948 6.51 -32.4 38.32 1 11:10 11.2 0.42 7.972 6.51 -31.5 31.17 1 11:10 11.2 0.42 7.972 6.51 -31.5 30.67 1 11:10 11.2 0.42 7.972 6.51 <td></td>							
10:25 11.7 0.32 12.402 6.04 41.2 11.49							
10:35 11.3 0.95 12.444 6.11 35.9 27.26 10 10:40 11.7 0.44 11.351 6.18 32.5 131.54 10 10:45 11.7 0.74 9.927 6.27 35.1 51.01 10 10:50 11.8 0.46 8.323 6.44 -19.1 20.16 4.95 10:55 12.2 0.46 7.792 6.51 -34.4 45.72 10 10:00 11.2 0.42 7.948 6.51 -32.4 38.32 10 11:05 11.2 0.42 7.970 6.51 -31.5 31.17 11 11:05 11.2 0.42 7.972 6.51 -31.5 30.67 11 11:10 11.2 0.42 7.972 6.51 -31.5 30.67 11 11:10 11.2 0.42 7.972 6.51 -31.5 30.67 11 11:10 11.2 0.42 1.91 1.91 1.91 1.91 1.91 10 10 <td></td>							
10:40 11.7 0.44 11.351 6.18 32.5 131.54 Image: constraint of the state of the							
10:45 11.7 0.74 9.927 6.27 35.1 51.01 Image: constraint of the state of the s							
10:50 11.8 0.46 8.323 6.44 -19.1 20.16 4.95 10:55 12.2 0.46 7.792 6.51 -34.4 45.72 11:00 11.2 0.42 7.948 6.51 -32.4 38.32 11:05 11.2 0.43 7.970 6.51 -31.5 31.17 11:10 11.2 0.42 7.972 6.51 -31.5 30.67 11:10 11.2 0.42 7.972 6.51 -31.5 30.67	Cloudy YSI						
10:55 12.2 0.46 7.792 6.51 -34.4 45.72 11:00 11.2 0.42 7.948 6.51 -32.4 38.32 11:05 11.2 0.43 7.970 6.51 -31.5 31.17 11:05 11.2 0.42 7.972 6.51 -31.5 30.67 11:10 11.2 0.42 7.972 6.51 -31.5 30.67 <td></td>							
11:00 11.2 0.42 7.948 6.51 -32.4 38.32 Image: Constraint of the state of the							
11:05 11.2 0.43 7.970 6.51 -31.5 31.17 Image: Constraint of the second secon							
11:10 11.2 0.42 7.972 6.51 -31.5 30.67 Image: Constraint of the second secon							
Image: Constraint of the second se							
Purge Time Start: 10:20 Purge Time End: 11:10 Final Static Water Level: 4.95							
OBSERVATIONS							

	Project Name:	ct Name: Former Steve Joy's Sunoco, NYSDEC BCP Site #C828134
LaBella Powered by partnership.	Location:	3865 West Henrietta Rd
300 State Street	Project No.:	2223592
Rochester, New York 14614	Sampled By:	AGB
Telephone: (585) 454-6110 Facsimile: (585) 454-3066	Date:	August 8, 2022
WELL I.D.: MW-7R	Weather:	84°F, partly cloudy

WELL SAMPLING INFORMATION

Well Diameter:	1"	Static Water Level:	1.55'
Depth of Well:	11.52'	Length of Well Screen:	
Measuring Point:	TOC	Depth to Top of Pump:	9'
Pump Type:	Peristaltic	Tubing Type:	LDPE

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	Temp	Dissolved 0 ₂	Conductivity	рН	Redox	Turbidity	Depth to	Comments
		Purged	°C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)	_		+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
0915	190	0.25	20.7	3.01	1.072	6.75	-99.3	51.68	4.01	
0920	190	0.50	20.6	0.91	1.124	6.74	-106.5	17.67	5.57	
0925	190	0.75	20.8	0.82	1.289	6.72	-112.0	11.57	6.37	
0930	190	1.00	20.9	0.72	1.327	6.74	-114.8	5.98	6.59	
0935	190	1.25	20.7	0.77	1.301	6.76	-114.0	6.56	6.60	
0940	190	1.50	20.7	0.70	1.350	6.76	-115.9	6.12	6.61	
	Total 1.5 Gallons Purged									

Purge Time End:

0940

Purge Time Start: 0910

Final Static Water Level:

6.61

OBSERVATIONS

Sample collected at 0942

📙 LaBella		Project Name:	Former Steve Joy's Sunoco, NYSDEC BCP Site #C828134
Powered by partnership		Location:	3875 West Henrietta Rd
300 State Street		Project No.:	2223592
Rochester, New York		Sampled By:	AGB
Telephone: (585) 45 Facsimile: (585) 454		Date:	August 8, 2022
WELL I.D.:	MW-3R	Weather:	86°F, partly cloudy

WELL SAMPLING INFORMATION

Well Diameter:	2"	Static Water Level:	3.75'
Depth of Well:	15.2'	Length of Well Screen:	
Measuring Point:	TOC	Depth to Top of Pump:	13'
Pump Type:	Peristaltic	Tubing Type:	LDPE

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	pН	Redox	Turbidity	Depth to	Comments
		Purged	°C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)	_		+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
1033	190	0.25	20.0	0.68	15.717	6.13	30.6	575.28	4.91	
1038	190	0.50	20.2	0.63	15.183	6.14	39.1	77.30	5.80	
1043	190	0.75	20.8	0.58	13.455	6.19	41.0	7.82	5.85	
1048	190	1.00	21.0	0.58	13.139	6.21	40.3	5.82	5.85	
1053	190	1.25	21.6	0.54	12.164	6.26	17.0	2.39	5.85	
1058	190	1.50	22.2	0.53	9.828	6.40	-19.6	3.82	5.85	
1103	190	1.75	21.8	0.56	9.070	6.47	-34.9	5.29	5.85	
1108	190	2.00	22.1	0.57	8.866	6.48	-35.4	5.01	5.85	
1113	190	2.25	22.0	0.57	8.819	6.48	-34.6	4.92	5.85	
1118	190	2.50	22.1	0.57	8.897	6.48	-33.4	4.75	5.85	
	Total 2.5 Gallons Purged									

Purge Time End:

1118

Purge Time Start: 1028

Final Static Water Level: 5.85

OBSERVATIONS

Sample collected at 1120. MS/MSD and Duplicate (Dup-8.8.22) collected

APPENDIX B

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number:	L2128631
Client:	LaBella Associates, P.C.
	300 State Street
	Suite 201
	Rochester, NY 14614
ATTN:	Mike Pelychaty
Phone:	(585) 295-6253
Project Name:	RJ DORSCHEL GW MONITORING
Project Number:	209395
Report Date:	06/01/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RJ DORSCHEL GW MONITORINGProject Number:209395

 Lab Number:
 L2128631

 Report Date:
 06/01/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2128631-01	MW-3R	WATER	3865 AND 3875 WEST HENRIETTA RD	05/28/21 11:10	05/28/21
L2128631-02	DUPE-01-052821	WATER	3865 AND 3875 WEST HENRIETTA RD	05/28/21 00:00	05/28/21

Project Name:RJ DORSCHEL GW MONITORINGProject Number:209395

Lab Number: L2128631 Report Date: 06/01/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:RJ DORSCHEL GW MONITORINGProject Number:209395

 Lab Number:
 L2128631

 Report Date:
 06/01/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 06/01/21

ORGANICS

VOLATILES

		Serial_No:06012119:50		
Project Name:	RJ DORSCHEL GW MONITORING	Lab Number:	L2128631	
Project Number:	209395	Report Date:	06/01/21	
	SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L2128631-01 MW-3R 3865 AND 3875 WEST HENRIETTA RD	Date Collected: Date Received: Field Prep:	05/28/21 11:10 05/28/21 Not Specified	
Sample Depth: Matrix: Analytical Method:	Water 1,8260C			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	100		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	3.2		ug/l	2.5	0.70	1	

Analytical Date: Analyst:

05/30/21 09:17

KJD

		Serial_No:06012119:5	
Project Name:	RJ DORSCHEL GW MONITORING	Lab Number:	L2128631
Project Number:	209395	Report Date:	06/01/21
	SAMPLE RESULTS		
Lab ID:	L2128631-01	Date Collected:	05/28/21 11:10
Client ID:	MW-3R	Date Received:	05/28/21
Sample Location:	3865 AND 3875 WEST HENRIETTA RD	Field Prep:	Not Specified

Samp	le De	pth:
------	-------	------

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	4.1		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	1.4	J	ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	108	70-130	

		Serial_No	p:06012119:50
Project Name:	RJ DORSCHEL GW MONITORING	Lab Number:	L2128631
Project Number:	209395	Report Date:	06/01/21
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2128631-02 DUPE-01-052821 3865 AND 3875 WEST HENRIETTA RD	Date Collected: Date Received: Field Prep:	05/28/21 00:00 05/28/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 05/30/21 09:40 KJD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	110		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	3.2		ug/l	2.5	0.70	1

		Serial_No	0:06012119:50
Project Name:	RJ DORSCHEL GW MONITORING	Lab Number:	L2128631
Project Number:	209395	Report Date:	06/01/21
	SAMPLE RESULTS		
Lab ID:	L2128631-02	Date Collected:	05/28/21 00:00
Client ID:	DUPE-01-052821	Date Received:	05/28/21
Sample Location:	3865 AND 3875 WEST HENRIETTA RD	Field Prep:	Not Specified

Samp	le De	epth:
------	-------	-------

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	3.4		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	1.4	J	ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	109		70-130	

Project Name: **RJ DORSCHEL GW MONITORING**

Project Number: 209395

Lab Number: L2128631 **Report Date:** 06/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: KJD

05/30/21 08:54

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS	- Westborough Lab	for sample(s):	01-02 Batch:	WG1506050-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: **RJ DORSCHEL GW MONITORING**

Project Number: 209395

Lab Number: L2128631 **Report Date:** 06/01/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/30/21 08:54 Analyst: KJD

arameter	Result	Qualifier Units	s RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lab	o for sample(s):	01-02 Batch:	WG1506050-5	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
1,4-Dioxane	ND	ug/l	250	61.	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/l	10	0.40	

Project Name:RJ DORSCHEL GW MONITORINGProject Number:209395

Lab Number: L2128631 Report Date: 06/01/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/30/21 08:54Analyst:KJD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - W	estborough La	b for sample	e(s): 01-	02 Batch:	WG1506050-5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	112		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	117		70-130	

Project Name: RJ DORSCHEL GW MONITORING

Project Number: 209395 Lab Number: L2128631 06/01/21

Report Date:

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-02	Batch:	WG1506050-3	WG1506050-4			
Methylene chloride	85			86		70-130	1		20
1,1-Dichloroethane	90			91		70-130	1		20
Chloroform	92			95		70-130	3		20
Carbon tetrachloride	100			100		63-132	0		20
1,2-Dichloropropane	88			89		70-130	1		20
Dibromochloromethane	100			100		63-130	0		20
1,1,2-Trichloroethane	88			92		70-130	4		20
Tetrachloroethene	100			100		70-130	0		20
Chlorobenzene	94			97		75-130	3		20
Trichlorofluoromethane	97			97		62-150	0		20
1,2-Dichloroethane	99			100		70-130	1		20
1,1,1-Trichloroethane	100			100		67-130	0		20
Bromodichloromethane	96			97		67-130	1		20
trans-1,3-Dichloropropene	79			80		70-130	1		20
cis-1,3-Dichloropropene	83			85		70-130	2		20
Bromoform	91			95		54-136	4		20
1,1,2,2-Tetrachloroethane	82			84		67-130	2		20
Benzene	83			84		70-130	1		20
Toluene	88			90		70-130	2		20
Ethylbenzene	87			90		70-130	3		20
Chloromethane	75			75		64-130	0		20
Bromomethane	52			54		39-139	4		20
Vinyl chloride	81			80		55-140	1		20

Project Number: 209395 Lab Number: L2128631 06/01/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1506050-3	WG1506050-4				
Chloroethane	84		84		55-138	0		20	
1,1-Dichloroethene	92		92		61-145	0		20	
trans-1,2-Dichloroethene	92		93		70-130	1		20	
Trichloroethene	92		94		70-130	2		20	
1,2-Dichlorobenzene	93		96		70-130	3		20	
1,3-Dichlorobenzene	93		97		70-130	4		20	
1,4-Dichlorobenzene	94		96		70-130	2		20	
Methyl tert butyl ether	78		81		63-130	4		20	
p/m-Xylene	90		95		70-130	5		20	
o-Xylene	90		90		70-130	0		20	
cis-1,2-Dichloroethene	92		95		70-130	3		20	
Styrene	90		95		70-130	5		20	
Dichlorodifluoromethane	63		63		36-147	0		20	
Acetone	69		70		58-148	1		20	
Carbon disulfide	80		80		51-130	0		20	
2-Butanone	79		88		63-138	11		20	
4-Methyl-2-pentanone	76		83		59-130	9		20	
2-Hexanone	84		94		57-130	11		20	
Bromochloromethane	100		110		70-130	10		20	
1,2-Dibromoethane	93		94		70-130	1		20	
1,2-Dibromo-3-chloropropane	95		97		41-144	2		20	
Isopropylbenzene	83		86		70-130	4		20	
1,2,3-Trichlorobenzene	90		95		70-130	5		20	

Project Name: RJ DORSCHEL GW MONITORING

Project Number: 209395

 Lab Number:
 L2128631

 Report Date:
 06/01/21

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1506050-3 WG1506050-4 1,2,4-Trichlorobenzene 85 89 70-130 5 20 89 Methyl Acetate 83 70-130 7 20 Cyclohexane 88 92 70-130 4 20 1,4-Dioxane 104 96 56-162 8 20 Freon-113 88 88 70-130 0 20 20 Methyl cyclohexane 81 85 70-130 5

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	106	106	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	90	89	70-130
Dibromofluoromethane	105	101	70-130

Project Name:	RJ DORSCHEL GW MONITORING	Batch Quality Control	Lab Number:	L2128631
Project Number:	209395		Report Date:	06/01/21

Parameter	Native Sample A	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M MW-3R	/IS - Westborough La	b Asso	ciated sample(s): 01-02 Q0	Batch ID:	WG15060)50-6 WG1506	6050-7	QC Sample	e: L2128	8631-01	Client ID:
Methylene chloride	ND	10	8.8	88		9.3	93		70-130	6		20
1,1-Dichloroethane	ND	10	10	100		10	100		70-130	0		20
Chloroform	ND	10	9.9	99		10	100		70-130	1		20
Carbon tetrachloride	ND	10	12	120		12	120		63-132	0		20
1,2-Dichloropropane	ND	10	9.0	90		9.6	96		70-130	6		20
Dibromochloromethane	ND	10	9.9	99		10	100		63-130	1		20
1,1,2-Trichloroethane	ND	10	8.8	88		9.2	92		70-130	4		20
Tetrachloroethene	ND	10	10	100		11	110		70-130	10		20
Chlorobenzene	100	10	120	200	Q	110	100		75-130	9		20
Trichlorofluoromethane	ND	10	12	120		12	120		62-150	0		20
1,2-Dichloroethane	ND	10	10	100		11	110		70-130	10		20
1,1,1-Trichloroethane	ND	10	11	110		12	120		67-130	9		20
Bromodichloromethane	ND	10	9.8	98		10	100		67-130	2		20
trans-1,3-Dichloropropene	ND	10	7.4	74		7.8	78		70-130	5		20
cis-1,3-Dichloropropene	ND	10	7.9	79		8.4	84		70-130	6		20
Bromoform	ND	10	9.4	94		10	100		54-136	6		20
1,1,2,2-Tetrachloroethane	ND	10	8.6	86		9.2	92		67-130	7		20
Benzene	ND	10	8.8	88		9.4	94		70-130	7		20
Toluene	ND	10	8.9	89		9.3	93		70-130	4		20
Ethylbenzene	ND	10	9.2	92		9.6	96		70-130	4		20
Chloromethane	ND	10	8.0	80		8.6	86		64-130	7		20
Bromomethane	ND	10	4.2	42		6.0	60		39-139	35	Q	20
Vinyl chloride	ND	10	9.0	90		9.8	98		55-140	9		20

Project Name:	RJ DORSCHEL GW MONITORING	Batch Quality Control	Lab Number:	L2128631
Project Number:	209395		Report Date:	06/01/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recov Qual Limit		Qual	RPD Limits
Volatile Organics by GC/M MW-3R	S - Westborough I	_ab Assoc	iated sample(s): 01-02 QC	Batch ID: WG15060	050-6 WG1506	050-7 QC Sa	mple: L212	8631-01	Client ID:
Chloroethane	ND	10	9.3	93	10	100	55-138	3 7		20
1,1-Dichloroethene	ND	10	10	100	11	110	61-145	5 10		20
trans-1,2-Dichloroethene	ND	10	10	100	11	110	70-130	10		20
Trichloroethene	ND	10	10	100	11	110	70-130	10		20
1,2-Dichlorobenzene	3.2	10	13	98	13	98	70-130	0		20
1,3-Dichlorobenzene	ND	10	10	100	11	110	70-130	10		20
1,4-Dichlorobenzene	4.1	10	13	89	14	99	70-130) 7		20
Methyl tert butyl ether	ND	10	8.6	86	9.0	90	63-130	5		20
p/m-Xylene	ND	20	18	90	19	95	70-130	5		20
o-Xylene	ND	20	17	85	18	90	70-130	6		20
cis-1,2-Dichloroethene	ND	10	9.6	96	10	100	70-130) 4		20
Styrene	ND	20	18	90	18	90	70-130	0		20
Dichlorodifluoromethane	1.4J	10	8.3	83	8.8	88	36-147	6		20
Acetone	ND	10	8.8	88	9.2	92	58-148	8 4		20
Carbon disulfide	ND	10	9.1	91	9.6	96	51-130	5		20
2-Butanone	ND	10	9.4	94	8.9	89	63-138	5		20
4-Methyl-2-pentanone	ND	10	8.1	81	8.9	89	59-130	9		20
2-Hexanone	ND	10	10	100	9.8	98	57-130) 2		20
Bromochloromethane	ND	10	11	110	12	120	70-130	9		20
1,2-Dibromoethane	ND	10	9.0	90	9.6	96	70-130	6		20
1,2-Dibromo-3-chloropropane	ND	10	9.7	97	11	110	41-144	13		20
Isopropylbenzene	ND	10	8.6	86	9.2	92	70-130) 7		20
1,2,3-Trichlorobenzene	ND	10	8.9	89	10	100	70-130) 12		20

