

#### PERIODIC REVIEW REPORT

### BROWNFIELD CLEANUP PROGRAM WARD STREET SITE (SITE NO. C828117) and 8-28 WARD STREET (SITE NO. C828136)

December 15, 2021

### Prepared on behalf of:

Germanow-Simon Corporation 408 St. Paul Street Rochester, New York 14601

### Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

## **Table of Contents**

| 1.0 | INTR | RODUCTION AND OVERVIEW                             | 1     |
|-----|------|----------------------------------------------------|-------|
|     | 1.1  | SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY | 1     |
|     | 1.2  | SITE MANAGEMENT REQUIREMENTS                       | 3     |
|     | 1.3  | EFFECTIVENESS OF THE REMEDIAL PROGRAM              | 5     |
|     | 1.4  | COMPLIANCE                                         |       |
|     | 1.5  | RECOMMENDATIONS                                    | 5     |
| 2.0 | REM  | EDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS | 6     |
| 3.0 | COM  | IPLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN | 8     |
| 4.0 | NEW  | / BUILDING CONSTRUCTION                            | 9     |
|     |      |                                                    | ••••• |
| 5.0 | OVE  | RALL CONCLUSIONS AND RECOMMENDATIONS               |       |

### TABLES

1 – Summary of Volatile Organic Compounds in Groundwater – September 2011 to October 2021

2 - Summary of Field Parameters in Groundwater - September 2011 to October 2021

### FIGURES

1 – Site Location Map

2 – Well Locations

3A-3F - Dissolved-Phase VOC Concentrations vs. Time

### **APPENDICES**

 $\bigcirc$ 

- A IC/EC Certification Forms
- **B NYSDEC Correspondence**
- C Laboratory Analytical Reports

### 1.0 INTRODUCTION AND OVERVIEW

Stantec Consulting Services Inc. (Stantec) has prepared this Periodic Review Report (PRR) and the attached Institutional Control/Engineering Control (IC/EC) forms (Appendix A) to summarize Site Management (SM) activities at the contiguous Ward Street and 8-28 Ward Street Brownfield Cleanup Program sites (the Sites) for the period November 15, 2020 to November 15, 2021.

The PRR was prepared on behalf of Germanow-Simon Corporation (Germanow-Simon), the owner of the Sites, to fulfill the PRR requirements of the Brownfield Cleanup Program (BCP) of the New York State Department of Environmental Conservation (NYSDEC or Department). The Ward Street Site is identified by NYSDEC as BCP Site No. C828117. The 8-28 Ward Street Site is identified as BCP Site No. C828136.

The Sites are located in the City of Rochester, Monroe County, New York along the north side of Ward Street between the intersection of Ward Street with St. Paul Street on the southwest and Emmett Street on the northeast. A map showing the locations of the Sites is presented on Figure 1.

### 1.1 SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY

Germanow-Simon and the Department agreed to pursue a program of environmental investigation and cleanup activities at the Sites to address past releases of industrial and dry-cleaning solvents and petroleum products that resulted in subsurface contamination by volatile organic compounds (VOCs). The BCP activities led to the implementation of a Multi-Phase Vacuum Extraction (MPVE) cleanup system for the Sites. MPVE is a contaminant remediation technology that uses a vacuum pump and extraction wells to simultaneously remove VOCs from subsurface soils, soil vapor and groundwater. The layout of the former MPVE system is provided in Figure 2 (Well Locations).

Construction, installation, and commissioning events of the MPVE system at the Ward Street Site were completed in October 2006. The 8-28 Ward Street Site component of the MPVE system was added in October 2008. With NYSDEC approval, the MPVE system was shut down on February 22, 2011 and has not been restarted since that time. At that time, the previously installed sub-slab depressurization system (SSDS) beneath the Building B Annex Area was reactivated (as it had been during previous sampling or MPVE maintenance-related shut-down periods).

In accordance with the NYSDEC-approved *Remedial Program Supplement, Enhanced Reductive Dechlorination Work Plan*, dated March 2011 (Stantec, 2011) and NYSDEC's November 14, 2011 approval letter, an *in-situ* bioremediation groundwater polishing program was initiated in November/December 2011. This was followed by a supplemental injection program for Enhanced Reductive Dechlorination (ERD), which was proposed in correspondence dated October 2012, approved by NYSDEC on November 6, 2012, and conducted in November 2012. The results of that event were summarized in Stantec's December 21, 2012 *Enhanced Reductive Dechlorination Supplemental Injection Program Summary Report*.

Because groundwater in the former Lilac Laundry area was found to meet the Department's groundwater quality standards (refer to *Ward Street Site Semi-Annual Progress Report #8, Ward Street Site (Site #C828117) and 8-28 Ward Street Site (Site #C828136), Rochester, New York* (Stantec, February 2011), and in preparation for site improvements, and with NYSDEC approval, the following wells were

#### Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

decommissioned in October 2011 at the Ward Street Site: MW-3, -5, -9, -9R, -20, -21, -32, -213, -214, -215, -216, -217, -218, and -219. In addition, since no significant groundwater impacts were present on the 8-28 Ward Street Site, and in preparation for site improvements, and with NYSDEC approval, the following wells were decommissioned in October 2011 at the 8-28 Ward Street Site: GQ1/MW-1, GQ2/MW-2, GQ4/MW-4, GQ8/MW-5, MW-19, -45, -46, -46R, and -47.

The results of the groundwater sampling event conducted in October 2013 indicated that significant dissolved-phase VOC reduction had occurred within the treatment area. Based on this observed reduction since the commencement of remedial measures, and the continued success of the ERD process, it was proposed in the 2015 PRR to: (1) discontinue the ERD groundwater treatment program; (2) reduce the number of wells that are monitored; (3) reduce the number of analytes that are monitored; and (4) reduce the frequency of monitoring. The PRR proposed that an annual groundwater sampling event be performed involving wells MW-16, -16R, -23, -23R, -105, -207R with analysis for VOCs by USEPA Method 8260 and total organic carbon (TOC) by USEPA Method 5310. This revised sampling and analysis approach was accepted in the NYSDEC February 4, 2016 letter to Germanow-Simon; a copy of the letter was included in Appendix B of the 2016 PRR.

The results of the annual groundwater sampling event completed in June 2015 showed that anaerobic and reducing geochemical conditions had been maintained at the wells sampled. Results at wells MW-16 and -23R indicated that the "parent" compounds tetrachloroethylene (PCE) and trichloroethylene (TCE) were below detection limits. Concentrations of daughter products at MW-16 had increased, suggesting that degradation was progressing but was incomplete. The only contaminant of concern detected at MW-23R was cis-dichloroethylene (cis-DCE) and the concentration was below the groundwater standard for that compound. Decreased concentrations were observed for all contaminants of concern at MW-105. However, increases in contaminants of concern were observed at MW-16R, -23, and -207R. After discussion with NYSDEC, it was proposed to complete another round of groundwater monitoring at these six wells in the spring of 2016 to assess the progress of the ERD process.

The groundwater parameters measured in the field during the March 2016 sampling event indicated that anaerobic and reducing geochemical conditions had been maintained or improved since 2015 at all sampled wells. This indicated that the ERD injection performed in November 2012 continued to promote an environment suitable for the breakdown of chlorinated VOCs. Measured groundwater parameters are provided on Table 2. The VOC data (Table 1) indicated that ERD continued under, and downgradient from, the Building B Annex shipping/receiving area. Low and decreasing concentrations of parent VOC compounds, PCE and TCE, were observed in MW-105; and only 'daughter' products, cis- and trans-1,2-Dichloroethene (DCE) and vinyl chloride (VC), were observed downgradient at wells MW-16 and -16R. VOC concentrations at downgradient well MW-207R remained generally similar to those observed during the previous round of groundwater sampling in June 2015 with only "daughter" VOC compounds detected.

In 2016, favorable conditions at the 8-28 Ward Street Site were maintained within the bedrock zone as VOC concentrations were at or below laboratory detection limits for all compounds at MW-23R. The results from MW-23, however, showed increases in PCE and TCE concentrations compared to levels observed prior to the initial injection activities. The increases in the concentrations of parent compounds were indicative of additional residual source material that had not been effectively treated by past remedial efforts in the area of MW-23. The groundwater results were forwarded to the Department on April 14, 2016 (Appendix B of the 2016 PRR).



#### Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

Following discussion with the Department, Stantec performed a two-day Geoprobe investigation (May 23-24, 2016) to investigate the potential source and extent of impacted soil in the vicinity of MW-23 which was contributing to the groundwater results. The investigation was summarized in the 2016 PRR; based on the results, Stantec recommended performing an on-Site remedial excavation of source material. This remedial approach would be supplemented with the placement in the excavation of sodium lactate as an electron-donor to further facilitate the breakdown of residual contamination in groundwater within, and downgradient of the source area. The results of the soil boring program and the recommended remedial approach were proposed to the Department both in correspondence dated October 27, 2016 and the December 15, 2016 PRR. Included as a part of the remedial approach set forth in the 2016 PRR, the next groundwater monitoring event was proposed to be completed three months after completion of the excavation program.

As detailed in the December 2017 PRR, a relatively small, supplemental excavation of TCE-impacted source-area soils was performed in October 2017 on the southern boundary of the 8-28 Ward Street site, immediately north of Ward Street. An application of sodium lactate was placed in the excavation prior to backfill to facilitate *in situ* bioremediation via ERD of residual groundwater impacts. Due to the timing of the excavation program, and the commitment to conduct the next groundwater monitoring event three months after completion of the excavation program, no groundwater monitoring was performed in 2017. Instead, it was performed in January 2018 with a second annual round occurring in October 2018.

The January and October 2018 groundwater monitoring results indicated PCE concentrations decreased in MW-23, with the October results dropping to their lowest level since 2013, while MW-23R remained essentially non-detect. In the other wells, variation in VOC levels were noted; however, the concentrations of the parent VOCs TCE and PCE remained generally low to non-detect, and the presence of daughter compounds cis-1,2-DCE and VC were indicative that ERD continued to occur.

Monitoring results from the next year's event demonstrated that some of the VOCs present in each sampled well decreased between October 2018 and October 2019. Any increases in VOC concentrations observed were relatively small in magnitude and these concentrations remained well below any historic highs. No significant "spikes" were observed, and the high concentration of PCE in well MW-23 observed in 2016 had returned to normal low levels. Given the favorable results, Stantec proposed that: (1) groundwater monitoring be modified to a bi-annual frequency; and (2) monitoring well MW-23R be removed from the sampling list. Both requests were approved by NYSDEC through acceptance of the 2019 and 2020 PRRs, respectively. Pertaining to the removal of MW-23R, NYSDEC stipulated that water levels, dissolved oxygen, and oxidation-reduction potential continue to be monitored during the bi-annual event.

### 1.2 SITE MANAGEMENT REQUIREMENTS

Site Management activities were implemented in accordance with the Department-approved SMPs for each Site. The SMPs for the Sites include the following required Institutional and Engineering Controls (ICs/ECs):

- Use of the Sites for commercial and industrial purposes is allowed as long as the following longterm controls are employed:
  - The MPVE system is operated in accordance with a Department-approved Operation, Maintenance & Monitoring (OM&M) plan until remedial requirements are achieved to the satisfaction of the Department. (*Note: this is no longer required; see below*)

- An SSDS constructed in conjunction with the MPVE system is operated continuously in the Building B Annex Area to mitigate the potential for soil vapor intrusion (SVI) when the MPVE system is shut down.
- Impervious surfaces covering specific areas of the Sites (building floor slabs and parking lot pavements) are maintained.
- NYSDEC approval must be obtained in advance for activities which breach impervious surfaces or disturb soils in those same areas of the Sites, and those activities must be performed in accordance with the SMPs.
- NYSDEC approval must be obtained in advance for use of groundwater for any purpose at the Sites.
- The Sites may not be used for purposes with a higher level of use than the commercial and industrial purposes described above.
- An environmental easement granted to the Department must be maintained on the property deeds and any subsequent instrument of land conveyance, lease, license, or other instruments granting rights of use of the Sites. At the request of the NYSDEC, the separate environmental easement mapping for the two sites was combined into a single Environmental Easement map dated August 1, 2012.
- Annually (or as otherwise directed by the Department), Germanow-Simon must certify to the Department the continued presence and effectiveness of the controls described above.

The MPVE system OM&M Plan for the Sites specified a program of maintenance activities and provided for monthly system performance monitoring, periodic groundwater monitoring, and annual indoor/outdoor air testing. Indoor air testing was previously conducted in the Building B Annex and Building B along with outdoor testing to obtain background conditions; however, due to NYSDEC's approval in 2014 to forego this testing, it is no longer conducted. The OM&M Plan specifies periodic reporting on OM&M activities, monitoring results and remedial progress. However, with NYSDEC approval, the MPVE system was shut down on February 22, 2011 and it has not been operated since. The system was subsequently decommissioned. Therefore, OM&M activities related to the MPVE system have not been required since it was shut down. The SSDS was commissioned on February 22, 2011 and has operated continuously since. The facility manager has confirmed its continued proper operation.

Due to building expansion/renovation and site improvement activities at the Sites during the September 15, 2011 to September 15, 2012 reporting period, the SMPs for both Sites were revised. Revised versions of these documents were submitted to the NYSDEC along with the PRR for that reporting period.

In the Fall of 2021, Germanow-Simon began coordinating for the proposed construction of a 10,500+/- sq. ft. building addition which will straddle the boundaries of the Ward Street (C828136) and 8-28 Ward Street (C828117) BCP sites. As a result of the proposed building location straddling two parcels, the City of Rochester has requested a proposed re-subdivision which will change the Sites' SBL numbers and lot alignments. Once this re-subdivision is completed, the Certificates of Completion and the Environmental Easement will need to be modified to reflect these changes. The 2012 SMPs will be revised and submitted to the Department to reflect Site conditions once construction is complete. See Section 4.0 for a description of the Site Management activities related to the new building construction.



### 1.3 EFFECTIVENESS OF THE REMEDIAL PROGRAM

The IC/ECs required under the SM program remained in place and were effective.

### 1.4 COMPLIANCE

Compliance with the SMPs for both Sites was maintained throughout the reporting period. On October 6, 2021, Stantec inspected the Site and made the following observations:

- The SSDS system power indicating light was operating as intended. No power outages occurred during this reporting period that may have affected the SSDS system were noted by the owner.
   Following the annual 2021 Site inspection, Stantec recommended that a new fan be installed given the age of the system. The fan was replaced by Germanow-Simon on October 11<sup>th</sup>.
- The Site cover materials (building floor slabs, asphalt pavement, concrete sidewalks and landscaped perimeter areas) are in excellent condition and are well-maintained. No areas of disturbed or degraded site cover were observed during the annual 2021 Site inspection. In preparation for the new building construction, and with Department approval, the asphalt parking lot was saw cut on October 28, 2021, in four locations to accommodate conducting test pits for the purpose of collecting fill material samples for laboratory analysis to allow for waste profile approval prior to the start of construction. The saw cut asphalt was replaced following completion of the test pits. See Section 4.0 for a description of planned breaches to the Site Cover relating to the new building construction.

### 1.5 RECOMMENDATIONS

As noted in Section 1.2, the SMPs for both Sites were revised in 2012 and are planned to be updated in 2022 following the new building construction. It is recommended that the requirements specified within the updated SMPs continue to be fulfilled. It is also recommended that a vacuum monitoring alarm be mounted adjacent to the power panel. The vacuum tube for the alarm would be attached to the suction pipe just below the fan.

# 2.0 REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

It was recommended in the 2019 PRR to decrease groundwater sampling frequency to every two years. After review, NYSDEC approved the bi-annual sampling on February 27, 2020. As such, no groundwater monitoring occurred during the 2020 reporting period.

The bi-annual monitoring event was performed on October 5, 2021. NYSDEC was notified in advance (see email, Appendix B). The following five wells were sampled: MW-16, 16R, -23, -105, and -207R. As with previous sampling events, low-flow sampling methodology was employed. It was recommended in the 2020 PRR to remove monitoring well MW-23R from the sampling program given that VOCs have been below groundwater standards during each sampling event since 2015. MW-23R was gauged for a record of static water level. The dissolved oxygen and oxidation-reduction potential were also monitored during the event, as required by NYSDEC in its 2020 PRR acceptance letter conditionally approving the removal of MW-23R from the sampling program. Stantec's approach to the geochemical monitoring at this well was accepted by NYSDEC (see email, Appendix B).

The analytical results are summarized on Table 1, along with historical results since 2011 for these six wells (including MW-23R). The analytical results are compared to NYSDEC TOGS 1.1.1 *New York State Ambient Water Quality Standards and Guidance Values* (SGVs) for Class GA groundwater. Table 2 provides a summary of the field parameters measured in groundwater during the sampling events. Figures 3A through 3F present time-series plots of individual VOC concentrations for these six wells (including MW-23R). The laboratory report is presented in Appendix C.

The following observations are made relative to groundwater levels and quality, based on the results of the 2021 sampling event:

- Groundwater levels were slightly lower (between 0.5 and 0.8 ft) as compared to the October 2019 gauging data. This is consistent with a comparison of annual precipitation records given the record-breaking annual precipitation recorded in 2019.
- Field parameters measured during the October 2021 sampling event continue to indicate anaerobic and reducing conditions in groundwater, with dissolved oxygen (DO) levels below 0.4 mg/L and negative oxidation/reduction potential (ORP) levels.
- In general, CVOC concentrations have continued to improve, or remained stable, with some daughter compounds showing significant concentration decreases since the last sampling event. The concentrations of PCE and TCE have been non-detect or only slightly exceed the SGV (except TCE at MW-105) and levels have decreased or remained stable around the SGV for several years. The daughter compound concentrations have also declined (except cis-1,2-DCE at MW-105). A summary of the COC concentrations (in µg/L) is presented in the table below, and further discussion of apparent trends at each monitoring well follows.

| Well / COC | PCE  | TCE  | Cis-1,2-<br>DCE | Trans-<br>1,2-DCE | VC   |
|------------|------|------|-----------------|-------------------|------|
| MW-16      | 7.04 | ND   | 169             | ND                | 270  |
| MW-16R     | ND   | 7.59 | 53.2            | ND                | 45.8 |
| MW-23      | ND   | ND   | 14.5            | ND                | 15.7 |
| MW-105     | 4.69 | 21.7 | 321             | ND                | 59.2 |
| MW-207R    | ND   | ND   | 300             | ND                | 465  |

 $\bigcirc$ 

ND = non-detect.

Wells MW-23 (overburden) and MW-23R (bedrock) are located in close proximity to the excavation (and associated sodium lactate application) performed in 2017. Data from the October 2021 sampling event continued to demonstrate improvement in the COC concentrations at MW-23 with PCE and TCE declining to levels below laboratory detection limits. Both cis-1,2-DCE and VC exhibited large decreases in concentration, and trans-1,2-DCE continued to be non-detect. These results continue to indicate the source excavation and lactate placement performed in late 2017 have had a positive effect on groundwater quality in this area.

VOCs in well MW-23R had been below groundwater standards and essentially remained at nondetect levels since 2015. As such, sampling was not performed at this well based on the 2020 PRR recommendations, which were approved by NYSDEC.

 Bedrock well MW-16R, located on the southern edge of the remedial area, exhibited large decreases in the concentrations of TCE, cis-1,2-DCE, and VC since 2019. Consistent with previous sampling rounds, PCE and trans-1,2-DCE were not detected above laboratory quantitation limits.

Overburden well MW-16, located adjacent to MW-16R, also exhibited large decreases in concentrations of cis-1,2-DCE and VC since 2019. The concentration of PCE only slightly exceeded the SGV, and TCE and trans-1,2-DCE remain below reporting limits.

- Although MW-105 continues to exhibit detections of PCE, TCE, cis-1,2-DCE, and VC, levels
  have remained relatively consistent over the past five sampling events. Concentrations of
  daughter product cis-1,2-DCE has increased over the past three sampling events but no other
  increases are noted and the present concentration remains well below the historical maximum
  concentrations. Furthermore, the concentration of PCE remains below the SGV and trans-1,2DCE was not detected above laboratory quantitation limits in 2021.
- Well MW-207R (the easternmost well location in these sampling events) continued to exhibit decreasing concentrations of cis-1,2-DCE and VC since 2018. Since 2019, the concentration of both daughter products decreased by approximately 60%. Trans-1,2-DCE, TCE, and PCE were not detected above laboratory quantitation limits. PCE and TCE have not been detected at this location since 2013.

Overall, the groundwater monitoring data are consistent with, or improved from, the results of previous sampling events and indicate that groundwater conditions are stable or improving at the monitoring wells.

### 3.0 COMPLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN

During the reporting period, compliance with the required ICs and ECs was maintained.

- Use of the Sites has been limited to the industrial manufacturing and support activities conducted by the Germanow-Simon Corporation and its affiliated enterprises. There has been no change in Site use or operations.
- In accordance with NYSDEC approval, the MPVE system was operated until February 22, 2011, at which time it was shut down indefinitely. The MVPE system was decommissioned, cleaned out, and disconnected from the sewer during the 2014 reporting period.
- The sub-slab depressurization system (SSDS) constructed in conjunction with the MPVE system has continuously operated since February 2011 in the Building B Annex Area to mitigate the potential for soil vapor intrusion (SVI).
- No groundwater use has occurred at the Sites.
- The environmental easement granted to the Department has been maintained on the property deeds and any subsequent instrument of land conveyance, lease, license, or other instruments granting rights of use of the Sites.

Signed and stamped forms certifying the continued presence and effectiveness of the ICs and ECs described above are presented in Appendix A.

The MPVE system OM&M Plan for the Sites specifies a program of maintenance activities, provides for monthly system performance monitoring and periodic groundwater monitoring, and annual indoor/outdoor air testing. The OM&M Plan specifies periodic reporting on OM&M activities, monitoring results and remedial progress. However, because the MPVE system was shut down permanently in 2011, activities or certification related to this specific EC have not been required since then.

Sampling results from February 22, 2013 indicated that the SSDS system, which has been operating continuously since the MPVE system was shut down, continued to successfully mitigate potential SVI at the Building B Annex. Based on these results and discussion with and subsequent approval by NYSDEC, annual indoor and outdoor air sampling was discontinued in 2015.

Following the annual 2021 Site inspection, Stantec recommended that a new fan be installed given the age of the system. The fan was replaced by Germanow-Simon on October 11<sup>th</sup> (see photo below).





## 4.0 NEW BUILDING CONSTRUCTION

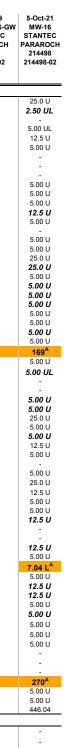
As stated earlier, in the Fall of 2021, Germanow-Simon began coordinating for the proposed construction of a 10,500+/- sq. ft. building addition which will straddle the boundaries of the Ward Street (C828136) and 8-28 Ward Street (C828117) BCP sites. The new building will house the manufacture of optical components for a COVID-19 antibody testing platform. This section summarizes the Site Management activities conducted, and/or proposed, relating to the new building construction through the end of the reporting period (November 15<sup>th</sup>). Note that formal ground-breaking associated with the new building construction was not initiated prior to November 15<sup>th</sup>. As such, Site Management activities performed for the actual construction side of the new building will be incorporated into the 2022 PRR along with any other Site Management activities occurring after November 15<sup>th</sup>.

Stantec's environmental staff will be providing full-time observation of sub-surface activities pursuant to the SMPs for the two sites. As noted below, Stantec is also assisting the design team with the sub-slab piping network to provide soil vapor mitigation should subsequent testing confirm that an active system is needed. Past investigations in this portion of the Sites have not revealed evidence of VOC impacts in this area.

The following is a summary of pertinent Site Management activities, data, correspondence, and deliverables related to the new building construction.

- Change of Site Use Form and Building Permit-Environmental Easement Review Form. Both forms, along with a series of supporting documents for the proposed construction, were submitted to the Department on October 29<sup>th</sup>. Approval was received on November 4<sup>th</sup>. Copies of the NYSDEC correspondence are included in Appendix B.
- Test Pit Program. A test pit program was conducted on October 21<sup>st</sup> to pre-characterize the excavation material to facilitate approval of a waste profile for offsite disposal. Stantec was onsite to collect soil samples and to conduct CAMP. No unusual or unexpected observations of fill conditions were noted; and no air monitoring exceedances were recorded. NYSDEC was notified before and after the program (see copy, Appendix B). The laboratory analytical report is included herein as Appendix C.
- 3. Waste Profile. Following pre-excavation characterization sampling, waste profile #124616NY was submitted online to Waste Management on November 12<sup>th</sup> for offsite disposal of the urban fill and other excavation fill material generated during new building construction at High Acres Landfill. Tracking of the offsite disposal volumes under the final approved waste profile (approved after the reporting period of November 19<sup>th</sup>) will be conducted during excavation and reported in the 2022 PRR.
- 4. SSDS Design. The Institutional Controls imposed on the Site include the requirement to evaluate for potential soil vapor intrusion (SVI) in any new buildings and mitigate as necessary. On behalf of Germanow-Simon and their Contractor (the Nichols Team), Stantec designed the sub-slab piping layout and associated details for the proposed new building *(submitted after the reporting period on November 17<sup>th</sup>)*. Based on previous discussions between Stantec and NYSDEC, the plan is to stub the piping at the floor slab. Once the building is sufficiently constructed, SVI testing will be conducted to determine if an active SSDS will be required, all of which will be incorporated in the 2022 PRR.

## 5.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS


No changes to the program are proposed at this time and the next PRR will be submitted in December 2022. Following construction of the new building, and update to the SMPs, it is anticipated that a request for bi-annual Periodic Review Reporting will be requested to align with the bi-annual groundwater monitoring requirement.

 $\bigcirc$ 

Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

TABLES

| Sample Location<br>Sample Date<br>Sample ID<br>Sampling Company<br>Laboratory<br>Laboratory Work Order<br>Laboratory Sample ID<br>Sample Type | Units        | TOGS                                    | 27-Sep-11<br>WSR-MW-16-GW-18<br>STANTEC<br>PARAROCH<br>P11-4090<br>14083 | 3-Feb-12<br>WSR-MW-16-GW-19<br>STANTEC<br>PARAROCH<br>12:0472<br>12:0472-06 | 2-Mar-12<br>WSR-MW-16-GW-20<br>STANTEC<br>PARAROCH<br>12:0936<br>12:0936-02 | 5-Jun-12<br>WSR-MW-16-GW-21<br>STANTEC<br>PARAROCH<br>12:2364<br>12:2364-06 | 5-Sep-12<br>WSR-MW-16-GW-22<br>STANTEC<br>PARAROCH<br>12:3668<br>12:3668-05 | 23-Jan-13<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>13:0353<br>130353-05 | 11-Apr-13<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>131259<br>131259-05 | MW16<br>3-Jul-13<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>132490<br>132490-06 | 9-Oct-13<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>133891<br>133891-05 | 9-Oct-13<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>133926<br>133926-05 | 17-Jun-15<br>828-MW-16-GW<br>STANTEC<br>PARAROCH<br>152493<br>152493-03 | 9-Mar-16<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>160970<br>160970-03 | 10-Jan-18<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>180096<br>180096-02 | 24-Oct-18<br>MW-16<br>STANTEC<br>PARAROCH<br>184937<br>184937-04 | 8-Oct-19<br>WSR-MW-16-GW<br>STANTEC<br>PARAROCH<br>194958<br>194958-02 | V 9 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|-----|
| Volatile Organic Compounds                                                                                                                    |              |                                         |                                                                          | 1                                                                           |                                                                             |                                                                             | 1                                                                           |                                                                          |                                                                         |                                                                                |                                                                        |                                                                        |                                                                         |                                                                        |                                                                         |                                                                  |                                                                        | _   |
| Acetone                                                                                                                                       | µg/L         | 50 <sup>B</sup>                         | 500 U                                                                    | 500 U                                                                       | 500 U                                                                       | 500 U                                                                       | 500 U                                                                       | 10 U                                                                     | 10.0 U                                                                  | 10.0 U                                                                         | -                                                                      | 13.6 J                                                                 | 10.0 U                                                                  | 10.0 U                                                                 | 25.0 U                                                                  | 50.0 U                                                           | 25.0 U                                                                 | Τ   |
| Benzene<br>Bromobenzene                                                                                                                       | μg/L<br>μg/L | 1 <sup>A</sup><br>5 <sup>A</sup>        | 35.0 U                                                                   | 35.0 U                                                                      | 35.0 U                                                                      | 35.0 U                                                                      | 35.0 U                                                                      | 0.70 U<br>5.0 U                                                          | 0.700 U<br>5.00 U                                                       | 0.700 U                                                                        | -                                                                      | 1 U<br>-                                                               | 1.00 U                                                                  | 1.00 U                                                                 | 2.50 U                                                                  | 5.00 U                                                           | 2.50 U                                                                 | ·   |
| Bromodichloromethane                                                                                                                          | μg/L         | 50 <sup>B</sup>                         | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Bromoform (Tribromomethane)                                                                                                                   | µg/L         | 50 <sup>B</sup>                         | 250 U                                                                    | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | 5.0 U                                                                    | 5.00 U                                                                  | 5.00 U                                                                         | -                                                                      | 5.00 U                                                                 | 5.00 U                                                                  | 5.00 U                                                                 | 12.5 U                                                                  | 25.0 U                                                           | 12.5 U                                                                 |     |
| Bromomethane (Methyl bromide)                                                                                                                 | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Butylbenzene, n-<br>Butylbenzene, sec- (2-Phenylbutane)                                                                                       | μg/L<br>μg/L | 5 <sup>A</sup>                          | 250 U<br>250 U                                                           | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              |                                                                             | -                                                                        | -                                                                       | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      |                                                                         |                                                                  | 1                                                                      |     |
| Butylbenzene, tert-                                                                                                                           | µg/L         | 5 <sup>A</sup>                          | 250 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                           | -                                                                        | -                                                                       | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |     |
| Carbon Disulfide                                                                                                                              | µg/L         | 60 <sup>B</sup>                         | 250 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Carbon Tetrachloride (Tetrachloromethane)<br>Chlorobenzene (Monochlorobenzene)                                                                | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 100 U<br>100 U                                                           | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 2.0 U<br>2.0 U                                                           | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                               | -                                                                      | 2.00 U<br>2.00 U                                                       | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                       | 5.00 U<br>5.00 U                                                        | 10.0 U<br>10.0 U                                                 | 5.00 U<br>5.00 U                                                       |     |
| Chlorobromomethane                                                                                                                            | µg/L         | 5 <sup>A</sup>                          | 250 U                                                                    | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | -                                                                           | 5.0 U                                                                    | 5.00 U                                                                  | 5.00 U                                                                         | -                                                                      | 5.00 U                                                                 | 5.00 U                                                                  | 5.00 U                                                                 | 12.5 U                                                                  | 25.0 U                                                           | 12.5 U                                                                 |     |
| Chloroethane (Ethyl Chloride)                                                                                                                 | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Chloroethyl Vinyl Ether, 2-<br>Chloroform (Trichloromethane)                                                                                  | μg/L<br>μg/L | n/v<br>7 <sup>A</sup>                   | -<br>100 U                                                               | -<br>100 U                                                                  | -<br>100 U                                                                  | -<br>100 U                                                                  | 500 U<br><b>100 U</b>                                                       | 10 U<br>2.0 U                                                            | 10.0 U<br>2.00 U                                                        | -<br>2.00 U                                                                    | -                                                                      | -<br>2.00 U                                                            | -<br>2.00 U                                                             | -<br>2.00 U                                                            | -<br>5.00 U                                                             | -<br>10.0 U                                                      | -<br>5.00 U                                                            |     |
| Chloromethane                                                                                                                                 | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Cyclohexane                                                                                                                                   | µg/L         | n/v                                     | 500 U                                                                    | 500 U                                                                       | 500 U                                                                       | 500 U                                                                       | -                                                                           | 10 U                                                                     | 10.0 U                                                                  | 10.0 U                                                                         | -                                                                      | 10.0 U                                                                 | 10.0 U                                                                  | 10.0 U                                                                 | 25.0 U                                                                  | 50.0 U                                                           | 25.0 U                                                                 |     |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                                                                                          | µg/L         | 0.04 <sup>A</sup><br>50 <sup>B</sup>    | 500 U                                                                    | 500 U                                                                       | 500 U                                                                       | 500 U                                                                       | -                                                                           | 10 U                                                                     | 10.0 U                                                                  | 10.0 U                                                                         | -                                                                      | <b>10.0 U</b><br>2.00 U                                                | 10.0 U                                                                  | 10.0 U                                                                 | 25.0 U                                                                  | 50.0 U                                                           | 25.0 U<br>5.00 U                                                       |     |
| Dibromochloromethane<br>Dichlorobenzene, 1,2-                                                                                                 | μg/L<br>μg/L | 50<br>3 <sup>A</sup>                    | 100 U<br>100 U                                                           | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 2.0 U<br>2.0 U                                                           | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                               | -                                                                      | 2.00 U                                                                 | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                       | 5.00 U<br>5.00 U                                                        | 10.0 U<br><b>10.0 U</b>                                          | 5.00 U                                                                 |     |
| Dichlorobenzene, 1,3-                                                                                                                         | µg/L         | 3 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Dichlorobenzene, 1,4-                                                                                                                         | µg/L         | 3^                                      | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Dichlorodifluoromethane (Freon 12)<br>Dichloroethane, 1,1-                                                                                    | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 250 U<br>100 U                                                           | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U                                                                       | 2.0 U<br>2.0 U                                                           | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                               | -                                                                      | 2.00 U<br>2.00 U                                                       | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                       | 5.00 U<br>5.00 U                                                        | 10.0 U<br>10.0 U                                                 | 5.00 U<br>5.00 U                                                       |     |
| Dichloroethane, 1,2-                                                                                                                          | µg/L         | 0.6 <sup>A</sup>                        | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Dichloroethene, 1,1-                                                                                                                          | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Dichloroethene, cis-1,2-                                                                                                                      | µg/L         | 5 <sup>A</sup>                          | 1,790 <sup>A</sup>                                                       | 8,600 <sup>A</sup>                                                          | 2,770 <sup>A</sup>                                                          | 2,720 <sup>A</sup>                                                          | 772 <sup>A</sup>                                                            | 8.3 <sup>A</sup>                                                         | 23.6 <sup>A</sup>                                                       | 9.39 <sup>A</sup>                                                              | -                                                                      | 2.89                                                                   | 165^                                                                    | 118 <sup>A</sup>                                                       | 256 <sup>A</sup>                                                        | 391 <sup>A</sup>                                                 | 295 <sup>A</sup>                                                       | 4   |
| Dichloroethene, trans-1,2-<br>Dichloropropane, 1,2-                                                                                           | μg/L<br>μg/L | 5 <sup>A</sup><br>1 <sup>A</sup>        | 100 U<br>100 U                                                           | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 2.0 U                                                                    | 24.3 <sup>A</sup>                                                       | 4.89<br><b>2.00 U</b>                                                          | -                                                                      | 13.3 <sup>A</sup><br>2.00 U                                            | 8.33 <sup>A</sup><br>2.00 U                                             | 2.43<br><b>2.00 U</b>                                                  | 4.40 J<br><b>5.00 U</b>                                                 | 10.0 U                                                           | 3.69 J<br><b>5.00 U</b>                                                |     |
| Dichloropropane, 1,3-                                                                                                                         | µg/L         | 5 <sup>A</sup>                          | -                                                                        | -                                                                           | -                                                                           |                                                                             |                                                                             | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 0                                                                         | -                                                                      | 2.00 0                                                                 | 2.00 0                                                                  | 2.00 0                                                                 | 5.00 0                                                                  | 10.0 U<br>-                                                      | 5.00 0                                                                 |     |
| Dichloropropane, 2,2-                                                                                                                         | µg/L         | 5 <sup>A</sup>                          | -                                                                        | -                                                                           | -                                                                           | -                                                                           | -                                                                           | 2.0 U                                                                    | 2.00 U                                                                  | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |     |
| Dichloropropene, cis-1,3-                                                                                                                     | µg/L         | 0.4 <sub>p</sub> <sup>A</sup>           | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                        | -                                                                       | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Dichloropropene, trans-1,3-<br>Dioxane, 1,4-                                                                                                  | μg/L<br>μg/L | 0.4 <sub>p</sub> <sup>A</sup><br>n/v    | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U<br>20 U                                                            | <b>2.00 U</b><br>20.0 U                                                 | 2.00 U<br>20.0 U                                                               | -                                                                      | 2.00 U<br>R                                                            | 2.00 U<br>20.0 U                                                        | <b>2.00 U</b><br>20.0 U                                                | 5.00 U<br>50.0 U                                                        | <b>10.0 U</b><br>100 U                                           | 5.00 U<br>50.0 U                                                       |     |
| Ethylbenzene                                                                                                                                  | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Ethylene Dibromide (Dibromoethane, 1,2-)                                                                                                      | µg/L         | 0.0006 <sup>A</sup>                     | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       |                                                                             | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Hexanone, 2- (Methyl Butyl Ketone)<br>Isopropylbenzene                                                                                        | μg/L<br>μg/L | 50 <sup>B</sup><br>5 <sup>A</sup>       | 250 U<br>250 U                                                           | 250 U<br>100 U                                                              | 250 U<br>100 U                                                              | 250 U<br>100 U                                                              | 250 U                                                                       | 5.0 U                                                                    | 5.00 U<br>2.00 U                                                        | 5.00 U<br>2.00 U                                                               | -                                                                      | 5.00 U<br>2.00 U                                                       | 5.00 U<br>2.00 U                                                        | 5.00 U<br>2.00 U                                                       | 12.5 U<br>5.00 U                                                        | 25.0 U<br><b>10.0 U</b>                                          | 12.5 U<br>5.00 U                                                       |     |
| Isopropyltoluene, p- (Cymene)                                                                                                                 | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                           | -                                                                        | -                                                                       | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |     |
| Methyl Acetate                                                                                                                                | µg/L         | n/v                                     | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                           | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                                                                                        | µg/L         | 50 <sup>B</sup><br>n/v                  | 500 U<br>250 U                                                           | 500 U<br>250 U                                                              | 500 U<br>250 U                                                              | 500 U<br>250 U                                                              | 500 U<br>250 U                                                              | 33<br>5.0 U                                                              | 10.0 U<br>5.00 U                                                        | 10.0 U<br>5.00 U                                                               | -                                                                      | 9.98 J<br>5.00 U                                                       | 10.0 U<br>5.00 U                                                        | 10.0 U<br>5.00 U                                                       | 25.0 U<br>12.5 U                                                        | 50.0 U<br>25.0 U                                                 | 25.0 U<br>12.5 U                                                       |     |
| Methyl Isobutyl Ketone (MIBK)<br>Methyl tert-butyl ether (MTBE)                                                                               | μg/L<br>μg/L | 10 <sup>B</sup>                         | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | - 250 0                                                                     | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Methylcyclohexane                                                                                                                             | µg/L         | n/v                                     | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                           | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Methylene Chloride (Dichloromethane)                                                                                                          | µg/L         | 5 <sup>A</sup>                          | 250 U                                                                    | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | 5.0 U                                                                    | 5.00 U                                                                  | 5.00 U                                                                         | -                                                                      | 5.00 U                                                                 | 5.00 U                                                                  | 5.00 U                                                                 | 12.5 U                                                                  | 25.0 U                                                           | 12.5 U                                                                 |     |
| Naphthalene<br>Propylbenzene, n-                                                                                                              | μg/L<br>μg/L | 10 <sup>A</sup><br>5 <sup>A</sup>       | 250 U<br>250 U                                                           | 250 U<br>100 U                                                              | 250 U<br>100 U                                                              | 250 U<br>100 U                                                              | -                                                                           | -                                                                        | -                                                                       | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       |                                                                  | -                                                                      |     |
| Styrene                                                                                                                                       | µg/L         | 5 <sup>A</sup>                          | 250 U                                                                    | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | 5.0 U                                                                    | 5.00 U                                                                  | 5.00 U                                                                         | -                                                                      | 5.00 U                                                                 | 5.00 U                                                                  | 5.00 U                                                                 | 12.5 U                                                                  | 25.0 U                                                           | 12.5 U                                                                 |     |
| Tetrachloroethane, 1,1,2,2-                                                                                                                   | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Tetrachloroethene (PCE)<br>Toluene                                                                                                            | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | 2,390 <sup>A</sup><br>100 U                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 2.0 U<br>2.0 U                                                           | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                               | -                                                                      | 2.00 U<br>2.00 U                                                       | 2.00 U<br>2.00 U                                                        | 2.00 U<br>2.00 U                                                       | 5.00 U<br>5.00 U                                                        | 10.0 U<br>10.0 U                                                 | 5.00 U<br>5.00 U                                                       |     |
| Trichlorobenzene, 1,2,3-                                                                                                                      | μg/L<br>μg/L | 5 <sup>A</sup>                          | 250 U                                                                    | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       |                                                                             | 5.0 U                                                                    | 5.00 U                                                                  | 5.00 U                                                                         | -                                                                      | 5.00 U                                                                 | 5.00 U                                                                  | 5.00 U                                                                 | 12.5 U                                                                  | 25.0 U                                                           | 12.5 U                                                                 |     |
| Trichlorobenzene, 1,2,4-                                                                                                                      | μg/L         | 5 <sup>A</sup>                          | 250 U                                                                    | 250 U                                                                       | 250 U                                                                       | 250 U                                                                       | -                                                                           | 5.0 U                                                                    | 5.00 U                                                                  | 5.00 U                                                                         | -                                                                      | 5.00 U                                                                 | 5.00 U                                                                  | 5.00 U                                                                 | 12.5 U                                                                  | 25.0 U                                                           | 12.5 U                                                                 |     |
| Trichloroethane, 1,1,1-                                                                                                                       | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Trichloroethane, 1,1,2-<br>Trichloroethene (TCE)                                                                                              | µg/L         | 1 <sup>A</sup><br>5 <sup>A</sup>        | 100 U                                                                    | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | 100 U<br>100 U                                                              | <b>2.0 U</b><br>2.0 U                                                    | <b>2.00 U</b><br>2.00 U                                                 | 2.00 U<br>2.00 U                                                               | -                                                                      | 2.00 U<br>2.00 U                                                       | 2.00 U<br>2.00 U                                                        | <b>2.00 U</b><br>2.00 U                                                | 5.00 U<br>5.00 U                                                        | 10.0 U<br>10.0 U                                                 | 5.00 U<br>5.00 U                                                       |     |
| Trichlorofluoromethane (Freon 11)                                                                                                             | μg/L<br>μg/L | 5 <sup>A</sup>                          | 1,140 <sup>A</sup><br>100 U                                              | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Trichlorotrifluoroethane (Freon 113)                                                                                                          | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                           | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Trimethylbenzene, 1,2,4-                                                                                                                      | µg/L         | 5 <sup>A</sup>                          | 250 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -                                                                           | -                                                                        | -                                                                       | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |     |
| Trimethylbenzene, 1,3,5-<br>Vinyl Acetate                                                                                                     | µg/L         | 5⊷ <sup>A</sup><br>n/v                  | 250 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | -<br>250 U                                                                  | -                                                                        | -                                                                       | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |     |
| Vinyl Chloride                                                                                                                                | μg/L<br>μg/L | 2 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 183 <sup>A</sup>                                                            | 945 <sup>A</sup>                                                            | 879 <sup>A</sup>                                                            | 13 <sup>A</sup>                                                          | 81.8 <sup>A</sup>                                                       | 6.65 <sup>A</sup>                                                              | -                                                                      | 3.52 <sup>A</sup>                                                      | 140 <sup>A</sup>                                                        | 135 <sup>A</sup>                                                       | 365 <sup>A</sup>                                                        | 914 <sup>A</sup>                                                 | 430 <sup>A</sup>                                                       |     |
| Xylene, m & p-                                                                                                                                | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Xylene, o-                                                                                                                                    | µg/L         | 5 <sup>A</sup>                          | 100 U                                                                    | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 100 U                                                                       | 2.0 U                                                                    | 2.00 U                                                                  | 2.00 U                                                                         | -                                                                      | 2.00 U                                                                 | 2.00 U                                                                  | 2.00 U                                                                 | 5.00 U                                                                  | 10.0 U                                                           | 5.00 U                                                                 |     |
| Total VOC                                                                                                                                     | µg/L         | n/v                                     | 5,320                                                                    | 8,600                                                                       | 2,953                                                                       | 3,665                                                                       | 1,651                                                                       | 54.3                                                                     | 129.7                                                                   | 20.93                                                                          | -                                                                      | 43.29                                                                  | 313.33                                                                  | 255.43                                                                 | 625.4                                                                   | 1,305                                                            | 728.69                                                                 |     |
| Miscellaneous Parameters Arsenic                                                                                                              | mg/L         | 0.005 <sup>A</sup>                      | 0.010 U                                                                  | 0.040Å                                                                      | 0.013                                                                       | 0.024                                                                       |                                                                             |                                                                          | 0.040A                                                                  |                                                                                |                                                                        | -                                                                      |                                                                         |                                                                        |                                                                         |                                                                  | -                                                                      | _   |
| Iron                                                                                                                                          | mg/L<br>mg/L | 0.025 <sup>A</sup><br>0.3. <sup>A</sup> | 3.42 <sup>A</sup>                                                        | 0.048 <sup>A</sup><br>20.8 <sup>A</sup>                                     | 2.35 <sup>A</sup>                                                           | 19.3 <sup>A</sup>                                                           | -                                                                           | -                                                                        | 0.0432 <sup>A</sup><br>16.9 L <sup>A</sup>                              | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | [                                                                       |                                                                  | 1 -                                                                    |     |
| Manganese                                                                                                                                     | mg/L         | 0.3. <sup>A</sup>                       | 0.294                                                                    | 0.117                                                                       | 0.155                                                                       | 0.109                                                                       |                                                                             | -                                                                        | 0.218 L                                                                 | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       |                                                                  |                                                                        |     |
| Sodium                                                                                                                                        | mg/L         | 20 <sup>A</sup>                         | 1,270 <sup>A</sup>                                                       | 1,250 <sup>A</sup>                                                          | 407 <sup>A</sup>                                                            | 1,280 <sup>A</sup>                                                          | 2,290 <sup>A</sup>                                                          | 2,000 <sup>A</sup>                                                       | 1,160 <sup>A</sup>                                                      | -                                                                              | -                                                                      | -                                                                      | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |     |
| Total Organic Carbon                                                                                                                          | mg/L         | n/v                                     | 5.2                                                                      | 122                                                                         | 8.5                                                                         | 8.9                                                                         | 20.5                                                                        |                                                                          | 144                                                                     | 92.0                                                                           | 41.0                                                                   |                                                                        | 15                                                                      | 10.8                                                                   | 12.6                                                                    | 2.5                                                              | 5.5                                                                    |     |



