

651 Colby Drive, Waterloo, Ontario, Canada N2V 1C2 Telephone: (519) 884-0510 Facsimile: (519) 884-0525 www.CRAworld.com

September 30, 2009

Reference No. 042271-03

Supervisor Mary Ellen Heyman Town of Irondequoit 1280 Titus Avenue Rochester, New York U.S.A. 14617

Dear Ms. Heyman:

Re: Vapor Intrusion Assessment Results Waterfront Property Development, Rochester, New York

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) was retained by Lighthouse Pointe Property Associates LLC (Lighthouse) to undertake a soil vapor intrusion assessment of two residences adjacent to Lighthouse's proposed waterfront property development (Site) located in the City of Rochester and the Town of Irondequoit, Monroe County, New York. The Site location is presented on Figure 1. This work was undertaken to investigate the possibility of indoor air contamination in residences adjacent to the site caused by volatile organic compounds (VOCs) from the Site. This letter is organized as follows:

- 1.0 Introduction
- 2.0 Summary of Field Investigation Activities
- 3.0 Evaluation of Results
- 4.0 Conclusions

2.0 <u>SUMMARY OF FIELD INVESTIGATION ACTIVITIES</u>

CRA's field investigation activities were completed between July 30 and August 18, 2009 and included the following:

- i) Update of site-specific health and safety plan (HASP).
- ii) Pre-sampling inspection of each residence and completion of the New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire and Building Inventory Form. The completed forms are attached as Attachment A.

Reference No. 042271-03

iii) Installation of soil vapor probes near each residence, on the side facing the site. Soil vapor probes were field screened for methane, sampled for VOCs, methane, and helium (tracer gas), and subsequently abandoned.

- 2 -

- iv) Installation of sub-slab soil vapor probes through the concrete floors in the basement of each residence. Sub-slab vapour probes were field screened for methane, sampled for VOCs, methane, and helium (tracer gas), and subsequently abandoned.
- v) Collection of an indoor air sample in the basement of each residence for laboratory analysis of methane and VOCs.
- vi) Collection of an outdoor (upwind) air sample for laboratory analysis of VOCs and methane to characterize ambient air quality.

Soil Vapor Probes - Installation and Sampling

Soil vapor probes were installed at 97 and 105 Timrod Drive on July 30, 2009 to facilitate the characterization of soil vapor adjacent to the residences. The soil vapor probe locations are presented on Figure 2. Note that the exact limit of buried waste associated with the Site is unknown in this area and it is suspected, based on inspections of the buildings and delineation of waste in the area, that these homes are constructed either on or adjacent to buried waste associated with the Site.

The soil vapor probe installed at 97 Timrod Drive was approximately 10 feet from the residence and was advanced to a depth of 6 feet below ground surface (bgs); fill material including glass shavings were observed. The probe was constructed of 1-inch PVC with a screened interval from 4 to 6 feet below ground surface. A bentonite surface seal was constructed.

The soil vapor probe installed at 105 Timrod Drive was approximately 10 feet from the residence and was advanced to a depth of 8 feet bgs; fill material including metals shavings and plastic were observed. The probe was constructed of 1-inch PVC with a screened interval from 4 to 7 feet bgs. A bentonite surface seal was constructed.

One round of soil vapor monitoring was conducted at the soil vapor probes on August 17, 2009. The monitoring was conducted for methane, carbon dioxide, oxygen, and total organic vapors (TOVs) using a Landgem and a photoionization detector (PID). Soil vapor probe monitoring results are presented in Table 1.

One round of soil vapor sampling was conducted over the period of August 17 and 18, 2009. This sampling was conducted concurrently with the indoor air sampling. Soil vapor samples were collected over an approximate 24-hour period using SUMMA® canisters and flow

Reference No. 042271-03

controllers. Helium tracer gas was used during sampling to allow evaluation of sample dilution by ambient air. A new piece of Teflon® tubing, and appropriate fittings connected the soil vapor probe sample port and the canister. Samples were shipped to TestAmerica in North Canton, Ohio under chain-of-custody protocols. Soil vapor samples were analyzed for VOCs, methane, and helium.

- 3 -

The analytical results are presented in Table 2 (97 Timrod Drive) and Table 3 (105 Timrod Drive). The laboratory report is provided in Attachment B.

Sub-Slab Vapor Probes - Installation and Sampling

Sub-slab soil vapor probes were installed at 97 and 105 Timrod Drive on July 30, 2009 to facilitate the characterization of sub-slab soil vapor beneath the residences. The sub-slab soil vapor probe locations are presented on Figure 2. Note that the exact limit of buried waste associated with the Site is unknown in this area and it is suspected, based on inspections of the buildings and delineation of waste in the area that these homes are constructed either on or adjacent to buried waste associated with the Site.

The sub-slab vapor probes were advanced through the concrete floor in the basement. The probes were constructed by sealing a brass pipe into the surrounding concrete floor to a depth just below the concrete.

One round of sub-slab vapor monitoring was conducted at the soil vapor probes on August 17, 2009. The monitoring was conducted for methane, carbon dioxide, oxygen, and TOVs using a Landgem and a PID. Sub-slab vapor probe monitoring results are presented in Table 1.

One round of sub-slab vapor sampling was conducted over the period of August 17 and 18, 2009. This sampling was conducted concurrently with the indoor air sampling. Sub-slab vapor samples were collected over an approximate 24 hour time period using SUMMA® canisters and flow controllers. Helium tracer gas was used during sampling to allow evaluation of sample dilution by ambient air. A new piece of Teflon® tubing, and appropriate fittings connected the soil vapor probe sample port and the canister. Sub-slab vapor samples were shipped to TestAmerica in North Canton, Ohio under chain-of-custody protocols. Sub-slab vapor samples were analyzed for VOCs, methane, and helium.

The analytical results are presented in Table 2 (97 Timrod Drive) and Table 3 (105 Timrod Drive). The laboratory report is provided in Attachment B.

