SITE MANAGEMENT PLAN 8-28 WARD STREET SITE INDEX #B8-0566-99-10 SITE #C828136

NOVEMBER 2008 Revised December 21, 2012

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 6274 EAST AVON-LIMA ROAD AVON, NEW YORK 14414

Prepared on Behalf of:

GERMANOW-SIMON CORPORATION 408 ST. PAUL STREET ROCHESTER, NEW YORK 14601-0144

Prepared by:

STANTEC CONSULTING SERVICES INC. 61 COMMERCIAL STREET ROCHESTER, NEW YORK 14614

TABLE OF CONTENTS

Section Page

1.0	Introduction				
	1.1	1.1 Purpose			
	1.2	Background	1		
	1.3 Completed Environmental Investigation, Remedial Actions and Pilot				
		Tests	2		
2.0	Development and Pre-Excavation Planning				
	2.1	Existing Information	4		
	2.2	Construction/Design Considerations	9		
3.0	System Design Details				
	3.1	MPVE System Configuration	11		
	3.2	Well head, piping configuration	11		
	3.3	Manifold	12		
	3.4	Sub-slab depressurization system	12		
	3.5	Sewer discharge	12		
	3.6	Air discharge	13		
4.0	Soil-Fill Characterization				
	4.1	Pre-excavation Sampling	14		
	4.2	Excavation Sampling	14		
5.0	Groundwater Characterization		15		
	5.1	Sampling	15		
6.0	Mon	Monitoring During Excavation, Well Installation, Remedial System Installation			
	and	and Future Development			
	6.1	Health and Safety Monitoring			
	6.2	Community Air Monitoring Plan (CAMP)	17		
	6.3	Soil/Fill/Groundwater Monitoring	19		
7.0	Management of Impacted Material				
	7.1	On-Site Re-Use of Excavated Materials	21		
	7.2	Off-Site Disposal of Excavated Materials	21		
	7.3	Off-Site Disposal of Impacted Water	22		
8.0	Monitoring After Excavation				
	8.1	Operations, Maintenance and Monitoring (OM&M) Plan	23		
	8.2	Post-Remediation Sampling Plan	23		
9.0	Flag	Flagging System			
	- 00 0 - 7				

Figures

Selected Drawings from Stantec February 1<u>5</u>4, 2008, Remedial Investigation Report as noted:

- Figure 1 Site Location Map
- Figure 4 Sample Location Map Remedial Investigations
- Figure 5 Groundwater Elevation Plan Overburden Wells 10/10/2007
- Figure 6 Groundwater Elevation Plan Overburden Wells 10/17-19/2007
- Figure 7 Groundwater Elevation Plan Bedrock Wells 10/10/2007
- Figure 8 Groundwater Elevation Plan Bedrock Wells 10/17-19/2007

Selected Drawings from Stantec December 2006, Final Engineering Report as noted:

- EN-6 Detail Sheet 1 (Trenching, well box piping, drainage connection, concrete sidewalk/driveway details)
- EN-7 Detail Sheet 2 (Exterior MPVE exhaust diagram, sub-slab depressurization fan installation detail, typical pipe sleeve detail, sub-slab depressurization system plan, exterior manifold enclosure detail)
- EN-8 Extraction well details

Selected Drawing from Stantec August 2008, Remedial Action Work Plan as noted:

- Figure 2 Proposed Extraction Piping
- Figure 3 Process Flow Diagram

<u>Tables</u>

Selected Tables from Stantec February 1<u>5</u>4, 2008, Remedial Investigation Report as noted:

- Table 4: Water level summary
- Table 5:Analytical Results Summary, Soil VOCs
- Table 6:
 Analytical Results Summary, Soil SVOCs
- Table 7:
 Analytical Results Summary, Soil PCBs and Pesticides
- Table 8: Analytical Results Summary, Soil Metals
- Table 9: Analytical Results Summary, Groundwater VOCs
- Table 10:
 Analytical Results Summary, Groundwater SVOCs
- Table 11: Analytical Results Summary, Groundwater PCBs and Pesticides
- Table 12:
 Analytical Results Summary, Groundwater Metals
- Table 13:
 Comparison of Previous Investigation and Remedial Investigation Analytical

 Results VOCs Detected in Groundwater

<u>Appendices</u>

- Appendix A Soil Boring Logs
- Appendix B Sewer Use Permit Information
- Appendix C Environmental Easement
- Appendix D Air Emission Analysis
- Appendix E ALTA Survey dated October 17, 2008, revised August 1, 2012

1.0 Introduction

1.1 Purpose

This Site Management Plan (SMP) has been developed at the request of Germanow-Simon Corporation (Germanow-Simon) and pertains to the 8-28 Ward Street Site (Site) located in the City of Rochester, Monroe County, New York (Figure 1). It has been developed to assist Germanow-Simon's contractors and designers in continuing the operation planning for the operation of the Multi-Phase Vacuum Extraction System (MPVE) (if deemed necessary) and any subsequent development work at the Site. It will accomplish this by describing the methods and procedures for monitoring, management and characterization of any materials and groundwater containing contaminants that may be encountered during subsurface activities at the Site.

New York State Department of Environmental Conservation (NYSDEC) regulates hazardous waste or non-hazardous solid waste as set forth in 6 NYCRR Parts 371-376 and 6 NYCRR Part 360. Proper management will require that care be taken in planning, monitoring and characterizing the waste soil/fill materials and water generated at the Site to confirm their hazardous or non-hazardous status and allow for proper off-site disposal in compliance with all applicable laws. Alternatively, with NYSDEC's prior approval, some of those wastes may be relocated and placed on-site.

This SMP provides guidance for planning and performing such monitoring, testing and management of excavated soil/fill materials or groundwater that may be encountered at the Site, whether returned to <u>the</u>excavation, placed elsewhere on-site or sent off-site for disposal in compliance with applicable law.

As required in the Engineering Certification, the Site Management Plan contains and/or refers to documents that identify use restrictions, institutional controls, engineering controls and and/or operation and maintenance requirements. The applicable use restriction, institutional controls, and engineering controls for the 8-28 Ward Street Site are discussed in Section 2, subsections A through E of the Environmental Easement contained in Appendix C.

1.2 Background

The Site, owned by Germanow-Simon, is a 1.2 acre parcel located at the corner of Ward Street and Emmett Street. The current and proposed future use of the Site is for commercial/industrial purposes. At present, the Site is occupied by an asphalt-paved parking lot. A narrow, unpaved strip with lawn and trees borders the east and south edges of the parking lot. Germanow-Simon and its affiliated companies currently employ approximately 85 individuals at its manufacturing facility located on the adjacent Ward Street Site. Germanow-Simon and its affiliated companies produce bimetal thermometers, plastic optics, and gauge and watch crystals.

Germanow-Simon factory buildings, located at 376-378 St. Paul Street, 388-392 St. Paul Street, and 19-23 Emmett Street, are located on adjacent property to the west and north of the Site. A parking lot, located at 398-402 St. Paul Street, is located to the northwest of the Site. Baseball and football playing fields for an elementary school are located across Emmett Street, at 455 North Clinton Avenue, opposite the northern corner of the Site. Residential townhouses are located at 405-433 North Clinton Avenue across Emmett Street to the east of the Site, and at 360 St. Paul Street across Ward Street south of the Site. To the southwest, at 360 St. Paul Street, is St. Simon's Terrace, a residential high rise building located at the corner of Ward Street and St. Paul Street. Further to the southwest beyond St. Paul Street is a city park overlooking the High Falls of the Genesee River gorge. The nearest residential buildings are located approximately 65 feet to the east of the Site across Emmett Street and south-southeast of the Site across Ward Street. The gorge of the Genesee River is located approximately 475 feet southwest of the Site across St. Paul Street.

The remedial investigation determined that impacted sub-surface soils requiring remedial measures are located in the area of MW-23 and MW-23R. The remedial investigation results indicate that the primary sources of contamination do not appear to be present on the Site. The data indicate that the on-Site contamination is more related to off-Site sources of contamination present to the north, south and west. The remedial investigation also suggests that an apparent off-Site source of contamination is present in the Ward Street right-of-way downgradient to the south of the Site, and that this source has resulted in low-level impacts along the south Site boundary. The remedial investigation findings suggest that the source of the contamination encountered at MW-23 and MW-23R is probably located at or in the immediate vicinity of MW-23 and MW-23R.

1.3 Completed Environmental Investigation, Remedial Actions and Pilot Tests

Several environmental investigations have been completed at the Site since 2000. After acquiring the Site, Germanow-Simon entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation on October 4, 2006.

Copies of reports documenting the activities and findings of previous environmental investigations conducted at the Site were appended to Stantec's May 2, 2006 Remedial Investigation Work Plan. In addition, Stantec's February 15, 2008 Remedial Investigation Report documents activities and findings of the most recent environmental investigation conducted at the Site.

A multi phase vacuum extraction (MPVE) system was designed and implemented for the adjacent Ward Street Site (Site #C828117, Index #B8-0566-99-10) as per the Alternative Analysis Report and Remedial Work Plan (AAR/RWP) dated July 17, 2006. The AAR/RWP -was approved by the Department in its August 31, 2006 letter following completion of the required 45-day public comment period, and presented in detail in the Department-approved Remedial Design Work Plan (RDWP) dated August 8, 2006. A Certificate of Completion was issued on December 22, 2006 for the Ward Street Site following submission and approval of a Final Engineering Report (FER).

The MPVE system was installed on the Ward Street Site in August, September and October 2006, and operation of the MPVE system commenced on October 6, 2006. Between October 13 and 17, 2008, monitoring wells MW-23 and MW-23R associated with the 8-28 Ward Street Site were converted to extraction wells and were connected to the MPVE. Note that because the rate of VOC removal had reached an asymptomatic condition and pursuant to NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been restarted since that time. The existing sub-slab depressurization system (SSDS) for the Building B Annex Area was turned on at the time the MPVE operation was suspended.

In November and December 2011 and November 2012, pursuant to NYSDEC approval, an enhanced reductive dechlorination polishing program was initiated to reduce residual contamination by VOCs in the subsurface. Monitoring of the effects of this polishing program is in progress.

Copies of select figures, summary tables of field screening, soil and groundwater analytical results, etc., from the remedial investigations conducted on the Site are attached to this SMP. Copies of the select soil boring logs for the Site are presented in Appendix A.

2.0 Development and Pre-Excavation Planning

2.1 Existing Information

<u>MPVE operation and decommissioning</u> The full-scale MPVE, as well as any future excavation and development activities, have the potential to disturb environmental media and fill materials at the Site which contain low levels of chlorinated volatile organic contaminants (VOCs) as a result of off-Site sources of contamination present to the north, south and west. The planning and design of the MPVE took into account, and any future excavation activities must take into account, the information from the previous investigations, documented subsurface contamination, and the intended location of proposed remediation construction/development. The NYSDEC-approved RDWP for the adjacent Ward Street Site to which a previously prepared SMP was appended already took into account these site-related considerations.

Future site development and excavation planning activities shall require prior approval by NYSDEC and the City of Rochester before proceeding. To this end, the Environmental Easement presented in Appendix C, which is acceptable to the NYSDEC has been recorded by Germanow-Simon, and the Site has been flagged by the City's Division of Environmental Quality in the City of Rochester Building Information System (BIS) in order to protect potential developers and establish proper management of construction activities prior to their commencement. This flagging provides an institutional control mechanism as required in the Engineering Certification. Further information regarding the BIS flagging system is provided in Section 8.0 of this report.

General Subsurface Conditions

Soils on the subject property are mapped in the Monroe County Soil Survey as Urban Land, which are areas that have been so altered or obscured by public works that identification of the soils is not feasible. These areas are commonly located in the older parts of the City of Rochester.

Based upon the subsurface investigations completed to date, the overburden soils beneath the Site include a few to several feet of inert fill material, which is composed of silt, sand and gravel with cinders and various building demolition debris, overlying upper and lower glacial till deposits. The 20 ft.-thick overburden sequence overlies dolomitic bedrock of the Upper Silurian Clinton Group. The uppermost bedrock unit is the Decew Dolostone which is comprised of a fine grained gray dolostone characterized by uneven, disturbed bedding features. The Decew is generally on the order of 6 to 16 feet thick in the Rochester area. The Decew is underlain by the Gates Dolostone Member of the Clinton Group Rochester Shale formation.

The Site has a layer of fill over the naturally deposited glacial tills. Fill thickness observed in test pit TP-101 and the new Site borings ranged from 1.8 to 4.7 ft. A layer of relatively low-density glacial till was found beneath the fill. The depth to the dense, lower till ranged from 10.0 to 14.0 ft. BGS. The depth to bedrock ranged between 19.5 ft. and 22 ft. BGS. These observations were consistent

with the conditions observed in previous investigations at the Site and on the adjacent Ward Street Site.

Groundwater

The near surface geology of the overburden and shallow bedrock provides for a shallow water table, low hydraulic conductivities, and low average linear velocities of groundwater flow.

Groundwater flow at the Site within the shallow water table zone is generally to the south towards Ward Street. Investigations along Ward Street during the previous Ward Street Site RI indicated that groundwater flow from the north side of Ward Street appeared to be directed toward the center of the street before flow proceeded southwesterly toward St. Paul Street. This pattern of flow indicated that underground utility features present below Ward Street (including sewer lines and/or pipe bedding) influenced local groundwater flow directions.

Figure 5 (from Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report) presents groundwater elevation data for overburden wells at the Site on October 10, 2007 when the MPVE system was in operation. As shown on Figure 5, two overburden groundwater capture zones related to operation of the Ward Street Site MPVE system extend onto the 8-28 Ward Street Site at its northwest and southwest corners.

A water-table contour plot based on the October 17-19, 2007 water level data, collected one week after the Ward Street Site MPVE system was shut down, is presented on Figure 6 (from Stantec's February 154, 2008 Remedial Investigation Report). The data indicate that in the absence of groundwater extraction activities, shallow groundwater generally flows in a southerly or southwesterly direction across the 8-28 Ward Street Site (Figure 6) towards Ward Street. The depths to groundwater in the overburden wells located on the 8-28 Ward Street Site ranged from 9.6 to 13.5 ft. BGS during the October 17-19, 2007 monitoring period. That range of water levels is consistent with previously reported water levels for the period prior to implementation of the MPVE remedial activities, and the October 17-19, 2007 water levels appear to be roughly representative of 'static' conditions.

Comparison of the groundwater elevation contours from prior to and after MPVE system shut-down indicates that the influence of the groundwater capture zones appears to extend east onto the 8-28 Ward Street Site as far as overburden wells MW-45, GQ2/MW-2 and GQ8/MW-5. Water levels at each of those three wells rebounded by approximately 1 foot after the system was shut down. At monitoring well GQ3/MW-3 in the southwest corner of the Site (west of MW-45), the water table is depressed below the bottom of the GQ3/MW-3 monitoring interval during MPVE operation.

The October 10, 2007 water level data for bedrock wells are presented in Table 4 (from Stantec's February 154, 2008 Remedial Investigation Report) and Figure 7 (from Stantec's February 154, 2008 Remedial Investigation Report). The data

indicate that during operation of the MPVE system, there is a 20-foot deep cone of depression in the bedrock groundwater potentiometric surface centered at the Ward Street Site extraction wells located to the southwest of the 8-28 Ward Street Site. Its influence is only marginal at -bedrock well MW-46R, located in the center of the 8-28 Ward Street Site, but the influence of the MPVE system does appear to extend to off-Site well MW-23R. The October 17-19, 2007 water level data, described below, indicate that the water level at MW-23R rebounded by approximately 2 feet after the MPVE system was shut down.

The October 17-19, 2007 water level data for bedrock wells are presented in Figure 8 (from Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report). The data indicate that under non-MPVE conditions there is a downward vertical flow gradient from the overburden to shallow bedrock at both the MW-23/23R and MW-46/46R well pairs, with a head difference of 0.8 ft. at both locations. The bottom of the overburden well monitoring interval is approximately 3 feet above the top of the bedrock well monitoring interval at both locations. The bedrock groundwater elevation contour plot indicates that bedrock groundwater flow under non-MPVE conditions is generally in a westerly direction towards the Genesee River Gorge (Figure 8) (from Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report).

Field Screening of Soils

During Stantec's February 1<u>5</u>4, 2008 Remedial Investigation, field screening of soil samples did not detect indications of significant contamination. Staining and odors were not noted in fill or native soil samples. Sample headspace testing with a PID did not detect organic vapors above background levels at most locations. Slightly elevated PID readings were noted at three borings:

- At test boring B-38, 21 to 56 ppm of organic vapors were recorded in the sample intervals from 2 4 ft. BGS and 4 6 ft. BGS, respectively. The base of the fill and top of the upper till soils were encountered at 4.7 ft. in this boring. Sample material from the 4 6 ft. interval was submitted for laboratory VOC analysis. However, VOCs were not detected. (Laboratory analytical results for soil samples are described below in Section 4.4.)
- At test boring B-39, 67 ppm of organic vapors were recorded in the 0 2 ft. BGS sample, which included parking lot sub-base material and various rock, gravel, and cinder fill. The 0 – 2 ft. sample was submitted for laboratory VOC analysis, but no VOCs were detected.
- At the MW-45 test boring, 18 and 16.5 ppm of organic vapors were recorded in the 4 – 6 ft. BGS and 8 – 10 ft. BGS samples from within and at the base of the upper till, respectively. Both samples were submitted for laboratory VOC analysis. Toluene was the only VOC detected, reported at concentrations of 1 and 2 ppb, respectively.

At test pit TP-101, sheet metal debris and a section of metal pipe were encountered in the fill. These are likely to have been the causes of indications of buried metal identified in the area by the March 2002 geophysical survey conducted for High Falls Brewing Company (refer to Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report for more information on the March 2002 geophysical survey).

Soil Analytical Data

The soil analytical results are summarized in the following Stantec tables:

Selected Tables from Stantec, February 1<u>5</u>4, 2008, Remedial Investigation Report as noted:

Table 5:Analytical Results Summary, Soil – VOCsTable 6:Analytical Results Summary, Soil – SVOCsTable 7:Analytical Results Summary, Soil – PCBs and PesticidesTable 8:Analytical Results Summary, Soil – Metals

Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report did not identify any on-Site soil contamination. As shown on Tables 5-8, no inorganics (metals), PCBs, pesticides, SVOCs, or VOCs were reported above the 6 NYCRR Part 375 Soil Cleanup Objectives (SCOs) for either commercial or industrial use. Furthermore, none were above the more protective "Protection of Groundwater" SCOs, with the exception of PCE in one sample. PCE was reported at a concentration of 9.9 ppm in the 12-14 ft. BGS sample from the off-Site test boring at MW-23R. The Protection of Groundwater SCO for PCE is 1.3 ppm. PCE had been reported at a similar concentration of 8.3 ppm in the 12-14 ft. BGS soil sample from the test boring at adjacent off-Site well MW-23 during the previous Ward Street Site investigation. The 12-14 ft. BGS sample interval corresponds to the depth at which the water table has been observed at MW-23.

Germanow-Simon anticipates that <u>through the use of</u> the MPVE system, <u>and with</u> <u>an enhanced reductive dechlorination polishing program, they</u> will attain soil and groundwater quality concentrations meeting the applicable NYSDEC standards, criteria and guidance values (SCGs) for the intended use of the Site. <u>During the</u> <u>implementation of the MPVE, and il</u>n the unlikely event that SCGs are not attained due to the complexities at the Site, persons conducting work at the Site must abide by the requirements of this SMP when excavating or otherwise disturbing fill, soil or groundwater in the following areas in which contaminants exceeding 6 NYCRR Part 375 Protection of Groundwater SCOs were identified.

Impacted sub-surface soils that require remedial measures are present off-Site at the locations of MW-23 and MW-23R. Soil containing PCE at concentrations above the Protection of Groundwater SCO is present at the locations of monitoring wells MW-23 and MW-23R. The contaminated soil samples were collected from a depth of 12 to 14 feet BGS, and the field screening data indicate that the soil contamination is limited in vertical extent to the water table horizon. No soil contamination was detected in on-Site borings located 40 to 55 feet to the north and northwest of the MW-23 and MW-23R locations. Germanow-Simon has been will be addressing the impacted these soils with the MPVE system and the enhanced reductive dechlorination polishing program.-

The total on-site quantity of soils that are impacted at levels greater than 6 NYCRR Part 375 Protection of Groundwater SCOs is estimated at 300 C.Y. or 500 tons.

Groundwater Analytical Data

The groundwater analytical results are summarized in the following Stantec tables:

Selected Tables from Stantec, February 1<u>5</u>4, 2008, Remedial Investigation Report as noted:

Table 9:	Analytical Results Summary, Groundwater - VOCs
Table 10:	Analytical Results Summary, Groundwater - SVOCs
Table 11:	Analytical Results Summary, Groundwater – PCBs and Pesticides
Table 12:	Analytical Results Summary, Groundwater – Metals
Table 13:	Comparison of Previous Investigation and Remedial Investigation
	Analytical Results – VOCs Detected in Groundwater

Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report identified trace to low levels of PCE, TCE, and cis-1,2-dichloroethene (cis-1,2-DCE) present in on-Site overburden groundwater on the west and south sides of the 8-28 Ward Street Site. The maximum on-Site total VOC concentration detected in Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report groundwater samples was 0.087 ppm at monitoring well MW-45, where the cis-1,2-DCE concentration exceeded the NYSDEC Ambient Water Quality Standard. VOC concentrations did not exceed NYSDEC standards in samples from other on-Site wells. At on-Site well MW-45, 0.087 ppm of cis-1,2-DCE was reported in the groundwater sample. Traces (less than 0.005 ppm) of PCE and/or TCE were also reported at on-Site wells GQ2/MW-2 and GQ4/MW-4, and 0.001 ppm of cis-1,2-DCE was reported in the sample from new on-Site well MW-47. Although GQ3/MW-3 was dry at the time of sampling (due to the effectiveness of the MPVE system implemented at the adjacent Ward Street Site), historically TCE had been detected in GW3/MW-3 at concentrations ranging from 0.016 ppm to 0.069 ppm.

As shown on Tables 10 and 11, no target SVOCs or PCBs were reported above detection limits, and no pesticides were reported above applicable New York State standards or guidance values. Reported concentrations of inorganics (metals) that represent potential Site contaminants were also not above applicable New York State standards or guidance values, as shown on Table 12. Table 13 presents a comparison of analytical results for VOCs detected in groundwater samples from the RI and previous investigations. As shown on Table 13, the VOC compounds identified and concentrations detected have been relatively consistent at the six wells which were installed during previous investigations (GQ1/MW-1 through GQ8/MW-5 and MW-23).

Chemical screening for groundwater involved comparison of detected concentrations in groundwater from wells on site and off site to the New York State Class GA potable groundwater standards in 6 NYCRRR Part 703 and the guidance values in Technical and Operational Guidance Series (TOGS) 1.1.1, NYSDEC, June 1998.

Off-site VOC impacts to overburden groundwater were associated with the Ward Street right-of-way south of the Site, in the location of MW-23 and MW-23R. Groundwater contamination by PCE and its degradation products TCE and cis-1,2-DCE is present in the overburden and shallow bedrock at off-Site monitoring wells MW-23 and MW-23R. As shown on Table 9, the chlorinated VOCs PCE, TCE and cis-1,2- DCE were reported in groundwater samples from off-Site wells MW-23 and MW-23R at concentrations ranging from 0.04 to 0.81 ppm. The volume of off-site overburden groundwater with total chlorinated VOC concentrations >100 μ g/L is estimated at more than 25,000 gallons (gal). The volume of on-site overburden groundwater with total chlorinated VOC concentrations >100 μ g/L is estimated at more than 25,000 gall.

Soil Vapor Analytical Data

On May 25, 2007, a total of 28 Emflux soil vapor survey canisters were installed in shallow small-diameter (3/4-inch) borings. The approximate soil vapor survey locations are depicted on Stantec's February 154, 2008 Remedial Investigation Report Figure 4. The soil vapor collectors were allowed to accumulate vapors for 7 days. The Multi-Phase Vacuum Extraction (MPVE) remedial system operating at the adjacent Ward Street Site was shut down for one week during deployment of the passive soil vapor collectors to minimize potential impacts to the collection of passive soil vapor data. The soil vapor collectors were retrieved on June 1, 2007. The soil vapor borings were subsequently backfilled with sand and sealed with asphalt cold patch. In addition to the field samples, one trip blank and one blind field duplicate were submitted for Quality Assurance/Quality Control (QA/QC) purposes. The 28 soil vapor collectors and QA/QC samples targeted chlorinated ethene VOCs, including PCE, trichloroethylene (TCE), cis-1,2-DCE, trans-1,2- dichloroethene, 1,1-dichloroethene and vinyl chloride (VC) using EPA Method 8260.

Of the six compounds that were analyzed, only PCE and TCE were detected. PCE and TCE are present at low levels in soil vapor in the area of the Site immediately to the east of MW-45 and northwest of SV-6/B-23/MW-23. Soil vapor contamination by PCE is present in the immediate vicinity of the MW-23 and MW-23R locations, but VOC concentrations in soil vapor drop off significantly at survey points located 25 feet to the west, north and east. The lower levels of soil vapor contamination detected do not extend laterally to the west, north or east more than 100 feet beyond the immediate vicinity of the MW-23 and MW-23R locations. A complete review of the passive soil gas surveys is presented in the Stantec's February 1<u>5</u>4, 2008 Remedial Investigation Report.

2.2 Construction/Design Considerations

Stantec's February 15, 2008 Remedial Investigation Report has shown that the contaminants present at the Site consist of chlorinated VOCs present in soil, soil vapor, and groundwater. Any waste material that is generated from excavation activities at the Site, including trenching or footer excavation for future development, must therefore be properly characterized and managed. The process can be simplified by pre-planning how the material will be handled during necessary excavation.

In order to properly characterize the waste material, soils and/or fill materials potentially containing contaminants will be screened and segregated into designated roll-offs. Segregation is intended to decrease the volume of waste material requiring handling and treatment as a solid or hazardous waste following characterization sampling and laboratory analysis.

If hazardous waste is generated as part of this remediation program, or during future site development or maintenance activities involving subsurface disturbance, this waste should not be replaced on the Site and must be properly characterized, managed and disposed of off site at a permitted facility in compliance with applicable law. Management of impacted materials is discussed in Section 7.0 of this SMP.

As this remediation project and future excavation projects progress, planning will need to consider that soil/fill management and waste characterization may affect the following construction elements:

- Schedules: Scheduling will need to allow for management of waste material that is generated during excavation. Should unanticipated materials or conditions be observed during excavation work, sampling may be required. Sampling will involve laboratory analysis, which typically takes from several days to several weeks to be completed. Therefore, construction schedules and design plans should allow for adequate flexibility for sampling, segregation, and temporary stockpiling of unanticipated materials on-site in roll-off containers in the parking lots to the east or north of Building B Annex.
- Subsurface Variability: Schedules should provide both contingency time and measures to address variability in subsurface conditions and the potential presence of groundwater. For example, if hazardous conditions are encountered, additional safety measures and use of personal protection gear will be required. Excavation dewatering and work stoppage could also affect construction schedules and costs.

Measures designed to address these situations are described in further detail in Sections 4.0, 5.0 and 6.0 of this SMP.

3.0 System Design Details

3.1 MPVE System Configuration

Two monitoring wells (MW-23 and MW-23R) have been converted to MPVE extraction wells at the Site. The locations of the monitoring wells are shown in Figure 2 of the August 2008 Remedial Action Work Plan. The MPVE vacuum pump unit, installed during the Ward Street MPVE system installation, is pre-fabricated, container-mounted, pre-piped, and pre-wired and contains the following major components which are schematically presented in Figure 3 of the August 2008 Remedial Action Work Plan:

- One 50 HP, 1300 ACFM (max) 875 ACFM @ 20"in Hg capacity beltdriven air-cooled rotary lobe vacuum pump;
- Steel and PVC piping;
- Steel, brass and PVC valves;
- 630 gallon system vessel with internally mounted high efficiency low maintenance oil/water separator and air stripper;
- Container heater and exhaust fan; and
- Aqueous phase 25 GPM Mono Progressive Cavity pump.

A second Treatment Unit container houses:

- Container heater and exhaust fan;
- Aqueous phase bag filters;
- 300-gallon water surge tank w/ float switch;
- Aqueous phase 10 GPM centrifugal pump (float switch-activated)
- Two parallel sets of two 170 lbs aqueous-phase GAC treatment vessels in series;
- Air-to-air heat exchanger to cool the vapor exhaust stream to approximately 110°F (off-line);
- Two 1,500 lbs vapor-phase GAC treatment vessels in series (off-line); and
- A 5HP centrifugal blower to reduce backpressure on the MPVE unit (offline).

Because the rate of VOC removal had reached an asymptomatic condition and pursuant to NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been restarted since that time.

3.2 Well head, piping configuration

The extraction wells are 2-inch inside diameter (ID) PVC screen with 0.010-inch slots to promote well efficiency and formation airflow.

The extraction wells are individually connected to a manifold system located in a heated enclosure constructed along the east wall of the Building B Annex, using 1.5-inch diameter HDPE (low friction) pipe for vacuum extraction and 0.5-inch diameter HDPE pipe for bleed air. The piping is attached to the wellheads and

drop tubes within flush-mounted 12-inch diameter steel road boxes. The wellhead and piping are installed in trenches to a depth of 48 to 60 inches in exterior locations. This depth protects against freezing weather. Where they can not be placed at sufficient depths, piping placed outdoors is heat traced and insulated to protect against freezing. Access to the drop tube, located between 48 and 60 inches from the surface within the well riser, is provided by means of a pitless adapter. This allows for removal of the drop tube for groundwater sampling using a removable threaded metal pipe. The drop tubes are set approximately 6 inches above the bottom of all extraction wells. A quick-connect adapter may be temporarily attached to the removable well caps to allow pressure measurements at the well head with a portable pressure gauge. Detailed drawings of extraction wells are shown in Stantec's December 2006 Final Engineering Report Drawing EN-8 for the Ward Street Site. The trenching detail is shown in Stantec's November 2006 Final Engineering Report Drawing EN-8 for the Ward Street Site.

One bedrock well (MW-23R) was installed on July 30-31, 2007, which was converted to an extraction well on October 15, 2008, along with one existing overburden well (MW-23).

Screened intervals were determined based on the extent of impacted soil across the soil profile. The layouts of the overburden and bedrock wells and associated piping are shown in Stantec's August 2008 Remedial Action Work Plan Drawing EN-2.

3.3 Manifold

The manifold is housed in an insulated, heated and secured enclosure designed specifically for the manifold. The individual extraction wells converge in one hole bored through the asphalt on the east side of the manifold, and feed directly into the manifold enclosure. The individual lines loop upwards to a 6-inch schedule 80 PVC piping header, where vacuum will be measured for each well. Vacuum measurements will also be made at each sub-manifold.

3.4 Sub-slab depressurization system

In order to minimize the potential for VOC soil vapor intrusion into any future buildings constructed at the Site, a sub-slab depressurization (SSD) system, appropriate to the future building design, should be installed. The design for the SSDS would need to be prepared and constructed in conjunction with the design and construction of any future buildings. Guidance for the design and installation of a SSDS is presented in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.

