Brownfield Cleanup Program Application

Former JML Optical, Inc. 678-690 Portland Avenue City of Rochester, New York

CHA Project Number: 17781.1001.1102

Source: City of Rochester Assessor's Office

Prepared on behalf of:

690 Portland Avenue Company 820 Linden Avenue Rochester, New York 14625-2710

Prepared by:

441 South Salina Street Syracuse, New York 13202 Phone: (315) 471-3920 Fax: (315) 471-3569

December 27, 2007

TABLE OF CONTENTS

Applicat	ion Form	1
Introdu	action & Requestor Information	7
Proper 2.1 2.2	Site Description	8
Curren	t Site Owner/Operator Information	10
Reques	stor Eligibility Information	11
Proper	ty Eligibility Information	12
Project 6.1 6.2 6.3	Purpose of Application and Proposed Site Re-Use	13 13
Proper 7.1 7.2 7.3 7.4	Environmental Reports Sampling Data Past Land Uses	15 17
Contac	et Information	19
Land U 9.1 9.2 9.3 9.4 9.5	Development Patters and Proposed Site Use (No. 1)	23 23 23
	LIST OF TABLES	
2-1. 8-1. 8-2. 8-3. 8-4. 8-5. 8-6. 8-7.	Site Contact List (SCL) – Government Agencies	
	Introdu Proper 2.1 2.2 Current Request Proper Project 6.1 6.2 6.3 Proper 7.1 7.2 7.3 7.4 Contact Land U 9.1 9.2 9.3 9.4 9.5	2.2 Adjacent Property Uses Current Site Owner/Operator Information Requestor Eligibility Information Property Eligibility Information Project Description 6.1 Purpose of Application and Proposed Site Re-Use 6.2 Scope of Project 6.3 Estimated Project Schedule Property Environmental History 7.1 Environmental Reports 7.2 Sampling Data 7.3 Past Land Uses 7.4 Past Owners & Operators Contact Information Land Use Factors 9.1 Development Patters and Proposed Site Use (No. 1) 9.2 Local Zoning Laws (No. 2) 9.3 Proximity of Land Uses to Property (No. 12) 9.4 Vulnerability of Groundwater to Contamination (No. 13) 9.5 Geography & Geology of Site (No. 14) LIST OF TABLES 2-1. Adjacent Properties 8-1. Site Contact List (SCL) – Government Agencies 8-2. SCL – Residents, Owners & Occupants of Site & Adjacent Parcels 8-3. SCL – Local News Media 8-4. SCL – Local Water Supplier 8-5. SCL – Persons Requesting to be Placed on SCL 8-6. SCL – School & Daycare Administrators for Facilities Near Site

LIST OF FIGURES

Figure 1. Site Location Map Figure 2. Schematic Site Plan

Figure 3. Tax Map & Adjacent Parcels

APPENDICES

Appendix A. Environmental Assessment Reports

LIST OF ACRONYMS & ABBREVIATIONS

ASP Analytical Services Protocol

ASTM American Society for Testing and Materials

BCP Brownfield Cleanup Program

CHA Clough Harbour & Associates LLP

COC Certificate of Completion

IPA Isopropyl Alcohol

JML Optical Industries, Inc.

NYSDEC New York State Department of Environmental Conservation

PCB Polychlorinated Biphenyls

PSC Preliminary Site Characterization RAR Remedial Alternatives Report

REC Recognized Environmental Condition

ROD Record of Decision SCL Site Contact List

SSC Supplemental Site Characterization SVOC Semi- Volatile Organic Compound

TCE Trichloroethylene TMP Tax Map Parcel

USDA United States Department of Agriculture

UST Underground Storage Tank VOC Volatile Organic Compound

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

BROWNFIELD CLEANUP PROGRAM (BCP)

ECL ARTICLE 27 / TITLE 14

07/07				DEPARTMENT BCP SITE #:	USE ONLY
Section I. Requestor Information	on				
NAME					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S REPRESENTATIVE	3				
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S CONSULTANT					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
NAME OF REQUESTOR'S ATTORNEY					
ADDRESS					
CITY/TOWN		ZIP CODE			
PHONE	FAX		E-MAIL		
THE REQUESTOR MUST CERTIFY THAT HE CHECKING ONE OF THE BOXES BELOW:	/SHE IS EITHER A PARTIO	CIPANT OR VOLUNTEER IN A	ACCORDAN	ICE WITH ECL § 27-1	.405 (1) BY
PARTICIPANT A requestor who either 1) was the owner of the site at the time of the disposal of hazardous waste or discharge of petroleum or 2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum. NOTE: By checking this box, the requestor certifies that he/she has exer appropriate care with respect to the hazardous waste found at the facility by treasonable steps to: i) stop any continuing discharge; ii) prevent any threatened for release; and iii) prevent or limit human, environmental, or natural resource exposition and previously released hazardous waste.			she has exercised facility by taking y threatened future		
Requestor Relationship to Property (check one): Previous Owner Current Owner If requestor is not the site owner, requestor will in the context of the cont				Yes	No

Section II. Property Information	Summary Sheet						
PROPERTY NAME:							
ADDRESS/LOCATION	CITY/TOWN			ZIP (CODE		
MUNICIPALITY(IF MORE THAN ONE, LIST AI	LL):						
COUNTY	SITE SIZE (ACRI	ES)					
LATITUDE (degrees/minutes/seconds) °	, " " L	ONGITUDE (d	egrees/min	utes/seconds	s) °	6	
HORIZONTAL COLLECTION METHOD: S	SURVEY GPS MAP	RIZONTAL R	EFERENCI	E DATUM:			
FOR EACH PARCEL, FILL OUT THE FOLLOWI	NG TAX MAP INFORMATION (if mor	e than three par	cels, attach	additional ir	nformation)		
Parcel Address	Parcel	No. Sect	ion No.	Block No.	Lot No.	Acreage	
Do the property boundaries correspon	ad to tax map metes and bounds?					Yes	No
If no, please attach a metes and bo	_						
2. Is the required property map attached		will not be p	cocessed	without m	ap)	Yes	No
3. Is the property part of a designated Er	n-zone pursuant to Tax Law § 21(b)(6)?			_	Yes	No
For more information go to: http://www	v.nylovesbiz.com/BrownField_Re	edevelopmer	ıt/default.	asp.			
If yes, identify area (name)							
50% 100% of the site is in	the En-zone (check one)						
PROPERTY DESCRIPTION NARRATIVE:							
List of Existing Easements (type here or	eattach information)						
Easement Holder (type here or	Descrip	tion					
List of Permits issued by the NYSDEC or	: USEPA Relating to the Propose	d Site (type	here or a	ttach info	rmation)		
Type <u>Issuing Ag</u>	gency Descri	ption					
nitials of each Requestor:							

Section III. Current Site Owner	/Operator Information				
OWNER'S NAME (if different from requestor)					
ADDRESS					
CITY/TOWN	ZIP CODE				
PHONE	FAX	E-MAIL			
OPERATOR'S NAME (if different from requestor	r or owner)				
ADDRESS					
CITY/TOWN	ZIP CODE				
PHONE	FAX	E-MAIL			
Section IV. Requestor Eligibility	y Information (Please refer to ECL §	27-1407)			
If answering "yes" to any of the following	ng questions, please provide an explanation as a	n attachment.			
1. Are any enforcement actions pending	against the requestor regarding this site?		Yes	No	
2. Is the requestor subject to an existing	order relating to contamination at the site?		Yes	No	
3. Is the requestor subject to an outstand	ling claim by the Spill Fund for this site?		Yes	No	
4. Has the requestor been determined to	have violated any provision of ECL Article 277	?	Yes	No	
5. Has the requestor previously been de	•		Yes	No	
6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving contaminants?			Yes	No	
7. Has the requestor been convicted of a criminal offense that involves a violent felony, fraud, bribery, perjury, theft, or offense against public administration?			Yes	No	
8. Has the requestor knowingly falsified or concealed material facts or knowingly submitted or made use of a false statement in a matter before the Department?		itted or made use of a	Yes	No	
9. Is the requestor an individual or entity of the type set forth in ECL 27-1407.8(f) that committed an act or failed to act, and such act or failure to act could be the basis for denial of a BCP application?			Yes	No	
	Information (Please refer to ECL § 27				
Is the property listed on the National			Yes	No	
· · ·	sistry of Inactive Hazardous Waste Disposal Site	es?	Yes	No	
= = = = =	Class #				
3. Is the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility? If yes, please provide: Permit type: EPA ID Number:			Yes	No	
Date permit issued: Permit expiration date: 4. Is the property subject to a cleanup order under navigation law Article 12 or ECL Article 17 Title 10?			Yes	No	
If yes, please provide: Order # 5. Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum?			Yes	No	
If yes, please provide explanation as a	an attachment.				
Section VI. Project Description					
What stage is the project starting at?	investigation remediation	n			
Please attach a description of the project which includes the following components:					
 Purpose and scope of the project Estimated project schedule 					

Section VII. Property's Environmental History

To the extent that existing information/studies/reports are available to the requestor, please attach the following:

1. Environmental Reports

A phase I environmental site assessment report prepared in accordance with ASTM E 1527 (American Society for Testing and Materials: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process), and all environmental reports related to contaminants on or emanating from the site.

If a final investigation report is included, indicate whether it meets the requirements of ECL Article 27-1415(2): Yes No					
2. Sampling Data: Indic	cate known conta	aminants and the med	ia which are known to	have been affected:	
Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas
Petroleum					
Chlorinated Solvents					
Other VOCs					
SVOCs					
Metals					
Pesticides					
PCBs					
Other*					
*Please describe:					•
3. Suspected Contamina	ants: Indicate su	spected contaminants	and the media which i	nay have been affecto	ed:
Contaminant Category	Soil	Groundwater	Surface Water	Sediment	Soil Gas
Petroleum					
Chlorinated Solvents					
Other VOCs					
SVOCs					
Metals					
Pesticides					
PCBs					
Other*					
*Please describe:					
4. INDICATE KNOWN OR S	USPECTED SOUR	CES OF CONTAMINANTS	S:		
Above Ground Pipeline of Routine Industrial Operati Adjacent Property Coal Gas Manufacture Other:	ons Di	agoons or Ponds amping or Burial of Wastes eepage Pit or Dry Well dustrial Accident	Underground Pipeline of Septic tank/lateral field Foundry Sand Unknown	_	oill or Discharge Storage Containers ating
5. INDICATE PAST LAND U	ISES:				
Coal Gas Manufacturing Pipeline Other:	Manufacturir Service Statio		op Dry Cleaner Tannery	Salvage Yard Electroplating	Bulk Plant Unknown
6. Owners					

A list of previous owners with names, last known addresses and telephone numbers (describe requestor's relationship, if any, to each previous owner listed. If no relationship, put "none").

7. Operators

A list of previous operators with names, last known addresses and telephone number (describe requestor's relationship, if any, to each previous operator listed. If no relationship, put "none").

Section VIII. Contact List Information

Please attach, at a minimum, the names and addresses of the following:

- 1. The chief executive officer and planning board/dept. chair of each county, city, town and village in which the property is located.
- 2. Residents, owners, and occupants of the property and properties adjacent to the property.
- 3. Local news media from which the community typically obtains information.
- 4. The public water supplier which services the area in which the property is located.
- 5. Any person who has requested to be placed on the contact list.
- 6. The administrator of any school or day care facility located on or near the property.
- 7. The location of a document repository for the project (e.g., local library). In addition, attach a copy of a letter sent to the repository acknowledging that it agrees to act as the document repository for the property.

Section IX. La	and Use Factor	rs (Please refe	r to ECL § 27	-1415(3))				
Current Use:	Residential	Commercial	Industrial	Vacant	Recreational	(check all	that apply)	
Intended Use:	Unrestricted	Residential	Commercial	Industrial	(check all that	apply)		
	appropriate box an omprehensive zonion					de a copy of	the local z	oning No
1. Do current hist re: discussion of a	orical and/or recentarea land uses)	it development pa	tterns support the	proposed use	e? (See #12 bel	ow		
2. Is the proposed	l use consistent wit	th applicable zoni	ng laws/maps?					
	l use consistent with use consistent with use signated Browns, designated Browns					erfront		
4. Are there any I	Environmental Just	ice Concerns? (Se	ee §27-1415(3)(p))).				
5. Are there any f	ederal or state land	l use designations	s relating to this si	te?				
6. Do the populat	6. Do the population growth patterns and projections support the proposed use?							
7. Is the property	accessible to exist	ing infrastructure	?					
8. Are there important cultural resources, including federal or state historic or heritage sites or Native American religious sites within ½ mile?								
	ortant federal, state cal habitats of enda				wildlife refuge	s,		
10. Are there floo	odplains within ½ r	mile?						
11. Are there any	institutional contr	ols currently appl	icable to the prop	erty?				
12. Describe on attachment the proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas.								
13. Describe on attachment the potential vulnerability of groundwater to contamination that might migrate from the property, including proximity to wellhead protection and groundwater recharge areas.								
14. Describe on a	14. Describe on attachment the geography and geology of the site.							

Statement of Certification and Signatures
(By requestor who is an individual)
I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.
Date: Print Name:
(By an requestor other than an individual)
I hereby affirm that I am <u>CO-OWNSK</u> (title) of <u>L90 PARTANO</u> (entity); that I am authorized by that entity to make this application; that this application was prepared by me or under my supervision and direction; and that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law. Date: <u>/2/28/07</u> Signature ** **Local *
SUBMITTAL INFORMATION: Three (3) complete copies are required.
Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF) on a CD or diskette, must be sent to:
Chief, Site Control Section New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020
• One (1) paper copy must be sent to the DEC regional contact in the regional office covering the county in which the site is located. Please check our website for the address of our regional offices; http://www.dec.ny.gov/about/776.html
FOR DEPARTMENT USE ONLY BCP SITE T&A CODE: LEAD OFFICE:

1.0 INTRODUCTION & REQUESTOR INFORMATION

The 690 Portland Avenue Company is proposing to redevelop the former lens manufacturing facility located at 678-690 Portland Avenue in the City of Rochester, Monroe County, New York, hereinafter referred to as the "Site" (see Figure 1 – Site Location Map). JML Optical Industries, Inc. (JML) who operated the specialty lens manufacturing facility on the site relocated their business to a larger property in the Town of Pittsford in 2005, leaving the 678-690 Portland Avenue Site vacant. The 690 Portland Avenue Company, the current owner of the Site, anticipates that by participating in the New York State Department of Environmental Conservation's (NYSDEC's) Brownfield Cleanup Program (BCP) and by performing an appropriate cleanup, the vitality of this idle Site can be restored.

The following list summarizes the contact information for the "Requestor" of the BCP Application:

Requestor:

690 Portland Avenue Company Contact: Mr. Michael E. McCusker 820 Linden Avenue

Rochester, New York 14625 Phone: (585) 248-8900 Fax: (585) 248-8924

e-mail: mikem@jmloptical.com

Requestor's Consultant:

Clough Harbour & Associates LLP Contact: Mr. Scott M. Smith, P.E. 441 South Salina Street Syracuse, New York 13202

Phone: (315) 471-3920 Fax: (315) 471-3569

e-mail: ssmith@cha-ll.com

Requestor's Attorney:

Harter Secrest & Emery, LLP Contact: Mr. Paul D. Sylvestri, Esq. 1600 Bausch & Lomb Place Rochester, New York 14604 Phone: (585) 232-2152 Fax: (585) 232-6500

e-mail: psylvestri@hselaw.com

Clough Harbour & Associates LLP (CHA) has prepared this document to provide additional detail relative to the BCP application. Please note that the sections in this document correspond to the section numbers in the Application. For example, Section 1.0 in this document corresponds to Section I on the BCP application form.

2.0 PROPERTY INFORMATION

2.1 SITE DESCRIPTION

The Site is an approximately 1.565-acre parcel of land located at 678-690 Portland Avenue in the City of Rochester, Monroe County, New York (Tax Map Parcel (TMP) No. 106.27-01-86). The Site is almost entirely covered with buildings or paved surfaces, except for a mowed grass area along the Portland Avenue entrance to the Site and a strip of grass along the eastern property (rear side of building). ILEX Optical constructed the first buildings on the Site in approximately 1930 and the most recent addition to the building was constructed on the south end of the Site around 1970. The buildings are generally one-story tall and are summarized as follows:

- **Building 1** The main building is approximately 53,250 square feet in size and is constructed with concrete blocks walls and a slab-on-grade flooring system. There is an approximately 300 square foot basement under a portion of the building. A second floor level along the building façade to Portland Avenue was utilized as office space and the second level on the northernmost portion of the building was utilized for storage.
- **Building 2** The second building is a former boiler house. The building is constructed with block walls and a concrete slab-on-grade and has a footprint of approximately 730 square feet. JML most recently used the building for storage.
- **Building 3** The third building is an approximately 300 square foot building constructed with metal siding and a concrete slab-on-grade. The building is unheated and was formerly utilized by JML to store chemicals.

All three buildings are currently unoccupied. A schematic site mapped has been included as Figure 2.

The site is located within a New York State "En-Zone" pursuant to Tax Law § 21(b)(6). There are no known easements on the Site and there are currently no environmental permits associated with Site.

2.2 ADJACENT PROPERTY USES

The site and neighboring properties are currently located in a Industrial (M-1) zoning district according to the City of Rochester Department of Community Development, Bureau of Building and

Zoning, except for the parcel located immediately south of the Site (76 Fernwood Avenue), which is zoned Low Density Residential (R-1). Neighboring property uses are summarizes as follows:

North: The Site is bordered to the north by a paved parking lot owned by the City of

Rochester. This parking lot was formerly a street named Ilex Place. There is a service station, an auto body repair shop and a two-family residential structure

located north of the City parking lot.

East: The Site is bordered to the east by a vacant industrial building and associated

parking lots. The site to the east was formerly operated under the name Vogt Manufacturing and is currently owned by 100 Fernwood Ave Associates. This

site is currently listed as a NYSDEC Brownfield facility.

South: The Site is bordered to the south by a parking lot and a single family residence.

A vacant industrial building (a NYSDEC Inactive Hazardous Waste Site known as Preferred Electric Motors) is also located to the south of the property at 42

Fernwood Avenue.

West: The Site is bordered to the west by Portland Avenue. A paved parking lot, a

vacant commercial building and a distribution facility are located along the west side of Portland Avenue, across from the main site entrance. There are also four residential properties located immediately adjacent to the west side of the Site.

Table 2-1 summarizes the parcels that are located immediately adjacent to the Site. A tax map depicting the parcel numbers and owners for adjacent parcels has been included on Figure 3.

Table 2-1. Adjacent Properties

Parcel Number	Address		Land Use
106.26-02-5	705 Portland Avenue	Michael Caccamise	Distribution Facility
106.26-02-6	695 Portland Avenue	Gregory Stahl	Distribution Facility
106.26-02-7	687 Portland Avenue	Gregory Stahl	Parking Lot
106.27-01-05	100 Fernwood Avenue	100 Fernwood Ave Associates	Manufacturing
106.27-01-71	76 Fernwood Avenue	690 Portland Ave Co.	Parking Lot
106.27-01-85	674 Portland Avenue	Reyes Realty Group Inc.	Residential – 1 family
106.27-01-87	29 Ilex Place	100 Fernwood Ave Associates	Parking Lot
106.27-01-93	728 Portland Avenue	CSM Development LLC	Parking Lot
106.27-01-94	702 Portland Avenue	Anthony & Mather Gentile	Residential - 2 family
106.27-01-95	708 Portland Avenue	Private Owner	Residential – 1 family
106.27-01-96	714 Portland Avenue	Private Owner	Residential – 1 family
106.27-01-97	720 Portland Avenue	Rosa & Ulysses Holmes	Residential – 1 family
106.27-01-98.1	724 Portland Avenue	City of Rochester	Parking Lot

3.0 CURRENT SITE OWNER/OPERATOR INFORMATION

Current Site Owner/Operator:

690 Portland Avenue Company

Contact: Mr. Michael E. McCusker 820 Linden Avenue Rochester, New York 14625

Phone: (585) 248-8900 Fax: (585) 248-8924

e-mail: mikem@jmloptical.com

The site is currently unoccupied and no current manufacturing operations are associated with the onsite buildings.

4.0 REQUESTOR ELIGIBILITY INFORMATION

As indicated in Section IV of the BCP Application, a owner of the 690 Portland Avenue Company has answered "no" to each question, and therefore, is considered an eligible requestor.

5.0 PROPERTY ELIGIBILITY INFORMATION

As indicated in Section V of the BCP Application, an owner of the 690 Portland Avenue Company has answered "no" to each question, and therefore, the Site is considered eligible for the BCP program.

6.0 PROJECT DESCRIPTION

6.1 PURPOSE OF APPLICATION AND PROPOSED SITE RE-USE

The Site has a long history of optical manufacturing related activities and some characterization of the site (see Section 7.0 for details) has been previously completed. The 690 Portland Avenue Company is now seeking to complete the characterization of the Site, including potential off-site impacts, remediate the Site as necessary, establish appropriate institutional controls (e.g. deed restrictions), and redevelop the Site.

The 690 Portland Avenue Company has been approached by a group who is seeking to utilize the Site for a Catholic Family Center after the Site actions are complete and the 690 Portland Avenue Company receives a Certificate of Completion (COC) from the NYSDEC.

6.2 SCOPE OF PROJECT

The scope of the project will include supplemental investigation, evaluation of remedial alternatives, remedial design, and remedial action, as discussed further in Section 6.3. A significant amount of subsurface investigation has already been completed to date. Although a detailed scope for the supplemental investigation will be included in the Remedial Investigation Work Plan, the supplemental investigation is anticipated to include the following, at a minimum:

- The collection of additional soil samples in the area of the former degreasers to refine the limits of TCE contamination in these areas.
- The re-sampling off existing monitoring wells to evaluate potential changes in groundwater quality.
- The collection of soil and groundwater samples on properties adjacent to the western boundary of the Site to evaluate potential off-site impacts.
- The collection of indoor air quality samples to evaluate the presence or absence of vapor intrusion into on-Site and down-gradient structures.
- The analysis of samples for polychlorinated biphenyls and pesticides. While no significant sources of these contaminants were identified at the site, it will be necessary to collect samples to verify the presence or absence in the subsurface soil and groundwater.
- All samples will be submitted to a certified laboratory and all analyses and deliverable packages will be provided in accordance with the NYSDEC's Analytical Services Protocol (ASP).

6.3 ESTIMATED PROJECT SCHEDULE

Since the 690 Portland Avenue Company has been approached by a party interesting in purchasing the property, the applicant is interested in completing the necessary investigation and remedial tasks in a timely fashion. Upon the NYSDEC notifying the 690 Portland Avenue Company that they have been accepted into the BCP, CHA will immediately begin to prepare a work plan for additional investigation. To minimize the need for changes to the work plan, CHA will schedule a meeting with the NYSDEC to discuss the proposed investigation approach and attempt to address any additional State concerns prior to submission of the plan. It is anticipated that approval of the work plan can be obtained within approximately two months following acceptance into the BCP program.

Depending on the results of the investigation phase of the project, it is anticipated that all data gathering and analysis can be completed in an approximately three to four month period following the approved work plan. Once the investigation is deemed complete by the NYSDEC, a Remedial Alternatives Report (RAR) will be prepared to evaluate potential site remedies. It is expected that the RAR will completed within an approximately two-month time period following completion of the investigation report.

Following public comment periods and issuance of a Record of Decision (ROD) from the NYSDEC, the remedial design phase of the project will commence. This phase will include the preparation and approval of a remedial design work plan, remedial design, and preparation of contract documents to implement the proposed remedy. Depending upon periods of time required for reviews and the complexity of the selected remedy, it as anticipated that the remedial design phase will have a duration of approximately three to four months.

Given that the limited size of the site and some of the remedial alternatives that will likely be considered during the alternative evaluation phase (e.g. installation of sub-slab depressurization systems, source removal, etc.), it is anticipated that the remedy will be implemented in a one to two month period. It is anticipated to take another one to two months to complete the remaining administrative tasks to obtain the final COC.

This anticipated schedule is very preliminary and the applicant will work to refine the schedule with the NYSDEC once it is accepted into the BCP. The 690 Portland Avenue Company will work to streamline the process along the way, but understands that there are several required periods of time for public review and comment during the BCP process. Overall, the 690 Portland Avenue Company hopes to complete the process in a 12 to 18 month period of time, although they realize the process could take longer depending on factors beyond their control and/or beyond the control of the NYSDEC.

The following table provides an estimated schedule for completion of the Former JML Optical, Inc. The overall progress of the project will be dependent upon a number of factors including, but not limited to, NYSDEC review and approval timeframes, time of year at which the final design documents are complete, weather conditions at the time of remedial construction, etc.

Table 6-1. Preliminary Project Schedule

Table 0-1. Tremmary Troject Benedule				
Description	Estimated Start	Estimated Finish		
Pre-Application Meeting & Preparation of the BCP Application	December 2007	December 2007		
Completeness Review	January 2008	January 2008		
Comment Period & Acceptance into BCP	January 2008	February 2008		
Execution of BCP Agreement	February 2008	February 2008		
Remedial Investigation Work Plan Scoping Meeting & Development	March 2008	March 2008		
Comment Period & Review of Work Plan	April 2008	May 2008		
Remedial Investigation	May 2008	July 2008		
Review & Approval of Investigation Report	August 2008	September 2008		
Remedial Alternatives Analysis	September 2008	October 2008		
DEC Selection of Proposed Remedy	October 2008	November 2008		
Public Comment Period on Proposed Remedy	November 2008	December 2008		
ROD Issued & Remedial Design Completed	January 2009	March 2009		
Review & Approval of Remedial Design	March 2009	April 2009		
Preparation of Contract Documents and Bidding Phase	April 2009	May 2009		
Remedial Construction	June 2009	July 2009		
Administrative Tasks (e.g. Institutional Controls)	July 2009	August 2009		
Certificate of Closure Obtained	August 2009	September 2009		

7.0 PROPERTY ENVIRONMENTAL HISTORY

7.1 ENVIRONMENTAL REPORTS

Labella Associates, P.C. (Labella) was retained by the Rochester Economic Development Corporation to completed a Phase I Environmental Site Assessment (ESA) for the parcels located at 76 Fernwood Avenue and 690 Portland Avenue in February 2005 in accordance with the American Society for Testing and Materials (ASTM) Standard Practice E 1527-00; however only the 690 Portland Avenue parcel is the subject of this BCP application.

Based upon the historical research completed by Labella, the Site was undeveloped until approximately 1930 at which time ILEX Optical constructed the original portion of the building on the Site to commence lens manufacturing operations. In December of 1979, the 690 Portland Avenue Company purchased the property and JML Optical operated at the Site until November of 2005, at which time the JML manufacturing operations were relocated to Pittsford, New York. The Site has remained vacant and under the ownership of the 690 Portland Avenue Company since 2005.

ILEX Optical and JML reportedly utilized several chemicals, including, but not limit to trichloroethylene (TCE), acetone, and isopropyl alcohol (IPA) during the manufacturing and cleaning of specialty optical lenses. Additionally, a 5,000-gallon No. 2 fuel oil underground storage tank (UST) was once located between the boiler house and manufacturing building and utilized for the boilers. At the time of the tank removal in 1999, impacted soil and a sheen on the groundwater was observed in the excavation. Spill No. 9870600 was reported to the NYSDEC on March 29, 1999 based upon the contamination observed. Where possible, contaminated soils were reportedly excavated and disposed of off-site. Excavation closure samples were collected following the removal of the impacted soils and the NYSDEC later closed the spill report on August 15, 2005.

The primary recognized environmental conditions (RECs) identified in the Phase I ESA include the following:

1. At the time of the ESA, there was an open NYSDEC spill file for the Site (Spill No. 9870600), associated with subsurface petroleum contamination observed during the removal of a 5,000-gallon No. 2 fuel oil UST from the Site. While contaminated soils were reportedly excavated and disposed off-site, no analytical data had been provided to Labella to confirm that the release had been addressed to an extent deemed acceptable to the NYSDEC.

- 2. The Site had a long history of using chlorinated solvents, particularly TCE, in association with the manufacturing of specialty optical lenses. The building once had a number of individual floor drains and trench drains. While JML filled these drains in with concrete, and the remaining drains are reportedly connected to a public sanitary sewer system, the historical discharge location of the former drains was unknown. Furthermore, a sump of unknown origin was identified in the storage area of the main manufacturing building.
- 3. A NYSDEC inactive hazardous waste disposal site, known as Preferred Electric Motors, Inc., was identified approximately 40 feet south of the Site. Investigation of this site in 2000 revealed that on-site disposal of waste solvents had impacted the subsurface soil and groundwater quality beneath the site and that vapor intrusion was occurring in the structures adjacent to the site.
- 4. A NYSDEC BCP site, known as 100 Fernwood Avenue, is located immediately adjacent to the east side of the Site. While Labella could not identify the purpose of large soil stockpiles at the rear of the building at the time that the Phase I ESA was completed, they suspected that the soil pile was associated with an environmental cleanup of contaminated soils.

Based upon the results of the Phase I ESA, JML Optical, Inc. retained Labella Associates, P.C. to perform a Phase II ESA – Preliminary Site Characterization (PSC) in June of 2005 to investigate the identified RECs. The following conclusions were made in the PSC report:

- 1. Solvent-related compounds released at the Preferred Electric Motors, Inc. site appeared to have impacted the groundwater quality at the south end of the Site.
- 2. Petroleum-related compounds associated with the 100 Fernwood Avenue site appeared to have migrated onto the eastern side of the Site.
- 3. Petroleum-related contamination was identified to remain in the location of the former 5,000-gallon UST at concentrations above the applicable soil and groundwater standards/guidance values established by the NYSDEC.
- 4. It appeared that solvent-related compounds, primarily TCE, had been released in the sump located adjacent to the maintenance shop in the main building on the Site.
- 5. There was no significant evidence of metal contamination in the soil samples collected from the Site.

To further characterize the impacted areas identified in the Phase II ESA PSC, Labella Associates, P.C. conducted a Phase II ESA Supplemental Site Characterization (SSC) in June of 2006. The following conclusions were made in the SSC report:

- 1. Groundwater appears to flow in a northwesterly direction beneath the Site.
- 2. Solvent-related compounds released at the Preferred Electric Motors, Inc. site appeared to have impacted the groundwater quality at the south end of the Site.
- 3. Petroleum-related compounds associated with the 100 Fernwood Avenue site appeared to have migrated onto the Site and impacted the subsurface soil and groundwater quality along the eastern side of the Site.
- 4. A second groundwater sample was collected in the vicinity of the former UST on the western side of the site and revealed that only the petroleum-related compounds were detected at concentrations above the applicable NYSDEC groundwater standards.
- 5. Labella estimated that the extent of soil impacted with TCE in the area of the sump adjacent to the maintenance shop was limited to an area approximately 25-feet by 25-feet in size.
- 6. TCE contamination was identified in the former degreasing area located near the western end of the former manufacturing building.

The complete copies of all three ESA reports have been included in Appendix A of this report.

7.2 SAMPLING DATA

Numerous soil and groundwater samples have been collected from the Site during the past environmental investigations. The samples have been analyzed for a variety of parameters including volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals. The complete analytical data packages received from the laboratories have been included in the environmental reports referenced in Section 7.1.

As indicate in Section VII of the BCP application form, the sampling data has confirmed the presence of petroleum-related contaminants, chlorinated solvents, and SVOCs in the soil and groundwater beneath the Site. It is suspected that the chlorinated solvents and some of the petroleum-related contaminants could be present in the soil gas beneath the site as well as adjacent parcels down-gradient of the site. Additional investigation will be required to confirm the presence or absence of vapor intrusion into on-Site buildings as well as adjacent structures. There are no known significant sources of polychlorinated biphenyls (PCBs), pesticides, or herbicides on the Site.

7.3 PAST LAND USES

The Site has been utilized for the manufacturing of specialty optical lenses from approximately 1930 to 2005. A 5,000-gallon No. 2 fuel oil UST was removed from the Site in 1999.

Adjacent properties have also had a long history of industrial use. The parcel located at 42 Fernwood Avenue (south of the Site) has been identified as a source of chlorinated solvents migrating onto the southern portion of the Site and the parcel located at 100 Fernwood Avenue (east of the Site) has been identified as a source of petroleum-related compounds migrating onto the eastern portion of the Site.

7.4 PAST OWNERS & OPERATORS

The site was reportedly undeveloped until 1930, at which time ILEX Optical began the manufacturing of specialty optical lenses on the Site. ILEX Optical continued operations at the site until 1979, at which time the Site was sold to 690 Portland Avenue Company and operated by JML Optical, Inc., the current owner. The 690 Portland Avenue Company has indicated that ILEX Optical went "out of business" several years ago and provided no names, address, or phone numbers for persons associated with ILEX.

8.0 CONTACT INFORMATION

The following tables have been provided to summarize the proposed Site Contact List (SCL) for the Site:

Table 8-1. SCL – Government Agencies
Table 8-2. SCL - Residents, Owners & Occupants of Site & Adjacent Parcels
Table 8-3. SCL – Local News Media
Table 8-4. SCL – Local Water Supplier
Table 8-5. SCL – Persons Requesting to be Placed on SCL
Table 8-6. SCL – School & Daycare Administrators for Facilities Near Site
Table 8-7. SCL – Document Repositories

Table 8-1. Site Contact List (SCL) – Government Agencies

Title/Agency	Name & Address	Phone Number
City of Rochester	Robert Duffy City Hall	(707) 100 7017
Mayor	30 Church Street	(585) 428-7045
C'' CD 1	Rochester, New York 14614	
City of Rochester	Julio Vasquez	
Commissioner of	City Hall	(585) 428-6550
Community	30 Church Street	
Development	Rochester, New York 14614	
City of Rochester	City Hall	
Community	30 Church Street	(585) 428-7043
Development, Bureau of	Rochester, New York 14614	(202) 120 70 12
Buildings & Zoning	·	
City of Rochester	Paul Holahan	
Commissioner of	30 Church Street	(585) 428-6855
Environmental Services	Rochester, New York 14614	
	Maggie Brooks	
Monroe County	110 County Office Building	(585) 753-1000
Executive	39 West Main Street	(383) 733-1000
	Rochester, New York 14614	
Monroe County	Judy Seil	
Acting Director of	8100 City Place	(595) 752 2000
Department of Planning	50 West Main Street	(585) 753-2000
& Development	Rochester, New York 14614	
Monroe County	John Graham, P.E.	
Director of Department	7100 City Place	(595) 760 7610 -7517
of Environmental	50 West Main Street	(585) 760-7610 x7517
Services	Rochester, New York 14614	

Table 8-2. SCL – Residents, Owners & Occupants of Site & Adjacent Parcels

Property & Address Owner & Address Occupant(s)/Use				
1 0	Owner & Audress	Occupant(s)/Use		
Subject Property: 678-690 Portland Avenue Rochester, New York 14621	690 Portland Avenue Company 820 Linden Avenue Rochester, New York 14625 (585) 248-8900	Vacant Manufacturing Facility		
North: 724 Portland Avenue Rochester, New York 14621	City of Rochester City Hall 30 Church Street Rochester, New York 14614	Parking Lot		
East: 100 Fernwood Avenue Rochester, New York 14621	100 Fernwood Ave. Associates 100 Fernwood Avenue Rochester, New York 14621	Parking Lot and Vacant Manufacturing Facility		
South: 674 Portland Avenue Rochester, New York 14621	Ryes Realty Group, Inc. 595 Blossom Road Suite 317 Rochester, NY 14610 (585) 544-2755	Ms. Roxanne Cox ((585) 467- 6921)/Single-Family Residential		
76 Fernwood Avenue Rochester, New York 14621	690 Portland Avenue Company	Parking Lot		
West: 702 Portland Avenue Rochester, New York 14621	Anthony & Mather Gentile 708 Portland Avenue Rochester, New York 14621 (585) 342-1940	Vacant 2-family residence		
708 Portland Avenue Rochester, New York 14621	Mather Gentile 708 Portland Avenue Rochester, New York 14621 (585) 342-1940	Mather Gentile((585) 342-1940)/Single family residence		
714 Portland Avenue Rochester, New York 14621	William Hertzog 714 Portland Avenue Rochester, New York 14621 (585) 266-2649	William Hertzog ((585) 266-2649)/Single family residence		
720 Portland Avenue Rochester, New York 14621	Rosa Holmes 396 Pardee Rd Rochester, NY 14609 (585) 482-0917	Tracy Berry ((585) 544-2488)/ Single family residence		

Table 8-3. SCL - Local News Media

Local New Media	Address	Phone Number
Democrat & Chronicle	55 Exchange Boulevard Rochester, New York 14614	(585) 232-7100
Channel 8 WROC-TV CBS Affiliate	201 Humboldt Street Rochester, New York 14610	(585) 224-8880
Channel 9 R News	71 Mt. Hope Avenue Rochester, New York 14620	(585) 756-2424
Channel 10 WHEC-TV NBC Affiliate	191 East Avenue Rochester, New York 14604	(585) 546-5670
Channel 13 WOKR-TV ABC Affiliate	4225 West Henrietta Road Rochester, NY 14623	(585) 334-8700
Channel 21 WXXI-TV PBS Affiliate	280 State Street PO Box 30021 Rochester, New York 14603	(585) 258-0200
Channel 31 WUHF-TV FOX Affiliate	201 Humboldt Street Rochester, New York 14610	(585) 232-3700
1180 AM 1180 WHAM	207 Midtown Plaza Rochester, New York 14604	(585) 454-4884

Table 8-4. SCL – Local Water Supplier

Supplier	Address	Phone Number
City of Rochester	City Hall	
Department of Environmental	30 Church Street	(585) 428-5990
Services- Waster Bureau	Rochester, New York 14614	

Table 8-5. SCL – Persons Requesting to be Placed on SCL

Name	Address	Phone Number
None to date.		

Table 8-6. SCL – School & Daycare Administrators for Facilities Near Site

Facility Name & Contact	Address	Phone Number
City of Rochester School 36 - Henry W. Longfellow (Pre-K through Grade 6) Principal: Paul Montanarello	85 Saint Jacob St, Rochester, NY	(585) 342-7270

Note: Henry W. Longfellow is located approximately 0.1 miles west of the Site and is the only school within a 0.25-mile radius of the Site. There are no daycare facilities known to be within a 0.5-mile radius of the Site.

Table 8-7. SCL – Document Repositories

Facility Name	Address	Phone Number
Monroe County Library	851 Joseph Avenue	(505) 420 0210
System - Lincoln Branch	Rochester, New York 14621	(585) 428-8210
Clough Harbour & Associates	16 Main Street West – Suite 830	(585) 262-2640
LLP	Rochester, New York 14614	

9.0 LAND USE FACTORS

9.1 DEVELOPMENT PATTERS AND PROPOSED SITE USE (NO. 1)

The Site is located in an area of mixed uses, including a mixture of residential and industrial uses. Given the proximity of the Site to nearby residences (including the parcel immediately south of the Site) and the presence of an existing school within 0.1-miles of the Site, a Catholic Community Center would be supported at the Site and community.

9.2 LOCAL ZONING LAWS (NO. 2)

The site is currently zoned Industrial (M-1). According to §120-83 of the City of Rochester Zoning Law, community centers can be permitted within a M-1 zoning district with a special use permit.

9.3 PROXIMITY OF LAND USES TO PROPERTY (NO. 12)

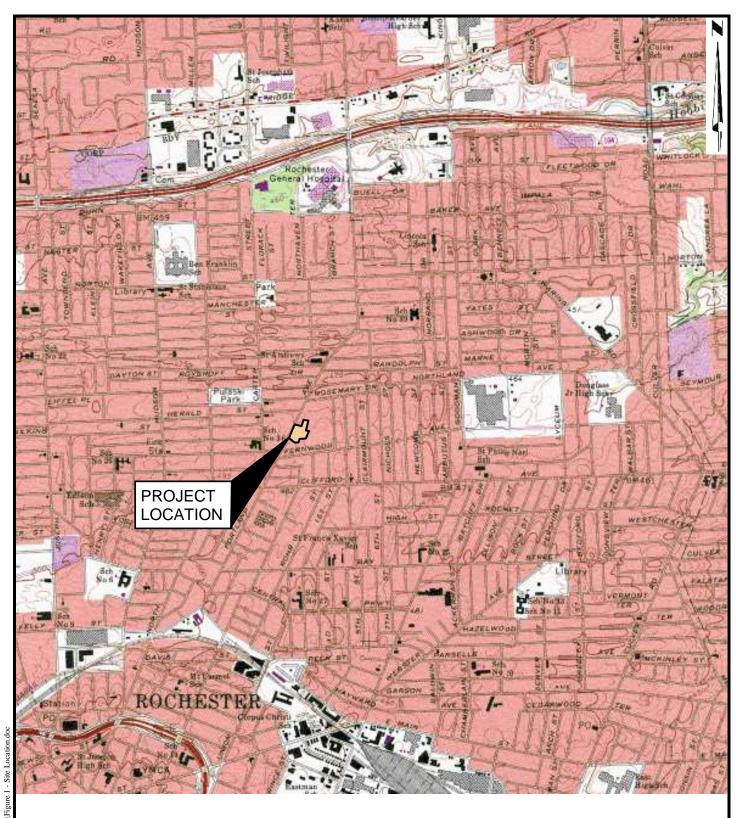
- Residential immediately adjacent to Site.
- Urban immediately adjacent to the Site.
- Commercial immediately adjacent to the Site.
- Industrial on Site and immediately adjacent to the Site.
- Agricultural no agricultural land within one-mile of the Site.
- Recreational there is a small park located approximately 1,000 feet northwest of the Site.

9.4 VULNERABILITY OF GROUNDWATER TO CONTAMINATION (NO. 13)

Groundwater was encountered at a depth of approximately 3 to 6 feet below the ground surface on the Site and within the immediately adjacent areas. Previous environmental investigations completed at the site have indicated that groundwater of the site has been impacted. The existence and/or extent of off-site migration or impacts relative to the potential for vapor intrusion have not been determined.

The site and surrounding properties are serviced by municipal water supplies derived from sources located several miles from the site. There are no known wellhead protection areas or groundwater recharge areas within a one-mile radius of the Site.

9.5 GEOGRAPHY & GEOLOGY OF SITE (NO. 14)


Based upon borings installed at the Site by Labella Associates, P.C., the soils beneath the site consist of sand intermixed with medium to fine angular gravel with little to trace amounts of silt to a maximum depth of approximately 13 feet below the ground surface, at which point bedrock was encountered. Based upon a network of groundwater monitoring wells installed at the Site, groundwater appears to be flowing in a northwesterly direction beneath the Site.

According to the United States Department of Agriculture (USDA) Soil Survey of Monroe County, New York, the surface soils at the site are mapped as smoothed urban land. Urban land is described as areas that have been so altered and obscured by urban works and structures that identification of the soils was not feasible. These areas are mainly in closely built-up parts of the City of Rochester.

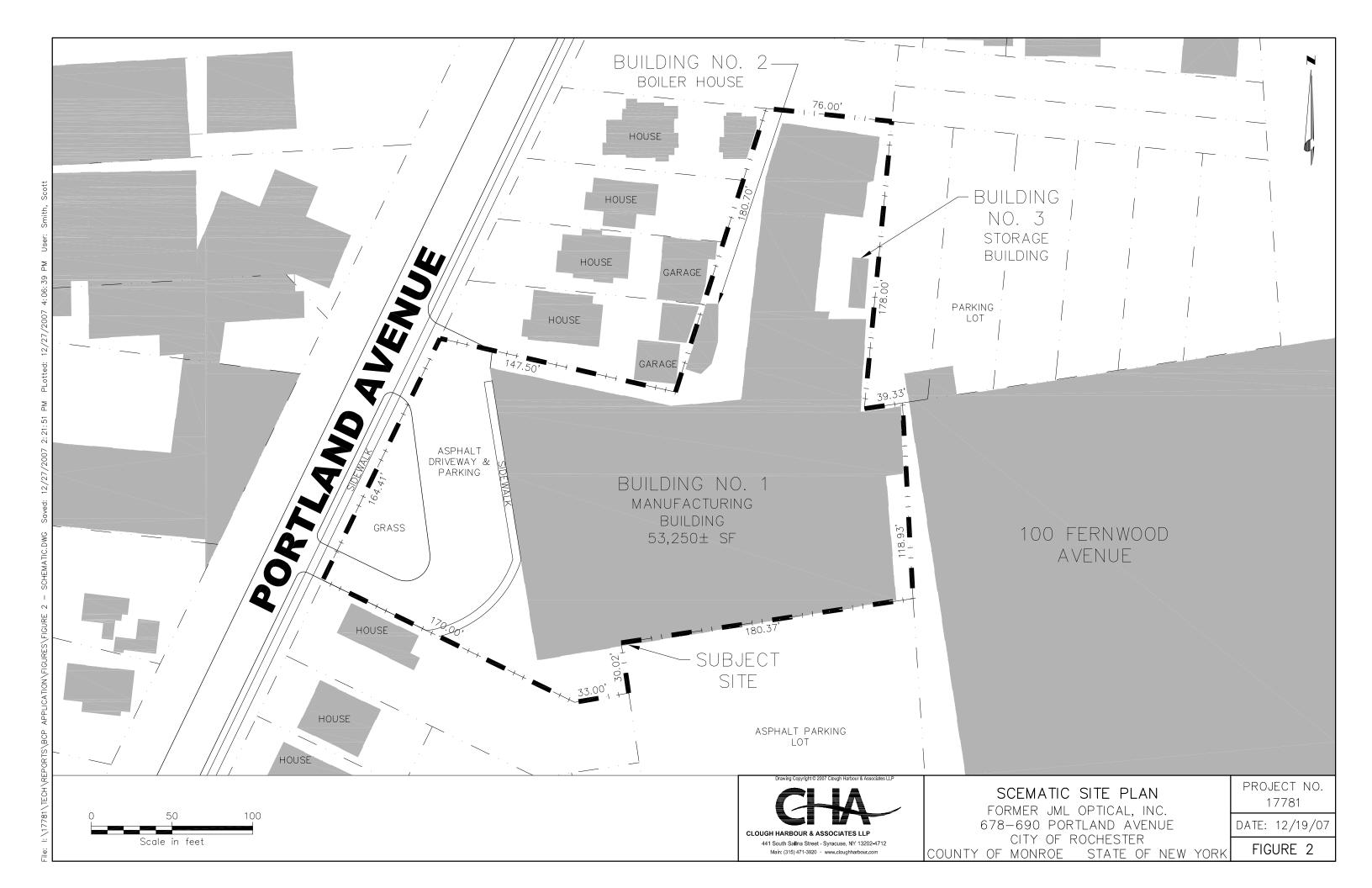
According to New York State Geological Survey, Finger Lakes Sheet, the surficial geology in the area of the subject property consist of lacustrine silts and clays, which are described as laminated silts and clay with variable thicknesses (up to 150 feet) deposited in proglacial lakes. The bedrock beneath the site is mapped as Oak Orchard and Penfield Dolostone of the Lockport Group.

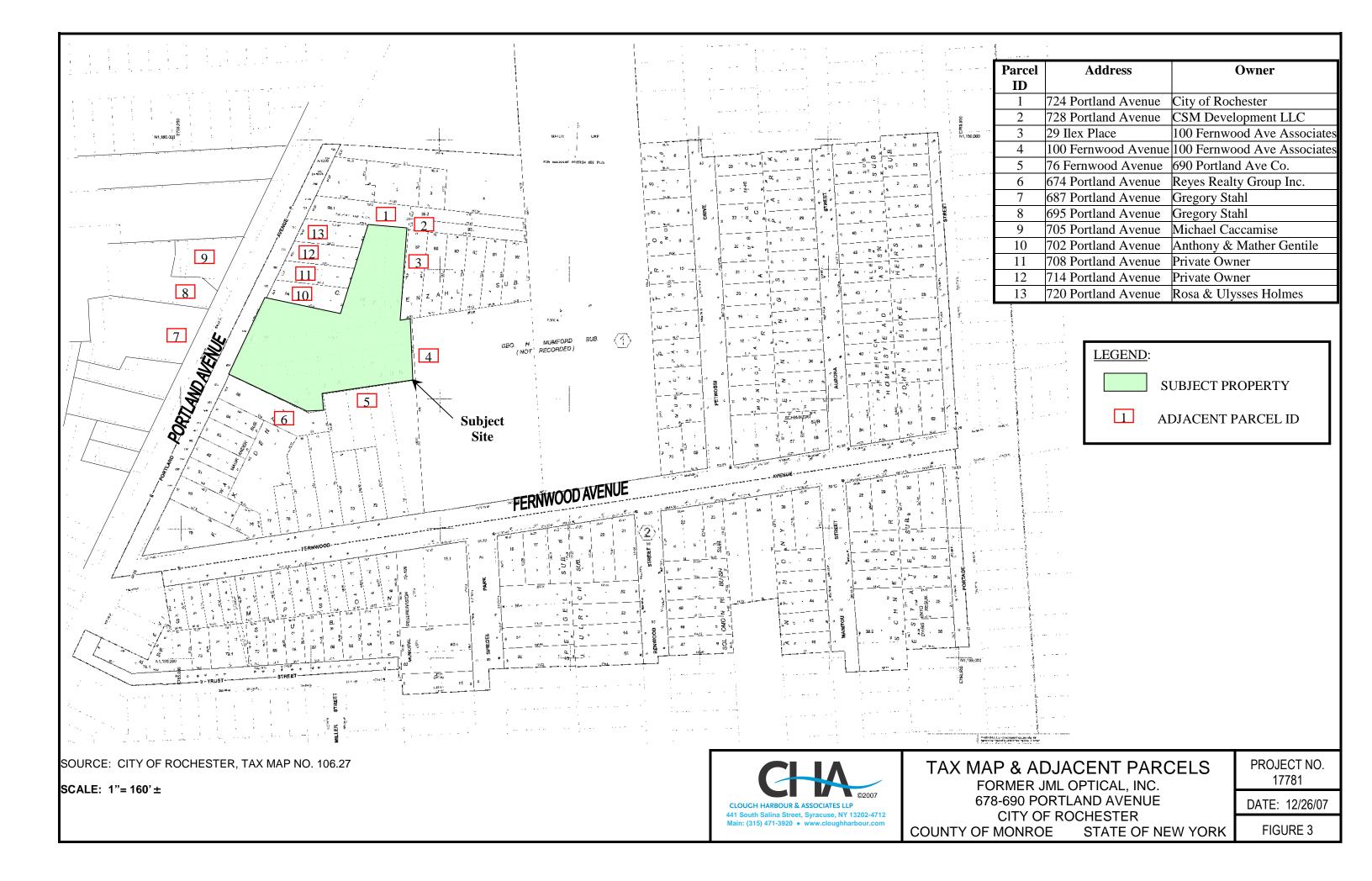
FIGURES

SOURCE: USGS QUADRANGLE – ROCHESTER EAST, NEW YORK. (1971, PHOTOREVISED 1978).

