
Stantec Consulting Services Inc.

December 15, 2018 File: 190500014

Attention: Mr. Todd Caffoe, P.E.

New York State Department of Environmental Conservation Division of Environmental Remediation 6274 East Avon-Lima Road Avon NY 14414-9519

Reference: Periodic Review Report

Ward Street Site, BCA Site No. C828117

and 8-28 Ward Street Site, BCA Site No. C828136

Rochester, New York

Dear Todd:

On behalf of Germanow-Simon Corporation (Germanow-Simon), Stantec Consulting Services Inc. (Stantec) has prepared this Periodic Review Report and completed the Institutional and Engineering Control Certification (IC/EC) Forms for the period November 15, 2017 to November 15, 2018 for Germanow-Simon to fulfill its obligation as a Volunteer under the Brownfield Cleanup Agreement (BCA) for its properties known as the Ward Street Site (BCA Site #C828117) and the 8-28 Ward Street Site (BCA Site #C828136). These adjacent sites are located on Ward Street in the City of Rochester, Monroe County, New York.

We ask that the Department please update the addresses for the sites, as indicated on the IC/EC forms.

Please do not hesitate to call should you have any questions or require further information.

Regards,

STANTEC CONSULTING SERVICES INC.

Michael P. Storonsky Managing Principal

(585) 413-5266

mike.storonsky@stantec.com

Peter Nielsen, P.E.

Principal (585) 413-5280

peter.nielsen@stantec.com

Attachment: Periodic Review Report – Ward Street Site No. C828117 and No. C282136

c. John Dole (Germanow-Simon)

December 15, 2018

Prepared on behalf of:

Germanow-Simon Corporation 408 St. Paul Street Rochester, New York 14601

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

Table of Contents

1.0	INTRO	ODUCTION AND OVERVIEW	
	1.1	SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY	
	1.2	SITE MANAGEMENT REQUIREMENTS	
	1.3	EFFECTIVENESS OF THE REMEDIAL PROGRAM	5
	1.4	COMPLIANCE	
	1.5	RECOMMENDATIONS	
	DEM	EDV DEDEODMANOE EFFECTIVENESS AND DROTTOTIVENESS	,
2.0	KEW	EDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS	5
3.0	СОМ	IPLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN	6
4.0	OVE	RALL CONCLUSIONS AND RECOMMENDATIONS	-
4.0	OVE	RALL CONCLUSIONS AND RECOMMENDATIONS	

TABLES

- 1 Summary of VOCs in Groundwater September 2011 to October 2018
- 2 Summary of Field Parameters in Groundwater September 2011 to October 2018

FIGURES

- 1 Site Location Map
- 2 Well Locations

APPENDICES

- A IC/EC Certification Forms
- B NYSDEC Correspondence
- C Laboratory Analytical Reports

1.0 INTRODUCTION AND OVERVIEW

Stantec Consulting Services Inc. (Stantec) has prepared this Periodic Review Report (PRR) and the attached Institutional Control/Engineering Control (IC/EC) forms (Appendix A) to summarize Site Management (SM) activities at the contiguous Ward Street and 8-28 Ward Street Brownfield Cleanup Program sites (the Sites) for the period November 15, 2017 to November 15, 2018.

The PRR was prepared on behalf of Germanow-Simon Corporation (Germanow-Simon), the owner of the Sites, to fulfill the PRR requirements of the Brownfield Cleanup Program (BCP) of the New York State Department of Environmental Conservation (NYSDEC or the Department). The Ward Street Site is identified by NYSDEC as BCP Site No. C828117. The 8-28 Ward Street Site is identified as BCP Site No. C828136.

The Sites are located in the City of Rochester, Monroe County, New York along the north side of Ward Street between the intersection of Ward Street with St. Paul Street on the southwest and Emmett Street on the northeast. A map showing the locations of the Sites is presented on Figure 1.

1.1 SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY

Germanow-Simon and the Department agreed to pursue a program of environmental investigation and cleanup activities at the Sites to address past releases of industrial and dry-cleaning solvents and petroleum products that resulted in subsurface contamination by volatile organic compounds (VOCs). The BCP activities led to the implementation of a Multi-Phase Vacuum Extraction (MPVE) cleanup system for the Sites. MPVE is a contaminant remediation technology that uses a vacuum pump and extraction wells to simultaneously remove VOCs from subsurface soils, soil vapor and groundwater. The layout of the former MPVE system is provided in Figure 2 (Well Locations).

Construction, installation, and commissioning of the MPVE system at the Ward Street Site were completed in October 2006. The 8-28 Ward Street Site component of the MPVE system was added in October 2008. With NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been restarted since that time. At that time, the previously-installed sub-slab depressurization system (SSDS) beneath the Building B Annex Area was reactivated (as it had been during previous sampling or MPVE maintenance-related shut-down periods).

In accordance with the NYSDEC-approved *Remedial Program Supplement, Enhanced Reductive Dechlorination Work Plan*, dated March 2011 (Stantec, 2011) and NYSDEC's November 14, 2011 approval letter, an *in-situ* bioremediation groundwater polishing program was initiated in November/December 2011. This was followed by a supplemental injection program, which was proposed in correspondence dated October 2012, approved by NYSDEC on November 6, 2012, and conducted in November 2012. The results of that event were summarized in Stantec's December 21, 2012 *Enhanced Reductive Dechlorination Supplemental Injection Program Summary Report*.

Because groundwater in the former Lilac Laundry area was found to meet the Department's groundwater quality standards (refer to *Ward Street Site Semi-Annual Progress Report #8, Ward Street Site (Site #C828117) and 8-28 Ward Street Site (Site #C828136), Rochester, New York* (Stantec, February 2011), and in preparation for site improvements, as per NYSDEC approval, in October 2011, the following wells were decommissioned at the Ward Street Site: MW-3, -5, -9, -9R, -20, -21, -32, -213, -214, -215, -216, -217, -218, and -219. In addition, since no significant groundwater impacts were present on the 8-28 Ward Street Site, and in preparation for site improvements, per NYSDEC approval in October 2011, the

following wells were decommissioned at the 8-28 Ward Street Site: GQ1/MW-1, GQ2/MW-2, GQ4/MW-4, GQ8/MW-5, MW-19, -45, -46, -46R, and -47.

The results of the groundwater sampling event conducted in October 2013 indicated that significant dissolved-phase VOC reduction had occurred within the treatment area. Based on this observed reduction since the commencement of remedial measures, and the continued success of the Enhanced Reductive Dichlorination (ERD) process, it was proposed in the 2015 PRR to: (1) discontinue the ERD groundwater treatment program; (2) reduce the number of wells that are monitored; (3) reduce the number of analytes that are monitored; and (4) reduce the frequency of monitoring. The PRR proposed that an annual groundwater sampling event be performed involving wells MW-16, -16R, -23, -23R, -105, -207R with analysis for VOCs by USEPA Method 8260 and total organic carbon (TOC) by USEPA Method 5310. This revised sampling and analysis approach was accepted in the NYSDEC February 4, 2016 letter to Germanow-Simon; a copy of the letter was included in Appendix B of the 2016 PRR.

The results of the annual groundwater sampling event completed in June 2015 showed that anaerobic and reducing geochemical conditions had been maintained at the wells sampled. Results at wells MW-16 and -23R indicated that the "parent" compounds tetrachloroethylene (PCE) and trichloroethylene (TCE) were below detection limits. Concentrations of daughter products at MW-16 had increased, suggesting that degradation was progressing but was incomplete. The only contaminant of concern detected at MW-23R was cis-dichloroethylene (cis-DCE) and the concentration was below the groundwater standard for that compound. Decreased concentrations were observed for all contaminants of concern at MW-105. However, increases in contaminants of concern were observed at MW-16R, -23, and -207R. After discussion with NYSDEC, it was proposed to complete another round of groundwater monitoring at these six wells in the spring of 2016 to assess the progress of the ERD process.

The groundwater parameters measured in the field during the March 2016 sampling event indicated that anaerobic and reducing geochemical conditions had been maintained or improved slightly since 2015 at all sampled wells. This indicated that the ERD injection performed in November 2012 continued to promote an environment suitable for the breakdown of chlorinated VOCs. Measured groundwater parameters are provided on Table 2.

The VOC data (Table 1) indicated that ERD continued under, and downgradient from, the Building B Annex shipping/receiving area. Low and decreasing concentrations of parent VOC compounds, tetrachloroethylene (PCE) and trichloroethylene (TCE), were observed in MW-105; and only 'daughter' products, cis- and trans-1,2-Dichloroethene (DCE) and vinyl chloride (VC), were observed downgradient at wells MW-16 and -16R. VOC concentrations at downgradient well MW-207R remained generally similar to those observed during the previous round of groundwater sampling in June 2015 with only "daughter" VOC compounds detected.

In 2016, favorable conditions at the 8-28 Ward Street Site were maintained within the bedrock zone as VOC concentrations were at or below laboratory detection limits for all compounds at MW-23R. The results from MW-23, however, showed increases in PCE and TCE concentrations compared to levels observed prior to the initial injection activities. The increases in the concentrations of parent compounds were indicative of additional residual source material that had not been effectively treated by past remedial efforts in the area of MW-23. The groundwater results were forwarded to the Department on April 14, 2016 (Appendix B of the 2016 PRR).

Following discussion with the Department, Stantec performed a two-day Geoprobe investigation (May 23-24, 2016) to investigate the potential source and extent of impacted soil in the vicinity of MW-23 which

was contributing to the groundwater results. The investigation was summarized in the 2016 PRR; based on the results, Stantec recommended performing an on-Site remedial excavation of source material. This remedial approach would be supplemented with the placement in the excavation of sodium lactate as an electron-donor to further facilitate the breakdown of residual contamination in groundwater within, and downgradient of the source area. The results of the soil boring program and the recommended remedial approach were proposed to the Department both in correspondence dated October 27, 2016 and the December 15, 2016 PRR. Included as a part of the remedial approach set forth in the 2016 PRR, the next groundwater monitoring event was proposed to be completed three months after completion of the excavation program.

As detailed in the December 2017 PRR, a relatively small, supplemental excavation of TCE-impacted source-area soils was performed in October 2017 on the southern boundary of the 8-28 Ward Street site, immediately north of Ward Street. An application of sodium lactate was placed in the excavation prior to backfill to facilitate *in situ* bioremediation of any residual groundwater impacts. Due to the timing of the excavation program, and the commitment to conduct the next groundwater monitoring event three months after completion of the excavation program, no groundwater monitoring was performed in 2017.

1.2 SITE MANAGEMENT REQUIREMENTS

Site Management activities were implemented in accordance with the Department-approved Site Management Plans (SMPs) for each site. The SMPs for the Sites include the following required Institutional and Engineering Controls (ICs/ECs):

- Use of the Sites for commercial and industrial purposes is allowed as long as the following longterm controls are employed:
 - The MPVE system is operated in accordance with a Department-approved Operation, Maintenance & Monitoring (OM&M) plan until remedial requirements are achieved to the satisfaction of the Department.
 - An SSDS constructed in conjunction with the MPVE system is operated continuously in the Building B Annex Area to mitigate the potential for soil vapor intrusion (SVI) when the MPVE system is shut down.
 - Impervious surfaces covering specific areas of the Sites (building floor slabs and parking lot pavements) are maintained.
 - NYSDEC approval must be obtained in advance for activities which breach impervious surfaces or disturb soils in those same areas of the Sites, and those activities must be performed in accordance with the SMPs.
 - NYSDEC approval must be obtained in advance for use of groundwater for any purpose at the Sites.
- The Sites may not be used for purposes with a higher level of use than the commercial and industrial purposes described above.
- An environmental easement granted to the Department must be maintained on the property deed and any subsequent instrument of land conveyance, lease, license, or other instruments granting rights of use of the Sites.

> Annually (or as otherwise directed by the Department), Germanow-Simon must certify to the Department as to the continued presence and effectiveness of the controls described above.

The MPVE system OM&M Plan for the Sites specified a program of maintenance activities and provided for monthly system performance monitoring, periodic groundwater monitoring, and annual indoor/outdoor air testing. Indoor air testing was previously conducted in the Building B Annex and Building B along with outdoor testing to obtain background conditions; however, due to NYSDEC's approval in 2014 to forego this testing, it is no longer conducted. The OM&M Plan specifies periodic reporting on OM&M activities, monitoring results and remedial progress. However, pursuant to NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been operated since that time. The system was subsequently decommissioned. Therefore, OM&M activities related to the MPVE system have not been required since it was shut down in February 2011. On February 22, 2011, the SSDS was turned on and has operated continuously since that time. The facility manager has confirmed its continued proper operation.

Due to building expansion/renovation and site improvement activities at the Sites during the September 15, 2011 to September 15, 2012 reporting period, the SMPs for both Sites were revised. Revised versions of these documents were submitted to the NYSDEC along with the PRR for that reporting period.

1.3 EFFECTIVENESS OF THE REMEDIAL PROGRAM

The IC/ECs required under the SM program remained in place and were effective.

1.4 COMPLIANCE

Compliance with the SMPs for both Sites was maintained throughout the reporting period.

As a followup to the 2017 soil excavation, two crabapple trees were planted on July 24, 2018 as replacements for two trees that required removal during the excavation program. One of the trees was located within the footprint of the former excavation. The work was discussed with NYSDEC in advance, and a memo summarizing the work was provided to NYSDEC on July 31, 2018 (see copy, Appendix B).

1.5 RECOMMENDATIONS

No change to the currently approved frequency of PRRs (currently annual) is recommended at this time. As noted in Section 1.2, the SMPs for both Sites were revised in 2012. It is recommended that the requirements specified within the updated SMPs continue to be fulfilled.

2.0 REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

As a followup to the October 2017 remedial excavation, a post-excavation groundwater monitoring event was performed on January 10, 2018. In addition, an annual monitoring event (as recommended in the 2017 PRR) was also performed on October 24, 2018. For each event the following six wells were sampled: MW-16, 16R, -23, -23R, -105, and -207R. As with previous sampling events, low-flow sampling methodology was employed.

The analytical results for each event are summarized on Table 1, along with all historical results for these six wells. Table 2 provides a summary of the field parameters measured in groundwater during the sampling events. Figures 3A through 3F present time-series plots of individual VOC concentrations for these six wells.

The following observations are made relative to groundwater levels and quality, based on the results of these two 2018 sampling events:

- Groundwater levels have dropped an average of 1.5 ft in the six sampled wells since the June 2016 sampling event.
- Field parameters measured during both sampling events indicate anaerobic groundwater conditions, with dissolved oxygen (DO) levels below 2 mg/L. Oxidation/reduction potential (ORP) values remain below zero, which continues to indicate reducing conditions.
- Wells MW-23 (overburden) and -23R (bedrock) are located in close proximity to the excavation performed in 2017. MW-23 had exhibited an increase in some of the VOCs of concern in the 2016 sampling event, most notably a significant "spike" in PCE. PCE concentrations in both 2018 sampling events showed a decrease; the October 2018 concentration had returned to its lowest detected level since 2013. Other VOCs in this well are also now within typical ranges observed since early 2013. VOCs in well MW-23R have essentially remained at non-detect levels since 2012.

These results indicate the source excavation and lactate placement performed in late 2017 are having a positive effect on groundwater quality in this area.

- Well MW-16R, located on the southern edge of the remedial area, has exhibited an increase in concentrations of cis-1,2-DCE and VC since 2013; however these compounds both dropped in concentration in the October 2018 event. TCE has shown variable concentrations in this well since 2013, but also showed a drop in the October 2018 event.
 - Well MW-16, located adjacent to MW-16R exhibited increases in concentrations of cis-1,2-DCE and VC in the 2018 results.
- MW-105 has shown detection of several VOCs but levels have remained relatively consistent for the last three sampling events. TCE, cis-1,2-DCE and VC showed slight increases in the October 2018 event.
- Well MW-207R (the easternmost well location in these sampling events) has exhibited variable
 concentrations of cis-1,2-DCE and VC since 2011, with generally-increasing trends since 2013.
 Both of these compounds increased in concentration in the January event, but decreased in the
 October event. Other VOCs of interest were below detection levels.

3.0 COMPLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN

During the reporting period, compliance with the required ICs and ECs was maintained.

- Use of the Sites has been limited to the industrial manufacturing and support activities conducted by the Germanow-Simon Corporation and its affiliated enterprises.
- In accordance with NYSDEC approval, the MPVE system was operated until February 22, 2011, at which time it was shut down indefinitely. The MVPE system was decommissioned, cleaned out, and disconnected from the sewer during the 2014 reporting period.

- The sub-slab depressurization system (SSDS) constructed in conjunction with the MPVE system has continuously operated since February 2011 in the Building B Annex Area to mitigate the potential for soil vapor intrusion (SVI).
- No groundwater use has occurred at the Sites.
- An environmental easement granted to the Department has been maintained on the property
 deed and any subsequent instrument of land conveyance, lease, license, or other instruments
 granting rights of use of the Sites. At the request of the NYSDEC, the separate environmental
 easement mapping for the two sites was combined into a single Environmental Easement map
 dated August 1, 2012.

Signed and stamped forms certifying the continued presence and effectiveness of the ICs and ECs described above are presented in Appendix A.

The MPVE system OM&M Plan for the Sites specifies a program of maintenance activities, provides for monthly system performance monitoring and periodic groundwater monitoring, and annual indoor/outdoor air testing. The OM&M Plan specifies periodic reporting on OM&M activities, monitoring results and remedial progress. However, since the MPVE system was shut down on February 22, 2011 and has not been restarted since that time, activities or certification related to the MPVE system have not been required since that time.

Sampling results from February 22, 2013 indicated that the SSDS system, which has been operating continuously since the MPVE system was shut down, continued to successfully mitigate potential SVI at the Building B Annex. Based on these results and discussion with and subsequent approval by NYSDEC, annual indoor and outdoor air sampling was discontinued in 2015. The system has been checked annually since 2015 to confirm proper operation.

Remedial progress during the reporting period has been reported to the NYSDEC in the form of emails and a written memo dated July 31, 2018 describing the planting of two replacement trees in thee area of the 2017 soil excavation. Copies of this correspondence with NYSDEC are presented in Appendix B.

4.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

As detailed in the previous PRR (December 2017), a remedial excavation had been performed in the fall of 2017. As proposed in the 2017 PRR report, follow-up groundwater monitoring was performed in 2018 at four boundary wells, one interior well and one exterior well approximately three-months after the MW-23 area was excavated, to assess the effectiveness of the remedial excavation and *in-situ* groundwater remediation. An annual monitoring event was also performed in the same six wells approximately 12 months post-excavation (October).

The monitoring results indicate variation in VOC levels in several of the wells; however the concentration of the parent VOCs TCE and PCE remain generally low to non-detect, and the presence of daughter compounds cis-1,2-DCE and VC are indicative that ERD continues to occur. Based on these observations it is recommended that one monitoring event be performed in 2019 to assess the ERD progress, and that the annual PRR frequency also be continued.

TABLES

Table 1 Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Sample Location	ĺ		l						MW16							
Sample Date			27-Sep-11	3-Feb-12	2-Mar-12	5-Jun-12	5-Sep-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	9-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18
Sample ID			WSR-MW-16-GW-18	WSR-MW-16-GW-19	WSR-MW-16-GW-20	WSR-MW-16-GW-21	WSR-MW-16-GW-22	WSR-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	828-MW-16-GW	WSR-MW-16-GW	WSR-MW-16-GW	MW-16
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order Laboratory Sample ID			P11-4090	12:0472	12:0936	12:2364	12:3668	13:0353	131259	132490	133891	133926	152493	160970	180096	184937
Sample Type	Units	TOGS	14083	12:0472-06	12:0936-02	12:2364-06	12:3668-05	130353-05	131259-05	132490-06	133891-05	133926-05	152493-03	160970-03	180096-02	184937-04
oumple Type	Oilles	1000														
Volatile Organic Compounds																
Acetone Benzene	μg/L μg/L	50 ^B	500 U 35.0 U	500 U 35.0 U	500 U 35.0 U	500 U 35.0 U	500 U 35.0 U	10 U 0.70 U	10.0 U 0.700 U	10.0 U 0.700 U	-	13.6 J 1 U	10.0 U 1.00 U	10.0 U 1.00 U	25.0 U 2.50 U	50.0 U 5.00 U
Bromobenzene	μg/L	5 ^A	35.00	35.00	33.00	35.00	35.00	5.0 U	5.00 U	0.7000	_	- 10	1.00 0	1.00 0	2.50 0	5.00 0
Bromodichloromethane	μg/L	50 ^B	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Bromoform (Tribromomethane)	μg/L	50 ^B	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Bromomethane (Methyl bromide)	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Butylbenzene, n-	μg/L	5 ^A	250 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane) Butylbenzene, tert-	μg/L	5 ^A	250 U 250 U	100 U 100 U	100 U 100 U	100 U 100 U	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L μg/L	60 ^B	250 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Chlorobromomethane	μg/L	5 ^A	250 U	250 U	250 U	250 U	-	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Chloroethane (Ethyl Chloride)	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane)	μg/L μg/L	n/v 7 ^A	100 U	100 U	100 U	100 U	500 U 100 U	10 U 2.0 U	10.0 U 2.00 U	2.00 U	-	2.00 U	- 2.00 U	2.00 U	5.00 U	10.0 U
Chloromethane	μg/L μg/L	7^` 5 ^A	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	_	2.00 U 2.00 U	2.00 U	2.00 U	5.00 U 5.00 U	10.0 U 10.0 U
Cyclohexane	μg/L	n/v	500 U	500 U	500 U	500 U	1000	10 U	10.0 U	10.0 U	_	10.0 U	10.0 U	10.0 U	25.0 U	50.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^A	500 U	500 U	500 U	500 U	-	10 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	25.0 U	50.0 U
Dibromochloromethane	μg/L	50 ^B	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichlorobenzene, 1,2-	μg/L	3 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichlorobenzene, 1,3-	μg/L	3 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichlorobenzene, 1,4- Dichlorodifluoromethane (Freon 12)	μg/L μg/L	3 ^A 5 ^A	100 U 250 U	100 U 100 U	100 U 100 U	100 U 100 U	100 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	_	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	5.00 U 5.00 U	10.0 U 10.0 U
Dichloroethane, 1,1-	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichloroethane, 1,2-	μg/L	0.6 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichloroethene, 1,1-	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichloroethene, cis-1,2-	μg/L	5 ^A	1,790 ^A	8,600 ^A	2,770 ^A	2,720 ^A	772 ^A	8.3 ^A	23.6 ^A	9.39 ^A	-	2.89	165 ^A	118 ^A	256 ^A	391 ^A
Dichloroethene, trans-1,2-	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	24.3 ^A	4.89	-	13.3 ^A	8.33 ^A	2.43	4.40 J	10.0 U
Dichloropropane, 1,2-	μg/L	1^	100 U	100 U	100 U	100 U	100 U	-	-	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichloropropane, 1,3-	μg/L	5 ^A	-	-	-	-	-	2.0 U	2.00 U	-	-	-	-	-	-	-
Dichloropropane, 2,2- Dichloropropene, cis-1,3-	μg/L μg/L	5 ^A 0.4 ₀ ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dichloropropene, trans-1,3-	μg/L	0.4 ₀ ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Dioxane, 1,4-	μg/L	n/v	-	-	-	-	-	20 U	20.0 U	20.0 U	-	R	20.0 U	20.0 U	50.0 U	100 U
Ethylbenzene	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^A	100 U	100 U	100 U	100 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^B	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Isopropylbenzene Isopropyltoluene, p- (Cymene)	μg/L μg/L	5^ 5^	250 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U		-	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Methyl Acetate	μg/L	n/v	100 U	100 U	100 U	100 U	_	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^B	500 U	500 U	500 U	500 U	500 U	33	10.0 U	10.0 U	-	9.98 J	10.0 U	10.0 U	25.0 U	50.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^B	100 U	100 U	100 U	100 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Methylcyclohexane	μg/L	n/v	100 U	100 U	100 U	100 U		2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Methylene Chloride (Dichloromethane) Naphthalene	μg/L μg/L	5 ^A 10 ^A	250 U 250 U	250 U 250 U	250 U 250 U	250 U 250 U	250 U	5.0 U	5.00 U	5.00 U	_	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Propylbenzene, n-	μg/L μg/L	5 ^A	250 U	100 U	100 U	100 U] [] - [] - [] - [:
Styrene	μg/L	5··^	250 U	250 U	250 U	250 U	250 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Tetrachloroethane, 1,1,2,2-	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Tetrachloroethene (PCE)	μg/L	5 ^A	2,390 ^A	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Toluene	μg/L	5 ^A	100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Trichlorobenzene, 1,2,3-	μg/L	5 ^A	250 U	250 U	250 U	250 U	-	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Trichlorobenzene, 1,2,4- Trichloroethane, 1,1,1-	μg/L	5 ^A	250 U	250 U	250 U	250 U	10011	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	12.5 U	25.0 U
Trichloroethane, 1,1,1-	μg/L μg/L	5^ 1 ^A	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	_	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	5.00 U 5.00 U	10.0 U 10.0 U
Trichloroethene (TCE)	μg/L	5 ^A	1,140 ^A	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Trichlorofluoromethane (Freon 11)	μg/L	5 ^A	1,140 100 U	100 U	100 U	100 U	100 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	100 U	100 U	100 U	100 U		2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	5.00 U	10.0 U
Trimethylbenzene, 1,2,4-	μg/L	5 ^A	250 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	μg/L	5 ^A	250 U	100 U	100 U	100 U	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	μg/L	n/v	-	-	A	-	250 U	-	- A	-	-		-	4	-	a4
Vinyl Chloride	μg/L	2 ^A	100 U	100 U	183 ^A	945 ^A	879 ^A	13 ^A	81.8 ^A	6.65 ^A	-	3.52 ^A	140 ^A	135 ^A	365 ^A	914 ^A
Xylene, m & p- Xylene, o-	μg/L μg/L	5 ^A	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	100 U 100 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	_	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	5.00 U 5.00 U	10.0 U 10.0 U
Total VOC	μg/L μg/L	n/v	5,320	8,600	2,953	3,665	1,651	54.3	129.7	20.93		43.29	313.33	255.43	625.4	1,305
Miscellaneous Parameters		•						-								
Arsenic	mg/L	0.025 ^A	0.010 U	0.048 ^A	0.013	0.024	-	-	0.0432 ^A	-	-	-	-	-	-	-
	mg/L	0.3.	3.42 ^A	20.8 ^A	2.35 ^A	19.3 ^A	-	-	16.9 L ^A	-	-	-	-	-	-	-
Iron							1			1		1				1
Iron Manganese	mg/L	0.3- ^A	0.294	0.117	0.155	0.109	-	-	0.218 L	-	-	-	-	-		-
		0.3 ^A 20 ^A	0.294 1,270 ^A	0.117 1,250 ^A 122	0.155 407^A 8.5	0.109 1,280 ^A 8.9	2,290 ^A	- 2,000 ^A 750	0.218 L 1,160 ^A 144	- - 92.0	- - 41.0	-	- - 15	- - 10.8	- - 12.6	2.5