3.5 Sewer discharge

When the MPVE system was operating, tTreated aqueous effluent wasis discharged into a sewer line located in Building B Annex. A detailed layout of this connection is shown in Stantec's December 2006 Final Engineering Report Drawing EN-6. A sewer discharge permit was obtained from Monroe County Pure Waters to discharge the treated aqueous effluent. The Sewer Use Permit is included as Appendix B.

3.6 Air discharge

A permit from the NYSDEC to discharge treated vapors was not required pursuant to the terms of the BCA. However, a substantive review and approval by the NYSDEC of the anticipated air emissions and the proposed treatment plans was required.

An eight-inch exhaust stack runs horizontally from the MPVE trailer along Building B Annex until it reaches Building B, at which point it runs vertically straight up Building B. This stack rises 11 feet above the top of Building B for an approximate total stack height of 56 feet from ground surface. A detailed layout of the stack is shown in Stantec's December 2006 Final Engineering Report Drawing EN-7. An air emission analysis was performed to determine short term and annual air emission concentrations. This analysis is found in Appendix D.

As of spring 2008 and with NYSDEC approval, vapor treatment (vapor granular activated carbon) was taken offline.

4.0 Soil-Fill Characterization

4.1 Pre-excavation Sampling

Sufficient data are available at this time such that additional soil/fill sampling prior to excavation activities is unnecessary. In general, soil borings previously completed on the Site appear to provide sufficient coverage. During future excavation activities, visual observations and PID readings should be used to determine if soil/fill sampling is necessary to evaluate unanticipated conditions outside of previously identified areas of contamination.

4.2 Excavation Sampling

Sampling of excavated fill or subsurface materials encountered during construction efforts should be considered if either of the following conditions is encountered:

- If conditions during excavation are significantly different than those observed during previously completed soil investigations, including unusual odors, visual observations such as stained soils, drums, containers, etc.; or
- If concerns, such as gross contamination, sheens on water or free-product are identified within soil.

In these situations, sampling frequency and analyses would vary based on the types and quantities of material encountered and the anticipated use/disposal of removed materials. Analysis must adequately characterize materials in light of applicable NYSDEC guidance values (e.g., 6 NYCRR Part 375) and/or permitted disposal facility requirements, depending on intended destination of materials.

Typical waste disposal analyses are:

- Full Toxicity Characteristic Leaching Procedure (TCLP) VOCs,
- Full TCLP SVOCs,
- Ignitability,
- Reactivity,
- Modified Paint Filter Test, and
- pH.

5.0 Groundwater Characterization

5.1 Sampling

Sufficient data are available at this time such that additional groundwater sampling prior to or during excavation activities is unnecessary. The wellheads and piping were installed in trenches at depths of 48 to 60 inches in exterior areas exposed to freezing weather. Therefore, with these shallow depths below ground surface, groundwater was not encountered. Groundwater that is encountered during excavation in an impacted area will need to be run through the liquid phase GAC in the Treatment Unit prior to discharge to the sanitary sewer, or containerized, characterized and properly disposed of off Site. Monitoring wells have been installed on the subject property and provide sufficient coverage for the portion of the Site affected by the impacted groundwater plumes. If excavation activities are proposed outside of these areas and are expected to extend to the depth of the water table, pre-excavation sampling may be recommended. In such cases, pre-excavation sampling frequency and analyses would vary based on the location of proposed work in relation to the characterized areas and on the anticipated quantity and handling of groundwater (see also Appendix B, Sewer Use Permit Information).

Surface water and rainwater should be prevented from reaching excavations; and excavations need to be covered if there is the possibility of such an occurrence.

6.0 Monitoring During Excavation, Well Installation, Remedial System Installation and Future Development

Monitoring of materials encountered during excavation activities, well installation, remedial system installation and future development is generally needed for three purposes:

- To protect the health and safety of Site workers during intrusive activities;
- To determine that soil/fill materials and groundwater are consistent with preexcavation characterization; and
- To determine whether the materials need to be characterized for handling and disposal where no pre-excavation characterization was performed.

6.1 Health and Safety Monitoring

Past investigations have shown that impacted materials will be encountered during construction activities in portions of the Site. Based on the historical uses of the Site, hazardous materials may potentially be encountered.

Generally, VOCs are associated with the soil/fill and are considered as potentially hazardous materials subject to health and safety planning.

VOCs are also associated with the groundwater and are considered potentially hazardous materials subject to health and safety planning.

Health and safety planning should also give consideration to other constructionrelated issues, such as use of heavy equipment, noise, odor, weather conditions, confined space entry, excavation safety and other construction-related OSHA regulations.

Health and safety planning should be performed prior to excavation and other activities which disturb the surface of the Site. This should include the preparation of a written Health and Safety Plan (HASP) for excavation activities. The HASP would be based on the results of the previous chemical analyses, information specific to the proposed remediation activities, specific excavation tasks to be completed and the potential for exposure of Site workers to the Site contaminants.

Workers on site performing or supervising earthwork activities, well installation and system installation and operations should be OSHA 1910.120 certified to perform work on a hazardous waste site. Previous investigations show that while the potential for worker exposure exists, it is relatively low. However, all contractors, developers and owner representatives involved in earthwork activities, well installation and system installation should consider the need for health and safety planning relative to their specific tasks and planned activities.

6.2 Community Air Monitoring Plan (CAMP)

PCE and TCE are the primary volatile organic compounds of concern that are present, or are potentially present, in the soil and groundwater at the Site. Volatilization of these compounds through disturbance of soils and/or groundwater could result in releases to the ambient air creating possible nuisance or exposure risks to the neighborhood.

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The CAMP presented below is identical to the New York State Department of Health (NYSDOH) generic CAMP presented in Appendix 1A of NYSDEC's Draft DER-10 Technical Guidance for Site Investigation and Remediation (December 25, 2002). Should site conditions change in the future, specific requirements for community air monitoring at the 8-28 Ward Street Site should be reviewed in consultation with NYSDOH to ensure proper applicability. For example, depending upon the nature of contamination, chemical-specific monitoring with appropriately-sensitive methods may be required. Or, depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements would be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, realtime air monitoring for volatile organic compounds (VOCs) and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate NYSDEC/NYSDOH staff. **Continuous monitoring** will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

All 15-minute readings must be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m3 above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m3 above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m3 of the upwind level and in preventing visible dust migration.

All readings must be recorded and be available for State (DEC and DOH) personnel to review.

6.3 Soil/Fill/Groundwater Monitoring

Monitoring of soil and fill materials that are excavated and groundwater that is pumped during construction should be performed for two reasons:

- To determine that the material encountered during excavation is consistent with the material encountered during previous investigations; and
- To allow characterization of the non-hazardous or hazardous nature of material encountered in the event that no previous investigation results are available for a specific area.

Monitoring should generally consist of documentation of visible characteristics of the soil, fill and groundwater encountered, including obvious staining, sheens, odors, or other indicators of contamination such as solvents, oils, tars or containers. It is recommended that construction monitoring be conducted by a

trained individual, such as an environmental engineer, scientist, or geologist during all earthwork activities, well installation, system installation and future development.

Several portable monitoring instruments are available to assist in field monitoring of materials. Such instruments are primarily used for detection of VOCs or dust and particulates. Since volatile organics (VOCs) have been detected in the past at the Site, this type of instrumentation is appropriate for construction excavation monitoring. Types of instruments available for this purpose include:

- Photoionization detector instruments (PID) these instruments operate by pumping a sample of ambient air into a chamber where the air is ionized using a light source of specific energy (either 10.2, 10.6, or 11.7 eV). Such instruments are manufactured by HNu and Microtip.
- Flame ionization detector instruments (FID) these instruments operate on a similar principle as the PIDs; however, ionization is caused by a flame produced by combusting hydrogen. The OVA manufactured by Foxboro is such an instrument.
- Combustible gas meters/gas monitors these instruments are capable of measuring combustible gases, such as methane and hydrogen sulfide, and would be used during construction activities if large amounts of organic materials such as railroad timbers or peat are encountered. However, it is not expected that large amounts of organic matter will be found.
- Dust/Particulate Meters these instruments are capable of measuring dust and particulates in ambient air. An example of an aerosol monitor is the MIE PDE-1000.

These types of instruments are readily available in the Rochester area and can be rented or purchased from several sources. However, these instruments should be operated by individuals trained and experienced in their use, limitations and capability for data generation. Readings generated from monitoring instruments should be recorded in the field along with visual observations.

7.0 Management of Impacted Material

7.1 On-Site Re-Use of Excavated Materials

It is recommended that non-hazardous excavated material be re-used onsite and covered with either clean soil or an impervious surface.

7.2 Off-Site Disposal of Excavated Materials

Fill material at the Site has been visually observed to contain solid waste (i.e. glass, cinders). As a result, fill material that is excavated will need to be handled as a solid waste for off-site disposal purposes. This will involve the characterization of the fill material to determine if it is a hazardous waste or if it should be disposed of as a solid waste at a permitted disposal facility. Such testing is typically performed to fulfill the disposal facility requirements and could include Toxicity Characteristic Leaching Procedure (TCLP) VOCs, SVOCS, and metals, PCBs, pesticides, herbicides, flashpoint, corrosivity and paint filter test.

Any fill materials that are proposed to be sent off-site to a non-permitted disposal facility would need to be sampled pursuant to a Department approved sampling plan and would need to meet the Unrestricted Use contaminant levels set forth in 6NYCRR Part 375-6.8(a).

Prior to off-site disposal of removed VOC impacted material (non-fill), waste characterization sampling should be performed to determine if the stockpiled material should be disposed off_-site as non-hazardous solid waste, or hazardous waste with or without treatment. A composite sample should be collected in accordance with the disposal facility requirements (e.g., 1 sample per 500 tons). Each composite sample should be submitted for laboratory analysis in accordance with the disposal facility requirements (e.g., TCL VOCs by EPA Test Method 8260 and TCLP VOCs by EPA Test Method 1311/8260).

Management of materials that will be disposed offsite will need to include characterization (sampling and laboratory analysis as required by the chosen landfill), management, off-site transportation and disposal at an approved landfill. Appropriate measures for management of excavated materials will need to include temporarily stockpiling excavated soils and solids, as well as measures to prevent them from contaminating other materials or migrating off site. Measures that should be incorporated into such plans include:

- Stockpile locations should be away from storm sewers, downwind property boundaries, and drainage courses;
- Dust suppression techniques should be used as necessary;
- Placement of stockpiles of soils, fill or hazardous materials containing contaminants (e.g. drums, containers, odiferous fill) should be in lined roll-offs with perimeter berms;
- Stockpiles of contaminated soils, fill, or hazardous materials (e.g. drums, containers, odiferous fill) should be covered with weighted down poly at the end of each day of placement to prevent migration by wind-blown dust or stormwater runoff until final placement is established; and

• Lined and covered roll-off containers should be used for material that will be disposed of off-site.

7.3 Off-Site Disposal of Impacted Water

Management of water will include characterization (sampling and laboratory analysis as required by the Monroe County Department of Environmental Services (MCDES) – Division of Pure Waters (DPW)), management, pumping to the Monroe County sewer system (if permitted), and identification of and conformance to the restriction on the use of groundwater. The prior approval of the NYSDEC must be obtained before the groundwater underlying the Controlled Property may be used for any purpose. Appropriate measures for management of water will need to include temporary containerization and measures to prevent water from contaminating other materials or migrating off-site. Measures that should be incorporated into such plans include:

- Containerize water prior to pumping off-site;
- Stage containers away from downwind property boundaries and drainage sources;
- Pump water directly into containers;
- Perform necessary sampling prior to disposal;
- Coordinate with MCDES-DPW to receive permission for disposal;
- Use granular activated carbon (GAC) to treat groundwater (if appropriate); and
- Do not use groundwater, either as potable water or in manufacturing processes.

The sewer use permit information is included in Appendix B.

If groundwater is pumped at the Site, a temporary sewer use permit is required for sewer disposal from MCDES-DPW. The required information to be supplied to the MCDES-DPW is included in Appendix B.

8.0 Monitoring After Excavation

Monitoring after excavation activities are completed is generally needed for three purposes:

- To continue protection of the health and safety of Site workers and anyone else potentially affected by the remedial measures taken by checking for malfunctions of remedial systems still in place;
- To ensure remedial measures are working; and
- To determine when system shutdown and/or site closure can occur.

8.1 Operations, Maintenance and Monitoring (OM&M) Plan

A site-specific plan is needed to ensure that post-excavation monitoring is completed properly. Stantec has prepared an Operations, Maintenance & Monitoring (OM&M) Plan for monitoring of the remedial measures put in place at the Site. The OM&M Plan is a modified version of Stantec's OM&M Plan for the adjacent Ward Street Site and is included in the Final Engineering Report for the 8-28 Ward Street Site.

8.2 Post-Remediation Sampling Plan

A site-specific post-remediation sampling plan is needed to demonstrate that the contaminants of concern are at or below the remedial action objectives. The cleanup equipment will remain in place until closure sampling has been completed and approval from the Department has been obtained. The final sampling event will consist of a limited number of borings for confirmatory sampling (one to two). The locations of soil samples will be proposed to the Department for review and approval prior to collection.

9.0 Flagging System

An Environmental Easement has been established in conjunction with this Site Management Plan for the Site's soil and groundwater. In addition, the City of Rochester has "flagged" the parcels that comprise the Site, and they will be subject to a special environmental review prior to issuance of a permit. A special notation has been added to the City's mainframe computer database of property information for the following tax account numbers:

The City of Rochester has established a procedure for "flagging" the tax account numbers of properties that require special environmental reviews as a result of hazardous waste or hazardous substance contamination. The reviews are conducted as referrals to the City's Division of Environmental Quality (DEQ) for any permit applications for properties where soil management plans or environmental contingency plans need to be established and followed during construction activities.

Tax ID #	Address	Zoning	Use
106.630-01- 016	8-28 Ward Street	M1 (Industrial District)	Parking Lot

The notation appears as a "flag" to City staff that receive future building and site preparation permit applications. The flag will require a referral to the City's DEQ before the application can be processed for approval. DEQ staff will review the permit application for consistency with the Site Management Plan, limited-use areas and land-use restrictions. A notification to the NYSDEC will be included at the time the permit is reviewed given the scope of the proposed work.

Consistent with the SMP, the Environmental Easement as set forth in Appendix C below, stipulates the following:

 The Controlled Property may be used for restricted <u>commercial or industrial</u> use as long as the following long-term engineering controls are employed:

i) A multi-phase vacuum extraction system ("MPVE") will be operated beneath on-site and beneath off-site within the right-of-way for Ward Street as depicted in ALTA Survey dated October 17, 2008 (Appendix E), until the remedial requirements are achieved to the satisfaction of the Department;

ii) the groundwater beneath the Controlled Property may not be used for potable or nonpotable purposes;

iii) the Site Management Plan (SMP), dated November 2008, must be implemented for the Controlled Property;

iv) soils at the Controlled Property shall be managed in accordance with the SMP, dated November 2008; The SMP includes requirements for the characterization, handling, and

disposal/re-use of residual contaminated media (e.g., soil, fill, groundwater) and requirements for soils imported to the site;

v) the existing surface and near surface soil, asphalt-paved surfaces, concrete-paved surfaces, and the building itself, as depicted in ALTA Survey dated October 17, 2008, act as a cover system at the Controlled Property. Disturbances and incidental damage to this cover system shall be repaired upon discovery with cover materials approved by the NYSDEC and the NYSDOH;

vi) the potential for vapor intrusion for any new buildings developed on the Controlled Property must be evaluated and mitigation shall be implemented, if needed, prior to occupancy. If a vapor mitigation system is required, it shall be operated and maintained until such time NYSDEC deems it is no longer needed;

vii) Grantor shall provide all persons who acquire any interest in the Controlled Property a true and complete copy of the Site Management Plan dated November 2008, that the Department has approved for the Controlled Property and all Department-approved amendments to the Site Management Plan.

The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved Site Management Plan, dated November 2008 ("SMP"). The SMP describes obligations that Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The Department may change the SMP for the Controlled Property from time to time on the basis of requests or information submitted by Grantor, and modifications in applicable statutes regulations, guidance or site conditions. The Department reserves a unilateral right to modify the SMP. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to date version of the SMP from:

Regional Remediation Engineer	or	Site Control Section
Region 8		Div. of Environmental Remediation
NYS DEC		NYS DEC
6274 East Avon-Lima Road		625 Broadway
Avon, New York 14414		Albany, NY 12233

- The Controlled Property may not be used for a higher level of use such as <u>unrestricted</u> <u>or restricted residential</u> use and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- Grantor covenants and agrees that until such time as the Environmental Easement is
 extinguished in accordance with the requirements of Article 71, Title 36 of the ECL, the
 property deed and all subsequent instruments of conveyance relating to the Controlled
 Property shall state in at least fifteen-point bold-faced type:

This property is subject to an environmental easement held by the New York State Department of Environmental Conservation pursuant of Title 36 to Article 71 of the Environmental Conservation Law.

- Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury that the controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls employed at the Controlled Property were approved by the NYSDEC, and that nothing has occurred that would impair the ability of such control to protect the public health and environment or constitute a violation or failure to comply with any Site Management Plan for such controls and giving access to such Controlled Property to evaluate continued maintenance of such controls.

Please note that since the Environmental Easement was issued, the rate of VOC removal by the MPVE system had reached asymptomatic conditions and pursuant to NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been restarted since that time. The existing sub-slab depressurization system (SSDS) for the Building B Annex Area was turned on at the time the MPVE operation was suspended.

<u>Please note that an updated ALTA Survey dated August 1, 2012 was prepared and issued at the request of the NYSDEC, which integrates the 8-28 Ward Street Site with the Ward Street Site (see Appendix E).</u>

Figures

Feet

Stantec www.stantec.com Copyright 2007

Remedial Investigation Report 8-28 Ward Street Site Rochester, NY

Note: Items in bold are modifications proposed to the MPVE system to include the 8-28 Ward Street Site.

Stantec Consulting 2250 Brighton Henrietta Townline Road Rochester, NY 14623 Phone 585.475.1440 Fax 585.424.5951 www.stantec.com Copyright 2007

Remedial Action Wor 8-28 Ward Stre

 $\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$

Tables

TABLE 4 WATER LEVEL SUMMARY REMEDIAL INVESTIGATION 8-28 WARD STREET ROCHESTER, NEW YORK

Well	Reference	4/11/2	2007	7/10/2	2007	8/24/2	2007	10/10/	2007	10/17/2007, 10/18/07	
	Elevation (ft AMSL)	ft BTOC	Elev.	ft BTOC	Elev.						
MW-23	507.29	10.08	497.21	11.98	495.31	NM	-	12.79	494.50	12.58	494.71
MW-23R	507.27	NM	-	NM	-	13.18	494.09	15.12	492.15	13.03	494.24
MW-45	506.96	NM	-	NM	-	13.51	493.45	13.26	493.70	12.36	494.60
MW-46	506.38	NM	-	NM	-	11.65	494.73	11.85	494.53	11.38	495.00
MW-46R	506.26	NM	-	NM	-	11.72	494.54	12.29	493.97	12.06	494.20
MW-47	506.29	NM	-	NM	-	11.07	495.22	11.38	494.91	11.23	495.06
GQ1/MW1	505.72	NM	-	NM	-	NM	-	NM	-	9.62	496.10
GQ2/MW2	507.58	9.29	498.29	12.63	494.95	NM	-	13.43	494.15	12.43	495.15
GQ3/MW3	507.35	Dry	-	Dry	-	NM	-	Dry	-	13.54	493.81
GQ4/MW4	506.44	NM	-	NM	-	NM	-	11.75	494.69	11.58	494.86
GQ8/MW5	506.83	8.56	498.27	11.29	495.54	NM	-	11.94	494.89	10.77	496.06

Notes:

1. ft. BTOC = feet below

2. NM = Not measured.

3. (-) = No data.

Stantec

TABLE 5 ANALYTICAL RESULTS SUMMARY SOIL - VOCs REMEDIAL INVESTIGATION, 8-28 WARD STREET, ROCHESTER, NEW YORK

Sample Location				B35	B36	B37	B38	B39	B40	MW23R	MW	45	MW46	MW47
Sample Date				1-Aug-07	1-Aug-07	1-Aug-07	2-Aug-07	2-Aug-07	2-Aug-07	30-Jul-07	2-Aug-07	2-Aug-07	1-Aug-07	1-Aug-07
Sample ID		6NYCRR Part 375 Re	stricted-Use Soil	828-B35-S(12-14)	828-B36-S(4-6)	828-B37-S(0-4)	828-B38-S(4-6)	828-B39-S(0-2)	828-B40-S(8-10)	828-MW23R-S (12-14)	828-MW45-S(4-6)	828-XX-S-DUP	828-MW46-S(12-14)	828-MW47-S(6-8)
Sample Depth		Cleanup Ob	jectives	12 - 14 ft	4 - 6 ft	0 - 4 ft	4 - 6 ft	0 - 2 ft	8 - 10 ft	8 - 10 ft	4 - 6 ft	8 - 10 ft	12 - 14 ft	6 - 8 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory		Destantion of Dublis		STLAM	STLAM	STLAM	STLAM	STLAM	STLAM	STLAM	STLAM	STLAM	STLAM	STLAM
Laboratory Work Order		Protection of Public		A078555	A078555	A078555	A078555	A078555	A078555	A078555	A078555	A078555	A078555	A078555
Laboratory Sample ID		(A) and Industrial (B)	Protection of	A7875604	A7875603	A7875605	A7875607	A7875608	A7875609	A7855501	A7875613	A7875610	A7875611	A7875612
Sample Type	Units	Sites	Groundwater									Field Duplicate		
Volatile Organic Compounds	•	0.000	e.eu.u.u.u.									riola 2 apricato		
			50		10.11		40.11	40.11	40.11	1000.11	44.11	44.11	40.11	
Acetone	µg/ĸg	500000c ⁻¹ 1000000d ⁻	50	11 U	12 0	110	10 0	10 0	10 0	1300 0	11 U	11 U	10 U	110
Benzene	µg/ĸg	44000 89000	60	11 U	12 0	110	10 0	10 0	10 0	1300 0	11 U	11 U	10 0	110
Bromodichloromethane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Bromoform	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Bromomethane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Carbon Disulfide	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Carbon Tetrachloride (Tetrachloromethane)	µg/kg	22000 ^A 44000 ^B	760	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Chlorinated Fluorocarbon (Freon 113)	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Chlorobenzene (Monochlorobenzene)	µg/kg	500000 ^A 1000000 ^B	1100	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Chloroethane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Chloroform	µg/kg	350000 ^A 700000 ^B	370	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Chloromethane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Cyclohexane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dibromo-3-Chloropropane (DBCP), 1,2-	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dibromochloromethane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichlorobenzene, 1,2-	µg/kg	500000c ^A 1000000d ^B	1100	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichlorobenzene, 1,3-	µg/kg	280000 ^A 560000 ^B	2400	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichlorobenzene, 1,4-	µg/kg	130000 ^A 250000 ^B	1800	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichlorodifluoromethane	µq/kq	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloroethane, 1.1-	ua/ka	240000 ^A 480000 ^B	270	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloroethane, 1.2-	ua/ka	30000 ^A 60000 ^B	20	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloroethylene, 1.1-	ua/ka	500000- ^A 1000000- ^B	330	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloroethylene, cis-1.2-	ua/ka	500000 ^A 1000000 ^B	250	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloroethylene trans-1 2-	ua/ka	500000 ^A 1000000 ^B	190	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloropropane 1.2-	ua/ka	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloropropene, cis-1.3-	ua/ka	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Dichloropropene, trans-1 3-	ug/kg	n/v	n/v	11 11	12 1	11 11	10 U	10 U	10 11	1300 U	11 11	11 11	10 11	11 11
Ethylbenzene	ug/kg	300000 ^A 780000 ^B	1000	11 11	12 1	11 11	10 U	10 U	10 11	1300 11	11 11	11 11	10 11	11 11
Ethylene Dibromide (Dibromoethane, 1.2-)	ug/kg	550000 760000 n/v	n/v	11 11	12 0	11 11	10 U	10 0	10 U	1300 U	11 0	11 11	10 0	11 11
Hexanone 2-	µg/kg	n/v	n/v	11 U	12 0	1111	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 11
	µg/kg	n/v	n/v	11 U	12 0	1111	10 U	10 U	10 U	1200 U	11 U	11 U	10 U	11 11
Mothyl Apotato	µg/kg	n/v	n/v	11 U	12 0	11 11	10 U	10.0	10 U	1200 U	11 U	11 U	10 U	11 11
Methyl Ethyl Ketone (MEK)	µg/kg	TI/V	100	11 U	12 0	11.0	10 0	10.0	10 U	1200 U	11 U	11.0	10 0	11.0
	µg/kg	500000 _c 1000000 _d	120	110	12 0	110	10 0	10 0	10 0	1300 0	110	110	10 0	110
Methyl Isobutyl Ketone (MIBK)	µg/kg		n/v	110	12 0	110	10 0	10 0	10 0	1300 0	11 U	110	10 0	110
	µg/ĸg	500000 _c 100000 _d	930	110	12 0	110	10.0	10 0	10 0	1300 0	110	110	10.0	110
Methylcylonexane	µg/ĸg	n/v	n/v	11 0	12 0	110	10 0	10 0	10 0	1300 0	11 U	11 0	10 U	110
Methylene Chloride (Dichloromethane)	µg/kg	500000c 1000000d	50	19 U	20 U	170	23 0	12 0	19 U	1300 0	24 U	22 0	22 0	12 0
Styrene	µg/kg	n/v	n/v	20 0	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Tetrachloroethane, 1,1,2,2-	µg/kg	n/v	n/v	17 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Tetrachloroethylene	µg/kg	150000 th 300000 ^B	1300	23 U	12 U	11 U	10 U	10 U	10 U	9900^	11 U	11 U	10 U	11 U
loluene	µg/kg	500000 [°] 1000000 ^B	700	12 U	12 U	11 U	10 U	10 U	10 U	1300 U	2 J	1 J	1 J	11 U
Trichlorobenzene, 1,2,4-	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U J	11 U	11 U	10 U	11 U
Trichloroethane, 1,1,1-	µg/kg	500000c ^A 1000000d ^B	680	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Trichloroethane, 1,1,2-	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Trichloroethylene	µg/kg	200000 ^A 400000 ^B	470	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Trichlorofluoromethane	µg/kg	n/v	n/v	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Vinyl chloride	µg/kg	13000 ^A 27000 ^B	20	11 U	12 U	11 U	10 U	10 U	10 U	1300 U	11 U	11 U	10 U	11 U
Xylenes, Total	µg/kg	500000 ^A 1000000 ^B	1600	33 U	34 U	34 U	31 U	31 U	31 U	4000 U	34 U	34 U	32 U	34 U

Notes: 6.5^A Concentration exceeds the indicated criteria.

2.5 Concentration is detected but does not exceed any of the criteria.

0.50 U Laboratory estimated quantitation limit exceeded criteria.

0.03 U The analyte was not detected above the laboratory estimated quantation limit and does not exceed any of the criteria.

c The SCOs for commercial use were capped at a maximum value of 500 mg/kg.

See 6 NYCRR Part 375 Technical Support Document section 9.3.

- $_{\rm d}$ $\,$ $\,$ The SCOs for industrial use and the protection of groundwater were capped at
- a maximum value of 1000 mg/kg. See Technical Support Document section 9.3.
- J Indicates an estimated value.
 - n/v No criteria/guideline value.

Stantec

TABLE 6 ANALYTICAL RESULTS SUMMARY, SOIL - SVOCs REMEDIAL INVESTIGATION, 8-28 WARD STREET, ROCHESTER, NEW YORK

Sample Location				MW4	5	MW46	MW47
Sample Date				2-Aug-07	2-Aug-07	1-Aug-07	1-Aug-07
Sample ID		6NYCRR Part 375 Res	stricted-Use Soil	828-MW45-S(8-10)	828-XX-S-DUP	828-MW46-S(14-16)	828-MW47-S(8-10)
Sample Depth		Cleanup Obj	ectives	8 - 10 ft	8 - 10 ft	14 - 16 ft	8 - 10 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC
Laboratory		Protection of Public		STLAM	STLAM	STLAM	STLAM
Laboratory Work Order		Health at Commercial	Drotostion of	AU78555 A7875606	AU78555 A7875610	AU78555 A7875601	AU78555 A7875602
Sample Type	Units	(A) and industrial (B) Sites	Groundwater	A1013000	Field Duplicate	A1013001	A1013002
Comi Malatila Ornania Ornana							
Semi - Volatile Organic Compou	inas "	,	,	000.11	070.11	000.11	000.11
2,2-oxybis(1-Chloropropane)	µg/kg	n/v	n/v	360 U	370 U 270 U	360 U	360 U
Acenaphthene	µg/kg ua/ka	500000 _c 1000000 _d	107000	360 U	370 U	360 U	к 360 U
Acetophenone	µg/kg	n/v	n/v	730 U	740 U	720 U	710 U
Anthracene	µg/kg	500000 _c ^A 1000000 _d ^B	1000000 _d	360 U	370 U	360 U	360 U
Atrazine	µg/kg	n/v	n/v	730 U	740 U	720 U	710 U
Benzaldehyde	µg/kg	n/v	n/v	730 U J	740 U J	720 U J	710 U J
Benzo(a)anthracene	µg/kg	5600 ^A 11000 ^B	1000	360 U	370 U	360 U	360 U
Benzo(a)pyrene Bonzo(b)fluoranthono	µg/kg	$1000_{g}^{-1} 1100^{-1}$	22000	360 U 360 U	370 U	360 U	360 U 360 U
Benzo(g,h,i)pervlene	µg/kg ua/ka	500000 ^A 1000000 ^B	100000	360 U	370 U	360 U	360 U
Benzo(k)fluoranthene	µg/kg	56000 ^A 110000 ^B	1700	360 U	370 U	360 U	360 U
Benzyl Butyl Phthalate	µg/kg	n/v	n/v	360 U	370 U	10 J	360 U
Biphenyl, 1,1'- (Biphenyl)	µg/kg	n/v	n/v	730 U	740 U	720 U	710 U
bis(2-Chloroethoxy)methane	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Bis(2-Chloroethyl)ether	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Bis(2-Ethylnexyl)phthalate	µg/kg	n/v	n/v	360 U	370 U	360 U 260 U	360 U
Caprolactam	µg/kg ua/ka	n/v	n/v	730 11.1	740 [].]	720 [1.]	710 [].]
Carbazole	ua/ka	n/v	n/v	360 U	370 U	360 U	360 U
Chloro-3-methyl phenol, 4-	µg/kg	n/v	n/v	360 U	370 U	360 U	R
Chloronaphthalene, 2-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Chlorophenol, 2-	µg/kg	n/v	n/v	360 U	370 U	360 U	R
Chlorophenyl Phenyl Ether, 4-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Chrysene	µg/kg	56000 ^A 110000 ^B	1000	360 U	370 U	360 U	360 U
Cresol, o- (Methylphenol, 2-)	µg/kg	500000 _c ^A 1000000 _d ^B	330	360 U	370 U 270 U	360 U	360 U
Dibenzo(a h)anthracene	µg/kg ua/ka	500000 _c 1000000 _d	100000a	360 U	370 U	360 U	360 U
Dibenzofuran	µg/kg µa/ka	350000 ^A 1000000 ^B	210000	360 U	370 U	360 U	360 U
Dichlorobenzidine, 3,3'-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Dichlorophenol, 2,4-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Diethyl Phthalate	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Dimethyl Phthalate	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Dimethylphenol, 2,4-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Di-II-Bulyi Phinalate	µg/kg ug/kg	n/v	n/v	360 U 920 U	92011	360 U 910 U	360 U 900 I I
Dinitrophenol, 2.4-	µg/kg µa/ka	n/v	n/v	920 U	920 U	910 U	900 U
Dinitrotoluene, 2,4-	µg/kg	n/v	n/v	360 U	370 U	360 U	R
Dinitrotoluene, 2,6-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Di-n-Octyl phthalate	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Fluoranthene	µg/kg	500000 _c ^A 1000000 _d ^B	1000000 _d	14 J	370 U	360 U	360 U
Fluorene	µg/kg	500000 _c ^A 1000000 _d ^B	386000	360 U	370 U	360 U	360 U
Hexachlorobutadiene	µg/kg ug/kg	6000 ⁺ 12000 ⁻	n/v	360 U 360 U	370 U	360 U	360 U
Hexachlorocyclopentadiene	ua/ka	n/v	n/v	360 U	370 U	360 U	360 U
Hexachloroethane	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Indeno(1,2,3-cd)pyrene	µg/kg	5600 ^A 11000 ^B	8200	360 U	370 U	360 U	360 U
Isophorone	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Methylnaphthalene, 2-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Naphthalene	µg/kg	500000 ^A 1000000 ^B	12000	360 U	370 U	360 U	360 U
Nitroaniline, 2-	µg/kg	n/v	n/v	920 U	920 U	910 U 910 U	900 U
Nitroaniline 4-	µg/kg ua/ka	n/v	n/v	920 U 920 U	920 U 920 U	910 U 910 U	900 U
Nitrobenzene	µg/kg µa/ka	n/v	n/v	360 U	370 U	360 U	360 U
Nitrophenol, 2-	μg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Nitrophenol, 4-	µg/kg	n/v	n/v	920 U	920 U	910 U	R
N-Nitrosodi-n-Propylamine	µg/kg	n/v	n/v	360 U	370 U	360 U	R
n-Nitrosodiphenylamine	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
p-Chloroaniline	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U
Phenanthrene	µg/kg	6700° 55000° 500000 ^A 1000000 ^B		920 U 13 I	920 U 370 U	910 U 360 U	K 360 I I
Phenol	µy/ky µa/ka	500000 _c 1000000 _d	330	360 U	370 U	10 J	800 U
Pyrene	µg/ka	500000 ^A 1000000 ^B	1000000 _d	12 J	370 U	360 U	R
Trichlorophenol, 2,4,5-	µg/kg	n/v	n/v	920 U	920 U	910 U	900 U
Trichlorophenol, 2,4,6-	µg/kg	n/v	n/v	360 U	370 U	360 U	360 U

Notes: 2.5 Concentration is detected but does not exceed any of the criteria.