SCALE: 1"=2000' ±

SITE LOCATION MAP FORMER JML OPTICAL, INC. 678-690 PORTLAND AVENUE CITY OF ROCHESTER


COUNTY OF MONROE STATE OF NEW YORK


PROJECT NO. 17781

DATE: 12/26/07

FIGURE 1

-\17781\Tech\Renorts\BCP Application\Figure

APPENDIX A

Environmental Assessment Reports

Phase I Environmental Site Assessment

Location:

76 Fernwood Avenue and 690 Portland Avenue Rochester, New York14621

Prepared for:

Rochester Economic Development Corporation 30 Church Street Rochester, New York 14614

LaBella Project No. 206025

February 2006

Phase I Environmental Site Assessment

Location:

76 Fernwood Avenue and 690 Portland Avenue Rochester, New York14621

Prepared for:

Rochester Economic Development Corporation 30 Church Street Rochester, New York 14614

LaBella Project No. 206025

February 2006

Table of Contents

		Page					
1.0	Exec	utive Summary1					
2.0	2.0 Introduction						
-1	2.1	Objective2					
	2.2	Scope of Work					
	2.3	Limitations and Exceptions of Assessment					
	2.4	Conditions5					
	2.5	Information Reported by User5					
	2.6	User Reliance					
3.0	Site 1	Description & Site Reconnaissance5					
	3.1	Site Location, Legal Description and Current Use of					
		Site/Improvements on the Site5					
	3.2	Physical Setting/General Site Setting6					
	3.3	Current Uses of the Adjoining Property6					
	3.4	Site Reconnaissance					
4.0	Interviews12						
	4.1	Owner Representative					
	4.2	Maintenance Manger					
	4.3	NYSDEC12					
٠	4.4	City of Rochester 12					
5.0	Reco	Records Review12					
	5.1	Standard Environmental record Sources-Federal and State					
	5.2	Historical Use Information on the Property and Adjoining Properties23					
6.0	Findi	ngs, Conclusions, and Recommendations for Additional Services24					
7.0	Quali	fications of Environmental Professionals25					
8.0	Subși	urface Risks/Unanticipated Hazardous Materials26					
9.0	Certification27						
10.0	Signatures of Environmental Professionals27						

Figures & Photographs Appendices Engineering Architecture

Associates, P.O.

Environmental

300 State Street, Suite 201, Rochester, NY 14614

February 21, 2006

Phone 585.454.6110 Fax 585.454.3066 www.labellapc.com

Thaddeus S. Schofield Rochester Economic Development Corporation 30 Church Street Rochester, New York 14614

Re:

Phase I Environmental Site Assessment

76 Fernwood Avenue and 690 Portland Avenue, Rochester, New York 14621

LaBella Project No. 206025

Dear Mr. Schofield:

LaBella Associates (LaBella), has been contracted by Rochester Economic Development Corporation to perform a Phase I Environmental Site Assessment (ESA) Report at 76 Fernwood Avenue and 690 Portland Avenue located in the City of Rochester, Monroe County, New York 14621, hereinafter referred to as the "Site."

The findings of this report are based upon a preliminary assessment of the condition of the Site within the Scope of Work and objective described below as of the date of our Site observations and documentation review. This assessment was prepared according to the American Society for Testing and Materials (ASTM) Standard Practice E1527-00 to satisfy the due diligence requirements set for Rochester Economic Development Corporation. The information contained in this Report is considered privileged and confidential and is intended solely for the use of Rochester Economic Development Corporation as it applies to the Site.

1.0 Executive Summary

Based on the Scope of Work, the information detailed herein, the known history of the Site, and the current conditions relative to the Site, Recognized Environmental Conditions have been identified at the Site appear to include, but are not limited to the following Sections.

Section 3.4.2 - Stains, Corrosion, Strained Vegetation

Section 3.4.4 - Wastewater & Pits, Ponds, Lagoons

Section 3.4.5 - Wells

Section 3.4.6 - Hazardous Substance, Petroleum, Chemical Usage/Storage/Disposal

Section 5.1.7 - Review of IHWDS

Section 5.1.11 - On-Site Petroleum Storage

Section 5.1.12 - Off-Site Petroleum and Chemical Bulk Storage and Major Oil Storage Facilities

Section 5.1.14 - Review of Previous Environmental Reports

As detailed in Sections listed above, there appears to be Recognized Environmental Conditions at the Site with regard to chemical usage, petroleum storage, historical operations at the Site, and off-Site facilities with environmental issues. These RECs represent potential concerns with regard to soil and/or groundwater impairment at and in the immediate vicinity of the Site.

No determination can be made under the Scope of Work of this assessment regarding this potential impairment. Should the Owner wish to make a determination regarding the potential impairment of soil and/or groundwater at the Site, further investigation would be recommended. Typical methods of investigation include soil boring and sampling, test pitting, or the installation and sampling of groundwater monitoring wells.

2.0 Introduction

2.1 Objective

This investigation was requested to identify, to the extent feasible, Recognized Environmental Conditions in connection with the Site. The Phase I ESA was conducted in general conformance with the scope and limitations of ASTM Standard Practice E1527-00.

The term, Recognized Environmental Condition, is defined by ASTM as the presence or likely presence of any hazardous substances as currently defined by the Comprehensive Environmental Response Compensation and Liability Act; or the presence of petroleum products as defined by the Resource Conservation and Recovery Act, the Oil Pollution Act of 1990, and the Clean Water Act at the Site under conditions that indicate: an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures at the Site, or into the ground, groundwater or surface water of the Site.

The term is not intended to include "de minimis" conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of the appropriate regulatory agencies,

The performance of ASTM Practice E1527-00 is intended to reduce, but not eliminate, uncertainty regarding the potential for Recognized Environmental Conditions in connection with the Site recognizing reasonable limits of time and cost.

The objective of this Phase I Environmental Site Assessment was to determine, using our best professional judgment, by means of the Scope of Work hereafter described:

- 1. A general description of the Site.
- 2. The current and historical usage of the Site.
- 3. Whether Recognized Environmental Conditions exist or have the potential to exist at the Site.
- 4. Whether Site conditions suggest further evaluation based on the presence or probable presence of such Recognized Environmental Conditions.

2.2 Scope of Work

The major components of this ESA included a review of historical information regarding the Site, interviews with occupants and local government agency representatives, a visual inspection of the Site, and a review of standard environmental record sources relative to the Site.

The findings and conclusions presented in this report are based on information gathered and limitations set forth in this report.

The Scope of Work for this Phase I ESA did not include sampling or analysis of environmental media such as soil, sediment, surface water, groundwater, air, or building materials suspected to contain lead or asbestos.

The Scope of Work to be performed in this assessment is limited to the areas described as follows.

- 1. Interviews with the owner representative, Mr. Dick Bachelder, and the Site Manager, Mr. Chris Nichols, to determine if hazardous materials and wastes are generated by Site operations, or are stored on Site.
- 2. Reviews and interviews with each of the following to obtain information directly regarding environmental concerns at or in the immediate vicinity of the Site, which is available directly by file or through general knowledge of the individual being interviewed. Information sources include:
 - a. United States Environmental Protection Agency (USEPA)
 - b. New York State Department of Environmental Conservation (NYSDEC), Region (8); Division of Solid and Hazardous Waste, Division of Water, Legal Division
 - c. Monroe County Health Department (MCHD)
 - d. Monroe County Environmental Management Council-(MCEMC)
 - e. City of Rochester
- 3. Review of the following State and Federal environmental records and databases to aid in the identification of conditions at or related to the Site and property, adjacent to or in the immediate vicinity of the Site, including:
 - a. USEPA National Priority List (NPL)-1.0 mile
 - b. USEPA Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS)—0.5 mile
 - c. Archived (No further Remedial Action Planned-NFRAP) CERCLIS Sites-Site and immediate vicinity
 - d. USEPA Resource Conservation and Recovery Act (RCRA) Corrective Action Workload (CORRACTS) and Subject to Corrective Action (NON-CORRACTS) Treatment, Storage, and Disposal Facility Listing (TSD)—1.0 mile and 0.5 mile
 - e. USEPA Resource Conservation and Recovery Act (RCRA) Large and Small quantity Generator Listing—Site and immediate vicinity
 - f. National Response Center Emergency Response and Notification System Listing (ERNS)
 –Site itself
 - g. NYSDEC Registry of Inactive Hazardous Waste Disposal Sites (IHWDS)-1.0 mile
 - h. NYSDEC Hazardous Substance Waste Disposal Site Inventory-0.5 mile
 - i. NYSDEC Part 360 Permitted Solid Waste Disposal Facilities-0.5 mile
 - j. MCEMC Inventory of Waste Disposal Sites-0.5 mile

- k. NYSDEC Listing of Registered Petroleum Bulk Storage Facilities (PBS)—Site and immediate vicinity
- 1. NYSDEC Listing of Registered Chemical Bulk Storage Facilities (CBS)—Site and immediate vicinity
- m. NYSDEC Listing of Major Oil Storage Facilities (MOSF)-Site and immediate vicinity
- n. NYSDEC Listing of Active Spills-0.5 miles
- o. Previous Phase II Environmental Site Assessment-June 2005 by LaBella Associates, P.C.
- p. USGS Topographic Quadrangle Map Rochester East, New York
- q. US Department of Agriculture Monroe County Soil Survey
- r. Generalized Groundwater Contour Map of Monroe County
- s. Aerial Photographs of the area
- t. City of Rochester Directories
- u. Local Plat Maps
- v. Sanborn Fire Insurance Maps
- 4. Site Visit on January 26, 2006 by Mr. Michael F. Pelychaty of LaBella Associates, P.C., to photograph the Site and to visually identify areas of concern as defined in the agreement.
- 5. Completion of LaBella Associates, P.C.'s Phase I Site Condition Report.

2.3 Limitations and Exceptions of Assessment

The actual presence of radon, lead-based paint, lead in drinking water, mold-related issues, electromagnetic frequencies, asbestos-containing materials (ACM), wetlands, cultural and historic resources, ecological resources, and endangered species are not included in the Scope of Work of this assessment. Additionally, regulatory compliance, industrial hygiene, health and safety, and indoor air quality are not included in the Scope of Work of this assessment.

Due to post 9/11 terrorist related concerns the NYSDEC has suspended the availability of petroleum bulk storage facilities, chemical bulk storage facilities, major oil storage facilities, and spills databases to the public.

LaBella is utilizing existing databases, the NYSDEC website, and other research techniques to obtain this relevant environmental information for Phase I ESA Reports. Due to the location of some Sites, not all historical records and maps may be readily available for review.

The client should be aware that the lack of availability of the above referenced ASTM required databases may affect the findings of this Phase I ESA report.

The Site visit was limited to visual observations of accessible areas only. No attempt was made to observe conditions in spaces not generally accessible, including but not limited to:

- 1. Crawlspaces
- 2. Attics and roofs
- 3. Pipe chases or plenums
- 4. Spaces concealed by walls, floors, or ceilings
- 5. Materials concealed by paneling, carpeting, or wallpaper

The Site visit was also limited to visual observations of the perimeter of the property and other highly suspect accessible areas only. Visual observations were limited at the time of the Site visit due to excessive snow cover. Areas of the Site that were inaccessible were left to the discretion of the Environmental Professional conducting the Site visit.

2.4 Conditions

You have agreed that the Scope of Work described under the Scope of Work is acceptable to you and that to the fullest extent permitted by law, LaBella Associates, P.C. shall not be liable to you for limiting its investigation to the Scope of Work described.

Based on the engagement and Scope of Work agreed upon, our evaluation of the Site is as presented herein.

2.5 Information Reported by User

2.5.1 Environmental Liens, Specialized Knowledge of Recognized Environmental Conditions, and Title Records

According to Mr. Bachelder, there are no apparent environmental liens against the property.

According to the ASTM Standard Practice E1527-00, "the user should check or engage a title company or title professional to check reasonable ascertainable recorded land title records for environmental liens or activity and use limitations currently recorded against the property."

2.5.2 Reasons for Performing Phase I

This Phase I Environmental Site Assessment was performed as an environmental due diligence to protect the City of Rochester prior to taking title of the parcels located at 76 Fernwood Avenue and 690 Portland Avenue located in the City of Rochester, Monroe County, New York.

2.6 User Reliance

Rochester Economic Development Corporation may rely upon the findings of this report and should be aware of the agreed upon Scope of Work and the limitations associated with this Scope of Work.

3.0 Site Description & Site Reconnaissance

3.1 Site Location, Legal Description, and Current Use of Site/Improvements on the Site

The Site is an approximate 2.5 acre parcel located at 76 Fernwood Avenue and 690 Portland Avenue located in the City of Rochester, Monroe County, New York 14621 (Tax Account #s 106.270-0001-086 and 106.270-0001-071 respectively) (see Figure 1).

The Site is improved with three buildings. The main building at the Site is 53,249 +/- square feet in size, constructed of cement block walls, and a concrete slab on grade, except for a small portion of the building where a 300 +/- square foot basement is located. This building is heated with natural gas, connected to the public sewer system, and a public water drinking source. The Site was unoccupied at the time of the Site visit, and was most recently occupied by JML Optical, which manufactured specialty optical lenses. An interior layout of the building obtained from JML Optical is depicted on Figures 2 and 3. This building contains a partial second floor. A second level exists along the building façade to Portland Avenue that is utilized as office space and a second level exist along the northernmost portion of the building that was utilized for storage by JML Optical.

According to Mr. Nichols, chemicals formerly utilized by JML Optical including trichloroethylene (TCE) and acetone and are discussed in Section 3.4.6.

The second building at the Site is the former boiler house that is 728 +/- square feet in size, constructed with cement block walls, and a concrete sub grade floor. This building was unoccupied at the time of the Site visit and was most recently utilized for storage by JML Optical.

The third building at the Site is a 300 +/- square foot storage building that was formerly utilized by JML Optical to store chemicals. This building is not heated and is constructed with metal sided and concrete slab on grade. The presence of this chemical storage shed is discussed in Section 3.4.6.

The exterior portion of the Site primarily consists of an asphalt paved parking lot south of the building and extending to and entrance on Fernwood Avenue. In addition, a parking loop and about ten parking spaces are located to the west of the building. The north and east sides of the building generally extend approximately ten feet from the property line.

3.2 Physical Setting/General Site Setting

According to the 7.5 minute, Rochester East, New York quadrangle USGS Map, the Site consists of generally level land.

According to the USGS map, the nearest water body is the Genesee River, which is located approximately 6,000 feet to the west of the Site.

Based on interpretation of the USGS topographic map and the Generalized Groundwater Contour Map of Monroe County, groundwater flow at the Site appears to be to the northwest.

According to the U.S. Department of Agriculture, Monroe County Soil Survey (1973), soils at the Site consist mainly of Urban Land. Soils of this type are characterized by areas that have been altered and obscured by structures that identification of the soil is not feasible.

3.3 Current Uses of the Adjoining Property

The Site is bordered by the following properties.

North: Ilex Place, Residential, Auto Repair Shop

South: Residential, Vacant Industrial Building (NYSDEC IHWDS - Preferred Electric Motors)

East: Vacant Commercial Building (NYSDEC Brownfield Facility-Vogt Manufacturing)

West: Residential, Vacant Commercial Building

The property adjacent to the south of the Site is a listed as a NYSDEC IHWDS and, as such, is discussed in detail in Section 5.1.7.

The property adjacent to the east of the Site is a listed under the NYSDEC Brownfield Program and, as such, is discussed in detail in Section 5.1.7.

3.4 Site Reconnaissance

3.4.1 Methodology and Limiting Conditions

The Phase I Site Visit and interview with Mr. Chris Nichols were conducted by Mr. Michael F. Pelychaty on January 26, 2006. Representative photographs from the Site visit are included in the Figures and Photographs section of this report. The interview with Mr. Bachelder was conducted via a questionnaire and is included in Appendix 2.

Visual observation of the outdoor portions of the site was limited due to the size, presence of snow on the ground at the time of the Site visit. In addition the interior of the boiler building was not able to be fully inspected due to objects blocking the inspector's ability to observe and access portion of the interior of this structure the time of the Site visit.

Recognized Environmental Conditions were identified at the Site at the time of the Site. Refer to Section 3.4.2.

3.4.2 Stains, Corrosion, Strained Vegetation

At the time of the site visit, staining/areas of unusual corrosion/stained vegetation was observed inside of the chemical storage room. The location of the chemical storage area is depicted Figure 2.

Based on the fact that a stained surface was observed where chemicals were reportedly stored represents a REC with regard for the potential of fugitive discharges of chemicals to impact the soil and/or groundwater at the Site.

See Conclusion (Section 6.0).

3.4.3 Solid Waste Disposal/Fill

Based on visual observations, the known history of the Site, and interviews with Mr. Nichols, the MCEMC, and the NYSDEC, it is not suspected that solid waste disposal has taken place at the Site or in the immediate vicinity.

The Site is unoccupied and, as such, does not produce solid waste. Solid waste formerly generated at the Site included general office waste and waste chemicals. General office waste was disposed of by Waste Management and the chemicals were disposed of by Safety Kleen. Former chemical usage and storage at the Site is discussed in Section 3.4.6.

As such, there are no apparent RECs relating to solid waste disposal at the Site at this time.

3.4.4 Wastewater & Pits, Ponds, Lagoons

According to Mr. Bachelder, wastewater generated at the Site, including floor drains, discharges to the public sewer.

No dry wells, pits, ponds, or lagoons were noted at the Site.

A sump is located at the Site next to the former maintenance shop. A Phase II ESA prepared for the Site by LaBella Associates, P.C. investigated the subsurface environmental conditions in the vicinity of this sump and found soil impacted with chlorinated solvents. This area of impairment at the Site is discussed in detail in Section 5.1.14.

See Conclusion (Section 6.0).

3.4.5 Wells

Based on visual observations and readily available information regarding the Site including interviews with Mr. Nichols, and the NYSDEC, eight wells are located at the Site. These wells were installed during the Phase II ESA conducted by LaBella Associates, P.C. dated June 2005. Two of these wells were installed by the NYSDEC to investigate the adjacent NYSDEC listed IHWDS located at 42 Fernwood Avenue. The presence of the wells installed by LaBella Associates, P.C. are discussed in detail in Section 5.1.4 and the wells installed by the NYSDEC are discussed in Section 5.1.7.

See Conclusion (Section 6.0).

3.4.6 Hazardous Substance, Petroleum, Chemical Usage/Storage/Disposal

Based on visual observations, the known history of the Site, and available information from Mr. Nichols, the NYSDEC, the JML Optical site utilized acids, trichloroethylene (TCE), isopropyl alcohol (IPA), acetone, and oils in association with their former site operations.

Acids were utilized at the area of the Site depicted Figure 2 labeled the "Paint Storage Room." This room contained a wood floor and was located above the basement at the Site. Several one gallon or less sized containers were present at this location of the Site. There did not appear to be any leaks, spills or unusual odors in the vicinity of the chemicals stored in this room. Although these chemicals may not represent a REC at the Site at this time, it is recommended that JML Optical legally dispose of all chemicals at the Site.

TCE, IPA, acetone, and oil were utilized at the Site and stored in the chemical storage room (next to the compressor room) in 55-gallon drums. There appeared to be staining observed on the concrete floor in this room as noted in Section 3.4.2. The staining observed on the concrete floor at the chemical storage room at the time of the Site visit represents a REC with regard for the potential of soil and or groundwater contamination.

Waste TCE, IPA, acetone, and oil were reportedly stored in 55-gallon drums in the chemical waste storage area. The chemical waste storage area is depicted on Figure 2. Recycled TCE was stored in 55-gallon drums and located adjacent to this storage area in a separate room. There did not appear to be any evidence of staining, leaks, spills or unusual odors that would indicated at REC at the waste and recycled chemical storage area at the time of the Site visit.

According to Mr. Bachelder, waste chemicals were disposed of by Safety Kleen.

It should be noted that miscellaneous drums and containers of potential chemicals, petroleum, and hazardous waste were observed throughout out the Site as follows:

- One 55-gallon drum, two 30 gallons drums, and approximately five one to five gallon size containers were observed in the chemical storage shed at the Site. The location of the chemical storage shed in depicted on Figure 2.
- At least one 55-gallon drum was observed inside the boiler building at the Site. Potentially other containers are present, however, due to the condition of this building the entire interior was not able to be visually inspected.
- A waste container labeled Hazardous Waste was observed in the Planetary Room (see Figure 2) located underneath a sink against the west wall. This container appeared to be connected to the drainage system of the sink.

It is recommended that these containers be evaluated to determine the nature of their contents.

The sump at the Site that located adjacent to the former maintenance shop is apparently the source of underground contaminations. The sump was observed to contain sediment that may be characterized as a F006 hazardous waste based on the reported solvent use at the Site.

See Conclusion (Section 6.0).

3.4.7 PCBs

PCBs are most commonly associated with electrical equipment such as transformers and capacitors. Three pole mounted transformers /have been identified at the Site. They are located north of the boiler building.

Further information regarding these transformers has been requested from RG&E. As of the date of this report, a response was not received from RG&E.

A copy of the FOIL request is included in Appendix 3.

3.4.8 Asbestos

Asbestos is a known carcinogen, which has been used in a wide variety of building materials, including: floor and ceiling tile, thermal systems insulation (i.e., pipe wrap, boiler insulation, etc.), sprayed on insulation, roofing felts, wallboard, and other materials. Health concerns relating to asbestos are associated with fiber release from friable (ACMs), or materials that become friable upon disturbance.

The potential presence of ACM noted below is materials that could be visibly inspected during the Site visit.

Additional ACM may be present behind walls, above ceilings, in pipe chases, in crawlspaces, under carpeting and flooring, and in other inaccessible areas.

There is the potential presence of ACM in the building structure at the Site, as listed, but not limited to the following:

- Friable ACM (potential presence)
 - -Pipe wrapping
 - -Caulking/joint compounds
 - -Ceiling tiles
 - -Fire wall
 - -Plaster/Wallboard
- Non-Friable ACM (potential presence)
 - -Roofing and associated materials
 - -Flooring and associated materials

The potential ACM observed in the building at the time of the Site visit appeared in good to poor condition.

The actual presence of friable and non-friable ACM can only be determined through an asbestos survey of the building structure, including sampling and analysis by certified personnel. There are currently no regulations that require that ACM be removed from the building structure at the Site. There are, however, regulations pertaining to the maintenance, renovation, and demolition of ACM. Therefore, prior to performing construction activities that would disturb potential ACM at the Site, it is recommended that all potential friable and non-friable ACM be sampled and analyzed to determine: amount, type, and condition of friable and non-friable ACM at the Site and costs associated with asbestos abatement or maintenance.

3.4.9 Radon

Radon, a naturally occurring odorless, colorless, radioactive gas, is found throughout the country. Prolonged exposure to elevated, indoor radon levels have been associated with increased risks of lung cancer.

Radon is associated with the occurrence of certain geologic conditions and rock types. Rock types with the potential of emitting radon are present in Monroe County.

The USEPA has established an action level of 4.0 picocuries/L of air as a recommended action level, where radon abatement measures should be taken.

According to the New York State DOH Basement Radon Survey, radon screenings in the City of Rochester yielded an average radon reading of 1.88 -pCi/L. This average radon reading is below the 4-pCi/L-action level suggested by the EPA for residential structures.

Radon levels can vary depending on such factors and building construction and geologic conditions. For instance, radon tends to infiltrate and accumulate in basements and crawlspaces. Although Site-specific radon levels cannot be determined without site-specific testing, given the average radon reading in the City of Rochester, and the slab-on-grade construction, radon does not appear to represent a significant environmental concern for the subject property at this time.

Based on the limited data available regarding radon levels in the vicinity of the Site and the variability associated with the presence of radon, it is not possible to conclusively identify Site-specific radon levels during a Site visit or through interviews. The actual indoor radon level can only be determined through sampling and analysis by qualified personnel.

As stated in the LIMITATIONS AND EXCEPTIONS Section, it is understood that no further assessment will be required at this time pertaining to the presence of radon at the Site.

3.4.10 Lead-Based Paint

Lead-based paint was widely used throughout the country for many years. It has been associated with lead poisoning resulting from ingestion of paint chips and inhalation of sanding dust. The sale of lead-based paint in interstate commerce of residential paints was banned in 1977.

It is not possible to conclusively identify the presence of lead-based paint at the Site under the scope of this assessment. The actual presence of lead-based paint can only be determined through sampling and analysis by qualified personnel.

This sampling and analysis is similar to asbestos sampling in that samples must be physically removed from areas of the Site and analyzed in an approved laboratory. A common method for obtaining these samples is coring, which will cause damage to the area being sampled.

As stated in the LIMITATIONS AND EXCEPTIONS Section, it is understood that no further assessment will be required at this time pertaining to the presence of lead-based paint at the Site.

3.4.11 Air Emissions

Based on the visual Site observation, the history of the Site, and interviews with Mr. Nichols, the NYSDEC, and the City of Rochester, it is not suspected that regulated air emission points and control equipment exist or have existed at the Site. It should be noted that an apparent exhaust stack is located at the boiler building. This stack may have formerly been utilized to emit off gases when the boiler was in operation at the Site.

As such, there are no apparent RECs relating to air emissions at the Site at this time.

3.4.12 Other Recognized Environmental Conditions

No other Recognized Environmental Conditions were noted at the Site at this time.

The Site Condition checklist is included as Appendix 1.

4.0 Interviews

4.1 Owner Representative

Mr. Dick Bachelder was interviewed as a part of this assessment. The notes from the interview are included in Appendix 2.

4.2 Maintenance Manger

Mr. Chris Nichols was interviewed as a part of this assessment. A copy of the interview record is included in the Site Condition checklist in Appendix 2.

4.3 New York State Department of Environmental Conservation

A Freedom of Information Law (FOIL) Request was submitted to the NYSDEC (January 13, 2006). As of the date of this report submission, a response has not been received from the NYSDEC. Any pertinent information received as a result of this FOIL request will be included as a Letter of Addendum.

A copy of the FOIL request is included in Appendix 3.

4.4 City of Rochester

A Freedom of Information Law (FOIL) Request was submitted to the City of Rochester (January 16, 2006). As of the date of this report submission, a response has not been received from the City of Rochester. Any pertinent information received as a result of this FOIL request will be included as a Letter of Addendum.

A copy of the FOIL request is included in Appendix 3.

5.0 Records Review

The following Federal, State and local environmental records were reviewed as a part of this assessment:

- a. USEPA National Priority List (NPL)-1.0 mile
- b. USEPA Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS)–0.5 mile
- c. Archived (No further Remedial Action Planned-NFRAP) CERCLIS Sites-Site and immediate vicinity
- d. USEPA Resource Conservation and Recovery Act (RCRA) CORRACTS and NON-CORRACTS Treatment, Storage, and Disposal Facility Listing (TSD)—1.0 mile and 0.5 mile

- e. USEPA Resource Conservation and Recovery Act (RCRA) Large and Small quantity Generator Listing-Site and immediate vicinity
- f. National Response Center Emergency Response and Notification System Listing (ERNS)–Site itself
- g. NYSDEC Registry of Inactive Hazardous Waste Disposal Sites (IHWDS)-1.0 mile
- h. NYSDEC Hazardous Substance Waste Disposal Site Inventory-0.5 mile
- i. NYSDEC Part 360 Permitted Solid Waste Disposal Facilities-0.5 mile
- j. MCEMC Inventory of Waste Disposal sites-0.5 mile
- k. NYSDEC Listing of Registered Petroleum Bulk Storage Facilities (PBS)—Site and immediate vicinity
- l. NYSDEC Listing of Registered Chemical Bulk Storage Facilities (CBS)—Site and immediate vicinity
- m. NYSDEC Listing of Major Oil Storage Facilities-Site and immediate vicinity
- n. NYSDEC Listing of Active Spills-0.5 miles
- o. Previous Phase II Environmental Site Assessment-June 2005 by LaBella Associates, P.C.

5.1 Standard Environmental Record Sources - Federal and State

5.1.1 Review of NPL

Review of relevant documents has revealed that the Site is not listed on the USEPA's National Priority List (January 2006) nor are any NPL Listings located within a one-mile radius of the Site. According to the EPA's NPL Website listing, this website was last updated January 5, 2006.

As such, there are no apparent RECs regarding NPL Listings at the Site at this time.

5.1.2 Review of CERCLIS

Review of relevant documents has revealed that the Site is not listed on the USEPA's CERCLIS Listing (January 2006) nor are any CERCLIS Listings located within a one-half mile radius of the Site. According to the EPA's CERCLIS Website listing, this website was last updated December 7, 2005.

As such, there are no apparent RECs regarding CERCLIS Listings at the Site at this time.

5.1.3 Review of CERCLIS NFRAP Listing

Review of relevant documents has revealed that the Site is not listed on the USEPA's CERCLIS NFRAP Listing (January 2006) nor are any CERCLIS NFRAP Listings located adjacent to or in the immediate vicinity of the Site. According to the EPA's CERCLIS NFRAP Website listing, this website was last updated December 7, 2005.

As such, there are no apparent RECs regarding CERCLIS NFRAP Listings at the Site at this time.

5.1.4 Review of RCRA TSD Facilities Listing

According to the USEPA's RCRA TSD non-CORRACTS Site Listing, there is one RCRA TSD Facility site within a one-mile radius of the Site. This facility is discussed herein, including: potential effects on the Site based on the nature of RCRA TSD Facility's operation, general groundwater flow in the area, and distance from the Site.

A. Bausch and Lomb Optics EPA ID#NYD002207751

1400 North Goodman Street, Rochester

The Bausch and Lomb Optics site is located approximately 2,800 feet to the east of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and away from the Site.

According to the RCRA TSD Listing, this facility conducts operations that include the manufacturing of optical instruments and lenses.

Based on the distance of this facility from the Site and the apparent flow of groundwater to the northeast and away from the Site, there are no apparent RECs regarding this RCRA TSD listing at the Site at this time.

A copy of the RCRA TSD Listing is included in Appendix 4.

5.1.5 Review of RCRA Generator Listing

According to the USEPA's RCRA Generator Listing the Site is listed as a RCRA small quantity generator, and there is one RCRA Generator facility located adjacent to or in the immediate vicinity of the Site. It is the following:

RCRA Generator Facilities

Facility Name	Address	Activity	RCRA ID#
Preferred Electric Motors	42 Fernwood Avenue	LQG _	NYP003602448

 $LQG = Large \ Quantity \ Generator - a facility that generates > 1,000 \ kilograms of regulated waste per month SQC = Small \ Quantity \ Generator - a facility that generates between <math>100 - 1,000 \ kilograms$ of regulated waste per month.

The Preferred Electric Motors facility also a listed NYSDEC IHWDS and, as such, is discussed in detail in Section 5.1.7.

Hazardous waste storage at the Site is discussed in Section 3.4.6.

Copies of the RCRA Generator Listings are included in Appendix 4.

5.1.6 Review of Federal ERNS Listing

Review of relevant documents has revealed that the Site is not listed on the USEPA's ERNS Listing (January 2006). According to the EPA's ERNS Website listing, this website was last updated January 22, 2006.

As such, there are no apparent RECs regarding the status of the Site as an ERNS facility at the Site at this time.

5.1.7 Review of IHWDS, Brownfield Cleanup Sites, and Voluntary Cleanup Sites

According to the NYSDEC Listing of IHWDS, there is one IHWDS, one Brownfield Cleanup Site, and one Voluntary Cleanup Site within a one-mile radius of the Site. They are the following:

A.	Former Vogt Manufacturing Site Code: C828119	100 Fernwood Avenue, Rochester
В.	Preferred Electric Motors, Inc. Site Code: 828106	42 Fernwood Avenue, Rochester
C.	Christopher Services, Inc.	501 & 503 Wilkins Street, Rochester

These disposal sites are discussed herein, including: potential effects on the Site based on the nature of materials disposed, general groundwater flow in the area, and distance from the Site.

A. Former Vogt Manufacturing

Site Code: V00664

The Former Vogt Manufacturing disposal facility is located adjacent to the east of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and toward the Site.

According to the NYSDEC Brownfield Cleanup Site Program Listing, the former Vogt Manufacturing Site is located in an urban portion of the City of Rochester, Monroe County. The main feature is a large unoccupied building (approximately 120,000 square feet) and surrounding parking areas. A smaller building (approximately 3,000 square feet) is also present at the facility and currently used as a church. Approximately one quarter of the facility is undeveloped. The surrounding parcels include a combination of commercial, industrial and residential uses. The large building was constructed in the late 1920s as a manufacturing facility for automobile trimmings. It was later converted for multi-tenant light industrial/commercial use, including plastic products manufacturing, tool and die makers, machine shops, painters, printers, graphics companies, and sheet metal contractors. It has been vacant since 2002. Specific prior uses that led to facility contamination have not been identified. However, a number of the past manufacturing operations may have resulted in the disposal of hazardous substances, including petroleum products and chlorinated solvents. Possible disposal of pesticides, PCBs, and heavy metals is also being evaluated. In 2004 and 2005, several petroleum underground storage tanks were removed. A Remedial investigation work is on-going.

Based on observations made at the time of the Site visit, there appears to be an underground remediation system in-place at this facility approximately 25-feet east of the Site. In addition, the previous Phase II ESA conducted by LaBella Associates, P.C. detected petroleum related compounds in the soil and groundwater at the Site's east property line adjacent to where the underground remediate system was observed. Based on the fact that there is known contamination at the Site and an apparent remedial system was observed in close proximity to the Site, represents a REC at the Site with regard for contamination at this facility to migrate through the soil and groundwater and onto the Site.

See Conclusion (Section 6.0).

B. Preferred Electric Motors, Inc.

The Preferred Electric Motors disposal facility is located adjacent to the south of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and toward the Site.

According to the NYSDEC IHWDS Listing, Preferred Electric Motors facility consists of a large two story building that occupies most of the property with a small courtyard and driveway. It was a small family owned and operated business where electric motors were rebuilt and refurbished. This facility operated for about 53 years at this location, and is currently closed. Halogenated solvents were used during manufacturing for cleaning and degreasing metal parts, and the facility used a trichloroethylene (TCE) vapor degreaser. In July of 2000, several decaying drums of spent solvents and oils were removed from the facility. Many of these drums were noted to be leaking. The owner conducted a limited soil investigation of the property in 2000. The investigation discovered the presence of an abandoned underground storage tank and areas of chlorinated solvents soil contamination. Surface and sub-surface soils showed considerable solvent contamination, and disposal of halogenated solvents (F002 Waste) has been confirmed. In 2000 the NYSDOH conducted indoor air sampling in houses adjacent to the facility, and indoor air contamination was confirmed. In the fall of 2000, a soil vapor extraction (SVE) system was installed on the property of adjacent houses in order to help minimize the impact of vapor migration into the house.

Ms. Valerie Woodward of the NYSDEC was contacted regarding two groundwater monitoring wells installed by the NYSDEC on the Site. On February 2, 2006, Ms Woodward forwarded analytical results from the two groundwater well installed by the NYSDEC and from wells MW-1 and MW-2 installed during the previous Phase II ESA by LaBella Associates, P.C. In summary, chlorinated solvents were detected in the groundwater at the Site above New York State Part 703 groundwater standards. Based on the close proximity of this facility to the Site, the apparent general flow of groundwater to the northeast and toward the Site, the previous Phase II ESA by LaBella Associates, P.C., and that chlorinated solvents have migrated from this facility and onto the Site, this facility represents a REC at the Site at this time.

A copy of the analytical results and information obtained from Ms. Woodward is included in Appendix 3.

See Conclusion (Section 6.0).

C. Christopher Services, Inc.

The Christopher Services, Inc disposal facility is located approximately 2,500 feet northwest of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and away from the Site.

According to the NYSDEC Voluntary Cleanup Listing, this property consists of two one-story buildings of concrete block construction with several bay doors in the front of both buildings. Currently the building located at 501 Wilkins Street is utilized for the loading and unloading of clean and dirty laundry and the building located at 513 Wilkins Street is utilized for limited storage. Both buildings have concrete floors with no basements. A floor drain was identified in the building at 513 Wilkins Street. The discharge point of the floor drain is unknown, however, samples of sludge from the floor drain contained PCE at a concentration of 6500 ppm. The Volunteer proposes to demolish the building and excavate the floor drain. Both buildings are connected to natural gas for heat. Additionally, both buildings have city-supplied water and sanitary sewer.

Based on the distance of this facility from the Site and the apparent flow of groundwater to the northeast and away from the Site, there is no apparent REC regarding this facility at the Site at this time.

Copies of the IHWDS and Brownfield Cleanup Site Listings are included in Appendix 4.

5.1.8 Review of NYSDEC Hazardous Substance Disposal Inventory_

Review of relevant documents has revealed that the Site is not listed on the New York State Directory of Hazardous Substance Disposal sites, last updated in 1998, nor are any Hazardous Substance Disposal Sites Listings located within a one half-mile of the Site.

As such, there are no apparent RECs regarding Hazardous Substance Disposal Site Listings at the Site at this time.

5.1.9 State Listed Solid Waste Facilities

According to the NYSDEC Listing of Solid Waste Facilities, there are no records indicating that NYSDEC Part 360 Permitted Solid Waste Disposal Facilities exist within a one half-mile radius of the Site. The Part 360 Permitted Solid Waste Disposal Facility listing was obtained from the NYSDEC website last updated in May 2005.

As such, there are no apparent RECs regarding State Listed Solid Waste Facilities in the vicinity of the Site.

5.1.10 Review of Local Disposal Sites

According to the Monroe County EMC, (January 2006) and review of aerial photography there are three waste disposal sites within a one half-mile radius of the Site. These disposal sites are discussed herein; including potential effects on the Site based on the nature of materials disposed, general groundwater flow in the area, and distance from the Site.

	Waste Present	Approximate Distance from Site	Approximate Direction from Site	Inferred GW Flow Direction in Vicinity of Waste Area	Recognized Environmental Condition at Site
City of Rochester Waste Location #199	This facility	is a NYSDEC II	HWDS (Preferred	Electric Motors) and is discuss	ed in Section 5.1.7 above.
City of Rochester Waste Location #207	This facility is a NYSDEC Brownfield Cleanup Site (Vogt Manufacturing) and is discussed in Section 5.1.7 above.				
City of Rochester Waste Location #209	This facility 5.1.7 above		oluntary Cleanup	Site (Christopher Services, Inc.	.) and is discussed in Section

Copies of the Local Waste Disposal Listings are included in Appendix 4.

5.1.11 On-Site Petroleum Storage

Based on visual Site observation, the known history of the Site, and interviews with Mr. Bachelder, the NYSDEC, and the City of Rochester, it appears that one 4,000 gallon underground fuel oil tank was removed from the Site (City of Rochester Permit #0988425, date issued December 20, 1998). It should be noted that the NYSDEC PBS Facility Information Report indicates that a 5,000 gallon underground fuel oil tank was removed in March of 1999. Although, the size of the tanks are listed different, according to JML Optical, only one known underground tank was located at the Site and was removed in March of 1999.

According to the NYSDEC Active Spill Listings, there is one active spill listed for the Site, NYSDEC Spill #9870600. This spill was reported to the NYSDEC on March 29, 1999 regarding contaminated soil encountered during a 4,000-5,000-gallon underground tank removal by Piedmont.

According to the NYDEC Spill Report Form, the soil is to be tested and a Geoprobe investigation around the tank pit will be conducted. In addition, a sheen was observed on the groundwater at approximately 9-feet below the ground surface. Due to the proximity of the tank to the building no further excavation was possible. JML Optical is to finish the removal of the tank and propose a Remedial Action Plan. No further information was provided.

LaBella Associates advanced one soil boring and monitoring well at the former tank pit. Petroleum related volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) were detected in the soil below NYSDEC recommended cleanup objectives and petroleum and chemical related VOCs and petroleum related SVOCs were detected in the groundwater at levels above the New York State (NYS) Part 703 Groundwater Standards.

Based on the fact there is an active NYSDEC Spill associated with the former underground fuel oil tank at the Site and the previous Phase II ESA conducted by LaBella Associates detected subsurface impairment in the reported former tank pit, the former presence of this underground fuel oil tank represents a REC at the Site with regard to soil and groundwater impairment.

See Conclusion (Section 6.0).

A copy of the Petroleum Bulk Storage Listing is included in Appendix 4.

5.1.12 Off-Site Petroleum and Chemical Bulk Storage and Major Oil Storage Facilities

According to the visual observation of the area in the vicinity of the Site, the NYSDEC Petroleum Bulk Storage Database for Region 8, the NYSDEC Chemical Bulk Storage Database for Region 8, the NYSDEC Major Oil Storage Facility Database for Region 8, and the City of Rochester Building Information System (BIS), four petroleum bulk storage facilities have been identified in the vicinity of the Site. They are the following:

A.	Preferred Electric Motors	42 Fernwood Avenue, Rochester
B.	Vogt Manufacturing	100 Fernwood Avenue, Rochester

- C. 705 Portland Avenue, Rochester
- D. 730 Portland Avenue, Rochester

As stated in the LIMITATIONS and EXCEPTIONS Section, current information from the NYSDEC regarding PBS, CBS and MOSF facilities has been suspended due to post 9/11 terrorist related concerns.

These facilities are discussed herein, including: available information from the City of Rochester BIS and the NYSDEC.

A. Preferred Electric Motors

This PBS facility is located adjacent to the south of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and toward the Site.

According to the NYSDEC IHWDS Report, an abandoned underground storage tank is located at the Site. The NYSDEC IHWDS does not indicate whether this tank was removed. As discussed in Section 5.1.7, the presence of this facility in close proximity to the Site and information obtained from groundwater samples collected at the Site represents a REC at the Site.

See Conclusion (Section 6.0).

B. Vogt Manufacturing

This PBS facility is located adjacent to the east of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and toward the Site.

According to the City of Rochester BIS, the following permits relating to PBS were on file for this facility.

Permit #	Date Issued	General Description
1048043	11/15/1994	Remove 8,000-gallon fuel tank
0323892	6/9/1980	Remove 1,000-gallon underground gas tank and pump
0201846	9/15/1971	Install one 1,000-gallon gas tank and pump
0162792	8/30/1955	Install 15,000-gallon fuel oil tank
0153711	7/16/1952	Install one 8,000-gallon tank

As discussed in Section 5.1.7, this facility is under the NYSDEC Brownfield Cleanup Program. In addition, it appears that some or all of the tanks listed above were located approximately 30 feet from the Site. As indicated in Section 5.1.7 above the presence of this facility in close proximity to the Site and analytical results from groundwater samples collected and analyzed during the previous Phase II ESA conducted at the Site, represents a REC at the Site with regard to petroleum related compounds migrating through the soil and/or groundwater from this facility and onto the Site.

See Conclusion (Section 6.0).

C. 705 Portland Avenue

This PBS facility is located approximately 40 feet northwest of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and away from the Site. This facility appears to be presently occupied by CC Caccamise Electrical Contractors.

According to the City of Rochester BIS, the following permits relating to PBS were on file for this facility.

Permit #	Date Issued	General Description
0832323	6/13/1983	Remove one 550-gallon fuel oil tank
0190322	1/10/1967	Convert gas station into tool die storage
0135699	6/23/1947	Construct gas station

According to the NYSDEC Active Spill Listings, there do not appear to be any active or closed spills on file for this facility.

Based on the fact that there are no Active NYSDEC Spills associated with this facility and the apparent flow of groundwater to the northeast and away from the Site, there are no apparent RECs regarding this PBS Facility at the Site at this time.

D. 730 Portland Avenue

This PBS facility is located approximately 40 feet north of the Site. According to the Generalized Groundwater Contour Map of Monroe County prepared for the MCEMC, the general flow of groundwater in the vicinity of this facility appears to be to the northeast and away from the Site. This facility appears to be presently occupied by and auto repair shop.

According to the City of Rochester BIS, the following permits relating to PBS were on file for this facility.

Permit #	Date Issued	General Description
0193845	10/25/1966	Change use from gas station to welding shop
0166122	11/7/1956	Install three 3,000-gallon gas tanks and pumps
0165466	8/13/1956	Build masonry gas station

According to the NYSDEC Active Spill Listings, there do not appear to be any active or closed spills on file for this facility.

Based on the fact that there are no Active NYSDEC Spills associated with this facility and the apparent flow of groundwater to the northeast and away from the Site, there are no apparent RECs regarding this PBS listing at the Site at this time.

5.1.13 Leaking Underground Storage Tank and Spill Sites

Based on a visual observation of the area in the vicinity of the Site, the NYSDEC Listing of Active Spills in Region 8, and the City of Rochester, two reported active spills, as defined by current NYSDEC regulations have been identified within a 0.25-mile radius of the Site. Based on the dense urban area of the Site, as per ASTM Standard, the search radii for NYSDEC Active spill database has been reduced from 0.5-mile to 0.25-miles from the Site. According to the NYSDEC Spills Website listing, this website is updated weekly. These facilities are discussed herein, including: available information from the NYSDEC.

NYSDEC Active Spill #	Facility Name	Location	Approximate Distance from Site	Approximate Direction from Site	Inferred Groundwater Flow Direction	Spill Notes	Recognized Environmental Condition (Y/N)
9314287	Atlantic Service Station	540 Portland Avenue	1,300 feet	Southwest	Northeast and away from the Site.	Contaminated soil and groundwater was discovered as part of an environmental audit. An oxygen injection system is to be installed.	No, based on the distance of this facility from the Site and the apparent flow of groundwater to the north any away from the Site.
0310371	Conifer Realty	100 Fernwood Avenue	This facility is a discussed in Sec	lso listed under the tion 5.1.7 above.	ne NYSDEC Brown	nfield Cleanup Progra	am and is

As detailed in the table above, NYSDEC Spill #9314287 does not appear to represent a REC at the Site, due to the distance of the facility from the Site and the apparent flow of groundwater to the northeast and away from the Site.

NYSDEC Spill #0310371 is located at an adjacent property that is also listed under the NYSDEC Brownfield Cleanup Program and is discussed in Section 5.1.7 above.

Copies of the NYSDEC Spill Report Forms are included in Appendix 4.

5.1.14 Review of Previous Environmental Reports

Review of the Previous Phase II ESA Report completed by LaBella Associates, P.C. dated June 2005 indicated that areas of impairment exist at the Site from the following sources:

- The adjacent off-Site NYSDEC IHWDS facility located at 42 Fernwood Avenue contained solvent related compounds that appear to have migrated through the groundwater and onto the Site. Additional information obtained from the NYSDEC has confirmed this source.
- The adjacent off-Site Brownfield site to the east located at 100 Fernwood Avenue has petroleum related compounds that appear to have migrated through the soil and groundwater and onto the Site.

- Petroleum related compounds remain in the soil and groundwater in the vicinity of the former UST pit at the Site.
- Solvent related compounds have been released into the soil and groundwater from historical use of chlorinated solvents at the Site. The source of the impairment appears to be the sump located adjacent to the maintenance shop.

As of the date of this report submission, it does not appear that remedial activities have taken place at the Site, and therefore these issues represent a REC at the Site.

A copy of the text from the Phase II ESA by LaBella Associates, P.C. dated June 2005 is included in Appendix 6.

5.2 Historical Use Information on the Property and Adjoining Properties

In accordance with ASTM Standard 1527-00, the following sources of historical information were reviewed as a part of this assessment.

- a. Aerial photographs of the area
- b. Interview with Site Manger
- c. City of Rochester Directories
- d. Plat maps
- e. Sanborn Fire Insurance Maps

Based on review of readily available historical information, it appears that the Site was utilized as residential property and a commercial food business at the 76 Fernwood Avenue parcel from approximately 1930 to 1970. The 690 Portland Avenue parcel appears to have been undeveloped until 1930 when Ilex Optical constructed the original portion of the building at the Site to manufacture specialty optical lenses and shutters. The buildings located at the 76 Fernwood Avenue parcel appear to have been razed in the early 1970s followed by the construction of a parking area for ILEX Optical. Also an addition was added onto the existing building located at the 690 Portland Avenue parcel. According to Mr. Bachelder, ILEX optical was sold to JML Optical in approximately 1985 and has remained a specialty manufacturer of optical lenses at the Site until November 2005 when JML Optical moved it operation to a different facility. The Site has remained vacant and owned by JML Optical to the present.

This review of readily available historical information has not revealed any issues of concern due to past ownership.

The following observations were made from the review of the historical aerial photographs:

Date of Photo	Notes (include changes at the Site, disturbance, etc.)	
1930, 1951, 1961, and 1970	The original portion of the building at 690 Portland Avenue appears to be present and two buildings appears to be located at the 76 Fernwood Avenue parcel at the Site. The surrounding properties that border the Site appears to consist of a mix of residential and commercial buildings.	
1978, 1988, 1993, 1996, and 1999	The original portion of the building at 690 Portland Avenue appears to be present along with the addition to the south of the original building that was reportedly added in the early 1970s. A parking area appears to present to the south of the building and an entrance added to the Site at the 76 Fernwood Avenue parcel appears to be present where two former buildings were observed in earlier dated aerial photographs of the Site. The surrounding properties that border the Site appears to consist of a mix of residential and commercial buildings.	

Copies of the aerial photographs are included in Appendix 5.

The property abstract was not readily available at the time the Phase I ESA was performed, and as such, was not reviewed as part of this Phase I ESA report.

6.0 Findings, Conclusions, and Recommendations for Additional Services

LaBella Associates has performed a Phase I Environmental Assessment in general conformance with the Scope and Limitations of ASTM Practice E 1527-00 of 76 Fernwood Avenue and 690 Portland Avenue located in the City of Rochester, Monroe County, New York 14621. Based on the Scope of Work, the information detailed herein, the known history of the Site, and the current conditions relative to the Site, Recognized Environmental Conditions have been identified at the Site appear to include, but are not limited to the following Sections.