| -   |
|-----|
| -   |
| _   |
|     |
| 6.9 |
|     |

| Sample Location                                                                | 1                  | 1                                                                 |                               |                             |                              |                               |                             |                             | M                          | W16R                       |                            |                          |                             |                                         |                              |                              |                              |                               |                             |
|--------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------|-------------------------------|-----------------------------|------------------------------|-------------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|-----------------------------|-----------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|-----------------------------|
| Sample Date                                                                    |                    | 28-Sep-11                                                         | 5-Jan-12                      | 3-Feb-12                    | 1-Mar-12                     | 1-Mar-12                      | 5-Jun-12                    | 5-Sep-12                    | 23-Jan-13                  | 11-Apr-13                  | 3-Jul-13                   | 9-Oct-13                 | 9-Oct-13                    | 18-Jun-15                               | 9-Mar-16                     | 10-Jan-18                    | 24-Oct-18                    | 8-Oct-19                      | 5-Oct-21                    |
| ample ID<br>ampling Company                                                    |                    | WSR-MW-16R-GW-18<br>STANTEC                                       | 3 WSR-MW-16R-GW-19<br>STANTEC | WSR-MW-16R-GW-20<br>STANTEC | WSR-MW-16R-GW-21<br>STANTEC  | WSR-MW-DUP-GW-21<br>STANTEC   | WSR-MW-16R-GW-22<br>STANTEC | WSR-MW-16R-GW-23<br>STANTEC | WSR-MW-16R-GW<br>STANTEC   | WSR-MW-16R-GW<br>STANTEC   | WSR-MW-16R-GW<br>STANTEC   | WSR-MW-16R-GW<br>STANTEC | WSR-MW-16R-GW<br>STANTEC    | 828-MW-16R-GW<br>STANTEC                | WSR-MW-16R-GW<br>STANTEC     | WSR-MW-16R-GW<br>STANTEC     | MW-16R<br>STANTEC            | WSR-MW-16R-GV<br>STANTEC      | W MW-16F<br>STANTE          |
| aboratory                                                                      |                    | PARAROCH                                                          | PARAROCH                      | PARAROCH                    | PARAROCH                     | PARAROCH                      | PARAROCH                    | PARAROCH                    | PARAROCH                   | PARAROCH                   | PARAROCH                   | PARAROCH                 | PARAROCH                    | PARAROCH                                | PARAROCH                     | PARAROCH                     | PARAROCH                     | PARAROCH                      | PARARO                      |
| aboratory Work Order                                                           |                    | P11-4106                                                          | P12-0069                      | 12:0472                     | 12:0906                      | 12:0906                       | 12:2364                     | 12:3668                     | 13:0353                    | 131259                     | 132490                     | 133891                   | 133926                      | 152493                                  | 160970                       | 180096                       | 184937                       | 194958                        | 214498                      |
| aboratory Sample ID<br>Sample Type                                             | Units TO           | 14149<br>DGS                                                      | 12:0069-02                    | 12:0472-07                  | 12:0906-05                   | 12:0906-06<br>Field Duplicate | 12:2364-05                  | 12:3668-04                  | 130353-04                  | 131259-04                  | 132490-05                  | 133891-04                | 133926-04                   | 152493-05                               | 160970-04                    | 180096-03                    | 184937-03                    | 194958-03                     | 214498-0                    |
| olatile Organic Compounds                                                      |                    |                                                                   |                               |                             |                              |                               |                             |                             |                            |                            |                            |                          |                             |                                         |                              |                              |                              |                               |                             |
| cetone                                                                         | μg/L 5             |                                                                   | 25.0 U                        | 500 U                       | 100 U                        | 100 U                         | 500 U                       | 500 U                       | 250 U                      | 100 U                      | 100 U                      | -                        | 100 U                       | 100 U                                   | 250 U                        | 250 U                        | 250 U                        | 250 U                         | 7.93 JB                     |
| enzene<br>romobenzene                                                          | μg/L 1<br>μg/L 5   | <sup>A</sup> 3.50 U                                               | 1.75 U                        | 35.0 U                      | 7.00 U                       | 7.00 U                        | 35.0 U                      | 35.0 U                      | 18 U<br>130 U              | 7.00 U<br>50.0 U           | 7.00 U                     | -                        | 10 U                        | 10.0 U                                  | 25.0 U                       | 25.0 U                       | 25.0 U                       | 25.0 U                        | 1.00 U                      |
| romodichloromethane                                                            |                    | 0 <sup>B</sup> 10.0 U                                             | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| romoform (Tribromomethane)                                                     |                    | 0 <sup>B</sup> 25.0 U                                             | 12.5 U                        | 250 U                       | 50.0 U                       | 50.0 U                        | 250 U                       | 250 U                       | 130 U                      | 50.0 U                     | 50.0 U                     | -                        | 50.0 U                      | 50.0 U                                  | 125 U                        | 125 U                        | 125 U                        | 125 U                         | 5.00 U                      |
| romomethane (Methyl bromide)<br>utylbenzene, n-                                |                    | <sup>A</sup> 10.0 U<br><sup>A</sup> 25.0 U                        | 5.00 U<br><b>12.5 U</b>       | 100 U<br>100 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U              | 100 U<br>100 U              | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| utylbenzene, sec- (2-Phenylbutane)                                             |                    | ^ 25.0 U                                                          | 12.5 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | -                          | -                          | _                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
| utylbenzene, tert-                                                             | µg/L 5             | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | -                          | -                          | -                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
| arbon Disulfide<br>arbon Tetrachloride (Tetrachloromethane)                    | μg/L 6<br>μg/L ε   | 0 <sup>B</sup> 25.0 U<br>5 <sup>A</sup> <b>10.0 U</b>             | 12.5 U<br>5.00 U              | 100 U<br>100 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U              | 100 U<br>100 U              | 100 U<br>100 U              | 50 U<br>50 U               | 20.0 U<br>20.0 U           | 20.0 U<br><b>20.0 U</b>    | -                        | 20.0 U<br>20.0 U            | 20.0 U<br>20.0 U                        | 50.0 U<br><b>50.0 U</b>      | 50.0 U<br><b>50.0 U</b>      | 50.0 U<br>50.0 U             | 50.0 U<br><b>50.0 U</b>       | 2.00 U<br>2.00 U            |
| hlorobenzene (Monochlorobenzene)                                               | 10                 | ^ 10.0 U                                                          | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     |                          | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| hlorobromomethane                                                              | µg/L 5             | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 250 U                       | 50.0 U                       | 50.0 U                        | 250 U                       | -                           | 130 U                      | 50.0 U                     | 50.0 U                     | -                        | 50.0 U                      | 50.0 U                                  | 125 U                        | 125 U                        | 125 U                        | 125 U                         | 5.00 U                      |
| hloroethane (Ethyl Chloride)                                                   |                    | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| nloroethyl Vinyl Ether, 2-<br>nloroform (Trichloromethane)                     | μg/L n<br>μg/L 7   | /v -<br>r <sup>A</sup> 10.0 U                                     | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 500 U<br>100 U              | 250 U<br>50 U              | 100 U<br><b>20.0 U</b>     | 20.0 U                     |                          | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| nloromethane                                                                   | µg/L 5             | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| vclohexane                                                                     | 10                 | /v 50.0 U<br>04 <sup>A</sup> <b>50.0 U</b>                        | 25.0 U<br><b>25.0 U</b>       | 500 U<br>500 U              | 100 U<br><b>100 U</b>        | 100 U<br><b>100 U</b>         | 500 U<br><b>500 U</b>       | -                           | 250 U<br><b>250 U</b>      | 100 U<br><b>100 U</b>      | 100 U<br><b>100 U</b>      | -                        | 100 U<br><b>100 U</b>       | 100 U<br><b>100 U</b>                   | 250 U<br>250 U               | 250 U<br>250 U               | 250 U<br>250 U               | 250 U<br><b>250 U</b>         | 10.0 U<br><b>10.0 U</b>     |
| ibromo-3-Chloropropane, 1,2- (DBCP)<br>ibromochloromethane                     | μg/L 0.0<br>μg/L 5 |                                                                   | 25.0 U                        | 500 U<br>100 U              | 20.0 U                       | 20.0 U                        | 500 U<br>100 U              | 100 U                       | 250 U                      | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 250 U<br>50.0 U              | 250 U<br>50.0 U              | 250 U<br>50.0 U              | 250 0<br>50.0 U               | 2.00 U                      |
| ichlorobenzene, 1,2-                                                           | μg/L 3             |                                                                   | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Dichlorobenzene, 1,3-                                                          | µg/L 3             |                                                                   | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Dichlorobenzene, 1,4-<br>Dichlorodifluoromethane (Freon 12)                    | μg/L 3<br>μg/L 5   | 3 <sup>A</sup> 10.0 U<br><sup>A</sup> 25.0 U                      | 5.00 U<br>12.5 U              | 100 U<br>100 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U              | 100 U<br>100 U              | 100 U                       | 50 U<br>50 U               | 20.0 U<br>20.0 U           | 20.0 U<br>20.0 U           | -                        | 20.0 U<br>20.0 U            | 20.0 U<br>20.0 U                        | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U              | 2.00 U<br>2.00 U            |
| Dichloroethane, 1,1-                                                           |                    | ^ 10.0 U                                                          | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Dichloroethane, 1,2-                                                           | μg/L 0.            | 6 <sup>A</sup> 10.0 U                                             | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Dichloroethene, 1,1-                                                           |                    | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| ichloroethene, cis-1,2-<br>ichloroethene, trans-1,2-                           |                    | <sup>A</sup> 1,150 <sup>A</sup><br><sup>A</sup> 10.6 <sup>A</sup> | 110 <sup>A</sup><br>5.00 U    | 3,810 <sup>A</sup><br>100 U | 2,260 <sup>A</sup><br>20.0 U | 2,360 <sup>A</sup><br>20.0 U  | 2,630 <sup>A</sup><br>100 U | 1,410 <sup>A</sup><br>100 U | 1,000 <sup>A</sup><br>50 U | 841 <sup>A</sup><br>20.0 U | 664 <sup>A</sup><br>20.0 U | -                        | 77.7 <sup>A</sup><br>20.0 U | 1,520 <sup>A</sup><br>36.0 <sup>A</sup> | 1,610 <sup>A</sup><br>50.0 U | 3,330 <sup>A</sup><br>50.0 U | 1,080 <sup>A</sup><br>50.0 U | 1,420 <sup>A</sup><br>50.0 U  | 53.2 <sup>A</sup><br>2.00 U |
| ichloropropane, 1,2-                                                           | μg/L 1             | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | -                          | -                          | 20.0 U                     | _                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| ichloropropane, 1,3-                                                           | µg/L 5             | <sup>A</sup> -                                                    | -                             | -                           |                              | -                             | -                           | -                           | 50 U                       | 20.0 U                     | -                          | -                        | -                           |                                         | -                            | -                            | -                            | -                             | -                           |
| ichloropropane, 2,2-                                                           |                    | " <sup>A</sup> -                                                  |                               | -                           | -                            |                               | -                           | -                           | 50 U                       | 20.0 U                     |                            | -                        | -                           | -                                       |                              |                              |                              |                               | -                           |
| Dichloropropene, cis-1,3-<br>Dichloropropene, trans-1,3-                       | μg/L 0<br>μg/L 0   |                                                                   | 5.00 U<br>5.00 U              | 100 U<br>100 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U              | 100 U<br>100 U              | 100 U<br>100 U              | 50 U                       | 20.0 U                     | 20.0 U<br>20.0 U           | -                        | 20.0 U<br>20.0 U            | 20.0 U<br>20.0 U                        | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U              | 2.00 U<br>2.00 U            |
| Dioxane, 1,4-                                                                  | µg/L n             |                                                                   | -                             | -                           | -                            | -                             | -                           | -                           | 500 U                      | 200 U                      | 200 U                      | -                        | R 20.0 0                    | 200 U                                   | 500 U                        | 500 U                        | 500 U                        | 500 U                         | 10.0 U                      |
| thylbenzene                                                                    | μg/L 5             |                                                                   | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Ethylene Dibromide (Dibromoethane, 1,2-)<br>Hexanone, 2- (Methyl Butyl Ketone) | µg/L 0.00          | 006 <sup>A</sup> <b>10.0 U</b><br>0 <sup>B</sup> 25.0 U           | <b>5.00 U</b><br>12.5 U       | 100 U<br>250 U              | <b>20.0 U</b><br>50.0 U      | <b>20.0 U</b><br>50.0 U       | 100 U<br>250 U              | -<br>250 U                  | 50 U<br>130 U              | <b>20.0 U</b><br>50.0 U    | <b>20.0 U</b><br>50.0 U    | -                        | <b>20.0 U</b><br>50.0 U     | <b>20.0 U</b><br>50.0 U                 | 50.0 U<br>125 U              | 50.0 U<br>125 U              | 50.0 U<br>125 U              | 50.0 U<br>125 U               | 2.00 U<br>5.00 U            |
| sopropylbenzene                                                                |                    | " <sup>A</sup> 25.0 U                                             | 12.5 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | -                          | 20.0 U                     | 20.0 U                     |                          | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| sopropyltoluene, p- (Cymene)                                                   | µg/L 5             | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | -                          | -                          | -                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
| Methyl Acetate                                                                 |                    | /v 10.0 U                                                         | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Methyl Ethyl Ketone (MEK) (2-Butanone)<br>Methyl Isobutyl Ketone (MIBK)        | μg/L 5<br>μg/L n   | 0 <sup>B</sup> 50.0 U<br>/v 25.0 U                                | 25.0 U<br>12.5 U              | 500 U<br>250 U              | <b>100 U</b><br>50.0 U       | <b>100 U</b><br>50.0 U        | 500 U<br>250 U              | 500 U<br>250 U              | <b>250 U</b><br>130 U      | <b>100 U</b><br>50.0 U     | <b>100 U</b><br>50.0 U     | -                        | <b>100 UJ</b><br>50.0 U     | <b>100 U</b><br>50.0 U                  | 250 U<br>125 U               | <b>250 U</b><br>125 U        | 250 U<br>125 U               | <b>250 U</b><br>125 U         | 10.0 U<br>5.00 U            |
| Methyl tert-butyl ether (MTBE)                                                 | μg/L 1             |                                                                   | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Methylcyclohexane                                                              |                    | /v 10.0 U                                                         | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       |                             | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| Methylene Chloride (Dichloromethane)<br>Naphthalene                            |                    | <sup>A</sup> 25.0 U<br>0 <sup>A</sup> 25.0 U                      | 12.5 U<br>12.5 U              | 250 U<br>250 U              | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U              | 250 U<br>250 U              | 250 U                       | 130 U                      | 50.0 U                     | 50.0 U                     | -                        | 50.0 U                      | 50.0 U                                  | 125 U                        | 125 U                        | 125 U                        | 125 U                         | 5.00 U                      |
| Propylbenzene, n-                                                              | μg/L 5             |                                                                   | 12.5 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | -                          | -                          | _                          | _                        | -                           | _                                       | -                            | -                            | _                            | -                             |                             |
| Styrene                                                                        | µg/L 5             | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 250 U                       | 50.0 U                       | 50.0 U                        | 250 U                       | 250 U                       | 130 U                      | 50.0 U                     | 50.0 U                     | -                        | 50.0 U                      | 50.0 U                                  | 125 U                        | 125 U                        | 125 U                        | 125 U                         | 5.00 U                      |
| etrachloroethane, 1,1,2,2-                                                     |                    | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| etrachloroethene (PCE)<br>oluene                                               |                    | <sup>A</sup> 832 <sup>A</sup><br><sup>A</sup> 10.0 U              | 299 <sup>A</sup><br>5.00 U    | 100 U<br>100 U              | 65.4 <sup>A</sup><br>20.0 U  | 64.4 <sup>A</sup><br>20.0 U   | 100 U<br>100 U              | 100 U<br>100 U              | 50 U<br>50 U               | 20.0 U<br>20.0 U           | 20.0 U<br>20.0 U           |                          | 20.0 U<br>20.0 U            | 694 <sup>A</sup><br>20.0 U              | 50.0 U<br>50.0 U             | 99.7 <sup>A</sup><br>50.0 U  | 50.0 U<br>50.0 U             | 45.1 J <sup>A</sup><br>50.0 U | 2.00 U<br>2.00 U            |
| richlorobenzene, 1,2,3-                                                        | μg/L 5             | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 250 U                       | 50.0 U                       | 50.0 U                        | 250 U                       | -                           | 130 U                      | 50.0 U                     | 50.0 U                     | -                        | 50.0 U                      | 50.0 U                                  | 125 U                        | 125 U                        | 125 U                        | 125 U                         | 5.00 U                      |
| richlorobenzene, 1,2,4-                                                        |                    | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 250 U                       | 50.0 U                       | 50.0 U                        | 250 U                       | -                           | 130 U                      | 50.0 U                     | 50.0 U                     | -                        | 50.0 U                      | 50.0 U                                  | 125 U                        | 125 U                        | 125 U                        | 125 U                         | 5.00 U                      |
| richloroethane, 1,1,1-<br>richloroethane, 1,1,2-                               |                    | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U<br>100 U              | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| richloroethane, 1,1,2-<br>richloroethene (TCE)                                 |                    | 1 <sup>A</sup> 10.0 U<br><sup>A</sup> 651 <sup>A</sup>            | 5.00 U<br>57.1 <sup>A</sup>   | 100 U<br>100 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U              | 100 U<br>100 U              | 100 U<br>100 U              | 50 U<br>50 U               | 20.0 U<br>167 <sup>A</sup> | 20.0 U<br>20.0 U           | -                        | 20.0 U<br>20.0 U            | 20.0 U<br>350 <sup>A</sup>              | 50.0 U<br>50.0 U             | 50.0 U<br>204 <sup>A</sup>   | 50.0 U<br>50.0 U             | 50.0 U<br>53.1 <sup>A</sup>   | 2.00 U<br>7.59 <sup>A</sup> |
| richlorofluoromethane (Freon 11)                                               |                    | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     |                          | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| richlorotrifluoroethane (Freon 113)                                            | µg/L 5             | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| rimethylbenzene, 1,2,4-                                                        |                    | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -                           | -                          | -                          | -                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
| rimethylbenzene, 1,3,5-<br>inyl Acetate                                        |                    | <sup>A</sup> 25.0 U                                               | 12.5 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | -<br>250 U                  |                            | -                          |                            | -                        |                             |                                         | -                            | -                            | -                            | -                             |                             |
| inyl Chloride                                                                  | μg/L 2             |                                                                   | 5.00 U                        | 717 <sup>A</sup>            | 997 <sup>A</sup>             | 1,030 <sup>A</sup>            | 1,060 <sup>A</sup>          | 790 <sup>A</sup>            | 1,100 <sup>A</sup>         | 558 <sup>A</sup>           | 1,040 <sup>A</sup>         | -                        | 33.1 <sup>A</sup>           | 537 <sup>A</sup>                        | 961 <sup>A</sup>             | 1,130 <sup>A</sup>           | 973 <sup>A</sup>             | 634 <sup>A</sup>              | 45.8 <sup>A</sup>           |
| ylene, m & p-                                                                  | µg/L 5             | <sup>A</sup> 10.0 U                                               | 5.00 U                        | 100 U                       | 20.0 U                       | 20.0 U                        | 100 U                       | 100 U                       | 50 U                       | 20.0 U                     | 20.0 U                     | -                        | 20.0 U                      | 20.0 U                                  | 50.0 U                       | 50.0 U                       | 50.0 U                       | 50.0 U                        | 2.00 U                      |
| ylene, o-<br>otal VOC                                                          |                    | <sup>A</sup> <b>10.0 U</b><br>/v 2,666.9                          | 5.00 U<br>466.1               | <b>100 U</b><br>4,527       | <b>20.0 U</b><br>3,322.4     | <b>20.0 U</b><br>3,454.4      | <b>100 U</b><br>3,690       | <b>100 U</b><br>2,200       | <b>50 U</b><br>2,100       | <b>20.0 U</b><br>1,566     | <b>20.0 U</b><br>1,704     | -                        | 20.0 U<br>110.8             | <b>20.0 U</b><br>3,137                  | 50.0 U<br>2,571              | <b>50.0 U</b><br>4,763.7     | 50.0 U<br>2,053              | 50.0 U<br>2,152.2             | 2.00 U<br>114.52            |
| Aiscellaneous Parameters                                                       | рук∟ п             | 2,000.9                                                           | 400.1                         | 7,327                       | 0,022.4                      | 0,404.4                       | 3,090                       | 2,200                       | 2,100                      | 1,000                      | 1,704                      | -                        | 110.0                       | 0,107                                   | 2,3/1                        | 4,103.1                      | 2,000                        | 2,102.2                       | 114.02                      |
| Insenic                                                                        | mg/L 0.0           | 25 <sup>A</sup> 0.010 U                                           | 0.010 U                       | 0.010 U                     | 0.010 U                      | 0.010 U                       | 0.010 U                     | -                           | -                          | 0.0100 U                   | -                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
| on                                                                             | mg/L 0.0           |                                                                   | 0.100 U                       | 0.381 <sup>A</sup>          | 1.00 <sup>A</sup>            | 1.05 <sup>A</sup>             | 2.68 <sup>A</sup>           | -                           | -                          | 0.144 L                    | -                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
| langanese                                                                      | mg/L 0.            |                                                                   | 0.015 U                       | 0.072                       | 0.287                        | 0.242                         | 0.109                       | -                           | -                          | 0.146 L                    | -                          | -                        | -                           | -                                       | -                            | -                            | -                            | -                             | -                           |
|                                                                                |                    | 0 <sup>A</sup> 461 <sup>A</sup>                                   | 675 <sup>A</sup>              | 1,070 <sup>A</sup>          | 590 <sup>A</sup>             | 598 <sup>A</sup>              | 659 <sup>A</sup>            | 758 <sup>A</sup>            | 820 <sup>A</sup>           | 340 <sup>A</sup>           | _                          | · ·                      | -                           | -                                       | -                            | l -                          |                              | -                             | -                           |
| odium<br>otal Organic Carbon                                                   | mg/L 2<br>mg/L n   | 0 401<br>/v 4.3                                                   | 4.4                           | 5.7                         | 3.9                          | 5.7                           | 4.2                         | 16.2                        | 230                        | 49.6                       | 42.0                       | 11.0                     |                             | 3.9                                     | 10.3                         | 5.49                         | 3.5                          | 1.0                           | 11.6                        |

| Sample Location<br>Sample Date<br>Sample ID<br>Sampling Company<br>Laboratory<br>Laboratory Work Order<br>Laboratory Sample ID<br>Sample Type | Units        | TOGS                                    | 28-Sep-11<br>WSR-MW-23-GW-7<br>STANTEC<br>PARAROCH<br>P11-4106<br>14150 | 5-Jan-12<br>828-MW-23-GW-8<br>STANTEC<br>PARAROCH<br>P12-0069<br>12:0069-06 | 6-Feb-12<br>828-MW-23-GW-9<br>STANTEC<br>PARAROCH<br>12:0488<br>12:0488-02 | 2-Mar-12<br>828-MW-23-GW-10<br>STANTEC<br>PARAROCH<br>12:0936<br>12:0936-05 | 5-Jun-12<br>828-MW-23-GW-11<br>STANTEC<br>PARAROCH<br>12:2364<br>12:2364-02 | 5-Jun-12<br>828-MW-DUP-GW-11<br>STANTEC<br>PARAROCH<br>12:2364<br>12:2364-03<br>Field Duplicate | 6-Sep-12<br>828-MW-23-GW-12<br>STANTEC<br>PARAROCH<br>12:3694<br>12:3694-05 | 24-Jan-13<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>13:0365<br>130365-05 | MW23<br>10-Apr-13<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>131242<br>131242-02 | 5-Jul-13<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>132505<br>132505-03 | 10-Oct-13<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>133909<br>133909-01 | 10-Oct-13<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>133925<br>133925-02 | 10-Oct-13<br>828-MW-DUP-GW<br>STANTEC<br>PARAROCH<br>133925<br>133925-03<br>Field Duplicate | 17-Jun-15<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>152493<br>152493-02 | 9-Mar-16<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>160970<br>160970-01 | 10-Jan-18<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>180096<br>180096-05 | 24-Oct-18<br>MW-23<br>STANTEC<br>PARAROCH<br>184937<br>184937-01 | 8-Oct-19<br>828-MW-23-GW<br>STANTEC<br>PARAROCH<br>194958<br>194958-05 | 5-Oct-21<br>MW-23<br>STANTEC<br>PARAROCH<br>214498<br>214498-04 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|
| Volatile Organic Compounds<br>Acetone                                                                                                         | µg/L         | 50 <sup>B</sup>                         | 100 U                                                                   | 500 U                                                                       | 500 U                                                                      | 500 U                                                                       | 1,000 U                                                                     | 1,000 U                                                                                         | 1,000 U                                                                     | 1,000 U                                                                  | 100 U                                                                           | 100 U                                                                  | -                                                                       | 100 U                                                                   | 100 U                                                                                       | 100 U                                                                   | 250 U                                                                  | 250 U                                                                   | 250 U                                                            | 250 U                                                                  | 10.0 U                                                          |
| Benzene<br>Bromobenzene                                                                                                                       | μg/L<br>μg/L | 1 <sup>A</sup><br>5 <sup>A</sup>        | 7.00 U                                                                  | 35.0 U                                                                      | 35.0 U                                                                     | 35.0 U                                                                      | 70.0 U                                                                      | 70.0 U                                                                                          | 70.0 U                                                                      | 70 U<br>500 U                                                            | 7.00 U<br>50.0 U                                                                | 7.00 U                                                                 | -                                                                       | 10 U                                                                    | 10 U                                                                                        | 10.0 U                                                                  | 25.0 U                                                                 | 25.0 U                                                                  | 25.0 U                                                           | 25.0 U                                                                 | 1.00 UL                                                         |
| Bromodichloromethane                                                                                                                          | µg/L         | 50 <sup>B</sup>                         | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 UL                                                         |
| Bromoform (Tribromomethane)<br>Bromomethane (Methyl bromide)                                                                                  | μg/L<br>μg/L | 50 <sup>B</sup><br>5 <sup>A</sup>       | 50.0 U<br><b>20.0 U</b>                                                 | 250 U<br>100 U                                                              | 250 U<br>100 U                                                             | 250 U<br>100 U                                                              | 500 U<br>200 U                                                              | 500 U<br>200 U                                                                                  | 500 U<br>200 U                                                              | 500 U<br>200 U                                                           | 50.0 U<br><b>20.0 U</b>                                                         | 50.0 U<br>20.0 U                                                       | -                                                                       | 50.0 U<br><b>20.0 U</b>                                                 | 50.0 U<br><b>20.0 U</b>                                                                     | 50.0 U<br><b>20.0 U</b>                                                 | 125 U<br>50.0 U                                                        | 125 U<br>50.0 U                                                         | 125 U<br>50.0 U                                                  | 125 U<br>50.0 U                                                        | 5.00 U<br>2.00 U                                                |
| Butylbenzene, n-                                                                                                                              | µg/L         | 5 <sup>A</sup>                          | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           |                                                                             |                                                                          | -                                                                               |                                                                        | -                                                                       |                                                                         |                                                                                             |                                                                         | -                                                                      | -                                                                       | -                                                                | -                                                                      | -                                                               |
| Butylbenzene, sec- (2-Phenylbutane)<br>Butylbenzene, tert-                                                                                    | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 50.0 U<br>50.0 U                                                        | 250 U<br>250 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | -                                                                           | -                                                                        | -                                                                               | -                                                                      | -                                                                       |                                                                         | -                                                                                           | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      |                                                                 |
| Carbon Disulfide                                                                                                                              | µg/L         | 60 <sup>B</sup>                         | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Carbon Tetrachloride (Tetrachloromethane)<br>Chlorobenzene (Monochlorobenzene)                                                                | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | 200 U<br>200 U                                                              | 200 U<br>200 U                                                           | 20.0 U<br>20.0 U                                                                | 20.0 U<br>20.0 U                                                       | -                                                                       | 20.0 U<br>20.0 U                                                        | 20.0 U<br>20.0 U                                                                            | 20.0 U<br>20.0 U                                                        | 50.0 U<br>50.0 U                                                       | 50.0 U<br>50.0 U                                                        | 50.0 U<br>50.0 U                                                 | 50.0 U<br>50.0 U                                                       | 2.00 U<br>2.00 U                                                |
| Chlorobromomethane                                                                                                                            | µg/L         | 5 <sup>A</sup>                          | 50.0 U                                                                  | 250 U                                                                       | 250 U                                                                      | 250 U                                                                       | 500 U                                                                       | 500 U                                                                                           | -                                                                           | 500 U                                                                    | 50.0 U                                                                          | 50.0 U                                                                 | -                                                                       | 50.0 U                                                                  | 50.0 U                                                                                      | 50.0 U                                                                  | 125 U                                                                  | 125 U                                                                   | 125 U                                                            | 125 U                                                                  | 5.00 U                                                          |
| Chloroethane (Ethyl Chloride)<br>Chloroethyl Vinyl Ether, 2-                                                                                  | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                   | 20.0 U<br>-                                                             | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | <b>200 U</b><br>1,000 U                                                     | <b>200 U</b><br>1,000 U                                                  | <b>20.0 U</b><br>100 U                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U<br>-                                                             | 50.0 U<br>-                                                            | 50.0 U                                                                  | 50.0 U<br>-                                                      | 50.0 U                                                                 | 2.00 U<br>-                                                     |
| Chloroform (Trichloromethane)                                                                                                                 | µg/L         | 7 <sup>A</sup>                          | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Chloromethane<br>Cyclohexane                                                                                                                  | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                   | <b>20.0 U</b><br>100 U                                                  | <b>100 U</b><br>500 U                                                       | <b>100 U</b><br>500 U                                                      | <b>100 U</b><br>500 U                                                       | <b>200 U</b><br>1,000 U                                                     | <b>200 U</b><br>1,000 U                                                                         | 200 U<br>-                                                                  | <b>200 U</b><br>1,000 U                                                  | <b>20.0 U</b><br>100 U                                                          | <b>20.0 U</b><br>100 U                                                 | -                                                                       | <b>20.0 U</b><br>100 U                                                  | <b>20.0 U</b><br>100 U                                                                      | <b>20.0 U</b><br>100 U                                                  | <b>50.0 U</b><br>250 U                                                 | <b>50.0 U</b><br>250 U                                                  | <b>50.0 U</b><br>250 U                                           | <b>50.0 U</b><br>250 U                                                 | 2.00 U<br>10.0 U                                                |
| Dibromo-3-Chloropropane, 1,2- (DBCP)<br>Dibromochloromethane                                                                                  | μg/L<br>μg/L | 0.04 <sup>A</sup><br>50 <sup>B</sup>    | <b>100 U</b><br>20.0 U                                                  | 500 U<br>100 U                                                              | 500 U<br>100 U                                                             | 500 U<br>100 U                                                              | 1,000 U<br>200 U                                                            | 1,000 U<br>200 U                                                                                | -<br>200 U                                                                  | 1,000 U<br>200 U                                                         | <b>100 U</b><br>20.0 U                                                          | <b>100 U</b><br>20.0 U                                                 | -                                                                       | <b>100 U</b><br>20.0 U                                                  | <b>100 U</b><br>20.0 U                                                                      | <b>100 U</b><br>20.0 U                                                  | 250 U<br>50.0 U                                                        | <b>250 U</b><br>50.0 U                                                  | 250 U<br>50.0 U                                                  | <b>250 U</b><br>50.0 U                                                 | <b>10.0 U</b><br>2.00 U                                         |
| Dichlorobenzene, 1,2-                                                                                                                         | µg/L<br>µg/L | 3 <sup>A</sup>                          | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 |                                                                         | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Dichlorobenzene, 1,3-<br>Dichlorobenzene, 1,4-                                                                                                | μg/L<br>μg/L | 3 <sup>A</sup><br>3 <sup>A</sup>        | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | 200 U<br>200 U                                                              | 200 U<br>200 U                                                           | 20.0 U<br>20.0 U                                                                | 20.0 U<br>20.0 U                                                       | -                                                                       | 20.0 U<br>20.0 U                                                        | 20.0 U<br>20.0 U                                                                            | 20.0 U<br>20.0 U                                                        | 50.0 U<br>50.0 U                                                       | 50.0 U<br>50.0 U                                                        | 50.0 U<br>50.0 U                                                 | 50.0 U<br>50.0 U                                                       | 2.00 U<br>2.00 U                                                |
| Dichlorodifluoromethane (Freon 12)                                                                                                            | µg/L         | 5 <sup>A</sup>                          | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | -                                                                           | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Dichloroethane, 1,1-<br>Dichloroethane, 1,2-                                                                                                  | μg/L<br>μg/L | 5 <sup>A</sup><br>0.6 <sup>A</sup>      | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | 200 U<br>200 U                                                              | 200 U<br>200 U                                                           | 20.0 U<br>20.0 U                                                                | 20.0 U<br>20.0 U                                                       | -                                                                       | 20.0 U<br>20.0 U                                                        | 20.0 U<br>20.0 U                                                                            | 20.0 U<br>20.0 U                                                        | 50.0 U<br>50.0 U                                                       | 50.0 U<br>50.0 U                                                        | 50.0 U<br>50.0 U                                                 | 50.0 U<br>50.0 U                                                       | 2.00 U<br>2.00 U                                                |
| Dichloroethene, 1,1-                                                                                                                          | µg/L         | 5 <sup>A</sup>                          | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Dichloroethene, cis-1,2-<br>Dichloroethene, trans-1,2-                                                                                        | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 4,130 <sup>A</sup><br>100 U                                                | 10,900 <sup>A</sup><br>100 U                                                | 5,120 <sup>A</sup><br>200 U                                                 | 5,240 <sup>A</sup><br>200 U                                                                     | 3,940 <sup>A</sup><br>200 U                                                 | 8,900 <sup>A</sup><br>200 U                                              | 242 <sup>A</sup><br>20.0 U                                                      | 862 <sup>A</sup><br>20.0 U                                             | -                                                                       | 86.8 J <sup>A</sup><br>20.0 U                                           | 142 J <sup>A</sup><br>20.0 U                                                                | 1,040 <sup>A</sup><br>20.0 U                                            | 1,110 <sup>A</sup><br>50.0 U                                           | 2,540 <sup>A</sup><br>50.0 U                                            | 1,020 <sup>A</sup><br>50.0 U                                     | 1,170 <sup>A</sup><br>50.0 U                                           | 14.5 <sup>A</sup><br>2.00 U                                     |
| Dichloropropane, 1,2-                                                                                                                         | μg/L<br>μg/L | 5<br>1 <sup>A</sup>                     | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | - 200 0                                                                  | - 20.0 0                                                                        | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Dichloropropane, 1,3-<br>Dichloropropane, 2,2-                                                                                                | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | -                                                                       | -                                                                           | -                                                                          | -                                                                           | -                                                                           | -                                                                                               | -                                                                           | 200 U                                                                    | 20.0 U                                                                          | -                                                                      | -                                                                       | -                                                                       | -                                                                                           | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      | -                                                               |
| Dichloropropene, cis-1,3-                                                                                                                     | μg/L<br>μg/L | 0.4 <sub>p</sub> <sup>A</sup>           | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Dichloropropene, trans-1,3-<br>Dioxane, 1,4-                                                                                                  | μg/L<br>μg/L | 0.4 <sub>p</sub> <sup>A</sup><br>n/v    | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U<br>2,000 U                                                         | <b>20.0 U</b><br>200 U                                                          | 20.0 U<br>200 U                                                        | -                                                                       | 20.0 U                                                                  | 20.0 U<br>R                                                                                 | 20.0 U<br>200 U                                                         | 50.0 U<br>500 U                                                        | 50.0 U<br>500 U                                                         | 50.0 U<br>500 U                                                  | 50.0 U<br>500 U                                                        | 2.00 U<br>10.0 U                                                |
| Ethylbenzene                                                                                                                                  | µg/L<br>µg/L | 5 <sup>A</sup>                          | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 |                                                                         | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Ethylene Dibromide (Dibromoethane, 1,2-)<br>Hexanone, 2- (Methyl Butyl Ketone)                                                                | μg/L<br>μg/L | 0.0006 <sup>A</sup><br>50 <sup>B</sup>  | <b>20.0 U</b><br>50.0 U                                                 | 100 U<br>250 U                                                              | 100 U<br>250 U                                                             | 100 U<br>250 U                                                              | 200 U<br>500 U                                                              | 200 U<br>500 U                                                                                  | 500 U                                                                       | 200 U<br>500 U                                                           | <b>20.0 U</b><br>50.0 U                                                         | <b>20.0 U</b><br>50.0 U                                                | -                                                                       | <b>20.0 U</b><br>50.0 U                                                 | <b>20.0 U</b><br>50.0 U                                                                     | <b>20.0 U</b><br>50.0 U                                                 | 50.0 U<br>125 U                                                        | 50.0 U<br>125 U                                                         | 50.0 U<br>125 U                                                  | 50.0 U<br>125 U                                                        | 2.00 U<br>5.00 U                                                |
| Isopropylbenzene                                                                                                                              | µg/L         | 5 <sup>A</sup>                          | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | -                                                                           | -                                                                        | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Isopropyltoluene, p- (Cymene)<br>Methyl Acetate                                                                                               | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                   | <b>20.0 U</b><br>20.0 U                                                 | <b>100 U</b><br>100 U                                                       | <b>100 U</b><br>100 U                                                      | <b>100 U</b><br>100 U                                                       | <b>200 U</b><br>200 U                                                       | 200 U<br>200 U                                                                                  | -                                                                           | -<br>200 U                                                               | -<br>20.0 U                                                                     | -<br>20.0 U                                                            | -                                                                       | -<br>20.0 U                                                             | -<br>20.0 U                                                                                 | -<br>20.0 U                                                             | -<br>50.0 U                                                            | -<br>50.0 U                                                             | -<br>50.0 U                                                      | -<br>50.0 U                                                            | -<br>2.00 U                                                     |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                                                                                        | µg/L         | 50 <sup>B</sup>                         | 100 U                                                                   | 500 U                                                                       | 500 U                                                                      | 500 U                                                                       | 1,000 U                                                                     | 1,000 U                                                                                         | 1,000 U                                                                     | 1,000 U                                                                  | 100 U                                                                           | 100 U                                                                  | -                                                                       | 100 UJ                                                                  | 100 UJ                                                                                      | 100 U                                                                   | 250 U                                                                  | 250 U                                                                   | 250 U                                                            | 250 U                                                                  | 10.0 U                                                          |
| Methyl Isobutyl Ketone (MIBK)<br>Methyl tert-butyl ether (MTBE)                                                                               | μg/L<br>μg/L | n/v<br>10 <sup>B</sup>                  | 50.0 U<br><b>20.0 U</b>                                                 | 250 U<br><b>100 U</b>                                                       | 250 U<br><b>100 U</b>                                                      | 250 U<br><b>100 U</b>                                                       | 500 U<br><b>200 U</b>                                                       | 500 U<br><b>200 U</b>                                                                           | 500 U                                                                       | 500 U<br>200 U                                                           | 50.0 U<br><b>20.0 U</b>                                                         | 50.0 U<br>20.0 U                                                       | -                                                                       | 50.0 U<br>20.0 U                                                        | 50.0 U<br>20.0 U                                                                            | 50.0 U<br><b>20.0 U</b>                                                 | 125 U<br><b>50.0 U</b>                                                 | 125 U<br><b>50.0 U</b>                                                  | 125 U<br>50.0 U                                                  | 125 U<br><b>50.0 U</b>                                                 | 5.00 U<br>2.00 U                                                |
| Methylcyclohexane                                                                                                                             | µg/L         | n/v                                     | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           |                                                                             | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 20.0 U                                                                  | 50.0 U                                                                 | 50.0 U                                                                  | 50.0 U                                                           | 50.0 U                                                                 | 2.00 U                                                          |
| Methylene Chloride (Dichloromethane)<br>Naphthalene                                                                                           | μg/L<br>μg/L | 5 <sup>A</sup><br>10 <sup>A</sup>       | 50.0 U<br>50.0 U                                                        | 250 U<br>250 U                                                              | 250 U<br>250 U                                                             | 250 U<br>250 U                                                              | 500 U<br>500 U                                                              | 500 U<br>500 U                                                                                  | 500 U                                                                       | 500 U                                                                    | 50.0 U                                                                          | 50.0 U                                                                 | -                                                                       | 50.0 U                                                                  | 50.0 U                                                                                      | 50.0 U                                                                  | 125 U                                                                  | 125 U                                                                   | 125 U                                                            | 125 U                                                                  | 5.00 U<br>-                                                     |
| Propylbenzene, n-                                                                                                                             | µg/L         | 5 <sup>A</sup>                          | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | -                                                                           |                                                                          |                                                                                 | -                                                                      | -                                                                       | -                                                                       | -                                                                                           | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      | -                                                               |
| Styrene<br>Tetrachloroethane, 1,1,2,2-                                                                                                        | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 50.0 U<br>20.0 U                                                        | 250 U<br>100 U                                                              | 250 U<br>100 U                                                             | 250 U<br>100 U                                                              | 500 U<br>200 U                                                              | 500 U<br>200 U                                                                                  | 500 U<br>200 U                                                              | 500 U<br>200 U                                                           | 50.0 U<br>20.0 U                                                                | 50.0 U<br>20.0 U                                                       | -                                                                       | 50.0 U<br>20.0 U                                                        | 50.0 U<br>20.0 U                                                                            | 50.0 U<br>20.0 U                                                        | 125 U<br>50.0 U                                                        | 125 U<br>50.0 U                                                         | 125 U<br>50.0 U                                                  | 125 U<br>50.0 U                                                        | 5.00 U<br>2.00 U                                                |
| Tetrachloroethene (PCE)                                                                                                                       | µg/L         | 5 <sup>A</sup>                          | 2,240 <sup>A</sup>                                                      | 4,010 <sup>A</sup>                                                          | 2,500 <sup>A</sup>                                                         | 107 <sup>A</sup>                                                            | 1,150 <sup>A</sup>                                                          | 1,130 <sup>A</sup>                                                                              | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 663 <sup>A</sup>                                                        | 4,810 <sup>A</sup>                                                     | 3,200 <sup>A</sup>                                                      | 404 <sup>A</sup>                                                 | 83.3 <sup>A</sup>                                                      | 2.00 U                                                          |
| Toluene<br>Trichlorobenzene, 1,2,3-                                                                                                           | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 20.0 U<br>50.0 U                                                        | 100 U<br>250 U                                                              | 100 U<br>250 U                                                             | 100 U<br>250 U                                                              | 200 U<br>500 U                                                              | 200 U<br>500 U                                                                                  | 200 U                                                                       | 200 U<br>500 U                                                           | 20.0 U<br>50.0 U                                                                | 20.0 U<br>50.0 U                                                       | -                                                                       | 20.0 U<br>50.0 U                                                        | 20.0 U<br>50.0 U                                                                            | 20.0 U<br>50.0 U                                                        | 50.0 U<br>125 U                                                        | 50.0 U<br>125 U                                                         | 50.0 U<br>125 U                                                  | 50.0 U<br>125 U                                                        | 2.00 U<br>5.00 U                                                |
| Trichlorobenzene, 1,2,4-                                                                                                                      | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | 50.0 U                                                                  | 250 U                                                                       | 250 U                                                                      | 250 U                                                                       | 500 U                                                                       | 500 U                                                                                           | -                                                                           | 500 U                                                                    | 50.0 U                                                                          | 50.0 U                                                                 | -                                                                       | 50.0 U                                                                  | 50.0 U                                                                                      | 50.0 U                                                                  | 125 U                                                                  | 125 U                                                                   | 125 U                                                            | 125 U                                                                  | 5.00 U                                                          |
| Trichloroethane, 1,1,1-<br>Trichloroethane, 1,1,2-                                                                                            | μg/L<br>μg/L | 5^<br>1 <sup>A</sup>                    | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | 200 U<br>200 U                                                              | 200 U<br>200 U                                                           | 20.0 U<br>20.0 U                                                                | 20.0 U<br>20.0 U                                                       | -                                                                       | 20.0 U<br>20.0 U                                                        | 20.0 U<br>20.0 U                                                                            | 20.0 U<br>20.0 U                                                        | 50.0 U<br>50.0 U                                                       | 50.0 U<br>50.0 U                                                        | 50.0 U<br>50.0 U                                                 | 50.0 U<br>50.0 U                                                       | 2.00 U<br>2.00 U                                                |
| Trichloroethene (TCE)                                                                                                                         | µg/L         | 5 <sup>A</sup>                          | 36.4 <sup>A</sup>                                                       | 100 U                                                                       | 407 <sup>A</sup>                                                           | 100 U                                                                       | 562 <sup>A</sup>                                                            | 549 <sup>A</sup>                                                                                | 200 U                                                                       | 200 U                                                                    | 20.0 U                                                                          | 20.0 U                                                                 | -                                                                       | 20.0 U                                                                  | 20.0 U                                                                                      | 251 <sup>A</sup>                                                        | 1,060 <sup>A</sup>                                                     | 423 <sup>A</sup>                                                        | 76.6 <sup>A</sup>                                                | 28.1 J <sup>A</sup>                                                    | 2.00 U                                                          |
| Trichlorofluoromethane (Freon 11)<br>Trichlorotrifluoroethane (Freon 113)                                                                     | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | 200 U                                                                       | 200 U<br>200 U                                                           | 20.0 U<br>20.0 U                                                                | 20.0 U<br>20.0 U                                                       | -                                                                       | 20.0 U<br>20.0 U                                                        | 20.0 U<br>20.0 U                                                                            | 20.0 U<br>20.0 U                                                        | 50.0 U<br>50.0 U                                                       | 50.0 U<br>50.0 U                                                        | 50.0 U<br>50.0 U                                                 | 50.0 U<br>50.0 U                                                       | 2.00 U<br>2.00 U                                                |
| Trimethylbenzene, 1,2,4-                                                                                                                      | µg/L         | 5 <sup>A</sup>                          | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | -                                                                           | -                                                                        | -                                                                               | -                                                                      | -                                                                       | -                                                                       | -                                                                                           | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      | -                                                               |
| Trimethylbenzene, 1,3,5-<br>Vinyl Acetate                                                                                                     | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                   | 50.0 U                                                                  | 250 U                                                                       | 100 U                                                                      | 100 U                                                                       | 200 U                                                                       | 200 U                                                                                           | -<br>500 U                                                                  | -                                                                        | -                                                                               |                                                                        | -                                                                       |                                                                         |                                                                                             | -                                                                       | -                                                                      | -                                                                       |                                                                  | -                                                                      |                                                                 |
| Vinyl Chloride                                                                                                                                | µg/L         | 2 <sup>A</sup>                          | 20.0 U                                                                  | 100 U                                                                       | 100 U                                                                      | 100 U                                                                       | 1,090 <sup>A</sup>                                                          | 1,130 <sup>A</sup>                                                                              | 1,110 <sup>A</sup>                                                          | 970 <sup>A</sup>                                                         | 154 <sup>A</sup>                                                                | 636 <sup>A</sup>                                                       | -                                                                       | 241 J <sup>A</sup>                                                      | 399 J <sup>A</sup>                                                                          | 73.3 <sup>A</sup>                                                       | 50.0 U                                                                 | 140 <sup>A</sup>                                                        | 105 <sup>A</sup>                                                 | 97.5 <sup>A</sup>                                                      | 15.7 <sup>A</sup>                                               |
| Xylene, m & p-<br>Xylene, o-                                                                                                                  | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 20.0 U<br>20.0 U                                                        | 100 U<br>100 U                                                              | 100 U<br>100 U                                                             | 100 U<br>100 U                                                              | 200 U<br>200 U                                                              | 200 U<br>200 U                                                                                  | 200 U<br>200 U                                                              | 200 U<br>200 U                                                           | 20.0 U<br>20.0 U                                                                | 20.0 U<br>20.0 U                                                       | -                                                                       | 20.0 U<br>20.0 U                                                        | 20.0 U<br>20.0 U                                                                            | 20.0 U<br>20.0 U                                                        | 50.0 U<br>50.0 U                                                       | 50.0 U<br>50.0 U                                                        | 50.0 U<br>50.0 U                                                 | 50.0 U<br>50.0 U                                                       | 2.00 U<br>2.00 U                                                |
| Total VOC                                                                                                                                     | μg/L<br>μg/L | n/v                                     | 2,276.4                                                                 | 4,010                                                                       | 7,037                                                                      | 11,007                                                                      | 7,922                                                                       | 8,049                                                                                           | 5,050                                                                       | 9,870                                                                    | 396                                                                             | 1,498                                                                  | -                                                                       | 327.8                                                                   | 541                                                                                         | 2,027.3                                                                 | 6,980                                                                  | 6,303                                                                   | 1,605.6                                                          | 1,378.9                                                                | 30.2                                                            |
| Miscellaneous Parameters Arsenic                                                                                                              | ma/l         | 0.007 <sup>A</sup>                      | 0.01011                                                                 | 0.01011                                                                     | 0.010                                                                      | 0.014                                                                       | 0.021                                                                       | 0.024                                                                                           | 1                                                                           |                                                                          | 0.0217                                                                          |                                                                        |                                                                         |                                                                         | 1                                                                                           |                                                                         |                                                                        |                                                                         |                                                                  |                                                                        |                                                                 |
| Arsenic<br>Iron                                                                                                                               | mg/L<br>mg/L | 0.025 <sup>A</sup><br>0.3. <sup>A</sup> | 0.010 U<br>0.100 U                                                      | 0.010 U<br>111 <sup>A</sup>                                                 | 0.018<br>23.3 <sup>A</sup>                                                 | 0.014<br><b>12.5<sup>A</sup></b>                                            | 0.021<br>15.7 <sup>A</sup>                                                  | 0.021<br><b>15.5<sup>A</sup></b>                                                                | 1                                                                           | -                                                                        | 0.0217<br>13.2 L <sup>A</sup>                                                   |                                                                        |                                                                         |                                                                         |                                                                                             |                                                                         | -                                                                      | -                                                                       |                                                                  | -                                                                      |                                                                 |
| Manganese                                                                                                                                     | mg/L         | 0.3. <sup>A</sup>                       | 0.226                                                                   | 4.07 <sup>A</sup>                                                           | 0.161                                                                      | 0.523 <sup>A</sup>                                                          | 0.165                                                                       | 0.189                                                                                           |                                                                             | -                                                                        | 0.445 L <sup>A</sup>                                                            |                                                                        | -                                                                       | -                                                                       | -                                                                                           | -                                                                       | -                                                                      | -                                                                       | -                                                                | -                                                                      | -                                                               |
| Sodium<br>Total Organic Carbon                                                                                                                | mg/L<br>mg/L | 20 <sup>A</sup><br>n/v                  | <b>1,450<sup>A</sup></b><br>3.7                                         | 1,660 <sup>A</sup><br>1,880                                                 | 1,090 <sup>A</sup><br>118                                                  | <b>1,090<sup>A</sup></b><br>68.4                                            | <b>1,130<sup>A</sup></b>                                                    | 1,150 <sup>A</sup>                                                                              | <b>1,120<sup>A</sup></b><br>64.3                                            | 1,300 <sup>A</sup>                                                       | 1,000 <sup>A</sup>                                                              | -<br>23.0                                                              | - 8.50                                                                  | -                                                                       | -                                                                                           | - 3.5                                                                   | -<br>9.17 J                                                            | -<br>6.67                                                               | - 2.8                                                            | -<br>3.6                                                               | -<br>16.2 S+                                                    |
| Total Organic Carbon                                                                                                                          | IIIg/L       | 11/V                                    | 3.7<br>See notes on last page                                           |                                                                             | 110                                                                        | 00.4                                                                        | 6.0                                                                         | 6.0                                                                                             | 04.3                                                                        | 560                                                                      | 165                                                                             | 23.0                                                                   | 0.00                                                                    |                                                                         | -                                                                                           | 3.3                                                                     | 9.1/J                                                                  | 0.07                                                                    | 2.0                                                              | 3.0                                                                    | 10.2 3+                                                         |