0.03 U The analyte was not detected above the laboratory estimated quantation limit and does not exceed any of the criteria.

- n/v No criteria/guideline value.
- Parameter not analyzed / not available.
- c The SCOs for commercial use were capped at a maximum value of 500 mg/kg.
- d The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg.
- g For constituents where the calculated SCO was lower than the rural soil background concentration, the rural soil background concentration is used as the SCO value for this use of the site.
- J Indicates an estimated value.

Stantec

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control critera. The presence or absence of the analyte cannot be verified.

TABLE 7 ANALYTICAL RESULTS SUMMARY SOIL - PCBs and Pesticides REMEDIAL INVESTIGATION 8-28 WARD STREET ROCHESTER, NEW YORK

Sample Location Sample Date				MW4 2-Aug-07	5 2-Aug-07	MW46 1-Aug-07	MW47 1-Aug-07
Sample ID		6NYCRR Part 375 Rest	ricted-Use Soil	828-MW45-S(8-10)	828-XX-S-DUP	828-MW46-S(14-16)	828-MW47-S(8-10)
Sample Depth		Cleanup Obje	ctives	8 - 10 ft	8 - 10 ft	14 - 16 ft	8 - 10 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC
Laboratory		Protection of Public		STLAM	STLAM	STLAM	STLAM
Laboratory Work Order		Health at Commercial		A078555	A078555	A078555	A078555
Laboratory Sample ID		(A) and Industrial (B)	Protection of	A7875606	A7875610	A7875601	A7875602
Sample Type	Units	Sites	Groundwater		Field Duplicate		
Polychlorinated Biphenyls							
Aroclor 1016	µg/kg	1000 ^A 25000 ^B	3200	37 U	37 U	36 U	37 U
Aroclor 1221	µg/kg	1000 ^A 25000 ^B	3200	75 U	75 U	74 U	74 U
Aroclor 1232	µg/kg	1000 ^A 25000 ^B	3200	37 U	37 U	36 U	37 U
Aroclor 1242	µg/kg	1000 ^A 25000 ^B	3200	37 U	37 U	36 U	37 U
Aroclor 1248	µg/kg	1000 ^A 25000 ^B	3200	37 U	37 U	36 U	37 U
Aroclor 1254	µg/kg	1000 ^A 25000 ^B	3200	37 U	37 U	36 U	37 U
Aroclor 1260	µg/kg	1000 ^A 25000 ^B	3200	37 U	37 U	36 U	37 U
Pesticides							
Aldrin	µg/kg	680 ^A 1400 ^B	190	1.9 U	1.9 U	1.9 U	1.9 U
BHC, alpha-	µg/kg	3400 ^A 6800 ^B	20	1.9 U	1.9 U	1.9 U	1.9 U
BHC, beta-	µg/kg	3000 ^A 14000 ^B	90	1.9 U	1.9 U	1.9 U	1.9 U
Camphechlor (Toxaphene)	µg/kg	n/v	n/v	190 U	190 U	190 U	190 U
Chlordane, alpha-	µg/kg	24000 ^A 47000 ^B	2900	1.9 U	1.9 U	1.9 U	1.9 U
Chlordane, gamma-	µg/kg	n/v	n/v	1.9 U	1.9 U	1.9 U	1.9 U
DDD	µg/kg	92000 ^A 180000 ^B	14000	3.7 U	3.7 U	3.6 U	3.7 U
DDE	µg/kg	62000 ^A 120000 ^B	17000	3.7 U	3.7 U	3.6 U	3.7 U
DDT	µg/kg	47000 ^A 94000 ^B	136000	3.7 U	3.7 U	3.6 U	3.7 U
delta-BHC	µg/kg	500000 _{c,g} ^A 1000000 _{d,g} ^B	250	1.9 U	1.9 U	1.9 U	1.9 U
Dieldrin	µg/kg	1400 ^A 2800 ^B	100	3.7 U	3.7 U	3.6 U	3.7 U
Endosulfan I	µg/kg	200000 _j ^A 920000 _j ^B	102000	1.9 U	1.9 U	1.9 U	1.9 U
Endosulfan II	µg/kg	200000j ^A 920000j ^B	102000	3.7 U	3.7 U	3.6 U	3.7 U
Endosulfan Sulfate	µg/kg	200000 _j ^A 920000 _j ^B	1000000 _d	3.7 U	3.7 U	3.6 U	3.7 U
Endrin	µg/kg	89000 ^A 410000 ^B	60	3.7 U	3.7 U	3.6 U	3.7 U
Endrin Aldehyde	µg/kg	n/v	n/v	3.7 U	3.7 U	3.6 U	3.7 U
Endrin Ketone	µg/kg	n/v	n/v	3.7 U	3.7 U	3.6 U	3.7 U
Heptachlor	µg/kg	15000 ^A 29000 ^B	380	1.9 U	1.9 U	1.9 U	1.9 U
Heptachlor Epoxide	µg/kg	n/v	n/v	1.9 U	1.9 U	1.9 U	1.9 U
Lindane (Hexachlorocyclohexane, gamma)	µg/kg	9200 ^A 23000 ^B	100	1.9 U	1.9 U	1.9 U	1.9 U
Methoxychlor (4,4'-Methoxychlor)	µg/kg	n/v	n/v	19 U	19 U	19 U	19 U

Notes:	
0.03 U	The analyte was not detected above the laboratory estimated quantation limit and does not exceed any of the criteria.
n/v	No criteria/guideline value.
-	Parameter not analyzed / not available.
c,g	The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See 6 NYCRR Part 375 Technical Support Document section 9.3. For constituents where the calculated SCO was lower tha
	rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the SCO value for this use of the site.
d,g	The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 Technical Support Document section 9.3. For constituents where t
	calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the SCO value for this use of the
A	This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.
B j	This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

Stantec

an the

the e site.

TABLE 8 ANALYTICAL RESULTS SUMMARY SOIL - METALS REMEDIAL INVESTIGATION 8-28 WARD STREET ROCHESTER, NEW YORK

Sample Location				MW4	15	N	MW47	
Sample Date				2-Aug-07	2-Aug-07	1-Aug-07	1-Aug-07	1-Aug-07
Sample ID		6NYCRR Part 375 Re	estricted-Use Soil	828-MW45-S(8-10)	828-XX-S-DUP	828-MW46-S(14-16)	828-MW46-S(14-16)LR	828-MW47-S(8-10)
Sample Depth		Cleanup Ob	ojectives	8 - 10 ft	8 - 10 ft	14 - 16 ft	14 - 16 ft	8 - 10 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory		Protection of		STLAM	STLAM	STLAM	STLAM	STLAM
Laboratory Work Order		Public Health at		A078555	A078555	A078555	A078555	A078555
Laboratory Sample ID		Commercial (A) and	Protection of	A7875606	A7875610	A7875601	A7875601MD	A7875602
Sample Type	Units	Industrial (B) Sites	Groundwater		Field Duplicate		Lab Replicate	
					_			
Metals								
Aluminum	mg/kg	n/v	n/v	3490 *	3390 *	2830 *	3475	2380 *
Antimony	mg/kg	n/v	n/v	7.1 U	7.0 U	6.1 U	7.0098 U	6.9 U
Arsenic	mg/kg	16 _g ^A 16 _g ^B	16	2.6	2.7	2.3	2.3	2.0
Barium	mg/kg	400 ^A 10000 _e ^B	820	26.2	25.5	17.6 B	18.9 B	18.3 B
Beryllium	mg/kg	590 ^A 2700 ^B	47	0.22 B	0.23 B	0.18 B	0.20 B	0.17 B
Cadmium	mg/kg	9.3 ^A 60 ^B	7.5	0.07 B	0.11 B	0.13 B	0.07 B	0.10 B
Calcium	mg/kg	n/v	n/v	43800 J	59000 J	48000 J	50914	54100 J
Chromium (Total)	mg/kg	n/v	n/v	5.9	5.5	5.4	6.2	4.4
Cobalt	mg/kg	n/v	n/v	3.4 B	3.5 B	2.8 B	3.3 B	2.3 B
Copper	mg/kg	270 ^A 10000 _e ^B	1720	8.3	8.6	7.1	6.5	5.4
Iron	mg/kg	n/v	n/v	8890 J	8930 J	8320 J	9492	6910 J
Lead	mg/kg	1000 ^A 3900 ^B	450	5.2 J	5.7 J	2.8 J	3.1 J	2.7 J
Magnesium	mg/kg	n/v	n/v	9870	12200	14000	12912	20400
Manganese	mg/kg	10000 _e ^A 10000 _e ^B	2000	279 J	304 J	311 J	361	235 J
Mercury	mg/kg	2.8 ^A 5.7 ^B	0.73	0.094 U	0.11 U	0.11 U	0.0957 U	0.11 U
Nickel	mg/kg	310 ^A 10000 _e ^B	130	6.5	6.5	5.7	6.7	4.6 B
Potassium	mg/kg	n/v	n/v	742 *	855 *	596 *	771	703 *
Selenium	mg/kg	1500 ^A 6800 ^B	4	4.2 U	4.1 U	3.5 U	4.0891 U	4.0 U
Silver	mg/kg	1500 ^A 6800 ^B	8.3	1.2 U	1.2 U	1.0 U	1.1683 U	1.2 U
Sodium	mg/kg	n/v	n/v	917	936	173 B	160 B	992
Thallium	mg/kg	n/v	n/v	3.0 U J	2.9 U J	2.5 U J	2.9208 U	2.9 U J
Vanadium	mg/kg	n/v	n/v	10.1	9.4	9.3	10.5	7.8
Zinc	ma/ka	10000 ^A 10000 ^B	2480	16.9	15.6	11.5	16.0	9.4

Notes:

2.5

0.03 U

n/v

В

Т

Concentration is detected but does not exceed any of the criteria.

The analyte was not detected above the laboratory estimated quantation limit and does not exceed any of the criteria.

No criteria/guideline value.

The SCOs for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 Technical Support Document section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 Technical Support Document section 9.3.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the SCO value for this use of the site.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the SCO value for this use of the site.

This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 Technical Support Document Table 5.6-1.

This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 Technical Support Document Table 5.6-1.

Indicates the spike or duplicate analysis is not within the quality control limits.

Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

Stantec

value for this use of the site. value for this use of the site.

TABLE 9 ANALYTICAL RESULTS SUMMARY **GROUNDWATER - VOCs REMEDIAL INVESTIGATION, 8-28 WARD STREET, ROCHESTER, NEW YORK**

Sample Location Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	TOGS	GQ1/MW1 17-Oct-07 828-GQ1/MW-1-GW STANTEC TALBF A07C076 A7C07609	GQ2/MW2 18-Oct-07 828-GQ1/MW-2-GW STANTEC TALBF A07C076 A7C07611	GQ4/MW4 17-Oct-07 828-GQ1/MW-4-GW STANTEC TALBF A07C076 A7C07608	GQ8/MW5 18-Oct-07 828-GQ1/MW-5-GW STANTEC TALBF A07C076 A7C07612	MW23 17-Oct-07 828-MW-23-GW STANTEC TALBF A07C076 A7C07610	MW23R 17-Oct-07 828-MW-23R-GW STANTEC TALBF A07C076 A7C07607	MW45 17-Oct-07 828-MW-45-GW STANTEC TALBF A07C076 A7C07602	17-Oct-07 828-MW-46-GW STANTEC TALBF A07C076 A7C07603	WW46 17-Oct-07 828-MW-46-GW-DU STANTEC TALBF A07C076 A7C07606 Field Duplicate	MW46R 17-Oct-07 828-MW-46R-GW STANTEC TALBF A07C076 A7C07604	MW47 17-Oct-07 828-MW-47-GW STANTEC TALBF A07C076 A7C07605	Trip Blank 17-Oct-07 828-MW-W-TB STANTEC TALBF A07C076 A7C07601 Trip Blank
Volatile Organic Compounds														
Acetone	µg/L	50 ^A	10 U J	2 J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	µg/L	1 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	µg/L	50 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	µg/L	50 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromomethane	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	µg/L	60 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L	5 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorinated Fluorocarbon (Freon 113)	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene (Monochlorobenzene)	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroethane	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	µg/L	7 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloromethane	µg/L	5∗∗ ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Cyclohexane	µg/L	n/v	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromo-3-Chloropropane (DBCP), 1,2-	µg/L	0.04 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	µg/L	50 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorobenzene, 1,2-	µg/L	3 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorobenzene, 1,3-	µg/L	3 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorobenzene, 1,4-	µg/L	3 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichloroethane, 1,1-	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichloroethane, 1,2-	µg/L	0.6 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichloroethylene, 1,1-	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	2 J	10 U	10 U	10 U	10 U	10 U	10 U
Dichloroethylene, cis-1,2-	µg/L	5 ^B	10 U J	10 U J	10 U J	50 U	66 J ^B	600 J ^B	87 ^B	10 U	10 U	10 U	1 J	10 U
Dichloroethylene, trans-1,2-	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	2 J	10 U	10 U	10 U	10 U	10 U	10 U
Dichloropropane, 1,2-	µg/L	1 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichloropropene, cis-1,3-	µg/L	0.4 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichloropropene, trans-1,3-	µg/L	0.4 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	µg/L	5 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexanone, 2-	µg/L	50 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Isopropylbenzene	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Acetate	µg/L	n/v	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Ethyl Ketone (MEK)	µg/L	50 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl Isobutyl Ketone (MIBK)	µg/L	n/v	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl tert-butyl ether (MTBE)	µg/L	10 ^A	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylcylohexane	µg/L	n/v	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylene Chloride (Dichloromethane)	µg/L	5 ^B	10 U J	10 U J	10 U J	7 J ^B	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethylene	µg/L	5** ^B	10 U J	10 U J	1 J	50 U	810 ^B	72 ^B	2 J	10 U	10 U	10 U	10 U	10 U
Toluene	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichlorobenzene, 1,2,4-	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U J	80 U J	10 U J	10 U J	10 U J	10 U J	10 U J	10 U J	10 U J
Trichloroethane, 1,1,1-	µg/L	5∗∗ ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethane, 1,1,2-	µg/L	1 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethylene	µg/L	5∗∗ ^B	10 U J	2 J	4 J	50 U	40 J ^B	41 ^B	10 U	10 U	10 U	10 U	3 J	10 U
Trichlorofluoromethane	µg/L	5** ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Vinyl chloride	µg/L	2 ^B	10 U J	10 U J	10 U J	50 U	80 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Xylenes, Total	µg/L	5 ^B	<u>30 U J</u>	<u>30 U J</u>	<u>30 U J</u>	150 U	240 U	<u>30 U</u>	<u>30 U</u>	<u>30 U</u>	30 U	<u>30 U</u>	<u>30 U</u>	<u>30 U</u>

Notes:

TOGS NYSDEC. October 22, 1993. Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1);

Ambient Water Quality Standards and Guidance Values, Reissued June 1998. April 2000 Addendum.

A TOGS Guidance ^B TOGS Standards

6.5^A Concentration exceeds the indicated criteria.

2.5 Concentration is detected but does not exceed any of the criteria.

Laboratory estimated quantitation limit exceeded criteria. 0.50 U The analyte was not detected above the laboratory estimated quantation limit. 0.03 U

No criteria/guideline value.

n/v

Parameter not analyzed / not available. -

р

J

The principal organic contaminant standard fro groundwater of 5 ug/l (described elsewhere in the Table) applies to this substance. ** Applies to the sum of cis- and trans-1,3-dichloropropene, CAS No. 10061-01-5 and 10061-02-6 respectively.

Indicates an estimated value.

U:\1405205\docs\8-28 Ward Street RI\RI Report\190500014 - 8-28RIRtables.xls

Stantec

TABLE 10 ANALYTICAL RESULTS SUMMARY, GROUNDWATER - SVOCs REMEDIAL INVESTIGATION, 8-28 WARD STREET, ROCHESTER, NEW YORK

Sample Location			MW45	N	/W46	MW47
Sample Date			17-Oct-07	17-Oct-07	17-Oct-07	17-Oct-07
Sample ID			828-MW-45-GW	828-MW-46-GW	828-MW-46-GW-DU	828-MW-47-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			TALBF	TALBF	TALBF	TALBF
Laboratory Work Order			AU/CU/6 A7C07701	AU/CU/6 A7C07702	AU/CU/6 A7C07901	AU/CU/6 A7C07703
Sample Type	Units	TOGS	/	7.1.001102	Field Duplicate	
Semi - Volatile Organic Compounds					•	
		r B	40.11	0.11	40.11	0.11
2,2-0xybis(1-Chioropropane)	µg/L ug/l	o∗∗ 20 ^B	10 U	90	10 U	90
Acenaphthylene	ua/L	20 n/v	10 U	9 U	10 U	9 U
Acetophenone	µg/L	n/v	10 U	9 U	10 U	9 U
Anthracene	µg/L	50 ^A	10 U	9 U	10 U	9 U
Atrazine	µg/L	7.5 ^B	10 U	9 U	10 U	9 U
Benzaldehyde	µg/L	n/v	10 U	9 U	10 U	9 U
Benzo(a)anthracene	µg/L	0.002 ^A	10 U	9 U	10 U	9 U
Benzo(a)pyrene	µg/L	n/v	10 U	90	10 U	90
Benzo(d)nuorantnene Benzo(d h i)pen/lene	µg/∟ ug/l	0.002 ^{**}	10 U	90	10 U	90
Benzo(k)fluoranthene	µg/∟ ua/l	0.002 ^A	10 U	9 U	10 U	90
Benzyl Butyl Phthalate	µg/L	50 ^A	10 U	9 U	10 U	9 U
Biphenyl, 1,1'- (Biphenyl)	μg/L	5.** ^B	10 U	9 U	10 U	9 U
bis(2-Chloroethoxy)methane	µg/L	5** ^B	10 U	9 U	10 U	9 U
Bis(2-Chloroethyl)ether	µg/L	1 ^B	10 U	9 U	10 U	9 U
Bis(2-Ethylhexyl)phthalate	µg/L	5 ^B	10 U	9 U	21 U	9 U
Bromophenyl Phenyl Ether, 4-	µg/L	n/v	10 U	9 U	10 U	9 U
Carbazala	µg/L	n/v	10 U J	9 U J	10 U J	901
Carbazole	µg/∟ ug/l	n/v	10 U	90	10 U	90
Chloronaphthalene 2-	µg/∟ ua/l	10 ^B	10 U	90	10 U	90
Chlorophenol. 2-	µg/L	n/v	10 U	9 U	10 U	9 U
Chlorophenyl Phenyl Ether, 4-	μg/L	n/v	10 U	9 U	10 U	9 U
Chrysene	µg/L	0.002 ^A	10 U	9 U	10 U	9 U
Cresol, o- (Methylphenol, 2-)	µg/L	n/v	10 U	9 U	10 U	9 U
Cresol, p- (Methylphenol, 4-)	µg/L	n/v	10 U	9 U	10 U	9 U
Dibenzo(a,h)anthracene	µg/L	n/v	10 U	9 U	10 U	90
Dibenzoluran Dichlorobonziding, 2.2'	µg/∟ ug/l	n/v	100	90	100	90
Dichlorophenol 24-	µg/∟ ug/l	ວ∗∗ 5 ^B	10 0	90	10 U	90
Diethvl Phthalate	µg/L µa/L	50 ^A	10 U	9 U	10 U	0.5 J
Dimethyl Phthalate	μg/L	50 ^A	10 U	9 U	10 U	9 U
Dimethylphenol, 2,4-	μg/L	50 ^A	10 U	9 U	10 U	9 U
Di-n-Butyl Phthalate	µg/L	50 ^B	10 U	9 U	10 U	9 U
Dinitro-o-cresol, 4,6-	µg/L	n/v	24 U	24 U	25 U	24 U
Dinitrophenol, 2,4-	µg/L	10 ^A	24 U	24 U	25 U	24 U
Dinitrotoluene, 2,4-	µg/L	5** ^D	10 U	90	10 U	90
Dinitrotoluene, 2,0-	µg/∟ ug/l	5.∗	10 U	90	10 11	90
Fluoranthene	µg/∟ ua/l	50 ^A	10 U	9 U	10 U	90
Fluorene	µg/L	50 ^A	10 U	9 U	10 U	9 U
Hexachlorobenzene	μg/L	0.04 ^B	10 U	9 U	10 U	9 U
Hexachlorobutadiene	µg/L	0.5 ^B	10 U	9 U	10 U	9 U
Hexachlorocyclopentadiene	µg/L	5∗∗ ^B	10 U	9 U	10 U	9 U
	µg/L	5** ^B	10 U	9 U	10 U	9 U
Indeno(1,2,3-cd)pyrene	µg/L	0.002 ^A	10 U	9 0	10 U	90
isopriorone Methylnanhthalene 2-	µg/∟ ua/l	50" n/v	10 U	90	10 U	9 U
Naphthalene	µg/∟ ua/l	10 ^B	10 U	9 U	10 U	90
Nitroaniline, 2-	μ <u>α</u> /L	5 ^B	24 U	24 U	25 U	24 U
Nitroaniline, 3-	μg/L	5** ^B	24 U	24 U	25 U	24 U
Nitroaniline, 4-	µg/L	5** ^B	24 U	24 U	25 U	24 U
Nitrobenzene	µg/L	0.4 ^B	10 U	9 U	10 U	9 U
Nitrophenol, 2-	µg/L	n/v	10 U	9 U	10 U	9 U
Nitrophenol, 4-	µg/L	n/v	24 U	24 U	25 U	24 U
IN-INITrosodi-n-Propylamine	µg/L	n/v	10 U 10 U	90	10 U	90
p-Chloroaniline	μg/L μα/l	ວປ 5 ^B	10 []	9 U 9]	10 11	9 U 9 / /
Pentachlorophenol	µg/L	1.0 ^B	24 U	24 U	25 U	24 U
Phenanthrene	μg/L	50 ^A	10 U	9 U	10 U	9 U
Phenol	μg/L	1.0 ^B	10 U	9 U	10 U	9 U
Pyrene	µg/L	50 ^A	10 U	9 U	10 U	9 U
Trichlorophenol, 2,4,5-	µg/L	n/v	24 U	24 U	25 U	24 U
Trichlorophenol, 2,4,6-	µg/L	n/v	10 U	9 U	10 U	9 U
Semi - volatile Organic Compounds T	165			[40 11
Priosphine imide, P,P,P-triphenyl- Unknown TIC 1	µg/L	n/v	-	-	- 8 I	10 JN
	<u>µy/∟</u>	1 I/ V	-	-		- <u>- </u>

Notes: TOGS NYSDEC. October 22, 1993. Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1);

Ambient Water Quality Standards and Guidance Values, Reissued June 1998. April 2000 Addendum.

- ^A TOGS Guidance
- ^B TOGS Standards
- **6.5^A** Concentration exceeds the indicated criteria.
- 2.5 Concentration is detected but does not exceed any of the criteria.
- **0.50 U** Laboratory estimated quantitation limit exceeded criteria.
- 0.03 U The analyte was not detected above the laboratory estimated quantation limit.
- n/v No criteria/guideline value.
- Parameter not analyzed / not available.
- -- The principal organic contaminant standard for groundwater of 5 ug/l applies to this substance.
- J Indicates an estimated value.

Stantec

N Indicates presumptive evidence of a compound. This flag is used only for tentatively idenitified compounds, where the identification based on the Mass Spectral library search. It is applied to all TIC results.

TABLE 11 ANALYTICAL RESULTS SUMMARY GROUNDWATER - PCBs and Pesticides REMEDIAL INVESTIGATION 8-28 WARD STREET ROCHESTER, NEW YORK

Sample Location	I		MW45	N	MW47	
Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID			17-Oct-07 828-MW-45-GW STANTEC TALBF A07C076 A7C07701	17-Oct-07 828-MW-46-GW STANTEC TALBF A07C076 A7C07702	17-Oct-07 828-MW-46-GW-DU STANTEC TALBF A07C076 A7C07901	17-Oct-07 828-MW-47-GW STANTEC TALBF A07C076 A7C07703
Sample Type	Units	TOGS			Field Duplicate	
Polychlorinated Biphenyls						
Aroclor 1016	µg/L	0.09 ^B	0.96 U	0.94 U	1.0 U	0.94 U
Aroclor 1221	µg/L	0.09 ^B	1.9 U	1.9 U	2.1 U	1.9 U
Aroclor 1232	µg/L	0.09 ^B	0.96 U	0.94 U	1.0 U	0.94 U
Aroclor 1242	µg/L	0.09 ^B	0.96 U	0.94 U	1.0 U	0.94 U
Aroclor 1248	µg/L	0.09 ^B	0.96 U	0.94 U	1.0 U	0.94 U
Aroclor 1254	µg/L	0.09 ^B	0.96 U	0.94 U	1.0 U	0.94 U
Aroclor 1260	µg/L	0.09 ^B	0.96 U	0.94 U	1.0 U	0.94 U
Pesticides						
Aldrin	µg/L	n/v	0.048 U	0.047 U	0.052 U	0.047 U
BHC, alpha-	µg/L	0.01 ^B	0.048 U	0.047 U	0.052 U	0.047 U
BHC, beta-	µg/L	0.04 ^B	0.048 U	0.047 U	0.052 U	0.047 U
Camphechlor (Toxaphene)	µg/L	0.06 ^B	4.8 U	4.7 U	5.2 U	4.7 U
Chlordane, alpha-	µg/L	n/v	0.048 U	0.047 U	0.052 U	0.047 U
Chlordane, gamma-	µg/L	n/v	0.048 U	0.047 U	0.052 U	0.047 U
DDD	µg/L	0.3 ^B	0.096 U	0.094 U	0.10 U	0.094 U
DDE	µg/L	0.2 ^B	0.096 U	0.094 U	0.10 U	0.094 U
DDT	µg/L	0.2 ^B	0.096 U	0.039 J	0.10 U	0.094 U
delta-BHC	µg/L	0.04 ^B	0.048 U	0.047 U	0.052 U	0.047 U
Dieldrin	µg/L	0.004 ^B	0.096 U	0.094 U	0.10 U	0.094 U
Endosulfan I	µg/L	n/v	0.048 U	0.047 U	0.052 U	0.047 U
Endosulfan II	µg/L	n/v	0.096 U	0.094 U	0.10 U	0.094 U
Endosulfan Sulfate	µg/L	n/v	0.096 U	0.094 U	0.10 U	0.094 U
Endrin	µg/L	n/v	0.096 U	0.021 J	0.10 U	0.094 U
Endrin Aldehyde	µg/L	5 ^B	0.096 U	0.036 J	0.10 U	0.094 U
Endrin Ketone	µg/L	5** ^B	0.096 U	0.094 U	0.10 U	0.094 U
Heptachlor	µg/L	$0.04^{A} 0.04^{B}$	0.048 U	0.047 U	0.052 U	0.047 U
Heptachlor Epoxide	µg/L	0.03 ^B	0.048 U	0.047 U	0.052 U	0.047 U
Lindane (Hexachlorocyclohexane, gamma)	µg/L	0.05 ^B	0.048 U	0.047 U	0.052 U	0.047 U
Methoxychlor (4,4'-Methoxychlor)	µg/L	35 ^B	0.48 U	0.011 J	0.52 U	0.47 U

Notes: TOGS NYSDEC. October 22, 1993. Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1);

Ambient Water Quality Standards and Guidance Values, Reissued June 1998. April 2000 Addendum.

- A TOGS Guidance
- ^B TOGS Standards

6.5^A Concentration exceeds the indicated criteria.

2.5 Concentration is detected but does not exceed any of the criteria.

0.50 U Laboratory estimated quantitation limit exceeded criteria.

0.03 U The analyte was not detected above the laboratory estimated quantation limit.

n/v No criteria/guideline value.

- Parameter not analyzed / not available.
- -- The principal organic contaminant standard fro groundwater of 5 ug/l (described elsewhere in the Table) applies to this substance.

Stantec

J Indicates an estimated value.