Reference No. 042271-03

- 4 -

Indoor Air Sampling

One round of indoor air sampling was conducted at both residences (97 Timrod Drive and 105 Timrod Drive) over the period of August 17 and 18, 2009. Indoor air samples were collected over an approximate 24-hour period in the basements of the homes. Indoor air sampling locations are presented on Figure 2. Indoor air samples were collected over an approximate 24-hour period using Summa canisters and flow controllers. Samples were shipped to TestAmerica in North Canton, Ohio under chain-of-custody protocols. Indoor air samples were analyzed for VOCs and methane.

The analytical results are presented in Table 2 (97 Timrod Drive) and Table 3 (105 Timrod Drive). The laboratory report is provided in Attachment B.

The indoor air analytical results obtained during this investigation do not represent worst-case conditions. Worst-case conditions would exist during the winter heating season when there is a greater pressure differential between sub-slab vapor and indoor air.

3.0 EVALUATION OF RESULTS

The analytical results were evaluated in consideration of the NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006; NYSDOH Guidance).

97 Timrod Drive

- Ten indoor air parameters exceeded the mean background values from the NYSDOH Control Home Database (1997).
- Fifteen sub-slab parameters exceeded the mean background values from the NYSDOH Control Home Database (1997).
- Thirty parameters were detected in soil vapor, sub-slab vapor, and indoor air.
- Twenty-eight parameters exhibited a concentration gradient from soil vapor to indoor air. These 28 parameters are listed below:

1,2,3-Trimethylbenzene	Benzene	Napthalene
1,2,4,5-Tetramethylbenzene	Butane	N-Dodecane
1,2,4-Trimethylbenzene	Carbon disulfide	N-Heptane
1,2-Dichlorotetrafluoroethane (CFC 114)	Chloroethane	Octane

Reference No. 042271-03

- 5 -

1,3,5-Trimethylbenzene	Cyclohexane	o-Xylene
1,4-Dichlorobenzene	Dichlorodifluoromethane (CFC-12)	Pentane
2,2,4-Trimethylpentane	Ethylbenzene	Turt-Butyl alcohol
2-Butanone (Methyl Ethyl Ketone)	Hexane	Trichlorofluoromethane (CFC-11)
4-Methyl-2-Pentanone (Methyl Isobutyl	Isopropyl alcohol	
Ketone)		
Acetone	Methylene Chloride	

Of these parameters, all but one were analyzed for in landfill gas samples collected at the Site in 2009 and, of those, all were detected.

- Twenty parameters exhibited a concentration gradient from the sub-slab vapor to the indoor air.
- Methane was detected in the soil vapor sample (39%; above the explosive limit) and the sub-slab vapor sample (6.9%/7.7%; within the explosive range).
- Helium, the tracer gas used to evaluate dilution by ambient air, was detected in the sub-slab vapor sample (15%/16%) and the soil vapor sample (4.9%). Therefore, the samples were significantly diluted by the tracer gas (and potentially by ambient air), and actual VOC concentrations in those media are likely greater than reported.

105 Timrod Drive

- Twelve indoor air parameters exceeded the mean indoor air background values from the NYSDOH Control Home Database (1997).
- Four sub-slab parameters exceed the mean indoor air background values from the NYSDOH Control Home Database (1997).
- Twenty-two parameters were detected in soil vapor, sub-slab vapor, and indoor air.
- Twenty-six parameters exhibited a concentration gradient from the outdoor soil vapor to the indoor air sample. These 26 parameters are listed below:

1,2,3-Trimethylbenzene	Butane	N-Dodecane
1,2,4-Trimethylbenzene	Carbon disulfide	N-Heptane
1,2-Dichlorotetrafluoroethane (CFC 114)	Cyclohexane	Nonane
1,3,5-Trimethylbenzene	Dichlorodifluoromethane (CFC-12)	Octane

Reference No. 042271-03

- 6 -

2,2,4-Trimethylpentane	Ethylbenzene	o-Xylene
2-Butanone (Methyl Ethyl Ketone)	Hexane	Pentane
4-Ethyl toluene	m&p-xylene	Turt-Butyl alcohol
4-Methyl-2-Pentanone (Methyl Isobutyl	Methylene chloride	Trichloroethane
Ketone)		
Benzene	Napthalene	

Of these parameters, all were analyzed for in landfill gas samples collected at the Site in 2009 and all but one were detected.

- Two parameters exhibited a concentration gradient from the sub-slab vapor to the indoor air. The consistently lower concentrations detected in the sub-slab vapor sample are likely anomalous because of the high level of correlation between the soil vapor and the indoor air samples. The sub-slab vapor results may not be representative of actual sub-slab conditions along the contaminant migration pathway from soil vapor to indoor air.
- Methane was detected in the soil vapor sample (55%; above the explosive limit) but not in the sub-slab vapor or the indoor air samples.
- Helium was detected in the sub-slab vapor sample (8.7%) and the soil vapor sample (15%). Therefore, the samples were diluted by the tracer gas (and potentially by ambient air), and actual VOC concentrations in those media are likely greater than reported.

4.0 <u>CONCLUSIONS</u>

Based on review of the results of the soil vapor intrusion evaluation, the following conclusions are drawn:

- 1. Soil vapor, sub-slab vapor, and indoor air at 97 and 105 Timrod have been contaminated by landfill gas constituents from the Site. This is demonstrated by i) the high level of VOC parameter correlation and concentration gradients between on-Site landfill gas, soil vapor, sub-slab vapor, and indoor air; and ii) the presence of methane in significant quantities in soil vapor and sub-slab vapor.
- 2. Any future development on or near the Site must include measures to prevent the migration of VOCs and methane from landfill gas to indoor air.
- 3. The indoor air results presented herein are not worst-case. Worst-case results would be obtained during the winter heating season.

Reference No. 042271-03

- 7 -

4. The limit of waste from the adjacent landfill likely extends onto the residential properties as indicated by the waste material observed during the advancement of the soil vapor probes.