| Sample Location                                              |              |                                                 |                                |                            |                            |                             |                             |                             |                           | MW23R                    |                          |                          |                          |                          |                          |                          |                         |                          |
|--------------------------------------------------------------|--------------|-------------------------------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|
| Sample Date                                                  |              |                                                 | 28-Sep-11                      | 5-Jan-12                   | 6-Feb-12                   | 2-Mar-12                    | 5-Jun-12                    | 6-Sep-12                    | 24-Jan-13                 | 10-Apr-13                | 5-Jul-13                 | 10-Oct-13                | 10-Oct-13                | 17-Jun-15                | 9-Mar-16                 | 10-Jan-18                | 24-Oct-18               | 8-Oct-19                 |
| ample ID<br>ampling Company                                  |              |                                                 | WSR-MW-23R-GW-7<br>STANTEC     | 828-MW-23R-GW-8<br>STANTEC | 828-MW-23R-GW-9<br>STANTEC | 828-MW-23R-GW-10<br>STANTEC | 828-MW-23R-GW-11<br>STANTEC | 828-MW-23R-GW-12<br>STANTEC | 828-MW-23R-GW<br>STANTEC  | 828-MW-23R-GW<br>STANTEC | 828-MW-23R-GW<br>STANTEC | 828-MW-23R-GW<br>STANTEC | 828-MW-23R-GW<br>STANTEC | 828-MW-23R-GW<br>STANTEC | 828-MW-23R-GW<br>STANTEC | 828-MW-23R-GW<br>STANTEC | MW-23R<br>STANTEC       | 828-MW-23R-GV<br>STANTEC |
| aboratory                                                    |              |                                                 | PARAROCH                       | PARAROCH                   | PARAROCH                   | PARAROCH                    | PARAROCH                    | PARAROCH                    | PARAROCH                  | PARAROCH                 | PARAROCH                 | PARAROCH                 | PARAROCH                 | PARAROCH                 | PARAROCH                 | PARAROCH                 | PARAROCH                | PARAROCH                 |
| aboratory Work Order                                         |              |                                                 | P11-4106                       | P12-0069                   | 12:0488                    | 12:0936                     | 12:2364                     | 12:3694                     | 13:0365                   | 131242                   | 132505                   | 133909                   | 133925                   | 152493                   | 160970                   | 180096                   | 184937                  | 194958                   |
| aboratory Sample ID<br>Sample Type                           | Units        | TOGS                                            | 14151                          | 12:0069-05                 | 12:0488-03                 | 12:0936-06                  | 12:2364-04                  | 12:3694-06                  | 130365-04                 | 131242-03                | 132505-02                | 133909-02                | 133925-04                | 152493-01                | 160970-02                | 180096-06                | 184937-02               | 194958-06                |
| /olatile Organic Compounds                                   |              |                                                 |                                |                            |                            |                             |                             |                             |                           |                          |                          |                          |                          |                          |                          |                          |                         |                          |
| cetone                                                       | µg/L         | 50 <sup>B</sup>                                 | 10.0 U                         | 10.0 U                     | 10.0 U                     | 10.0 U                      | 10.0 U                      | 30.6                        | 10 U                      | 10.0 U                   | 11.1                     | -                        | 18.3 J                   | 10.0 U                   | 10.0 U                   | 10.0 U                   | 10.0 U                  | 10.0 U                   |
| enzene<br>romobenzene                                        | μg/L<br>μg/L | 1^<br>5 <sup>A</sup>                            | 0.700 U                        | 0.700 U                    | 0.700 U                    | 0.700 U                     | 0.700 U                     | 0.700 U<br>-                | 0.70 U<br>5.0 U           | 0.700 U<br>5.00 U        | 0.700 U                  | -                        | 10                       | 1.00 U                   | 1.00 U                   | 1.00 U                   | 1.00 U                  | 1.00 U                   |
| romodichloromethane                                          | µg/L         | 50 <sup>B</sup>                                 | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| romoform (Tribromomethane)                                   | µg/L         | 50 <sup>8</sup><br>5 <sup>A</sup>               | 5.00 U                         | 5.00 U                     | 5.00 U                     | 5.00 U                      | 5.00 U                      | 5.00 U                      | 5.0 U                     | 5.00 U                   | 5.00 U                   | -                        | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                  | 5.00 U                   |
| romomethane (Methyl bromide)<br>utylbenzene, n-              | μg/L<br>μg/L | 5 <sup>A</sup>                                  | 2.00 U<br>5.00 U               | 2.00 U<br>5.00 U           | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>-                 | 2.0 U<br>-                | 2.00 U<br>-              | 2.00 U                   | -                        | 2.00 U<br>-              | 2.00 U                   | 2.00 U                   | 2.00 U<br>-              | 2.00 U                  | 2.00 U                   |
| utylbenzene, sec- (2-Phenylbutane)                           | µg/L         | 5 <sup>A</sup>                                  | 5.00 U                         | 5.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | -                           | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| utylbenzene, tert-<br>arbon Disulfide                        | µg/L         | 5 <sup>A</sup><br>60 <sup>B</sup>               | 5.00 U<br>5.00 U               | 5.00 U<br>5.00 U           | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | -<br>2.00 U                 | -<br>2.0 U                | -<br>2.00 U              | -<br>2.00 U              | -                        | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U             | -<br>2.00 U              |
| arbon Disulide<br>arbon Tetrachloride (Tetrachloromethane)   | μg/L<br>μg/L | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| nlorobenzene (Monochlorobenzene)                             | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| nlorobromomethane                                            | µg/L         | 5 <sup>A</sup>                                  | 5.00 U                         | 5.00 U                     | 5.00 U                     | 5.00 U                      | 5.00 U                      | -                           | 5.0 U                     | 5.00 U                   | 5.00 U                   | -                        | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                  | 5.00 U                   |
| hloroethane (Ethyl Chloride)<br>hloroethyl Vinyl Ether, 2-   | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                           | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U<br>10.0 U            | 2.0 U<br>10 U             | 2.00 U<br>10.0 U         | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| hloroform (Trichloromethane)                                 | µg/L         | 7 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| hloromethane                                                 | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| yclohexane<br>ibromo-3-Chloropropane, 1,2- (DBCP)            | μg/L<br>μg/L | n/v<br>0.04 <sup>A</sup>                        | 10.0 U<br><b>10.0 U</b>        | 10.0 U<br><b>10.0 U</b>    | 10.0 U<br><b>10.0 U</b>    | 10.0 U<br><b>10.0 U</b>     | 10.0 U<br><b>10.0 U</b>     | -                           | 10 U<br><b>10 U</b>       | 10.0 U<br><b>10.0 U</b>  | 10.0 U<br><b>10.0 U</b>  | -                        | 10.0 U<br><b>10.0 U</b>  | 10.0 U<br><b>10.0 U</b>  | 10.0 U<br><b>10.0 U</b>  | 10.0 U<br><b>10.0 U</b>  | 10.0 U<br><b>10.0 U</b> | 10.0 U<br><b>10.0 U</b>  |
| bibromochloromethane                                         | µg/L         | 50 <sup>B</sup>                                 | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Dichlorobenzene, 1,2-                                        | µg/L         | 3 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Dichlorobenzene, 1,3-<br>Dichlorobenzene, 1,4-               | μg/L<br>μg/L | 3 <sup>A</sup><br>3 <sup>A</sup>                | 2.00 U<br>2.00 U               | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.0 U<br>2.0 U            | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | -                        | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U         |
| Dichlorodifluoromethane (Freon 12)                           | μg/L<br>μg/L | 3<br>5 <sup>A</sup>                             | 5.00 U                         | 5.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | -                           | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Dichloroethane, 1,1-                                         | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Vichloroethane, 1,2-<br>Vichloroethene, 1,1-                 | µg/L         | 0.6 <sup>A</sup>                                | 2.00 U<br>2.00 U               | <b>2.00 U</b><br>2.00 U    | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | <b>2.00 U</b><br>2.00 U     | <b>2.00 U</b><br>2.00 U     | <b>2.0 U</b><br>2.0 U     | <b>2.00 U</b><br>2.00 U  | 2.00 U                   | -                        | 2.00 U<br>2.00 U         | <b>2.00 U</b><br>2.00 U  | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U         |
| Dichloroethene, cis-1,2-                                     | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>                | 63.8 <sup>A</sup>              | 82.4 <sup>A</sup>          | 2.00 0                     | 2.00 0                      | 32.6 <sup>A</sup>           | 5.30 <sup>A</sup>           | 5.8 <sup>A</sup>          | 5.83 <sup>A</sup>        | 2.00 U<br>4.81           | -                        | 9.16 <sup>A</sup>        | 2.00 U<br>1.46 J         | 2.00 U<br>1.86 J         | 2.00 U<br>1.94 J         | 2.00 U                  | 2.00 U                   |
| vichloroethene, trans-1,2-                                   | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| ichloropropane, 1,2-                                         | μg/L         | 1 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | -                         | -                        | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Dichloropropane, 1,3-                                        | µg/L         | 5 <sup>A</sup>                                  | -                              | -                          | -                          | -                           | -                           | -                           | 2.0 U                     | 2.00 U                   | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| Vichloropropane, 2,2-<br>Vichloropropene, cis-1,3-           | μg/L<br>μg/L | 5 <sup>A</sup><br>0.4 <sub>p</sub> <sup>A</sup> | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Dichloropropene, trans-1,3-                                  | µg/L         | 0.4 <sub>p</sub> <sup>A</sup>                   | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| Dioxane, 1,4-                                                | µg/L         | n/v                                             | -                              | -                          | -                          | -                           | -                           | -                           | 20 U                      | 20.0 U                   | 20.0 U                   | -                        | R                        | 20.0 U                   | 20.0 U                   | 20.0 U                   | 20.0 U                  | 20.0 U                   |
| thylbenzene<br>thylene Dibromide (Dibromoethane, 1,2-)       | μg/L<br>μg/L | 5 <sup>A</sup><br>0.0006 <sup>A</sup>           | 2.00 U<br><b>2.00 U</b>        | 2.00 U<br><b>2.00 U</b>    | 2.00 U<br><b>2.00 U</b>    | 2.00 U<br>2.00 U            | 2.00 U<br><b>2.00 U</b>     | 2.00 U                      | 2.0 U<br><b>2.0 U</b>     | 2.00 U<br><b>2.00 U</b>  | 2.00 U<br>2.00 U         | -                        | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br><b>2.00 U</b>  | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U         |
| lexanone, 2- (Methyl Butyl Ketone)                           | µg/L         | 50 <sup>B</sup>                                 | 5.00 U                         | 5.00 U                     | 5.00 U                     | 5.00 U                      | 5.00 U                      | 5.00 U                      | 5.0 U                     | 5.00 U                   | 5.00 U                   | -                        | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                  | 5.00 U                   |
| sopropylbenzene                                              | µg/L         | 5 <sup>A</sup>                                  | 5.00 U                         | 5.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | -                           | -                         | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| sopropyltoluene, p- (Cymene)<br>/lethyl Acetate              | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                           | 2.00 U<br>2.00 U               | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | -                           | -<br>2.0 U                | -<br>2.00 U              | -<br>2.00 U              | -                        | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U             | -<br>2.00 U              |
| /lethyl Ethyl Ketone (MEK) (2-Butanone)                      | µg/L         | 50 <sup>B</sup>                                 | 10.0 U                         | 10.0 U                     | 11.9                       | 10.0 U                      | 10.0 U                      | 10.0 U                      | 130 <sup>B</sup>          | 80.7 <sup>B</sup>        | 76.9 <sup>B</sup>        | -                        | 107 J <sup>B</sup>       | 10.0 U                   | 10.0 U                   | 10.0 U                   | 10.0 U                  | 10.0 U                   |
| Methyl Isobutyl Ketone (MIBK)                                | µg/L         | n/v                                             | 5.00 U                         | 5.00 U                     | 5.00 U                     | 5.00 U                      | 5.00 U                      | 5.00 U                      | 5.0 U                     | 5.00 U                   | 5.00 U                   | -                        | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                  | 5.00 U                   |
| Methyl tert-butyl ether (MTBE)                               | µg/L         | 10 <sup>B</sup>                                 | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | -                           | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U<br>1.37 J         | 2.00 U                   | 2.00 U                  | 2.00 U<br>2.00 U         |
| Methylcyclohexane<br>Methylene Chloride (Dichloromethane)    | μg/L<br>μg/L | n/v<br>5 <sup>A</sup>                           | 2.00 U<br>5.00 U               | 2.00 U<br>5.00 U           | 2.00 U<br>5.00 U           | 2.00 U<br>5.00 U            | 2.00 U<br>5.00 U            | 5.00 U                      | 2.0 U<br>5.0 U            | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | -                        | 2.00 U<br>5.00 U         | 1.59 J<br>5.00 U         | 5.00 U                   | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U        | 5.00 U                   |
| laphthalene                                                  | µg/L         | 10 <sup>A</sup>                                 | 5.00 U                         | 5.00 U                     | 5.00 U                     | 5.00 U                      | 5.00 U                      | -                           | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| Propylbenzene, n-                                            | µg/L         | 5 <sup>A</sup>                                  | 5.00 U                         | 5.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | -                           | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| tyrene<br>etrachloroethane, 1,1,2,2-                         | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>                | 5.00 U<br>2.00 U               | 5.00 U<br>2.00 U           | 5.00 U<br>2.00 U           | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U            | 5.0 U<br>2.0 U            | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | -                        | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U         |
| etrachloroethene (PCE)                                       | μg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| oluene                                                       | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| richlorobenzene, 1,2,3-                                      | µg/L         | 5 <sup>A</sup>                                  | 5.00 U                         | 5.00 U                     | 5.00 U                     | 5.00 U                      | 5.00 U                      | -                           | 5.0 U                     | 5.00 U                   | 5.00 U                   | -                        | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.00 U                  | 5.00 U                   |
| richlorobenzene, 1,2,4-<br>richloroethane, 1,1,1-            | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>                | 5.00 U<br>2.00 U               | 5.00 U<br>2.00 U           | 5.00 U<br>2.00 U           | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U            | -<br>2.00 U                 | 5.0 U<br>2.0 U            | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         |                          | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U         |
| richloroethane, 1,1,2-                                       | µg/L<br>µg/L | 1 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| richloroethene (TCE)                                         | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| richlorofluoromethane (Freon 11)                             | µg/L         | 5 <sup>A</sup>                                  | 2.00 U                         | 2.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      | 2.00 U                      | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| ichlorotrifluoroethane (Freon 113)<br>imethylbenzene, 1,2,4- | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>                | 2.00 U<br>5.00 U               | 2.00 U<br>5.00 U           | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | -                           | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| imethylbenzene, 1,3,5-                                       | μg/L<br>μg/L | 5 <sup>A</sup>                                  | 5.00 U                         | 5.00 U                     | 2.00 U                     | 2.00 U                      | 2.00 U                      |                             | -                         | -                        | ]                        | .                        | [                        |                          | -                        | [                        | -                       | -                        |
| nyl Acetate                                                  | µg/L         | n/v                                             | -                              | -                          | -                          | -                           | -                           | 5.00 U                      | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| nyl Chloride                                                 | µg/L         | 2 <sup>A</sup>                                  | 2.21 <sup>A</sup>              | 2.00 U                     | 2.00 U                     | 2.00 U                      | 5.95 <sup>A</sup>           | 3.46 <sup>A</sup>           | 2.0 U                     | 2.00 U                   | 2.00 U                   | -                        | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                  | 2.00 U                   |
| /lene, m & p-<br>/lene, o-                                   | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>                | 2.00 U<br>2.00 U               | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U           | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.0 U<br>2.0 U            | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | -                        | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U         |
| otal VOC                                                     | μg/L<br>μg/L | o⊷<br>n/v                                       | 66.01                          | 82.4                       | 29.3                       | 13.1                        | 38.55                       | 39.36                       | 135.8                     | 86.53                    | 92.81                    | -                        | 134.46                   | 3.05                     | 3.23                     | 1.94                     | 2.00 U<br>ND            | 1.11                     |
| liscellaneous Parameters                                     |              |                                                 |                                |                            |                            |                             |                             |                             |                           |                          |                          |                          |                          |                          |                          |                          |                         |                          |
| senic                                                        | mg/L         | 0.025 <sup>A</sup>                              | 0.010 U                        | 0.010 U                    | 0.010 U                    | 0.010 U                     | 0.010 U                     | -                           | -                         | 0.0100 U                 | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| on                                                           | mg/L         | 0.3. <sup>A</sup>                               | 0.819 <sup>A</sup>             | 3.04 <sup>A</sup>          | 7.52 <sup>A</sup>          | 3.08 <sup>A</sup>           | 4.21 <sup>A</sup>           | -                           | -                         | 3.08 L <sup>A</sup>      | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| langanese                                                    | mg/L         | 0.3.4                                           | 0.040                          | 0.129                      | 0.053                      | 0.081 M                     | 0.034                       | -                           | -                         | 0.0702 L                 | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                        |
| odium<br>otal Organic Carbon                                 | mg/L<br>mg/L | 20 <sup>A</sup><br>n/v                          | 417 <sup>A</sup><br>3.6        | 392 <sup>A</sup><br>38.4   | 751 <sup>A</sup><br>33.0   | 766 <sup>A</sup><br>31.1    | 458 <sup>A</sup><br>4.0     | 568 <sup>A</sup><br>58.6    | 1,200 <sup>A</sup><br>670 | 529 <sup>A</sup><br>368  | -<br>86.0                | - 175                    | -                        | - 6.8                    | - 12.0                   | - 6.17                   | - 2.9                   | - 0.97                   |
|                                                              | IIIg/L       | 11/V                                            | 3.6<br>See notes on last page. | JU.4                       | 33.0                       | ্যা.।                       | 4.U                         | 0.00                        | 0/0                       | 300                      | 00.0                     | 1/0                      | -                        | 0.0                      | 12.0                     | 0.17                     | 2.9                     | 0.97                     |

| Sample Location<br>Sample Date                                                 |              |                                         | 28-Sep-11                   | 4-Jan-12                    | 2-Feb-12                    | 29-Feb-12                     | 4-Jun-12                    | 4-Sep-12                    | 22-Jan-13                | MW105<br>11-Apr-13                | 2-Jul-13                    | 8-Oct-13                 | 8-Oct-13                    | 18-Jun-15                   | 10-Mar-16                         | 10-Jan-18                         | 24-Oct-18                   | 8-Oct-19                          | 5-Oct-21                    |
|--------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|--------------------------|-----------------------------------|-----------------------------|--------------------------|-----------------------------|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------------------------|
| Sample ID<br>Sampling Company                                                  |              |                                         | WSR-MW-105-GW-12<br>STANTEC | WSR-MW-105-GW-13<br>STANTEC | WSR-MW-105-GW-14<br>STANTEC | WSR-MW-105-GW-15<br>STANTEC   | WSR-MW-105-GW-16<br>STANTEC | WSR-MW-105-GW-17<br>STANTEC | WSR-MW-105-GW<br>STANTEC | WSR-MW-105-GW<br>STANTEC          | WSR-MW-105-GW<br>STANTEC    | WSR-MW-105-GW<br>STANTEC | WSR-MW-105-GW<br>STANTEC    | WSR-MW-105-GW<br>STANTEC    | WSR-MW-105-GW<br>STANTEC          | WSR-MW-105-GW<br>STANTEC          | MW-105<br>STANTEC           | WSR-MW-105-GW<br>STANTEC          | MW-105<br>STANTEC           |
| Laboratory                                                                     |              |                                         | PARAROCH<br>P11-4106        | PARAROCH<br>P12-0041        | PARAROCH<br>12:0443         | PARAROCH<br>12:0868           | PARAROCH<br>12:2335         | PARAROCH<br>12:3644         | PARAROCH<br>13:0329      | PARAROCH                          | PARAROCH                    | PARAROCH<br>133887       | PARAROCH                    | PARAROCH<br>152493          | PARAROCH<br>160970                | PARAROCH<br>180096                | PARAROCH<br>184937          | PARAROCH<br>194958                | PARAROCH<br>214498          |
| Laboratory Work Order<br>Laboratory Sample ID<br>Sample Type                   | Units        | TOGS                                    | 14152                       | 12:0041-02                  | 12:0443                     | 12:0868-02                    | 12:2335-05                  | 12:3644-02                  | 130329-05                | 131259<br>131259-02               | 132471<br>132471-02         | 133887-01                | 133927<br>133927-02         | 152493-07                   | 160970-06                         | 180096-01                         | 184937-06                   | 194958-01                         | 214498                      |
| Volatile Organic Compounds                                                     |              |                                         |                             |                             |                             |                               |                             |                             |                          |                                   |                             |                          |                             |                             |                                   |                                   |                             |                                   |                             |
| Acetone<br>Benzene                                                             | μg/L<br>μg/L | 50 <sup>B</sup>                         | 50.0 U<br><b>3.50 U</b>     | 50.0 U<br><b>3.50 U</b>     | 35.4 B<br><b>1.75 U</b>     | 20.0 U<br><b>1.40 U</b>       | 10.0 U<br>0.700 U           | 20.0 U<br><b>1.40 U</b>     | 50 U<br><b>3.5 U</b>     | 32.8<br>0.700 U                   | 10.0 U<br>0.700 U           | -                        | 10.0 U<br>1 U               | 10.0 U<br>1.00 U            | 10.0 U<br>1.00 U                  | 10.0 U<br>1.00 U                  | 10.0 U<br>1.00 U            | 20.0 U<br><b>2.00 U</b>           | 25.0 U<br>2.50 UL           |
| Bromobenzene                                                                   | µg/L         | 5 <sup>A</sup>                          | -                           | -                           | -                           | -                             | -                           | -                           | 25 U                     | 5.00 U                            | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Bromodichloromethane<br>Bromoform (Tribromomethane)                            | μg/L<br>μg/L | 50 <sup>B</sup><br>50 <sup>B</sup>      | 10.0 U<br>25.0 U            | 10.0 U<br>25.0 U            | 5.00 U<br>12.5 U            | 4.00 U<br>10.0 U              | 2.00 U<br>5.00 U            | 4.00 U<br>10.0 U            | 10 U<br>25 U             | 2.00 U<br>5.00 U                  | 2.00 U<br>5.00 U            | -                        | 2.00 U<br>5.00 U            | 2.00 U<br>5.00 U            | 2.00 U<br>5.00 U                  | 2.00 U<br>5.00 U                  | 2.00 U<br>5.00 U            | 4.00 U<br>10.0 U                  | 5.00 UL<br>12.5 U           |
| Bromomethane (Methyl bromide)                                                  | μg/L         | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Butylbenzene, n-<br>Butylbenzene, sec- (2-Phenylbutane)                        | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 25.0 U<br>25.0 U            | 25.0 U<br>25.0 U            | 12.5 U<br>12.5 U            | 4.00 U<br>4.00 U              | 2.00 U<br>2.00 U            | -                           | -                        | -                                 | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Butylbenzene, tert-                                                            | μg/L         | 5 <sup>A</sup>                          | 25.0 U                      | 25.0 U                      | 12.5 U                      | 4.00 U                        | 2.00 U                      | -                           | -                        | -                                 | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Carbon Disulfide<br>Carbon Tetrachloride (Tetrachloromethane)                  | μg/L<br>μg/L | 60 <sup>B</sup><br>5 <sup>A</sup>       | 25.0 U<br><b>10.0 U</b>     | 25.0 U<br><b>10.0 U</b>     | 12.5 U<br>5.00 U            | 4.00 U<br>4.00 U              | 2.00 U<br>2.00 U            | 4.00 U<br>4.00 U            | 10 U<br><b>10 U</b>      | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | -                        | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | 4.00 U<br>4.00 U                  | 5.00 U<br>5.00 U            |
| Chlorobenzene (Monochlorobenzene)                                              | μg/L         | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Chlorobromomethane<br>Chloroethane (Ethyl Chloride)                            | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | 25.0 U<br>10.0 U            | 25.0 U                      | 12.5 U                      | <b>10.0 U</b><br>4.00 U       | 5.00 U<br>2.00 U            | -<br>4.00 U                 | 25 U<br>10 U             | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U            | -                        | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U            | <b>10.0 U</b><br>4.00 U           | 12.5 U                      |
| Chloroethyl Vinyl Ether, 2-                                                    | μg/L<br>μg/L | o⊶<br>n/v                               | -                           | 10.0 U                      | 5.00 U<br>-                 | 4.00 0                        | -                           | 20.0 U                      | 50 U                     | 10.0 U                            | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | 5.00 U<br>-                 |
| Chloroform (Trichloromethane)                                                  | µg/L         | 7 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Chloromethane<br>Cyclohexane                                                   | μg/L<br>μg/L | 5 <sup>A</sup><br>n/v                   | <b>10.0 U</b><br>50.0 U     | <b>10.0 U</b><br>50.0 U     | 5.00 U<br>25.0 U            | 4.00 U<br>20.0 U              | 2.00 U<br>10.0 U            | 4.00 U<br>-                 | <b>10 U</b><br>50 U      | 2.00 U<br>10.0 U                  | 2.00 U<br>10.0 U            | -                        | 2.00 U<br>10.0 U            | 2.00 U<br>10.0 U            | 2.00 U<br>10.0 U                  | 2.00 U<br>10.0 U                  | 2.00 U<br>10.0 U            | 4.00 U<br>20.0 U                  | 5.00 U<br>25.0 U            |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                           | µg/L         | 0.04 <sup>A</sup>                       | 50.0 U                      | 50.0 U                      | 25.0 U                      | 20.0 U                        | 10.0 U                      | -                           | 50 U                     | 10.0 U                            | 10.0 U                      | -                        | 10.0 U                      | 10.0 U                      | 10.0 U                            | 10.0 U                            | 10.0 U                      | 20.0 U                            | 25.0 U                      |
| Dibromochloromethane<br>Dichlorobenzene, 1,2-                                  | μg/L<br>μg/L | 50 <sup>B</sup><br>3 <sup>A</sup>       | 10.0 U<br><b>10.0 U</b>     | 10.0 U<br><b>10.0 U</b>     | 5.00 U<br><b>5.00 U</b>     | 4.00 U<br><b>4.00 U</b>       | 2.00 U<br>2.00 U            | 4.00 U<br><b>4.00 U</b>     | 10 U<br><b>10 U</b>      | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | -                        | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | 4.00 U<br><b>4.00 U</b>           | 5.00 U<br><b>5.00 U</b>     |
| Dichlorobenzene, 1,3-                                                          | µg/L         | 3 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Dichlorobenzene, 1,4-<br>Dichlorodifluoromethane (Freon 12)                    | μg/L<br>μg/L | 3 <sup>A</sup><br>5 <sup>A</sup>        | 10.0 U<br>25.0 U            | 10.0 U<br>25.0 U            | 5.00 U<br>12.5 U            | <b>4.00 U</b><br>4.00 U       | 2.00 U<br>2.00 U            | 4.00 U                      | 10 U<br>10 U             | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | -                        | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | <b>4.00 U</b><br>4.00 U           | 5.00 U<br>5.00 U            |
| Dichloroethane, 1,1-                                                           | µg/L         | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Dichloroethane, 1,2-<br>Dichloroethene, 1,1-                                   | μg/L<br>μg/L | 0.6 <sup>A</sup><br>5 <sup>A</sup>      | 10.0 U<br>10.0 U            | 10.0 U<br>10.0 U            | 5.00 U<br>5.00 U            | <b>4.00 U</b><br>4.00 U       | 2.00 U<br>2.00 U            | <b>4.00 U</b><br>4.00 U     | 10 U<br>10 U             | <b>2.00 U</b><br>2.00 U           | <b>2.00 U</b><br>2.00 U     | -                        | <b>2.00 U</b><br>2.00 U     | <b>2.00 U</b><br>2.00 U     | <b>2.00 U</b><br>2.00 U           | <b>2.00 U</b><br>2.00 U           | 2.00 U<br>2.00 U            | <b>4.00 U</b><br>4.00 U           | 5.00 U<br>5.00 U            |
| Dichloroethene, cis-1,2-                                                       | μg/L         | 5 <sup>A</sup>                          | 480 <sup>A</sup>            | 179 <sup>A</sup>            | 220 <sup>A</sup>            | 155 <sup>A</sup>              | 81.9 <sup>A</sup>           | 145 <sup>A</sup>            | 210 <sup>A</sup>         | 159 <sup>A</sup>                  | 83.6 <sup>A</sup>           | -                        | 151 <sup>A</sup>            | 111 <sup>A</sup>            | 129 <sup>A</sup>                  | 131 <sup>A</sup>                  | 188 <sup>A</sup>            | 212 <sup>A</sup>                  | 321 <sup>A</sup>            |
| Dichloroethene, trans-1,2-                                                     | µg/L         | 5 <sup>A</sup>                          | 358 <sup>A</sup>            | 134 <sup>A</sup>            | 183 <sup>A</sup>            | 120 <sup>A</sup>              | 59.0 <sup>A</sup>           | 115 <sup>A</sup>            | 120 <sup>A</sup>         | 83.6 <sup>A</sup>                 | 86.4 <sup>A</sup>           | -                        | 196 <sup>A</sup>            | 130 <sup>A</sup>            | 115 <sup>A</sup>                  | 100 <sup>A</sup>                  | 98.9 <sup>A</sup>           | 111 <sup>A</sup>                  | 5.00 U                      |
| Dichloropropane, 1,2-<br>Dichloropropane, 1,3-                                 | μg/L<br>μg/L | 1 <sup>A</sup><br>5 <sup>A</sup>        | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | -<br>10 U                | -<br>2.00 U                       | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 UL                     |
| Dichloropropane, 2,2-                                                          | µg/L         | 5 <sup>A</sup>                          | -                           | -                           | -                           | -                             | -                           | -                           | 10 U                     | 2.00 U                            | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Dichloropropene, cis-1,3-<br>Dichloropropene, trans-1,3-                       | μg/L<br>μg/L | 0.4 <sup>A</sup><br>0.4 <sup>A</sup>    | 10.0 U<br>10.0 U            | 10.0 U<br>10.0 U            | 5.00 U<br>5.00 U            | 4.00 U<br>4.00 U              | 2.00 U<br>2.00 U            | 4.00 U<br>4.00 U            | 10 U                     | -<br>2.00 U                       | 2.00 U<br>2.00 U            | -                        | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | 4.00 U<br>4.00 U                  | 5.00 U<br>5.00 U            |
| Dioxane, 1,4-                                                                  | μg/L         | n/v                                     | -                           | -                           | 5.00 0                      | 4.00 0                        |                             | 4.00 0                      | 100 U                    | 20.0 U                            | 20.0 U                      | -                        | 2.00 0<br>R                 | 20.0 U                      | 20.0 U                            | 20.0 U                            | 20.0 U                      | 40.0 U                            | 25.0 U                      |
| Ethylbenzene<br>Ethylong Dibromida (Dibromoothong, 1.2.)                       | µg/L         | 5 <sup>A</sup>                          | 10.0 U<br>10.0 U            | 10.0 U<br>10.0 U            | 5.00 U<br><b>5.00 U</b>     | 4.00 U<br><b>4.00 U</b>       | 2.00 U<br><b>2.00 U</b>     | 4.00 U                      | 10 U<br>10 U             | 2.00 U<br><b>2.00 U</b>           | 2.00 U<br><b>2.00 U</b>     | -                        | 2.00 U<br><b>2.00 U</b>     | 2.00 U<br><b>2.00 U</b>     | 2.00 U<br><b>2.00 U</b>           | 2.00 U<br><b>2.00 U</b>           | 2.00 U<br>2.00 U            | 4.00 U<br><b>4.00 U</b>           | 5.00 U<br><b>5.00 U</b>     |
| Ethylene Dibromide (Dibromoethane, 1,2-)<br>Hexanone, 2- (Methyl Butyl Ketone) | μg/L<br>μg/L | 0.0006 <sup>A</sup><br>50 <sup>B</sup>  | 25.0 U                      | 25.0 U                      | 12.5 U                      | 10.0 U                        | 5.00 U                      | -<br>10.0 U                 | 25 U                     | 5.00 U                            | 5.00 U                      | -                        | 5.00 U                      | 5.00 U                      | 5.00 U                            | 5.00 U                            | 5.00 U                      | 4.00 U                            | 12.5 U                      |
| Isopropylbenzene                                                               | µg/L         | 5 <sup>A</sup>                          | 25.0 U                      | 25.0 U                      | 12.5 U                      | 4.00 U                        | 2.00 U                      | -                           | -                        | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Isopropyltoluene, p- (Cymene)<br>Methyl Acetate                                | μg/L<br>μg/L | 5⊷ <sup>A</sup><br>n/v                  | <b>10.0 U</b><br>10.0 U     | <b>10.0 U</b><br>10.0 U     | 5.00 U<br>5.00 U            | 4.00 U<br>4.00 U              | 2.00 U<br>2.00 U            | -                           | -<br>10 U                | -<br>2.00 U                       | -<br>2.00 U                 | -                        | -<br>2.00 U                 | -<br>2.00 U                 | -<br>2.00 U                       | -<br>2.00 U                       | -<br>2.00 U                 | -<br>4.00 U                       | -<br>5.00 U                 |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                         | µg/L         | 50 <sup>B</sup>                         | 50.0 U                      | 50.0 U                      | 25.0 U                      | 20.0 U                        | 10.0 U                      | 20.0 U                      | 110 <sup>B</sup>         | 32.2                              | 10.0 U                      | -                        | 10.0 UJ                     | 10.0 U                      | 10.0 U                            | 10.0 U                            | 10.0 U                      | 20.0 U                            | 25.0 U                      |
| Methyl Isobutyl Ketone (MIBK)<br>Methyl tert-butyl ether (MTBE)                | μg/L<br>μg/L | n/v<br>10 <sup>B</sup>                  | 25.0 U<br>10.0 U            | 25.0 U<br>10.0 U            | 12.5 U<br>5.00 U            | 10.0 U<br>4.00 U              | 5.00 U<br>2.00 U            | 10.0 U                      | 25 U<br>10 U             | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U            | -                        | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U            | 10.0 U<br>4.00 U                  | 12.5 U<br>5.00 U            |
| Methylcyclohexane                                                              | µg/L         | n/v                                     | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | -                           | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Methylene Chloride (Dichloromethane)<br>Naphthalene                            | μg/L<br>μg/L | 5 <sup>A</sup><br>10 <sup>A</sup>       | 25.0 U<br>25.0 U            | 25.0 U<br>25.0 U            | 12.5 U<br>12.5 U            | <b>10.0 U</b><br>10.0 U       | 5.00 U<br>5.00 U            | 10.0 U                      | 25 U                     | 5.00 U                            | 5.00 U                      | -                        | 5.00 U                      | 5.00 U                      | 5.00 U                            | 5.00 U                            | 5.00 U                      | 10.0 U                            | 12.5 U                      |
| Propylbenzene, n-                                                              | µg/L         | 5 <sup>A</sup>                          | 25.0 U                      | 25.0 U                      | 12.5 U                      | 4.00 U                        | 2.00 U                      | -                           | -                        | -                                 | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Styrene<br>Tetrachloroethane, 1,1,2,2-                                         | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>        | 25.0 U<br>10.0 U            | 25.0 U<br>10.0 U            | <b>12.5 U</b><br>5.00 U     | <b>10.0 U</b><br>4.00 U       | 5.00 U<br>2.00 U            | <b>10.0 U</b><br>4.00 U     | 25 U<br>10 U             | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U            | -                        | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U            | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U                  | 5.00 U<br>2.00 U            | <b>10.0 U</b><br>4.00 U           | <b>12.5 U</b><br>5.00 U     |
| Tetrachloroethene (PCE)                                                        | μg/L<br>μg/L | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 6.71 <sup>A</sup>           | 4.00 0                        | 5.21 <sup>A</sup>           | 5.59 <sup>A</sup>           | 10 U                     | 2.00 U                            | 2.00 U                      |                          | 2.00 U                      | 2.00 U<br>1.38 J            | 2.36                              | 2.93                              | 3.37                        | 4.00 U<br>2.15 J                  | 4.69 JL                     |
| Toluene                                                                        | µg/L         | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Trichlorobenzene, 1,2,3-<br>Trichlorobenzene, 1,2,4-                           | μg/L<br>μg/L | 5^<br>5 <sup>A</sup>                    | 25.0 U<br>25.0 U            | 25.0 U<br>25.0 U            | 12.5 U<br>12.5 U            | 10.0 U<br>10.0 U              | 5.00 U<br>5.00 U            | -                           | 25 U<br>25 U             | 5.00 U<br>5.00 U                  | 5.00 U<br>5.00 U            | -                        | 5.00 U<br>5.00 U            | 5.00 U<br>5.00 U            | 5.00 U<br>5.00 U                  | 5.00 U<br>5.00 U                  | 5.00 U<br>5.00 U            | 10.0 U<br>10.0 U                  | 12.5 U<br>12.5 U            |
| Trichloroethane, 1,1,1-                                                        | µg/L         | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Trichloroethane, 1,1,2-                                                        | µg/L         | 1 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Trichloroethene (TCE)<br>Trichlorofluoromethane (Freon 11)                     | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 431 <sup>A</sup><br>10.0 U  | 221 <sup>A</sup><br>10.0 U  | 264 <sup>A</sup><br>5.00 U  | 200 <sup>A</sup><br>4.00 U    | 139 <sup>A</sup><br>2.00 U  | 229 <sup>A</sup><br>4.00 U  | 230 <sup>A</sup><br>10 U | <b>13.9<sup>A</sup></b><br>2.00 U | 20.3 <sup>A</sup><br>2.00 U | -                        | 16.8 <sup>A</sup><br>2.00 U | 9.94 <sup>A</sup><br>2.00 U | <b>10.1<sup>A</sup></b><br>2.00 U | <b>15.2<sup>A</sup></b><br>2.00 U | 23.5 <sup>A</sup><br>2.00 U | <b>14.2<sup>A</sup></b><br>4.00 U | 21.7 <sup>A</sup><br>5.00 U |
| Trichlorotrifluoroethane (Freon 113)                                           | µg/L         | 5 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U                      | 4.00 U                        | 2.00 U                      | -                           | 10 U                     | 2.00 U                            | 2.00 U                      | -                        | 2.00 U                      | 2.00 U                      | 2.00 U                            | 2.00 U                            | 2.00 U                      | 4.00 U                            | 5.00 U                      |
| Trimethylbenzene, 1,2,4-<br>Trimethylbenzene, 1,3,5-                           | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 25.0 U<br>25.0 U            | 25.0 U<br>25.0 U            | 12.5 U<br>12.5 U            | 4.00 U<br>4.00 U              | 2.00 U<br>2.00 U            |                             | -                        | -                                 | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Vinyl Acetate                                                                  | μg/L         | n/v                                     | -                           | -                           | -                           | -                             | -                           | 10.0 U                      | -                        | -                                 | -                           | _                        | -                           | -                           |                                   | -                                 | -                           | -                                 | -                           |
| Vinyl Chloride                                                                 | µg/L         | 2 <sup>A</sup>                          | 10.0 U                      | 10.0 U                      | 5.00 U<br>5.00 U            | <b>4.00 U</b><br>4.00 U       | 2.00 U<br>2.00 U            | <b>4.00 U</b><br>4.00 U     | 10 U                     | 23.6 <sup>A</sup>                 | 18.8 <sup>A</sup>           | -                        | 78.3 <sup>A</sup>           | 48.5 <sup>A</sup>           | 55.5 <sup>A</sup>                 | 48.7 <sup>A</sup>                 | 75.8 <sup>A</sup>           | 46.6 <sup>A</sup>                 | 59.2 <sup>A</sup>           |
| Xylene, m & p-<br>Xylene, o-                                                   | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>        | 10.0 U<br>10.0 U            | 10.0 U<br>10.0 U            | 5.00 U                      | 4.00 U                        | 2.00 U                      | 4.00 U                      | 10 U<br>10 U             | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | -                        | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U            | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U                  | 2.00 U<br>2.00 U            | 4.00 U<br>4.00 U                  | 5.00 U<br>5.00 U            |
| Total VOC                                                                      | µg/L         | n/v                                     | 1,269                       | 534                         | 709.11                      | 479.92                        | 285.11                      | 494.59                      | 670                      | 345.1                             | 209.1                       | -                        | 442.1                       | 300.82                      | 311.96                            | 297.83                            | 389.57                      | 385.95                            | 406.59                      |
| Miscellaneous Parameters Arsenic                                               | mc/l         | 0.025 <sup>A</sup>                      | 0.010 U                     | 0.010 U                     | 0.010 U                     | 0.010 U                       | 0.010 U                     | -                           | -                        | 0.0194                            | -                           | _                        |                             | -                           |                                   | -                                 |                             | -                                 |                             |
| Iron                                                                           | mg/L<br>mg/L | 0.025 <sup>A</sup><br>0.3. <sup>A</sup> | 0.100 U                     | 0.100 U                     | 0.100 U                     | 0.100 U                       | 0.100 U                     | -                           |                          | 3.91 L <sup>A</sup>               | -                           |                          |                             | -                           | -                                 | -                                 |                             | -                                 | .                           |
| Manganese                                                                      | mg/L         | 0.3. <sup>A</sup>                       | 0.092                       | 0.021                       | 0.033                       | 0.041                         | 0.015 U                     | -                           | -                        | 0.0860 L                          | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -                                 | -                           |
| Sodium                                                                         | mg/L         | 20 <sup>A</sup><br>n/v                  | 318 <sup>A</sup><br>3.2     | 346 <sup>A</sup>            | 352 <sup>A</sup><br>3.2     | <b>342<sup>A</sup></b><br>2.9 | 356 <sup>A</sup><br>3.3     | 361 <sup>A</sup><br>3.2     | 1,100 <sup>A</sup>       | 302 <sup>A</sup>                  | -                           | -                        | -                           | -                           | -                                 | -                                 | -                           | -<br>1.6                          | -<br>2.9 S+                 |
| otal Organic Carbon                                                            | mg/L         |                                         |                             |                             |                             |                               |                             |                             | 1,200                    | 164                               | 12.0                        | 4.70                     |                             | 2.5                         | 6.14                              | 3.52                              | 2.0                         |                                   |                             |

|                                                                                                |                                              | 27-Sep-11<br>WSR-MW-207R-GW-12<br>STANTEC | 27-Sep-11<br>WSR-MW-Dup-GW-13 | 6-Feb-12                     | 2-Mar-12                     | 6-Jun-12                     | 6-Sep-12                     | 24-Jan-13                 | MW207R<br>12-Apr-13       | E 1-140                   | 10-Oct-13                 | 10-Oct-13                 | 40 Jun 45                     | 40.14-11.40                   |                           | 24-Oct-18              |                               |                         |
|------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------------|-------------------------------|---------------------------|------------------------|-------------------------------|-------------------------|
| Sampling Company<br>Laboratory<br>Laboratory Work Order<br>Laboratory Sample ID<br>Sample Type |                                              |                                           | WSR-MW-Dup-GW-13              |                              |                              |                              |                              |                           |                           | 5-Jul-13                  |                           |                           | 18-Jun-15                     | 10-Mar-16                     | 10-Jan-18                 |                        | 8-Oct-19                      | 5-Oct-21                |
| aboratory<br>aboratory Work Order<br>aboratory Sample ID<br>Sample Type I                      |                                              |                                           | STANTEC                       | WSR-MW-207R-GW-13<br>STANTEC | WSR-MW-207R-GW-14<br>STANTEC | WSR-MW-207R-GW-15<br>STANTEC | WSR-MW-207R-GW-16<br>STANTEC | WSR-MW-207R-GW<br>STANTEC | WSR-MW-207R-GW<br>STANTEC | WSR-MW-207R-GW<br>STANTEC | WSR-MW-207R-GW<br>STANTEC | WSR-MW-207R-GW<br>STANTEC | WSR-MW-207R-GW<br>STANTEC     | WSR-MW-207R-GW<br>STANTEC     | WSR-MW-207R-GW<br>STANTEC | MW-207R<br>STANTEC     | WSR-MW-207R-GW<br>STANTEC     | MW-207R<br>STANTEC      |
| Laboratory Sample ID<br>Sample Type                                                            |                                              | PARAROCH                                  | PARAROCH                      | PARAROCH                     | PARAROCH                     | PARAROCH                     | PARAROCH                     | PARAROCH                  | PARAROCH                  | PARAROCH                  | PARAROCH                  | PARAROCH                  | PARAROCH                      | PARAROCH                      | PARAROCH                  | PARAROCH               | PARAROCH                      | PARAROCI                |
| Sample Type                                                                                    |                                              | P11-4089<br>14074                         | P11-4089<br>14075             | 12:0488<br>12:0488-04        | 12:0936<br>12:0936-03        | 12:2392<br>12:2392-03        | 12:3694<br>12:3694-02        | 13:0365<br>130365-02      | 131283<br>131283-04       | 132505<br>132505-04       | 133909<br>133909-04       | 133925<br>133925-06       | 152493<br>152493-06           | 160970<br>160970-05           | 180096<br>180096-04       | 184937<br>184937-05    | 194958<br>194958-04           | 214498<br>214498-01     |
|                                                                                                | Units TOO                                    |                                           | Field Duplicate               | 12:0408-04                   | 12:0936-03                   | 12:2392-03                   | 12:3694-02                   | 130365-02                 | 131203-04                 | 132505-04                 | 133909-04                 | 133925-06                 | 152493-06                     | 160970-05                     | 180096-04                 | 164937-05              | 194956-04                     | 214496-01               |
| olatile Organic Compounds                                                                      |                                              |                                           |                               |                              |                              |                              |                              |                           |                           |                           |                           |                           |                               |                               |                           |                        |                               |                         |
|                                                                                                | μg/L 50 <sup>4</sup><br>μg/L 1 <sup>A</sup>  | 50.0 U<br><b>3.50 U</b>                   | 50.0 U<br><b>3.50 U</b>       | 100 U<br>7.00 U              | 100 U<br>7.00 U              | 50.0 U<br><b>3.50 U</b>      | 50.0 U<br><b>3.50 U</b>      | 50 U<br><b>3.5 U</b>      | 50.0 U<br><b>3.50 U</b>   | 200 U<br>14.0 U           | -                         | 200 U<br>20 U             | 200 U<br>20.0 U               | 100 U<br>10.0 U               | 100 U<br>10.0 U           | 200 U<br>20.0 U        | 100 U<br>10.0 U               | 29.2 J<br>5.00 UL       |
| Bromobenzene                                                                                   | µg/L 5'                                      | -                                         | -                             | -                            | -                            | -                            | -                            | 25 U                      | 25.0 U                    | -                         | -                         | -                         | -                             | -                             | -                         | -                      | -                             | -                       |
|                                                                                                | μg/L 50 <sup>l</sup><br>μg/L 50 <sup>l</sup> |                                           | 10.0 U<br>25.0 U              | 20.0 U<br>50.0 U             | 20.0 U<br>50.0 U             | 10.0 U<br>25.0 U             | 10.0 U<br>25.0 U             | 10 U<br>25 U              | 10.0 U<br>25.0 U          | 40.0 U<br><b>100 U</b>    |                           | 40.0 U<br><b>100 U</b>    | 40.0 U<br><b>100 U</b>        | 20.0 U<br>50.0 U              | 20.0 U<br>50.0 U          | 40.0 U<br>100 U        | 20.0 U<br>50.0 U              | 10.0 UL<br>25.0 U       |
|                                                                                                | μg/L 5                                       | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | µg/L 5                                       |                                           | 25.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | -                            | -                         | -                         | -                         | -                         | -                         | -                             | -                             | -                         | -                      | -                             | -                       |
|                                                                                                | μg/L 5 <sup>/</sup><br>μg/L 5 <sup>/</sup>   |                                           | 25.0 U<br>25.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | -                            | -                         | -                         | -                         | -                         | -                         | -                             | -                             | -                         | -                      | -                             |                         |
| Carbon Disulfide                                                                               | µg/L 60 <sup>4</sup>                         | 25.0 U                                    | 25.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 5 <sup>A</sup><br>μg/L 5 <sup>4</sup>   | 10.0 U<br>10.0 U                          | 10.0 U<br>10.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | 10.0 U<br>10.0 U             | 10 U<br>10 U              | 10.0 U<br>10.0 U          | 40.0 U<br>40.0 U          |                           | 40.0 U<br>40.0 U          | 40.0 U<br>40.0 U              | 20.0 U<br>20.0 U              | 20.0 U<br>20.0 U          | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U<br>10.0 U        |
|                                                                                                | µg/L 5'                                      | 25.0 U                                    | 25.0 U                        | 50.0 U                       | 50.0 U                       | 25.0 U                       | -                            | 25 U                      | 25.0 U                    | 100 U                     | -                         | 100 U                     | 100 U                         | 50.0 U                        | 50.0 U                    | 100 U                  | 50.0 U                        | 25.0 U                  |
|                                                                                                | μg/L 5                                       |                                           | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L n/v<br>μg/L 7 <sup>A</sup>              |                                           | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 50.0 U<br><b>10.0 U</b>      | 50 U<br><b>10 U</b>       | 50.0 U<br><b>10.0 U</b>   | 40.0 U                    |                           | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
| Chloromethane                                                                                  | µg/L 5…                                      | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L n/v<br>μg/L 0.04                        |                                           | 50.0 U<br><b>50.0 U</b>       | 100 U<br><b>100 U</b>        | 100 U<br><b>100 U</b>        | 50.0 U<br><b>50.0 U</b>      | -                            | 50 U<br>50 U              | 50.0 U<br><b>50.0 U</b>   | 200 U<br>200 U            |                           | 200 U<br>200 U            | 200 U<br>200 U                | 100 U<br><b>100 U</b>         | 100 U<br><b>100 U</b>     | 200 U<br>200 U         | 100 U<br><b>100 U</b>         | 50.0 U<br><b>50.0 U</b> |
| Dibromochloromethane                                                                           | µg/L 50 <sup>8</sup>                         | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 3 <sup>A</sup><br>μg/L 3 <sup>A</sup>   | 10.0 U<br>10.0 U                          | 10.0 U<br>10.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | 10.0 U<br>10.0 U             | 10 U<br>10 U              | 10.0 U<br>10.0 U          | 40.0 U<br>40.0 U          | -                         | 40.0 U<br>40.0 U          | 40.0 U<br>40.0 U              | 20.0 U<br>20.0 U              | 20.0 U<br>20.0 U          | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U<br>10.0 U        |
|                                                                                                | μg/L 3 <sup>A</sup>                          | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | µg/L 5                                       | 25.0 U                                    | 25.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       |                              | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 0.6              |                                           | 10.0 U<br>10.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | 10.0 U<br>10.0 U             | 10 U<br>10 U              | 10.0 U<br>10.0 U          | 40.0 U<br>40.0 U          | -                         | 40.0 U<br>40.0 U          | 40.0 U<br>40.0 U              | 20.0 U<br>20.0 U              | 20.0 U<br>20.0 U          | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U<br>10.0 U        |
| Dichloroethene, 1,1-                                                                           | µg/L 5                                       | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | µg/L 5'                                      |                                           | 913 <sup>4</sup>              | 1,330 <sup>A</sup>           | 1,480 <sup>A</sup>           | 432 <sup>A</sup>             | 98.4 <sup>A</sup>            | 500 <sup>A</sup>          | 250 <sup>A</sup>          | 193 <sup>A</sup>          | -                         | 40.0 U                    | 537 <sup>A</sup>              | 690 <sup>A</sup>              | 1,940 <sup>A</sup>        | 1,070 <sup>A</sup>     | 932^                          | 300 <sup>A</sup>        |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 1 <sup>A</sup>   | 22.7 <sup>A</sup><br>10.0 U               | 22.3 <sup>A</sup><br>10.0 U   | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 13.9 <sup>A</sup><br>10.0 U  | 26.0 <sup>A</sup><br>10.0 U  | 24 <sup>A</sup>           | 10.0 U                    | 40.0 U<br>40.0 U          | -                         | 40.0 U<br>40.0 U          | 40.0 U<br>40.0 U              | 14.7 J <sup>A</sup><br>20.0 U | 25 <sup>A</sup><br>20.0 U | 40.0 U<br>40.0 U       | 15.5 J <sup>A</sup><br>20.0 U | 10.0 U<br>10.0 UL       |
| Dichloropropane, 1,3-                                                                          | µg/L 5'                                      | -                                         | -                             | -                            | -                            | -                            | -                            | 10 U                      | 10.0 U                    | -                         | -                         | -                         | -                             | -                             | -                         | -                      | -                             | -                       |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 0.4              |                                           | 10.0 U                        | -<br>20.0 U                  | -<br>20.0 U                  | -<br>10.0 U                  | -<br>10.0 U                  | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | -<br>40.0 U               | -<br>40.0 U                   | -<br>20.0 U                   | 20.0 U                    | -<br>40.0 U            | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 0.4                                     |                                           | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | µg/L n/v<br>µg/L 5                           |                                           | -                             |                              | -                            |                              | -                            | 100 U                     | 100 U                     | 400 U                     | -                         | R                         | 400 U                         | 200 U                         | 200 U                     | 400 U                  | 200 U                         | 50.0 U                  |
|                                                                                                | μg/L 5'<br>μg/L 0.000                        |                                           | 10.0 U<br>10.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | 10.0 U                       | 10 U<br>10 U              | 10.0 U<br>10.0 U          | 40.0 U<br>40.0 U          | -                         | 40.0 U<br>40.0 U          | 40.0 U<br>40.0 U              | 20.0 U<br>20.0 U              | 20.0 U<br>20.0 U          | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U<br>10.0 U        |
| lexanone, 2- (Methyl Butyl Ketone)                                                             | µg/L 50 <sup>8</sup>                         | 25.0 U                                    | 25.0 U                        | 50.0 U                       | 50.0 U                       | 25.0 U                       | 25.0 U                       | 25 U                      | 25.0 U                    | 100 U                     | -                         | 100 U                     | 100 U                         | 50.0 U                        | 50.0 U                    | 100 U                  | 50.0 U                        | 25.0 U                  |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 5 <sup>4</sup>   |                                           | 25.0 U<br>10.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | -                            | -                         | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | µg/L n/v                                     | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | -                            | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | µg/L 50 <sup>6</sup>                         |                                           | 50.0 U                        | 100 U                        | 100 U                        | 50.0 U                       | 50.0 U                       | 140 <sup>B</sup>          | 61.0 <sup>B</sup>         | 200 U                     | -                         | 200 UJ                    | 200 U                         | 100 U                         | 100 U                     | 200 U                  | 100 U                         | 50.0 U                  |
|                                                                                                | μg/L n/v<br>μg/L 10 <sup>i</sup>             |                                           | 25.0 U<br>10.0 U              | 50.0 U<br><b>20.0 U</b>      | 50.0 U<br><b>20.0 U</b>      | 25.0 U<br>10.0 U             | 25.0 U                       | 25 U<br>10 U              | 25.0 U<br>10.0 U          | 100 U<br><b>40.0 U</b>    | -                         | 100 U<br><b>40.0 U</b>    | 100 U<br><b>40.0 U</b>        | 50.0 U<br><b>20.0 U</b>       | 50.0 U<br><b>20.0 U</b>   | 100 U<br><b>40.0 U</b> | 50.0 U<br><b>20.0 U</b>       | 25.0 U<br>10.0 U        |
| Methylcyclohexane                                                                              | µg/L n/v                                     | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       |                              | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 10 <sup>4</sup>  | 25.0 U<br>25.0 U                          | 25.0 U<br>25.0 U              | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U             | 25.0 U<br>25.0 U             | 25.0 U                       | 25 U                      | 25.0 U                    | 100 U                     | -                         | 100 U                     | 100 U                         | 50.0 U                        | 50.0 U                    | 100 U                  | 50.0 U                        | 25.0 U                  |
|                                                                                                | µg/L 5                                       | 25.0 U                                    | 25.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | -                            | -                         | -                         | -                         | -                         | -                         | -                             | -                             | -                         | -                      | -                             | -                       |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 5 <sup>4</sup>   | 25.0 U<br>10.0 U                          | 25.0 U<br>10.0 U              | 50.0 U<br>20.0 U             | 50.0 U<br>20.0 U             | 25.0 U<br>10.0 U             | 25.0 U<br>10.0 U             | 25 U<br>10 U              | 25.0 U<br>10.0 U          | 100 U<br>40.0 U           | -                         | 100 U<br>40.0 U           | 100 U<br>40.0 U               | 50.0 U<br>20.0 U              | 50.0 U<br>20.0 U          | 100 U<br>40.0 U        | 50.0 U<br>20.0 U              | 25.0 U<br>10.0 U        |
|                                                                                                | μg/L 5                                       |                                           | 130 <sup>A</sup>              | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 <sup>-0</sup>          | 10.0 U                    | 40.0 U                    |                           | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 UL                 |
| Toluene                                                                                        | μg/L 5                                       | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 5 <sup>4</sup>   | 25.0 U<br>25.0 U                          | 25.0 U<br>25.0 U              | 50.0 U<br>50.0 U             | 50.0 U<br>50.0 U             | 25.0 U<br>25.0 U             | -                            | 25 U<br>25 U              | 25.0 U<br>25.0 U          | 100 U<br>100 U            | -                         | 100 U<br>100 U            | 100 U<br>100 U                | 50.0 U<br>50.0 U              | 50.0 U<br>50.0 U          | 100 U<br>100 U         | 50.0 U<br>50.0 U              | 25.0 U<br>25.0 U        |
| Trichloroethane, 1,1,1-                                                                        | µg/L 5                                       | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
| Trichloroethane, 1,1,2-                                                                        | µg/L 1 <sup>A</sup>                          |                                           | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | 10.0 U                       | 10 U                      | 10.0 U                    | 40.0 U                    | -                         | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U                 | 20.0 U                        | 10.0 U                  |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 5 <sup>4</sup>   |                                           | 184 <sup>A</sup><br>10.0 U    | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | 10.0 U<br>10.0 U             | 55 <sup>A</sup><br>10 U   | 10.0 U<br>10.0 U          | 40.0 U<br>40.0 U          |                           | 40.0 U<br>40.0 U          | 20.5 J <sup>A</sup><br>40.0 U | 20.0 U<br>20.0 U              | 20.0 U<br>20.0 U          | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U<br>10.0 U        |
| richlorotrifluoroethane (Freon 113)                                                            | μg/L 5                                       | 10.0 U                                    | 10.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | -                            | 10 U                      | 10.0 U                    | 40.0 U                    |                           | 40.0 U                    | 40.0 U                        | 20.0 U                        | 20.0 U                    | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U                  |
| rimethylbenzene, 1,2,4-                                                                        | µg/L 5                                       | 25.0 U                                    | 25.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | -                            | -                         | -                         | -                         | -                         | -                         | -                             | -                             | -                         | -                      | -                             | -                       |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L n/v              |                                           | 25.0 U                        | 20.0 U                       | 20.0 U                       | 10.0 U                       | -<br>25.0 U                  |                           | .                         |                           |                           | -                         | -                             | -                             | .                         |                        | -                             | 1                       |
| /inyl Chloride                                                                                 | µg/L 2 <sup>A</sup>                          | 203 <sup>A</sup>                          | 213 <sup>A</sup>              | 1,010 <sup>A</sup>           | 936 <sup>A</sup>             | 627 <sup>A</sup>             | 184 <sup>A</sup>             | 1,000 <sup>A</sup>        | 327 <sup>A</sup>          | 1,850 <sup>A</sup>        | -                         | 451 <sup>A</sup>          | 829 <sup>A</sup>              | 582 <sup>A</sup>              | 2,000 <sup>A</sup>        | 1,700 <sup>A</sup>     | 1,140 <sup>A</sup>            | 465 <sup>A</sup>        |
|                                                                                                | μg/L 5 <sup>4</sup><br>μg/L 5 <sup>4</sup>   |                                           | 10.0 U<br>10.0 U              | 20.0 U<br>20.0 U             | 20.0 U<br>20.0 U             | 10.0 U<br>10.0 U             | 10.0 U<br>10.0 U             | 10 U<br>10 U              | 10.0 U<br>10.0 U          | 40.0 U<br>40.0 U          | -                         | 40.0 U<br>40.0 U          | 40.0 U<br>40.0 U              | 20.0 U<br>20.0 U              | 20.0 U<br>20.0 U          | 40.0 U<br>40.0 U       | 20.0 U<br>20.0 U              | 10.0 U<br>10.0 U        |
|                                                                                                | μg/L 5<br>μg/L n/v                           |                                           | 1,462.3                       | 2,340                        | 2,416                        | 1,072.9                      | 308.4                        | 1,738                     | 638                       | <b>40.0 U</b><br>2,043    |                           | <b>40.0 U</b><br>451      | <b>40.0 0</b><br>1,386.5      | 1,286.7                       | 20.0 U<br>3,965           | <b>40.0 0</b><br>2,770 |                               | 794.2                   |
| liscellaneous Parameters                                                                       |                                              |                                           |                               |                              |                              |                              |                              |                           |                           |                           |                           |                           |                               |                               |                           |                        |                               |                         |
|                                                                                                | mg/L 0.02                                    |                                           | -                             | 0.010 U                      | 0.014                        | 0.010 U                      | -                            |                           | 0.0100 U                  |                           | -                         |                           |                               | -                             |                           | -                      |                               | -                       |
|                                                                                                | mg/L 0.3<br>mg/L 0.3                         |                                           |                               | 0.100 U<br>0.045             | 0.100 U<br>0.145             | 0.100 U<br>0.057             | -                            | -                         | 0.100 U<br>0.0207         | -                         |                           |                           |                               | -                             | -                         | -                      | -                             |                         |
|                                                                                                | mg/L 0.3<br>mg/L 20 <sup>4</sup>             |                                           |                               | 543 <sup>A</sup>             | 439 <sup>A</sup>             | 538 <sup>A</sup>             | 531 <sup>A</sup>             | 840 <sup>A</sup>          | 493 <sup>A</sup>          |                           |                           |                           |                               | -                             |                           |                        | -                             |                         |
|                                                                                                | mg/L n/v                                     |                                           | -                             | 18.5                         | 8.7                          | 9.4                          | 1.7                          | 530                       | 131                       | 28.0                      | 18.4                      |                           | 4.1                           | 11.7                          | 5.91                      | 3.5                    | 2.1                           | 3.1                     |