Stantec

Table 1
Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Control Cont	Sample Location Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	TOGS	28-Sep-11 WSR-MW-16R-GW-18 STANTEC PARAROCH P11-4106 14149	5-Jan-12 WSR-MW-16R-GW-19 STANTEC PARAROCH P12-0069 12:0069-02	3-Feb-12 WSR-MW-16R-GW-20 STANTEC PARAROCH 12:0472 12:0472-07	1-Mar-12 WSR-MW-16R-GW-21 STANTEC PARAROCH 12:0906 12:0906-05	1-Mar-12 WSR-MW-DUP-GW-21 STANTEC PARAROCH 12:0906 12:0906-06 Field Duplicate	5-Jun-12 WSR-MW-16R-GW-22 STANTEC PARAROCH 12:2364 12:2364-05	5-Sep-12 WSR-MW-16R-GW-23 STANTEC PARAROCH 12:3668 12:3668-04	MW16R 23-Jan-13 WSR-MW-16R-GW STANTEC PARAROCH 13:0353 130353-04	11-Apr-13 WSR-MW-16R-GW STANTEC PARAROCH 131259 131259-04	3-Jul-13 WSR-MW-16R-GW STANTEC PARAROCH 132490 132490-05	9-Oct-13 WSR-MW-16R-GW STANTEC PARAROCH 133891 133891-04	9-Oct-13 WSR-MW-16R-GW STANTEC PARAROCH 133926 133926-04	18-Jun-15 828-MW-16R-GW STANTEC PARAROCH 152493 152493-05	9-Mar-16 WSR-MW-16R-GW STANTEC PARAROCH 160970 160970-04	10-Jan-18 WSR-MW-16R-GW STANTEC PARAROCH 180096 180096-03	24-Oct-18 MW-16R STANTEC PARAROCH 184937 184937-03
Common West T. 1,550 S. 1,500		1	B	50.011	05.011	500.11	400.11	400.11	500.11	500.11	05044	400.11	400.11		400.11	400.11	05011	050.11	05011
Section Company Comp														-				250 U 25.0 U	250 U 25.0 U
Secretary Continues and Cont		μg/L			-									-		-		-	-
Controlled Note Note No. 1														-				50.0 U 125 U	50.0 U 125 U
Selection of Principation 2 Principa			5 ^A											-				50.0 U	50.0 U
Education Laboration Labo										-	-	-	-	-	-	-	-	-	-
Committed Comm] [-	-	-	-	-	-	-	
Charlester Section S	Carbon Disulfide	μg/L	60 ^B	25.0 U	12.5 U	100 U	20.0 U	20.0 U	100 U					-				50.0 U	50.0 U
Changements Change Chang														-				50.0 U 50.0 U	50.0 U 50.0 U
Chamber France Chamber Chamb										1000				-				125 U	125 U
Continue			5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U				20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Demonstration 1				10.011	5.00 11	100 11	20.011	20.011	100 11				20.011	-	20.011	20.011	50 O U	50.0 U	50.0 U
December Company Com	Chloromethane	μg/L	5 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U		50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Elementerment		μg/L								-				-				250 U	250 U 250 U
Children		μg/L μg/L								100 U				-				50.0 U	50.0 U
Decision of the content of the con		μg/L	3 ^A	10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U	50 U	20.0 U	20.0 U	-	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Debteropheron Process														-				50.0 U 50.0 U	50.0 U 50.0 U
Calcinomestics 1			5 ^A							1000								50.0 U	50.0 U
Company Comp														-				50.0 U	50.0 U
Definition of the content of the c			0.6^ 5^											-				50.0 U 50.0 U	50.0 U 50.0 U
Debuty represent 12 12 15 15 15 15 15 15														-				3,330 ^A	1,080 ^A
Debtoorpages 1.5											50 U	20.0 U		-				50.0 U	50.0 U
Debuggere, 22 195				10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U		50.11	20.011	20.0 U	-	20.0 U		50.0 U	50.0 U	50.0 U
Demonstration Demonstratio				-	-	-	-	-	-	-			-	-	-	-	-	-	-
Doams i. Figure											<u>-</u>	-		-				50.0 U	50.0 U
Ethylemenic (Demonstrant 1.2)				10.0 U	5.00 U	100 U	20.0 U	20.0 U	100 U	100 U				-				50.0 U 500 U	50.0 U 500 U
Hearmong - Z. Methyl Spyl Kenney 19th 50° 25° 0 U 12.5 U 220 U 50.0 U 20.0 U	Ethylbenzene	μg/L	5 ^A							100 U	50 U	20.0 U	20.0 U	-		20.0 U	50.0 U	50.0 U	50.0 U
Septembersearce Septembers										250.11				-				50.0 U 125 U	50.0 U 125 U
Methyle faces Methyle files Methyle file	Isopropylbenzene									2500	1300			-				50.0 U	50.0 U
Methyle Meth										-	-	-	-	-	-	-	-	-	-
Methyleshopk Nerve (MRE) up1 n										500 U				-				50.0 U 250 U	50.0 U 250 U
Methyleychlorated (Dichiarmethane) ypl. N/ 10.0 U 5.00 U 20.0 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0 U 50.0 U 50.0 U 25.0 U	Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U		130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U
Methyleric Chloride (Dichloromethane)										-				-				50.0 U 50.0 U	50.0 U 50.0 U
Naphthalene µg/L 10^1 22.0 U 12.5 U 250 U 50.0 U 50.0 U 250 U 10 U 20 U 250 U 250 U 30 U 50.0 U 50.										250 U				-				125 U	125 U
Symene S										-	-	-	-	-	-	-	-	-	-
Tetrachiorochane, 1,1,2-			5^							250.11	130 11	50.011	50.011	-	50.011	50.011	125	125 U	125 U
Tollende yol 5^ 10.0 U 5.00 U 10.0 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0 U			5··^											-				50.0 U	50.0 U
Trichlorobenzene, 12.3-														-				99.7 ^A	50.0 U
Trichlorobenzene, 1,2.4- ypl. 5.^h 25.0 U 12.5 U 250 U 50.0 U 250 U 50.0 U 250 U 50.0 U 5										100 U				-				50.0 U 125 U	50.0 U 125 U
Trichloresthene, 1,1.2-	Trichlorobenzene, 1,2,4-	μg/L	5 ^A	25.0 U	12.5 U	250 U	50.0 U	50.0 U	250 U	-	130 U	50.0 U	50.0 U	-	50.0 U	50.0 U	125 U	125 U	125 U
Trichloroethene (TCE)														-				50.0 U	50.0 U
Trichloroffuromethane (Freon 11)														[-				50.0 U 204 ^A	50.0 U 50.0 U
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5- Ug/L Usyl Chloride U	Trichlorofluoromethane (Freon 11)												-	-				50.0 U	50.0 U
Trimethylbenzene, 1,3,5-			5 ^A							-				-				50.0 U	50.0 U
Vinyl Acetate										-	-			-	-	-			-
Xylene, m & p- yg/L 5^ 10.0 U 5.00 U 100 U 20.0 U 20.0 U 100 U 50 U 20.0 U 20.0 U 20.0 U 20.0 U 50.0 U 5	Vinyl Acetate	μg/L	n/v	-	-	-	-	-	-		-	-	-	-	-	-	-	-	<u> </u>
Xylene, o- pg/L of modes µg/L of modes 5-A of modes 10.0 U of modes 5.00 U of modes 10.0 U of modes 5.00 U of modes 10.0 U of modes 5.00 U of modes 20.0 U														-				1,130 ^A	973 ^A
Total VOC														-				50.0 U 50.0 U	50.0 U 50.0 U
Arsenic mg/L 0.025 ^A 0.010 U	Total VOC		n/v											-				4,763.7	2,053
Iron mg/L Number 0.3.^* Number 1.81^A Number 0.100 U Number 0.381^A Number 1.00^A Number 1.00^A Number 2.68^A Number - - - 0.144 L Number - <		*				0.0:-::													
Manganese mg/L 0.3.^ 0.068 0.015 U 0.072 0.287 0.242 0.109 0.146 L										1							-		
Sodium mg/L 20 [^] 461 [^] 675 [^] 1,070 [^] 590 [^] 598 [^] 659 [^] 758 [^] 820 [^] 340 [^]										1	1 -		-	-	-	-	-	-	-
	Sodium	mg/L	20 ^A	461 ^A	675 ^A	1,070 ^A	590 ^A	598 ^A	659 ^A			340 ^A	-	-	-	-	-	-	-
Total Organic Carbon mg/L n/v 4.3 4.4 5.7 3.9 5.7 4.2 16.2 230 49.6 42.0 11.0 - 3.9 10.3 5.4 See notes on last page.	Total Organic Carbon	mg/L	n/v		4.4	5.7	3.9	5.7	4.2	16.2	230	49.6	42.0	11.0	-	3.9	10.3	5.49	3.5

Stantec

Table 1
Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Sample Location			Ì							MW2	23								
Sample Date			28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	10-Oct-13	10-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18
Sample ID			WSR-MW-23-GW-7	828-MW-23-GW-8	828-MW-23-GW-9	828-MW-23-GW-10	828-MW-23-GW-11	828-MW-DUP-GW-11	828-MW-23-GW-12	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	828-MW-DUP-GW	828-MW-23-GW	828-MW-23-GW	828-MW-23-GW	MW-23
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			P11-4106	P12-0069	12:0488	12:0936	12:2364	12:2364	12:3694	13:0365	131242	132505	133909	133925	133925	152493	160970	180096	184937
Laboratory Sample ID Sample Type	Units	TOGS	14150	12:0069-06	12:0488-02	12:0936-05	12:2364-02	12:2364-03 Field Duplicate	12:3694-05	130365-05	131242-02	132505-03	133909-01	133925-02	133925-03 Field Duplicate	152493-02	160970-01	180096-05	184937-01
Cample Type	Omts	1000						Tiela Daplicate							Tiela Daplicate				
Volatile Organic Compounds												400.11			10011				
Acetone Benzene	μg/L μg/L	50 ^B	100 U 7.00 U	500 U 35.0 U	500 U 35.0 U	500 U 35.0 U	1,000 U 70.0 U	1,000 U 70.0 U	1,000 U 70.0 U	1,000 U 70 U	100 U 7.00 U	100 U 7.00 U	-	100 U 10 U	100 U 10 U	100 U 10.0 U	250 U 25.0 U	250 U 25.0 U	250 U 25.0 U
Bromobenzene	μg/L	5 ^A	-	-	-					500 U	50.0 U	-	-			-	-	-	20.00
Bromodichloromethane	μg/L	50 ^B	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Bromoform (Tribromomethane)	μg/L	50 ^B	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Bromomethane (Methyl bromide)	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Butylbenzene, n-	μg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^A	50.0 U 50.0 U	250 U	100 U 100 U	100 U 100 U	200 U 200 U	200 U 200 U	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert- Carbon Disulfide	μg/L μg/L	60 ^B	50.0 U	250 U 250 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Chlorobromomethane	μg/L	5A	50.0 U	250 U	250 U	250 U	500 U	500 U		500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Chloroethane (Ethyl Chloride)	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	-	-	-	-	-	-	1,000 U	1,000 U	100 U	-	-	-	-	-	-	-	-
Chloroform (Trichloromethane)	μg/L	7 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Chloromethane	μg/L	5 ^A	20.0 U	100 U 500 U	100 U	100 U 500 U	200 U	200 U 1,000 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U 250 U	50.0 U
Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L μg/L	n/v	100 U 100 U	500 U	500 U 500 U	500 U	1,000 U		-	1,000 U	100 U 100 U	100 U 100 U	-	100 U 100 U	100 U 100 U	100 U 100 U	250 U 250 U	250 U	250 U 250 U
Dibromochloromethane	μg/L	0.04 ^A 50 ^B	20.0 U	100 U	100 U	100 U	1,000 U 200 U	1,000 U 200 U	200 U	1,000 U 200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichlorobenzene, 1,2-	μg/L	3 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichlorobenzene, 1,3-	μg/L	3 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichlorobenzene, 1,4-	μg/L	3 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichlorodifluoromethane (Freon 12)	μg/L	5A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichloroethane, 1,1-	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichloroethane, 1,2-	μg/L	0.6 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichloroethene, 1,1-	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichloroethene, cis-1,2-	μg/L	5 ^A	20.0 U	100 U	4,130 ^A	10,900 ^A	5,120 ^A	5,240 ^A	3,940 ^A	8,900 ^A	242 ^A	862 ^A	-	86.8 J ^A	142 J ^A	1,040 ^A	1,110 ^A	2,540 ^A	1,020 ^A
Dichloroethene, trans-1,2-	μg/L	5··^	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichloropropane, 1,2-	μg/L	1^	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U			20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Dichloropropane, 1,3-	μg/L	5··^	-	-	-	-	-	-	-	200 U	20.0 U	-	-	-	-	-	-	-	-
Dichloropropane, 2,2-	μg/L	5 ^A	-	400.11	400.11	400.11	-	-	-	200 U	20.0 U		-	-	-	-	50011	50011	50.011
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	μg/L μg/L	0.4 ₀ ^A 0.4 ₀ ^A	20.0 U 20.0 U	100 U 100 U	100 U 100 U	100 U 100 U	200 U 200 U	200 U 200 U	200 U 200 U	200 U	20.0 U	20.0 U 20.0 U	-	20.0 U 20.0 U	20.0 U 20.0 U	20.0 U 20.0 U	50.0 U 50.0 U	50.0 U 50.0 U	50.0 U 50.0 U
Dioxane, 1,4-	μg/L	n/v	20.0 0	100 0	100 0	100 0	200 0	200 0	200 0	2,000 U	200 U	200 U	-	20.0 U	20.0 U	200 U	500 U	500 U	500 U
Ethylbenzene	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U		200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^B	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Isopropylbenzene	μg/L	5·· ^A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	-	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Isopropyltoluene, p- (Cymene)	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	μg/L	n/v	20.0 U	100 U	100 U	100 U	200 U	200 U		200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^B	100 U	500 U	500 U	500 U	1,000 U	1,000 U	1,000 U	1,000 U	100 U	100 U	-	100 UJ	100 UJ	100 U	250 U	250 U	250 U
Methyl Isobutyl Ketone (MIBK) Methyl tert-butyl ether (MTBE)	μg/L	n/v	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Methylcyclohexane	μg/L μg/L	10 ^B n/v	20.0 U 20.0 U	100 U 100 U	100 U 100 U	100 U 100 U	200 U 200 U	200 U 200 U	_	200 U 200 U	20.0 U 20.0 U	20.0 U 20.0 U	-	20.0 U 20.0 U	20.0 U 20.0 U	20.0 U 20.0 U	50.0 U 50.0 U	50.0 U 50.0 U	50.0 U 50.0 U
Methylene Chloride (Dichloromethane)	μg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Naphthalene	μg/L	10 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	-	-			-			-	1200	1200	1200
Propylbenzene, n-	μg/L	5A	50.0 U	250 U	100 U	100 U	200 U	200 U	-	-	-	-	-	-	-	-	-	-	-
Styrene	μg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U	500 U	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Tetrachloroethane, 1,1,2,2-	μg/L	5·· ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Tetrachloroethene (PCE)	μg/L	5 ^A	2,240 ^A	4,010 ^A	2,500 ^A	107 ^A	1,150 ^A	1,130 ^A	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	663 ^A	4,810 ^A	3,200 ^A	404 ^A
Toluene	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Trichlorobenzene, 1,2,3-	μg/L	5··^	50.0 U	250 U	250 U	250 U	500 U	500 U	-	500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Trichlorobenzene, 1,2,4-	μg/L	5 ^A	50.0 U	250 U	250 U	250 U	500 U	500 U		500 U	50.0 U	50.0 U	-	50.0 U	50.0 U	50.0 U	125 U	125 U	125 U
Trichloroethane, 1,1,1-	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Trichloroethane, 1,1,2- Trichloroethene (TCE)	μg/L	1 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Trichlorofluoromethane (Freon 11)	μg/L μg/L	5 [^]	36.4 ^A	100 U 100 U	407 ^A	100 U 100 U	562 ^A	549 ^A	200 U 200 U	200 U 200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	251 ^A	1,060 ^A	423 ^A 50.0 U	76.6 ^A
Trichlorotrifluoroethane (Freon 11)	/1	5 ···	20.0 U	100 U 100 U	100 U 100 U	100 U 100 U	200 U 200 U	200 U 200 U	200 0	200 U	20.0 U	20.0 U	-	20.0 U 20.0 U	20.0 U 20.0 U	20.0 U	50.0 U 50.0 U	50.0 0	50.0 U
Trimethylbenzene, 1,2,4-	μg/L μg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U		200 0	20.00	20.00	-	20.00	20.00	20.00	30.00	30.00	30.00
Trimethylbenzene, 1,3,5-	μg/L	5 ^A	50.0 U	250 U	100 U	100 U	200 U	200 U	_	-	_	_	-	_		-	_	_	_
Vinyl Acetate	μg/L	n/v	-						500 U				-				-		-
Vinyl Chloride	μg/L	2 ^A	20.0 U	100 U	100 U	100 U	1,090 ^A	1,130 ^A	1,110 ^A	970 ^A	154 ^A	636 ^A	-	241 J ^A	399 J ^A	73.3 ^A	50.0 U	140 ^A	105 ^A
Xylene, m & p-	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Xylene, o-	μg/L	5 ^A	20.0 U	100 U	100 U	100 U	200 U	200 U	200 U	200 U	20.0 U	20.0 U	-	20.0 U	20.0 U	20.0 U	50.0 U	50.0 U	50.0 U
Total VOC	μg/L	n/v	2,276.4	4,010	7,037	11,007	7,922	8,049	5,050	9,870	396	1,498	-	327.8	541	2,027.3	6,980	6,303	1,605.6
Miscellaneous Parameters			1																
Arsenic	mg/L	0.025 ^A	0.010 U	0.010 U	0.018	0.014	0.021	0.021	-	-	0.0217	-	-	-	-	-	-	-	-
Iron	mg/L	0.3.	0.100 U	111 ^A	23.3 ^A	12.5 ^A	15.7 ^A	15.5 ^A	-	-	13.2 L ^A	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3· ^A	0.226	4.07 ^A	0.161	0.523 ^A	0.165	0.189	-	-	0.445 L ^A	-	-	-	-	-	-	-	-
Sodium	mg/L	20 ^A	1,450 ^A	1,660 ^A	1,090 ^A	1,090 ^A	1,130 ^A	1,150 ^A	1,120 ^A	1,300 ^A	1,000 ^A	-	-	-	-	-	-	-	-
Total Organic Carbon	mg/L	n/v	3.7	1,880	118	68.4	6.0	6.0	64.3	560	165	23.0	8.50	l -		3.5	9.17 J	6.67	2.8

Stantec

Table 1
Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

	Î	İ	i						B410/	000							
Sample Location Sample Date			28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	6-Sep-12	MW: 24-Jan-13	23R 10-Apr-13	5-Jul-13	10-Oct-13	10-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18	24-Oct-18
Sample ID			WSR-MW-23R-GW-7	828-MW-23R-GW-8	828-MW-23R-GW-9	828-MW-23R-GW-10	828-MW-23R-GW-11	828-MW-23R-GW-12	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	828-MW-23R-GW	MW-23R
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			P11-4106	P12-0069	12:0488	12:0936	12:2364	12:3694	13:0365	131242	132505	133909	133925	152493	160970	180096	184937
Laboratory Sample ID			14151	12:0069-05	12:0488-03	12:0936-06	12:2364-04	12:3694-06	130365-04	131242-03	132505-02	133909-02	133925-04	152493-01	160970-02	180096-06	184937-02
Sample Type	Units	TOGS															
Volatile Organic Compounds	<u> </u>	1	-				I.			I							
Acetone	μg/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	30.6	10 U	10.0 U	11.1	-	18.3 J	10.0 U	10.0 U	10.0 U	10.0 U
Benzene	μg/L	1^	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.70 U	0.700 U	0.700 U	-	1 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromobenzene Bromodichloromethane	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5.0 U 2.0 U	5.00 U 2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	μg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide)	μg/L μg/L	50 ^B 5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Butylbenzene, n-	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 0	2.00	2.00 0	2.00 0	_	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	_	_	_	_	-	_	-	_	_	_
Butylbenzene, tert-	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L	60 ^B	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobromomethane	μg/L	5··^	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	-	-			-	10.0 U	10 U	10.0 U	-	-	-	·	-		
Chloroform (Trichloromethane) Chloromethane	μg/L	7 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Cyclohexane	μg/L μg/L	5 ^A n/v	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U	2.0 U 10 U	2.00 U 10.0 U	2.00 U 10.0 U] [2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^A	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	10 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromochloromethane	μg/L	50 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,3-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,1-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,2-	μg/L	0.6 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, 1,1-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, cis-1,2-	μg/L	5 ^A	63.8 ^A	82.4 ^A	17.4 ^A	13.1 ^A	32.6 ^A	5.30 ^A	5.8 ^A	5.83 ^A	4.81	-	9.16 ^A	1.46 J	1.86 J	1.94 J	2.00 U
Dichloroethene, trans-1,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropane, 1,2-	μg/L	1 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropane, 1,3-	μg/L	5··^	-	-	-	-	-	-	2.0 U	2.00 U	-	-	-	-	-	-	-
Dichloropropane, 2,2-	μg/L	5 ^A							2.0 U	2.00 U		-					-
Dichloropropene, cis-1,3-	μg/L	0.4 _p ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	·		2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3- Dioxane, 1,4-	μg/L	0.4 _p ^A n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U 20.0 U	2.00 U 20.0 U	-	2.00 U R	2.00 U 20.0 U	2.00 U 20.0 U	2.00 U 20.0 U	2.00 U 20.0 U
Ethylbenzene	μg/L μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 0	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	-	-	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	μg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^B	10.0 U	10.0 U	11.9	10.0 U	10.0 U	10.0 U	130 ^B	80.7 ^B	76.9 ^B	-	107 J ^B	10.0 U	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methylcyclohexane Methylene Chloride (Dichloromethane)	μg/L μg/L	n/v 5 ^A	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	5.00 U	2.0 U 5.0 U	2.00 U 5.00 U	2.00 U 5.00 U		2.00 U 5.00 U	1.59 J 5.00 U	1.37 J 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U
Naphthalene	μg/L	10 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 0	5.00	5.00 0	5.00 0	_	5.00 0	5.00 0	5.00 0	5.00 0	5.00 0
Propylbenzene, n-	μg/L	5 ^A	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	_	_	_	_	_	_	_	_	_	1 -
Styrene	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Toluene	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichlorobenzene, 1,2,4-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5.0 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,2-	μg/L	1 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorofluoromethane (Freon 11)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113) Trimethylbenzene, 1,2,4-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.0 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5-	μg/L μg/l	5 ^A	5.00 U 5.00 U	5.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U		-	-	-	Ī .		-	-	-	1 -
Vinyl Acetate	μg/L μg/L	n/v	5.00 0	5.00 U	2.00 0	2.00 U	2.00 0	5.00 U			-	-		[.	-	
Vinyl Chloride	μg/L	2 ^A	2.21 ^A	2.00 U	2.00 U	2.00 U	5.95 ^A	3.46 ^A	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, m & p-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, o-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.00 U	2.00 U	_	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Total VOC	μg/L	n/v	66.01	82.4	29.3	13.1	38.55	39.36	135.8	86.53	92.81		134.46	3.05	3.23	1.94	ND
Miscellaneous Parameters																	
Arsenic	mg/L	0.025 ^A	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	-	-	0.0100 U	<u> </u>	-	-	-	-	-	-
Iron	mg/L	0.3.	0.819 ^A	3.04 ^A	7.52 ^A	3.08 ^A	4.21 ^A	-	-	3.08 L ^A	-	-	-	-	-	-	
Manganese	mg/L	0.3· ^A	0.040	0.129	0.053	0.081 M	0.034	-	-	0.0702 L	-	-	-	-	-	-	-
Sodium	mg/L	20 ^A	417 ^A	392 ^A	751 ^A	766 ^A	458 ^A	568 ^A	1,200 ^A	529 ^A	-	-	-	-	-	-	-
Total Organic Carbon	mg/L	n/v	3.6	38.4	33.0	31.1	4.0	58.6	670	368	86.0	175	-	6.8	12.0	6.17	2.9
			See notes on last page.														