Section 3.4.2 - Stains, Corrosion, Strained Vegetation

Section 3.4.4 - Wastewater & Pits, Ponds, Lagoons

Section 3.4.5 - Wells

Section 3.4.6 - Hazardous Substance, Petroleum, Chemical Usage/Storage/Disposal

Section 5.1.7 - Review of IHWDS

Section 5.1.11 - On-Site Petroleum Storage

Section 5.1.12 - Off-Site Petroleum and Chemical Bulk Storage and Major Oil Storage Facilities

Section 5.1.14 - Review of Previous Environmental Reports

As detailed in Sections listed above, there appears to be Recognized Environmental Conditions at the Site with regard to chemical usage, petroleum storage, historical operations at the Site, and off-Site facilities with environmental issues. These RECs represent potential concerns with regard to soil and/or groundwater impairment at and in the immediate vicinity of the Site.

No determination can be made under the Scope of Work of this assessment regarding this potential impairment. Should the Owner wish to make a determination regarding the potential impairment of soil and/or groundwater at the Site, further investigation would be recommended. Typical methods of investigation include soil boring and sampling, test pitting, or the installation and sampling of groundwater monitoring wells.

7.0 Qualifications of Environmental Professionals

Gregory R. Senecal, CHMM

Mr. Senecal is the Environmental Division Director. His responsibilities include personnel coordination, scoping, scheduling, organization, and review of Phase I Environmental Site Assessments, Phase II Environmental Site Assessments, and remedial efforts undertaken by the firm. With fifteen years of experience conducting and supervising environmental investigations, Mr. Senecal has gained in-depth insight with regard to the issues faced by today's property owner.

Mr. Senecal is certified in Hazardous Materials Management and has extensive experience in the field of Environmental Management relating to Phase I and Phase II Environmental Site Assessments, remediation, and environmental compliance evaluations. Mr. Senecal has conducted or supervised over 800 Phase I Environmental Site Assessments and over 200 Phase II Environmental Site Assessments during his time with LaBella.

Dennis E. Porter, CHMM

Mr. Porter is a Client Manager in the Environmental Division. His responsibilities include personnel coordination, scheduling, organization, and review of Phase I Environmental Site Assessments, Phase II Environmental Site Assessments, and remedial efforts undertaken by the firm. With fourteen years of experience conducting and supervising environmental investigations, Mr. Porter has gained in-depth insight with regard to the issues faced by today's property owner.

Mr. Porter is certified in Hazardous Materials Management and has extensive experience in the field of Environmental Management relating to Phase I and Phase II Environmental Site Assessments, remediation, and environmental compliance evaluations. Mr. Porter is also a Certified USEPA AHERA Building Inspector.

Michael F. Pelychaty

Mr. Pelychaty is a staff Environmental Geologist. He has over six years of experience in the field of Environmental Management relating to Phase I and Phase II Environmental Site Assessments.

Current work includes numerous environmental site assessments and audits in New York and Pennsylvania. The site assessments include assessment of environmental liability associated with properties such as warehouses, gas stations, auto repair facilities, manufacturing facilities, farms, and commercial properties. While conducting these investigations, Mr. Pelychaty has obtained an understanding of the many environmental issues facing property owners.

Janet M. Bissi, CHMM

Ms. Bissi is the Phase I ESA Program Manager and an Environmental Analyst, with over four years experience, who conducts Phase I and Phase II Environmental Site Assessments. Her Phase I duties include conducting historical research and database research about the site and the area. Her Phase II work includes placement of test pits, soil borings and monitoring wells, soil sampling, underground storage tank removal, groundwater monitoring, well sampling, etc.

Current work includes numerous environmental site assessments and audits in New York and Pennsylvania. This includes assessment of environmental liability associated with properties such as warehouses, gas stations/repair facilities, manufacturing facilities, farms, and other commercial properties. While conducting these investigations, Ms. Bissi has obtained a solid understanding of the many environmental issues facing property owners.

Mr. Craig Stiles

Mr. Stiles is a staff Environmental Geologist. He has over sixteen years of experience in the field of Environmental Management relating to Phase I and Phase II Environmental Site Assessments.

Current work includes numerous environmental site assessments and audits in New York and Pennsylvania. The site assessments include assessment of environmental liability associated with properties such as warehouses, gas stations, auto repair facilities, manufacturing facilities, farms, and commercial properties. While conducting these investigations, Mr. Stiles has obtained an understanding of the many environmental issues facing property owners.

8.0 Subsurface Risks/Unanticipated Hazardous Materials

The work for this Report has been performed in accordance with generally accepted environmental engineering practices for this region. The conclusions and recommendations of this report are based upon our professional opinion and judgment and are dependent upon LaBella Associates, P.C.'s knowledge, information supplied by the present owner and managers of the Site, and data and information solicited from governmental agencies. LaBella Associates, P.C. makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports.

In addition, LaBella Associates cannot provide guarantees, certifications, or warranties that the property is or is not free of environmental impairment without a subsurface investigation involving drilling, vapor analysis, laboratory soil analysis, groundwater monitoring, well installation, and laboratory groundwater analysis. Even with such a program, the data and samples from any given soil boring or monitoring well will indicate conditions that apply only at that particular location, and such conditions may not necessarily apply to the general site as a whole.

Furthermore, LaBella Associates cannot provide guarantees, certifications, or warranties that the building is not free of environmental impairment without exhaustive building material and ambient air sampling programs. Even with such a program, the results from any given sampling location will indicate conditions that apply only at that particular location, and such conditions may not necessarily apply to the building as a whole.

9.0 Certification

LaBella Associates, P.C. certifies the accuracy of this report, to the best of our knowledge, based on the information collected as described in the Scope of Work of this assessment.

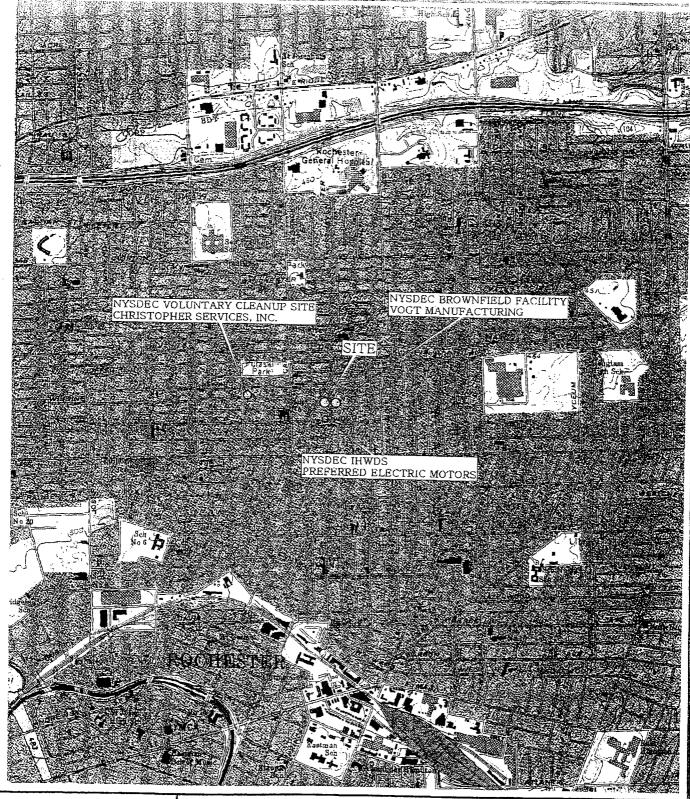
A copy of all information collected during this assessment including photographs, maps, notes, and other material will be kept on file at the offices of LaBella Associates, P.C. This information is available at your request.

10.0 Signatures of Environmental Professionals

Respectfully submitted,

LABELLA ASSOCIATES, P.C.

By Gregory R. Senecal, CHMM Environmental Division Director Michael F. Pelychaty Environmental Geologist


GRS/MFP/lk

Attachments

Y:\ROCHESTER ECONOMIC DEV\206025\CLERICAL\WORD\RPT\R6B21MP1.DOC

Figures and Photographs

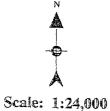
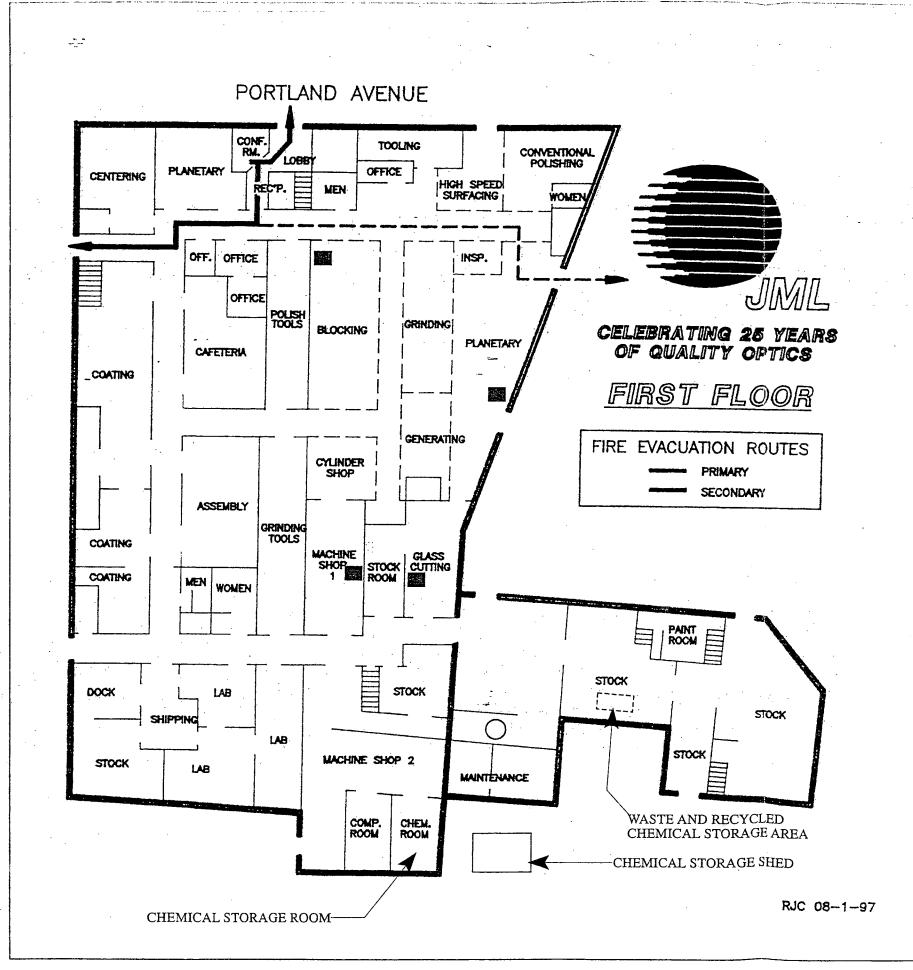



FIGURE 1
Site Location Map

690 Portland Avenue Rochester, New York 14621

MBELLA

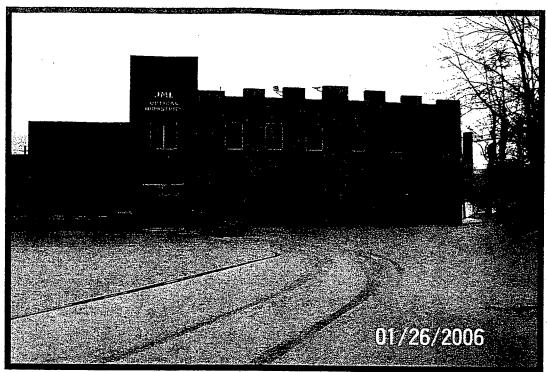
LaBella Project No 206025 Phase 1

NOTES:

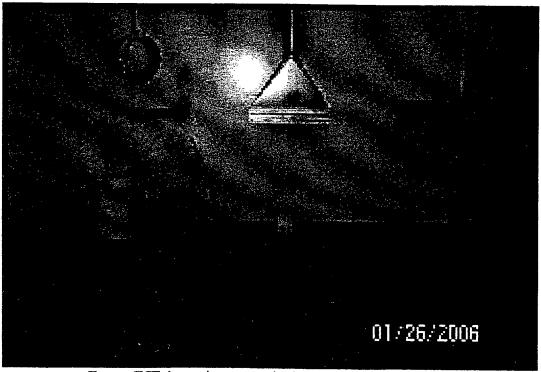
- 1. ALL LOCATIONS SHOWN ARE APPROXIMATE.
- 2. FIGURE OBTAINED FROM JML OPTICAL, INC.
- 3. FIGURE NOT TO SCALE.
- 4. MAP MODIFIED BY LABELLA _ ASSOCIATES, P.C. TO DEPICT SOME POTENTIAL AREAS OF RECOGNIZED ENVIORNMENTAL CONDITIONS.

LEGEND:

- APPROXIMATE LOCATION OF TCE DEGREASER
- APPROXIMATE LOCATION OF SUMP

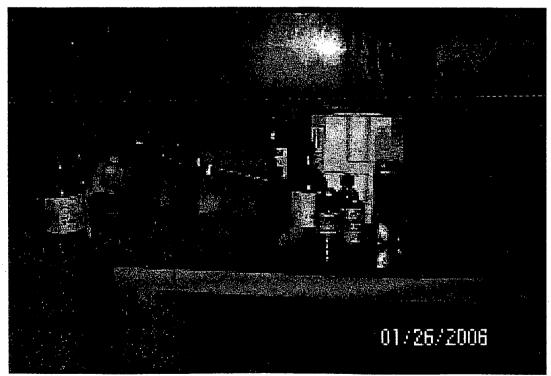

300 STATE STREET ROCHESTER, NY 14614 P: (585) 454-6110 F: (585) 454-3066 PHASE I ENVIRONMNETAL SITE ASESSMENT 690 PORTLAND AVENUE ROCHESTER, NEW YORK FIRST FLOOR BUILDING LAYOUT DRAWING TITLE DATE: SEPTEMBER 2005 FINAL

S

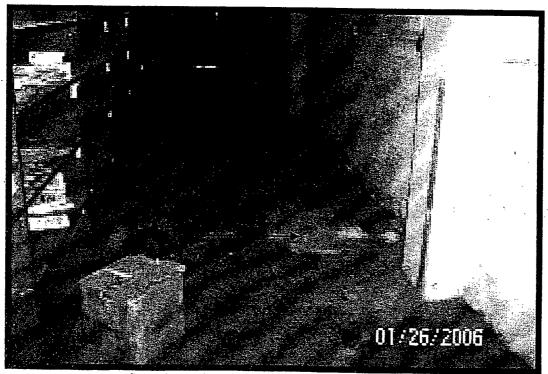

FIGURE

PROJECT/DRAWING NO.


206025


Facing east at the Site from Portland Avenue.

Former TCE degreasing area at the former Machine Shop room.


Chemical storage room at the Site.

Miscellaneous chemicals located on the Paint Room (See Figure 2 for location).

Facing south toward Fernwood Avenue at JML Optical's parking Lot. Former Vogt Manufacturing structure located to the east.

Sump located next to maintenance shop at the Site.

Appendix 1

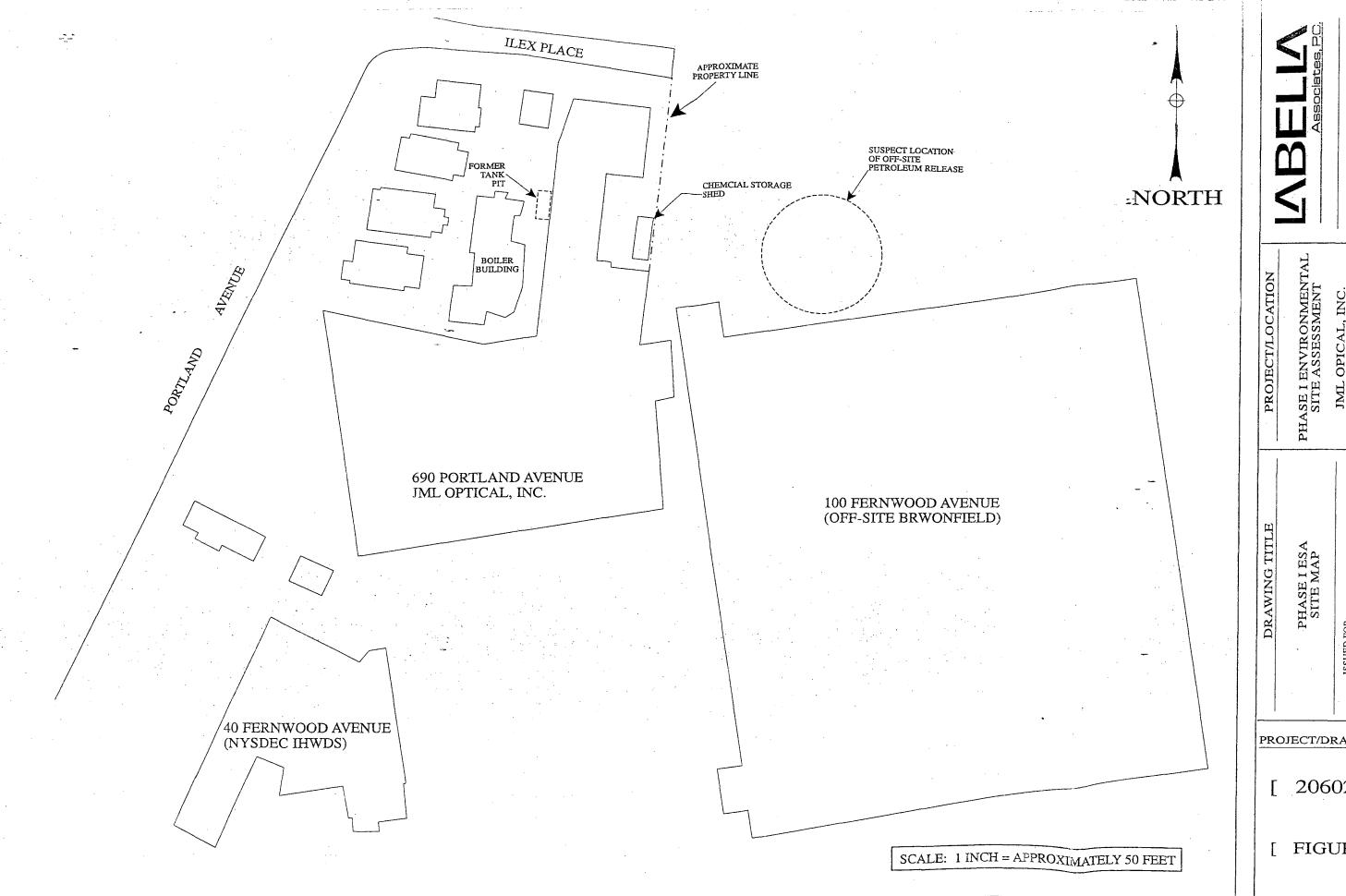
MBELLY.

LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, New York 14614-1098

Phone: (585) 454-6110 FAX: (585) 454-3066

PHASE I SITE CONDITION REPORT

Project No. 206025 Phose 1	Date: 01/26/2006
LaBella Representative: Michael F. Pelychaty	
Site Name: JML OPTICAL /NC	
Site Name: JML OPTICAL / NC. Address: 690 PROTICALO AVE \$ 76 Fea	www. I he
City/County/State/Zip: City of Richeston, Marrie	Court NewYork.
City/County/State/Zip: City of Rakesfor, Manue Representative Present/Title: Chais Nichels (Manuteurne min
Inaccessible Areas/Limitations: 2-4" of snow	ongrand
LOCALITY:	
Suburban	Rural Highly Developed
Moderately DevelopedLightly Developed	oped Undeveloped
AgriculturalVacant	Wooded Fallow
TOPOGRAPHY:	
LevelGently SlopingModer	rately Claning
Highly Sloping	atery Stoping
Other:	
GROUNDS: _	_
AcreageFrontage	DepthPaved Area
	Storm DrainsFill Materials
Dead Vegetation	I III Materials
Nature/Location:	
WATERWAYS:	4
On-Site Adjacent Nearby	V
Type:CreekLake	Pond
Nature/Location: ~ 6,000 - Levt	wed at side
PCBs: Yes No	
Nature/Location: 3 Pulc mounted	neer horter bids


	TURES: Total Square Feet
	BLDG#1: אין אין Sq. Ft. אין Year Built Garage
	Use: varant at time of sete visit since Now 2005 must readily ablied by sml upper
]	Construction: Conerce S(ab + Coment black wall), small boyene Heating System: Mut sa) Sanitary System/Discharge: Blwor = Floor Drains/Discharge: Slwer
3	Sump Pump/Discharge: M
]	BLDG#2: 728 Sq. Ft. 1940 Year Built Garage
-	Use: Bulen Building-formerly - Stange + caemai
I S	Construction:
2	Sump Pump/Discharge:
	BLDG#3: 300 Sq. Ft. 7 Year Built Garage [# of Stories Jse: Valout former them storage show
_	
S	Construction: Me ful sedim councile slas angrade Heating System: Love Sanitary System/Discharge: Coor Drains/Discharge:
S	ump Pump/Discharge:
.KI -	PTION OF CURRENT ON-SITE OPERATIONS:
_	Vacant BLOG
_	

DESCRI	IPTION_	OF PAST	ON-SI <i>PTTC</i>	TE OPE	RATION Pa G	NS: NOV 20	id5 -	-21985	•	
_	J	1930	10	11985	\$ C	Ex unha	u l	-21985		
_										
		-> Mai	qu bic	mer o	1 spec	all up	hcal	leuses		
-	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					
CURRE				į					•	
_		at. Gas	<u> —</u>	Efect	ric	Sewer	S	eptic		
~ <u>-</u>		Iunicipal W	ater		Well	Water =				
DIII iz C	TODAG	TO DO A NITZO								
		E TANKS		. D	1					
	#	of Tanks		Kegi	stered	Te	sted	•		
								Type of		
	UST /		ĺ					Monitoring	Paperwork	
Tank #	AST	Capacity	Produ	ct Stored	Age	Construct	ion	System	Available	
							·			
13	71h 41	TTO7	·		11 1		· V		<u> </u>	
γ· τ	nere ine	re any US	s exca	vated or I	lled in-p	lace at the Sit	e? <u>I</u>	2		
ת ת	ocanon:	7164	16 6 6	i CAL D	/W)					
ת	ale(s):	ation Avail	abla:	اس	, (
S	tained st	auon Avan ressed dea	d vere	tation/surf	aces.					
Ü	iumou, si	robboa, aca	u vogo	tution sum	accs					
. –						-				
ASBEST	OS:					•				
.102201	. 05.									
Pine	insulatio	מח	/	Roiler/ts	nk insula	etion V	Linol	01177	 1	
	ter/wallb		<u> </u>			tion ×				
	site pane		(Joint compound Fire doors			Vinyl wall covering Floor tile			
	Textured paint finish			Mastic	13		Electrical insulation			
	Pipe fitting insulation			Boiler gaskets			Duct tape			
	Fireproofing (spray-on)			Insulation (blown-in)			Ceiling tiles			
	Furnace cement		Acoustical plaster			Roofing materials >				
	Siding		Woven cloth -			Caulking putties				
	Other		Wovencion			Caulk	ang putties 🔨			
Othe	<u></u>						 	,		
L:				l <u></u>	······································		L			
ODORS:	MARK	,								
ODORS:	So	lvents		Petrol	eum	Oth	er.	Y Vicible Spil	M ook	
_	Un	known Ori	gin	1 04101	Cum	Ou		visible Spii	ILEAK	
			D***					Y Visible Spil Lo Cher	7	
PERMIT	s: Non	<u>L</u>						5 Fu	my neon	
		DES/NPDI	ES		RCRA		Ser	wer Discharge		
		r Emissions				lous Waste		Other		
	st:									

- [-> TCE, IPA, Oils, aceture
_	
	MSDSs You Yes, If yes, obtain copies
SOL	ID WASTE: SITE VACANT -NONE Type/Composition:
	Type/Composition:
	Storage/Container:
*	Collector:
REC	YCLING: SITE LATALT NONE
	Type/Composition:
	Storage/Container:
	Collector:
HAZ	ARDOUS WASTE: FORMERLY
	Type/Composition:
	Storage/Container:
	Amt Generated/Year:
	Disposal Location & Contractor:
	Type/Composition:
	Storage/Container:
	Amt Generated/Year:
	Disposal Location & Contractor:
	Type/Composition:
	Storage/Container:
_	Amt Generated/Year:
	Disposal Location & Contractor:
	•
	Type/Composition:
	Storage/Container:
•	Amt Generated/Year:
	*Obtain Manifests
WAS	STE OIL: NO - SING WATANT
	Storage/Container:
	Collector:
	Disposal Receipts:
DRY	CLEANING:
	Yes
	Type of Chemicals Used:
	How long has dry cleaning activities been conducted on-Site?
	Hazardous Waste Manifests: obtain copies if yes
FILM	M DEVELOPING/X-RAYS:
	Metal Recovery System In Place?
	Hazardous Waste Generated? Yes If yes obtain manifests

VEH	CLE REPAIR
	Does Vehicle Repair Take Place at the Site:
	Part Washers: Y No Yes
	Hazardous Waste Generated?NoYes If yes obtain manifests
ENVI	RONMENTAL LIENS
221172	Site Representative aware of any Environmental Liens against the Site
	No Yes
FILL/	WASTE DISPOSAL
	Any visual evidence appear that fill (other than engineered) or waste disposal has taken place at
-	the Site? Y No Yes If yes describe:
:	
ADJA	CENT PROPERTIES:
	North: Auto Refair, Ilex Blace, Rosidenhal South: Preferred Electric (NYSMLT INDS) Residential East: Forme Voyt Manufacturing - record Udg West: Residential and Commerce)
	South: Preferred Electric (NYSALT ITENDS), Residential
	East: Forme Vost Manufaching - record Adj
	West: /les (dentral and commerce)
CITTUR 1	INCORPORTANI NIATES.
SILE	INSPECTION NOTES: Building/Location:
	building/Location.
	·
	Building/Location:
	Building/Location:
	building/Location.
	_
	Building/Location:

NA = Not Applicable NO = None Observed

DESIGNED BY: MFP
DRAWN BY: MFP
REVIEWED BY: GRS

DATE: MARCH/APRIL 2005

PROJECT/DRAWING NO.

206025]

FIGURE]

300 State Street Rochester, New York 14614

Appendix 2

STOCKER BELLEVIEW TO THE BERLEVIEW

JML OPTICAL INDUSTRIES, INC. . 820 LINDEN AVE. . ROCHESTER, NY 14625-2710 Phone: 585-248-8900 • Fax: 585-248-8919

1 / ARELLA DELLA MARIEL DELLA	
LETING LATE INIKE PELHCHATY I IIICH	CBACHELDED,
SUBJECT: DATE:	FAX NO:
PHASEI QUESTIONAIRE 9/13	106

Total number of pages, including cover page: 5

Mike, Enclosed please find the Rhase I Questionaire you required, Dick Bachelder

300 State Street, Suite 201 Rochester, New York 14614-1098 Phone: (585) 454-6110 FAX: (585) 454-3066

OWNER/SITE MANAGER PHASE I ESA QUESTIONNAIRE

	Project No 206025
	Site Name / Address: 690 Portland Avneue, City of Rochester, Monroe County, New York
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pleas	se fill out this questionnaire to best of your knowledge. Feel free to call with any questions, or we
can	liscuss at the time of the Site visit,
	week m la la za
	Owner/Site Manager:
	Title: Nest 10WNEZ
	Signature: VIM ~ Date: 2006
	40 11 86 1
1.	Site Description and Operation
	Total sq. ft. of building(s): 55,000 Acreage of Site: UNKNOWN
	Descriptions of Site Operations: MANUFACTURE OF PRECISION
	OPTICS.
	On Sita Iffilition 1200 040 CECINE
	On-Site Utilities: 1200 AMP SERVICE PLUS NATURAL GAS
2.	What are the past use(s) of the Site and dates of occupancy?
	1929-1963 ILEX OPTICAL - OPTICAL MFG.
-	-1963-1979 ILEX DIFTICAL NEW OWNERS OFT, MFG.
	1980 - 2005 JMI OPTICAL INDUSTRIES OUT MES
	NOVEMBER 2005 VACANT
•	
3.	What is the nature of solid waste generated at the Site and disposed of from the Site (including
	hazardous)?
	LEAD BASED GLASS WASTE SHIPPED OFFSITE
•	BY SPETY CLEAN INC. How is it stored? IN 55 GAL, DRUMS
÷	Who collects the wastes? TMC & DT 100 C 011 THE
	Who collects the wastes? JML OPTICAL COLLECTED THE WASTE AND SHETY CLEAN INC. TOOK IT OFF SITE.
4,	What type of heating, does this property have, if any?
	FORCED AIR NATURAL GAS
	(i.e. natural gas, heating oil, propane, etc.)
5.	Was this facility ever heated with oil? No Yes (PRIOR OWNER)
	If yes, when? UP UNTIL 1979 (PRIDE TO JMI OWNER SHIP
	If yes, how was it stored? UNDER GROUND 5500 GAL TANK

6.	Was the Site ever a car repair shop, paint shop, or gas station?
	Are there or have there been any aboveground (AST) or belowground (UST) storage tanks?
	(Approx. dates)
	No X Yes AST UST X Capacity 5500 GAL Product FUEL 0/L
	AST UST Capacity Product
	AST UST Capacity Product
	If so, are there any leak detection devices in place? What types?
	THE TANK WAS REMOVED IN 1999
	(Please provide documentation if yes)
7.	What type of chemicals are used for operations on Site?
•	List: WHEN IT WAS IN OPERATION, WE USED ACETONE
	ALCOHOL TRICHLORETHELENE Are MSDS sheets readily available for these chemicals? Yes X No
	Are MSDS sheets readily available for these chemicals? I es A 140
	(if yes, please provide copies) How are the chemical wastes stored & disposed? THE CHEMICAL WASTES
	WERE STORED IN 55 GAL, DRUMS AND PUMPEROUT AND TAKEN OFF SITE BY SAFETY CLEAN INC.
	ANDTAKEN OFF SITE BY SAFETY CLEAN INC.
8.	To the best of your knowledge, do you have any federal, state, or local permits for the following?
	SPDES NO RCRA Wastes NO Air Emissions UNKNOWN BPA Generator ID# NYD 05910 45036
	Air Emissions UNIKNOWN BEA Generator ID# 101000 410 -10 0 0
9.	To the best of your knowledge, have you ever generated or transported hazardous waste from the
	property?
	No X Yes, Manifests? YES
10.	Do you treat or dispose of any waste materials on-Site? (i.e. landfilling, neutralization,
IŲ.	incineration
	Yes, Type
	The second of th
11.	Has the facility ever been tested for the following? No X Yes
	If yes, please circle: Lead in Drinking Water Indoor Air Quality Radon Asbestos
	Air Emissions (Waste Disposal)
12.	Has the Site ever been the subject of an enforcement action by any federal, state, or local agency
	regarding environmental issues? No X Yes, Nature: SEE ATTACHED
	140 163, 14Atmo. <u>9</u>
13.	Have there been any spills, unpermitted discharges, or releases of hazardous or contaminated
	materials or petroleum products at or in the vicinity of the Site?
	No X Yes, Nature THERE WAS A LEAK IN THE 5500 GAL,
1.1	UST THAT HAS SENSE BEEN REMOVED Is the Site presently under any federal, state, or local consent orders, decrees or cause of action?
14.	No Yes
15.	Has any other entity ever been allowed to dump, store, dispose, transport, bury, incinerate, or
	landfill any materials at the Site?
	No Yes, Who? When

the distriction

TWO IS NOT THE REAL OF THE REPORT OF THE SECOND SECTION OF THE SECOND SECOND SECTION OF THE SECOND SE

3 R.

Are you aware of	any environmental liens on the Site?
No _	Yes
In woodsawntar gan	terated or disposed of at the Site? No X Yes
15 Wastewater Ber	THE SITE IS NO LONGER IN BUSINESS
Sanitary waste:	Yes, Discharge location FRONT OF 690 PORTLAND
Non-Sanitary Was	
NO NO	Yes, Discharge location ris there currently, a septic tank; leach field, injection well, or dry well located
on the Site?	r is mere correlatly, a septic tank, leach field, injection work, or dry won located
	Yes, When & location
NO	tes, when a location there ever any water wells located on-Site?
X No	Vos
Ara thorn dry floo	or drains, sumps, storm drains, or other drainage systems at the Site?
Are there any 1100	Viscobarga Point: FRANT AE / 9A FARTIA
C Description	Discharge Points
Sump rumps:	Discharge Point: FRONT OF 690 PORTLA Discharge Point: FRONT OF 690 PORTLA Discharge Point: FRONT OF 690 PORTLA
Storm Drains:	Discussifications (12010 10 K) The
Other:	
A 44 4	there been any dry cleaning activities conducted on-Site?
	Yes, When
	1 CS, Wilch
Y- 43	developing or film developing conducted on-Site:
No No	developing or time developing conducted on-site.
IND	netals recovery system in use?NoYes
ir yes, is mere a m	letais recovery system in use:140168
Limes there are be	een previous Phase I Environmental Site Assessments or environmental audits
performed for the	Yes; please provide if possible
A-NO -	1es; please provide it possible
	Tiols for the City numilable?
is the Adstract of .	Title for the Site available? Yes; please provide if possible
	Test brease brovide it hospitore
	and a star of the Site available?
Oo you nave a pro	perty survey map or other mapping of the Site available?
	Yes; please provide if possible
0176 m4 mm = -4	and the same and t
what are the past a	and assess the analysis and another adjacent to the Cita?
~	and present uses of the properties adjacent to the Site?
	and present uses of the properties adjacent to the Site? Current Use/Occupant Past Uses/Occupant
	and present uses of the properties adjacent to the Site? Current Use/Occupant RESIDENTIAL RESIDENTIAL
	and present uses of the properties adjacent to the Site? Current Use/Occupant RESIDENTIAL RESIDENTIAL
North:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL
Yorth:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL
North:	RESIDENTIAL /INDUSTRIAL - RESIDENTIAL /INDUSTRIAL /INDUSTR
North:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL/INDUSTRIAL - RESIDENTIAL/IN
North:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL/INDUSTRIAL - RESIDENTIAL/IN
Direction North: South: East:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL
North: South: East:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL IN DUSTRIAL (100 FERN WOOD AVE, - MFG
North:	Current Use/Occupant RESIDENTIAL RESIDENTIAL RESIDENTIAL RESIDENTIAL/INDUSTRIAL - RESIDENTIAL/IN

380 C) N. 341

1987 Andrew Grand Committee (1998) And Andrew Grand Committee (1998) Andrew Grand Co

- 4. An inspection of Respondent's facility conducted by an authorized representative of the Department on August 28, 2001 revealed that Respondent violated the following hazardous waste management regulations at 6 NYCRR:
 - a. §373-1.2(c) Operated a hazardous waste facility without a permit by treating hazardous waste in a portable container which does not meet any exemption permitting.
 - b. §372.2(a)(8)(iii)(d) Failed to mark accumulation dates on six 55-gallon containers of hazardous waste.
 - c. §373-3.9(d)(3) Failed to mark "Hazardous Waste" and other words identifying the contents of six 55-gallon containers of hazardous waste.
 - d. §373-3.9(d)(1) Storage area held six 55-gallon containers of hazardous waste which were open and were not in use.
 - e. §373-3.9(e) Failed to conduct weekly inspections of the hazardous waste storage area.
 - f. §372.2(a)(8)(iii)(e)(2)(i) Failed to list the name and telephone number of the emergency coordinator posted next to the telephone.
 - g. §372.2(a)(8)(iii)(e)(2)(i) Failed to post the location of fire extinguisher, spill control equipment and, if present, fire alarm, next to the telephone.
- 5. Respondent waives its right to a hearing or to otherwise contest the Department's allegations, consents to the issuance of this Order and agrees to be bound by its terms.

300 State Street Rochester, New York 14614

Telephone: (585) 454-6110 Facsimile: (585) 454-3066

TELEPHONE LOG

CONTACT NAME: Chais Nichols	BY:	Michael F. Pelychaty
TELEPHONE:		206025 Pluse 1
ORGANIZATION: JML Offen! Maintenne min	DATE:	1-26-06
PROJECT: Phase I ESA	RE:	Ceven / Ivan
- 4 TCE degreasing orens 1-Blocking onen, and 1-Glass cutting used TCE, IPA, Acetura, Luse cils -1 Steamerum, wasete in the store oven, next to waste then storage oven,	Ra eguir	tong, 1- Machineshop new n-Stored in them 1 TCF; in Room
floor drains to sewer		
no kuma spill		•
U/s fronk new Rule Building		
a Catifician desposed of waste chemica	ls-	
Vacant sine 11/2005 - Jul m	unu Rober	id specially ophical
leases		

LaBella Associates, P.C. 300 State Street
Rochester, New York 14614

Appendix 3

Records Access Application

	, as moscoo reprication
(Please print or type)	
1-16-2006 Date Michael F. Pelychaty Print Name	300 State Street, Suite 201 Address Rochester, New York 14614
La Bella Associetés, P. C. Representing 585-295-6253 Teléphone	Mur F. Acts Signature
I hereby apply to inspect □ and/or copy the following record(s):	Signature
INSPELDENTEDS (NOT ANY FIRE	76 FERNWOOD AVE
PETROLEUM OR CHEMICAL	
STUMBLE PANCS OR ENVIRONMETAL 135	Miss -
Return completed application to: Records Access Officer Bureau of Communications & Special Events City Hall	There is a 25¢ per page charge for copying most records. For more information on public access to records, call 428-7135. FAX 1428-7669
30 Church Street Rochester, New York 14614	
For agency use only	
Approved	
Denied	Records Access Officer
Record not Maintained by City	Date
or appeal only	
you wish to appeal the Record Access Officer's lecision on your application for public access to ecords, sign below and send this form within 30	I hereby appeal:
ays to: Corporation Counsel, City Hall, 30 Church Street, Rochester, New York 14614.	Signature
	Date

300 State Street, Suite 201, Rochester, NY 14614

Phone 585.454.6110 Fax 585.454.3066 www.labellapc.com

January 13, 2006

Ms. Kimberly Schutts New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Re: FOIL Request

JML Optical, Inc. or COMIDA JML Optical Industries 678 and 690 Portland Avenue and 76 Fernwood Avenue City of Rochester, Monroe County, New York 14621 LaBella Project No. 206025

Dear Ms. Schutts:

Please accept this letter as a formal request to the following NYSDEC Departments for review/copies of department records for the above referenced properties, if available.

Environmental Enforcement	Q	Air
Environmental Permits		Law Enforcement/Investigation
Environmental Remediation	Ω	Legal
Hazardous Materials	a	Water
Solid Materials	a	Petroleum Bulk Storage
•		

Please call me at (585) 295-6253 with any questions or if you require additional information.

Thank you for your assistance in this matter.

Michel F. Pelgelet

Respectfully submitted.

LABELLA ASSOCIATES, P.C.

Michael F. Pelychaty

300 State Street, Suite 201, Rochester, NY 14614

Phone 585,454,6110 Fax 585,454,3066 www.labellapc.com

January 13, 2006

Ms. Kimberly Schutts
New York State Department of Environmental Conservation
6274 East Avon-Lima Road
Avon, New York 14414

Re:

FOIL Request

Preferred Electric Motors, Inc.

42 Fernwood Avenue

City of Rochester, Monroe County, New York 14621

LaBella Project No. 206025

Dear Ms. Schutts:

Please accept this letter as a formal request to the following NYSDEC Departments for review/copies of department records for the above referenced properties, if available.

0	Environmental Enforcement	0	Air
	Environmental Permits	a	Law Enforcement/Investigations
	Environmental Remediation	a	Legal
	Hazardous Materials		Water
	Solid Materials	0	Petroleum Bulk Storage

Please call me at (585) 295-6253 with any questions or if you require additional information.

Thank you for your assistance in this matter.

Respectfully submitted,

LABELLA ASSOCIATES, P.C.

Michael F. Pelychaty

300 State Street, Suite 201, Rochester, NY 14614

Phone 585.454.6110 Fax 585.454.3066 www.labellapc.com

January 13, 2006

Ms. Kimberly Schutts
New York State Department of Environmental Conservation
6274 East Avon-Lima Road
Avon, New York 14414

Re:

FOIL Request

Former Vogt Manufacturing Site Owner: Tamarck III Associates

100 Fernwood Avenue, City of Rochester, Monroe County, New York 14621

LaBella Project No. 206025

Dear Ms. Schutts:

Please accept this letter as a formal request to the following NYSDEC Departments for review/copies of department records for the above referenced properties, if available.

a	Environmental Enforcement	۵	Air
0	Environmental Permits	Q	Law Enforcement/Investigations
	Environmental Remediation	<u> </u>	Legal
0	Hazardous Materials	Q	Water
a	Solid Materials	۵	Petroleum Bulk Storage

Please call me at (585) 295-6253 with any questions or if you require additional information.

Thank you for your assistance in this matter.

Mill F. Pelet

Respectfully submitted,

LABELLA ASSOCIATES, P.C.

Michael F. Pelychaty

NYS Department of Environmental Conservation

Region 8 Freedom Of Information Act 6274 East Avon-Lima Road Avon, New York 14414-9519

Denise Sheehan Commissioner

Mr. Michael Pelychaty
LaBella Associates, P.C.
300 State Street
Rochester, NY 14614-

1/26/2006

Website: www.dec.state.ny.us

FOIL Request Number 06-82

Dear Mr. Pelychaty:

This is to acknowledge receipt of your Freedom of Information Law (FOIL) request and to advise you we are conducting a file search for the following parcel(s) of real property:

Records re: JML Optical/COMIDA JML Optical, 678, 690 Portland Ave/76 Fernwood Ave, Rochester

Please note, we do not search for spill files without a spill number. If you are interested in spill information and have not already provided us with a spill number, we refer you to the NYSDEC spill website: www.dec.state.ny.us/apps/derfoil/index.cfm

If you locate a spill number from the database you may contact me for a copy of the spill fact sheet or other information that is included in the file. If you do not have access to a computer, please call me at (585) 226-5363.

Also, be advised if you are asking us to check for properties in the surrounding area, we are unable to do a search by radius. We need names and addresses for each property. Due to the large volume of requests we receive, you may expect a reply in about four weeks.

If you call or write, refer to request number 06-82.

Sincerely,

Received By LaBella Associates, P.C.

JAN 3 U 2006

Client:_____

NYS Department of Environmental Conservation

Region 8 Freedom Of Information Act 6274 East Avon-Lima Road Avon, New York 14414-9519

Denise Sheehan Commissioner

Mr. Michael Pelychaty LaBella Associates, P.C. 300 State Street Rochester, NY 14

14614-

1/26/2006

Website: www.dec.state.ny.us

FOIL Request Number 06-83

Dear Mr. Pelychaty:

This is to acknowledge receipt of your Freedom of Information Law (FOIL) request and to advise you we are conducting a file search for the following parcel(s) of real property:

Records re: Preferred Electric Motors, 42 Fernwood Ave., Rochester

Please note, we do not search for spill files without a spill number. If you are interested in spill information and have not already provided us with a spill number, we refer you to the NYSDEC spill website: www.dec.state.ny.us/apps/derfoil/index.cfm.

If you locate a spill number from the database you may contact me for a copy of the spill fact sheet or other information that is included in the file. If you do not have access to a computer, please call me at (585) 226-5363.

Also, be advised if you are asking us to check for properties in the surrounding area, we are unable to do a search by radius. We need names and addresses for each property. Due to the large volume of requests we receive, you may expect a reply in about four weeks.

If you call or write, refer to request number 06-83.

Sincerely,

Kimberly Shutts

Regional FOIL Coordinator

Received By LaBella Associates, P.C.

JAN 3 U 2006

Client:_	
Proj.#:	

NYS Department of Environmental Conservation

Region 8 Freedom Of Information Act 6274 East Avon-Lima Road Avon, New York 14414-9519

Mr. Michael Pelychaty LaBella Associates, P.C. 300 State Street

Rochester, NY 14614-

1/26/2006

Website: www.dec.state.ny.us

FOIL Request Number 06-84

Dear Mr. Pelychaty:

This is to acknowledge receipt of your Freedom of Information Law (FOIL) request and to advise you we are conducting a file search for the following parcel(s) of real property:

Records re: Vogt Manufacturing/Tamarck III, 100 Fernwood Ave., Rochester

Please note, we do not search for spill files without a spill number. If you are interested in spill information and have not already provided us with a spill number, we refer you to the NYSDEC spill website: www.dec.state.ny.us/apps/derfoil/index.cfm

If you locate a spill number from the database you may contact me for a copy of the spill fact sheet or other information that is included in the file. If you do not have access to a computer, please call me at (585) 226-5363.

Also, be advised if you are asking us to check for properties in the surrounding area, we are unable to do a search by radius. We need names and addresses for each property. Due to the large volume of requests we receive, you may expect a reply in about four weeks.

If you call or write, refer to request number 06-84.

Sincerely,

Kimberly Shutts

Regional FOIL Coordinator

Received By LaBella Associates, P.C.

JAN 30 2006

Client:_____Proj.#:_____

Engineering Architecture

ABELIA Associates, P.C.

Environmental

300 State Street, Suite 201, Rochester, NY 14614

February 2, 2006

Phone 585.454.6110 Fax 585.454.3066 www.labellapc.com

Ms. Karen Sahler Rochester Gas and Electric Co. 89 East Avenue Rochester, New York 14604

Re:

Request For Information

JML Optical, 690 Portand Avenue, Rochester, New York

LaBella Project No. 206025 Phase 1

Dear Ms. Sahler:

Please accept this letter as a formal request for information concerning the age, and potential PCB contamination and testing of three pole-mounted transformers located at the above referenced location.

Any information that you could provide me regarding the above transformers would be very much appreciated.

Please feel free to contact me at (585) 295-6253 if you have any questions or need additional information.

Thank you very much for your assistance in this matter.

Respectfully submitted,

LABELLA ASSOCIATES, P.C.

Milel F Pelyht

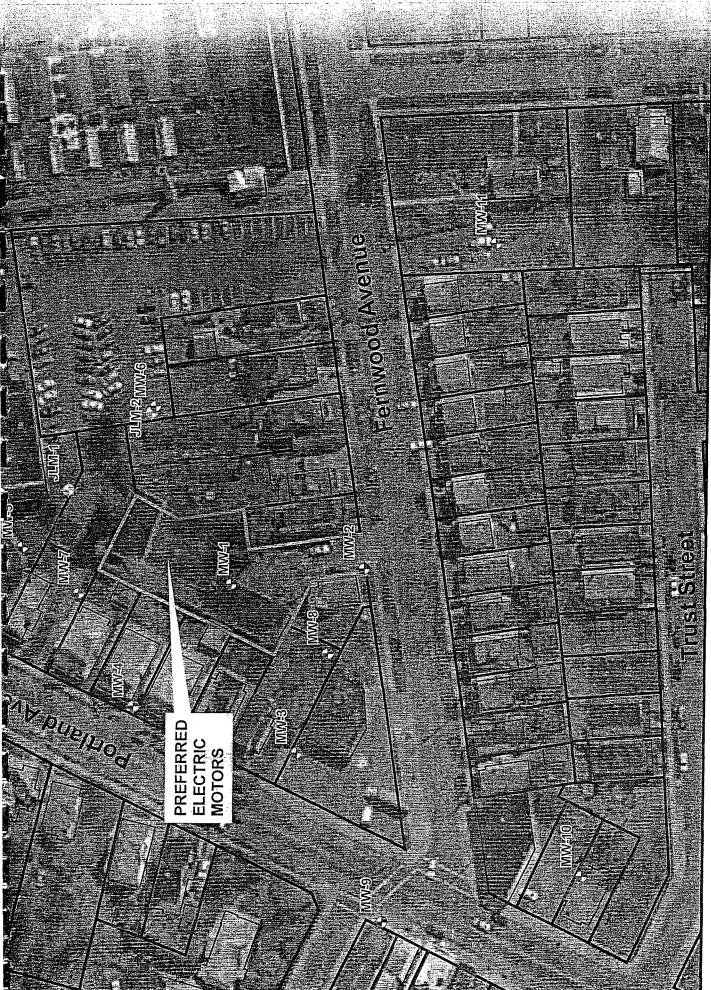
Michael F. Pelychaty

Environmental Geologist

MFP/lk

Y:\ROCHESTER ECONOMIC DEV\206025\CLERICAL\WORD\JCOR\J6B02MP1.DOC

Preferred Electric Motors.txt


From: Valerie Woodward [vjwoodwa@gw.dec.state.ny.us]
Sent: Thursday, February 02, 2006 10:33 AM
To: Pelychaty, Mike
Subject: Preferred Electric Motors

Mike

Attached is a file that contains the data and well specs for well that we have installed at JML. Also I added a map of well locations for your information.

ThankYou and Have a Nice Day :-)

Valerie Woodward NYSDEC
12th floor
625 Broadway
Albany, NY 12233-7013
(518) 402-9812
(FAX) 402-9819,
vjwoodwa@gw.dec.state.ny.us

Legend

Monitoring Wells

MACTEC Well (shallow Bedrock)

MW-6 (PEMW00601301XX 92/2/2005 FS FS Final Qualit MW-6
PEMW00601301XD
6/2/2005
FD (duplicate)
Frial Result Frial Cueliff: MW-5
1 PEGWOGS01202XX | 10/12/2005
FS suff MW-5

| PEMW00501401XX | 8/1/2005 | FS FS FS FS JML-1 PEGWJMI00602XX 10/12/2005 FS | Field Sample id | PEP20050001) X | Field Sample id Suitate
Bicarbonate
Bicarbonate
Choir Akairnin, as CaCO3
Choride
Suifide
pH

<u>-</u>

.