|                                                                                |              | 1                                      |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                         |                         |                         |                         |                         |                         |                         |                         |                         |
|--------------------------------------------------------------------------------|--------------|----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Sample Location Sample Date                                                    |              |                                        | 4-Jan-12                 | 5-Jan-12                 | 2-Feb-12                 | 3-Feb-12                 | 6-Feb-12                 | 29-Feb-12                | 1-Mar-12                 | 2-Mar-12                 | 4-Jun-12                 | 5-Jun-12                 | 6-Jun-12                 | Trip Blank<br>4-Sep-12   | 5-Sep-12                 | 6-Sep-12                 | 22-Jan-13               | 23-Jan-13               | 24-Jan-13               | 10-Apr-13               | 11-Apr-13               | 12-Apr-13               | 2-Jul-13                | 3-Jul-13                | 5-Jul-13                |
| Sample ID                                                                      |              |                                        | Trip Blank               | Trip Blank              | Trip Blank              | Trip Blank              | Trip Blank              | Trip Blank              | Trip Blank              | Trip Blank              | Trip Blank              | Trip Blank              |
| Sampling Company<br>Laboratory                                                 |              |                                        | STANTEC<br>PARAROCH      | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     | STANTEC<br>PARAROCH     |
| Laboratory Work Order                                                          |              |                                        | P12-0041                 | P12-0069                 | 12:0443                  | 12:0472                  | 12:0488                  | 12:0868                  | 12:0906                  | 12:0936                  | 12:2335                  | 12:2364                  | 12:2392                  | 12:3644                  | 12:3668                  | 12:3694                  | 13:0329                 | 13:0353                 | 13:0365                 | 131242                  | 131259                  | 131283                  | 132471                  | 132490                  | 132505                  |
| Laboratory Sample ID<br>Sample Type                                            | Units        | TOGS                                   | 12:0041-01<br>Trip Blank | 12:0069-01<br>Trip Blank | 12:0443-01<br>Trip Blank | 12:0472-01<br>Trip Blank | 12:0488-01<br>Trip Blank | 12:0868-01<br>Trip Blank | 12:0906-01<br>Trip Blank | 12:0936-01<br>Trip Blank | 12:2335-01<br>Trip Blank | 12:2364-01<br>Trip Blank | 12:2392-01<br>Trip Blank | 12:3644-01<br>Trip Blank | 12:3668-01<br>Trip Blank | 12:3694-01<br>Trip Blank | 130329-01<br>Trip Blank | 130353-01<br>Trip Blank | 130365-01<br>Trip Blank | 131242-01<br>Trip Blank | 131259-01<br>Trip Blank | 131283-01<br>Trip Blank | 132471-01<br>Trip Blank | 132490-01<br>Trip Blank | 132505-01<br>Trip Blank |
|                                                                                | Units        | 1005                                   |                          |                          |                          |                          |                          |                          | пр Банк                  | THP Blank                |                          |                          | Прылк                    |                          |                          |                          |                         | Прылк                   |                         | Прылк                   |                         |                         |                         |                         |                         |
| Volatile Organic Compounds<br>Acetone                                          | µg/L         | 50 <sup>B</sup>                        | 10.0 U                   | 28.1 B                   | 10.0 U                   | 10.0 U                   | 10 U                    | 10 U                    | 10 U                    | 13.3                    | 10.0 U                  |
| Benzene<br>Bromobenzene                                                        | µg/L         | 1 <sup>A</sup><br>5 <sup>A</sup>       | 0.700 U                  | 0.70 U                  | 0.70 U                  | 0.70 U                  | 0.700 U                 | 0.700 U                 | 0.700 U                 | 0.700 U                 | 0.700 U                 | 0.700 U                 |
| Bromodichloromethane                                                           | μg/L<br>μg/L | 5<br>50 <sup>B</sup>                   | 2.00 U                   | -<br>2.00 U              | -<br>2.00 U              | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Bromoform (Tribromomethane)                                                    | µg/L         | 50 <sup>B</sup>                        | 5.00 U                   | 5.0 U                   | 5.0 U                   | 5.0 U                   | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  |
| Bromomethane (Methyl bromide)<br>Butylbenzene, n-                              | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>       | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Butylbenzene, sec- (2-Phenylbutane)                                            | µg/L         | 5 <sup>A</sup>                         | 5.00 U                   | 5.00 U                   | 5.00 U                   | 2.00 U                   | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Butylbenzene, tert-<br>Carbon Disulfide                                        | µg/L         | 5 <sup>A</sup>                         | 5.00 U<br>5.00 U         | 5.00 U<br>5.00 U         | 5.00 U<br>5.00 U         | 2.00 U<br>2.00 U         | - 2 00 11                | - 2.00.11                | -<br>2.00 U              | -                       | -<br>2.0 U              | -<br>2.0 U              | -<br>2.00 U             | - 2.00.11               | - 2 00 11               | -<br>2.00 U             | -<br>2.00 U             | -<br>2.00 U             |
| Carbon Tetrachloride (Tetrachloromethane)                                      | μg/L<br>μg/L | 60 <sup>B</sup><br>5 <sup>A</sup>      | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U                   | 2.0 U<br>2.0 U          | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Chlorobenzene (Monochlorobenzene)                                              | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Chlorobromomethane<br>Chloroethane (Ethyl Chloride)                            | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>       | 5.00 U<br>2.00 U         | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U              | 5.0 U<br>2.0 U          | 5.0 U<br>2.0 U          | 5.0 U<br>2.0 U          | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        |
| Chloroethyl Vinyl Ether, 2-                                                    | µg/L         | n/v                                    | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | 10.0 U                   | 10.0 U                   | 10.0 U                   | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Chloroform (Trichloromethane)<br>Chloromethane                                 | µg/L         | 7 <sup>A</sup><br>5 <sup>A</sup>       | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        |
| Chloromethane<br>Cyclohexane                                                   | μg/L<br>μg/L | 5⊷°<br>n/v                             | 2.00 U<br>10.0 U         | 2.00 U<br>-              | - 2.00 0                 | -                        | 2.0 U<br>10 U           | 2.0 U<br>10 U           | 2.0 U<br>10 U           | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U                  |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                           | µg/L         | 0.04 <sup>A</sup>                      | 10.0 U                   | -                        | -                        | -                        | 10 U                    | 10 U                    | 10 U                    | 10.0 U                  | 10.0 U                  | 10.0 U                  | 10.0 U                  | 10.0 U                  | 10.0 U                  |
| Dibromochloromethane<br>Dichlorobenzene, 1,2-                                  | μg/L<br>μg/L | 50 <sup>8</sup><br>3 <sup>A</sup>      | 2.00 U<br>2.00 U         | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        |
| Dichlorobenzene, 1,3-                                                          | µg/L         | 3 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Dichlorobenzene, 1,4-<br>Dichlorodifluoromethane (Freon 12)                    | μg/L<br>μg/L | 3 <sup>A</sup><br>5 <sup>A</sup>       | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        |
| Dichloroethane, 1,1-                                                           | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Dichloroethane, 1,2-<br>Dichloroethene, 1,1-                                   | µg/L         | 0.6 <sup>A</sup><br>5 <sup>A</sup>     | 2.00 U<br>2.00 U         | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        |
| Dichloroethene, cis-1,2-                                                       | μg/L<br>μg/L | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Dichloroethene, trans-1,2-                                                     | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Dichloropropane, 1,2-                                                          | µg/L         | 1 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Dichloropropane, 1,3-<br>Dichloropropane, 2,2-                                 | μg/L<br>μg/L | 5 <sup>A</sup>                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |                          | -                        | -                        | -                        | -                       | -                       |                         | -                       | -                       | -                       |                         | -                       | -                       |
| Dichloropropene, cis-1,3-                                                      | µg/L         | 0.4 <sub>p</sub> <sup>A</sup>          | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Dichloropropene, trans-1,3-<br>Dioxane, 1,4-                                   | μg/L<br>μg/L | 0.4 <sub>p</sub> <sup>A</sup><br>n/v   | 2.00 U                   | 2.0 U<br>20 U           | 2.0 U<br>20 U           | 2.0 U<br>20 U           | 2.00 U<br>20.0 U        | 2.00 U<br>20.0 U        | 2.00 U<br>20.0 U        | 2.00 U<br>20.0 U        | 2.00 U<br>20.0 U        | 2.00 U<br>20.0 U        |
| Ethylbenzene                                                                   | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Ethylene Dibromide (Dibromoethane, 1,2-)<br>Hexanone, 2- (Methyl Butyl Ketone) | μg/L<br>μg/L | 0.0006 <sup>A</sup><br>50 <sup>B</sup> | <b>2.00 U</b><br>5.00 U  | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | <b>2.00 U</b><br>5.00 U  | <b>2.00 U</b><br>5.00 U  | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | -<br>5.00 U              | -<br>5.00 U              | -<br>5.00 U              | <b>2.0 U</b><br>5.0 U   | 2.0 U<br>5.0 U          | 2.0 U<br>5.0 U          | 2.00 U<br>5.00 U        | 2.00 U<br>5.00 U        | 2.00 U<br>5.00 U        | 2.00 U<br>5.00 U        | 2.00 U<br>5.00 U        | 2.00 U<br>5.00 U        |
| Isopropylbenzene                                                               | μg/L         | 5 <sup>A</sup>                         | 5.00 U                   | 5.00 U                   | 5.00 U                   | 2.00 U                   |                          | -                        | -                        | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Isopropyltoluene, p- (Cymene)                                                  | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Methyl Acetate<br>Methyl Ethyl Ketone (MEK) (2-Butanone)                       | μg/L<br>μg/L | n/v<br>50 <sup>B</sup>                 | 2.00 U<br>10.0 U         | -<br>10.0 U              | -<br>10.0 U              | -<br>10.0 U              | 2.0 U<br>10 U           | 2.0 U<br>10 U           | 2.0 U<br>10 U           | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        | 2.00 U<br>10.0 U        |
| Methyl Isobutyl Ketone (MIBK)                                                  | µg/L         | n/v                                    | 5.00 U                   | 5.0 U                   | 5.0 U                   | 5.0 U                   | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  |
| Methyl tert-butyl ether (MTBE)<br>Methylcvclohexane                            | μg/L<br>μg/L | 10 <sup>B</sup><br>n/v                 | 2.00 U<br>2.00 U         | -                        | -                        | -                        | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        |
| Methylene Chloride (Dichloromethane)                                           | µg/L         | 5 <sup>A</sup>                         | 5.00 U                   | 5.0 U                   | 5.0 U                   | 5.0 U                   | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  |
| Naphthalene<br>Propylhenzene                                                   | µg/L         | 10 <sup>A</sup><br>5 <sup>A</sup>      | 5.00 U<br>5.00 U         | 5.00 U<br>5.00 U         | 5.00 U<br>5.00 U         | 5.00 U<br>2.00 U         | 5.00 U                   | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Propylbenzene, n-<br>Styrene                                                   | μg/L<br>μg/L | 5 <sup>A</sup>                         | 5.00 U                   | 2.00 U                   | 2.00 U<br>5.00 U         | 2.00 U                   | 5.00 U                   | 5.00 U                   | 2.00 U<br>5.00 U         | 5.00 U                   | 5.00 U                   | 5.00 U                   | 5.0 U                   | 5.0 U                   | 5.0 U                   | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  |
| Tetrachloroethane, 1,1,2,2-                                                    | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Tetrachloroethene (PCE)<br>Toluene                                             | μg/L<br>μg/L | 5 <sup>A</sup><br>5 <sup>A</sup>       | 2.00 U<br>2.00 U         | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.0 U<br>2.0 U          | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        | 2.00 U<br>2.00 U        |
| Trichlorobenzene, 1,2,3-                                                       | µg/L         | 5 <sup>A</sup>                         | 5.00 U                   | -                        | -                        | -                        | 5.0 U                   | 5.0 U                   | 5.0 U                   | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  | 5.00 U                  |
| Trichlorobenzene, 1,2,4-<br>Trichloroethane, 1,1,1-                            | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>       | 5.00 U<br>2.00 U         | -<br>2.00 U              | -<br>2.00 U              | -<br>2.00 U              | 5.0 U<br>2.0 U          | 5.0 U<br>2.0 U          | 5.0 U<br>2.0 U          | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        | 5.00 U<br>2.00 U        |
| Trichloroethane, 1,1,1-<br>Trichloroethane, 1,1,2-                             | μg/L<br>μg/L | 1 <sup>A</sup>                         | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Trichloroethene (TCE)                                                          | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Trichlorofluoromethane (Freon 11)                                              | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup>       | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U<br>2.00 U         | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Trichlorotrifluoroethane (Freon 113)<br>Trimethylbenzene, 1,2,4-               | μg/L<br>μg/L | 5 <sup>A</sup>                         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>5.00 U         | 2.00 U<br>2.00 U         | .                        | -                        | -                        | 2.0 U<br>-              | 2.0 U<br>-              | 2.0 U<br>-              | 2.00 U<br>-             | 2.00 U<br>-             | 2.00 U<br>-             | 2.00 U<br>-             | 2.00 U<br>-             | 2.00 U<br>-             |
| Trimethylbenzene, 1,3,5-                                                       | µg/L         | 5 <sup>A</sup>                         | 5.00 U                   | 5.00 U                   | 5.00 U                   | 2.00 U                   | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Vinyl Acetate<br>Vinyl Chloride                                                | μg/L<br>μg/L | n/v<br>2 <sup>A</sup>                  | -<br>2.00 U              | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | 5.00 U<br>2.00 U         | -<br>2.0 U              | -<br>2.0 U              | -<br>2.0 U              | -<br>2.00 U             | -<br>2.00 U             | -<br>2.00 U             | -<br>2.00 U             | -<br>2.00 U             | -<br>2.00 U             |
| Xylene, m & p-                                                                 | μg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  |
| Xylene, o-                                                                     | µg/L         | 5 <sup>A</sup>                         | 2.00 U                   | 2.00 U<br>ND             | 2.00 U                   | 2.00 U                   | 2.00 U                   | 2.0 U                   | 2.0 U                   | 2.0 U                   | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U                  | 2.00 U<br>0             | 2.00 U                  |
| Total VOC<br>Miscellaneous Parameters                                          | µg/L         | n/v                                    | ND                       | 28.1                     | ND                       | ND                       | ND                      | ND                      | ND                      | 13.3                    | ND                      | ND                      | U                       | 0                       | 0                       |
|                                                                                | mg/L         | 0.025 <sup>A</sup>                     | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Iron                                                                           | mg/L         | 0.3. <sup>A</sup>                      | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Manganese                                                                      | mg/L         | 0.3. <sup>A</sup>                      | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |
| Sodium                                                                         | mg/L         | 20 <sup>A</sup>                        | -                        |                          |                          |                          | -                        |                          | -                        | -                        | -                        | -                        | -                        |                          |                          | -                        | -                       | -                       | -                       |                         | I -                     | -                       | -                       | -                       | -                       |
| Total Organic Carbon                                                           | mg/L         | n/v                                    | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          | -                        | -                        | -                        | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       | -                       |

| Sample Location                                            | 1            |                                  | 1                |                  |                  |                      | Trip Blank         |                  |                  |                  |                  |
|------------------------------------------------------------|--------------|----------------------------------|------------------|------------------|------------------|----------------------|--------------------|------------------|------------------|------------------|------------------|
| Sample Date                                                |              |                                  | 8-Oct-13         | 9-Oct-13         | 10-Oct-13        | 17-Jun-15            | 9-Mar-16           | 10-Jan-18        | 16-Oct-18        | 3-Oct-19         | 30-Sep-21        |
| Sample ID                                                  |              |                                  | Trip Blank       | Trip Blank       | Trip Blank       | TRIP-06172015, T-633 | Trip Blank (T-693) | Trip Blank T-803 | Trip Blank       | Trip Blank       | Trip Blank T1072 |
| Sampling Company                                           |              |                                  | STANTEC          | STANTEC          | STANTEC          | STANTEC              | STANTEC            | STANTEC          | STANTEC          | STANTEC          | STANTEC          |
| Laboratory                                                 |              |                                  | PARAROCH         | PARAROCH         | PARAROCH         | PARAROCH             | PARAROCH           | PARAROCH         | PARAROCH         | PARAROCH         | PARAROCH         |
| Laboratory Work Order                                      |              |                                  | 133927           | 133926           | 133925           | 152493               | 160970             | 180096           | 184937           | 194958           | 214498           |
| Laboratory Sample ID                                       |              |                                  | 133927-01        | 133926-01        | 133925-01        | 152493-04            | 160970-07          | 180096-07        | 184937-07        | 194958-07        | 214498-06        |
| Sample Type                                                | Units        | TOGS                             | Trip Blank       | Trip Blank       | Trip Blank       | Trip Blank           | Trip Blank         | Trip Blank       | Trip Blank       | Trip Blank       | Trip Blank       |
|                                                            |              |                                  |                  |                  |                  |                      |                    |                  |                  |                  |                  |
| Volatile Organic Compounds                                 |              |                                  |                  |                  |                  |                      |                    |                  |                  |                  |                  |
| Acetone                                                    | µg/L         | 50 <sup>B</sup>                  | 10.0 U           | 10.0 U           | 10.0 U           | 10.0 U               | 10.0 U             | 10.0 U           | 10.0 U           | 10.0 U           | 5.33 JB          |
| Benzene                                                    | µg/L         | 1 <sup>^</sup>                   | 1 U              | 10               | 10               | 1.00 U               | 1.00 U             | 1.00 U           | 1.00 U           | 1.00 U           | 1.00 U           |
| Bromobenzene                                               | µg/L         | 5 <sup>A</sup>                   | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Bromodichloromethane                                       | µg/L         | 50 <sup>B</sup>                  | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Bromoform (Tribromomethane)                                | µg/L         | 50 <sup>B</sup>                  | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U           |
| Bromomethane (Methyl bromide)                              | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Butylbenzene, n-                                           | µg/L         | 5 <sup>A</sup><br>5 <sup>A</sup> | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Butylbenzene, sec- (2-Phenylbutane)<br>Butylbenzene, tert- | µg/L         | 5 <sup>A</sup>                   | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Carbon Disulfide                                           | µg/L         | 60 <sup>B</sup>                  | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | -<br>2.00 U      | -<br>2.00 U      | -<br>2.00 U      | 2.00 U           |
| Carbon Tetrachloride (Tetrachloromethane)                  | μg/L<br>μg/L | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Chlorobenzene (Monochlorobenzene)                          | μg/L<br>μg/L | 5<br>5 <sup>A</sup>              | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Chlorobromomethane                                         | μg/L<br>μg/L | 5 <sup>A</sup>                   | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 2.00 U           | 5.00 U           | 5.00 U           |
| Chloroethane (Ethyl Chloride)                              | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Chloroethyl Vinyl Ether, 2-                                | μg/L         | o<br>n/v                         | 2.000            | -                | 2.00 0           | -                    | 2.00 0             | -                | -                | 2.00 0           | 2.00 0           |
| Chloroform (Trichloromethane)                              | μg/L         | 7 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Chloromethane                                              | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Cyclohexane                                                | μg/L         | n/v                              | 10.0 U           | 10.0 U           | 10.0 U           | 10.0 U               | 10.0 U             | 10.0 U           | 10.0 U           | 10.0 U           | 10.0 U           |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                       | µg/L         | 0.04 <sup>A</sup>                | 10.0 U           | 10.0 U           | 10.0 U           | 10.0 U               | 10.0 U             | 10.0 U           | 10.0 U           | 10.0 U           | 10.0 U           |
| Dibromochloromethane                                       | μg/L         | 50 <sup>B</sup>                  | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichlorobenzene, 1,2-                                      | µg/L         | 3 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichlorobenzene, 1,3-                                      | μg/L         | 3 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichlorobenzene, 1,4-                                      | µg/L         | 3 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichlorodifluoromethane (Freon 12)                         | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloroethane, 1,1-                                       | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloroethane, 1,2-                                       | µg/L         | 0.6 <sup>A</sup>                 | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloroethene, 1,1-                                       | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloroethene, cis-1,2-                                   | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 1.12 J           |
| Dichloroethene, trans-1,2-                                 | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloropropane, 1,2-                                      | µg/L         | 1 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloropropane, 1,3-                                      | µg/L         | 5 <sup>A</sup>                   | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Dichloropropane, 2,2-                                      | µg/L         | 5 <sup>A</sup>                   | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Dichloropropene, cis-1,3-                                  | µg/L         | 0.4 <sub>p</sub> <sup>A</sup>    | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dichloropropene, trans-1,3-                                | µg/L         | 0.4 <sub>p</sub> <sup>A</sup>    | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Dioxane, 1,4-                                              | µg/L         | n/v                              | R                | R                | R                | 20.0 U               | 20.0 U             | 20.0 U           | 20.0 U           | 20.0 U           | 10.0 U           |
| Ethylbenzene                                               | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Ethylene Dibromide (Dibromoethane, 1,2-)                   | µg/L         | 0.0006 <sup>A</sup>              | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Hexanone, 2- (Methyl Butyl Ketone)                         | µg/L         | 50 <sup>B</sup>                  | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U           |
| Isopropylbenzene                                           | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Isopropyltoluene, p- (Cymene)                              | µg/L         | 5 <sup>A</sup>                   | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Methyl Acetate                                             | µg/L         | n/v                              | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                     | µg/L         | 50 <sup>B</sup>                  | 10.0 UJ          | 10.0 UJ          | 10.0 UJ          | 10.0 U               | 10.0 U             | 10.0 U           | 10.0 U           | 10.0 U           | 10.0 U           |
| Methyl Isobutyl Ketone (MIBK)                              | µg/L         | n/v                              | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U           |
| Methyl tert-butyl ether (MTBE)<br>Methylcyclohexane        | µg/L         | 10 <sup>B</sup>                  | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
|                                                            | µg/L         | n/v<br>5⊷ <sup>A</sup>           | 2.00 U<br>5.00 U | 2.00 U<br>5.00 U | 2.00 U<br>5.00 U | 2.00 U<br>5.00 U     | 2.00 U<br>5.00 U   | 2.00 U<br>5.00 U | 2.00 U<br>5.00 U | 2.00 U<br>5.00 U | 2.00 U<br>5.00 U |
| Methylene Chloride (Dichloromethane)<br>Naphthalene        | µg/L         | 5<br>10 <sup>A</sup>             | 5.00 0           | 5.00 0           | 5.00 0           | 5.00 0               | 5.00 0             | 5.00 0           | 5.00 0           | 5.00 0           | 5.00 0           |
| Propylbenzene, n-                                          | μg/L<br>μg/L | 5 <sup>A</sup>                   |                  |                  |                  |                      |                    |                  |                  | 1                |                  |
| Styrene                                                    | μg/L         | 5 <sup>A</sup>                   | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U           |
| Tetrachloroethane, 1,1,2,2-                                | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Tetrachloroethene (PCE)                                    | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Toluene                                                    | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Trichlorobenzene, 1,2,3-                                   | μg/L         | 5 <sup>A</sup>                   | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U           |
| Trichlorobenzene, 1,2,4-                                   | μg/L         | 5 <sup>A</sup>                   | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U               | 5.00 U             | 5.00 U           | 5.00 U           | 5.00 U           | 5.00 U           |
| Trichloroethane, 1,1,1-                                    | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Trichloroethane, 1,1,2-                                    | μg/L         | 1 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Trichloroethene (TCE)                                      | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Trichlorofluoromethane (Freon 11)                          | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Trichlorotrifluoroethane (Freon 113)                       | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Trimethylbenzene, 1,2,4-                                   | μg/L         | 5 <sup>A</sup>                   | 2.00 0           | 2.00 0           | 2.00 0           | 2.00 0               | 2.00 0             | 2.00 0           | 2.00 0           | 2.00 0           | 2.00 0           |
| Trimethylbenzene, 1,3,5-                                   | μg/L         | 5 <sup>A</sup>                   | -                | _                | _                |                      |                    | -                | -                | -                | _                |
| Vinyl Acetate                                              | μg/L         | n/v                              | - 1              | -                |                  | -                    |                    | -                | -                | -                | -                |
| Vinyl Chloride                                             | µg/L         | 2 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Xylene, m & p-                                             | µg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Xylene, o-                                                 | μg/L         | 5 <sup>A</sup>                   | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U               | 2.00 U             | 2.00 U           | 2.00 U           | 2.00 U           | 2.00 U           |
| Total VOC                                                  | μg/L         | n/v                              | ND               | ND               | ND               | ND                   | ND                 | ND               | ND               | ND               | 6.45             |
| Miscellaneous Parameters                                   |              |                                  | -                |                  |                  |                      |                    |                  |                  |                  |                  |
| Arsenic                                                    | mg/L         | 0.025 <sup>A</sup>               | -                | -                | -                | -                    | -                  | -                | -                | -                | -                |
| Iron                                                       | mg/L         | 0.3.4                            | - I              | <u>-</u>         | - I              |                      | _                  | -                | _                | -                | -                |
| Manganese                                                  | mg/L         | 0.3. <sup>A</sup>                |                  |                  |                  |                      |                    |                  |                  |                  |                  |
| Sodium                                                     | mg/L         | 20 <sup>A</sup>                  | 1                | -                | -                | -                    |                    |                  | -                | -                |                  |
|                                                            | mg/L<br>mg/L | 20 <sup>11</sup><br>n/v          | -                | -                | -                | -                    | -                  | -                | -                | -                |                  |
| Total Organic Carbon                                       | IIIg/L       | 11/V                             |                  | -                | -                | -                    | · ·                | -                | -                | -                | -                |

..

Notes: TOGS NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004) A TOGS 1.1.1 - Table 1 - Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards
 B TOGS 1.1.1 - Table 1 - Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance

6.5<sup>A</sup> Concentration exceeds the indicated standard.
 15.2 Measured concentration did not exceed the indicated standard.

**0.50 U** Laboratory reporting limit was greater than the applicable standard.

0.03 U Analyte was not detected at a concentration greater than the laboratory reporting limit. n/v No standard/guideline value.

- Parameter not analyzed / not available. -
  - The standard for Iron and Manganese is 500 ug/L, which applies to the sum of these substances. As individual standards, the standard is 300 ug/L. The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.
- Applies to the sum of cis- and trans-1,3-dichloropropene.
- в Method blank contained trace levels of analyte. Refer to included method blank report. The reported result is an estimated value. J

L Laboratory Control Sample recovery outside accepted QC limits.

м Denotes matrix spike recoveries outside QC limits. Matrix bias indicated.

ND Not detected.

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

S+ LCS Spike recovery is above acceptable limits

UJ Indicates estimated non-detect.

190500014 Page 8 of 8

## Ward Street Sites Germanow-Simon Corporation Rochester, NY

| Area of interes               | st    |                      |                      |                      |                      |                      |                      |                   | On-Site Area 1: I     | Building B Anne                         | x                 |                   |                   |                   |                   |                                 |                  |
|-------------------------------|-------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------|-----------------------|-----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------|------------------|
| Sample Locatio                | n     |                      |                      |                      |                      |                      |                      |                   | MM                    | /105                                    |                   |                   |                   |                   |                   |                                 |                  |
| Sample Dat                    | te    | 28-Sep-11            | 4-Jan-12             | 2-Feb-12             | 29-Feb-12            | 4-Jun-12             | 4-Sep-12             | 22-Jan-13         | 11-Apr-13             | 2-Jul-13                                | 8-Oct-13          | 18-Jun-15*        | 10-Mar-16         | 10-Jan-18*        | 24-Oct-18         | 08-Oct-19*                      | 5-Oct-21         |
| Sample I                      | D     | WSR-MW-105-<br>GW-12 | WSR-MW-105-<br>GW-13 | WSR-MW-105-<br>GW-14 | WSR-MW-105-<br>GW-15 | WSR-MW-105-<br>GW-16 | WSR-MW-105-<br>GW-17 | WSR-MW-105-<br>GW | WSR-MW-105-<br>GW     | WSR-MW-105-<br>GW                       | WSR-MW-105-<br>GW | WSR-MW-105-<br>GW | WSR-MW-105-<br>GW | WSR-MW-105-<br>GW | WSR-MW-105-<br>GW | WSR-MW-105-<br>GW               | WSR-MW-105<br>GW |
| Sampling Compan               | y     | STANTEC              | STANTEC              | STANTEC              | STANTEC              | STANTEC              | STANTEC              | STANTEC           | STANTEC               | STANTEC                                 | STANTEC           | STANTEC           | STANTEC           | STANTEC           | STANTEC           | STANTEC                         | STANTEC          |
| Field Parameters              | Units |                      |                      |                      |                      |                      |                      |                   |                       |                                         |                   |                   |                   |                   |                   |                                 |                  |
| Color (Visual)                | none  | clear                | clear                | clear                | clear                | clear                | cloudy               | clear             | Black<br>precipitate  | clear with some<br>brown<br>precipitate | clear             | cloudy            | clear             | slightly cloudy   |                   | brown turbid<br>(after bailing) |                  |
| Conductivity, Field           | mS/cm | 2.50                 | 2.72                 | 0.267                | 2.36                 | 0.318                | 2.60                 | 4.66              | 2.71                  | 2.55                                    | 2.76              | 2.24              | 2.31              | 2.08              | 2.02              | 2.039                           | 2.00             |
| Dissolved Oxygen, Field       | mg/L  | 0.00                 | 0.53                 | 0.00                 | 0.25                 | 0.97                 | 0.53                 | 0.17              | 0.79                  | 0.32                                    | 0.21              | 0.42              | 0.35              | 0.33              | 0.48              | 0.26                            | 0.27             |
| Odor                          | none  | none                 | no odor              | no odor              | no odor              | sulfur odor          | no odor              | sulfur odor       | Strong sulfur<br>odor | none                                    | none              | none              | slight sulfur     | none              | none              | none                            | none             |
| Oxidation Reduction Potential | mV    | 111                  | 227                  | 297                  | 235                  | -132                 | 195.3                | -199.2            | -219.6                | -152.6                                  | -70.2             | -28.0             | -90.2             | -27.5             | -91.8             | -8.4                            | -62.4            |
| oH, Field                     | S.U.  | 6.87                 | 7.25                 | 7.28                 | 7.33                 | 7.09                 | 7.16                 | 6.90              | 7.37                  | 8.47                                    | 7.26              | 7.18              | 7.22              | 7.14              | 7.19              | 7.18                            | 7.84             |
| Temperature, Field            | deg C | 20.46                | 20.49                | 19.22                | 20.43                | 19.4                 | 21.3                 | 18.9              | 18.7                  | 19.6                                    | 19.4              | 19.2              | 19.6              | 20.0              | 21.2              | 20.7                            | 21.8             |
| Turbidity, Field              | NTU   | 58.5                 | 31.3                 | 3.44                 | 9.75                 | 4.41                 | 17.6                 | 4.99              | 4.36                  | 5.56                                    | 3.56              | 47.8              | 13.0              | 20.3              | 25.8              | 91.19                           | 6.58             |
| /olume Purged                 | gal   | 0.6                  | 3~                   | 3.5 ~                | 2.0                  | 1.0                  | 1.1                  | 2.7               | 1.3                   | 1.35                                    | 1.0               | 0.3               | 1.3               | 1.2               | 0.7               | 0.6                             | 1.0              |

## Ward Street Sites Germanow-Simon Corporation Rochester, NY

| Area of interes               | t     |                       |                          |                          |                       |                                               |                                           | On-Site                                   | Area 1: Building                         | B Annex                                   |                                           |                                  |                   |                       |                                                 |                              |
|-------------------------------|-------|-----------------------|--------------------------|--------------------------|-----------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|-------------------|-----------------------|-------------------------------------------------|------------------------------|
| Sample Location               | n     |                       |                          |                          |                       |                                               |                                           |                                           | MW207R                                   |                                           |                                           |                                  |                   |                       |                                                 |                              |
| Sample Date                   | Ð     | 27-Sep-11             | 6-Feb-12                 | 2-Mar-12                 | 6-Jun-12              | 6-Sep-12<br>R-WSR-MW-207R<br>GW-16<br>STANTEC | 24-Jan-13<br>WSR-MW-207R<br>GW<br>STANTEC | 12-Apr-13<br>WSR-MW-207R<br>GW<br>STANTEC | 5-Jul-13<br>WSR-MW-207R<br>GW<br>STANTEC | 10-Oct-13<br>WSR-MW-207R<br>GW<br>STANTEC | 18-Jun-15<br>WSR-MW-207R<br>GW<br>STANTEC | 10-Mar-16<br>· WSR-MW-207R<br>GW | 10-Jan-18*        | 24-Oct-18             | 8-Oct-19<br>R· WSR-MW-207R·<br>GW<br>STANTEC    | 5-Oct-21                     |
| Sample II                     | D     | WSR-MW-207R-<br>GW-12 | WSR-MW-207R-<br>GW-13    | WSR-MW-207R<br>GW-14     | WSR-MW-207R<br>GW-15  |                                               |                                           |                                           |                                          |                                           |                                           |                                  | WSR-MW-207R<br>GW | WSR-MW-207R<br>GW     |                                                 | WSR-MW-207R<br>GW<br>STANTEC |
| Sampling Company              | y     | STANTEC               | STANTEC                  | STANTEC                  | STANTEC               |                                               |                                           |                                           |                                          |                                           |                                           | STANTEC                          | STANTEC           | STANTEC               |                                                 |                              |
| Field Parameters              | Units |                       |                          |                          |                       |                                               |                                           |                                           |                                          |                                           |                                           |                                  |                   |                       |                                                 |                              |
| Color (Visual)                | none  | clear                 | clear w/ black<br>flecks | clear w/ black<br>flecks | clear                 | clear w/ black<br>flecks                      | murky w/ black<br>flecks                  | Black<br>precipitate                      | clear with black<br>precipitate          | clear with black<br>particulates          | slightly yellow                           | clear                            | clear             | clear                 | clear with black,<br>fine suspended<br>material |                              |
| Conductivity, Field           | mS/cm | 0.50                  | 0.541                    | 4.32                     | 0.490                 | 4.59                                          | 49.93                                     | 3.85                                      | 4.00                                     | 3.57                                      | 3.84                                      | 3.48                             | 3.36              | 3.60                  | 4.648                                           | 9.72                         |
| Dissolved Oxygen, Field       | mg/L  | 0.7                   | 0.00                     | 0.00                     | 0.62                  | 0.41                                          | 0.36                                      | 0.74                                      | 0.15                                     | 0.14                                      | 0.67                                      | 0.4                              | 0.10              | 0.18                  | 0.12                                            | 0.33                         |
| Odor                          | none  | sulfur odor           | odor                     | sulfur odor              | strong sulfur<br>odor | sulfur                                        | sulfur odor                               | odor                                      | strong sulfur<br>odor                    | strong sulfur<br>odor                     | sulfur odor                               | sulfur odor                      | sulfur odor       | strong sulfur<br>odor | sulfur odor                                     | sulfur odor                  |
| Oxidation Reduction Potential | mV    | -134                  | -345                     | -374                     | -358                  | -301.6                                        | -351.9                                    | -346.1                                    | -349.2                                   | -288.8                                    | -248.2                                    | -67.0                            | -104.5            | -278.4                | -141.3                                          | -71.4                        |
| oH, Field                     | S.U.  | 6.93                  | 6.73                     | 7.22                     | 6.68                  | 6.87                                          | 6.77                                      | 8.04                                      | 6.78                                     | 6.93                                      | 6.79                                      | 7.00                             | 6.93              | 7.06                  | 6.76                                            | 6.70                         |
| Temperature, Field            | deg C | 17.9                  | 14.27                    | 13.28                    | 15.9                  | 20.1                                          | 14.0                                      | 11.7                                      | 18.7                                     | 18.6                                      | 15.0                                      | 14.2                             | 14.0              | 16.0                  | 16.2                                            | 18.6                         |
| Turbidity, Field              | NTU   | 4.21                  | -0.29                    | 5.79                     | 0.70                  | 3.92                                          | 1.72                                      | 2.31                                      | 3.53                                     | 3.66                                      | 1.52                                      | 2.29                             | 2.40              | 1.0                   | 55.04**                                         | 1.41                         |
| /olume Purged                 | gal   | 1.5                   | 1.1                      | 0.5                      | 1.3                   | 1.2                                           | 3.6                                       | 1.6                                       | 2.0                                      | 1.5                                       | 1.5                                       | 1.6                              | 1.1               | 0.7                   | 0.7                                             | 0.75                         |

## Ward Street Sites Germanow-Simon Corporation Rochester, NY

| Area of interes               | t     |                     |                     |                     |                     |                                                       |                  | Off-Site A                      | rea 1: MW-16/ W                 | ard Street                 |                                   |                                      |                                                                           |                  |                                           |                                           |
|-------------------------------|-------|---------------------|---------------------|---------------------|---------------------|-------------------------------------------------------|------------------|---------------------------------|---------------------------------|----------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------|------------------|-------------------------------------------|-------------------------------------------|
| Sample Location               | n     |                     |                     |                     |                     |                                                       |                  |                                 | MW16                            |                            |                                   |                                      |                                                                           |                  |                                           |                                           |
| Sample Date                   | e     | 27-Sep-11           | 3-Feb-12            | 2-Mar-12            | 5-Jun-12            | 5-Sep-12                                              | 23-Jan-13        | 11-Apr-13                       | 3-Jul-13                        | 9-Oct-13                   | 17-Jun-15*                        | 9-Mar-16                             | 10-Jan-18*                                                                | 24-Oct-18        | 8-Oct-19                                  | 5-Oct-21                                  |
| Sample ID<br>Sampling Company |       | WSR-MW-16-<br>GW-18 | WSR-MW-16-<br>GW-19 | WSR-MW-16-<br>GW-20 | WSR-MW-16-<br>GW-21 | WSR-MW-16-<br>GW-22                                   | WSR-MW-16-<br>GW | WSR-MW-16-<br>GW                | WSR-MW-16-<br>GW                | WSR-MW-16-<br>GW           | WSR-MW-16-<br>GW                  | WSR-MW-16-<br>GW                     | WSR-MW-16-<br>GW                                                          | WSR-MW-16-<br>GW | WSR-MW-16-<br>GW                          | WSR-MW-16-<br>GW                          |
|                               |       | STANTEC             | STANTEC             | STANTEC             | STANTEC             | TEC STANTEC STANTEC STANTEC STANTEC STANTEC STANTEC S |                  | STANTEC                         | STANTEC                         | STANTEC                    | STANTEC                           |                                      |                                                                           |                  |                                           |                                           |
| Field Parameters              | Units |                     |                     |                     |                     |                                                       |                  |                                 |                                 |                            |                                   |                                      |                                                                           |                  |                                           |                                           |
| Color (Visual)                | none  | sl.red              | clear               | slightly cloudy     | clear               | clear                                                 | clear            | clear with black<br>precipitate | clear with black<br>precipitate | clear with black<br>specks | clear with black sulfide deposits | clear with black<br>sulfide deposits | slightly cloudy<br>with light to dark<br>colored<br>suspended<br>material | none             | clear with black<br>suspended<br>material | clear with black<br>suspended<br>material |
| Conductivity, Field           | mS/cm | 6.72                | 0.762               | 2.33                | 0.843               | 10.52                                                 | 7.63             | 10.63                           | 9.73                            | 10.13                      | 11.94                             | 12.76                                | 8.50                                                                      | 7.56             | 5.511                                     | 3.16                                      |
| Dissolved Oxygen, Field       | mg/L  | 0                   | 0.0                 | 0.00                | 1.09                | 0.40                                                  | 0.51             | 0.8                             | 0.19                            | 0.10                       | 0.35                              | 0.13                                 | 0.17                                                                      | 0.26             | 0.13                                      | 0.16                                      |
| Odor                          | none  | 0                   | no odor             | no odor             | no odor             | sulfur                                                | sewage odor      | Sulfur odor                     | slight sulfur<br>odor           | sulfur odor                | none                              | sulfur odor                          | slight sulfur<br>odor                                                     | none             | slight sulfur<br>odor                     | none                                      |
| Oxidation Reduction Potential | mV    | -107                | -259                | -181                | -291                | -319.5                                                | -208.0           | -361.2                          | -207.6                          | -188.0                     | -150.0                            | -120.2                               | -115.1                                                                    | -164.4           | -140.3                                    | -120.8                                    |
| oH, Field                     | S.U.  | 6.82                | 7.13                | 7.52                | 7.20                | 7.26                                                  | 7.06             | 7.10                            | 7.13                            | 7.33                       | 7.08                              | 7.06                                 | 7.19                                                                      | 7.46             | 7.41                                      | 7.59                                      |
| Temperature, Field            | deg C | 19.29               | 11.68               | 11.23               | 19.6                | 21.7                                                  | 8.7              | 8.3                             | 18.1                            | 19.3                       | 16.5                              | 14.9                                 | 11.8                                                                      | 17.8             | 17.3                                      | 20.0                                      |
| Turbidity, Field              | NTU   | 30                  | 11.1                | 17.6                | 37.0                | 7.11                                                  | 1.01             | 4.55                            | 8.59                            | 11.4                       | 8.98                              | 11.55                                | 15.0                                                                      | 1.89             | 17.27                                     | 12.0                                      |
| /olume Purged                 | gal   | 0.9                 | 3.0                 | 1.9                 | 0.5                 | 1.1                                                   | 2.8              | 3.3                             | 1.3                             | 0.8                        | 1.0                               | 1.1                                  | 0.4                                                                       | 0.3              | 1.2                                       | not recorded                              |