Should you have any questions regarding this letter, please do not hesitate to contact us.

Yours truly,

CONESTOGA-ROVERS & ASSOCIATES

for h hu han

Ian K. Richardson, PE

WA/ev/1 Encl.

cc: Alan Knauf, Knauf Shaw LLP Charlie Morgan, Lighthouse Pointe Property Associates LLC

42271-03(MORG011)GN-WA003 SEP 25/2009

RESIDENTIAL AIR MONITORING RESULTS SUMMARY ROCHESTER, NEW YORK

Sample Date: Sample Location: Sample Type:		8/17/2009 95 Timrod Drive Soil Vapour Probe	8/17/2009 105 Timrod Drive Soil Vapour Probe	8/17/2009 95 Timrod Drive Sub-slab Probe	8/17/2009 105 Timrod Drive Sub-slab Probe	
Parameter:	Unit:					
Total Organic Vapors	ppm	0.0	0.0	0.5	2.2	
Methane	%	5.0	21.0	12.0	0.1	
Carbon Dioxide	%	2.1	6.0	11.0	0.2	
Oxygen	%	17.1	14.7	7.2	19.0	

RESIDENTIAL AIR SAMPLING RESULTS SUMMARY 97 TIMROD DRIVE ROCHESTER, NEW YORK

Sample Location: Sample ID:		Background NYSDOH 1997:	97 Timrod Basement Air IA-42271-081709-JDW-001	97 Timrod Basement Sub-Slab SS-42271-081709-JDW-001	97 Timrod Basement Sub-Slab SS-42271-081709-JDW-002	97 Timrod Exterior Soil Probe SV-42271-081709-JDW-002	Upwind Background Air UW-42271-081709-JDW-001	Summary o	of 2009 On-Site Soil	Vapor Results
Sample Tupe		Control Home	Indoor Air	Sub-slab Vapor	Sub-slab Vavor	Soil Vavor	Background Outdoor Air	Number	Number	Maximum
Sample Date			8/18/2009	8/18/2009	8/18/2009	8/18/2009	8/18/2009	of	of	Detected
oumpie Dute			9192000	9192005	(Dunlicate)	9192000	010/2003	Samples	Detections	Concentration
Parameter	Units				(Dupnette)			oumpies	Detterions	contention
Volatile Organic Compounds										
1,1,1-Trichloroethane	µg/m3	9.17	12	4.1	4.4	ND (11)	ND (1.1)	11	1	0.16
1,1,2,2-Tetrachloroethane	µg/m3	1.86	ND (1.4)	ND (2.7)	ND (2.7)	ND (14)	ND (1.4)	11	0	N/A
1,1,2-Trichloroethane	µg/m3	1.72	ND (1.1)	ND (2.2)	ND (2.2)	ND (11)	ND (1.1)	11	0	N/A
1,1-Dichloroethane	µg/m3	2.11	ND (0.81)	57	62	ND (8.1)	ND (0.81)	11	0	N/A
1,1-Dichloroethene	µg/m3	0.68	ND (0.79)	0.92 J	0.72 J	3.3 J	ND (0.79)	11	2	2.5
1,2,3-Trimethylbenzene	µg/m3	NC	2.8	4.5	5.2	39	ND (0.98)	11	2	69
1,2,4,5-Tetramethylbenzene	µg/m3	NC	1.3	7.1	6.6	290	ND (1.1)	NA	NA	NA
1,2,4-Trichlorobenzene	µg/m3	2.32	ND (7.4)	1.6 J	ND (15)	ND (74)	ND (7.4)	11	0	N/A
1,2,4-Trimethylbenzene	μg/m3	6.28	5.9	2.0	1.7 J	11	0.65 J	11	5	34
1,2-Dibromoethane (Ethylene Dibromide)	µg/m3	0.80	ND (1.5)	ND (3.1)	ND (3.1)	ND (15)	ND (1.5)	11	0	N/A
1,2-Dichlorobenzene	μg/m3	2.02	ND (1.2)	ND (2.4)	ND (2.4)	140	ND (1.2)	11	2	19