Stantec

Table 1
Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Sample Location	1		I						MW1	05							
Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID			28-Sep-11 WSR-MW-105-GW-12 STANTEC PARAROCH P11-4106 14152	4-Jan-12 WSR-MW-105-GW-13 STANTEC PARAOCH P12-0041 12:0041-02	2-Feb-12 WSR-MW-105-GW-14 STANTEC PARAROCH 12:0443 12:0443-02	29-Feb-12 WSR-MW-105-GW-15 STANTEC PARAROCH 12:0868 12:0868-02	4-Jun-12 WSR-MW-105-GW-16 STANTEC PARAROCH 12:2335 12:2335-05	4-Sep-12 WSR-MW-105-GW-17 STANTEC PARAROCH 12:3644 12:3644-02	22-Jan-13 WSR-MW-105-GW STANTEC PARAROCH 13:0329 130329-05	11-Apr-13 WSR-MW-105-GW STANTEC PARAROCH 131259 131259-02	2-Jul-13 WSR-MW-105-GW STANTEC PARAROCH 132471 132471-02	8-Oct-13 WSR-MW-105-GW STANTEC PARAROCH 133887 133887-01	8-Oct-13 WSR-MW-105-GW STANTEC PARAROCH 133927 133927-02	18-Jun-15 WSR-MW-105-GW STANTEC PARAROCH 152493 152493-07	10-Mar-16 WSR-MW-105-GW STANTEC PARAROCH 160970 160970-06	10-Jan-18 WSR-MW-105-GW STANTEC PARAROCH 180096 180096-01	24-Oct-18 MW-105 STANTEC PARAROCI 184937 184937-06
Sample Type	Units	TOGS	14132	12.0041-02	12.0443-02	12.0000-02	12.2333-03	12.3044-02	130329-03	131239-02	132471-02	133007-01	133927-02	132493-07	100370-00	180030-01	104937-00
Volatile Organic Compounds	ı									<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Acetone	μg/L	50 ^B	50.0 U	50.0 U	35.4 B	20.0 U	10.0 U	20.0 U	50 U	32.8	10.0 U	-	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Benzene Bromobenzene	μg/L μg/L	1 ^A 5 ^A	3.50 U	3.50 U	1.75 U	1.40 U	0.700 U	1.40 U	3.5 U 25 U	0.700 U 5.00 U	0.700 U	-	1 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	μg/L	50 ^B	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	μg/L	50 ^B	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	10.0 U	25 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide) Butylbenzene, n-	μg/L μg/L	5 ^A	10.0 U 25.0 U	10.0 U 25.0 U	5.00 U 12.5 U	4.00 U 4.00 U	2.00 U 2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-		- 0.0011
Carbon Disulfide Carbon Tetrachloride (Tetrachloromethane)	μg/L μg/L	60 ^B 5 ^A	25.0 U 10.0 U	25.0 U 10.0 U	12.5 U 5.00 U	4.00 U 4.00 U	2.00 U 2.00 U	4.00 U 4.00 U	10 U 10 U	2.00 U 2.00 U	2.00 U 2.00 U	-	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorophomomethane	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	-	25 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2-	μg/L μg/L	5 ^A n/v	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U 20.0 U	10 U 50 U	2.00 U 10.0 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroform (Trichloromethane)	μg/L	7 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloromethane Cyclohexane	μg/L μg/L	5 ^A n/v	10.0 U 50.0 U	10.0 U 50.0 U	5.00 U 25.0 U	4.00 U 20.0 U	2.00 U 10.0 U	4.00 U	10 U 50 U	2.00 U 10.0 U	2.00 U 10.0 U	-	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^A	50.0 U	50.0 U	25.0 U	20.0 U	10.0 U	-	50 U	10.0 U	10.0 U	-	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromochloromethane	μg/L	50 ^B	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	μg/L μg/L	3 ^A 3 ^A	10.0 U 10.0 U	10.0 U 10.0 U	5.00 U 5.00 U	4.00 U 4.00 U	2.00 U 2.00 U	4.00 U 4.00 U	10 U 10 U	2.00 U 2.00 U	2.00 U 2.00 U	-	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Dichlorobenzene, 1,4-	μg/L	3 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,1- Dichloroethane, 1,2-	μg/L μg/L	5 ^A 0.6 ^A	10.0 U 10.0 U	10.0 U 10.0 U	5.00 U 5.00 U	4.00 U 4.00 U	2.00 U 2.00 U	4.00 U 4.00 U	10 U 10 U	2.00 U 2.00 U	2.00 U 2.00 U	-	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Dichloroethene, 1,1-	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, cis-1,2-	μg/L	5 ^A	480 ^A	179 ^A	220 ^A	155 ^A	81.9 ^A	145 ^A	210 ^A	159 ^A	83.6 ^A	-	151 ^A	111 ^A	129 ^A	131 ^A	188 ^A
Dichloroethene, trans-1,2- Dichloropropane, 1,2-	μg/L	5 ^A	358 ^A 10.0 U	134 ^A 10.0 U	183 ^A 5.00 U	120 ^A	59.0 ^A	115 ^A	120 ^A	83.6 ^A	86.4 ^A	-	196 ^A	130 ^A	115 ^A	100 ^A	98.9 ^A 2.00 U
Dichloropropane, 1,3-	μg/L μg/L	5 ^A	10.0 0	10.0 0	5.00 0	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 0
Dichloropropane, 2,2-	μg/L	5 ^A	-	-	-	-	-	-	10 U	2.00 U	-	-	-	-	-	-	-
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	μg/L μg/L	0.4 _p ^A	10.0 U 10.0 U	10.0 U 10.0 U	5.00 U	4.00 U	2.00 U 2.00 U	4.00 U	10 U	2.00 U	2.00 U 2.00 U	-	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Dioxane, 1,4-	μg/L	0.4 _p ^A n/v	10.0 0	10.0 0	5.00 U	4.00 U	2.00 0	4.00 U	100 U	20.0 U	20.0 U	-	2.00 U	20.0 U	20.0 U	20.0 U	20.0 U
Ethylbenzene	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-) Hexanone, 2- (Methyl Butyl Ketone)	μg/L μg/L	0.0006 ^A 50 ^B	10.0 U 25.0 U	10.0 U 25.0 U	5.00 U 12.5 U	4.00 U 10.0 U	2.00 U 5.00 U	10.0 U	10 U 25 U	2.00 U 5.00 U	2.00 U 5.00 U	-	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U
Isopropylbenzene	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-
Methyl Acetate Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L μg/L	n/v 50 ^B	10.0 U 50.0 U	10.0 U 50.0 U	5.00 U 25.0 U	4.00 U 20.0 U	2.00 U 10.0 U	20.0 U	10 U	2.00 U 32.2	2.00 U 10.0 U	-	2.00 U 10.0 UJ	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	10.0 U	25 U	5.00 U	5.00 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^B	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	-	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methylcyclohexane Methylene Chloride (Dichloromethane)	μg/L μg/L	n/v 5 ^A	10.0 U 25.0 U	10.0 U 25.0 U	5.00 U 12.5 U	4.00 U 10.0 U	2.00 U 5.00 U	10.0 U	10 U 25 U	2.00 U 5.00 U	2.00 U 5.00 U	-	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U
Naphthalene	μg/L	10 ^A	25.0 U	25.0 U	12.5 U	10.0 U	5.00 U	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-		
Styrene Tetrachloroethane, 1,1,2,2-	μg/L μg/L	5 ^A	25.0 U 10.0 U	25.0 U 10.0 U	12.5 U 5.00 U	10.0 U 4.00 U	5.00 U 2.00 U	10.0 U 4.00 U	25 U 10 U	5.00 U 2.00 U	5.00 U 2.00 U	-	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U
Tetrachloroethene (PCE)	μg/L	5 ^A	10.0 U	10.0 U	6.71 ^A	4.92	5.21 ^A	5.59 ^A	10 U	2.00 U	2.00 U	-	2.00 U	1.38 J	2.36	2.93	3.37
Toluene	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3- Trichlorobenzene, 1,2,4-	μg/L μg/L	5 ^A	25.0 U 25.0 U	25.0 U 25.0 U	12.5 U 12.5 U	10.0 U 10.0 U	5.00 U 5.00 U		25 U 25 U	5.00 U 5.00 U	5.00 U 5.00 U		5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U
Trichloroethane, 1,1,1-	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,2-	μg/L	1 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE) Trichlorofluoromethane (Freon 11)	μg/L μg/L	5 ^A 5 ^A	431 ^A 10.0 U	221 ^A 10.0 U	264^A 5.00 U	200 ^A 4.00 U	139 ^A 2.00 U	229 ^A 4.00 U	230 ^A	13.9 ^A 2.00 U	20.3 ^A 2.00 U		16.8 ^A 2.00 U	9.94 ^A 2.00 U	10.1 ^A 2.00 U	15.2 ^A 2.00 U	23.5 ^A 2.00 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U		10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	μg/L	5 ^A	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5- Vinyl Acetate	μg/L μg/L	5 ^A n/v	25.0 U	25.0 U	12.5 U	4.00 U	2.00 U	10.0 U	=	-	-	-			-		-
Vinyl Chloride	μg/L	2 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	23.6 ^A	18.8 ^A	1	78.3 ^A	48.5 ^A	55.5 ^A	48.7 ^A	75.8 ^A
Xylene, m & p-	μg/L	5 ^A	10.0 U	10.0 U	5.00 U	4.00 U	2.00 U	4.00 U	10 U	2.00 U	2.00 U	-	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, o- Total VOC	μg/L μg/L	5 ^A n/v	10.0 U 1,269	10.0 U 534	5.00 U 709.11	4.00 U 479.92	2.00 U 285.11	4.00 U 494.59	10 U 670	2.00 U 345.1	2.00 U 209.1		2.00 U 442.1	2.00 U 300.82	2.00 U 311.96	2.00 U 297.83	2.00 U 389.57
Miscellaneous Parameters	ру/с	11/ V	1,209	334	703.11	413.32	200.11	434.33	070	340.1	203.1	-	442.1	300.02	311.50	231.03	305.37
Arsenic	mg/L	0.025 ^A	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U	-	-	0.0194	-	-	-	-	-	-	T -
Iron	mg/L	0.3. ^A	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	-	-	3.91 L ^A	-	-	-	-	-	-	-
Manganese	mg/L	0.3-^	0.092	0.021	0.033	0.041	0.015 U	-	-	0.0860 L	-	-	-	-	-	-	-
Sodium Total Organic Carbon	mg/L mg/L	20 ^A n/v	318 ^A 3.2	346^A	352 ^A 3.2	342 ^A 2.9	356 ^A 3.3	361 ^A 3.2	1,100 ^A 1,200	302^A 164	- 12.0	4.70	-	2.5	6.14	3.52	2.0
rotal Organic Carbon	HIG/L	1#V	See notes on last page.	١ ٥	J.Z	2.9	J.3	3.2	1,200	104	12.0	4.70		2.3	U.14	3.32	

Table 1
Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Sample Location	1 1	I							MW2	07R							
Sample Date			27-Sep-11	27-Sep-11	6-Feb-12	2-Mar-12	6-Jun-12	6-Sep-12	24-Jan-13	12-Apr-13	5-Jul-13	10-Oct-13	10-Oct-13	18-Jun-15	10-Mar-16	10-Jan-18	24-Oct-18
Sample ID			WSR-MW-207R-GW-12	WSR-MW-Dup-GW-13	WSR-MW-207R-GW-13	WSR-MW-207R-GW-14				WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	WSR-MW-207R-GW	MW-207R
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory Laboratory Work Order			PARAROCH P11-4089	PARAROCH P11-4089	PARAROCH 12:0488	PARAROCH 12:0936	PARAROCH 12:2392	PARAROCH 12:3694	PARAROCH 13:0365	PARAROCH 131283	PARAROCH 132505	PARAROCH 133909	PARAROCH 133925	PARAROCH 152493	PARAROCH 160970	PARAROCH 180096	PARAROCH 184937
Laboratory Sample ID			14074	14075	12:0488-04	12:0936-03	12:2392-03	12:3694-02	130365-02	131283-04	132505-04	133909-04	133925-06	152493-06	160970-05	180096-04	184937-05
Sample Type	Units	TOGS		Field Duplicate													
Volatile Organic Compounds		<u> </u>								<u> </u>	<u> </u>	<u> </u>					
Acetone	μg/L	50 ^B	50.0 U	50.0 U	100 U	100 U	50.0 U	50.0 U	50 U	50.0 U	200 U	-	200 U	200 U	100 U	100 U	200 U
Benzene	μg/L	1^	3.50 U	3.50 U	7.00 U	7.00 U	3.50 U	3.50 U	3.5 U	3.50 U	14.0 U	-	20 U	20.0 U	10.0 U	10.0 U	20.0 U
Bromobenzene Bromodichloromethane	μg/L	5 ^A	- 10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	25 U 10 U	25.0 U 10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Bromoform (Tribromomethane)	μg/L μg/L	50 ^B 50 ^B	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	100 U		100 U	100 U	50.0 U	50.0 U	100 U
Bromomethane (Methyl bromide)	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	_	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Butylbenzene, n-	μg/L	5 ^A	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5··^	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5 ^A	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide Carbon Tetrachloride (Tetrachloromethane)	μg/L μg/L	60 ^B	25.0 U 10.0 U	25.0 U 10.0 U	20.0 U 20.0 U	20.0 U 20.0 U	10.0 U 10.0 U	10.0 U 10.0 U	10 U 10 U	10.0 U 10.0 U	40.0 U 40.0 U	-	40.0 U 40.0 U	40.0 U 40.0 U	20.0 U 20.0 U	20.0 U 20.0 U	40.0 U 40.0 U
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U		40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Chlorobromomethane	μg/L	5 ^A	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U		25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U
Chloroethane (Ethyl Chloride)	μg/L	5·· ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v						50.0 U	50 U	50.0 U		-			·		
Chloroform (Trichloromethane)	μg/L	7 [^]	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Chloromethane Cyclohexane	μg/L μg/L	5 ^A n/v	10.0 U 50.0 U	10.0 U 50.0 U	20.0 U 100 U	20.0 U 100 U	10.0 U 50.0 U	10.0 U	10 U 50 U	10.0 U 50.0 U	40.0 U 200 U		40.0 U 200 U	40.0 U 200 U	20.0 U 100 U	20.0 U 100 U	40.0 U 200 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L μg/L	0.04 ^A	50.0 U	50.0 U	100 U	100 U	50.0 U	-	50 U	50.0 U	200 U		200 U	200 U	100 U	100 U	200 U
Dibromochloromethane	μg/L	50 ^B	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichlorobenzene, 1,2-	μg/L	3 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichlorobenzene, 1,3-	μg/L	3 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichlorobenzene, 1,4-	μg/L	3 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichlorodifluoromethane (Freon 12) Dichloroethane, 1,1-	μg/L	5 ^A 5 ^A	25.0 U 10.0 U	25.0 U 10.0 U	20.0 U 20.0 U	20.0 U 20.0 U	10.0 U 10.0 U	10.0 U	10 U 10 U	10.0 U 10.0 U	40.0 U 40.0 U	-	40.0 U 40.0 U	40.0 U 40.0 U	20.0 U 20.0 U	20.0 U 20.0 U	40.0 U 40.0 U
Dichloroethane, 1,2-	μg/L μg/L	0.6 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U		40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichloroethene, 1,1-	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	_	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichloroethene, cis-1,2-	μg/L	5 ^A	908 ^A	913 ^A	1.330 ^A	1.480 ^A	432 ^A	98.4 ^A	500 ^A	250 ^A	193 ^A		40.0 U	537 ^A	690 ^A	1,940 ^A	1.070 ^A
Dichloroethene, trans-1,2-	μg/L	5 ^A	22.7 ^A	22.3 ^A	20.0 U	20.0 U	13.9 ^A	26.0 ^A	24 ^A	10.0 U	40.0 U	-	40.0 U	40.0 U	14.7 J ^A	25 ^A	40.0 U
Dichloropropane, 1,2-	μg/L	1 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	-	-	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Dichloropropane, 1,3-	μg/L	5 ^A	-	-	-	-	-	-	10 U	10.0 U	-	-	-	-	-	-	-
Dichloropropane, 2,2-	μg/L	5 ^A	40.011	40.011	-	-	40.011	-	10 U	10.0 U	-	-	-	-	-	-	40.0 U
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	μg/L μg/L	0.4 _p ^A 0.4 _p ^A	10.0 U 10.0 U	10.0 U 10.0 U	20.0 U 20.0 U	20.0 U 20.0 U	10.0 U 10.0 U	10.0 U 10.0 U	10 U	10.0 U	40.0 U 40.0 U	-	40.0 U 40.0 U	40.0 U 40.0 U	20.0 U 20.0 U	20.0 U 20.0 U	40.0 U
Dioxane, 1,4-	μg/L	n/v	10.00	10.00	20.00	20.00	10.00	10.00	100 U	100 U	400 U	_	R R	400 U	200 U	200 U	400 U
Ethylbenzene	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^B	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U
Isopropylbenzene Isopropyltoluene, p- (Cymene)	μg/L μg/L	5 [^]	25.0 U 10.0 U	25.0 U 10.0 U	20.0 U 20.0 U	20.0 U 20.0 U	10.0 U 10.0 U	-	-	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Methyl Acetate	μg/L	n/v	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	_	10 U	10.0 U	40.0 U	_	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^B	50.0 U	50.0 U	100 U	100 U	50.0 U	50.0 U	140 ^B	61.0 ^B	200 U	-	200 UJ	200 U	100 U	100 U	200 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^B	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Methylcyclohexane Methylene Chloride (Dichloromethane)	μg/L μg/L	n/v 5 ^A	10.0 U 25.0 U	10.0 U 25.0 U	20.0 U 50.0 U	20.0 U 50.0 U	10.0 U 25.0 U	25.0 U	10 U 25 U	10.0 U 25.0 U	40.0 U 100 U	-	40.0 U 100 U	40.0 U 100 U	20.0 U 50.0 U	20.0 U 50.0 U	40.0 U 100 U
Naphthalene	μg/L	10 ^A	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 0	250	25.00	1000	_	100 0	1000	30.00	50.00	100 0
Propylbenzene, n-	μg/L	5 ^A	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	
Styrene	μg/L	5·· ^A	25.0 U	25.0 U	50.0 U	50.0 U	25.0 U	25.0 U	25 U	25.0 U	100 U	-	100 U	100 U	50.0 U	50.0 U	100 U
Tetrachloroethane, 1,1,2,2-	μg/L	5··^	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Tetrachloroethene (PCE)	μg/L	5 ^A	132 ^A	130 ^A	20.0 U	20.0 U	10.0 U	10.0 U	19 ^A	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Toluene Trichlorobenzene, 1,2,3-	μg/L	5 ^A	10.0 U	10.0 U	20.0 U 50.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U 50.0 U	40.0 U 100 U
Trichlorobenzene, 1,2,3- Trichlorobenzene, 1,2,4-	μg/L μg/L	5 ^A	25.0 U 25.0 U	25.0 U 25.0 U	50.0 U	50.0 U 50.0 U	25.0 U 25.0 U] -	25 U 25 U	25.0 U 25.0 U	100 U 100 U		100 U 100 U	100 U 100 U	50.0 U 50.0 U	50.0 U	100 U 100 U
Trichloroethane, 1,1,1-	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	_	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Trichloroethane, 1,1,2-	μg/L	1 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Trichloroethene (TCE)	μg/L	5 ^A	182 ^A	184 ^A	20.0 U	20.0 U	10.0 U	10.0 U	55 ^A	10.0 U	40.0 U	-	40.0 U	20.5 J ^A	20.0 U	20.0 U	40.0 U
Trichlorofluoromethane (Freon 11)	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	-	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5-	μg/L	5 ^A	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	-	-	-	-	-	-	-	-	-	_
Vinyl Acetate	μg/L μg/L	5 ^A n/v	25.0 U	25.0 U	20.0 U	20.0 U	10.0 U	25.0 U	-			-	.	-		[[
Vinyl Chloride	μg/L	2 ^A	203 ^A	213 ^A	1.010 ^A	936 ^A	627 ^A	184 ^A	1.000 ^A	327 ^A	1.850 ^A	1	451 ^A	829 ^A	582 ^A	2.000 ^A	1,700 ^A
Xylene, m & p-	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Xylene, o-	μg/L	5 ^A	10.0 U	10.0 U	20.0 U	20.0 U	10.0 U	10.0 U	10 U	10.0 U	40.0 U	-	40.0 U	40.0 U	20.0 U	20.0 U	40.0 U
Total VOC	μg/L	n/v	1,447.7	1,462.3	2,340	2,416	1,072.9	308.4	1,738	638	2,043	-	451	1,386.5	1,286.7	3,965	2,770
Miscellaneous Parameters			Т					1									
Arsenic	mg/L	0.025 ^A	-	-	0.010 U	0.014	0.010 U	-	-	0.0100 U	-	-	-	-	-	-	-
Iron	mg/L	0.3.^	-	-	0.100 U	0.100 U	0.100 U	-	-	0.100 U	-	-	-	-	-	-	-
Manganese	mg/L	0.3· ^A	-	-	0.045	0.145	0.057	-	-	0.0207	-	-	-	-	-	-	-
Sodium Total Organia Carban	mg/L mg/L	20 ^A n/v	-	-	543 ^A	439 ^A	538 ^A	531 ^A	840 ^A	493 ^A	- 28.0	18.4	-	4.1	11.7	5.91	
Total Organic Carbon	mg/L	rI/V	See notes on last page.	· -	18.5	8.7	9.4	1.7	530	131	∠8.0	18.4	-	4.1	11.7	5.91	3.5

Table 1
Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018
PERIODIC REVIEW REPORT, WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

	i	î	1									Talle	DII									
Sample Location			4 Ion 12	5 lon 12	2 Eab 12	3-Feb-12	6 Fab 12	29-Feb-12	1-Mar-12	2-Mar-12	4 1 42		Blank	4 San 12	E Com 12	6 Can 12	22 Jan 12	22 Jan 42	24 Jan 42	10-Apr-13	11 Ame 12	12 Amz 12
Sample Date Sample ID			4-Jan-12 Trip Blank	5-Jan-12 Trip Blank	2-Feb-12 Trip Blank	Trip Blank	6-Feb-12 Trip Blank	Trip Blank	Trip Blank	Z-War-12 Trip Blank	4-Jun-12 Trip Blank	5-Jun-12 Trip Blank	6-Jun-12 Trip Blank	4-Sep-12 Trip Blank	5-Sep-12 Trip Blank	6-Sep-12 Trip Blank	22-Jan-13 Trip Blank	23-Jan-13 Trip Blank	24-Jan-13 Trip Blank	Trip Blank	11-Apr-13 Trip Blank	12-Apr-13 Trip Blank
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCI
Laboratory Work Order			P12-0041	P12-0069	12:0443	12:0472	12:0488	12:0868	12:0906	12:0936	12:2335	12:2364	12:2392	12:3644	12:3668	12:3694	13:0329	13:0353	13:0365	131242	131259	131283
Laboratory Sample ID			12:0041-01	12:0069-01	12:0443-01	12:0472-01	12:0488-01	12:0868-01	12:0906-01	12:0936-01	12:2335-01	12:2364-01	12:2392-01	12:3644-01	12:3668-01	12:3694-01	130329-01	130353-01	130365-01	131242-01	131259-01	131283-01
Sample Type	Units	TOGS	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
Volatile Organic Compounds	1	1																				
Acetone	μg/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	28.1 B	10.0 U	10.0 U	10 U	10 U	10 U	13.3	10.0 U	10.0 U
Benzene	μg/L	1 ^A	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.700 U	0.70 U	0.70 U	0.70 U	0.700 U	0.700 U	0.700 U
Bromobenzene Bromodichloromethane	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	μg/L μg/L	50 ^B 50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Butylbenzene, n-	μg/L	5A	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5··^	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5··^	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L	60 ^B	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene) Chlorobromomethane	μg/L μg/L	5··^	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U	2.00 U	2.00 U	2.0 U 5.0 U	2.0 U 5.0 U	2.0 U 5.0 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U
Chloroethane (Ethyl Chloride)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	-	-		2.55 0	2.30 0			2.30 0		-	-	10.0 U	10.0 U	10.0 U	2.50					
Chloroform (Trichloromethane)	μg/L	7 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Chloromethane	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Cyclohexane	μg/L	n/v	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	-	-	10 U	10 U	10 U	10.0 U	10.0 U	10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane	μg/L	0.04 ^A	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	20011	20011	2 00 11	10 U	10 U	10 U	10.0 U	10.0 U	10.0 U
Dibromochioromethane Dichlorobenzene, 1,2-	μg/L μg/L	50 ^B	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Dichlorobenzene, 1,3-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,1-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,2-	μg/L	0.6 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloroethene, 1,1-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloroethene, cis-1,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloroethene, trans-1,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloropropane, 1,2- Dichloropropane, 1,3-	μg/L μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloropropane, 2,2-	μg/L	5 ^A	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Dichloropropene, cis-1,3-	μg/L	0.4 ₀ ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3-	μg/L	0.4 _p ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Dioxane, 1,4-	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20 U	20 U	20 U	20.0 U	20.0 U	20.0 U
Ethylbenzene	μg/L	5··^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-) Hexanone, 2- (Methyl Butyl Ketone)	μg/L	0.0006 ^A	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	-			2.0 U 5.0 U	2.0 U 5.0 U	2.0 U 5.0 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U
Isopropylbenzene	μg/L μg/L	50 ^B 5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5.00 U	5.00 U	5.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	2.00	2.00	2.00	2.00 0	2.00 0	2.00 0
Methyl Acetate	μg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 U	10 U	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Methylcyclohexane Methylene Chloride (Dichloromethane)	μg/L μg/L	n/v 5 ^A	2.00 U 5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U 5.00 U	2.00 U	2.00 U	- 	5.00 U	- - 00 II	2.0 U	2.0 U	2.0 U 5.0 U	2.00 U	2.00 U	2.00 U 5.00 U
Naphthalene	μg/L	10 ^A	5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U	5.00 0	5.00 U	5.0 U	5.0 U	5.0 0	5.00 U	5.00 U	5.00 0
Propylbenzene, n-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	_	_	-	_	
Styrene	μg/L	5··^	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Toluene	μg/L	5··^	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	-	-	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U
Trichlorobenzene, 1,2,4- Trichloroethane, 1,1,1-	μg/L	5··^	5.00 U	5.00 U	5.00 U 2.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	20011	2.00.11	2.00.11	5.0 U	5.0 U	5.0 U	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1- Trichloroethane, 1,1,2-	μg/L μg/L	5 ^A	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Trichloroethene (TCE)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Trichlorofluoromethane (Freon 11)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	- '
Trimethylbenzene, 1,3,5-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	-	-	-	-	-	-	-	-
Vinyl Acetate	μg/L	n/v	I	-		1	1		l	1				5.00 U	5.00 U	5.00 U		1		l		-
Vinyl Chloride	μg/L	2 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Xylene, m & p-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.0 U	2.0 U	2.0 U	2.00 U	2.00 U	2.00 U
Xylene, o- Total VOC	μg/L μg/L	5 ^A n/v	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U ND	2.00 U 28.1	2.00 U ND	2.00 U ND	2.0 U ND	2.0 U ND	2.0 U ND	2.00 U 13.3	2.00 U ND	2.00 U ND
Miscellaneous Parameters	, Pyr		.40	.10		. 10	.40	.40	.10	.40		.40	.10	20.1	.,,,,,	.10		.,,,,,	.40	.5.5	, AD	IND
Arsenic	mg/L	0.025 ^A	-	-			-		-	_		_		-		-	-	_	_	-	-	
Iron	mg/L	0.025 0.3. ^A				-	_		_	-		_		_	-	_	_	-	-	l -	_	-
Manganese	mg/L	0.3. ^A		_					_			-	_			_	_			_	_	
Sodium	mg/L	20 ^A		_					_			-	_			_	_			_	_	
Total Organic Carbon	mg/L	n/v	-	_				_	-			-	-	_		-	_			-	_	_
			See notes on la	et name																		

Stantec

Table 1 Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2018 PERIODIC REVIEW REPORT, WARD STREET SITES GERMANOW-SIMON CORPORATION ROCHESTER, NY

Sample Location Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	TOGS	2-Jul-13 Trip Blank STANTEC PARAROCH 132471 132471-01 Trip Blank	3-Jul-13 Trip Blank STANTEC PARAROCH 132490 132490-01 Trip Blank	5-Jul-13 Trip Blank STANTEC PARAROCH 132505 132505-01 Trip Blank	8-Oct-13 Trip Blank STANTEC PARAROCH 133927 133927-01 Trip Blank	9-Oct-13 Trip Blank STANTEC PARAROCH 133926 133926-01 Trip Blank	Trip Blan 10-Oct-13 Trip Blank STANTEC PARAROCH 133925 133925-01 Trip Blank	k 17-Jun-15 TRIP-06172015, T-633 STANTEC PARAROCH 152493 152493-04 Trip Blank	9-Mar-16 Trip Blank (T-693) STANTEC PARAROCH 160970 160970-07 Trip Blank	10-Jan-18 Trip Blank T-803 STANTEC PARAROCH 180096 180096-07 Trip Blank	16-Oct-18 Trip Blank STANTEC PARAROCH 184937 184937-07 Trip Blank
Volatile Organic Compounds			1			1	1	1				
Acetone Benzene	μg/L μg/L	50 ^B 1 ^A	10.0 U 0.700 U	10.0 U 0.700 U	10.0 U 0.700 U	10.0 U 1 U	10.0 U 1 U	10.0 U 1 U	10.0 U 1.00 U	10.0 U 1.00 U	10.0 U 1.00 U	10.0 U 1.00 U
Bromobenzene	μg/L	5 ^A	-	- 0.700 0	- 0.700 0	-	-	-	-	-	-	- 1.00 0
Bromodichloromethane	μg/L	50 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Bromoform (Tribromomethane)	μg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Bromomethane (Methyl bromide)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Butylbenzene, n- Butylbenzene, sec- (2-Phenylbutane)	μg/L μg/L	5 ^A	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5 ^A	-	_	_	_			-		_	
Carbon Disulfide	μg/L	60 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Chlorothana (Ethyl Chlorida)	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2-	μg/L μg/L	5 ^A n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Chloroform (Trichloromethane)	μg/L	7 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Chloromethane	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Cyclohexane	μg/L	n/v	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U				
Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane	μg/L	0.04 ^A 50 ^B	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U				
Dichlorobenzene, 1,2-	μg/L μg/L	3 ^A	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U				
Dichlorobenzene, 1,3-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichlorobenzene, 1,4-	μg/L	3 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichloroethane, 1,1-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichloroethane, 1,2- Dichloroethene, 1,1-	μg/L μg/L	0.6 ^A 5 ^A	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U				
Dichloroethene, cis-1,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichloroethene, trans-1,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichloropropane, 1,2-	μg/L	1 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichloropropane, 1,3-	μg/L	5 ^A	-	-	-	-	-	-	-	-	-	-
Dichloropropane, 2,2-	μg/L	5 ^A	-	-	-	-	-	-	-	-	-	-
Dichloropropene, cis-1,3-	μg/L	0.4 _p ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Dichloropropene, trans-1,3- Dioxane, 1,4-	μg/L μg/L	0.4 ₀ ^A n/v	2.00 U 20.0 U	2.00 U 20.0 U	2.00 U 20.0 U	2.00 U R	2.00 U R	2.00 U R	2.00 U 20.0 U	2.00 U 20.0 U	2.00 U 20.0 U	2.00 U 20.0 U
Ethylbenzene	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Isopropylbenzene	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Isopropyltoluene, p- (Cymene) Methyl Acetate	μg/L μg/L	5 ^A n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^B	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Methyl tert-butyl ether (MTBE)	μg/L	10 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Methylcyclohexane	μg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Methylene Chloride (Dichloromethane)	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Naphthalene Propylbenzene, n-	μg/L μg/L	10 ^A 5 ^A	-				_	-	-		-	
Styrene	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Tetrachloroethane, 1,1,2,2-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Tetrachloroethene (PCE)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Toluene	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Trichlorobenzene, 1,2,3-	μg/L	5 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U				
Trichlorobenzene, 1,2,4- Trichloroethane, 1,1,1-	μg/L μg/L	5 ^A	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U				
Trichloroethane, 1,1,2-	μg/L	1 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Trichloroethene (TCE)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Trichlorofluoromethane (Freon 11)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Trichlorotrifluoroethane (Freon 113)	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Trimethylbenzene, 1,2,4-	μg/L	5 ^A	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5- Vinyl Acetate	μg/L	5 ^A	-	-	-	-		-	-	-	-	-
Vinyl Acetate Vinyl Chloride	μg/L μg/L	n/v 2 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Xylene, m & p-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Xylene, o-	μg/L	5 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U				
Total VOC	μg/L	n/v	0	0	0	ND	ND	ND	ND	ND	ND	ND
Miscellaneous Parameters												
Arsenic	mg/L	0.025 ^A	-	-	-	-	-	-	-	-	-	-
Iron	mg/L	0.3.^	-	-	-	-	-	-	-	-	-	-
Manganese	mg/L	0.3- ^A	-	-	-	-		-	-	-	-	-
Sodium Total Connects Contract	mg/L	20 ^A	-	-	-	-	-	-	-	-	-	
Total Organic Carbon	mg/L	n/v	-							-	-	

- Notes:

 TOGS NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004)

 A TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance Concentration exceeds the indicated standard.