## Ward Street Sites Germanow-Simon Corporation Rochester, NY

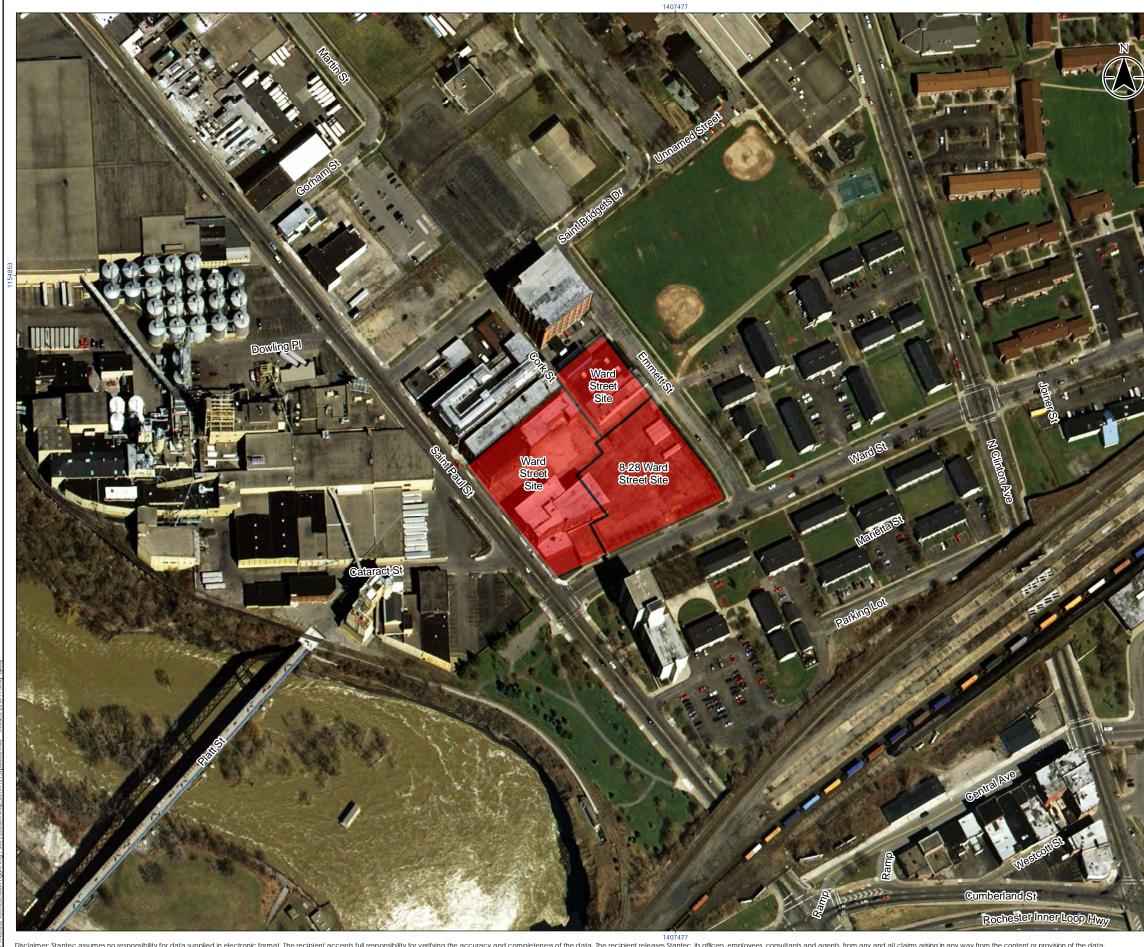
| Area of interes               | st    |                      |                      |                      |                                               |                                             |                                             | C                                         | Off-Site Area 1: N                        | W-16/ Ward Stre                          | eet                                        |                                             |                                 |                                                           |                                  |                                                    |                                           |
|-------------------------------|-------|----------------------|----------------------|----------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------------------|-------------------------------------------|
| Sample Locatio                | n     |                      |                      |                      |                                               |                                             |                                             |                                           | MM                                        | /16R                                     |                                            |                                             |                                 |                                                           |                                  |                                                    |                                           |
| Sample Dat                    | e     | 28-Sep-11            | 5-Jan-12             | 3-Feb-12             | 1-Mar-12<br>- WSR-MW-16R-<br>GW-21<br>STANTEC | 5-Jun-12<br>WSR-MW-16R-<br>GW-22<br>STANTEC | 5-Sep-12<br>WSR-MW-16R-<br>GW-23<br>STANTEC | 23-Jan-13<br>WSR-MW-16R-<br>GW<br>STANTEC | 11-Apr-13<br>WSR-MW-16R-<br>GW<br>STANTEC | 3-Jul-13<br>WSR-MW-16R-<br>GW<br>STANTEC | 9-Oct-13<br>- WSR-MW-16R-<br>GW<br>STANTEC | 17-June-15*<br>WSR-MW-16R-<br>GW<br>STANTEC | 9-Mar-16<br>WSR-MW-16R-<br>GW   | 10-Jan-18*<br>WSR-MW-16R-<br>GW                           | 24-Oct-18<br>- WSR-MW-16R-<br>GW | 08-Oct-19<br>WSR-MW-16R-<br>GW<br>STANTEC          | 05-Oct-21<br>WSR-MW-16R-<br>GW<br>STANTEC |
| Sample I                      | D     | WSR-MW-16R-<br>GW-18 | WSR-MW-16R-<br>GW-19 | WSR-MW-16R-<br>GW-20 |                                               |                                             |                                             |                                           |                                           |                                          |                                            |                                             |                                 |                                                           |                                  |                                                    |                                           |
| Sampling Compan               | У     | STANTEC              | STANTEC              | STANTEC              |                                               |                                             |                                             |                                           |                                           |                                          |                                            |                                             | STANTEC                         | STANTEC                                                   | STANTEC                          |                                                    |                                           |
| Field Parameters              | Units |                      |                      |                      |                                               |                                             |                                             |                                           |                                           |                                          |                                            |                                             |                                 |                                                           |                                  |                                                    |                                           |
| Color (Visual)                | none  | clear                | clear                | clear                | clear w/ black<br>flecks                      | clear                                       | clear                                       | murky                                     | Slightly clouded                          | clear with black<br>precipitate          | clear with black<br>precipitate            | clear with black<br>particulate             | clear with black<br>particulate | clear with fine<br>light to dark<br>suspended<br>material | clear                            | mostly clear<br>with dark<br>suspended<br>material | clear                                     |
| Conductivity, Field           | mS/cm | 4.31                 | 3.75                 | 0.782                | 4.90                                          | 0.629                                       | 5.19                                        | 5.32                                      | 4.06                                      | 4.40                                     | 2.67                                       | 8.04                                        | 3.72                            | 3.96                                                      | 2.91                             | 4.875                                              | 1.03                                      |
| Dissolved Oxygen, Field       | mg/L  | 1.12                 | 2.63                 | 0.00                 | 0.00                                          | 1.00                                        | 0.16                                        | 0.90                                      | 0.76                                      | 0.25                                     | 0.14                                       | 0.16                                        | 0.11                            | 0.34                                                      | 1.35                             | 0.14                                               | 0.08                                      |
| Odor                          | none  | none                 | no odor              | no odor              | stale odor                                    | no odor                                     | sulfur                                      | sulfur                                    | Sulfur odor                               | slight sulfur<br>odor                    | sulfur odor                                | none                                        | none                            | sulfur odor                                               | none                             | none                                               | none                                      |
| Oxidation Reduction Potential | mV    | -62                  | 104                  | -247                 | -196                                          | -247                                        | -328.6                                      | -346.8                                    | -313.9                                    | -354.5                                   | -264.3                                     | -205.9                                      | -144.3                          | -143.1                                                    | -155.9                           | -163.5                                             | -133.9                                    |
| pH, Field                     | S.U.  | 6.56                 | 7.53                 | 6.84                 | 7.04                                          | 6.53                                        | 6.96                                        | 6.76                                      | 7.04                                      | 6.90                                     | 6.58                                       | 7.00                                        | 6.95                            | 6.89                                                      | 6.99                             | 6.84                                               | 7.21                                      |
| Temperature, Field            | deg C | 17.78                | 7.26                 | 12.28                | 10.95                                         | 18.3                                        | 20.9                                        | 11.1                                      | 8.3                                       | 19.0                                     | 19.7                                       | 16.0                                        | 17.2                            | 10.6                                                      | 16.7                             | 16.7                                               | 18.3                                      |
| Turbidity, Field              | NTU   | 37                   | 44.3                 | 12.7                 | 29                                            | 15.0                                        | 11.48                                       | 3.97                                      | 13.9                                      | 12.50                                    | 6.42                                       | 9.79                                        | 3.76                            | 14.1                                                      | 3.92                             | 26.33                                              | 1.92                                      |
| Volume Purged                 | gal   | 1.0                  | 0.6                  | 2.7                  | 2.1                                           | 0.8                                         | 1.9                                         | 1.2                                       | 2.8                                       | 2.0                                      | 1.1                                        | 0.3                                         | 1.4                             | 0.8                                                       | 1.6                              | 1.3                                                | 0.75                                      |

## Ward Street Sites Germanow-Simon Corporation Rochester, NY

| Area of interes               | st    |                    |                   |                          |                          |                                                         |                       |                            | 8-28 \               | Ward St                         |                              |                                          |              |                                                    |              |                                                                 |                                                        |
|-------------------------------|-------|--------------------|-------------------|--------------------------|--------------------------|---------------------------------------------------------|-----------------------|----------------------------|----------------------|---------------------------------|------------------------------|------------------------------------------|--------------|----------------------------------------------------|--------------|-----------------------------------------------------------------|--------------------------------------------------------|
| Sample Locatio                | n     |                    |                   |                          |                          |                                                         |                       |                            | M                    | N23                             |                              |                                          |              |                                                    |              |                                                                 |                                                        |
| Sample Dat                    | e     | 28-Sep-11          | 5-Jan-12          | 6-Feb-12                 | 2-Mar-12                 | 5-Jun-12                                                | 6-Sep-12              | 24-Jan-13                  | 10-Apr-13            | 5-Jul-13                        | 10-Oct-13                    | 17-Jun-15*                               | 9-Mar-16     | 10-Jan-18*                                         | 24-Oct-18    | 8-Oct-19                                                        | 5-Oct-21                                               |
| Sample I                      | D     | WSR-MW-23-<br>GW-7 | 828-MW-23-GW<br>8 | 828-MW-23-GW<br>9        | 828-MW-23-GW<br>10       | 828-MW-23-GW<br>11                                      | 828-MW-23-GW<br>12    | <sup>/.</sup> 828-MW-23-GW | 828-MW-23-GW         | 828-MW-23-GW                    | / 828-MW-23-GW               | 828-MW-23-GW                             | 828-MW-23-GW | 828-MW-23-GW                                       | 828-MW-23-GW | / 828-MW-23-GW                                                  | / 828-MW-23-GV                                         |
| Sampling Company              |       | STANTEC            | STANTEC           | STANTEC                  | STANTEC                  | STANTEC STANTEC STANTEC STANTEC STANTEC STANTEC STANTEC |                       | STANTEC                    | STANTEC              | STANTEC                         | STANTEC                      | STANTEC                                  | STANTEC      |                                                    |              |                                                                 |                                                        |
| Field Parameters              | Units |                    |                   |                          |                          |                                                         |                       |                            |                      |                                 |                              |                                          |              |                                                    |              |                                                                 |                                                        |
| Color (Visual)                | none  | clear              | clear             | clear w/ black<br>flecks | clear w/ black<br>flecks | clear, no black<br>flecks                               | clear/black<br>pieces | clear w/ black<br>flecks   | Black<br>precipitate | clear with black<br>precipitate | clear with black precipitate | slightly yellow,<br>brown<br>particulate |              | clear, few fine<br>black<br>suspended<br>particles | clear        | mostly clear<br>with light-<br>colored<br>suspended<br>material | dark grey<br>suspended<br>solids observed<br>initially |
| Conductivity, Field           | mS/cm | 7.37               | 7.12              | 0.596                    | 6.06                     | 0.828                                                   | 6.62                  | 4.66                       | 4.38                 | 3.48                            | 5.96                         | 4.34                                     | 5.21         | 4.39                                               | 3.72         | 3.919                                                           | 4.87                                                   |
| Dissolved Oxygen, Field       | mg/L  | 0.0                | 2.61              | 0.00                     | 0.00                     | 0.42                                                    | 0.16                  | 0.35                       | 0.22                 | 0.11                            | 0.13                         | 0.47                                     | 0.32         | 0.28                                               | 0.25         | 0.06                                                            | 0.06                                                   |
| Odor                          | none  | none               | no odor           | no odor                  | no odor                  | no odor                                                 | no odor               | sewage odor                | No odor              | slight sulfur<br>odor           | sulfur odor                  | none                                     | none         | none                                               | none         | none                                                            | none                                                   |
| Oxidation Reduction Potential | mV    | 31                 | -135              | -187                     | -238                     | -211                                                    | -147.1                | -232.0                     | -149.2               | -271.7                          | -149.3                       | -101.3                                   | -22.2        | -76.6                                              | -74.4        | -139.8                                                          | -125.9                                                 |
| pH, Field                     | S.U.  | 6.66               | 6.73              | 7.09                     | 7.57                     | 6.71                                                    | 7.04                  | 7.09                       | 7.13                 | 6.44                            | 6.93                         | 7.13                                     | 7.09         | 7.04                                               | 7.08         | 6.84                                                            | 7.40                                                   |
| Temperature, Field            | deg C | 14.63              | 11.85             | 6.47                     | 12.18                    | 13.8                                                    | 21.0                  | 11.0                       | 9.8                  | 18.1                            | 15.3                         | 15.8                                     | 12.7         | 11.8                                               | 14.7         | 17.2                                                            | 17.6                                                   |
| Turbidity, Field              | NTU   | 45                 | 12.2              | 9.78                     | 24                       | 1.35                                                    | 9.14                  | 3.72                       | 9.72                 | 9.23                            | 3.66                         | 25.3                                     | 8.52         | 37.0                                               | 23.9         | 150                                                             | 14.1                                                   |
| Volume Purged                 | gal   | 2.1                | 1.6               | 0.5                      | 0.6                      | 2.5                                                     | 1.6                   | 0.9                        | 1.0                  | 1.1                             | 1.2                          | 0.8                                      | 1.7          | 0.8                                                | 0.8          | 1.3                                                             | 2.75                                                   |

## Ward Street Sites Germanow-Simon Corporation Rochester, NY

| Area of intere                | st    |                     |                          |                          |                                             |                                             |                                  |                                           | 8-28 V                                    | Vard St                                  |                                           |                                  |                                  |                                             |                                           |                                          |                                          |
|-------------------------------|-------|---------------------|--------------------------|--------------------------|---------------------------------------------|---------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|
| Sample Location               | n     |                     |                          |                          |                                             |                                             |                                  |                                           | MM                                        | /23R                                     |                                           |                                  |                                  |                                             |                                           |                                          |                                          |
| Sample Da                     | e     | 28-Sep-11           | p-11 5-Jan-12            | 6-Feb-12                 | 2-Mar-12<br>828-MW-23R-<br>GW-10<br>STANTEC | 5-Jun-12<br>828-MW-23R-<br>GW-11<br>STANTEC | 6-Sep-12<br>828-MW-23R-<br>GW-12 | 24-Jan-13<br>828-MW-23R-<br>GW<br>STANTEC | 10-Apr-13<br>828-MW-23R-<br>GW<br>STANTEC | 5-Jul-13<br>828-MW-23R-<br>GW<br>STANTEC | 10-Oct-13<br>828-MW-23R-<br>GW<br>STANTEC | 17-Jun-15                        | 9-Mar-16                         | 10-Jan-18*                                  | 24-Oct-18<br>828-MW-23R-<br>GW<br>STANTEC | 8-Oct-19<br>828-MW-23R-<br>GW<br>STANTEC | 5-Oct-21<br>828-MW-23R-<br>GW<br>STANTEC |
| Sample                        | D     | WSR-MW-23R-<br>GW-7 | 828-MW-23R-<br>GW-8      | 828-MW-23R-<br>GW-9      |                                             |                                             |                                  |                                           |                                           |                                          |                                           | 828-MW-23R-<br>GW                | 828-MW-23R-<br>GW                | 828-MW-23R-<br>GW                           |                                           |                                          |                                          |
| Sampling Compar               | y     | STANTEC             | STANTEC                  | STANTEC                  |                                             |                                             | STANTEC                          |                                           |                                           |                                          |                                           | STANTEC                          | STANTEC                          | STANTEC                                     |                                           |                                          |                                          |
| Field Parameters              | Units |                     |                          |                          |                                             |                                             |                                  |                                           |                                           |                                          |                                           |                                  |                                  |                                             |                                           |                                          |                                          |
| Color (Visual)                | none  | clear               | clear w/ black<br>flecks | clear w/ black<br>flecks | clear w/ black<br>flecks                    | clear w/ black<br>flecks                    | black                            | murky                                     | 0                                         | clear with black<br>precipitate          | clear with black<br>precipitate           | clear, black<br>sulfide deposits | clear, black<br>sulfide deposits | clear, fine black<br>suspended<br>particles |                                           |                                          |                                          |
| Conductivity, Field           | mS/cm | 3.44                | 4.24                     | 0.671                    | 7.03                                        | 0.635                                       | 4.74                             | 6.34                                      | 6.52                                      | 6.45                                     | 5.28                                      | 5.18                             | 4.78                             | 4.14                                        | 3.86                                      | 3.896                                    | 5.85                                     |
| Dissolved Oxygen, Field       | mg/L  | 0.00                | 0.00                     | 0.00                     | 0.00                                        | 0.57                                        | 0.24                             | 0.33                                      | 0.11                                      | 0.11                                     | 0.41                                      | 0.14                             | 0.09                             | 0.13                                        | 1.17                                      | 0.09                                     | 0.09                                     |
| Odor                          | none  | none                | no odor                  | odor                     | sulfur odor                                 | no odor                                     | sulfur                           | slight sulfur<br>odor                     | 0                                         | strong sulfur<br>odor                    | strong sulfur<br>odor                     | sulfur odor                      | sulfur odor                      | sulfur odor                                 | none                                      | none                                     | none                                     |
| Oxidation Reduction Potential | mV    | -23                 | -168                     | -262                     | -317                                        | -211                                        | -375.3                           | -438.3                                    | -358.9                                    | -408.0                                   | -347.1                                    | -307.0                           | -138.5                           | -190.7                                      | -122.2                                    | -173.9                                   | -104.8                                   |
| pH, Field                     | S.U.  | 6.63                | 7.38                     | 6.71                     | 6.86                                        | 6.59                                        | 7.02                             | 6.65                                      | 6.67                                      | 6.79                                     | 6.97                                      | 7.16                             | 7.25                             | 7.26                                        | 7.25                                      | 6.96                                     | 7.28                                     |
| Temperature, Field            | deg C | 22.26               | 12.61                    | 11.12                    | 12.97                                       | 16.1                                        | 19.7                             | 11.5                                      | 10.8                                      | 17.5                                     | 15.5                                      | 14.3                             | 14.2                             | 11.1                                        | 14.6                                      | 15.7                                     | 16.6                                     |
| Turbidity, Field              | NTU   | 3.3                 | 6.24                     | 1.04                     | 11.3                                        | 3.27                                        | 0.92                             | 1.60                                      | 1.25                                      | 0.82                                     | 3.84                                      | 2.87                             | 3.58                             | 8.97                                        | 1.88                                      | 3.97                                     | 0.63                                     |
| Volume Purged                 | gal   | 0.7                 | 1.3                      | 1.7                      | 2.2                                         | 1.1                                         | 1.4                              | 1.5                                       | 2.3                                       | 2.3                                      | 0.9                                       | 1.8                              | 1.5                              | 0.75                                        | 0.3                                       | 1.7                                      | 1.5                                      |


Ward Street Sites Germanow-Simoan Corporation Rochester, NY

### Notes:

- deg C degrees Celsius
- gal gallons
- mg/l milligrams per liter
- mS/cm milliSiemens per centimeter
- mV millivolts
- NTU nephelometric turbidity unit
- S.U. standard units
- \* During the June 2015, January 2018 events, as well as October 2019 for WSR-MW-105-GW, excessive drawdown at the indicated wells resulted in a switch from low-flow purging to volumetric purgeby bailer. The parameters reported here, including the volume purged, are from the end of low-flow purging.
- \*\* Water is clear and there is no visual indication of rising turbidity (DSS is flowmeter turbidity)

Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

FIGURES







Legend Site Boundary



Notes

NOLES
1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
2. Base features produced under license with the Ontario Ministry of Natural
Resources © Queen's Printer for Ontario, 2013.
3. Ortholmagery © First Base Solutions, 20xx.



Ward Street C. of Rochester, Monroe Co., NY

Prepared by MB on 2011-02-XX Technical Review by AL on 2013-XX-XX Independent Review by MPS

Client/Project

Ward Street Site (C828117) and 8-28 Ward Street Site (C828136) Figure No.

1 Title

### Site Location Map





### Legend

Well Network

- Monitoring Well Sampled in October 2021 (\*see Note 3)  $\blacklozenge$
- Other Monitoring Well
- Extraction Well (inactive)
  - Excavation Area (October 2017)
- 8-28 Ward Street Site Property Line
- Ward Street Site Property Line
- As-Built Trenching Limits



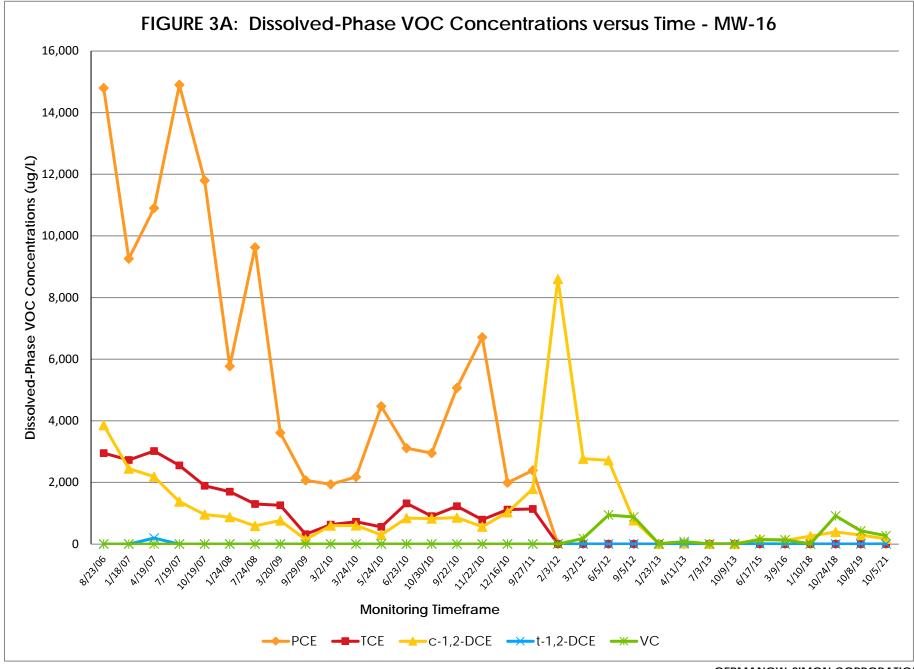
Notes 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet. 2. Orthoimagery (2015) downloaded from gis.ny.gov. Key Map basemap: ArcGIS World Street Map. 3. "No sample for laboratory analysis was collected at monitoring well MW-23R in accordance with NYSDEC's approval of the 2020 PRR recommendation that sampling be discontinued at this well. NYSDEC required that water level, dissolved oxygen, and oxidation-reduction potential continue to be monitored bi-annually.



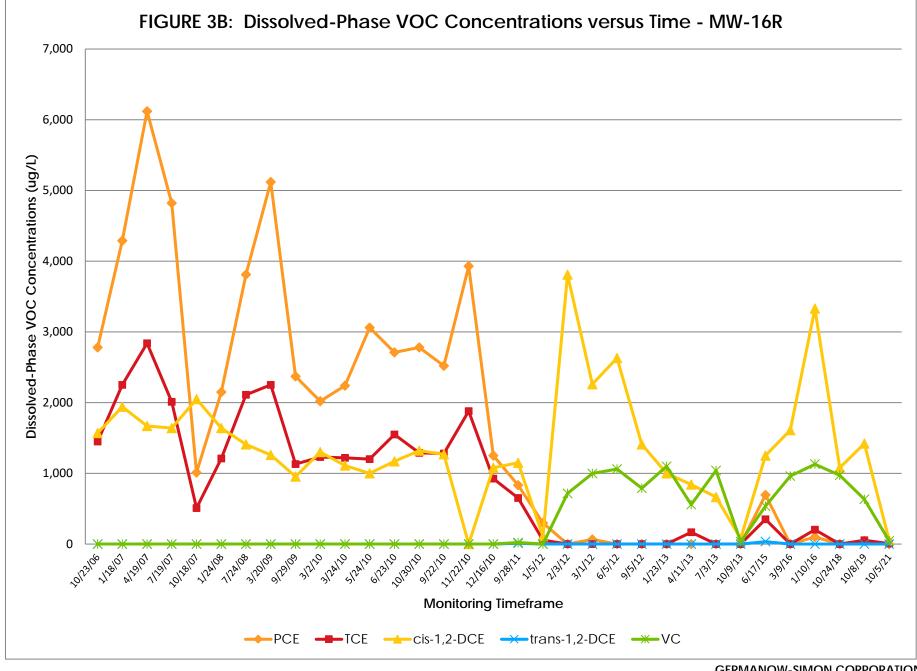
Project Location

 Prepared by LB on 2018-05-11

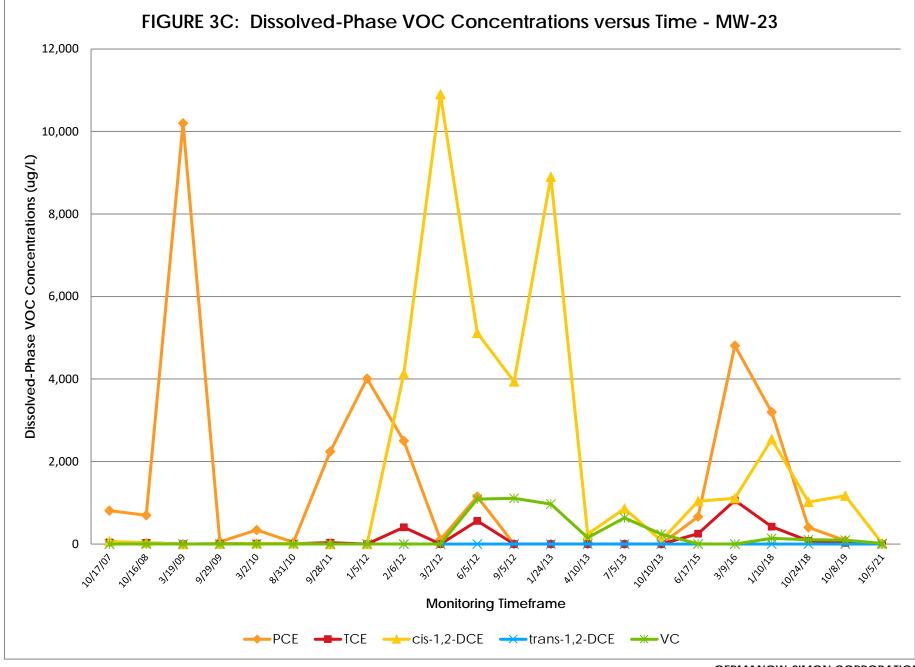
 Ward Street
 Technical Review by RJM on 2018-05-3xx


 C. of Rochester, Monroe Co., NY
 Independent Review by MPS on 2018-05-3xx

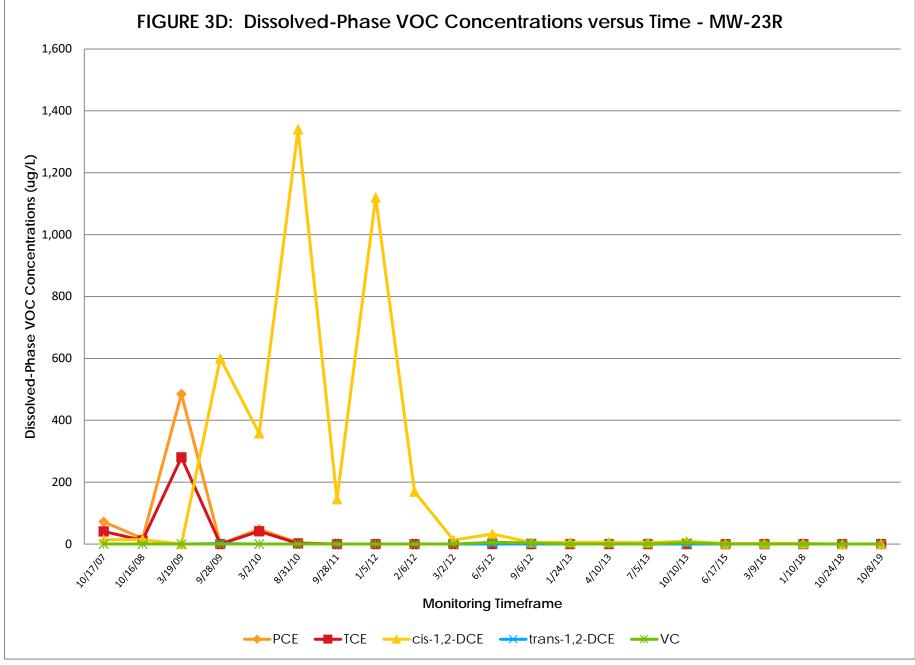
Client/Project Groundwater Monitoring Ward Street Site (C828117) and 8-28 Ward Street Site (C828136) Figure No


2

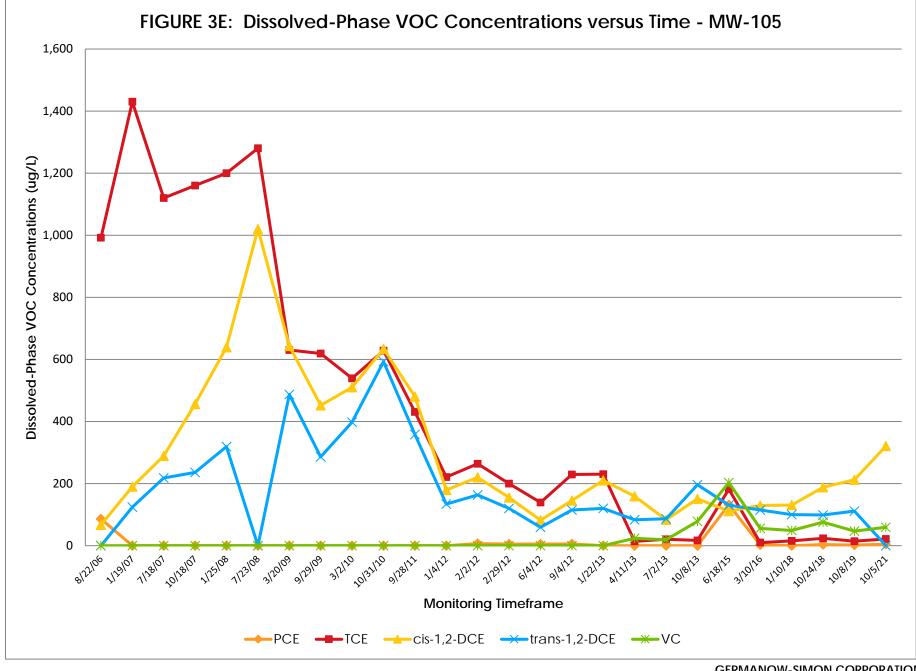
Title


Well Locations

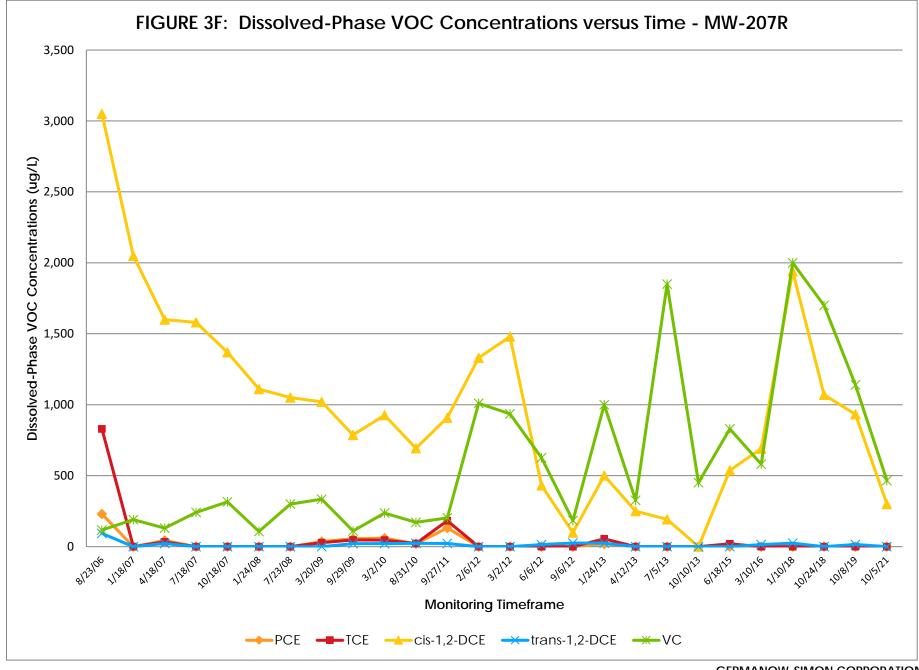



() Stantec




**Stantec** 




**Stantec** 



) Stantec



Stantec



() Stantec

GERMANOW-SIMON CORPORATION PERIODIC REVIEW REPORT, WARD STREET SITE ROCHESTER, NY Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

> APPENDIX A IC/EC Certification Forms



## Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



|                    |                                                                                                                                   | Site Details                                                                                                             | Box 1               |      |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------|------|--|
| Sit                | e No.                                                                                                                             | C828117                                                                                                                  |                     |      |  |
| Sit                | e Name Wa                                                                                                                         | /ard Street Site                                                                                                         |                     |      |  |
| Cit <u>y</u><br>Co | e Address:<br>y/Town: Ro<br>unty: Monroo<br>e Acreage:                                                                            | De                                                                                                                       |                     |      |  |
| Re                 | porting Perio                                                                                                                     | iod: November 15, 2020 to November 15, 2021                                                                              |                     |      |  |
|                    |                                                                                                                                   |                                                                                                                          | YES                 | NO   |  |
| 4                  | la tha inform                                                                                                                     | restion chours correct?                                                                                                  |                     |      |  |
| 1.                 | is the mon                                                                                                                        | rmation above correct?                                                                                                   | Х                   |      |  |
|                    | If NO, inclu                                                                                                                      | ude handwritten above or on a separate sheet.                                                                            |                     |      |  |
| 2.                 |                                                                                                                                   | e or all of the site property been sold, subdivided, merged, or unde mendment during this Reporting Period?              | ergone a            | X    |  |
| 3.                 |                                                                                                                                   | been any change of use at the site during this Reporting Period CRR 375-1.11(d))?                                        |                     | X    |  |
| 4.                 |                                                                                                                                   | federal, state, and/or local permits (e.g., building, discharge) bee<br>ne property during this Reporting Period?        | en issued           | X    |  |
|                    |                                                                                                                                   | swered YES to questions 2 thru 4, include documentation or imentation has been previously submitted with this certificat |                     |      |  |
| 5.                 | Is the site of                                                                                                                    | currently undergoing development?                                                                                        |                     | X    |  |
|                    |                                                                                                                                   |                                                                                                                          |                     |      |  |
|                    |                                                                                                                                   |                                                                                                                          | Box 2               |      |  |
|                    |                                                                                                                                   |                                                                                                                          | YES                 | NO   |  |
| 6.                 |                                                                                                                                   | rent site use consistent with the use(s) listed below?<br>ial and Industrial                                             | X                   |      |  |
| 7.                 | Are all ICs                                                                                                                       | s in place and functioning as designed?                                                                                  | $\mathbf{X}$ $\Box$ |      |  |
|                    | IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. |                                                                                                                          |                     |      |  |
| AC                 | Corrective M                                                                                                                      | Measures Work Plan must be submitted along with this form to a                                                           | address these iss   | ues. |  |
| Sig                | nature of Ow                                                                                                                      | wner, Remedial Party or Designated Representative                                                                        | Date                |      |  |

|      |                                                                                                                                                       | Box 2 | A   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| _    |                                                                                                                                                       | YES   | NO  |
| 8.   | Has any new information revealed that assumptions made in the Qualitative Exposure<br>Assessment regarding offsite contamination are no longer valid? |       | X   |
|      | If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.   |       |     |
| 9.   | Are the assumptions in the Qualitative Exposure Assessment still valid?<br>(The Qualitative Exposure Assessment must be certified every five years)   | ×     |     |
|      | If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.    |       |     |
| SITE | E NO. C828117                                                                                                                                         | Во    | k 3 |
| I    | Description of Institutional Controls                                                                                                                 |       |     |

| Parcel                   | Owner                                                                                                                      | Institutional Control                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 106.62-01-028            | Germanow-Simon Corporation                                                                                                 |                                             |
|                          |                                                                                                                            | Ground Water Use Restriction                |
|                          |                                                                                                                            | Soil Management Plan                        |
|                          |                                                                                                                            | Landuse Restriction                         |
|                          |                                                                                                                            | Site Management Plan<br>Monitoring Plan     |
|                          | ommercial or industrial. Restrict groundwater<br>red Soil Management Plan; and maintain Envi<br>Germanow-Simon Corporation |                                             |
| 100.02-01-029            | Germanow-Simon Corporation                                                                                                 | Monitoring Plan                             |
|                          |                                                                                                                            | Site Management Plan                        |
|                          |                                                                                                                            | Ground Water Use Restriction                |
|                          |                                                                                                                            | Soil Management Plan                        |
|                          |                                                                                                                            | Landuse Restriction                         |
| 5                        | ommercial or industrial. Restrict groundwater<br>ed Soil Management Plan; and maintain Envi<br>Germanow-Simon Corporation  |                                             |
|                          |                                                                                                                            | Site Management Plan                        |
|                          |                                                                                                                            | Ground Water Use Restrictior                |
|                          |                                                                                                                            | Soil Management Plan                        |
|                          |                                                                                                                            | Landuse Restriction                         |
|                          |                                                                                                                            | Monitoring Plan                             |
| Restrict site usage to o | ommercial or industrial. Restrict groundwater                                                                              |                                             |
|                          | red Soil Management Plan; and maintain Envi<br>Germanow-Simon Corporation                                                  |                                             |
|                          |                                                                                                                            | Site Management Plan                        |
|                          |                                                                                                                            | Monitoring Plan                             |
|                          |                                                                                                                            | Ground Water Use Restriction                |
|                          |                                                                                                                            | Soil Management Plan                        |
|                          |                                                                                                                            | Landuse Restriction                         |
|                          | ommercial or industrial. Restrict groundwater<br>ed Soil Management Plan; and maintain Envi<br>Germanow-Simon Corporation  |                                             |
|                          |                                                                                                                            | Ground Water Use Restrictior                |
|                          |                                                                                                                            | Soil Management Plan                        |
|                          |                                                                                                                            | Landuse Restriction                         |
|                          |                                                                                                                            | Site Management Dian                        |
|                          |                                                                                                                            | Site Management Plan<br>Monitoring Plan     |
| Restrict site usage to g | ommercial or industrial. Restrict groundwater                                                                              |                                             |
|                          | ed Soil Management Plan; and maintain Envi                                                                                 |                                             |
| 106.62-01-057            | Germanow-Simon Corporation                                                                                                 | <b>3 - - - -</b>                            |
|                          | · F · · · ·                                                                                                                | Soil Management Plan                        |
|                          |                                                                                                                            | Site Management Plan                        |
|                          |                                                                                                                            | Ground Water Use Restriction                |
|                          |                                                                                                                            | Landuse Restriction                         |
|                          |                                                                                                                            | Monitoring Plan                             |
| comply with the approv   | ommercial or industrial. Restrict groundwater<br>ed Soil Management Plan; and maintain Envi                                |                                             |
| 106.62-01-21             | Germanow-Simon Corporation                                                                                                 | Cround Water Lies Destriction               |
|                          |                                                                                                                            | Ground Water Use Restriction                |
|                          |                                                                                                                            | Soil Management Plan<br>Landuse Restriction |
|                          |                                                                                                                            |                                             |
|                          |                                                                                                                            | Monitoring Plan                             |
|                          |                                                                                                                            |                                             |

Site Management Plan

Restrict site usage to commercial or industrial. Restrict groundwater use. Any on-site soil excavation shall comply with the approved Soil Management Plan; and maintain Environmental Easement Agreement.

Box 4

## **Description of Engineering Controls**

Engineering Control

106.62-01-028

Parcel

Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-029** 

# Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-030** 

## Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-031** 

## Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-032** 

## Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Operate a sub-slab depressurization system; Maintain asphalt and concrete surfaces in the area of contamination.

# 106.62-01-057

## Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination. **106.62-01-21** 

Vapor Mitigation Cover System

A multi-phase vacuum extraction system ("MPVE") was operated at the site until February 22, 2011. DEC has approved the shutdown and decommissioning of the system. An enhanced reductive dechlorination (ERD) program was implemented at the site in November 2011. Continued groundwater monitoring and periodic injections are required until cleanup goals are achieved or DEC approves program modifications; Maintain asphalt and concrete surfaces in the area of contamination.

|    | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                                          |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| •  | I certify by checking "YES" below that:                                                                                                                                                                                                                                        |     |
|    | a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;                                                                                                               | i   |
|    | b) to the best of my knowledge and belief, the work and conclusions described in this certific<br>are in accordance with the requirements of the site remedial program, and generally accepte<br>engineering practices; and the information presented is accurate and compete. |     |
|    | YES NC                                                                                                                                                                                                                                                                         | С   |
|    | $\mathbf{X}$ $\Box$                                                                                                                                                                                                                                                            |     |
| 2. | For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:                                                                                                                                                 |     |
|    | (a) The Engineering Control(s) employed at this site is unchanged<br>since the date that the Control was put in-place, or was last approved by the Department;                                                                                                                 |     |
|    | (b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;                                                                                                                                                              | h a |
|    | (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;                                                                                                         |     |
|    | (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and                                                                                                                                            |     |
|    | (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document                                                                                     |     |
|    | YES NO                                                                                                                                                                                                                                                                         | С   |
|    | $\mathbf{X}$ $\Box$                                                                                                                                                                                                                                                            |     |
|    | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                                                                          |     |
|    | A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                                                                                                                | ·-  |
|    |                                                                                                                                                                                                                                                                                |     |

| SITE NO. C8281                                                                                                                                                            |                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|                                                                                                                                                                           | Box 6                                     |
| SITE OWNER OR DESIGNATED REPRE<br>I certify that all information and statements in Boxes 1,2, a<br>statement made herein is punishable as a Class "A" misde<br>Penal Law. | and 3 are true. I understand that a false |
| ARDREV GERMANNE at GER<br>print name print                                                                                                                                | business address                          |
| am certifying as                                                                                                                                                          | (Owner or Remedial Party)                 |
|                                                                                                                                                                           |                                           |
| for the Site named in the Site Details Section of this form.                                                                                                              |                                           |
| for the Site named in the Site Details Section of this form.                                                                                                              | nlelzi                                    |

|                                                                                   | EC CER                     | TIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|-----------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Pr                                                                                | ofessiona                  | Engineer Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Box 7                 |
| I certify that all information in Boxes 4 punishable as a Class "A" misdemean     | and 5 are t<br>or, pursual | rue. I understand that a false statement to Section 210.45 of the Penal Law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt made herein is     |
| Dwight Harrienger                                                                 |                            | ntec Consulting Services, Inc.<br>Commercial St., Ste. 100, Rocheste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er, NY 14617          |
| print name                                                                        |                            | print business address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                    |
| am certifying as a Professional Engine                                            | er for the $_{=}$          | Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| Signature of Professional Engineer, fo<br>Remedial Party, Rendering Certification |                            | (Owner or Remedial Participation of Remedial | 1 <u>202</u> 1<br>ate |

Γ



#### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Site       | Site Details te No. C828136                                                                                                     | Box 1                    |      |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|
| Site       | te Name 8-28 Ward Street                                                                                                        |                          |      |
| City<br>Co | te Address: 8-28 Ward Street Zip Code: 14603-1061<br>ty/Town: Rochester<br>punty: Monroe<br>te Acreage: 1.222                   |                          |      |
| Re         | eporting Period: November 15, 2020 to November 15, 2021                                                                         |                          |      |
|            |                                                                                                                                 | YES                      | NO   |
| 1.         | Is the information above correct?                                                                                               | ×                        |      |
|            | If NO, include handwritten above or on a separate sheet.                                                                        |                          |      |
| 2.         | Has some or all of the site property been sold, subdivided, merged, tax map amendment during this Reporting Period?             | or undergone a           | X    |
| 3.         | Has there been any change of use at the site during this Reporting I (see 6NYCRR 375-1.11(d))?                                  | ⊃eriod                   | X    |
| 4.         | Have any federal, state, and/or local permits (e.g., building, discharg<br>for or at the property during this Reporting Period? | ge) been issued          | X    |
|            | If you answered YES to questions 2 thru 4, include documentat that documentation has been previously submitted with this ce     |                          |      |
| 5.         | Is the site currently undergoing development?                                                                                   |                          | X    |
|            |                                                                                                                                 | Box 2                    |      |
|            |                                                                                                                                 | YES                      | NO   |
| 6.         | Is the current site use consistent with the use(s) listed below?<br>Commercial and Industrial                                   | ×                        |      |
| 7.         | Are all ICs in place and functioning as designed?                                                                               | ×□                       |      |
|            | IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign a DO NOT COMPLETE THE REST OF THIS FORM. Other                              |                          |      |
| AC         | Corrective Measures Work Plan must be submitted along with this fo                                                              | orm to address these iss | ues. |
| Sia        | gnature of Owner, Remedial Party or Designated Representative                                                                   | Date                     |      |

|                                  |                                                                                                                                                                                                                                                                                                                                                              | Box 2           | Α    |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|
|                                  |                                                                                                                                                                                                                                                                                                                                                              | YES             | NO   |
|                                  | as any new information revealed that assumptions made in the Qualitative Exposure<br>ssessment regarding offsite contamination are no longer valid?                                                                                                                                                                                                          | 2               | X    |
|                                  | you answered YES to question 8, include documentation or evidence<br>at documentation has been previously submitted with this certification form.                                                                                                                                                                                                            |                 |      |
|                                  | re the assumptions in the Qualitative Exposure Assessment still valid?<br>The Qualitative Exposure Assessment must be certified every five years)                                                                                                                                                                                                            | X               |      |
|                                  | you answered NO to question 9, the Periodic Review Report must include an pdated Qualitative Exposure Assessment based on the new assumptions.                                                                                                                                                                                                               |                 |      |
| SITE N                           | O. C828136                                                                                                                                                                                                                                                                                                                                                   | Bo              | x 3  |
| De                               | scription of Institutional Controls                                                                                                                                                                                                                                                                                                                          |                 |      |
| Parcel                           | <u>Owner</u> <u>Institutional Cor</u>                                                                                                                                                                                                                                                                                                                        | <u>trol</u>     |      |
| 106.63-1                         | -16 Germanow-Simon Corporation<br>Ground Water L<br>Soil Manageme<br>Landuse Restric                                                                                                                                                                                                                                                                         | nt Plan         | tion |
| Groundy                          | Site Manageme<br>Monitoring Plan<br>vater use is prohibited;                                                                                                                                                                                                                                                                                                 | nt Plan         |      |
|                                  |                                                                                                                                                                                                                                                                                                                                                              |                 |      |
|                                  | Ianagement Plan (SMP) must be implemented;                                                                                                                                                                                                                                                                                                                   |                 |      |
| Soils sh                         | all be managed in accordance with the SMP;                                                                                                                                                                                                                                                                                                                   |                 |      |
| The pot                          | ential for vapor intrusion for any new buildings must be evaluated and mitigated as r                                                                                                                                                                                                                                                                        | necessary;      |      |
| Periodic                         | review is required to certifiy all controls are in place.                                                                                                                                                                                                                                                                                                    |                 |      |
|                                  |                                                                                                                                                                                                                                                                                                                                                              | Bo              | x 4  |
| De                               | scription of Engineering Controls                                                                                                                                                                                                                                                                                                                            |                 |      |
| Parcel                           | Engineering Control                                                                                                                                                                                                                                                                                                                                          |                 |      |
| 106.63-1                         |                                                                                                                                                                                                                                                                                                                                                              |                 |      |
|                                  | Groundwater Treatment System<br>Cover System                                                                                                                                                                                                                                                                                                                 |                 |      |
| 22, 2011<br>reductive<br>groundw | whase vacuum extraction system ("MPVE") was operated at the site until<br>. DEC has approved the shutdown and decommissioning of the system. An enhance<br>dechlorination (ERD) program was implemented at the site in November 2011. Contacter monitoring and periodic injections are required until cleanup goals are achieved<br>s program modifications; | ced<br>Intinued |      |
|                                  | surface and near surface soils, asphalt-paved surfaces, concrete-paved surfaces, a buildings act as a cover system and must be maintained;                                                                                                                                                                                                                   | nd any          |      |

L

|   | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | I certify by checking "YES" below that:                                                                                                                                                                                                                                              |
|   | a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;                                                                                                                     |
|   | b) to the best of my knowledge and belief, the work and conclusions described in this certification<br>are in accordance with the requirements of the site remedial program, and generally accepted<br>engineering practices; and the information presented is accurate and compete. |
|   | YES NO                                                                                                                                                                                                                                                                               |
|   | $\mathbf{X}$ $\Box$                                                                                                                                                                                                                                                                  |
| • | For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:                                                                                                                                                       |
|   | (a) The Engineering Control(s) employed at this site is unchanged<br>since the date that the Control was put in-place, or was last approved by the Department;                                                                                                                       |
|   | (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;                                                                                                                                                                |
|   | (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;                                                                                                               |
|   | (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and                                                                                                                                                  |
|   | (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.                                                                                          |
|   | YES NO                                                                                                                                                                                                                                                                               |
|   | $\mathbf{X}$ $\Box$                                                                                                                                                                                                                                                                  |
|   | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                                                                                |
|   | A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                                                                                                                      |
| - | Signature of Owner, Remedial Party or Designated Representative Date                                                                                                                                                                                                                 |
|   |                                                                                                                                                                                                                                                                                      |

Γ

| IC CERTIFICATIONS<br>SITE NO. C828136                                                                                                                                                                                     |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                                                                           | Box 6                     |
| SITE OWNER OR DESIGNATED REPRESENTATIVE SIG<br>I certify that all information and statements in Boxes 1,2, and 3 are true. I un<br>statement made herein is punishable as a Class "A" misdemeanor, pursuant<br>Penal Law. | derstand that a false     |
| ANDREW GERMANNOW at GERMANOW Sin<br>print name print business address                                                                                                                                                     | Corp                      |
| am certifying as                                                                                                                                                                                                          | (Owner or Remedial Party) |
| for the Site named in the Site Details Section of this form.                                                                                                                                                              | - /3/2/<br>Date           |

| EC CERTIFICATIONS                                                                                                                                             |                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Professional Engineer Signature                                                                                                                               | Box 7                                   |
| I certify that all information in Boxes 4 and 5 are true. I understand that a figure punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the |                                         |
| DWIGHT HARRIENGER at STANTEC CONSULTING<br>print name print business address                                                                                  |                                         |
| am certifying as a Professional Engineer for the <u><u></u> (ひゃご に)<br/>(Owner or</u>                                                                         | r Remedial Party)                       |
| Put Haningen<br>Signature of Professional Engineer, for the Owner or<br>Remedial Party, Rendering Certification                                               | A C P A A A A A A A A A A A A A A A A A |

Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

> APPENDIX B NYSDEC Correspondence

Mike,

Please proceed as planned. Thank you.

-Todd

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at <u>teri.cotter@dec.ny.gov</u> or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

# New York State Department of Environmental Conservation 6274 East Avon-Lima Road, Avon, NY 14414

P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

From: Storonsky, Mike <mike.storonsky@stantec.com>
Sent: Monday, September 20, 2021 10:10 AM
To: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>
Cc: Best, Laura <Laura.Best@stantec.com>
Subject: RE: Groundwater Sampling: C828136 and C828117 Ward Street and 8-28 Ward Street Sites

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

## Todd,

We are anticipating conducting our 2021 Groundwater sampling the first week in October. We wanted to confirm that schedule would be ok with the Department?

Thanks, Mike

# Michael P. Storonsky

Managing Principal, Environmental Services Mobile: 585 298-2386 <u>mike.storonsky@stantec.com</u>

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Sent: Wednesday, July 7, 2021 8:28 AM
To: Best, Laura <<u>Laura.Best@stantec.com</u>>

**Cc:** Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>; Pratt, David (DEC) <<u>david.pratt@dec.ny.gov</u>> **Subject:** Re: Groundwater Sampling: C828136 and C828117 Ward Street and 8-28 Ward Street Sites

Using the flow-through cell for DO/ORP measurements as described in your e-mail is acceptable. Please let me know if you have any additional questions. -Todd

From: Best, Laura <<u>Laura.Best@stantec.com</u>>
Sent: Monday, June 28, 2021 2:34 PM
To: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Cc: <u>mike.storonsky@stantec.com</u> <<u>mike.storonsky@stantec.com</u>>
Subject: Groundwater Sampling: C828136 and C828117 Ward Street and 8-28 Ward Street Sites

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Dear Todd,

We are preparing costs for our client to perform the 2021 groundwater sampling event at the Ward Street/8-28 Ward Street sites (C828136 and C828117). In accordance with the 2020 PRR approval letter, we will no longer sample MW-23R for VOCs and TOC. The approval letter indicated that ORP and DO measurements would still be required (along with measuring groundwater levels). We wanted to confirm our proposed approach is acceptable. We propose to use the same flow-through setup as for low-flow sampling, and to purge MW-23R for 5 minutes prior to collecting a DO/ORP measurement. Please advise if this approach is acceptable.

Thank you, Laura

# Laura Best

Hydrogeologic Scientist Mobile: 585 301-0166 Laura.Best@stantec.com

Stantec 61 Commercial Street Suite 100 Rochester NY 14614-1009



The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From:Storonsky, MikeTo:Best, LauraSubject:FW: Ward Street & 8-28 Ward Street Sites, c828117 and c828136, Upcoming Test PitsDate:Friday, October 22, 2021 12:51:42 PM

FYI

# Michael P. Storonsky

Managing Principal, Environmental Services Mobile: 585 298-2386 <u>mike.storonsky@stantec.com</u>

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>
Sent: Friday, October 22, 2021 12:26 PM
To: Storonsky, Mike <mike.storonsky@stantec.com>
Subject: RE: Ward Street & 8-28 Ward Street Sites, c828117 and c828136, Upcoming Test Pits

Mike, Thanks for the heads up. Please proceed as planned.

-Todd

From: Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>
Sent: Friday, October 22, 2021 12:06 PM
To: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Subject: Ward Street & 8-28 Ward Street Sites, c828117 and c828136, Upcoming Test Pits

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Todd,

I wanted to let you know that we are planning to conduct 4-5 test pits next Thursday to pre-characterize fill material for disposal at Waste Management's High Acres Landfill.

The contractor is going to pre-cut the asphalt on Wed. and the plan is to return the spoils to the excavation unless we see significant impacts.

We plan to be on-site conducting CAMP and collecting samples for analysis of samples to satisfy Waste Management's requirements for an estimated 1,000 cy of material that the contractor is expecting will be displaced.

I expect to be getting the change of use submitted later today and I am told the site plan is being submitted to the city early next week. I left a voice mail for Jane Forbes earlier this week but have not yet connected.