Project Name: Project Number:	RJ DORSCHE 209395	L GW MONI	ITORING	Batch Quality Control						ber: ate:	L2128631 06/01/21		
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/	MS - Westborough	Lab Assoc	ciated sample	e(s): 01-02 QC	Batch ID	: WG15060	050-6 WG1506	6050-7	QC Sample	: L2128	3631-01	Client ID):

MW-3R	0		• 、	,			•		
1,2,4-Trichlorobenzene	ND	10	8.6	86	9.4	94	70-130	9	20
Methyl Acetate	ND	10	8.4	84	9.2	92	70-130	9	20
Cyclohexane	ND	10	9.9J	99	11	110	70-130	11	20
1,4-Dioxane	ND	500	660	132	740	148	56-162	11	20
Freon-113	ND	10	10	100	11	110	70-130	10	20
Methyl cyclohexane	ND	10	9.3J	93	10	100	70-130	7	20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	112	111	70-130	
4-Bromofluorobenzene	88	87	70-130	
Dibromofluoromethane	106	105	70-130	
Toluene-d8	94	94	70-130	

Project Name: **RJ DORSCHEL GW MONITORING** Project Number: 209395

Serial_No:06012119:50 Lab Number: L2128631 Report Date: 06/01/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2128631-01A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-01A1	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2128631-01A2	Vial HCI preserved	А	NA		3.4	Υ	Absent		NYTCL-8260-R2(14)
L2128631-01B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-01B1	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-01B2	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-01C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-01C1	Vial HCl preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-01C2	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-02A	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-02B	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2128631-02C	Vial HCI preserved	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)

YES

Project Name: RJ DORSCHEL GW MONITORING

Project Number: 209395

Lab Number: L2128631

Report Date: 06/01/21

GLOSSARY

Acronyms

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: RJ DORSCHEL GW MONITORING

Project Number: 209395

Lab Number: L2128631

Report Date: 06/01/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:06012119:50

Project Name: RJ DORSCHEL GW MONITORING

Project Number: 209395

Lab Number: L2128631 Report Date: 06/01/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:RJ DORSCHEL GW MONITORINGProject Number:209395

 Lab Number:
 L2128631

 Report Date:
 06/01/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	e of \	-		Rec'd	- 12	91	21	ALPHA Job # L2128631	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		A TON			Delive	erable	s			- ingel	Billing Information	
TEL: 508-898-9220 FAX: 508-896-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: RJ D Project Location: 3845	orschel	Groundwa	ter mon	itoning		ASP-			LASP-		Same as Client Info	
		Project Location: 504)	nnd 301	Swest He	nrietta	Rd	10	EQui	S (1 File)] EQul	S (4 File)	PO#	
Client Information		Project # 2093	47					Other						
Client: 10Bella As		(Use Project name as Pr	the second s		_		Regul	atory	Requireme	ent			Disposal Site Information	
Address: 300 SHOLES		and the second se	e pery	chahy				NY TO	IGS] NY Pa	rt 375	Please identify below location of	e e e
and the second s	14409	ALPHAQuote #:						AWQ	Standards		NY CF	-51	applicable disposal facilities.	
Phone: SPS-US4		Tum-Around Time						NY Re	stricted Use] Other		Disposal Facility:	
Fax espiincelabe		Standard		Due Date:				NY Un	restricted U	se			NJ NY	
Email: MPEly(nah	islabella pc.com	Rush (only if pre approved		# of Days:	201	4 YS		NYC S	ewer Disch	arge			Other:	_
These samples have b	een previously analyze	ed by Alpha					ANAL	YSIS					Sample Filtration	T
Other project specific	c requirements/comm	ents:					9			1			Done	0
							8260		*				Lab to do	а
							5						Preservation	1
Please specify Metals	s or TAL.						005						Lab to do	в
							2						(Please Specify below)	0
ALPHA Lab ID	C.	male ID	Colle	ection	Sample	Sampler's	1							ť
(Lab Use Only)	58	mple ID	Date	Time	Matrix	Initials	701	-					Sample Specific Comments	1
28631-01	MW-3R		5128121	11:10	GW,	ES	N			1			mslinsp cellected	9
-02	DUP2-01-05	52821	5/28/21	-	CiW	ES	X							3
										1				-
										1				
										1				
										-		_		\vdash
										1				\vdash
			2							+		_		H
		¥1.							_	1				\vdash
Preservative Code: A = None	Container Code P = Plastic	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	V			\square			Please print clearly, legibly	
B = HCI C = HNO ₃	A = Amber Glass V = Vial	mananela. Cerundadon h	0. MA015				10	_	_	-		_	and completely. Samples of not be logged in and	can
$D = H_2SO_4$	G = Glass				P	reservative	B						turnaround time clock will r	not
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	Dellequisted) Dur		0		_			-			start until any ambiguities a	
G = NaHSO4	O = Other	Relinquished E	sy:	Date/1		and the second se	Receive				Date/		resolved. BY EXECUTING THIS COC, THE CLIENT	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	E = Encore D = BOD Bottle	Emplemo	1=00	12:00 5		RECURE			the second se	1	8/21	12:00	HAS READ AND AGREES	5
O = Other	-1	SECURE STORA				RCunn	ingh	in	AAL		1/21	12:34		A'S
		RCunninghor	NMAL	5/38/21	12:36	11	1	est	mg	156	921	01.00	TERMS & CONDITIONS. (See reverse side.)	
Form No: 01-25 HC (rev. 3 age 26 of 26	0-Sept-2013)	V				1-1	/		0		-			

ANALYTICAL REPORT

Lab Number:	L2131461
Client:	LaBella Associates, P.C.
	300 State Street
	Suite 201
	Rochester, NY 14614
ATTN:	Mike Pelychaty
Phone:	(585) 295-6253
Project Name:	RJ DORSCHEL GROUNDWATER
Project Number:	209395
Report Date:	06/15/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RJ DORSCHEL GROUNDWATERProject Number:209395

 Lab Number:
 L2131461

 Report Date:
 06/15/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2131461-01	MW-7R	WATER	HENRIETTA, NY	06/10/21 12:15	06/10/21
L2131461-02	DUPE-061021	WATER	HENRIETTA, NY	06/10/21 00:00	06/10/21
L2131461-03	TRIP BLANK	WATER	HENRIETTA, NY	06/10/21 00:00	06/10/21

Project Name:RJ DORSCHEL GROUNDWATERProject Number:209395

Lab Number: L2131461 Report Date: 06/15/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: RJ DORSCHEL GROUNDWATER Project Number: 209395

 Lab Number:
 L2131461

 Report Date:
 06/15/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

L2131461-03: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. This sample was not analyzed.

Volatile Organics

L2131461-01D and -02D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

The WG1512330-7 MSD recovery, performed on L2131461-01, is outside the acceptance criteria for cyclohexane (0%). The unacceptable percent recovery is attributed to the elevated concentration of target compound present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Monig Michelle M. Morris

Title: Technical Director/Representative

Date: 06/15/21

ORGANICS

VOLATILES

				Serial_No	p:06152114:34
Project Name:	RJ DORSCHEL GRO		ATER	Lab Number:	L2131461
Project Number:	209395		SAMPLE RESULTS	Report Date:	06/15/21
Lab ID: Client ID: Sample Location:	L2131461-01 MW-7R HENRIETTA, NY	D		Date Collected: Date Received: Field Prep:	06/10/21 12:15 06/10/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/15/21 10:55 NLK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	1.4	J	ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	ND		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	21		ug/l	1.0	0.32	2
Toluene	7.3		ug/l	5.0	1.4	2
Ethylbenzene	34		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Trichloroethene	ND		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

						Serial_No	:06152114:34	
Project Name:	RJ DORSCHEL GRO	OUNDWATER	R		Lab Nu	umber:	L2131461	
Project Number:	209395				Report	Date:	06/15/21	
		SAMF	PLE RESULT	5	-			
Lab ID: Client ID: Sample Location:	L2131461-01 MW-7R HENRIETTA, NY	D			Date Co Date Re Field Pre	ceived:	06/10/21 12:15 06/10/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	gh Lab						
		-						
1,3-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
1,4-Dichlorobenzene		ND		ug/l	5.0	1.4	2	
Methyl tert butyl ether		ND		ug/l	5.0	1.4	2	
p/m-Xylene		38		ug/l	5.0	1.4	2	
o-Xylene		2.4	J	ug/l	5.0	1.4	2	
cis-1,2-Dichloroethene		ND		ug/l	5.0	1.4	2	
Styrene		ND		ug/l	5.0	1.4	2	
Dichlorodifluoromethane		ND		ug/l	10	2.0	2	
Acetone		ND		ug/l	10	2.9	2	
Carbon disulfide		ND		ug/l	10	2.0	2	
2-Butanone		ND		ug/l	10	3.9	2	
4-Methyl-2-pentanone		ND		ug/l	10	2.0	2	
2-Hexanone		ND		ug/l	10	2.0	2	
Bromochloromethane		ND		ug/l	5.0	1.4	2	
1,2-Dibromoethane		ND		ug/l	4.0	1.3	2	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	5.0	1.4	2	
Isopropylbenzene		31		ug/l	5.0	1.4	2	
1,2,3-Trichlorobenzene		ND		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene		ND		ug/l	5.0	1.4	2	
Methyl Acetate		ND		ug/l	4.0	0.47	2	
Cyclohexane		110		ug/l	20	0.54	2	
1,4-Dioxane		ND		ug/l	500	120	2	
Freon-113		ND		ug/l	5.0	1.4	2	
Methyl cyclohexane		48		ug/l	20	0.79	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	94	70-130

				Serial_No	p:06152114:34
Project Name:	RJ DORSCHEL GRO	JUND	WATER	Lab Number:	L2131461
Project Number:	209395			Report Date:	06/15/21
			SAMPLE RESULTS		
Lab ID:	L2131461-02	D		Date Collected:	06/10/21 00:00
Client ID:	DUPE-061021			Date Received:	06/10/21
Sample Location:	HENRIETTA, NY			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	06/15/21 11:17				
Analyst:	NLK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	ND		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
rans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	24		ug/l	1.0	0.32	2
Toluene	6.8		ug/l	5.0	1.4	2
Ethylbenzene	43		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Trichloroethene	ND		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

	Serial_No:06152114:34						
Project Name:	RJ DORSCHEL GR	OUNDWATER			Lab Nu	umber:	L2131461
Project Number:	209395				Report	Date:	06/15/21
-		SAMPL		6	•		
Lab ID: Client ID: Sample Location:	L2131461-02 DUPE-061021 HENRIETTA, NY	D			Date Collected: Date Received: Field Prep:		06/10/21 00:00 06/10/21 Not Specified
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	by GC/MS - Westborou		quaintor	Unito			
Volatile Organites t		ight Lab					
1,3-Dichlorobenzene		ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene		ND		ug/l	5.0	1.4	2
Methyl tert butyl ether		ND		ug/l	5.0	1.4	2
p/m-Xylene		43		ug/l	5.0	1.4	2
o-Xylene		2.6	J	ug/l	5.0	1.4	2
cis-1,2-Dichloroethene		ND		ug/l	5.0	1.4	2
Styrene		ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane		ND		ug/l	10	2.0	2
Acetone		ND		ug/l	10	2.9	2
Carbon disulfide		ND		ug/l	10	2.0	2
2-Butanone		ND		ug/l	10	3.9	2
4-Methyl-2-pentanone		ND		ug/l	10	2.0	2
2-Hexanone		ND		ug/l	10	2.0	2
Bromochloromethane		ND		ug/l	5.0	1.4	2
1,2-Dibromoethane		ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	5.0	1.4	2
Isopropylbenzene		44		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene		ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene		ND		ug/l	5.0	1.4	2
Methyl Acetate		ND		ug/l	4.0	0.47	2
Cyclohexane		150		ug/l	20	0.54	2

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	94	70-130

500

5.0

20

ug/l

ug/l

ug/l

120

1.4

0.79

ND

ND

67

2

2

2

1,4-Dioxane

Freon-113

Methyl cyclohexane

Project Name: **RJ DORSCHEL GROUNDWATER**

Project Number: 209395

Lab Number: L2131461 **Report Date:** 06/15/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/15/21 08:23 Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	for sample(s):	01-02 Batch:	WG1512330-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: **RJ DORSCHEL GROUNDWATER**

Project Number: 209395

Lab Number: L2131461 **Report Date:** 06/15/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/15/21 08:23 Analyst: NLK

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-02 Batch:	WG1512330-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: RJ DORSCHEL GROUNDWATER

 Lab Number:
 L2131461

 Report Date:
 06/15/21

Project Number: 209395

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/15/21 08:23Analyst:NLK

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sample	e(s): 01-02	Batch:	WG1512330-5	

Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	108		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	94		70-130		
Dibromofluoromethane	116		70-130		

Project Name: RJ DORSCHEL GROUNDWATER

Project Number: 209395 Lab Number: L2131461 06/15/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): C	01-02 Batch: V	WG1512330-3 WG1512330-4			
Methylene chloride	100		98	70-130	2	20	
1,1-Dichloroethane	110		100	70-130	10	20	
Chloroform	100		96	70-130	4	20	
Carbon tetrachloride	93		83	63-132	11	20	
1,2-Dichloropropane	100		100	70-130	0	20	
Dibromochloromethane	87		89	63-130	2	20	
1,1,2-Trichloroethane	88		95	70-130	8	20	
Tetrachloroethene	93		90	70-130	3	20	
Chlorobenzene	95		96	75-130	1	20	
Trichlorofluoromethane	100		92	62-150	8	20	
1,2-Dichloroethane	97		89	70-130	9	20	
1,1,1-Trichloroethane	88		83	67-130	6	20	
Bromodichloromethane	92		91	67-130	1	20	
trans-1,3-Dichloropropene	79		79	70-130	0	20	
cis-1,3-Dichloropropene	88		83	70-130	6	20	
Bromoform	86		91	54-136	6	20	
1,1,2,2-Tetrachloroethane	92		92	67-130	0	20	
Benzene	100		94	70-130	6	20	
Toluene	92		91	70-130	1	20	
Ethylbenzene	90		90	70-130	0	20	
Chloromethane	110		100	64-130	10	20	
Bromomethane	140	Q	130	39-139	7	20	
Vinyl chloride	120		120	55-140	0	20	

Project Number: 209395 Lab Number: L2131461 06/15/21

Report Date:

Parameter	LCS %Recovery	LCSI Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated sa	mple(s): 01-02 Bat	ch: WG1512330-	3 WG1512330-4				
Chloroethane	110	110		55-138	0		20	
1,1-Dichloroethene	98	90		61-145	9		20	
trans-1,2-Dichloroethene	100	95		70-130	5		20	
Trichloroethene	92	89		70-130	3		20	
1,2-Dichlorobenzene	92	91		70-130	1		20	
1,3-Dichlorobenzene	94	92		70-130	2		20	
1,4-Dichlorobenzene	93	92		70-130	1		20	
Methyl tert butyl ether	77	84		63-130	9		20	
p/m-Xylene	90	90		70-130	0		20	
o-Xylene	95	95		70-130	0		20	
cis-1,2-Dichloroethene	100	99		70-130	1		20	
Styrene	95	95		70-130	0		20	
Dichlorodifluoromethane	99	100		36-147	1		20	
Acetone	86	81		58-148	6		20	
Carbon disulfide	100	95		51-130	5		20	
2-Butanone	70	86		63-138	21	Q	20	
4-Methyl-2-pentanone	68	80		59-130	16		20	
2-Hexanone	66	70		57-130	6		20	
Bromochloromethane	99	98		70-130	1		20	
1,2-Dibromoethane	83	85		70-130	2		20	
1,2-Dibromo-3-chloropropane	76	85		41-144	11		20	
Isopropylbenzene	88	86		70-130	2		20	
1,2,3-Trichlorobenzene	80	80		70-130	0		20	

RJ DORSCHEL GROUNDWATER

Project Number: 209395

Project Name:

 Lab Number:
 L2131461

 Report Date:
 06/15/21

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1512330-3 WG1512330-4 1,2,4-Trichlorobenzene 83 83 70-130 0 20 95 98 Methyl Acetate 70-130 3 20 Cyclohexane 97 91 70-130 6 20 1,4-Dioxane 70 76 56-162 8 20 Freon-113 100 99 70-130 20 1 20 Methyl cyclohexane 91 84 70-130 8

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	106	113	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	95	96	70-130
Dibromofluoromethane	107	105	70-130

Project Name:	RJ DORSCHEL GROUNDWATER	Batch Quality Control	Lab Number:	L2131461
Project Number:	209395		Report Date:	06/15/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/N MW-7R	/IS - Westborough	Lab Assoc	iated sample(s): 01-02 Q0	C Batch ID: WG1512	330-6 WG151	2330-7 (QC Sample	e: L2131	461-01	Client ID:
Methylene chloride	1.4J	20	19	95	20	100		70-130	5		20
1,1-Dichloroethane	ND	20	19	95	20	100		70-130	5		20
Chloroform	ND	20	18	90	18	90		70-130	0		20
Carbon tetrachloride	ND	20	20	100	20	100		63-132	0		20
1,2-Dichloropropane	ND	20	20	100	20	100		70-130	0		20
Dibromochloromethane	ND	20	20	100	19	95		63-130	5		20
1,1,2-Trichloroethane	ND	20	24	120	22	110		70-130	9		20
Tetrachloroethene	ND	20	21	105	19	95		70-130	10		20
Chlorobenzene	ND	20	20	100	19	95		75-130	5		20
Trichlorofluoromethane	ND	20	21	105	21	105		62-150	0		20
1,2-Dichloroethane	ND	20	17	85	18	90		70-130	6		20
1,1,1-Trichloroethane	ND	20	18	90	18	90		67-130	0		20
Bromodichloromethane	ND	20	17	85	18	90		67-130	6		20
trans-1,3-Dichloropropene	ND	20	17	85	16	80		70-130	6		20
cis-1,3-Dichloropropene	ND	20	16	80	17	85		70-130	6		20
Bromoform	ND	20	20	100	21	105		54-136	5		20
1,1,2,2-Tetrachloroethane	ND	20	22	110	22	110		67-130	0		20
Benzene	21	20	40	95	41	100		70-130	2		20
Toluene	7.3	20	28	104	26	94		70-130	7		20
Ethylbenzene	34	20	55	105	54	100		70-130	2		20
Chloromethane	ND	20	21	105	20	100		64-130	5		20
Bromomethane	ND	20	24	120	23	115		39-139	4		20
Vinyl chloride	ND	20	25	125	25	125		55-140	0		20