1,2-Dichloroethane	µg/m3	2.11	1.3	0.44 J	ND (1.6)	ND (8.1)	ND (0.81)	11	0	N/A
1,2-Dichloropropane	µg/m3	2.11	ND (0.92)	ND (1.8)	ND (1.8)	ND (9.2)	ND (0.92)	11	0	N/A
1.2-Dichlorotetrafluoroethane (CFC 114)	ug/m3	0.80	0.48 I	81	82	690	ND (1.4)	11	11	480
1.3.5-Trimethylbenzene	ug/m3	2.99	1.8	0.96 [1.1]	5.2 I	ND (0.98)	11	2	64
1.3-Butadiene	ug/m3	NC	ND (0.88)	ND (1.8)	ND (1.8)	ND (8.8)	ND (0.88)	11	0	N/A
1.3-Dichlorobenzene	$\mu g/m3$	2.10	ND (1.2)	ND (2.4)	ND (2.4)	11 1	ND (1.2)	11	9	11
1.4-Dichlorobenzene	ug/m3	9.23	1.9	1.6 [1.4 I	250	ND (1.2)	11	4	100
1,4-Dioxane	μg/m3	NC	0.33 J	6.9	6.2	ND (18)	ND (1.8)	11	0	N/A
1-Methylnaphthalene	ug/m3	NC	ND (15)	ND (29)	ND (29)	ND (150)	ND (15)	11	0	N/A
2,2,4-Trimethylpentane	μg/m3	NC	2.5	30	30	35	0.61 J	11	8	140
2-Butanone (Methyl Ethyl Ketone)	μg/m3	NC	4.3	5.8	6.3	9.0 [3.2	11	11	32
2-Chlorotoluene	μg/m3	NC	ND (2.1)	ND (4.1)	ND (4.1)	ND (21)	ND (2.1)	11	0	N/A
2-Ethylthiophene	μg/m3	NC	ND (0.92)	ND (1.8)	ND (1.8)	ND (9.2)	ND (0.92)	NA	NA	NA
2-Hexanone	μg/m3	NC	0.27 J	ND (4.1)	ND (4.1)	ND (20)	0.27 J	11	2	0.82
2-Methylnaphthalene	μg/m3	NC	ND (15)	ND (29)	ND (29)	ND (150)	ND (15)	11	0	N/A
2-Methylthiophene	μg/m3	NC	ND (0.80)	ND (1.6)	ND (1.6)	ND (8.0)	ND (0.80)	NA	NA	NA
3-Methylthiophene	ug/m3	NC	ND (0.80)	ND (1.6)	ND (1.6)	ND (8.0)	ND (0.80)	NA	NA	NA
4-Ethyl toluene	μg/m3	NC	2.7	ND (3.9)	ND (3.9)	ND (20)	0.41 J	11	2	4.7
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	µg/m3	NC	0.68 J	24	25	39	0.34 J	11	4	200
Acetaldehyde	μg/m3	NC	23	ND (36)	39	ND (180)	22	NA	NA	NA
Acetone	µg/m3	NC	43	52	57	45 J	26	11	7	160
Acrolein	µg/m3	NC	5.2	1.5 J	ND (3.7)	ND (18)	3.1	11	5	0.89
Allyl chloride	µg/m3	NC	ND (0.63)	ND (1.3)	ND (1.3)	ND (6.3)	ND (0.63)	11	0	N/A
Benzene	µg/m3	4.64	5.8	8.4	8.4	110	0.82	11	7	160
Benzo(b)thiophene	µg/m3	NC	ND (2.6)	ND (5.3)	ND (5.3)	ND (26)	ND (2.6)	NA	NA	NA
Bromodichloromethane	µg/m3	2.67	0.48 J	ND (2.7)	ND (2.7)	ND (13)	ND (1.3)	11	0	N/A
Bromoform	µg/m3	2.69	ND (2.1)	ND (4.1)	ND (4.1)	ND (21)	ND (2.1)	11	0	N/A
Bromomethane (Methyl Bromide)	µg/m3	0.64	ND (0.78)	ND (1.6)	ND (1.6)	ND (7.8)	ND (0.78)	11	0	N/A
Butane	µg/m3	NC	17	220	240	550	2.7	11	11	620
Carbon disulfide	µg/m3	NC	0.21 J	ND (3.1)	ND (3.1)	53	ND (1.6)	11	10	6.2
Carbon tetrachloride	µg/m3	2.17	0.63 J	ND (2.5)	ND (2.5)	ND (13)	0.54 J	11	3	0.45
Chlorobenzene	µg/m3	2.00	ND (0.92)	6.1	5.7	1900	ND (0.92)	11	5	600
Chloroethane	µg/m3	0.50	0.25 J	320	330	1.7 J	ND (0.53)	11	3	3.4
Chloroform (Trichloromethane)	µg/m3	2.81	2.7	15	16	ND (9.8)	0.19 J	11	3	0.93