Please let me know if you have any questions.

Thanks, Mike

Michael P. Storonsky Managing Principal, Environmental Services Mobile: 585 298-2386 mike.storonsky@stantec.com



The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Storonsky, Mike
Sent: Thursday, August 5, 2021 8:45 AM
To: Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov) <todd.caffoe@dec.ny.gov>
Subject: Ward Street & 8-28 Ward Street Sites, c828117 and c828136, Change of Use Form

Good Morning Todd,

Hope you and your family are doing well.

As a follow-up to the voice mail message I left earlier this week, please find attached a change of use form and a figure that we are proposing to submit to Albany for the Ward Street and 8-28 Ward Street sites. I wanted to run these by you first as I don't see where there is a place for Andy to sign when he will continue to be responsible for the implementation of the SMP. I am reading this correctly? I don't anticipate we will encounter too many issues other than urban fill in this area so I would also like to discuss with you the requirements for the project.

Please give me a call when you have a chance.

Thanks, Mike

## **Michael P. Storonsky**

Managing Principal, Environmental Services Mobile: 585 298-2386 <u>mike.storonsky@stantec.com</u>



The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

| From:        | Storonsky, Mike                                                                             |
|--------------|---------------------------------------------------------------------------------------------|
| То:          | Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov)                                                 |
| Cc:          | <u>Best, Laura; Harrienger, Dwight; Allen, Dan</u>                                          |
| Subject:     | FW: CHANGE OF USE, 8-28 WARD ST, c828117, & WARD ST., c828136, BCP SITES                    |
| Date:        | Monday, November 1, 2021 3:02:57 PM                                                         |
| Attachments: | FW Site Plan Review (DES Impacts) - 19-23 Emmett Street 8-28 Ward Street (SP-09-21-22) .msg |

#### Hi Todd,

I wanted to let you know that I received a call earlier today from Len Zinoman in the central office requesting that we forward our files on a CD. The documents that were posted to the FTP site are being uploaded to a CD and will be sent out tonight for overnight delivery to Albany. Not sure if that affects what you need to do from your end?.

We conducted our pre-characterization test pit program on Thursday last week and nothing out of the ordinary was noted, typical urban fill. Samples have been submitted for analysis for a one week turnaround time and the contractor is planning to have the material ~1,000 cy of material taken to High Acres LF. We will let you know how that progresses.

I have been in contact with Jane Forbes and last week she sent along the attached message to Anna Keller in the City Buildings and Zoning Bureau who will be issuing the City permit. It looks they will be looking for your comments to issue their comments as I am sure you know.

The contractor is hoping to break ground Nov. 22 and it has been reported that the city and COMIDA expect to be able to provide their approvals by the 19<sup>th</sup>.

Please let me know if you have questions or require further information.

Thanks, Mike

## **Michael P. Storonsky**

Managing Principal, Environmental Services Mobile: 585 298-2386 <u>mike.storonsky@stantec.com</u>

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

#### From: Storonsky, Mike

Sent: Friday, October 29, 2021 3:29 PM

To: derweb@gw.dec.state.dec; leonard.zinoman@dec.ny.gov

Cc: Caffoe, Todd (DEC) (todd.caffoe@dec.ny.gov) <todd.caffoe@dec.ny.gov>; Forbes, Jane <jane.forbes@cityofrochester.gov>; anna.keller@cityofrochester.gov; agermanow@teltru.com; Colin Sheridan <CSheridan@gsoptics.com>; John Nichols <john@nicholsteam.com>; Jim Burm <jimb@nicholsteam.com>; Farmer, Mel <mel.farmer@stantec.com>; Best, Laura <Laura.Best@stantec.com>; Harrienger, Dwight <dwight.harrienger@stantec.com> Subject: CHANGE OF USE, 8-28 WARD ST, c828117, & WARD ST., c828136, BCP SITES

Chief, Site Control Section,

As discussed with Leonard Zinoman earlier this week, and on behalf of Germanow-Simon Corporation,

presented below are the login credentials to a temporary FTP site which contains a Change of Use form, a Request for Building Permit-Environmental Easement Review form, and a series of supporting documents for the proposed construction of a 10,500+/- sq. ft. building addition which straddles the boundaries of the Ward Street (c828136) and 8-28 Ward Street (c828117) BCP sites. The two BCP sites and the two associated tax parcels involved with the proposed construction, 8-28 Ward St. and 19-23 Emmett Street, are covered by a single Environmental Easement which is also attached. The new building will house the manufacture of optical components for a COVID-19 antibody testing platform (see attached announcement).

We have previously been in contact with the NYSDEC Project Manager, Todd Caffoe, and also Ms. Jane Forbes in the City of Rochester Division of Environmental Quality, to advise them of this project. Site plans have been submitted to the City for their review and approval and the documents associated with that submission are also attached. I understand Ms. Forbes has provided the City Planner who is reviewing this application, Ms. Anna Keller, with the environmental requirements that will be needed to satisfy the SMP and Environmental Easement provisions associated with site plan approval and resubdivision approval which has been requested by the City.

Stantec's environmental staff will be providing full-time observation of sub-surface activities pursuant to the SMPs for the two sites. We are also assisting the design team with the sub-slab piping network to provide soil vapor mitigation should subsequent testing confirm that an active system is needed. Past investigations in this portion of the Sites have not revealed evidence of VOC impacts in this area.

Should you have any questions, please contact us.

Sincerely, Mike

#### Michael P. Storonsky Managing Principal, Environmental Services

Mobile: 585 298-2386 mike.storonsky@stantec.com

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please use the link below to access your directory with the username and password provided.

NOTE: FTP directories are not included in Stantec daily backups and are only intended to be used as a means of transferring large files between offices, clients, etc.

Login Information Browser link: https://tmpsftp.stantec.com Login name: s1108131854 Password: 7254758 Expiry Date: 11/22/2021

# Mike,

I have reviewed the information submitted for the new construction change in use at the referenced sites. The Change-in-Use can proceed as planned subject to the following:

- 1. The current Site Management Plan (SMP) provides the mechanism for characterizing, monitoring and disposal of excavated soils and it is acceptable to proceed under the current SMP;
- 2. Soil import is not discussed in the current SMP. Any imported soils would require a request to import soil be submitted to the Department for approval. As you know, imported fill material must be sampled or meet the exemption in DER-10;
- 3. It is understood that piping for a sub-slab depressurization is included in the current building design. If sampling shows there is soil vapor intrusion into the new structure, then active fans shall be installed on the system; and
- 4. Upon completion, the site cover shall be restored.

As part of this project, the site boundaries are not changing but the SBL numbers for the tax lots will be changing. Upon completion of change to the SBL numbers, the easement and COC need to be updated to reflect the new SBL numbers for the properties. A summary of this Change-in-Use shall be presented in the 2022 Periodic Review Report.

Please let me know if you have any questions. Thanks.

-Todd

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at teri.cotter@dec.ny.gov or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

| From:        | Storonsky, Mike                                                                                         |
|--------------|---------------------------------------------------------------------------------------------------------|
| To:          | Caffoe, Todd (DEC)                                                                                      |
| Cc:          | <u>Forbes, Jane, Best, Laura, Allen, Dan</u>                                                            |
| Subject:     | RE: 8-28 Ward Street/Ward Street C828136 and C828117 - Preliminary SSDS Drawings & Resubdivision Change |
| Date:        | Friday, November 19, 2021 5:06:26 PM                                                                    |
| Attachments: | report.c828117.c828136.2021-11-19.testpits.pdf                                                          |

Hi Todd,

The contractor for the new building at the Ward St. sites is currently hoping to obtain their site plan approval permit and break ground sometime the week after Thanksgiving but that remains to be determined. I am told their building permit will follow a little bit later. Therefore, although it has only been a few days since they were submitted, I have been asked to get an estimate on the timeframe for the Department's review of the proposed Re-subdivision change and the SSDS drawings?

Also, for your information, attached is the data we received for the soil samples from the test pits conducted in the footprint of the proposed building at the Ward St. sites. Nothing out of the ordinary was reported. I believe the waste profile was approved earlier today by Waste Management for the excavated material to be shipped to the High Acres Landfill and is just awaiting a final signature.

Please let me know if you have any questions.

Thank you for your ongoing assistance, Mike

Michael P. Storonsky Managing Principal, Environmental Services Mobile: 585 298-2386 mike.storonsky@stantec.com

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Storonsky, Mike

Sent: Wednesday, November 17, 2021 9:57 AM

To: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>

**Cc:** Pratt, David (DEC) <david.pratt@dec.ny.gov>; Forbes, Jane <Jane.Forbes@CityofRochester.Gov>; agermanow@teltru.com; Harrienger, Dwight <dwight.harrienger@stantec.com>; Best, Laura

<Laura.Best@stantec.com>; Farmer, Mel <mel.farmer@stantec.com>

**Subject:** 8-28 Ward Street/Ward Street C828136 and C828117 - Preliminary SSDS Drawings & Resubdivision Change

#### Todd,

Attached please find the sub-slab piping layout and associated details for the proposed new building at the Ward Street sites. As previously discussed, the plan is to stub this piping at the floor slab and once the building is sufficiently constructed, conduct SVI testing to determine if an active SSDS will be required. Please let us know if the Department has any comments on these drawings.

Also, as part of the City's ongoing review of the site plan drawings, it has been requested that the portion of Cork Street that was abandoned previously and incorporated into the BCP sites should be combined with the 19-23 Emmett St. and 8-28 Ward St. parcels as part that previously requested re-subdivision

process (see attached). Please advise if the Department has any concerns with that modification.

Sincerely, Mike

Michael P. Storonsky Managing Principal, Environmental Services Mobile: 585 298-2386

<u>mike.storonsky@stantec.com</u>

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>
Sent: Friday, November 5, 2021 7:34 AM
To: Storonsky, Mike <mike.storonsky@stantec.com>
Cc: Forbes, Jane <Jane.Forbes@CityofRochester.Gov>; agermanow@teltru.com; Pratt, David (DEC)
<david.pratt@dec.ny.gov>
Subject: Re: 8-28 Ward Street/Ward Street C828136 and C828117

Thanks Mike, Please let me know if you need anything else from me.

-Todd

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at <u>teri.cotter@dec.ny.gov</u> or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414

P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

From: Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>
Sent: Thursday, November 4, 2021 4:54 PM
To: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Cc: Forbes, Jane <<u>Jane.Forbes@CityofRochester.Gov</u>>; agermanow@teltru.com
<agermanow@teltru.com>; Pratt, David (DEC) <<u>david.pratt@dec.ny.gov</u>>
Subject: RE: 8-28 Ward Street/Ward Street C828136 and C828117

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Todd,

Thank you for your prompt review and comments. These items will be addressed/included in the work that is performed.

Sincerely,

Mike

## Michael P. Storonsky

Managing Principal, Environmental Services

Mobile: 585 298-2386 mike.storonsky@stantec.com



The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Sent: Thursday, November 4, 2021 1:28 PM
To: Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>
Cc: Forbes, Jane <<u>Jane.Forbes@CityofRochester.Gov</u>>; <u>agermanow@teltru.com</u>; Pratt, David (DEC)
<<u>david.pratt@dec.ny.gov</u>>

Mike,

I have reviewed the information submitted for the new construction change in use at the referenced sites. The Change-in-Use can proceed as planned subject to the following:

- 1. The current Site Management Plan (SMP) provides the mechanism for characterizing, monitoring and disposal of excavated soils and it is acceptable to proceed under the current SMP;
- 2.
- 3. Soil import is not discussed in the current SMP. Any imported soils would require a request to import soil be submitted to the Department for approval. As you know, imported fill material must be sampled or meet the exemption in DER-10;
- 4.
- 5. It is understood that piping for a sub-slab depressurization is included in the current building design. If sampling shows there is soil vapor intrusion into the new structure, then active fans shall be installed on the system; and

6.

7. Upon completion, the site cover shall be restored.

As part of this project, the site boundaries are not changing but the SBL numbers for the tax lots will be changing. Upon completion of change to the SBL numbers, the easement and COC need to be updated to reflect the new SBL numbers for the properties. A summary of this Change-in-Use shall be presented in the 2022 Periodic Review Report.

Please let me know if you have any questions. Thanks.

-Todd

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at teri.cotter@dec.ny.gov or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

# New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414

P: (585) 226-5350 [Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

| From:    | Caffoe, Todd (DEC)                                                                                      |
|----------|---------------------------------------------------------------------------------------------------------|
| To:      | Storonsky, Mike                                                                                         |
| Cc:      | Pratt, David (DEC); Forbes, Jane; agermanow@teltru.com; Harrienger, Dwight; Best, Laura; Farmer, Mel    |
| Subject: | RE: 8-28 Ward Street/Ward Street C828136 and C828117 - Preliminary SSDS Drawings & Resubdivision Change |
| Date:    | Tuesday, November 23, 2021 3:51:55 PM                                                                   |

Mike,

I have reviewed the SSDS piping layout and details for the proposed new building at the referenced sites, and it is acceptable to proceed as planned.

I have also looked at the proposed resubdivision which will change the sites SBL numbers and lot alignments, but it will not change the site boundaries. This plan is acceptable. Once this resubdivision is completed, the COC and easement will need to be modified to reflect these changes.

Please let me know if you have any additional questions.

-Todd

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Forsythe, at <u>teri.forsythe@dec.ny.gov</u> or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

# New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 |Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

From: Storonsky, Mike <mike.storonsky@stantec.com>

Sent: Wednesday, November 17, 2021 9:57 AM

To: Caffoe, Todd (DEC) <todd.caffoe@dec.ny.gov>

**Cc:** Pratt, David (DEC) <david.pratt@dec.ny.gov>; Forbes, Jane <Jane.Forbes@CityofRochester.Gov>; agermanow@teltru.com; Harrienger, Dwight <dwight.harrienger@stantec.com>; Best, Laura

<Laura.Best@stantec.com>; Farmer, Mel <mel.farmer@stantec.com>

**Subject:** 8-28 Ward Street/Ward Street C828136 and C828117 - Preliminary SSDS Drawings & Resubdivision Change

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails. Attached please find the sub-slab piping layout and associated details for the proposed new building at the Ward Street sites. As previously discussed, the plan is to stub this piping at the floor slab and once the building is sufficiently constructed, conduct SVI testing to determine if an active SSDS will be required. Please let us know if the Department has any comments on these drawings.

Also, as part of the City's ongoing review of the site plan drawings, it has been requested that the portion of Cork Street that was abandoned previously and incorporated into the BCP sites should be combined with the 19-23 Emmett St. and 8-28 Ward St. parcels as part that previously requested re-subdivision process (see attached). Please advise if the Department has any concerns with that modification.

Sincerely, Mike

# **Michael P. Storonsky**

Managing Principal, Environmental Services Mobile: 585 298-2386 <u>mike.storonsky@stantec.com</u>

?

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Sent: Friday, November 5, 2021 7:34 AM
To: Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>
Cc: Forbes, Jane <<u>Jane.Forbes@CityofRochester.Gov</u>>; agermanow@teltru.com; Pratt, David (DEC)
<<u>david.pratt@dec.ny.gov</u>>
Subject: Re: 8-28 Ward Street/Ward Street C828136 and C828117

Thanks Mike, Please let me know if you need anything else from me.

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at <u>teri.cotter@dec.ny.gov</u> or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

## New York State Department of Environmental Conservation

<sup>-</sup>Todd

6274 East Avon-Lima Road, Avon, NY 14414

P: (585) 226-5350 Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

From: Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>
Sent: Thursday, November 4, 2021 4:54 PM
To: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Cc: Forbes, Jane <<u>Jane.Forbes@CityofRochester.Gov</u>>; agermanow@teltru.com
<agermanow@teltru.com>; Pratt, David (DEC) <<u>david.pratt@dec.ny.gov</u>>
Subject: RE: 8-28 Ward Street/Ward Street C828136 and C828117

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Todd,

Thank you for your prompt review and comments. These items will be addressed/included in the work that is performed.

Sincerely,

Mike

## Michael P. Storonsky

Managing Principal, Environmental Services

Mobile: 585 298-2386 mike.storonsky@stantec.com



The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Sent: Thursday, November 4, 2021 1:28 PM
To: Storonsky, Mike <<u>mike.storonsky@stantec.com</u>>
Cc: Forbes, Jane <<u>Jane.Forbes@CityofRochester.Gov</u>>; agermanow@teltru.com; Pratt, David (DEC)
<<u>david.pratt@dec.ny.gov</u>>
Subject: 8-28 Ward Street/Ward Street C828136 and C828117

Mike,

I have reviewed the information submitted for the new construction change in use at the referenced sites. The Change-in-Use can proceed as planned subject to the following:

- 1. The current Site Management Plan (SMP) provides the mechanism for characterizing, monitoring and disposal of excavated soils and it is acceptable to proceed under the current SMP;
- 2.
- 3. Soil import is not discussed in the current SMP. Any imported soils would require a request to import soil be submitted to the Department for approval. As you know, imported fill material must be sampled or meet the exemption in DER-10;
- 4.
- 5. It is understood that piping for a sub-slab depressurization is included in the current building design. If sampling shows there is soil vapor intrusion into the new structure, then active fans shall be installed on the system; and
- 6.
- 7. Upon completion, the site cover shall be restored.

As part of this project, the site boundaries are not changing but the SBL numbers for the tax lots will be changing. Upon completion of change to the SBL numbers, the easement and COC need to be updated to reflect the new SBL numbers for the properties. A summary of this Change-in-Use shall be presented in the 2022 Periodic Review Report.

Please let me know if you have any questions. Thanks.

-Todd

As the State of New York transitions from the COVID-19 Health Crisis, I will be working both remotely (W & Th) and in the office (M,T, & F). Please e-mail if you need to reach me. If you need immediate assistance, please contact our unit secretary, Teri Cotter, at

teri.cotter@dec.ny.gov or 585-226-5353, and she will direct your inquiry.

# Todd M. Caffoe, P.E.

Division of Environmental Remediation

# New York State Department of Environmental Conservation

6274 East Avon-Lima Road, Avon, NY 14414

P: (585) 226-5350 [Todd.Caffoe@dec.ny.gov

www.dec.ny.gov

Periodic Review Report 2021 Brownfield Cleanup Program Ward Street Site (Site No. C828117) and 8-28 Ward Street (Site No. C828136)

> APPENDIX C Laboratory Analytical Reports



# Analytical Report For

# Stantec

For Lab Project ID

# 214498

Referencing

Ward Street

Prepared

# Wednesday, October 13, 2021

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the enclosed report reflects analysis that has been subcontracted and are presented in their original form.

RRal

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Wednesday, October 13, 2021



**Lab Project ID:** 214498

| Client:            | <u>Stantec</u> |                |           |
|--------------------|----------------|----------------|-----------|
| Project Reference: | Ward Street    |                |           |
| Sample Identifier: | MW-207R        |                |           |
| Lab Sample ID:     | 214498-01      | Date Sampled:  | 10/5/2021 |
| Matrix:            | Groundwater    | Date Received: | 10/5/2021 |

# **Volatile Organics**

| <u>Analyte</u>              | <u>Result</u> | <u>Units</u> | Qualifier | Date Analyzed   |
|-----------------------------|---------------|--------------|-----------|-----------------|
| 1,1,1-Trichloroethane       | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,1,2,2-Tetrachloroethane   | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,1,2-Trichloroethane       | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,1-Dichloroethane          | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,1-Dichloroethene          | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2,3-Trichlorobenzene      | < 25.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2,4-Trichlorobenzene      | < 25.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2-Dibromo-3-Chloropropane | < 50.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2-Dibromoethane           | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2-Dichlorobenzene         | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2-Dichloroethane          | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,2-Dichloropropane         | < 10.0        | ug/L         | L         | 10/7/2021 16:25 |
| 1,3-Dichlorobenzene         | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,4-Dichlorobenzene         | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| 1,4-Dioxane                 | < 50.0        | ug/L         |           | 10/7/2021 16:25 |
| 2-Butanone                  | < 50.0        | ug/L         |           | 10/7/2021 16:25 |
| 2-Hexanone                  | < 25.0        | ug/L         |           | 10/7/2021 16:25 |
| 4-Methyl-2-pentanone        | < 25.0        | ug/L         |           | 10/7/2021 16:25 |
| Acetone                     | 29.2          | ug/L         | J         | 10/7/2021 16:25 |
| Benzene                     | < 5.00        | ug/L         | L         | 10/7/2021 16:25 |
| Bromochloromethane          | < 25.0        | ug/L         |           | 10/7/2021 16:25 |
| Bromodichloromethane        | < 10.0        | ug/L         | L         | 10/7/2021 16:25 |
| Bromoform                   | < 25.0        | ug/L         |           | 10/7/2021 16:25 |
| Bromomethane                | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| Carbon disulfide            | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| Carbon Tetrachloride        | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| Chlorobenzene               | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
| Chloroethane                | < 10.0        | ug/L         |           | 10/7/2021 16:25 |
|                             |               |              |           |                 |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.



| Client:               | <u>Stantec</u> |        |      |                |           |       |
|-----------------------|----------------|--------|------|----------------|-----------|-------|
| Project Reference:    | Ward Street    |        |      |                |           |       |
| Sample Identifier:    | MW-207R        |        |      |                |           |       |
| Lab Sample ID:        | 214498-01      |        |      | Date Sampled:  | 10/5/2021 |       |
| Matrix:               | Groundwate     | er     |      | Date Received: | 10/5/2021 |       |
| Chloroform            |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Chloromethane         |                | < 10.0 | ug/L |                | 10/7/2021 |       |
| cis-1,2-Dichloroether | ne             | 300    | ug/L |                | 10/7/2021 |       |
| cis-1,3-Dichloroprop  |                | < 10.0 | ug/L |                | 10/7/2021 |       |
| Cyclohexane           |                | < 50.0 | ug/L |                | 10/7/2021 |       |
| Dibromochlorometha    | ane            | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Dichlorodifluorometh  | nane           | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Ethylbenzene          |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Freon 113             |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Isopropylbenzene      |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| m,p-Xylene            |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Methyl acetate        |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Methyl tert-butyl Eth | er             | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Methylcyclohexane     |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Methylene chloride    |                | < 25.0 | ug/L |                | 10/7/2021 | 16:25 |
| o-Xylene              |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Styrene               |                | < 25.0 | ug/L |                | 10/7/2021 | 16:25 |
| Tetrachloroethene     |                | < 10.0 | ug/L | L              | 10/7/2021 | 16:25 |
| Toluene               |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| trans-1,2-Dichloroeth | iene           | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| trans-1,3-Dichloropro | opene          | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Trichloroethene       |                | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Trichlorofluorometha  | ane            | < 10.0 | ug/L |                | 10/7/2021 | 16:25 |
| Vinyl chloride        |                | 465    | ug/L |                | 10/7/2021 | 16:25 |
|                       |                |        |      |                |           |       |



| Client:            | <u>Stantec</u> |                |           |
|--------------------|----------------|----------------|-----------|
| Project Reference: | Ward Street    |                |           |
| Sample Identifier: | MW-207R        |                |           |
| Lab Sample ID:     | 214498-01      | Date Sampled:  | 10/5/2021 |
| Matrix:            | Groundwater    | Date Received: | 10/5/2021 |
|                    |                |                |           |

|                       | Percent Recovery | <u>Limits</u>                                      | <u>Outliers</u>                                                                                                                             | Date Analy                                                                                                                                                          | zed                                                                                                                                                                                                                                                 |
|-----------------------|------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 119              | 83 - 120                                           |                                                                                                                                             | 10/7/2021                                                                                                                                                           | 16:25                                                                                                                                                                                                                                               |
|                       | 105              | 65.5 - 118                                         |                                                                                                                                             | 10/7/2021                                                                                                                                                           | 16:25                                                                                                                                                                                                                                               |
|                       | 128              | 91.2 - 109                                         | *                                                                                                                                           | 10/7/2021                                                                                                                                                           | 16:25                                                                                                                                                                                                                                               |
|                       | 116              | 79.7 - 112                                         | *                                                                                                                                           | 10/7/2021                                                                                                                                                           | 16:25                                                                                                                                                                                                                                               |
| EPA 8260C             |                  |                                                    |                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                     |
| EPA 5030C<br>z04564.D |                  |                                                    |                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                     |
|                       | EPA 5030C        | 119<br>105<br>128<br>116<br>EPA 8260C<br>EPA 5030C | 119       83 - 120         105       65.5 - 118         128       91.2 - 109         116       79.7 - 112         EPA 8260C       EPA 5030C | 119       83 - 120         105       65.5 - 118         128       91.2 - 109       *         116       79.7 - 112       *         EPA 8260C       EPA 5030C       * | 119       83 - 120       10/7/2021         105       65.5 - 118       10/7/2021         128       91.2 - 109       *       10/7/2021         116       79.7 - 112       *       10/7/2021         EPA 8260C       EPA 5030C       *       10/7/2021 |



| Client:            | <u>Stantec</u> |                |           |
|--------------------|----------------|----------------|-----------|
| Project Reference: | Ward Street    |                |           |
| Sample Identifier: | MW-16          |                |           |
| Lab Sample ID:     | 214498-02      | Date Sampled:  | 10/5/2021 |
| Matrix:            | Groundwater    | Date Received: | 10/5/2021 |

#### **Volatile Organics**

| <u>Analyte</u>              | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|-----------------------------|---------------|--------------|-----------|----------------------|
| 1,1,1-Trichloroethane       | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,1,2,2-Tetrachloroethane   | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,1,2-Trichloroethane       | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,1-Dichloroethane          | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,1-Dichloroethene          | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,2,3-Trichlorobenzene      | < 12.5        | ug/L         |           | 10/7/2021 16:45      |
| 1,2,4-Trichlorobenzene      | < 12.5        | ug/L         |           | 10/7/2021 16:45      |
| 1,2-Dibromo-3-Chloropropane | < 25.0        | ug/L         |           | 10/7/2021 16:45      |
| 1,2-Dibromoethane           | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,2-Dichlorobenzene         | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,2-Dichloroethane          | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,2-Dichloropropane         | < 5.00        | ug/L         | L         | 10/7/2021 16:45      |
| 1,3-Dichlorobenzene         | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,4-Dichlorobenzene         | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| 1,4-Dioxane                 | < 25.0        | ug/L         |           | 10/7/2021 16:45      |
| 2-Butanone                  | < 25.0        | ug/L         |           | 10/7/2021 16:45      |
| 2-Hexanone                  | < 12.5        | ug/L         |           | 10/7/2021 16:45      |
| 4-Methyl-2-pentanone        | < 12.5        | ug/L         |           | 10/7/2021 16:45      |
| Acetone                     | < 25.0        | ug/L         |           | 10/7/2021 16:45      |
| Benzene                     | < 2.50        | ug/L         | L         | 10/7/2021 16:45      |
| Bromochloromethane          | < 12.5        | ug/L         |           | 10/7/2021 16:45      |
| Bromodichloromethane        | < 5.00        | ug/L         | L         | 10/7/2021 16:45      |
| Bromoform                   | < 12.5        | ug/L         |           | 10/7/2021 16:45      |
| Bromomethane                | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| Carbon disulfide            | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| Carbon Tetrachloride        | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| Chlorobenzene               | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
| Chloroethane                | < 5.00        | ug/L         |           | 10/7/2021 16:45      |
|                             |               |              |           |                      |



**Stantec** 

**Client:** 

**Lab Project ID:** 214498

| chent.                | Stantee     |        |      |                |           |       |
|-----------------------|-------------|--------|------|----------------|-----------|-------|
| Project Reference:    | Ward Street |        |      |                |           |       |
| Sample Identifier:    | MW-16       |        |      |                |           |       |
| Lab Sample ID:        | 214498-02   |        |      | Date Sampled:  | 10/5/2021 |       |
| Matrix:               | Groundwate  | er     |      | Date Received: | 10/5/2021 |       |
| Chloroform            |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Chloromethane         |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| cis-1,2-Dichloroether | ne          | 169    | ug/L |                | 10/7/2021 | 16:45 |
| cis-1,3-Dichloroprop  | ene         | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Cyclohexane           |             | < 25.0 | ug/L |                | 10/7/2021 | 16:45 |
| Dibromochlorometha    | ane         | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Dichlorodifluoromet   | hane        | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Ethylbenzene          |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Freon 113             |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Isopropylbenzene      |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| m,p-Xylene            |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Methyl acetate        |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Methyl tert-butyl Eth | er          | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Methylcyclohexane     |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Methylene chloride    |             | < 12.5 | ug/L |                | 10/7/2021 | 16:45 |
| o-Xylene              |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Styrene               |             | < 12.5 | ug/L |                | 10/7/2021 | 16:45 |
| Tetrachloroethene     |             | 7.04   | ug/L | L              | 10/7/2021 | 16:45 |
| Toluene               |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| trans-1,2-Dichloroetl | hene        | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| trans-1,3-Dichloropr  | opene       | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Trichloroethene       |             | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Trichlorofluorometh   | ane         | < 5.00 | ug/L |                | 10/7/2021 | 16:45 |
| Vinyl chloride        |             | 270    | ug/L |                | 10/7/2021 | 16:45 |
|                       |             |        |      |                |           |       |



| Client:               | <u>Stantec</u> |                  |               |                 |           |       |
|-----------------------|----------------|------------------|---------------|-----------------|-----------|-------|
| Project Reference:    | Ward Street    |                  |               |                 |           |       |
| Sample Identifier:    | MW-16          |                  |               |                 |           |       |
| Lab Sample ID:        | 214498-02      |                  | Dat           | e Sampled:      | 10/5/2021 |       |
| Matrix:               | Groundwater    |                  | Dat           | e Received:     | 10/5/2021 |       |
| Surrogate             |                | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | Date Anal | yzed  |
| 1,2-Dichloroethane-de | 4              | 118              | 83 - 120      |                 | 10/7/2021 | 16:45 |
| 4-Bromofluorobenzer   | ne             | 113              | 65.5 - 118    |                 | 10/7/2021 | 16:45 |

| 4-Bromofluorobenzene |                        | 113 | 65.5 - 118 |   | 10/7/2021 | 16:45 |
|----------------------|------------------------|-----|------------|---|-----------|-------|
| Pentafluorobenzene   |                        | 121 | 91.2 - 109 | * | 10/7/2021 | 16:45 |
| Toluene-D8           |                        | 119 | 79.7 - 112 | * | 10/7/2021 | 16:45 |
| Method Reference(s): | EPA 8260C<br>EPA 5030C |     |            |   |           |       |

Data File:

z04565.D



| Client:            | <u>Stantec</u> |                |           |
|--------------------|----------------|----------------|-----------|
| Project Reference: | Ward Street    |                |           |
| Sample Identifier: | MW-16R         |                |           |
| Lab Sample ID:     | 214498-03      | Date Sampled:  | 10/5/2021 |
| Matrix:            | Groundwater    | Date Received: | 10/5/2021 |

#### **Volatile Organics**

| Analyte                     | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|-----------------------------|---------------|--------------|-----------|----------------------|
| 1,1,1-Trichloroethane       | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,1,2,2-Tetrachloroethane   | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,1,2-Trichloroethane       | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,1-Dichloroethane          | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,1-Dichloroethene          | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,2,3-Trichlorobenzene      | < 5.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,2,4-Trichlorobenzene      | < 5.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,2-Dibromo-3-Chloropropane | < 10.0        | ug/L         |           | 10/6/2021 18:23      |
| 1,2-Dibromoethane           | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,2-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,2-Dichloroethane          | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,2-Dichloropropane         | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,3-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,4-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| 1,4-Dioxane                 | < 10.0        | ug/L         |           | 10/6/2021 18:23      |
| 2-Butanone                  | < 10.0        | ug/L         |           | 10/6/2021 18:23      |
| 2-Hexanone                  | < 5.00        | ug/L         |           | 10/6/2021 18:23      |
| 4-Methyl-2-pentanone        | < 5.00        | ug/L         |           | 10/6/2021 18:23      |
| Acetone                     | 7.93          | ug/L         | JB        | 10/6/2021 18:23      |
| Benzene                     | < 1.00        | ug/L         |           | 10/6/2021 18:23      |
| Bromochloromethane          | < 5.00        | ug/L         |           | 10/6/2021 18:23      |
| Bromodichloromethane        | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| Bromoform                   | < 5.00        | ug/L         |           | 10/6/2021 18:23      |
| Bromomethane                | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| Carbon disulfide            | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| Carbon Tetrachloride        | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| Chlorobenzene               | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
| Chloroethane                | < 2.00        | ug/L         |           | 10/6/2021 18:23      |
|                             |               |              |           |                      |



**Stantec** 

**Client:** 

**Lab Project ID:** 214498

| chent.                | Stantet     |        |      |                |           |       |
|-----------------------|-------------|--------|------|----------------|-----------|-------|
| Project Reference:    | Ward Street |        |      |                |           |       |
| Sample Identifier:    | MW-16R      |        |      |                |           |       |
| Lab Sample ID:        | 214498-03   |        |      | Date Sampled:  | 10/5/2021 |       |
| Matrix:               | Groundwate  | er     |      | Date Received: | 10/5/2021 |       |
| Chloroform            |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Chloromethane         |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| cis-1,2-Dichloroether | ne          | 53.2   | ug/L |                | 10/6/2021 | 18:23 |
| cis-1,3-Dichloroprop  | ene         | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Cyclohexane           |             | < 10.0 | ug/L |                | 10/6/2021 | 18:23 |
| Dibromochlorometha    | ane         | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Dichlorodifluoromet   | hane        | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Ethylbenzene          |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Freon 113             |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Isopropylbenzene      |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| m,p-Xylene            |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Methyl acetate        |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Methyl tert-butyl Eth | er          | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Methylcyclohexane     |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Methylene chloride    |             | < 5.00 | ug/L |                | 10/6/2021 | 18:23 |
| o-Xylene              |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Styrene               |             | < 5.00 | ug/L |                | 10/6/2021 | 18:23 |
| Tetrachloroethene     |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Toluene               |             | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| trans-1,2-Dichloroet  | hene        | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| trans-1,3-Dichloropr  | opene       | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Trichloroethene       |             | 7.59   | ug/L |                | 10/6/2021 | 18:23 |
| Trichlorofluorometh   | ane         | < 2.00 | ug/L |                | 10/6/2021 | 18:23 |
| Vinyl chloride        |             | 45.8   | ug/L |                | 10/6/2021 | 18:23 |
|                       |             |        |      |                |           |       |



| Client:            | <u>Stantec</u> |                  |        |              |               |
|--------------------|----------------|------------------|--------|--------------|---------------|
| Project Reference: | Ward Street    |                  |        |              |               |
| Sample Identifier: | MW-16R         |                  |        |              |               |
| Lab Sample ID:     | 214498-03      |                  | Dat    | te Sampled:  | 10/5/2021     |
| Matrix:            | Groundwater    |                  | Dat    | te Received: | 10/5/2021     |
|                    |                |                  |        |              |               |
| Surrogate          |                | Percent Recovery | Limits | Outliers     | Date Analyzed |

|           | <u>Percent Recovery</u> | <u>Limits</u>                                       | <u>Outliers</u>                                                                                                                              | <u>Date Analy</u>                                                                                          | zed                                                                                                                                                                                                                    |
|-----------|-------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 118                     | 83 - 120                                            |                                                                                                                                              | 10/6/2021                                                                                                  | 18:23                                                                                                                                                                                                                  |
|           | 111                     | 65.5 <b>-</b> 118                                   |                                                                                                                                              | 10/6/2021                                                                                                  | 18:23                                                                                                                                                                                                                  |
|           | 115                     | 91.2 - 109                                          | *                                                                                                                                            | 10/6/2021                                                                                                  | 18:23                                                                                                                                                                                                                  |
|           | 98.4                    | 79.7 - 112                                          |                                                                                                                                              | 10/6/2021                                                                                                  | 18:23                                                                                                                                                                                                                  |
| EPA 8260C |                         |                                                     |                                                                                                                                              |                                                                                                            |                                                                                                                                                                                                                        |
| EPA 5030C |                         |                                                     |                                                                                                                                              |                                                                                                            |                                                                                                                                                                                                                        |
| z04530.D  |                         |                                                     |                                                                                                                                              |                                                                                                            |                                                                                                                                                                                                                        |
|           | EPA 5030C               | 118<br>111<br>115<br>98.4<br>EPA 8260C<br>EPA 5030C | 118       83 - 120         111       65.5 - 118         115       91.2 - 109         98.4       79.7 - 112         EPA 8260C       EPA 5030C | 118       83 - 120         111       65.5 - 118         115       91.2 - 109         98.4       79.7 - 112 | 118       83 - 120       10/6/2021         111       65.5 - 118       10/6/2021         115       91.2 - 109       *       10/6/2021         98.4       79.7 - 112       10/6/2021         EPA 8260C         EPA 5030C |



| Client:            | <u>Stantec</u> |                |           |
|--------------------|----------------|----------------|-----------|
| Project Reference: | Ward Street    |                |           |
| Sample Identifier: | MW-23          |                |           |
| Lab Sample ID:     | 214498-04      | Date Sampled:  | 10/5/2021 |
| Matrix:            | Groundwater    | Date Received: | 10/5/2021 |

#### **Volatile Organics**

| Analyte                     | <u>Result</u> | <u>Units</u> | Qualifier | Date Analyzed   |
|-----------------------------|---------------|--------------|-----------|-----------------|
| 1,1,1-Trichloroethane       | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,1,2,2-Tetrachloroethane   | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,1,2-Trichloroethane       | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,1-Dichloroethane          | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,1-Dichloroethene          | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,2,3-Trichlorobenzene      | < 5.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,2,4-Trichlorobenzene      | < 5.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,2-Dibromo-3-Chloropropane | < 10.0        | ug/L         |           | 10/6/2021 18:42 |
| 1,2-Dibromoethane           | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,2-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,2-Dichloroethane          | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,2-Dichloropropane         | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,3-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,4-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| 1,4-Dioxane                 | < 10.0        | ug/L         |           | 10/6/2021 18:42 |
| 2-Butanone                  | < 10.0        | ug/L         |           | 10/6/2021 18:42 |
| 2-Hexanone                  | < 5.00        | ug/L         |           | 10/6/2021 18:42 |
| 4-Methyl-2-pentanone        | < 5.00        | ug/L         |           | 10/6/2021 18:42 |
| Acetone                     | < 10.0        | ug/L         |           | 10/6/2021 18:42 |
| Benzene                     | < 1.00        | ug/L         |           | 10/6/2021 18:42 |
| Bromochloromethane          | < 5.00        | ug/L         |           | 10/6/2021 18:42 |
| Bromodichloromethane        | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| Bromoform                   | < 5.00        | ug/L         |           | 10/6/2021 18:42 |
| Bromomethane                | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| Carbon disulfide            | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| Carbon Tetrachloride        | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| Chlorobenzene               | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
| Chloroethane                | < 2.00        | ug/L         |           | 10/6/2021 18:42 |
|                             |               |              |           |                 |



**Stantec** 

**Client:** 

**Lab Project ID:** 214498

| enent.                | <u>btuntee</u> |        |      |                |           |       |
|-----------------------|----------------|--------|------|----------------|-----------|-------|
| Project Reference:    | Ward Street    |        |      |                |           |       |
| Sample Identifier:    | MW-23          |        |      |                |           |       |
| Lab Sample ID:        | 214498-04      |        |      | Date Sampled:  | 10/5/2021 |       |
| Matrix:               | Groundwate     | er     |      | Date Received: | 10/5/2021 |       |
| Chloroform            |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Chloromethane         |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| cis-1,2-Dichloroether | ne             | 14.5   | ug/L |                | 10/6/2021 | 18:42 |
| cis-1,3-Dichloroprop  | ene            | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Cyclohexane           |                | < 10.0 | ug/L |                | 10/6/2021 | 18:42 |
| Dibromochlorometha    | ane            | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Dichlorodifluorometh  | nane           | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Ethylbenzene          |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Freon 113             |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Isopropylbenzene      |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| m,p-Xylene            |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Methyl acetate        |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Methyl tert-butyl Eth | er             | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Methylcyclohexane     |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Methylene chloride    |                | < 5.00 | ug/L |                | 10/6/2021 | 18:42 |
| o-Xylene              |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Styrene               |                | < 5.00 | ug/L |                | 10/6/2021 | 18:42 |
| Tetrachloroethene     |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Toluene               |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| trans-1,2-Dichloroeth | iene           | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| trans-1,3-Dichloropro | opene          | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Trichloroethene       |                | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Trichlorofluorometha  | ane            | < 2.00 | ug/L |                | 10/6/2021 | 18:42 |
| Vinyl chloride        |                | 15.7   | ug/L |                | 10/6/2021 | 18:42 |
|                       |                |        |      |                |           |       |



| Client:                            | <u>Stantec</u> |                         |                           |               |                                |                      |
|------------------------------------|----------------|-------------------------|---------------------------|---------------|--------------------------------|----------------------|
| Project Reference:                 | Ward Street    |                         |                           |               |                                |                      |
| Sample Identifier:                 | MW-23          |                         |                           |               |                                |                      |
| Lab Sample ID:                     | 214498-04      |                         | Dat                       | e Sampled:    | 10/5/2021                      |                      |
| Matrix:                            | Groundwater    |                         | Dat                       | e Received:   | 10/5/2021                      |                      |
| Surrogate<br>1.2-Dichloroethane-d4 |                | Percent Recovery<br>122 | <u>Limits</u><br>83 - 120 | Outliers<br>* | <b>Date Analy</b><br>10/6/2021 | <b>yzed</b><br>18:42 |

| 1,2-Dichloroethane-d4 |           | 122 | 83 - 120   | * | 10/6/2021 | 18:42 |
|-----------------------|-----------|-----|------------|---|-----------|-------|
| 4-Bromofluorobenzene  |           | 118 | 65.5 - 118 |   | 10/6/2021 | 18:42 |
| Pentafluorobenzene    |           | 119 | 91.2 - 109 | * | 10/6/2021 | 18:42 |
| Toluene-D8            |           | 114 | 79.7 - 112 | * | 10/6/2021 | 18:42 |
| Method Reference(s):  | EPA 8260C |     |            |   |           |       |
|                       | EPA 5030C |     |            |   |           |       |
| Data File:            | z04531.D  |     |            |   |           |       |



| Client:            | <u>Stantec</u> |                |           |
|--------------------|----------------|----------------|-----------|
| Project Reference: | Ward Street    |                |           |
| Sample Identifier: | MW-105         |                |           |
| Lab Sample ID:     | 214498-05      | Date Sampled:  | 10/5/2021 |
| Matrix:            | Groundwater    | Date Received: | 10/5/2021 |

#### **Volatile Organics**

| <u>Analyte</u>              | <u>Result</u> | <u>Units</u> | Qualifier | Date Analyzed   |
|-----------------------------|---------------|--------------|-----------|-----------------|
| 1,1,1-Trichloroethane       | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,1,2,2-Tetrachloroethane   | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,1,2-Trichloroethane       | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,1-Dichloroethane          | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,1-Dichloroethene          | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,2,3-Trichlorobenzene      | < 12.5        | ug/L         |           | 10/7/2021 17:04 |
| 1,2,4-Trichlorobenzene      | < 12.5        | ug/L         |           | 10/7/2021 17:04 |
| 1,2-Dibromo-3-Chloropropane | < 25.0        | ug/L         |           | 10/7/2021 17:04 |
| 1,2-Dibromoethane           | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,2-Dichlorobenzene         | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,2-Dichloroethane          | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,2-Dichloropropane         | < 5.00        | ug/L         | L         | 10/7/2021 17:04 |
| 1,3-Dichlorobenzene         | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,4-Dichlorobenzene         | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| 1,4-Dioxane                 | < 25.0        | ug/L         |           | 10/7/2021 17:04 |
| 2-Butanone                  | < 25.0        | ug/L         |           | 10/7/2021 17:04 |
| 2-Hexanone                  | < 12.5        | ug/L         |           | 10/7/2021 17:04 |
| 4-Methyl-2-pentanone        | < 12.5        | ug/L         |           | 10/7/2021 17:04 |
| Acetone                     | < 25.0        | ug/L         |           | 10/7/2021 17:04 |
| Benzene                     | < 2.50        | ug/L         | L         | 10/7/2021 17:04 |
| Bromochloromethane          | < 12.5        | ug/L         |           | 10/7/2021 17:04 |
| Bromodichloromethane        | < 5.00        | ug/L         | L         | 10/7/2021 17:04 |
| Bromoform                   | < 12.5        | ug/L         |           | 10/7/2021 17:04 |
| Bromomethane                | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| Carbon disulfide            | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| Carbon Tetrachloride        | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| Chlorobenzene               | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
| Chloroethane                | < 5.00        | ug/L         |           | 10/7/2021 17:04 |
|                             |               |              |           |                 |



**Stantec** 

**Client:** 

**Lab Project ID:** 214498

| chent.                | Stantet     |        |      |                |           |       |
|-----------------------|-------------|--------|------|----------------|-----------|-------|
| Project Reference:    | Ward Street |        |      |                |           |       |
| Sample Identifier:    | MW-105      |        |      |                |           |       |
| Lab Sample ID:        | 214498-05   |        |      | Date Sampled:  | 10/5/2021 |       |
| Matrix:               | Groundwate  | er     |      | Date Received: | 10/5/2021 |       |
| Chloroform            |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Chloromethane         |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| cis-1,2-Dichloroether | ne          | 321    | ug/L |                | 10/7/2021 | 17:04 |
| cis-1,3-Dichloroprop  | ene         | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Cyclohexane           |             | < 25.0 | ug/L |                | 10/7/2021 | 17:04 |
| Dibromochlorometha    | ane         | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Dichlorodifluorometl  | hane        | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Ethylbenzene          |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Freon 113             |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Isopropylbenzene      |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| m,p-Xylene            |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Methyl acetate        |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Methyl tert-butyl Eth | ier         | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Methylcyclohexane     |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Methylene chloride    |             | < 12.5 | ug/L |                | 10/7/2021 | 17:04 |
| o-Xylene              |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Styrene               |             | < 12.5 | ug/L |                | 10/7/2021 | 17:04 |
| Tetrachloroethene     |             | 4.69   | ug/L | JL             | 10/7/2021 | 17:04 |
| Toluene               |             | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| trans-1,2-Dichloroeth | hene        | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| trans-1,3-Dichloropr  | opene       | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Trichloroethene       |             | 21.7   | ug/L |                | 10/7/2021 | 17:04 |
| Trichlorofluorometha  | ane         | < 5.00 | ug/L |                | 10/7/2021 | 17:04 |
| Vinyl chloride        |             | 59.2   | ug/L |                | 10/7/2021 | 17:04 |
|                       |             |        |      |                |           |       |



| Client:            | <u>Stantec</u> |                          |         |                 |               |
|--------------------|----------------|--------------------------|---------|-----------------|---------------|
| Project Reference: | Ward Street    |                          |         |                 |               |
| Sample Identifier: | MW-105         |                          |         |                 |               |
| Lab Sample ID:     | 214498-05      |                          | Dat     | e Sampled:      | 10/5/2021     |
| Matrix:            | Groundwater    |                          | Dat     | e Received:     | 10/5/2021     |
| Surrogate          |                | Percent Recovery         | Limits  | Outliers        | Date Analvzed |
| Surrogate          |                | <u>r creent necovery</u> | LIIIILS | <u>outifers</u> | Date Analyzeu |

| Surrogate             |           | <u>i cicciit necovery</u> | LIIIILS    | <u>outilers</u> | Date Analy |       |
|-----------------------|-----------|---------------------------|------------|-----------------|------------|-------|
| 1,2-Dichloroethane-d4 |           | 105                       | 83 - 120   |                 | 10/7/2021  | 17:04 |
| 4-Bromofluorobenzene  |           | 94.9                      | 65.5 - 118 |                 | 10/7/2021  | 17:04 |
| Pentafluorobenzene    |           | 112                       | 91.2 - 109 | *               | 10/7/2021  | 17:04 |
| Toluene-D8            |           | 98.8                      | 79.7 - 112 |                 | 10/7/2021  | 17:04 |
| Method Reference(s):  | EPA 8260C |                           |            |                 |            |       |
|                       | EPA 5030C |                           |            |                 |            |       |
| Data File:            | z04566.D  |                           |            |                 |            |       |
|                       |           |                           |            |                 |            |       |



| Client:            | <u>Stantec</u>   |                                 |  |
|--------------------|------------------|---------------------------------|--|
| Project Reference: | Ward Street      |                                 |  |
| Sample Identifier: | Trip Blank T1072 |                                 |  |
| Lab Sample ID:     | 214498-06        | <b>Date Sampled:</b> 9/30/2021  |  |
| Matrix:            | Water            | <b>Date Received:</b> 10/5/2021 |  |

#### **Volatile Organics**

| <u>Analyte</u>              | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|-----------------------------|---------------|--------------|-----------|----------------------|
| 1,1,1-Trichloroethane       | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,1,2,2-Tetrachloroethane   | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,1,2-Trichloroethane       | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,1-Dichloroethane          | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,1-Dichloroethene          | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,2,3-Trichlorobenzene      | < 5.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,2,4-Trichlorobenzene      | < 5.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,2-Dibromo-3-Chloropropane | < 10.0        | ug/L         |           | 10/6/2021 19:21      |
| 1,2-Dibromoethane           | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,2-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,2-Dichloroethane          | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,2-Dichloropropane         | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,3-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,4-Dichlorobenzene         | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| 1,4-Dioxane                 | < 10.0        | ug/L         |           | 10/6/2021 19:21      |
| 2-Butanone                  | < 10.0        | ug/L         |           | 10/6/2021 19:21      |
| 2-Hexanone                  | < 5.00        | ug/L         |           | 10/6/2021 19:21      |
| 4-Methyl-2-pentanone        | < 5.00        | ug/L         |           | 10/6/2021 19:21      |
| Acetone                     | 5.33          | ug/L         | JB        | 10/6/2021 19:21      |
| Benzene                     | < 1.00        | ug/L         |           | 10/6/2021 19:21      |
| Bromochloromethane          | < 5.00        | ug/L         |           | 10/6/2021 19:21      |
| Bromodichloromethane        | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| Bromoform                   | < 5.00        | ug/L         |           | 10/6/2021 19:21      |
| Bromomethane                | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| Carbon disulfide            | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| Carbon Tetrachloride        | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| Chlorobenzene               | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
| Chloroethane                | < 2.00        | ug/L         |           | 10/6/2021 19:21      |
|                             |               |              |           |                      |



| Client:                   | <u>Stantec</u> |        |      |                |                        |       |
|---------------------------|----------------|--------|------|----------------|------------------------|-------|
| Project Reference:        | Ward Street    |        |      |                |                        |       |
| Sample Identifier:        | Trip Blank T10 | )72    |      |                |                        |       |
| Lab Sample ID:            | 214498-06      |        |      | Date Sampled:  | 9/30/2021              |       |
| Matrix:                   | Water          |        |      | Date Received: | 10/5/2021              |       |
| Chloroform                |                | < 2.00 | ug/I |                | 10/6/2021              | 10.21 |
| Chloromethane             |                | < 2.00 | ug/L |                |                        |       |
| cis-1,2-Dichloroethen     |                | . 2.00 | ug/L | т              | 10/6/2021              |       |
| cis-1,3-Dichloroprope     |                | < 2.00 | ug/L | J              | 10/6/2021<br>10/6/2021 |       |
| Cyclohexane               |                | < 10.0 | ug/L |                | 10/6/2021              |       |
| Dibromochlorometha        |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Dichlorodifluorometha     |                | < 2.00 | ug/L |                | 10/6/2021              |       |
|                           |                | < 2.00 | ug/L |                |                        |       |
| Ethylbenzene<br>Freon 113 |                | < 2.00 | ug/L |                | 10/6/2021              |       |
|                           |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Isopropylbenzene          |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| m,p-Xylene                |                |        | ug/L |                | 10/6/2021              |       |
| Methyl acetate            |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Methyl tert-butyl Ethe    |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Methylcyclohexane         |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Methylene chloride        |                | < 5.00 | ug/L |                | 10/6/2021              |       |
| o-Xylene                  |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Styrene                   |                | < 5.00 | ug/L |                | 10/6/2021              |       |
| Tetrachloroethene         |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Toluene                   |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| trans-1,2-Dichloroeth     |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| trans-1,3-Dichloropro     | -              | < 2.00 | ug/L |                | 10/6/2021              |       |
| Trichloroethene           |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Trichlorofluorometha      |                | < 2.00 | ug/L |                | 10/6/2021              |       |
| Vinyl chloride            | c              | < 2.00 | ug/L |                | 10/6/2021              | 19:21 |



| Client:            | <u>Stantec</u>   |                |           |
|--------------------|------------------|----------------|-----------|
| Project Reference: | Ward Street      |                |           |
| Sample Identifier: | Trip Blank T1072 |                |           |
| Lab Sample ID:     | 214498-06        | Date Sampled:  | 9/30/2021 |
| Matrix:            | Water            | Date Received: | 10/5/2021 |

| <u>Surrogate</u>              | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | Date Analy | vzed  |
|-------------------------------|------------------|---------------|-----------------|------------|-------|
| 1,2-Dichloroethane-d4         | 122              | 83 - 120      | *               | 10/6/2021  | 19:21 |
| 4-Bromofluorobenzene          | 110              | 65.5 - 118    |                 | 10/6/2021  | 19:21 |
| Pentafluorobenzene            | 114              | 91.2 - 109    | *               | 10/6/2021  | 19:21 |
| Toluene-D8                    | 107              | 79.7 - 112    |                 | 10/6/2021  | 19:21 |
| Method Reference(s): EPA 8260 | C                |               |                 |            |       |
| EPA 5030                      | C                |               |                 |            |       |
| Data File: z04533.D           |                  |               |                 |            |       |



| Client:                   | <u>Stantec</u> |
|---------------------------|----------------|
| <b>Project Reference:</b> | Ward Street    |
| Lab Project ID:           | 214498         |
| SDG #:                    | 4498-01        |
| Matrix:                   | Groundwater    |