Spirit E. (1978)

THE PROPERTY OF

NE S

		- -			
			•		
		•	gā-		~
	Loc Name Field Sample Id	MW-6 PEMW00601301XD	MW-6 PEMW00601301XX		
	Field Sample Date	6/2/2005	6/2/2005		
_	Qc Code	FD (duplicate)	FS		
Param Name 2,4,5-Trichlorophenol	Result Uom	Final Result Final Qual	Final Result Final Quali 27 U	fier 1	
2,4,6-Trichlorophenol	ug/L	9 U	11 U		
2,4-Dichlorophenol	ug/L	9 U	11 U		
2,4-Dimethylphenol	ug/L ug/L	9 U 23 U	11 U 27 U		
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/L	9 U	11 U		
2,6-Dinitrotoluene	ug/L	9 U	11 U		
2-Chloronaphthalene	ug/L	9 U	11 U		
2-Chlorophenol 2-Methylnaphthalene	ug/L ug/L	. 9 U	11 U		
2-Methylphenol	ug/L	9 U	11 U _. .		
2-Nitroaniline	ug/L	23 U 9 U	27 U 11 U		
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/L ug/L	9 U 9 U	11 U		
3-Nitroaniline	ug/L	23 U	27 U		
4,6-Dinitro-2-methylphenol	ug/L	23 U	27 U		
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	ug/L ug/L	9 U 9 U	11 U		•
4-Chloroaniline	ug/L	9 U	11 U		
4-Chlorophenyl phenyl ether	ug/L	9 U	11 U		•
4-Methylphenol 4-Nitroaniiine	ug/L ug/L	9 U 23 U	27 U		
4-Nitrophenol	ug/L	23 U	27 U		
Acenaphthene	ug/L	9 U	11 U		
Acenaphthylene Acetophenone	ug/L ug/L	9 U	11 U		
Anthracene	ug/L	9 U	11 U		
Atrazine	ug/L	9 U	.11 U		
Benzaldehyde Benzo(a)anthracene	ug/L ug/L	9- U	11 U 11 U		
Benzo[a]pyrene	ug/L	9 Ü	11 U		
Benzo[b]fluoranthene	ug/L	9 U	11 U		
Benzo[ghi]perylene Benzo[k]fluoranthene	ug/L ug/L	9 U 9 U	11 U 11 U		
Biphenyl	ug/L	9 U	11_ U		
Bis(2-Chloroethoxy)methane	ug/L	9 U	. 11 U		
Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether	ug/L ug/L	9 U 9 U	11 · U		
Bis(2-Ethylhexyl)phthalate	ug/L	9 U	11 U		
Butylbenzylphthalate	ug/L	9 U	11 U		
Caprolactum Carbazole	ug/L ug/L	9 U	11 U 11 U		
Chrysene	ug/L	9 U	11 U		
Di-n-butylphthalate	ug/L	9 U	11 U 11 U		-
Di-n-octylphthalate Dibenz[a,h]anthracene	ug/L ug/L	9 U	11 U		
Dibenzofuran	ug/L	9 U	11 U		
Diethylphthalate	ug/L	9 U	11 U		
Dimethylphthalate Fluoranthene	ug/L ug/L	9 U.	11 U 11 — U		
Fluorene	ug/L	9 U	11 U		
Hexachlorobenzene	ug/L	9 U	11 U		
Hexachlorobutadiene Hexachlorocyclopentadiene	ug/L ug/L	9 U	11 U 11 U		
Hexachloroethane	ug/L	9 U	11 U		
Indeno[1,2,3-cd]pyrene	ug/L	9 U _.	11 U		
Isophorone	ug/L	9 U	11 U		
N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine	ug/L ug/L	9 U	11 U 11 U		
Naphthalene	ug/L	9 U	11 U		
Nitrobenzene	ug/L	9 U	11 U		
Pentachlorophenol	ug/L	23 U 9 U	27 U 11 U		
Phenanthrene Phenol	ug/L ug/L	9 U	11 U 11 U		
Pyrene	ug/L	9 U	11 Ŭ		

		-									
Ø ⊆	Nell Depth Screened (ft bgs) Interval (ft bgs)	Riser Elevation	Bedrock Depth (ft bgs)	Depth to Groun Groundwater* Elevati 4/5/05 (ft btor) 4/5/05	d water lons*	Depth to Groundwate Groundwater Elevations 5/6/05 (ft btor) 5/6/05	Groundwater Elevations 5/6/05	Depth to Groun Groundwater Elevati 6/1/05 (ft btor) 6/1/05	Groundwater Elevations 6/1/05	Depth to Groundwater Groundwater Elevations 6/2/05 (# btor) 6/2/05	Groundwater Elevations 6/2/05
۲.	7.0-17.0	482.87	+	69'2	475.18	9.03	473.84	9.13	473.74		
6	3.65-16.65	483.09	7.7	2.11	480.98	3.04	480.05	4.8	478.29		477 94

Labella Associates, P.C. 300 State Street Rochester, New York 14614

Appendix 4

ADELLED STATES

U.S. Environmental Protection Agency

Facility Registry System (FRS)

Recent Additions Contact Us Print Version	EF Search:	60
FPA Home > Envirofacts > FRS > Report		

Facility Detail Report

Facility Name:	BAUSCH AND LOMB OPTICS CENTER
Location Address:	1400 NORTH GOODMAN STREET
Supplemental Address:	
City Name:	ROCHESTER
<u>State</u>	NY
County Name:	MONROE
ZIP/Postal Code:	14609-3596
EPA Region:	02
Congressional District Number:	28
Legislative District Number:	NY
HUC Code:	04140101
Federal Facility:	NO
<u>Tribal Land :</u>	NO
<u>Latitude:</u>	
<u>Longitude:</u>	=
Method:	
Reference Point Description:	
Duns Number:	
Registry ID:	110000774895

Map this facility

Environmental Interests

Information System	Information System ID	Environmental Interest Type	Data Source	{I	Supplementa Environmen Interests:
AIRS/AFS	3605500016	AIR MINOR	AIRS/AFS	11/16/2001	
					FIS-8-2614 00136/0000 AIR PROGR/ FIS-8-2614 00136/0000 AIR PROGR/

<u>NEI</u>	NEINY3605517	CRITERIA AND HAZARDOUS AIR POLLUTANT INVENTORY	* NEI		
RCRAINFO	NYD002207751	HAZARDOUS WASTE BIENNIAL REPORTER	RCRAINFO	02/19/2002	
RCRAINFO	NYD002207751	SQG	RCRAINFO	02/25/2004	
RCRAINFO	NYD002207751	TSD	NOTIFICATION	02/25/2004	
RCRAINFO	NYR000048991	NOT IN A UNIVERSE	IMPLEMENTER	05/30/1999	
TRIS	14692BSCHL1400N	TRI REPORTER	TRI REPORTING FORM	06/28/2005	

Facility Mailing Addresses

Affiliation Type	Delivery Point	City Name	State		Information System
CONTACT/GENERAL	1400 N GOODMAN ST	ROCHESTER	NY	14609	TRIS
CONTACT/GENERAL	1400 NORTH GOODMAN STREET	ROCHESTER	NY	14609	RCRAINFO
CONTACT/GENERAL	1653 E MAIN ST	ROCHESTER	NY	14609	RCRAINFO
CONTACT/GENERAL	SUNTRU STREET/1400 N.GOODMAN	ROCHESTER	NY	14603	AIRS/AFS
CONTACT/OWNER	ONE BAUSCH & LOMB PLACE	ROCHESTER	NY	14604	RCRAINFO
CONTACT/REGULATORY	1400 N GOODMAN ST	ROCHESTER	NY	14602	RCRAINFO
LEGALLY RESPONSIBLE PARTY	BAUSCH & LOMB PL	ROCHESTER	NY	14604- 2071	FIS

NAICS Codes

Data Source	NAICS Code	Description	Primary
NEI	33911		
RCRAINFO	339115	OPHTHALMIC GOODS MANUFACTURING.	

SIC Codes _

Data Source	SIC Code	Description	Primary
AIRS/AFS	3827	OPTICAL INSTRUMENTS AND LENSES	
FIS	3827	OPTICAL INSTRUMENTS AND LENSES	
FIS	3851	OPHTHALMIC GOODS	
NEI	3851	OPHTHALMIC GOODS	
TRIS	3851	OPHTHALMIC GOODS	

Contacts

Affiliation Type	Full Name	Office Phone	Information System	Mailing Addres
AIR FEE BILLING CONTACT	DOUG DAWSON		FIS	
CONTACT/GENERAL	MARGARET A. GRAHAM	5853385469	TRIS	
CONTACT/REGULATORY	JAMES G KELLAS	5853385172	RCRAINFO	<u>View</u>

Organizations

Affiliation Type	Name	<u>DUNS</u> Number		Mailing Address
CONTACT/OPERATOR	BAUSCH & LOMB, INCORPORATED		RCRAINFO	
CONTACT/OWNER	BAUSCH & LOMB, INCORPORATED		RCRAINFO	View
LEGALLY RESPONSIBLE PARTY	BAUSCH AND LOMB INC		FIS	<u>View</u>

Alternative Names

Alternative Name	Source of Data
APPLIED COATINGS INC	EPA INSPECTION
BAUSCH & LOMB INC.	TRI REPORTING FORM
BAUSCH & LOMB INC OPTICS CENTER	NOTIFICATION (RCRA)
BAUSCH & LOMB GLASS	AIRS/AFS
BAUSCH & LOMB - OPTICS CENTER ROCHES	NEI-HAP

Query executed on: JAN-25-2006

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Wednesday, January 25th, 2006 http://oaspub.epa.gov/enviro/fii_query_dtl.disp_program_facility

U.S. Environmental Protection Agency

Facility Registry System (FRS)

Facility Detail Report

Facility Name:	PREFERRED ELECTRIC MOTORS
Location Address:	42 FERNWOOD AVE
Supplemental Address:	
City Name:	ROCHESTER
<u>State</u>	NY
County Name:	MONROE
ZIP/Postal Code:	14621
EPA Region:	02
Congressional District Number:	28
Legislative District Number:	NY
HUC Code:	04140101
<u>Federal Facility:</u>	NO
<u>Tribal Land :</u>	NO
<u>Latitude:</u>	
<u>Longitude:</u>	
Method:	
Reference Point Description:	
<u>Duns Number:</u>	
Registry ID:	110004562027

Map this facility

Environmental Interests

Information System	Information System ID	Environmental Interest Type	Data Source	Last Updated Date	Supplemental Environmental Interests:
<u>FIS</u>	8-2614-00368	STATE MASTER	FIS		FIS-8-2614- 00368/00001 AIR PROGRAM
RCRAINFO	NYP003602448	HAZARDOUS WASTE BIENNIAL REPORTER	RCRAINFO	02/26/2002	
RCRAINFO	NYP003602448	LQG	RCRAINFO	02/26/2002	

RCRAINFO NYR000085852 CESQG NOTIFICATION 05/19/2000

Facility Mailing Addresses

Affiliation Type	Delivery Point	City Name	State		Information System
CONTACT/GENERAL	PO BOX 30767	ROCHESTER	NY	146030767	RCRAINFO
CONTACT/OWNER	344 WHIPPLE LANE	ROCHESTER	NY	14622	RCRAINFO
CONTACT/REGULATORY	42 FERNWOOD AVE	ROCHESTER	NY	14621	RCRAINFO
LEGALLY RESPONSIBLE PARTY	42 FERNWOOD AVE	ROCHESTER	NY	14621-5624	FIS

NAICS Codes

Data Source	NAICS Code	Description	Primary
FIS	335312	MOTOR AND GENERATOR MANUFACTURING.	
RCRAINFO	56291		

SIC Codes

Data Source	SIC Code	<u>Description</u> –	Primary
FIS	3621	MOTORS AND GENERATORS	

Contacts

Affiliation Type Full Name	e Office Phor	ne Information System	Mailing Address
CONTACT/REGULATORY ROBERT	TALENT 716342508	0 RCRAINFO	View
CONTACT/REGULATORY ROBERT	N ALENT 716342508	0 RCRAINFO	

Organizations

Affiliation Type	Name	11	II 🛋	Mailing Address
CONTACT/OWNER	LEON H ALENT	·	RCRAINFO	View
LEGALLY RESPONSIBLE PARTY	PREFERRED ELECTRIC MOTORS		FIS	<u>View</u>

Alternative Names

No Alternative Names returned.

Query executed on: JAN-25-2006

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Wednesday, January 25th, 2006 http://oaspub.epa.gov/enviro/fii_query_dtl.disp_program_facility

U.S. Environmental Protection Agency

Facility Registry System (FRS)

Recent Additions | Contact Us | Print Version | EF Search: | EPA Home > Envirofacts > FRS > Report

Facility Detail Report

Facility Name:	JML OPTICAL INDUSTRIES INC
Location Address:	690 PORTLAND AVE
Supplemental Address:	
<u>City Name:</u>	ROCHESTER
State	NY
County Name:	MONROE
ZIP/Postal Code:	146215196
EPA Region:	02
Congressional District Number:	28
Legislative District Number:	NY
HUC Code:	04140101
Federal Facility:	NO
<u>Tribal Land :</u>	NO.
<u>Latitude:</u>	_
Longitude:	
Method:	
Reference Point Description:	
<u>Duns Number:</u>	
Registry ID:	110001604185

- Map this facility

Environmental Interests

Information System	Information System ID	Environmental Interest Type	Data Source	<u>Last</u> <u>Updated</u> Date	Supplemental Environmental Interests:
AIRS/AFS	3605500347	AIR SYNTHETIC MINOR	AIRS/AFS	09/13/2005	
			·		FIS-8-2614- 00277/00001 AIR PROGRAM FIS-8-2614- 00277/00002

http://gasnih ena gov/enviro/fii queru del dian program facilitan anno 111 . 20000

FIS	8-2614-00277	STATE MASTER	FIS		AIR PROGRAM FIS-8-2614- 00277/00003 AIR PROGRAM FIS-8-2614- 00277/00005 AIR PROGRAM FIS-8-2614- 00277/00006 AIR PROGRAM FIS-8-2614- 00277/00007 AIR PROGRAM FIS-8-2614- 00277/00008 AIR PROGRAM FIS-8-2614- 00277/00009 AIR PROGRAM FIS-8-2614- 00277/00010 AIR PROGRAM FIS-8-2614- 00277/00011 AIR PROGRAM FIS-8-2614- 00277/00012 AIR PROGRAM FIS-8-2614- 00277/00012 AIR PROGRAM FIS-8-2614- 00277/00013 AIR PROGRAM FIS-8-2614- 00277/00014 AIR PROGRAM FIS-8-2614- 00277/00015 AIR PROGRAM FIS-8-2614- 00277/00015 AIR PROGRAM FIS-8-2614- 00277/00015 AIR PROGRAM FIS-8-2614- 00277/00015 AIR PROGRAM
					FIS-8-2614- 00277/00016 AIR PROGRAM FIS-NYD059645036 HAZARDOUS WASTE PROGRAM
RCRAINFO	NYD059645036	SQG	NOTIFICATION (RCRA)	06/12/1989	

Facility Mailing Addresses

Affiliation Type	Delivery Point	City Name	State		information System
CONTACT/GENERAL	690 PORTLAND AVE	ROCHESTER	NY	14621	RCRAINFO
CONTACT/OWNER	NOT REQUIRED	NOT REQUIRED	WY	99999	RCRAINFO

CONTACT/REGULATORY	690 PORTLAND AVE	ROCHESTER	NY	14621	RCRAINFO	
LEGALLY RESPONSIBLE PARTY	690 PORTLAND AVE	ROCHESTER	NY	14621- 5144	FIS	

NAICS Codes

Data Source	NAICS Code	Description	Primary
FIS	333314	OPTICAL INSTRUMENT AND LENS MANUFACTURING.	

SIC Codes

Data Source	SIC Code	Description	Primary
AIRS/AFS	3827	OPTICAL INSTRUMENTS AND LENSES	
FIS	3827 ~	OPTICAL INSTRUMENTS AND LENSES	

Contacts

Affiliation Type	Full Name	II — -	Information System	Mailing Address
AIR PERMITTING FACILITY OWNER CONTACT	RICHARD BACHELDER		FIS	
CONTACT/COMPLIANCE	RICHARD BACHELDER	7163428900	AIRS/AFS	
CONTACT/REGULATORY	GARY CASALE	7163428900	RCRAINFO	View

Organizations

Affiliation Type	Name	DUNS Number	Information System	Mailing Address
CONTACT/OWNER	J M L OPTICAL		RCRAINFO	View
LEGALLY RESPONSIBLE PARTY	J M L OPTICAL INC		FIS	View

Alternative Names

Alternative Name	Source of Data
J M L OPTICAL	RCRAINFO

Query executed on: JAN-25-2006

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Wednesday, January 25th, 2006 http://oaspub.epa.gov/enviro/fii_query_dtl.disp_program_facility

http://oaspuh.ena.gov/enviro/fij.guom. 44 4:--

Environmental Site Remediation Database Search

More information:

Environmental Remediation Databases Glossary of Hazardous Waste Sites Database Terms

More searches:

New Environmental Remediation Sites Database Search

Back to Search Results

Other Links of Interest...

Site Record

Administrative Information

Site Name: Former Vogt Manufacturing Site

Site Code: C828119 EPA ID Number:

Location

DEC Region: 8

Address: 100 Fernwood Ave. City: Rochester Zip: 14623-

County: Monroe

Latitude: Longitude:

Site Type:

Estimated Size: 8.09 Acres

Institutional And Engineering Controls

Control Name

httn.//www.nna dos state

No Controls Currently at the Site

Site Owner(s)

Current Owner Name: TAMARCK III ASSOCIATES
Current Owner(s) Address: 183 EAST MAIN STREET
ROCHESTER, NY 14604

Site Description:

The former Vogt Manufacturing Site is located in an urban portion of the City of Rochester, Monroe County. The main site feature is a large unoccupied building (approximately 120,000 square feet) and surrounding parking areas. A smaller building (approximately 3,000 square feet) is also present at the site and currently used as a church. Approximately one quarter of the site is undeveloped. The surrounding parcels include a combination of commercial, industrial and residential uses. The large building was constructed in the late 1920s as a manufacturing facility for automobile trimmings. It was later converted for multi-tenant light industrial/commercial use, including plastic products manufacturing, tool and die makers, machine shops, painters, printers, graphics companies, and sheet metal contractors. It has been vacant since 2002. Specific prior uses that led to site contamination have not been identified. However, a number of the past manufacturing operations may have resulted in the disposal of hazardous substances at the site, including petroleum products and chlorinated solvents. Possible disposal of pesticides, PCBs, and heavy metals is also being evaluated. In 2004 and 2005, several petroleum underground storage tanks have been removed. Remedial investigation work is on-going.

Material Disposed of at Site and Quantity:

Type of Waste Quantity of Waste

Assessment of Environmental Problems:

The primary contaminants of concern known at this time

http://www.npng.dog.eteta.gov.ng/gov. /1 C :10 /:

include petroleum hydrocarbons, chlorinated solvents, and plasticizers. Investigation work to fully define the nature and extent of contamination at the site is on-going. A determination on the significance of the environmental threat will be made once the remedial investigation is complete.

Assessment of Health Problems:

If you have questions regarding the information in this database, please contact the Department at (518) 402-9543 for further assistance.

Other Links of Interest

<u>Priority Classification</u> definitions of the site classification codes used in the inactive hazardous waste disposal records

Overview of DER's Remedial Programs

Phone Numbers for Environmental Site Remediation

Environmental Site Remediation Database Search

More information:

Environmental Remediation Databases
Glossary of Hazardous Waste Sites Database Terms

More searches:

New Environmental Remediation Sites Database Search

Back to Search Results

Other Links of Interest...

Site Record

Administrative Information

Site Name: Preferred Electric Motors, Inc.

Site Code: 828106 Classification: 02 EPA ID Number:

Location

DEC Region: 8

Address: 42 FERNWOOD AVENUE City: ROCHESTER Zip: 14621

County: Monroe

Latitude: 43:10:46 **Longitude:** 77:35:21

Site Type: LAGOON

Estimated Size: 0.25 Acres

Institutional And Engineering Controls

Control Name

No Controls Currently at the Site

Site Owner(s)

Current Owner Name: PREFERRED ELECTRIC MOTORS,

Current Owner(s) Address: 42 FERNWOOD AVENUE ROCHESTER ,NY 14621

Owner(s) during disposal: PREFERRED ELECTRIC MOTORS, INC.

Operator during disposal: Preferred Electric Motors, Inc. Stated Operator(s) Address: 42 Fernwood Avenue
Rochester, NY 14621

Hazardous Waste Disposal Period From: 1950 **To:** present

Site Description:

Preferred Electric Motors, Inc. is located at 42 Fernwood Ave. near the intersection with Portland Ave. in the city of Rochester in Monroe county in the middle of a residential area containing some light industry. The site consists of a large 2 story building that fills most of the property with a small courtyard and driveway. It was a small family owned and operated business where electric motors were rebuilt and refurbished. This facility operated for about 53 years at this location but is currently closed. Halogenated solvents were used during manufacturing for cleaning and degreasing metal parts, and the facility used a trichloroethylene (TCE) vapor degreaser. In July of 2000, several decaying drums of spent solvents and oils were removed from the facility yard. Many of these drums were noted to be leaking. The owner conducted a limited soil investigation of the property in 2000. The investigation discovered the presence of an abandoned underground storage tank and areas of chlorinated solvents soil contamination. Surface and sub-surface soils showed considerable solvent contamination, and disposal of halogenated solvents (F002 Waste) has been confirmed. In 2000 the NYSDOH conducted indoor air sampling in houses adjacent to the site, and indoor air contamination was

confirmed. In the fall of 2000, a soil vapor extraction (SVE) system was installed on the property of an adjacent houses in order to help minimize the impact of vapor migration into the house. A State Superfund Remedial Investigation/Feasibility Study (RI/FS) will begin in 2005.

Material Disposed of at Site and Quantity:

Type of Waste

Quantity of Waste

TETRACHLOROETHENE

UNKNOWN

TRICHLOROETHENE (TCE)

UNKNOWN

Assessment of Environmental Problems:

Contamination from the on-site disposal of waste solvents (TCE and PCE) has been documented and confirmed. The adjacent residences were significantly impacted by the solvent vapors that had migrated into the homes and which pose a potential threat to human health. Additional investigation is needed to determine the full extent and nature of contamination. The soil vapor extraction system that was installed on an adjacent property will require continuous operation and monitoring.

Assessment of Health Problems: -

Trichloroethene (TCE) and to a lesser extent tetrachloroethene (PERC) vapors have been detected in indoor air samples collected in adjacent houses. The house in closest proximity to the site had elevated levels of TCE and PERC. At NYSDOH and Monroe County Health Department's request, NYSDEC installed a soil vapor extraction system under and adjacent to this house to intercept the vapors. Indoor air samples collected after the system was installed and operating, showed that the system had effectively captured the vapors. TCE and PERC vapors have been detected at much lower levels in five other homes adjacent the site. Additional remedial work is necessary to mitigate the migration of soil gas vapors into these homes and possibly other nearby homes. Although the nature and extent of possible groundwater contamination has not been defined, exposure to contaminated groundwater is not a concern as all houses and businesses in the area are served by public water.

If you have questions regarding the information in this database, please contact the Department at (518) 402-9543 for further assistance.

Other Links of Interest

<u>Priority Classification</u> definitions of the site classification codes used in the inactive hazardous waste disposal records

Overview of DER's Remedial Programs

Phone Numbers for Environmental Site Remediation

http://www.

Environmental Site Remediation Database Search

More information:

Environmental Remediation Databases Glossary of Hazardous Waste Sites Database Terms

More searches:

New Environmental Remediation Sites Database Search

Back to Search Results

Other Links of Interest...

Site Record

Administrative Information

Site Name: Christopher Service Company, Inc.

Site Code: V00664 EPA ID Number:

Location

DEC Region: 8

Address: 501 & 513 Wilkens Street

City: Rochester Zip: 14621-

County: Monroe

Latitude: 43:10:43 **Longitude:** 77:35:48

Site Type:

Estimated Size: 0.4 Acres

Institutional And Engineering Controls

Control Name

No Controls Currently at the Site

Site Owner(s)

Current Owner Name: C/O ARAMARK UNIFORM SERVICE

CO., INC

Current Owner(s) Address: 2300 WARRENVILLE RD.

DOWNERS GROVE, IL 60515-

1765

Operator during disposal: CHRISTOPHER SERVICE

COMPANY INC.

Stated Operator(s) Address: 501 & 513 WILKENS ST.

ROCHESTER, NY 14621

Site Description:

The property consists of two one-story buildings of concrete block construction with several bay doors in the front of both buildings. Currently the building located at 501 Wilkins Street is utilized for the loading and unloading of clean and dirty laundry and the building located at 513-Wilkins Street is utilized for limited storage. Both buildings have concrete floors with no basements. A floor drain was identified in the building at 513 Wilkins Street. The discharge point of the floor drain is unknown, however, samples of sludge from the floor drain contained PCE at a concentration of 6500 ppm. The Volunteer proposes to demolish the building and excavate the floor drain. Both buildings are connected to natural gas for heat. Additionally, both buildings have city-supplied water and sanitary sewer.

Material Disposed of at Site and Quantity:

Type of Waste Quantity of Waste

Assessment of Environmental Problems:

The remedial investigation has begun, indicating elevated levels of Trichloroethylene (TCE) in the sump sediments. Additional investigation will define the extent of the impacted

soil and groundwater.

Assessment of Health Problems:

If you have questions regarding the information in this database, please contact the Department at (518) 402-9543 for further assistance.


. <u>=</u>-

Other Links of Interest

<u>Priority Classification</u> definitions of the site classification codes used in the inactive hazardous waste disposal records

Overview of DER's Remedial Programs

Phone Numbers for Environmental Site Remediation

<u>Site#</u> RO-199 RO-207 RO-209

<u>Type of Waste</u> NYSDEC Registry Site #828106 – Preferred Electric Motors NYSDEC Brownfield Cleanup – 100 Fernwood Ave. NYSDEC Voluntary Cleanup – 501 Wilkins St.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Petroleum Bulk Storage Program Facility Information Report

PBS # : 8-600647

Site:

JML OPTICAL INDUSTRIES, INC ROCHESTER, NY 14621 690 PORTLAND AVENUE

Town : ROCHESTER (C) Longitude : : #S83 Site Type : Manufacturing County : MONROE Latitude : SPDES#:

(716) 342-8900 Operator : NAT KOSCHARA (716) 342-8900 Emergency : DICK BACHELDER

Reg Expires : 03/18/2004 Last Inspection :

Owner Type : Corporate/Commercial

Phone: (716) 342-8900

14621

ROCHESTER, NY

Owner : 690 PORTLAND AVE., CO 690 PORTLAND AVENUE

Site status : Under 1101 gal.

Active Capacity : 0 gals.

Total Active Tanks : 0

Mail : JML OPTICAL INDUSTRIES, INC

690 PORTLAND AVENUE

Cert Printed: 03/18/1999

Site Errors : Complete Owner Error : Complete Tank Errors : No Data

(716) 342-8900 Att : RICHARD BACHELDER

14621

ROCHESTER, NY

SecCont Leak OverFil Disp LastTest NextTest 78200 CLOSED: 03/01, 135 0 0 PipeInt PipeExt PipeType PipeLoc Product TankType TankInt TankExt Capac (g) 2,000 TankLoc Stat DateIn TankNo

90

page 1 of 1

DEC REGION# 8 (A	von)	YSDEG SPILL	SPILL NU	MBER <u>9870600</u>		
SPILL NAME:JML CALLER'S NAME:	OPTICAL		DEC LEAD	D: TW		
CALLER'S AGENCY:						
CALLER'S PHONE:						
SPILL DATE:	03/29/1999 E: 03/29/1999		10:00 10:35 F	RECEIVED BY CID #	÷	
Material	Spilled	M	at. Class	Am't Spilled	Units	Am't Re
#2 FUEL OIL		(Pet-Ha	z-Other-Unk .	Unknown	Gal - Lbs	0
		<u></u>	z-Other-Unk.		Gal - Lbs	
3)		Pet-Ha	z-Other-Unk.		Gal - Lbs	
4)		Pet-Ha	z-Other-Un <u>k.</u>		Gal - Lbs	
	OCATION PTICAL		NAME:	POTENTIAL JML OPTICAL	SPILLER	
				690 PORTLAND A	VENUE	
STREET: 690 PORTLA	ND AVENUE		CITY: R	OCHESTER		
I/C/V: ROCHESTER			STATE: _	NY	ZIP: 14621-	
CONTACT: FRED LE				: RICH BACH		
PHONE:(716) 955			PHONE: _	(716) 342-89	00 EXT	
	. CAUSE			SPILL SOL		•
raffic Accident Hara	ank Test Failure (lousekeeping Peliberate Abandoned Drums	Tank Failure Tank Overfill Other Unknown		Gas Station Passenger Vehicle Comm. Vehicle Tank Truck	Private Dwelling Vessel Railroad Car Major Facility	Non-Maj F Comm/Ind Non-Comm Unknown
RESOU	RCE AFFECTED			- SPILL REP	ORTED BY	. •
	Groundwater Gurface Water	Air		Responsible Party Affected Persons Police Department	Tank Tester DEC Citizen	Local Age Federal Go Other
		4 000 5 000 6		Fire Department	Health Dept.	
CALLER REMARKS: W. WAS ENCOUNTERED AR	i i					ATED SOIL
IEDMONT WILL TEST						
	SH TO RESPOND TO					
* <u>PBS Number</u>	Tank Number			Test M		Leak
PRIMARY CONTACT CAL	LED DATE:	TIM	E:hrs.	REACHED DATE:		TIMEs.
ECONDARY CONT. CAL			E:hrs.	FAXED BY CID#:		
PIN#	T&A	Cost Ce			R to Central Office	
Cleanup Ceased	M	eets St'dsNO	La	st Inspect@//29/1999	N	i ® enalty
RP-CUI	ENF-INIT		INVES	S-COM	CAP	
UST Trust Eligible NO	Site ()	B C D E Re	sp. Party ①)2 3 4 5 6 F	Reg Close Date	
Created on 03/29/1999		n 06/15/1999 I	s Updated?	NO EDO	DATA	\ INPUT [
ate Printed: 02/11/200	06			L	D _i	intFor 3/30/1999

CALLER'S REMARKS (continued)

1100 HRS.

DEC REMARKS

03/29/99 TW ON SITE. SPOKE TO DICK BATCHLENDER OF JML OPTICAL. TANK IS STILL IN PLACE. WATER IS NOTED IN THE EXCAVATION AT APPROXIMATELY 9' BELOW GRADE. A SLIGHT SHEEN WAS NOTED ON THE WATER. DUE TO THE PROXIMITY OF THE TANK TO THE STRUCTURES, NO FURTHER EXCAVATION IS POSSIBLE. JML OPTICAL TO FINISH REMOVAL, AND PROPOSE REMEDIAL ACTION PLAN.

SPILL NUMBER	Am't Re
CALLER'S NAME: NOTIFIER'S NAME: CALLER'S AGENCY: NOTIFIER'S AGENCY: CALLER'S PHONE: EXT. SPILL DATE: 03/07/1994 TIME: 11:00 CALL RECEIVED DATE: 03/07/1994 TIME: 12:00 RECEIVED BY CID #: Material Spilled Mat. Class Am't Spilled Units 1) GASOLINE Pet-Haz-Other-Unk. 0 Pet-Haz-Other-Unk. Gal - Lbs 3) Pet-Haz-Other-Unk. Gal - Lbs	Am't Re
CALLER'S AGENCY: NOTIFIER'S AGENCY: CALLER'S PHONE: EXT. SPILL DATE: 03/07/1994 TIME: 11:00 CALL RECEIVED DATE: 03/07/1994 TIME: 12:00 RECEIVED BY CID #: Material Spilled Mat. Class Am't Spilled Units Pet-Haz-Other-Unk. = 0 Pet-Haz-Other-Unk. Gal - Lbs 3) Pet-Haz-Other-Unk. Gal - Lbs	Am't Re
SPILL DATE: 03/07/1994 TIME: 11:00	Am't Red
CALL RECEIVED DATE: 03/07/1994 TIME: 12:00 RECEIVED BY CID #: Material Spilled Mat. Class Am't Spilled Units O Gal - Lbs 0 Pet-Haz-Other-Unk. Gal - Lbs 0 Pet-Haz-Other-Unk. Gal - Lbs 0 Pet-Haz-Other-Unk. Gal - Lbs 0	Am't Red
Material Spilled Mat. Class Am't Spilled Units Pet-Haz-Other-Unk. 0 Gal - Lbs 0 Pet-Haz-Other-Unk. Gal - Lbs Pet-Haz-Other-Unk. Gal - Lbs	Am't Red
3) Pet-Haz-Other-Unk. Gal - Lbs	
3) Pet-Haz-Other-Unk. Gal - Lbs	
SPILL LOCATION POTENTIAL SPILLER	
PLACE: ATLANTIC SERVICE STATION NAME: SUN OIL COMPANY	
STREET: 301 WEST HIAWATHA BLVD	
STREET: 540 PORTLAND AVENUE CITY: SYRACUSE	
ICIV: ROCHESTER CO: MONROE STATE: NY ZIP:	
CONTACT: CONTACT:	
PHONE: EXT PHONE: (315) 466-7609	
SPILL CAUSE SPILL SOURCE	
	on-Maj F
Tubbenger Veiller Vesser	omm/Ind on-Comm
Wandaliam Ahandanad Duura Uut	nknown
RESOURCE AFFECTED SPILL REPORTED BY	
n Land Groundwater Air . Responsible Party Tank Tester Lo	cal Age
In Sewer Surface Water Affected Persons DEC Fe	deral Go
WATERBODY:	her
Fire Department Health Dept. CALLER REMARKS: WHILE PERFORMING SOIL BORINGS AS PART OF AN ENVIRONMENTAL AUDIT AT STATION	ī
A353-9754, CONTAMINATED SOIL WAS ENCOUNTERED IN ONE BORING AT A DEPTH OF 7-9	<u>'</u>
T. PID READING > 400 PPM.	
* PDO W	
PBS Number Tank Size Test Method	<u>Leak</u>
PRIMARY CONTACT CALLED DATE: TIME:_hrs. REACHED DATE: T	
ECONDARY CONT. CALLED DATE: TIME: _hrs. FAXED BY CID#:	∐MEs.
PIN # T & A Cost Center ISR to Central Office	
Cleanup Ceased Meets St'dsNO Last Inspection N@ena	alty
RP-CUI ENF-INIT INVES-COM CAP	
UST Trust Eligible YES Site B C D E Resp. Party 1 2 3 4 5 6 Reg Close Date	
Greated on 03/08/1994 Last Updated on 04/11/2000 Is Updated? NO EDO DATA INPU	l I

DEC REMARKS

03/07/94: SECOND BORING TO BE INSTALLED. A MONITORING WELL TO BE PLACED IN BORING WHERE CONTAMINATION FOUND. SUN TO FOLLOW-UP WITH PROPER REMEDIATION.

06/14/94: TILTON ON SITE W/DAN BISHAK; READINGS W/PID GOT READINGS UP TO 750 PPM AT 5' TO 7' BELOW GRADE. ALL CONTAMINATED SOIL IS BEING RMEOVED OFF SITE TO HIGH ACRES. GROUNDWATER SERVICE TO SEND....

06/14/94: ...CLOSURE REPORT TO SUN OIL.

12/08/94: DEPT RECEIVES CLOSURE REPORT FROM GES. THESE 12,000 GAL GASOLINE TANKS REMOVED ON JUNE 13-15, 1994. TANKS WERE IN VERY GOOD CONDITION. EXCAVATED SOILS HAD PID READINGS FROM 4 PPM TO 729 PPM.

12/08/94: BOTTOM OF EXCAVATION WAS APPROX 12 FT BELOW GRADE. TOTAL AMOUNT OF SOIL REMOVED FROM THE EXCAVATION WAS ESTIMATED AT 800 TO 1000 CU YDS (1200-1500 TONS). SOIL SAMPLING OF SIDEWALLS INDICATES

12/08/94: ...PETROLEUM CONTAMINATION ABOVE GUIDANCE VALUES FOR ALL SIDES. NO SAMPLES TAKEN FROM BOTTOM. SUN NEEDS TO PERFORM FURTHER INVESTIGATION AND DEVELOP A REMEDIAL ACTION PLAN.

02/06/96 CH MEETING WITH BENDER OF SUN ON 02-01-96; SUN WILL SAMPLE GROUNDWATER IN MW-1 AND EVALUATE FOR GASOLINE CONTAMINATION. ADDITIONAL WELLS TO DEFINE GROUNDWATER FLOW DIRECTION MAY BE INSTALLED.

080/06/96 REVIEW G.E.S. SITE ASSESSMENT PERFORMED IN FEB AND MARCH 96. THREE NEW WELLS INSTALLED IN ADDITION TO EXISTING ONE WELL. BEDROCK IS BETWEEN 12 12.5 FT BELOW GRADE ACROSS SITE. DEPTH TO GROUNDWATER IS 6 3/4 TO 10 1/3 FT ELOW GRADE. NO FREE PRODUCT WAS ENCOUNTERED. SOIL SAMPLES TAKEN FROM MW-2 - MW-4. SOIL SAMPLES SHOW MW-3 WITH 76,630 PPB BTEX AND MW-4 WITH 29,463 BTEX. W-3 HAD 330 PPB BENZENE WHILE MW-4 HAD 603 PPB BENZENE. GROUNDWATER ANALYSIS HOWED MW-1 TO HAVE 4700 PPB BTEX, MW-3 HAD 12,500 PPB BTEX, MW-4 HAD 57400 PPB BTEX, AND MW-2 WAS LESS THAN 1 PPB. ASSESSMENT SHOWS UTILITIES AND SOME NEIGHBORING BASEMENTS TO BE POTENTIAL RFCEPTORS. CH WILL REQUEST SUN TO PERFORM EMEDIATION THROUGH A STIP.

08/07/96 CH MEETS WITH DAVE BENDER OF SUN. REMEDIATION NEEDS TO BE PERFORMED.

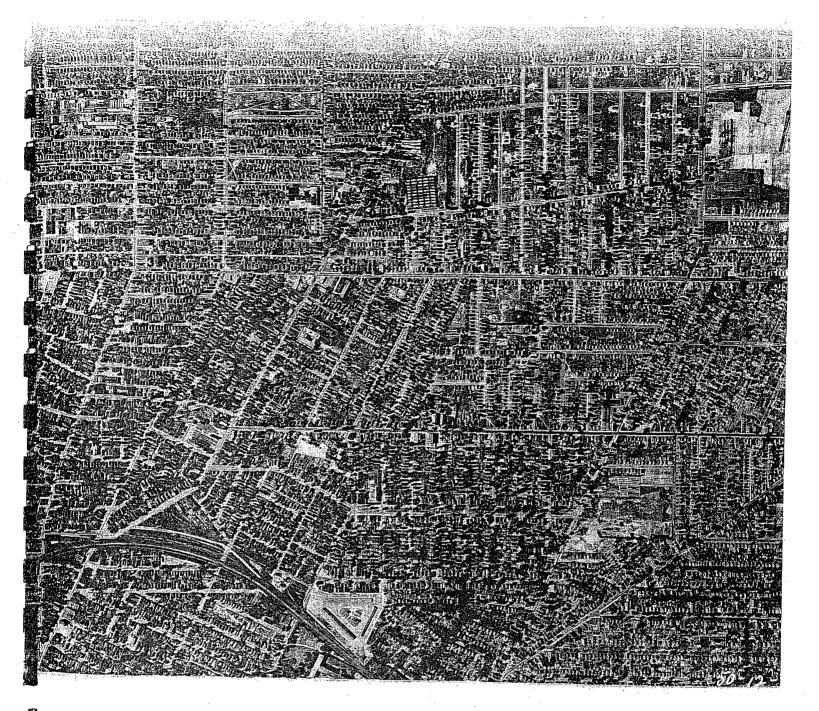
02/11/97: CORRECTIVE ACTION PLAN SUBMITTED BY GES. PROPOSE INSTALLING 2 NEW OTAL PHASE EXTRACTION PIS. AS WELL AS USING MW3 & MW4. EXTRACTION WILL BE ERFORMED USING A VACUM TRUCK FOR 1-2 HRS. ON EACH WELL ON A QUARTERLY BASIS.

7/9/97 1ST QUARTER REPORT 97. ON 2/20/97 HIGH VAC EXTRACTION USING VAC TRUCK AS PERFORMED ON ALL WELLS. ON 3/97 GROUNDWATER SAMPLES TAKEN. ELEVATED BTEX EVELS IN MW1, MW3, MW4 & EXTRACTION A 2.

09/24/97; CH MTG. W/ BENDER OF SUN.GES SCHEDULED TO VAC AGAIN IN 4TH UARTER.THIS DOES NOT SEEM TO BE WORKING.ALTERNATE REMEDIAL ACTION PLAN NEEDS TO BE DEVELOPED FOR 98.

04/28/98:CH MTG W/ BENDER OF SUN. SITE IS HOT.NEED TO SEND LETTER TO SUN REQUESTING REMEDIATION.

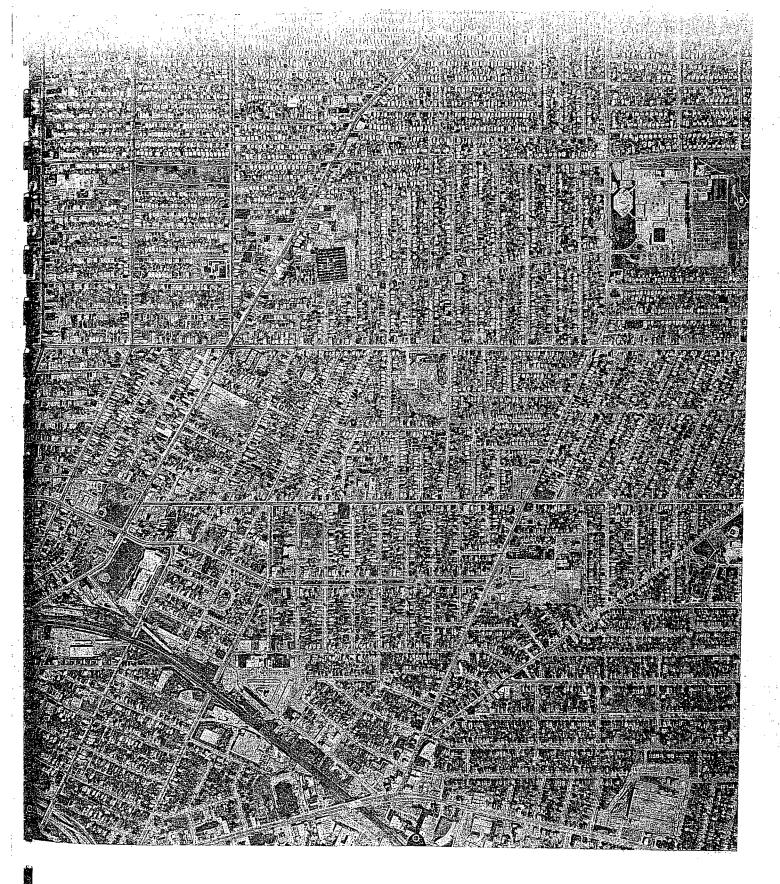
Spill Number: 931428, Spill Name: ATLANTIC SERVICE STATIONPrinted on: 02/11/2006


DEC REMARKS (Continued)

07/06/99:CH MEETS W/ BENDER. NEW WELLS TO GO IN AND RAP DEVELOPED.

04/05/00:CH MTG W/ BENDER. INSTALLED O2 INJECTION WELLS, AND SITE IS WAITING FOR AVAILABILITY OF O2 TRAILER. NEW TRAILER TO BE BUILT AND SENT TO ROCHESTER TO ADDRESS SEVERAL SITES.

Appendix 5



Appendix 6

Phase II Environmental Site Assessment Preliminary Site Characterization

Location:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

Prepared for:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

LaBella Project No. 205126

June 2005

Phase II Environmental Site Assessment Preliminary Site Characterization

Location:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

Prepared for:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

LaBella Project No. 205126

June 2005

Table of Contents

1.0	Taken 1	Page
1.0	Introduction and Background	1
2.0	Objective	
3.0	Scope of Work	
4.0	Floor Drain Investigation	
5.0	Soil Boring Investigation and Observations	
6.0	Analytical Results	
7.0	Summary of Geologic and Hydrogeologic Conditions	10
8.0	Discussions and Conclusions	10

Figure Appendices

1.0 Introduction and Background

LaBella Associates, P.C. ("LaBella") conducted a Phase II Environmental Site Assessment (ESA); Preliminary Site Characterization (PSC) at the property known as JML Optical, Inc. ("JML") located at 690 Portland Avenue in the City of Rochester, Monroe County, New York, hereinafter referred to as the "Site." The Phase II ESA was implemented to investigate the following potential Recognized Environmental Conditions (RECs).

- An open New York State Department of Environmental Conservation (NYSDEC) Spill file (#9870600) that exists for the Site. This petroleum release is associated with the removal of an approximately 5,000-gallon underground fuel oil tank from 690 Portland Ave. It is reported that this former underground storage tank (UST) formerly serviced the boiler house located on the western portion of the parcel. It is reported that while removing the UST, contaminated soil was encountered during the UST excavation and where possible, the contaminated soil was excavated and disposed of off-site. This work was completed by Piedmont Equipment for JML. Reportedly excavation closure samples were collected as part of the UST Closure and follow-up groundwater monitoring wells were advanced at the Site. However, to date, no analytical data has been provided to LaBella. Also the NYSDEC has recently contacted JML regarding the status of this release.
- The Site has a long history of optical related manufacturing. As part of the process it is reported that chlorinated solvents (primarily Trichloroethylene (TCE) were utilized at the Site. In addition, the facility was historically equipped with both individual floor drains and linear trench drains to presumably receive fugitive wastewater emissions. The trench drains were a site feature that may have been utilized by the previous owner but were filled with concrete by JML. No information is available regarding the historical discharge location of the trench drains. Reportedly the current floor drains discharge to the municipal sewer system on either Portland Avenue or Fernwood Avenue. At the time of the site walkthrough the decommissioned trench drains were observed at several locations throughout the original buildings. In addition, non-decommissioned floor drains and a potential large drainage structure (manhole/sump within storage area) were observed throughout the original building.
- One NYSDEC Inactive Hazardous Waste Disposal Site (IHWDS) is located approximately 40-feet south of the Site. This IHWDS known as Preferred Electric Motors, Inc., is located at 42 Fernwood Avenue. Preferred Electric Motors, Inc. utilized halogenated solvents (TCE) during their manufacturing process for cleaning and degreasing metal parts. A limited soil investigation was conducted in 2000. The investigation confirmed that on-site disposal of waste solvents occurred and that surface and subsurface soils showed considerable contamination from solvents. Further investigation revealed that the adjacent residences were significantly impacted by the solvent vapors migrating into adjacent structures.

Phase II Environmental Site Assessment
JML Optical, Inc.
690 Portland Avenue
Rochester, New York
Page 1

• The adjacent parcel to the east, 100 Fernwood Avenue, is currently involved in an environmental clean-up under the NYSDEC Brownfield Cleanup Program. At the time of the site walkthrough, a large soil pile was observed in the open lot adjacent to JML's east fence line. It is unclear at this time if the observed soil pile is associated with the environmental cleanup. Based on the level of research completed to date, the magnitude of the environmental cleanup associated with this parcel is not known.

The issues outlined above represent RECs in regard to potential soil and/or groundwater impairment at the Site. LaBella recommended that further investigation into these RECs be conducted to assist in making business decisions regarding JML divestiture of the 690 Portland Avenue facility.

2.0 Objective

The objective of this Phase II ESA was to identify potential soil and/or groundwater impairment from the RECs identified above. The Scope of Work that was implemented at the Site was designed to roughly characterize the horizontal and vertical extent of impairment at the Site.

3.0 Scope of Work

The following Scope of Work was undertaken in accordance with our discussions:

- 1. A floor drain investigation was undertaken in order to identify the discharge locations of effluent in floor drains in the vicinity where historical degreasing activities were reportedly conducted at the Site. JML retained a professional plumber to snake and videotape the drains to identify the discharge locations.
- 2. An Underground Facilities Protection Organization (UFPO) stakeout was conducted (UFPO #03095-114-007 and #041015-053-038) at the Site, to locate any subsurface utilities in the areas where the subsurface assessment and delineation had taken place.
- LaBella Associates retained the services of a specialized contractor to implement a direct push "geo-probe" soil boring and sampling program at the Site. Two eight (8) hour days of borings were conducted at the Site. The borings were conducted at in the vicinity of the above listed RECs at the Site.
- 4. Soils from the borings were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable volatile organic compounds (VOCs) on a Photo-Ionization Detector total VOC meter. Positive indications from any of these screening methods were collectively referred to as "evidence of impairment." Evidence of impairment gathered at the time of the fieldwork was used to determine the location for soil samples and was also used to roughly determine the vertical and horizontal extent of impairment at the Site.

Phase II Environmental Site Assessment
JML Optical, Inc.
690 Portland Avenue
Rochester, New York
Page 2

- 5. Soil samples were collected from the borings based on evidence of impairment. Seven (7) soil samples were retained from the borings for laboratory analysis. Samples were analyzed for analytical parameters based on the location collected and the suspect constituents of concern. Sample locations were determined at the time of the fieldwork and were based on evidence of impairment. Soil samples were analyzed for one of the following analyses:
 - Petroleum and chemical related VOCs by United States Environmental Protection Agency (USEPA) Method 8260B Target Compound List (TCL) plus NYSDEC Spill Technology and Remediation Series (STARS) Compounds,
 - SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only, and
 - Eight (8) Resource Conservation and Recovery Act (RCRA) Metals by USEPA Methods SW846 6010 and SW846 7470 (totals).
- 6. Six (6) temporary shallow-overburden groundwater monitoring wells were advanced at the Site. The wells were located based on evidence of impairment and local hydro-geological conditions observed during the investigation. The general locations that were selected provided the highest probability of capturing fugitive the RECs discussed above. Four (4) samples were selected and submitted for laboratory analysis based on the scope of work and objectives of the project. Groundwater samples were analyzed for one or more of the following analyses:
 - Petroleum and chemical related VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds, and
 - SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only.
- 7. A LaBella survey crew located and elevated four of the groundwater monitoring wells. This survey data was utilized to add the groundwater monitoring well locations to the Site Mapping, and calculate groundwater flow direction and gradient for the Site.
- 8. Groundwater and soil samples were sent under Chain of Custody procedures to a New York State Department of Health (NYSDOH) approved laboratory.