TABLE 12 ANALYTICAL RESULTS SUMMARY GROUNDWATER - METALS REMEDIAL INVESTIGATION 8-28 WARD STREET ROCHESTER, NEW YORK

Sample Location			N	IW45	N	1W46	MW47
Sample Date			17-Oct-07	17-Oct-07	17-Oct-07	17-Oct-07	17-Oct-07
Sample ID			828-MW-45-GW	828-MW-45-GW-LR	828-MW-46-GW	828-MW-46-GW-DU	828-MW-47-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			TALBF	TALBF	TALBF	TALBF	TALBF
Laboratory Work Order			A07C076	A07C076	A07C076	A07C076	A07C076
Laboratory Sample ID			A7C07801	A7C07801MD	A7C07902	A7C07901	A7C07903
Sample Type	Units	TOGS		Lab Replicate		Field Duplicate	
Metals							
Aluminum	µg/L	n/v	7410 J	7543.48	2570 J	286 J	464 J
Antimony	µg/L	3⁵	60.0 U	60.0 U	60.0 U	60.0 U	60.0 U
Arsenic	µg/L	25 [™]	6.0 B	7.01 B	8.3 B	10.0 U	10.0 U
Barium	µg/L	1000 ^B	134 B	139.09 B	68.7 B	49.5 B	82.2 B
Beryllium	µg/L	3 ^A	0.78 B	0.80 B	0.50 B	0.35 B	0.65 B
Cadmium	µg/L	5 ⁸	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Calcium	µg/L	n/v	383000	381237.8	309000	262000	241000
Chromium (Total)	µg/L	50 ^B	12.4	12.4900	4.3 B	10.0 U	10.0 U
Cobalt	µg/L	n/v	5.9 B	5.69 B	4.3 B	2.2 B	2.6 B
Copper	µg/L	200 ^B	10.6 B	9.97 B	3.2 B	25.0 U	25.0 U
Iron	µg/L	300∗ ^B	15300 * ^B	15396.39 ^B	5840 J ^B	538 J ^B	2060 * ^B
Lead	µg/L	25 ^B	4.2 BN	3.78 B	10.0 U N	10.0 U N	10.0 U N
Magnesium	µg/L	35000 ^A	167000 ^A	165994.3 ^A	151000 ^A	137000 ^A	85600 ^A
Manganese	µg/L	300∗ ^B	472 J ^B	470.02 ^B	321 J ^B	118 J	278 J
Mercury	µg/L	0.7 ^B	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	µg/L	100 ^B	13.5 B	13.76 B	7.1 B	3.6 B	4.1 B
Potassium	µg/L	n/v	33900 J	33696.59	21500 J	19200 J	70300 J
Selenium	µg/L	10 ^B	35.0 U	35.0 U	35.0 U	35.0 U	35.0 U
Silver	µg/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Sodium	µg/L	20000 ^B	568000 ^B	564690.6 ^B	397000 ^в	345000 ^B	2490000 ^B
Thallium	µg/L	0.5 ^A	25.0 U	25.0 U	25.0 U	25.0 U	25.0 U
Vanadium	µg/L	n/v	14.4 B	13.97 B	6.6 B	1.4 B	2.2 B
Zinc	µg/L	2000 ^A	24.9 B	25.18 B	12.0 B	60.0 U	7.3 B

Notes:

TOGS NYSDEC. October 22, 1993. Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1);

Ambient Water Quality Standards and Guidance Values, Reissued June 1998. April 2000 Addendum.

- ^A TOGS Guidance
- ^B TOGS Standards

6.5^A Concentration exceeds the indicated criteria.

2.5 Concentration is detected but does not exceed any of the criteria.

0.50 U Laboratory estimated quantitation limit exceeded criteria.

0.03 U The analyte was not detected above the laboratory estimated quantation limit.

n/v No criteria/guideline value.

- Parameter not analyzed / not available.
- B Also see entry for Iron and Manganese (GA = 500, applies to the sum of Iron and Manganese).

* Indicates the spike or duplicate analysis is not within the quality control limits.

B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

J Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.

Stantec

N Indicates spike sample recovery is not within the quality control limits.

Table 12

TABLE 13 Comparison of Previous Investigation and Remedial Investigation Analytical Results - VOCs Detected in Groundwater 8-28 WARD STREET ROCHESTER, NEW YORK

Comple Leastion						601	/M/M/4			
Sample Location			10-May-02	17-Sen-02	12/16/02	24-Mar-03	24-Sen-03	30-Apr-04	23-Sen-04	17-Oct-07
Sampling Company	Units	TOGS	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	STANTEC
Laboratory	•	Std.	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	TALBE
VOCs Detected										
Tetrachloroethylene	µg/L	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
Trichloroethylene	ua/L	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
Dichloroethylene. cis-1.2-	ua/L	5	2 U	2 U	2 U	2 U	2 U	2 U	20	10 U J
Vinyl chloride	µg/L	2	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
,	10									
Comple Leastion		r i				602	/M/A/2			
Sample Location			10 May 02	17 Son 02	12/16/02	24 Mar 02	24 Son 02	20 Apr 04	22 San 04	18 Oct 07
	Unite	TOOS	TU-IWAy-02	17-Sep-02	12/10/02	24-Iviar-03	24-3ep-03	30-Apr-04	23-3ep-04	18-001-07
Sampling Company	Units	IUGS	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	STANTEC
VOCs Detected		510.	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	TALBE
Totas allo as allo dana		-	0.11	0.11	0.11	0.11	0.11	0.11	0.11	10111
Tetrachloroethylene	µg/L	5	20	20	20	20	20	20	20	10 U J
Irichloroethylene	µg/L	5	21.8	20	20	20.9	20	6.54	4.31	2 J
Dichloroethylene, cis-1,2-	µg/L	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
Vinyl chloride	µg/L	2	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
Sample Location						GQ3/	/MW3			
Sample Date			10-May-02	17-Sep-02	12/16/02	24-Mar-03	24-Sep-03	30-Apr-04	23-Sep-04	18-Oct-07
Sampling Company	Units	TOGS	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	STANTEC
Laboratory		Std.	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	
VOCs Detected										
Tetrachloroethylene	ua/L	5	6.44	5.99	4.91	2 U	4.56	2 U	3.21	
Trichloroethylene	ua/L	5	68.9	63.4	59.4	15.6	63.9	28.9	41.4	DRY
Dichloroethylene cis-1 2-	ug/l	5	211	211	211	211	211	211	211	
	ug/L	2	211	211	211	211	211	211	211	
Virgromonae	pg/L	-	20	20	20	20	20	20	20	
O						004				
Sample Location						GQ4/	00004			
Sample Date			10-May-02	17-Sep-02	12/16/02	24-Mar-03	24-Sep-03	30-Apr-04	23-Sep-04	17-Oct-07
Sampling Company	Units	TOGS	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	STANTEC
		Std.	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	TALBF
VOCS Detected	-									
Tetrachloroethylene	µg/L	5	2.02	2 U	2 U	2 U	2 U	2 U	2 U	1 J
Trichloroethylene	µg/L	5	7.95	10	5.79	2 U	9.89	2 U	6.19	4 J
Dichloroethylene, cis-1,2-	μg/L	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
Vinyl chloride	µg/L	2	2 U	2 U	2 U	2 U	2 U	2 U	2 U	10 U J
Sample Location						GQ8/	/MW5			
Sample Date			10-May-02	17-Sep-02	12/16/02	24-Mar-03	24-Sep-03	30-Apr-04	23-Sep-04	18-Oct-07
Sampling Company	Units	TOGS	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	GeoQuest	STANTEC
Laboratory		Std.	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	Paradigm	TALBF
VOCs Detected										
Tetrachloroethylene	µg/L	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	50 U
Trichloroethylene	µg/L	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	50 U
Dichloroethylene, cis-1,2-	μg/L	5	7.69	9.76	7.77	5.63	7.53	2 U	6.27	50 U
Vinyl chloride	μq/L	2	9.93	4.89	4.34	2	5.34	2 U	3.69	50 U
· ·		1			-		-	-		-

Sample Location				MW-23		MW-23 R	MW-45	MW-46	MW-46R	MW-47
Sample Date			11-Oct-01	12-Jul-05	17-Oct-07	17-Oct-07	17-Oct-07	17-Oct-07	17-Oct-07	17-Oct-07
Sampling Company	Units	TOGS	STANTEC							
Laboratory		Std.	TALBF							
VOCs Detected										
Tetrachloroethylene	µg/L	5	240 J	1,600	810	72	2 J	10 U	10 U	10 U
Trichloroethylene	µg/L	5	15	55	40 J	41	10 U	10 U	10 U	3 J
Dichloroethylene, cis-1,2-	µg/L	5	1 J	38	66 J	600 J	87 J	10 U	10 U	1 J
Dichloroethylene, trans-1,2-	µg/L	5	10 U	10 U	80 U	2 J	10 U	10 U	10 U	10 U
Dichloroethylene, 1,1-	µg/L	5	10 U	10 U	80 U	2 J	10 U	10 U	10 U	10 U
Vinyl chloride	µg/L	2	10 U	10 U	80 U	10 U				

Stantec

Notes: U - The analyte was not detected above the laboratory's estimated quantation limit.

J - Indicates an estimated value.

Appendix A

Test Boring No.: B-23

Page 1 of 2

Destan Transition of

Project:	Ward Street	Drill Contractor:	Nature's Way	Start Date:	9/27/2001
Project #:	190500014	Driller:	Steve Gingrich	Completion Date:	9/27/2001
Client:	Germanow-Simon	Elevation:		Drilling Method:	4-1/4" H.S.A.
Location:	Rochester, New York	Weather:		Supervisor:	P.Smith

0 C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks 2 7 0.4 15" 1 0-2" Brown, SiLT, some fine Sand, trace	0 C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Brown. SILT. some fine Sand. trace - - - - - - - rots. moist - 10 - - - - - rots. moist - 10 - - - - - rots. moist - 10 - - - - - rots. moist - 10 - - - - - rots. moist - 10 - - - - rots. moist - - 10 -	0 C	9 9 3 3	6-12" 7 10 4	12-18" 10 10 10 7	18-24" 12 10	PID 0.4 2.7 1.5	Rec. 15" 14"	No. 1	Depth 0-2' 2'-4'	Remarks Brown, SILT, some fine Sand, trace roots, moist Brown and gray/brown, medium to fine SANE some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,
2 0.4 15" 1 0-2" Brown, SILT, some fine Sand, trace roots, moist 1 10 12	2 0.4 15" 1 0-2" Brown, SILT, some fine Sand, trace roots, moist 9 12 14" 2 2.4" Brown, fine SAND, some Silt, trace Gravel, moist 9 2.7 14" 2 2.4" Brown, fine SAND, some Silt, trace Gravel, moist 10 10 10 10 10 10 10 3 11.5 14" 3 4'-6" Brown, fine SAND, some Silt, trace Gravel, moist 10 1.5 14" 3 4'-6" Brown, SILT, some fine Sand, moist 3 1.8 16" 6'-8" Gray, medium to fine SAND, some Silt, moist 3 7 2.4 16" 5 8'-10" 7 2.4 16" 5 8'-10" same, except wet 7 2.4 16" 10'-12' same (Upper Till) 10 7 12" 4.9 18" 10'-12' same 11 7 12" 14"-15.3' Gray to red brown, medium to fine SAND an Sit, some coarse to fine	5	2 9 3 3	7	10 10 10 7	12	0.4	15"	2	0-2' 2'-4'	Brown, SILT, some fine Sand, trace roots, moist Brown and gray/brown, medium to fine SANE some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,
7 10 200 roots media roots media <thr></thr> foots media 10	7 10 201 roots, moist 9 2.7 14" 2 9 2.7 14" 2 10 10 10 10 3 10 10 10 3 10 14" 2 10 10 14" 2 3 10 14" 3 4 10 15 14" 16" 3 1.5 14" 16" 6" 3 1.8 16" 6" 6" 7 2.4 16" 5" 8"-10" 7 2.4 16" 5 8"-10" 7 2.4 16" 5 8"-10" 7 2.4 16" 5 8"-10" 10 7 2.4 16" 10'-12" 3 3 35.0 8" 7 2 4.9 16" 10'-12" same 15 42 14" 8 14'-15.3" Gray to red brown, medium to fine SAND an Silt, some coarse	5	9	7	10 10 10 7	12	2.7	14"	2	2'-4'	roots, moist Brown and gray/brown, medium to fine SANE some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,
Image: Second stress Image: Second stress Brown and gravel, dry to moist (FILL) 9 12 14" 2 2'-4" Brown, fine SAND, some silt and gravel, dry to moist (FILL) 9 10 10 10 10 10 10 10 5 4 10 <td< td=""><td>Image: 10 Image: 10 Image: 10 Image: 12 <thimage: 12<="" th=""> <thimage: 12<="" th=""> <thi< td=""><td>5</td><td>9</td><td>10</td><td>10 10 7</td><td>12 </td><td>2.7</td><td>14"</td><td>2</td><td>2'-4'</td><td>Brown and gray/brown, medium to fine SANI some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,</td></thi<></thimage:></thimage:></td></td<>	Image: 10 Image: 10 Image: 10 Image: 12 Image: 12 <thimage: 12<="" th=""> <thimage: 12<="" th=""> <thi< td=""><td>5</td><td>9</td><td>10</td><td>10 10 7</td><td>12 </td><td>2.7</td><td>14"</td><td>2</td><td>2'-4'</td><td>Brown and gray/brown, medium to fine SANI some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,</td></thi<></thimage:></thimage:>	5	9	10	10 10 7	12 	2.7	14"	2	2'-4'	Brown and gray/brown, medium to fine SANI some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,
9 12 some silt and gravel, dry to moist (FILL) 9 2.7 14" 2 2'-4' Brown, fine SAND, some Silt, trace Gravel, moist 10 10 10 10 10 10 10 3 10 10 10 10 10 10 10 3 10 15 14" 3 4'-6' Brown, fine SAND, some Silt, trace Gravel, moist 5 4 10 15 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 3 11.8 16" 6'-8' Gray, medium to fine SAND, some Silt, moist moist 7 2.4 16" 5 8'-10' same, except wet 10'-12' 10 5 10'-12' same (Upper Till) same 2 4.9 16" 6 10'-12' same 3 7 22 10'-12' same Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 15 42 10 11'-15'.' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we same	Image: solution of the second state of the second	5	9	10	10 7	12 10	2.7	14"	2	2'-4'	some silt and gravel, dry to moist (FILL) Brown, fine SAND, some Silt, trace Gravel,
9 2.7 14" 2 2'-4' Brown, fine SAND, some Silt, trace Gravel, moist 3 10	9 2.7 14" 2 2'-4' Brown, fine SAND, some Silt, trace Gravel, moist 10 10 10 10 10 10 10 3 10 15 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 3 1 1.5 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 3 1 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10' same, except wet 7 2.4 16" 6 10'-12' same 10 7 2.4 16" 6 10'-12' 3 7 12'-14' same same 10 22 4.9 16" 10'-12' same 3 7 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we same 15 42 14'-16.9' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we same 31 6.8 9" 9 16'-16.9'	5	9	10	10	10	2.7	14"	2	2'-4'	Brown, fine SAND, some Silt, trace Gravel,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Second	5	3	10	10 7	10	1.5			7	
10 10 (Upper Till) 3 1 15 14" 3 4 7 8 4'-6' Brown, SILT, some Fine Sand, moist 3 1 18 16" 4 6'-8' 3 7 8 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10' 7 7 2.4 16" 5 7 2.4 16" 5 8'-10' 7 2.4 16" 5 8'-10' 10 5 4.9 16" 6 10'-12' 3 3 3 3 10'-12' same 10 5 4.9 16" 6 10'-12' 3 3 35.0 8" 7 12'-14' same 15 42 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Sit, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we same, except moist 31 6.8 9" 9	10 10 (Upper Till) 3 10 10 4'-6' 3 7 4'-6' 3 18 16" 4'-6' 3 18 16" 4'-6' 3 18 16" 4'-6' 3 18 16" 4'-6' 3 7 - - 7 2.4 16" 5'-10' 7 2.4 16" 5'-10' 7 2.4 16" 5'-10' 7 2.4 16" 5'-10' 10 7 - - 2 4.9 16" 10'-12' 3 3 35.0 8" 7 2 3 - - - 3 35.0 8" 7 12'-14' 3 32.0 14" 8 14'-15.3' 15 42 - - - 31 6.8 9" 9 16'-16.9' 31 1.3 1.3 -	5	3	4	10 	10	1.5			L	moist
3 10 10 15 14" 3 4-6" Brown, SILT, some Fine Sand, moist 5 4 7 18 16" 4 6"-8" Gray, medium to fine SAND, some Silt, moist 3 1.8 16" 4 6"-8" Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10" same, except wet 7 2.4 16" 6 10'-12" same 10 5 5 10'-12" same (Upper Till) 2 4.9 16" 6 10'-12" same 3 3 35.0 8" 7 12'-14" same 3 3 35.0 8" 7 12'-14" same 15 42 33 - - 50/4 - 50/4 31 6.8 9" 9 16'-16.9" Same, except moist (Lower Till) 31 6.8 9" 9 16'-16.9" same, except moist 10'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0'-0	10 10 1.5 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 3 1 7 1 1 6'-8' Gray, medium to fine SAND, some Silt, moist 3 1 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10' same, except wet 7 2.4 16" 6 10'-12' same 10 5 10'-12' same (Upper Till) 3 3 3 3 10'-12' 3 3 3 3 10'-12' 3 3 3 3 10'-12' 3 3 3 3 10'-12' 3 3 3 3 10'-12' 3 1 6 - - 10 15 42 - - 11 6.8 9" 9 16'-16.9' 31 6.8 9" 9 16'-16.9' 31 6.8 9" 9	5	3	4	7	10	1.5		1		(Upper Till)
3 1.5 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 7 7 1 1 6'-8' Gray, medium to fine SAND, some Silt, moist 3 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10' same, except wet 7 2.4 16" 6 8'-10' same, except wet 10 5 10" 6 10'-12' same 3 3 35.0 8" 7 12'-14' same 3 22 33 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same, except moist 31 6.8 9" 9 16'-16.9' same 31 6.8 9" 9 16'-16.9' same 31 6.8 9" <td>3 1.5 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 3 7 8 6'-8' Gray, medium to fine SAND, some Silt, moist 3 7 2.4 16" 5 8'-10' 7 2.4 16" 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10' 7 2.4 16" 6 10'-12' 7 2.4 16" 6 10'-12' 3 3 3 3 10' 5 2 4.9 16" 6 10'-12' same 3 3 35.0 8" 7 12'-14' same 2 33 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we same, except moist Silt, some coarse to fine Gravel, moist to we same, except moist 31 6.8 9" 9 16'-16.9' same 31 1.3 1.3 10 18'-18.9' same 31 1.3 1.3 10<</td> <td>5</td> <td>3</td> <td>4</td> <td>7</td> <td></td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td>	3 1.5 14" 3 4'-6' Brown, SILT, some Fine Sand, moist 3 7 8 6'-8' Gray, medium to fine SAND, some Silt, moist 3 7 2.4 16" 5 8'-10' 7 2.4 16" 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10' 7 2.4 16" 6 10'-12' 7 2.4 16" 6 10'-12' 3 3 3 3 10' 5 2 4.9 16" 6 10'-12' same 3 3 35.0 8" 7 12'-14' same 2 33 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we same, except moist Silt, some coarse to fine Gravel, moist to we same, except moist 31 6.8 9" 9 16'-16.9' same 31 1.3 1.3 10 18'-18.9' same 31 1.3 1.3 10<	5	3	4	7		1.5				
5 4 7 8 6'-8' 3 1.8 16'' 4 6'-8' 3 7 7 6'-8' 7 2.4 16'' 5 7 2.4 16'' 5 7 2.4 16'' 6''-8' 7 2.4 16'' 5 2 4.9 16'' 6''-10' 3 3 10'' 5 2 4.9 16''' 6''' 3 3 3''' 10''' 3 3 3'''' 10''' 2 3'''' 10'''' 3 3''''' 11''''''' 25 20.0 14''''''''''''''''''''''''''''''''''''	5 4 7 0 0 3 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 3 7 2.4 16" 5 8'-10' 7 2.4 16" 5 8'-10' 7 2.4 16" 6 8'-10' 7 2.4 16" 6 10'-12' 7 3 - - - 10 - 5 - (Upper Till) 3 - - - - 10 - 5 - - 22 4.9 16" 6 10'-12' 3 - - - - 3 - - - - 3 - - - - - 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we sit, some coarse to fine Grave	5	3	4	7		the second s	14"	3	4'-6'	Brown, SILT, some Fine Sand, moist
7 8 3 1.8 16" 4 6'-8' 3 7 - - 7 2.4 16" 5 7 2.4 16" 5 7 2.4 16" 5 7 2.4 16" 5 7 2.4 16" 5 7 2.4 16" 6 7 2.4 16" 6 7 2.4 16" 6 7 2.4 16" 6 10 5 - - 2 4.9 16" 6 3 - - - 3 - - 3 - - 22 - - 3 - - 22 - - 3 - - 25 20.0 14" 14'-15.3' 6ray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 31 - - 31 - - 31 - - 50/5 - -	3 7 8 6'-8' Gray, medium to fine SAND, some Silt, moist 3 7 2.4 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 7 2.4 16" 5 8'-10" same, except wet (Upper Till) 10 5 6 7 6 10'-12' same 10 7 12'-14' same same (Upper Till) 11 22 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 15 42 10 16'-16.9' same, except moist (Lower Till) 31 1.3 8" 10 18'-18.9' same 20 10 10 18'-18.9' same 20 10 13 1.3 1.4 1.8		3		7	1			<u> </u>		
3 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 3 3 7 7 2.4 16" 5 8'-10' same, except wet (Upper Till) 10 7 2.4 16" 6 10'-12' same, except wet (Upper Till) 10 5 7 10'-12' same (Upper Till) 2 4.9 16" 6 10'-12' same 3 3 3 10'-12' same same 2 4.9 16" 6 10'-12' same 3 3 3 10'-12' same same 2 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an 15 42 - - - - - 31 6.8 9" 9 16'-16.9' - - 31 1.3 8" 10 18'-18.9' - - 31 1.3 1.3 - - - - - </td <td>3 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 3 3 7 2.4 16" 5 8'-10' same, except wet 7 2.4 16" 5 8'-10' same, except wet (Upper Till) 10 5 6 10'-12' same (Upper Till) 2 4.9 16" 6 10'-12' same 3 35.0 8" 7 12'-14' same 2 3 35.0 8" 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 15 42 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 31 1.3 1.3 10 18'-18.9' same 20 10 10 18'-18.9' same 20 10 10 18'-18.9' sa</td> <td>10</td> <td>3</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td>-</td> <td></td>	3 1.8 16" 4 6'-8' Gray, medium to fine SAND, some Silt, moist 3 3 7 2.4 16" 5 8'-10' same, except wet 7 2.4 16" 5 8'-10' same, except wet (Upper Till) 10 5 6 10'-12' same (Upper Till) 2 4.9 16" 6 10'-12' same 3 35.0 8" 7 12'-14' same 2 3 35.0 8" 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 15 42 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 31 1.3 1.3 10 18'-18.9' same 20 10 10 18'-18.9' same 20 10 10 18'-18.9' sa	10	3	2					ļ	-	
3 1.8 16" 4 6"-8" Gray, medium to fine SAND, some Silt, moist 7 3 7 10 7 10	3 1.8 16" 4 6"-8" Gray, medium to fine SAND, some Silt, moist 7 3 7 10 7 10 10"	10	3	2	+	8				Į	
3 7 moist 7 2.4 16" 5 7 2.4 16" 5 7 7 10 10" 5 2 4.9 16" 6 10"-12" 3 3 35.0 8" 7 12"-14" 3 35.0 8" 7 12"-14" same 10 7 12"-14" same (Upper Till) 3 35.0 8" 7 12"-14" same 12 22 33 14"-15.3" Gray to red brown, medium to fine SAND an 15 42 50/4 50/5 50/5 50/5 31 6.8 9" 9 16"-16.9" same, except moist 31 1.3 8" 10 18"-18.9" same 31 1.3 1.3 118"-18.9" same 31 1.3 1.3 10" 18"-18.9" 31 1.3 1.3 118"-18.9" same	3 7 7 2.4 16" 5 8'-10" same, except wet 10 7 4.9 16" 6 10" 5 (Upper Till) 10 5 6 10" 6 10" <t< td=""><td>10</td><td></td><td>1 2</td><td></td><td></td><td>1.8</td><td>16"</td><td>4</td><td>6'-8'</td><td>Gray, medium to fine SAND, some Silt,</td></t<>	10		1 2			1.8	16"	4	6'-8'	Gray, medium to fine SAND, some Silt,
7 7 2.4 16" 5 8'-10' same, except wet 10 7 10 5 10' same (Upper Till) 2 4.9 16" 6 10'-12' same 2 4.9 16" 6 10'-12' same 3 7 7 10' same (Upper Till) 3 7 7 10' same same 3 7 7 12'-14' same same 15 22 14" 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same, except moist 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 31 1.3 1.3 10' 18'-18.9' same 20 9 10' 18'-18.9' same same	10 7 2.4 16" 5 8'-10' same, except wet 10 7 4.9 16" 6 (Upper Till) 2 4.9 16" 6 (Upper Till) 3 35.0 8" 7 12'-14' 3 35.0 8" 7 12'-14' 3 35.0 8" 7 12'-14' 25 20.0 14" 8 14'-15.3' 15 42 50/4 50/4 50/4 31 6.8 9" 9 16'-16.9' 31 1.3 8" 10 18'-18.9' 31 1.3 8" 10 18'-18.9' 31 1.3 8" 10 18'-18.9' 31 1.3 1.3 8" 10 31 1.3 1.3 8" 10 31 1.3 1.3 18'-18.9' 31 1.3 1.3 10 18'-18.9' 31 1.3 1.3 10 18'-18.9'	10	 		· ·	ļļ			_	4	moist
7 2.4 16" 5 8'-10' same, except wet 10 7 10 5 10" 10	7 7 2.4 16" 5 8'-10' same, except wet 10 7 10 5 10' <	10	1		3					-	
7 2.4 16" 5 8"-10" same, except wet 10 7 10 5 10" (Upper Till) 2 4.9 16" 6 10"-12" same 3 7 10" 6 10"-12" same 3 3 35.0 8" 7 12"-14" same 3 3 35.0 8" 7 12"-14" same 15 22 20.0 14" 8 14"-15.3" Gray to red brown, medium to fine SAND an 15 42 14" 14"-15.3" Gray to red brown, medium to fine SAND an 31 6.8 9" 9 16"-16.9" same, except moist 31 1.3 8" 10 18"-18.9" same 20 16" 18"-18.9" same same	7 2.4 16° 5 8°-10° same, except wet 10 7 10 10°	10	<u> </u>			7			<u> </u>		
10 7 10 10 5 2 4.9 3 - - 7 3 - 7 - 3 35.0 22 - 3 - 22 - - 7 - - 25 20.0 14'-15.3' 50/5 - 31 - - - 31 - 50/5 - 31 - 50/5 - 31 - <td< td=""><td>10 7 6 10'-12' same (Upper Till) 2 4.9 16" 6 10'-12' same 3 3 35.0 8" 7 12'-14' same 3 35.0 8" 7 12'-14' same 15 22 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an 15 42 14" 14'-15.3' Gray to red brown, medium to fine SAND an 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 131 1.3 8" 10 18'-18.9' same 20 16'-16.9' 18'-18.9' same same same 20 18'-18.9' 18'-18.9' same same same</td><td>10</td><td><u> </u></td><td><u> </u></td><td></td><td></td><td>2.4</td><td>16"</td><td>5</td><td>8'-10'</td><td>same, except wet</td></td<>	10 7 6 10'-12' same (Upper Till) 2 4.9 16" 6 10'-12' same 3 3 35.0 8" 7 12'-14' same 3 35.0 8" 7 12'-14' same 15 22 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an 15 42 14" 14'-15.3' Gray to red brown, medium to fine SAND an 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 131 1.3 8" 10 18'-18.9' same 20 16'-16.9' 18'-18.9' same same same 20 18'-18.9' 18'-18.9' same same same	10	<u> </u>	<u> </u>			2.4	16"	5	8'-10'	same, except wet
10 7 6 10'-12' same (Upper Till) 2 3 - 10'-12' same (Upper Till) 3 - 7 - - same 3 - 35.0 8" 7 12'-14' same 3 - - - - - - 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an 15 42 - - - - - 31 6.8 9" 9 16'-16.9' - - 31 - - - - - - 31 1.3 8" 10 18'-18.9' - - 31 - - - - - - - 31 1.3 8" 10 18'-18.9' - - - 31 - - - - - - - - 31 - - - <t< td=""><td>10 5 4.9 16" 6 10'-12' same 2 3 7 10'-12' same (Upper Till) 3 35.0 8" 7 12'-14' same 3 35.0 8" 7 12'-14' same 15 42 33 - - Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same 31 1.3 8" 10 18'-18.9' same 20 131 1.3 8" 10 18'-18.9' same 20 10 18'-18.9' same same same</td><td>10</td><td><u> </u></td><td>/</td><td>_</td><td></td><td></td><td><u> </u></td><td> </td><td>4</td><td></td></t<>	10 5 4.9 16" 6 10'-12' same 2 3 7 10'-12' same (Upper Till) 3 35.0 8" 7 12'-14' same 3 35.0 8" 7 12'-14' same 15 42 33 - - Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same 31 1.3 8" 10 18'-18.9' same 20 131 1.3 8" 10 18'-18.9' same 20 10 18'-18.9' same same same	10	<u> </u>	/	_			<u> </u>	 	4	
10 2 5 4.9 16" 6 10'-12' same 2 3 -	10 5 4.9 16" 6 10'-12' 3 6 - - - 3 - 7 - - 3 - 7 - - 3 - 7 - - 3 - 35.0 8" 7 12'-14' 3 - - - - 22 - - - - 3 - - - - 22 - - - - 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 - - - - 31 - - - 31 - - - 31 - - - 31 - - - 31 - - - 31 - - - 31 - - - 31 - - - 31 - - - 32 - - 31 - - <td>101</td> <td></td> <td> </td> <td><u> </u></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>4</td> <td></td>	101		 	<u> </u>				<u> </u>	4	
2 4.9 70 6 10-12 same 3 6 7 12'-14' same 3 35.0 8" 7 12'-14' 3 7 7 7 22 33 7 7 25 20.0 14" 8 15 42 14'-15.3' 31 6.8 9" 31 6.8 9" 31 1.3 31 1.3 50/5 7 31 1.3 50/5 7 31 1.3 50/5 7 31 1.3 20 18'-18.9'	2 4.9 10 10 12 same 3 6 7 5 6 6 3 35.0 8" 7 12'-14' same 1 7 12'-14' same 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an 15 42 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 1 1.3 8" 10 18'-18.9'			<u> </u>		5	4.0	4.01		101 401	(Upper Till)
3 7 3 7 22 7 22 7 22 7 25 20.0 15 42 31 6.8 50/5 7 31 1.3 8" 10 18'-18.9' 20 18'-18.9' 20 18'-18.9'	3 6 7 5 3 7 7 7 22 33 7 7 25 20.0 14" 8 14'-15.3' 15 42 6.8 9" 9 16'-16.9' 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 10 18'-18.9' same same		<u></u>	2			4.9	10	<u> </u>	1 10-12	Same
3 7 7 3 7 7 22 33 (density change) 15 22 33 15 42 33 31 6.8 9" 31 6.8 9" 31 6.8 9" 31 6.8 9" 31 1.3 8" 31 1.3 8" 50/5 31 1.3 31 1.3 8" 31 1.3 8" 31 1.3 8" 31 1.3 8" 31 1.3	3 7 35.0 8" 7 12'-14' same 1 7 12'-14' same (density change) 15 42 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 15 42 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' 31 1.3 8" 10 18'-18.9' 31 1.3 8" 10 18'-18.9' 20 1 1.3 10 18'-18.9' 20 1 1 1.3 8"			3	6					-	. "
3 35.0 8" 7 12'-14' same 22 33 (density change) (density change) 15 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 9 10 18'-18.9' same	3 35.0 8" 7 12'-14' same 22 33 (density change) (density change) 15 42 33 Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' 31 6.8 9" 9 16'-16.9' 31 1.3 8" 10 18'-18.9' 31 1.3 8" 10 18'-18.9' 20 10 10 18'-18.9' same				0	7		_		-	
3 7 33.0 5 7 12.14 Same 22 33	3 3 3 3 3 3 (density change) 25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 1 1.3 8" 10 18'-18.9'						35.0	8"	7	12'-14'	same
22 33 (density change) 25 20.0 14" 8 14'-15.3' 15 42 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we sit, some coarse to fine Gravel, moist to we same, except moist 31 6.8 9" 9 16'-16.9' 31 1.3 8" 10 18'-18.9' 20 50/5 10 18'-18.9' same	22 33			7			- 35.0	0	<u>'</u>	12-14	1
25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we silt, some c	25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we 15 42	. —			22			<u></u>		-	(density change)
25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we silt, some coarse to fine Gravel, moist to we same, except moist 31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same	25 20.0 14" 8 14'-15.3' Gray to red brown, medium to fine SAND an Silt, some coarse to fine Gravel, moist to we Silt, some c		h	· ·		33			╂-────	1	
15 42 31 6.8 31 6.8 50/5 31 1.3 8" 10 18'-16.9' Silt, some coarse to fine Gravel, moist to we (Lower Till) 31 50/5	15 42 31 6.8 50/5 31 1.3 8" 10 18'-18.9' cotes:		25	<u>}</u>			20.0	14"	8	14'-15 3'	I Grav to red brown, medium to fine SAND and
31 6.8 9" 9 16'-16.9' 31 1.3 8" 10 18'-18.9' 31 50/5 10 18'-18.9' 31 1.3 8" 10 50/5 10 18'-18.9'	31 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 1 1 1 1	15		42							Silt some coarse to fine Gravel moist to wet
31 6.8 9" 9 16'-16.9' same, except moist 50/5 50/5 6.8 9" 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 50/5 50/5 50/5 50/5 50/5	31 6.8 9" 9 16'-16.9' same, except moist 50/5 1 1.3 8" 10 18'-18.9' same 31 1.3 8" 10 18'-18.9' same 20 1 1 1 10 18'-18.9'	<u></u>	<u> </u>		50/4				<u> </u>	1	
31 6.8 9" 9 16'-16.9' same, except moist 50/5 50/5 6.8 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' same 20 50/5 9 9 16'-16.9' same	31 6.8 9" 9 16'-16.9' same, except moist 50/5 9" 9 16'-16.9' same, except moist 31 1.3 8" 10 18'-18.9' 31 50/5 9 9 10 31 1.3 8" 10 18'-18.9' 20 9 9 10 18'-18.9' 20 9 9 10 18'-18.9' 20 9 9 10 18'-18.9' 31 9 9 9 10 18'-18.9' 31 9 9 9 10 18'-18.9' 9 20 9 9 9 10 18'-18.9' 9 9 10 9 9 10 18'-18.9' 9 9 10 10 9 9 9 9 9 10 18'-18.9' 9 9 10 9 9 9 9 10 18'-18.9' 9 9 10 9 9 9 <td>- </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- 									
50/5 (Lower Till) 31 1.3 50/5 31 50/5 31	50/5 (Lower Till) 31 1.3 50/5 31 50/5 31 50/5 31 50/5 31	[31				6.8	9"	9	16'-16.9'	same, except moist
(Lower Till)	(Lower Till)			50/5				· ·· ·		1	, F
31 1.3 8" 10 18'-18.9' 20 50/5 10 18'-18.9'	31 1.3 8" 10 18'-18.9' same 50/5										(Lower Till)
31 1.3 8" 10 18'-18.9' same 50/5	31 1.3 8" 10 18'-18.9' same 20 0 0 0 0 0 0							<u></u>	<u> </u>		, , ,
20 50/5	20 50/5 00000000000000000000000000000000		31				1.3	8"	10	18'-18.9'	same
20	20 20 0tes:			50/5						ĺ	
20	20				ł						· · · · · · · · · · · · · · · · · · ·
	otes:	20						•			