# Volatile Organics

| Analyte                     | <u>Result</u> | <u>Units</u> | Qualifier | Date Analyzed |       |
|-----------------------------|---------------|--------------|-----------|---------------|-------|
| 1,1,1-Trichloroethane       | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,1,2,2-Tetrachloroethane   | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,1,2-Trichloroethane       | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,1-Dichloroethane          | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,1-Dichloroethene          | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2,3-Trichlorobenzene      | <5.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2,4-Trichlorobenzene      | <5.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2-Dibromo-3-Chloropropane | <10.0         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2-Dibromoethane           | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2-Dichlorobenzene         | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2-Dichloroethane          | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,2-Dichloropropane         | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,3-Dichlorobenzene         | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,4-Dichlorobenzene         | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| 1,4-Dioxane                 | <10.0         | ug/L         |           | 10/6/2021     | 16:27 |
| 2-Butanone                  | <10.0         | ug/L         |           | 10/6/2021     | 16:27 |
| 2-Hexanone                  | 7.44          | ug/L         |           | 10/6/2021     | 16:27 |
| 4-Methyl-2-pentanone        | <5.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Acetone                     | 33.6          | ug/L         |           | 10/6/2021     | 16:27 |
| Benzene                     | <1.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Bromochloromethane          | <5.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Bromodichloromethane        | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Bromoform                   | <5.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Bromomethane                | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Carbon disulfide            | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Carbon Tetrachloride        | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
| Chlorobenzene               | <2.00         | ug/L         |           | 10/6/2021     | 16:27 |
|                             |               |              |           |               |       |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Thursday, October 7, 2021



| Client:                   | <u>Stantec</u> |
|---------------------------|----------------|
| <b>Project Reference:</b> | Ward Street    |
| Lab Project ID:           | 214498         |
| SDG #:                    | 4498-01        |
| Matrix:                   | Groundwater    |

# Volatile Organics

| <u>Analyte</u>            | Result | <u>Units</u> | Qualifier | Date Analy | zed   |
|---------------------------|--------|--------------|-----------|------------|-------|
| Chloroethane              | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Chloroform                | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Chloromethane             | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| cis-1,2-Dichloroethene    | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| cis-1,3-Dichloropropene   | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Cyclohexane               | <10.0  | ug/L         |           | 10/6/2021  | 16:27 |
| Dibromochloromethane      | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Dichlorodifluoromethane   | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Ethylbenzene              | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Freon 113                 | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Isopropylbenzene          | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| m,p-Xylene                | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Methyl acetate            | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Methyl tert-butyl Ether   | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Methylcyclohexane         | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Methylene chloride        | <5.00  | ug/L         |           | 10/6/2021  | 16:27 |
| o-Xylene                  | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Styrene                   | <5.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Tetrachloroethene         | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Toluene                   | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| trans-1,2-Dichloroethene  | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| trans-1,3-Dichloropropene | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Trichloroethene           | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Trichlorofluoromethane    | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |
| Vinyl chloride            | <2.00  | ug/L         |           | 10/6/2021  | 16:27 |



| Client:                   | <u>Stantec</u> |
|---------------------------|----------------|
| <b>Project Reference:</b> | Ward Street    |
| Lab Project ID:           | 214498         |
| SDG #:                    | 4498-01        |
| Matrix:                   | Groundwater    |

# Volatile Organics

| <u>Analyte</u>                                                   |                                                             | <u>Result</u>    |                   | Qualifier       | <b>Date Analyzed</b> |       |
|------------------------------------------------------------------|-------------------------------------------------------------|------------------|-------------------|-----------------|----------------------|-------|
| Surrogate                                                        | ĺ                                                           | Percent Recovery | Limits            | <b>Outliers</b> | Date Anal            | yzed  |
| 1,2-Dichloroethane-d4                                            |                                                             | 112              | 83 - 120          |                 | 10/6/2021            | 16:27 |
| 4-Bromofluorobenzene                                             |                                                             | 114              | 65.5 • 118        |                 | 10/6/2021            | 16:27 |
| Pentafluorobenzene                                               |                                                             | 116              | 91.2 <b>-</b> 109 | *               | 10/6/2021            | 16:27 |
| Toluene-D8                                                       |                                                             | 102              | 79.7 - 112        |                 | 10/6/2021            | 16:27 |
| Method Reference(s):<br>Data File:<br>QC Batch ID:<br>QC Number: | EPA 8260C<br>EPA 5030C<br>z04524.D<br>QC211006VOAW<br>Blk 1 | V                |                   |                 |                      |       |



# **<u>QC Report for Laboratory Control Sample</u>**

| Client:                   | <u>Stantec</u> |
|---------------------------|----------------|
| <b>Project Reference:</b> | Ward Street    |
| Lab Project ID:           | 214498         |
| SDG #:                    | 4498-01        |
| Matrix:                   | Groundwater    |

## Volatile Organics

|                           | <u>Spike</u> | <u>Spike</u> | LCS           | LCS %           | <u>% Rec</u>  | LCS             | Date            |
|---------------------------|--------------|--------------|---------------|-----------------|---------------|-----------------|-----------------|
| Analyte                   | Added        | <u>Units</u> | <u>Result</u> | <b>Recovery</b> | <u>Limits</u> | <b>Outliers</b> | <u>Analyzed</u> |
| 1,1,1-Trichloroethane     | 20.0         | ug/L         | 22.1          | 111             | 85 - 128      |                 | 10/6/2021       |
| 1,1,2,2-Tetrachloroethane | 20.0         | ug/L         | 19.3          | 96.5            | 55.4 - 146    |                 | 10/6/2021       |
| 1,1,2-Trichloroethane     | 20.0         | ug/L         | 20.0          | 99.9            | 72.4 - 115    |                 | 10/6/2021       |
| 1,1-Dichloroethane        | 20.0         | ug/L         | 21.7          | 109             | 83.8 - 118    |                 | 10/6/2021       |
| 1,1-Dichloroethene        | 20.0         | ug/L         | 20.1          | 100             | 66.7 - 112    |                 | 10/6/2021       |
| 1,2-Dichlorobenzene       | 20.0         | ug/L         | 18.0          | 89.9            | 75.5 - 113    |                 | 10/6/2021       |
| 1,2-Dichloroethane        | 20.0         | ug/L         | 21.1          | 105             | 83 - 112      |                 | 10/6/2021       |
| 1,2-Dichloropropane       | 20.0         | ug/L         | 20.2          | 101             | 82.4 - 104    |                 | 10/6/2021       |
| 1,3-Dichlorobenzene       | 20.0         | ug/L         | 17.7          | 88.3            | 74.6 - 103    |                 | 10/6/2021       |
| 1,4-Dichlorobenzene       | 20.0         | ug/L         | 17.6          | 87.8            | 74.9 - 102    |                 | 10/6/2021       |
| Benzene                   | 20.0         | ug/L         | 20.9          | 104             | 87.6 - 106    |                 | 10/6/2021       |
| Bromodichloromethane      | 20.0         | ug/L         | 20.7          | 104             | 84.1 - 105    |                 | 10/6/2021       |
| Bromoform                 | 20.0         | ug/L         | 19.4          | 96.8            | 61.9 - 132    |                 | 10/6/2021       |
| Bromomethane              | 20.0         | ug/L         | 24.9          | 125             | 23.7 - 187    |                 | 10/6/2021       |
| Carbon Tetrachloride      | 20.0         | ug/L         | 21.5          | 108             | 85.9 - 117    |                 | 10/6/2021       |
| Chlorobenzene             | 20.0         | ug/L         | 19.2          | 96.0            | 82.7 - 103    |                 | 10/6/2021       |



# **QC Report for Laboratory Control Sample**

| Client:                   | <u>Stantec</u> |
|---------------------------|----------------|
| <b>Project Reference:</b> | Ward Street    |
| Lab Project ID:           | 214498         |
| SDG #:                    | 4498-01        |
| Matrix:                   | Groundwater    |

### Volatile Organics

|                           | <u>Spike</u> | <u>Spike</u> | LCS           | <u>LCS %</u>    | <u>% Rec</u>      | LCS             | Date      |
|---------------------------|--------------|--------------|---------------|-----------------|-------------------|-----------------|-----------|
| Analyte                   | Added        | <u>Units</u> | <u>Result</u> | <b>Recovery</b> | <u>Limits</u>     | <b>Outliers</b> | Analyzed  |
| Chloroethane              | 20.0         | ug/L         | 22.5          | 113             | 63.7 <b>-</b> 135 |                 | 10/6/2021 |
| Chloroform                | 20.0         | ug/L         | 22.0          | 110             | 86.9 - 113        |                 | 10/6/2021 |
| Chloromethane             | 20.0         | ug/L         | 25.7          | 128             | 35 - 169          |                 | 10/6/2021 |
| cis-1,3-Dichloropropene   | 20.0         | ug/L         | 19.7          | 98.6            | 74.8 - 106        |                 | 10/6/2021 |
| Dibromochloromethane      | 20.0         | ug/L         | 20.2          | 101             | 76.1 - 110        |                 | 10/6/2021 |
| Ethylbenzene              | 20.0         | ug/L         | 19.2          | 96.0            | 81.5 - 105        |                 | 10/6/2021 |
| Methylene chloride        | 20.0         | ug/L         | 20.4          | 102             | 49.4 - 124        |                 | 10/6/2021 |
| Tetrachloroethene         | 20.0         | ug/L         | 22.1          | 111             | 73 - 112          |                 | 10/6/2021 |
| Toluene                   | 20.0         | ug/L         | 19.4          | 97.1            | 78.6 - 106        |                 | 10/6/2021 |
| trans-1,2-Dichloroethene  | 20.0         | ug/L         | 21.2          | 106             | 76 - 113          |                 | 10/6/2021 |
| trans-1,3-Dichloropropene | 20.0         | ug/L         | 18.6          | 93.1            | 64.4 - 107        |                 | 10/6/2021 |
| Trichloroethene           | 20.0         | ug/L         | 21.0          | 105             | 84.7 - 109        |                 | 10/6/2021 |
| Trichlorofluoromethane    | 20.0         | ug/L         | 23.1          | 115             | 75.2 - 129        |                 | 10/6/2021 |
| Vinyl chloride            | 20.0         | ug/L         | 24.6          | 123             | 54.9 - 139        |                 | 10/6/2021 |
|                           |              |              |               |                 |                   |                 |           |



# **<u>QC Report for Laboratory Control Sample</u>**

| Client:            | <u>Stantec</u> |
|--------------------|----------------|
| Project Reference: | Ward Street    |
| Lab Project ID:    | 214498         |
| SDG #:             | 4498-01        |
| Matrix:            | Groundwater    |

#### **Volatile Organics**

|                |                      |              | <u>Spike</u> | <u>Spike</u> | LCS    | <u>LCS %</u>    | <u>% Rec</u> | LCS             | Date     |
|----------------|----------------------|--------------|--------------|--------------|--------|-----------------|--------------|-----------------|----------|
| <u>Analyte</u> |                      |              | Added        | <u>Units</u> | Result | <b>Recovery</b> | Limits       | <b>Outliers</b> | Analyzed |
|                | Method Reference(s): | EPA 8260C    |              |              |        |                 |              |                 |          |
|                |                      | EPA 5030C    |              |              |        |                 |              |                 |          |
|                | Data File:           | z04523.D     |              |              |        |                 |              |                 |          |
|                | QC Number:           | LCS 1        |              |              |        |                 |              |                 |          |
|                | QC Batch ID:         | QC211006VOAW |              |              |        |                 |              |                 |          |
|                |                      |              |              |              |        |                 |              |                 |          |



| Client:            | <b>Stantec</b> |
|--------------------|----------------|
| Project Reference: | Ward Street    |
| Lab Project ID:    | 214498         |
| SDG #:             | 4498-01        |
| Matrix:            | Groundwater    |

#### **Volatile Organics**

| Analyte                     | <u>Result</u> | <u>Units</u> | Qualifier | Date Analyzed |       |
|-----------------------------|---------------|--------------|-----------|---------------|-------|
| 1,1,1-Trichloroethane       | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,1,2,2-Tetrachloroethane   | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,1,2-Trichloroethane       | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,1-Dichloroethane          | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,1-Dichloroethene          | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2,3-Trichlorobenzene      | <5.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2,4-Trichlorobenzene      | <5.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2-Dibromo-3-Chloropropane | <10.0         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2-Dibromoethane           | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2-Dichlorobenzene         | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2-Dichloroethane          | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,2-Dichloropropane         | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,3-Dichlorobenzene         | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,4-Dichlorobenzene         | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| 1,4-Dioxane                 | <10.0         | ug/L         |           | 10/7/2021     | 16:06 |
| 2-Butanone                  | <10.0         | ug/L         |           | 10/7/2021     | 16:06 |
| 2-Hexanone                  | 5.29          | ug/L         |           | 10/7/2021     | 16:06 |
| 4-Methyl-2-pentanone        | <5.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Acetone                     | <10.0         | ug/L         |           | 10/7/2021     | 16:06 |
| Benzene                     | <1.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Bromochloromethane          | <5.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Bromodichloromethane        | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Bromoform                   | <5.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Bromomethane                | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Carbon disulfide            | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Carbon Tetrachloride        | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
| Chlorobenzene               | <2.00         | ug/L         |           | 10/7/2021     | 16:06 |
|                             |               |              |           |               |       |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Friday, October 8, 2021



| Client:                   | <u>Stantec</u> |
|---------------------------|----------------|
| <b>Project Reference:</b> | Ward Street    |
| Lab Project ID:           | 214498         |
| SDG #:                    | 4498-01        |
| Matrix:                   | Groundwater    |

#### **Volatile Organics**

| Analyte                   | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |       |
|---------------------------|---------------|--------------|-----------|----------------------|-------|
| Chloroethane              | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Chloroform                | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Chloromethane             | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| cis-1,2-Dichloroethene    | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| cis-1,3-Dichloropropene   | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Cyclohexane               | <10.0         | ug/L         |           | 10/7/2021            | 16:06 |
| Dibromochloromethane      | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Dichlorodifluoromethane   | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Ethylbenzene              | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Freon 113                 | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Isopropylbenzene          | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| m,p-Xylene                | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Methyl acetate            | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Methyl tert-butyl Ether   | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Methylcyclohexane         | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Methylene chloride        | <5.00         | ug/L         |           | 10/7/2021            | 16:06 |
| o-Xylene                  | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Styrene                   | <5.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Tetrachloroethene         | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Toluene                   | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| trans-1,2-Dichloroethene  | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| trans-1,3-Dichloropropene | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Trichloroethene           | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Trichlorofluoromethane    | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
| Vinyl chloride            | <2.00         | ug/L         |           | 10/7/2021            | 16:06 |
|                           |               |              |           |                      |       |



| Client: -          | <u>Stantec</u> |
|--------------------|----------------|
| Project Reference: | Ward Street    |
| Lab Project ID:    | 214498         |
| SDG #:             | 4498-01        |
| Matrix:            | Groundwater    |

### Volatile Organics

| <u>Analyte</u>        |                        | <u>Result</u> | <u>Units</u>  | Qualifier       | <b>Date Analyzed</b> |       |
|-----------------------|------------------------|---------------|---------------|-----------------|----------------------|-------|
| Surrogate             | Per                    | cent Recovery | <u>Limits</u> | <b>Outliers</b> | Date Anal            | yzed  |
| 1,2-Dichloroethane-d4 |                        | 117           | 83 - 120      |                 | 10/7/2021            | 16:06 |
| 4-Bromofluorobenzene  |                        | 104           | 65.5 - 118    |                 | 10/7/2021            | 16:06 |
| Pentafluorobenzene    |                        | 119           | 91.2 - 109    | *               | 10/7/2021            | 16:06 |
| Toluene-D8            |                        | 113           | 79.7 - 112    | *               | 10/7/2021            | 16:06 |
| Method Reference(s):  | EPA 8260C<br>EPA 5030C |               |               |                 |                      |       |
| Data File:            | z04563.D               |               |               |                 |                      |       |
| QC Batch ID:          | QC211007VOAW           |               |               |                 |                      |       |
| QC Number:            | Blk 1                  |               |               |                 |                      |       |



# **QC Report for Laboratory Control Sample**

| <b>Stantec</b> |
|----------------|
| Ward Street    |
| 214498         |
| 4498-01        |
| Groundwater    |
|                |

# Volatile Organics

| 0                         | <u>Spike</u> | <u>Spike</u> | LCS           | <u>LCS %</u> | <u>% Rec</u>  | LCS             | Date      |
|---------------------------|--------------|--------------|---------------|--------------|---------------|-----------------|-----------|
| Analyte                   | Added        | <u>Units</u> | <u>Result</u> | Recovery     | <u>Limits</u> | <b>Outliers</b> | Analyzed  |
| 1,1,1-Trichloroethane     | 20.0         | ug/L         | 20.4          | 102          | 85 - 128      |                 | 10/7/2021 |
| 1,1,2,2-Tetrachloroethane | 20.0         | ug/L         | 17.4          | 87.1         | 55.4 - 146    |                 | 10/7/2021 |
| 1,1,2-Trichloroethane     | 20.0         | ug/L         | 21.3          | 107          | 72.4 - 115    |                 | 10/7/2021 |
| 1,1-Dichloroethane        | 20.0         | ug/L         | 21.5          | 108          | 83.8 - 118    |                 | 10/7/2021 |
| 1,1-Dichloroethene        | 20.0         | ug/L         | 18.5          | 92.3         | 66.7 - 112    |                 | 10/7/2021 |
| 1,2-Dichlorobenzene       | 20.0         | ug/L         | 17.3          | 86.6         | 75.5 - 113    |                 | 10/7/2021 |
| 1,2-Dichloroethane        | 20.0         | ug/L         | 22.0          | 110          | 83 - 112      |                 | 10/7/2021 |
| 1,2-Dichloropropane       | 20.0         | ug/L         | 21.3          | 107          | 82.4 - 104    | *               | 10/7/2021 |
| 1,3-Dichlorobenzene       | 20.0         | ug/L         | 16.6          | 83.2         | 74.6 - 103    |                 | 10/7/2021 |
| 1,4-Dichlorobenzene       | 20.0         | ug/L         | 16.7          | 83.3         | 74.9 - 102    |                 | 10/7/2021 |
| Benzene                   | 20.0         | ug/L         | 21.2          | 106          | 87.6 - 106    | *               | 10/7/2021 |
| Bromodichloromethane      | 20.0         | ug/L         | 21.1          | 106          | 84.1 - 105    | *               | 10/7/2021 |
| Bromoform                 | 20.0         | ug/L         | 18.4          | 91.8         | 61.9 - 132    |                 | 10/7/2021 |
| Bromomethane              | 20.0         | ug/L         | 24.4          | 122          | 23.7 - 187    |                 | 10/7/2021 |
| Carbon Tetrachloride      | 20.0         | ug/L         | 19.6          | 97.9         | 85.9 - 117    |                 | 10/7/2021 |
| Chlorobenzene             | 20.0         | ug/L         | 18.7          | 93.4         | 82.7 - 103    |                 | 10/7/2021 |
|                           |              |              |               |              |               |                 |           |



# **<u>QC Report for Laboratory Control Sample</u>**

| Client:            | <u>Stantec</u> |
|--------------------|----------------|
| Project Reference: | Ward Street    |
| Lab Project ID:    | 214498         |
| SDG #:             | 4498-01        |
| Matrix:            | Groundwater    |

## **Volatile Organics**

|                           | <u>Spike</u> | <u>Spike</u> | LCS           | <u>LCS %</u>    | <u>% Rec</u> | LCS             | Date      |
|---------------------------|--------------|--------------|---------------|-----------------|--------------|-----------------|-----------|
| Analyte                   | Added        | <u>Units</u> | <u>Result</u> | <b>Recovery</b> | Limits       | <u>Qutliers</u> | Analyzed  |
| Chloroethane              | 20.0         | ug/L         | 21.4          | 107             | 63.7 - 135   |                 | 10/7/2021 |
| Chloroform                | 20.0         | ug/L         | 21.8          | 109             | 86.9 - 113   |                 | 10/7/2021 |
| Chloromethane             | 20.0         | ug/L         | 23.6          | 118             | 35 - 169     |                 | 10/7/2021 |
| cis-1,3-Dichloropropene   | 20.0         | ug/L         | 20.7          | 104             | 74.8 - 106   |                 | 10/7/2021 |
| Dibromochloromethane      | 20.0         | ug/L         | 21.6          | 108             | 76.1 - 110   |                 | 10/7/2021 |
| Ethylbenzene              | 20.0         | ug/L         | 16.8          | 83.8            | 81.5 - 105   |                 | 10/7/2021 |
| Methylene chloride        | 20.0         | ug/L         | 20.3          | 102             | 49.4 - 124   |                 | 10/7/2021 |
| Tetrachloroethene         | 20.0         | ug/L         | 22.7          | 114             | 73 - 112     | *               | 10/7/2021 |
| Toluene                   | 20.0         | ug/L         | 20.1          | 101             | 78.6 - 106   |                 | 10/7/2021 |
| trans-1,2-Dichloroethene  | 20.0         | ug/L         | 20.4          | 102             | 76 - 113     |                 | 10/7/2021 |
| trans-1,3-Dichloropropene | 20.0         | ug/L         | 19.6          | 97.8            | 64.4 - 107   |                 | 10/7/2021 |
| Trichloroethene           | 20.0         | ug/L         | 20.5          | 103             | 84.7 - 109   |                 | 10/7/2021 |
| Trichlorofluoromethane    | 20.0         | ug/L         | 20.6          | 103             | 75.2 - 129   |                 | 10/7/2021 |
| Vinyl chloride            | 20.0         | ug/L         | 21.4          | 107             | 54.9 - 139   |                 | 10/7/2021 |
|                           |              |              |               |                 |              |                 |           |



# **<u>QC Report for Laboratory Control Sample</u>**

| Client:            | <u>Stantec</u> |
|--------------------|----------------|
| Project Reference: | Ward Street    |
| Lab Project ID:    | 214498         |
| SDG #:             | 4498-01        |
| Matrix:            | Groundwater    |

# Volatile Organics

|         |                      |              | <u>Spike</u> | <u>Spike</u> | LCS    | <u>LCS %</u>    | <u>% Rec</u>  | LCS             | Date            |
|---------|----------------------|--------------|--------------|--------------|--------|-----------------|---------------|-----------------|-----------------|
| Analyte |                      |              | Added        | <u>Units</u> | Result | <b>Recovery</b> | <u>Limits</u> | <u>Outliers</u> | <u>Analyzed</u> |
|         | Method Reference(s): | EPA 8260C    |              |              |        |                 |               |                 | -               |
|         |                      | EPA 5030C    |              |              |        |                 |               |                 |                 |
|         | Data File:           | z04562.D     |              |              |        |                 |               |                 |                 |
|         | QC Number:           | LCS 1        |              |              |        |                 |               |                 |                 |
|         | QC Batch ID:         | QC211007VOAW |              |              |        |                 |               |                 |                 |
|         |                      |              |              |              |        |                 |               |                 |                 |



# **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

*"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.* 

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

*"B" = Method blank contained trace levels of analyte. Refer to included method blank report.* 

*"J"* = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"\*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

# GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

| Warranty.                    | Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scope and<br>Compensation.   | LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.<br>Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Prices.                      | Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing<br>by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony,<br>court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs<br>may incur additional fees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Limitations of<br>Liability. | In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re-<br>perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived<br>unless made in writing and received by LAB within ninety (90) days following completion of services.<br>LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not<br>limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.<br>All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients<br>or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or<br>other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.<br>Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against<br>any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions,<br>proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of<br>any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting<br>from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or<br>disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any<br>environmental permit or (e) a material misrepresentation in disclosing the materials to be tested. |
| Hazard Disclosure.           | Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sample Handling.             | Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.                                                                                                                                                                                                                                                                                                 |
| Legal Responsibility.        | LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Assignment.                  | LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Force Majeure.               | LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in<br>part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not<br>limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars,<br>civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies<br>from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Law.                         | This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             | 179 Lake A                                | venue, Roche                   | ster, NY 14                        | 608 C       | Office (585)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 647-2530              | ) Fax (585 | 5) 647-331 <sup>-</sup> | I         |                                        |                         | INA                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|-------------|-------------------------------------------|--------------------------------|------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------------------|-----------|----------------------------------------|-------------------------|----------------------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             |                                           | CHA                            | AIN C                              | )F (        | CUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOD                   | Y          |                         |           |                                        |                         | 1002                             |
| DAE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             | REPORT TO:                                |                                |                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INV                   | OICE TO    |                         |           |                                        | -                       |                                  |
| PAF            | RADIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Μ                   |                         | CLIENT:     | FANTEC                                    |                                | 0                                  | LIENT:      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CNN                   | 115        |                         |           |                                        | LAB PROJECT             | D                                |
| 1000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         | ADDRESS:    | Commercial                                | st Su                          | ite 100                            | DDRESS      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAH                   | 1E         |                         |           | 72140                                  | ugs/                    |                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                   |                         | CITY: Roche | CTATE.                                    |                                |                                    | ITY:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | STATE:     | ZIP                     | :         | Quotation                              | #: 0                    |                                  |
|                | and the second s |                     |                         | PHONE: (585 |                                           |                                |                                    | HONE:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |            |                         |           | Email:                                 | half of                 | aler ran                         |
|                | CT REFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                         | ATTN: LAUM  |                                           | teven 1                        | life "                             | TTN: /      | 1P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |            |                         |           | Steven                                 | life sh                 | nkc. com                         |
| Ward           | Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | et-                 |                         |             | es:<br>queous Liquid<br>on-Aqueous Liquid | <b>WA</b> - V<br><b>WG</b> - 0 | Vater<br>Groundwate                | r           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drinking V<br>Wastewa |            | <b>SO</b> - S<br>SL - S |           | <b>SD</b> - Solid<br><b>PT</b> - Paint | WP - Wipe<br>CK - Caulk | OL - Oil<br>AR - Air             |
|                | Try I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                         |             |                                           |                                |                                    | -           | and the second se | IESTED                | ANALY      | SIS                     |           |                                        |                         |                                  |
| DATE COLLECTED | TIME<br>COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С О М ₱ О S   Т Е   | G<br>R<br>A<br>B        |             | SAMPLE IDENTIFIER                         |                                | M C<br>A O<br>T D<br>E<br>I S<br>X | NUM BER OFS | TCL 10(826)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |            |                         |           | REMAR                                  | ĸs                      | PARADIGM LAB<br>SAMPLE<br>NUMBER |
| 10/5/2021      | 0900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | X                       | MW-         | 207R                                      |                                | FW                                 | 4           | XV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |            |                         |           |                                        |                         | 01                               |
| 1010101        | 0955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | X                       | MW          | - 16                                      |                                |                                    | 4           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |            |                         | 1         |                                        |                         | 02                               |
|                | 1035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ul.                 | $\langle \cdot \rangle$ | MANI        | -16R                                      |                                |                                    | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++                    |            |                         | -         |                                        |                         | 03                               |
| 1255           | 1135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₩~                  | $\bigcirc$              | INAN/ -     | 23                                        |                                | +++                                | 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | +          |                         |           |                                        |                         | 04                               |
| 16,55          | 1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | $\bigcirc$              | MIL         | 105                                       |                                | +                                  | 4<br>U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++                    | + + +      |                         | 1         |                                        |                         | 05                               |
| al de de       | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                         | 1110-       | 0/                                        | )                              | 5                                  | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++                    | + $+$ $+$  |                         |           |                                        |                         | 06                               |
| 19/30/2        | Re.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                         | Inp         | Blank T1072                               | 0.                             | W                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++                    | + + +      |                         |           |                                        |                         |                                  |
| person         | 1015121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | <u> </u>                |             | hatil                                     | Vala                           | hit                                | }           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++                    | +          | $\rightarrow$           |           |                                        |                         |                                  |
|                | וטיטו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                         |             | with                                      | Gizi m                         | riolst                             | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++-                   | + + +      |                         |           |                                        |                         |                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             |                                           |                                |                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ++                    |            |                         | 5         |                                        | 1                       |                                  |
| L              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             |                                           |                                | 1                                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |            |                         | 10 Ci     | Cerol 1015                             | 12/ 154                 | 0                                |
| Turnaroun      | d Timo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                   |                         | Report Sup  | plomonte                                  |                                |                                    |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                    |            |                         | start     | ad in fiel                             | el mi                   | 1 0.1. 1                         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt upon l           |                         |             | l fees may apply.                         | - 54                           | wen k                              | life        | . AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | iO         | 15/21                   | NA        | ustry 20                               | ral dem                 | d lehning                        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             | 1                                         | Sampl                          | 10                                 | <i>w</i> .c | - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>              | Date       | Time                    |           | 0                                      | Total Cost:             |                                  |
| Standard 5 day | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None R              | equired                 |             | None Required                             | Sp                             | ien R                              | 6           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     | 10         | 15/21                   | /         |                                        |                         |                                  |
| 10 day         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Batch G             | 0C                      |             | Basic EDD                                 | Reling                         | uished By                          | <u>.</u>    | AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 00.653     | Time                    |           |                                        |                         |                                  |
| Rush 3 day     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Catego              | ry A                    | X           | NYSDEC EDD                                | Receiv                         | egle                               | /           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |            | 1510                    |           |                                        | P.I.F.                  |                                  |
| Rush 2 day     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Catego              | ry B                    |             |                                           | M                              | Mit                                | to          | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nd                    | 0/5912     | 16                      | 5:4       |                                        |                         |                                  |
| Rush 1 day     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                         |             |                                           | Réceiv                         | ved @Lab                           | Ву          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 015 6                 | Date       | /Time                   | 11        |                                        | L                       |                                  |
| Date Needed    | led:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other<br>please ind | icate packa             | ige needed: | Other EDD Dieded                          | By sig                         | gning thi                          | s forn      | n, client a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agrees t              | o Paradi   | igm Terr                | ns and Co | onditions (rev                         | verse).                 |                                  |

See additional page for spagpls4cond1tions.

2062

| PARADIGM                                                         | <u>Ch</u>                            | <u>ain of Custody Suppl</u>                          | <u>ement</u>       |
|------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------|
| Client:<br>Lab Project ID:                                       | Stanter<br>214498                    | Completed by:<br>Date:                               | Nyly/ail<br>0/5/2/ |
|                                                                  | <b>Sample Con</b><br>Per NELAC/EL    | <b>dition Requirements</b><br>AP 210/241/242/243/244 |                    |
| Condition                                                        | NELAC compliance with the sar<br>Yes | nple condition requirements upon<br>No               | n receipt-<br>N/A  |
| Container Type<br>Comments                                       |                                      |                                                      |                    |
| Transferred to method-<br>compliant container                    |                                      |                                                      |                    |
| Headspace<br>(<1 mL)<br>Comments                                 |                                      |                                                      |                    |
| Preservation<br>Comments                                         |                                      |                                                      |                    |
| <b>Chlorine Absent</b><br>(<0.10 ppm per test strip)<br>Comments |                                      |                                                      |                    |
| Holding Time<br>Comments                                         |                                      |                                                      |                    |
| <b>Temperature</b><br>Comments                                   | In cial of                           | tarty in field                                       |                    |
| Compliant Sample Quantity/Ty<br>Comments                         | vpe                                  |                                                      |                    |
|                                                                  |                                      |                                                      |                    |



Experience is the solution 314 North Pearl Street 

Albany, New York 12207 (800) 848-4983 

(518) 434-4546 

Fax (518) 434-0891

October 11, 2021

Sarah Conlon Paradigm Environmental 179 Lake Avenue Rochester, NY 14608

Work Order No: 211006017

TEL: (800) 724-1997

RE: Analysis of Samples Project# 214498

Dear Sarah Conlon:

Adirondack Environmental Services, Inc received 5 samples on 10/6/2021 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Jon David

ELAP#: 10709

Tara Daniels Laboratory Director

Page 1 of 3

# Adirondack Environmental Services, Inc

### **CASE NARRATIVE**

#### Paradigm Environmental Analysis of Samples

Project# 214498

Date: 11-Oct-21

Lab WorkOrder: 211006017

Sample containers were not supplied by Adirondack Environmental Services.

#### Definitions - RL: Reporting Limit DF: Dilution factor

| <b>Qualifiers:</b> | ND : Not Detected at reporting limit         | C: CCV below acceptable Limits                    |
|--------------------|----------------------------------------------|---------------------------------------------------|
|                    | J: Analyte detected below quantitation limit | C+: CCV above acceptable Limits                   |
|                    | B: Analyte detected in Blank                 | S: LCS Spike recovery is below acceptable limits  |
|                    | X : Exceeds maximum contamination limit      | S+: LCS Spike recovery is above acceptable limits |
|                    | H: Hold time exceeded                        | Z: Duplication outside acceptable limits          |
|                    | N: Matrix Spike below acceptable limits      | T : Tentatively Identified Compound-Estimated     |
|                    | N+: Matrix Spike is above acceptable limits  | E :Above quantitation range-Estimated             |
|                    |                                              |                                                   |

Note : All Results are reported as wet weight unless noted

The results relate only to the items tested. Information supplied by the client is assumed to be correct.

| Project:                           | Paradigm Environmen<br>Analysis of Samples<br>Project# 214498 | tal    |     |      | LabV<br>PO# |                      | er: 21 | 1006017                  |
|------------------------------------|---------------------------------------------------------------|--------|-----|------|-------------|----------------------|--------|--------------------------|
| Lab SampleID:                      | 211006017-001                                                 |        |     |      | Collect     | ion Date:            |        |                          |
| Client Sample ID:<br>Analyses      | MW-207R                                                       | Result | RL  | Qual | Units       | Matrix:              | DF     | NDWATER<br>Date Analyzed |
| TOTAL ORGANIC                      | CARBON - SM 5310C                                             | -2011  |     |      |             |                      |        | Analyst: CP              |
| Total Organic Carbo                | on                                                            | 3.1    | 1.0 |      | mg/L        |                      | 1      | 10/11/2021 10:06:00 AM   |
| Lab SampleID:<br>Client Sample ID: | 211006017-002<br>MW-16                                        |        |     |      | Collect     | ion Date:<br>Matrix: |        | 021<br>NDWATER           |
| Analyses                           |                                                               | Result | RL  | Qual | Units       |                      | DF     | Date Analyzed            |
| TOTAL ORGANIC                      | CARBON - SM 5310C                                             | -2011  |     |      |             |                      |        | Analyst: CP              |
| Total Organic Carbo                | on                                                            | 6.9    | 1.0 |      | mg/L        |                      | 1      | 10/11/2021 10:50:00 AM   |
| Lab SampleID:<br>Client Sample ID: | 211006017-003<br>MW-16R                                       |        |     | 1    | Collect     | ion Date:<br>Matrix: |        | 021<br>NDWATER           |
| Analyses                           |                                                               | Result | RL  | Qual | Units       |                      | DF     | Date Analyzed            |
| TOTAL ORGANIC                      | CARBON - SM 5310C                                             | -2011  |     |      |             |                      |        | Analyst: CP              |
| Total Organic Carbo                | on                                                            | 11.6   | 1.0 |      | mg/L        |                      | 1      | 10/11/2021 11:09:00 AM   |
| Lab SampleID:<br>Client Sample ID: | 211006017-004<br>MW-23                                        |        |     | 1    | Collect     | ion Date:<br>Matrix: |        | 021<br>NDWATER           |
| Analyses                           |                                                               | Result | RL  | Qual | Units       |                      | DF     | Date Analyzed            |
| TOTAL ORGANIC                      | CARBON - SM 5310C                                             | -2011  |     |      |             |                      |        | Analyst: CP              |
| Total Organic Carbo                | on                                                            | 16.2   | 1.0 | S+   | mg/L        |                      | 1      | 10/11/2021 2:28:00 PM    |
| Lab SampleID:<br>Client Sample ID: | 211006017-005<br>MW-105                                       |        |     | 1    | Collect     | ion Date:<br>Matrix: |        | 021<br>NDWATER           |
| Analyses                           |                                                               | Result | RL  | Qual | Units       |                      | DF     | Date Analyzed            |
| TOTAL ORGANIC                      | CARBON - SM 5310C                                             | -2011  |     |      |             |                      |        | Analyst: CP              |
|                                    |                                                               |        |     |      |             |                      |        |                          |

# Adirondack Environmental Services, Inc

Page 3 of 3

Date: 11-Oct-21

CLIENT: Paradigm Environmental Work Order: 211006017

**Project:** Analysis of Samples

### ANALYTICAL QC SUMMARY REPORT

BatchID: R199784

| MBLK                 | SeqNo: <b>3176601</b><br>Samp ID: <b>MBLK</b>  |                        |                    |                          |                         |                    |                                      | stNo: <b>SM531</b><br>hits: <b>mg/L</b>      |                                | RunNo: <b>199784</b><br>Iysis Date: <b>10/8/2021</b>                                                       |                  |
|----------------------|------------------------------------------------|------------------------|--------------------|--------------------------|-------------------------|--------------------|--------------------------------------|----------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------|------------------|
| Analyte              |                                                | <u>Result</u>          | PQL                | SPK value                | SPK Ref Val             | <u>%REC</u>        | LowLimit                             | <u>HighLimit</u>                             | RPD Ref Val                    | <u>%RPD</u> <u>RPDLimit</u>                                                                                | <u>Qual</u>      |
| Total Org            | ganic Carbon                                   | ND                     | 1.00               | 0                        | 0                       | 0                  | 0                                    | 0                                            | 0                              | 0                                                                                                          |                  |
| lcs                  | SeqNo: 3176482                                 |                        |                    |                          |                         |                    | Tes                                  | stNo: SM531                                  | 0C                             | RunNo: <b>199784</b>                                                                                       |                  |
|                      | Samp ID: LCS                                   |                        |                    |                          |                         |                    | Un                                   | nits: mg/L                                   | Ana                            | lysis Date: 10/8/2021                                                                                      |                  |
| Analyte              |                                                | <u>Result</u>          | PQL                | <u>SPK value</u>         | <u>SPK Ref Val</u>      | <u>%REC</u>        | <u>LowLimit</u>                      | <u>HighLimit</u>                             | <u>RPD Ref Val</u>             | <u>%RPD</u> RPDLimit                                                                                       | Qual             |
| Total Org            | ganic Carbon                                   | 51.69                  | 5.00               | 50.2                     | 0                       | 103                | 82.7                                 | 120                                          | 0                              | 0                                                                                                          |                  |
|                      |                                                |                        |                    |                          |                         |                    |                                      |                                              |                                |                                                                                                            |                  |
| lcs                  | SeqNo: 3176525                                 |                        |                    |                          |                         |                    | Tes                                  | stNo: SM531                                  | 0C                             | RunNo: 199784                                                                                              |                  |
| lcs                  | SeqNo: <b>3176525</b><br>Samp ID: <b>LCS</b>   |                        |                    |                          |                         |                    |                                      | stNo: <b>SM531</b><br>hits: <b>mg/L</b>      |                                | RunNo: <b>199784</b><br>Iysis Date: <b>10/11/2021</b>                                                      |                  |
| Ics<br>Analyte       |                                                | Result                 | PQL                | SPK value                | SPK Ref Val             | %REC               |                                      |                                              |                                |                                                                                                            | Qual             |
| Analyte              |                                                | <u>Result</u><br>93.17 | <u>PQL</u><br>5.00 | <u>SPK value</u><br>50.2 | <u>SPK Ref Val</u><br>0 | <u>%REC</u><br>186 | Un                                   | nits: mg/L                                   | Ana                            | lysis Date: 10/11/2021                                                                                     | <u>Qual</u><br>S |
| Analyte              | Samp ID: LCS                                   |                        |                    |                          |                         |                    | Un<br><u>LowLimit</u><br>82.7        | hits: <b>mg/L</b><br><u>HighLimit</u><br>120 | Ana<br><u>RPD Ref Val</u><br>0 | lysis Date: 10/11/2021<br><u>%RPD</u> <u>RPDLimit</u>                                                      |                  |
| Analyte<br>Total Org | Samp ID: LCS                                   | 93.17                  |                    |                          |                         |                    | Un<br><u>LowLimit</u><br>82.7<br>Tes | hits: <b>mg/L</b><br><u>HighLimit</u>        | Ana<br>RPD Ref Val<br>0<br>0C  | lysis Date: <b>10/11/2021</b> <u>%RPD</u> <u>RPDLimit</u> 0                                                |                  |
| Analyte<br>Total Org | Samp ID: LCS<br>ganic Carbon<br>SeqNo: 3176522 | 93.17                  |                    |                          |                         |                    | Un<br><u>LowLimit</u><br>82.7<br>Tes | HighLimit<br>120<br>HighStho: SM531          | Ana<br>RPD Ref Val<br>0<br>0C  | Iysis Date:         10/11/2021           %RPD         RPDLimit           0         RunNo:           199784 |                  |

211006017

# CHAIN OF CUSTODY

## ADIRONDACK: ELAP ID: 11

a and a second

| PA                              | RADIG                  | M-                                        |                  | REPORT TO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                                | MPANY:           |       | and the second second | NVOICE   | то:              |    |                   | LAB PROJECT                                                                                                                                                                                                                                                   | #- la          | IENT PRO      | JECT #              |                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|------------------------|-------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|------------------|-------|-----------------------|----------|------------------|----|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                        |                                           | COMPAN           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | imental         |                                                | ORESS:           |       | Same                  | ,        |                  |    |                   |                                                                                                                                                                                                                                                               | <i>"</i> .  °- |               | 0201 #              |                                                                                                                                                                                                                                                                                                                                                         |
| 1                               |                        | 1                                         | CITY:            | S. STATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZIP:            | CITY                                           |                  |       |                       |          | STATE:           |    | ZIP:              | TURNAROUND                                                                                                                                                                                                                                                    | TIME: (WORK    | ING DAY       | 5)                  | Demo                                                                                                                                                                                                                                                                                                                                                    |
|                                 | Second Second          |                                           | PHONE:           | FAX:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | РНС                                            | DNE:             |       |                       | FAX:     |                  |    |                   | -                                                                                                                                                                                                                                                             |                | STD           |                     |                                                                                                                                                                                                                                                                                                                                                         |
| PROJECT NAME/SIT                | E NAME:                |                                           | ATTN:            | Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | ATT                                            | N:               | Acc   | ounts                 | Payabl   | e                |    |                   |                                                                                                                                                                                                                                                               | 2 🔲 3          |               | ſ                   |                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                        |                                           | COMMEN           | m) 1/ 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | is to reporting | @parac                                         | ligmen           | v.cor | n                     |          |                  |    |                   | Data Dua                                                                                                                                                                                                                                                      | - <u>-</u>     | - <b>L_(</b>  | <u>k</u>            | iteratura de la composition de la comp<br>de la composition de l<br>de la composition de la |
|                                 |                        |                                           | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                | I                | REQ   | UESTI                 | ED AN/   | ALYSI            | S  |                   | Date Due                                                                                                                                                                                                                                                      | ·IG(/)         | $\mathcal{D}$ |                     | and the second                                                                                                                                                                                                                                        |
| DATE                            | TIME                   | C<br>O<br>M<br>P<br>O<br>S<br>I<br>T<br>E | G<br>R<br>A<br>B | SAMPLE LOCATION/FIEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | M N<br>A U<br>T M<br>R B<br>I E<br>X R         | CONTAINER<br>DOL |       |                       |          |                  |    | QC S              | <i>remarks</i>                                                                                                                                                                                                                                                | nt             |               | RADIGM I<br>PLE NUN |                                                                                                                                                                                                                                                                                                                                                         |
| 1/0/5/21                        | 0900                   |                                           | 1×               | MW-207R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G               | Wé                                             |                  |       |                       |          |                  |    | 2144              | 98-01                                                                                                                                                                                                                                                         |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| <u></u> 2                       | 0955                   |                                           |                  | mw-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | Ī                                              |                  |       |                       |          |                  |    |                   | 02                                                                                                                                                                                                                                                            |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 3                               | 1035                   |                                           |                  | mw-16R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                |                  |       |                       |          |                  |    |                   | 03                                                                                                                                                                                                                                                            |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 4                               | 1255                   |                                           |                  | mw-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                                                |                  |       |                       |          |                  |    |                   | 04                                                                                                                                                                                                                                                            |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 5                               | 1420                   |                                           |                  | MW-105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | 16                                             | , J              |       |                       |          |                  |    |                   | os                                                                                                                                                                                                                                                            |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 6                               |                        |                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |                  |       |                       |          |                  |    |                   |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 7                               |                        | ś                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |                  |       |                       |          |                  |    |                   |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 3                               |                        |                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |                  |       |                       |          |                  |    |                   |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 9.                              |                        |                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |                  |       |                       |          |                  |    |                   |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| 10                              |                        |                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                |                  |       |                       |          |                  |    |                   |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| **LAB USE C<br>Sample Condition |                        |                                           |                  | AND DECEMBER OF AN ADDRESS OF ADD |                 | 19 21 19 - 19<br>- 19 - 19 - 19 - 19 - 19 - 19 |                  |       |                       | a bade i |                  |    | d procession from | e La glassica de la ser<br>Service de la service de la<br>Service de la service de la |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| Sample Condition                | Receipt Par            |                                           | 241124212        | NELAC Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]               |                                                |                  |       |                       |          |                  |    |                   |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| Comments:                       | Container T<br>Vot AeS | ype:<br>Ac 10/6                           | 0                | Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CI<br>Sampled B | ient<br>y                                      |                  |       |                       | i        | Date/Tin         | ne |                   |                                                                                                                                                                                                                                                               | Total Cost:    |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| Comments:                       | Preservatio            | on:                                       |                  | Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relinguish      | U/<br>ed By                                    | Vai              | l     | /_(                   | 0/6      | Date/Tin         | ne | 0830              |                                                                                                                                                                                                                                                               |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |
| Comments:                       | Holding Tir            | me:                                       |                  | Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received        |                                                | p~               | L     | ŀ                     | olla     | Date/Tir         |    | 2:22              | <u> </u>                                                                                                                                                                                                                                                      | P.I.F.         |               | 7                   |                                                                                                                                                                                                                                                                                                                                                         |
| Comments:                       | Temperatu              | ure:                                      |                  | Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received        | Lab By                                         | 2                |       |                       |          | ///2<br>Date/Tin |    | 5:30pm            | <u>h</u>                                                                                                                                                                                                                                                      |                |               |                     |                                                                                                                                                                                                                                                                                                                                                         |



314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

## **TERMS, CONDITIONS & LIMITATIONS**

All service rendered by the **Adirondack Environmental Services**, Inc. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.