 Measured concentration did not exceed the indicated standard.

 Analyte was not detected at a concentration greater than the laboratory reporting limit.

 No standard/guideline value.

 Parameter not analyzed / not available.

 The standard for Iron and Manganese is 500 ug/L, which applies to the sum of these substances. As individual standards, the standard is 300 ug/L.

 The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.

 Applies to the sum of cis- and trans-1,3-dichloropropene.

 Indicates analyte was found in associated blank, as well as in the sample.

 Detection limit adjustment for sample matrix effects.

- Denotes matrix spike recoveries outside QC limits. Matrix bias indicated.
- The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control critera. The presence or absence of the analyte cannot be verified.

190500014 Page 8 of 8 $\label{local_prop_local} \mbox{U:\label{local_prop_lo$

Table 2
Summary of Field Parameters in Groundwater – September 2011 to October 2018
WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Area of interest							(On-Site Area 1:	Building B Anne	×X					
Sample Location								MW	/105						
Sample Date		28-Sep-11	4-Jan-12	2-Feb-12	29-Feb-12	4-Jun-12	4-Sep-12	22-Jan-13	11-Apr-13	2-Jul-13	8-Oct-13	18-Jun-15*	10-Mar-16	10-Jan-18*	24-Oct-18
Sample ID		WSR-MW-105- GW-12	WSR-MW-105- GW-13	WSR-MW-105- GW-14	WSR-MW-105- GW-15	WSR-MW-105- GW-16	WSR-MW-105- GW-17	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW	WSR-MW-105- GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units														
Color (Visual)	none	clear	clear	clear	clear	clear	cloudy	clear	Black precipitate	clear with some brown precipitate	clear	cloudy	clear	slightly cloudy	
Conductivity, Field	mS/cm	2.50	2.72	0.267	2.36	0.318	2.60	4.66	2.71	2.55	2.76	2.24	2.31	2.08	2.02
Dissolved Oxygen, Field	mg/L	0.00	0.53	0.00	0.25	0.97	0.53	0.17	0.79	0.32	0.21	0.42	0.35	0.33	0.48
Odor	none	none	no odor	no odor	no odor	sulfur odor	no odor	sulfur odor	Strong sulfur odor	none	none	none	slight sulfur	none	none
Oxidation Reduction Potential	mV	111	227	297	235	-132	195.3	-199.2	-219.6	-152.6	-70.2	-28.0	-90.2	-27.5	-91.8
pH, Field	S.U.	6.87	7.25	7.28	7.33	7.09	7.16	6.90	7.37	8.47	7.26	7.18	7.22	7.14	7.19
Temperature, Field	deg C	20.46	20.49	19.22	20.43	19.4	21.3	18.9	18.7	19.6	19.4	19.2	19.6	20.0	21.2
Turbidity, Field	NTU	58.5	31.3	3.44	9.75	4.41	17.6	4.99	4.36	5.56	3.56	47.8	13.0	20.3	25.8
Volume Purged	gal	0.6	3 ~	3.5 ~	2.0	1.0	1.1	2.7	1.3	1.35	1.0	0.3	1.3	1.2	0.7

Table 2
Summary of Field Parameters in Groundwater – September 2011 to October 2018
WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Area of interest							On-Site A	Area 1: Building	B Annex					
Sample Location								MW207R						
Sample Date		27-Sep-11	6-Feb-12	2-Mar-12	6-Jun-12	6-Sep-12	24-Jan-13	12-Apr-13	5-Jul-13	10-Oct-13	18-Jun-15	10-Mar-16	10-Jan-18*	24-Oct-18
Sample ID		WSR-MW- 207R-GW-12	WSR-MW- 207R-GW-13	WSR-MW- 207R-GW-14	WSR-MW- 207R-GW-15	WSR-MW- 207R-GW-16	WSR-MW- 207R-GW	WSR-MW- 207R-GW	WSR-MW- 207R-GW	WSR-MW- 207R-GW	WSR-MW- 207R-GW	WSR-MW- 207R-GW	WSR-MW- 207R-GW	WSR-MW- 207R-GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units													
Color (Visual)	none	clear	clear w/ black flecks	clear w/ black flecks	clear	clear w/ black flecks	murky w/ black flecks	Black precipitate	clear with black precipitate	clear with black particulates	slightly yellow	clear	clear	clear
Conductivity, Field	mS/cm	0.50	0.541	4.32	0.490	4.59	49.93	3.85	4.00	3.57	3.84	3.48	3.36	3.60
Dissolved Oxygen, Field	mg/L	0.7	0.00	0.00	0.62	0.41	0.36	0.74	0.15	0.14	0.67	0.4	0.10	0.18
Odor	none	sulfur odor	odor	sulfur odor	strong sulfur odor	sulfur	sulfur odor	odor	strong sulfur odor	strong sulfur odor	sulfur odor	sulfur odor	sulfur odor	strong sulfur odor
Oxidation Reduction Potential	mV	-134	-345	-374	-358	-301.6	-351.9	-346.1	-349.2	-288.8	-248.2	-67.0	-104.5	-278.4
pH, Field	S.U.	6.93	6.73	7.22	6.68	6.87	6.77	8.04	6.78	6.93	6.79	7.00	6.93	7.06
Temperature, Field	deg C	17.9	14.27	13.28	15.9	20.1	14.0	11.7	18.7	18.6	15.0	14.2	14.0	16.0
Turbidity, Field	NTU	4.21	-0.29	5.79	0.70	3.92	1.72	2.31	3.53	3.66	1.52	2.29	2.40	1.0
Volume Purged	gal	1.5	1.1	0.5	1.3	1.2	3.6	1.6	2.0	1.5	1.5	1.6	1.1	0.7

Table 2
Summary of Field Parameters in Groundwater – September 2011 to October 2018
WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Area of interest							Off-Site Ar	ea 1: MW-16/ V	Vard Street					
Sample Location								MW16						
Sample Date		27-Sep-11	3-Feb-12	2-Mar-12	5-Jun-12	5-Sep-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	17-Jun-15*	9-Mar-16	10-Jan-18*	24-Oct-18
Sample ID		WSR-MW-16- GW-18	WSR-MW-16- GW-19	WSR-MW-16- GW-20	WSR-MW-16- GW-21	WSR-MW-16- GW-22	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW	WSR-MW-16- GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units		<u> </u>											
Color (Visual)	none	sl.red	clear	slightly cloudy	clear	clear	clear	clear with black precipitate	clear with black precipitate	clear with black specks	clear with black sulfide deposits	clear with black sulfide deposits	slightly cloudy with light to dark colored suspended material	none
Conductivity, Field	mS/cm	6.72	0.762	2.33	0.843	10.52	7.63	10.63	9.73	10.13	11.94	12.76	8.50	7.56
Dissolved Oxygen, Field	mg/L	0	0.0	0.00	1.09	0.40	0.51	0.8	0.19	0.10	0.35	0.13	0.17	0.26
Odor	none	0	no odor	no odor	no odor	sulfur	sewage odor	Sulfur odor	slight sulfur odor	sulfur odor	none	sulfur odor	slight sulfur odor	none
Oxidation Reduction Potential	mV	-107	-259	-181	-291	-319.5	-208.0	-361.2	-207.6	-188.0	-150.0	-120.2	-115.1	-164.4
pH, Field	S.U.	6.82	7.13	7.52	7.20	7.26	7.06	7.10	7.13	7.33	7.08	7.06	7.19	7.46
Temperature, Field	deg C	19.29	11.68	11.23	19.6	21.7	8.7	8.3	18.1	19.3	16.5	14.9	11.8	17.8
Turbidity, Field	NTU	30	11.1	17.6	37.0	7.11	1.01	4.55	8.59	11.4	8.98	11.55	15.0	1.89
Volume Purged	gal	0.9	3.0	1.9	0.5	1.1	2.8	3.3	1.3	0.8	1.0	1.1	0.4	0.3

Table 2
Summary of Field Parameters in Groundwater – September 2011 to October 2018
WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Area of interest							Of	f-Site Area 1: M	W-16/ Ward Str	eet					
Sample Location								MW	/16R						
Sample Date		28-Sep-11	5-Jan-12	3-Feb-12	1-Mar-12	5-Jun-12	5-Sep-12	23-Jan-13	11-Apr-13	3-Jul-13	9-Oct-13	17-June-15*	9-Mar-16	10-Jan-18*	24-Oct-18
Sample ID		WSR-MW-16R- GW-18	WSR-MW-16R- GW-19	WSR-MW-16R- GW-20	WSR-MW-16R- GW-21	WSR-MW-16R- GW-22	WSR-MW-16R- GW-23	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW	WSR-MW-16R- GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units			·											
Color (Visual)	none	clear	clear	clear	clear w/ black flecks	clear	clear	murky	Slightly clouded	clear with black precipitate	clear with black precipitate	clear with black particulate	clear with black particulate	clear with fine light to dark suspended material	clear
Conductivity, Field	mS/cm	4.31	3.75	0.782	4.90	0.629	5.19	5.32	4.06	4.40	2.67	8.04	3.72	3.96	2.91
Dissolved Oxygen, Field	mg/L	1.12	2.63	0.00	0.00	1.00	0.16	0.90	0.76	0.25	0.14	0.16	0.11	0.34	1.35
Odor	none	none	no odor	no odor	stale odor	no odor	sulfur	sulfur	Sulfur odor	slight sulfur odor	sulfur odor	none	none	sulfur odor	none
Oxidation Reduction Potential	mV	-62	104	-247	-196	-247	-328.6	-346.8	-313.9	-354.5	-264.3	-205.9	-144.3	-143.1	-155.8
pH, Field	S.U.	6.56	7.53	6.84	7.04	6.53	6.96	6.76	7.04	6.90	6.58	7.00	6.95	6.89	6.99
Temperature, Field	deg C	17.78	7.26	12.28	10.95	18.3	20.9	11.1	8.3	19.0	19.7	16.0	17.2	10.6	16.7
Turbidity, Field	NTU	37	44.3	12.7	29	15.0	11.48	3.97	13.9	12.50	6.42	9.79	3.76	14.1	3.92
Volume Purged	gal	1.0	0.6	2.7	2.1	0.8	1.9	1.2	2.8	2.0	1.1	0.3	1.4	0.8	1.6

Table 2
Summary of Field Parameters in Groundwater – September 2011 to October 2018
WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Area of interest								8-28 V	Vard St						
Sample Location		MW23													
Sample Date		28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	17-Jun-15*	9-Mar-16	10-Jan-18*	24-Oct-18
Sample ID		WSR-MW-23- GW-7	828-MW-23- GW-8	828-MW-23- GW-9	828-MW-23- GW-10	828-MW-23- GW-11	828-MW-23- GW-12	828-MW-23- GW	828-MW-23- GW	828-MW-23- GW	828-MW-23- GW	828-MW-23- GW	828-MW-23- GW	828-MW-23- GW	828-MW-23- GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units		I.	<u> </u>			I.	<u> </u>	<u> </u>	<u> </u>				<u> </u>	
Color (Visual)	none	clear	clear	clear w/ black flecks	clear w/ black flecks	clear, no black flecks	clear/black pieces	clear w/ black flecks	Black precipitate	clear with black precipitate	clear with black precipitate	slightly yellow, brown particulate		clear, few fine black suspended particles	clear
Conductivity, Field	mS/cm	7.37	7.12	0.596	6.06	0.828	6.62	4.66	4.38	3.48	5.96	4.34	5.21	4.39	3.72
Dissolved Oxygen, Field	mg/L	0.0	2.61	0.00	0.00	0.42	0.16	0.35	0.22	0.11	0.13	0.47	0.32	0.28	0.25
Odor	none	none	no odor	no odor	no odor	no odor	no odor	sewage odor	No odor	slight sulfur odor	sulfur odor	none	none	none	none
Oxidation Reduction Potential	mV	31	-135	-187	-238	-211	-147.1	-232.0	-149.2	-271.7	-149.3	-101.3	-22.2	-76.6	-74.4
pH, Field	S.U.	6.66	6.73	7.09	7.57	6.71	7.04	7.09	7.13	6.44	6.93	7.13	7.09	7.04	7.08
Temperature, Field	deg C	14.63	11.85	6.47	12.18	13.8	21.0	11.0	9.8	18.1	15.3	15.8	12.7	11.8	14.7
Turbidity, Field	NTU	45	12.2	9.78	24	1.35	9.14	3.72	9.72	9.23	3.66	25.3	8.52	37.0	23.9
Volume Purged	gal	2.1	1.6	0.5	0.6	2.5	1.6	0.9	1.0	1.1	1.2	0.8	1.7	0.8	0.8



Table 2
Summary of Field Parameters in Groundwater – September 2011 to October 2018
WARD STREET SITES
GERMANOW-SIMON CORPORATION
ROCHESTER, NY

Area of interest								8-28 V	Vard St						
Sample Location		MW23R													
Sample Date		28-Sep-11	5-Jan-12	6-Feb-12	2-Mar-12	5-Jun-12	6-Sep-12	24-Jan-13	10-Apr-13	5-Jul-13	10-Oct-13	17-Jun-15	9-Mar-16	10-Jan-18*	24-Oct-18
Sample ID		WSR-MW-23R- GW-7	828-MW-23R- GW-8	828-MW-23R- GW-9	828-MW-23R- GW-10	828-MW-23R- GW-11	828-MW-23R- GW-12	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW	828-MW-23R- GW
Sampling Company		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Field Parameters	Units														
Color (Visual)	none	clear	clear w/ black flecks	clear w/ black flecks	clear w/ black flecks	clear w/ black flecks	black	murky	0	clear with black precipitate	clear with black precipitate	clear, black sulfide deposits	clear, black sulfide deposits	clear, fine black suspended particles	
Conductivity, Field	mS/cm	3.44	4.24	0.671	7.03	0.635	4.74	6.34	6.52	6.45	5.28	5.18	4.78	4.14	3.86
Dissolved Oxygen, Field	mg/L	0.00	0.00	0.00	0.00	0.57	0.24	0.33	0.11	0.11	0.41	0.14	0.09	0.13	1.17
Odor	none	none	no odor	odor	sulfur odor	no odor	sulfur	slight sulfur odor	0	strong sulfur odor	strong sulfur odor	sulfur odor	sulfur odor	sulfur odor	none
Oxidation Reduction Potential	mV	-23	-168	-262	-317	-211	-375.3	-438.3	-358.9	-408.0	-347.1	-307.0	-138.5	-190.7	-122.2
pH, Field	S.U.	6.63	7.38	6.71	6.86	6.59	7.02	6.65	6.67	6.79	6.97	7.16	7.25	7.26	7.25
Temperature, Field	deg C	22.26	12.61	11.12	12.97	16.1	19.7	11.5	10.8	17.5	15.5	14.3	14.2	11.1	14.6
Turbidity, Field	NTU	3.3	6.24	1.04	11.3	3.27	0.92	1.60	1.25	0.82	3.84	2.87	3.58	8.97	1.88
Volume Purged	gal	0.7	1.3	1.7	2.2	1.1	1.4	1.5	2.3	2.3	0.9	1.8	1.5	0.75	0.3

FIGURES

Legend

Site Boundary

0.03 0.06 1:2,400 (At original document size of 11x17)

NOTES

1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet

2. Base features produced under license with the Ontario Ministry of Natural
Resources ® Queen's Printer for Ontario, 2013.

3. Ortholmagery © First Base Solutions, 20xx.

Project Location Ward Street C. of Rochester, Monroe Co., NY

Prepared by MB on 2011-02-XX Technical Review by AL on 2013-XX-XX Independent Review by MPS

Ward Street Site (C828117) and 8-28 Ward Street Site (C828136)

Site Location Map

Legend

Well Network

Other Monitoring Well

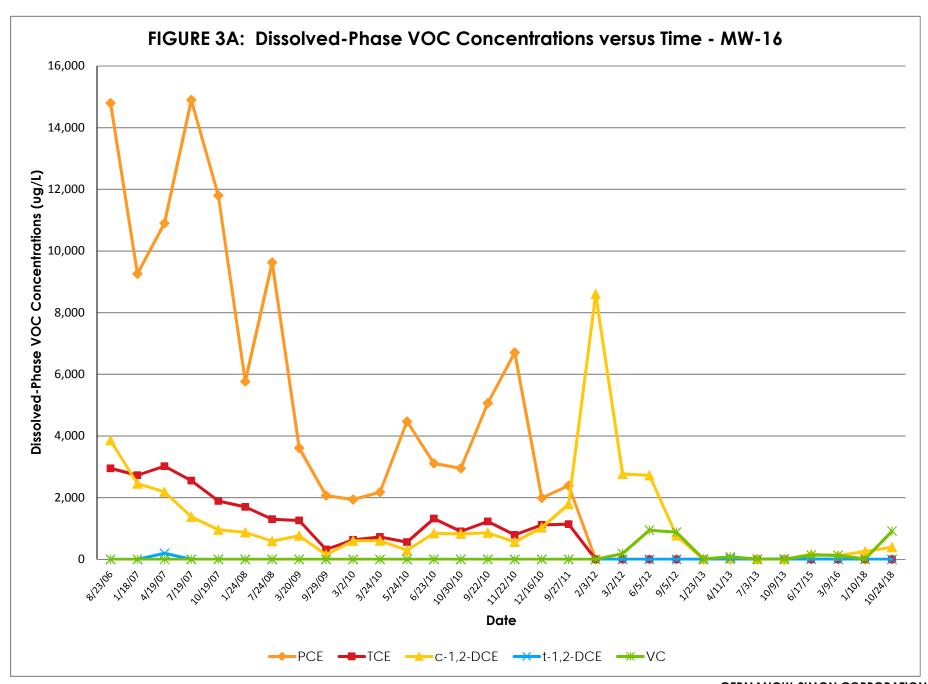
Extraction Well (inactive)

Excavation Area (October 2017)

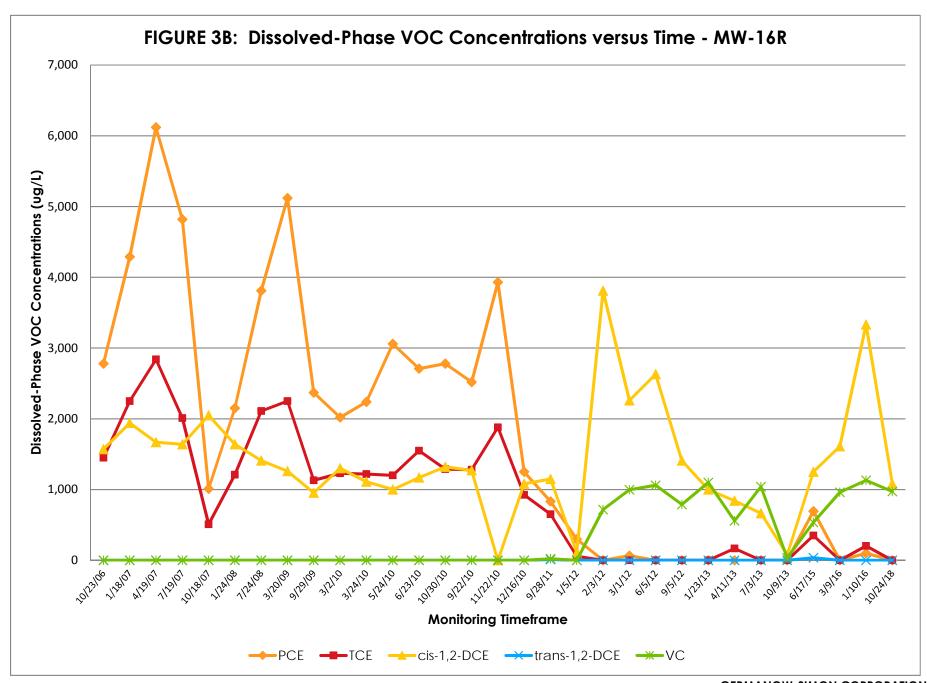
8-28 Ward Street Site Property Line

Ward Street Site Property Line

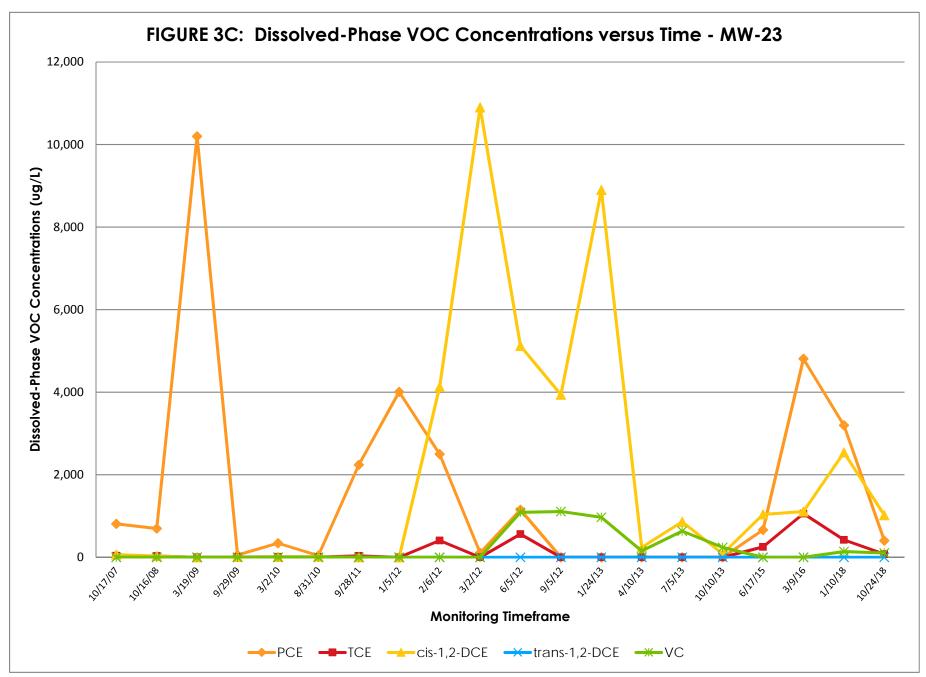
As-Built Trenching Limits

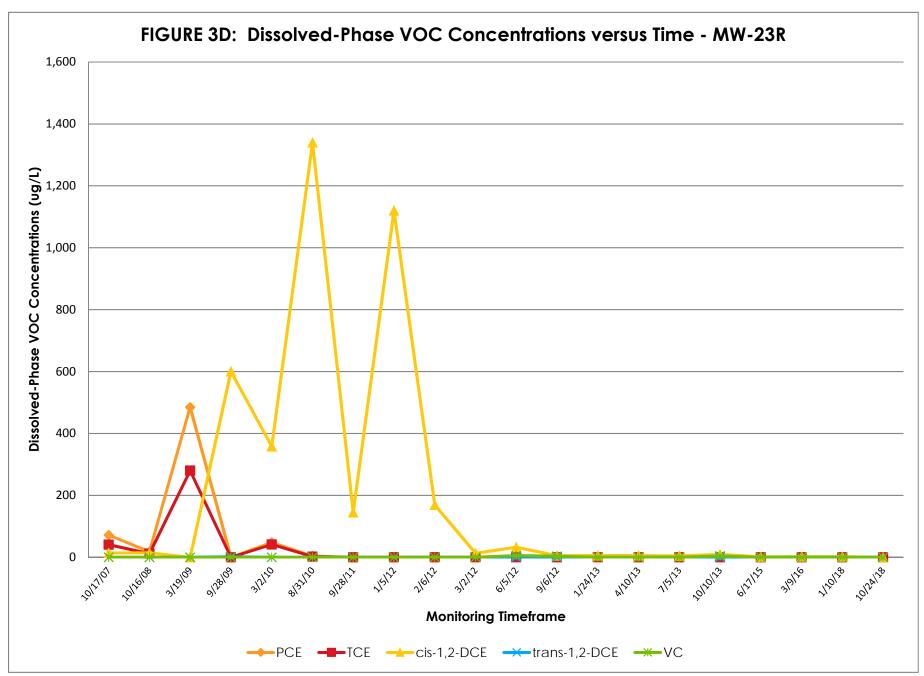

Ward Street

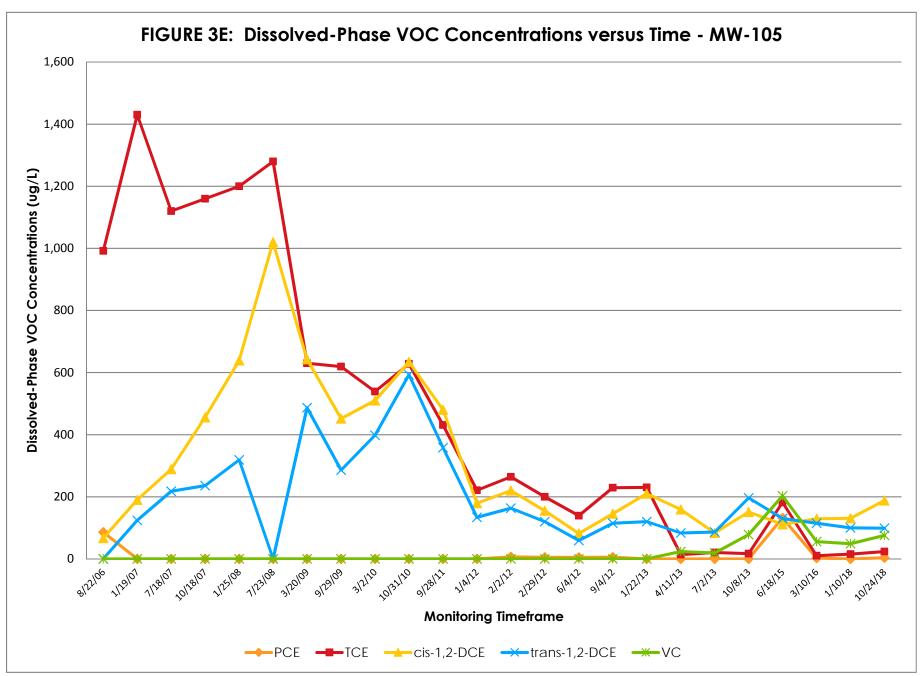
C. of Rochester, Monroe Co., NY

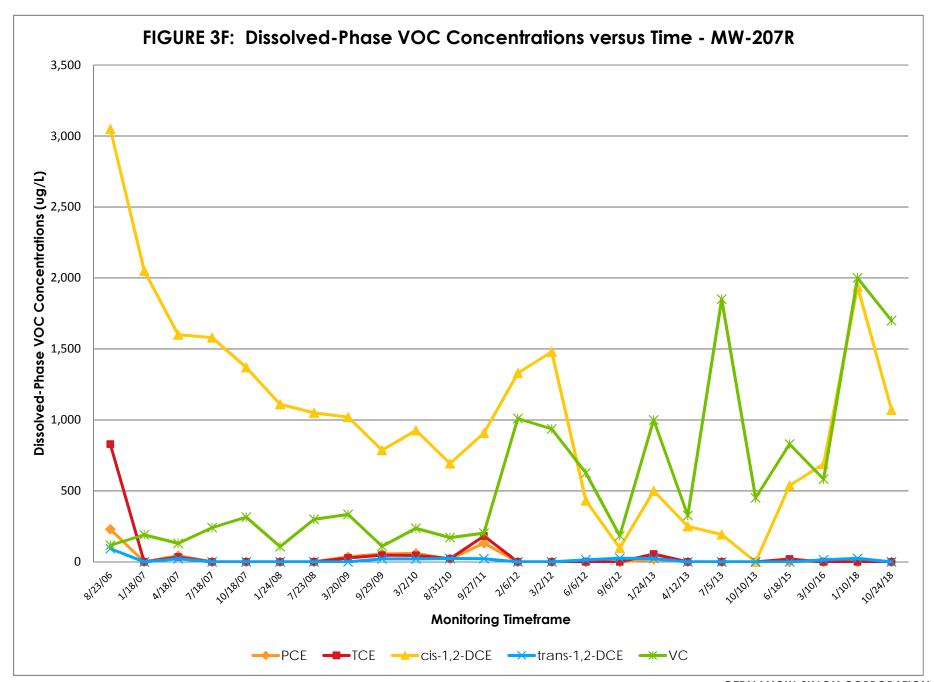

Prepared by LB on 2018-05-1x
Iechnical Review by RJM on 2018-05-xx
Independent Review by MPS on 2018-05-xx