	2250 Brighton I Rochester, NY	łenrietta Town L 14623	Test Boring No.: <u>B-23</u>
Stantec	(585) 475-1440		Page 1 of 2
Project: Ward Street	Drill Contractor:	Nature's Way Start Date:	9/27/2001
Project #: 190500014	Driller:	Steve Gingrich Completion Date	9/27/2001
Client: Germanow-Simon	Elevation:	Drilling Method:	4-1/4" H.S.A.

Weather:

Supervisor:

P.Smith

Location: Rochester, New York

		B	lows o	n Sam	pler		SAN	IPLE		Soil and Rock Information
20	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
		17				0.4	5"	11	20'-20.9'	same
			50/5							
	_									
										22.0
										Auguer refusal at 22 ft. bgs
		 								· · · · · · · · · · · · · · · · · · ·
			L							
ļ				L				ļ		
	·	<u> </u>	 							Notes:
25								ļ		1. Monitoring well MW-23 installed in
			ļ							completed borehole.
				· ·						
			<u> </u>							
			 	 				 		
										· · · · · · · · · · · · · · · · · · ·
			<u>-</u>							
}			<u> </u>					<u> </u>		· · · · · · · · · · · · · · · · · · ·
┝								<u> </u>		
20	<u></u> .									
- 30										
·										
ł								$\left \right $		
-										
ŀ										
ŀ										
ľ										
ľ										
35										
].									-	
[
]]]	/			
]					
40							. '			
Note:	<u>s:</u>						,			
1. N	= No.	of Bio	ws to D	Drive 2"	Spoon	12" wi	th 140 lb. V	Vt. 30"	Ea. Blow	
2. C	= No.	of Blo	ws to [Drive	Ca	sina	with		b. Wt.	Ea. Blow

Design Loss wield at (a)

HOLE DIAMETER:

8 inch

Test Boring No.: B35

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007
Client:	Germanow-Simon	Elevation:	Not measured	Drilling Method:	Geoprobe
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Supervisor:	D. Bauch
	Rochester, New York	-	90s°F	-	

[SAN	MPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	1	34"	1	0-4	Parking lot base, dry.	0
					Brown SILT and fine SAND, some fine-coarse GRAVEL, brick fragments,	0.6
					misc. fill, some cindery material, dry, with brick at 1.4-1.6'.	
					Light tan brown SILT and fine-medium SAND, some fine-coarse GRAVEL,	1.6
					moist.	
					(+111)	
5	0.3	30"	2	4-8	Brown fine-medium SAND and some SILT, few fine GRAVEL, moist, grading to brown SILT and some fine SAND, wet.	4
					(Upper Till)	
	0.3				Brown fine-coarse SAND, some SILT, some fine-coarse GRAVEL, moist.	6.4
	0.6	30"	3	8-12	Brown-gray brown SILT and fine-medium SAND. some fine-coarse GRAVEL.	8
				-	moist-wet - wet-soupy at 10.3-10.5'.	-
10						
	1					
	1 /	36"	Λ	12-16	Brown gray-brown fine SAND and SILT few fine GRAVEL wet	12
	1.4	50	4	12-10	blown gray-blown nine SAND and SILT, lew nine SIXAVEL, wet.	12
					Gray fine-coarse very dense SILT and SAND, some rock fragments and fine-	13.5
	0.7				coarse GRAVEL, moist-dry.	
15					(Lower Till)	
					End of boring at 16'.	16.0
					Comple 12 11 for TCL V/OCo	
					Sample 12-14 for TCL VOCS.	
				1		
20				1		

Notes:

Test Boring No.: B36

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007
Client:	Germanow-Simon	Elevation:	Not measured	Drilling Method:	Geoprobe
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Supervisor:	D. Bauch
	Rochester, New York	-	90s°F	-	

[SAM	MPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0	18"	1	0-4	Parking lot base, dry.	0
					Brown medium-fine SAND, some SILT, dry.	0.5
					Brown medium-coarse SAND and fine-coarse GRAVEL, some SILT, dry.	1.3
					(Fill)	
	2.8	28"	2	4-8		
5					Brown SILT and fine SAND, wet grading to moist.	4.2
					(Upper Till)	
	0.8					
	2.6	30"	3	8-12	Brown fine-medium SAND and some fine-coarse GRAVEL, moist.	8
					Brown grading to gray brown fine-medium SAND and SILT, some fine-coarse	8.7
10					GRAVEL, wet.	
	0.5					
				10.10		
	1.4	26"	4	12-16	Gray brown fine-medium SAND and SILI, some fine-coarse GRAVEL, wet,	12
				4	broken rock at 13'.	
	0.4					40.0
	0.4				Brown fine-medium SAND and SILT, broken rock at 14°, moist.	13.9
15				-		
15				-	Find of howing of 451	45.0
				-	End of boring at 15'.	15.0
					Comple 4 Cl for TCL VICCo	
				-	Sample 4-6 for TCL VOCS.	
				4		
				4		
				4		
				1		
				1		
20				1		
20					1	

Notes:

Test Boring No.: B37

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007
Client:	Germanow-Simon	Elevation:	Not measured	Drilling Method:	Geoprobe
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Supervisor:	D. Bauch
	Rochester, New York	-	90s°F	-	

		SA	MPLE		Soil Information						
0	PID	Rec.	No.	Depth	Remarks						
	2.7	35"	1	0-4	Parking lot base, dry.	0					
]	Misc. fill, dark brown SAND and SILT, cindery material at 1.1', some fine-	0.8					
]	coarse GRAVEL, moist.						
					Brown-tan SILT and fine SAND, moist.	1.2					
					(Fill)						
			ļ								
ļ											
_	2.2	33"	2	4-8							
5		ļ	ļ	1	Misc. fill, dark brown fine SAND, rock fragments, cindery material, moist.	4.3					
		ļ	ļ	1	Brown fine-medium SAND and SILT, few fine-medium GRAVEL, moist-wet.	5.2					
ļ	4.0	ļ;	ļ	ł	(Upper Till)						
ļ	1.2	ļ,	ļ	ł							
		ļ	ļ	ł							
-+		ļi	ļ	4							
ŀ	22	35"	3	8 1 2	Rown gray brown fine medium SAND and SILT few fine modium GRAVEL	0					
ŀ	2.2	- 55	5	0-12	wet	0					
ŀ		├ ───┐	┞────	1	wol.						
10			├───	1	Brown gray-brown fine-coarse SAND, some SILT, dry-moist	95					
	1.2	i	├───	1		0.0					
ŀ		i	<u>├</u> ───	1							
ŀ		i	<u> </u>	1							
			t	1							
ľ	0.7	27"	4	12-16	Brown fine-coarse SAND, some SILT, some fine-coarse GRAVEL, wet.	12					
				1	(Lower Till)						
]							
[0.6										
15											
ļ		Ļ	L	!							
ļ			L	ļ							
		ļ	ļ	1	End of boring at 16'.	16.0					
		ļ	ļ	1							
$ \rightarrow $		ļ,	ļ	1	Sample 0-4' for TCL VOCs.						
		ļ	ļ	l							
-		ļi	ļ	4							
ŀ		ļi	ļ	4							
20			 	4							
20				L							

Notes:

Test Boring No.: B38

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/2/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/2/2007
Client:	Germanow-Simon	Elevation:	Not measured	Drilling Method:	Geoprobe
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Supervisor:	D. Bauch
	Rochester, New York	-	90s°F	-	

		SAI	MPLE		Soil Information					
0	PID	Rec.	No.	Depth	Remarks					
	4.5	36"	1	0-4	Parking lot base, dry.	0				
ľ]	Misc. fill, brown fine-coarse SAND and SILT, some black cindery material,	0.8				
Ī				1	rock fragments, moist.					
Ī				1	Brown fine-medium SAND and SILT, few fine-medium GRAVEL, moist.	1.2				
Ī	21.5			1	(Fill)					
[
	56.3	42"	2	4-8						
5					Dark brown medium SAND, some SILT, fine-coarse GRAVEL, moist.	4.5				
					Brown grading to gray-brown fine-medium SAND and SILT, few fine-medium	4.7				
					GRAVEL, moist grading to wet.					
	1.9				(Upper Till)					
				1	Brown fine-coarse SAND and SILT, fine-coarse GRAVEL and pebbles, moist.	7				
						-				
	0.5	26"	3	8-12	Brown grading to gray-brown SILT and fine-medium SAND, some fine-coarse	8				
				4	GRAVEL and pebbles, rock at 8.8', wet.					
10				4						
10	0.0			4						
-	0.3			-						
ŀ				-						
				-						
ŀ	0.6	24"	4	12-16	Brown gray SILT and fine-medium SAND, some fine-medium GRAV/FL and	12				
	0.0	24	-	12-10	rock fragments wet	12				
ŀ				1	(Lower Till)					
ŀ				1						
	0.5			1						
15	0.0			1						
				1						
ľ				1						
ľ					End of boring at 16'.	16.0				
ľ				1						
				1	Sample 4-6' for TCL VOCs.					
				1						
ľ				1						
ľ				1						
				1						
20				1						

Notes:

Test Boring No.: B39

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/2/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/2/2007
Client:	Germanow-Simon	Elevation:	Not measured	Drilling Method:	Geoprobe
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Supervisor:	D. Bauch
	Rochester, New York	-	90s°F	-	

0 PID Rec. No. Depth Remarks 67.2 36" 1 0-4 Parking lot base, dry. 0 7 1 0 1 0-4 Parking lot base, dry. 0 9.5 1 0 1 0.4 Parking lot base, dry. 1.3 9.5 1 0 1 Dark brown SAND and SLT, cindery material, some fine-medium GRAVEL, moist. 1.3 9.5 1 0 6 33" 2 4-8 0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, moist. 1.8 0.8 1 1 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 6.3 0.8 1 1 Brown fine-medium SAND and SILT, few fine GRAVEL, moist. 6.3 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1 1 1 1 10 1 1			SAI	MPLE		Soil Information					
67.2 36" 1 0-4 Parking lot base, dry. (Fill) 9.5 0 Broken pink sandstone, brown fine-medium SAND and SILT, moist. 1 9.5 0 1 0 1.3 9.5 0 1 1.3 Broken gray rock, dry. 1.4 0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 0.6 32" 3 8-12 Brown-tan SILT and fine-medium SAND and SILT, few fine GRAVEL, moist. 6.5 0.6 32" 3 8-12 Brown fine-medium SAND and SILT, few fine GRAVEL, wet. 6.5 0.6 32" 3 8-12 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 8 10	0	PID	Rec.	No.	Depth	Remarks					
Image: constraint of the standard start is a start of the standard start is stard stone, brown fine-medium SAND and SILT, moist. 1 9.5 Image: constraint of the standard start is start of the start is start in the start is start of the start is start in the start is start in the start is start in the start is start of the start is start in the start is start if the start is start in the start in the start is start in the start is start in the star		67.2	36"	1	0-4	Parking lot base, dry.	0				
9.5 Broken pink sandstone, brown fine-medium SAND and SILT, moist. 1.3 9.5 Broken pink sandstone, brown SAND, and SILT, cindery material, some fine-medium GRAVEL, moist. 1.3 9.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 1.4 0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 0.6 32" 3 Broken gray rock, dry. 6 6 0.8 Broken gray rock, dry. 6 6 6 0.6 32" 3 8-12 Brown fine-medium SAND, and SILT, few fine GRAVEL, moist. 6.5 0.6 32" 3 8-12 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 8 10]	(Fill)					
9.5 Dark brown SAND and SILT, cindery material, some fine-medium GRAVEL, moist. 1.4 9.5 Broken gray rock, dry. 1.4 0.6 33" 2 4-8 0.6 33" 2 4-8 0.6 32" 2 4-8 0.8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 0.8 Brown fine-medium SAND and SILT, few fine GRAVEL, moist. 6 0.8 Brown fine-medium SAND and SILT, few fine GRAVEL, moist. 6.3 0.6 32" 3 8-12 Brown fine-medium SAND and SILT, few fine GRAVEL, wet. 6.5 0.6 32" 3 8-12 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 8 10 Intervent 12 11 Intervent Gray-brown SILT and fine SAND, broken gray rock at 14.3', moist. 14 0.3 Intervent End of boring at 16'. Sample 0-2' for TCL VOCs. 16.0 20 Intervent Intervent Intervent 16.0						Broken pink sandstone, brown fine-medium SAND and SILT, moist.	1				
9.5 Broken gray rock, dry. 1.4 0.6 33" 2 4-8 0.6 32" 2 4-8 0.8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 0.8 Brown fine-medium SAND and SILT, few fine GRAVEL, moist. 6 0.8 Brown fine-medium SAND and SILT, few fine GRAVEL, moist. 6.3 0.6 32" 3 8-12 0.6 32" 3 8-12 0.6 32" 3 8-12 0.6 32" 3 8-12 0.6 32" 3 8-12 0.6 35" 4 12-16 10 Interview Interview Interview 10 Interview Interview 112 Interview Interview Interview 12 Interview Interview Interview 12 Interview Interview Interview Interview Interview Interview Interview						Dark brown SAND and SILT, cindery material, some fine-medium GRAVEL, moist.	1.3				
0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, moist. (Upper Till) 1.8 0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 5 - - - 6 - 6 0.8 - - - 6 - 6 0.8 - - - 6 - 6 0.6 32" 3 8-12 Brown fine-medium SAND, few fine GRAVEL, moist. 6.5 0.6 32" 3 8-12 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 8 10 - - - - 6 12 - - - - - 6.5 0.6 35" 4 12-16 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 12 10 - - - - - - - - - - - - -		9.5				Broken gray rock, dry.	1.4				
Image: Constraint of the second sec						Brown-tan SILT and fine-medium SAND, moist.	1.8				
0.6 33" 2 4-8 Brown-tan SILT and fine-medium SAND, some fine-medium GRAVEL, moist. 4 0.8						(Upper Till)					
0.8 33 2 4-8 Blown-land SiLT and time-inteductin GRAVEL, moist. 4 0.8		0.6	20"	2	4.0	Drown ton SILT and find modium SAND, some find modium CDAV/EL, maint	4				
0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.8 6 0.6 32" 10 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 13 7 14 12-16 15 7 16 7 17 7 18 7 19 7 10 7 13 7 14 10 15 7 16 16.0	5	0.0	33	2	4-0	BIOWN-IAN SILT and IME-MEDIUM SAND, Some IME-MEDIUM GRAVEL, MOISI.	4				
0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>					-						
0.8					•						
Image: Second		0.8				Broken gray rock, dry.	6				
0.6 32" 3 8-12 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 8 10 1.2 10 1.2 10 <						Brown fine-medium SAND and SILT, few fine GRAVEL, moist.	6.3				
Image: Constraint of the stand						Brown SILT and fine-medium SAND, few fine GRAVEL, wet.	6.5				
0.6 32" 3 8-12 Brown grading to gray-brown SIL1 and fine SAND, some fine-coarse GRAVEL 8 10 1.2			0.01		0.40						
10 12 11 12 13 14 12 14 12 14 12 14 14 12 14 14 14 12 14 <td< td=""><td></td><td>0.6</td><td>32*</td><td>3</td><td>8-12</td><td>Brown grading to gray-brown SILI and tine SAND, some tine-coarse GRAVEL</td><td>8</td></td<>		0.6	32*	3	8-12	Brown grading to gray-brown SILI and tine SAND, some tine-coarse GRAVEL	8				
10 1.2 1.					4	and rock fragments, red sandstone fragment at 10.8, wet.					
10 1.2 1.	10				-						
1.2	10	12			1						
Image: Constraint of the second sec		1.2			1						
Image: Constraint of the state of					1						
0.6 35" 4 12-16 Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL 12 1					1						
and rock fragments, wet. and rock fragments, wet. and rock fragments, wet. Gray-brown SILT and fine SAND, broken gray rock at 14.3', moist. 15 15 16 17 18 19 19 10 10 11 12 14 15 16 17 18 19 10 10 11 12 14 15 16 17 18 19 10 10 11 12 13 14 15 16 16 17 18 18 19 10 11 12 13 14 15 16		0.6	35"	4	12-16	Brown grading to gray-brown SILT and fine SAND, some fine-coarse GRAVEL	12				
Image: Constraint of the stand						and rock fragments, wet.					
0.3											
0.3						Gray-brown SILT and fine SAND, broken gray rock at 14.3', moist.	14				
15	4 -	0.3			4	(Lower Till)					
Image: Constraint of the second sec	15				-						
Image: Second					1						
20 Lind of boining at 101 Sample 0-2' for TCL VOCs.						End of boring at 16'	16.0				
Sample 0-2' for TCL VOCs. 20					1		10.0				
					1	Sample 0-2' for TCL VOCs.					
]						
]						
					4						
					4						
	20										

Test Boring No.: B40

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/2/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/2/2007
Client:	Germanow-Simon	Elevation:	Not measured	Drilling Method:	Geoprobe
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Supervisor:	D. Bauch
	Rochester, New York	-	90s°F	-	

		SAI	MPLE		Soil Information					
0	PID	Rec.	No.	Depth	Remarks					
	0.7	43"	1	0-4	Parking lot base, dry.	0				
					(Fill)					
					Brown fine-coarse SAND and fine-coarse GRAVEL, some SILT, moist.	1.5				
	0.2				Brown-tan SILT and fine-medium SAND, some fine-coarse GRAVEL, moist.	1.7				
					(Upper Till)					
	1.3	33"	2	4-8	Brown-tan SILT and fine-medium SAND, some fine-coarse GRAVEL, moist	4				
5					grading to wet at 6.0'.					
	0.4				Brown fine-coarse SAND, some SILT, fine-coarse GRAVEL, moist.	6.3				
		0.4"		0.40	Desugn and the second because OILT and fine CAND, four fine meetings ODAN/EL					
	2	24**	3	8-12	Brown grading to gray-brown SILT and tine SAND, tew fine-medium GRAVEL,	8.2				
					wet.					
10										
10	0.2									
ŀ	0.5			-						
-										
ŀ										
	0.4	30"	4	12-16	Brown gray SILT and fine SAND, few fine-medium GRAVEL, wet, broken gray	12				
	•••		-		rock at 13.0'.					
ľ					(Lower Till)					
ľ				1	Brown fine-coarse SAND and fine-coarse GRAVEL, some SILT, wet.	13.8				
	0.6									
15										
[End of boring at 16'.	16.0				
]	Sample 8-10' for TCL VOCs.					
				1						
ļ				1						
ļ				4						
				4						
20										

Notes:

Well No.: MW23R

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	7/30/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	7/31/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York		90s°F	-	

			<u>SAMPL</u>	.E		Soil Information				
0	PID	Rec.	BCs	No.	Depth	Remarks				
	0.6	16'	8	1	0-2	Topsoil, dry	0			
[6			Light brown coarse-fine SAND and GRAVEL, dry.	0.5			
[9			(Fill)				
Γ			11							
ſ	0	8"	6	2	2-4	Brown fine SAND, some SILT, dry, native.	2			
	·		6			(Upper Till)				
Γ	·i		6							
Γ	·i		6							
ſ	0.1	6"	3	3	4-6	Brown fine SILT, moist.	4			
5	·;		4		1					
	·		5							
ľ	·		6							
ľ	1.4	12"	4	4	6-8	Brown fine SILT. some GRAVEL. moist.	6			
ľ			5							
ľ	,,	'	6							
	,P	'	4							
ľ	2	5"	5	5	8-10	Brown fine SILT, few small GRAVEL, moist.	8			
ľ		<u>├</u> ──	6	<u> </u>			-			
F	·	┝────┦	7		-					
10	·	┝────┦	10		-					
	27	12"	3	6	10-12	Brown fine SILT and SAND, few round medium peobles, wet	10			
ŀ		- <u>'-</u> -'	4	- Ŭ						
ŀ	·	┟────┘	5		4					
ŀ	J	┟────┘	8		-					
ŀ	51	11"	6	7	12-14	Rown fine SILT and some SAND some round medium nebbles, wet	12			
-+		<u> ' ' '</u>	7	, ·						
ŀ	J	┟────┘	g		-					
ŀ	·	┝───┘	13		-					
ŀ	23	16"	6	8	14-16	Rrown-grav fine SILT some medium rounded pebbles dense wet	14			
15	2.0		15			/I ower Till)	1-1			
	J	┟────┘	28		-					
ŀ	J	┟────┘	38		-					
ŀ	51	12"	18	q	16-17 3	Rown-gray fine SILT some SAND some rounded medium-fine pebbles	16.0			
ŀ	5.1	14	57	3	10-17.0	and condetone fragmente wet	10.0			
ŀ		┟────┘	100/3		4	and sandstone magnetics, wet.				
	·	├ ────′	100/5		4	Auger advanced without campling 17 3-22'	17 3			
ŀ	<u>/</u>	┟────┘		 	18-20		17.5			
ŀ	·	├ ────′			10-20					
ŀ	[_]	┟────┘	 	 	-					
20	·'	┟────′	 	 	4					
20	'	<u>í </u>]				

Well No.: MW23R

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	7/30/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	7/31/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York	-	90s°F	-	

		SAMPLE				Soil Information				
0	PID	Rec.	BCs	No.	Depth	Remarks				
					20-22					
						Auger refusal at top of bedrock, 22'.				
					Run 1	Decew Dolostone - Gray fine grained dolomitic limestone, few vugs.	22			
					22-32					
					REC =	Sample 12-14' for TCL VOCs.				
					97%					
25										
					RQD =					
					64%					
30										
						Devine termineted at 22.0 ft has	20			
					4	Donny terminated at 32.0 It. bys.	32			
					-					
35										
55										

Notes:

- 1. PID Model Mini-Rae 2000 with 10.6eV lamp.
- 2. Bedrock cored with NX core barrel and reamed with 3-7/8" roller bit.
- 3. Monitoring well MW-23R installed in completed borehole. See well completion log for details

BEDROCK INTERFACE MONITORING WELL

DESIGN DETAILS

PROJECT NAME	8-28 Ward Street	HOLE DESIGNATION	MW-23R
PROJECT NUMBER	190500014.310	DATE COMPLETED	7/31/2007
CLIENT	Germanow-Simon	DRILLING METHOD	Hollow stem auger
LOCATION	8-28 Ward Street	SUPERVISOR	D. Bauch
	Rochester, NY		

SCREEN TYPE:	CONTINUOUS	SLOTX	PERFORATED		LOUVRE _		OTHER	
SCREEN MATERIAL:	STAINLESS S	STEEL	PVC_>	<	OTHER			
SCREEN LENGTH:	5	ft	SCREEN DIAMETER	2	in.	SCREEN	SLOT SIZE:	0.010
WELL CASING MATERIAL:		Blac	k iron pipe	WELL	CASING DIAME		4	in
HOLE DIAMETER:		4 in						

Well No.: MW45

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/2/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/2/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York		90s°F		

		!	SAMPL	AMPLE Soil Information			
0	PID	Rec.	BCs	No.	Depth	Remarks	
	7	10"	12	1	0-2	Parking lot base, dry.	0
		I <u> </u>	9	ſ <u> </u>		Brown medium-fine SAND and SILT, fine-coarse GRAVEL, few rock	0.5
Ī		I'	7			fragments, dry.	ļ
	!	í <u> </u>	8			(Fill)	l
	6.2	8"	4	2	2-4		
			5			Brown-tan SILT and medium-fine SAND, some fine-medium GRAVEL,	2.3
		I <u> </u>	6	ſ <u> </u>		moist.	l
			7			(Upper Till)	l
Ī	18	17"	2	3	4-6	Brown fine SAND and SILT, some fine-medium GRAVEL, moist.	4
5		I'	3				l
	!	í <u> </u>	5				l
Ī	!	í <u> </u>	5				
	0.7		3	4	6-8	No recovery - rock blocking.	I
Γ	· '		5				l
Γ	· 7	[]	7				l
	,	í '	7				l
Γ	16.5	16"	6	5	8-10	Brown fine SILT and SAND, some fine-coarse GRAVEL and	8
Γ	· · · · ·	('	7			sandstone fragments, wet, grading to gray-brown.	
Γ	· · · · ·	('	7				
10	· · · · ·	í T	12				
	3.4	12"	8	6	10-12	Gray-brown SILT and fine SAND, fine-medium GRAVEL, wet.	10
Γ	· '		16			(Lower Till)	
Γ	· '		18				
Γ	· · · · ·	í T	22				
Γ	1.5	15"	7	7	12-14	Gray-brown SILT and fine SAND, some fine-coarse GRAVEL, broken	12
	· 7	[]	9			rock at 12.5-12.6', wet grading to moist.	
Γ	,	í '	17				
Γ	· · · · ·	í T	21				
Γ	0.8	22"	29	8	14-16	Gray brown SILT and fine-coarse SAND, some fine-coarse GRAVEL,	14
15	,	í '	38			broken sandstone at 15.6', moist.	
	,	í '	50				
Γ	,	í '	42				l
Γ	1.2	19"	21	9	16-18	Gray brown SILT and fine SAND, some fine-coarse GRAVEL and rock	16.0
Γ	· · · · ·	í – – – – – – – – – – – – – – – – – – –	28			fragments, wet.	
Γ	,	í '	34				
	,	(38			Gray brown fine-coarse SAND, some SILT and fine-coarse GRAVEL,	17.5
Ī	2.1	6"	33	10	18-20	moist.	
Ţ	, ;	()	100/4			Gray brown SILT and fine SAND, some fine-medium GRAVEL, moist-wei	18.4
Ī	,	(
20	,	('					

Well No.: MW45

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/2/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/2/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York	_	90s°F	-	

			SAMPL	E		Soil Information	
0	PID	Rec.	BCs	No.	Depth	Remarks	
					20-21		
						Auger refusal at top of bedrock, 21'.	21
						Boring terminated at 21.0 ft. bgs.	
						Sample 4-6' for TCL VOCs and 8-10' for TCL SVOCs, Pest\PCB,	
						TAL metals. DUP	
25							
30							

Notes:

- 1. PID Model Mini-Rae 2000 with 10.6eV lamp.
- 2. Monitoring well MW-45 installed in completed borehole. See well completion log for details