## Analytical Report For

# **Stantec**

For Lab Project ID

# 214909

## Referencing

# Ward St Soil Disposal Profile

## Prepared

## Monday, November 8, 2021

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Monday, November 8, 2021



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | TP-1 VOC                      |                |            |
| Lab Sample ID:     | 214909-01                     | Date Sampled:  | 10/28/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Volatile Organics**

| <u>Analyte</u>        | Result                        | <u>Units</u> | Regulatory Lim    | it Qualifier    | Date Anal         | <u>yzed</u> |
|-----------------------|-------------------------------|--------------|-------------------|-----------------|-------------------|-------------|
| 1,1-Dichloroethene    | < 20.0                        | ug/L         | 700               |                 | 11/2/2021         | 18:23       |
| 1,2-Dichloroethane    | < 20.0                        | ug/L         | 500               |                 | 11/2/2021         | 18:23       |
| 2-Butanone            | < 100                         | ug/L         | 200000            |                 | 11/2/2021         | 18:23       |
| Benzene               | < 20.0                        | ug/L         | 500               |                 | 11/2/2021         | 18:23       |
| Carbon Tetrachloride  | < 20.0                        | ug/L         | 500               |                 | 11/2/2021         | 18:23       |
| Chlorobenzene         | < 20.0                        | ug/L         | 100000            |                 | 11/2/2021         | 18:23       |
| Chloroform            | < 20.0                        | ug/L         | 6000              |                 | 11/2/2021         | 18:23       |
| Tetrachloroethene     | < 20.0                        | ug/L         | 700               |                 | 11/2/2021         | 18:23       |
| Trichloroethene       | < 20.0                        | ug/L         | 500               |                 | 11/2/2021         | 18:23       |
| Vinyl chloride        | < 20.0                        | ug/L         | 200               |                 | 11/2/2021         | 18:23       |
| Surrogate             | Perc                          | ent Recovery | <u>Limits</u>     | <u>Outliers</u> | <b>Date Analy</b> | zed         |
| 1,2-Dichloroethane-d4 |                               | 104          | 77.9 - 132        |                 | 11/2/2021         | 18:23       |
| 4-Bromofluorobenzene  |                               | 101          | 62.6 <b>-</b> 133 |                 | 11/2/2021         | 18:23       |
| Pentafluorobenzene    |                               | 106          | 88.9 - 114        |                 | 11/2/2021         | 18:23       |
| Toluene-D8            |                               | 97.9         | 75.6 - 117        |                 | 11/2/2021         | 18:23       |
| Method Reference(s):  | EPA 8260C<br>EPA 1311 / 5030C |              |                   |                 |                   |             |
| Data File:            | z05191.D                      |              |                   |                 |                   |             |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | TP-3 VOC                      |                |            |
| Lab Sample ID:     | 214909-02                     | Date Sampled:  | 10/28/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Volatile Organics**

| <u>Analyte</u>        | <u>Result</u>                 | <u>Units</u> | <b>Regulatory Lim</b> | <u>it Qualifier</u> | Date Anal         | <u>yzed</u> |
|-----------------------|-------------------------------|--------------|-----------------------|---------------------|-------------------|-------------|
| 1,1-Dichloroethene    | < 20.0                        | ug/L         | 700                   |                     | 11/2/2021         | 18:43       |
| 1,2-Dichloroethane    | < 20.0                        | ug/L         | 500                   |                     | 11/2/2021         | 18:43       |
| 2-Butanone            | < 100                         | ug/L         | 200000                |                     | 11/2/2021         | 18:43       |
| Benzene               | < 20.0                        | ug/L         | 500                   |                     | 11/2/2021         | 18:43       |
| Carbon Tetrachloride  | < 20.0                        | ug/L         | 500                   |                     | 11/2/2021         | 18:43       |
| Chlorobenzene         | < 20.0                        | ug/L         | 100000                |                     | 11/2/2021         | 18:43       |
| Chloroform            | < 20.0                        | ug/L         | 6000                  |                     | 11/2/2021         | 18:43       |
| Tetrachloroethene     | < 20.0                        | ug/L         | 700                   |                     | 11/2/2021         | 18:43       |
| Trichloroethene       | < 20.0                        | ug/L         | 500                   |                     | 11/2/2021         | 18:43       |
| Vinyl chloride        | < 20.0                        | ug/L         | 200                   |                     | 11/2/2021         | 18:43       |
| <u>Surrogate</u>      | Perc                          | ent Recovery | <u>Limits</u>         | <u>Outliers</u>     | <b>Date Analy</b> | zed         |
| 1,2-Dichloroethane-d4 |                               | 114          | 77.9 - 132            |                     | 11/2/2021         | 18:43       |
| 4-Bromofluorobenzene  |                               | 123          | 62.6 - 133            |                     | 11/2/2021         | 18:43       |
| Pentafluorobenzene    |                               | 106          | 88.9 - 114            |                     | 11/2/2021         | 18:43       |
| Toluene-D8            |                               | 103          | 75.6 - 117            |                     | 11/2/2021         | 18:43       |
| Method Reference(s):  | EPA 8260C<br>EPA 1311 / 5030C |              |                       |                     |                   |             |
| Data File:            | z05192.D                      |              |                       |                     |                   |             |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | TP-4 VOC                      |                |            |
| Lab Sample ID:     | 214909-03                     | Date Sampled:  | 10/28/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Volatile Organics**

| <u>Analyte</u>                     | Result                                    | <u>Units</u> | Regulatory Lim    | it Qualifier    | Date Anal         | <u>yzed</u> |
|------------------------------------|-------------------------------------------|--------------|-------------------|-----------------|-------------------|-------------|
| 1,1-Dichloroethene                 | < 20.0                                    | ug/L         | 700               |                 | 11/2/2021         | 19:02       |
| 1,2-Dichloroethane                 | < 20.0                                    | ug/L         | 500               |                 | 11/2/2021         | 19:02       |
| 2-Butanone                         | < 100                                     | ug/L         | 200000            |                 | 11/2/2021         | 19:02       |
| Benzene                            | < 20.0                                    | ug/L         | 500               |                 | 11/2/2021         | 19:02       |
| Carbon Tetrachloride               | < 20.0                                    | ug/L         | 500               |                 | 11/2/2021         | 19:02       |
| Chlorobenzene                      | < 20.0                                    | ug/L         | 100000            |                 | 11/2/2021         | 19:02       |
| Chloroform                         | < 20.0                                    | ug/L         | 6000              |                 | 11/2/2021         | 19:02       |
| Tetrachloroethene                  | < 20.0                                    | ug/L         | 700               |                 | 11/2/2021         | 19:02       |
| Trichloroethene                    | < 20.0                                    | ug/L         | 500               |                 | 11/2/2021         | 19:02       |
| Vinyl chloride                     | < 20.0                                    | ug/L         | 200               |                 | 11/2/2021         | 19:02       |
| Surrogate                          | Perc                                      | ent Recovery | <u>Limits</u>     | <u>Outliers</u> | <b>Date Analy</b> | zed         |
| 1,2-Dichloroethane-d4              |                                           | 112          | 77.9 - 132        |                 | 11/2/2021         | 19:02       |
| 4-Bromofluorobenzene               |                                           | 103          | 62.6 - 133        |                 | 11/2/2021         | 19:02       |
| Pentafluorobenzene                 |                                           | 110          | 88.9 <b>-</b> 114 |                 | 11/2/2021         | 19:02       |
| Toluene-D8                         |                                           | 102          | 75.6 - 117        |                 | 11/2/2021         | 19:02       |
| Method Reference(s):<br>Data File: | EPA 8260C<br>EPA 1311 / 5030C<br>z05193.D |              |                   |                 |                   |             |
| Data rile:                         | 205193.D                                  |              |                   |                 |                   |             |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-1                        |                |            |
| Lab Sample ID:     | 214909-04                     | Date Sampled:  | 10/29/2021 |
| Matrix:            | Soil                          | Date Received: | 10/29/2021 |

#### Flash Point

| <u>Analyte</u>          | Result                | <u>Units</u>    |               | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|-----------------------|-----------------|---------------|------------------|----------------------|
| Flash Point, Celsius    | >70.0                 | С               |               |                  | 11/3/2021            |
| Method Reference(s):    | EPA 1010A             |                 |               |                  |                      |
| <u>PCBs</u>             |                       |                 |               |                  |                      |
| <u>Analyte</u>          | <u>Result</u>         | <u>Units</u>    |               | <u>Qualifier</u> | Date Analyzed        |
| PCB-1016                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1221                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1232                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1242                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1248                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1254                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1260                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1262                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| PCB-1268                | < 0.148               | mg/Kg           |               |                  | 11/2/2021 18:12      |
| <u>Surrogate</u>        | Percent ]             | <u>Recovery</u> | <u>Limits</u> | <u>Outliers</u>  | <b>Date Analyzed</b> |
| Tetrachloro-m-xylene    | 80                    | .5              | 12.2 - 91.2   |                  | 11/2/2021 18:12      |
| Method Reference(s):    | EPA 8082A             |                 |               |                  |                      |
| Preparation Date:       | EPA 3546<br>11/1/2021 |                 |               |                  |                      |
| <u>pH</u>               |                       |                 |               |                  |                      |
| Analyte                 | Result                | <u>Units</u>    |               | <b>Qualifier</b> | <b>Date Analyzed</b> |
| рН                      | 8.63 @ 21.1 C         | S.U.            |               |                  | 11/2/2021 11:59      |
| Method Reference(s):    | EPA 9045D             |                 |               |                  |                      |
| <u>Reactive Cyanide</u> |                       |                 |               |                  |                      |
| Analyte                 | Result                | <u>Units</u>    |               | <b>Qualifier</b> | Date Analyzed        |
| Reactivity, Cyanide     | <1.0                  | mg/Kg           |               |                  | 11/4/2021            |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Monday, November 8, 2021



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-1                        |                |            |
| Lab Sample ID:     | 214909-04                     | Date Sampled:  | 10/29/2021 |
| Matrix:            | Soil                          | Date Received: | 10/29/2021 |
|                    |                               |                |            |

Method Reference(s):EPA 7.3.3.2Subcontractor ELAP ID:10709ELAP does not offer this test for approval as part of their laboratory certification program.

#### **Reactive Sulfide**

| <u>Analyte</u>                                                             | <u>Result</u>                                    | <u>Units</u>        | <b>Qualifier</b>           | Date Analyzed |
|----------------------------------------------------------------------------|--------------------------------------------------|---------------------|----------------------------|---------------|
| Reactivity, Sulfide                                                        | 127                                              | mg/Kg               |                            | 11/4/2021     |
| Method Reference(s):<br>Subcontractor ELAP ID:<br>FLAP does not offer this | EPA 7.3.4.2<br>10709<br>test for approval as par | t of their laborato | pry certification program. |               |
| LLAI UDES HOL OJJET LIIIS                                                  | lest joi appioval as pai                         |                     | i y cerujication program.  |               |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-1                        |                |            |
| Lab Sample ID:     | 214909-04A                    | Date Sampled:  | 10/29/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Semi-Volatile Organics**

| Analyte                         | <u>Result</u>                             | <u>Units</u> | <b>Regulatory Limit</b> | <u>Qualifier</u> | Date Anal         | <u>yzed</u> |
|---------------------------------|-------------------------------------------|--------------|-------------------------|------------------|-------------------|-------------|
| 1,4-Dichlorobenzene             | < 40.0                                    | ug/L         | 7500                    |                  | 11/3/2021         | 15:37       |
| 2,4,5-Trichlorophenol           | < 40.0                                    | ug/L         | 400000                  |                  | 11/3/2021         | 15:37       |
| 2,4,6-Trichlorophenol           | < 40.0                                    | ug/L         | 2000                    |                  | 11/3/2021         | 15:37       |
| 2,4-Dinitrotoluene              | < 40.0                                    | ug/L         | 130                     |                  | 11/3/2021         | 15:37       |
| Cresols (as m,p,o-Cresol)       | < 80.0                                    | ug/L         | 200000                  |                  | 11/3/2021         | 15:37       |
| Hexachlorobenzene               | < 40.0                                    | ug/L         | 130                     |                  | 11/3/2021         | 15:37       |
| Hexachlorobutadiene             | < 40.0                                    | ug/L         | 500                     |                  | 11/3/2021         | 15:37       |
| Hexachloroethane                | < 40.0                                    | ug/L         | 3000                    |                  | 11/3/2021         | 15:37       |
| Nitrobenzene                    | < 40.0                                    | ug/L         | 2000                    |                  | 11/3/2021         | 15:37       |
| Pentachlorophenol               | < 80.0                                    | ug/L         | 100000                  |                  | 11/3/2021         | 15:37       |
| Pyridine                        | < 40.0                                    | ug/L         | 5000                    |                  | 11/3/2021         | 15:37       |
| <u>Surrogate</u>                | Perc                                      | ent Recovery | <u>Limits</u>           | <u>Outliers</u>  | <b>Date Analy</b> | zed         |
| 2,4,6-Tribromophenol            |                                           | 76.2         | 49.6 <b>-</b> 116       |                  | 11/3/2021         | 15:37       |
| 2-Fluorobiphenyl                |                                           | 52.1         | 18.6 - 104              |                  | 11/3/2021         | 15:37       |
| 2-Fluorophenol                  |                                           | 64.3         | 10 - 105                |                  | 11/3/2021         | 15:37       |
| Nitrobenzene-d5                 |                                           | 67.1         | 51.2 - 99.6             |                  | 11/3/2021         | 15:37       |
| Phenol-d5                       |                                           | 58.4         | 10 - 104                |                  | 11/3/2021         | 15:37       |
| Terphenyl-d14                   |                                           | 72.4         | 55.6 - 122              |                  | 11/3/2021         | 15:37       |
| Method Reference(s):            | EPA 8270D                                 |              |                         |                  |                   |             |
| Preparation Date:<br>Data File: | EPA 1311 / 3510C<br>11/2/2021<br>B57830.D |              |                         |                  |                   |             |
| <u>TCLP Herbicides</u>          |                                           |              |                         |                  |                   |             |
| Analyte                         | Result                                    | <u>Units</u> | <b>Regulatory Limit</b> | Qualifier        | Date Anal         | yzed        |
| 2,4,5-TP (Silvex)               | < 0.050                                   | mg/L         | 1                       |                  | 11/2/2021         |             |
| 2,4-D                           | < 0.050                                   | mg/L         | 10                      |                  | 11/2/2021         |             |



| Client:                        | <u>Stante</u>                 | <u>c</u>                      |                      |                       |                 |            |             |
|--------------------------------|-------------------------------|-------------------------------|----------------------|-----------------------|-----------------|------------|-------------|
| Project Reference:             | Ward St Soil Disposal Profile |                               |                      |                       |                 |            |             |
| Sample Identifier:             | Comp                          | -1                            |                      |                       |                 |            |             |
| Lab Sample ID:                 | 2149                          | 09-04A                        |                      | Dat                   | e Sampled:      | 10/29/202  | 1           |
| Matrix:                        | TCLP                          | Extract                       |                      | Dat                   | e Received:     | 10/29/202  | 1           |
| Method Referenc                | e(s):                         | EPA 8321B                     |                      |                       |                 |            |             |
| Subcontractor EL               | AP ID:                        | EPA 1311<br>10709             |                      |                       |                 |            |             |
| <u>TCLP Mercury</u>            |                               |                               |                      |                       |                 |            |             |
| Analyte                        |                               | Result                        | <u>Units</u>         | <b>Regulatory Lin</b> | nit Qualifier   | Date Ana   | yzed        |
| Mercury                        |                               | < 0.00200                     | mg/L                 | 0.2                   | -               | 11/2/2021  | -           |
| Method Referenc                | e(s):                         | EPA 7470A<br>EPA 1311         | 5,                   |                       |                 |            |             |
| Preparation Date<br>Data File: | 2:                            | 11/1/2021<br>Hg211102B        |                      |                       |                 |            |             |
| <u>TCLP Pesticides</u>         |                               |                               |                      |                       |                 |            |             |
| Analyte                        |                               | <u>Result</u>                 | <u>Units</u>         | <u>Regulatory Lin</u> | nit Qualifier   | Date Ana   | yzed        |
| Chlordane                      |                               | < 2.00                        | ug/L                 | 30                    |                 | 11/4/2021  | 15:37       |
| Endrin                         |                               | < 1.00                        | ug/L                 | 20                    |                 | 11/4/2021  | 15:37       |
| gamma-BHC (Lindane)            |                               | < 1.00                        | ug/L                 | 400                   |                 | 11/4/2021  | 15:37       |
| Heptachlor                     |                               | < 1.00                        | ug/L                 | 8                     |                 | 11/4/2021  | 15:37       |
| Heptachlor Epoxide             |                               | < 1.00                        | ug/L                 | 8                     |                 | 11/4/2021  | 15:37       |
| Methoxychlor                   |                               | < 1.00                        | ug/L                 | 10000                 |                 | 11/4/2021  | 15:37       |
| Toxaphene                      |                               | < 20.0                        | ug/L                 | 500                   |                 | 11/4/2021  | 15:37       |
| <u>Surrogate</u>               |                               | Perc                          | <u>cent Recovery</u> | <u>Limits</u>         | <u>Outliers</u> | Date Analy | <u>vzed</u> |
| Decachlorobiphenyl (1)         | )                             |                               | 113                  | 17 - 148              |                 | 11/4/2021  | 15:37       |
| Tetrachloro-m-xylene (         | [1]                           |                               | 89.4                 | 18 - 112              |                 | 11/4/2021  | 15:37       |
| Method Reference               | e(s):                         | EPA 8081B                     |                      |                       |                 |            |             |
| Preparation Date               | 9:                            | EPA 1311 / 3510C<br>11/4/2021 |                      |                       |                 |            |             |
| TCLP RCRA Metals               | <u>(ICP)</u>                  |                               |                      |                       |                 |            |             |
| <u>Analyte</u>                 |                               | <u>Result</u>                 | <u>Units</u>         | <b>Regulatory Lin</b> | nit Qualifier   | Date Ana   | yzed        |
| Arsenic                        |                               | < 0.500                       | mg/L                 | 5                     |                 | 11/2/2021  | 18:49       |
| Barium                         |                               | 0.683                         | mg/L                 | 100                   |                 | 11/2/2021  |             |
| Cadmium                        |                               | < 0.0250                      | mg/L                 | 1                     |                 | 11/2/2021  |             |



| Client:                     | <u>Stante</u> | <u>ec</u>                                |       |                |                 |
|-----------------------------|---------------|------------------------------------------|-------|----------------|-----------------|
| Project Reference:          | Ward S        | St Soil Disposal Pro                     | ofile |                |                 |
| Sample Identifier:          | Comp          | <b>b</b> -1                              |       |                |                 |
| Lab Sample ID:              | 2149          | 09-04A                                   |       | Date Sampled:  | 10/29/2021      |
| Matrix:                     | TCLP          | Extract                                  |       | Date Received: | 10/29/2021      |
|                             |               |                                          |       |                |                 |
| Chromium                    |               | < 0.500                                  | mg/L  | 5              | 11/2/2021 18:49 |
| Lead                        |               | < 0.500                                  | mg/L  | 5              | 11/2/2021 18:49 |
| Selenium                    |               | < 0.200                                  | mg/L  | 1              | 11/2/2021 18:49 |
| Silver                      |               | < 0.500                                  | mg/L  | 5              | 11/2/2021 18:49 |
| Method Refere               | ence(s):      | EPA 6010C                                |       |                |                 |
| Preparation D<br>Data File: | ate:          | EPA 1311 / 3005A<br>11/1/2021<br>211102D |       |                |                 |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-2                        |                |            |
| Lab Sample ID:     | 214909-05                     | Date Sampled:  | 10/29/2021 |
| Matrix:            | Soil                          | Date Received: | 10/29/2021 |
|                    |                               |                |            |

#### Flash Point

| <u>Analyte</u>          | Result                | <u>Units</u> |               | Qualifier        | Date Analyzed        |
|-------------------------|-----------------------|--------------|---------------|------------------|----------------------|
| Flash Point, Celsius    | >70.0                 | С            |               |                  | 11/4/2021            |
| Method Reference(s):    | EPA 1010A             |              |               |                  |                      |
| <u>PCBs</u>             |                       |              |               |                  |                      |
| <u>Analyte</u>          | <u>Result</u>         | <u>Units</u> |               | <u>Qualifier</u> | Date Analyzed        |
| PCB-1016                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1221                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1232                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1242                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1248                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1254                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1260                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1262                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| PCB-1268                | < 0.143               | mg/Kg        |               |                  | 11/2/2021 18:36      |
| <u>Surrogate</u>        | Percent ]             | Recovery     | <u>Limits</u> | <u>Outliers</u>  | <b>Date Analyzed</b> |
| Tetrachloro-m-xylene    | 83                    | 8.5          | 12.2 - 91.2   |                  | 11/2/2021 18:36      |
| Method Reference(s):    | EPA 8082A             |              |               |                  |                      |
| Preparation Date:       | EPA 3546<br>11/1/2021 |              |               |                  |                      |
| <u>pH</u>               |                       |              |               |                  |                      |
| Analyte                 | Result                | <u>Units</u> |               | Qualifier        | <b>Date Analyzed</b> |
| рН                      | 8.34 @ 21.2 C         | S.U.         |               |                  | 11/2/2021 12:01      |
| Method Reference(s):    | EPA 9045D             |              |               |                  |                      |
| <u>Reactive Cyanide</u> |                       |              |               |                  |                      |
| Analyte                 | Result                | <u>Units</u> |               | Qualifier        | Date Analyzed        |
| Reactivity, Cyanide     | <1.0                  | mg/Kg        |               |                  | 11/4/2021            |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

#### Report Prepared Monday, November 8, 2021



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-2                        |                |            |
| Lab Sample ID:     | 214909-05                     | Date Sampled:  | 10/29/2021 |
| Matrix:            | Soil                          | Date Received: | 10/29/2021 |
|                    |                               |                |            |

Method Reference(s):EPA 7.3.3.2Subcontractor ELAP ID:10709ELAP does not offer this test for approval as part of their laboratory certification program.

#### **Reactive Sulfide**

| <u>Analyte</u>                                 | <u>Result</u>        | <u>Units</u>         | Qualifier                  | Date Analyzed |
|------------------------------------------------|----------------------|----------------------|----------------------------|---------------|
| Reactivity, Sulfide                            | <10                  | mg/Kg                |                            | 11/4/2021     |
| Method Reference(s):<br>Subcontractor ELAP ID: | EPA 7.3.4.2<br>10709 |                      |                            |               |
|                                                |                      | rt of their laborato | ory certification program. |               |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-2                        |                |            |
| Lab Sample ID:     | 214909-05A                    | Date Sampled:  | 10/29/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Semi-Volatile Organics**

| Analyte                                                 | <u>Result</u>                                          | <u>Units</u> | <b>Regulatory Limi</b> | t Qualifier     | Date Analy        | zed   |
|---------------------------------------------------------|--------------------------------------------------------|--------------|------------------------|-----------------|-------------------|-------|
| 1,4-Dichlorobenzene                                     | < 40.0                                                 | ug/L         | 7500                   |                 | 11/3/2021         | 16:06 |
| 2,4,5-Trichlorophenol                                   | < 40.0                                                 | ug/L         | 400000                 |                 | 11/3/2021         | 16:06 |
| 2,4,6-Trichlorophenol                                   | < 40.0                                                 | ug/L         | 2000                   |                 | 11/3/2021         | 16:06 |
| 2,4-Dinitrotoluene                                      | < 40.0                                                 | ug/L         | 130                    |                 | 11/3/2021         | 16:06 |
| Cresols (as m,p,o-Cresol)                               | < 80.0                                                 | ug/L         | 200000                 |                 | 11/3/2021         | 16:06 |
| Hexachlorobenzene                                       | < 40.0                                                 | ug/L         | 130                    |                 | 11/3/2021         | 16:06 |
| Hexachlorobutadiene                                     | < 40.0                                                 | ug/L         | 500                    |                 | 11/3/2021         | 16:06 |
| Hexachloroethane                                        | < 40.0                                                 | ug/L         | 3000                   |                 | 11/3/2021         | 16:06 |
| Nitrobenzene                                            | < 40.0                                                 | ug/L         | 2000                   |                 | 11/3/2021         | 16:06 |
| Pentachlorophenol                                       | < 80.0                                                 | ug/L         | 100000                 |                 | 11/3/2021         | 16:06 |
| Pyridine                                                | < 40.0                                                 | ug/L         | 5000                   |                 | 11/3/2021         | 16:06 |
| <u>Surrogate</u>                                        | Perc                                                   | ent Recovery | <u>Limits</u>          | <u>Outliers</u> | <b>Date Analy</b> | zed   |
| 2,4,6-Tribromophenol                                    |                                                        | 77.7         | 49.6 <b>-</b> 116      |                 | 11/3/2021         | 16:06 |
| 2-Fluorobiphenyl                                        |                                                        | 52.7         | 18.6 <b>-</b> 104      |                 | 11/3/2021         | 16:06 |
| 2-Fluorophenol                                          |                                                        | 65.0         | 10 - 105               |                 | 11/3/2021         | 16:06 |
| Nitrobenzene-d5                                         |                                                        | 68.5         | 51.2 - 99.6            |                 | 11/3/2021         | 16:06 |
| Phenol-d5                                               |                                                        | 59.9         | 10 - 104               |                 | 11/3/2021         | 16:06 |
| Terphenyl-d14                                           |                                                        | 75.0         | 55.6 - 122             |                 | 11/3/2021         | 16:06 |
| Method Reference(s):<br>Preparation Date:<br>Data File: | EPA 8270D<br>EPA 1311 / 3510C<br>11/2/2021<br>B57831.D |              |                        |                 |                   |       |
| <u>TCLP Herbicides</u>                                  |                                                        |              |                        |                 |                   |       |
| Analyte                                                 | Result                                                 | <u>Units</u> | <b>Regulatory Limi</b> | t Qualifier     | Date Analy        | zed   |
| 2,4,5-TP (Silvex)                                       | < 0.050                                                | mg/L         | 1                      |                 | 11/4/2021         |       |
| 2,4-D                                                   | < 0.050                                                | mg/L         | 10                     |                 | 11/4/2021         |       |



| Client:                                                          | <u>Stante</u>                 | <u>C</u>                                        |                     |                |                           |                          |       |
|------------------------------------------------------------------|-------------------------------|-------------------------------------------------|---------------------|----------------|---------------------------|--------------------------|-------|
| Project Reference:                                               | Ward St Soil Disposal Profile |                                                 |                     |                |                           |                          |       |
| Sample Identifier:<br>Lab Sample ID:<br>Matrix:                  |                               | -2<br>19-05A<br>Extract                         |                     |                | e Sampled:<br>e Received: | 10/29/2023<br>10/29/2023 |       |
| Method Reference<br>Subcontractor EL<br><u>TCLP Mercury</u>      |                               | EPA 8321B<br>EPA 1311<br>10709                  |                     |                |                           |                          |       |
| Analyte                                                          |                               | Result                                          | <u>Units</u>        | Regulatory Lim | uit Auglifier             | Date Anal                | vzed  |
| Mercury                                                          |                               | < 0.00200                                       | mg/L                | 0.2            | <u>nı</u> yuamıcı         | 11/2/2021                | -     |
| Mercury<br>Method Reference<br>Preparation Date:<br>Data File:   |                               | EPA 7470A<br>EPA 1311<br>11/1/2021<br>Hg211102B | iiig) L             | 0.2            |                           | 11/2/2021                | 15.50 |
| <u>TCLP Pesticides</u>                                           |                               |                                                 |                     |                |                           |                          |       |
| <u>Analyte</u>                                                   |                               | <u>Result</u>                                   | <u>Units</u>        | Regulatory Lin | <u>iit Qualifier</u>      | Date Anal                | vzed  |
| Chlordane                                                        |                               | < 2.00                                          | ug/L                | 30             | •                         | 11/4/2021                |       |
| Endrin                                                           |                               | < 1.00                                          | ug/L                | 20             |                           | 11/4/2021                |       |
| gamma-BHC (Lindane)                                              |                               | < 1.00                                          | ug/L                | 400            |                           | 11/4/2021                |       |
| Heptachlor                                                       |                               | < 1.00                                          | ug/L                | 8              |                           | 11/4/2021                | 15:53 |
| Heptachlor Epoxide                                               |                               | < 1.00                                          | ug/L                | 8              |                           | 11/4/2021                | 15:53 |
| Methoxychlor                                                     |                               | < 1.00                                          | ug/L                | 10000          |                           | 11/4/2021                | 15:53 |
| Toxaphene                                                        |                               | < 20.0                                          | ug/L                | 500            |                           | 11/4/2021                | 15:53 |
| <u>Surrogate</u>                                                 |                               | Perc                                            | <u>ent Recovery</u> | <u>Limits</u>  | <u>Outliers</u>           | <b>Date Analy</b>        | zed   |
| Decachlorobiphenyl (1)                                           |                               |                                                 | 132                 | 17 - 148       |                           | 11/4/2021                | 15:53 |
| Tetrachloro-m-xylene (                                           | 1)                            |                                                 | 99.3                | 18 · 112       |                           | 11/4/2021                | 15:53 |
| Method Reference<br>Preparation Date:<br><u>TCLP RCRA Metals</u> |                               | EPA 8081B<br>EPA 1311 / 3510C<br>11/4/2021      |                     |                |                           |                          |       |
| <u>Analyte</u>                                                   |                               | <u>Result</u>                                   | <u>Units</u>        | Regulatory Lin | <u>it Oualifier</u>       | Date Anal                | vzed  |
| Arsenic                                                          |                               | < 0.500                                         | mg/L                | 5              |                           | 11/2/2021                |       |
| Barium                                                           |                               | 0.786                                           | mg/L<br>mg/L        | 100            |                           | 11/2/2021                |       |
| Cadmium                                                          |                               | < 0.0250                                        | mg/L                | 1              |                           | 11/2/2021                |       |



| Client:                      | <u>Stante</u> | <u>c</u>                      |       |                |                 |
|------------------------------|---------------|-------------------------------|-------|----------------|-----------------|
| Project Reference:           | Ward S        | St Soil Disposal Pro          | ofile |                |                 |
| Sample Identifier:           | Comp          | -2                            |       |                |                 |
| Lab Sample ID:               | 21490         | )9-05A                        |       | Date Sampled:  | 10/29/2021      |
| Matrix:                      | TCLP          | Extract                       |       | Date Received: | 10/29/2021      |
|                              |               |                               |       |                |                 |
| Chromium                     |               | < 0.500                       | mg/L  | 5              | 11/2/2021 18:54 |
| Lead                         |               | 0.921                         | mg/L  | 5              | 11/2/2021 18:54 |
| Selenium                     |               | < 0.200                       | mg/L  | 1              | 11/2/2021 18:54 |
| Silver                       |               | < 0.500                       | mg/L  | 5              | 11/2/2021 18:54 |
| Method Refere                | nce(s):       | EPA 6010C<br>EPA 1311 / 3005A |       |                |                 |
| Preparation Da<br>Data File: | ite:          | 11/1/2021<br>211102D          |       |                |                 |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-3                        |                |            |
| Lab Sample ID:     | 214909-06                     | Date Sampled:  | 10/29/2021 |
| Matrix:            | Soil                          | Date Received: | 10/29/2021 |
|                    |                               |                |            |

#### Flash Point

| <u>Analyte</u>          | Result                | <u>Units</u>    |               | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------------|-----------------------|-----------------|---------------|------------------|----------------------|
| Flash Point, Celsius    | >70.0                 | С               |               |                  | 11/4/2021            |
| Method Reference(s):    | EPA 1010A             |                 |               |                  |                      |
| <u>PCBs</u>             |                       |                 |               |                  |                      |
| <u>Analyte</u>          | <u>Result</u>         | <u>Units</u>    |               | <u>Qualifier</u> | <b>Date Analyzed</b> |
| PCB-1016                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1221                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1232                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1242                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1248                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1254                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1260                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1262                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| PCB-1268                | < 0.194               | mg/Kg           |               |                  | 11/2/2021 19:00      |
| <u>Surrogate</u>        | Percent ]             | <u>Recovery</u> | <u>Limits</u> | <u>Outliers</u>  | <b>Date Analyzed</b> |
| Tetrachloro-m-xylene    | 86                    | .8              | 12.2 - 91.2   |                  | 11/2/2021 19:00      |
| Method Reference(s):    | EPA 8082A             |                 |               |                  |                      |
| Preparation Date:       | EPA 3546<br>11/1/2021 |                 |               |                  |                      |
| <u>pH</u>               |                       |                 |               |                  |                      |
| Analyte                 | <u>Result</u>         | <u>Units</u>    |               | Qualifier        | Date Analyzed        |
| рН                      | 7.65 @ 21.3 C         | S.U.            |               |                  | 11/2/2021 12:03      |
| Method Reference(s):    | EPA 9045D             |                 |               |                  |                      |
| <u>Reactive Cyanide</u> |                       |                 |               |                  |                      |
| Analyte                 | Result                | <u>Units</u>    |               | Qualifier        | Date Analyzed        |
| Reactivity, Cyanide     | <1.0                  | mg/Kg           |               |                  | 11/5/2021            |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

#### Report Prepared Monday, November 8, 2021



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-3                        |                |            |
| Lab Sample ID:     | 214909-06                     | Date Sampled:  | 10/29/2021 |
| Matrix:            | Soil                          | Date Received: | 10/29/2021 |
|                    |                               |                |            |

Method Reference(s):EPA 7.3.3.2Subcontractor ELAP ID:10709ELAP does not offer this test for approval as part of their laboratory certification program.

#### **Reactive Sulfide**

| <u>Analyte</u>                                 | <u>Result</u>            | <u>Units</u>         | Qualifier                 | Date Analyzed |
|------------------------------------------------|--------------------------|----------------------|---------------------------|---------------|
| Reactivity, Sulfide                            | 105                      | mg/Kg                |                           | 11/5/2021     |
| Method Reference(s):<br>Subcontractor ELAP ID: | EPA 7.3.4.2<br>10709     | t of their laborate  | n antification program    |               |
| ELAP does not offer this                       | test for approval as par | rt of their laborato | ry certification program. |               |



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-3                        |                |            |
| Lab Sample ID:     | 214909-06A                    | Date Sampled:  | 10/29/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Semi-Volatile Organics**

| <u>Analyte</u>                                                                    | Result                                                 | <u>Units</u> | Regulatory Limit Qualifi | er Date Analyzed |
|-----------------------------------------------------------------------------------|--------------------------------------------------------|--------------|--------------------------|------------------|
| 1,4-Dichlorobenzene                                                               | < 40.0                                                 | ug/L         | 7500                     | 11/3/2021 16:35  |
| 2,4,5-Trichlorophenol                                                             | < 40.0                                                 | ug/L         | 400000                   | 11/3/2021 16:35  |
| 2,4,6-Trichlorophenol                                                             | < 40.0                                                 | ug/L         | 2000                     | 11/3/2021 16:35  |
| 2,4-Dinitrotoluene                                                                | < 40.0                                                 | ug/L         | 130                      | 11/3/2021 16:35  |
| Cresols (as m,p,o-Cresol)                                                         | < 80.0                                                 | ug/L         | 200000                   | 11/3/2021 16:35  |
| Hexachlorobenzene                                                                 | < 40.0                                                 | ug/L         | 130                      | 11/3/2021 16:35  |
| Hexachlorobutadiene                                                               | < 40.0                                                 | ug/L         | 500                      | 11/3/2021 16:35  |
| Hexachloroethane                                                                  | < 40.0                                                 | ug/L         | 3000                     | 11/3/2021 16:35  |
| Nitrobenzene                                                                      | < 40.0                                                 | ug/L         | 2000                     | 11/3/2021 16:35  |
| Pentachlorophenol                                                                 | < 80.0                                                 | ug/L         | 100000                   | 11/3/2021 16:35  |
| Pyridine                                                                          | < 40.0                                                 | ug/L         | 5000                     | 11/3/2021 16:35  |
| Surrogate                                                                         | Perce                                                  | ent Recovery | Limits Outlier           | s Date Analyzed  |
| 2,4,6-Tribromophenol                                                              |                                                        | 76.8         | 49.6 - 116               | 11/3/2021 16:35  |
| 2-Fluorobiphenyl                                                                  |                                                        | 61.9         | 18.6 - 104               | 11/3/2021 16:35  |
| 2-Fluorophenol                                                                    |                                                        | 66.3         | 10 - 105                 | 11/3/2021 16:35  |
| Nitrobenzene-d5                                                                   |                                                        | 71.5         | 51.2 - 99.6              | 11/3/2021 16:35  |
| Phenol-d5                                                                         |                                                        | 61.7         | 10 - 104                 | 11/3/2021 16:35  |
| Terphenyl-d14                                                                     |                                                        | 75.4         | 55.6 - 122               | 11/3/2021 16:35  |
| Method Reference(s):<br>Preparation Date:<br>Data File:<br><b>TCLP Herbicides</b> | EPA 8270D<br>EPA 1311 / 3510C<br>11/2/2021<br>B57832.D |              |                          |                  |
|                                                                                   |                                                        |              |                          |                  |
| <u>Analyte</u>                                                                    | <u>Result</u>                                          | <u>Units</u> | Regulatory Limit Qualifi | -                |
| 2,4,5-TP (Silvex)                                                                 | < 0.050                                                | mg/L         | 1                        | 11/2/2021        |
| 2,4-D                                                                             | < 0.050                                                | mg/L         | 10                       | 11/2/2021        |
| Method Reference(s):                                                              | EPA 8321B<br>EPA 1311                                  |              |                          |                  |

Subcontractor ELAP ID: 10709



| Client:            | <u>Stantec</u>                |                |            |
|--------------------|-------------------------------|----------------|------------|
| Project Reference: | Ward St Soil Disposal Profile |                |            |
| Sample Identifier: | Comp-3                        |                |            |
| Lab Sample ID:     | 214909-06A                    | Date Sampled:  | 10/29/2021 |
| Matrix:            | TCLP Extract                  | Date Received: | 10/29/2021 |

#### **TCLP Mercury**

| <u>Analyte</u>                                          | Result                                          | <u>Units</u> | Regulatory Limi         | t Qualifier     | Date Anal         | yzed        |
|---------------------------------------------------------|-------------------------------------------------|--------------|-------------------------|-----------------|-------------------|-------------|
| Mercury                                                 | < 0.00200                                       | mg/L         | 0.2                     |                 | 11/2/2021         | 13:37       |
| Method Reference(s):<br>Preparation Date:<br>Data File: | EPA 7470A<br>EPA 1311<br>11/1/2021<br>Hg211102B |              |                         |                 |                   |             |
| <u>TCLP Pesticides</u>                                  |                                                 |              |                         |                 |                   |             |
| <u>Analyte</u>                                          | <u>Result</u>                                   | <u>Units</u> | <b>Regulatory Lim</b> i | it Qualifier    | Date Anal         | <u>yzed</u> |
| Chlordane                                               | < 2.00                                          | ug/L         | 30                      |                 | 11/4/2021         | 16:10       |
| Endrin                                                  | < 1.00                                          | ug/L         | 20                      |                 | 11/4/2021         | 16:10       |
| gamma-BHC (Lindane)                                     | < 1.00                                          | ug/L         | 400                     |                 | 11/4/2021         | 16:10       |
| Heptachlor                                              | < 1.00                                          | ug/L         | 8                       |                 | 11/4/2021         | 16:10       |
| Heptachlor Epoxide                                      | < 1.00                                          | ug/L         | 8                       |                 | 11/4/2021         | 16:10       |
| Methoxychlor                                            | < 1.00                                          | ug/L         | 10000                   |                 | 11/4/2021         | 16:10       |
| Toxaphene                                               | < 20.0                                          | ug/L         | 500                     |                 | 11/4/2021         | 16:10       |
| <u>Surrogate</u>                                        | Perce                                           | ent Recovery | <u>Limits</u>           | <u>Outliers</u> | <b>Date Analy</b> | zed         |
| Decachlorobiphenyl (1)                                  |                                                 | 107          | 17 - 148                |                 | 11/4/2021         | 16:10       |
| Tetrachloro-m-xylene (1)                                |                                                 | 95.7         | 18 - 112                |                 | 11/4/2021         | 16:10       |
| Method Reference(s):                                    | EPA 8081B                                       |              |                         |                 |                   |             |
| Preparation Date:                                       | EPA 1311 / 3510C<br>11/4/2021                   |              |                         |                 |                   |             |
| TCLP RCRA Metals (ICP)                                  |                                                 |              |                         |                 |                   |             |
| Analyte                                                 | Result                                          | <u>Units</u> | <b>Regulatory Lim</b> i | it Qualifier    | Date Anal         | yzed        |
| Arsenic                                                 | < 0.500                                         | mg/L         | 5                       |                 | 11/2/2021         | 18:58       |
| Barium                                                  | 1.03                                            | mg/L         | 100                     |                 | 11/2/2021         | 18:58       |
| Cadmium                                                 | < 0.0250                                        | mg/L         | 1                       |                 | 11/2/2021         | 18:58       |
| Chromium                                                | < 0.500                                         | mg/L         | 5                       |                 | 11/2/2021         | 18:58       |
| Lead                                                    | < 0.500                                         | mg/L         | 5                       |                 | 11/2/2021         | 18:58       |
| Selenium                                                | < 0.200                                         | mg/L         | 1                       |                 | 11/2/2021         | 18:58       |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Monday, November 8, 2021



| Client:    |                                 | <u>Stantec</u>                      |        |                |                 |
|------------|---------------------------------|-------------------------------------|--------|----------------|-----------------|
| Project Re | ference:                        | Ward St Soil Disposal P             | rofile |                |                 |
| Sample I   | dentifier:                      | Comp-3                              |        |                |                 |
| Lab Sam    | ple ID:                         | 214909-06A                          |        | Date Sampled:  | 10/29/2021      |
| Matrix:    |                                 | TCLP Extract                        |        | Date Received: | 10/29/2021      |
| Silver     |                                 | < 0.500                             | mg/L   | 5              | 11/2/2021 18:58 |
|            | Method Reference                | e(s): EPA 6010C<br>EPA 1311 / 3005A |        |                |                 |
|            | Preparation Date:<br>Data File: |                                     |        |                |                 |



# **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

*"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.* 

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

*"B" = Method blank contained trace levels of analyte. Refer to included method blank report.* 

*"J"* = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"\*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

# GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

| Warranty.                    | Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scope and                    | LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Compensation.                | parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi<br>use LAB default method for all tests unless specified otherwise on the Work Order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Prices.                      | Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Limitations of<br>Liability. | In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re-<br>perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived<br>unless made in writing and received by LAB within ninety (90) days following completion of services.<br>LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not<br>limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.<br>All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients<br>or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or                                                                                                                                     |
|                              | other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.<br>Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against<br>any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions,<br>proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of<br>any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting<br>from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or<br>disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any<br>environmental permit or (e) a material misrepresentation in disclosing the materials to be tested. |
| Hazard Disclosure.           | Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of<br>the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any<br>hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance<br>with applicable laws.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Handling.             | Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may<br>add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless<br>modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these<br>samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Legal Responsibility.        | LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Assignment.                  | LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Force Majeure.               | LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in<br>part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not<br>limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars,<br>civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies<br>from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.                                                                                                                                                                                                                                                                                                                                                                                                               |
| Law.                         | This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                          |                                      |                                           |                  |                                                          | e, Rochester, NY 14<br>CHAIN C |                                               | . ,    | ·                                  |                      | 311                |                                        |                                       | 1062                             |
|------------------------------------------|--------------------------------------|-------------------------------------------|------------------|----------------------------------------------------------|--------------------------------|-----------------------------------------------|--------|------------------------------------|----------------------|--------------------|----------------------------------------|---------------------------------------|----------------------------------|
| PROJEC                                   |                                      | ENCE                                      |                  | PHONE: (585) 363-0365<br>ATTN: Steven, Fife (2), stanted | t<br><sup>ZIP</sup> / 4614     | CLIENT:<br>ADDRES<br>CITY:<br>PHONE:<br>ATTN: | 3S:    |                                    | STATE:               | ZIP:               | Quotation                              |                                       | D stantec cen<br>D stantec cen   |
| Wad St So                                | il Uispos                            | sal pro                                   | sfile            |                                                          | WA - Water<br>WG - Groundwate  | er                                            |        | Drinking V<br>Wastewat             |                      | - Soil<br>- Sludge | <b>SD</b> - Solid<br><b>PT</b> - Paint | <b>WP</b> - Wipe<br><b>CK</b> - Caulk | OL - Oil<br>AR - Air             |
| DATE COLLECTED                           | TIME<br>COLLECTED                    | C<br>O<br>M<br>P<br>O<br>S<br>I<br>T<br>E | G<br>R<br>A<br>B | SAMPLE IDENTIFIER                                        | M C<br>A O<br>R E<br>I S<br>X  | NUMBER OF                                     | LP VOC | PCBS<br>PCBS<br>Reactive Sulfale B | Reactive Cyanide RIA |                    | REMARK                                 | ïs                                    | PARADIGM LAB<br>SAMPLE<br>NUMBER |
| 10 28 21<br><u> 10 24 21</u><br>10 24 21 | 1050<br>1055<br>1100<br>1350<br>1400 | XX                                        | ×<br>×<br>×      | TP-1 VOC<br>TP-3 VOC<br>TP-4 VOC<br>COMP-1<br>COMP-2     | SO                             | <br> <br> <br>3<br>3                          |        |                                    |                      |                    |                                        |                                       | 61<br>02<br>03<br>044<br>054     |
|                                          | <u>1410</u>                          |                                           |                  | COMP - 3                                                 |                                | 3                                             |        |                                    |                      | A-Go               | Cicly                                  | 1/29/21                               | 06A<br>1534                      |

| Turnaroun    | d Time       | R                                | eport Sup      | olements                                | Slauma Pla All                        | 10 00               | 10 00/00          |                    |
|--------------|--------------|----------------------------------|----------------|-----------------------------------------|---------------------------------------|---------------------|-------------------|--------------------|
| Availabi     | ity continge | nt upon lab approv               | al; additional | fees may apply.                         | Steven 1918 2110                      | 10-28 to            | 10-29/21          |                    |
| andard 5 day | X            | None Required                    | X              | None Required                           | Sampled By                            | Date/Time           | 1500              | Total Cost:        |
| ) day        |              | Batch QC                         |                | Basic EDD                               | Relinguished By                       | Date/Time           | /-00              |                    |
| ush 3 day    |              | Category A                       |                | NYSDEC EDD                              | 40                                    | 10/29/21            | 1500              | DIE                |
| ush 2 day    |              | Category B                       |                | STHNTEC                                 | Received By<br>My Wail                | Date/Time           | 1535              | P.I.F <sub>2</sub> |
| ush 1 day    |              |                                  |                | EDD                                     | Received @ Lab By                     | Date/Time           |                   |                    |
| ate Needed   | d:           | Other<br>please indicate package | needed:        | Other EDD please indicate EDD poseded : | By signing this form, client agrees t | to Paradigm Terms a | and Conditions (1 | reverse).          |
|              |              |                                  |                |                                         |                                       | Car                 | additional neg    | <b>c</b>           |

| PARADIGM                                                         | <u>Ch</u>                            | 272                                                  |                    |   |
|------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------|---|
| Client:                                                          | Storter                              | Completed by: 🧾                                      | Mylyail            |   |
| Lab Project ID:                                                  | 214909                               | Date:                                                | 10/29/21           |   |
|                                                                  | Sample Cond<br>Per NELAC/ELA         | <b>lition Requirements</b><br>AP 210/241/242/243/244 | •<br>              | ł |
| Condition                                                        | NELAC compliance with the sam<br>Yes | pple condition requirements up<br>No                 | on receipŧ-<br>N/A |   |
| Container Type<br>Comments                                       |                                      |                                                      |                    |   |
| Transferred to method-<br>compliant container                    |                                      |                                                      |                    |   |
| Headspace<br>(<1 mL)<br>Comments                                 | Techon                               |                                                      |                    |   |
| Preservation<br>Comments                                         |                                      |                                                      |                    |   |
| <b>Chlorine Absent</b><br>(<0.10 ppm per test strip)<br>Comments |                                      |                                                      |                    |   |
| H <b>olding Tim</b> e<br>Comments                                |                                      |                                                      |                    | Ŀ |
| <b>Femperature</b><br>Comments                                   | 4°c, cu                              |                                                      | met                |   |
| Compliant Sample Quantity/Ty<br>Comments                         | rpe                                  |                                                      |                    |   |
| đ                                                                |                                      |                                                      | L.                 |   |

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

# CHAIN OF CUSTODY

211101012

ADIRONDACK: ELAP ID: 1

| PROJECT NAME/SITE NAME: |                    | COMPAN                                                                      | REPORT TO:<br>COMPANY: Paradigm Environmental<br>ADDRESS: |                                                                                                                 |                     | COMP                | INVOICE TO:<br>COMPANY: Same<br>ADDRESS: |                |           |                    |                 | LAB PROJECT #:   | CLIENT PRO.   | LIENT PROJECT # |                         |
|-------------------------|--------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|---------------------|------------------------------------------|----------------|-----------|--------------------|-----------------|------------------|---------------|-----------------|-------------------------|
|                         |                    | ADDRES                                                                      |                                                           |                                                                                                                 |                     | ADDRI               |                                          |                |           |                    |                 |                  |               |                 |                         |
|                         |                    | CITY:                                                                       | CITY: STATE:                                              |                                                                                                                 | ZIP: CITY:          |                     |                                          | STATE:         |           | STATE:             | ZIP:            | TURNAROUND TIME: | (WORKING DAYS | ING DAYS)       |                         |
|                         |                    | PHONE:                                                                      |                                                           | FAX:                                                                                                            |                     | PHONE:              |                                          | FAX:           |           |                    |                 |                  | STD           | STD             |                         |
|                         |                    | ATTN:                                                                       | ATTN: Reporting                                           |                                                                                                                 | ATTN: AC            |                     | Accounts                                 | counts Payable |           |                    | 1 2             | 3 5              | 3 5           |                 |                         |
|                         |                    | COMMENTS: Please email results to reporting@paradigmenv.com Date Due: 11/8/ |                                                           |                                                                                                                 |                     |                     |                                          |                | 1/8/21    | 21                 |                 |                  |               |                 |                         |
|                         |                    |                                                                             |                                                           | in the second |                     |                     |                                          | R              | EQUEST    | ED AN/             | ALYSIS          |                  |               | 1-1-51-6-7      |                         |
| DATE                    | TIME               | C<br>O<br>M<br>P<br>O<br>S<br>I<br>T<br>E                                   | G<br>R<br>A<br>B                                          | SA                                                                                                              | VPLE LOCATION/FIELD | di<br>I             | CONNTA<br>NUTAL<br>BIN<br>RER            | 1-4            | TCL PHerb |                    |                 |                  | REMARKS       |                 | ADIGM LAB<br>PLE NUMBER |
| 129/21                  | 1350               | X                                                                           |                                                           | 21490                                                                                                           | 9-04                | 50                  |                                          | X              |           |                    |                 |                  |               |                 |                         |
| }                       | 1400               | Ý                                                                           |                                                           | 214909                                                                                                          |                     |                     |                                          | KT             |           |                    |                 |                  |               |                 |                         |
|                         | 1410               | X                                                                           |                                                           | 214909                                                                                                          |                     |                     | . )                                      | X              |           |                    |                 |                  |               |                 |                         |
| Ĭ                       | 1350               | ×                                                                           |                                                           | 214909                                                                                                          |                     | TELP<br>2XFra       | $\tau$ 1                                 |                | X         |                    |                 | Samolos          | spin at       |                 |                         |
|                         | 1400               | ×                                                                           |                                                           | 214909                                                                                                          |                     |                     |                                          |                | X         |                    |                 | Paradir          |               | ,               |                         |
| 1                       | 1410               | <br>X                                                                       |                                                           | 214909                                                                                                          |                     |                     |                                          |                | ×<br>×    |                    |                 |                  | P Helb        |                 |                         |
| ¥                       | 7-110              | ~~                                                                          |                                                           | 1211101                                                                                                         | 0007                |                     |                                          |                | ++        |                    |                 | 1 1000           | nel D         |                 |                         |
|                         |                    |                                                                             |                                                           |                                                                                                                 |                     |                     |                                          | +++            |           |                    |                 |                  |               |                 | +-+-+                   |
|                         | · · ·              |                                                                             |                                                           |                                                                                                                 |                     |                     |                                          | ++             |           |                    |                 |                  |               |                 | +++                     |
|                         |                    |                                                                             |                                                           |                                                                                                                 |                     |                     |                                          |                |           |                    |                 | +                |               |                 |                         |
| BUSE                    | ONLY BELO          |                                                                             | .INE**                                                    | <u> </u>                                                                                                        |                     | 1                   |                                          | -11-           |           |                    |                 | <u>     </u>     |               | <u> </u>        | <u>       </u>          |
|                         | ion: Per NELA      | C/ELAP 210                                                                  |                                                           |                                                                                                                 | ~                   |                     |                                          |                |           |                    |                 |                  |               |                 |                         |
|                         | Receipt Par        |                                                                             |                                                           |                                                                                                                 | Compliance N        | Cli                 | ent                                      |                |           |                    |                 |                  |               | r               | <u></u>                 |
| ents:                   | Container T<br>NOT | 876S                                                                        |                                                           | · · · · · · · · · · · · · · · · · · ·                                                                           |                     | Sampled By          | /                                        | ,              |           | ; . I              | Date/Time       |                  | Total         | Cost:           |                         |
|                         | Preservat          | ion:                                                                        |                                                           | Y 🔲                                                                                                             | N                   | Mart                | Wa                                       | -              | TII       | 1121               | 1 (             | 0 281            |               |                 |                         |
| nts:                    | TESCIVAL           |                                                                             |                                                           | ' L]<br>-                                                                                                       | '` <b>`</b>         | Relinquishe         | d By                                     |                | 1//       | <u> יייוי</u><br>ו | Date/Time       | <u> </u>         |               | L               |                         |
| ents:                   | Holding Ti         | me:                                                                         |                                                           | Y                                                                                                               | N                   | - Ama<br>Received B | nza                                      | chr            | <u> </u>  |                    | ک)<br>Date/Time | 11:26            | P.I.F.        |                 | 1                       |
| ents:                   | Temperat           | ure:                                                                        | SC                                                        | Y 🗌                                                                                                             | N                   | Received @          | Lah By                                   | /              | <u>}</u>  |                    | 2)<br>Date/Time | 2:50             |               |                 | ]                       |