Client/Project Groundwater Monitoring Ward Street Site (C828117) and 8-28 Ward Street Site (C828136)


Well Locations







APPENDIX A IC/EC Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sif	Site Details te No. C828117	Box 1	
	te Name Ward Street Site	: 63	
Sit Cit Co	408 St. Paul Street te Address: Corner of Ward St. & St. Paul St. ty/Town: Rochester bunty: Monroe te Acreage: 1.859		T21
Re	eporting Period: November 15, 2017 to November 15, 2018		
		YES	NO
۱.	Is the information above correct?	О	X
	If NO, include handwritten above or on a separate sheet. See Address Correct	ction Above	
	Has some or all of the site property been sold, subdivided, merged, or undergotax map amendment during this Reporting Period?	one a	X
	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
	Have any federal, state, and/or local permits (e.g., building, discharge) been is for or at the property during this Reporting Period?	sued	X
	If you answered YES to questions 2 thru 4, include documentation or evithat documentation has been previously submitted with this certification		
j.	Is the site currently undergoing development?	0	X
		.0	
		Box 2	
		YES	NO
	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X	
, .	Are all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date be DO NOT COMPLETE THE REST OF THIS FORM. Otherwise conti		
	Corrective Measures Work Plan must be submitted along with this form to add	ress these iss	ues.
Sic	gnature of Owner, Remedial Party or Designated Representative	Date	

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		$\bar{\mathbf{X}}$
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	O
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	E NO. C828117	Во	x 3
	Description of Institutional Controls		

Parcel Owner Institutional Control
106.62-01-028 Germanow-Simon Corporation

Ground Water Use Restriction Soil Management Plan Landuse Restriction

Site Management Plan Monitoring Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

106.62-01-029

Germanow-Simon Corporation

Monitoring Plan
Site Management Plan
Ground Water Use Restriction
Soil Management Plan
Landuse Restriction

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

106.62-01-030

Germanow-Simon Corporation

Site Management Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction

Monitoring Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

106.62-01-031

Germanow-Simon Corporation

Site Management Plan
Monitoring Plan
Ground Water Use Restriction
Soil Management Plan
Landuse Restriction

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

106.62-01-032

Germanow-Simon Corporation

Ground Water Use Restriction Soil Management Plan Landuse Restriction

Site Management Plan Monitoring Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

106.62-01-057

Germanow-Simon Corporation

Soil Management Plan Site Management Plan Ground Water Use Restriction Landuse Restriction Monitoring Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

106.62-01-21

Germanow-Simon Corporation

Ground Water Use Restriction Soil Management Plan Landuse Restriction

Monitoring Plan

Site Management Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

106.62-01-028

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. 106.62-01-029

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. 106.62-01-030

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. 106.62-01-031

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. 106.62-01-032

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Operate a sub-slab depressurization system; Maintain asphalt and concrete surfaces in the area of contamination.

106.62-01-057

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. 106.62-01-21

Vapor Mitigation Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination.

Periodic Review Report (PRR) Certification Statements

	4		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dir reviewed by, the party making the certification; 	ection of,	and
	b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gen	l in this ce erally acc	ertification epted
	engineering practices; and the information presented is accurate and compete.	YES	NO
	80 m	X	D
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the following statements are true:	or each In nat all of t	stitutional ne
	(a) the Institutional Control and/or Engineering Control(s) employed at this site since the date that the Control was put in-place, or was last approved by the D	is uncha epartmen	nged t;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	ct public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control	ite the ol;	
	(d) nothing has occurred that would constitute a violation or failure to comply v Site Management Plan for this Control; and	with the	
	(e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose established in	for the sit the docu	e, the ment.
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu		
	A Corrective Measures Work Plan must be submitted along with this form to address	these is	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C828117

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Andrew Germanow print name	at Germanow-Simon Co	
am certifying as Owner		(Owner or Remedial Party
or the Site named in the Site Details	Section of this form.	
10		11 1

IC/EC CERTIFICATIONS SITE NO. C 828117

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Peter Nielsen at print name	Stantec, 61 Commercial St, Suite 100 Rochester, NY 14614 print business address
am certifying as a Professional Engineer for	
OF NEW YO	(Owner or Remedial Party)
Co de la Contraction de la Con	2/
No. 061A997	12/14/2018
Signature of Professional Engineer for the Remedial Party, Rendering Certification	Owner or Stamp Date (Required for PE)

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	6 4		
	Site Details	Box 1	
Sit	e No. C828136		
Sit	e Name 8-28 Ward Street		
Oil	14605		131
	e Address: 8-28 Ward Street Zip Code: 14603-1061		
	y/Town: Rochester		
	unty: Monroe e Acreage: 1.222		
Oit	57.010dg6. 1.222		
Re	porting Period: November 15, 2017 to November 15, 2018		
		YES	NO
1.	Is the information above correct?		X
	INNO include hand with a large part of the Court of the C	A 1.	
	If NO, include handwritten above or on a separate sheet. See Address Correction	Above	-
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a		
	tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period		X
	(see 6NYCRR 375-1.11(d))?	LJ.	Λ
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued		
•	for or at the property during this Reporting Period?		X
	If you answered YES to questions 2 thru 4, include documentation or evidence		
	that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?		X
_			
		Box 2	
	a contract of the contract of		
		YES	NO
6.	Is the current site use consistent with the use(s) listed below?	$\bar{\mathbf{X}}$	
٥.	Commercial and Industrial	A	Li
	Commercial and modernal		
7.	Are all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a	nd	9
	DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	iiu	
AC	corrective Measures Work Plan must be submitted along with this form to address th	ese iss	ues.
Sia	nature of Owner, Remedial Party or Designated Representative Date		
	Date		

			A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?	0	$\bar{\mathbf{X}}$
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

Box 3 **SITE NO. C828136 Description of Institutional Controls** Institutional Control Owner Parcel Germanow-Simon Corporation 106.63-1-16 Ground Water Use Restriction Soil Management Plan Landuse Restriction Site Management Plan Monitoring Plan Groundwater use is prohibited; A Site Management Plan (SMP) must be implemented; Soils shall be managed in accordance with the SMP; The potential for vapor intrusion for any new buildings must be evaluated and mitigated as necessary; Periodic review is required to certifiy all controls are in place.

review is required to certary all controls are in place.

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

106.63-1-16

Groundwater Treatment System

Box 4

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications;

Existing surface and near surface soils, asphalt-paved surfaces, concrete-paved surfaces, and any existing buildings act as a cover system and must be maintained;

	-
D	- 8
	-5

Periodic Review Report (PRR) Certification Statements

	renductive Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the di- reviewed by, the party making the certification; 	rection of	, and
	b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and ger		
	engineering practices; and the information presented is accurate and compete.	YES	NO
		N	0
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the following statements are true:		
	(a) the Institutional Control and/or Engineering Control(s) employed at this site since the date that the Control was put in-place, or was last approved by the D		
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	ct public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control		
	(d) nothing has occurred that would constitute a violation or failure to comply vSite Management Plan for this Control; and	vith the	
	(e) if a financial assurance mechanism is required by the oversight document mechanism remains valid and sufficient for its intended purpose established in		
		YES	NO
		$\bar{\mathbf{X}}$	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue).	
	A Corrective Measures Work Plan must be submitted along with this form to address	these iss	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C828136

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE
I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Andrew Germanow	at	Germanow-Simon Coporation
print name		print business address
am certifying as Owner		(Owner or Remedial Party)
for the Site named in the Site Details	Section o	f this form.
Moura		11.118
Signature of Owner, Remedial Party Rendering Certification	or Design	ated Representative Date

IC/EC CERTIFICATIONS SITE NO. B2B136

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Peter Nielsen		, 61 Commercial St, Suite 100 ter, NY 14614
print name		business address
certifying as a Professional Engineer f	or the Owner	
OF NEW YOR		(Owner or Remedial Party)
TER MELSEN	7//	
		12/11
0.061099		12/14/2010
	e Owner or	

PERIODIC REVIEW REPORT BROWNFIELD CLEANUP PROGRAM WARD STREET SITE (SITE NO. C828117) AND 8-28 WARD STREET (SITE NO. C828136)

APPENDIX B NYSDEC Correspondence

Sent: Monday, July 23, 2018 1:49 PM

To: Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov)

Cc: Nielsen, Peter; Kelly, Amanda

Subject: 8-18 Ward Street Site, C828136 - Crabapple Replanting

Attachments: siteplan.c828117.c828136.2017-12-15.PRR_ICEC.fig4.2017PRR.PDF;

report.c828117.c828136.2016-10-27.boring_logs.exerpt.pdf;

report.c828117.c828136.2016-10-27.soil.pdf; report.c828117.c828136.2017-10-10

_Confirmatory_Soil.pdf

Importance: High

Tracking: Recipient Read

Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov)

Nielsen, Peter Read: 7/23/2018 2:42 PM

Kelly, Amanda

Todd,

As a follow-up to my voice mail message, the replanting of two crab apple trees is tentatively scheduled for tomorrow at the 8-28 Ward Street Site in the area of our 2017 remedial excavation to replace two crab apple trees that were removed. The shadows from the two tree former tree locations can be observed in the attached site plan. Planting of the trees will require shallow 2.5 ft. excavations. One of the excavations will be located within the area excavated and backfilled last year. The second will be just to the east of the former excavation in between four former bogging locations. The four borings, B-4, B-9, B-13 and B-15 which surround the area of the second tree, did not exhibit evidence of impacts at these shallow depts. Similarly the easterly excavation sidewall did not exhibit evidence of impacts. The soil that will be excavated is proposed to be feathered out around the base of the trees and reseeded. Given the available data from these two locations, we are not proposing to conduct CAMP monitoring.

Please let us know if the proposed handling of the soils, and foregoing the CAMP monitoring program during the planting of these trees will be acceptable.

Sincerely, Mike

Michael P. Storonsky

Managing Principal, Environmental Services

Direct: (585) 413-5266 Mobile: (585) 298-2386

Stantec Consulting Services Inc.

Sent: Thursday, January 04, 2018 4:28 PM

To: Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov)

Subject: Ward Street Site, BCA Site No.: C828117 and 8-28 Ward Street Site, BCA Site No.: C828136 -

Groundwater Monitoring Event

Todd,

On behalf of Germanow-Simon, and contingent on weather conditions, we are presently planning to conduct our next groundwater monitoring event at the Ward Street and 8-28 Ward Street sites on Wed. – Thurs., Jan. 10-11, 2017.

Please let us know if you have any questions or if you require further information.

Sincerely, Mike

Michael P. Storonsky

Managing Principal, Environmental Services

Direct: (585) 413-5266 Mobile: (585) 298-2386

Stantec Consulting Services Inc.

Sent: Wednesday, August 01, 2018 8:02 AM **To:** Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov)

Cc: Nielsen, Peter; Kelly, Amanda

Subject: 8-28 Ward Street Site, C828136 - Crabapple Replanting **Attachments:** letter.c828117.c828136.2017-07-31.replanting.pdf

Good Morning Todd,

As a follow-up to our conversation and the information presented below, please find enclosed a letter summarizing the recent replanting of the two crab apple trees at the 8-28 Ward Street Site.

Please contact us with any questions.

Sincerely, Mike

From: Storonsky, Mike

Sent: Monday, July 23, 2018 1:49 PM

To: Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov) <todd.caffoe@dec.ny.gov>

Cc: Nielsen, Peter < Peter. Nielsen@stantec.com>; Kelly, Amanda < Amanda. Kelly@stantec.com>

Subject: 8-28 Ward Street Site, C828136 - Crabapple Replanting

Importance: High

Todd,

As a follow-up to my voice mail message, the replanting of two crab apple trees is tentatively scheduled for tomorrow at the 8-28 Ward Street Site in the area of our 2017 remedial excavation to replace two crab apple trees that were removed. The shadows from the two tree former tree locations can be observed in the attached site plan. Planting of the trees will require shallow 2.5 ft. excavations. One of the excavations will be located within the area excavated and backfilled last year. The second will be just to the east of the former excavation in between four former bogging locations. The four borings, B-4, B-9, B-13 and B-15 which surround the area of the second tree, did not exhibit evidence of impacts at these shallow depts. Similarly the easterly excavation sidewall did not exhibit evidence of impacts. The soil that will be excavated is proposed to be feathered out around the base of the trees and reseeded. Given the available data from these two locations, we are not proposing to conduct CAMP monitoring.

Please let us know if the proposed handling of the soils, and foregoing the CAMP monitoring program during the planting of these trees will be acceptable.

Sincerely, Mike

Michael P. Storonsky

Managing Principal, Environmental Services

Direct: (585) 413-5266 Mobile: (585) 298-2386

Stantec Consulting Services Inc.

July 31, 2018 File: 190500014

Attention: Todd Caffoe NYS DEC - Region 8 Office Division of Environmental Remediation 6274 East Avon-Lima Rd. Avon, NY 14414-9519

Reference: Crabapple Tree Replanting

Ward Street Site, BCA Site #C828117 8-28 Ward Street Site, BCA Site #C828136

Rochester, New York

Dear Todd,

This memorandum serves to inform the New York State Department of Environmental Conservation (NYSDEC) that the replanting of two crabapple trees occurred on July 24, 2018 at the 8-28 Ward Street Site (NYSDEC Brownfield Cleanup Agreement (BCA) #C828117 and BCA #C828136 (Site)) in the area of the 2017 remedial excavation, which was summarized in the 2017 Periodic Review Report (PRR).

One of the removed trees was located within the footprint of the 2017 remedial excavation, while the second was approximately five feet east. Since four borings (B-4, B-9, B-13 and B-15) and a confirmatory sample on the east wall of the remedial excavation did not exhibit evidence of impacts and the trees required only shallow excavations (approximately 22 inches below ground surface), NYSDEC granted approval to forgo the Community Air Monitoring Plan (CAMP) via a phone call on July 23, 2018.

Bristols Garden Center (Bristols) completed the planting of both crabapple trees on the morning of July 24th. Excavations were hand dug and Stantec screened the excavated soil with a photoionization detector (PID). There were no PID readings above background concentrations for the duration of field activities. The displaced soil was spread around the base of the two trees. To match the conditions of existing crabapple trees on-Site, Bristols returned on July 26th to plant grass seed in the disturbed areas surrounding the two trees.

Please do not hesitate to call should you have any questions or require further information.

Regards,

Stantec Consulting Services Inc.

Mike Storonsky

Principal

Phone: (585) 413-5266 Fax: (585) 272-1814 mike.storonsky@stantec.com Principal

Phone: (585) 413-5280 Fax: (585) 424-5951 Peter.Nielsen@stantec.com Environmental EIT

Phone: (585) 413-5370

Fax: (585) 319-9499 Amanda.Kelly@stantec.com

c. John Dole (Germanow-Simon)

 $ka~u:\label{lem:lemon} \textbf{ka~u:}\label{lemon:lemon} a~u:\label{lemon:le$

Sent: Thursday, October 18, 2018 1:57 PM

To: Caffoe, Todd (DEC)

Cc: Mahoney, Robert; Delmedico, Jay

Subject: Ward Street Site, BCA Site No.: C828117 and 8-28 Ward Street Site, BCA Site No.: C828136 -

Groundwater Monitoring Event

Todd,

We are planning to conduct our next groundwater monitoring event at the Ward Street and 8-28 Ward Street sites on Wed. –Thurs., Oct. 24-25, 2018.

Please let us know if you have any questions or if you require further information.

Sincerely, Mike

Michael P. Storonsky

Managing Principal, Environmental Services

Direct: (585) 413-5266 Mobile: (585) 298-2386

Stantec Consulting Services Inc.

PERIODIC REVIEW REPORT BROWNFIELD CLEANUP PROGRAM WARD STREET SITE (SITE NO. C828117) AND 8-28 WARD STREET (SITE NO. C828136)

APPENDIX C Laboratory Analytical Reports

Analytical Report For

Stantec

For Lab Project ID

180096

Referencing

Ward Street 190500014

Prepared

Tuesday, January 16, 2018

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: WSR-MW-105-GW

Lab Sample ID:180096-01Date Sampled:1/10/2018Matrix:GroundwaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	1/11/2018 14:12
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	1/11/2018 14:12
1,1,2-Trichloroethane	< 2.00	ug/L	1/11/2018 14:12
1,1-Dichloroethane	< 2.00	ug/L	1/11/2018 14:12
1,1-Dichloroethene	< 2.00	ug/L	1/11/2018 14:12
1,2,3-Trichlorobenzene	< 5.00	ug/L	1/11/2018 14:12
1,2,4-Trichlorobenzene	< 5.00	ug/L	1/11/2018 14:12
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	1/11/2018 14:12
1,2-Dibromoethane	< 2.00	ug/L	1/11/2018 14:12
1,2-Dichlorobenzene	< 2.00	ug/L	1/11/2018 14:12
1,2-Dichloroethane	< 2.00	ug/L	1/11/2018 14:12
1,2-Dichloropropane	< 2.00	ug/L	1/11/2018 14:12
1,3-Dichlorobenzene	< 2.00	ug/L	1/11/2018 14:12
1,4-Dichlorobenzene	< 2.00	ug/L	1/11/2018 14:12
1,4-dioxane	< 20.0	ug/L	1/11/2018 14:12
2-Butanone	< 10.0	ug/L	1/11/2018 14:12
2-Hexanone	< 5.00	ug/L	1/11/2018 14:12
4-Methyl-2-pentanone	< 5.00	ug/L	1/11/2018 14:12
Acetone	< 10.0	ug/L	1/11/2018 14:12
Benzene	< 1.00	ug/L	1/11/2018 14:12
Bromochloromethane	< 5.00	ug/L	1/11/2018 14:12
Bromodichloromethane	< 2.00	ug/L	1/11/2018 14:12
Bromoform	< 5.00	ug/L	1/11/2018 14:12
Bromomethane	< 2.00	ug/L	1/11/2018 14:12
Carbon disulfide	< 2.00	ug/L	1/11/2018 14:12
Carbon Tetrachloride	< 2.00	ug/L	1/11/2018 14:12
Chlorobenzene	< 2.00	ug/L	1/11/2018 14:12
Chloroethane	< 2.00	ug/L	1/11/2018 14:12
Chloroform	< 2.00	ug/L	1/11/2018 14:12

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

10,000 110101 011001		000001	<u>-</u>				
Sample Identifier:	WSR-MW-105	5-GW					
Lab Sample ID:	180096-01			Date	Sampled:	1/10/2018	
Matrix:	Groundwater			Date	Received:	1/10/2018	
Chloromethane		< 2.00	ug/L			1/11/2018	14:12
cis-1,2-Dichloroethene		131	ug/L			1/11/2018	14:12
cis-1,3-Dichloropropen	e	< 2.00	ug/L			1/11/2018	14:12
Cyclohexane		< 10.0	ug/L			1/11/2018	14:12
Dibromochloromethan	е	< 2.00	ug/L			1/11/2018	14:12
Dichlorodifluorometha	ne	< 2.00	ug/L			1/11/2018	14:12
Ethylbenzene		< 2.00	ug/L			1/11/2018	14:12
Freon 113		< 2.00	ug/L			1/11/2018	14:12
Isopropylbenzene		< 2.00	ug/L			1/11/2018	14:12
m,p-Xylene		< 2.00	ug/L			1/11/2018	14:12
Methyl acetate		< 2.00	ug/L			1/11/2018	14:12
Methyl tert-butyl Ether		< 2.00	ug/L			1/11/2018	14:12
Methylcyclohexane		< 2.00	ug/L			1/11/2018	14:12
Methylene chloride		< 5.00	ug/L			1/11/2018	14:12
o-Xylene		< 2.00	ug/L			1/11/2018	14:12
Styrene		< 5.00	ug/L			1/11/2018	14:12
Tetrachloroethene		2.93	ug/L			1/11/2018	14:12
Toluene		< 2.00	ug/L			1/11/2018	14:12
trans-1,2-Dichloroether	ne	100	ug/L			1/11/2018	14:12
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			1/11/2018	14:12
Trichloroethene		15.2	ug/L			1/11/2018	14:12
Trichlorofluoromethan	e	< 2.00	ug/L			1/11/2018	14:12
Vinyl chloride		48.7	ug/L			1/11/2018	14:12
Surrogate		<u>Perc</u>	ent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			106	85.9 - 118		1/11/2018	14:12
4-Bromofluorobenzene	:		96.6	69.4 - 123		1/11/2018	14:12
Pentafluorobenzene			96.7	81.6 - 114		1/11/2018	14:12
Toluene-D8			101	82.7 - 112		1/11/2018	14:12

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48081.D

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: WSR-MW-16-GW

Lab Sample ID:180096-02Date Sampled:1/10/2018Matrix:GroundwaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 5.00	ug/L	1/11/2018 15:23	
1,1,2,2-Tetrachloroethane	< 5.00	ug/L	1/11/2018 15:23	
1,1,2-Trichloroethane	< 5.00	ug/L	1/11/2018 15:23	
1,1-Dichloroethane	< 5.00	ug/L	1/11/2018 15:23	
1,1-Dichloroethene	< 5.00	ug/L	1/11/2018 15:23	
1,2,3-Trichlorobenzene	< 12.5	ug/L	1/11/2018 15:23	,
1,2,4-Trichlorobenzene	< 12.5	ug/L	1/11/2018 15:23	,
1,2-Dibromo-3-Chloropropane	< 25.0	ug/L	1/11/2018 15:23	
1,2-Dibromoethane	< 5.00	ug/L	1/11/2018 15:23	
1,2-Dichlorobenzene	< 5.00	ug/L	1/11/2018 15:23	
1,2-Dichloroethane	< 5.00	ug/L	1/11/2018 15:23	
1,2-Dichloropropane	< 5.00	ug/L	1/11/2018 15:23	
1,3-Dichlorobenzene	< 5.00	ug/L	1/11/2018 15:23	
1,4-Dichlorobenzene	< 5.00	ug/L	1/11/2018 15:23	
1,4-dioxane	< 50.0	ug/L	1/11/2018 15:23	,
2-Butanone	< 25.0	ug/L	1/11/2018 15:23	,
2-Hexanone	< 12.5	ug/L	1/11/2018 15:23	,
4-Methyl-2-pentanone	< 12.5	ug/L	1/11/2018 15:23	
Acetone	< 25.0	ug/L	1/11/2018 15:23	
Benzene	< 2.50	ug/L	1/11/2018 15:23	
Bromochloromethane	< 12.5	ug/L	1/11/2018 15:23	
Bromodichloromethane	< 5.00	ug/L	1/11/2018 15:23	
Bromoform	< 12.5	ug/L	1/11/2018 15:23	
Bromomethane	< 5.00	ug/L	1/11/2018 15:23	
Carbon disulfide	< 5.00	ug/L	1/11/2018 15:23	
Carbon Tetrachloride	< 5.00	ug/L	1/11/2018 15:23	
Chlorobenzene	< 5.00	ug/L	1/11/2018 15:23	
Chloroethane	< 5.00	ug/L	1/11/2018 15:23	
Chloroform	< 5.00	ug/L	1/11/2018 15:23	

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier:	WSR-MW-16-GW					
Lab Sample ID:	180096-02			Date Sampled:	1/10/2018	
Matrix:	Groundwater			Date Received:	1/10/2018	
Chloromethane	< 5.	00 uş	g/L		1/11/2018	15:23
cis-1,2-Dichloroethene	256	uş	g/L		1/11/2018	15:23
cis-1,3-Dichloropropene	< 5.0	00 uş	g/L		1/11/2018	15:23
Cyclohexane	< 25	5.0 uş	g/L		1/11/2018	15:23
Dibromochloromethane	< 5.0	00 uş	g/L		1/11/2018	15:23
Dichlorodifluoromethan	e < 5.0	00 uş	g/L		1/11/2018	15:23
Ethylbenzene	< 5.0	00 uş	g/L		1/11/2018	15:23
Freon 113	< 5.0	00 uş	g/L		1/11/2018	15:23
Isopropylbenzene	< 5.0	00 uş	g/L		1/11/2018	15:23
m,p-Xylene	< 5.0	00 uş	g/L		1/11/2018	15:23
Methyl acetate	< 5.0	00 uş	g/L		1/11/2018	15:23
Methyl tert-butyl Ether	< 5.0	00 uş	g/L		1/11/2018	15:23
Methylcyclohexane	< 5.0	00 uş	g/L		1/11/2018	15:23
Methylene chloride	< 12	2.5 uş	g/L		1/11/2018	15:23
o-Xylene	< 5.0	00 ug	g/L		1/11/2018	15:23
Styrene	< 12	2.5 ug	g/L		1/11/2018	15:23
Tetrachloroethene	< 5.0	00 ug	g/L		1/11/2018	15:23
Toluene	< 5.0	00 ug	g/L		1/11/2018	15:23
trans-1,2-Dichloroethen	e 4.40) սչ	g/L	J	1/11/2018	15:23
trans-1,3-Dichloroprope	ene < 5.0	00 ug	g/L		1/11/2018	15:23
Trichloroethene	< 5.0	00 uş	g/L		1/11/2018	15:23
Trichlorofluoromethane	< 5.0	00 uş	g/L		1/11/2018	15:23
Vinyl chloride	365	uş	g/L		1/11/2018	15:23
<u>Surrogate</u>		Percent Rec	overy Limits	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		107	85.9 - 12	18	1/11/2018	15:23
4-Bromofluorobenzene		95.8	69.4 - 12	23	1/11/2018	15:23
Pentafluorobenzene		95.9	81.6 - 12	14	1/11/2018	15:23
Toluene-D8		99.8	82.7 - 12	12	1/11/2018	15:23