OVERBURDEN MONITORING WELL

DESIGN DETAILS

Well No.: MW46

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007	
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007	
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch	
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger	
	Rochester, New York		90s°F	-		

			SAMPL	.E		Soil Information			
0	PID	Rec.	BCs	No.	Depth	Remarks			
	0.6	11"	17	1	0-2	GRAVEL parking lot base, dry.	0		
			18			Brown SAND and SILT, misc. fill, dry.	0.7		
			9			(Fill)			
			7						
	2.3	6"	18	2	2-4	Brown SILT and medium-fine SAND, some GRAVEL and rock	2		
			12			fragments, moist, native.			
			10			(Upper Till)			
_			8						
_	6.2	13"	5	3	4-6	Brown fine SILT and SAND, few GRAVEL, moist.	4		
5			6			Light brown SILT and some SAND, trace GRAVEL, moist-wet.	4.2		
			7		1				
-			10						
-	6	10"	7	4	6-8	Brown SILT and fine-coarse SAND, some fine-coarse sub-rounded	6		
-			7			GRAVEL, moist.			
			1		-				
-	4.0	4 4 11	4		0.40		•		
-	1.8	14"	5	5	8-10	Brown medium SAND and some SILI, few GRAVEL, moist.	8		
-			6		-				
10			/		-				
10	2.6	10"	12	6	10.10	Prown SILT and fine SAND, trace fine CDAV/EL, wat	40		
-	3.0	10	5 7	0	10-12	BIOWN SILT and the SAND, trace the GRAVEL, wet.	10		
-			15		-				
ŀ			10		-				
F	12.8	11"	6	7	12_14	Brown gray-brown SILT and fine SAND some GRAVEL wet	12		
	12.0		9	1	12-14	blown gray-blown oill r and line on we, some of AVEL, wet.	12		
F			11		1				
Ē			17		1				
F	6.3	16"	16	8	14-16	Grav-brown SILT and fine SAND, some fine GRAVEL, wet-moist.	14		
15		-	24	-		(Lower Till)			
			36		1				
Ē			52		1				
Ī	4.4	18"	36	9	16-18	Gray-brown SILT and fine SAND, few fine GRAVEL, moist.	16.0		
ľ			42		1				
[62]				
			71						
	1	11"	26	10	18-19.7	Gray-brown SILT and fine SAND, some small GRAVEL, moist-wet.	18		
			38]				
			40						
20			100/2						

Well No.: MW46

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007	
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007	
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch	
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger	
	Rochester, New York		90s°F	-		

		:	SAMPL	.E		Soil Information	
0	PID	Rec.	BCs	No.	Depth	Remarks	
						Auger refusal at top of bedrock, 20'.	20
						Boring terminated at 20.0 ft. bgs.	
						Sample 12-14' for TCL VOCs and 14-16' for TCL SVOCs, Pest\PCB,	
						TAL metals. MS/MSD	
25							
30							

Notes:

- 1. PID Model Mini-Rae 2000 with 10.6eV lamp.
- 2. Monitoring well MW-46 installed in completed borehole. See well completion log for details

OVERBURDEN MONITORING WELL

DESIGN DETAILS

Well No.: MW46R

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	7/30/2007	
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	7/31/2007	
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch	
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger	
	Rochester, New York	-	90s°F			

	SAMPLE			.E		Soil Information	
0	PID	Rec.	BCs	No.	Depth	Remarks	
					0-19.5	Auger advanced without sampling to 19.5'	
				'			
				'			
				'			
5							
10							
10							
				'			
				'			
15					1		
					40 -		
20					19.5	Auger refusal at top of bedrock, 19.5'.	19.5

2250 Brighton Henrietta Town Line Road Rochester, NY 14623 (585) 475-1440

Well No.: MW46R

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	7/30/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	7/31/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York	-	90s°F	-	

	SAMPLE			E		Soil Information				
0	PID	Rec.	BCs	No.	Depth	Remarks				
					Run 1	Decew Dolostone - Fine grained gray dolomitic limestone, few vugs.				
				1	9.5-29.5					
					REC =					
					90%					
					RQD =					
					17%					
25										
						Boring terminated at 29.5 ft, bos	29 5			
30							20.0			

Notes:

- 1. PID Model Mini-Rae 2000 with 10.6eV lamp.
- 2. Bedrock cored with NX core barrel and reamed with 3-7/8" roller bit.
- 3. Monitoring well MW-46R installed in completed borehole. See well completion log for details

BEDROCK INTERFACE MONITORING WELL

DESIGN DETAILS

PROJECT NAME 8-28 Ward Street	HOLE DESIGNATION	MW-46R	
PROJECT NUMBER 190500014.310	DATE COMPLETED	7/31/2007	_
CLIENT Germanow-Simon	DRILLING METHOD Ho	llow stem auger	•
LOCATION 8-28 Ward Street	SUPERVISOR D.	Bauch	
Rochester, NY			

SCREEN TYPE:	CONTINUOUS S	LOT	X PERFORATED	LOUVRE	OTHER
SCREEN MATERIAL:	STAINLESS S	TEEL_	PVC _X	OTHER	
SCREEN LENGTH:	5	ft	SCREEN DIAMETER2	in. SCF	EEN SLOT SIZE: 0.010
WELL CASING MATERIAL:			Black iron pipe	WELL CASING DIAMETER:	4 in
HOLE DIAMETER:		4 in			

2250 Brighton Henrietta Town Line Road Rochester, NY 14623 (585) 475-1440

Well No.: MW47

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York		90s°F	-	

	SAMPLE					Soil Information					
0	PID	Rec.	BCs	No.	Depth	Remarks					
	6.7	14"	14	1	0-2	Parking lot base, dry.	0				
[<u> </u>		8								
[<u> </u>		7			Brown red-brown SILT and fine SAND, some fine GRAVEL, dry.	1				
[,		5			(Fill)	ļ				
	5.1	15"	2	2	2-4	Brown red-brown medium-fine SAND, some SILT, few fine GRAVEL,	2				
	í – – – – – – – – – – – – – – – – – – –		3			moist, native.					
	i – – – – – – – – – – – – – – – – – – –		2			(Upper Till)	ļ				
	i – – – – – – – – – – – – – – – – – – –		1								
	5.8	5"	2	3	4-6	Brown fine-medium SAND and SILT, some fine-medium GRAVEL,	4				
5	i – I		1			moist-wet.					
	ii		2	[
	ı — †		1	<u> </u>							
	9.3	10"	1	4	6-8	Brown medium-fine SAND and SILT, some coarse-fine GRAVEL, wet.	6				
	ı — †		2	<u> </u>							
	[]		7	<u> </u>							
	(9	<u> </u>			ļ				
	10.3	15"	4	5	8-10	Brown SILT and medium-fine SAND, some medium-fine GRAVEL,	8				
			5			wet.	ļ				
	·+		5		1						
10	i — 1		5	[
	0.3	13"	4	6	10-12	Grav brown SILT and fine-medium SAND, fine GRAVEL, wet.	10				
			4		-						
	(5	<u> </u>							
	(11	l	1						
	0.9	15"	3	7	12-14	Grav brown SILT and fine-medium SAND, fine-coarse GRAVEL, wet,	12				
			6	<u> </u>		trace red sandstone staining.					
	í – – †		7								
	(12	l	1						
	0.6	18"	9	8	14-16	Grav brown SILT and fine-coarse SAND and fine-coarse GRAVEL, wet.	14				
15	I		23			(Lower Till)					
	·+		23	l	1	(/,	l				
	i — †		32								
	3.7	16"	15	9	16-18	I Grav brown fine-medium SAND and SILT, trace small GRAVEL.	16.0				
			29			wet-soupy.	• • • •				
	i — I		36								
	i – I		65								
	2.1	10"	12	10	18-19.3	I Grav brown fine-medium SAND and SILT, trace small GRAVEL, wet -	18				
			24	<u> </u>		arading from wet-souny to wet-moist.	••				
	[]	!	100/4				l				
20	 ا		100, 1	┢────	1						
	, ,	1 '	1 7	1							

2250 Brighton Henrietta Town Line Road Rochester, NY 14623 (585) 475-1440

Well No.: MW47

Project:	8-28 Ward Street	Drill Contractor:	Nothnagle	Start Date:	8/1/2007
Project #:	190500014.310	Driller:	S. Loranty	Completion Date:	8/1/2007
Client:	Germanow-Simon	Elevation:	Not measured	Supervisor:	D. Bauch
Location:	8-28 Ward Street	Weather:	Sunny, 80s°-	Drilling Method:	Hollow stem auger
	Rochester, New York	-	90s°F	-	

	SAMPLE			Soil Information				
0	PID	Rec.	BCs	No.	Depth	Remarks		
	0.5	4"	42		20-21	Gray brown SILT and fine-medium SAND, some fine-medium GRAVEL,	20	
			100/2			wet.		
						Auger refusal at top of bedrock, 21'.	21	
						Boring terminated at 21.0 ft. bgs.		
						Sample 6-8' for TCL VOCs and 8-10' for TCL SVOCs, Pest\PCB,		
						TAL metals. MS/MSD		
25								
30								

Notes:

- 1. PID Model Mini-Rae 2000 with 10.6eV lamp.
- 2. Monitoring well MW-47 installed in completed borehole. See well completion log for details

OVERBURDEN MONITORING WELL

DESIGN DETAILS

TEST PIT LOG

Test Hole No:	TP-101	Inspected By: Pete Smith V		Weather/Temp:		
Location/Station:		N:	E:		Elev.:	
Equipment Used:	Backhoe	Contractor:	Matrix		Operator:	P. Bliek
Start Time:	9:30	Stop Time:	12:00		Agency Rep:	
Comments:		-				
 No Roc No Gra 	Rock Encountered ck Encountered At Ground Water Encound Water Encour	Ft. xountered. htered AtFt.		LOCATIO	N SKETCH:	

_____ MSW %

Native %(USCS)

Fill % C&D%

DEPTH		PID	READ	INGS	
(ft. BGS)	CLASSIFICATION	Max	Sust	Bkgd	NOTES
0-0.3	Asphalt parking lot.				
0.3-1.3	Crushed stone parking lot base, dry.				
1.3-1.7	Orangey brown silt and fine sand, some small		0.0	0.0	
	gravel, moist.				
1.7-2.0	Black medium sand and silt, some large gravel,		0.0	0.0	
	some slag, moist.				
2.0-2.7	Tan brown silty fine sand, few brick, moist.		0.0	0.0	Metal pipe at 10-15' station.
2.7-3.1	Black cindery silt and fine sand, large rocks, large		0.0	0.0	Foundation to 4.5' deep at 0-5'
	rusted metal sheet pieces, misc. fill, moist.				station.
3.1-3.7	Red brown silt, few fine sand, trace white ashy silt,		0.0	0.0	
	many glass fragments, dry-moist.				
3.7-4.5	Red brown silt and fine sand, some glass, moist.		0.0	0.0	
4.5-7.0	Brown silty fine sand, moist (NATIVE).		0.0	0.0	
7.0	Test pit terminated at 7.0'.				
	Sample 2' bgs at 5' station for VOCs (black		0.0	0.0	Samples held, not analyzed
	cindery material with slag) (DUP and MS/MSD).				
	Sample 6.5' bgs at 7' station for VOCs.		0.0	0.0	Sample held, not analyzed

Appendix B

Department of Environmental Services

Monroe County, New York

Maggie Brooks County Executive John E. Graham, P.E. *Director*

Initial Sewer Use Permit Instructions

Please provide all requested information accurately. The Sewer Use Permit is a legal document. Any name or address change will require a new Initial Sewer Use Permit. An officer of the company must sign the permit or designate someone else the responsibility by attachment letter with the permit package. The permit application refers to sections of the Sewer Use Law, which is available in the "Related Documents" section of this Web page.

Pure Waters, under Section 57 of the Worker's Compensation Law and Section 220 - Subdivision 8 of the Disability Benefits Law, is required to have on file proof that your company has workers compensation and disability benefits for your employees. A form from your insurance carrier stating such coverage will thus be required before your permit can be processed.

Initial permit fee of \$40.00 should be made payable to Director of Finance, County of Monroe. All copies of the application, the form from your insurance carrier, and the check should be mailed to:

Division of Pure Waters Industrial Waste Control Section 444 E. Henrietta Road, Bldg. 15 Rochester, New York 14620

If you have any questions regarding the permit, please call the Industrial Waste Control Section at 760-7600 option 4.

APPLICATION FOR PERMIT TO DISCHARGE INTO PURE WATERS SEWER SYSTEM OR TRIBUTARY

i.	Name of Applicant:	Germanow-Simon Corporation
2.	Address of Applicant:	408 St. Paul Street
	-	Rochester, NY 14601
	-	
3.	location of Property:	Same
4.	Ownership of Freperty:	Same
	different than above	
5.	Number of sewer connections requiring	1
	license/permit	
6.	Type of activity producing wastes requiring license or	
	permit pursuant to Sewer Use Law of Monroe County	Environmental remediation
7.	Department of Health or of New York State Formit #	
	(if any)	NA
8.	Number of Attachments:	3
	Exhibit "A"	
	Exhibit "B"	
	Exhibit "C"	
	Exhibit "D"	NA

Note:

1.00

÷

1. Fill in all opaces. Mark, "NA" in appropriate space, if not applicable.

2. Pefer to page 10 of this document for descriptions of Exhibits A, B and D. Fefer to page 16 for Exhibit C.

Euge In

SUMMARY OF INDUSTRIAL WASTE CHARACTERISTICS Exhibit C

Firm:	Germano	w-Sim	on Corporat	ion		
Haarmas:	408 St.	Paul	Street			
		Indu	strial Waste	e Characteri	stics and Quantit	ty
Characterist	1-78		(Unin)	Avg.	Minimum	Maximum
Volume (Gal. or CP/:	menth;					
Temperature	(F cr C)					
рH						
Biochemical ((mg/L or lbs/	Dxygen De /mil. gal	mand .)				
Chlorine Dema (mg/L or lbs/	and (mil. gal	• }				
Suspended Sol (mg/L or lbs/	ids 'mil. gal	.)				
Phosphate or (mg/1 or lbs/	Phosphor 'mil. gal	us .)				
	SUBSI	TANCES	UNDER ARTIC	LES IV, V, V	/I, VII OF SEWER	USE LAW
List item an	ld concen	tratic	n (or volume	e) under app	ropriate heading.	. If none, so state.)
l. Unpolluted	l waters	(Se	ct. 4.1) _			

2.	Prchibited Materials	(Sect.	4.2)	
3. cha	Certain materials and aracteristics	l/or (Sect.	4.3)	
4.	Toxic Substances	(Sect. 5.2)	5.1,	
5.	Pethogenic Bacteria	(Sect.	5.1)	
€.	Radioactive Wastes	(Sect.	6.2;	
7.	Soavenjer Wastes	186dt. 7.27	7.:,	

Fije 1b

and the second

444 E. Henrietta Rd., Bldg. 15 • Rochester, New York 14620-4630 (585) 760-7600 Option 4 • fax: (585) 324-1213 • www.monroecounty.gov

ATTACHMENTS TO ACCOMPANY APPLICATION

1. A plot or tape location map of the property showing accurately the side and location of all sever and drainage connections to the severage system, all protocatrent devices and all manholes or other accessible sampling points. Each sever or drain connection shown on drawing shall be designated by an identification number. The plot or tape location map shall be attached as Exhibit "A".

2. A complete schedule of all process waters and industrial wastes produced or expected to be produced at said property, including a description of the character of each waste, the daily volume and whether the flow is continuous or intermittent. The schedule shall be attached as Exhibit "B".

3. A summary of the total wastewater characteristics to be received from the applicant shall be submitted in proper for as Exhibit "C".

4. Additional information requested by the Director of Pure Waters shall be prepared as Exhibit "D" and be attached to the application as required.

Company Representative Signature

Andrew Germanow

Print Name

President

Title

Phone Number (585) 232-1441, ext. 254

Person to be contacted for inspection and/or emergency purposes including phone number

Michael P. Storonsky, Stantec

Print Name

Phone number (585) 413-5620

Puge 10

44

÷,

INITIAL SEWER USE PERMIT

200

No.

County of Mon:	roe Fare Maters District No		arnit 8	10 :
		Ξ	xpires:	
		Ŧ	Ĵ' : :	\$40.00
Firm Name	Germanow-Simon Corporation			
Address	408 St. Paul Street			
	Rochester, NY 14601			
Type of Easing	ess or Service <u>Scientific Ins</u>	strument Manufaci	uring	
I. The above-n system or Trib verified by th and conditions A B C	amed applicant is permitted to sutary thereto as applied for by a applicant except the Director to govern the permitted discha	discharge wastes an application o of Pure Waters r rge:	into c lated require	he Pure Waters Sewer and s the following terms
II. The applic	ant further agrees to:		,	
l. Accep all pert	t and abide by all provisions of inent rules or regulations now :	f the Sewer Use L in force or shall	aw of N be add	Monrce County and of opted in the future.
2. Notif system o Exhibit daily vo were not	y the Director of Pure Waters in r any change in industrial waste "B". The latter encompasses eit lume or strength of wastes liste listed in Exhibit "B".	n writing of any es discharge to t ther (1) an incre ed in Exhibit "B"	revisio he publ ase cr or (2)	on to the plant sewer lic sewers listed in decrease in average new wastes that
3. Furnis related s sought.	sh the Director of Pure Waters w to the installation or use of se	pon request any a wer or drain for	additic which	nal information this permit is
 Operation condition involved, 	te and maintain any waste pretre n of the acceptance into the pub in an efficient manner at all	atment facilities lic sewer of the times, and at no	, as m indust expens	ay be required as a rial wastes e to the County.
5. Cooper inspectin pretreats	wate with the Director of Pure W Ng, sampling, and study of Maste. Ment.	aters or his repr s, or the facilit	esenta ies pro	tives in their ovided for
6. Notify breakdown to the pu	the Director of Fure Waters import of pretroatment equipment, or objic sewers of any wattes or pro-	mediately of any other cocurrence oceps waters not	accider that oc lovered	tt, negligence, coasions discharge d by this permit.
Applicant's Sig	Satire		Dute _	
Applicant's Tit	10 President			
Energency Contu	Michael Storonsky	Phone (5	85) 41	3-5620
Permit Approved	by		Date	

444 E. Henrietta Rd., Bldg. 15 • Rochester, New York 14620-4630 (585) 760-7600 Option 4 • fax: (585) 324-1213 • www.monroecounty.gov Department of Environmental Services

Monroe County, New York

Maggie Brooks County Executive John E. Graham, P.E. Director

JUL 18 2007 STANTEC

July 11, 2007

Mr. Andrew Germanow Germanow Simon Corp 408 St. Paul Street Rochester, NY 14605

Re: Sewer Use Permit Renewal

Dear Mr. Andrew Germanow:

Enclosed is an application for a Sewer Use Permit Renewal. Be advised the Sewer Use Permit is a legal document. Please provide all requested information accurately, especially the correct legal name of your company. Any name or address change within the last year will require an Initial Sewer Use Permit application. An officer of the municipality/company must sign the permit or designate someone else the responsibility by attachment letter with the permit package. The renewal will become effective upon the expiration date of your present permit and be in effect for one year.

Pure Waters, under Section 57 of the Worker's Compensation Law and Section 220-Subdivision 8 of the Disability Benefits Law, is required to have on file proof that your company has Workmans Compensation insurance and Disability benefits for your employees. A form from your insurance carrier stating such coverage will be required before your permit can be processed.

\$50.00

Please fill out the enclosed application and mail with a check for \$30.00 payable to the Director of Finance, County of Monroe.

All copies of the application and the form from your insurance carrier should be mailed to:

Department of Environmental Services Industrial Waste Section 444 East Henrietta Road Rochester, NY 14620

If you have any questions regarding the permit, please call the Industrial Waste Section at 585-753-7600 option 4.

Sincerely,

Harry M. Reiter Pretreatment Coordinator

Department of Environmental Services

Monroe County, New York

Maggie Brooks County Executive

John E. Graham, P.E. Director

January 11, 2007

NOTICE

Please note, a three year term Sewer Use Permit has been approved by the Monroe County Legislature. Permits will be renewed this year at one, two and three year terms with all permits at a three year term and a \$75.00 renewal fee following the 2007 renewal year. The fees associated with permit renewals this year will be \$25.00, \$50.00, and \$75.00 for a one, two or three year term respectively. Please refer to the enclosed permit for your effective term, renewal date and fee.

If you have questions, please call me at 585-753-7658 or Harry Reiter at 585-753-7523.

Sean Keenan Senior Industrial Waste Technician

xc: file, Harry Reiter(Pretreatment Coordinator)

444 East Henriretta Road, Rochester, New York 14620 - 585-753-7600, fax 585-324-1213

<u>www.monroecounty.gov</u>

printed on recycled paper

PERMIT RENEWAL

This office can NOT renew your permit unless the following documents are forwarded with the permit renewal.

- 1. The signed and dated permit renewal. (with any corrections)
- Documentation of Workers Compensation Insurance and New York State Liability Insurance. Forms should accompany the permit renewal. (If you are self insured, a signed letter stating such must be forwarded to this office with the permit.
- 3. A check made payable to: Director of Finance, County of Monroe

4. Any other documentation deemed necessary by the permitted.

COUNTY OF MONROE SEWER USE PERMIT RENEWAL

Firm Name:	Germanow Simon Corp 408 St. Paul Street		Permit Number: Fee: \$50.00 Expires: Augus	912 + 31, 2009
Mailing Addr:	408 St. Paul Street Rochester, NY 14605		W/C Expire: District No:	8520
Business Type:				
Has there been an in the past twelve	y revision to the plant sewer system months Yes: No: If yes, please exponention for the past twelve (12)	or any change in industria plain in a separate letter.	al wastes discharged	l to the public sewer
	······································			
Water Account	No.(s)	_ (cu ft/gal)	<u> </u>	
Initial Permit as li	sted under II.	the undersigned agrees to	comply with all th	e requirements in the
Name of person to	be contacted for inspection & samp	ling purposes:		
Type or Print:		Phone No:		
YOUR PERMIT N	IUST BE SIGNED AS FOLLOWS:	<u>.</u>		
 For a corporation: by (a) A president, secret who performs simi (b) The manager of or annual sales or ex assigned or delegat 	a responsible corporate officer. A corporate ary, treasurer or vice - president of the corp lar policy - or decision - making functions he or more manufacturing, production, or of penditures exceeding \$25 million (in secon ted to the manager in accordance with corp	e officer means: poration in charge of a principa for the corporation: or peration facilities employing n d - quarter 1980 dollars), if au porate procedures.	al business function, or nore than 250 persons of thority to sign documer	any other person or having gross nts has been
2. For a partnership or so	ble proprietorship: by a general partner or the	he proprietor, respectively; or		
3. By a duly authorized a	representative of the individual designated i	in items (1) or (2) above if:		
 (a) The authorization (b) The authorization which the Industri or an individual or may thus be either (c) The written author 	is made in writing by the individual describ specifies either an individual or a position l al Discharge originates such as the position position having overall responsibility for e a named individual or any individual occup ization is submitted to this Department.	bed in items (1) or (2); having responsibility for the or of plant manager, superintence environmental matters for the or pying named position); and	verall operation of the f lent, position of equiva company; (A duly autho	acility from lent responsibility, prized representative
Print or Type:		Phone No:		
Signature:		Date:		
Title:	• ·			
Renewal Approved	l:	Date:		
	(Director of Pure Waters)			

3.

Appendix C

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this <u>11</u> day of <u>Hovtemission</u>, 2005, between Owner(s) <u>Germanow-Simon Corporation</u> residing at (or having an office at) <u>408 Saint Paul</u> <u>Street, Rochester, New York 14603</u> (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of environmental easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and of ensuring the potential restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that environmental easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and;

WHEREAS, Grantor, is the owner of real property located at the address of <u>8-28 Ward Street</u> in the <u>City of Rochester, Monroe County, New York</u> known and designated on the tax map of the County Clerk of Monroe County as tax map parcel number <u>section 106.63 block 0001 lot</u> <u>016.00</u>, being the same as that property conveyed to Grantor by deed on <u>April 27, 2006</u>, and recorded in the Land Records of the <u>Monroe</u> County Clerk at page <u>506</u>, liber <u>10289</u> of Deeds, comprised of approximately <u>1.221 acres</u>, and hereinafter more fully described in <u>Schedule A</u> attached hereto and made a part hereof (the " Controlled Property"); and;

WHEREAS, the Commissioner does hereby acknowledge that the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established at this Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36;and

NOW THEREFORE, in consideration of the covenants and mutual promises contained herein and the terms and conditions of **Brownfield Cleanup Agreement Number** <u>B8-0566-99-10</u>, (Strike inappropriate language)

Grantor grants, conveys and releases to Grantee a permanent Environmental Easement pursuant to Article 71, Title 36 of the ECL in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the potential restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The following controls apply to the use of the Controlled Property, run with the land are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees, and any person using the Controlled Property:

A. The Controlled Property may be used for restricted <u>commercial or industrial</u> use as long as the following long-term engineering controls are employed:

i) A multi-phase vacuum extraction system ("MPVE") will be operated beneath on-site and beneath off-site within the right-of-way for Ward Street as depicted in ALTA survey dated October 17, 2008, until the remedial requirements are achieved to the satisfaction of the Department;

ii) the groundwater beneath the Controlled Property may not be used for potable or nonpotable purposes;

iii) the Site Management Plan(SMP), dated November 2008, must be implemented for the Controlled Property;

iv) soils at the Controlled Property shall be managed in accordance with the SMP, dated November, 2008. The SMP includes requirements for the characterization, handling, and disposal/re-use of residual contaminated media (e.g., soil, fill, groundwater) and requirements for soils imported to the site;

v) the existing surface and near surface soil, asphalt-paved surfaces, concrete-paved

> surfaces, and the building itself, as depicted in ALTA survey dated October 17, 2008, act as a cover system at the Controlled Property. Disturbances and incidental damage to this cover system shall be repaired upon discovery with cover materials approved by the NYSDEC and the NYSDOH;

vi) the potential for vapor intrusion for any new buildings developed on the Controlled Property must be evaluated and mitigation shall be implemented, if needed, prior to occupancy. If a vapor mitigation system is required, it shall be operated and maintained until such time NYSDEC deems it is no longer needed;

vii) Grantor shall provide all persons who acquire any interest in the Controlled Property a true and complete copy of the Site Management Plan dated November 2008, that the Department has approved for the Controlled Property and all Department-approved amendments to the Site Management Plan.

The Grantor hereby acknowledges receipt of a copy of the NYSDEC-approved Site Management Plan, dated November 2008 ("SMP"). The SMP describes obligations that Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system on the Controlled Property, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The Department may change the SMP for the Controlled Property from time to time on the basis of requests or information submitted by Grantor, and modifications in applicable statutes regulations, guidance or site conditions. The Department reserves a unilateral right to modify the SMP. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Regional Remediation Engineer: or	Site Control Section
Region 8	Division of Environmental Remediation
NYS Department of Environmental Conservation	n NYS DEC
6274 East Avon-Lima Road	625 Broadway
East Avon, New York 14414	Albaņy, NY 12233

B. The Controlled Property may not be used for a higher level of use such as **unrestricted or restricted residential** use and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state

in at least fifteen-point bold-faced type:

This property is subject to an environmental easement held by the New York State Department of Environmental Conservation pursuant of Title 36 to Article 71 of the Environmental Conservation Law.

í

145000

D. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

E. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury that the controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls employed at the Controlled Property were approved by the NYSDEC, and that nothing has occurred that would impair the ability of such control to protect the public health and environment or constitute a violation or failure to comply with any Site Management Plan for such controls and giving access to such Controlled Property to evaluate continued maintenance of such controls.

3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Controlled Property, including:

1. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

2. The right to give, sell, assign, or otherwise transfer the underlying fee interest to the Controlled Property by operation of law, by deed, or by indenture, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This environmental easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be

defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this environmental easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person intentionally violates this environmental easement, the Grantee may revoke the Certificate of Completion provided under ECL Article 27, Title 14, or Article 56, Title 5 with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach. Grantor shall then have a reasonable amount of time from receipt of such notice to cure. At the expiration of said second period, Grantee may commence any proceedings and take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement in accordance with applicable law to require compliance with the terms of this Environmental Easement.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar its enforcement rights in the event of a subsequent breach of or noncompliance with any of the terms of this Environmental easement.

6. <u>Notice</u>. Whenever notice to the State (other than the annual certification) or approval from the State is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to: Environmental Easement Attorney

Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

Such correspondence shall be delivered by hand, or by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of

this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. This environmental easement may be amended only by an amendment executed by the Commissioner of the New York State Department of Environmental Conservation and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This environmental easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantor's Name By: Fich German Title: Response Date: 11 7/2008

ſ

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation

by:

Alexander B. Grannis, Commissioner

Grantor's Acknowledgment

IF GRANTOR IS A CORPORATION:

STATE OF New York) COUNTY OF Monroe)

On the <u>7th</u> day of <u>Nov</u>, in the year 2008, before me, the undersigned, personally appeared <u>Andrew Germanew</u>, personally known to me who, being duly sworn, did depose and say that he/she/they reside at <u>83 Hawthorne St. Rochester</u>, <u>Nov</u> (full mailing address) and that he/she/they is (are) the <u>President</u> (President or other officer or director or attorney in fact duly appointed of the

<u>Germanow-Smon</u> <u>Corporation</u> (full legal name of corporation) the corporation described in and which executed the above instrument; and that he/she/they signed his/her/their name(s) thereto by the authority of the board of directors of said corporation.

Catherice A. Standeriger Notary Public - State of New York

CATHERINE L. STAUDMYER Notary Public, State of New York No. 01ST8068068 Qualified in Monroe County Commission Expires Dec. 24, 2009

ACKNOWLEDGMENT FOR AN INDIVIDUAL

)) ss:

)

STATE OF NEW YORK

COUNTY OF

On the _____ day of _____, in the year 20 __, before me, the undersigned, personally appeared ______, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

Grantee's Acknowledgment

7

STATE OF NEW YORK)) ss: COUNTY OF)

On the _____ day of _____, in the year 20__, before me, the undersigned, personally appeared ______, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

EDMS # 270354 and 276575

Appendix D

Bouchard, Marc

From:	Bouchard, Marc
Sent:	Monday, December 17, 2007 1:43 PM
То:	'Todd Caffoe'
Cc:	Putzig, Bart; Storonsky, Mike
Subject:	RE: Ward Street Site Progress Report
Attachments:	tbl_190500014_AirGuide1_calcs_December2007.pdf

Todd,

Attached are our calculations for the air guide 1 impact analysis for the Ward Street Site MPVE system. We calculated effluent guidelines (post GAC) for comparison to our air analytical results based on linear regressions (see graph) of 3 arbitrary emission concentrations vs. the short term impact and the annual impact concentrations. The resulting linear functions (which are essentially a simplified DAR-1 dispersion model for our specific set of parameters such as location, flow rate, stack height, etc) were used to back-calculate an emission rate that would satisfy the AGC and SGC criteria for each compound. Please call or e-mail with any questions or concerns.