Project Name:	RJ DORSCHEL GROUNDWATER	Batch Quality Control	Lab Number:	L2131461
Project Number:	209395		Report Date:	06/15/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M MW-7R	S - Westborough	Lab Assoc	iated sample(s): 01-02 Q0	C Batch ID:	WG15123	330-6 WG1512	2330-7	QC Sample	e: L213′	1461-01	Client ID:
Chloroethane	ND	20	22	110		20	100		55-138	10		20
1,1-Dichloroethene	ND	20	20	100		20	100		61-145	0		20
trans-1,2-Dichloroethene	ND	20	19	95		19	95		70-130	0		20
Trichloroethene	ND	20	17	85		17	85		70-130	0		20
1,2-Dichlorobenzene	ND	20	20	100		19	95		70-130	5		20
1,3-Dichlorobenzene	ND	20	20	100		19	95		70-130	5		20
1,4-Dichlorobenzene	ND	20	20	100		19	95		70-130	5		20
Methyl tert butyl ether	ND	20	17	85		19	95		63-130	11		20
p/m-Xylene	38	40	79	103		73	88		70-130	8		20
o-Xylene	2.4J	40	44	110		40	100		70-130	10		20
cis-1,2-Dichloroethene	ND	20	18	90		18	90		70-130	0		20
Styrene	ND	40	41	103		38	95		70-130	8		20
Dichlorodifluoromethane	ND	20	24	120		25	125		36-147	4		20
Acetone	ND	20	26	130		29	145		58-148	11		20
Carbon disulfide	ND	20	21	105		20	100		51-130	5		20
2-Butanone	ND	20	41	205	Q	39	195	Q	63-138	5		20
4-Methyl-2-pentanone	ND	20	20	100		20	100		59-130	0		20
2-Hexanone	ND	20	17	85		17	85		57-130	0		20
Bromochloromethane	ND	20	18	90		19	95		70-130	5		20
1,2-Dibromoethane	ND	20	18	90		19	95		70-130	5		20
1,2-Dibromo-3-chloropropane	ND	20	18	90		20	100		41-144	11		20
Isopropylbenzene	31	20	53	110		54	115		70-130	2		20
1,2,3-Trichlorobenzene	ND	20	19	95		20	100		70-130	5		20

Project Name: Project Number:	RJ DORSCHEI 209395	_ GROUND'	WATER	I	Batch Qi	uality Cor	ntrol		Lab Nur Report I			:131461 5/15/21
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits

Volatile Organics by GC/MS MW-7R	S - Westborough	Lab Associa	ated sample(s	s): 01-02 (QC Batch ID	: WG15123	30-6 WG151	2330-7	QC Sample	e: L213	1461-01	Client ID:
1,2,4-Trichlorobenzene	ND	20	21	105		20	100		70-130	5		20
Methyl Acetate	ND	20	12	60	Q	16	80		70-130	29	Q	20
Cyclohexane	110	20	120	50	Q	110	0	Q	70-130	9		20
1,4-Dioxane	ND	1000	800	80		950	95		56-162	17		20
Freon-113	ND	20	22	110		22	110		70-130	0		20
Methyl cyclohexane	48	20	68	100		56	40	Q	70-130	19		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	97	105	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	89	99	70-130
Toluene-d8	103	101	70-130

Project Name: RJ DORSCHEL GROUNDWATER Project Number: 209395

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	mation		Initial	Final	Final Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН рН о		Pres	Seal	Date/Time	Analysis(*)
L2131461-01A	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01A1	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01A2	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01B	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01B1	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01B2	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01C	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01C1	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-01C2	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-02A	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-02B	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-02C	Vial HCI preserved	А	NA		5.1	Y	Absent		NYTCL-8260-R2(14)
L2131461-03A	Vial HCI preserved	А	NA		5.1	Y	Absent		ARCHIVE()
L2131461-03B	Vial HCI preserved	А	NA		5.1	Y	Absent		ARCHIVE()

Container Comments

L2131461-03A	Vial contains headspace
L2131461-03B	Vial contains headspace

Project Name: RJ DORSCHEL GROUNDWATER

Project Number: 209395

Lab Number: L2131461

Report Date: 06/15/21

GLOSSARY

Acronyms

,,	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: RJ DORSCHEL GROUNDWATER

Project Number: 209395

Lab Number: L2131461

Report Date: 06/15/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:06152114:34

Project Name: RJ DORSCHEL GROUNDWATER

Project Number: 209395

Lab Number: L2131461

Report Date: 06/15/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name:RJ DORSCHEL GROUNDWATERProject Number:209395

 Lab Number:
 L2131461

 Report Date:
 06/15/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Pag \ c	e of		Date Re in Lat		olu,	121	ALPHA Job #
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		19 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Deliv	erables	C			Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: AJ	Dorschel	GINDUN	Noten (ASP-A		X A	SP-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: H21		the second se				EQuIS (File)	E E	QuIS (4 File)	PO#
Client Information			395					Other				
client: Jabella as	ssociates	(Use Project name as P	Project #)				Regu	latory Re	quireme	nt	111 111	Disposal Site Information
Address; 300,510HC	STRPH SWIR 201	Project Manager:	1. DPILLEM	icitu				NY TOGS		N	/ Part 375	Please identify below location of
BOUNESTOVID	N 14/1014	ALPHAQuote #:						AWQ Star	dards	N)	CP-51	applicable disposal facilities.
Phone: 585-645	04-lell0	Turn-Around Time				C. SUMPS		NY Restric	ded Use	Ot	her	Disposal Facility:
Fax:	Lung, and a second second	Standar	rd 🗌	Due Date	: 1 DA	V		NY Unrest	ricted Use	е		YN LUN
Email: MPENUC/101	No apellopcan	Rush (only if pre approve	d) [🗐	# of Days	1 1 1	1		NYC Sew	er Dischar	rge		Other:
These samples have b	peen previously analyze	ed by Alpha					ANA	LYSIS				Sample Filtration
Other project specific	c requirements/comm	ients:										Done
								29				Lab to do
							2	824				Preservation
Please specify Metals	s or TAL.						0	00				Lab to do
								19				(Please Specify below)
ALPHA Lab ID	80	male ID	Coll	ection	Sample	Sampler's	12	2				
(Lab Use Only)	58	mple ID	Date	Time	Matrix	Initials	3					Sample Specific Comments
31461 -01	MW-7B		6/10/21	12:15	GW	TIS	P		-			ms) msib collected
r	DUPP-0610	al	6/10/21	-	9W		\$		1			
			1				1		1			
							-					
		÷										
									+	-		
			-			-	1					
							-					
Preservative Code:	Container Code	Westboro: Certification I	No: MA935		1000		1					Discountry in the second
A = None B = HCI	P = Plastic A = Amber Glass	Mansfield: Certification I		-	Con	tainer Type	\vee					Please print clearly, legibly and completely. Samples ca
C = HNO ₃	V = Vial				-		-		-	-		not be logged in and
D = H2SO4 G = Glass E = NaOH B = Bacteria Cup F = MeOH C = Cube					P	reservative	0					turnaround time clock will ne
		Relinquished By: Date/Ti		Time		Rocol	ed By:	_	D	ate/Time	start until any ambiguities a resolved. BY EXECUTING	
G = NaHSO ₄ H = Na ₂ S ₂ O ₃	O = Other E = Encore	Sim and a marine		and the second se	13:30	Zui			TT AA		al 132	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	D = BOD Bottle	SECURESTAR	SE ADI	1 /10/01	16:53	DA	10	SIGNA	ON.	- 0/1	61 100	HAS READ AND AGREES
O = Other		Reunnergh		11/21	16:53	RCur	The	nam	AAL	6/10/	21 16/5	TO BE BOUND BY ALPHA' TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 3	0-Sept-2013)	- Curreng M	ma	grya	10175	14	Y.,	prop	7	0/110	00:40	(See reverse side.)
ge 26 of 26	operation of					1 01		-7	<u> </u>			And the second sec

ANALYTICAL REPORT

Lab Number:	L2026156
Client:	LaBella Associates, P.C.
	300 State Street
	Suite 201
	Rochester, NY 14614
ATTN:	Mike Pelychaty
Phone:	(585) 295-6253
Project Name:	MINI COOPER ANNUAL MONITORING
Project Number:	219395
Report Date:	06/24/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:MINI COOPER ANNUAL MONITORINGProject Number:219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2026156-01	MW-3R-062220	WATER	MINI COOP OF ROCHESTER	06/22/20 12:15	06/22/20
L2026156-02	MW-7-06-2220	WATER	MINI COOP OF ROCHESTER	06/22/20 14:50	06/22/20
L2026156-03	DUPE-01	WATER	MINI COOP OF ROCHESTER	06/22/20 00:00	06/22/20
L2026156-04	TRIP BLANK-01	WATER	MINI COOP OF ROCHESTER	06/22/20 13:00	06/22/20

Project Name:MINI COOPER ANNUAL MONITORINGProject Number:219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: MINI COOPER ANNUAL MONITORING Project Number: 219395

Lab Number: L2026156 **Report Date:** 06/24/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

The WG1385074-6/-7 MS/MSD recoveries, performed on L2026156-01, are outside the acceptance criteria for chlorobenzene (0%/0%). The unacceptable percent recoveries are attributed to the elevated concentrations of target compounds present in the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

120A Jennifer L Clements

Title: Technical Director/Representative

Date: 06/24/20

ORGANICS

VOLATILES

		Serial_N	0:06242016:03
Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:	L2026156
Project Number:	219395	Report Date:	06/24/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2026156-01 MW-3R-062220 MINI COOP OF ROCHESTER	Date Collected: Date Received: Field Prep:	06/22/20 12:15 06/22/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/23/20 16:42 AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	120		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	3.3		ug/l	2.5	0.70	1

						Serial_No	0:06242016:03	
Project Name:	MINI COOPER ANNUA	AL MONITOR	RING		Lab Nu	umber:	L2026156	
Project Number:	219395				Report	Date:	06/24/20	
-		SAMP		S	-			
Lab ID: Client ID: Sample Location: Sample Depth:	L2026156-01 MW-3R-062220 MINI COOP OF ROCI	HESTER			Date Co Date Re Field Pre	ceived:	06/22/20 12:15 06/22/20 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics h	y GC/MS - Westborough	Lab						
volatilo organico z		200						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		1.6	J	ug/l	2.5	0.70	1	
Methyl tert butyl ether		1.1	J	ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		1.0	J	ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	107	70-130	

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

1

0.70

0.70

0.70

0.70

0.23

0.27

0.70

0.40

2.5

2.5

2.5

2.5

2.0

10

2.5

10

n-Propylbenzene

Methyl Acetate

Cyclohexane

Methyl cyclohexane

Freon-113

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

		Serial_No	0:06242016:03
Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:	L2026156
Project Number:	219395	Report Date:	06/24/20
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2026156-02 D MW-7-06-2220 MINI COOP OF ROCHESTER	Date Collected: Date Received: Field Prep:	06/22/20 14:50 06/22/20 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 06/23/20 23:40 NLK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	12	3.5	5
1,1-Dichloroethane	ND		ug/l	12	3.5	5
Chloroform	ND		ug/l	12	3.5	5
Carbon tetrachloride	ND		ug/l	2.5	0.67	5
1,2-Dichloropropane	ND		ug/l	5.0	0.68	5
Dibromochloromethane	ND		ug/l	2.5	0.74	5
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5
Tetrachloroethene	ND		ug/l	2.5	0.90	5
Chlorobenzene	ND		ug/l	12	3.5	5
Trichlorofluoromethane	ND		ug/l	12	3.5	5
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5
Bromodichloromethane	ND		ug/l	2.5	0.96	5
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5
Bromoform	ND		ug/l	10	3.2	5
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5
Benzene	780		ug/l	2.5	0.80	5
Toluene	57		ug/l	12	3.5	5
Ethylbenzene	920		ug/l	12	3.5	5
Chloromethane	ND		ug/l	12	3.5	5
Bromomethane	ND		ug/l	12	3.5	5
Vinyl chloride	ND		ug/l	5.0	0.36	5
Chloroethane	ND		ug/l	12	3.5	5
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Trichloroethene	ND		ug/l	2.5	0.88	5
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5

			Serial_N	0:06242016:03	
Project Name:	MINI COOPER ANI	NUAL MONITORING	Lab Number:	L2026156	
Project Number:	219395		Report Date:	06/24/20	
SAMPLE RESULTS					
Lab ID:	L2026156-02	D	Date Collected:	06/22/20 14:50	
Client ID:	MW-7-06-2220		Date Received:	06/22/20	
Sample Location:	MINI COOP OF R	OCHESTER	Field Prep:	Not Specified	

Sampl	e Depth:
-------	----------

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	1700		ug/l	12	3.5	5
o-Xylene	98		ug/l	12	3.5	5
cis-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	ND		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	ND		ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
n-Butylbenzene	14		ug/l	12	3.5	5
sec-Butylbenzene	9.5	J	ug/l	12	3.5	5
tert-Butylbenzene	ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	52		ug/l	12	3.5	5
p-Isopropyltoluene	6.2	J	ug/l	12	3.5	5
Naphthalene	560		ug/l	12	3.5	5
n-Propylbenzene	120		ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	70		ug/l	12	3.5	5
1,2,4-Trimethylbenzene	830		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	140		ug/l	50	1.4	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	59		ug/l	50	2.0	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	96	70-130	

		Serial_No	0:06242016:03
Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:	L2026156
Project Number:	219395	Report Date:	06/24/20
	SAMPLE RESULTS		
Lab ID:	L2026156-03	Date Collected:	06/22/20 00:00
Client ID:	DUPE-01	Date Received:	06/22/20
Sample Location:	MINI COOP OF ROCHESTER	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	06/23/20 17:32		
Analyst:	AJK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	120		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	3.5		ug/l	2.5	0.70	1

		Serial_No:06242016:		
Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:	L2026156	
Project Number:	219395	Report Date:	06/24/20	
	SAMPLE RESULTS			
Lab ID:	L2026156-03	Date Collected:	06/22/20 00:00	
Client ID:	DUPE-01	Date Received:	06/22/20	
Sample Location:	MINI COOP OF ROCHESTER	Field Prep:	Not Specified	
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	1.9	J	ug/l	2.5	0.70	1
Methyl tert butyl ether	1.0	J	ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-lsopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	102	70-130	

		Serial_No	0:06242016:03
Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:	L2026156
Project Number:	219395	Report Date:	06/24/20
	SAMPLE RESULTS		
Lab ID:	L2026156-04	Date Collected:	06/22/20 13:00
Client ID:	TRIP BLANK-01	Date Received:	06/22/20
Sample Location:	MINI COOP OF ROCHESTER	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	06/23/20 16:17		
Analyst:	AJK		
Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date:	L2026156-04 TRIP BLANK-01 MINI COOP OF ROCHESTER Water 1,8260C 06/23/20 16:17	Date Received:	06/22/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.21	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

				Serial_No:06242016:03					
Project Name:	MINI COOPER ANNUAL MONITORING				Lab Nu	mber:	L2026156		
Project Number:	219395				Report	Date:	06/24/20		
SAMPLE RESULTS									
Lab ID:	L2026156-04				Date Co	llected:	06/22/20 13:00		
Client ID:	TRIP BLANK-01				Date Re	ceived:	06/22/20		
Sample Location:	MINI COOP OF ROCH	ESTER			Field Pre	ep:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westborough L	₋ab							
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1		

1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.4	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/23/20 09:30Analyst:PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,03-04 Batc	h: WG1385074-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/I	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/I	2.5	0.70
Trichloroethene	ND	ug/I	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2026156

06/24/20

Lab Number:

Report Date:

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/23/20 09:30Analyst:PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01,03-04	Batch: WG1385074-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/I	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:	L2026156
Project Number:	219395	Report Date:	06/24/20
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/23/20 09:30Analyst:PD

Parameter	Result	Qualifier	Units	s R	L	MDL	
Volatile Organics by GC/MS - West	borough La	ab for sample	e(s):	01,03-04	Batch:	WG1385074-5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	104		70-130	

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

Lab Number: L2026156 **Report Date:** 06/24/20

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/23/20 20:22 Analyst: MKS

arameter	Result	Qualifier Uni	ts RL	MDL
olatile Organics by GC/MS - W	/estborough Lat	o for sample(s):	02 Batch:	WG1385429-5
Methylene chloride	ND	uç	j/l 2.5	0.70
1,1-Dichloroethane	ND	uç	g/l 2.5	0.70
Chloroform	ND	uç	g/l 2.5	0.70
Carbon tetrachloride	ND	uç	g/l 0.50	0.13
1,2-Dichloropropane	ND	uç	g/l 1.0	0.14
Dibromochloromethane	ND	uç	g/l 0.50	0.15
1,1,2-Trichloroethane	ND	uç	g/l 1.5	0.50
Tetrachloroethene	ND	uç	g/l 0.50	0.18
Chlorobenzene	ND	uç	g/l 2.5	0.70
Trichlorofluoromethane	ND	uç	g/l 2.5	0.70
1,2-Dichloroethane	ND	uç	g/l 0.50	0.13
1,1,1-Trichloroethane	ND	uç	g/l 2.5	0.70
Bromodichloromethane	ND	uç	g/l 0.50	0.19
trans-1,3-Dichloropropene	ND	uç	g/l 0.50	0.16
cis-1,3-Dichloropropene	ND	uç	g/l 0.50	0.14
Bromoform	ND	uç	g/l 2.0	0.65
1,1,2,2-Tetrachloroethane	ND	uç	g/l 0.50	0.17
Benzene	ND	uç	g/l 0.50	0.16
Toluene	ND	uç	g/l 2.5	0.70
Ethylbenzene	ND	uç	g/l 2.5	0.70
Chloromethane	ND	uç	g/l 2.5	0.70
Bromomethane	ND	uç	g/l 2.5	0.70
Vinyl chloride	ND	uç	ı/l 1.0	0.07
Chloroethane	ND	uç	j/l 2.5	0.70
1,1-Dichloroethene	ND	uç	y/l 0.50	0.17
trans-1,2-Dichloroethene	ND	uç	j/l 2.5	0.70
Trichloroethene	ND	uç	y/l 0.50	0.18
1,2-Dichlorobenzene	ND	uç	g/l 2.5	0.70
1,3-Dichlorobenzene	ND	uç	y/l 2.5	0.70