RESIDENTIAL AIR SAMPLING RESULTS SUMMARY 97 TIMROD DRIVE ROCHESTER, NEW YORK

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Results
Sample Date $\$182009$ $\$18209$ </th <th>Maximum</th>	Maximum
Image: space of the symptotic space of the symptot space of the sympton space of the sympton space of the sympton space of the sympto	Detected
ParameterInitisChloromethane (Methyl Chloride)pg/n31.082.01.1 J1.1 JND (10)2.11.14cis-1,2-Dichloroethanepg/n32.04ND (0.79)3.73.59.8ND (0.79)1.14cis-1,3-Dichloropropencpg/n32.12ND (0.91)ND (1.8)ND (1.8)ND (9.1)ND (0.9)1.10Cyclohexanepg/n32.64ND (0.91)ND (3.4)ND (3.4)ND (1.7)ND (1.7)1.10Dibromochomethane (CFC-12)pg/n30.774.904.95.12.002.51.11.1Ethandpg/n30.714.802.21.96.59.7NANAEthylbeznenepg/n33.216.02.22.11.30.54J1.14Hexachlorobutadienepg/n33.216.02.22.11.30.54J1.14Hexachlorobutadienepg/n33.216.02.22.11.30.54J1.14Hexachlorobutadienepg/n31.24ND (1.1)ND (2.1)ND (1.0)ND (1.1)1.10Hexanepg/n33.516.55.503.001.700.97J1.11.1Indancpg/n3ND (ND (ND (ND (ND (ND (ND (ND (ND (ND (mcentration
Chloromethane (Methyl Chloride) $\mu g/m3$ 1.082.01.3 J1.3 JND (0)2.1114cis-1,2-Dichloromethane $\mu g/m3$ 2.04ND (0.79)3.73.59.8ND (0.79)114cis-1,3-Dichloropropene $\mu g/m3$ 2.12ND (0.91)ND (1.8)ND (1.8)ND (9.1)ND (0.91)110Cyclobeane $\mu g/m3$ NC2.41.201.201.60ND (1.7)110Dibromochloromethane (CFC-12) $\mu g/m3$ 0.674.904.905.12.002.51111Ethanol $\mu g/m3$ 0.74.802.21.96.59.7NANAEthylbenzene $\mu g/m3$ 3.216.02.22.1130.54 J114Hexachlorobutadiene $\mu g/m3$ 3.56.33.503.601.700.97 J110Hexachlorobutadiene $\mu g/m3$ 3.76.33.503.601.700.97 J111Indane $\mu g/m3$ 0.56.33.503.601.700.97 J111Indane $\mu g/m3$ NCND (0.97)ND (1.9)ND (3.8)ND (3.8)ND (9.0)ND (9.0)111Indane $\mu g/m3$ NCND (0.97)ND (3.8)ND (3.8)ND (9.0)ND (9.0)111	
cis-1,2-Dichloropene $\mu g/m3$ 2.04ND (079) 3.7 3.5 9.8ND (0.79)114cis-1,3-Dichloropopene $\mu g/m3$ 2.21ND (0.91)ND (1.8)ND (1.8)ND (9.1)ND (0.91)110Cyclobeane $\mu g/m3$ NC2.4120120160ND (1.7)117Dibromochloromethane $\mu g/m3$ 2.66ND (1.7)ND (3.4)ND (3.4)ND (7)ND (7)110Dichlorofilluromethane (CFC-12) $\mu g/m3$ 0.77 4.904.951 2002.51111Ethanol $\mu g/m3$ NC 4.80 2.219659.7NANAEthylbenzene $\mu g/m3$ 1.24ND (1.1)ND (2.1)ND (1.0)ND (1.1)4Hexachlorobutadiene $\mu g/m3$ 1.24ND (1.1)ND (2.1)ND (1.0)ND (1.1)110Hexane $\mu g/m3$ NC 6.3350380 1700.9711111Indane $\mu g/m3$ NCND (0.97)ND (1.9)2.02.40ND (0.9)111Indane $\mu g/m3$ NCND (0.97)ND (3.8)ND (3.8)ND (9.0)ND (9.0)111	1.5
is13-Dichloropropene $\mu g/m3$ 2.21 $ND (0.91)$ $ND (1.8)$ $ND (1.8)$ $ND (9.1)$ $ND (0.91)$ 11 0 Cyclobeane $\mu g/m3$ NC 2.4 120 120 160 $ND (1.7)$ 111 7 Dibronchloromethane $\mu g/m3$ 2.66 $ND (1.7)$ $ND (3.4)$ $ND (3.4)$ $ND (17)$ $ND (17)$ $ND (1.7)$ 111 7 Dichlorodifluoromethane (CFC-12) $\mu g/m3$ 0.77 4.9 4.9 5.1 20 2.5 111 0 Ethanol $\mu g/m3$ NC 4.90 2.2 19 6.5 9.7 NA NA Ethylbenzene $\mu g/m3$ 3.21 6.0 2.2 2.1 13 0.54 11 4 Hexachlorobutadiene $\mu g/m3$ 1.24 $ND (11)$ $ND (21)$ $ND (10)$ $ND (11)$ 11 1 Indane $\mu g/m3$ NC $ND (0.97)$ $ND (1.9)$ 2.0 2.40 $ND (0.97)$ 111 1 Indane $\mu g/m3$ NC $ND (0.97)$ $ND (3.8)$ $ND (3.8)$ $ND (1.9)$ $ND (1.9)$ 111 1	7.1
	N/A
Dibromochloromethane $\mu g/m3$ 2.66 $ND(1.7)$ $ND(3.4)$ $ND(3.4)$ $ND(17)$ $ND(1.7)$ 11 0 Dichlorodifluoromethane (CFC-12) $\mu g/m3$ 0.77 4.9 49 51 200 2.5 11 11 Ethanol $\mu g/m3$ NC 480 22 19 65 9.7 NA NA Ethylbenzene $\mu g/m3$ 3.21 6.0 2.2 2.1 13 $0.54J$ 11 4 Hexachlorobutadiene $\mu g/m3$ 1.24 $ND(11)$ $ND(21)$ $ND(21)$ $ND(10)$ $ND(11)$ 11 0 Hexachlorobutadiene $\mu g/m3$ 3.75 6.3 350 380 170 $0.97J$ 11 1 Indane $\mu g/m3$ NC $ND(0.97)$ $ND(1.9)$ 2.0 2.40 $ND(0.9)$ 11 1 Indane $\mu g/m3$ NC $ND(1.9)$ $ND(3.8)$ $ND(3.8)$ $ND(1.9)$ $ND(1.9)$ 11 1	1200