4.0 Floor Drain Investigation

The floor drain investigation involved the use of a metal "snake" and video camera to evaluate the discharge location of floor drains in the vicinity where the use of historical chlorinated solvents reportedly had taken place at the Site. JML retained the services if Diamond Plumbing to snake and video the floor drains. On March 3, 2005 LaBella and Diamond Plumbing investigated the floor drains inside the maintenance shop, the sump, and storage area located directly west of the maintenance shop.

Diamond Plumbing snaked the drains in the cold storage area and it appeared the drain discharged in the northeasterly direction toward Ilex Place. The discharge location of the drain could not be determined, however, it was the opinion of Diamond Plumbing that the drain likely discharged to the sewer.

Phase II Environmental Site Assessment
JML Optical, Inc.
690 Portland Avenue
Rochester, New York
Page 3

Two (2) floor drains inside the maintenance shop (one in the office portion and the other in the work area) were determined to discharge to the sump. Diamond Plumbing subsequently attempted to video the discharge location of the sump, however, the opening would not allow the camera to enter. The sump appeared to be constructed of metal and it extended approximately 3-feet below the floor grade. A metal snake was subsequently used to assess the discharge location of the sump. The snake was passed approximately 40-feet into effluent piping exiting the sump with no discharge point encountered, and it was the opinion of Diamond Plumbing that the drain discharged to a sewer in a northerly direction toward llex Place.

Several other floor drains were observed inside the JML building at the Site where known historical degreasing/solvent use had taken place. According to Diamond Plumbing the drains in these areas where cleaned out with a snake approximately two years ago and it was their opinion that the drains discharged to a sewer lateral on Portland Avenue.

5.0 Soil Boring Investigation and Observations

Methodology:

Borings were advanced with a "geoprobe" direct push sampling system. The use of direct push technology allows for rapid sampling, observation, and characterization of relatively shallow overburden soils. The geoprobe utilizes a 4-foot macro-core sampler with disposable polyethylene sleeves. Soil cores are retrieved in 4-foot sections and can be easily cut from the polyethylene sleeves for observation and sampling. The macro-core sampler was decontaminated between samples and borings using an alconox and water solution.

Six (6) temporary shallow-overburden groundwater-monitoring wells were installed at the Site. Each groundwater monitoring well utilized 1-inch well screen. The groundwater-monitoring wells were set between depths of 6.8 to 10.0-feet Below the Ground Surface (BGS), with 5-feet of 0.010-inch slotted PVC screen connected to an appropriate length of PVC riser to complete the well installation. The wells were sand packed to 2-feet above the top of the well screen and bentonite sealed to the ground surface.

Prior to sampling, wells MW-1, MW-2, MW-3, and MW-4 were purged by bailing at least three (3) well volumes.

Samples were collected in laboratory supplied sample jars and vials. All samples were placed in coolers with chemical ice packs and transported under chain of custody procedures to NYSDOH approved laboratory for analysis.

Field Activities:

Twenty-two (22) borings and six (6) groundwater monitoring wells were advanced at the Site on March 18 and April 8, 2005. All of the borings were advanced to a total depth of 6.2 to 11.3-feet BGS. All soil cores were continuously assessed by a LaBella Associates' Environmental Geologist for soil type and evidence of impairment. Table 1 below details PID readings collected from the soil borings at the time of the fieldwork.

Table 1
Soil Boring PID Readings

Soil Boring			Approxin	nate Depth			Approximate	
I.D. 0'-2	0'-2'	2'-4'	4'-6'	6'-8'	8'-10'	10'-12'	Depth of Sample Analyzed	Analytical Method
B-2	0	0 :	0	0			NA	NA
B-3	1.4	0	1.4	1.4			NA	NA NA
B-4		1.4	1.4	1,3			NA	NA NA
B-5	0.7	0	8.2	19.4	8.0		6'-8'	8260B, 8270
B-6	0	0.5	0.5	0	0	0	NA	NA
B-7	4.2	0.7	0	0			NA	NA.
B-8	3.4	4.2	132	222			6'-7.2'	8260B, 8 RCR
B-9	1.6	4.3	18.1	13.6			NA	NA
B-10	0	0.9	1.7	1.5	0)		4'-6'	8260B, 8270
B-11	0	0	0	. 0	0	0	NA	NA
B-12	0	29.2	0	0			NA	NA
B-13	1.1	1.7	58.9	59.9			8'-9.7'	8260B
B-14	0.7	0.5	1.7	1.1			NA	NA
B-15	2.3	2.2	1.7	2.6			4'-6.2'	8260B
B-16	0.2	0.3	6.7	9.9	2.7		NA	NA
B-17	1.9	2.0	0.7	0.9			NA	NA
B-18	0.7	0.8	706				NA	NA
B-19	0.7	0.8	0.6	0.8			NA	NA
B-20	0.2	0.5	0.7	0.9			NA	NA
B-21	0	0	0	0	0		NA	NA
B-22	0	0	0	0	0		NA	NA
	PID readings		<u> </u>	1.4	2.3		NA	NA

Note: All PID readings were collected utilizing a Minirae 2000 photoionization detector and are representative of ppm VOC 8260B denotes sample analyzed for VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Constituents 8270 denotes sample analyzed for SVOCs by USEPA Method 8270 NYSDEC STARS Constituents only 8 RCRA denoted sample analyzed for the 8 RCRA Metals by USEPA Method

--- denotes soil sample not collected NA denotes Not Applicable

As noted in Table 1 above, slight to slightly moderate evidence of impairment was noted in seventeen(17) of the twenty-two (22) soil borings advanced at the Site.

The highest evidence of impairment appeared to be in the vicinity of the "sump" as represent in PID measurements from soil borings B-7 and B-12. The other location of the highest evidence of impairment appeared in the vicinity of the former underground tank pit at the Site as represented in soil boring B-4.

Each groundwater monitoring well was purged and sampled using a dedicated PVC bailer on March 16, 2005.

On March 28, 2005, a LaBella survey crew located and elevated overburden groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. In addition, static groundwater levels were collected from each overburden groundwater monitoring well advanced at the Site. The results of these static groundwater levels are summarized in Table 2 below:

Table 2
Static Water Level Measurements on March 23, 2005

Well I.D.	Static Water Level (Feet)	Groundwater Elevation
MW-1	1.54	98.74
MW-2	1.68	98.26
MW-3	4.50	96.01
MW-4	5.28	97.12

Note: Static water levels measured from the top of the PVC riser Groundwater Elevation denotes the site specific groundwater elevation

Boring and groundwater monitoring well locations at the Site are depicted on Figures 1a and 1b (attached). Copies of the boring and monitoring well logs are included in Appendix 1.

6.0 Analytical Results

Four (4) groundwater samples from groundwater monitoring wells MW-1, MW-2, and MW-3, and MW-4 and five (5) soil samples from the soil borings were sent under Chain of Custody procedures to a NYSDOH approved laboratory and analyzed for one or more of the following analyses:

- Petroleum and chemical related VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds,
- SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only, and
- Eight (8) RCRA Metals by USEPA Methods SW846 6010 and SW846 7470 (totals).

Soil Results:

The analytical results from the soil samples were compared to the NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality. The analytical results for the soil analyses are summarized in Tables 3, 4, and 5 below.

Table 3
Detected VOCs in Soils
Analytical Method USEPA 8260B Target Compound List plus NYSDEC STARS Compounds

Parameter	Result: B-4 6 to 8 Feet BGS	Result: B-7 6 to 7.2 Feet BGS	Result: B-8 4 to 6 Feet BGS	Result: B-12 8-fo 9.7 Feet BGS	Result: B-14 4 to 6 Feet BGS	NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality
cis-1,2-Dichloroethene	ND<37.6	1,250	ND<117	984	388	10,000*
trans-1,2-Dichloroethene	ND<37.6	ND<91.1	ND<117	ND<123	23,3	300
Tetrachloroethene	ND<37.6	138	ND<117	ND<123	ND<9.35	1,400
Trichloroethene	ND<37.6	3,120	ND<117	1,340	ND<9.35	700
Ethylbenzene	69.9	ND<91.1	258	ND<123	ND<9.35	5,500
Toluene	ND<37.6	ND<91.1	ND<117	ND<123	21.1	1,500
m,p-Xylene	67.6	ND<91.1	1,430	ND<123	ND<9.35	1,200
n-Butylbenzne	206	ND<91.1	ND<117	ND<123	ND<9.35	12,000
sec-Butylbenzene	48.8	ND<91.1	ND<117	ND<123	ND<9.35	11,000
n-Propylbenzene	166	ND<91.1	ND<117	ND<123	ND<9.35	3,700
Isopropylbenzene	82.6	ND<91.1	ND<117	ND<123	ND<9.35	2,300
p-Isopropyltoluene	66.0	ND<91.1	ND<117	ND<123	ND<9.35	11,000
Naphthalene	3,630	ND<228	ND<293	ND<309	ND<23.4	13,000
1,2,4-Trimethylbenzne	2,290	ND<91.1	ND<117	ND<123	ND<9.35	13,000

NOTE: ND = Non Detect

All results are shown in microgram per Kilogram (µg/Kg) which is approximately equivalent to parts per billion (ppb)

* Per NYSDEC TAGM 4046, the sum of individual Volatile Organic Compounds may not exceed 10,000 ppb

BOLD denotes compound detected above NYSDEC TAGM 4046 guidance value

As indicated in Table 3 above, there are solvent related compounds in soil borings B-8 and B-12 above the NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality.

Table 4
Detected SVOCs in Soils
Analytical Method USEPA 8270 NYSDEC STARS Compounds

			Compounds
Parameter	Result: B-4, 6 to 8- Feet BGS	Result: B-8, 4 to 6- Feet BGS	NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality
Acenaphthene	765	ND<334	90,000
Anthracene	679	ND<334	700,000
Fluorene	678	ND<334	350,000
Naphthalene .	1,750	ND<334	13.000
Phenanthracene	4,080	ND<334	220,000
Pyrene	761	ND<334	665,000
Total SVOCs*	8,713	0	50,000

NOTE: ND = Non Detect

All results are shown in microgram per Kilogram (µg/Kg) which is approximately equivalent to parts per billion (ppb) * Per NYSDEC TAGM 4046, the sum of individual Semi-Volatile Organic Compounds may not exceed 50,000 ppb

As indicated in Table 4, there were no SVOC compounds detected above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality.

Phase II Environmental Site Assessment
JML Optical, Inc.
690 Portland Avenue
Rochester, New York
Page 7

LABELLA

Table 5
Analytical Results for the 8 RCRA Metals

Parameter	Result: B-7, 6-7.2- Feet BGS	Recommended Soil Cleanup Objective (ppm)	Eastern USA Background	
Arsenic	5.15	7.5 or SB	3 to 12 ¹	
Barium	58.5	300 or SB	15 to 600	
Cadmium	0.646	1 or SE	0.1 to 1	
Chromium	13.4	10 or SB	1.5 to 10 ¹	
Lead	6.49	SB ²	200 to 500 ²	
Mercury	0.0226	0.1	0.001 to 0.2	
Selenium	<0.581	2 or SB	0.1 to 3.9	
Silver	<1.16	SB	NA	

NOTE: All results shown in milligrams per Kilogram which is approximately equivalent to parts per million (ppm)

¹New York State Background

²Average background levels in metropolitan or suburban areas or near highways SB = Site Background, NA = Not Applicable

As indicated in Table 5 above, there do not appear to be irregular levels of metals above the NYSDEC TAGM 4046 Recommended Soil Cleanup Objective or Eastern USA Background levels.

A copy of the analytical results is included in Appendix 2.

Groundwater Results:

The analytical results from the groundwater samples were compared to the New York State (NYS) Part 703 Groundwater Standards published in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998. The analytical results for the groundwater analyses are summarized in Tables 6 and 7.

Table 6
Detected VOCs in Groundwater
Analytical Method USEPA 8260B Target Compound List plus NYSDEC STARS Compounds

Parameter	Result: MW-1	Result: MW-2	Result: MW-3	Result: MW-4	New York State Part 703 Groundwater Standard
cis-1,2-Dichloroethene	ND<2.00	ND<2,00	78.9	ND<20.0	5
Trichloroethene	19.7	ND<2.00	45.8	ND<20.0	5
Ethylbenzene	ND<2.00	ND<2.00	ND<20.0	966	5
Toluene	ND<2.00	ND<2.00	ND<20.0	32.1	5
m,p-Xylene	ND<2.00	ND<2.00	ND<20.0	3,520	5
Styrene	ND<2.00	ND<2.00	ND<20.0	152	5
Acetone	ND<10.0	ND<10.0	ND<100	229*	50
n-Butylbenzne	ND<2.00	ND<2.00	61.6	ND<20.0	5
n-Propylbenzene	ND<2.00	ND<2.00	27.8	ND<20.0	5
Isopropylbenzene	ND<2.00	ND<2.00	25.6	27.9	5
Naphthalene	ND<5.00	ND<5.00	662	ND<50.0	10
1,2,4-Trimethylbenzne	ND<2.00	ND<2.00	275	44.3	5
1,3,5-Trimethylbenzene	ND<2.00	ND<2.00	ND<20.0	30.6	5

NOTE: ND = Non Detect, NA = Not Available

All results are shown in microgram per Liter (µg/L) which is approximately equivalent to parts per billion (ppb)
Static Water is considered approximate below the ground surface and measured at the time of sampling

* Potential laboratory contaminant

BOLD denotes compound detected above New York State Part 703 Groundwater Standard

Table 7
Detected SVOCs in Groundwater
USEPA Method 8270C NYSDEC STARS Compounds only

Parameter	Result: MW-3	Result: MW-4	NYS Part 703 Groundwater Standard	
Acenaphthene	29.7	ND<10.0	20	
Anthracene	23.6	ND<10.0	50	
Chrysene	13.0	ND<10.0	0.002	
Fluorene	24.7	ND<10.0	50	
Naphthalene	65.6	ND<10.0	10	
Phenanthracene	133	ND<10.0	50	
Pyrene	25.4	ND<10.0	50	

NOTE: ND = Non Detect, NA =Not Available

All results are shown in microgram per Kilogram (µg/L) which is approximately equivalent to parts per billion (ppb)

Static Water is considered approximate below the ground surface and measured at the time of sampling

BOLD denotes compound detected above the NYS Part 703 Groundwater Standard

Phase II Environmental Site Assessment JML Optical, Inc. 690 Portland Avenue Rochester, New York

Page 9

LABELLA

As indicated in Tables 6 and 7 above, petroleum related compounds were detected in monitoring wells MW-3 and MW-4 above NYS Part 703 groundwater standards and solvent related compounds were detected in wells MW-1 and MW-3 above NYS Part 703 groundwater standards

A copy of the analytical results is included in Appendix 2.

7.0 Summary of Geologic and Hydrogeologic Conditions

Site geologic features are based primarily on information and observations obtained at the time of fieldwork on March 18 and April 8, 2005.

Based on static groundwater level measurements collected on March 23, 2005, groundwater appears to be approximately 2-feet BGS and groundwater flow appears to be in the northerly direction as depicted on Figure 2.

Soil observed from the soil borings advanced at the Site on March 16, 2005 generally consist of Brown coarse to fine SAND with little Silt and fine angular Gravel from approximately 0 to 4-feet BGS, Brown to gray coarse to fine SAND with little fine Silt and fine angular Gravel from approximately 4 to 10-feet BGS.

8.0 Discussion and Conclusions

Based on observations made during the Phase II ESA and analytical results from soil and groundwater samples collected and analyzed at the Site, there appears to have been historical releases of petroleum and solvent related compounds into the soil and groundwater at the Site. The petroleum and solvent related compounds were detected at different potential area of concerns as-discussed below:

- It appears that the adjacent off-Site NYSDEC IHWDS facility located at 72 Fernwood Avenue contained solvent related compounds that had migrated through the groundwater and onto the Site. Monitoring well MW-1 detected Trichloroethene at 19.7 parts per billion (ppb), slightly above the NYS Part 703 Groundwater standards of 5 ppb. The NYSDEC has recently installed two (2) groundwater monitoring wells at the Site to evaluate the potential migration of contaminants from this facility. As such, this release does not appear to be a result of historical use of solvent related compounds at the Site, as such this area of concern would not likely represent a NYSDEC enforced remedial concern for JML at the Site.
- It appears that the adjacent off-Site Brownfield site to the east located at 100 Fernwood Avenue has petroleum related compounds that had migrated through the soil and groundwater and onto the Site. Soil and groundwater samples from soil boring/monitoring well B-8/MW-4 detected one petroleum related VOC in the soil slightly above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality and several petroleum related VOCs in the groundwater above NYS Part 703 Groundwater Standards. This boring/monitoring well was also located adjacent to the shed that was reportedly formerly used to store chemicals. The analytical results from soil boring/monitoring well B-8/MW-4 did not detect any solvent related compounds in the analysis that would indicate a release of chemicals from the former chemical storage in the shed at the Site. As such, the petroleum related compounds detected

Phase II Environmental Site Assessment

JML Optical, Inc. 690 Portland Avenue Rochester, New York Page 10

LABELIA

at this potential area of concern appear to be the result of the petroleum release at the 100 Fernwood Avenue facility, as such this area of concern would not likely represent a NYSDEC enforced remedial concern for JML at the Site.

- It appears that petroleum related VOC and SVOCs remain in the soil and groundwater in the vicinity of the former UST pit. Soil boring/monitoring well B-4/MW-3 was advanced in the former reported location of the UST pit to potentially identify "worse case" contaminant levels as a result of the former UST release. The soil sample analyzed from this boring detected petroleum related VOC and SVOC compounds below the NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality. The water sample collected and analyzed from well MW-3 detected low levels of petroleum related VOC and SVOC compounds slightly above NYS Part 703 Groundwater Standards.
- It appears that solvent related compounds have been released into the soil and groundwater from historical use of chlorinated solvents at the Site. The source of the impairment appears to be the sump located adjacent to the maintenance shop. During the floor drain investigation, it appeared the sump extended approximately 3-feet below floor grade and contained a metal bottom. There is a potential this metal bottom may have eroded and released wastewater containing chlorinated solvents into the soil and groundwater at the Site. The levels of solvents detected in the soil are slightly above the NYSDEC TAGM guidance levels with the highest levels detected adjacent to the sump. Chlorinated solvents were detected in well MW-3, which is located in the former UST pit. The source of this groundwater impairment has not been determined. However, it appears it is from the sump as it is the only known source of soil impacted with chlorinated solvents.

This Phase II ESA assessed petroleum and solvent related soil and groundwater impairment at the Site. As discussed, it appears that the source of the petroleum and solvent impairment at the Site is from release at the former UST pit and fugitive emissions of chlorinated solvents into the sump respectively. It is recommended that LaBella, and JML (the "Project Team") discuss the potential need for corrective action and how it will coincide with JML's divestiture of the Site.

A copy of all information collected during this assessment, including photographs, maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, P.C. This information is available at your request.

N:\UML OPTICAL\205126\CLERICAL\WORD\RPT\R5G14DP1.DOC

LaBella Associates, P.C. 300 State Street
Rochester, New York 14614

Appendix 7

Reference of Published Sources

USGS 7.5 Minute Topographic Quadrangle Map Rochester, New York

Delorme X-map

Monroe County Soil Survey

United States Department of Agricultural Soil Conservation Service

USEPA NPL, CERCLIS, CERCLIS NFRAP, RCRA TSD, RCRA Generator and ERNS Listings

USEPA Website

NYSDEC IHWDS and recent Spills

NYSDEC Website

NYS Hazardous Substance Sites

NYSDEC Hazardous Substance Waste Disposal Site Study Book, 1998

Part 360 Permitted Landfill listings

NYSDEC Division of Solid & Hazardous Material Listing, January 2004

Aerial Photographs

MCEMC

Polk City of Rochester Suburban Directories and Monroe County Plat Maps

Monroe County Library

Phase II Environmental Site Assessment Preliminary Site Characterization

Location:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

Prepared for:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

LaBella Project No. 205126

June 2005

Phase II Environmental Site Assessment Preliminary Site Characterization

Location:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

Prepared for:

JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

LaBella Project No. 205126

June 2005

Table of Contents

		Page
1.0	Introduction and Background	1
2.0	Objective	2
3.0	Scope of Work	2
4.0	Floor Drain Investigation	3
5.0	Soil Boring Investigation and Observations	4
6.0	Analytical Results	6
7.0	Summary of Geologic and Hydrogeologic Conditions	. 10
8.0	Discussions and Conclusions	10

Figure Appendices

1.0 Introduction and Background

LaBella Associates, P.C. ("LaBella") conducted a Phase II Environmental Site Assessment (ESA); Preliminary Site Characterization (PSC) at the property known as JML Optical, Inc. ("JML") located at 690 Portland Avenue in the City of Rochester, Monroe County, New York, hereinafter referred to as the "Site." The Phase II ESA was implemented to investigate the following potential Recognized Environmental Conditions (RECs).

- An open New York State Department of Environmental Conservation (NYSDEC) Spill file (#9870600) that exists for the Site. This petroleum release is associated with the removal of an approximately 5,000-gallon underground fuel oil tank from 690 Portland Ave. It is reported that this former underground storage tank (UST) formerly serviced the boiler house located on the western portion of the parcel. It is reported that while removing the UST, contaminated soil was encountered during the UST excavation and where possible, the contaminated soil was excavated and disposed of off-site. This work was completed by Piedmont Equipment for JML. Reportedly excavation closure samples were collected as part of the UST Closure and follow-up groundwater monitoring wells were advanced at the Site. However, to date, no analytical data has been provided to LaBella. Also the NYSDEC has recently contacted JML regarding the status of this release.
- The Site has a long history of optical related manufacturing. As part of the process it is reported that chlorinated solvents (primarily Trichloroethylene (TCE) were utilized at the Site. In addition, the facility was historically equipped with both individual floor drains and linear trench drains to presumably receive fugitive wastewater emissions. The trench drains were a site feature that may have been utilized by the previous owner but were filled with concrete by JML. No information is available regarding the historical discharge location of the trench drains. Reportedly the current floor drains discharge to the municipal sewer system on either Portland Avenue or Fernwood Avenue. At the time of the site walkthrough the decommissioned trench drains were observed at several locations throughout the original buildings. In addition, non-decommissioned floor drains and a potential large drainage structure (manhole/sump within storage area) were observed throughout the original building.
- One NYSDEC Inactive Hazardous Waste Disposal Site (IHWDS) is located approximately 40-feet south of the Site. This IHWDS known as Preferred Electric Motors, Inc., is located at 42 Fernwood Avenue. Preferred Electric Motors, Inc. utilized halogenated solvents (TCE) during their manufacturing process for cleaning and degreasing metal parts. A limited soil investigation was conducted in 2000. The investigation confirmed that on-site disposal of waste solvents occurred and that surface and subsurface soils showed considerable contamination from solvents. Further investigation revealed that the adjacent residences were significantly impacted by the solvent vapors migrating into adjacent structures.

• The adjacent parcel to the east, 100 Fernwood Avenue, is currently involved in an environmental clean-up under the NYSDEC Brownfield Cleanup Program. At the time of the site walkthrough, a large soil pile was observed in the open lot adjacent to JML's east fence line. It is unclear at this time if the observed soil pile is associated with the environmental cleanup. Based on the level of research completed to date, the magnitude of the environmental cleanup associated with this parcel is not known.

The issues outlined above represent RECs in regard to potential soil and/or groundwater impairment at the Site. LaBella recommended that further investigation into these RECs be conducted to assist in making business decisions regarding JML divestiture of the 690 Portland Avenue facility.

2.0 Objective

The objective of this Phase II ESA was to identify potential soil and/or groundwater impairment from the RECs identified above. The Scope of Work that was implemented at the Site was designed to roughly characterize the horizontal and vertical extent of impairment at the Site.

3.0 Scope of Work

The following Scope of Work was undertaken in accordance with our discussions:

- A floor drain investigation was undertaken in order to identify the discharge locations of
 effluent in floor drains in the vicinity where historical degreasing activities were reportedly
 conducted at the Site. JML retained a professional plumber to snake and videotape the
 drains to identify the discharge locations.
- 2. An Underground Facilities Protection Organization (UFPO) stakeout was conducted (UFPO #03095-114-007 and #041015-053-038) at the Site, to locate any subsurface utilities in the areas where the subsurface assessment and delineation had taken place.
- 3. LaBella Associates retained the services of a specialized contractor to implement a direct push "geo-probe" soil boring and sampling program at the Site. Two eight (8) hour days of borings were conducted at the Site. The borings were conducted at in the vicinity of the above listed RECs at the Site.
- 4. Soils from the borings were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable volatile organic compounds (VOCs) on a Photo-Ionization Detector total VOC meter. Positive indications from any of these screening methods were collectively referred to as "evidence of impairment." Evidence of impairment gathered at the time of the fieldwork was used to determine the location for soil samples and was also used to roughly determine the vertical and horizontal extent of impairment at the Site.

- 5. Soil samples were collected from the borings based on evidence of impairment. Seven (7) soil samples were retained from the borings for laboratory analysis. Samples were analyzed for analytical parameters based on the location collected and the suspect constituents of concern. Sample locations were determined at the time of the fieldwork and were based on evidence of impairment. Soil samples were analyzed for one of the following analyses:
 - Petroleum and chemical related VOCs by United States Environmental Protection Agency (USEPA) Method 8260B Target Compound List (TCL) plus NYSDEC Spill Technology and Remediation Series (STARS) Compounds,
 - SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only, and
 - Eight (8) Resource Conservation and Recovery Act (RCRA) Metals by USEPA Methods SW846 6010 and SW846 7470 (totals).
- 6. Six (6) temporary shallow-overburden groundwater monitoring wells were advanced at the Site. The wells were located based on evidence of impairment and local hydro-geological conditions observed during the investigation. The general locations that were selected provided the highest probability of capturing fugitive the RECs discussed above. Four (4) samples were selected and submitted for laboratory analysis based on the scope of work and objectives of the project. Groundwater samples were analyzed for one or more of the following analyses:
 - Petroleum and chemical related VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds, and
 - SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only.
- A LaBella survey crew located and elevated four of the groundwater monitoring wells.
 This survey data was utilized to add the groundwater monitoring well locations to the Site Mapping, and calculate groundwater flow direction and gradient for the Site.
- 8. Groundwater and soil samples were sent under Chain of Custody procedures to a New York State Department of Health (NYSDOH) approved laboratory.

4.0 Floor Drain Investigation

The floor drain investigation involved the use of a metal "snake" and video camera to evaluate the discharge location of floor drains in the vicinity where the use of historical chlorinated solvents reportedly had taken place at the Site. JML retained the services if Diamond Plumbing to snake and video the floor drains. On March 3, 2005 LaBella and Diamond Plumbing investigated the floor drains inside the maintenance shop, the sump, and storage area located directly west of the maintenance shop.

Diamond Plumbing snaked the drains in the <u>cold storage</u> area and it appeared the drain discharged in the northeasterly direction toward Ilex Place. The discharge location of the drain could not be determined, however, it was the opinion of Diamond Plumbing that the drain likely discharged to the sewer.

Two (2) floor drains inside the maintenance shop (one in the office portion and the other in the work area) were determined to discharge to the sump. Diamond Plumbing subsequently attempted to video the discharge location of the sump, however, the opening would not allow the camera to enter. The sump appeared to be constructed of metal and it extended approximately 3-feet below the floor grade. A metal snake was subsequently used to assess the discharge location of the sump. The snake was passed approximately 40-feet into effluent piping exiting the sump with no discharge point encountered, and it was the opinion of Diamond Plumbing that the drain discharged to a sewer in a northerly direction toward llex Place.

Several other floor drains were observed inside the JML building at the Site where known historical degreasing/solvent use had taken place. According to Diamond Plumbing the drains in these areas where cleaned out with a snake approximately two years ago and it was their opinion that the drains discharged to a sewer lateral on Portland Avenue.

5.0 Soil Boring Investigation and Observations

Methodology:

Borings were advanced with a "geoprobe" direct push sampling system. The use of direct push technology allows for rapid sampling, observation, and characterization of relatively shallow overburden soils. The geoprobe utilizes a 4-foot macro-core sampler with disposable polyethylene sleeves. Soil cores are retrieved in 4-foot sections and can be easily cut from the polyethylene sleeves for observation and sampling. The macro-core sampler was decontaminated between samples and borings using an alconox and water solution.

Six (6) temporary shallow-overburden groundwater-monitoring wells were installed at the Site. Each groundwater monitoring well utilized 1-inch well screen. The groundwater-monitoring wells were set between depths of 6.8 to 10.0-feet Below the Ground Surface (BGS), with 5-feet of 0.010-inch slotted PVC screen connected to an appropriate length of PVC riser to complete the well installation. The wells were sand packed to 2-feet above the top of the well screen and bentonite sealed to the ground surface.

Prior to sampling, wells MW-1, MW-2, MW-3, and MW-4 were purged by bailing at least three (3) well volumes.

Samples were collected in laboratory supplied sample jars and vials. All samples were placed in coolers with chemical ice packs and transported under chain of custody procedures to NYSDOH approved laboratory for analysis.

Field Activities:

Twenty-two (22) borings and six (6) groundwater monitoring wells were advanced at the Site on March 18 and April 8, 2005. All of the borings were advanced to a total depth of 6.2 to 11.3-feet BGS. All soil cores were continuously assessed by a LaBella Associates' Environmental Geologist for soil type and evidence of impairment. Table 1 below details PID readings collected from the soil borings at the time of the fieldwork.

Table 1
Soil Boring PID Readings

			Approxim	ate Depth			Approximate	
Soil Boring I.D.	0'-2'	2'-4'	4'-6'	6'-8'	8'-10'	10'-12'	Depth of Sample Analyzed	Analytical Method
B-1	0	0	0	0			NA	NA
B-2	0	0	1.4	1.4			NA	NA
B-3	1.4	1.4	1.4	1.3			NA	NA
(B-4)	0.7	0	8.2	19.4	8.0		6'-8'	8260B, 8270
B-5	0	0.5	0.5	0	0	0	NA	NA
B-6	0	0.7	0	0			NA .	NA
(B-7)	4.2	4.2	132	222			6'-7.2'	8260B, 8 RCR
(B-8)	3.4	4.3	18.1	13.6			NA	NA
B-9	1.6	0.9	1.7	1.5	0		4'-6'	8260B, 8270
B-10	0	0	0	0	0	0	NA	NA
B-11	0	0	0	0			NA	NA
(B-12)	0	29.2	58.9	59.9			8'-9.7'	8260B
B-13	1.1	1.7	1.7	1,1			NA	NA
(B-14)	0.7	0.5	1.7	2.6			4'-6.2'	8260B
B-15	2.3	2.2	6.7	9.9	2.7		NA	NA
B-16	0.2	0.3	0.7	0.9			NA	NA
B-17	1.9	2.0					NA	NA
B-18	0.7	0.8	0.6	0.8			NA	NA
B-18	0.2	0.3	0.7	0.9			NA	NA
B-20	0	0.5	0	0	0		NA	NA
B-20	0	0	0	0	0		NA	NA
B-21 B-22	0	0	0	1.4	2,3		NA	NA

Note: All PID readings were collected utilizing a Minirae 2000 photoionization detector and are representative of ppm VOC 8260B denotes sample analyzed for VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Constituents 8270 denotes sample analyzed for SVOCs by USEPA Method 8270 NYSDEC STARS Constituents only 8 RCRA denoted sample analyzed for the 8 RCRA Metals by USEPA Method

denotes soil sample not collected
 NA denotes Not Applicable

As noted in Table 1 above, slight to slightly moderate evidence of impairment was noted in seventeen(17) of the twenty-two (22) soil borings advanced at the Site.

The highest evidence of impairment appeared to be in the vicinity of the "sump" as represent in PID measurements from soil borings B-7 and B-12. The other location of the highest evidence of impairment appeared in the vicinity of the former underground tank pit at the Site as represented in soil boring B-4.

Each groundwater monitoring well was purged and sampled using a dedicated PVC bailer on March 16, 2005.

On March 28, 2005, a LaBella survey crew located and elevated overburden groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. In addition, static groundwater levels were collected from each overburden groundwater monitoring well advanced at the Site. The results of these static groundwater levels are summarized in Table 2 below:

Table 2
Static Water Level Measurements on March 23, 2005

Well I.D.	Static Water Level (Feet)	Groundwater Elevation	
MW-1	1.54	98.74	
MW-2	1.68	98.26	
MW-3	4.50	96.01	
MW-4	5.28	97.12	

Note: Static water levels measured from the top of the PVC riser Groundwater Elevation denotes the site specific groundwater elevation

Boring and groundwater monitoring well locations at the Site are depicted on Figures 1a and 1b (attached). Copies of the boring and monitoring well logs are included in Appendix 1.

6.0 Analytical Results

Four (4) groundwater samples from groundwater monitoring wells MW-1, MW-2, and MW-3, and MW-4 and five (5) soil samples from the soil borings were sent under Chain of Custody procedures to a NYSDOH approved laboratory and analyzed for one or more of the following analyses:

- Petroleum and chemical related VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds,
- SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only, and
- Eight (8) RCRA Metals by USEPA Methods SW846 6010 and SW846 7470 (totals).

Soil Results:

The analytical results from the soil samples were compared to the NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality. The analytical results for the soil analyses are summarized in Tables 3, 4, and 5 below.

Table 3
Detected VOCs in Soils
Analytical Method USEPA 8260B Target Compound List plus NYSDEC STARS Compounds

Parameter	Result: B-4 6 to 8 Feet BGS	Result: B-7 6 to 7.2 Feet BGS	Result: B-8 4 to 6 Feet BGS	Result: B-12 8 to 9.7 Feet BGS	Result: B-14 4 to 6 Feet BGS	NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality
cis-1,2-Dichloroethene	ND<37.6	1,250	ND<117	984	388	10,000*
trans-1,2-Dichloroethene	ND<37.6	ND<91.1	ND<117	ND<123	23.3	300
Tetrachloroethene	ND<37.6	138	ND<117	ND<123	ND<9.35	1,400
Trichloroethene	ND<37.6	3,120	ND<117	(1,340)	ND<9.35	700
Ethylbenzene	69.9	ND<91.1	258	ND<123	ND<9.35	5,500
Toluene	ND<37.6	ND<91.1	ND<+17	ND<123	21.1	1,500
m,p-Xylene	67.6	ND<91.1	1,430)	ND<123	ND<9.35	1,200
n-Butylbenzne	206	ND<91.1	ND<117	ND<123	ND<9.35	12,000
sec-Butylbenzene	48.8	ND<91.1	ND<117	ND<123	ND<9.35	11,000
n-Propylbenzene	166	ND<91.1	ND<117	ND<123	ND<9.35	3,700
Isopropylbenzene	82.6	ND<91.1	ND<117	ND<123	ND<9.35	2,300
p-Isopropyltoluene	66.0	ND<91.1	ND<117	ND<123	ND<9.35	11,000
Naphthalene	3,630	ND<228	ND<293	ND<309	ND<23.4	13,000
1,2,4-Trimethylbenzne	2,290	ND<91.1	ND<117	ND<123	ND<9.35	13,000

NOTE: ND = Non Detect

All results are shown in microgram per Kilogram (µg/Kg) which is approximately equivalent to parts per billion (ppb)

* Per NYSDEC TAGM 4046, the sum of individual Volatile Organic Compounds may not exceed 10,000 ppb

*BOLD denotes compound detected above NYSDEC TAGM 4046 guidance value

As indicated in Table 3 above, there are solvent related compounds in soil borings B-8 and B-12 above the NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality.

Table 4
Detected SVOCs in Soils
Analytical Method USEPA 8270 NYSDEC STARS Compounds

Parameter	Result: B-4, 6 to 8- Feet BGS	Result: B-8, 4 to 6- Feet BGS	NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality
Acenaphthene	765	ND<334	90,000
Anthracene	679	ND<334	700,000
Fluorene	678	ND<334	350,000
Naphthalene	1,750	ND<334	13,000
Phenanthracene	4,080	ND<334	220,000
Pyrene	761	ND<334	665,000
Total SVOCs*	8,713	0	50,000

NOTE: ND = Non Detect

All results are shown in microgram per Kilogram (µg/Kg) which is approximately equivalent to parts per billion (ppb)

* Per NYSDEC TAGM 4046, the sum of individual Semi-Volatile-Organic Compounds may not exceed 50,000 ppb

As indicated in Table 4, there were no SVOC compounds detected above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality.

Phase II Environmental Site Assessment JML Optical, Inc. 690 Portland Avenue Rochester, New York

Page 7

LABELLA

Table 5
Analytical Results for the 8 RCRA Metals

Parameter	Result: B-7, 6-7.2- Feet BGS	Recommended Soil Cleanup Objective (ppm)	Eastern USA Background		
Arsenic	5.15	7.5 or SB	3 to 12 ¹		
Barium	58.5	300 or SB	15 to 600		
Cadmium	0.646	1 or SB	0.1 to 1		
Chromium	13.4	10 or SB	1.5 to 10 ¹		
Lead	6.49	SB ²	200 to 500 ²		
Mercury	0.0226	0.1	0.001 to 0.2		
Selenium	<0.581	2 or SB	0.1 to 3.9		
Silver	<1.16	SB	NA.		

NOTE: All results shown in milligrams per Kilogram which is approximately equivalent to parts per million (ppm)

¹New York State Background

²Average background levels in metropolitan or suburban areas or near highways

SB = Site Background, NA = Nor Applicable

As indicated in Table 5 above, there do not appear to be irregular levels of metals above the NYSDEC TAGM 4046 Recommended Soil Cleanup Objective or Eastern USA Background levels.

A copy of the analytical results is included in Appendix 2.

Groundwater Results:

The analytical results from the groundwater samples were compared to the New York State (NYS) Part 703 Groundwater Standards published in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998. The analytical results for the groundwater analyses are summarized in Tables 6 and 7.

Table 6 **Detected VOCs in Groundwater** Analytical Method USEPA 8260B Target Compound List plus NYSDEC STARS Compounds

Parameter	Result: MW-1	Result: MW-2	Result: MW-3	Result: MW-4	New York State Part 703 Groundwater Standard
cis-1.2-Dichloroethene	ND<2.00	ND<2.00	78.9	ND<20.0	5
Trichloroethene	(19.7)	ND<2.00	45.8	ND<20.0	5
Ethylbenzene	NÐ<2.00	ND<2.00	ND<20.0	(9662	5 .
Toluene	ND<2.00	ND<2.00	ND<20.0	321	5
	ND<2.00	ND<2.00	ND<20.0	(3,520)	5
m,p-Xylene	ND<2.00	ND<2.00	ND<20.0	(152)	5
Styrene	ND<10.0	ND<10.0	ND<100	229*)	50
Acetone	ND<2.00	ND<2.00	(61.6	ND<20.0	5
n-Butylbenzne	ND<2.00	ND<2.00	(27.8)	ND<20.0	5
n-Propylbenzene	ND<2.00	ND<2.00	(25.6)	(27.9)	5
Isopropylbenzene	ND<5.00	ND<5.00	(662)	ND-50-0	10
Naphthalene	ND<2.00	ND<2.00	275)	44.3	5
1,2,4-Trimethylbenzne 1,3,5-Trimethylbenzene	ND<2.00	ND<2.00	ND<20.0	(30.6)	5

NOTE: ND = Non Detect, NA = Not Available

All results are shown in microgram per Liter (µg/L) which is approximately equivalent to parts per billion (ppb) Static Water is considered approximate below the ground surface and measured at the time of sampling

* Potential laboratory contaminant BOLD denotes compound detected above New York State Part 703 Groundwater Standard

Table 7 **Detected SVOCs in Groundwater** USEPA Method 8270C NYSDEC STARS Compounds only

Parameter	Result: MW-3	Result: MW-4	NYS Part 703 Groundwater Standard 20	
Acenaphthene	29.70	ND<10.0		
	23.6	ND<10.0	50	
Anthracene	13.0	ND<10.0	0.002	
Chrysene	24.7	ND<10.0	50	
Fluorene	65.6	ND<10.0	10	
Naphthalene		ND<10.0	50	
Phenanthracene Pyrene	25.4	ND<10.0	50	

NOTE: ND = Non Detect, NA =Not Available

All results are shown in microgram per Kilogram (µg/L) which is approximately equivalent to parts per billion (ppb) Static Water is considered approximate below the ground surface and measured at the time of sampling BOLD denotes compound detected above the NYS Part 703 Groundwater Standard

> Phase II Environmental Site Assessment JML Optical, Inc. 690 Portland Avenue Rochester, New York Page 9

LABELLA

As indicated in Tables 6 and 7 above, petroleum related compounds were detected in monitoring wells MW-3 and MW-4 above NYS Part 703 groundwater standards and solvent related compounds were detected in wells MW-1 and MW-3 above NYS Part 703 groundwater standards

A copy of the analytical results is included in Appendix 2.

7.0 Summary of Geologic and Hydrogeologic Conditions

Site geologic features are based primarily on information and observations obtained at the time of fieldwork on March 18 and April 8, 2005.

Based on static groundwater level measurements collected on March 23, 2005, groundwater appears to be approximately 2-feet BGS and groundwater flow appears to be in the northerly direction as depicted on Figure 2.

Soil observed from the soil borings advanced at the Site on March 16, 2005 generally consist of Brown coarse to fine SAND with little Silt and fine angular Gravel from approximately 0 to 4-feet BGS, Brown to gray coarse to fine SAND with little fine Silt and fine angular Gravel from approximately 4 to 10-feet BGS.

8.0 Discussion and Conclusions

Based on observations made during the Phase II ESA and analytical results from soil and groundwater samples collected and analyzed at the Site, there appears to have been historical releases of petroleum and solvent related compounds into the soil and groundwater at the Site. The petroleum and solvent related compounds were detected at different potential area of concerns as discussed below:

• It appears that the adjacent off-Site NYSDEC IHWDS facility located at 72 Fernwood. Avenue contained solvent related compounds that had migrated through the groundwater and onto the Site. Monitoring well MW-1 detected Trichloroethene at 19.7 parts per billion (ppb), slightly above the NYS Part 703 Groundwater standards of 5 ppb. The NYSDEC has recently installed two (2) groundwater monitoring wells at the Site to evaluate the potential migration of contaminants from this facility. As such, this release does not appear to be a result of historical use of solvent related compounds at the Site, as such this area of concern would not likely represent a NYSDEC enforced remedial concern for JML at the Site.

Avenue has petroleum related compounds that had migrated through the soil and groundwater and onto the Site. Soil and groundwater samples from soil boring/monitoring well B-8/MW-4 detected one petroleum related VOC in the soil slightly above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality and several petroleum related VOCs in the groundwater above NYS Part 703 Groundwater Standards. This boring/monitoring well was also located adjacent to the shed that was reportedly formerly used to store chemicals. The analytical results from soil boring/monitoring well B-8/MW-4 did not detect any solvent related compounds in the analysis that would indicate a release of chemicals from the former chemical storage in the shed at the Site. As such, the petroleum related compounds detected

Phase II Environmental Site Assessment
JML Optical, Inc.
690 Portland Avenue
Rochester, New York
Page 10

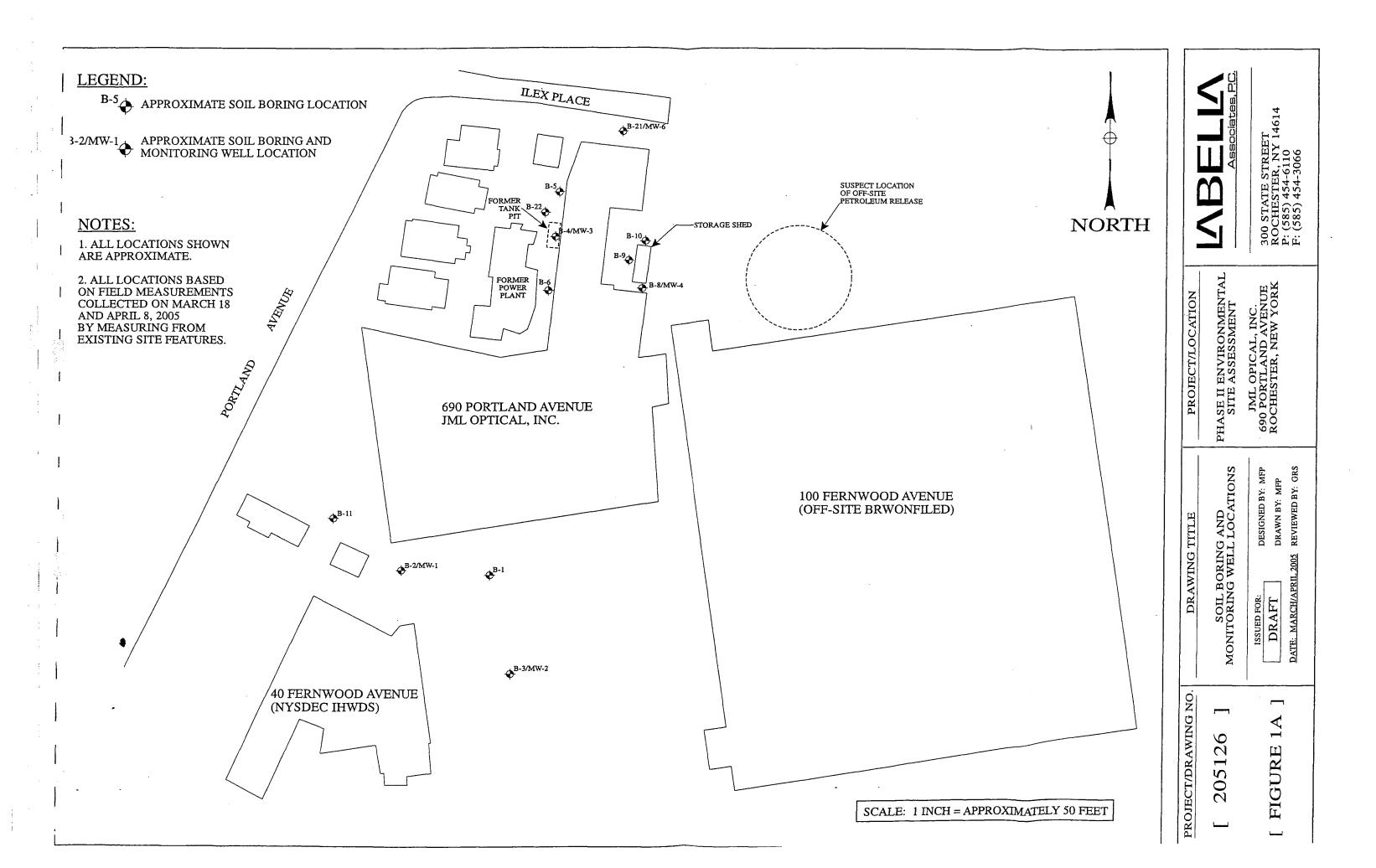
LABELLA

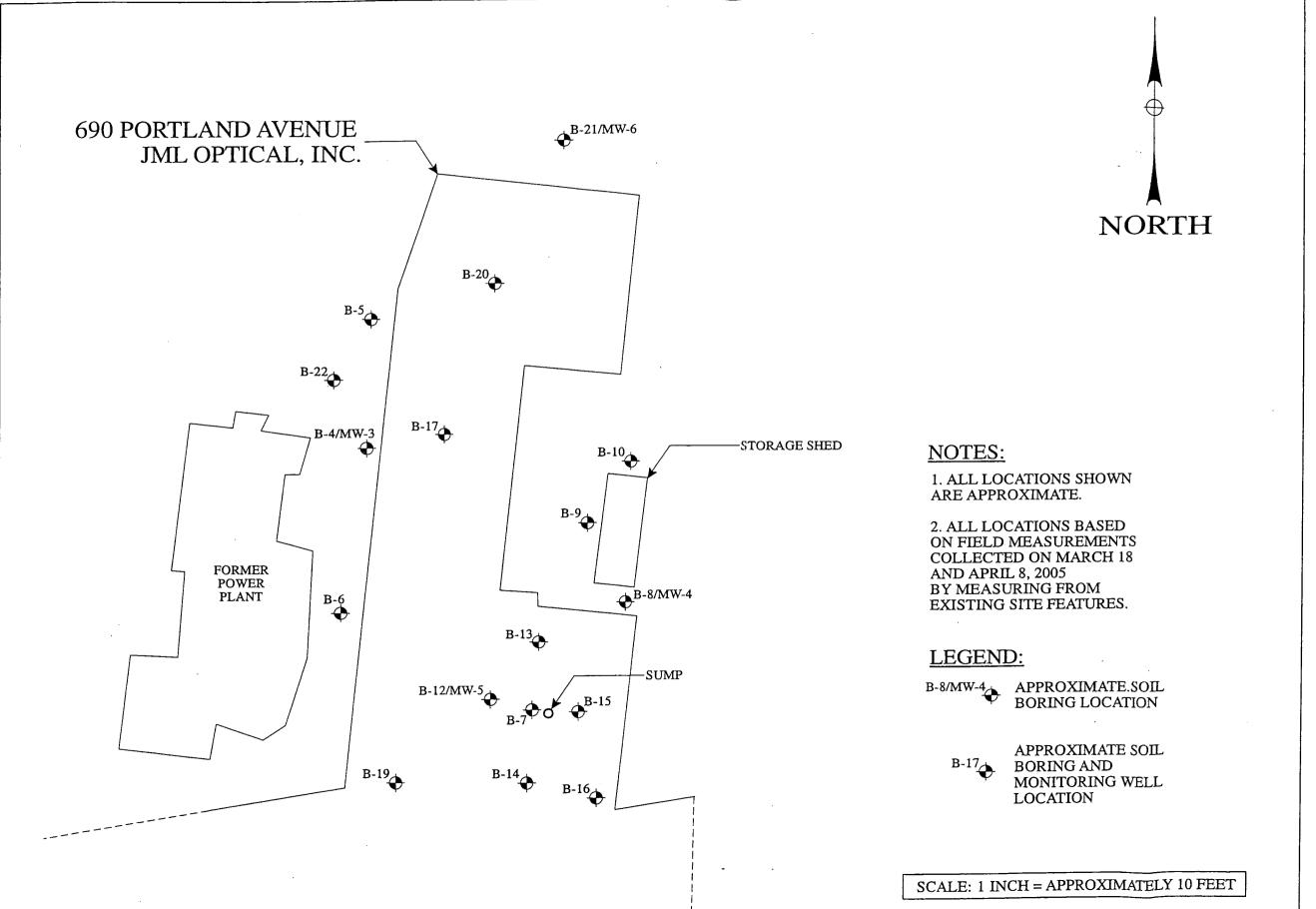
A

at this potential area of concern appear to be the result of the petroleum release at the 100 Fernwood Avenue facility, as such this area of concern would not likely represent a NYSDEC enforced remedial concern for JML at the Site.