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/23/20 20:22Analyst:MKS

arameter	Result	Qualifier Un	its F	٦L	MDL
olatile Organics by GC/MS - W	/estborough Lat	o for sample(s)	: 02 Bato	ch:	WG1385429-5
1,4-Dichlorobenzene	ND	u	g/l 2	2.5	0.70
Methyl tert butyl ether	ND	u	g/l 2	2.5	0.70
p/m-Xylene	ND	u	g/l 2	2.5	0.70
o-Xylene	ND	u	g/l 2	2.5	0.70
cis-1,2-Dichloroethene	ND	u	g/l 2	2.5	0.70
Styrene	ND	u	g/l 2	2.5	0.70
Dichlorodifluoromethane	ND	u	g/l 5	5.0	1.0
Acetone	ND	u	g/l 5	5.0	1.5
Carbon disulfide	ND	u	g/l 5	5.0	1.0
2-Butanone	ND	u	g/l 5	5.0	1.9
4-Methyl-2-pentanone	ND	u	g/l 5	5.0	1.0
2-Hexanone	ND	u	g/l 5	5.0	1.0
1,2-Dibromoethane	ND	u	g/l 2	2.0	0.65
n-Butylbenzene	ND	u	g/l 2	2.5	0.70
sec-Butylbenzene	ND	u	g/l 2	2.5	0.70
tert-Butylbenzene	ND	u	g/l 2	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	u	g/l 2	2.5	0.70
Isopropylbenzene	ND	u	g/l 2	2.5	0.70
p-Isopropyltoluene	ND	u	g/l 2	2.5	0.70
Naphthalene	ND	u	g/l 2	2.5	0.70
n-Propylbenzene	ND	u	g/l 2	2.5	0.70
1,2,4-Trichlorobenzene	ND	u	g/l 2	2.5	0.70
1,3,5-Trimethylbenzene	ND	u	g/l 2	2.5	0.70
1,2,4-Trimethylbenzene	ND	u	g/l 2	2.5	0.70
Methyl Acetate	ND	u	g/l 2	2.0	0.23
Cyclohexane	ND	u	g/l	10	0.27
Freon-113	ND	u	g/l 2	2.5	0.70
Methyl cyclohexane	ND	u	g/l ·	10	0.40

L2026156 06/24/20

Project Name:	MINI COOPER ANNUAL MONITORING	Lab Number:
Project Number:	219395	Report Date:
	Mathad Dlank Analysia	

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:06/23/20 20:22Analyst:MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough La	ab for sampl	e(s): 02	Batch:	WG1385429-5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	104		70-130	

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395 Lab Number: L2026156 06/24/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPI Qual Lim	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	01,03-04 Batch:	WG1385074-3 WG13850	74-4		
Methylene chloride	100		100	70-130	0	20	I
1,1-Dichloroethane	110		110	70-130	0	20	i
Chloroform	100		110	70-130	10	20	I
Carbon tetrachloride	98		99	63-132	1	20	I
1,2-Dichloropropane	100		110	70-130	10	20	I
Dibromochloromethane	93		93	63-130	0	20	I
1,1,2-Trichloroethane	99		98	70-130	1	20	I
Tetrachloroethene	96		99	70-130	3	20	1
Chlorobenzene	100		100	75-130	0	20	I
Trichlorofluoromethane	100		100	62-150	0	20	1
1,2-Dichloroethane	110		110	70-130	0	20	1
1,1,1-Trichloroethane	100		110	67-130	10	20	I
Bromodichloromethane	100		99	67-130	1	20	I
trans-1,3-Dichloropropene	95		87	70-130	9	20	I
cis-1,3-Dichloropropene	98		95	70-130	3	20	I
Bromoform	88		88	54-136	0	20	I
1,1,2,2-Tetrachloroethane	94		94	67-130	0	20	I
Benzene	99		100	70-130	1	20	
Toluene	99		100	70-130	1	20	1
Ethylbenzene	99		100	70-130	1	20	
Chloromethane	120		120	64-130	0	20	
Bromomethane	59		48	39-139	21	Q 20	
Vinyl chloride	91		90	55-140	1	20	1

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03-04 Batch: WG1385074-3 WG1385074-4 Chloroethane 89 55-138 86 3 20 1.1-Dichloroethene 100 100 61-145 0 20 trans-1.2-Dichloroethene 110 110 70-130 20 0 Trichloroethene 96 98 70-130 2 20 70-130 20 1,2-Dichlorobenzene 97 100 3 1.3-Dichlorobenzene 99 100 70-130 1 20 99 70-130 20 1.4-Dichlorobenzene 100 1 Methyl tert butyl ether 98 92 63-130 6 20 p/m-Xylene 100 100 70-130 0 20 o-Xylene 100 100 70-130 0 20 cis-1,2-Dichloroethene 110 110 70-130 0 20 Styrene 100 100 70-130 0 20 Dichlorodifluoromethane 89 90 36-147 1 20 Q 20 130 58-148 14 Acetone 150 Carbon disulfide 110 110 51-130 0 20 2-Butanone 120 120 63-138 0 20 4-Methyl-2-pentanone 91 85 59-130 7 20 88 57-130 20 2-Hexanone 92 4 1,2-Dibromoethane 94 93 70-130 1 20 n-Butylbenzene 100 100 53-136 0 20 sec-Butylbenzene 99 100 70-130 20 1 20 tert-Butylbenzene 95 100 70-130 5 1,2-Dibromo-3-chloropropane 85 85 41-144 0 20

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

LCSD LCS %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03-04 Batch: WG1385074-3 WG1385074-4 Isopropylbenzene 94 97 70-130 3 20 p-Isopropyltoluene 98 100 70-130 2 20 Naphthalene 86 86 70-130 0 20 n-Propylbenzene 98 100 69-130 2 20 1,2,4-Trichlorobenzene 94 97 70-130 3 20 1,3,5-Trimethylbenzene 97 100 64-130 3 20 1,2,4-Trimethylbenzene 20 97 99 70-130 2 Methyl Acetate 20 130 110 70-130 17 Cyclohexane 110 110 70-130 0 20 Freon-113 110 110 70-130 0 20 Methyl cyclohexane 97 100 70-130 3 20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	102	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	95	96	70-130
Dibromofluoromethane	105	103	70-130

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

Lab Number: L2026156 Report Date: 06/24/20

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1385429-3 WG1385429-4 Methylene chloride 110 110 70-130 0 20 1,1-Dichloroethane 110 110 70-130 0 20 Chloroform 110 110 70-130 20 0 Carbon tetrachloride 100 100 63-132 20 0 70-130 20 1,2-Dichloropropane 110 110 0 Dibromochloromethane 95 98 63-130 3 20 100 100 70-130 20 1.1.2-Trichloroethane 0 Tetrachloroethene 100 100 70-130 0 20 Chlorobenzene 110 100 75-130 10 20 Trichlorofluoromethane 110 110 62-150 0 20 1.2-Dichloroethane 110 110 70-130 0 20 1,1,1-Trichloroethane 110 110 67-130 0 20 Bromodichloromethane 100 100 67-130 0 20 70-130 20 trans-1,3-Dichloropropene 97 100 3 cis-1,3-Dichloropropene 100 100 70-130 0 20 Bromoform 88 91 54-136 3 20 1,1,2,2-Tetrachloroethane 96 100 67-130 20 4 70-130 20 Benzene 100 100 0 70-130 20 Toluene 100 100 0 Ethylbenzene 100 100 70-130 0 20 Chloromethane 120 120 64-130 0 20 Bromomethane 20 45 48 39-139 6 20 Vinyl chloride 89 90 55-140 1

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395 Lab Number: L2026156 Report Date: 06/24/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG	1385429-3	WG1385429-4		
Chloroethane	87		88		55-138	1	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	110		110		70-130	0	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	98		100		70-130	2	20
1,3-Dichlorobenzene	99		100		70-130	1	20
1,4-Dichlorobenzene	98		100		70-130	2	20
Methyl tert butyl ether	100		100		63-130	0	20
p/m-Xylene	105		110		70-130	5	20
o-Xylene	100		105		70-130	5	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Styrene	100		105		70-130	5	20
Dichlorodifluoromethane	89		89		36-147	0	20
Acetone	120		120		58-148	0	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	130		120		63-138	8	20
4-Methyl-2-pentanone	95		97		59-130	2	20
2-Hexanone	95		96		57-130	1	20
1,2-Dibromoethane	97		99		70-130	2	20
n-Butylbenzene	100		110		53-136	10	20
sec-Butylbenzene	100		100		70-130	0	20
tert-Butylbenzene	97		100		70-130	3	20
1,2-Dibromo-3-chloropropane	87		89		41-144	2	20

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

LCSD LCS %Recovery RPD %Recovery Parameter %Recovery Limits RPD Limits Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1385429-3 WG1385429-4 Isopropylbenzene 98 100 70-130 2 20 p-Isopropyltoluene 110 99 70-130 11 20 Naphthalene 91 93 70-130 2 20 n-Propylbenzene 100 100 69-130 0 20 1,2,4-Trichlorobenzene 95 100 70-130 5 20 1,3,5-Trimethylbenzene 98 100 64-130 2 20 1,2,4-Trimethylbenzene 20 98 100 70-130 2 Methyl Acetate 20 130 130 70-130 0 Cyclohexane 110 110 70-130 0 20 Freon-113 110 110 70-130 0 20 Methyl cyclohexane 100 100 70-130 0 20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	107	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	95	98	70-130
Dibromofluoromethane	105	104	70-130

Matrix Spike Analysis Batch Quality Control

		Datch Qu
Project Name:	MINI COOPER ANNUAL MONITORING	

Project Number: 219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

Native MS MS MS MSD MSD Recovery RPD %Recovery Qual Limits Qual Limits Parameter Sample Added Found %Recovery Qual Found RPD Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03-04 QC Batch ID: WG1385074-6 WG1385074-7 QC Sample: L2026156-01 Client ID: MW-3R-062220 Methylene chloride ND 10 10 100 11 110 70-130 10 20 ND 120 130 8 1,1-Dichloroethane 10 12 13 70-130 20 Chloroform ND 110 12 120 9 20 10 11 70-130 Carbon tetrachloride ND 100 110 10 20 10 10 11 63-132 ND 110 11 110 0 20 1,2-Dichloropropane 10 11 70-130 Dibromochloromethane ND 10 9.2 92 9.7 97 63-130 5 20 ND 2 20 1.1.2-Trichloroethane 10 9.8 98 10 100 70-130 ND 10 9.7 97 70-130 3 20 Tetrachloroethene 10 100 120 Q Q 75-130 0 20 Chlorobenzene 10 120 0 120 0 Trichlorofluoromethane ND 10 11 110 12 120 62-150 9 20 1,2-Dichloroethane ND 10 11 110 12 120 70-130 9 20 110 120 9 1,1,1-Trichloroethane ND 10 11 12 67-130 20 ND 100 110 67-130 10 Bromodichloromethane 10 10 11 20 trans-1,3-Dichloropropene ND 96 6 10 9.0 90 9.6 70-130 20 cis-1,3-Dichloropropene ND 92 99 7 10 9.2 9.9 70-130 20 Bromoform ND 10 8.4 84 9.0 90 54-136 7 20 ND 3 1,1,2,2-Tetrachloroethane 10 9.7 97 10 100 67-130 20 ND 10 Benzene 10 10 100 11 110 70-130 20 ND 0 Toluene 10 10 100 10 100 70-130 20 ND 0 Ethylbenzene 10 10 100 10 100 70-130 20 Chloromethane ND 10 12 120 13 130 64-130 8 20 29 Bromomethane ND 10 3.3 33 Q 4.4 44 39-139 Q 20 7 Vinyl chloride ND 10 9.2 92 9.9 99 55-140 20

Matrix Spike Analysis

Project Name: MINI COOPER ANNUAL MONITORING		Batch Quality Control	Lab No
Project Number:	219395		Repor

Lab Number:	L2026156
Report Date:	06/24/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-3R-062220	- Westborough	Lab Assoc	iated sample(s): 01,03-04	QC Batch ID: WG13	85074-6 WG1	385074-7 QC Sar	nple: L2	2026156-01 Client ID
Chloroethane	ND	10	8.5	85	9.2	92	55-138	8	20
1,1-Dichloroethene	ND	10	11	110	12	120	61-145	9	20
trans-1,2-Dichloroethene	ND	10	11	110	12	120	70-130	9	20
Trichloroethene	ND	10	9.9	99	10	100	70-130	1	20
1,2-Dichlorobenzene	3.3	10	13	97	14	107	70-130	7	20
1,3-Dichlorobenzene	ND	10	9.9	99	11	110	70-130	11	20
1,4-Dichlorobenzene	1.6J	10	11	110	12	120	70-130	9	20
Methyl tert butyl ether	1.1J	10	11	110	12	120	63-130	9	20
p/m-Xylene	ND	20	20	100	21	105	70-130	5	20
o-Xylene	ND	20	20	100	21	105	70-130	5	20
cis-1,2-Dichloroethene	ND	10	11	110	12	120	70-130	9	20
Styrene	ND	20	19	95	20	100	70-130	5	20
Dichlorodifluoromethane	1.0J	10	9.9	99	11	110	36-147	11	20
Acetone	ND	10	14	140	14	140	58-148	0	20
Carbon disulfide	ND	10	11	110	12	120	51-130	9	20
2-Butanone	ND	10	12	120	14	140	Q 63-138	15	20
4-Methyl-2-pentanone	ND	10	10	100	10	100	59-130	0	20
2-Hexanone	ND	10	9.8	98	10	100	57-130	2	20
1,2-Dibromoethane	ND	10	9.6	96	10	100	70-130	4	20
n-Butylbenzene	ND	10	9.6	96	10	100	53-136	4	20
sec-Butylbenzene	ND	10	9.4	94	10	100	70-130	6	20
tert-Butylbenzene	ND	10	9.3	93	10	100	70-130	7	20
1,2-Dibromo-3-chloropropane	ND	10	8.8	88	9.5	95	41-144	8	20

Matrix Spike Analysis

Project Name:	MINI COOPER ANNUAL MONITORING	Batch Quality Control	Lab Number:	L2026156
Project Number:	219395		Report Date:	06/24/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M MW-3R-062220	S - Westborough La	ab Assoc	ciated sample(s	s): 01,03-04	QC Batch	ID: WG13	85074-6 WG1	385074-7 QC Sam	ple: L2	2026156-0	01 Client ID:
Isopropylbenzene	ND	10	9.3	93		10	100	70-130	7		20
p-lsopropyltoluene	ND	10	9.7	97		10	100	70-130	3		20
Naphthalene	ND	10	9.2	92		9.7	97	70-130	5		20
n-Propylbenzene	ND	10	9.5	95		10	100	69-130	5		20
1,2,4-Trichlorobenzene	ND	10	8.9	89		9.7	97	70-130	9		20
1,3,5-Trimethylbenzene	ND	10	9.4	94		10	100	64-130	6		20
1,2,4-Trimethylbenzene	ND	10	9.3	93		10	100	70-130	7		20
Methyl Acetate	ND	10	12	120		13	130	70-130	8		20
Cyclohexane	ND	10	10	100		12	120	70-130	18		20
Freon-113	ND	10	10	100		12	120	70-130	18		20
Methyl cyclohexane	ND	10	9.2J	92		10	100	70-130	8		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	105	106	70-130
4-Bromofluorobenzene	96	96	70-130
Dibromofluoromethane	103	104	70-130
Toluene-d8	99	99	70-130

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2026156-01A	Vial HCI preserved	А	NA		3.1	Y	Absent		NYTCL-8260-R2(14)
L2026156-01A1	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-01A2	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-01B	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-01B1	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-01B2	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-01C	Vial HCI preserved	А	NA		3.1	Y	Absent		NYTCL-8260-R2(14)
L2026156-01C1	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-01C2	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-02A	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-02B	Vial HCI preserved	А	NA		3.1	Y	Absent		NYTCL-8260-R2(14)
L2026156-02C	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-03A	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-03B	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-03C	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)
L2026156-04A	Vial HCI preserved	А	NA		3.1	Y	Absent		NYTCL-8260-R2(14)
L2026156-04B	Vial HCI preserved	А	NA		3.1	Υ	Absent		NYTCL-8260-R2(14)

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

Lab Number: L2026156

Report Date: 06/24/20

GLOSSARY

Acronyms

Actonyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Report Format: DU Report with 'J' Qualifiers

Project Name:MINI COOPER ANNUAL MONITORINGProject Number:219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name: MINI COOPER ANNUAL MONITORING

Project Number: 219395

Lab Number: L2026156 Report Date: 06/24/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:MINI COOPER ANNUAL MONITORINGProject Number:219395

 Lab Number:
 L2026156

 Report Date:
 06/24/20

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene, 1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 1-Methylnaphthalene.
SPA 3C Fixed gases
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker We Tonawanda, NY 14150: 275 Coo	iy .	5	Page of			Date I in L	Rec'd .ab	6/2:	3/2	0	ALPHA Job # 12026156	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	- THE ROOM	-12			Delive	erable	s		The Mar	Res No.	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Mini C	UDDEY Ar	inval mon	itrion			ASP-	A	M	ASP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3268	Project Location: MMi (ning.		ī	EQui	S (1 File)	the second second	EQuIS	(4 File)	PO#	
Client Information		Project # 219 395					Π	Other						
Client: LQBCIIQ		(Use Project name as Pro	viect #)	1	+		Requ	COLUMN TWO IS NOT	Requireme	ent		March 14	Disposal Site Information	
Address: 300 State	St	Project Manager: MrKt		vatu			CONTRACTOR OF	NY TO			NY Part	375		
ROCHESTER INV	14614	ALPHAQuote #:	- FOIM U	Uny			H		Standards	H	NY CP-5		Please identify below location applicable disposal facilities.	or
Phone: 585 -507-		Turn-Around Time	La Martine	and the second	State of the local division in which the local division in the loc				stricted Use	_	Other	8	Disposal Facility:	
Fax:	11 10	Standard		Due Date:	Cold State State State				restricted Us		Grind			
Email: Mpely Chaty	inhalla of form	Rush (only if pre approved)		# of Days:	204	TAT	ΙH		ewer Discha					
These samples have be	and the second se			# 01 Days.	004	1 1/11		LYSIS	9.000.00000000	ររដ្ឋម			Other:	No.
Other project specific							ANA			-		_	Sample Filtration	- 0
3 PAN	TAT	enta.					Tet +	CS B2LED					Done Lab to do Preservation Lab to do	t a (
Please specify Metals	or TAL.						8	N.						В
							Baw						(Please Specify below)	t
ALPHA Lab ID	Sa	mple ID	Colle	ction	Sample	Sampler's	VOCS	STATS						1
(Lab Use Only)			Date	Time	Matrix	Initials	YOX	5					Sample Specific Comments	e
Contraction of the second	ML-20		6/15/20	12:00	GW	LES,								
	ML-12/I	\sim	6/15/20	14:20	CAN	48								
	LAB- SBW-1	5 /	6115/20	10:55	GRW	85								
	LAB-BBW-11		6/15/20	14:45	GW	EST								
						4								
26156 -01	MW-3K-0	(03331) (ms/msp)	10/22/26	12:15	GW	ES	X	X					ms/msD included	9
- 02	MW-7-06	-2220	6/22/20	14:50	CiW	ES	X	2				-		6
	Dupe-01		6/22/20	-	GW	FS	V	20		-		-		3
-04		- 01	6/22/20	260	CIW	ES	X	$\hat{\mathbf{b}}$						2
Preservative Code:	Container Code	Westboro: Certification No		1,000	0100	123	~	1-		-	-		and the other statements and the second	
A = None B = HCI	P = Plastic A = Amber Glass	Mansfield: Certification No			Con	tainer Type	V						Please print clearly, leg and completely. Sample	
C = HNO ₃	V = Vial	Mananola, Contribution N	5. MAO 15				-	-				-	not be logged in and	as can
$D = H_2SO_4$	G = Glass				P	reservative	B						turnaround time clock w	
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	Delleviched		-				A		+			start until any ambiguiti	
G = NaHSO ₄	O = Other	Relinquished E		Date/1	and the second se			ed By		111	Date/Ti		resolved. BY EXECUTI THIS COC, THE CLIEN	
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	- Smy land		6/22/20 15		Runn	yna	MA	AL		2/20	17:10	HAS BEAD AND ACRE	0.000
K/E = Zn Ac/NaOH O = Other		KCunninglow	AAL	6/22/20	17:10	11h	year	Ú	7/	6,6	23/20	SDEDO	TO BE BOUND BY AL	Contraction of the second
					_	1			Α	-	-		TERMS & CONDITION (See reverse side.)	S.
Form No: 01-25 HC (rev. 3	0-Sept-2013)								\mathcal{O}			_	(See reverse side.)	