Dichlorodiffuoromethane (CFC-12) $\mu g/m^3$ 0.77 4.9 49 51 200 2.5 11 11 Ethanol $\mu g/m^3$ NC 480 22 19 65 9.7 NA NA Ethylbenzene $\mu g/m^3$ 3.21 6.0 2.2 2.1 13 $0.54J$ 11 4 Hexachlorobutadiene $\mu g/m^3$ 124 $ND(1)$ $ND(21)$ $ND(10)$ $ND(1)$ 11 0 Hexachlorobutadiene $\mu g/m^3$ 3.7 6.3 350 380 170 $0.97J$ 11 0 Hexachlorobutadiene $\mu g/m^3$ NC $ND(19)$ $ND(21)$ $ND(10)$ $ND(1)$ 11 0 Hexachlorobutadiene $\mu g/m^3$ 3.7 6.3 350 380 170 $0.97J$ 11 11 Indane $\mu g/m^3$ NC $ND(1.9)$ $ND(2.8)$ $ND(19$ $ND(1.9)$ $ND(2.8)$	N/A
Ethanol $\mu g/m^3$ NC 480 22 19 65 9.7 NA NA Ethylbenzene $\mu g/m^3$ 3.21 6.0 2.2 2.1 13 0.54 J 11 4 Hexachlorobutadiene $\mu g/m^3$ 1.24 ND (11) ND (21) ND (21) ND (10) ND (11) 11 0 Hexachlorobutadiene $\mu g/m^3$ 3.75 6.3 360 380 170 0.97 J 11 11 Indane $\mu g/m^3$ NC ND (0.97) ND (1.9) 2.0 2.0 2.0 ND (0.97) 11 1 Indene $\mu g/m^3$ NC ND (0.97) ND (3.8) ND (3.8) ND (1.9) ND (1.9) 11 1	940
Ethylbenzene $\mu g/m^3$ 3.21 6.0 2.2 2.1 13 0.54 J 11 4 Hexachlorobutatiene $\mu g/m^3$ 124 $ND(11)$ $ND(21)$ $ND(10)$ $ND(11)$ $D1$ 0 Hexace $\mu g/m^3$ 3.5 6.3 350 380 170 0.971 11 11 Indane $\mu g/m^3$ NC $ND(0.97)$ $ND(1.9)$ 2.0 240 $ND(0.97)$ 11 2 Indene $\mu g/m^3$ NC $ND(1.9)$ $ND(3.8)$ $ND(1.9)$ $ND(1.9)$ $ND(3.8)$ $ND(1.9)$	NA
Hexachlorobutadiene μg/m3 1.24 ND (11) ND (21) ND (21) ND (10) ND (11) 11 0 Hexane μg/m3 3.75 6.3 350 380 170 0.971 11 11 Indane μg/m3 NC ND (0.97) ND (1.9) 2.0 240 ND (0.97) 11 2 Indene μg/m3 NC ND (1.9) ND (3.8) ND (19) ND (1.9) 11 1	26
Hexane μg/m3 3.75 6.3 350 380 170 0.97 J 11 11 Indane μg/m3 NC ND (0.97) ND (1.9) 2.0 240 ND (0.97) 11 2 Indane μg/m3 NC ND (1.9) ND (3.8) ND (1.9) ND (1.9) 11 1	N/A
Indane μg/m3 NC ND (0.97) ND (1.9) 2.0 240 ND (0.97) 11 2 Indene μg/m3 NC ND (1.9) ND (3.8) ND (1.9) ND (1.9) 11 1	810
Indene μg/m3 NC ND (1.9) ND (3.8) ND (3.8) ND (1.9) 11 1	63
	48
Isopropyl Alcohol µg/m3 NC 11 1.8J 1.8J 22J 0.79J 11 11	290
m&p-Xylene µg/m3 7.43 20 5.9 4.6 12 2.1 11 5	130
Methyl Tert Butyl Ether μg/m3 NC ND (3.6) ND (7.2) ND (7.2) ND (7.2) ND (3.6) 11 1	4
Methylene chloride μg/m3 13.28 1.6 25J 3.6 7.6 5.1 11 11	9.4
Naphthalene µg/m3 4.07 1.1J 5.5 3.5J 7.1J 0.64J 11 1	17
N-Decane µg/m3 NC 3.8 J ND (12) ND (12) ND (58) 0.45 J 11 1	7.6
N-Dodecane µg/m3 NC 2.1 J 21 14 68J ND (7.0) 11 5	29
N-Heptane μg/m3 NC 3.3 45 50 130 0.82 J 11 10	940
Nonane μg/m3 NC 2.5 J ND (5.2) ND (5.2) ND (2.6) 11 0	N/A
N-Undecane μg/m3 NC 1.7J ND (13) ND (13) ND (64) 11 1	0.48
μg/m3 NC 1.8 J 7.9 7.9 18 J 0.28 J 11 5	43
o-Xylene µg/m3 3.71 7.2 2.0 1.9 28 0.75 J 11 6	37
Pentane μg/m3 NC 15 160 160 320 1.7J 11 9	380
μg/m3 2.21 1.1 ND (1.7) ND (8.5) ND (0.85) 11 0	N/A
μg/m3 NC 1.3 J 37 40 2.0 J 0.32 J 11 7	10
Tetrachloroethene μg/m3 4.78 ND (1.4) 12 11 3.9 J ND (1.4) 11 4	57
μg/m3 NC ND (0.69) ND (1.4) ND (6.9) ND (0.69) 11 0	N/A
Toluene μg/m3 1852 44 7.5 6.6 36 3.1 11 10	750
trans-1,2-Dichloroethene μg/m3 4.52 ND (0.79) 1.2 1.4 2.6J ND (0.79) 11 2	4.4
trans-1,3-Dichloropropene μg/m3 2.21 ND (0.91) ND (1.8) ND (9.1) ND (0.91) 11 0	N/A
μg/m3 2.17 ND (1.1) 1.8 J 1.6 J 5.4 J ND (1.1) 11 4	5.4
Trichlorofluoromethane (CFC-11) μg/m3 2.08 8.1 3.0 3.3 10 J 2.1 11 7	1.9
Trifluorotrichloroethane (Freon 113) μg/m3 0.95 0.70 J ND (3.1) ND (3.1) ND (15) 0.48 J 11 6	0.61
Vinyl Bromide (Bromoethene) μg/m3 NC ND (0.87) ND (1.7) ND (1.7) ND (0.87) N1 0	N/A
Vinyl chloride µg/m3 0.70 ND (0.51) 24 27 54 ND (0.51) 11 5	33
Helium % NC - 15 16 4.9 -	
Methane % NC ND (0.24) 7.7 6.9 39 0.71	