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48084.D

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: WSR-MW-16R-GW

Lab Sample ID:180096-03Date Sampled:1/10/2018Matrix:GroundwaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 50.0	ug/L		1/11/2018 13:01
1,1,2,2-Tetrachloroethane	< 50.0	ug/L		1/11/2018 13:01
1,1,2-Trichloroethane	< 50.0	ug/L		1/11/2018 13:01
1,1-Dichloroethane	< 50.0	ug/L		1/11/2018 13:01
1,1-Dichloroethene	< 50.0	ug/L		1/11/2018 13:01
1,2,3-Trichlorobenzene	< 125	ug/L		1/11/2018 13:01
1,2,4-Trichlorobenzene	< 125	ug/L		1/11/2018 13:01
1,2-Dibromo-3-Chloropropane	< 250	ug/L		1/11/2018 13:01
1,2-Dibromoethane	< 50.0	ug/L		1/11/2018 13:01
1,2-Dichlorobenzene	< 50.0	ug/L		1/11/2018 13:01
1,2-Dichloroethane	< 50.0	ug/L		1/11/2018 13:01
1,2-Dichloropropane	< 50.0	ug/L		1/11/2018 13:01
1,3-Dichlorobenzene	< 50.0	ug/L		1/11/2018 13:01
1,4-Dichlorobenzene	< 50.0	ug/L		1/11/2018 13:01
1,4-dioxane	< 500	ug/L		1/11/2018 13:01
2-Butanone	< 250	ug/L		1/11/2018 13:01
2-Hexanone	< 125	ug/L		1/11/2018 13:01
4-Methyl-2-pentanone	< 125	ug/L		1/11/2018 13:01
Acetone	< 250	ug/L		1/11/2018 13:01
Benzene	< 25.0	ug/L		1/11/2018 13:01
Bromochloromethane	< 125	ug/L		1/11/2018 13:01
Bromodichloromethane	< 50.0	ug/L		1/11/2018 13:01
Bromoform	< 125	ug/L		1/11/2018 13:01
Bromomethane	< 50.0	ug/L		1/11/2018 13:01
Carbon disulfide	< 50.0	ug/L		1/11/2018 13:01
Carbon Tetrachloride	< 50.0	ug/L		1/11/2018 13:01
Chlorobenzene	< 50.0	ug/L		1/11/2018 13:01
Chloroethane	< 50.0	ug/L		1/11/2018 13:01
Chloroform	< 50.0	ug/L		1/11/2018 13:01

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

-						
Sample Identifier:	WSR-MW-16R-GW					
Lab Sample ID:	180096-03		Date Sa	ampled:	1/10/2018	
Matrix:	Groundwater		Date R	eceived:	1/10/2018	
Chloromethane	< 50.0	ug/L			1/11/2018	13:01
cis-1,2-Dichloroethene	3330	ug/L			1/11/2018	13:01
cis-1,3-Dichloropropen	e < 50.0	ug/L			1/11/2018	13:01
Cyclohexane	< 250	ug/L			1/11/2018	13:01
Dibromochloromethane	e < 50.0	ug/L			1/11/2018	13:01
Dichlorodifluoromethan	ne < 50.0	ug/L			1/11/2018	13:01
Ethylbenzene	< 50.0	ug/L			1/11/2018	13:01
Freon 113	< 50.0	ug/L			1/11/2018	13:01
Isopropylbenzene	< 50.0	ug/L			1/11/2018	13:01
m,p-Xylene	< 50.0	ug/L			1/11/2018	13:01
Methyl acetate	< 50.0	ug/L			1/11/2018	13:01
Methyl tert-butyl Ether	< 50.0	ug/L			1/11/2018	13:01
Methylcyclohexane	< 50.0	ug/L			1/11/2018	13:01
Methylene chloride	< 125	ug/L			1/11/2018	13:01
o-Xylene	< 50.0	ug/L			1/11/2018	13:01
Styrene	< 125	ug/L			1/11/2018	13:01
Tetrachloroethene	99.7	ug/L			1/11/2018	13:01
Toluene	< 50.0	ug/L			1/11/2018	13:01
trans-1,2-Dichloroether	ne < 50.0	ug/L			1/11/2018	13:01
trans-1,3-Dichloroprop	ene < 50.0	ug/L			1/11/2018	13:01
Trichloroethene	204	ug/L			1/11/2018	13:01
Trichlorofluoromethan	e < 50.0	ug/L			1/11/2018	13:01
Vinyl chloride	1130	ug/L			1/11/2018	13:01
<u>Surrogate</u>	F	Percent Recovery	<u>Limits</u> 0	<u>utliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		108	85.9 - 118		1/11/2018	13:01
4-Bromofluorobenzene		95.5	69.4 - 123		1/11/2018	13:01
Pentafluorobenzene		98.9	81.6 - 114		1/11/2018	13:01
Toluene-D8		99.5	82.7 - 112		1/11/2018	13:01

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48078.D

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: WSR-MW-207R-GW

Lab Sample ID:180096-04Date Sampled:1/10/2018Matrix:GroundwaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L	1/11/2018 13:25
1,1,2,2-Tetrachloroethane	< 20.0	ug/L	1/11/2018 13:25
1,1,2-Trichloroethane	< 20.0	ug/L	1/11/2018 13:25
1,1-Dichloroethane	< 20.0	ug/L	1/11/2018 13:25
1,1-Dichloroethene	< 20.0	ug/L	1/11/2018 13:25
1,2,3-Trichlorobenzene	< 50.0	ug/L	1/11/2018 13:25
1,2,4-Trichlorobenzene	< 50.0	ug/L	1/11/2018 13:25
1,2-Dibromo-3-Chloropropane	< 100	ug/L	1/11/2018 13:25
1,2-Dibromoethane	< 20.0	ug/L	1/11/2018 13:25
1,2-Dichlorobenzene	< 20.0	ug/L	1/11/2018 13:25
1,2-Dichloroethane	< 20.0	ug/L	1/11/2018 13:25
1,2-Dichloropropane	< 20.0	ug/L	1/11/2018 13:25
1,3-Dichlorobenzene	< 20.0	ug/L	1/11/2018 13:25
1,4-Dichlorobenzene	< 20.0	ug/L	1/11/2018 13:25
1,4-dioxane	< 200	ug/L	1/11/2018 13:25
2-Butanone	< 100	ug/L	1/11/2018 13:25
2-Hexanone	< 50.0	ug/L	1/11/2018 13:25
4-Methyl-2-pentanone	< 50.0	ug/L	1/11/2018 13:25
Acetone	< 100	ug/L	1/11/2018 13:25
Benzene	< 10.0	ug/L	1/11/2018 13:25
Bromochloromethane	< 50.0	ug/L	1/11/2018 13:25
Bromodichloromethane	< 20.0	ug/L	1/11/2018 13:25
Bromoform	< 50.0	ug/L	1/11/2018 13:25
Bromomethane	< 20.0	ug/L	1/11/2018 13:25
Carbon disulfide	< 20.0	ug/L	1/11/2018 13:25
Carbon Tetrachloride	< 20.0	ug/L	1/11/2018 13:25
Chlorobenzene	< 20.0	ug/L	1/11/2018 13:25
Chloroethane	< 20.0	ug/L	1/11/2018 13:25
Chloroform	< 20.0	ug/L	1/11/2018 13:25

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Toject Kelerence.	waru sireet 1703000	17			
Sample Identifier:	WSR-MW-207R-GW				
Lab Sample ID:	180096-04		Date Sampled:	1/10/2018	
Matrix:	Groundwater		Date Received:	1/10/2018	
Chloromethane	< 20.0	ug/L		1/11/2018	13:25
cis-1,2-Dichloroethene	1940	ug/L		1/11/2018	13:25
cis-1,3-Dichloropropene	< 20.0	ug/L		1/11/2018	13:25
Cyclohexane	< 100	ug/L		1/11/2018	13:25
Dibromochloromethane	< 20.0	ug/L		1/11/2018	13:25
Dichlorodifluoromethane	e < 20.0	ug/L		1/11/2018	13:25
Ethylbenzene	< 20.0	ug/L		1/11/2018	13:25
Freon 113	< 20.0	ug/L		1/11/2018	13:25
Isopropylbenzene	< 20.0	ug/L		1/11/2018	13:25
m,p-Xylene	< 20.0	ug/L		1/11/2018	13:25
Methyl acetate	< 20.0	ug/L		1/11/2018	13:25
Methyl tert-butyl Ether	< 20.0	ug/L		1/11/2018	13:25
Methylcyclohexane	< 20.0	ug/L		1/11/2018	13:25
Methylene chloride	< 50.0	ug/L		1/11/2018	13:25
o-Xylene	< 20.0	ug/L		1/11/2018	13:25
Styrene	< 50.0	ug/L		1/11/2018	13:25
Tetrachloroethene	< 20.0	ug/L		1/11/2018	13:25
Toluene	< 20.0	ug/L		1/11/2018	13:25
trans-1,2-Dichloroethene	25.0	ug/L		1/11/2018	13:25
trans-1,3-Dichloroprope	ne < 20.0	ug/L		1/11/2018	13:25
Trichloroethene	< 20.0	ug/L		1/11/2018	13:25
Trichlorofluoromethane	< 20.0	ug/L		1/11/2018	13:25
Vinyl chloride	2000	ug/L		1/11/2018	13:25
<u>Surrogate</u>	<u>P</u>	ercent Recovery	<u>Limits</u> <u>Outliers</u>	Date Analy	<u>zed</u>
1,2-Dichloroethane-d4		104	85.9 - 118	1/11/2018	13:25
4-Bromofluorobenzene		93.3	69.4 - 123	1/11/2018	13:25
Pentafluorobenzene		99.1	81.6 - 114	1/11/2018	13:25
Toluene-D8		99.6	82.7 - 112	1/11/2018	13:25

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48079.D

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: 828-MW-23-GW

Lab Sample ID:180096-05Date Sampled:1/10/2018Matrix:GroundwaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 50.0	ug/L	1/11/2018 13:49
1,1,2,2-Tetrachloroethane	< 50.0	ug/L	1/11/2018 13:49
1,1,2-Trichloroethane	< 50.0	ug/L	1/11/2018 13:49
1,1-Dichloroethane	< 50.0	ug/L	1/11/2018 13:49
1,1-Dichloroethene	< 50.0	ug/L	1/11/2018 13:49
1,2,3-Trichlorobenzene	< 125	ug/L	1/11/2018 13:49
1,2,4-Trichlorobenzene	< 125	ug/L	1/11/2018 13:49
1,2-Dibromo-3-Chloropropane	< 250	ug/L	1/11/2018 13:49
1,2-Dibromoethane	< 50.0	ug/L	1/11/2018 13:49
1,2-Dichlorobenzene	< 50.0	ug/L	1/11/2018 13:49
1,2-Dichloroethane	< 50.0	ug/L	1/11/2018 13:49
1,2-Dichloropropane	< 50.0	ug/L	1/11/2018 13:49
1,3-Dichlorobenzene	< 50.0	ug/L	1/11/2018 13:49
1,4-Dichlorobenzene	< 50.0	ug/L	1/11/2018 13:49
1,4-dioxane	< 500	ug/L	1/11/2018 13:49
2-Butanone	< 250	ug/L	1/11/2018 13:49
2-Hexanone	< 125	ug/L	1/11/2018 13:49
4-Methyl-2-pentanone	< 125	ug/L	1/11/2018 13:49
Acetone	< 250	ug/L	1/11/2018 13:49
Benzene	< 25.0	ug/L	1/11/2018 13:49
Bromochloromethane	< 125	ug/L	1/11/2018 13:49
Bromodichloromethane	< 50.0	ug/L	1/11/2018 13:49
Bromoform	< 125	ug/L	1/11/2018 13:49
Bromomethane	< 50.0	ug/L	1/11/2018 13:49
Carbon disulfide	< 50.0	ug/L	1/11/2018 13:49
Carbon Tetrachloride	< 50.0	ug/L	1/11/2018 13:49
Chlorobenzene	< 50.0	ug/L	1/11/2018 13:49
Chloroethane	< 50.0	ug/L	1/11/2018 13:49
Chloroform	< 50.0	ug/L	1/11/2018 13:49

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier:	828-MW-23-GW				
Lab Sample ID:	180096-05		Date Sampled:	1/10/2018	
Matrix:	Groundwater		Date Received	: 1/10/2018	
Chloromethane	< 50.0	ug/L		1/11/2018	13:49
cis-1,2-Dichloroethene	2540	ug/L		1/11/2018	13:49
cis-1,3-Dichloropropene	< 50.0	ug/L		1/11/2018	13:49
Cyclohexane	< 250	ug/L		1/11/2018	13:49
Dibromochloromethane	< 50.0	ug/L		1/11/2018	13:49
Dichlorodifluoromethan	e < 50.0	ug/L		1/11/2018	13:49
Ethylbenzene	< 50.0	ug/L		1/11/2018	13:49
Freon 113	< 50.0	ug/L		1/11/2018	13:49
Isopropylbenzene	< 50.0	ug/L		1/11/2018	13:49
m,p-Xylene	< 50.0	ug/L		1/11/2018	13:49
Methyl acetate	< 50.0	ug/L		1/11/2018	13:49
Methyl tert-butyl Ether	< 50.0	ug/L		1/11/2018	13:49
Methylcyclohexane	< 50.0	ug/L		1/11/2018	13:49
Methylene chloride	< 125	ug/L		1/11/2018	13:49
o-Xylene	< 50.0	ug/L		1/11/2018	13:49
Styrene	< 125	ug/L		1/11/2018	13:49
Tetrachloroethene	3200	ug/L		1/11/2018	13:49
Toluene	< 50.0	ug/L		1/11/2018	13:49
trans-1,2-Dichloroethen	e < 50.0	ug/L		1/11/2018	13:49
trans-1,3-Dichloroprope	ene < 50.0	ug/L		1/11/2018	13:49
Trichloroethene	423	ug/L		1/11/2018	13:49
Trichlorofluoromethane	< 50.0	ug/L		1/11/2018	13:49
Vinyl chloride	140	ug/L		1/11/2018	13:49
<u>Surrogate</u>		Percent Recovery	<u>Limits</u> <u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		102	85.9 - 118	1/11/2018	13:49
4-Bromofluorobenzene		95.1	69.4 - 123	1/11/2018	13:49
Pentafluorobenzene		97.0	81.6 - 114	1/11/2018	13:49
Toluene-D8		99.3	82.7 - 112	1/11/2018	13:49

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48080.D

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: 828-MW-23R-GW

Lab Sample ID:180096-06Date Sampled:1/10/2018Matrix:GroundwaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	1/11/2018 14:59
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	1/11/2018 14:59
1,1,2-Trichloroethane	< 2.00	ug/L	1/11/2018 14:59
1,1-Dichloroethane	< 2.00	ug/L	1/11/2018 14:59
1,1-Dichloroethene	< 2.00	ug/L	1/11/2018 14:59
1,2,3-Trichlorobenzene	< 5.00	ug/L	1/11/2018 14:59
1,2,4-Trichlorobenzene	< 5.00	ug/L	1/11/2018 14:59
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	1/11/2018 14:59
1,2-Dibromoethane	< 2.00	ug/L	1/11/2018 14:59
1,2-Dichlorobenzene	< 2.00	ug/L	1/11/2018 14:59
1,2-Dichloroethane	< 2.00	ug/L	1/11/2018 14:59
1,2-Dichloropropane	< 2.00	ug/L	1/11/2018 14:59
1,3-Dichlorobenzene	< 2.00	ug/L	1/11/2018 14:59
1,4-Dichlorobenzene	< 2.00	ug/L	1/11/2018 14:59
1,4-dioxane	< 20.0	ug/L	1/11/2018 14:59
2-Butanone	< 10.0	ug/L	1/11/2018 14:59
2-Hexanone	< 5.00	ug/L	1/11/2018 14:59
4-Methyl-2-pentanone	< 5.00	ug/L	1/11/2018 14:59
Acetone	< 10.0	ug/L	1/11/2018 14:59
Benzene	< 1.00	ug/L	1/11/2018 14:59
Bromochloromethane	< 5.00	ug/L	1/11/2018 14:59
Bromodichloromethane	< 2.00	ug/L	1/11/2018 14:59
Bromoform	< 5.00	ug/L	1/11/2018 14:59
Bromomethane	< 2.00	ug/L	1/11/2018 14:59
Carbon disulfide	< 2.00	ug/L	1/11/2018 14:59
Carbon Tetrachloride	< 2.00	ug/L	1/11/2018 14:59
Chlorobenzene	< 2.00	ug/L	1/11/2018 14:59
Chloroethane	< 2.00	ug/L	1/11/2018 14:59
Chloroform	< 2.00	ug/L	1/11/2018 14:59

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier:	828-MW-23R-GW				
Lab Sample ID:	180096-06		Date Sampled:	1/10/2018	
Matrix:	Groundwater		Date Received	1/10/2018	
Chloromethane	< 2.00	ug/L		1/11/2018	14:59
cis-1,2-Dichloroethene	1.94	ug/L	J	1/11/2018	14:59
cis-1,3-Dichloropropene	< 2.00	ug/L		1/11/2018	14:59
Cyclohexane	< 10.0	ug/L		1/11/2018	14:59
Dibromochloromethane	< 2.00	ug/L		1/11/2018	14:59
Dichlorodifluoromethane	e < 2.00	ug/L		1/11/2018	14:59
Ethylbenzene	< 2.00	ug/L		1/11/2018	14:59
Freon 113	< 2.00	ug/L		1/11/2018	14:59
Isopropylbenzene	< 2.00	ug/L		1/11/2018	14:59
m,p-Xylene	< 2.00	ug/L		1/11/2018	14:59
Methyl acetate	< 2.00	ug/L		1/11/2018	14:59
Methyl tert-butyl Ether	< 2.00	ug/L		1/11/2018	14:59
Methylcyclohexane	< 2.00	ug/L		1/11/2018	14:59
Methylene chloride	< 5.00	ug/L		1/11/2018	14:59
o-Xylene	< 2.00	ug/L		1/11/2018	14:59
Styrene	< 5.00	ug/L		1/11/2018	14:59
Tetrachloroethene	< 2.00	ug/L		1/11/2018	14:59
Toluene	< 2.00	ug/L		1/11/2018	14:59
trans-1,2-Dichloroethene	e < 2.00	ug/L		1/11/2018	14:59
trans-1,3-Dichloroprope	ne < 2.00	ug/L		1/11/2018	14:59
Trichloroethene	< 2.00	ug/L		1/11/2018	14:59
Trichlorofluoromethane	< 2.00	ug/L		1/11/2018	14:59
Vinyl chloride	< 2.00	ug/L		1/11/2018	14:59
<u>Surrogate</u>	I	Percent Recovery	<u>Limits</u> <u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4		105	85.9 - 118	1/11/2018	14:59
4-Bromofluorobenzene		97.2	69.4 - 123	1/11/2018	14:59
Pentafluorobenzene		94.4	81.6 - 114	1/11/2018	14:59
Toluene-D8		98.3	82.7 - 112	1/11/2018	14:59

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48083.D

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier: Trip Blank T-803

Lab Sample ID:180096-07Date Sampled:1/10/2018Matrix:WaterDate Received:1/10/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	1/11/2018 12:38
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	1/11/2018 12:38
1,1,2-Trichloroethane	< 2.00	ug/L	1/11/2018 12:38
1,1-Dichloroethane	< 2.00	ug/L	1/11/2018 12:38
1,1-Dichloroethene	< 2.00	ug/L	1/11/2018 12:38
1,2,3-Trichlorobenzene	< 5.00	ug/L	1/11/2018 12:38
1,2,4-Trichlorobenzene	< 5.00	ug/L	1/11/2018 12:38
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	1/11/2018 12:38
1,2-Dibromoethane	< 2.00	ug/L	1/11/2018 12:38
1,2-Dichlorobenzene	< 2.00	ug/L	1/11/2018 12:38
1,2-Dichloroethane	< 2.00	ug/L	1/11/2018 12:38
1,2-Dichloropropane	< 2.00	ug/L	1/11/2018 12:38
1,3-Dichlorobenzene	< 2.00	ug/L	1/11/2018 12:38
1,4-Dichlorobenzene	< 2.00	ug/L	1/11/2018 12:38
1,4-dioxane	< 20.0	ug/L	1/11/2018 12:38
2-Butanone	< 10.0	ug/L	1/11/2018 12:38
2-Hexanone	< 5.00	ug/L	1/11/2018 12:38
4-Methyl-2-pentanone	< 5.00	ug/L	1/11/2018 12:38
Acetone	< 10.0	ug/L	1/11/2018 12:38
Benzene	< 1.00	ug/L	1/11/2018 12:38
Bromochloromethane	< 5.00	ug/L	1/11/2018 12:38
Bromodichloromethane	< 2.00	ug/L	1/11/2018 12:38
Bromoform	< 5.00	ug/L	1/11/2018 12:38
Bromomethane	< 2.00	ug/L	1/11/2018 12:38
Carbon disulfide	< 2.00	ug/L	1/11/2018 12:38
Carbon Tetrachloride	< 2.00	ug/L	1/11/2018 12:38
Chlorobenzene	< 2.00	ug/L	1/11/2018 12:38
Chloroethane	< 2.00	ug/L	1/11/2018 12:38
Chloroform	< 2.00	ug/L	1/11/2018 12:38

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Sample Identifier:	Trip Blank T	-803					
Lab Sample ID:	180096-07			Date	e Sampled:	1/10/2018	
Matrix:	Water			Date	e Received:	1/10/2018	
Chloromethane		< 2.00	ug/L			1/11/2018	12:38
cis-1,2-Dichloroethene		< 2.00	ug/L			1/11/2018	12:38
cis-1,3-Dichloropropene	e	< 2.00	ug/L			1/11/2018	12:38
Cyclohexane		< 10.0	ug/L			1/11/2018	12:38
Dibromochloromethane	!	< 2.00	ug/L			1/11/2018	12:38
Dichlorodifluoromethar	ne	< 2.00	ug/L			1/11/2018	12:38
Ethylbenzene		< 2.00	ug/L			1/11/2018	12:38
Freon 113		< 2.00	ug/L			1/11/2018	12:38
Isopropylbenzene		< 2.00	ug/L			1/11/2018	12:38
m,p-Xylene		< 2.00	ug/L			1/11/2018	12:38
Methyl acetate		< 2.00	ug/L			1/11/2018	12:38
Methyl tert-butyl Ether		< 2.00	ug/L			1/11/2018	12:38
Methylcyclohexane		< 2.00	ug/L			1/11/2018	12:38
Methylene chloride		< 5.00	ug/L			1/11/2018	12:38
o-Xylene		< 2.00	ug/L			1/11/2018	12:38
Styrene		< 5.00	ug/L			1/11/2018	12:38
Tetrachloroethene		< 2.00	ug/L			1/11/2018	12:38
Toluene		< 2.00	ug/L			1/11/2018	12:38
trans-1,2-Dichloroethen	ie	< 2.00	ug/L			1/11/2018	12:38
trans-1,3-Dichloroprope	ene	< 2.00	ug/L			1/11/2018	12:38
Trichloroethene		< 2.00	ug/L			1/11/2018	12:38
Trichlorofluoromethane	2	< 2.00	ug/L			1/11/2018	12:38
Vinyl chloride		< 2.00	ug/L			1/11/2018	12:38
<u>Surrogate</u>		<u>Pe</u>	rcent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			106	85.9 - 118		1/11/2018	12:38
4-Bromofluorobenzene			95.9	69.4 - 123		1/11/2018	12:38
Pentafluorobenzene			96.5	81.6 - 114		1/11/2018	12:38
Toluene-D8			99.4	82.7 - 112		1/11/2018	12:38

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48077.D

Method Blank Report

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Lab Project ID: 180096 **SDG #:** 0096-01

Matrix: Groundwater

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed	
1,1,1-Trichloroethane	<2.00	ug/L		1/11/2018	12:15
1,1,2,2-Tetrachloroethane	<2.00	ug/L		1/11/2018	12:15
1,1,2-Trichloroethane	<2.00	ug/L		1/11/2018	12:15
1,1-Dichloroethane	<2.00	ug/L		1/11/2018	12:15
1,1-Dichloroethene	<2.00	ug/L		1/11/2018	12:15
1,2,3-Trichlorobenzene	<5.00	ug/L		1/11/2018	12:15
1,2,4-Trichlorobenzene	<5.00	ug/L		1/11/2018	12:15
1,2-Dibromo-3-Chloropropane	<10.0	ug/L		1/11/2018	12:15
1,2-Dibromoethane	<2.00	ug/L		1/11/2018	12:15
1,2-Dichlorobenzene	<2.00	ug/L		1/11/2018	12:15
1,2-Dichloroethane	<2.00	ug/L		1/11/2018	12:15
1,2-Dichloropropane	<2.00	ug/L		1/11/2018	12:15
1,3-Dichlorobenzene	<2.00	ug/L		1/11/2018	12:15
1,4-Dichlorobenzene	<2.00	ug/L		1/11/2018	12:15
1,4-dioxane	<20.0	ug/L		1/11/2018	12:15
2-Butanone	<10.0	ug/L		1/11/2018	12:15
2-Hexanone	<5.00	ug/L		1/11/2018	12:15
4-Methyl-2-pentanone	<5.00	ug/L		1/11/2018	12:15
Acetone	<10.0	ug/L		1/11/2018	12:15
Benzene	<1.00	ug/L		1/11/2018	12:15
Bromochloromethane	<5.00	ug/L		1/11/2018	12:15
Bromodichloromethane	<2.00	ug/L		1/11/2018	12:15
Bromoform	<5.00	ug/L		1/11/2018	12:15
Bromomethane	<2.00	ug/L		1/11/2018	12:15
Carbon disulfide	<2.00	ug/L		1/11/2018	12:15
Carbon Tetrachloride	<2.00	ug/L		1/11/2018	12:15
Chlorobenzene	<2.00	ug/L		1/11/2018	12:15
Chloroethane	<2.00	ug/L		1/11/2018	12:15

Method Blank Report

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Lab Project ID: 180096 **SDG #:** 0096-01