ANALYTICAL REPORT

Lab Number:	L2242586
Client:	LaBella Associates, P.C.
	300 State Street
	Suite 201
	Rochester, NY 14614
ATTN:	Mike Pelychaty
Phone:	(585) 295-6253
Project Name:	FORMER STEVE JOY'S SUNOCO
Project Number:	P2204006
Report Date:	08/19/22
Report Date.	00/10/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08192213:01

Project Name:FORMER STEVE JOY'S SUNOCOProject Number:P2204006

 Lab Number:
 L2242586

 Report Date:
 08/19/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2242586-01	MW-7R-8.8.22	WATER	WEST HENRIETTA, NY	08/08/22 09:42	08/08/22
L2242586-02	MW-3R-8.8.22	WATER	WEST HENRIETTA, NY	08/08/22 11:20	08/08/22
L2242586-03	DUP-8.8.22	WATER	WEST HENRIETTA, NY	08/08/22 11:20	08/08/22
L2242586-04	TRIP BLANK-8.8.22	WATER	WEST HENRIETTA, NY	08/08/22 00:00	08/08/22

Project Name:FORMER STEVE JOY'S SUNOCOProject Number:P2204006

 Lab Number:
 L2242586

 Report Date:
 08/19/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: FORMER STEVE JOY'S SUNOCO Project Number: P2204006

 Lab Number:
 L2242586

 Report Date:
 08/19/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2242586-02D: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 08/19/22

ORGANICS

VOLATILES

		Serial_No:08192213:01
Project Name:	FORMER STEVE JOY'S SUNOCO	Lab Number: L2242586
Project Number:	P2204006	Report Date: 08/19/22
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location:	L2242586-01 D MW-7R-8.8.22 WEST HENRIETTA, NY	Date Collected:08/08/22 09:42Date Received:08/08/22Field Prep:Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/13/22 18:34 MV	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Benzene	22		ug/l	2.0	0.64	4		
Toluene	3.8	J	ug/l	10	2.8	4		
Ethylbenzene	30		ug/l	10	2.8	4		
p/m-Xylene	46		ug/l	10	2.8	4		
o-Xylene	ND		ug/l	10	2.8	4		
Xylenes, Total	46		ug/l	10	2.8	4		
n-Butylbenzene	14		ug/l	10	2.8	4		
sec-Butylbenzene	8.1	J	ug/l	10	2.8	4		
tert-Butylbenzene	ND		ug/l	10	2.8	4		
Isopropylbenzene	49		ug/l	10	2.8	4		
p-Isopropyltoluene	ND		ug/l	10	2.8	4		
Naphthalene	510		ug/l	10	2.8	4		
n-Propylbenzene	140		ug/l	10	2.8	4		
1,3,5-Trimethylbenzene	4.8	J	ug/l	10	2.8	4		
1,2,4-Trimethylbenzene	9.9	J	ug/l	10	2.8	4		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	93	70-130	

		Serial_No	0:08192213:01
Project Name:	FORMER STEVE JOY'S SUNOCO	Lab Number:	L2242586
Project Number:	P2204006	Report Date:	08/19/22
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2242586-02 D MW-3R-8.8.22 WEST HENRIETTA, NY	Date Collected: Date Received: Field Prep:	08/08/22 11:20 08/08/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 08/15/22 23:57 MV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	5.0	1.4	2
1,1-Dichloroethane	ND		ug/l	5.0	1.4	2
Chloroform	ND		ug/l	5.0	1.4	2
Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Dibromochloromethane	ND		ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Tetrachloroethene	ND		ug/l	1.0	0.36	2
Chlorobenzene	130		ug/l	5.0	1.4	2
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
Bromodichloromethane	ND		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
Bromoform	ND		ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Benzene	ND		ug/l	1.0	0.32	2
Toluene	ND		ug/l	5.0	1.4	2
Ethylbenzene	ND		ug/l	5.0	1.4	2
Chloromethane	ND		ug/l	5.0	1.4	2
Bromomethane	ND		ug/l	5.0	1.4	2
Vinyl chloride	ND		ug/l	2.0	0.14	2
Chloroethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene	ND		ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
Trichloroethene	ND		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	5.1		ug/l	5.0	1.4	2

Project Number: P2204006 SAMPLE RESULTS Report Date: 08/19/22 Lab ID: L2242586-02 D Date Collecter 08/08/22 11:20 Client ID: MW-3R-8.8.22 Bate Receivers: 08/08/22 Field Prep: 08/08/22 Sample Location: WEST HENRIETTA, NC Date Receivers: 08/08/22 NC Parmetr Result Qualifier NE ME ME ME Interceivers: Distor Parceivers: 1.4-Dichlorobenzene 6.2 ug1 5.0 1.4 2 1.4-Dichlorobenzene 6.2 ug1 5.0 1.4 2 0m/Mytene ND						:	Serial_No	p:08192213:01
SAMPLE RESULTS Lab ID: L2242586-02 D Client ID: MW-3R-8.8.22 Date Received: 08/08/22 Instrume Sample Location: WEST HENRIETTA, NY Date Received: 08/08/22 Not Specified Sample Depth: Email Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab Ug/l 5.0 1.4 2 1.3-Dichlorobenzene ND ug/l 5.0 1.4 2 1.4-Dichlorobenzene ND ug/l 5.0 1.4 2 1.4-Dichlorobenzene ND ug/l 5.0 1.4 2 1.4-Dichlorobenzene ND ug/l 5.0 1.4 2 orygene ND ug/l 5.0 1.4 2 Interview ND ug/l 5.0 1.4 2 Orygene ND ug/l 5.0 1.4 2 Orygene ND ug/l 5.0 1.4 2 Dichlorodifucromethane ND ug/l 1.0 <td>Project Name:</td> <td>FORMER STEVE JOY'S</td> <td>SUNOCC</td> <td>)</td> <td></td> <td>Lab Nu</td> <td>mber:</td> <td>L2242586</td>	Project Name:	FORMER STEVE JOY'S	SUNOCC)		Lab Nu	mber:	L2242586
Lab ID: Client ID: MW-3R-8.8.22 Sample Location:L2242586-02 MW-3R-8.8.22 Sample Location:Date Collected: MW-3R-8.8.22 Not Specified08/08/22 Not SpecifiedParmeterResultQualifierUnitsRLMDLDilution FactorVolatile Organics by GC/MS - Westborough LabUg/l5.01.421.4-DichlorobenzeneRDug/l5.01.421.4-Dichlorobenzene6.2ug/l5.01.42Methyl etherNDug/l5.01.42O'Aldrie Corganics by GC/MS - Westborough Labug/l5.01.421.4-DichlorobenzeneR.Dug/l5.01.42O'Aldrie Corganics by GC/MS - Westborough Labug/l5.01.421.4-DichlorobenzeneNDug/l5.01.420ug/l5.01.422Ide thyl etherNDug/l5.01.42O'Aldrie Corganics by GC/MS - Westborough Labug/l5.01.421.4-DichlorobenzeneNDug/l5.01.420Ug/l5.01.4220Ug/l5.01.4220Ug/l1.0Ug/l1.420Ug/l1.0Ug/l1.02.021.4-DichlorobenzeneNDUg/l1.02.020Ug/l1.0Ug/l1.4220 <td>Project Number:</td> <td>P2204006</td> <td></td> <td></td> <td></td> <td>Report</td> <td>Date:</td> <td>08/19/22</td>	Project Number:	P2204006				Report	Date:	08/19/22
Client ID: MW-3R-8.8.22 WEST HENRIETTA, NY Date Received: 08/08/22 Field Prep: Not Specified Parameter Result Qualifier Units RL MDL Dilution Factor Volatile Organics by GC/MS - Westborough Lab ug/l 5.0 1.4 2 1,4-Dichlorobenzene 6.2 ug/l 5.0 1.4 2 Methyl teth tutyl ether ND ug/l 5.0 1.4 2 Om-Xylene ND ug/l 5.0 1.4 2 Cishlorobenzene ND ug/l 5.0 1.4 2 off-laborite function ND ug/l 5.0 1.4 2 Othorobilloromethane ND ug/l 1.0 2.0			SAMP	LE RESULTS	6			
ParameterResultQualifierUnitsRLMDLDilution FactorVolatile Organics by GC/MS - Westborough Lab1,3-DichlorobenzeneNDug/l5.01.421,4-Dichlorobenzene6.2ug/l5.01.42Methy tert butyl etherNDug/l5.01.42p/m-XyleneNDug/l5.01.42o-XyleneNDug/l5.01.42cis-1,2-DichloroetheneNDug/l5.01.42bichlorodifluoromethaneNDug/l5.01.42Carbon disulfideNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-ButanoneNDug/l102.022-HexanoneNDug/l5.01.421,2-Dibromo-shaneNDug/l5.01.421,2-Dibromo-shaneNDug/l5.01.421,2-Dibromo-shaneNDug/l5.01	Lab ID: Client ID: Sample Location:	MW-3R-8.8.22	Y			Date Ree	ceived:	08/08/22
Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND ug/l 5.0 1.4 2 1,4-Dichlorobenzene 6.2 ug/l 5.0 1.4 2 Methyl tert butyl ether ND ug/l 5.0 1.4 2 p/m-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 5.0 1.4 2 Carbon disulfide ND ug/l 10 2.0 2 Carbon disulfide ND ug/l 10 2.0 2 2-Bitanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10	Sample Depth:							
1,3-Dichlorobenzene ND ug/l 5.0 1.4 2 1,4-Dichlorobenzene 6.2 ug/l 5.0 1.4 2 Methyl tert butyl ether ND ug/l 5.0 1.4 2 p/m-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 5.0 1.4 2 Acetone ND ug/l 1.0 2.0 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 5.0 1.4 2 1,2-Dibromoethane	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene 6.2 ug/l 5.0 1.4 2 Methyl tert butyl ether ND ug/l 5.0 1.4 2 p/m-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 1.0 2.0 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 5.0 1.4 2 1,2-Dibromochlane ND ug/l 5.0 1.4 2 1,2-Dibromo-3-chloropropane	Volatile Organics b	y GC/MS - Westborough L	.ab					
1,4-Dichlorobenzene 6.2 ug/l 5.0 1.4 2 Methyl tert butyl ether ND ug/l 5.0 1.4 2 p/m-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 1.0 2.0 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 5.0 1.4 2 1,2-Dibromochlane ND ug/l 5.0 1.4 2 1,2-Dibromo-3-chloropropane	1.3-Dichlorobonzono		ND		ug/l	5.0	1 /	2
Methyl tert butyl ether ND ug/l 5.0 1.4 2 p/m-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 1.0 2.0 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 5.0 1.4 2 1,2-Dibromoethane	,				•			
ND ug/l 5.0 1.4 2 o-Xylene ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichloroethene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 10 2.0 2 Acetone ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 5.0 1.4 2 1,2-Dibromochane ND ug/l 5.0 1.4 2 1,2-Dibromochloropropane ND	•				•			
ND ug/l 5.0 1.4 2 cis-1,2-Dichloroethene ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichloroethene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 10 2.0 2 Acetone ND ug/l 10 2.9 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Promochloromethane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2								
List ND ug/l 5.0 1.4 2 Styrene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 5.0 1.4 2 Acetone ND ug/l 10 2.0 2 Carbon disulfide ND ug/l 10 2.9 2 2-Butanone ND ug/l 10 2.0 2 4-Methyl-2-pentanone ND ug/l 10 3.9 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 1.4 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2					-			
Styrene ND ug/l 5.0 1.4 2 Dichlorodifluoromethane ND ug/l 10 2.0 2 Acetone ND ug/l 10 2.9 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2					-			
Dichlorodifluoromethane ND ug/l 10 2.0 2 Acetone ND ug/l 10 2.9 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 2.0 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Promochloromethane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2								
Acetone ND ug/l 10 2.9 2 Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 10 2.0 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2					-			
Carbon disulfide ND ug/l 10 2.0 2 2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 10 2.0 2 1,2-Dibromoethane ND ug/l 5.0 1.4 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2					-			
2-Butanone ND ug/l 10 3.9 2 4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 10 2.0 2 1,2-Dibromoethane ND ug/l 5.0 1.4 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2							2.9	
4-Methyl-2-pentanone ND ug/l 10 2.0 2 2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 5.0 1.4 2 1,2-Dibromoethane ND ug/l 4.0 1.3 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2	Carbon disulfide		ND		ug/l	10	2.0	2
2-Hexanone ND ug/l 10 2.0 2 Bromochloromethane ND ug/l 5.0 1.4 2 1,2-Dibromoethane ND ug/l 4.0 1.3 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2	2-Butanone		ND		ug/l	10	3.9	2
Bromochloromethane ND ug/l 5.0 1.4 2 1,2-Dibromoethane ND ug/l 4.0 1.3 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2	4-Methyl-2-pentanone		ND		ug/l	10	2.0	2
1,2-Dibromoethane ND ug/l 4.0 1.3 2 1,2-Dibromo-3-chloropropane ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2	2-Hexanone		ND		ug/l	10	2.0	2
ND ug/l 5.0 1.4 2 Isopropylbenzene ND ug/l 5.0 1.4 2	Bromochloromethane		ND		ug/l	5.0	1.4	2
Isopropylbenzene ND ug/l 5.0 1.4 2	1,2-Dibromoethane		ND		ug/l	4.0	1.3	2
۲۰۰۰ ۳۳۰ ۳۳۰ ۳۳۰ ۳۳۰ ۳۳۰ ۳۳۰ ۳۳۰ ۳۳۰ ۳۳۰	1,2-Dibromo-3-chloroprop	pane	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene ND ug/l 5.0 1.4 2	Isopropylbenzene		ND		ug/l	5.0	1.4	2
	1,2,3-Trichlorobenzene		ND		ug/l	5.0	1.4	2

1,2,3-Trichlorobenzene	ND	ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	1.4	2	
Methyl Acetate	ND	ug/l	4.0	0.47	2	
Cyclohexane	ND	ug/l	20	0.54	2	
1,4-Dioxane	ND	ug/l	500	120	2	
Freon-113	ND	ug/l	5.0	1.4	2	
Methyl cyclohexane	ND	ug/l	20	0.79	2	

% Recovery	Qualifier	Acceptance Criteria	
94		70-130	
96		70-130	
98		70-130	
97		70-130	
	94 96 98	94 96 98	% Recovery Qualifier Criteria 94 70-130 96 70-130 98 70-130

		Serial_No	0:08192213:01
Project Name:	FORMER STEVE JOY'S SUNOCO	Lab Number:	L2242586
Project Number:	P2204006	Report Date:	08/19/22
	SAMPLE RESULTS		
Lab ID:	L2242586-03	Date Collected:	08/08/22 11:20
Client ID:	DUP-8.8.22	Date Received:	08/08/22
Sample Location:	WEST HENRIETTA, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	08/12/22 16:32		
Analyst:	LAC		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	140		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	5.5		ug/l	2.5	0.70	1

						Serial_No	0:08192213:01
Project Name:	FORMER STEVE JOY	'S SUNOCO)		Lab Nu	umber:	L2242586
Project Number:	P2204006				Report	Date:	08/19/22
-		SAMP	LE RESULTS	S			
Lab ID: Client ID: Sample Location:	L2242586-03 DUP-8.8.22 WEST HENRIETTA, I	NY			Date Co Date Re Field Pre	ceived:	08/08/22 11:20 08/08/22 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		1.1	J	ug/l	2.5	0.70	1
1,4-Dichlorobenzene		6.8		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
••							

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	99	70-130

10

ug/l

0.40

ND

1

Methyl cyclohexane

		Serial_N	0:08192213:01
Project Name:	FORMER STEVE JOY'S SUNOCO	Lab Number:	L2242586
Project Number:	P2204006	Report Date:	08/19/22
	SAMPLE RESULTS		
Lab ID:	L2242586-04	Date Collected:	08/08/22 00:00
Client ID:	TRIP BLANK-8.8.22	Date Received:	08/08/22
Sample Location:	WEST HENRIETTA, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	08/12/22 16:09		
Analyst:	LAC		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

						Serial_No	0:08192213:01
Project Name:	FORMER STEVE JOY'S	SUNOCO)		Lab Ni	umber:	L2242586
Project Number:	P2204006				Repor	t Date:	08/19/22
		SAMP	LE RESULTS	5			
Lab ID:	L2242586-04				Date Co	llected:	08/08/22 00:00
Client ID:	TRIP BLANK-8.8.22				Date Re	ceived:	08/08/22
Sample Location:	WEST HENRIETTA, NY	/			Field Pro	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough L	ab					

1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
Bromochloromethane	ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl Acetate	ND	ug/l	2.0	0.23	1	
Cyclohexane	ND	ug/l	10	0.27	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
Freon-113	ND	ug/l	2.5	0.70	1	
Methyl cyclohexane	ND	ug/l	10	0.40	1	

% Recovery	Acceptance Qualifier Criteria
98	70-130
97	70-130
101	70-130
100	70-130
	98 97 101