- It appears that petroleum related VOC and SVOCs remain in the soil and groundwater in the vicinity of the former UST pit. Soil boring/monitoring well B-4/MW-3 was advanced in the former reported location of the UST pit to potentially identify "worse case" contaminant levels as a result of the former UST release. The soil sample analyzed from this boring detected petroleum related VOC and SVOC compounds below the NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality. The water sample collected and analyzed from well MW-3 detected low levels of petroleum related VOC and SVOC compounds slightly above NYS Part 703 Groundwater Standards.
- It appears that solvent related compounds have been released into the soil and groundwater from historical use of chlorinated solvents at the Site. The source of the impairment appears to be the sump located adjacent to the maintenance shop. During the floor drain investigation, it appeared the sump extended approximately 3-feet below floor grade and contained a metal bottom. There is a potential this metal bottom may have eroded and released wastewater containing chlorinated solvents into the soil and groundwater at the Site. The levels of solvents detected in the soil are slightly above the NYSDEC TAGM guidance levels with the highest levels detected adjacent to the sump. Chlorinated solvents were detected in well MW-3, which is located in the former UST pit. The source of this groundwater impairment has not been determined. However, it appears it is from the sump as it is the only known source of soil impacted with chlorinated solvents.

This Phase II ESA assessed petroleum and solvent related soil and groundwater impairment at the Site. As discussed, it appears that the source of the petroleum and solvent impairment at the Site is from release at the former UST pit and fugitive emissions of chlorinated solvents into the sump respectively. It is recommended that LaBella, and JML (the "Project Team") discuss the potential need for corrective action and how it will coincide with JML's divestiture of the Site.


A copy of all information collected during this assessment, including photographs, maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, P.C. This information is available at your request.


N:UML OPTICAL\205126\CLERICAL\WORD\RPT\R5G14DP1.DOC

LaBella Associates, P.C. 300 State Street Rochester, New York 14614

Figures

PHASE II ENVIRONMENTAL SITE ASSESSMENT JML OPICAL, INC. 690 PORTLAND AVENUE ROCHESTER, NEW YORK PROJECT/LOCATION

SOIL BORING AND MONITORING WELL LOCATIONS ISSUED FOR:

DRAFT

DATE: MARCH/APRIL 2

205126 FIGURE

PROJECT/DRAWING NO.

DRAWING TITLE

300 State Street Rochester, New York 14614

Appendix 1

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

JOB:

B - 1

1 OF

1

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc.

DRILLER:

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

08:55 TO 09:10

DATUM:

R. Rose LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 3/16/2005

END DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

<u> </u>	SAMPLE					PID		
Ē			0.770.474				FIELD SCREEN	
ОЕРТН (FEET)	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE		VISUAL C	CLASSIFICATION	(PPM)	REMARKS
	(INCHES)	DEPTH	(FEET)					
0	20		n.a	Asphalt - Not Sar Brown to gray cm	nf SAND, little Silt, t	0.0		
			1.2	Brown mf SAND,	, some Silt, trace f a	0.0		
	,	S-1					0.0	
2		0' - 4'		•				
							,	
4	20		4.0	Brown Silt, some	Clay, little f Sand	uden Oreugh	0.0	
			4.5	Brown cmf SANE), little Silt and f and	jular Gravei	0.0	
_		S - 2 4' - 6.3'	, 6.3	nieces of weathe	red rock mixed in a	t bottom of sampler	0.0	
6		4 - 0.3	, 0.0	picocs of weathe		,		
				Refusal at 6.3-fe	eet BGS			
В								
"								
10								
"								
12								
"								
14								
16								
				DEPTH (FT)	1	NOTES:		
	WATER	LEVEL DATA	воттом оғ		GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
1	i		NA	6.3				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium

f = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

BORING: B - 1

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 2

1 OF

205126 CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

DRILLER:

CONTRACTOR: SLC Environmental Services, Inc.

R. Rose LABELLA REPRESENTATIVE: M. Pelychaty

BORING LOCATION:

GROUND SURFACE ELEVATION START DATE: 3/16/2005

TIME:

JOB:

09:15 TO 09:25

DATUM:

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 3/16/2005

OTHER:

								
ОЕРТН (РЕЕТ)		SAMPLE					PID FIELD SCREEN	
DEPTH	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	CLASSIFICATION	(PPM)	REMARKS
0	40			Brown cmf SAND (some reddish bro), little fm angular G own sand)	ravel and Silt moist, no odors	0.0	
]						0.0	
2		S - 1 0' - 4'					0.0	
4					COALD PULL FOR		0.0	
	30		4.0	Brown to gray cm	of SAND, little f ang	ular Gravei, moist		
		S-2					1.4	
6		4' - 6.8'		(limestone fragme	ents at bottom of sa	ampler)	1.4	
				Refusal at 6.8-fe				
				Incidda at olo io				
8								:
10								
12							Ì	
							1	
14								
16				DEPTH (FT)		NOTES:		
-	WATER	LEVEL DATA	воттом оғ			Monitoring well MW-1 installed in borehole		
DATE	TIME	ELAPSED TIME	CASING	l i	ENCOUNTERED	, ,		
BAIL			NA NA	6.8				
			·					

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
- 3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium ND = Non Detect

trace = 1 to 10% some = 20 to 35%

f = fine

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

JOB:

B - 3

1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

CONTRACTOR: SLC Environmental Services, Inc.

DRILLER:

BORING LOCATION:

TIME:

09:15 TO 09:25

R. Rose LABELLA REPRESENTATIVE: M. Pelychaty GROUND SURFACE ELEVATION START DATE: 3/16/2005

END DATE: 3/16/2005

DATUM:

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

NA

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

							,	
ОЕРТН (FEET)	SAMPLE STRATA		I STRATA				PID FIELD SCREEN	
DEPTH	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL (CLASSIFICATION	(PPM)	REMARKS
0	34		0.4	Asphalt - Not Sa Brown cmf SAN	impled D, little Silt and f and	gular Gravel, moist	0.7	
					•	,	1.4	
2		S - 1 0' - 4'					1.4	
4	18		4.0	Brown cmf SAN	D, little angular f Gra	avel, moist	1.4	
		S - 2					1.3	
6		4' - 6.9'						
				Refusal at 6.9-f	eet BGS			
8								
10								
12								
14								
						•		
16								
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ	BOTTOM OF GROUNDWATER Monitoring well MW-2 installed in borehole				
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
			NA	6.9	<u> </u>			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

f = fine

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue

Rochester, New York

BORING:

SHEET

JOB:

B - 4

1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

CONTRACTOR: SLC Environmental Services, Inc.

BORING LOCATION:

TIME:

11:45 TO 12:00

DATUM:

DRILLER: R. Rose LABELLA REPRESENTATIVE: M. Pelychaty GROUND SURFACE ELEVATION START DATE: 3/16/2005

END DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

							,	
ОЕРТН (FEET)	SAMPLE	SAMPLE	STRATA CHANGE		VISUAL	CLASSIFICATION	PID FIELD SCREEN (PPM)	REMARKS
효	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	(FEET)		VISUAL	DAGGI TOXTTOTT		
0	24	DETITI	0.8	Limestone crush Brown to Gray c	er run stone mf SAND, some mf	angular Gravel, little Silt, moist, no odors	0.7	
							0.0	
2		S - 1 0' - 4'					0.0	
4	32		4.0	Brown to gray cr	nf SAND and SILT,	trace f angular Gravel, moderate	8.2	
		S- 2 4' - 6'		petroleum odor,	most to wet	7.8		
6		S - 3		saturated			19.4	
		6'- 8'					8.0	
	13	S-4					3.1	
В		8' - 9.1'					3.1	
İ				Refusal at 9.1-f	eet BGS			
10								
1.0								
12								
14								
						·		
16								
				DEPTH (FT)		NOTES:		
	WATER LEVEL DATA BOTTO		воттом оғ	воттом оғ	GROUNDWATER	Monitoring well MW-3 installed in borehole		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	-		
			NA	9.1	L			

GENERAL NOTES

- 1). STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

m = medium

BGS = Below the Ground Surface

f = fine

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 5

1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

DRILLER:

CONTRACTOR: SLC Environmental Services, Inc. BORING LOCATION:

R. Rose

GROUND SURFACE ELEVATION

START DATE: 3/16/2005

TIME:

JOB:

12:10 TO 12:20

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 3/16/2005

OTHER:

F							PID	
(FEE		SAMPLE					FIELD	
рертн (геет)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL	LASSIFICATION	SCREEN (PPM)	REMARKS
0	34		0.6	Asphalt - Not Sa Red-brown cmf S	mpled SAND, little f angula	r Gravel and Silt, moist	0.0	
		S - 1 0' - 4'	1.9	Gray-brown cmf	SAND, little f angula	ar Gravel and Silt, moist to wet	0.0	
2		U - 4					0.5	
4	23						0.5	
	23						0.0	
		S - 2	5.8		and SILT, little f and	pular to sub rounded Gravel, saturated,	0.0	
6		4' - 8'		organic odor			0.5	
8								
	23	S - 3 8' - 11.3'	8.4	Brown to gray on	nf SAND, some mf	0.0		
10								
				Refusal at 11.3-	toot BGS		<u> </u>	
12				neiusai at 11.0	neet DGG			
14								
16							1	
				DEPTH (FT)	T	NOTES:		
	1	LEVEL DATA	воттом оғ	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
	L	L	NA	11.2	<u> </u>			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

m = medium

BGS = Below the Ground Surface

f = fine

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING:

B-6

SHEET 1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc.

BORING LOCATION: GROUND SURFACE ELEVATION TIME:

JOB:

12:25 TO 12:40

1

DATUM:

DRILLER: LABELLA REPRESENTATIVE: M. Pelychaty

R. Rose

START DATE: 3/16/2005

END DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

AUGER SIZE AND TYPE:

NA

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-inch ID

OTHER:

E		SAMPLE					PID	
1 12		SAMIFEE					FIELD	
I I	SAMPLE		STRATA				SCREEN	DEMARKS
ОЕРТН (FEET)	RECOVERY	SAMPLE NO. AND	CHANGE		VISUAL C	LASSIFICATION	(PPM)	REMARKS
<u> </u>	(INCHES)	DEPTH	(FEET)				 	
0	32			Asphalt - Not Sai	mpled		0.0	
	i		0.2	Gray to brown cn	nf SAND and GRAV	ÆL .	0.0	
İ					0 4 4 10 11 11 11 11 11 11 11 11 11 11 11 11	famoular Gravel, wat	0.0	
			1.7	Light brown cmf	SAND, Imie Sin and	f angular Gravel, wet		
		S - 1 0' - 4'						
2		0 - 4					0.7	
							Į.	
1				·				
4							0.0	
	12						5.5	
		S- 2 4' - 7.2'				<i>e</i>	0.0	
		4 - 1.2						
6								
	•							
							ļ	
				Refusal at 7.2-fe	eet BGS		1	
8							İ	
1								
							1	
1							1	
10								
		:					İ	
12								
]	
}							1	
							•	
14							1	
"								
			ļ		-			
			1					
			ł					
16	L			DEPTH (FT)		NOTES:		
						Monitoring well MW-3 installed in borehole		
<u></u>		LEVEL DATA	воттом оғ		i	Moduloung well MAA-2 installed in poleticle		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
1			NA	7.2				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = mediumf = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: B-7 SHEET

1 OF

205126 CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

> CONTRACTOR: SLC Environmental Services, Inc. DRILLER:

R. Rose

BORING LOCATION: Next to sump/manhole GROUND SURFACE ELEVATION

TIME: DATUM:

JOB:

13:40 TO 13:55

LABELLA REPRESENTATIVE: M. Pelychaty

END DATE: 3/16/2005 START DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore INSIDE DIAMETER: 1.8-Inch ID

OTHER:

FEET)		SAMPLE					PID FIELD	
ОЕРТН (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)	VISUAL CLASSIFICATION			SCREEN (PPM)	REMARKS
0	30		0.3	Concrete - Not S Brown cmf SAND	ampled), little f angular Gra	vel	0.0	
		S - 1 0' - 4'	0.6	Brown mf SAND	, some Silt, little f an	ngular Gravel, moist	4.2	
2		0 - 4				·	4.2	
4	24	S-2					116	
	24	4' - 6'					132	
6		S - 3 6' - 7.2'	6.5	Brown mf SAND	and SILT, little f ang	gular Gravel, wet, chemical odor	222	
				Refusal at 7.2-fe	eet BGS			
8		,						
10								
12								
14								
				-				
16								
				DEPTH (FT)		NOTES:		
	WATER LEVEL DATA BOTTOM OF		BOTTOM OF	GROUNDWATER				

GENERAL NOTES

TIME

DATE

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

BORING

7.2

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

CASING

NA

c - coarse m = medium

f = fine

ENCOUNTERED

ND = Non Detect

some = 20 to 35%

ELAPSED TIME

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING:

B - 8

SHEET

1 OF 205126

CHKD BY:

JOB:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

DRILLER:

CONTRACTOR: SLC Environmental Services, Inc.

R. Rose

BORING LOCATION: Next to sump/manhole

TIME:

14:20 TO 14:40

GROUND SURFACE ELEVATION LABELLA REPRESENTATIVE: M. Pelychaty START DATE: 3/16/2005

DATUM:

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

NA

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 3/16/2005

OTHER:

L								
E		SAMPLE					PID	
оертн (ғеет)		SAMPLE					FIELD	
l Ï	ŞAMPLE		STRATA				SCREEN	
<u> </u>	RECOVERY	SAMPLE NO. AND	CHANGE		VISUAL C	CLASSIFICATION	(PPM)	REMARKS
_ 8	(INCHES)	DEPTH	(FEET)					
0	32		:	Concrete - Not S	ampled			
			0.4	Light brown cmf	SAND, some Silt, lit	tle f angular Gravel, moist, slight odor	0.0	
İ							3.4	
1]						3.4	
1 .		S - 1 0' - 4'					4.3	
2		0-4						
1	i						3.7	
-	1 1							
4							10.2	
ļ	34	S - 2			rui- On i consu	les Crovel wet slight adar	. 10.2	•
1		4' - 6'	5.3	Gray cmt SAND,	imie Sitt and t angu	lar Gravel, wet, slight odor	18.1	
1								
6		S-3					1	
"	1	6' - 7.6'		•			13.6	
1	ļ							
Ì				Refusal at 7.6-fe	et BGS		1	
	! !							
8		:						
1							1	
1]		:					
10							1	
	ļ į						1	
ł								
1								
							1	İ
12							I	ľ
							I	
1								
14								
			-				1	
16							1	
10		L		DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ		GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	Monitoring well MW-4 installed in borehole.		
			NA	7.6				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium f = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING:

SHEET

JOB:

B - 9

1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

CONTRACTOR: SLC Environmental Services, Inc.

DRILLER:

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

14:45 TO 15:05

1

DATUM:

R. Rose LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT AUGER SIZE AND TYPE:

NA

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 3/16/2005

OTHER:

	,				r	
ОЕРТН (FEET)		SAMPLE			PID	
E.					FIELD SCREEN	
Ĕ	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE	VISUAL CLASSIFICATION	(PPM)	REMARKS
DEF	(INCHES)	DEPTH	(FEET)			
0	34	7.	0.7	Gray cmf SAND and f angular Gravel, wet, no odors Brown cmf SAND, little Silt and f angular Gravel, moist, some brick pieces	0.0	'
		S - 1 0' - 4'			1.6	
2		0 - 4			8.0	
					0.9	
4	30	§-2			1.7	
		4' - 6'	5.5	Gray mf SAND, little Silt, saturated, some black staining, very slight odor	1.6	
6		S-3			1.5	
		6' - 8'			1.5	
					0.0	
8	22	S-4	9.0	Brown cmf SAND, little Silt and f angular Gravel, saturated, slight odor	0.0	
		8' - 10.2'	9.0	PIOWIT CITE SAND, HILLE SIR MIN PARISON CHARGE, SANDANCE, SASSANCE.	0.0	
10						
		,		Refusal at 10.2-feet BGS		
12						
14						
16					<u> </u>	
				DEPTH (FT) NOTES:		· · · · · · · · · · · · · · · · · · ·
	WATER	LEVEL DATA	воттом оғ	BOTTOM OF GROUNDWATER		
DATE	TIME	ELAPSED TIME	CASING	BORING ENCOUNTERED		
			NA	10.2		
						

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium f = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 10

1 OF

205126

CHKD BY:

JOB:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

CONTRACTOR: SLC Environmental Services, Inc.

DRILLER:

R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

15:15 TO 15:35

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

AUGER SIZE AND TYPE: OVERBURDEN SAMPLING METHOD: Direct Push DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 3/16/2005

OTHER:

					1	
FEET)		SAMPLE			PID FIELD	
рертн (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)	VISUAL CLASSIFICATION	SCREEN (PPM)	REMARKS
0	34			Brown cmf SAND, little Silt and f angular Gravel	0.0	
2		S - 1 0' - 4'			0.0	
					0.5	
4						
•	36		4.5	Brown mf SAND, little Silt, saturated, slight petroleum odor	0.0	
					0.0	
6		S - 2 4' - 8'			0.0	
8	20	S-4			0.0	
		8' - 10.8'			0.0	
10					0.0	
				Refusal at 10.8-feet BGS		·
12						
14						
16						<u> </u>
	WATER	LEVEL DATA	воттом оғ	DEPTH (FT) NOTES: BOTTOM OF GROUNDWATER		
DATE	TIME	ELAPSED TIME	CASING	BORING ENCOUNTERED		
PATE	1 MIL	201020 11112	NA	10.8		
	<u> </u>		I INM	10.0		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium f = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING:

B - 11

1 OF

205126

CHKD BY:

SHEET

JOB:

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANT

DRILLER:

CONTRACTOR: SLC Environmental Services, Inc. R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME: DATUM: 16:00 TO 16:15

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 3/16/2005

END DATE: 3/16/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE NO. AND DEPTH STRATA CHANGE (FEET) STRATA CHANGE (FEET) STRATA CHANGE (FEET) STRATA CHANGE (FEET) STRATA CHANGE (FEET) STRATA CHANGE (FEET) STRATA CHANGE (FEET) STRATA STRATA STRATA SOTTOM OF SAND, Bitle Sitt and f angular Gravel, wet O.0 O.0 O.0	ļ								
	E		SAMPLE						
	E		D/ dvi. CL						
O	ΙĔ			STRATA					DEMARKS
	EP			CHANGE		VISUAL C	LASSIFICATION	(PPM)	NEWARKS
S-1 Q'-4' 2.0 Brown mf SAND, little Silt ad f angular Gravel, moist 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			DEPTH			5 4 4 5 1 m 2 1 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2	formula Canada wat		
S - 1	0	36			Gray-brown cmt	SAND, little Sit and	r angular Gravel, wet	0.0	
2 S - 1 C - 4' 2.0 Brown mf SAND, little Silt ad f angular Gravel, moist 0.0 0							·	• • •	
2 0'-4' 2.0 Brown mt SAND, little Silt ad f angular Gravel, moist 0.0								0.0	
10									
\$ -2	2		0' - 4'	2.0	Brown mf SAND	, little Silt ad f anguli	ar Gravel, moist	0.0	
\$ -2									
\$ -2									
\$ -2									
8	4								
S - 2	1	10						0.0	
6								0.0	
6			S-2	ŀ					
Refusal at 6.9-feet BGS	6								
10								ŀ	
10					0-4	- BCC			
10 12 14 16					nerusar at 6.5-16	et bas			
10 12 14 16	8								
12 14 16									
12 14 16								1	
12 14 16									
12 14 16	10								
14	"								
14								i	
14								ł	
14	1,0								
16	12								
16									
16								1	
16				ļ					
DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED	14							1	
DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED									
DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED								}	
DEPTH (FT) NOTES: WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED				1				1	
WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED	16				DEDTUGE		NOTES-	L	<u> </u>
DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED				 		1	140123.		
	L	WATER	LEVEL DATA	воттом оғ	1				
NA 6.9	DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
				NA	6.9				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
- 3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface NA = Not Applicable

f = fine

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 12

1 OF

205126 CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc.

BORING LOCATION:

GROUND SURFACE ELEVATION

START DATE: 4/8/2005

END DATE: 4/8/2005

TIME:

JOB:

08:50 TO 09:10

DATUM:

DRILLER: R. Rose LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

FEET)		SAMPLE					PID FIELD	
рертн (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL (CLASSIFICATION	SCREEN (PPM)	REMARKS
0	20		0.4	Concrete - Not S Brown cmf SAN	Sampled D, some mf angular	Gravel, little Silt, slightly damp, odor	0.0	
		S-1					0.0	
2		0' - 4'					0.0	
4						t codonate adam	10.8	
	20	S-2	4.0	Brown mf SAND), little Silt, moist to	wet, moderate odor	10.8	
		4' - 6'		<u> </u>			29.2	
6		_					58.9	
		S - 3 6' - 8'					38.5	
8				Basses and CANIC) little f angular Grav	vel and Silt, saturated, odor	10.8	
		S - 4 8' - 9.7'	8.0	Brown IIII SANL	o, iittie i angulai Gia	ver and one, saturated, oddr	59.9	
				Refusal at 9.7-f	oot BGS			
10				neiusai at 3.7-1	cet Dao			
12						,		
14		•						
16								
	WATER LEVEL DATA BOTTOM OF			DEPTH (FT)	GROUNDWATER	NOTES:		
5475				BOTTOM OF	1	Monitoring well MW-5 installed in borehole		
DATE	TIME	ELAPSED TIME	CASING NA	BORING 9.7	ENCOUNTERED	Intollitoring well MAA-9 histories in poleticie		
			INA	1 5.1				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = mediumf = fine

ND = Non Detect BGS = Below the Ground Surface

some = 20 to 35%

trace = 1 to 10%

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 13

1 OF

1

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANT

DRILLER:

CONTRACTOR: SLC Environmental Services, Inc. R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

START DATE: 4/8/2005

TIME:

JOB:

09:25 TO 09:35

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 4/8/2005

OTHER:

<u> </u>								
DEPTH (FEET)		SAMPLE					PID	
E				ļ			FIELD SCREEN	
E	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE		VISUAL C	LASSIFICATION	(PPM)	REMARKS
	(INCHES)	DEPTH	(FEET)					
0	40			Concrete - Not S	ampled			
			0.3	Brown mf SAND	, little Silt and f angu	lar Gravel, slightly damp	0.7	
							1.1	
		S-1						·
2		0' - 4'					1.1	
			2.5	B 4 CAN!	D name Cilt trace f	angular Gravel, moist	1.7	
l			3.0	Brown CITIT SAINL	J, Some Sill, trace i	angular Graver, moist		
1								
4							1,1	
	30			1			1.7	
			5.3	Brown cmf SANI	D, little Silt, trace f a	ngular Gravel, wet	1.7	
		S-2						
6		4' - 6.8'					1,1	
l								'
1				Refusal at 7.0-f	eet BGS			
1								
8			=					
1								
1				•				
							1	
10								
İ								
ļ								
		:						
12				l				
1								
	1							
۱				İ				
14								
							ł	
4.0								
16	1	<u> </u>		DEPTH (FT)		NOTES:	·	
-	1ALATED	LEVEL DATA	воттом оғ			Monitoring well MW-1 installed in borehole		
		LEVEL DATA	1	ł .	1	monney and the second of the s		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
			NA	7.0	L			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
- 3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium f = fine

ND = Non Detect BGS = Below the Ground Surface

some = 20 to 35%

trace = 1 to 10%

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 14

1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc.

R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

JOB:

09:45 TO 10:00

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 4/8/2005

END DATE: 4/8/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

1									
ОЕРТН (FEET)	SAMPLE RECOVERY	SAMPLE SAMPLE NO. AND	STRATA CHANGE		VICUAL	CLASSIFICATION		PID FIELD SCREEN (PPM)	REMARKS
OE:	(INCHES)	DEPTH DEPTH	(FEET)	<u> </u>	VISUAL	CLASSIFICATION		(1.111)	MEINAMICO
0	35		0.3	Concrete - Not Brown mf SANI		ular Gravel, slightly damp	,	0.7	
								0.5	
2		S - 1 0' - 4'						0.5	
								0.5	
4	20	l	-	moist to wet				1.7	
								1.7	
6		\$ - 2 4' - 6.2'						2.6	
				Refusal at 6.2-	eet BGS				
8									
10									
12									
14									
16									
				DEPTH (FT)		NOTES:			
	WATER	LEVEL DATA	воттом оғ	воттом оғ	GROUNDWATER				
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED				·

GENERAL NOTES

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

6.2

2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

NA

c - coarse

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

m = medium BGS = Below the Ground Surface

f = fine NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 15

1 OF 205126

JOB: CHKD BY:

300 STATE STREET, ROCHESTER, NY

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc.

R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

10:15 TO 10:30

1

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 4/8/2005

END DATE: 4/8/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

NA

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

		·						1
ОЕРТН (FEET)		SAMPLE					PID FIELD	
HT4	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE		VISUAL	CLASSIFICATION	SCREEN (PPM)	REMARKS
<u>ā</u>	(INCHES)	DEPTH	(FEET)					
0	28		0.3	Concrete - Not Brown cmf SAN	Sampled ND, little Silt and f an	gular Gravel, moist	2.3	
				,			1.7	
2		S - 1 0' - 4'					2.2	
4	34		4.0	Brown f SAND a	and SILT, moist		5.6	
		S - 2 4' - 6'	4.6	Brown mf SAND	D, little SILT and mf	angular Gravel, moist	6.7	
6							5.9	
		S - 3 6' - 8'					9.9	
8	10	S-4	8.0	Gray mf angular	GRAVEL and cmf	SAND, little Silt, saturated	2.7	
		8' - 8.8'	0.0	Gray IIII arigular	GIVIVEE and Simi	orato, inib cin, saturate		
10				Refusal at 8.8-1	lost BGC			_
10				neiusai at 6.0-1	leet bus			
12								
14	,					\		
16	l							
				DEPTH (FT)		NOTES:		1
	WATER	EVEL DATA	воттом оғ	· · · · · · · · · · · · · · · · · · ·	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
5015	111112	SENT OLD TIME	NA NA	8.8	LINGOONTERED			
			INA	U.0	L	l		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

m = medium

BGS = Below the Ground Surface

f = fine

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

JOB:

B-16

1 OF

205126

10:30 TO 11:05

CHKD BY:

300 STATE STREET, ROCHESTER, NY

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc. R. Rose

BORING LOCATION: GROUND SURFACE ELEVATION

TIME:

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

NA

START DATE: 4/8/2005

END DATE: 4/8/2005

DRIVE SAMPLER TYPE: 4-foot Macrocore INSIDE DIAMETER: 1.8-Inch ID

OTHER:

							<u> </u>	ı
(FEET)		SAMPLE					PID FIELD SCREEN	
оертн (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	LASSIFICATION	(PPM)	REMARKS
0	34		0.3	Concrete - Not Sand, Brown mf SAND,	ampled little Silt and f angu	lar Gravel, moist	0.2	
2		S - 1 0' - 4'					0.3	
							0.3	
4	14						0.7	
		S - 2	5.0	Brown cmf SAND), little f angular Gra	vel, moist	0.9	
6		4' - 6.9'						
8				Refusal at 6.9-fe	eet BGS			
10								
12								
14								
16								
				DEPTH (FT)		NOTES:		
<u> </u>		LEVEL DATA	воттом оғ		GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING		ENCOUNTERED			
1	į.	į.	NA	6.9				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

f = fine -

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 17 1 OF

205126

JOB: CHKD BY:

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANT

DRILLER:

CONTRACTOR: SLC Environmental Services, Inc. R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

11:25 TO 11:35

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 4/8/2005

END DATE: 4/8/2005

DATUM:

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

	,			,			1	1
ОЕРТН (FEET)		SAMPLE					PID FIELD	
<u>¥</u>	SAMPLE		STRATA		MOUNT	CLASSIFICATION	SCREEN (PPM)	REMARKS
	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(*****)	TEMATIC
0	26			Brown mf SAND	, little Silt and f ang	ular Gravel, moist	1.9	
1	1							
	!						1.1	
1		S-1					1	
2		0' - 4'					2.0	
4								
	0			*				
6								
В				Refusal at 7.7-f	eet BGS			
10								
12								
14								
16								
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ	воттом оғ	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
			NA	7.7				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

f = fine

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 18 1

OF 205126

JOB: CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTAN

CONTRACTOR: SLC Environmental Services, Inc.

OVERBURDEN SAMPLING METHOD: Direct Push

NA

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

12:05 TO 12:20

R. Rose

START DATE: 4/8/2005

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

AUGER SIZE AND TYPE:

END DATE: 4/8/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

(FEET)		SAMPLE					PID FIELD	
ОЕРТН (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	38			Concrete - Not S	ampled			
			0.3	Brown cmf SAND), some mf angular	Gravel, little Silt	0.7	
							0.6	
2		S - 1 0' - 4'					0.8	
							0.8	
							0.0	
4								
-	40		4.0	Brown to gray mf	SAND, little Silt mo	pist	0.6	
				ļ			0.8	
6							5.5	
				little f angular Gra	avel at bottom of sa	mpler	0.7	
l				Refusal at 7.8-fe			_	
8				Hefusal at 7.6-le	et bus			
10								
12								
14								
							-	
16						NOTES.		<u> </u>
-	MATER	I DIEL BATA	воттом оғ	DEPTH (FT)	GROUNDWATER	NOTES:		
DATE	TIME	LEVEL DATA ELAPSED TIME	CASING	i I	ENCOUNTERED			
DAIE	HIMIT	ELAFSED TIME	NA NA	7.8	LITOURILLE			

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

m = medium

BGS = Below the Ground Surface

f = fine

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 19

1 OF

205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY

ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc. R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME: DATUM:

JOB:

13:15 TO 13:30

1

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 4/8/2005

END DATE: 4/8/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

NA

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

ОЕРТН (FEET)		SAMPLE					PID FIELD	
∓	SAMPLE		STRATA				SCREEN	
1	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)		VISUAL	CLASSIFICATION	(PPM)	REMARKS
0	24	DEFIN	(Communication Net	Commission			
"	24		0.4	Concrete - Not Brown cmf SAN	sampied ID, some mf angulai	r Gravel, moist	0.2]
				1			Ì	ł
			1.8	Gray to brown o	omf SAND, trace f a	ngular Gravel, moist, cinders	1	
2		S - 1 0' - 4'					0.3	
-		0 - 4						
			İ				0.3	İ
				1			i	
4				1				
1	21		4.0	Brown f SAND a	and SILT, wet		0.7	
							0.9	
6		S - 2 4' - 6.9'		-little f angular G	aravel in bottom 2" o	of sampler		
			ļ			,		
i i						, . ,		
			İ	Refusal at 7.2-1	leet BGS			
В								
1 .								
							i	
10								
12	İ							
14	1							
							· [
	į							
16								
				DEPTH (FT)		NOTES:		
	WATER L	LEVEL DATA	воттом оғ	BOTTOM OF	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
			NA	7.2				

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
- 3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = medium

f = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

NA = Not Applicable

BGS = Below the Ground Surface

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: B - 20 SHEET

1 OF

205126

CHKD BY:

JOB:

300 STATE STREET, ROCHESTER, NY

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: SLC Environmental Services, Inc. R. Rose

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

13:45 TO 14:30

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 4/8/2005

END DATE: 4/8/2005

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

<u> </u>	· · · · ·			T	·			
ОЕРТН (FEET)		SAMPLE					PID FIELD	
H H	SAMPLE		STRATA	-			SCREEN	
F.	RECOVERY	SAMPLE NO. AND	CHANGE		VISUAL	CLASSIFICATION	(PPM)	REMARKS
	(INCHES)	DEPTH	(FEET)	ļ				
0	18		0.4	Concrete - Not S	Sampled ID little of angular (Gravel, slightly damp	0.0	
			0.4	Brown citt orav	D, mile in angele.			
				1			0.0	
2		S - 1 0' - 4'						ł
		0-4		-				
4								
	34	_	4.0	Brown to red-bro	own mf SAND, some	e Silt, little mf angular Gravel, moist	0.0	
		S - 2 4' - 8.4'				•		
		4 - 0.4					0.0	
6					. Pull - 4 C	al wet tot paturated	0.0	
			6.6	Gray cmt SAND	, little i angular Grav	rel, wet tot saturated	0.5	
							ļ	
				-				
8							Ì	
				Refusal at 8.4-1	eet BGS			
ĺ				İ			Ī	
10								
"								
							1	
12								
14								
							1	
١., ا								
16	<u> </u>			DEPTH (FT)		NOTES:		
	WATED	LEVEL DATA	воттом оғ	T	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED			
DAIE	TIME	CLAFGED TIME	NA NA	8.4	L. TOOOL TILLED			
		.,	INA	0.4		L		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
- 3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse m = mediumf = fine

ND = Non Detect

some = 20 to 35%

trace = 1 to 10%

BGS = Below the Ground Surface

NA = Not Applicable

Phase II Environmental Site Assessment - JML Optical

690 Portland Avenue Rochester, New York BORING: SHEET

B - 21 1 OF

JOB: 205126

CHKD BY:

300 STATE STREET, ROCHESTER, NY

DRILLER:

ENVIRONMENTAL ENGINEERING CONSULTAN

CONTRACTOR: SLC Environmental Services, Inc.

BORING LOCATION:

GROUND SURFACE ELEVATION

TIME:

15:00 TO 15:15

R. Rose LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 4/8/2005

END DATE: 4/8/2005

DATUM:

TYPE OF DRILL RIG: Track Mounted Geoprobe® 54 LT

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

NA

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER:

(FEET)		SAMPLE			PID FIELD SCREEN	
ОЕРТН (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)	VISUAL CLASSIFICATION	(PPM)	REMARKS
0	30			Brown cmf SAND, little f angular Gravel, some cinders, moist, fill	0.0	
		S-1			0.0	
2		0' - 4'			0.0	
						,
4	36		4.0	Brown mf SAND, some Silt, trace angular f Gravel, moist	0.0	<u>{</u>
6	,	S - 2 4' - 6'			0.0	
		S - 3 6' - 8'			0.0	
8		S-4	8.2	Brown cmf SAND, little f angular Gravel and Silt, saturated	0.0	
	20	8' - 10.0'	6.2	DIOMITCHII O/CIO, IIIIO I BIGUEL BIBLE DE SE SE SE SE SE SE SE SE SE SE SE SE SE	0.0	
				Refusal at 10.0-feet BGS		
10				nelusal at 10.0-lett 500		
12						
14						
16						
				DEPTH (FT) NOTES:		
		LEVEL DATA	воттом оғ	BOTTOM OF GROUNDWATER		
DATE	TIME	ELAPSED TIME	CASING	BORING ENCOUNTERED		
			NA NA	10.0		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
- 3) Abbreviations

and = 35 to 50 %

little = 10 to 20%

c - coarse

ND = Non Detect

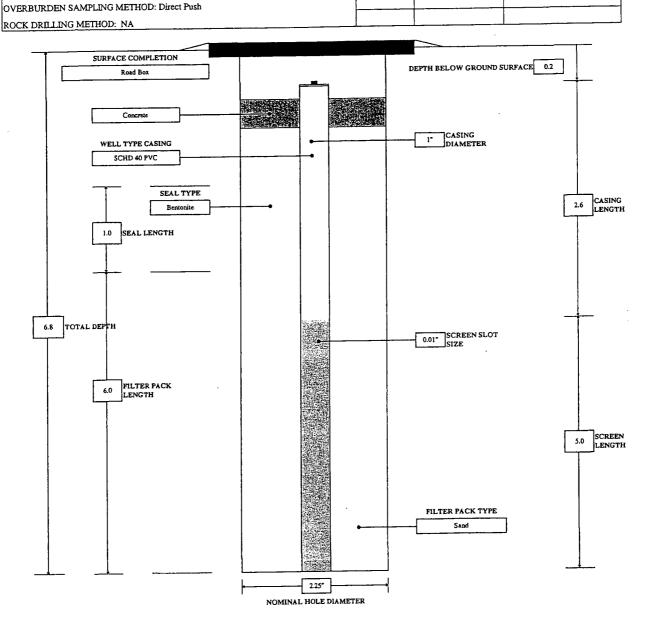
some = 20 to 35%

trace = 1 to 10%

m = medium

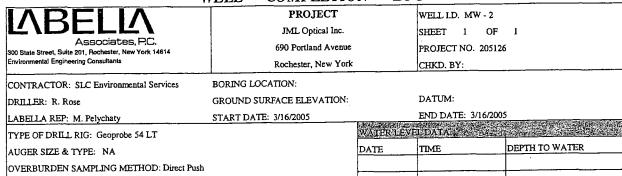
BGS = Below the Ground Surface

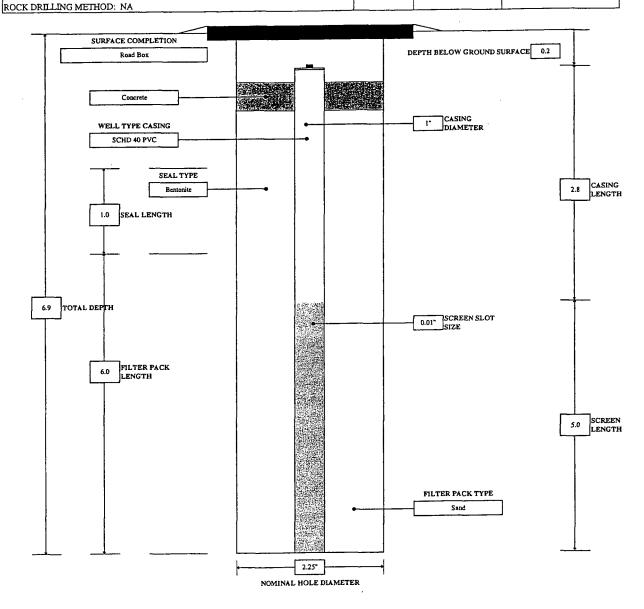
f = fine


NA = Not Applicable

LOG **COMPLETION** WELL **PROJECT** WELL I.D. MW - 1 OF JML Optical Inc. SHEET 1 Associates, P.C. 690 Portland Avenue PROJECT NO. 205126 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD. BY: CONTRACTOR: SLC Environmental Services BORING LOCATION: GROUND SURFACE ELEVATION: DATUM: DRILLER: R. Rose END DATE: 3/16/2005 START DATE: 3/16/2005 LABELLA REP: M. Pelychaty TYPE OF DRILL RIG: Geoprobe 54 LT

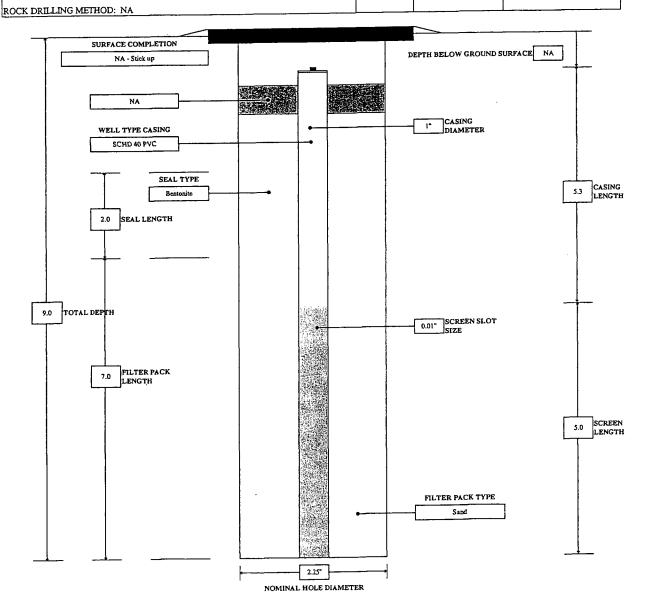
AUGER SIZE & TYPE: NA


TIME


DEPTH TO WATER

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED,
FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

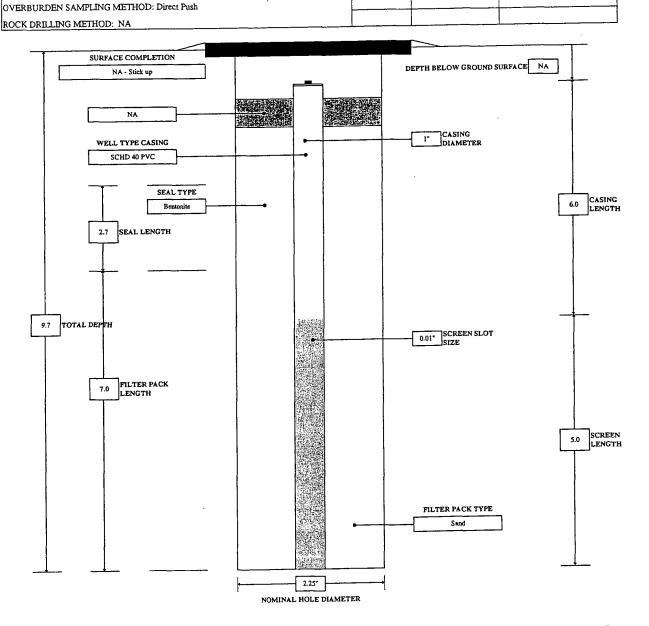
NA = Not Applicable



NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

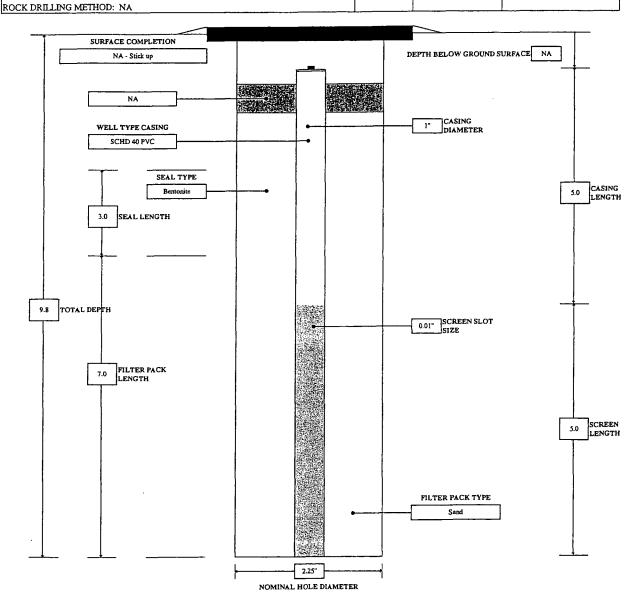
NA = Not Applicable

PROJECT WELL I.D. MW - 3 JML Optical Inc. SHEET 1 OF 1 Associates, P.C. 690 Portland Avenue PROJECT NO. 205126 300 State Street, Suite 201, Rochester, New York 14614 ironmental Engineering Consultants Rochester, New York CHKD. BY: BORING LOCATION: CONTRACTOR: SLC Environmental Services GROUND SURFACE ELEVATION: DATUM: DRILLER: R. Rose END DATE: 3/16/2005 START DATE: 3/16/2005 LABELLA REP: M. Pelychaty WATER LEVEL DATA TO THE TYPE OF DRILL RIG: Geoprobe 54 LT DEPTH TO WATER DATE AUGER SIZE & TYPE: NA


OVERBURDEN SAMPLING METHOD: Direct Push

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable


PROJECT WELL I.D. MW - 4 JML Optical Inc. SHEET 1 OF 1 Associates, P.C. PROJECT NO. 205126 690 Portland Avenue 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD. BY: CONTRACTOR: SLC Environmental Services BORING LOCATION: DATUM: GROUND SURFACE ELEVATION: DRILLER: R. Rose END DATE: 4/8/2005 START DATE: 4/8/2005 LABELLA REP: M. Pelychaty WATER LEVEL DATA TYPE OF DRILL RIG: Geoprobe 54 LT DEPTH TO WATER TIME AUGER SIZE & TYPE: NA

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not applicable

PROJECT WELL LD. MW - 5 JML Optical Inc. SHEET 1 OF Associates, P.C. 690 Portland Avenue PROJECT NO. 205126 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD, BY: CONTRACTOR: SLC Environmental Services BORING LOCATION: DATUM: GROUND SURFACE ELEVATION: DRILLER: R. Rose END DATE: 4/8/2005 START DATE: 4/8/2005 LABELLA REP: M. Pelychaty WATER LEVEL DATA TYPE OF DRILL RIG: Geoprobe 54 LT DEPTH TO WATER AUGER SIZE & TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable

Appendix 2

Client:

LaBella Associates, P.C.

Lab Project No.:

05-0944

690 Portland Ave

Lab Sample No.:

4078

Client Job Site:

Rochester, N.Y.

Sample Type:

Soil

Client Job No.:

205126

Date Sampled: Date Received: 03/18/2005 03/21/2005

Field Location: Field ID No.:

B-7/S-3 N/A

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	03/23/2005	SW846 6010	5.15
Barium	03/23/2005	SW846 6010	58.5
Cadmium	03/23/2005	SW846 6010	0.646
Chromium	03/23/2005	SW846 6010	13.4
Lead	03/23/2005	SW846 6010	6.49
Mercury	03/24/2005	SW846 7471	0.0226
Selenium	03/23/2005	SW846 6010	<0.581
Silver	03/23/2005	SW846 6010	<1.16

ELAP ID No.:10958

Comments: The matrix spike recovered 76.2% for Selenium.