Best regards,

Marc Bouchard, Eng. Environmental Engineer Stantec

2250 Brighton-Henrietta Town Line Road Rochester NY 14623-2706 Ph: (585) 413-5636 Fx: (585) 424-5951 Cell: (585) 520-9892 marc.bouchard@stantec.com

stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Todd Caffoe [mailto:tmcaffoe@gw.dec.state.ny.us] Sent: Wednesday, November 07, 2007 8:29 AM To: Storonsky, Mike Cc: Bouchard, Marc; Putzig, Bart Subject: Ward Street Site Progress Report

Mike,

I've reviewed your request to remove control equipment on the vapor discharge stream from the MPVE system. Prior to approval, I'll need some additional information. Please provide the calculations for the air-guide 1 impact analysis including the input parameters used. If you used a software package to generate the numbers, please provide a printout from the software package which includes the input parameters. Thanks. -Todd

Todd M. Caffoe, P.E. Environmental Engineer 2 NYSDEC - Region 8 6274 East Avon-Lima Road Avon, New York 14414

tmcaffoe@gw.dec.state.ny.us voice (585)226-5350

voice (585)226-5350 fax (585)226-8696

NON PETROLEUM Spill Cleanup/Remediation Air Emission Permit Application New York State Department of Environmental Conservation Region 8, 6274 E. Avon-Lima Rd., Avon, NY 14414 5/14/93 DEW

Source:	Air Strippe	r Soil	Vent	Other	(specify)	X Multi-Phase
Facility Name:	Ward St Site MPVE					Extraction
Facility Address:	408 St. Paul Street					
	Rochester, NY					
Startup Date:	Early September 2006			Shutdown	Date:	TBD
Stack Height:			56 ft			
Stack Exit Inside Dimens:	ions:	0.6666	66667 ft			
Stack Exit Temperature:			70.7 °F			
Stack Exit Flow Rate:			600 cfr	n		

		Emission Rate		Actual
		Potential		Emissions
Contaminant Name	CAS #	(lbs/hr)	Percent Control	(lbs/hr)
Vinyl Chloride	00075-01-4	0.0122	99	0.0002
cis-1,2-Dichlorethene	00540-59-0	0.0826	99	0.0009
Trichloroethene	00079-01-6	0.1096	99	0.0011
Tetrachloroethene	00127-18-4	1.0138	99	0.0102
Chloroform	00067-66-3	0.0090	99	0.0001
1,1-Dichloroethene	00075-35-4	0.0090	99	0.0001
trans-1,2-Dichloroethene	00156-60-5	0.0090	99	0.0001
Benzene	00071-43-2	0.0032	99	0.0001
Ethylbenzene	00100-41-4	0.0090	99	0.0001
Toluene	00108-88-3	0.0090	99	0.0001
m,p-Xylene	00108-38-3	0.0090	99	0.0001
o-Xylene	00095-47-6	0.0090	99	0.0001
Carbon Disulfide	00075-15-0	0.0226	99	0.0003
Trimethylbenzene	25551-13-7	0.0090	99	0.0001
n-Propylbenzene	00103-65-1	0.0090	99	0.0001
isopropylbenzene	00098-82-8	0.0090	99	0.0001

Use Air Guide-1 (Draft 1991 Edition) screening equations on p. B-9 to estimate ambient impact. Compare impact estimate to AGC and SGC from tables in the back of Air Guide-1. See Air Guide 1, p. 8-9 for compounds not listed. Impact levels must be below guideline concentrations if air pollution control is not used.

	Short Term Impact	SGC	Annual Impact	AGC
CAS #	(µg/m3) *	(µg/m3)	(µg/m3) *	(µg/m3)
00075-01-4	3.59	180000	0.07	0.11
00540-59-0	24.34	-	0.51	1900
00079-01-6	32.29	54000	0.67	0.5
00127-18-4	298.68	1000	6.20	1.0
00067-66-3	2.65	150.00	0.06	0.04
00075-35-4	2.65	-	0.06	70.00
00156-60-5	2.65	-	0.06	1900.00
00071-43-2	0.94	1300.00	0.02	0.13
00100-41-4	2.65	54000.00	0.06	1000.00
00108-88-3	2.65	37000.00	0.06	400.00
00108-38-3	2.65	4300.00	0.06	100.00
00095-47-6	2.65	4300.00	0.06	100.00
00075-15-0	6.66	6200.00	0.14	700.00
25551-13-7	2.65	-	0.06	290.00
00103-65-1	2.65	-	0.06	0.10
00098-82-8	2.65	-	0.06	400.00
	* Maximum Short-Term		* Potential Annual	
	Impact		Impact	
	(Cavity, Point & Area)			

Note: The above short term and annual impacts were calculated using the DAR-1 Impact Screening Analysis Software (v.3.6) and assume the emission rate potential without GAC treatment.

Potential annual impacts are based on 52 weeks of system operation (8760 hours)

Non Petroleum Air Emission Permit

Air Pollution Control Equipment:

	Not Needed Based on Ana Not Needed Based on Ana X Described Below	alysis of Design C alysis of Operatin	onditions g Conditions	
Air Pollution Control				
Type:	None		Thermal Afterbur	ner
	X Activated Bed Absorber	-	Catalytic Unit	
	Other, Explain:	-		
	Manufacturer's Name:	Siemens		
	Model Number:	VSC2000 (quantity: 2	2)	
	Disposal of Collected Cont	caminants		
	Landfill Off-Site	-	Recycled On-Site	
	Recycled in the Process	3	X Other, Explain:	
				Reactivated off- site
Frequency of stack emis	ssion monitoring/testing	 -	Monthly	
Monitoring/testing met	nod <u>sa</u>	ID Monitoring, EPA Me ample(s) as needed	thod 8260 (modified for ⁻	Fedlar bag) vapor
Name of DEC Spill/Remed	liation Project Manager Phone	Todd Caffoe # (585) 226-5350		
This is not a permit un specifications and limm application will become I certify this system of compliance with all exa	ntil signed and dated by the its stated above and containe e binding and enforcable cond will be operated in accordanc isting laws, rules and regula	Division of Regul ed in any attached litions of the perf ce with the specif ctions.	atory Affairs below materials submitte mit. ications stated abo	. All d with this ve and in
		Associate		
Signature of	Responsible Party	IILIE		Date
Signature:			Date	
Division of Air Resourd	ces			
Signature:			Date	
Division of Regulatory	Affairs			
c: DEC Project Manager			5/14/9	3 DEW

p. 2

NON PETROLEUM Spill Cleanup/Remediation Air Emission Permit Application New York State Department of Environmental Conservation Region 8, 6274 E. Avon-Lima Rd., Avon, NY 14414 5/14/93 DEW

Source:	Air Stripper_	Soil Vent	Other (spe	ecify) <u>X</u> Multi-Phase Vapor
Facility Name:	Ward St Site MPVE			Extraction
Facility Address:	408 St. Paul Street			
	Rochester, NY			
Startup Date:	Early September 2006		Shutdown Dat	ce: TBD
Stack Height:	-	56 ft	:	
Stack Exit Inside Dimensi	lons:	0.666666667 ft	:	
Stack Exit Temperature:	-	70.7 °F	7	
Stack Exit Flow Rate:	-	600 cf	Ēm	

		Emission Rate		Actual
		Potential		Emissions
Contaminant Name	CAS #	(lbs/hr)	Percent Control	(lbs/hr)
Vinyl Chloride	00075-01-4	0.0002	99	0.0001
cis-1,2-Dichlorethene	00540-59-0	0.0002	99	0.0001
Trichloroethene	00079-01-6	0.0002	99	0.0001
Tetrachloroethene	00127-18-4	0.0002	99	0.0001
Chloroform	00067-66-3	0.0002	99	0.0001
1,1-Dichloroethene	00075-35-4	0.0002	99	0.0001
trans-1,2-Dichloroethene	00156-60-5	0.0002	99	0.0001
Benzene	00071-43-2	0.0002	99	0.0001
Ethylbenzene	00100-41-4	0.0002	99	0.0001
Toluene	00108-88-3	0.0002	99	0.0001
m,p-Xylene	00108-38-3	0.0002	99	0.0001
o-Xylene	00095-47-6	0.0002	99	0.0001
Carbon Disulfide	00075-15-0	0.0002	99	0.0001
Trimethylbenzene	25551-13-7	0.0002	99	0.0001
n-Propylbenzene	00103-65-1	0.0002	99	0.0001
isopropylbenzene	00098-82-8	0.0002	99	0.0001

Use Air Guide-1 (Draft 1991 Edition) screening equations on p. B-9 to estimate ambient impact. Compare impact estimate to AGC and SGC from tables in the back of Air Guide-1. See Air Guide 1, p. 8-9 for compounds not listed. Impact levels must be below guideline concentrations if air pollution control is not used.

	Short Term Impact	SGC	Annual Impact	AGC
CAS #	(µg/m3) *	(µg/m3)	(µg/m3) *	(µg/m3)
00075-01-4	0.06	180000	0.0012	0.11
00540-59-0	0.06	-	0.0012	1900
00079-01-6	0.06	54000	0.0012	0.5
00127-18-4	0.06	1000	0.0012	1.0
00067-66-3	0.06	150.00	0.0012	0.04
00075-35-4	0.06	-	0.0012	70.00
00156-60-5	0.06	-	0.0012	1900.00
00071-43-2	0.06	1300.00	0.0012	0.13
00100-41-4	0.06	54000.00	0.0012	1000.00
00108-88-3	0.06	37000.00	0.0012	400.00
00108-38-3	0.06	4300.00	0.0012	100.00
00095-47-6	0.06	4300.00	0.0012	100.00
00075-15-0	0.06	6200.00	0.0012	700.00
25551-13-7	0.06	-	0.0012	290.00
00103-65-1	0.06	-	0.0012	0.10
00098-82-8	0.06	-	0.0012	400.00
	* Maximum Short-Term		* Potential Annual	
	Impact		Impact	
	(Cavity, Point & Area)			

Note: The above short term and annual impacts were calculated using the DAR-1 Impact Screening Analysis Software (v.3.6) and

assume the emission rate potential without GAC treatment.

Potential annual impacts are based on 52 weeks of system operation (8760 hours)

Non Petroleum Air Emission Permit

Air Pollution Control Equipment:

	Not Needed Based on Ana Not Needed Based on Ana X Described Below	alysis of Design C alysis of Operatin	Conditions g Conditions	
Air Pollution Control				
Type:	None		Thermal Afterbur	ner
	X Activated Bed Absorber	-	Catalytic Unit	
	Other, Explain:	-		
	Manufacturer's Name:	Siemens		
	Model Number:	VSC2000 (quantity: 2	2)	
	Disposal of Collected Cont	caminants		
	Landfill Off-Site	-	Recycled On-Site	
	Recycled in the Process	3	X Other, Explain:	
				Reactivated off- site
Frequency of stack emis	ssion monitoring/testing	-	Monthly	
Monitoring/testing met	nod <u>sa</u>	ID Monitoring, EPA Me ample(s) as needed	thod 8260 (modified for	Tedlar bag) vapor
Name of DEC Spill/Remed	liation Project Manager Phone	Todd Caffoe # (585) 226-5350		
This is not a permit un specifications and limm application will become I certify this system v compliance with all exa	ntil signed and dated by the its stated above and containe e binding and enforcable cond will be operated in accordanc isting laws, rules and regula	Division of Regul d in any attached litions of the per te with the specif tions.	atory Affairs below materials submitte mit. ications stated abo	 All d with this ve and in
		Associate		
Signature of	Responsible Party	TILLE		Date
Signature:			Date	:
Division of Air Resourd	ces			
Signature:			Date	:
Division of Regulatory	Affairs			
c: DEC Project Manager			5/14/9	3 DEW

p. 2

NON PETROLEUM Spill Cleanup/Remediation Air Emission Permit Application New York State Department of Environmental Conservation Region 8, 6274 E. Avon-Lima Rd., Avon, NY 14414 5/14/93 DEW

Source:	Air Stripper	Soil Vent_	Other (spe	ecify) <u>X</u> Multi-Phase Vapor
Facility Name:	Ward St Site MPVE			Extraction
Facility Address:	408 St. Paul Street Rochester, NY			
Startup Date:	Early September 2006		Shutdown Dat	ze: <u>TBD</u>
Stack Height:		56	ft	
Stack Exit Inside Dimensi	lons:	0.666666667	ft	
Stack Exit Temperature:		70.7	۰F	
Stack Exit Flow Rate:		600	cfm	

		Emission Rate		Actual
		Potential		Emissions
Contaminant Name	CAS #	(lbs/hr)	Percent Control	(lbs/hr)
Vinyl Chloride	00075-01-4	0.8972	99	0.009
cis-1,2-Dichlorethene	00540-59-0	0.8972	99	0.009
Trichloroethene	00079-01-6	0.8972	99	0.009
Tetrachloroethene	00127-18-4	0.8972	99	0.009
Chloroform	00067-66-3	0.8972	99	0.009
1,1-Dichloroethene	00075-35-4	0.8972	99	0.009
trans-1,2-Dichloroethene	00156-60-5	0.8972	99	0.009
Benzene	00071-43-2	0.8972	99	0.009
Ethylbenzene	00100-41-4	0.8972	99	0.009
Toluene	00108-88-3	0.8972	99	0.009
m,p-Xylene	00108-38-3	0.8972	99	0.009
o-Xylene	00095-47-6	0.8972	99	0.009
Carbon Disulfide	00075-15-0	0.8972	99	0.009
Trimethylbenzene	25551-13-7	0.8972	99	0.009
n-Propylbenzene	00103-65-1	0.8972	99	0.009
isopropylbenzene	00098-82-8	0.8972	99	0.009

Use Air Guide-1 (Draft 1991 Edition) screening equations on p. B-9 to estimate ambient impact. Compare impact estimate to AGC and SGC from tables in the back of Air Guide-1. See Air Guide 1, p. 8-9 for compounds not listed. Impact levels must be below guideline concentrations if air pollution control is not used.

	Short Term Impact	SGC	Annual Impact	AGC
CAS #	(µg/m3) *	(µg/m3)	(µg/m3) *	(µg/m3)
00075-01-4	264.33	180000	5.49	0.11
00540-59-0	264.33	-	5.49	1900
00079-01-6	264.33	54000	5.49	0.5
00127-18-4	264.33	1000	5.49	1.0
00067-66-3	264.33	150.00	5.49	0.04
00075-35-4	264.33	-	5.49	70.00
00156-60-5	264.33	-	5.49	1900.00
00071-43-2	264.33	1300.00	5.49	0.13
00100-41-4	264.33	54000.00	5.49	1000.00
00108-88-3	264.33	37000.00	5.49	400.00
00108-38-3	264.33	4300.00	5.49	100.00
00095-47-6	264.33	4300.00	5.49	100.00
00075-15-0	264.33	6200.00	5.49	700.00
25551-13-7	264.33	-	5.49	290.00
00103-65-1	264.33	-	5.49	0.10
00098-82-8	264.33	-	5.49	400.00
	* Maximum Short-Term		* Potential Annual	
	Impact		Impact	
	(Cavity, Point & Area)			

Note: The above short term and annual impacts were calculated using the DAR-1 Impact Screening Analysis Software (v.3.6) and assume the emission rate potential without GAC treatment.

Potential annual impacts are based on 52 weeks of system operation (8760 hours)

Non Petroleum Air Emission Permit

Air Pollution Control Equipment:

	Not Needed Based on Ana Not Needed Based on Ana X Described Below	alysis of Design C alysis of Operatin	Conditions g Conditions	
Air Pollution Control				
Type:	None		Thermal Afterbur	ner
	X Activated Bed Absorber	-	Catalytic Unit	
	Other, Explain:	-		
	Manufacturer's Name:	Siemens		
	Model Number:	VSC2000 (quantity: 2	2)	
	Disposal of Collected Cont	caminants		
	Landfill Off-Site	-	Recycled On-Site	
	Recycled in the Process	3	X Other, Explain:	
				Reactivated off- site
Frequency of stack emis	ssion monitoring/testing	-	Monthly	
Monitoring/testing met	nod <u>sa</u>	ID Monitoring, EPA Me ample(s) as needed	thod 8260 (modified for	Tedlar bag) vapor
Name of DEC Spill/Remed	liation Project Manager Phone	Todd Caffoe # (585) 226-5350		
This is not a permit un specifications and limm application will become I certify this system v compliance with all exa	ntil signed and dated by the its stated above and containe e binding and enforcable cond will be operated in accordanc isting laws, rules and regula	Division of Regul d in any attached litions of the per te with the specif tions.	atory Affairs below materials submitte mit. ications stated abo	 All d with this ve and in
		Associate		
Signature of	Responsible Party	TILLE		Date
Signature:			Date	:
Division of Air Resourd	ces			
Signature:			Date	:
Division of Regulatory	Affairs			
c: DEC Project Manager			5/14/9	3 DEW

p. 2

Appendix B - Supporting Calculations for Air Guide-1 Ambient Air Quality Impact Screening Analysis

Emission Rate Calculations

Ward Street Site Project no: 1405205 (190500014) Prepared by: M.Bouchard Date: 12 feb 2007

Emission Rate Calculations

Full-scale maximum measured

VOCs (as per vapor exhaust sampling result)	CAS#	Effluent Concentration (uq/m ³)	peak flow rate (acfm)	peak flow rate (air m³/hr)	Peak emission rate (uq/hr)	Peak emission rate (Ibs/hr)	Peak emission rate with factor of safety (x2) (lbs/hr)	Total hours of operation for the year (hrs/yr) (52 weeks/yr)	Peak emission rate (Ibs/yr) (assuming 52 weeks)
Vinyl Chloride	00075-01-4	2700	600	1019.406477	2752397.489	0.0061	0.0122	8760	, 106.9
cis-1,2-Dichlorethene	00540-59-0	18400	600	1019.406477	18757079.18	0.0413	0.0826	8760	723.6
Trichloroethene	00079-01-6	24400	600	1019.406477	24873518.05	0.0548	0.1096	8760	960.1
Tetrachloroethene	00127-18-4	226000	600	1019.406477	230385863.9	0.5069	1.0138	8760	8880.9
Chloroform	00067-66-3	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
1,1-Dichloroethene	00075-35-4	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
trans-1,2-Dichloroethene	00156-60-5	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
Benzene	00071-43-2	700	600	1019.406477	713584.5341	0.0016	0.0032	8760	28.1
Ethylbenzene	00100-41-4	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
Toluene	00108-88-3	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
m,p-Xylene	00108-38-3	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
o-Xylene	00095-47-6	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
Carbon Disulfide	00075-15-0	5000	600	1019.406477	5097032.387	0.0113	0.0226	8760	198
Trimethylbenzene	25551-13-7	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
n-Propylbenzene	00103-65-1	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
isopropylbenzene	00098-82-8	2000	600	1019.406477	2038812.955	0.0045	0.009	8760	78.9
Total VOCs		297200	600	1019.406477	302967605.1	0.6666	1.3332	8760	11678.9

Estimate of Flow Velocity

			flow velocity		flow velocity
Flow rate (cfm)	diam (ft)	xsec area (sqft)	(ft/min)	sec/min	(ft/sec)
600	0.666666667	0.34906585	1718.873385	60	29

U:\1405205\docs\OM&M\Progress Report No.4\[tbl_190500014_Ward_OM&M_PR4_Jan08.xls]Emiss&flow_fullscale

Appendix B - Supporting Calculations for Air Guide-1 Ambient Air Quality Impact Screening Analysis

Emission Rate Calculations

Ward Street Site Project no: 1405205 (190500014) Prepared by: M.Bouchard Date: 12 feb 2007

Emission Rate Calculations

0.01 ug/m3 effluent concentration for each compound

VOCs (as per vapor exhaust sampling result)	CAS#	Effluent Concentration (ug/m ³)	peak flow rate (acfm)	peak flow rate (air m³/hr)	Peak emission rate (ug/hr)	Peak emission rate (Ibs/hr)	Peak emission rate with factor of safety (x2) (lbs/hr)	Total hours of operation for the year (hrs/yr) (52 weeks/yr)	Peak emission rate (lbs/yr) (assuming 52 weeks)
Vinyl Chloride	00075-01-4	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
cis-1,2-Dichlorethene	00540-59-0	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Trichloroethene	00079-01-6	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Tetrachloroethene	00127-18-4	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Chloroform	00067-66-3	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
1,1-Dichloroethene	00075-35-4	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
trans-1,2-Dichloroethene	00156-60-5	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Benzene	00071-43-2	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Ethylbenzene	00100-41-4	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Toluene	00108-88-3	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
m,p-Xylene	00108-38-3	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
o-Xylene	00095-47-6	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Carbon Disulfide	00075-15-0	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Trimethylbenzene	25551-13-7	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
n-Propylbenzene	00103-65-1	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
isopropylbenzene	00098-82-8	0.01	600	1019.406477	10.19406477	0.0001	0.0002	8760	1.8
Total VOCs		0.16	600	1019.406477	163.1050364	0.0001	0.0002	8760	1.8

Estimate of Flow Velocity

					a
			flow velocity		flow velocity
Flow rate (cfm)	diam (ft)	xsec area (sqft)	(ft/min)	sec/min	(ft/sec)
600	0.666666667	0.34906585	1718.873385	60	29

U:\1405205\docs\OM&M\Progress Report No.4\[tbl_190500014_Ward_OM&M_PR4_Jan08.xls]Emiss&flow_0.01ugm3
Appendix B - Supporting Calculations for Air Guide-1 Ambient Air Quality Impact Screening Analysis

Emission Rate Calculations

Ward Street Site Project no: 1405205 (190500014) Prepared by: M.Bouchard Date: 12 feb 2007

Emission Rate Calculations

200,000 ug/m3 effluent concentration for each compound

VOCs (as per vapor exhaust sampling result)	CAS #	Effluent Concentration (ug/m ³)	peak flow rate (acfm)	peak flow rate (air m³/hr)	Peak emission rate (uo/hr)	Peak emission rate (lbs/hr)	Peak emission rate with factor of safety (x2) (lbs/hr)	Total hours of operation for the year (hrs/yr) (52 weeks/yr)	Peak emission rate (Ibs/yr) (assuming 52 weeks)
Vinyl Chloride	00075-01-4	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
cis-1,2-Dichlorethene	00540-59-0	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Trichloroethene	00079-01-6	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Tetrachloroethene	00127-18-4	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Chloroform	00067-66-3	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
1,1-Dichloroethene	00075-35-4	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
trans-1,2-Dichloroethene	00156-60-5	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Benzene	00071-43-2	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Ethylbenzene	00100-41-4	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Toluene	00108-88-3	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
m,p-Xylene	00108-38-3	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
o-Xylene	00095-47-6	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Carbon Disulfide	00075-15-0	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Trimethylbenzene	25551-13-7	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
n-Propylbenzene	00103-65-1	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
isopropylbenzene	00098-82-8	200000	600	1019.406477	203881295.5	0.4486	0.8972	8760	7859.5
Total VOCs		3200000	600	1019.406477	3262100727	7.1767	14.3534	8760	125735.8

Estimate of Flow Velocity

					a
			flow velocity		flow velocity
Flow rate (cfm)	diam (ft)	xsec area (sqft)	(ft/min)	sec/min	(ft/sec)
600	0.666666667	0.34906585	1718.873385	60	29

 $\label{eq:linear} U:\label{eq:linear} U:\lab$

Appendix B - Input Data for Air Guide-1 Software Ambient Air Quality Impact Screening Analysis

Ward Street Site Project no: 1405205 (190500014) Prepared by: M.Bouchard Date: 12 feb 2007

		0.01 ug/m3 effluent	200,000 ug/m3 effluent
	Full-scale maximum	concentration for each	concentration for each
Description	measured	compound	compound
Run File Name	c:\wardOMM1	c:\wardOMM2	c:\wardOMM3
Location code	261400	261400 Diagle	261400
Facility Code	Blank	Mord St Site MD//F	Blank
Facility Name	408 St. Paul Street	108 St. Paul Street	408 St. Paul Street
Facility Address	400 St. Faul Stieet	400 St. Faul Street	Pochester
Standard Industrial Code (SIC)	Blank	Blank	Blank
Emission Point Number	1	1	1
Source Code	2912219	2912219	2912219
Application Type	Blank	Blank	Blank
Source Type	Point	Point	Point
Height of stack above structures (ft)	11	11	11
Stack Height (ft)	56	56	56
Stack diameter (in)	8	8	8
Stack temperature (deg F)	70.7	70.7	70.7
Exit Velocity (ft/sec)	29	29	29
Exit flow rate (actual cfm)	600	600	600
Distance to property line (ft)	120	120	120
Building Width (ft)	125	125	125
Durunny Holly (II) Direction building length is facing (deg from North, clockwice)	165	165 202 F	165 202 F
LITME (meters)	292.3	292.0	292.3
UTMW (meters)	4782344	4782344	4782344
UTM zone	18	18	18
Emission rate units	lbv	lby	lby
Number of pollutants	16	.59	16
CAS number (1)	00540-59-0	00540-59-0	00540-59-0
Emissions (lbs/hr) (1)	0.0826	0.0002	0.8972
Emissions (lbs/yr) (1)	723.6	1.8	7859.5
CAS number (2)	00079-01-6	00079-01-6	00079-01-6
Emissions (lbs/hr) (2)	0.1096	0.0002	0.8972
Emissions (lbs/yr) (2)	960.1	1.8	7859.5
CAS number (3)	00127-18-4	00127-18-4	00127-18-4
Emissions (lbs/hr) (3)	1.0138	0.0002	0.8972
Emissions (lbs/yr) (3)	8880.9	1.8	7859.5
CAS number (4)	00075-01-4	00075-01-4	00075-01-4
Emissions (Ibs/III) (4)	0.0122	0.0002	7950.5
CAS number (5)	00067-66-3	00067-66-3	00067-66-3
Emissions (lbs/hr) (5)	0.009	0,0002	0.8972
Emissions (lbs/vr) (5)	78.9	1.8	7859 5
CAS number (6)	00075-35-4	00075-35-4	00075-35-4
Emissions (lbs/hr) (6)	0.009	0.0002	0.8972
Emissions (lbs/yr) (6)	78.9	1.8	7859.5
CAS number (7)	00156-60-5	00156-60-5	00156-60-5
Emissions (lbs/hr) (7)	0.009	0.0002	0.8972
Emissions (lbs/yr) (7)	78.9	1.8	7859.5
CAS number (8)	00071-43-2	00071-43-2	00071-43-2
Emissions (lbs/hr) (8)	0.0032	0.0002	0.8972
Emissions (lbs/yr) (8)	28.1	1.8	7859.5
CAS number (9)	00100-41-4	00100-41-4	00100-41-4
Emissions (Ibs/nr) (9)	0.009	0.0002	0.8972
CAS number (10)	00109 99 3	0.100 99 2	7059.5
Emissions (lbs/br) (10)	0,000	00100-00-3	00100-00-3 0 8072
Emissions (Ibs/rit) (10)	78.9	1.8	7859.5
CAS number (11)	00108-38-3	00108-38-3	00108-38-3
Emissions (lbs/hr) (11)	0.009	0.0002	0.8972
Emissions (lbs/yr) (11)	78.9	1.8	7859.5
CAS number (12)	00095-47-6	00095-47-6	00095-47-6
Emissions (lbs/hr) (12)	0.009	0.0002	0.8972
Emissions (lbs/yr) (12)	78.9	1.8	7859.5
CAS number (13)	00075-15-0	00075-15-0	00075-15-0
Emissions (lbs/hr) (13)	0.0226	0.0002	0.8972
Emissions (lbs/yr) (13)	198	1.8	7859.5
CAS number (14)	25551-13-7	25551-13-7	25551-13-7
Emissions (lbs/hr) (14)	0.009	0.0002	0.8972
Emissions (lbs/yr) (14)	78.9	1.8	7859.5
CAS number (15)	00103-65-1	00103-65-1	00103-65-1
Emissions (IDS/NF) (15)	0.009	0.0002	0.8972
CAS number (16)	78.9	1.8	00000 00 00
Emissions (lbs/br) (16)	00030-82-8	00030-02-0	00030-02-0
Emissions (Ibs/III) (10) Emissions (Ibs/VII) (16)	70.0	0.0002	0.09/2
	76.9	1.0	1009.5

Linear Regression of Air Guide 1 Model Relationship Between Effluent Concentration and Impact Concentration (Annual Guideline Concentration)

Ward Street OM, Rochester, NY, 190500014

				Short-term effluent guideline at	Annual effluent guideline
Compound	CAS#	SGC (ug/m3)	AGC (ug/m3)	GAC outlet (ug/m3)	at GAC outlet (ug/m3)
Vinyl Chloride	00075-01-4	180000	0.11	136000	4
cis-1,2-Dichlorethene	00540-59-0	-	1900	-	69000
Trichloroethene	00079-01-6	54000	0.5	40000	18
Tetrachloroethene	00127-18-4	1000	1	750	36
Chloroform	00067-66-3	150	0.043	113	1
1,1-Dichloroethene	00075-35-4	-	70	-	2500
trans-1,2-Dichloroethene	00156-60-5	-	1900	-	69000
Benzene	00071-43-2	1300	0.13	980	4
Ethylbenzene	00100-41-4	54000	1000	40000	36000
Toluene	00108-88-3	37000	400	27000	14000
m,p-Xylene	00108-38-3	4300	100	3200	3600
o-Xylene	00095-47-6	4300	100	3200	3600
Carbon Disulfide	00075-15-0	6200	700	4600	25000
Trimethylbenzene	25551-13-7	-	290	-	10000
n-Propylbenzene	00103-65-1	-	0.1	-	3
isopropylbenzene	00098-82-8	-	400	-	14000
MTBE	01634-04-4	1	3000	-	109000
Naphtalene	00091-20-3	7900	3	5900	100
1.2.4-trimethylbenzene	00095-63-6	-	290	-	10000
1.3.5-trimethylbenzene	00108-67-8	-	290	-	10000