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Lab Number: L2242586 **Report Date:** 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/22 08:40 Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lab	for sample(s):	03-04 Batch:	WG1674556-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2242586

08/19/22

Lab Number:

Report Date:

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: PD

08/12/22 08:40

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s):	03-04 Batch:	WG1674556-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:FORMER STEVE JOY'S SUNOCOProject Number:P2204006

Lab Number: L2242586 Report Date: 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/12/22 08:40Analyst:PD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sample	e(s): (03-04	Batch:	WG1674556-5	

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	100	70-130

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Lab Number: L2242586 **Report Date:** 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/13/22 13:52 Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
/olatile Organics by GC/MS - We	stborough Lat	b for sample	e(s): 01	Batch:	WG1675397-5
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
Xylenes, Total	ND		ug/l	2.5	0.70
n-Butylbenzene	ND		ug/l	2.5	0.70
sec-Butylbenzene	ND		ug/l	2.5	0.70
tert-Butylbenzene	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
p-Isopropyltoluene	ND		ug/l	2.5	0.70
Naphthalene	ND		ug/l	2.5	0.70
n-Propylbenzene	ND		ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	98		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	99		70-130

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Report Date:

Lab Number: L2242586 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/15/22 20:00 Analyst: ΜV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sampl	e(s): 02	Batch:	WG1676390-5
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.0	0.14
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70

L2242586

08/19/22

Lab Number:

Report Date:

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: ΜV

08/15/22 20:00

arameter	Result	Qualifier Un	its	RL	MDL	
olatile Organics by GC/MS - \	Vestborough Lab	o for sample(s)	: 02	Batch:	WG1676390-	5
1,4-Dichlorobenzene	ND	u	g/I	2.5	0.70	
Methyl tert butyl ether	ND	u	g/l	2.5	0.70	
p/m-Xylene	ND	u	g/l	2.5	0.70	
o-Xylene	ND	u	g/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	u	g/l	2.5	0.70	
Styrene	ND	u	g/l	2.5	0.70	
Dichlorodifluoromethane	ND	u	g/l	5.0	1.0	
Acetone	ND	u	g/l	5.0	1.5	
Carbon disulfide	ND	u	g/l	5.0	1.0	
2-Butanone	ND	u	g/l	5.0	1.9	
4-Methyl-2-pentanone	ND	u	g/l	5.0	1.0	
2-Hexanone	ND	u	g/l	5.0	1.0	
Bromochloromethane	ND	u	g/l	2.5	0.70	
1,2-Dibromoethane	ND	u	g/l	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	u	g/l	2.5	0.70	
Isopropylbenzene	ND	u	g/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	u	g/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	u	g/l	2.5	0.70	
Methyl Acetate	ND	u	g/l	2.0	0.23	
Cyclohexane	ND	u	g/l	10	0.27	
1,4-Dioxane	ND	u	g/l	250	61.	
Freon-113	ND	u	g/l	2.5	0.70	
Methyl cyclohexane	ND	u	g/l	10	0.40	

Project Name:FORMER STEVE JOY'S SUNOCOProject Number:P2204006

 Lab Number:
 L2242586

 Report Date:
 08/19/22

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/15/22 20:00Analyst:MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough La	ab for sampl	le(s): 02	Batch:	WG1676390-5	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	93		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	98		70-130		
Dibromofluoromethane	97		70-130		

Project Number: P2204006 Lab Number: L2242586 08/19/22

Report Date:

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	03-04	Batch:	WG1674556-3	WG1674556-4			
Methylene chloride	100			100		70-130	0		20
1,1-Dichloroethane	100			100		70-130	0		20
Chloroform	100			100		70-130	0		20
Carbon tetrachloride	110			110		63-132	0		20
1,2-Dichloropropane	94			96		70-130	2		20
Dibromochloromethane	110			110		63-130	0		20
1,1,2-Trichloroethane	99			100		70-130	1		20
Tetrachloroethene	110			110		70-130	0		20
Chlorobenzene	100			100		75-130	0		20
Trichlorofluoromethane	110			110		62-150	0		20
1,2-Dichloroethane	100			100		70-130	0		20
1,1,1-Trichloroethane	110			110		67-130	0		20
Bromodichloromethane	100			100		67-130	0		20
trans-1,3-Dichloropropene	100			110		70-130	10		20
cis-1,3-Dichloropropene	98			100		70-130	2		20
Bromoform	110			110		54-136	0		20
1,1,2,2-Tetrachloroethane	96			100		67-130	4		20
Benzene	98			98		70-130	0		20
Toluene	99			100		70-130	1		20
Ethylbenzene	100			100		70-130	0		20
Chloromethane	60	Q		58	Q	64-130	3		20
Bromomethane	41			41		39-139	0		20
Vinyl chloride	83			82		55-140	1		20

Project Number: P2204006 Lab Number: L2242586 08/19/22

Report Date:

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	03-04	Batch:	WG1674556-3	WG1674556-4				
Chloroethane	89			90		55-138	1		20	
1,1-Dichloroethene	100			100		61-145	0		20	
trans-1,2-Dichloroethene	100			100		70-130	0		20	
Trichloroethene	100			110		70-130	10		20	
1,2-Dichlorobenzene	100			110		70-130	10		20	
1,3-Dichlorobenzene	100			110		70-130	10		20	
1,4-Dichlorobenzene	100			110		70-130	10		20	
Methyl tert butyl ether	100			110		63-130	10		20	
p/m-Xylene	105			105		70-130	0		20	
o-Xylene	100			105		70-130	5		20	
cis-1,2-Dichloroethene	100			100		70-130	0		20	
Styrene	105			105		70-130	0		20	
Dichlorodifluoromethane	110			110		36-147	0		20	
Acetone	110			100		58-148	10		20	
Carbon disulfide	100			99		51-130	1		20	
2-Butanone	88			89		63-138	1		20	
4-Methyl-2-pentanone	94			100		59-130	6		20	
2-Hexanone	91			94		57-130	3		20	
Bromochloromethane	120			110		70-130	9		20	
1,2-Dibromoethane	100			110		70-130	10		20	
1,2-Dibromo-3-chloropropane	110			120		41-144	9		20	
Isopropylbenzene	98			100		70-130	2		20	
1,2,3-Trichlorobenzene	110			130		70-130	17		20	

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

 Lab Number:
 L2242586

 Report Date:
 08/19/22

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 03-04 Batch: WG1674556-3 WG1674556-4 120 1,2,4-Trichlorobenzene 110 70-130 9 20 89 92 Methyl Acetate 70-130 3 20 Cyclohexane 100 100 70-130 0 20 1,4-Dioxane 120 126 56-162 5 20 Freon-113 110 120 70-130 9 20 20 Methyl cyclohexane 100 100 70-130 0

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	101	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	94	93	70-130
Dibromofluoromethane	102	102	70-130

Project Number: P2204006

FORMER STEVE JOY'S SUNOCO

Project Name:

Report Date: 08/19/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RF Qual Lin	PD nits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: W	G1675397-3	WG1675397-4			
Benzene	99		96		70-130	3	2	20
Toluene	99		97		70-130	2	2	20
Ethylbenzene	99		96		70-130	3	2	20
p/m-Xylene	100		100		70-130	0	2	20
o-Xylene	100		100		70-130	0	2	20
n-Butylbenzene	100		100		53-136	0	2	20
sec-Butylbenzene	100		99		70-130	1	2	20
tert-Butylbenzene	100		98		70-130	2	2	20
Isopropylbenzene	100		98		70-130	2	2	20
p-Isopropyltoluene	100		100		70-130	0	2	20
Naphthalene	79		96		70-130	19	2	20
n-Propylbenzene	100		98		69-130	2	2	20
1,3,5-Trimethylbenzene	100		97		64-130	3	2	20
1,2,4-Trimethylbenzene	100		98		70-130	2	2	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1.2-Dichloroethane-d4	92	92	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	98	99	70-130

Project Number: P2204006 Lab Number: L2242586 08/19/22

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG	1676390-3	WG1676390-4				
Methylene chloride	97		96		70-130	1		20	
1,1-Dichloroethane	94		92		70-130	2		20	
Chloroform	94		93		70-130	1		20	
Carbon tetrachloride	97		96		63-132	1		20	
1,2-Dichloropropane	92		89		70-130	3		20	
Dibromochloromethane	96		95		63-130	1		20	
1,1,2-Trichloroethane	97		95		70-130	2		20	
Tetrachloroethene	100		99		70-130	1		20	
Chlorobenzene	97		96		75-130	1		20	
Trichlorofluoromethane	99		96		62-150	3		20	
1,2-Dichloroethane	90		89		70-130	1		20	
1,1,1-Trichloroethane	94		93		67-130	1		20	
Bromodichloromethane	93		92		67-130	1		20	
trans-1,3-Dichloropropene	96		95		70-130	1		20	
cis-1,3-Dichloropropene	96		93		70-130	3		20	
Bromoform	95		96		54-136	1		20	
1,1,2,2-Tetrachloroethane	95		95		67-130	0		20	
Benzene	96		94		70-130	2		20	
Toluene	94		94		70-130	0		20	
Ethylbenzene	95		95		70-130	0		20	
Chloromethane	53	Q	52	Q	64-130	2		20	
Bromomethane	65		65		39-139	0		20	
Vinyl chloride	93		91		55-140	2		20	

Project Number: P2204006 Lab Number: L2242586 08/19/22

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 02	Batch: WG	1676390-3	WG1676390-4				
Chloroethane	110		100		55-138	10		20	
1,1-Dichloroethene	99		97		61-145	2		20	
trans-1,2-Dichloroethene	99		98		70-130	1		20	
Trichloroethene	100		97		70-130	3		20	
1,2-Dichlorobenzene	96		97		70-130	1		20	
1,3-Dichlorobenzene	98		98		70-130	0		20	
1,4-Dichlorobenzene	96		96		70-130	0		20	
Methyl tert butyl ether	97		95		63-130	2		20	
p/m-Xylene	95		95		70-130	0		20	
o-Xylene	95		100		70-130	5		20	
cis-1,2-Dichloroethene	99		96		70-130	3		20	
Styrene	95		95		70-130	0		20	
Dichlorodifluoromethane	88		85		36-147	3		20	
Acetone	86		87		58-148	1		20	
Carbon disulfide	96		95		51-130	1		20	
2-Butanone	75		77		63-138	3		20	
4-Methyl-2-pentanone	82		82		59-130	0		20	
2-Hexanone	79		80		57-130	1		20	
Bromochloromethane	110		110		70-130	0		20	
1,2-Dibromoethane	98		98		70-130	0		20	
1,2-Dibromo-3-chloropropane	96		93		41-144	3		20	
Isopropylbenzene	96		96		70-130	0		20	
1,2,3-Trichlorobenzene	100		100		70-130	0		20	

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Lab Number: L2242586

Report Date: 08/19/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPL Qual Limi	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 02	2 Batch: WG	1676390-3	WG1676390-4			
1,2,4-Trichlorobenzene	100		100		70-130	0	20	
Methyl Acetate	77		77		70-130	0	20	
Cyclohexane	95		93		70-130	2	20	
1,4-Dioxane	108		98		56-162	10	20	
Freon-113	110		110		70-130	0	20	
Methyl cyclohexane	100		100		70-130	0	20	

Surrogate	LCS %Recovery Qual	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	90	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	99	97	70-130

Matrix Spike Analysis

	Nativo	Me	Me	Me	Men	MED	Basavaru	
Project Number:	P2204006						Report Date:	08/19/22
Project Name:	FORMER STE	VE JOY'S S	UNOCO	Ba	atch Quality Con	trol	Lab Number:	L2242586

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Reco Qual Lim		RPD Qual Limits	
Volatile Organics by GC/M 3R-8.8.22	IS - Westborough	Lab Assoc	iated sample(s): 02 QC Ba	tch ID: WG1676390-	6 WG167639	0-7 QC Sam	ple: L224258	36-02 Client ID:	MW
Methylene chloride	ND	20	21	105	22	110	70-1	30 5	20	
1,1-Dichloroethane	ND	20	20	100	22	110	70-1	30 10	20	
Chloroform	ND	20	20	100	22	110	70-1	30 10	20	
Carbon tetrachloride	ND	20	21	105	22	110	63-1	32 5	20	
1,2-Dichloropropane	ND	20	19	95	21	105	70-1	30 10	20	
Dibromochloromethane	ND	20	20	100	21	105	63-1	30 5	20	
1,1,2-Trichloroethane	ND	20	20	100	22	110	70-1	30 10	20	
Tetrachloroethene	ND	20	21	105	22	110	70-1	30 5	20	
Chlorobenzene	130	20	150	100	140	50	Q 75-1	30 7	20	
Trichlorofluoromethane	ND	20	22	110	23	115	62-1	50 4	20	
1,2-Dichloroethane	ND	20	19	95	21	105	70-1	30 10	20	
1,1,1-Trichloroethane	ND	20	21	105	22	110	67-1	30 5	20	
Bromodichloromethane	ND	20	19	95	21	105	67-1	30 10	20	
trans-1,3-Dichloropropene	ND	20	19	95	21	105	70-1	30 10	20	
cis-1,3-Dichloropropene	ND	20	19	95	21	105	70-1	30 10	20	
Bromoform	ND	20	19	95	22	110	54-1	36 15	20	
1,1,2,2-Tetrachloroethane	ND	20	20	100	22	110	67-1	30 10	20	
Benzene	ND	20	21	105	22	110	70-1	30 5	20	
Toluene	ND	20	20	100	21	105	70-1	30 5	20	
Ethylbenzene	ND	20	20	100	21	105	70-1	30 5	20	
Chloromethane	ND	20	11	55	Q 12	60	Q 64-1	30 9	20	
Bromomethane	ND	20	9.4	47	13	65	39-1	39 32	Q 20	
Vinyl chloride	ND	20	21	105	22	110	55-1	40 5	20	

Matrix Spike Analysis

	Nativo	MC	Me	MC	MED	MED	Baaavary	חחח
Project Number:	P2204006						Report Date:	08/19/22
Project Name:	FORMER STE	VE JOY'S S	UNOCO	Ba	atch Quality Cont	trol	Lab Number:	L2242586

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	, RPD	RPD Qual Limits
Volatile Organics by GC/M 3R-8.8.22	S - Westborough	Lab Assoc	iated sample(s): 02 QC Ba	tch ID: WG1676390-	6 WG167639	0-7 QC Sample: I	_224258	6-02 Client ID: MW-
Chloroethane	ND	20	24	120	25	125	55-138	4	20
1,1-Dichloroethene	ND	20	22	110	24	120	61-145	9	20
trans-1,2-Dichloroethene	ND	20	22	110	23	115	70-130	4	20
Trichloroethene	ND	20	21	105	23	115	70-130	9	20
1,2-Dichlorobenzene	5.1	20	25	100	27	110	70-130	8	20
1,3-Dichlorobenzene	ND	20	21	105	22	110	70-130	5	20
1,4-Dichlorobenzene	6.2	20	26	99	27	104	70-130	4	20
Methyl tert butyl ether	ND	20	21	105	24	120	63-130	13	20
p/m-Xylene	ND	40	41	103	42	105	70-130	2	20
o-Xylene	ND	40	40	100	43	108	70-130	7	20
cis-1,2-Dichloroethene	ND	20	21	105	22	110	70-130	5	20
Styrene	ND	40	40	100	42	105	70-130	5	20
Dichlorodifluoromethane	ND	20	19	95	20	100	36-147	5	20
Acetone	ND	20	16	80	18	90	58-148	12	20
Carbon disulfide	ND	20	21	105	22	110	51-130	5	20
2-Butanone	ND	20	16	80	17	85	63-138	6	20
4-Methyl-2-pentanone	ND	20	19	95	21	105	59-130	10	20
2-Hexanone	ND	20	19	95	21	105	57-130	10	20
Bromochloromethane	ND	20	22	110	24	120	70-130	9	20
1,2-Dibromoethane	ND	20	20	100	22	110	70-130	10	20
1,2-Dibromo-3-chloropropane	ND	20	20	100	23	115	41-144	14	20
Isopropylbenzene	ND	20	21	105	21	105	70-130	0	20
1,2,3-Trichlorobenzene	ND	20	22	110	25	125	70-130	13	20

Matrix Spike Analysis

Project Name: Project Number:	FORMER STE P2204006	VE JOY'S S	UNOCO		Batch Qi	uality Cor	ntrol		Lab Num Report D			2242586 3/19/22
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits

Volatile Organics by GC/MS 3R-8.8.22	S - Westborough I	_ab Associ	ated sample(s):	02 QC Bat	ch ID: WG1676390-6	6 WG1676390	-7 QC Sample: L2	242586-02	Client ID: MW-
1,2,4-Trichlorobenzene	ND	20	22	110	24	120	70-130	9	20
Methyl Acetate	ND	20	16	80	17	85	70-130	6	20
Cyclohexane	ND	20	21	105	21	105	70-130	0	20
1,4-Dioxane	ND	1000	1100	110	1200	120	56-162	9	20
Freon-113	ND	20	23	115	24	120	70-130	4	20
Methyl cyclohexane	ND	20	22	110	22	110	70-130	0	20

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichloroethane-d4	92	93	70-130	
4-Bromofluorobenzene	98	98	70-130	
Dibromofluoromethane	99	99	70-130	
Toluene-d8	97	97	70-130	

Project Name: FORMER STEVE JOY'S SUNOCO Project Number: P2204006

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2242586-01A	Vial HCI preserved	A	NA		4.3	Y	Absent		NYSTARS-8260(14)
L2242586-01B	Vial HCI preserved	А	NA		4.3	Y	Absent		NYSTARS-8260(14)
L2242586-01C	Vial HCI preserved	А	NA		4.3	Y	Absent		NYSTARS-8260(14)
L2242586-02A	Vial HCI preserved	А	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02A1	Vial HCI preserved	А	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02A2	Vial HCI preserved	А	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02B	Vial HCI preserved	А	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02B1	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02B2	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02C	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02C1	Vial HCI preserved	А	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-02C2	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-03A	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-03B	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-03C	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-04A	Vial HCI preserved	A	NA		4.3	Y	Absent		NYTCL-8260-R2(14)
L2242586-04B	Vial HCI preserved	А	NA		4.3	Y	Absent		NYTCL-8260-R2(14)

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Lab Number: L2242586

Report Date: 08/19/22

GLOSSARY

Acronyms

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Lab Number: L2242586 **Report Date:** 08/19/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Serial_No:08192213:01

Project Name: FORMER STEVE JOY'S SUNOCO

Project Number: P2204006

Lab Number: L2242586

Report Date: 08/19/22

Data Qualifiers

Identified Compounds (TICs).