Matrix: Groundwater

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed	
Chloroform	<2.00	ug/L		1/11/2018	12:15
Chloromethane	<2.00	ug/L		1/11/2018	12:15
cis-1,2-Dichloroethene	<2.00	ug/L		1/11/2018	12:15
cis-1,3-Dichloropropene	<2.00	ug/L		1/11/2018	12:15
Cyclohexane	<10.0	ug/L		1/11/2018	12:15
Dibromochloromethane	<2.00	ug/L		1/11/2018	12:15
Dichlorodifluoromethane	<2.00	ug/L		1/11/2018	12:15
Ethylbenzene	<2.00	ug/L		1/11/2018	12:15
Freon 113	<2.00	ug/L		1/11/2018	12:15
Isopropylbenzene	<2.00	ug/L		1/11/2018	12:15
m,p-Xylene	<2.00	ug/L		1/11/2018	12:15
Methyl acetate	<2.00	ug/L		1/11/2018	12:15
Methyl tert-butyl Ether	<2.00	ug/L		1/11/2018	12:15
Methylcyclohexane	<2.00	ug/L		1/11/2018	12:15
Methylene chloride	<5.00	ug/L		1/11/2018	12:15
o-Xylene	<2.00	ug/L		1/11/2018	12:15
Styrene	<5.00	ug/L		1/11/2018	12:15
Tetrachloroethene	<2.00	ug/L		1/11/2018	12:15
Toluene	<2.00	ug/L		1/11/2018	12:15
trans-1,2-Dichloroethene	<2.00	ug/L		1/11/2018	12:15
trans-1,3-Dichloropropene	<2.00	ug/L		1/11/2018	12:15
Trichloroethene	<2.00	ug/L		1/11/2018	12:15
Trichlorofluoromethane	<2.00	ug/L		1/11/2018	12:15
Vinyl chloride	<2.00	ug/L		1/11/2018	12:15

Method Blank Report

Client: <u>Stantec</u>

Project Reference: Ward Street 190500014

Lab Project ID: 180096 **SDG #:** 0096-01

Matrix: Groundwater

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	<u>Date Analyzed</u> <u>Date Analyzed</u>	
Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>		
1,2-Dichloroethane-d4	102	85.9 - 118		1/11/2018	12:15
4-Bromofluorobenzene	95.3	69.4 - 123		1/11/2018	12:15
Pentafluorobenzene	96.3	81.6 - 114		1/11/2018	12:15
Toluene-D8	99.9	82.7 - 112		1/11/2018	12:15

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x48076.D

QC Batch ID: voaw180111

QC Number:

QC Report for Laboratory Control Sample

Client: Stantec

Project Reference: Ward Street 190500014

SDG #: Lab Project ID: 180096

0096-01

Groundwater

Matrix:

Volatile Organics

Chlorobenzene	Carbon Tetrachloride	Bromomethane	Bromoform	Bromodichloromethane	Benzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichloropropane	1,2-Dichloroethane	1,2-Dichlorobenzene	1,1-Dichloroethene	1,1-Dichloroethane	1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane	Analyte	
20.0	20,0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20,0	20.0	20.0	20.0	20.0	20.0	20.0	Added	Spike
ug/L	ug/L	ug/L		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		Spike
19.1	19.0	18.3	14.7	19.2	19.6	18.4	18.3	19.2	18.7	18.7	18.2	18.9	18.2	19.6	19.5	Result	LCS
95.4	95.1	91.4	73.6	96,0	97.9	91.9	91.7	96.0	93.7	93.5	91.2	94.6	90.9	98.1	97.4	Recovery	LCS %
84.7 - 110	65.5 - 121	50.6 - 170	69.2 - 110	85.7 - 116	86.6 - 114	80.2 - 109	80.9 - 114	81.2 - 109	85.5 - 122	87.3 - 118	62.4 - 115	76.7 - 114	85.2 - 118	83.4 - 123	70.3 - 119	Limits	% Rec
																Outliers	TCS
1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	Analyzed	Date

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

QC Report for Laboratory Control Sample

Stantec

Client:

Project Reference: Ward Street 190500014

Lab Project ID: 180096

0096-01

SDG #:

Matrix:

Groundwater

Vinyl chloride 20.0	Trichlorofluoromethane 20.0	Trichloroethene 20.0	trans-1,3-Dichloropropene 20.0	trans-1,2-Dichloroethene 20.0	Toluene 20.0	Tetrachloroethene 20.0	Methylene chloride 20.0	Ethylbenzene 20.0	Dibromochloromethane 20.0	cis-1,3-Dichloropropene 20.0	Chloromethane 20.0	Chloroform 20.0	Chloroethane 20.0	Analyte	Spike	Volatile Organics
.0	.0	.0	.0	.0	.0	.0	.0	.0	0	0	0	0	0	ed	S	
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units	Spike	
18.2	19.7	18.6	17.1	19.2	19.8	18.9	18.5	19.8	16.8	19.1	17.9	19.5	19.2	Result	LCS	
91.1	98.5	93.0	85.7	96.1	99.0	94.3	92.6	99.2	83.9	95.6	89.4	97.6	95.8	Recovery	LCS %	
70.6 - 144	62.6 - 139	76.3 - 113	65.7 - 109	70.5 - 118	87 - 113	73.6 - 126	46.4 - 150	81.5 - 118	81.2 - 119	74 - 114	73.9 - 143	82.1 - 119	78 - 140	Limits	% Rec	
														Outliers	LCS	
1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	1/11/2018	Analyzed	Date	

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Laboratory Control Sample

Client: Project Reference: Stantec

Ward Street 190500014

Lab Project ID: 180096

SDG #:

Matrix:

0096-01 Groundwater

Volatile Organics

Method Reference(s): EPA 8260C

> Added Spike

> Units Spike

> Result LCS

Recovery LCS %

Limits % Rec

Outliers LCS

Analyzed Date

Analyte

x48075.D EPA 5030C

voaw180111

QC Number: QC Batch ID: Data File:

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

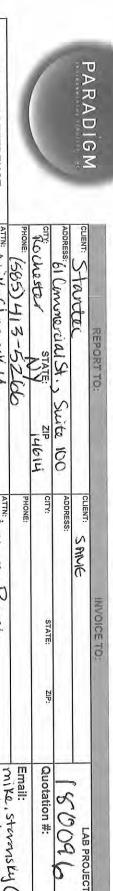
LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.


LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

CHAIN OF CUSTODY

Standard 5 day None Required 10 day Rush 3 day Rush 2 day Rush 1 day Other please indicate date needed: Description of the pack of	Turnaround Time Availability contingent upon lab		V 09:00	27.72 17.72	12:50	(0:40	11:50	7 7550 81/01/1	DATE COLLECTED COLLECTED S I I I I I I I I I I I I I I I I I I	The state of the s	190500014	PROJECT REFERENCE				TARADIGE	
None Required Batch QC Category A Category B Categ	naround Time Report Supplements Availability contingent upon lab approval; additional fees may apply.		p Blank	628 - MW - 28 - 6-W	- MW - 2078-	- MW - 1612 -	WR-NW-16-	6 WSR-MW-105-6W	G R A A B		Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	ATTN: Mike Storensky	PHONE: (585) 413-5266	1	S. Flan	CLIENT: S- WITTE	REPORT TO:
Relinquished By Date Received By Date Received @ Lab By Date Received @ Lab By Date Received @ Lab By Date	respect i/s	Jan W. San K.	3 WA 1 X	××××××××××××××××××××××××××××××××××××××	× × ×	××	-	MG 4 XX	100 (2313	REQUESTED ANALYSIS	WA - Water WG - Groundwater WW - Wastewater	ATTN: Lawa Best	PHONE:	_	ADDRESS:	CLIENT: SANJE	INVOICE TO:
Time Time gm Teri	15:00	10°Cicul p								SIS	SO - Soil SD - Solid SL - Sludge PT - Paint	245 W. 126	Email:	ZIP: Quotation #:	20	,	_
IS IS Notal Cost: 11110/18 1535	started in hill	07	06	25	03	رم	01	PARADIGM LAB SAMPLE NUMBER		WP - Wipe OL - Oil CK - Caulk AR - Air	Stanfect com	strames VII (a)	on#:	22003	LAB PROJECT ID		

24 of 46

2012

Chain of Custody Supplement

Client:	Stanter	Completed by:	Moylan
Lab Project ID:	180096	Date:	1110118
		dition Requirements AP 210/241/242/243/244	
Condition	NELAC compliance with the san Yes	mple condition requirements upo No	on receipt N/A
Container Type Comments	4		
Transferred to method- compliant container			□ ∠
Headspace (<1 mL) Comments			
Preservation Comments	<u></u>		
Chlorine Absent (<0.10 ppm per test strip) Comments			·
Holding Time Comments			
Temperature Comments	10°c iu	d started in field	1/10/18/1535
Sufficient Sample Quantity Comments			

ANALYTICAL REPORT

Lab Number: L1800843

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Jane Daloia Phone: (585) 647-2530

Project Name: 180096
Project Number: 180096
Report Date: 01/16/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 180096 Project Number: 180096 **Lab Number:** L1800843 **Report Date:** 01/16/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1800843-01	180096-01	WATER	Not Specified	01/10/18 09:35	01/10/18
L1800843-02	180096-02	WATER	Not Specified	01/10/18 11:50	01/10/18
L1800843-03	180096-03	WATER	Not Specified	01/10/18 10:40	01/10/18
L1800843-04	180096-04	WATER	Not Specified	01/10/18 12:50	01/10/18
L1800843-05	180096-05	WATER	Not Specified	01/10/18 14:40	01/10/18
L1800843-06	180096-06	WATER	Not Specified	01/10/18 13:49	01/10/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Project Name:
 180096
 Lab Number:
 L1800843

 Project Number:
 180096
 Report Date:
 01/16/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kara Soroko

Authorized Signature:

Title: Technical Director/Representative Date: 01/16/18

ALPHA

INORGANICS & MISCELLANEOUS

Project Name: 180096 Lab Number: L1800843

Project Number: 180096 Report Date: 01/16/18

SAMPLE RESULTS

Lab ID: L1800843-01 Date Collected: 01/10/18 09:35

Client ID: 180096-01 Date Received: 01/10/18
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	3.52		mg/l	2.50	0.570	5	-	01/11/18 07:37	121,5310C	DW

Project Name: 180096

Lab Number: L1800843

Project Number: 180096 Report Date: 01/16/18

SAMPLE RESULTS

 Lab ID:
 L1800843-02
 Date Collected:
 01/10/18 11:50

 Client ID:
 180096-02
 Date Received:
 01/10/18

Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Total Organic Carbon	12.6		mg/l	10.0	2.28	20	-	01/11/18 07:37	121,5310C	DW

Project Name: 180096 Lab Number: L1800843

Project Number: 180096 Report Date: 01/16/18

SAMPLE RESULTS

Lab ID: L1800843-03 Date Collected: 01/10/18 10:40

Client ID: 180096-03 Date Received: 01/10/18
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Total Organic Carbon	5.49		mg/l	5.00	1.14	10	-	01/11/18 07:37	121,5310C	DW

Project Name: 180096

Lab Number: L1800843

Project Number: 180096 Report Date: 01/16/18

SAMPLE RESULTS

 Lab ID:
 L1800843-04
 Date Collected:
 01/10/18 12:50

 Client ID:
 180096-04
 Date Received:
 01/10/18

Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Total Organic Carbon	5.91		mg/l	2.50	0.570	5	-	01/11/18 07:37	121,5310C	DW

Project Name: 180096 Lab Number: L1800843

Project Number: 180096 Report Date: 01/16/18

SAMPLE RESULTS

Lab ID: L1800843-05 Date Collected: 01/10/18 14:40

Client ID: 180096-05 Date Received: 01/10/18
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Total Organic Carbon	6.67		mg/l	5.00	1.14	10	-	01/11/18 07:37	121,5310C	DW

Project Name: 180096 Lab Number: L1800843

Project Number: 180096 Report Date: 01/16/18

SAMPLE RESULTS

Lab ID: L1800843-06 Date Collected: 01/10/18 13:49

Client ID: 180096-06 Date Received: 01/10/18
Sample Location: Not Specified Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lab)								
Total Organic Carbon	6.17		mg/l	5.00	1.14	10	-	01/11/18 07:37	121,5310C	DW

Project Name: Lab Number: 180096 L1800843 Project Number: 180096

Report Date: 01/16/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	-06 Ba	tch: WC	G1080049-1				
Total Organic Carbon	ND	ma/l	0.500	0.114	1	_	01/11/18 07:37	121.5310C	: DW

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L1800843

Project Number: 180096

Project Name:

180096

Report Date: 01/16/18

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01-06	Batch: WG10800	49-2				
Total Organic Carbon	100	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 180096
Project Number: 180096

Lab Number:

L1800843

01/16/18

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery 0	Recovery Qual Limits I		RPD imits
General Chemistry - Westboro	ough Lab Asso	ciated samp	ole(s): 01-06	QC Batch II	D: WG1080049-4	QC Sample: L1	1800843-01 Clien	it ID: 180096-0)1
Total Organic Carbon	3.52	20	22.6	95	-	-	80-120	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1800843

Report Date:

01/16/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associate	ed sample(s): 01-06 QC Bat	ch ID: WG1080049-3	QC Sample:	L1800843-01	Client ID:	180096-01
Total Organic Carbon	3.52	3.39	mg/l	4		20

Project Name:

Project Number: 180096

180096

Project Name: 180096 **Lab Number:** L1800843 Project Number: 180096

Report Date: 01/16/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation			Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	он рН		deg C Pres		Date/Time	Analysis(*)	
L1800843-01A	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-01B	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-02A	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-02B	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-03A	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-03B	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-04A	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-04B	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-05A	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-05B	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-06A	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	
L1800843-06B	Vial H2SO4 preserved	Α	NA		2.8	Υ	Absent		TOC-5310(28)	

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Агрна

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

CHAIN OF CUSTODY

000				DEDOCT TO				muon	CE TO:			./		
PA	RADIG	M	COMPAN	REPORT TO: Paradigm Enviror		COMP	ANY: S	ame	GE TO.		LAB PROJECT #:	CLIENT F	ROJECT #:	:
1	rather married	1	ADDRES	raradigin chanol		ADDR		anic						
			CITY:	175 Cake Aveilde	NY ZIP: 14608	1			STATE	ZIP:	TURNAROUND TIME: (M	VORKING DA	AVSI	
-		•	PHONE	Rochester STATE:	NY 14000	PHON	E.	FA	0.00					
	or vistaer.		1 500									STI		OTHER
PROJECT NAME/SIT	E NAME:		ATTN:	Reporting		ATTN		unts Paya	ble		1 2	3 🔀	5	
			COMMEN	TS: Please email result	ts to reporting@p	aradi	gmenv.con	1			Date Due:	1/18/1	18	
							REQU	ESTED A	NALYSIS			111011	U	
DATE	TIME	C O M P O S - T E	G R A B	SAMPLE LOCATION/FIEL	DID R	CONTAINER	s				REMARKS	PA	ARADIGIN LA	AB SAMPLE NUMBER
11/10/18	0435			180096-01	Gh	2	X							
2	1150			02		1								
3	1040			U3					\Box					
			1	04		11	1111							
4	1250		+	05		11	+++		111					
5	1440		+			++	++++	++		+			++	
6	1349	_	+	06	- 1	1	+++	+++	+++	++-		_	++	
7			+			+	+++	+++	+++	++-				+
8			+		_	-	+++	+++	+++	-		-		_
9						-	+++		+++	++-		_		-
10														
**LAB USE O Sample Condition	ONLY BELO	W THIS L	JNE""	13/244		_				-			_	
Sample Solisia	Receipt Para		23112756	NELAC Compliance										
Comments:	Container Ty	vpe;		Y N	Clien Sampled By	<u>t</u>	٨		Date/Tim	e	Total C	Cost:		
Comments	Preservation	nc.		Y N	Reliaquished I	24/ 3y /	ail	- 11	Date/Time		600	L		
Comments	Halding Tim	ie:		Y . N .	Réceived By	0	1	[/10	/18 Date/Time		110 P.F.		7	
Comments:	Temperatur	ec.		Y N	Received By	nl	SA		Date/Tim		00			

Analytical Report For

Stantec

For Lab Project ID

184937

Referencing

1905000014

Prepared

Wednesday, November 7, 2018

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-23

Lab Sample ID:184937-01Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Total Organic Carbon

AnalyteResultUnitsQualifierDate AnalyzedTotal Organic Carbon2.8mg/L10/29/2018

Method Reference(s): SM 5310 C **Subcontractor ELAP ID:** 11148

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyze	ed
1,1,1-Trichloroethane	< 50.0	ug/L	11/6/2018 16	6:58
1,1,2,2-Tetrachloroethane	< 50.0	ug/L	11/6/2018 16	5:58
1,1,2-Trichloroethane	< 50.0	ug/L	11/6/2018 16	6:58
1,1-Dichloroethane	< 50.0	ug/L	11/6/2018 16	6:58
1,1-Dichloroethene	< 50.0	ug/L	11/6/2018 16	6:58
1,2,3-Trichlorobenzene	< 125	ug/L	11/6/2018 16	5:58
1,2,4-Trichlorobenzene	< 125	ug/L	11/6/2018 16	5:58
1,2-Dibromo-3-Chloropropane	< 250	ug/L	11/6/2018 16	6:58
1,2-Dibromoethane	< 50.0	ug/L	11/6/2018 16	6:58
1,2-Dichlorobenzene	< 50.0	ug/L	11/6/2018 16	6:58
1,2-Dichloroethane	< 50.0	ug/L	11/6/2018 16	6:58
1,2-Dichloropropane	< 50.0	ug/L	11/6/2018 16	6:58
1,3-Dichlorobenzene	< 50.0	ug/L	11/6/2018 16	6:58
1,4-Dichlorobenzene	< 50.0	ug/L	11/6/2018 16	6:58
1,4-Dioxane	< 500	ug/L	11/6/2018 16	5:58
2-Butanone	< 250	ug/L	11/6/2018 16	6:58
2-Hexanone	< 125	ug/L	11/6/2018 16	6:58
4-Methyl-2-pentanone	< 125	ug/L	11/6/2018 16	6:58
Acetone	< 250	ug/L	11/6/2018 16	6:58
Benzene	< 25.0	ug/L	11/6/2018 16	6:58
Bromochloromethane	< 125	ug/L	11/6/2018 16	6:58
Bromodichloromethane	< 50.0	ug/L	11/6/2018 16	6:58
Bromoform	< 125	ug/L	11/6/2018 16	6:58

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	MW-23			
Lab Sample ID:	184937-01		Date Sampled:	10/24/2018
Matrix:	Groundwater		Date Received:	10/24/2018
Bromomethane	< 50.0	ug/L		11/6/2018 16:58
Carbon disulfide	< 50.0	ug/L		11/6/2018 16:58
Carbon Tetrachloride	< 50.0	ug/L		11/6/2018 16:58
Chlorobenzene	< 50.0	ug/L		11/6/2018 16:58
Chloroethane	< 50.0	ug/L		11/6/2018 16:58
Chloroform	< 50.0	ug/L		11/6/2018 16:58
Chloromethane	< 50.0	ug/L		11/6/2018 16:58
cis-1,2-Dichloroethene	1020	ug/L		11/6/2018 16:58
cis-1,3-Dichloropropene	< 50.0	ug/L		11/6/2018 16:58
Cyclohexane	< 250	ug/L		11/6/2018 16:58
Dibromochloromethane	< 50.0	ug/L		11/6/2018 16:58
Dichlorodifluoromethan	e < 50.0	ug/L		11/6/2018 16:58
Ethylbenzene	< 50.0	ug/L		11/6/2018 16:58
Freon 113	< 50.0	ug/L		11/6/2018 16:58
Isopropylbenzene	< 50.0	ug/L		11/6/2018 16:58
m,p-Xylene	< 50.0	ug/L		11/6/2018 16:58
Methyl acetate	< 50.0	ug/L		11/6/2018 16:58
Methyl tert-butyl Ether	< 50.0	ug/L		11/6/2018 16:58
Methylcyclohexane	< 50.0	ug/L		11/6/2018 16:58
Methylene chloride	< 125	ug/L		11/6/2018 16:58
o-Xylene	< 50.0	ug/L		11/6/2018 16:58
Styrene	< 125	ug/L		11/6/2018 16:58
Tetrachloroethene	404	ug/L		11/6/2018 16:58
Toluene	< 50.0	ug/L		11/6/2018 16:58
trans-1,2-Dichloroethen	e < 50.0	ug/L		11/6/2018 16:58
trans-1,3-Dichloroprope	ene < 50.0	ug/L		11/6/2018 16:58
Trichloroethene	76.6	ug/L		11/6/2018 16:58
Trichlorofluoromethane	< 50.0	ug/L		11/6/2018 16:58
Vinyl chloride	105	ug/L		11/6/2018 16:58

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-23

Lab Sample ID:184937-01Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	77.9	86.4 - 119	*	11/6/2018	16:58
4-Bromofluorobenzene	89.1	76 - 118		11/6/2018	16:58
Pentafluorobenzene	96.0	87 - 112		11/6/2018	16:58
Toluene-D8	93.9	88.4 - 111		11/6/2018	16:58

Method Reference(s):

EPA 8260C

EPA 5030C

Data File:

x56337.D

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-23R

Lab Sample ID:184937-02Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Total Organic Carbon

AnalyteResultUnitsQualifierDate AnalyzedTotal Organic Carbon2.9mg/L10/29/2018

Method Reference(s): SM 5310 C Subcontractor ELAP ID: 11148

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		11/6/2018 18:28
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		11/6/2018 18:28
1,1,2-Trichloroethane	< 2.00	ug/L		11/6/2018 18:28
1,1-Dichloroethane	< 2.00	ug/L		11/6/2018 18:28
1,1-Dichloroethene	< 2.00	ug/L		11/6/2018 18:28
1,2,3-Trichlorobenzene	< 5.00	ug/L		11/6/2018 18:28
1,2,4-Trichlorobenzene	< 5.00	ug/L		11/6/2018 18:28
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		11/6/2018 18:28
1,2-Dibromoethane	< 2.00	ug/L		11/6/2018 18:28
1,2-Dichlorobenzene	< 2.00	ug/L		11/6/2018 18:28
1,2-Dichloroethane	< 2.00	ug/L		11/6/2018 18:28
1,2-Dichloropropane	< 2.00	ug/L		11/6/2018 18:28
1,3-Dichlorobenzene	< 2.00	ug/L		11/6/2018 18:28
1,4-Dichlorobenzene	< 2.00	ug/L		11/6/2018 18:28
1,4-Dioxane	< 20.0	ug/L		11/6/2018 18:28
2-Butanone	< 10.0	ug/L		11/6/2018 18:28
2-Hexanone	< 5.00	ug/L		11/6/2018 18:28
4-Methyl-2-pentanone	< 5.00	ug/L		11/6/2018 18:28
Acetone	< 10.0	ug/L		11/6/2018 18:28
Benzene	< 1.00	ug/L		11/6/2018 18:28
Bromochloromethane	< 5.00	ug/L		11/6/2018 18:28
Bromodichloromethane	< 2.00	ug/L		11/6/2018 18:28
Bromoform	< 5.00	ug/L		11/6/2018 18:28

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	MW-23R			
Lab Sample ID:	184937-02		Date Sampled:	10/24/2018
Matrix:	Groundwater		Date Received:	10/24/2018
Bromomethane	< 2.00	ug/L		11/6/2018 18:
Carbon disulfide	< 2.00	ug/L		11/6/2018 18:
Carbon Tetrachloride	< 2.00	ug/L		11/6/2018 18:
Chlorobenzene	< 2.00	ug/L		11/6/2018 18:
Chloroethane	< 2.00	ug/L		11/6/2018 18:
Chloroform	< 2.00	ug/L		11/6/2018 18
Chloromethane	< 2.00	ug/L		11/6/2018 18
cis-1,2-Dichloroethene	< 2.00	ug/L		11/6/2018 18
cis-1,3-Dichloropropene	< 2.00	ug/L		11/6/2018 18
Cyclohexane	< 10.0	ug/L		11/6/2018 18
Dibromochloromethane	< 2.00	ug/L		11/6/2018 18
Dichlorodifluoromethan	e < 2.00	ug/L		11/6/2018 18
Ethylbenzene	< 2.00	ug/L		11/6/2018 18
Freon 113	< 2.00	ug/L		11/6/2018 18
Isopropylbenzene	< 2.00	ug/L		11/6/2018 18
m,p-Xylene	< 2.00	ug/L		11/6/2018 18
Methyl acetate	< 2.00	ug/L		11/6/2018 18
Methyl tert-butyl Ether	< 2.00	ug/L		11/6/2018 18
Methylcyclohexane	< 2.00	ug/L		11/6/2018 18
Methylene chloride	< 5.00	ug/L		11/6/2018 18
o-Xylene	< 2.00	ug/L		11/6/2018 18
Styrene	< 5.00	ug/L		11/6/2018 18
Tetrachloroethene	< 2.00	ug/L		11/6/2018 18
Toluene	< 2.00	ug/L		11/6/2018 18
trans-1,2-Dichloroethen	e < 2.00	ug/L		11/6/2018 18
trans-1,3-Dichloroprope	ne < 2.00	ug/L		11/6/2018 18
Trichloroethene	< 2.00	ug/L		11/6/2018 18
Trichlorofluoromethane	< 2.00	ug/L		11/6/2018 18
Vinyl chloride	< 2.00	ug/L		11/6/2018 18

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-23R

Lab Sample ID:184937-02Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	86.7	86.4 - 119		11/6/2018	18:28
4-Bromofluorobenzene	84.1	76 - 118		11/6/2018	18:28
Pentafluorobenzene	94.7	87 - 112		11/6/2018	18:28
Toluene-D8	92.2	88.4 - 111		11/6/2018	18:28

Method Reference(s): El

EPA 8260C EPA 5030C

Data File:

x56341.D

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-16R

Lab Sample ID:184937-03Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Total Organic Carbon

AnalyteResultUnitsQualifierDate AnalyzedTotal Organic Carbon3.5mg/L10/29/2018

Method Reference(s): SM 5310 C **Subcontractor ELAP ID:** 11148

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 50.0	ug/L		11/6/2018 17:21
1,1,2,2-Tetrachloroethane	< 50.0	ug/L		11/6/2018 17:21
1,1,2-Trichloroethane	< 50.0	ug/L		11/6/2018 17:21
1,1-Dichloroethane	< 50.0	ug/L		11/6/2018 17:21
1,1-Dichloroethene	< 50.0	ug/L		11/6/2018 17:21
1,2,3-Trichlorobenzene	< 125	ug/L		11/6/2018 17:21
1,2,4-Trichlorobenzene	< 125	ug/L		11/6/2018 17:21
1,2-Dibromo-3-Chloropropane	< 250	ug/L		11/6/2018 17:21
1,2-Dibromoethane	< 50.0	ug/L		11/6/2018 17:21
1,2-Dichlorobenzene	< 50.0	ug/L		11/6/2018 17:21
1,2-Dichloroethane	< 50.0	ug/L		11/6/2018 17:21
1,2-Dichloropropane	< 50.0	ug/L		11/6/2018 17:21
1,3-Dichlorobenzene	< 50.0	ug/L		11/6/2018 17:21
1,4-Dichlorobenzene	< 50.0	ug/L		11/6/2018 17:21
1,4-Dioxane	< 500	ug/L		11/6/2018 17:21
2-Butanone	< 250	ug/L		11/6/2018 17:21
2-Hexanone	< 125	ug/L		11/6/2018 17:21
4-Methyl-2-pentanone	< 125	ug/L		11/6/2018 17:21
Acetone	< 250	ug/L		11/6/2018 17:21
Benzene	< 25.0	ug/L		11/6/2018 17:21
Bromochloromethane	< 125	ug/L		11/6/2018 17:21
Bromodichloromethane	< 50.0	ug/L		11/6/2018 17:21
Bromoform	< 125	ug/L		11/6/2018 17:21