Parameter											Concentration (mo	a/m ³)							
Sample ID				1	WSR-VAP-01	WSR-VAP-02	WSR-VAP-03	WSR-VAP-04	WSR-VAP-05	WSR-VAP-06	WSR-VAP-07	WSR-VAP-08	WSR-VAP-09	WSR-VAP-10	WSR-VAP-11	WSR-VAP-12	WSR-VAP-14	WSR-VAP-15	WSR-VAP-16
Date Sampled:	ine n³)	ž (È Ĕ .	9/27/2006	9/28/2006	9/29/2006	10/2/2006	10/3/2006	10/3/2006	10/5/2006	10/5/2006	10/13/2006	10/13/2006	10/20/2006	10/20/2006	11/8/2006	1/30/2007	1/30/2007
Time:	deh ig/	m ³	line f	m ³	9:20	10:30	14:10	13:50	16:20	16:25	17:40	17:45	9:35	9:40	8:25	8:30	17:05	10:45	10:45
PID 10.6eV (ppmV isobutylene)	ine u (h	19 Ef	ide i	HEH L	84.3	0.3	2.6	5	88.4	0.2	48.9	0	54.8	0	41.3	2	9.5	11.4	13
PID 11.7eV (ppmV isobutylene)	tion u	ed be	ti Gr	bed ()	264	2.4	4.2	5.1	207	2.4	87.3	1.3	94.7	0	42.6	2.7	NA	NA	NA
Associated Well or Area	Ter	Bas	ual	Bas	MW-22	MW-219	MW-200	MW-215	Bldg B Annex OB	Bldg B Annex OB	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System
Test	rt.	-C-l	uu a	5 - 5 E	ROI	ROI	IWVT	IWVT	Group	Group	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
Sample Location	on She	e So	A no	Gr AG	Pre-VGAC1	Pre-VGAC1	Pre-VGAC1	Pre-VGAC1	Pre-VGAC1	Post-VGAC2	Pre-VGAC1	Post-VGAC2	Pre-VGAC1	Post-VGAC2	Pre-VGAC1	Post-VGAC2	Post-VGAC2	Pre-VGAC1	Post-VGAC2
Sample Temperature (°F)	°° 0		Ċ		68	72.5	73	80	80	80	70.5	70.5	51	51	60	60	67.6	45.6	45.9
Halocarbons		•	•				•				•								
Bromodichloromethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Bromomethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Bromoforrn	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Carbon Tetrachloride	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Chloroethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Chloromethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
2-Chloroethyl vinyl Ether	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Chloroform	150	113	0.043	1	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Dibromochloromethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,1-Dichloroethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,2-Dichloroethane	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,1-Dichloroethene	-	-	70	2500	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
cis-1,2-Dichloroethene	-	-	1900	69000	12.6	ND <2.0	ND <2.0	ND <2.0	0 18.4	ND <2.0	6.6	ND <2.0	ND <2.0	ND <2.0	ND <1.00	1.75	ND <1.00	ND <1.00	ND <1.00
trans-1,2-Dichloroethene	-	-	1900	69000	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,2-Dichloropropane	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
cis-1,3-Dichloropropene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
trans-1,3-Dichloropropene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Methylene chloride	-	-	-	-	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <2.50								
1,1,2,2-Tetrachloroethane	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Tetrachloroethene	1000	750	1	36	166	4.19	ND <2.0	ND <2.0	226	2.15	51.1	ND <2.0	27.7	ND <2.0	19.2	ND <1.00	ND <1.00	3.71	17.5
1,1,1-Trichloroethane	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,1,2-Trichloroethane	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Trichloroethene	54000	40000	0.5	18	20.6	ND <2.0	3.87	ND <2.0	24.4	ND <2.0	10.2	ND <2.0	ND <2.0	ND <2.0	2.62	ND <1.00	6.18	ND <1.00	ND <1.00
Trichlorofluoromethane	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
vinyl chloride	2E+05	136000	0.11	4	2.7	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00				
Aromatics																			
Benzene	1300	980	0.13	4	ND <0.7	ND <0.7	ND <0.7	ND <0.7	ND <0.7	ND <0.7	ND <0.350								
n-Butylbenzene	-	-	-	-		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
sec-Butylbenzene	-	-	-	-		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
tert-Butylbenzene	-	-	-	-		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
Chlorobenzene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Ethylbenzene	54000	40000	1000	36000	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Isopropylbenzene	-	-	400	14000		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
p-Isopropyltoluene	-	-	-	-		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
Naphtalene	7900	5900	3	100		ND <5.0		ND <5.0			ND <5.0	ND <5.0						ND <5.0	ND <5.0
n-Propylbenzene	-	-	0.1	3		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
I oluene	37000	27000	400	14000	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,2,4-Trimethylbenzene	-	-	290	10000		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
1,3,5-1 rimethylbenzene	-	-	290	10000		ND <2.0		ND <2.0			ND <2.0	ND <2.0	ND 0.0				115 1 00	ND <2.0	ND <2.0
m,p-Xylene	4300	3200	100	3600	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
0-Xylene	4300	3200	100	3600	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
	-		-		ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,3-Dichlorobenzene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
1,4-Dichlorobenzene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <1.00								
Ketones		r			ND 40	ND 40	ND 40	ND 40	ND 10	ND 40	ND 10		ND 40	ND 10					ND 5.00
Acetone	-		-	-	ND <10	ND <10	ND <10	ND <10	ND <10	ND <10	ND <5.00								
2-Butanone	-		-	-	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <2.50								
2-Hexanone	-		-	-	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <2.50								
4-iviethyl-2-pentanone	-	-	- 1	-	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <2.50								
Miscellaneous		r	r	-	1														
Carbon disulfide	6200	4600	700	25000	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <2.50								
Methyl tert-butyl ether	-	-	3000	1E+05		ND <2.0		ND <2.0			ND <2.0	ND <2.0						ND <2.0	ND <2.0
Vinyl acetate	-	-	-	-	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <5.0	ND <2.50								
-		1	1						· · · · · ·	- / -	· · · · ·	-	· ·- ·		· · · ·				
Total VOCs (mg/m ³)		261743		4E+05	201.9	4.19	3.87	0	268.8	2.15	67.9	0	27.7	0	21.82	1.75	6.18	3.71	17.5

Notes: - Short-term and annual guidelines were developed using Air Guide 1 DAR-1 software, and are based on a 56ft stack height. - Samples collected in Tedlar bags and analyzed using a modified EPA method 8260. - ND denotes non-detect - mg/m³ is milligram per cubic meter of air at standard temperature (20 degC) and pressure (101.325 kPa). - **Bold-faced** values are concentrations that have been reported above the detection limits.

Client/Project

GERMANOW-SIMON CORPORATION PROGRESS REPORT NO.3 - INTERIM QUARTERLY MPVE OM&M, WARD STREET SITE, ROCHESTER, NEW YORK

Table No.

یرو No. **3-2a** Title

Vapor Discharge Analytical Results

Segue 7 Segue 7 <t< th=""><th>Parameter</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Concentratio</th><th>n (mg/m³)</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Parameter									Concentratio	n (mg/m³)						
And Stateword PUC Sections 2000 PUC	Sample ID			_		WSR-VAP-17	WSR-VAP-18	WSR-VAP-19	WSR-VAP-20	WSR-VAP-21 **	WSR-VAP-22 **	Trip Blank	WSR-VAP-23 **	WSR-VAP-24 **	Trip Blank	WSR-VAP-25 **	WSR-VAP-26 **
	Date Sampled:	ine "), au) aut	3/21/2007	3/21/2007	4/19/2007	4/19/2007	5/21/2007	5/21/2007	5/21/2007	6/19/2007	6/19/2007	6/19/2007	7/19/2007	7/19/2007
Part Part Manufaced Association for an analysis Part Part Manufaced Association for an analysis Part Part Part Part Part Part Part Part	Time:	idel ug/	jine Line	nile ug/	llue //m	11:10	11:15	16:45	16:45	10:35	10:40	N/A	14:35	14:38	N/A	14:05	14:10
$ \begin{array}{ $	PID 10.6eV (ppmV isobutylene)	- 10 10 10	mg Ef	n (j	i Ef	8.7	4.3	5.1	2	11.9	1.2	N/A	21.7	1.4	N/A	68	3.9
Lange Markel And Lange Application Disc Statem	PID 11.7eV (ppmV isobutylene)	atio	sed 7e (atio C	sea 7e (NA	NA	NA	NA	NA	NA	N/A	NA	NA	N/A	NA	NA
Service Trans P <	Associated Well or Area	Tel	lelii	ua ntra	e Ba	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System	Whole System				
Bargh Laveur A B B Des (DAC) PP (DAC) <td>Test</td> <td>ort</td> <td>ς p</td> <td>Ann</td> <td>-5 ci</td> <td>Monitoring</td>	Test	ort	ς p	Ann	-5 ci	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring	Monitoring
Test Programm (P) C	Sample Location	S S	S Q) Q	Ϋ́Θ	Pre-VGAC1	Post-VGAC2	Pre-VGAC1	Post-VGAC2	Pre-VGAC1	Post-VGAC2	N/A	Pre-VGAC1	Post-VGAC2	N/A	Pre-VGAC1	Post-VGAC2
Balance in the second	Sample Temperature (°F)	•		•		67.2	67.6	69.5	69.5	70.5	70.5	N/A	87.5	87.5	N/A	85.5	85.5
Bandardonethes I	Halocarbons		r	1													
Description ·< ·< ·< ·< ·< ·< ·<	Bromodichloromethane	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000661	ND <0.000661	ND <0.000663	ND <0.000967	ND <0.000928	ND <0.000682	ND <0.0099	ND <0.0099
Description - <th< td=""><td>Bromomethane</td><td>-</td><td></td><td>-</td><td></td><td>ND <1.00</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <0.000384</td><td>ND <0.000384</td><td>ND <0.000384</td><td>ND <0.000561</td><td>ND <0.000538</td><td>ND <0.000396</td><td>ND <0.0058</td><td>ND <0.0058</td></th<>	Bromomethane	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000384	ND <0.000384	ND <0.000384	ND <0.000561	ND <0.000538	ND <0.000396	ND <0.0058	ND <0.0058
Construction - <t< td=""><td>Bromoforrn</td><td>-</td><td></td><td>-</td><td></td><td>ND <1.00</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <0.00102</td><td>ND <0.00102</td><td>ND <0.00102</td><td>ND <0.00149</td><td>ND <0.00143</td><td>ND <0.00105</td><td>ND <0.015</td><td>ND <0.015</td></t<>	Bromoforrn	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.00102	ND <0.00102	ND <0.00102	ND <0.00149	ND <0.00143	ND <0.00105	ND <0.015	ND <0.015
Constraint ·	Carbon Tetrachloride	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.000/34	ND <0.000620	ND <0.000622	ND <0.000908	ND <0.000870	ND <0.000640	ND <0.0093	ND <0.0093
Chronomischer Berger I. I. Instrume Instrum	Chloropethane	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000261	ND <0.000261	ND <0.000262	ND <0.000382	ND <0.000366	ND <0.000270	ND <0.0039	ND <0.0039
Columner	2 Chloroothyl vipyl Ethor	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000204	0.000716	ND <0.000204	ND <0.000299	ND <0.000200	ND <0.000211	ND <0.0031	ND <0.0031
Dispersionmente Dispersion	2-Chloroform	-	112	- 0.042	1	ND <1.00	ND <1.00	ND <1.00	ND <1.00	- ND <0.000482	- ND <0.000482	- ND <0.000483	- ND <0.000705	- 0.0013	- ND -0.000407	- ND <0.0072	- ND <0.0072
1.1.0260x0000000000000000000000000000000000	Dibromochloromethane	150	113	0.043		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000402	ND <0.000432	ND <0.000403	ND <0.000703	ND <0.0013	ND <0.000497	ND <0.0072	ND <0.0072
C1:Debuterename I I IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 1-Dichloroethane					ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000400	ND <0.000400	ND <0.000401	0.00115	ND <0.000561	ND <0.000413	ND <0.0060	ND <0.0060
1	1 2-Dichloroethane	-		-		ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000400	ND <0.000400	ND <0.000401	ND <0.000585	ND <0.000561	ND <0.000413	ND <0.0060	ND <0.0060
Sci 2 Subtroombres i i image in the stand interval	1.1-Dichloroethene	-	-	70	2500	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000392	0.00432	ND <0.000393	ND <0.000573	0.00868	ND <0.000404	ND <0.0059	0.0081
Imple Labolationshame ·	cis-1,2-Dichloroethene	-	-	1900	69000	ND <1.00	ND <1.00	ND <1.00	ND <1.00	1.12	0.0194	ND < 0.000393	0.734	2.23	ND < 0.000404	0.94	1.6
C2-Decompanyane - - - No No NO Allow Allow NO </td <td>trans-1,2-Dichloroethene</td> <td>-</td> <td>-</td> <td>1900</td> <td>69000</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>0.0354</td> <td>0.00241</td> <td>ND < 0.000393</td> <td>0.0252</td> <td>0.0911</td> <td>ND <0.000404</td> <td>0.051</td> <td>0.085</td>	trans-1,2-Dichloroethene	-	-	1900	69000	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.0354	0.00241	ND < 0.000393	0.0252	0.0911	ND <0.000404	0.051	0.085
ch.1.3-boltograppen I. I. No -1.00	1,2-Dichloropropane	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000457	ND <0.000457	ND <0.000458	ND <0.000669	ND <0.000641	ND <0.000472	ND <0.0069	ND <0.0069
Tanel A Solutiongrogene I	cis-1,3-Dichloropropene	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000449	ND <0.000449	ND <0.000450	ND <0.000657	ND <0.000630	ND <0.000463	ND <0.0067	ND <0.0067
Methylane dividué - - ND - 250	trans-1,3-Dichloropropene	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000449	ND <0.000449	ND <0.000450	ND <0.000657	ND <0.000630	ND <0.000463	ND <0.0067	ND <0.0067
11.22-Transhowenhame - - - NO NO<100 NO<100 NO<100 NO<100077 NO<100077 NO<1000077 NO<100077 NO<1000	Methylene chloride	-	-	-	-	ND <2.50	ND <2.50	ND <2.50	ND <2.50	ND <0.00171	ND <0.00171	ND <0.00172	ND <0.00251	ND <0.00240	0.00287	ND <0.026	ND <0.026
Tenenbroacheme 100 700 1 30 1.05 ND <1.00 ND <1.000 ND <1.000 <th< td=""><td>1,1,2,2-Tetrachloroethane</td><td>-</td><td>-</td><td>-</td><td>-</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <1.00</td><td>ND <0.000678</td><td>ND <0.000678</td><td>ND <0.000679</td><td>ND <0.000991</td><td>ND <0.000951</td><td>ND <0.000699</td><td>ND <0.010</td><td>ND <0.010</td></th<>	1,1,2,2-Tetrachloroethane	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000678	ND <0.000678	ND <0.000679	ND <0.000991	ND <0.000951	ND <0.000699	ND <0.010	ND <0.010
1.1.1 P - - ND ND ND AU00558 ND	Tetrachloroethene	1000	750	1	36	1.65	ND <1.00	ND <1.00	ND <1.00	11.1	0.0535	ND <0.000671	ND <0.000979	0.0586	ND <0.000691	9.4	0.014
11.2 Fridementing - - - - - ND -1.00 ND -0.00558 ND -0.00588 ND -0.00558	1,1,1-Trichloroethane	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000539	ND <0.000539	ND <0.000540	ND <0.000788	ND <0.000756	ND <0.000556	ND <0.0081	ND <0.0081
Inducembrine Second 4000 0.5 18 NO -0.002 AD -0.002 AD -0.0023	1,1,2-Trichloroethane	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000539	ND <0.000539	ND <0.000540	ND <0.000788	ND <0.000756	ND <0.000556	ND <0.0081	ND <0.0081
Individualization L Individualization L Individualization Indindindindividualization Individualizatio	Trichloroethene	54000	40000	0.5	18	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.718	0.00284	ND <0.000250	0.351	0.0041	ND <0.000258	2.3	ND <0.0038
Instruction Part of the image in the image interm in the image in the image in the image in the	I richlorofluoromethane	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000555	0.00347	ND <0.000556	0.00451	0.000779	ND <0.000573	<0.0083	-
Andmats Products	Vinyi chioride	2E+05	136000	0.11	4	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.0166	0.00751	ND <0.000254	0.0138	0.0163	ND <0.000261	0.038	0.014
Data Disol Bool Close ND 2000 ND 2000000000 ND 2000000000000000000000000000000000000	Bonzono	1200	080	0.12	4	ND -0.250	ND -0.250	ND -0.250	ND -0.250	0.00206	0.002	ND -0.000210	0.00247	0.000076	ND -0.000220	ND -0.0049	ND -0.0049
Description	Benzene	1300	980	0.13	4	ND <0.350	ND <0.350	ND <0.350	ND <0.350	*	*	ND <0.000319 *	*	0.000976	ND <0.000329	ND <0.0048	ND <0.0048
Dirt Burgenzene · · · ND -20 ND -2000668 ND -0000641 ND -0000641 ND -0000647 ND -0000647 ND -0000647 ND -0000647 ND -0000641	n-Butylbenzene			_	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	*	*	*	*	*	*	*	*
Chierospanzane i	tert-Butylbenzene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	*	*	*	*	*	*	*	*
Englemane 5400 1000 100 ± 100 ND ± 100 N	Chlorobenzene	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000457	ND <0.000457	ND <0.000458	ND <0.000669	ND <0.000641	ND <0.000472	ND <0.0069	ND < 0.0069
Isopropribuncene -	Ethylbenzene	54000	40000	1000	36000	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.00352	ND <0.000433	ND <0.000434	0.00414	ND <0.000607	ND < 0.000447	ND <0.0065	ND <0.0065
plsptplanene ND -2.0 ND -2.006 ND -2.00066	Isopropylbenzene	-	-	400	14000	ND <2.0	ND <2.0	ND <2.0	ND <2.0	*	*	*	*	*	*	*	*
Naphtainen 7900 5900 33 100 ND <5.0 ND <5.00	p-lsopropyltoluene	-	-	-	-	ND <2.0	ND <2.0	ND <2.0	ND <2.0	*	*	*	*	*	*	*	*
n.Prophyberzene · · <	Naphtalene	7900	5900	3	100	ND <5.0	ND <5.0	ND <5.0	ND <5.0	*	*	*	*	×	*	*	*
Toluene 37000 27000 400 14000 ND <1.00 ND <1.00 </td <td>n-Propylbenzene</td> <td>-</td> <td>-</td> <td>0.1</td> <td>3</td> <td>ND <2.0</td> <td>ND <2.0</td> <td>ND <2.0</td> <td>ND <2.0</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td>*</td>	n-Propylbenzene	-	-	0.1	3	ND <2.0	ND <2.0	ND <2.0	ND <2.0	*	*	*	*	*	*	*	*
1_2,4-Trimethylbenzene · · 290 10000 ND -2.0 ND -2.000493 ND -0.000431 ND -0.000431 ND -0.000633 ND -0.000667 ND -0.00067	Toluene	37000	27000	400	14000	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.00174	ND <0.000376	ND <0.000376	0.00497	0.000873	ND <0.000388	ND <0.0056	ND <0.0056
1.3.5-Trimethylbenzene · 290 10000 ND <2.0 ND <2.0 ND <2.0 ND <2.0 ND <2.0 ND <2.0 ND <2.00 ND <2.	1,2,4-Trimethylbenzene	-	-	290	10000	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <0.000490	0.000569	ND <0.000491	ND <0.000717	ND <0.000687	ND < 0.000506	8.9	0.0081
mp.px/sylene 4300 3200 100 3600 ND <1.00	1,3,5-Trimethylbenzene	-	-	290	10000	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <0.000490	ND <0.000490	ND <0.000491	ND <0.000717	ND <0.000687	ND <0.000506	0.74	ND <0.0075
e-Xylene 4300 3800 ND <1.00 ND	m,p-Xylene	4300	3200	100	3600	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.00646	ND <0.000433	ND <0.000434	0.00538	ND <0.000607	ND <0.000447	0.029	ND <0.0065
systeme - - ND <1.00 ND <1.00 </td <td>o-Xylene</td> <td>4300</td> <td>3200</td> <td>100</td> <td>3600</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>0.00486</td> <td>ND <0.000433</td> <td>ND <0.000434</td> <td>0.00533</td> <td>ND <0.000607</td> <td>ND <0.000447</td> <td>ND <0.0065</td> <td>ND <0.0065</td>	o-Xylene	4300	3200	100	3600	ND <1.00	ND <1.00	ND <1.00	ND <1.00	0.00486	ND <0.000433	ND <0.000434	0.00533	ND <0.000607	ND <0.000447	ND <0.0065	ND <0.0065
1.2-bickhoroderizene - - NU < 1.00 NU < 0.000596 NU < 0.000597 NU < 0.000862 NU < 0.000866 NU < 0.000966 NU < 0.000597 NU < 0.000866 NU < 0.000866 NU < 0.000866 NU < 0.000867 NU < 0.000866 NU < 0.000866 NU < 0.000872 NU < 0.000866 NU < 0.000866 NU < 0.000866 NU < 0.000866 NU < 0.000872 NU < 0.000866 NU < 0.000866 NU < 0.000867 NU < 0.000866 NU < 0.000866 NU < 0.000872 NU < 0.000866 NU < 0.000866 NU < 0.000866 NU < 0.000872 NU < 0.000866 NU < 0.000866 NU < 0.000873 NU < 0.000872 NU < 0.000866 NU < 0.00086 NU < 0.000873 NU < 0.000872 NU < 0.000872 NU < 0.000872 NU < 0.000873 NU < 0.0000873 NU < 0.000873	Styrene	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000425	ND <0.000425	ND <0.000425	ND <0.000621	ND <0.000596	ND <0.000438	ND <0.0064	ND <0.0064
I_3-DickIndicative - - - ND <1.00 ND <1.00 </td <td>1,2-Dichlorobenzene</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <1.00</td> <td>ND <0.000596</td> <td>ND <0.000596</td> <td>ND <0.000597</td> <td>ND <0.000872</td> <td>ND <0.000836</td> <td>ND <0.000615</td> <td>ND <0.0090</td> <td>ND <0.0090</td>	1,2-Dichlorobenzene	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000596	ND <0.000596	ND <0.000597	ND <0.000872	ND <0.000836	ND <0.000615	ND <0.0090	ND <0.0090
International of the structure Indext.ob/			-	-		ND <1.00	ND < 1.00	ND < 1.00	ND < 1.00	ND <0.000396	ND <0.000396	ND <0.000597	ND <0.000672	ND <0.000030	ND <0.000615	ND <0.0090	ND <0.0090
Noticinal Number of the state	Kotonos	-	-	-	-	ND <1.00	ND <1.00	ND <1.00	ND <1.00	ND <0.000390	ND <0.000390	ND <0.000397	ND <0.000072	ND <0.000030	ND <0.000013	ND <0.0090	ND <0.0090
Indexand Image: Solution Image: Solution </td <td>Acetone</td> <td>-</td> <td>-</td> <td>1 -</td> <td></td> <td>ND <5.00</td> <td>ND <5.00</td> <td>ND <5.00</td> <td>ND <5.00</td> <td>0.0346</td> <td>0.0112</td> <td>0.00144</td> <td>0.0147</td> <td>0.0268</td> <td>0.00536</td> <td>0.059</td> <td>0.11</td>	Acetone	-	-	1 -		ND <5.00	ND <5.00	ND <5.00	ND <5.00	0.0346	0.0112	0.00144	0.0147	0.0268	0.00536	0.059	0.11
Section Section ND <2.00 <	2-Butanone	1				ND <3.00	ND < 2.00	ND < 3.00	ND <0.00	ND <0.00204	0.0112	ND <0.00144	ND <0.0047	ND <0.000/12	ND <0.00303	0.039	ND 0.0088
Ind state Ind state <t< td=""><td>2-Hexanone</td><td></td><td>-</td><td></td><td></td><td>ND <2.50</td><td>ND <2.50</td><td>ND <2.50</td><td>ND <2.50</td><td>ND <0.000234</td><td>ND <0.00111</td><td>ND <0.000294</td><td>ND <0.000430</td><td>ND <0.000412</td><td>ND <0.000303</td><td>ND <0.002</td><td>ND <0.0000</td></t<>	2-Hexanone		-			ND <2.50	ND <2.50	ND <2.50	ND <2.50	ND <0.000234	ND <0.00111	ND <0.000294	ND <0.000430	ND <0.000412	ND <0.000303	ND <0.002	ND <0.0000
Miscellaneous ND <2.00 ND <2.50	4-Methyl-2-pentanone	-	-	-	-	ND <2.50	ND <2.50	ND <2.50	ND <2.50	ND <0.000408	ND <0.000408	ND <0.000409	ND <0.000597	ND <0.000573	ND <0.000421	ND <0.012	ND <0.012
Carbon disulfide 620 4600 700 25000 ND < 2.50 ND < 0.000310 ND < 0.000311 0.000727 ND < 0.00435 0.00659 0.0068 ND < 0.0047 Methyl tert-butyl ether - - 3000 1E+05 ND < 2.0	Miscellaneous		1			110 \$2.00	110 12:00	110 12.00	110 \$2.00				110 30.000001			.10 .0.012	10 30.012
Methyl terk-butyl ether - - 3000 1E+05 ND <2.0 ND <2.0 <th< td=""><td>Carbon disulfide</td><td>6200</td><td>4600</td><td>700</td><td>25000</td><td>ND <2.50</td><td>ND <2.50</td><td>ND <2.50</td><td>ND <2.50</td><td>ND <0.000310</td><td>ND <0.000310</td><td>ND <0.000311</td><td>0.000727</td><td>ND <0.000435</td><td>0.00659</td><td>0.0068</td><td>ND <0.0047</td></th<>	Carbon disulfide	6200	4600	700	25000	ND <2.50	ND <2.50	ND <2.50	ND <2.50	ND <0.000310	ND <0.000310	ND <0.000311	0.000727	ND <0.000435	0.00659	0.0068	ND <0.0047
Vinyl acetate - - ND <2.50 ND <2.50 ND <2.50 ND <2.50 ND <0.000351 ND <0.000351 ND <0.000352 ND <0.000354 ND <0.000362	Methyl tert-butyl ether	-	-	3000	1E+05	ND <2.0	ND <2.0	ND <2.0	ND <2.0	ND <0.000359	ND <0.000359	ND <0.000360	ND <0.000525	ND <0.000504	ND <0.000371	ND <0.0054	ND <0.0054
Total VOCs (mg/m³) 261743 4E+05 1.65 0 0 13.046 0.109 0.001 1.167 2.440 0.015 22.476 1.848	Vinyl acetate	-	-	-	-	ND <2.50	ND <2.50	ND <2.50	ND <2.50	ND <0.000351	ND <0.000351	ND <0.000352	ND <0.000514	ND <0.000492	ND <0.000362	ND <0.0053	ND <0.0053
Total VOCs (mg/m³) 261743 4E+05 1.65 0 0 13.046 0.109 0.001 1.167 2.440 0.015 22.476 1.848		1		-		- I			•								
	Total VOCs (mg/m ³)		261743		4E+05	1.65	0	0	0	13.046	0.109	0.001	1.167	2.440	0.015	22.476	1.848

Notes: - Short-term and annual guidelines were developed using Air Guide 1 DAR-1 software, and are based on a 56ft stack height. - Samples collected in Tedlar bags and analyzed using a modified EPA method 8260. - ND denotes non-detect - mg/m³ is milligram per cubic meter of air at standard temperature (20 degC) and pressure (101.325 kPa). - **Bold-faced** values are concentrations that have been reported above the detection limits. - **** denotes analytical parameters that cannot be reported by method TO-15 - **** denotes vapor samples collected and anlyzed by method TO-15

Client/Proie	ct
Cherner Toje	
GER	
PRC	GRESS REPORT NO.3 - INTERIM QUARTERLY MPVE OM&M, WARD STREET SITE,
	HESTER, NEW YORK
Table No.	
3-2b	
Title	
Vapor Dis	charge Analytical Results

Appendix E

(62' WIDE) STREET MAC. APRON CONC. WALK 164.00' BLDG. COR. 0.0' \$ 168.26' 7' CLF GATE FEN. COR. -GRASS AND TRFF 0.0'↔ |8.9'↓ W/BARBED WIRE SWING GATE PARKING STRIPING (TYP) \Box GQI/MWI 🏾 R H R PARCEL PER L SEE 7 MW 2 SEE NOTE 4 MW-46F GERMANOW SIMON MW-46 CORPORATION (PARKING LOT-PER L. 10289, P. 506 NO BUILDINGS) - OH⁵E[↑] GRASS T.M. NO. 106.63-1-016 MW 21 N 37°-22'-13" WI AREA=1.221 ± ACRES W/ELEC. METER ABANDONED (N 38-32-20" W) (143.00 TO SOUTHERLY LIMITS OF CORK ST.) GQ8/MW5 (143.00' TO SOUTHERLY LIMITS OF CORK STREET IMW-IT X X X X 8 8 (8.27' (MEAS.) 7 8' 8 8 8 8 8 8 8 8 18.27' (MEAS.) 7 8' 8 78.37' (DFFN) 7 VNFFN FORMERLY 54.65' (MEAS.) THE GENESEE 54.63' (DEED) MW 9-R ⊕ ⊕MW-9 MW-217 BREWING COMPANY BLDG. COR. T.M.NO. 106.63-1-016 MW-219 € PAVEMENT PARCEL III -PER L 4396, PG 37+ MW 3 MW-216 MW-213 SEE NOTE 4 PARCEL PER L 4396, PG 37 CITY OF ROCHESTER -PAVEMENT . 5410,PG 262 CONC. PAVEMENT (SEE NOTE 4 GQ2/MW2 106.36' (DEED) <u>\$ 36°-43'-26'' E</u> 105.92'(MEAS) VALL COR BLDG. COR. BLDG. COI ΔΝΟΡ STONE PARKING LO SEE NOTE NO. 10 4 STORY BUILDING AREA=1.363 ACRES+/-PAVEMENT MW 107 VISITOR OFFICE ENTRANCE _____ SEE NOTE NO. 10 CONC. PAVEMENT MW 5 -+ ELEC. BOX ON BLDG BLDG.COR. MW 105 + EFFLUENT TREATMENT SWITCH BOX MW 106 UPPER FALLS MW 22 B-101 REALTY CO. MW-101 UPPER FALLS REALTY CO. MINETH REALTY COMPANY MINETH REALTY COMPANY T.M.NO. 106.62-1-032 MW 22-R T.M. NO. 106.62-1-030 T.M.NO. 106.62-1-029 T.M.NO. 106.62-1-028 ⊕^{B-3} MW-3 0.L <>> 36.82 (DEED) /BLDC FORMERLY MW-15 UPPER FALLS, REALTY CO. T.M.NO. 106.62-1-03 * GATE SEE NOTE 5 STONE PARKING LO 30.05' (MEAS.)— –BLDG. COR. - 53.68' (DEED) -SEE NOTE NO. 10 30.03' (DEED) 0.0' <> @MW-14 SPRINKLER HOOK-UP BLDG. COR.).0'↔ 38.12' (MEAS.) 76' (DEED) 40' (DEED) 39.85' (DEED) 3,125' (DEED) <u>- EN-N 38-20-00"W</u> 277.70 ----E----[] SEE NOTE NO. IO ST. PAUL (66' WIDE) STREET

> NEW GRANITE R.O.W. MON. LANDS DESIGNATED AS TAX MAP PARCELS: 106.62-1-028, BEING 408 ST. PAUL STREET; 106.62-1-029, BEING 398-402 ST. PAUL STREET; 106.62-1-030, BEING 388-392 ST. PAUL STREET; 106.62-1-031, BEING 384 ST. PAUL STREET; 106.62-1-032 BEING 376-378 ST. PAUL STREET: 106.62-1-021 BEING 19-23 EMMETT STREET: 106.63-1-016 BEING 8-28 WARD STREET. AND 106.62-1-057 BEING 25 CORK STREET.

OF ENVIRONMENTAL REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, NEW YORK, 12233 OR AT DERWEB@GW.DEC.STATE.NY.US.

DATE. 8/1/12

BY: Robert A. Verito ROBERT A. VENTO, N.Y.S.P.L.S. NO. 49701