M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:FORMER STEVE JOY'S SUNOCOProject Number:P2204006

 Lab Number:
 L2242586

 Report Date:
 08/19/22

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

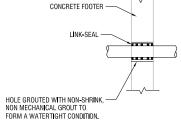
	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Pag / 0			Date R in L	ec'd ab	8/	9	122	ALPHA JOB # L224258	36
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		SARD & DA		15 285	Deliv	erables		122			Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Form	ER STEUF	JOY'S SU	WOCO			ASP-A		¥	ASP-	В	2-Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: We	et llear	ull N	15			EQuIS	(1 File)	R	EQui	S (4 File)	PO #	
Client Information		Project # P22040	006	the cro				Other				· · · · · · · · · · · · · · · · · · ·	00042.0	
Client: LABCULA	ASSNITATES	(Use Project name as P					Regu	latory F	equireme	ent			Disposal Site Information	1.22
Address: 300 STA		Project Manager: MS	The second se	A				NY TOO	A CONTRACTOR OF CONTRACTOR OFO		NY Pa	rt 375	Please identify below location of	of
			21000					AWQ S	andards	Ē	NY CF	-51	applicable disposal facilities.	OI
Phone: 585-454		Turn-Around Time	No. of Concession, Name	and the second			H	and the second second	ricted Use		Other		Disposal Facility:	•••••
	LABELLA PC. Com			Due Date:			1 8		stricted Us		o'u iui			
Email: MPelvelt		Rush (only if pre approve							wer Discha					
and the second se	The other states and the states of the state		4/ <u> </u>	# of Days:					wer Discha	irge	_		Other:	157
These samples have be Other project specific	the second se						ANA	LYSIS		<u> </u>	-		Sample Filtration	
ال الحماد المعام ال المعام المعام المعام المعام المعام		MW-3A-8.8.22	for perfi	ming Mis,	150		836D						Done Lab to do Preservation Lab to do (Please Specify below)	a I B o t
ALPHA Lab ID	Sa	mple ID	Coll	ection	Sample	Sampler's	STARS	7.02						t
(Lab Use Only)		1000000000	Date	Time	Matrix	Initials	ST	Ă					Sample Specific Comments	e
42586.01	MW-7R -	8.8.22	8/8/22		GW	AGB	×							3
- 04	MW-SR-	8.8.22	8/8/22		64	ABS	1	X					MS/MSD*	9
-03	DUP- 7.8	.22	8/8/22		GW	A63		V					,	3
- 64	DUP- 8.8 TREP BLANK	- 8.8.22	8/8/22		GW	AGS		X						2
												_		n
									_			_		-
							-			+	_	_		+
A = None	Container Code P = Plastic A = Amber Glass	Westboro: Certification Mansfield: Certification Mansfield			Cor	L tainer Type	V	V	+				Please print clearly, legit and completely. Sample	
D = H ₂ SO ₄ (E = NaOH	V = Vial G = Glass B = Bacteria Cup				F	reservative	B	ß					not be logged in and turnaround time clock wi start until any ambiguitie	
TTTW WTT	C = Cube D = Other	Relinquished	By:	Date/	Time		Receiv	ed By:			Date/	Time	resolved. BY EXECUTIN	
I = Na ₂ S ₂ O ₃	E = Encore	In rua	-	8/8/22	1416	ECURE	F STO	RAG	AAL	8/8/	32	14:14	THIS COC, THE CLIENT HAS READ AND AGREE	
/E = Zn Ac/NaOH	D = BOD Bottle	SEURE STORAG	E AAL .	8/8/22		Reins				8/8/6		16:50	1 HAD MEAD AND AGAL	
) = Other		RCunningham		8/8/22	16:56	IN	1		_	8/9/	22	2015	TERMS & CONDITIONS	
Form No: 01-25 HC (rev. 30- ge 37 of 37	-Sept-2013)	0		1111	- the second	-				1			(See reverse side.)	

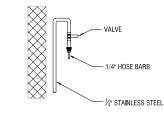
APPENDIX C

Site Inspection Form

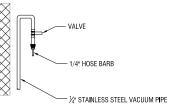
300 State Street Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066	Project Name: NYSDEC BCP Location: 3865 & 3875 Wes Project No.: 209395 Inspected By: E. Spirito Date of Inspection: 6/22/20 Weather Conditions: Overcas	Site No. C828134 St Henrietta Road, Rochest	PECTION FORM er, New York
INSPECTION FINDINGS			
<u>3865 Building</u> SSDS VENT FAN & GENERAL LOCATION 6/22/2020	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Fan Located in Women's Restroom, behind wall panel.	Yes. U-tube manometer reading $2.6 H_2O$ "	YES	System Running. No actions taken.
<u>3875 Building</u> SSDS VENT FAN & GENERAL LOCATION 7/10/2020	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Customer Reception Area	-0.072 H20", -1.126 H20" & 0.675 H20"	YES	System running. No actions taken.
Western Portion of Service Area	Fan and alarm located here -0.799 H20", -0.764 H20" & 0.588 H20"	YES	System running. No actions taken.
Eastern Portion Service Area	-0.662 H20" &0.661 H20"	YES	System running. No actions taken.
GENERAL SITE CONDITIONS 7/10/2020	CURRENT USE OF SITE (COMMERCIAL/ RESIDENTIAL/ETC.)	SITE RECORDS UP TO DATE (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Everything appears to be in good condition.	Commercial automobile sales and service.	YES	No action taken.

300 State Street	Project Name: NYSDEC BCP Location: 3865 & 3875 Wes Project No.: 209395		
Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066	Inspected By: E. Spirito Date of Inspection: 5/28/20 Weather Conditions: Rain	021	
INSPECTION FINDINGS			
<u>3865 Building</u> SSDS VENT FAN & GENERAL LOCATION 5/28/2021	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Fan Located in Women's Restroom, behind wall panel.	Yes. U-tube manometer reading 2.7 H_2O "	YES	System Running. No actions taken.
<u>3875 Building</u> SSDS VENT FAN & GENERAL LOCATION 7/10/2020	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Customer Reception Area	-1.525 H20", -0.838 H20" & 0.370 H20"	YES	System running. No actions taken.
Eastern Portion of Service Area	Fan and alarm located here -0.446 H20", -0.351 H20" & 0.052 H20"	YES	System running. No actions taken.
Western Portion Service Area	-0.134 H20" &0.1010 H20"	YES	System running. No actions taken.
GENERAL SITE CONDITIONS 7/10/2020	CURRENT USE OF SITE (COMMERCIAL/ RESIDENTIAL/ETC.)	SITE RECORDS UP TO DATE (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Everything appears to be in good condition.	Commercial automobile sales and service.	YES	No action taken.


300 State Street Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066	Project Name: NYSDEC BCP Location: 3865 & 3875 Wes Project No.: 2223592 Inspected By: AGB Date of Inspection: 8/8/202 Weather Conditions: 86°F, p	Site No. C828134 st Henrietta Road, Rochest	PECTION FORM er, New York
INSPECTION FINDINGS <u>3865 Building</u> SSDS VENT FAN & GENERAL LOCATION 5/28/2021	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Fan Located in Women's Restroom, behind wall panel.	Yes. U-tube manometer reading 2.6 H ₂ O"	YES	System Running. No actions taken.
<u>3875 Building</u> SSDS VENT FAN & GENERAL LOCATION 7/10/2020	FAN OPERATING PROPERLY (YES/NO) and MANOMETER READING (H ₂ O"):	PIPING and LABELLING IN GOOD CONDITION (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Customer Reception Area	-0.613 H20", -0.580 H20" & -0.124 H20"	YES	System running. No actions taken.
Eastern Portion of Service Area	Fan and alarm located here -0.202 H20", -0.172 H20" & -0.009 H20"	YES	System running. No actions taken.
Western Portion Service Area	-0.064 H20" & -0.063 H20"	YES	System running. No actions taken.
GENERAL SITE CONDITIONS 7/10/2020	CURRENT USE OF SITE (COMMERCIAL/ RESIDENTIAL/ETC.)	SITE RECORDS UP TO DATE (YES/NO)	COMMENTS AND/OR ACTIONS TAKEN
Everything appears to be in good condition.	Commercial automobile sales and service.	YES	No action taken.


APPENDIX D

SSDS As-Built Drawings


PROFILE AT PENETRATION

PROFILE AT GAUGE POINT

10. STAINLESS STEEL TUBING OPEN AT THE END WITH FILTER FABRIC OVER THE END AND FIXED WITH TAPE 6-INCHES FROM THE END.

9. RADONAWAY EASY READ DYNAMETER U-TUBE MANOMETER MONITOR INSTALLED ON VACUUM SIDE OF FAN FOR PRESSURE GAUGE. RADONAWAY CHECKPOINT II AUDIBLE SYSTEM ALARM INSTALLED ON VACUUM SIDE OF FAN FOR ALARM. ALARM INSTALLED ON A SEPARATE CIRCUIT FROM THE FAN.

INTERIOR WALL IN A VISIBLE LOCATION.

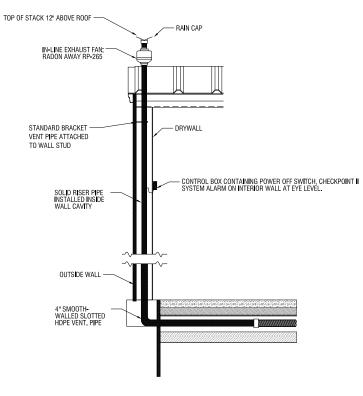
8. RISER PIPING INSIDE WALL CAVITIES TO HAVE PRESSURE GAUGES AND ALARMS MOUNTED ON

7. ALL PENETRATIONS AND GAPS SEALED WITH AN ELASTOMERIC JOINT SEALANT.

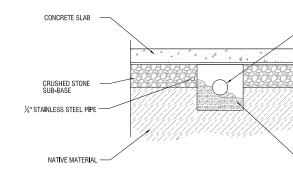
6. PEA STONE CONSISTS OF MATERIAL THAT WILL PASS THROUGH A 2-INCH SIEVE AND BE RETAINED BY A 1/4-INCH SIEVE.

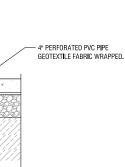
5. PROFILE SEQUENCE MAY VARY BASED ON SPECIFIC LOCATIONS.

4. HEADER PIPING SHOWN IS 4-INCH SCHEDULE 40 PVC.

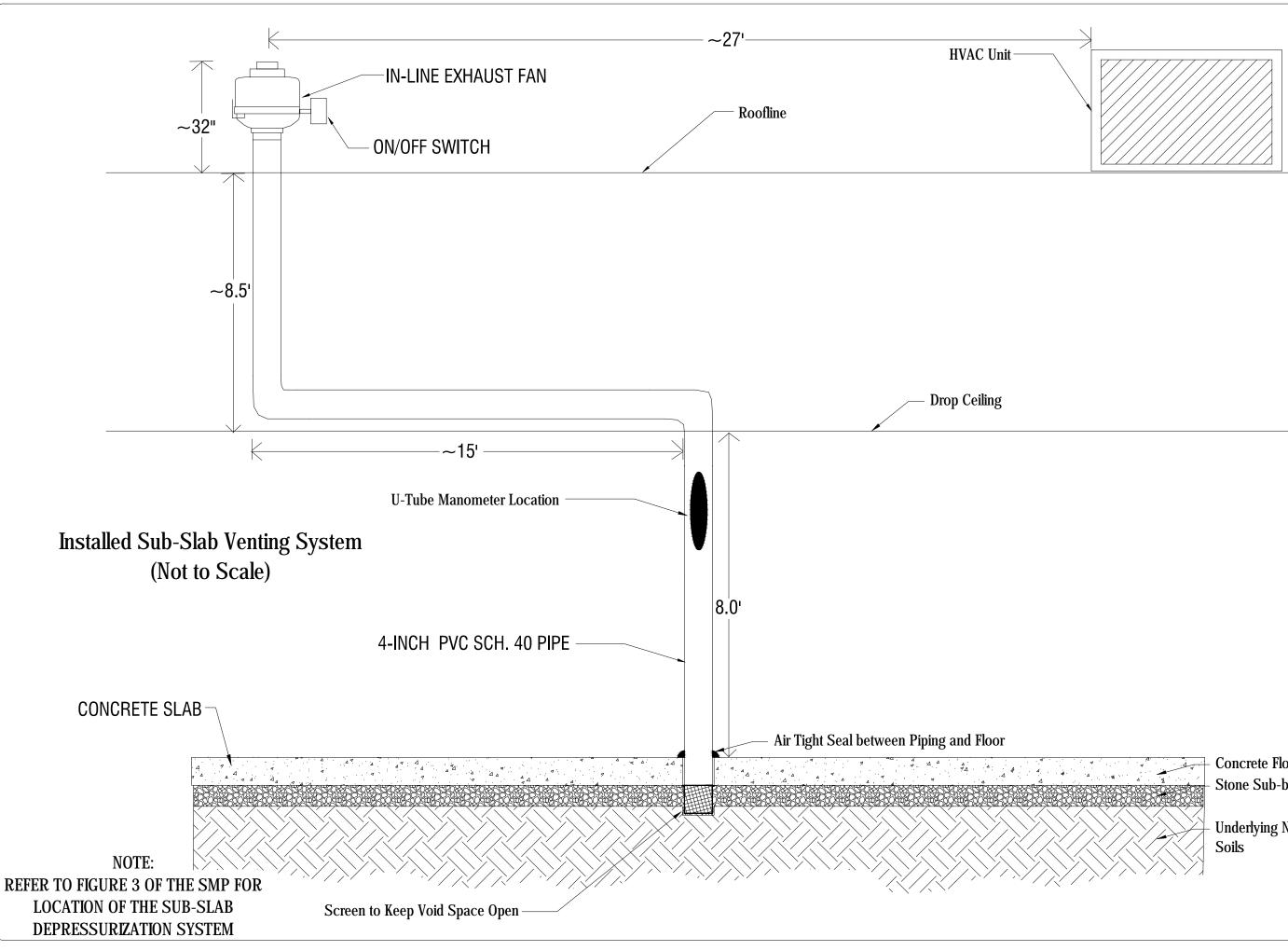

DUAL-WALLED CORRUGATED EXTERIOR SMOOTH INTERIOR HDPE.

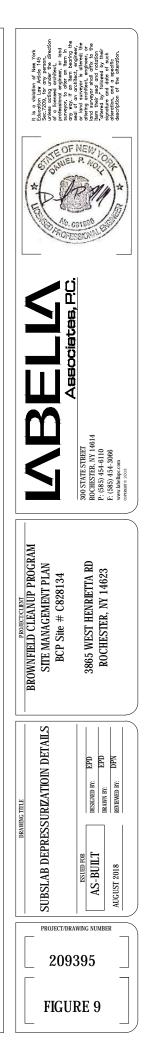
PIPING. 3. ALL SUB-SLAB VAPOR COLLECTION PIPING IS GEOTEXTILE-WRAPPED 4-INCH PERFORATED


2. HEADER PIPE SLOPED UP 1/4-INCH PER FOOT FROM CONNECTION WITH VAPOR COLLECTION


NOTES:

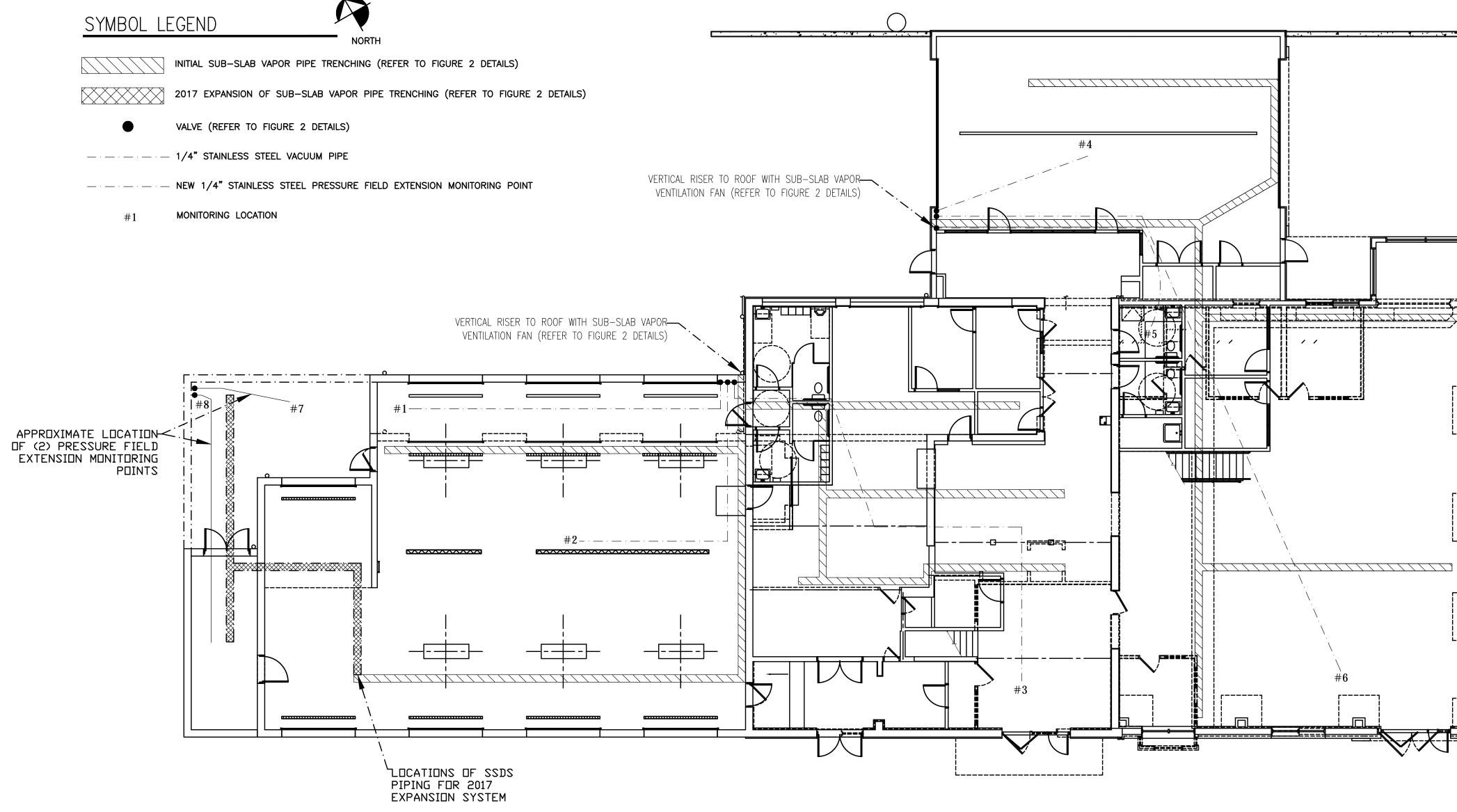
REAR ENDWALL



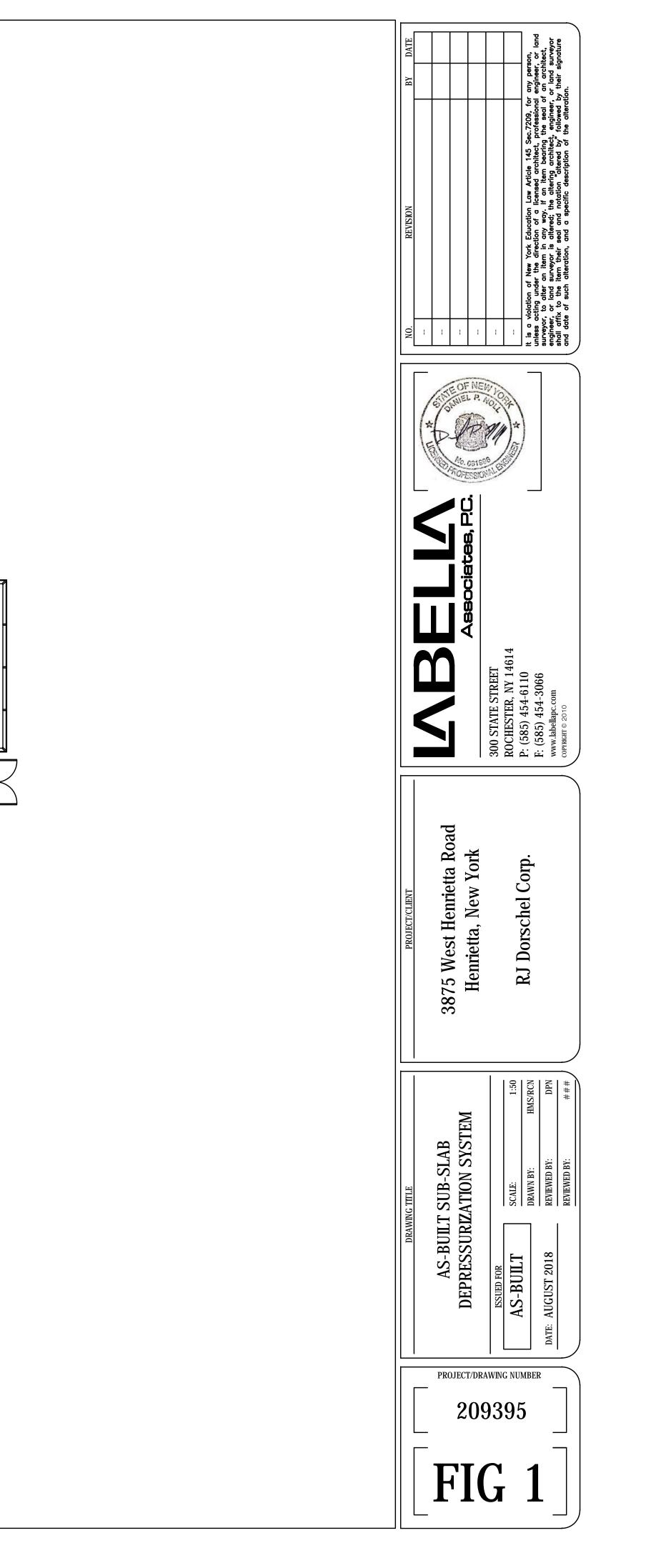


- 12"x12" PEA STONE TRENCH

1. PERFORATED CAP INSTALLED AT EACH VAPOR COLLECTION PIPE TERMINATION.



Concrete Floor Stone Sub-base


Underlying Native

	NORTH
	INITIAL SUB-SLAB VAPOR PIPE TRENCHING (REFER TO FIGURE 2 DETAILS)
	2017 EXPANSION OF SUB-SLAB VAPOR PIPE TRENCHING (REFER TO FIGURE 2 DETAILS)
•	VALVE (REFER TO FIGURE 2 DETAILS)
·_·	1/4" STAINLESS STEEL VACUUM PIPE
	NEW 1/4" STAINLESS STEEL PRESSURE FIELD EXTENSION MONITORING POINT
#1	MONITORING LOCATION

NOTE:

BASE DRAWING ADAPTED FROM TY LIN INTERNATIONAL DRAWING TITLED "SANITARY SEWER PLUMBING PLAN" DATED NOVEMBER 8, 2011.

 \langle / \rangle

APPENDIX E

Institutional Controls/Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. C828134	Box	1
Site Name Former Steve Joy's Sunoco	•	
Site Address: 3865 West Henrietta Road Zip Code: 14623 City/Town: Rochester County: Monroe Site Acreage: 2.500		
Reporting Period: August 7, 2019 to June 17, 2021		
	YES	NO
1. Is the information above correct?	X	0
If NO, include handwritten above or on a separate sheet.		
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?	`	X
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 		X
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.	1	
5. Is the site currently undergoing development?		X
	Box 2	
	YES	NO
 Is the current site use consistent with the use(s) listed below? Commercial and Industrial 	X	
7. Are all ICs/ECs in place and functioning as designed?	X	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address the	ese issu	es.
Signature of Owner, Remedial Party or Designated Representative Date		

	Box	2A
8. Has any new information revealed that assumptions made in the Qualitative Exposu Assessment regarding offsite contamination are no longer valid?	YES	NO
and the following value		X
If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		,
9. Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
ITE NO. C828134		
Description of Institutional Controls	Box	3

.

·

Owner R.J. Dorschel Corp.

Institutional Control

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

Ground Water Use Restriction

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential, etc.) use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;

• All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

• The existing sub-slab depressurization system at the 3865 West Henrietta Road property will be monitored and maintained in accordane with the SMP;

• The existing biocell will be monitored and maintained in accordance with the SMP;

• The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;

• Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation:

Vegetable gardens and farming on the Site are prohibited; and

• The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time

that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable. 161.19-1-9 R.J. Dorschel Corp.

> Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential, etc.) use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;

• All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

The existing biocell will be monitored and maintained in accordance with the SMP;

• The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;

• Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in

accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

• A SSDS will be designed and installed/started prior to occupancy of the existing 3875 West Henrietta Road building. The SSDS will be designed and installed in

accordance with the State's most recent guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation; · Vegetable gardens and farming on the Site are prohibited; and

• The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

		Box 4	
Description of Engin	eering Controls		
Parcel 161.15-1-20.1	Engineering Control		
	Vapor Mitigation		
161.19-1-9			
(•	Vapor Mitigation		
		· · ·	

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:	•	
	 a) the Periodic Review report and all attachments were prepared u reviewed by, the party making the certification; 	inder the directic	on of, and
	 b) to the best of my knowledge and belief, the work and conclusion are in accordance with the requirements of the site remedial program engineering practices; and the information presented is accurate and conclusion 		
		YE	S NO
	If this site has an IC/EC D	X	
c f	If this site has an IC/EC Plan (or equivalent as required in the Decision Doc or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES following statements are true:	solow that all	orthe
	(a) the Institutional Control and/or Engineering Control(s) employed a since the date that the Control was put in-place, or was last approved	at this site is unc	hanged
	(b) nothing has occurred that would impair the ability of such Control, the environment;	to protect public	ent; health and
	(c) access to the site will east		
	 (c) access to the site will continue to be provided to the Department, to remedy, including access to evaluate the continued maintenance of this (d) nothing has 		
	(d) nothing has occurred that would constitute a violation or failure to c Site Management Plan for this Control; and	comply with the	
	(e) if a financial assurance mechanism is required by the oversight doc mechanism remains valid and sufficient for its intended purpose established.		te, the Iment.
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date belo DO NOT COMPLETE THE REST OF THIS FORM. Otherwise co		
Corr	rective Measures Work Plan must be submitted along with this form to ad	manue.	
		dress these iss	ues.
natu	ure of Owner, Remedial Party or Designated Representative		
	-procentative	Date	

•

.

•

•

•

	IC CERTIFICATIONS SITE NO. C828134	Вох 6
	SITE OWNER OR DESIGNATED REPRESENTATIVE I certify that all information and statements in Boxes 1,2, and 3 are true statement made herein is punishable as a Class "A" misdemeanor, purs Penal Law.	I understand that a false
	at	Rd Rochester NY 14623
	print name print business add	ress
	am certifying as Owner's Representative	(Owner or Remedial Party)
R	for the Site named in the Site Details Section of this form. President RJ Dorschel Corp. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	6/11/21 Date

IC/EC CERTIFICATIONS

Qualified Environmental Professional Signature Box 7 I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. LABELLA ASSOCTATES, D. P. C. DANIEL P. Noc print name 300 STATE ST ROCHESTER NY print business address at am certifying as a Qualified Environmental Professional for the OWNER EOF Newner or Remedial Party) Lice! U Signature of Qualified Environmental Professional, for Vo. 08199 Stamp the Owner or Remedial Party, Rendering Certification (Required for PE)

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details te No. C828134			Box 1	
Sit	e Name For	mer Steve Joy's Sunoco			
Cit Co	e Address: 3 y/Town: Roc unty:Monroe e Acreage: 2		Zip Code: 14623		
Re	porting Perio	d: -August 06, 2019 to Aug	ust 06, 2022		
		June 18, 2021 to Au	gust 08, 2022		
				YES	NO
1.	Is the inform	nation above correct?		X	
	If NO, includ	de handwritten above or on	a separate sheet.		
2.	tax map am	endment during this Report	en sold, subdivided, merged, or undergo ting Period? n R.J. Dorschel Corp to Store Master Funding XV	Х	
3.					
4.	•	deral, state, and/or local pe property during this Report	ermits (e.g., building, discharge) been is ting Period?	sued	х
			thru 4, include documentation or evidential or evidential submitted with this certification		
5.	Is the site c	urrently undergoing develop	pment?		х
				Box 2	
				YES	NO
6.		nt site use consistent with t and Industrial	he use(s) listed below?	x	
7.	Are all ICs in	n place and functioning as	designed?	x	
AC		DO NOT COMPLETE THE F	JESTION 6 OR 7 IS NO, sign and date b REST OF THIS FORM. Otherwise contin e submitted along with this form to add	nue.	ues.
Sig	nature of Owr	ner, Remedial Party or Desig	nated Representative	Date	

		Box 2	A
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?	YES	NO X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	x	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	E NO. C828134	Bo	x 3
	Description of Institutional Controls		

-

г

Parcel 161.15-1-20.1 Owner Store Master Funding LLC Institutional Control

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

Ground Water Use Restriction

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential, etc.) use without additional remediation and amendment of the Environmental

Easement, as approved by the NYSDEC;

 All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

• The existing sub-slab depressurization system at the 3865 West Henrietta Road property will be monitored and maintained in accordane with the SMP;

. The existing biocell will be monitored and maintained in accordance with the SMP;

• The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;

 Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

· Vegetable gardens and farming on the Site are prohibited; and

• The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time

that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable. Store Master Funding LLC

161.19-1-9

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

The property may only be used for commercial or industrial use, provided that the long-term Engineering and Institutional Controls included in this SMP are employed.

• The property may not be used for a higher level of use (e.g., unrestricted, residential, etc.) use without additional remediation and amendment of the Environmental

Easement, as approved by the NYSDEC;

 All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

• The existing biocell will be monitored and maintained in accordance with the SMP;

• The use of the groundwater underlying the property is prohibited without treatment restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH;

 Prior to occupancy of any newly constructed buildings at this site a soil vapor intrusion evaluation will be performed in accordance with the State's most recent

guidance on evaluation soil vapor intrusion. Alternatively, a SSDS can be designed and installed/started prior to occupancy of any newly constructed building. The SSDS will be designed and installed in

accordance with the State's most recent

guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

• A SSDS will be designed and installed/started prior to occupancy of the existing 3875 West Henrietta Road building. The SSDS will be designed and installed in

accordance with the State's most recent guidance on evaluating soil vaor intrusion and will require approval by NYSDEC and NYSDOH prior to installation;

· Vegetable gardens and farming on the Site are prohibited; and

• The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled

Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs

the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access the

Site at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time

that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

Box 4

Description of Engineering Controls

Parcel 161.15-1-20.1 Engineering Control

Vapor Mitigation

161.19-1-9

Vapor Mitigation

	Periodic Review Report (PRR) Certification Statements
	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO
	X
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
А	Corrective Measures Work Plan must be submitted along with this form to address these issues.
s	ignature of Owner, Remedial Party or Designated Representative Date

L

IC CERTIFICATIONS SITE NO. C828134

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Greg Stahl	at	3865 West Henriet	ta Rd
print name		print business addres	S
am certifying as	Member		(Owner or Remedial Party)
for the Site named in the Site	Details Section of	this form.	9/5/22
Signature of Owner, Remedia Rendering Certification	l Party, or Design	ated Representative	Date

• .

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. LABEUAA Assocrates

	STATE ST ROCHESTER
am certifying as a Qualified Environmental Professional	(Owner or Remedial Party)
	STATE OF NEW WOR
Dal May	ER 100 No. 081996 CM 9/5/2022
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification	Statistics Date (Required for PE)

APPENDIX F

MW-7 Closure Log and MW-7R Installation Log

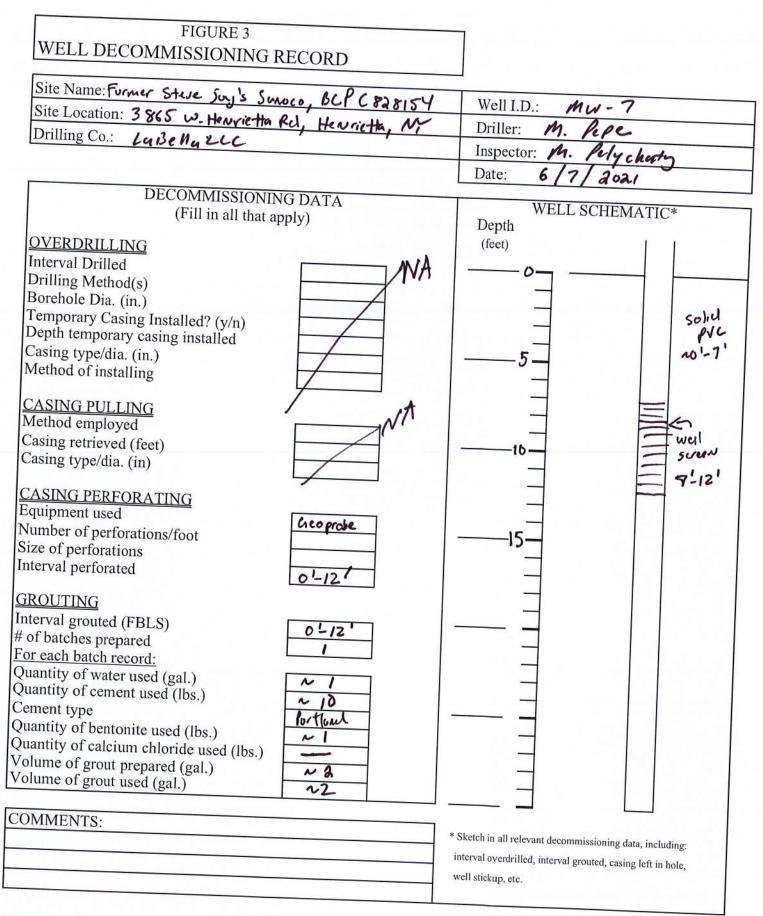
PROJECT NAME:	Former Stue Joy's Sarvas, BCP 828154
PROJECT NO .:	209395
LOCATION:	3865 w Henrieth R.J. Henrietta, NY
CLIENT:	Dorsche (

DATE: <u>6</u>	7/	20,	21	1	_	
DAY OF WEEK:	6	т	w	т	F	s
SHEET NO.	1		OF		1	
		АМ			PM	-
WEATHER	Cal	tes	4			
						_

~70°1=

TEMPERATURE

DESCRIPTION OF WORK PERFORMED AND INSPECTED


(SCOPE, NATURE OF WORK, PROBLEMS, DISCUSSIONS, MEASUREMENTS, CONTRACTORS, HOURS, ITEMS) 0900 Michael F. Pely chich (MFD LeBilly Assecuts Graces on site to Ssice deconnession cf. is bellahor ~111 of and Will MW-JR Ma 1'ene on - >. fe La Bi llo FO confiete The closure + ins ful later. MW-7R well 13 insfulled to death 2 a bi n. weil screen scul anil renarive hun 5 UNNA filled martern fee scrtonit CAM condu durin inspellation as below. well In Ical 6620 will Gennise in sach SEAD (12) IDW L. NO NO wel) servited. is hilled Cabut 3 7R Muincu-7 nerl heo beese 6rock Arcas 6 close allan hell into IN1 ma great 151 WP 11 1 loscre 40g (P-43 Recorde Fisure 5-ll 1030 -NF TIME DUST UPWIND voc with VOC UP WIND pust pourwind VOC POLON WINP 0930 0.062 0.064 0 0 0 0945 0.0 59 0.071 0 0 0 0.059 0.068 1000 0 C 0

INSPECTOR'S SIGNATURE

Mult. Physty

6/7 2021 DATE

ATTACHMENTS YES / NO

Drilling Contractor

Department Representative

		IONITORING WELL		MONITORING WELL ID
				MW-7R
Project: Former Steve Joy's Stev	unoco Henrietta, NY	LaBella Project No.: LaBella Representative: Date Installed: Time: Type of Drill Rig: Auger size and type:	209395 M. Pelychaty 6/7/2021 Track Mounted Geo Not Applicable	to oprobe 6620
Ground El.: Not Applicable	Location: <u>SEE PLAN</u>	Depth to bedrock:	Not Applicable	e
BOREHOLE BACKFILL				
(Numbers refer to depth from ground surface in feet)				
BENTONITE		Elevation/Depth of		ft.
5.0		Type of Riser/Silt Pipe Inside diameter Outside diameter	Schedule 40 PVC	<u>1.0</u> in. <u>1.5</u> in.
		Depth of top of Scr	een	<u>7.0</u> ft.
SAND PACK		Diameter of boreho Type of Screen	0.010 in. Schedule 4	in.
		Depth of bottom of	Screen	<u>12.0</u> ft.
12.0		Depth of bottom of	borehole	<u>12.0</u> ft.
6.7 ft. + Lengt	5.0 ft. = h of Screen (L2) Total	11.7 ft. Lemgth		
NOTES:				