Approved By:

Bruge Hoogesteger, Technical Director

Semi-Volatile STARS Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Lab Project Number: 05-0944 Lab Sample Number: 4077

Client Job Number:

205126

Field Location: Field ID Number:

Date Sampled: B-4 / S-3 **Date Received:** 03/18/2005 03/21/2005

Sample Type:

N/A Soil

Date Analyzed:

03/24/2005

Base / Neutrals	Results in ug / Kg
Acenaphthene	765
Acenaphthylene	ND< 355
Anthracene	679
Benzo (a) anthracene	ND< 355
Benzo (a) pyrene	ND< 355
Benzo (b) fluoranthene	ND< 355
Benzo (g,h,i) perylene	ND< 355
Benzo (k) fluoranthene	ND< 355
Chrysene	ND< 355
Dibenz (a,h) anthracene	ND< 355
Fluoranthene	ND< 355
Fluorene	678
Indeno (1,2,3-cd) pyrene	ND< 355
Naphthalene	1,750
Phenanthrene	4,080
Pyrene	761
ELAP Number 10958 Method: EPA 8270C	Data File: 23719.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

Semi-Volatile STARS Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Lab Project Number: 05-0944 Lab Sample Number: 4079

Client Job Number:

205126

B-8 / S-2

Date Sampled:

03/18/2005

Field Location: Field ID Number:

N/A

Date Received:

03/21/2005

Sample Type:

Soil

Date Analyzed:

03/24/2005

Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 334
Acenaphthylene	ND< 334
Anthracene	ND< 334
Benzo (a) anthracene	ND< 334
Benzo (a) pyrene	ND< 334
Benzo (b) fluoranthene	ND< 334
Benzo (g,h,i) perylene	ND< 334
Benzo (k) fluoranthene	ND< 334
Chrysene	ND< 334
Dibenz (a,h) anthracene	ND< 334
Fluoranthene	ND< 334
Fluorene	ND< 334
	ND< 334
Indeno (1,2,3-cd) pyrene	ND< 334
Naphthalene	ND< 334
Phenanthrene Pyrene	ND< 334

ELAP Number 10958

Method: EPA 8270C

Data File: 23720.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944S2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Client Job Number: 205126

Field Location: Field ID Number: B-4 / S-3 N/A

Sample Type:

Soil

Lab Project Number: 05-0944 Lab Sample Number: 4077

Date Sampled:

Date Received:

03/18/2005 03/21/2005

Date Analyzed:

03/24/2005

Halocarbons Results in ug / Kg Bromodichloromethane ND< 37.6 Bromomethane ND< 37.6 Bromoform ND< 37.6 Carbon Tetrachloride ND< 37.6 Chloroethane ND< 37.6 Chloromethane ND< 37.6 2-Chloroethyl vinyl Ether ND< 37.6 Chloroform ND< 37.6 Dibromochloromethane ND< 37.6 1,1-Dichloroethane ND< 37.6 1,2-Dichloroethene ND< 37.6 1,1-Dichloroethene ND< 37.6 1,2-Dichloroethene ND< 37.6 1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 1,2-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 37.6 Tetrachloroethene ND< 37.6 Tetrachloroethene ND< 37.6		·
Bromomethane Bromoform ND< 37.6 Bromoform ND< 37.6 Carbon Tetrachloride ND< 37.6 Chloroethane ND< 37.6 Chloromethane ND< 37.6 Chloroform ND< 37.6 Chloroform ND< 37.6 Dibromochloromethane ND< 37.6 1,1-Dichloroethane ND< 37.6 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethane ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 37.6 Tetrachloroethene ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6 ND< 37.6	Halocarbons	Results in ug / Kg
Bromoform ND 37.6 Carbon Tetrachloride ND 37.6 Chloroethane ND 37.6 Chloromethane ND 37.6 2-Chloroethyl vinyl Ether ND 37.6 Chloroform ND 37.6 Dibromochloromethane ND 37.6 1,1-Dichloroethane ND 37.6 1,2-Dichloroethane ND 37.6 1,1-Dichloroethene ND 37.6 trans-1,2-Dichloroethene ND 37.6 1,2-Dichloropropane ND 37.6 cis-1,3-Dichloropropene ND 37.6 trans-1,3-Dichloropropene ND 37.6 Methylene chloride ND 37.6 1,1,2,2-Tetrachloroethane ND 37.6 Tetrachloroethene ND 37.6	Bromodichloromethane	ND< 37.6
Carbon Tetrachloride Chloroethane Chloromethane Chloromethane ND< 37.6 Chloromethane ND< 37.6 Chloroform ND< 37.6 Chloroform ND< 37.6 Dibromochloromethane ND< 37.6 1,1-Dichloroethane ND< 37.6 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloropene ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6 ND< 37.6	Bromomethane	ND< 37.6
Chloroethane Chloromethane Chloromethane 2-Chloroethyl vinyl Ether ND< 37.6 Chloroform ND< 37.6 Chloroform ND< 37.6 Dibromochloromethane ND< 37.6 1,1-Dichloroethane ND< 37.6 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6 ND< 37.6	Bromoform	ND< 37.6
Chloromethane 2-Chloroethyl vinyl Ether Chloroform ND< 37.6 Chloroform ND< 37.6 Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 Cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 37.6 Tetrachloroethene ND< 37.6 ND< 37.6 ND< 37.6	Carbon Tetrachloride	ND< 37.6
2-Chloroethyl vinyl Ether ND< 37.6 Chloroform ND< 37.6 Dibromochloromethane ND< 37.6 1,1-Dichloroethane ND< 37.6 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	Chloroethane	ND< 37.6
Chloroform ND< 37.6 Dibromochloromethane ND< 37.6 1,1-Dichloroethane ND< 37.6 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	Chloromethane	ND< 37.6
Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 index of trans-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6 ND< 37.6	2-Chloroethyl vinyl Ether	ND< 37.6
1,1-Dichloroethane ND< 37.6 1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	Chloroform	ND< 37.6
1,2-Dichloroethane ND< 37.6 1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	Dibromochloromethane	ND< 37.6
1,1-Dichloroethene ND< 37.6 cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	1,1-Dichloroethane	ND< 37.6
cis-1,2-Dichloroethene ND< 37.6 trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	1,2-Dichloroethane	ND< 37.6
trans-1,2-Dichloroethene ND< 37.6 1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	1,1-Dichloroethene	ND< 37.6
1,2-Dichloropropane ND< 37.6 cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	cis-1,2-Dichloroethene	ND< 37.6
cis-1,3-Dichloropropene ND< 37.6 trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	trans-1,2-Dichloroethene	ND< 37.6
trans-1,3-Dichloropropene ND< 37.6 Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	1,2-Dichloropropane	ND< 37.6
Methylene chloride ND< 94.1 1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	cis-1,3-Dichloropropene	ND< 37.6
1,1,2,2-Tetrachloroethane ND< 37.6 Tetrachloroethene ND< 37.6	trans-1,3-Dichloropropene	ND< 37.6
Tetrachloroethene ND< 37.6	Methylene chloride	ND< 94.1
	1,1,2,2-Tetrachloroethane	ND< 37.6
A A A Tribula as all and AID a 27.6	Tetrachloroethene	ND< 37.6
11,1,1-1 richioroethane	1,1,1-Trichloroethane	ND< 37.6
1,1,2-Trichloroethane ND< 37.6	1,1,2-Trichloroethane	ND< 37.6
Trichloroethene ND< 37.6	Trichloroethene	ND< 37.6
Trichlorofluoromethane ND< 37.6	Trichlorofluoromethane	ND< 37.6
Vinyl chloride ND< 37.6	Vinyl chloride	ND< 37.6

Aromatics	Results in ug / Kg
Benzene	ND< 37.6
Chlorobenzene	ND< 37.6
Ethylbenzene	69.9
Toluene	ND< 37.6
m,p-Xylene	67.6
o-Xylene	ND< 37.6
Styrene	ND< 37.6
1,2-Dichlorobenzene	ND< 37.6
1,3-Dichlorobenzene	ND< 37.6
1,4-Dichlorobenzene	ND< 37.6

Ketones	Results in ug / Kg
Acetone	ND< 188
2-Butanone	ND< 94.1
2-Hexanone	ND< 94.1
4-Methyl-2-pentanone	ND< 94.1

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 94.1
Vinyl acetate	ND< 94.1
•	

ELAP Number 10958

Method: EPA 8260B

Data File: 27952.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944V1.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Lab Project Number: 05-0944 Lab Sample Number: 4077

Client Job Number: Field Location:

205126

B-4 / S-3

N/A

Date Sampled:

03/18/2005

Field ID Number: Sample Type:

Soil

Date Received:

03/21/2005

Date Analyzed:

03/24/2005

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	206	1,2,4-Trimethylbenzene	2,290
sec-Butylbenzene	48.8	1,3,5-Trimethylbenzene	ND< 37.6
tert-Butylbenzene	ND< 37.6		
n-Propylbenzene	166	Miscellaneous	
Isopropylbenzene	82.6	Methyl tert-butyl Ether	ND< 37.6
p-Isopropyltoluene	66.0		
Naphthalene	3,630		Data File: 27052 D

ELAP Number 10958

Method: EPA 8260B

Data File: 27952.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944V1.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Client Job Number: Field Location:

205126

Field ID Number:

B-7 / S-3 N/A

Soil Sample Type:

Lab Project Number: 05-0944

Lab Sample Number: 4078

Date Sampled:

03/18/2005

Date Received:

03/21/2005

Date Analyzed:

03/24/2005

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 91.1
Bromomethane	ND< 91.1
Bromoform	ND< 91.1
Carbon Tetrachloride	ND< 91.1
Chloroethane	ND< 91.1
Chloromethane	ND< 91.1
2-Chloroethyl vinyl Ether	ND< 91.1
Chloroform	ND< 91.1
Dibromochloromethane	ND< 91.1
1.1-Dichloroethane	ND< 91.1
1,2-Dichloroethane	ND< 91.1
1,1-Dichloroethene	ND< 91.1
cis-1,2-Dichloroethene	1,250
trans-1,2-Dichloroethene	ND< 91.1
1,2-Dichloropropane	ND< 91.1
cis-1,3-Dichloropropene	ND< 91.1
trans-1,3-Dichloropropene	ND< 91.1
Methylene chloride	ND< 228
1,1,2,2-Tetrachloroethane	ND< 91.1
1 ' ' '	

Aromatics	Results in ug / Kg
Benzene	ND< 91.1
Chlorobenzene	ND< 91.1
Ethylbenzene	ND< 91.1
Toluene	ND< 91.1
m,p-Xylene	ND< 91.1
1 14 1	ND< 91.1
o-Xylene	ND< 91.1
Styrene	ND< 91.1
1,2-Dichlorobenzene	ND< 91.1
1,3-Dichlorobenzene	
1,4-Dichlorobenzene	ND< 91.1

Ketones	Results in ug / Kg
Acetone	ND< 456
2-Butanone	ND< 228
2-Hexanone	ND< 228
4-Methyl-2-pentanone	ND< 228

Miscellaneous	Results in ug / Kg
Carbon disulfide Vinyl acetate	ND< 228 ND< 228

ELAP Number 10958

Tetrachloroethene

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Method: EPA 8260B

138

3,120

ND< 91.1

ND< 91.1

ND< 91.1

ND< 91.1

Data File: 27953.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944V2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

205126

Client Job Number:

Field Location: Field ID Number: B-7 / S-3

Sample Type:

N/A Soil

Lab Project Number: 05-0944 Lab Sample Number: 4078

Date Sampled:

03/18/2005

Date Received:

03/21/2005

Date Analyzed:

03/24/2005

Results in ug / Kg	Aromatics	Results in ug / Kg
ND< 91.1	1,2,4-Trimethylbenzene	ND< 91.1
ND< 91.1	1,3,5-Trimethylbenzene	ND< 91.1
ND< 91.1		
ND< 91.1	Miscellaneous	
ND< 91.1	Methyl tert-butyl Ether	ND< 91.1
ND< 91.1		
ND< 228		Data File: 27953 D
	ND< 91.1 ND< 91.1 ND< 91.1 ND< 91.1 ND< 91.1 ND< 91.1	ND 91.1 1,2,4-Trimethylbenzene ND 91.1 1,3,5-Trimethylbenzene ND 91.1 Miscellaneous ND 91.1 Methyl tert-butyl Ether ND 91.1

ELAP Number 10958

Method: EPA 8260B

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944V2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Lab Project Number: 05-0944 Lab Sample Number: 4079

Client Job Number: Field Location:

205126 B-8 / S-2

Date Sampled:

03/18/2005

Field ID Number:

N/A

Date Received:

03/21/2005

Sample Type:

Soil

Date Analyzed:

03/24/2005

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 117
Bromomethane	ND< 117
Bromoform	ND< 117
Carbon Tetrachloride	ND< 117
Chloroethane	ND< 117
Chloromethane	ND< 117
2-Chloroethyl vinyl Ether	ND< 117
Chloroform	ND< 117
Dibromochloromethane	ND< 117
1,1-Dichloroethane	ND< 117
1,2-Dichloroethane	ND< 117
1,1-Dichloroethene	ND< 117
cis-1,2-Dichloroethene	ND< 117
trans-1,2-Dichloroethene	ND< 117
1,2-Dichloropropane	ND< 117
cis-1,3-Dichloropropene	ND< 117
trans-1,3-Dichloropropene	ND< 117
Methylene chloride	ND< 293
1,1,2,2-Tetrachloroethane	ND< 117
Tetrachloroethene	ND< 117
1,1,1-Trichloroethane	ND< 117
1,1,2-Trichloroethane	ND< 117
Trichloroethene	ND< 117
Trichlorofluoromethane	ND< 117
Vinyl chloride	ND< 117

Aromatics	Results in ug / Kg
Benzene	ND< 117
Chlorobenzene	ND< 117
Ethylbenzene	258
Toluene	ND< 117
m,p-Xylene	1,430
o-Xylene	ND< 117
Styrene	ND< 117
1,2-Dichlorobenzene	ND< 117
	ND< 117
1,3-Dichlorobenzene	ND< 117
1,4-Dichlorobenzene	ND (III

Ketones	Results in ug / Kg
Acetone	ND< 587
2-Butanone	ND< 293
2-Hexanone	ND< 293
4-Methyl-2-pentanone	ND< 293

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 293
Vinyl acetate	ND< 293

ELAP Number 10958

Method: EPA 8260B

Data File: 27941.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944V3.XLS

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

Field Location:

Sample Type:

Field ID Number:

690 Portland Ave

Rochester, NY

Lab Project Number: 05-0944 Lab Sample Number: 4079

Client Job Number:

205126

B-8 / S-2

N/A Soil Date Sampled:

03/18/2005

Date Received:

03/21/2005

Date Analyzed:

03/24/2005

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 117	1,2,4-Trimethylbenzene	ND< 117
sec-Butylbenzene	ND< 117	1,3,5-Trimethylbenzene	ND< 117
tert-Butylbenzene	ND< 117		
n-Propylbenzene	ND< 117	Miscellaneous	
Isopropylbenzene	ND< 117	Methyl tert-butyl Ether	ND< 117
p-Isopropyltoluene	ND< 117		
Naphthalene	ND< 293		

Data File: 27941.D Method: EPA 8260B ELAP Number 10958

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050944V3,XLS requirements upon receipt.

PARADIGM

CHAIN OF CUSTODY

ENVIRONMENTAL	MENTAL		HEROBINOS TENT				- INWOJOE TO:			
SERVICES, INC	, INC.	COMPANY:	ANY: LO Belly ASSOCIATES, P.		COMPANY:				LAB PROJECT#: CLIENT PROJECT#:	CLIENT PROJECT #:
179 Lake Avenue	!	ADDRES	L	SUITE DO 1	ADDRESS:		المرارة		05-0444	55 196
Rochester, NY 14608 (585) 647-2530 • (800) 724-1997	08 00) 724-1997	CITY	STATE:	179h/	CITY:	7	TY TY STATE:	:dIZ:	TURNAROUND TIME: (WORKING DAYS)	ig DAYS)
FAX: (585) 647-331	:	PHONE:	// <i>O</i>		PHONE:		FAX:			STD ОТНЕЯ
PROJECT NAME/SITE NAME:	AME:	ATTN:	MICHAEL PERCHAN		ATTN:				1 2 3	∑, }
Raynes nen 100	Ut	COMMENTS	ENTS:						THE ASSESSMENT OF THE PROPERTY	A CONTRACTOR AND A CONT
							STEED ANALISTS			
	002			≅ ∢	UOZ F	2.				***
DATE	TIME	∉ ∢	SAMPLE LOCATION/FIELD ID	. ⊢ <u>.</u> cc	¥ - ¥ 9	DYJ			REMARKS	PARADIGM LAB SAMPLE NUMBER
	n — ⊢ Ш			-×	шс Хшсо	773012 20763 111778				-
13/18/65	×		B-4/5-3	712	-	××		79	Syd, 879	1-1911
2 3/18/05	×		6-7/5-3	<u>8</u>	_	×		9	5 23, 82-1.	81401
	×		1,8	2017	-	メメ		14.	16, BGS	0101
4			-							
2										
9				1	,		7	معتنعن في بينعمول	-	
2				Man		A T	4	_		
8			je ye je			<i>)</i>				
6					_		-			
10										#
LAB USE ONLY BELOW THIS LINE	NILY BELO	WITHIS	S LINEX SECTION OF THE SECTION OF TH							
Sample Condition: Per NELAC/ELAP 210/241/242/243/244	1: Per NELAC/E	LAP 210/2	1/241/242/243/244							*f
Recei	Receipt Parameter		NELAC Compllance	•		0	,			
Comments:	Container Type:			WICHAEL Sampled By	7.	- YELYCHA'I	CHA! (Date/Time	Total Cost:	
	Preservation:			Mar	7	The state of the s	4	1/12/5	2.16.00	
Comments:				Helindulshed by) And	1		Date/IIme	Ş	

P.I.F.

Z

Holding Time:

Тепрегаture:

53

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave.

Rochester, NY

205126

Field Location: Field ID Number:

Client Job Number:

B-12/\$-4

Sample Type:

N/A Soil Lab Project Number: 05-1296

Lab Sample Number: 5738

Date Sampled:

04/07/2005

Date Received:

04/15/2005

Date Analyzed:

04/20/2005

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 123	1,2,4-Trimethylbenzene	ND< 123
sec-Butylbenzene	ND< 123	1,3,5-Trimethylbenzene	ND< 123
tert-Butylbenzene	ND< 123		
n-Propylbenzene	ND< 123	Miscellaneous	
Isopropylbenzene	ND< 123	Methyl tert-butyl Ether	ND< 123
p-Isopropyltoluene	ND< 123		'
Naphthalene	ND< 309		
ELAP Number 10958	Method	EPA 8260B	Data File: 28483.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Moogesteger/Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition
051296V1XLS requirements upon receipt.

Volatile Analysis Report for Solls/Sollds/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave.

Rochester, NY

Lab Project Number: 05-1296 Lab Sample Number: 5738

Client Job Number:

Field Location:

205126

Field ID Number: Sample Type:

B-12 / S-4 N/A

Soil

Date Sampled:

04/07/2005

Date Received: Date Analyzed: 04/15/2005 04/20/2005

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 123
Bromomethane	ND< 123

Bromomethane	ND< 123
Bromoform	ND< 123
Carbon Tetrachloride	ND< 123
Chloroethane	ND< 123
Chloromethane	ND< 123
2-Chloroethyl vinyl Ether	ND< 123
Chloroform	ND< 123
Dibromochloromethane	ND< 123

Dibromochloromethane 1,1-Dichloroethane ND< 123 ND< 123 1,2-Dichloroethane

ND< 123 1,1-Dichloroethene cis-1,2-Dichloroethene 984 ND< 123 trans-1,2-Dichloroethene ND< 123 1,2-Dichloropropane

cls-1,3-Dichloropropene ND< 123 trans-1,3-Dichloropropene ND< 123 Methylene chloride ND< 309 ND< 123 1.1.2.2-Tetrachloroethane Tetrachiomethene ND< 123 ND< 123 1,1,1-Trichloroethane

1,1,2-Trichloroethane Trichioroethene Trichlorofluoromethane Vinyl chloride

Aromatics	Results in ug / Kg
Benzene	ND< 123
Chlorobenzene	ND< 123
Ethylbenzene	ND< 123
Toluene	ND< 123
m,p-Xylene	ND< 123
o-Xylene	ND< 123
Styrene	ND< 123
1,2-Dichlorobenzene	ND< 123
1.3-Dichlorobenzene	ND< 123
1.4-Dichlorobenzene	ND< 123

Ketones	Results in up / Kg	
Acetone	ND< 617	
2-Butanone	ND< 309	
2-Нехапопе	ND< 309	
4-Methyl-2-pentanone	ND< 309	

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 309
/inyl acetate	ND< 309
•	

ELAP Number 10958

Method: EPA 8260B

ND< 123

ND< 123

ND< 123

1,340

Data File: 28483.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave.

Results in ug / Kg

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35 ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35 ND< 9.35

ND< 23.4

ND< 9.35

ND< 9.35

ND< 9.35

ND< 9.35 ND< 9.35

ND< 9.35

ND< 9.35

388

23.3

Rochester, NY

Client Job Number:

Field Location: Field ID Number: 205126 B-14 / S-2

Sample Type:

Bromodichloromethane

Carbon Tetrachioride

2-Chloroethyl vinyl Ether

Dibromochloromethane

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane cis-1,3-Dichloropropens

Methylene chloride

Tetrachloroethene

Trichloroethene

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachioroethane

Halocarbons

Bromomethane

Chloroethane

Chloroform

Chloromethane

Bromoform

N/A Soil Lab Project Number: 05-1296 Lab Sample Number: 5739

Date Sampled:

04/07/2005

Date Received: Date Analyzed:

04/15/2005 04/19/2005

ND< 9.35 ND< 9.35
ND< 9.35
ND< 9.35
21.1
ND< 9.35

Results in ug / Kg
ND< 46.7
ND< 23.4
ND< 23.4
ND< 23.4

Miscellaneous	Results in ug / Kg	
Carbon disuffide	ND< 23.4	
Vinyl acetate	ND< 23.4	
	l	
	Dela Fila: 28445 D	

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

Data File: 28445.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

echnical Director Bruce Hoogesteger:

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 051296V2.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave.

Rochester, NY

Lab Project Number: 05-1298

Lab Sample Number: 5739

Client Job Number: Field Location:

205126 B-14 / S-2

Date Sampled:

04/07/2005

Field ID Number:

N/A

Date Received:

04/15/2005

Sample Type:

Soil

Date Analyzed:

04/19/2005

Aromatics	Results In ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 9.35	1,2,4-Trimethylbenzene	ND< 9.35
sec-Butylbenzene	ND< 9.35	1,3,5-Trimethylbenzene	ND< 9.35
tert-Butylbenzene	ND< 9.35		•
n-Propylbenzene	ND< 9.35	Miscellaneous	
Isopropylbenzene	ND< 9.35	Methyl tert-butyl Ether	ND< 9.35
p-Isopropylloluene	ND< 9.35		

ELAP Number 10958

Naphthalene

Method: EPA 8260B

ND< 23.4

Data File: 28445.D

Comments: ND denotes Non Detect

ug / Kg = mlcrogram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipi.

CHAIN OF CUSTODY

OTHER <u>∞ 0</u> Paradiom Lab Sample Number 3 പ **305126** 3 or Single TURNAROUND THE: (WORKING DAYS) Total Cost: 15-1297 REMARKS 70/h1/.h Ä 4/2/65 STATE: ž MICHAEL F. PELYCHARY Hecebred @ Lab Bd \$40L5 + 72L809ZQ ADDRESS: HONE Š 7 1887 V Lax to Lußelly Asseryes, 770-755 Poly Chat Start SAMPLE LOCATION FIELD 10 Z Mease NELAC Compliance PARABUSE ON WHIELD WATHER INVESTMENT AUTHERS: 300 State Y-S SS Sample Condition: Per NEL AC/EL AP 210/241/242/243/244 2 6-14 B-13 @ K < 6 Container Type: **ENVIRONMENTAL** 18 To Toporature: Preservation: Holding Time: 179 Lake Avenus Rochester, NY 14508 (585) 647-2530 • (800) 724-1997 FAX: (585) 647-3311 Receipt Parameter PARADIGM 640 Pershams Ave SERVICES, INC. Rochoster, NY ¥ PROJECT NAME/SITE NAME: 1 4/1/65 DATE 2 4 40

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

Client Job Number:

205126

Field Location: Field ID Number: Sample Type:

MW-1 N/A

Water

Lab Project Number: 05-0974

Lab Sample Number: 4183

Date Sampled:

03/23/2005

Date Received: Date Analyzed: 03/23/2005 03/25/2005

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon Tetrachloride	ND< 2.00

ND< 2.00 Chloroethane Chloromethane ND< 2.00 2-Chloroethyl vinyl Ether ND< 2.00

Chloroform Dibromochloromethane

1,1-Dichloroethane 1,2-Dichloroethane

ND< 2,00 1,1-Dichloroethene ND< 2.00 cis-1.2-Dichloroethene ND< 2.00 ND< 2.00 trans-1,2-Dichloroethene 1,2-Dichloropropane

ND< 2.00 cis-1,3-Dichloropropene ND< 2.00 trans-1,3-Dichloropropene ND< 2.00 Methylene chloride ND< 5.00 1,1,2,2-Tetrachloroethane ND< 2.00

Tetrachloroethene ND< 2.00 1.1.1-Trichloroethane ND< 2.00 1,1,2-Trichloroethane ND< 2.00 Trichloroethene 19.7 Trichlorofluoromethane ND< 2.00

Vinvi chloride ELAP Number 10958

Aromatics	Results in ug / L	
Benzene	ND< 0.700	
Chiorobenzene	ND< 2.00	
Ethylbenzene	ND< 2.00	
Toluene	ND< 2.00	
m,p-Xylene	ND< 2.00	
o-Xylene	ND< 2.00	
Styrene	ND< 2,00	
1,2-Dichlorobenzane	ND< 2.00	
1,3-Dichlorobenzene	ND< 2.00	
1,4-Dichlorobenzene	ND< 2.00	

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
√inyl acetate	ND< 5.00
•	

Method: EPA 8260B Data File: 27976.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruca Hoogesteger: Pechnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition D50974V1.XL8 requirements upon receipt.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Lab Project Number: 05-0974

Client Job Number:

Rochester, NY 205126

Lab Sample Number: 4183

Field Location:

MW-1

Date Sampled:

03/23/2005

Field ID Number:

N/A

Date Received:

03/23/2005

Sample Type:

Water

Date Analyzed:

03/25/2005

Aromatics	Results in up / L.	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2,00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00	•	
Naphthalene	ND< 5.00		

ELAP Number 10958

Method: EPA 8260B

Data File: 27976.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050974~1.xis requirements upon receipt.

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Aye

Rochester, NY

Client Job Number:

205126

Field Location: Field ID Number: MW-2

Sample Type:

N/A Water

Lab Project Number: 05-0974

Lab Sample Number: 4184

Date Sampled:

03/23/2005

Date Received:

03/23/2005

Date Analyzed:

03/25/2005

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2,00

Ketones	Results in ug / L	
Acetone	ND< 10.0	
2-Butanone	ND< 5.00	
2-Hexanone	ND< 5.00	
4-Methyl-2-pentanone	ND< 5.00	

Results in ug / L
ND< 5.00
ND< 5.00

ELAP Number 10958

Melhod: EPA 8260B

Data File: 27977.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050974V2.XLS requirements upon receipt.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

890 Portland Ave

Rochester, NY

Client Job Number: Field Location:

205126 MW-2

N/A Water

Field ID Number: Sample Type:

Lab Project Number: 05-0974 Lab Sample Number: 4184

Date Sampled:

03/23/2005

Date Received:

03/23/2005

Date Analyzed:

03/25/2005

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-isopropyltoluene	ND< 2.00	-	
Naphthalene	ND< 5.00		

ELAP Number 10958

Method: EPA 8260B

Data File: 27977.D

Comments: ND denotes Non Delect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is pert of a multipage document and should only be availabled in its collecty. Chain of Custody provides additional information, including compliance with sample condition 050974V2.XIs requirements upon receipt.

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Client Job Number:

205126

Field Location: Field ID Number: MW-3

Sample Type:

N/A Water Lab Project Number: 05-0974

Lab Sample Number: 4185

Date Sampled:

03/23/2005

Date Received:

03/23/2005

Date Analyzed:

03/25/2005

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 20.0
Bromomethane	ND< 20.0
Bromoform	ND< 20.0
Carbon Tetrachlorida	ND< 20,0
Chloroethane	ND< 20.0
Chloromethane	ND< 20,0
2-Chloroethyl vinyl Ether	ND< 20.0
Chloroform	ND< 20.0
Dibromochloromethane	ND< 20.0
1,1-Dichloroethane	ND< 20.0
1,2-Dichloroethane	ND< 20.0
1,1-Dichloroethene	ND< 20.0
cls-1,2-Dichloroethene	78.9
trans-1,2-Dichloroethene	ND< 20.0
1,2-Dichloropropane	ND< 20,0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Methylene chloride	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	ND< 20.0
1,1,1-Trichlomethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichlomethene	45.8
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0

Aromatics	Results in ug / L
Benzene	ND< 7.00
Chlorobenzene	ND< 20.0
Ethylbenzene	ND< 20.0
Toluene	ND< 20.0
m,p-Xylene	ND< 20.0
o-Xylene	ND< 20.0
Styrene	ND< 20.0
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0

Ketones	Results in ug / L
Acetone	ND< 100
2-Butanone	ND< 50.0
2-Hexanone	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0

Miscelianeous	Results in ug / L
Carbon disulfide	ND< 50.0
Vinyl acetate	ND< 50.0

ELAP Number 10958

Method: EPA 8260B

Data File: 27978.D

Comments: ND denotes Non Delect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Lab Sample Number: 4185

Lab Project Number: 05-0974

Client Job Number:

205126

Date Sampled:

Field Location:

MW-3

Date Received:

03/23/2005 03/23/2005

Field ID Number:

N/A Water

Sample Type:

Date Analyzed:

03/25/2005

Aromatics	Results in ug / L	Aromatics	Results In ug / L
n-Butylbenzene	61.6	1,2,4-Trimethylbenzene	275
sec-Butylbenzene	ND< 20.0	1,3,5-Trimethylbenzene	ND< 20.0
tert-Butylbenzene	ND< 20.0	•	
n-Propylbenzene	27.8	Miscellaneous	
Isopropyibenzene	25.6	Methyl tert-butyl Ether	ND< 20.0
p-Isopropyltoluene	ND< 20.0	-	
Naphthalene	662		

ELAP Number 10958

Method; EPA 8260B

Data File: 27978.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

050974v3,xts requirements upon receipt.

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Client Job Number: Field Location:

205126 MW-4

Field ID Number: Sample Type:

N/A Water Lab Project Number: 05-0974

Lab Sample Number: 4186

Date Sampled:

03/23/2005 03/23/2005

Date Received:

03/25/2005

Date Analyzed:

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 20.0
Bromomethane	ND< 20.0
Bromoform	ND< 20.0
Carbon Tetrachloride	ND< 20.0
Chloroethane	ND< 20,0
Chloromethane	ND< 20.0
2-Chloroethyl vinyl Ether	ND< 20.0
Chloroform	ND< 20.0
Dibromochloromethane	ND< 20.0
1,1-Dichloroethane	ND< 20.0
1,2-Dichloroethane	ND< 20.0
1,1-Dichloroethene	ND< 20.0
cis-1,2-Dichloroethene	ND< 20.0
trans-1,2-Dichloroethene	ND< 20.0
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Methylene chloride	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	ND< 20.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichloroethene	ND< 20.0
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0

Aromatics	Results in ug / L
Benzene	ND< 7.00
Chlorobenzene	ND< 20.0
Ethylbenzene	966
Toluene	32.1
m,p-Xylene	3,520
o-Xylene	ND< 20.0
Styrene	152
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0

Ketones	Results in ug / L
Acetone	229
2-Butanone	ND< 50.0
2-Hexanone	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 50.0
Vinyl acetate	ND< 50.0
1	
Í	
,	
\$	

ELAP Number 10958

Method: EPA 8260B

Data File: 27997.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogestager, Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050974V4,XLS requirements upon receipt,

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Lab Project Number: 05-0974

Client Job Number:

Rochester, NY

Lab Sample Number: 4186

Field Location:

205126 MW-4

Date Sampled:

03/23/2005

Field ID Number: Sample Type:

N/A Water

Date Received:

03/23/2005

Date Analyzed:

03/25/2005

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 20.0	1,2,4-Trimethylbenzene	44.3
sec-Butylbenzene	ND< 20.0	1,3,5-Trimethylbenzene	30.6
tert-Butylbenzene	ND< 20.0	•	
n-Propylbenzene	ND< 20.0	Miscellaneous	
isopropyibenzene	27.9	Methyl tert-butyl Ether	ND< 20.0
p-isopropyltoluene	ND< 20.0	•	
Naphthalene	ND< 50.0		

ELAP Number 10958

Method: EPA 8260B

Data File: 27997.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a mullipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 050974V4XLS requirements upon receipt.

Semi -Volatile STARS Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Cilent Job Site:

690 Portland Ave

Rochester, NY

Client Job Number: 205126 Field Location:

Field ID Number: Sample Type:

мw-з

N/A Water Lab Project Number: 05-0974

Lab Sample Number: 4185

Date Sampled:

03/23/2005

Date Received: Date Analyzed:

03/23/2005

03/29/2005

Base / Neutrals		Results in ug / L	=
Acenaphthene		29.7	
Acenaphthylene	1	ND< 10.0	
Anthracene		23.6	
Benzo (a) anthra	acene	ND< 10.0	
Benzo (a) pyren		ND< 10.0	
Benzo (b) fluora		ND< 10.0	
Benzo (g,h,i) per	rylene	ND< 10,0	
Benzo (k) fluora	nthene	ND< 10.0	
Chrysene		13.0	
Dibenz (a,h) anti	hracene	ND< 10.0	ı
Fluoranthene		ND< 10.0	- (
Fluorene		24.7	
Indeno (1,2,3-cd) pyrene	ND< 10.0	ı
Naphthalene		65.6	- 1
Phenanthrene		133	- 1
Pyrene		25.4	-
ELAP Number 10958	Method: EPA 8270C	Data File: 23757	ቨ.

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 050974S1.XLS

Semi -Volatile STARS Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Ave

Rochester, NY

Lab Project Number: 05-0974 Lab Sample Number: 4186

Client Job Number: Field Location:

205126 MW-4

Date Sampled:

03/23/2005

Fleid ID Number: Sample Type: MW-4 N/A Water

Date Received:

03/23/2005

Date Analyzed:

03/29/2005

Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0
Acenaphthylene	ND< 10.0
Anthracene	ND< 10.0
Benzo (a) anthracene	ND< 10.0
Benzo (a) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0
Benzo (g,h,l) perylene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0
Chrysene	ND< 10.0
Dibenz (a,h) anthracene	ND< 10.0
Fluoranthene	ND< 10.0
Fluorene	ND< 10,0
Indeno (1,2,3-cd) pyrene	ND< 10.0
Naphthalene	ND< 10.0
Phenanthrene	ND< 10.0
Pyrene	ND< 10.0

ELAP Number 10958

Method: EPA 8270C

Data File: 23758.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Gustody provides additional information, including compliance with sample condition requirements upon receipt.

D508T452.XLS

PARADIGM

CHAIN OF CUSTODY

ENVIROR	ENVIRONMENTAL		THE PROPERTY OF THE PROPERTY O					OFFICE				
SERVICES, INC.	ES, INC.	COMI	tes,	P.C.	COMPAN	J.					5	ENT PROJECT A:
179 Lake Avenu	6	ADDA	ADDRESS 500 State Street, Suite 20	1901	ADDRESS	35	0	W] 		5-02.17	205196
(585) 647-2530	Hochester, NY 14608 (585) 647-2530 • (800) 724-1997 (585) 647-2530 • (800) 724-1997	CILL	/	4634	cıry:		SFIT	-STATE		ZIP:	TURNARGUND TIME: [WORKING DAYS]	NG DAYS)
FAX: (363) 047.	= 3	P.F.O.	PHONE: 85- 454-6110		PHONE			FAXE				STD ОТНЕЯ
PROJECT NAMESTE NAME:	TANO AVE	ATTA _	ATTH: MICHAREL PERYOUTY		ATTN:							
Routes 1	Routes Per, NY.	CO#(COMILENTS:			<u>ک</u>						
							ESTER	TVALY(SI				
DATE	TAME	0 E € 0 0	G R R SAMPLE LOCATIONFIELD 10	# « H E ·	202E	27442 27442					ЯЕМАНХЅ	PARADIGM LAB SAMPLE NUMBER
-	· •	<u> </u>	d	- ×	2. 年 2. 元 2. 元	90CB						
1 3/22/05			1-MM	Wa TE	6	X						SI 81 11 1813
22/28/22			MM-3	mores	K 12	X						18 I h
33/26/68	,		MW-3	rafter	7	XX,						185
20/18/02			MW-4	marker	~	ΙXΙΧ						28 I T
5					_							
9					_		N					
7				20	7	V	6	N	Ø			
8)		9	<u> </u>				
6												1
10												1
MEAE USE	KOININABER	N TH	TEMBOUS CONTRIBUTION OF THE STATE OF THE STA									
Sample Condit	Ilon: Per NELAC	ELAP 21	Sample Condition: Per NELAC/ELAP 210/241/242/243/244									
	neeling Darameter	-	MEI AC Compliance		ı	(`		

			· .						
			Total Cost				P.I.F.		
	\	3/22/05	Dete/Time,	0/9/ Soka/5	Date/Filme	3/23/05 100	Date/Time	1/05	, Date/Time
		VICHAEL F. YETHERFY	A C C C Rampled By	Mulm 1. 1 Solve	elinquished By	Ame o Cabie	1 111 1 0 1 H Day of	Helled walall 310	aceived @ Lab By
1157647454	NELAC Compilance				<u> </u>]:		
THE PROPERTY OF THE PROPERTY O	Receipt Parameter	Confeiner Type:		VENT Preservation:	27 201	Holding Time:		Temperature:	O
י פולווושני		<u> </u>	Camments:		Conments		Comments:		Comments:

Phase II Environmental Site Assessment Supplemental Site Characterization

Location:

Former JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

Prepared for:

JML Optical Industries, Inc. 820 Linden Avenue Rochester, New York 14625-2710

LaBella Project No. 206331

June 2006

Phase II Environmental Site Assessment Supplemental Site Characterization

Location:

Former JML Optical, Inc. 690 Portland Avenue Rochester, New York 14621

Prepared for:

JML Optical Industries, Inc. 820 Linden Avenue Rochester, New York 14625-2710

LaBella Project No. 206331

June 2006

Table of Contents

		Page
1.0	Background and Previous Investigations	1
2.0	Objective	2
3.0	Scope of Work	2
4.0	Soil Boring Investigation and Observations 4.1 Methodology 4.2 Soil Boring and Groundwater Monitoring Well Study 4.3 Groundwater Sampling 4.4 Field Survey	5 5 7
5.0	Analytical Results	
6.0	Site Geology	12
7.0	Discussion and Conclusions	12

Figures Appendices

1.0 Background and Previous Investigations

LaBella Associates, P.C. ("LaBella") was retained to conduct a Phase II Environmental Site Assessment (ESA): Supplemental Site Characterization (SSC) at the property known as JML Optical, Inc. ("JML") located at 690 Portland Avenue and 76 Fernwood Avenue in the City of Rochester, Monroe County, New York, hereinafter referred to as the "Site" (see Figure 1).

Site Background:

The Site has a long history of optical related manufacturing. ILEX Optical built and occupied the original portion of the building from approximately 1930 to 1979. In December 1979, 690 Portland Avenue Company purchased the property and JML Optical operated at the Site until November 2005. The Site has remained vacant and owned by 690 Portland Avenue Company since November 2005.

ILEX Optical and JML Optical reportedly utilized several chemicals such as trichloroethylene (TCE), acetone, and isopropyl alcohol (IPA) associated with the manufacturing of optical lenses. Figure 2 depicts JML's manufacturing layout, including designated chemical storage areas.

An approximate 5,000-gallon fuel oil underground storage tank (UST) was removed from the Site in 1999. At the time of the UST removal, impacted soil was encountered and a sheen was observed on the groundwater. As a result of this contamination, the spill was reported to the New York State Department of Environmental Conservation (NYSDEC), and Spill #9870600 was assigned to this release.

Phase II ESA: Preliminary Site Characterization (June 2005):

JML retained LaBella to conduct a Phase II ESA: Preliminary Site Characterization (PSC) in March and April 2005. This work included advancing twenty two soil borings (designated B-1 through B-22) and converting six (6) of these borings into groundwater monitoring wells (designated MW-1 through MW-6). In addition soil and groundwater samples were collected and analyzed for constituents of concern. The Phase II ESA: PSC report dated June 2005 concluded the following areas of impairment exist at the Site:

- The adjacent off-site NYSDEC Inactive Hazardous Waste Disposal Site (IHWDS) (Site #828106) located at 42 Fernwood Avenue (Preferred Electric Motors facility) contained chlorinated solvent related compounds that appear to have migrated through the groundwater and onto at least the southern portion of the Site.
- The adjacent off-site Brownfield Cleanup Program (BCP) site (#C828119) located to the east at 100 Fernwood Avenue (Former Vogt Manufacturing) has petroleum related compounds that appear to have migrated through the soil and groundwater and onto the Site. [Note: Although petroleum related compounds appear to be the 'main' contaminant at the BCP site to the East, chlorinated solvents were also indicated on the fact sheet provided on the NYSDEC web site.]
- Petroleum related compounds remain in the soil and groundwater in the vicinity of the former 5,000-gallon fuel oil UST pit at the Site.
- Solvent related compounds have been released into the soil and groundwater from historical use of chlorinated solvents at the Site. The source of the impairment appears to be the sump located adjacent to the maintenance shop.

Phase I Environmental Site Assessment (February 2006):

LaBella Associates conducted a Phase I Environmental Site Assessment (ESA) in accordance with American Society for Testing and Materials (ASTM) Standard Practice E1527-00 in February 2006. The Phase I ESA identified the above issues as RECs and also identified chemical degreasing and storage areas as additional RECs at the Site.

A brief description of these additional RECs as identified by the Phase I ESA is provided below;

- Staining/areas of unusual corrosion/stained vegetation were observed inside of the chemical storage room. The Phase I ESA concluded that based on the fact that a stained surface was observed where chemicals were reportedly stored represented a REC with regard for the potential of fugitive discharges of chemicals to impact the soil and/or groundwater at the Site.
- The former presence of TCE degreasers located in the newer portions of the site buildings that were associated with JML's manufacturing activities conducted at the Site. Although there are no reported releases or spills associated with the degreasing operations and there were no visual indication that a release had occurred at the time of the Phase I ESA site visit, the Phase I ESA concluded that the former presence of TCE degreasing operations represented a REC with regard for the potential of fugitive discharges of chemicals to impact the soil and/or groundwater at the Site.
- A sump is located at the Site next to the former maintenance shop. LaBella's Phase II ESA (June 2005) investigated the subsurface environmental conditions in the vicinity of this sump and found soil impacted with chlorinated solvents. Based on the results of the June 2005 Phase II ESA additional characterization was recommended.

Note: The sump is located in one of the original structures constructed at the Site and was utilized by ILEX Optical. Operations completed JML during their tenure at the Site reportedly did not contribute wastewater to this system.

The Phase II ESA: SSC was designed to address the RECs identified in the Phase I ESA and to further characterize any impacted areas identified during the implementation of the Preliminary Site Characterization (June 2005). The results of the Phase II ESA: SSC are discussed below.

2.0 Objective

The objective of this project was to further delineate the areas of RECs identified in the previous Phase II ESA and the Phase I ESA prepared for the Site.

3.0 Scope of Work

The following Scope of Work was undertaken for the project:

1. An Underground Facilities Protection Organization (UFPO) stakeout was conducted at the Site, to locate any subsurface utilities in the areas where the subsurface assessment and delineation had taken place.

- 2. LaBella retained the services of a specialized contractor to implement a direct push "geo-probe" soil boring and sampling program at the Site. Fourteen test borings (designated B-23 through B-36) were advanced over two days at the Site. The borings were advanced to further evaluate select RECs. The specific RECs evaluated and the borings advanced in those areas are as follows:
 - NYSDEC IHWDS additional test borings were not advanced to further evaluate
 this REC since the Phase II ESA: PSC only identified low-level impacts from the
 IHWDS along the southern portion of the Site (i.e. worst case locations) and the
 NYSDEC is in the process of evaluating the IHWDS.
 - BCP site to the East soil borings B-32 and B-36 were advanced to specifically evaluate the BCP site to the East; however, soil borings B-27, B-28, and B-29 were also advanced within approximately 20-feet of the eastern property line.
 - Former 5,000-gallon UST additional soil borings were not advanced to further evaluate the former UST since this area was generally delineated in the previous Phase II ESA: PSC.
 - Sump adjacent to Maintenance Shop soil borings B-23, B-29, B-30, B-31 and B-33 were advanced to further evaluate the TCE impacts to soil and groundwater in the area of the sump.
 - <u>TCE Degreasing Areas</u> soil borings B-24, B-25, and B-26 were advanced in proximity to former TCE degreasing areas.
 - <u>Chemical Storage Room</u> soil borings B-27, B-28, and B-35 were advanced in the area of the former chemical storage room.
 - Recycled Chemical Storage Area soil boring B-34 was advanced in the former waste and recycled chemical storage area.
- 3. Soils from the borings were continuously assessed for visible impairment, olfactory indications of impairment, and/or indication of detectable volatile organic compounds (VOCs) on a Photo-Ionization Detector total VOC meter. Positive indications from any of these screening methods were collectively referred to as "evidence of impairment." Evidence of impairment gathered at the time of the fieldwork was used to determine the location for soil samples and was also used to roughly determine the vertical and horizontal extent of impairment at the Site.
- 4. Soil samples were collected from the borings based on evidence of impairment. Nine (9) soil samples were retained from the borings for laboratory analysis. Samples were analyzed for analytical parameters based on the location collected and the suspect constituents of concern. Sample locations were determined at the time of the fieldwork and were based on evidence of impairment. Soil samples were analyzed for one of the following analyses:
 - Petroleum and chemical related VOCs by United States Environmental Protection Agency (USEPA) Method 8260B Target Compound List (TCL) plus NYSDEC Spill Technology and Remediation Series (STARS) Compounds,
 - Petroleum related VOCs by USEPA Method 8260 NYSDEC STARS Compounds,

- Petroleum related Semi-VOCs (SVOCs) by USEPA Method 8270C NYSDEC STARS Compounds only, and
- Eight (8) Resource Conservation and Recovery Act (RCRA) Metals by USEPA Methods SW846 6010 and SW846 7470 (totals).
- 5. Seven (7) temporary shallow-overburden groundwater monitoring wells were installed at the Site. The wells were located based on evidence of impairment and local hydro-geological conditions observed during the investigation. The general locations that were selected provided the highest probability of capturing fugitive emissions from the RECs discussed above and to further delineate known areas of groundwater impairment. Specifically, the following borings were converted into groundwater monitoring wells in proximity to the following RECs:
 - BCP site to the East monitoring well MW-11 (B-32). In addition, although not specifically installed for evaluating the Site to the east, monitoring wells MW-9 (B-27) and MW-10 (B-29) are within approximately 20-feet of the eastern property line.
 - Sump adjacent to Maintenance Shop monitoring wells MW-10 (B-29) and MW-12 (B-33).
 - TCE Degreasing Areas monitoring wells MW-7 (B-25) and MW-8 (B-26).
 - Chemical Storage Room monitoring well MW-9 (B-27).
 - Recycled Chemical Storage Area monitoring well MW-13 (B-34).
- 6. Eleven (11) groundwater samples were collected and submitted for laboratory analysis based on the scope of work and objectives of the project. Seven (7) of the groundwater samples were collected from the seven (7) new monitoring wells and the other four (4) groundwater samples were collected from wells MW-3, MW-4, MW-5, and MW-6 installed during the previous Phase II ESA; PSC conducted at the Site. Groundwater samples were analyzed for one or more of the following analyses:
 - Petroleum and chemical related VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds,
 - Petroleum related VOCs by USEPA Method 8260 NYSDEC STARS Compounds, and
 - Petroleum related SVOCs by USEPA Method 8270C NYSDEC STARS Compounds only.
- 7. A LaBella survey crew elevated the groundwater monitoring wells. This survey data was utilized with the survey data collected during the previous Phase II ESA; PSC, to calculate groundwater flow direction for the Site.
- 8. Groundwater and soil samples were sent under Chain of Custody procedures to a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory.

4.0 Soil Boring Investigation and Observations

4.1 Methodology

Borings were advanced with a "geoprobe" direct push sampling system. The use of direct push technology allows for rapid sampling, observation, and characterization of relatively shallow overburden soils. The geoprobe utilizes a 4-foot macro-core sampler with disposable polyethylene sleeves. Soil cores are retrieved in 4-foot sections and can be easily cut from the polyethylene sleeves for observation and sampling. The macro-core sampler was decontaminated between samples and borings using an alconox and water solution.

Seven (7) temporary shallow-overburden groundwater-monitoring wells were installed at the Site. Each groundwater monitoring well utilized 1-inch well screen. The groundwater-monitoring wells were set between depths of 9.14 to 11.70-feet Below the Ground Surface (BGS), with 5-feet of 0.010-inch slotted PVC screen connected to an appropriate length of PVC riser to complete the well installation. The wells were sand packed to 2-feet above the top of the well screen and bentonite sealed to the ground surface.

Prior to sampling, each well was purged by bailing at least three (3) well volumes or until the well was purged dry. In addition, field parameters such as temperature, conductivity, and dissolved oxygen were recorded at the time of sampling with a Horiba U22 water quality meter.

Samples were collected in laboratory supplied sample jars and vials. All samples were placed in coolers with chemical ice packs and transported under chain of custody procedures to NYSDOH ELAP approved laboratory for analysis.

4.2 Soil Boring and Groundwater Monitoring Well Study

On February 1 and 3, 2006, fourteen (14) borings (designated B-23 through B-36) were advanced at the Site. Seven (7) of the borings were converted into groundwater monitoring wells (designated MW-7 through MW-13). The approximate soil boring and monitoring well locations are shown on Figures 3 and 4 respectively. The borings were advanced to a depth between 7.9 and 12.5-feet BGS. All soil cores were continuously assessed by a LaBella Environmental Geologist for soil type and evidence of impairment. Table 1 below details PID readings collected from the soil borings at the time of the fieldwork and the specific soil samples tested.

TABLE 1 - Soil Boring PID Readings

0-11			Approxi	nate Dep	th		Approximate	
Soil Boring I.D.	0'-2'	2'-4'	4'-6'	6'-8'	8'-10'	10'-12'	Depth of Sample Analyzed	Analytical Method
B-23	0.0	0.0	0.2	0.3	0.3	0.3	4'-8'	8260B TCL
B-24	0.0	0.0	0.7	0.2	0.0	0.0	6'-8'	8260B TCL
B-25	1.0	5.0	15.3	12.9	3.0	2.8	4'-6'	8260B TCL
B-26	0.7	0.2	0.2	0.1	0.1	0.1	NA	NA
(B-27)	0.0	1.2	31.2	50.9	15.0	14.8	6'-8'	8260B TCL STARS, 8270C, 8 RCRA
B-28	0.0	0.0	0.0	0.0			NA	NA
B-28 B-29	0.9	0.9	1.1	1.2	1.2	1.1	6'-8'	8260B TCL
B-29 B-30	0.5	0.7	0.7	0.8	0.5	0.5	6'-8'	8260B TCL
B-30 B-31	0.1	0.2	0.3	0.2	0.2	0.2	4'-8'	8260B TCL STARS
B-31	0.2	0.0	0.0	0.0	0.0	0.0	NA	NA
	0.0	0.0	1.7	4.9	1.4	0.0	4'-8'	8260B TCL
B-33		0.0	0.0	0.0	0.0	0.0	NA	NA
B-34	0.0		1.2	0.3	0.0	0.0	4'-8'	8260B TCL STARS
B-35 B-36	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA

Note:

- (1) All PID readings were collected utilizing a Minirae 2000 photoionization detector and are representative of total ppm VOCs
- (2) 8260B TCL denotes sample analyzed for VOCs by USEPA Method 8260B TCL
- (3) 8260B TCL STARS denotes sample analyzed for VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds
- (4) 8270C denotes sample analyzed for SVOCs by USEPA Method 8270C NYSDEC STARS Compounds only
- (5) 8 RCRA denoted sample analyzed for the 8 RCRA Metals by USEPA Methods SW846 6010 and SW846 7471
- (6) --- denotes soil sample not collected
- (7) NA denotes Not Applicable

As noted in Table 1 above, PID readings greater than background were noted in ten (10) of the fourteen (14) borings advanced at the Site. Copies of the soil boring and well completion logs are included in Appendix 1. Evidence of impairment for each of the areas where soil borings were advanced is described below:

- BCP site to the East soil borings B-28, B-32 and B-36 did not detect evidence of impairment. Soil boring B-29 detected PID readings above background; however, the peak PID reading was 1.2 parts per million (ppm) and no odors or staining were noted.
- Sump adjacent to Maintenance Shop slight evidence of impairment (including peak PID readings between 0.3 and 4.9 ppm) was detected in soil borings B-23, B-29, B-30, B-31 and B-33; however, odors were not noted from the soil samples collected from these soil borings.
- TCE Degreasing Areas soil borings B-24 and B-26 detected PID readings above background (peak readings of 0.7 ppm); however, odors were not noted from the soil samples collected. Soil boring B-25 detected evidence of impairment consisting of PID readings up to 15.3 ppm.
- Chemical Storage Room evidence of impairment (including elevated PID readings, petroleum and chemical odors, and black staining) was noted in soil boring B-27; however, elevated PID readings were not noted until approximately 4-ft. in depth. Soil boring B-35 detected slightly elevated PID readings (peak of 1.2 ppm); however, odors and staining were not observed. Soil boring B-28 did not detect evidence of impairment.

 Recycled Chemical Storage Area – evidence of impairment was not noted in soil boring B-34.

4.3 Groundwater Sampling

On February 8, 2006 ten (10) groundwater monitoring wells were purged and sampled at the Site. Prior to sampling and purging of the wells static water levels were collected from monitoring wells MW-1 through MW-13.

At least three (3) well volumes were purged prior to sampling or until the well was purged dry. During well development field measurements of indicator parameters such as temperature, pH, specific conductance, dissolved oxygen, turbidity, and Redox potential were collected with a Horiba U-22 water quality meter. Copies of the well sampling logs are included in Appendix 1.