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	MW-16R			
Lab Sample ID:	184937-03		Date Sampled:	10/24/2018
Matrix:	Groundwater		Date Received:	10/24/2018
Bromomethane	< 50.0	ug/L		11/6/2018 17:
Carbon disulfide	< 50.0	ug/L		11/6/2018 17:
Carbon Tetrachloride	< 50.0	ug/L		11/6/2018 17
Chlorobenzene	< 50.0	ug/L		11/6/2018 17
Chloroethane	< 50.0	ug/L		11/6/2018 17
Chloroform	< 50.0	ug/L		11/6/2018 17
Chloromethane	< 50.0	ug/L		11/6/2018 17
cis-1,2-Dichloroethene	1080	ug/L		11/6/2018 17
cis-1,3-Dichloropropene	< 50.0	ug/L		11/6/2018 17
Cyclohexane	< 250	ug/L		11/6/2018 17
Dibromochloromethane	< 50.0	ug/L		11/6/2018 17
Dichlorodifluoromethane	e < 50.0	ug/L		11/6/2018 17
Ethylbenzene	< 50.0	ug/L		11/6/2018 17
Freon 113	< 50.0	ug/L		11/6/2018 17
Isopropylbenzene	< 50.0	ug/L		11/6/2018 17
m,p-Xylene	< 50.0	ug/L		11/6/2018 17
Methyl acetate	< 50.0	ug/L		11/6/2018 17
Methyl tert-butyl Ether	< 50.0	ug/L		11/6/2018 17
Methylcyclohexane	< 50.0	ug/L		11/6/2018 17
Methylene chloride	< 125	ug/L		11/6/2018 17
o-Xylene	< 50.0	ug/L		11/6/2018 17
Styrene	< 125	ug/L		11/6/2018 17
Tetrachloroethene	< 50.0	ug/L		11/6/2018 17
Toluene	< 50.0	ug/L		11/6/2018 17
trans-1,2-Dichloroethene	e < 50.0	ug/L		11/6/2018 17
trans-1,3-Dichloroproper	ne < 50.0	ug/L		11/6/2018 17
Trichloroethene	< 50.0	ug/L		11/6/2018 17
Trichlorofluoromethane	< 50.0	ug/L		11/6/2018 17
Vinyl chloride	973	ug/L		11/6/2018 17

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-16R

Lab Sample ID:184937-03Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

<u>Surrogate</u>	Percent Recovery Limits		<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	81.2	86.4 - 119	*	11/6/2018	17:21
4-Bromofluorobenzene	83.9	76 - 118		11/6/2018	17:21
Pentafluorobenzene	102	87 - 112		11/6/2018	17:21
Toluene-D8	91.3	88.4 - 111		11/6/2018	17:21

Method Reference(s):

EPA 8260C

EPA 5030C

Data File:

x56338.D

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-16

Lab Sample ID:184937-04Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Total Organic Carbon

AnalyteResultUnitsQualifierDate AnalyzedTotal Organic Carbon2.5mg/L10/29/2018

Method Reference(s): SM 5310 C **Subcontractor ELAP ID:** 11148

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Ana	llyzed
1,1,1-Trichloroethane	< 10.0	ug/L	11/7/2018	8 13:00
1,1,2,2-Tetrachloroethane	< 10.0	ug/L	11/7/2018	8 13:00
1,1,2-Trichloroethane	< 10.0	ug/L	11/7/2018	8 13:00
1,1-Dichloroethane	< 10.0	ug/L	11/7/2018	8 13:00
1,1-Dichloroethene	< 10.0	ug/L	11/7/2018	8 13:00
1,2,3-Trichlorobenzene	< 25.0	ug/L	11/7/2018	8 13:00
1,2,4-Trichlorobenzene	< 25.0	ug/L	11/7/2018	8 13:00
1,2-Dibromo-3-Chloropropane	< 50.0	ug/L	11/7/2018	8 13:00
1,2-Dibromoethane	< 10.0	ug/L	11/7/2018	8 13:00
1,2-Dichlorobenzene	< 10.0	ug/L	11/7/2018	8 13:00
1,2-Dichloroethane	< 10.0	ug/L	11/7/2018	8 13:00
1,2-Dichloropropane	< 10.0	ug/L	11/7/2018	8 13:00
1,3-Dichlorobenzene	< 10.0	ug/L	11/7/2018	8 13:00
1,4-Dichlorobenzene	< 10.0	ug/L	11/7/2018	8 13:00
1,4-Dioxane	< 100	ug/L	11/7/2018	8 13:00
2-Butanone	< 50.0	ug/L	11/7/2018	8 13:00
2-Hexanone	< 25.0	ug/L	11/7/2018	8 13:00
4-Methyl-2-pentanone	< 25.0	ug/L	11/7/2018	8 13:00
Acetone	< 50.0	ug/L	11/7/2018	8 13:00
Benzene	< 5.00	ug/L	11/7/2018	8 13:00
Bromochloromethane	< 25.0	ug/L	11/7/2018	8 13:00
Bromodichloromethane	< 10.0	ug/L	11/7/2018	8 13:00
Bromoform	< 25.0	ug/L	11/7/2018	8 13:00

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	MW-16			
Lab Sample ID:	184937-04		Date Sampled:	10/24/2018
Matrix:	Groundwater		Date Received:	10/24/2018
Bromomethane	< 10.0	ug/L		11/7/2018 13:
Carbon disulfide	< 10.0	ug/L		11/7/2018 13
Carbon Tetrachloride	< 10.0	ug/L		11/7/2018 13
Chlorobenzene	< 10.0	ug/L		11/7/2018 13
Chloroethane	< 10.0	ug/L		11/7/2018 13
Chloroform	< 10.0	ug/L		11/7/2018 13
Chloromethane	< 10.0	ug/L		11/7/2018 13
cis-1,2-Dichloroethene	391	ug/L		11/7/2018 13
cis-1,3-Dichloropropene	< 10.0	ug/L		11/7/2018 13
Cyclohexane	< 50.0	ug/L		11/7/2018 13
Dibromochloromethane	< 10.0	ug/L		11/7/2018 13
Dichlorodifluoromethane	e < 10.0	ug/L		11/7/2018 13
Ethylbenzene	< 10.0	ug/L		11/7/2018 13
Freon 113	< 10.0	ug/L		11/7/2018 13
Isopropylbenzene	< 10.0	ug/L		11/7/2018 13
m,p-Xylene	< 10.0	ug/L		11/7/2018 13
Methyl acetate	< 10.0	ug/L		11/7/2018 13
Methyl tert-butyl Ether	< 10.0	ug/L		11/7/2018 13
Methylcyclohexane	< 10.0	ug/L		11/7/2018 13
Methylene chloride	< 25.0	ug/L		11/7/2018 13
o-Xylene	< 10.0	ug/L		11/7/2018 13
Styrene	< 25.0	ug/L		11/7/2018 13
Tetrachloroethene	< 10.0	ug/L		11/7/2018 13
Toluene	< 10.0	ug/L		11/7/2018 13
trans-1,2-Dichloroethene	< 10.0	ug/L		11/7/2018 13
trans-1,3-Dichloroproper	ne < 10.0	ug/L		11/7/2018 13
Trichloroethene	< 10.0	ug/L		11/7/2018 13
Trichlorofluoromethane	< 10.0	ug/L		11/7/2018 13
Vinyl chloride	914	ug/L		11/7/2018 13

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-16

Lab Sample ID:184937-04Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Surrogate	Percent Recovery	Limits	Outliers	Date Analyzed	
Surrogate	1 CICEIIL RECOVELY	<u>LIIIILS</u>	<u>outilets</u>	Date Analy	<u>/LCu</u>
1,2-Dichloroethane-d4	88.7	86.4 - 119		11/7/2018	13:00
4-Bromofluorobenzene	90.5	76 - 118		11/7/2018	13:00
Pentafluorobenzene	105	87 - 112		11/7/2018	13:00
Toluene-D8	83.9	88.4 - 111	*	11/7/2018	13:00

Method Reference(s):

EPA 8260C

EPA 5030C

Data File:

x56360.D

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-207R

Lab Sample ID:184937-05Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Total Organic Carbon

AnalyteResultUnitsQualifierDate AnalyzedTotal Organic Carbon3.5mg/L10/29/2018

Method Reference(s): SM 5310 C **Subcontractor ELAP ID:** 11148

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyzed	ļ
1,1,1-Trichloroethane	< 40.0	ug/L	11/7/2018 13:2	22
1,1,2,2-Tetrachloroethane	< 40.0	ug/L	11/7/2018 13:2	22
1,1,2-Trichloroethane	< 40.0	ug/L	11/7/2018 13:2	22
1,1-Dichloroethane	< 40.0	ug/L	11/7/2018 13:2	22
1,1-Dichloroethene	< 40.0	ug/L	11/7/2018 13:2	22
1,2,3-Trichlorobenzene	< 100	ug/L	11/7/2018 13:2	22
1,2,4-Trichlorobenzene	< 100	ug/L	11/7/2018 13:2	22
1,2-Dibromo-3-Chloropropane	< 200	ug/L	11/7/2018 13:2	22
1,2-Dibromoethane	< 40.0	ug/L	11/7/2018 13:2	22
1,2-Dichlorobenzene	< 40.0	ug/L	11/7/2018 13:2	22
1,2-Dichloroethane	< 40.0	ug/L	11/7/2018 13:2	22
1,2-Dichloropropane	< 40.0	ug/L	11/7/2018 13:2	22
1,3-Dichlorobenzene	< 40.0	ug/L	11/7/2018 13:2	22
1,4-Dichlorobenzene	< 40.0	ug/L	11/7/2018 13:2	22
1,4-Dioxane	< 400	ug/L	11/7/2018 13:2	22
2-Butanone	< 200	ug/L	11/7/2018 13:2	22
2-Hexanone	< 100	ug/L	11/7/2018 13:2	22
4-Methyl-2-pentanone	< 100	ug/L	11/7/2018 13:2	22
Acetone	< 200	ug/L	11/7/2018 13:2	22
Benzene	< 20.0	ug/L	11/7/2018 13:2	22
Bromochloromethane	< 100	ug/L	11/7/2018 13:2	22
Bromodichloromethane	< 40.0	ug/L	11/7/2018 13:2	22
Bromoform	< 100	ug/L	11/7/2018 13:2	22

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	MW-207R			
Lab Sample ID:	184937-05		Date Sampled:	10/24/2018
Matrix:	Groundwater		Date Received:	10/24/2018
Bromomethane	< 40.0	ug/L		11/7/2018 13:
Carbon disulfide	< 40.0	ug/L		11/7/2018 13:
Carbon Tetrachloride	< 40.0	ug/L		11/7/2018 13:
Chlorobenzene	< 40.0	ug/L		11/7/2018 13:
Chloroethane	< 40.0	ug/L		11/7/2018 13:
Chloroform	< 40.0	ug/L		11/7/2018 13:
Chloromethane	< 40.0	ug/L		11/7/2018 13:
cis-1,2-Dichloroethene	1070	ug/L		11/7/2018 13
cis-1,3-Dichloropropene	< 40.0	ug/L		11/7/2018 13
Cyclohexane	< 200	ug/L		11/7/2018 13
Dibromochloromethane	< 40.0	ug/L		11/7/2018 13
Dichlorodifluoromethane	< 40.0	ug/L		11/7/2018 13
Ethylbenzene	< 40.0	ug/L		11/7/2018 13
Freon 113	< 40.0	ug/L		11/7/2018 13
Isopropylbenzene	< 40.0	ug/L		11/7/2018 13
m,p-Xylene	< 40.0	ug/L		11/7/2018 13
Methyl acetate	< 40.0	ug/L		11/7/2018 13
Methyl tert-butyl Ether	< 40.0	ug/L		11/7/2018 13
Methylcyclohexane	< 40.0	ug/L		11/7/2018 13
Methylene chloride	< 100	ug/L		11/7/2018 13
o-Xylene	< 40.0	ug/L		11/7/2018 13
Styrene	< 100	ug/L		11/7/2018 13
Tetrachloroethene	< 40.0	ug/L		11/7/2018 13
Toluene	< 40.0	ug/L		11/7/2018 13
trans-1,2-Dichloroethene	< 40.0	ug/L		11/7/2018 13
trans-1,3-Dichloroproper	ne < 40.0	ug/L		11/7/2018 13
Trichloroethene	< 40.0	ug/L		11/7/2018 13
Trichlorofluoromethane	< 40.0	ug/L		11/7/2018 13
Vinyl chloride	1700	ug/L		11/7/2018 13

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-207R

Lab Sample ID:184937-05Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	s Date Analyze	
1,2-Dichloroethane-d4	85.0	86.4 - 119	*	11/7/2018	13:22
4-Bromofluorobenzene	81.6	76 - 118		11/7/2018	13:22
Pentafluorobenzene	96.5	87 - 112		11/7/2018	13:22
Toluene-D8	90.5	88.4 - 111		11/7/2018	13:22

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x56361.D

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-105

Lab Sample ID:184937-06Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

Total Organic Carbon

AnalyteResultUnitsQualifierDate AnalyzedTotal Organic Carbon2.0mg/L10/29/2018

Method Reference(s): SM 5310 C **Subcontractor ELAP ID:** 11148

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier D	ate Analyzed	
1,1,1-Trichloroethane	< 2.00	ug/L	11,	/6/2018 18:5	0
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	11,	/6/2018 18:5	0
1,1,2-Trichloroethane	< 2.00	ug/L	11,	/6/2018 18:5	0
1,1-Dichloroethane	< 2.00	ug/L	11,	/6/2018 18:5	0
1,1-Dichloroethene	< 2.00	ug/L	11,	/6/2018 18:5	0
1,2,3-Trichlorobenzene	< 5.00	ug/L	11,	/6/2018 18:5	0
1,2,4-Trichlorobenzene	< 5.00	ug/L	11	/6/2018 18:5	0
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	11,	/6/2018 18:5	0
1,2-Dibromoethane	< 2.00	ug/L	11,	/6/2018 18:5	0
1,2-Dichlorobenzene	< 2.00	ug/L	11,	/6/2018 18:5	0
1,2-Dichloroethane	< 2.00	ug/L	11	/6/2018 18:5	0
1,2-Dichloropropane	< 2.00	ug/L	11,	/6/2018 18:5	0
1,3-Dichlorobenzene	< 2.00	ug/L	11	/6/2018 18:5	0
1,4-Dichlorobenzene	< 2.00	ug/L	11,	/6/2018 18:5	0
1,4-Dioxane	< 20.0	ug/L	11	/6/2018 18:5	0
2-Butanone	< 10.0	ug/L	11,	/6/2018 18:5	0
2-Hexanone	< 5.00	ug/L	11,	/6/2018 18:5	0
4-Methyl-2-pentanone	< 5.00	ug/L	11,	/6/2018 18:5	0
Acetone	< 10.0	ug/L	11	/6/2018 18:5	0
Benzene	< 1.00	ug/L	11	/6/2018 18:5	0
Bromochloromethane	< 5.00	ug/L	11,	/6/2018 18:5	0
Bromodichloromethane	< 2.00	ug/L	11,	/6/2018 18:5	0
Bromoform	< 5.00	ug/L	11	/6/2018 18:5	0

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	MW-105			
Lab Sample ID:	184937-06		Date Sampled:	10/24/2018
Matrix:	Groundwater		Date Received:	10/24/2018
Bromomethane	< 2.00	ug/L		11/6/2018 18:
Carbon disulfide	< 2.00	ug/L		11/6/2018 18:
Carbon Tetrachloride	< 2.00	ug/L		11/6/2018 18:
Chlorobenzene	< 2.00	ug/L		11/6/2018 18:
Chloroethane	< 2.00	ug/L		11/6/2018 18:
Chloroform	< 2.00	ug/L		11/6/2018 18:
Chloromethane	< 2.00	ug/L		11/6/2018 18:
cis-1,2-Dichloroethene	188	ug/L		11/6/2018 18:
cis-1,3-Dichloropropene	< 2.00	ug/L		11/6/2018 18:
Cyclohexane	< 10.0	ug/L		11/6/2018 18
Dibromochloromethane	< 2.00	ug/L		11/6/2018 18
Dichlorodifluoromethan	e < 2.00	ug/L		11/6/2018 18
Ethylbenzene	< 2.00	ug/L		11/6/2018 18
Freon 113	< 2.00	ug/L		11/6/2018 18
Isopropylbenzene	< 2.00	ug/L		11/6/2018 18
m,p-Xylene	< 2.00	ug/L		11/6/2018 18
Methyl acetate	< 2.00	ug/L		11/6/2018 18
Methyl tert-butyl Ether	< 2.00	ug/L		11/6/2018 18
Methylcyclohexane	< 2.00	ug/L		11/6/2018 18
Methylene chloride	< 5.00	ug/L		11/6/2018 18
o-Xylene	< 2.00	ug/L		11/6/2018 18
Styrene	< 5.00	ug/L		11/6/2018 18
Tetrachloroethene	3.37	ug/L		11/6/2018 18
Toluene	< 2.00	ug/L		11/6/2018 18
trans-1,2-Dichloroethene	e 98.9	ug/L		11/6/2018 18
trans-1,3-Dichloroprope	ne < 2.00	ug/L		11/6/2018 18
Trichloroethene	23.5	ug/L		11/6/2018 18
Trichlorofluoromethane	< 2.00	ug/L		11/6/2018 18
Vinyl chloride	75.8	ug/L		11/6/2018 18

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: MW-105

Lab Sample ID:184937-06Date Sampled:10/24/2018Matrix:GroundwaterDate Received:10/24/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	81.9	86.4 - 119	*	11/6/2018	18:50
4-Bromofluorobenzene	81.0	76 - 118		11/6/2018	18:50
Pentafluorobenzene	103	87 - 112		11/6/2018	18:50
Toluene-D8	91.0	88.4 - 111		11/6/2018	18:50

Method Reference(s):

EPA 8260C EPA 5030C

Data File: x56342.D

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier: Trip Blank

 Lab Sample ID:
 184937-07
 Date Sampled:
 10/16/2018

 Matrix:
 Water
 Date Received:
 10/24/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	10/26/2018 13:48
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	10/26/2018 13:48
1,1,2-Trichloroethane	< 2.00	ug/L	10/26/2018 13:48
1,1-Dichloroethane	< 2.00	ug/L	10/26/2018 13:48
1,1-Dichloroethene	< 2.00	ug/L	10/26/2018 13:48
1,2,3-Trichlorobenzene	< 5.00	ug/L	10/26/2018 13:48
1,2,4-Trichlorobenzene	< 5.00	ug/L	10/26/2018 13:48
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	10/26/2018 13:48
1,2-Dibromoethane	< 2.00	ug/L	10/26/2018 13:48
1,2-Dichlorobenzene	< 2.00	ug/L	10/26/2018 13:48
1,2-Dichloroethane	< 2.00	ug/L	10/26/2018 13:48
1,2-Dichloropropane	< 2.00	ug/L	10/26/2018 13:48
1,3-Dichlorobenzene	< 2.00	ug/L	10/26/2018 13:48
1,4-Dichlorobenzene	< 2.00	ug/L	10/26/2018 13:48
1,4-Dioxane	< 20.0	ug/L	10/26/2018 13:48
2-Butanone	< 10.0	ug/L	10/26/2018 13:48
2-Hexanone	< 5.00	ug/L	10/26/2018 13:48
4-Methyl-2-pentanone	< 5.00	ug/L	10/26/2018 13:48
Acetone	< 10.0	ug/L	10/26/2018 13:48
Benzene	< 1.00	ug/L	10/26/2018 13:48
Bromochloromethane	< 5.00	ug/L	10/26/2018 13:48
Bromodichloromethane	< 2.00	ug/L	10/26/2018 13:48
Bromoform	< 5.00	ug/L	10/26/2018 13:48
Bromomethane	< 2.00	ug/L	10/26/2018 13:48
Carbon disulfide	< 2.00	ug/L	10/26/2018 13:48
Carbon Tetrachloride	< 2.00	ug/L	10/26/2018 13:48
Chlorobenzene	< 2.00	ug/L	10/26/2018 13:48
Chloroethane	< 2.00	ug/L	10/26/2018 13:48
Chloroform	< 2.00	ug/L	10/26/2018 13:48

Client: <u>Stantec</u>

Project Reference: 1905000014

Sample Identifier:	Trip Blank						
Lab Sample ID:	184937-07			Da	te Sampled:	10/16/2018	3
Matrix:	Water			Dat	te Received:	10/24/2018	3
Chloromethane		< 2.00	ug/L			10/26/2018	13:48
cis-1,2-Dichloroethene		< 2.00	ug/L			10/26/2018	13:48
cis-1,3-Dichloropropend	9	< 2.00	ug/L			10/26/2018	13:48
Cyclohexane		< 10.0	ug/L			10/26/2018	13:48
Dibromochloromethane	!	< 2.00	ug/L			10/26/2018	13:48
Dichlorodifluoromethar	ne	< 2.00	ug/L			10/26/2018	13:48
Ethylbenzene		< 2.00	ug/L			10/26/2018	13:48
Freon 113		< 2.00	ug/L			10/26/2018	13:48
Isopropylbenzene		< 2.00	ug/L			10/26/2018	13:48
m,p-Xylene		< 2.00	ug/L			10/26/2018	13:48
Methyl acetate		< 2.00	ug/L			10/26/2018	13:48
Methyl tert-butyl Ether		< 2.00	ug/L			10/26/2018	13:48
Methylcyclohexane		< 2.00	ug/L			10/26/2018	13:48
Methylene chloride		< 5.00	ug/L			10/26/2018	13:48
o-Xylene		< 2.00	ug/L			10/26/2018	13:48
Styrene		< 5.00	ug/L			10/26/2018	13:48
Tetrachloroethene		< 2.00	ug/L			10/26/2018	13:48
Toluene		< 2.00	ug/L			10/26/2018	13:48
trans-1,2-Dichloroether	ie	< 2.00	ug/L			10/26/2018	13:48
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			10/26/2018	13:48
Trichloroethene		< 2.00	ug/L			10/26/2018	13:48
Trichlorofluoromethane	e	< 2.00	ug/L			10/26/2018	13:48
Vinyl chloride		< 2.00	ug/L			10/26/2018	13:48
<u>Surrogate</u>		<u>Per</u>	cent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			95.2	86.4 - 119		10/26/2018	13:48
4-Bromofluorobenzene			79.2	76 - 118		10/26/2018	13:48
Pentafluorobenzene			93.2	87 - 112		10/26/2018	13:48
Toluene-D8			87.7	88.4 - 111	*	10/26/2018	13:48

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x56035.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

10

III III	2
(
E	n
0	5
00	1
0	0
0	00
0	
0	J
1	J
b	<
	-

	rdicate date needed:] [Rush 1 day	Rush 2 day	Rush 3 day	10 day	Standard 5 day	Availability contingent	Turnaround Time		21/2-6/01 00	per sample label	10/16/18	5.5.1h	18:33	12.30	1111 L	9.54	16/24/B 9:24	DATE COLLECTED COLLECTED		1905 000014	PROJECT REFERENCE				PARADIGM
1	lease indicate	Other		Category B	Category A	Batch QC	None Required	upon lab :		_					_			>		m worson			NCE			٩	
		Other EDD			NYSDEC EDD	Basic EDD	ired None Required	Availability contingent upon lab approval; additional fees may apply.	Report Supplements		60 10/24/18	per sample label	Trip Blank T.	Mu-HI-53 105 Fee sample liberts	K Must 2: 850 mm- 707R	» mw-16	10 mw-le R	725-MM X	52-mm X	G R A B		N A O	ATTN: BODS Malloy	97125th-2353NOHA	orright Ster STATE:	Comm	CLIENT: STANTE/ CONSULTION
See addi	signing this form, client agrees to P	124/18/16:12	ate/Time	500	Received By Paleria 10/24/18 1600	Date/Time	Sampled by (C/7/1/8 (C	2000 200 100 100 100 100 100 100 100 100	9 2 1 In/16				T-863 WA 1 X	10 febres 6.65 4 x x	36 4 x x	W V K	mg 4 K K	(m) 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WG 4 x x	X-D-DE WMOOO TO DMOSCZ WDMZ-D-IZOO TOC VOC-TCL put Sample /abils & ully/	REQUESTED ANALYSIS	WA - Water DW - Drinking Water SO - Soil WG - Groundwater WW - Wastewater SL - Sludge	ATTE Mahory	10441-544	225	rectif St	CLIENT: STRAFT C CONSUMILA
See additional page for sample conditions.	nditions (reverse).			1/7		5	(6,00	l,	27											REMARKS		SD - Solid WP - Wipe PT - Paint CK - Caulk	806. M.	Email:	Quotation #:	184937	LAB PROJECT ID
ditions.													07	30	0.5	0 4	03	ŝ	0)	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air					

Chain of Custody Supplement

Client:	Stantec	Completed by:	Glenn Pezzulo
Lab Project ID:	Sample Condition Per NELAC/ELAP 210	Date: 1 Requirements /241/242/243/244	10/24/18
N Condition	ELAC compliance with the sample co Yes	ondition requirements upo No	n receipt N/A
Container Type Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments	NO A		
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	8,c		
Sufficient Sample Quantity Comments			

1.701

Page 21 of 21	

Received @ Lab Ev

Date/Time

54.66

Temp 2.7°C 11/7/18 MES

Z

Received By

125

,Date/Time

71.5

Holding Time:

4

z

Received By

Preservation:

×

Z

Relinquished By

0

125

00

6100

Total Cost:

Date/Time

Sample Condition: Por NELAC/ELAP 210/241/242/243/244

Receipt Parameter Container Type:

×

z

Sampled By

Client

NELAC Compliance

179 Lake Ayenue, Rochester, NY 14808 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTORY

PROJECT NAMESTE NAME:	Constitution of the Consti			The second and the second seco	PARADIGM	en _u
ATTRE	PHONE	Clare	ADDRESS:	COSSESSION		
Reporting		Rochester	179 Lake	Paradign	REI	
Q	FAX:	STATE	179 Lake Avenue	Paradigm Environmental	PORT TO:	12
		AN		mental		HAIN
		STATE: NY ZP: 14608 CITY:				OF
ATTRE	PHONE	CITY	ADDRESS:	COMPANY:		OF CUSTOL
Accounts Davahla				Same		Yao,
Dawahla	FAX	STATE			NVOICE TO:	
		ZIP:			7-1-0	
		TURNAROUND TIME: [WORKING DAYS]		LAB PROJECT #:		
	STD	NORKING DAYS)		CLIENT PROJECT #:	-1010101	לא ליבו ועם
	OTLER				经营业	11148

TARADIGE	COMPANY:	" Paradigm Environmental	COMPANY;	Same	LAB PROJECT #:	CLIENT PROJECT #:
	ADDRESS:		ADDRESS:			
	CITY:	Rochester STATE: NY ZIP: 14	ZIP: 14608 CITY:	STATE: ZIP:	TURNAROUND TIME: [WORKING DAYS]	[WORKING DAYS]
	PHONE	FAX:	PHONE	FAXO		פונים
PROJECT NAMESTIE NAME:	ATTRE	Reporting	ATTIE	Accounts Payable	1 2	
	COMMENTS:	rs: Please email results to reporting@paradigmenv.com	@paradigme	inv.com		
				REQUESTED ANALYSIS		
DATE TIME P S C C C C C C C C C C C C C C C C C C	מנגלט	SAMPLE LOCATION FIELD ID	2002 CZ 2002 CZ 2002 CZ 2002 CZ		REMARKS	PARADIGM LAB SAMPLE NUMBER
1 10/24/18 09:24		10-126481	Signal 2	*		
2 08:59		100				
3		- 03				
4 12:36		ho-				
5 /3:33		-05				
6 14:53		- 00	4 4	4-		
7						
co						
9						
10						
WEABUSE ONLY BELOWITHIS HINE WAS	NATURE OF	の対象を表する。対象の関係が対象がある。	はなる。はいないであるから	高い方では、10mmでは、1	A CONTROL OF THE PARTY OF THE P	