Notes:

NA- Not analyzed for this parameter

ND()- Not present at or above the associated value.

J- Estimated concentration.

D- Result was obtained from the analysis of a dilution

Exceedance of background.

Page 2 of 2

RESIDENTIAL AIR SAMPLING RESULTS SUMMARY 105 TIMROD DRIVE ROCHESTER, NEW YORK

Sample Location:		Background	105 Timrod Basement Air	105 Timrod BasementSub-Slab	105 Timrod Exterior Soil Probe	Upwind Background Air	Summary o	of 2009 On-Site Soil	Vapor Results
Sample ID:		NYSDOH 1997:	IA-42271-081709-JDW-003	SS-42271-081709-JDW-003	SV-42271-081709-JDW-001	UW-42271-081709-JDW-001			
Sample Type		Control Home	Indoor Air	Sub-slub Vapor	Soil Vapor	Background Outdoor Air	Number	Number	Maximum
Sample Date			8/18/2009	8/18/2009	8/18/2009	8/18/2009	of	of	Detected
			(Duplicate)				Samples	Detections	Concentration
Parameter	Units								
Volatile Organic Compounds									
1,1,1-Trichloroethane	µg/m3	9.17	0.30 J	0.33 J	ND (11)	ND (1.1)	11	1	0.16
1,1,2,2-Tetrachloroethane	µg/m3	1.86	ND (1.4)	ND (1.4)	ND (14)	ND (1.4)	11	0	N/A
1,1,2-Trichloroethane	µg/m3	1.72	ND (1.1)	ND (1.1)	ND (11)	ND (1.1)	11	0	N/A
1,1-Dichloroethane	µg/m3	2.11	ND (0.81)	ND (0.81)	ND (8.1)	ND (0.81)	11	0	N/A
1,1-Dichloroethene	µg/m3	0.68	ND (0.79)	ND (0.79)	ND (7.9)	ND (0.79)	11	2	2.5
1,2,3-Trimethylbenzene	µg/m3	NC	2.8	ND (0.98)	2100	ND (0.98)	11	2	69
1,2,4,5-Tetramethylbenzene	µg/m3	NC	ND (1.1)	ND (1.1)	480	ND (1.1)	NA	NA	NA
1,2,4-Trichlorobenzene	µg/m3	2.32	ND (7.4)	ND (7.4)	7.9 J	ND (7.4)	11	0	N/A
1,2,4-Trimethylbenzene	µg/m3	6.28	7.4	0.91 J	2700	0.65 J	11	5	34
1,2-Dibromoethane (Ethylene Dibromide)	µg/m3	0.80	ND (1.5)	ND (1.5)	ND (15)	ND (1.5)	11	0	N/A
1,2-Dichlorobenzene	µg/m3	2.02	ND (1.2)	ND (1.2)	46	ND (1.2)	11	2	19
1,2-Dichloroethane	µg/m3	2.11	0.63 J	0.45 J	ND (8.1)	ND (0.81)	11	0	N/A
1,2-Dichloropropane	µg/m3	2.11	ND (0.92)	ND (0.92)	ND (9.2)	ND (0.92)	11	0	N/A
1,2-Dichlorotetrafluoroethane (CFC 114)	µg/m3	0.80	3.0	3.0	500	ND (1.4)	11	11	480
1,3,5-Trimethylbenzene	μg/m3	2.99	2.1	0.51 J	1600	ND (0.98)	11	2	64
1,3-Butadiene	μg/m3	NC	ND (0.88)	ND (0.88)	ND (8.8)	ND (0.88)	11	0	N/A
1,3-Dichlorobenzene	μg/m3	2.10	ND (1.2)	ND (1.2)	ND (12)	ND (1.2)	11	9	11
1,4-Dichlorobenzene	µg/m3	9.23	ND (1.2)	ND (1.2)	41	ND (1.2)	11	4	100
1,4-Dioxane	µg/m3	NC	ND (1.8)	0.44 J	ND (18)	ND (1.8)	11	0	N/A
1-Methylnaphthalene	µg/m3	NC	ND (15)	ND (15)	ND (150)	ND (15)	11	0	N/A
2,2,4-Trimethylpentane	µg/m3	NC	10.0	ND (2.3)	74	0.61 J	11	8	140
2-Butanone (Methyl Ethyl Ketone)	µg/m3	NC	9.5	2.9 J	9.7 J	3.2	11	11	32
2-Chlorotoluene	µg/m3	NC	ND (2.1)	ND (2.1)	ND (21)	ND (2.1)	11	0	N/A
2-Ethylthiophene	µg/m3	NC	ND (0.92)	ND (0.92)	ND (9.2)	ND (0.92)	NA	NA	NA
2-Hexanone	µg/m3	NC	0.72 J	0.38 J	ND (20)	0.27 J	11	2	0.82
2-Methylnaphthalene	µg/m3	NC	ND (15)	ND (15)	ND (150)	ND (15)	11	0	N/A
2-Methylthiophene	µg/m3	NC	ND (0.80)	ND (0.80)	ND (8.0)	ND (0.80)	NA	NA	NA
3-Methylthiophene	µg/m3	NC	ND (0.80)	ND (0.80)	ND (8.0)	ND (0.80)	NA	NA	NA
4-Ethyl toluene	µg/m3	NC	ND (2.0)	ND (2.0)	58	0.41 J	11	2	4.7
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	µg/m3	NC	1.9 J	1.5 J	48	0.34 J	11	4	200
Acetaldehyde	µg/m3	NC	29	120	ND (180)	22	NA	NA	NA
Acetone	µg/m3	NC	92	140	ND (120)	26	11	7	160
Acrolein	µg/m3	NC	5.3	0.91 J	ND (18)	3.1	11	5	0.89
Allyl chloride	µg/m3	NC	ND (0.63)	ND (0.63)	ND (6.3)	ND (0.63)	11	0	N/A
Benzene	µg/m3	4.64	8.9	1.0	30	0.82	11	7	160
Benzo(b)thiophene	µg/m3	NC	ND (2.6)	ND (2.6)	ND (26)	ND (2.6)	NA	NA	NA
Bromodichloromethane	µg/m3	2.67	0.44 J	ND (1.3)	ND (13)	ND (1.3)	11	0	N/A
Bromoform	µg/m3	2.69	ND (2.1)	ND (2.1)	ND (21)	ND (2.1)	11	0	N/A
Bromomethane (Methyl Bromide)	µg/m3	0.64	ND (0.78)	ND (0.78)	ND (7.8)	ND (0.78)	11	0	N/A
Butane	µg/m3	NC	84	1.8	1000	2.7	11	11	620
Carbon disulfide	µg/m3	NC	0.17 J	0.25 J	2.2 J	ND (1.6)	11	10	6.2
Carbon tetrachloride	µg/m3	2.17	0.57 J	0.53 J	ND (13)	0.54 J	11	3	0.45
Chlorobenzene	µg/m3	2.00	ND (0.92)	ND (0.92)	8.2 J	ND (0.92)	11	5	600
Chloroethane	µg/m3	0.50	0.098 J	0.093 J	2.5 J	ND (0.53)	11	3	3.4

RESIDENTIAL AIR SAMPLING RESULTS SUMMARY 105 TIMROD DRIVE ROCHESTER, NEW YORK

Sample Location: Sample ID:		Background NYSDOH 1997:	105 Timrod Basement Air IA-42271-081709-JDW-003	105 Timrod BasementSub-Slab SS-42271-081709-JDW-003	105 Timrod Exterior Soil Probe SV-42271-081709-JDW-001	Upwind Background Air UW-42271-081709-JDW-001	Summary o	of 2009 On-Site Soil	Vapor Results
Sample Type Sample Date		Control Home	Indoor Air 8/18/2009 (Duplicate)	Sub-slub Vapor 8/18/2009	Soil Vapor 8/18/2009	Background Outdoor Air 8/18/2009	Number of Samples	Number of Detections	Maximum Detected Concentration
Parameter	Units								
Chloroform (Trichloromethane)	µg/m3	2.81	1.1	ND (0.98)	ND (9.8)	0.19 J	11	3	0.93
Chloromethane (Methyl Chloride)	µg/m3	1.08	2.3	ND (1.0)	ND (10)	2.1	11	4	1.5
cis-1,2-Dichloroethene	µg/m3	2.04	ND (0.79)	ND (0.79)	5.4 J	ND (0.79)	11	4	7.1
cis-1,3-Dichloropropene	µg/m3	2.21	ND (0.91)	ND (0.91)	ND (9.1)	ND (0.91)	11	0	N/A
Cyclohexane	µg/m3	NC	5.7	ND (1.7)	730	ND (1.7)	11	7	1200
Dibromochloromethane	µg/m3	2.66	ND (1.7)	ND (1.7)	ND (17)	ND (1.7)	11	0	N/A
Dichlorodifluoromethane (CFC-12)	µg/m3	0.77	12	12	140	2.5	11	11	940
Ethanol	µg/m3	NC	230	1700	ND (38)	9.7	NA	NA	NA
Ethylbenzene	µg/m3	3.21	7.1	0.53 J	85	0.54 J	11	4	26
Hexachlorobutadiene	µg/m3	1.24	ND (11)	ND (11)	ND (110)	ND (11)	11	0	N/A
Hexane	µg/m3	3.75	20	0.73 J	660	0.97 J	11	11	810
Indane	μg/m3	NC	1.2	ND (0.97)	290	ND (0.97)	11	2	63
Indene	µg/m3	NC	ND (1.9)	ND (1.9)	ND (19)	ND (1.9)	11	1	48
Isopropyl Alcohol	µg/m3	NC	8.4	5.9	3.7 J	0.79 J	11	11	290
m&p-Xylene	µg/m3	7.43	28	1.8	420	2.1	11	5	130
Methyl Tert Butyl Ether	µg/m3	NC	ND (3.6)	ND (3.6)	ND (36)	ND (3.6)	11	1	4
Methylene chloride	µg/m3	13.28	6.6	2.8	7.7 J	5.1	11	11	9.4
Naphthalene	µg/m3	4.07	5.0	ND (2.6)	16 J	0.64 J	11	1	17
N-Decane	µg/m3	NC	5.7 J	1.7 J	ND (58)	0.45 J	11	1	7.6
N-Dodecane	µg/m3	NC	1.2 J	ND (7.0)	51 J	ND (7.0)	11	5	29
N-Heptane	µg/m3	NC	6.6	0.58 J	400	0.82 J	11	10	940
Nonane	µg/m3	NC	3.4	0.64 J	710	ND (2.6)	11	0	N/A
N-Undecane	µg/m3	NC	3.4 J	0.57 J	ND (64)	ND (6.4)	11	1	0.48
Octane	µg/m3	NC	2.2	0.76 J	110	0.28 J	11	5	43
o-Xylene	µg/m3	3.71	9.0	0.74 J	190	0.75 J	11	6	37
Pentane	µg/m3	NC	62	1.2 J	490	1.7 J	11	9	380
Styrene	µg/m3	2.21	1.5	0.25 J	ND (8.5)	ND (0.85)	11	0	N/A
Tert-Butyl Alcohol	µg/m3	NC	1.1 J	360 D	2.5 J	0.32 J	11	7	10
Tetrachloroethene	µg/m3	4.78	4.2	5.8	ND (14)	ND (1.4)	11	4	57
Thiophene	µg/m3	NC	ND (0.69)	ND (0.69)	ND (6.9)	ND (0.69)	11	0	N/A
Toluene	µg/m3	18.52	65	5.9	17	3.1	11	10	750
trans-1,2-Dichloroethene	µg/m3	4.52	ND (0.79)	ND (0.79)	7.1 J	ND (0.79)	11	2	4.4
trans-1,3-Dichloropropene	µg/m3	2.21	ND (0.91)	ND (0.91)	ND (9.1)	ND (0.91)	11	0	N/A
Trichloroethene	µg/m3	2.17	ND (1.1)	ND (1.1)	8.3 J	ND (1.1)	11	4	5.4
Trichlorofluoromethane (CFC-11)	µg/m3	2.08	6.8	6.7	3.0 J	2.1	11	7	1.9
Trifluorotrichloroethane (Freon 113)	µg/m3	0.95	0.56 J	0.50 J	ND (15)	0.48 J	11	6	0.61
Vinyl Bromide (Bromoethene)	µg/m3	NC	ND (0.87)	ND (0.87)	ND (8.7)	ND (0.87)	11	0	N/A
Vinyl chloride	μg/m3	0.70	ND (0.51)	ND (0.51)	29	ND (0.51)	11	5	33
11 I	0/			0.7					
Helium	%	NC	- NID (0.22)	8.7	15	-			
wetnane	%	NC	ND (0.22)	ND (0.23)	55	0.71			

Notes:

NA- Not analyzed for this parameter

ND()- Not present at or above the associated value.

Estimated concentration.

Exceedance of background.

CRA 042271Heyman1-T2-T3