4.4 Field Survey

On February 22, 2006 a LaBella survey crew elevated overburden groundwater monitoring wells MW-4 through MW-13. Each well elevation was recorded to a site specific elevation. Exterior groundwater monitoring well locations were recorded with a Trimble GeoExplorer Global Positioning System (GPS). A copy of the each well elevation and corresponding site-specific water levels are included in Appendix 1.

5.0 Analytical Results

Nine (9) soil and eleven (11) groundwater samples were sent under Chain of Custody procedures to a NYSDOH ELAP certified laboratory. Soil and groundwater samples were submitted for one or more of the following analyses:

- Petroleum and chemical related VOCs by USEPA Method 8260B TCL plus NYSDEC STARS Compounds,
- Petroleum related VOCs by USEPA Method 8260 NYSDEC STARS Compounds,
- SVOCs by USEPA Method 8270 NYSDEC STARS Compounds only, and
- Eight (8) RCRA Metals by USEPA Methods SW846 6010 and SW846 7470 (totals).

Table 2 below summarizes soil and groundwater samples submitted to the laboratory for their respective analyses.

TABLE 2
Analytical Sample Summary Table

	T				Ana	lyses	
Sample Location	Sample Date	Sample Depth (Feet)	Sample Matrix	USEPA Method 8260B TCL	USEPA Method 8260B TCL plus NYSDEC STARS Compounds	USEPA Method 8270C NYSDEC STARS Compounds only	USEPA Methods SW846 3010 and SW846 7471 Eight RCRA Metals (totals)
B-23	02/01/2006	4-8	Soil	X	<u> </u>		
B-24	02/01/2006	6-8	Soil	X			
B-25	02/01/2006	4-6	Soil	X			
B-27	02/01/2006	6-8	Soil		X	X	X
B-29	02/01/2006	6-8	Soil	X	ļ		
B-30	02/01/2006	6-8	Soil	X			
B-31	02/01/2006	4-8	Soil		X		
B-33	02/03/2006	4-8	Soil	X			
B-35	02/03/2006	4-8	Soil		X		
MW-3	02/08/2006	NA	Water		X	X	
MW-4	02/08/2006	NA	Water		X		
MW-5	02/08/2006	NA	Water		X		
MW-6	02/08/2006	NA	Water		X		
MW-7	02/08/2006	NA	Water	X		ļ	
MW-8	02/08/2006	NA	Water	X		ļ	
MW-9	02/08/2006	NA	Water		X	X	
MW-10	02/08/2006	NA	Water		X	ļ	
MW-11	02/08/2006	NA	Water		X		
MW-12	02/08/2006	NA	Water		X	X	
MW-13	02/08/2006	NA	Water		X	X	L

Note:

- (1) USEPA denotes United States Environmental Protection Agency
- (2) TCL denotes Target Compound list
- (3) NYSDEC denotes New York State Department of Environmental Conservation
- (4) STARS denotes Spill Technology and Remediation Series
- (5) RCRA denotes Resource Conservation and Recovery Act
- (6) NA denotes Not Applicable

A copy of the laboratory analytical reports for the soil and groundwater samples are included in Appendix 2.

5.1 Soil Results

The analytical results from the soil samples analyzed for VOCs and SVOCs were compared to the NYSDEC Technical Administrative and Guidance Manual (TAGM) 4046 Soil Cleanup Objective to Protect Groundwater Quality. The laboratory detected VOCs and SVOCs are summarized in Table 3.

Detected Volatile and Semi-Volatile Organic Compounds in Soil All Results Expressed in micrograms per Kilogram ($\mu g/Kg$) Samples Collected on February 1 and 3, 2006 TABLE 3

Parameter	B-23 / S-2, 4'-8' BGS	B-24 / S-3, 6'-8' BGS	B-25 / S-2, 4'-6' BGS	B-27 / S-3, 6'-8' BGS	B-29 / S-3, 6'-8' BGS	B-30 / S-3, 6'-8' BGS	B-31 / S-2, 4'-8' BGS	B-33 / S-2, 4'-8' BGS	B-35 / S-2, 4'-8' BGS	NYSDEC TAGM 4046 Soil Cleanup
Area of Concern	Sump	TCE Degreaser	TCE Degreaser	Chemical Storage Room	Sump/BCP Site to the East	Sump	Sump	Sump	Chemical Storage Room	Objective to Protect Groundwater Quality
Volatile Organic Compounds	spunds									
cis 1.3 Dichloroethene	72 72 UN	ND<6 31	#	ND<62.1	ND<10.3	ND<10.3	44.1	20.8	ND<7.91	10,000*
Trichloroethene	1	169	8.420	ND<62.1	ND<10.3	ND<10.3	212	22.5	ND<7.91	700
Michael	67:7	ì		2.450	1	1	ND<26.6	1	ND<19.8	13,000
Naphthalene				2,22						
Semi-Volatile Organic Compounds	Compounds			į						
Dhonanthrone			;	535	1	}	!	}	1	50,000
I ilciiantii ciic										

All results are shown in microgram per Kilogram (µg/Kg) which is approximately equivalent to parts per billion (ppb).
 ND denotes Non Detect.
 --- denoted sample not analyzed for associated parameter.
 BOLD denotes compound detected over the NYSDEC TAGM 4046 Recommended Soil Cleanup Objective to Protect Groundwater Quality.
 BGS denotes Below the Ground Surface
 Per NYSDEC TAGM 4046, the sum of individual Volatile Organic Compounds may not exceed 10,000 ppb

Notes:

Phase II Environmental Site Assessment Supplemental Site Characterization Former JML Optical, Inc., 690 Portland Avenue LaBella Project No. 206331

As indicated in Table 3 above, VOCs were detected above the reported laboratory detection limits in six (6) of the nine (9) soil samples analyzed for VOCs. Chlorinated VOCs (TCE and 1,2-dichloroethene [1,2-DCE]) were detected at concentrations above the reported laboratory detection limits in five (5) of the six (6) samples; however, only TCE was detected in soil sample B-25 (4'-6' BGS) at a concentration above the NYSDEC TAGM 4046 Recommended Soil Cleanup Objective (RSCO).

SVOCs were not detected at concentrations above the reported laboratory detection limits in the soil sample analyzed, with the exception of phenanthrene in soil boring B-27 (6'-8' BGS); however, the detected concentration is below the NYSDEC TAGM RSCO.

The analytical results from the soil sample analyzed for Eight (8) RCRA Metals (B-27, 6'-8') were compared to the NYSDEC TAGM 4046 RSCO and Eastern USA Background levels, and are summarized in Table 4.

TABLE 4 Eight RCRA Metals (totals) Sample Collected on February 1, 2006 All Results Expressed in milligrams per Kilogram (mg/Kg)

Parameter	B-27 / S-3, 6'-8' BGS	NYSDEC TAGM 4046 Recommended Soil Cleanup Objective	Eastern USA Background
Arsenic	5.01	7.5 or SB	3 to 12*
Barium	31.7	300 or SB	15 to 600
Cadmium	<0.503	1 or SB	0.1 to 1
Chromium	6.36	10 or SB	1.5 to 10*
Lead	9.51	SB**	200 to 500**
Mercury	<0.0189	0.1	0.001 to 0.2
Selenium	<0.503	2 or SB	0.1 to 3.9
Silver	<1.00	SB	Not Available

Notes:

- (1) All results shown in milligrams per Kilogram which is approximately equivalent to parts per million (ppm)
- (2) *New York State Background
- (3) ** Per NYSDEC TAGM 4046 average background levels in metropolitan or suburban areas or near highways is 200 to 500 ppm
- (4) BGS denoted Below the Ground Surface
- (5) SB denotes Site Background

As indicated in Table 4 above, the sample analyzed from soil boring B-27 did not detect RCRA metals at concentrations above the NYSDEC TAGM 4046 RSCO or Eastern USA Background levels.

5.2 **Groundwater Results**

The analytical results for the groundwater samples were compared to the New York State (NYS) Part 703 groundwater standards that are published in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998. The groundwater results are summarized in Table 5.

Detected Volatile and Semi-Volatile Organic Compounds in Groundwater All Results Expressed in micrograms per Liter $(\mu g/L)$ Samples Collected on February 8, 2006 TABLE 5

Parameter	MW-3	MW-4	MW-5	9-MW	MW-7	WW-8	6-MM	MW-10	MW-11	MW-12	MW-13	New York
Area of Concern	Former	BCP Site to the East	Sump	North Property Line	TCE Degreaser	TCE Degreaser	Chemical Storage/BCP Site to the East	BCP Site to the East	BCP Site to the East	Sump	Waste Chemical Storage Area	State Part 703 Groundwater Standard
Volatila Organic Compands	٤			((((
cis-1 2-Dichloroethene	(8.3)	ND<4.00	(30.200)	(1.7.1)	(250)	(20.2)	ND<20.0	(45.5)	ND<2.00	(146)	(38.9)	5
trans-1 2-Dichloroethene	NPS 00	丄	ND<400	ND<2.00	ND220.0	(6.00)	ND<20.0	ND<2.00	ND<2.00	ND<2.00	ND22:00	5
Tetrachloroethene	ND-S 00		ND<400	ND<2.00	ND<20.0	ND<2,00	ND<20.0	2.09	ND<2.00	ND<2.00	ND-2.00	5
Trichloroethene	302	ND<4.00	5.280	ND-2.00	(131)	(118	ND<20.0	(17.9)	4.09	(70.1)	110	5
Vinyl chloride	8.46	ND<4.00	574	(11.2)	ND<20.0	ND<2.00	ND<20.0	ND<2.00	ND<2.00	(62.5)	6.02	2
Ethylbenzene	ND<2.00	(361)	ND<400	ND<2.00	ND<20.0	ND<2.00	ND-20.0	ND<2.00	ND<2.00	ND<2.00	ND-2.00	5
m n-Xvlene	ND<2.00	574	ND<400	ND<2.00	ND<20.0	ND<2.00	243)	ND<2.00	ND<2.00	ND<2.00	(23.5)	5
o-Xvlene	ND<2.00	ND<4.00	ND<400	ND<2.00	ND<20.0	ND<2.00	(23.4)	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
n-Butylbenzene	(10.2)	ND<4.00	ND<400	ND<2.00	1		ND<20.0	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
sec-Butvlhenzene	227	ND<4.00	ND<400	ND<2.00	i	-	ND<20.0	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
n-Pronvlhenzene	530	ND<4.00	ND<400	ND<2.00	1	1	ND<20.0	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
Isomonylhenzene	1	ND<4.00	ND<400	ND<2.00		1	ND-20.0	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
Naphthalene	ND<5.00	-	ND<1,000	ND<2.00			2040	ND<5.00	ND<5.00	ND<5.00	ND<5.00	10
1.2.4-Trimethylbenzene	ND<2.00	(13.1)	ND<400	ND<2.00		1	₹61 5	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
1.3.5-Trimethylbenzene	ND<2.00	9.16°	ND<400	ND<2.00		-	(48.3)	ND<2.00	ND<2.00	ND<2.00	ND<2.00	5
Semi-Volatile Organic Compounds	spunodi)					A					
Acenaphthene	ND<20.0	1	1	1			174	-		ND<10.0	ND<10.0	20
Acenaphthylene	ND<20.0	1	1	-			46.3	-		ND<10.0	ND<10.0	20
Anthracene	ND<20.0		-	1	-		182	-		ND<10.0	ND<10.0	50
Fluorene	27.6		1	1	i	-	213			ND<10.0	ND<10.0	50
Nanhthalene	ND<20.0	1	-	1	1	-	985			ND<10.0	ND<10.0	10
Phenanthrene	112			1	1	į	646			ND<10.0	ND<10.0	50
Pyrene	25.5	1	-				135	1	1	ND<10.0	ND<10.0	50
	-						\ /					

All results depicted in micrograms per Liter (μg/L) which is approximately equivalent to parts per billion (ppb)
 BOLD denotes compound detected above New York State Part 703 Groundwater Standard
 --- denotes sample not analyzed for associated parameter
 ND denotes Non Detect

Note:

- 111 -

Phase II Environmental Site Assessment Supplemental Site Characterization Former JML Optical, Inc., 690 Portland Avenue LaBella Project No. 206331

As indicated in Table 5 above, chlorinated VOCs were detected above the reported laboratory detection limits in nine (9) of the eleven (11) groundwater samples (i.e., samples MW-4 and MW-9 did not detect chlorinated VOCs). In addition, 8 of these groundwater samples detected concentrations of chlorinated VOCs above their respective New York State Part 703 Groundwater Standards. Petroleum related VOCs were not detected above the reported laboratory detection limits in seven (7) of the eleven (11) groundwater samples. Each of the four (4) groundwater samples that detected petroleum related VOCs detected one or more petroleum related VOCs at concentrations above NYS Part 703 Groundwater Standards. [Note: Two of these samples MW-3 and MW-13 also contained chlorinated VOCs.]

SVOCs were detected above the reported laboratory detection limits in two (2) of the four (4) groundwater samples analyzed for SVOCs. In addition, one or more SVOCs, in these two samples with detections, were detected at concentrations above the NYS Part 703 Groundwater Standards.

6.0 Site Geology

Site geology has been assessed through observations of thirty-six (36) soil borings, thirteen (13) shallow overburden one-inch groundwater wells, and two bedrock wells (installed by the NYSDEC). Soil at the Site primarily consists of sand intermixed with medium to fine angular gravel with little to trace amounts of silt to approximately 13-feet BGS. Soils were not observed at deeper depths due to equipment refusal. However, information obtained from the NYSDEC regarding the off-site IHWDS located at 42 Fernwood Avenue (Preferred Electric Motors), indicted that depth to bedrock at the south periphery of the Site was detected at two borings locations at 7.4 and 11-feet BGS.

Static groundwater level measurements were collected on February 8, 2006 from each well prior to purging and sampling. Groundwater was commonly measured at approximately 3 to 6-feet BGS from overburden wells installed during the prior Phase II ESA; PSC and the Phase II ESA; SSC. A groundwater contour map was produced from static groundwater level measurements on February 8, 2006 and indicated that groundwater flow appears to be in the northwesterly direction. Groundwater contours are depicted on Figure 4.

7.0 Discussion and Conclusions

The findings from this Phase II ESA: SSC and the Previous Phase II ESA: PSC report are discussed below for each REC identified at the Site:

- NYSDEC IHWDS four soil borings B-1, B-2, B-3, and B-11 were advanced in close proximity to the southern property line during the Phase II ESA: PSC and two of these borings were converted into groundwater monitoring wells (B-2/MW-1 and B-3/MW-2). This previous work indicated low-level impacts from TCE in the area of MW-1; however, MW-2 did not detect concentrations of VOCs. As such, it was concluded that the IHWDS to the south has impacted the southern portion of the property.
- BCP Site to the East a soil and groundwater sample from soil boring/monitoring well B-8/MW-4 advanced during the Phase II ESA: PSC detected VOC concentrations in soil and groundwater that exceed NYSDEC guidance values; however, these contaminants appear attributable to the BCP site to the east. Six (6) additional test borings (B-27, B-28, B-29, B-32, B-35 and B-36) were advanced within approximately 20-feet of the eastern property line.

Evidence of petroleum related impacts were noted in soil boring B-27 and a soil sample analyzed from boring B-7 (6'-8' BGS) detected one VOC and one SVOC (each petroleum related) above the reported laboratory detection limits; however, the concentrations detected were below the NYSDEC RSCOs.

In addition, groundwater samples from four (4) monitoring wells within approximately 20-feet of the eastern property line were also collected and two (2) of these samples, MW-4 and MW-9, detected concentrations of petroleum related VOCs above the NYSDEC Groundwater Standards. In addition, sample MW-9 detected SVOCs above the NYSDEC Groundwater Standards.

Based on these results, the BCP site to the east appears to be impacting soil and groundwater at the Site in the areas of B-8/MW-4 and B-27/MW-9.

- Former 5,000-gallon UST Soil borings and a groundwater monitoring well were advanced in the area of the former UST during the previous Phase II ESA: PSC. A 'worse case' soil sample from the apparent tank pit area did not detect concentrations of VOCs or SVOCs above NYSDEC RSCOs. A groundwater sample collected from MW-3 during the previous Phase II ESA: PSC detected nine petroleum related VOCs and SVOCs at concentrations above NYSDEC Groundwater Standards; however, a groundwater sample collected from MW-3 during this study only detected three petroleum related VOCs and SVOCs above NYSDEC Groundwater Standards. [Note: Chlorinated VOCs were also detected in these two samples.]
- Sump adjacent to Maintenance Shop TCE impacts to soil and groundwater in the sump area were initially identified when two (2) of three (3) soil samples (B-7 and B-12) from the Phase II ESA: PSC detected TCE at concentrations greater than NYSDEC RSCOs. Soil in the area of the sump impacted with chlorinated VOCs was further delineated by advancing soil borings B-23, B-29, B-30, and B-31. Soil samples collected from these additional test borings were collected from anticipated clean locations in order to evaluate the extent of impact above NYSDEC RSCOs. The analytical results confirmed that chlorinated VOCs from these samples were not detected at concentrations above the NYSDEC RSCOs. As a result, soil impacted with chlorinated solvents detected above NYSDEC TAGM 4046 guidance levels appears to be limited to an area approximately 25-feet by 25-feet in the vicinity of the sump. Figure 5 depicts the general area of soil impacted with TCE in the vicinity of the sump.

Groundwater samples from monitoring wells in the area of the sump MW-5, MW-10 and MW-12 detected concentrations of chlorinated solvents (TCE, cis-1,2-dichloroethene (1,2-DCE), and vinyl chloride) at concentrations above NYSDEC Groundwater Standards.

Note: Based on historical accounts of JML's activities at the Site, the wastewater collection and discharge system in the original ILEX structures (i.e. floor drains) and associated sump have not been utilized for wastewater collection or discharge during JML's tenure at the Site. The maintenance room located near the sump area impacted with TCE was used for storage of tools. Actual maintenance activities took place predominantly in the manufacturing areas where the machines were located. Based on the timing of the release associated with the sump, it appears that JML Optical would be considered an "innocent owner" (i.e. Volunteer) as their liability is a result of site ownership after the discharge to the sump occurred.

- TCE Degreasing Areas soil borings B-24, B-25, and B-26 were advanced in proximity to former TCE degreasing areas to evaluate for potential impacts from these areas. Soil borings B-24 and B-26 detected PID readings above background; however, odors were not noted from the soil samples collected. A soil sample from B-24 detected TCE; however, the concentration detected was below the NYSDEC RSCO. Soil boring B-25 encountered PID readings up to 15.3 ppm and a soil sample from this boring detected TCE at a concentration above the NYSDEC RSCO. Groundwater samples from MW-7 (B-25) and MW-8 (B-26) detected TCE and 1,2-DCE at concentrations above NYSDEC Groundwater Standards.
- Chemical Storage Room Soil boring B-35 detected slightly elevated PID readings (peak of 1.2 ppm); however, odors and staining were not observed. Soil boring B-28 did not detect evidence of impairment. Evidence of impairment was noted in soil boring B-27; however, elevated PID readings were not noted until approximately 4-feet in depth. Furthermore, a soil and groundwater sample (MW-9) collected from this boring detected petroleum related VOCs and SVOCs (as discussed above). The concentrations detected in the soil sample are below the NYSDEC RSCOs; however, the concentration of VOCs and SVOCs in the groundwater sample are above NYSDEC Groundwater Standards.
- Recycled Chemical Storage Area evidence of impairment was not noted in soil boring B-34: however, a groundwater sample from MW-13 detected chlorinated solvents and one (1) petroleum related VOC at concentrations above NYSDEC Groundwater Standards.

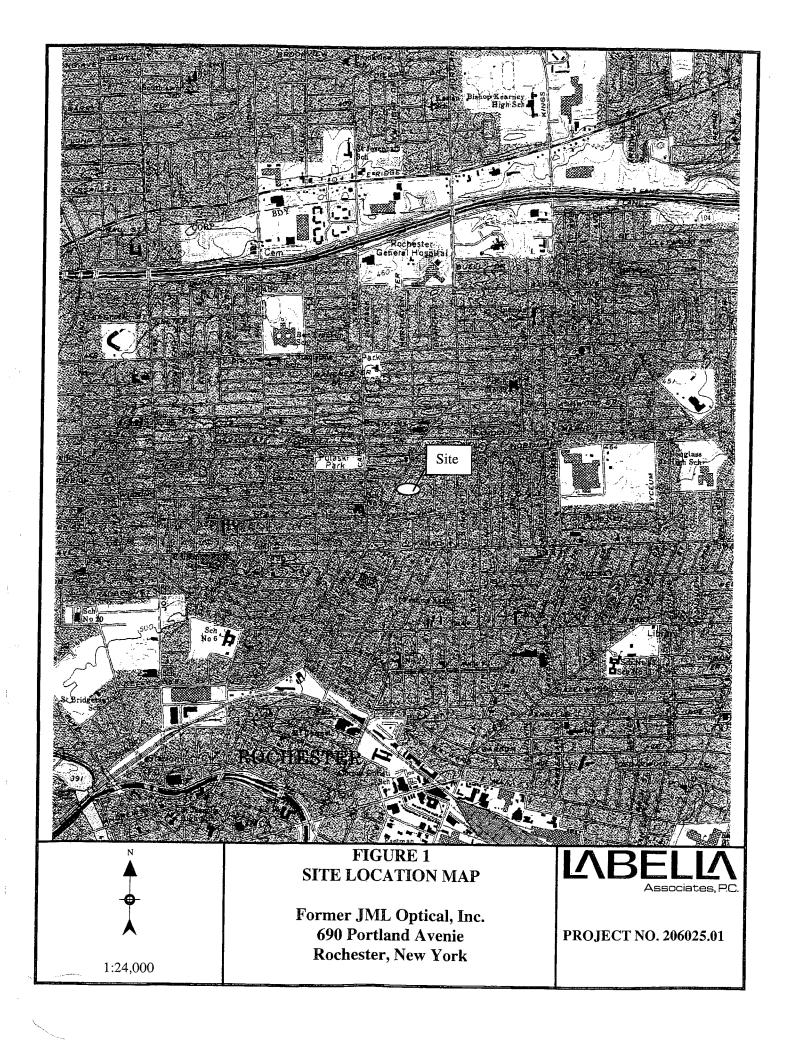
Based on the above findings, the following areas of concern (AOCs) are identified for the Site. In addition, recommendations for additional evaluation and/or remedial work are discussed.

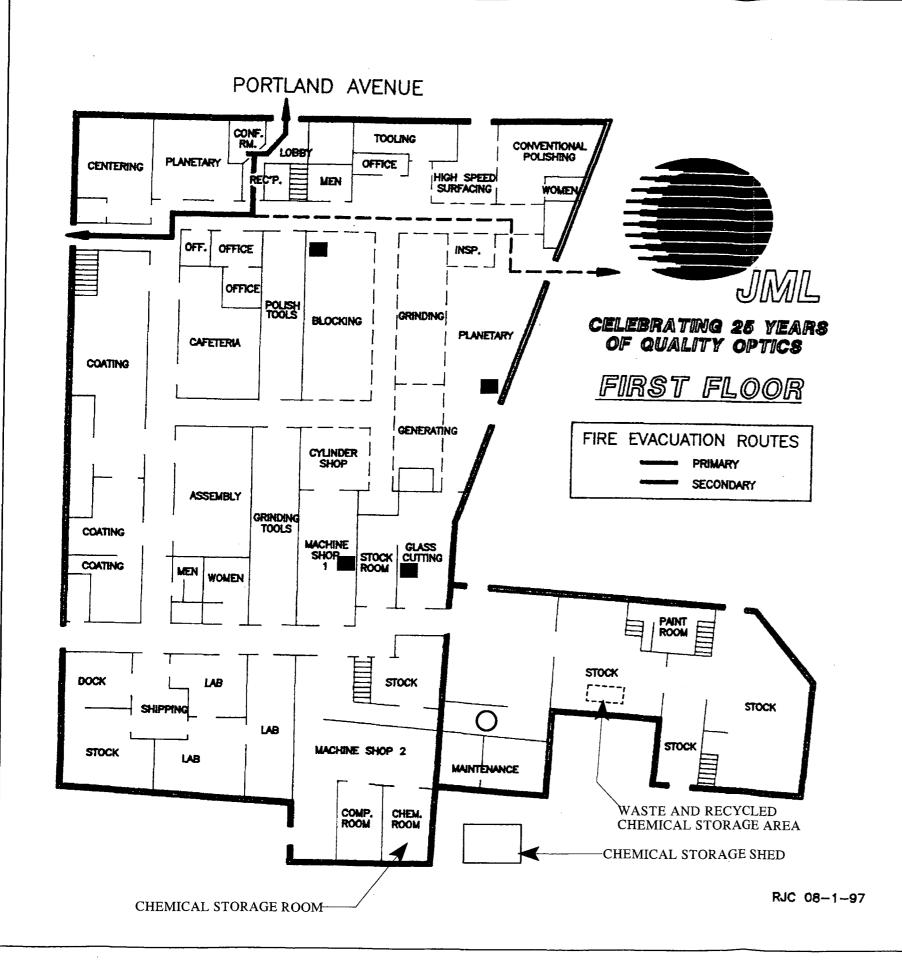
AOC #1: NYSDEC IHWDS to South – Although TCE impacts to soil and groundwater appear evident at the Site due to on-site historical operations, a portion of the Site along the southern property line appears impacted due to the IHWDS to the south. This IHWDS to the south appears to be undergoing a remedial investigation through the NYSDEC. As such, it appears that any additional investigation and/or remedial work in relation to impacts from the IHWDS to the south would be the responsibility of that responsible party and/or the NYSDEC.

AOC #2: BCP site to the East – Petroleum impacted soil and groundwater has been identified along a portion of the eastern property line. The petroleum impacted soil and groundwater in this area appears attributable to the adjacent BCP site to the east. As such, it appears that any additional investigation and/or remediation in relation to these impacts would be the responsibility of the responsible party and/or NYSDEC.

AOC #3: Former Sump Area – Vadose zone TCE soil contamination above NYSDEC RSCOs has been identified in association with the sump area. The area of vadose zone TCE impact in proximity to the sump appears generally defined to an approximate 25-feet by 25-feet area. It is recommended that soil exceeding NYSDEC RSCOs associated with the sump area be remediated (e.g., removal and disposal, soil vapor extraction, etc.). VOC impacted groundwater from the sump appears limited to the northern portions of the Site. The VOC groundwater impacts associated with the sump appear to be 'relatively low-level' with the exception of groundwater in the immediate area of the sump, specifically MW-5.

A source removal action in the sump area appears warranted. Since a majority of the groundwater impacts downgradient of the sump appear to be relatively low-level and breakdown products of TCE (1,2-DCE and vinyl chloride) have been detected, it may be possible for the groundwater contamination to be remediated via monitored natural attenuation after the completion of the source removal.


AOC #4: Former TCE Degreasers – Vadose zone TCE soil contamination above NYSDEC RSCOs has been identified in association with a former degreaser area. This area is specifically related to the area of B-25. The extent of vadose zone soil TCE impact in proximity to B-25 has not been defined (i.e., only one soil boring was completed in this area). As such, it is recommended that the area of B-25 be further evaluated in order to determine the extent of soil in this area that exceeds NYSDEC RSCOs. Subsequent to defining the extent of impact in the area of B-25, it is recommended that soil exceeding NYSDEC RSCOs from this area be remediated (e.g., removal and disposal, soil vapor extraction, etc.). The VOC groundwater impacts associated with the degreaser areas in the area of B-25 appear to be 'relatively low-level'. A source removal action in the degreaser area appears warranted. Since the groundwater impacts at the apparent source area (i.e. worst case levels) appear to be relatively low-level and a breakdown product of TCE (1,2-DCE) has been detected, it appears warranted that the groundwater contamination associated with the former TCE Degreaser may be able to be remediated via monitored natural attenuation after the completion of the source removal action.


A copy of all information collected during this assessment, including photographs, maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, P.C. This information is available at your request.

Y:\ROCHESTER ECONOMIC DEV\206025\PHASE 3\CLERICAL\RPT\R6F22DP1.DOC

Figures and Photographs

NOTES:

- 1. ALL LOCATIONS SHOWN ARE APPROXIMATE.
- 2. FIGURE OBTAINED FROM JML OPTICAL, INC.
- 3. FIGURE NOT TO SCALE.
- 4. MAP MODIFIED BY LABELLA ASSOCIATES, P.C. TO DEPICT SOME POTENTIAL AREAS OF RECOGNIZED ENVIORNMENTAL CONDITIONS.

LEGEND:

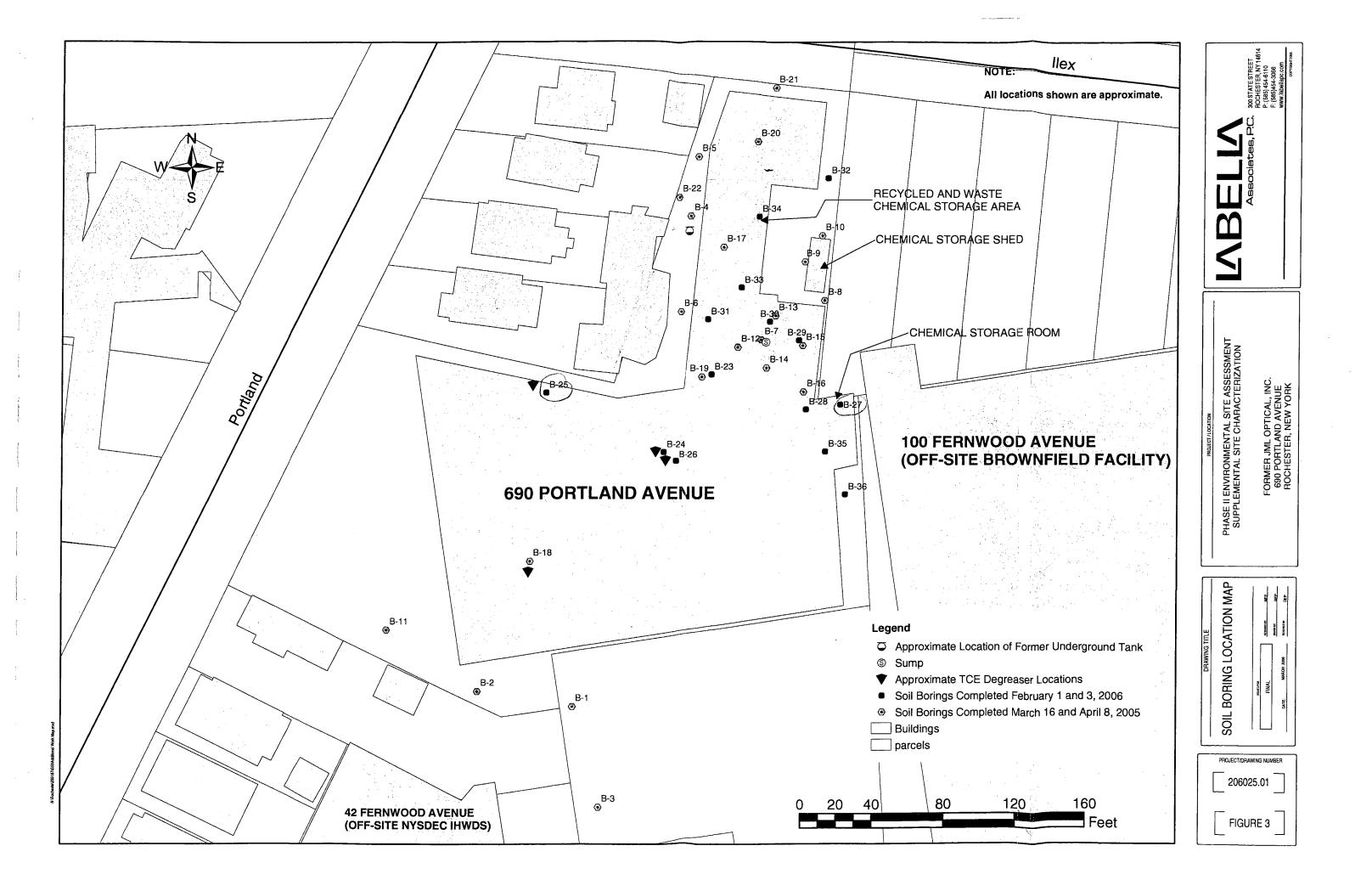
- APPROXIMATE TCE DEGREASER LOCATIONS
- O APPROXIMATE LOCATION OF SUMP

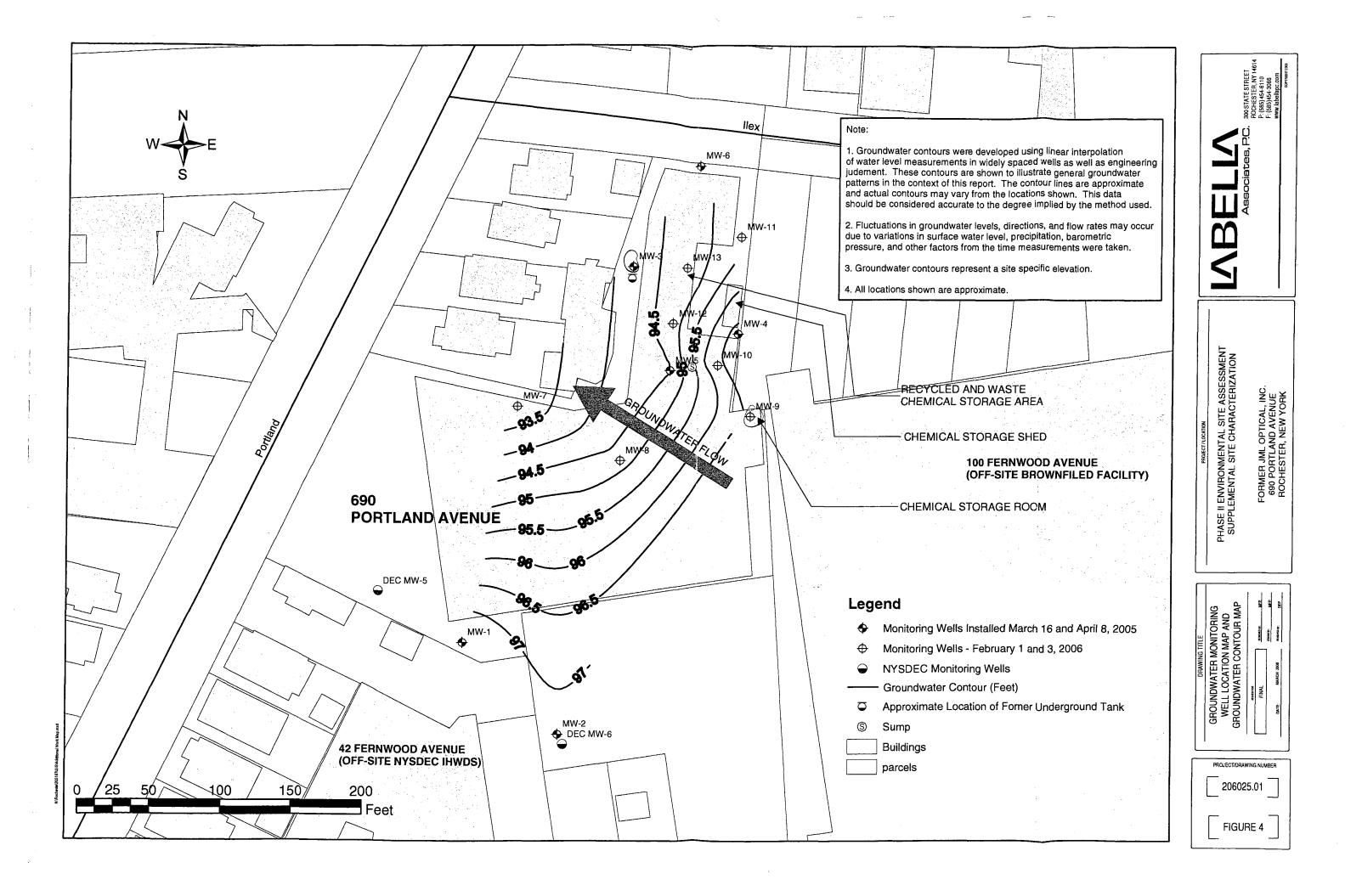
NBELLA Associates, P.C.

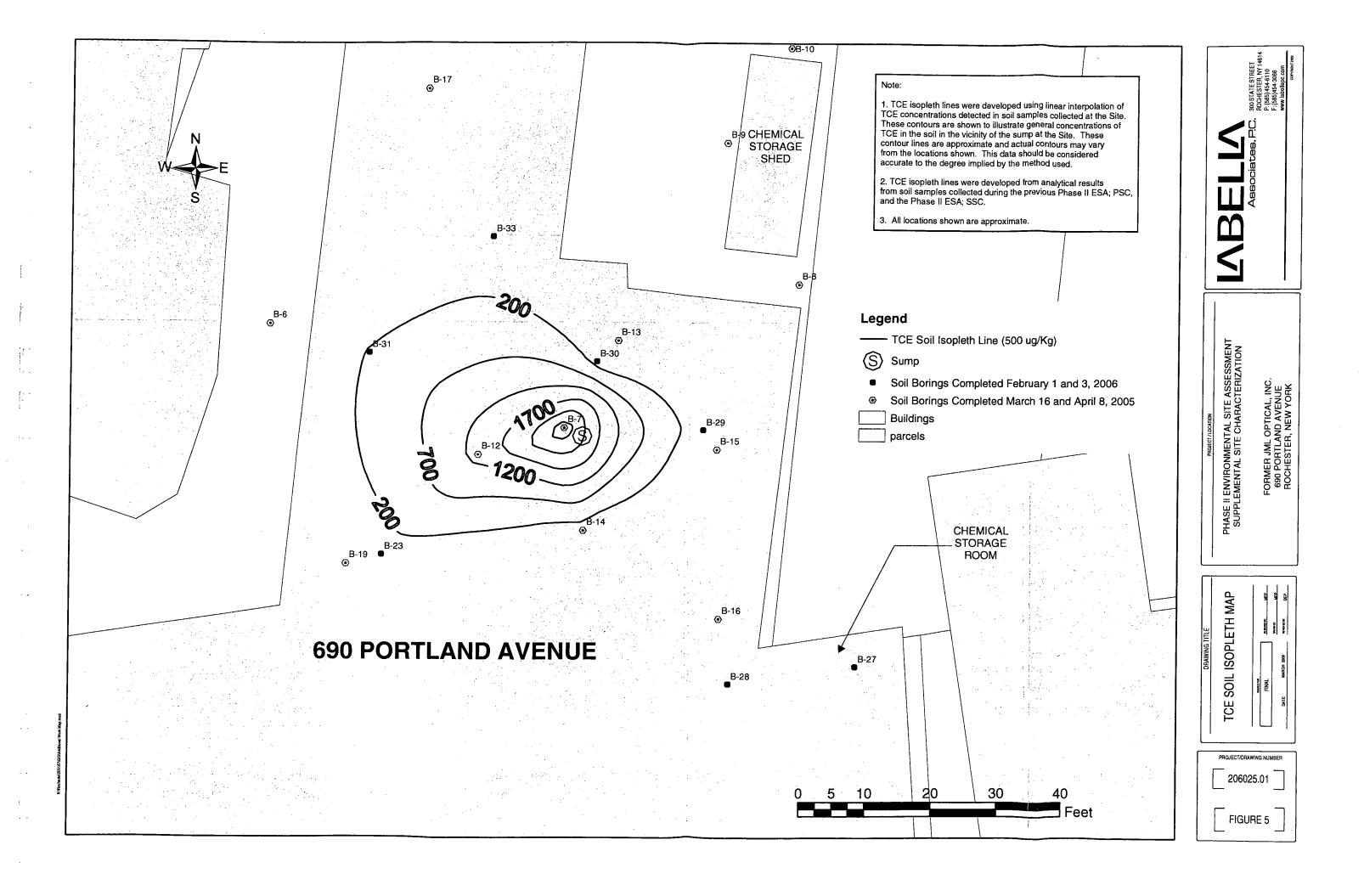
> ARACTERIZATION ER IML OPTICAL, INC PORTLAND AVENUE HESTER, NEW YORK

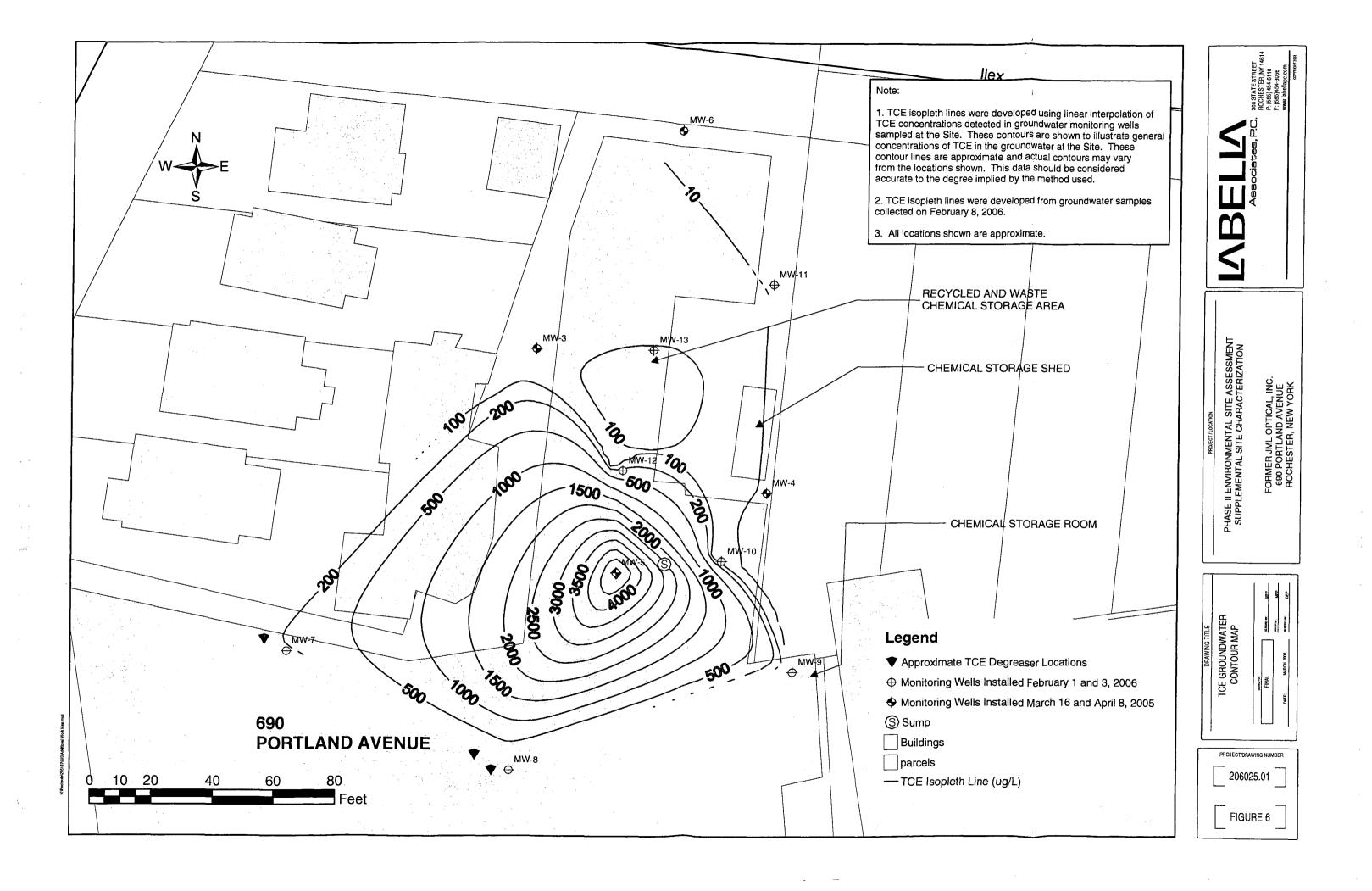
> > DESIGNED BY: MFP
> > DRAWN BY: MFP

ISSUED FOR:
FINAL
DATE: MARCH 2006


PROJECT/DRAWING NO


[206025.01]


FIRST FLOOR BUILDING LAYOUT


DRAWING TITLE

[FIGURE 2]

Appendix 1

PROJECT

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING: SHEET

B - 23

1 OF 1 206025 Phase 3

JOB:

CHKD BY:

300 STATE STREET, ROCHESTER. NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: TREC Environmental

P. Wiley

OVERBURDEN SAMPLING METHOD: Direct Push

BORING LOCATION:

GROUND SURFACE ELEVATION: NA

TIME: DATUM: 10:15 TO 10:35

DRILLER:

START DATE: 02/01/2006

NA

LABELLA REPRESENTATIVE: M. Pelychaty

END DATE: 02/01/2006

DRIVE SAMPLER TYPE: 4-foot Macrocore

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted AUGER SIZE AND TYPE:

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

1	012,100,102	N GAME EING METHOD	. Discour don					
(FEET)		SAMPLE					PID FIELD	
ОЕРТН (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	SCREEN (PPM)	REMARKS	
0	24	S-1 0'-4'	0.6	Concrete - Not Sa Brown cmf SAND,	mpled , some m+f angular	Gravel, slightly damp, no odor	0.0	
							0.0	
2			2.0	Gray cmf SAND, li slightly damp no o		with ash at bottom of core),	0.0	
4	34	S-2	4.0	Brown mf SAND a	and SILT, wet, no o	dor	0.2	
		4'-8'					0.2	
	:		5.0	Brown cmf SAND,	, little f angular Grav	vel and Silt, damp, no odor		
6							0.3	:
8	32	S-3 8'-10.5'					0.2	
							0.3	
10				As above, wet			0.3	
"								
				Refusal at 10.5-fo	eet BGS			
12								
								:
14								
16	l.,	<u> </u>		DEPTH (FT)		NOTES:	I	
WATER LEVEL DATA		воттом ог						
DATE	TIME	ELAPSED TIME	CASING	L I	ENCOUNTERED	BGS = Below the Ground Surface		
NA	NA	NA	NA	10.5	Yes	NA = Not Applicable		
		· · · · · · · · · · · · · · · · · · ·						

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

BORING: B - 23

DRILLER:

PROJECT

Phase II Environmental Site Assessment 690 Portland Avenue

SHEET JOB: Rochester, New York

BORING: B - 24

1 OF

CHKD BY:

206025 Phase 3

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS

CONTRACTOR: TREC Environmental

P. Wiley LABELLA REPRESENTATIVE: M. Pelychaty BORING LOCATION: Glass Cutting Room at TCE Degreaser

GROUND SURFACE ELEVATION: NA

START DATE: 02/01/2006

END DATE: 02/01/2006

TIME: DATUM: 10:38 TO 11:05

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

(FEET)		SAMPLE					PID FIELD	
ОЕРТН (РЕЕТ)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	13	S-1 0'-4'	0.6	Concrete - Not S Brown cmf SANE	ampled), some m+f angular	Gravel, little Silt slightly damp, no odor	0.0	
2							0.0	·
4	38	S-2	4.0	Brown mf SAND	and SILT, little Clay,	damp, no odor	0.4	
		4'-6'					0.7	
6		S-3 6'-8'	6.7	Brown cmf SANI), little Silt and fang	ular Gravel, wet, no odors	0.2	
8	13	S-4 8'-10.4'		As above, satura	ited		0.0	
10				As above, wet				
				Refusal at 10.4-	feet BGS			
12								
14								
16				DEPTH (FT)		NOTES:		
-	WATER	LEVEL DATA	воттом оғ	7	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	Į.	BGS = Below the Ground Surface		
NA	NA	NA NA	NA	10.4	Yes	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Associates, P.C.

PROJECT

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING: SHEET

B - 25

1 OF

206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

BORING LOCATION: Planetary Room at TCE Degreaser adjacent to north wall TIME:

11:13 TO 11:40

DRILLER:

P. Wiley

GROUND SURFACE ELEVATION: NA

DATUM:

JOB:

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 02/01/2006

NA

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

DRIVE SAMPLER TYPE: 4-foot Macrocore

END DATE: 02/01/2006

AUGER SIZE AND TYPE:

NA OVERBURDEN SAMPLING METHOD: Direct Push INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

								r
(FEET)		SAMPLE					PID FIELD	
рертн (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL (CLASSIFICATION	SCREEN (PPM)	REMARKS
0	27	S-1 0'-4'	0.6 0.7	Concrete - Not S Black Cinders Brown cmf SANI		iravel, little Silt, slightly damp, no odors	1.0	
2							2.3	
_							5.0	
4	40	S-2 4'-6'	4.0	Brown mf SAND	, some Silt, moist, n	o odor	15.3	
			5.4	Brown mf SAND	and SILT, moist, no	odor	9.4 4.6	
6		S-3 6'-8'					12.9	
			7.0	Brown cmf SANI	D, little Silt and fang	ular Gravel, moist, no odor		
8	24	S-4 8'-10.8'		As above, damp			2.4 3.0	
]	:			2.8	
10								
		·		Refusal at 10.8-	feet BGS			
12								
14								
14								
16								
				DEPTH (FT)		NOTES:		
<u></u>	WATER	LEVEL DATA	воттом оғ	воттом оғ	GROUNDWATER			
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
NA	NA	NA NA	NA NA	10.8	Yes	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue

Rochester, New York

START DATE: 02/01/2006

BORING:

B - 26

SHEET JOB:

1 OF 206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

> CONTRACTOR: TREC Environmental DRILLER:

P. Wiley

BORING LOCATION: Machine Shop at TCE Degreaser adjacent to north wall GROUND SURFACE ELEVATION: NA

TIME:

12:15 TO 12:40 NA

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 02/01/2006

OTHER: NA

FEET)		SAMPLE					PID FIELD	
оертн (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	36	S-1 0'-4'	0.6	Black Cinders	Concrete - Not Sampled Black Cinders Brown cmf SAND, little Silt and f angular Gravel, slightly damp, no odor		0.7	
2							0.2	
			3.0	Brown mf SAND,	some Silt, little fan	gular Gravel, slightly damp, no odors	0.2	
4	36	S-2					0.2	
		4'-6'	5.0	Brown mf SAND	and SILT, little Clay	, wet, no odors	0.1	
6		S-3	6.0	Brown cmf SAND), some Silt, little fa	ngular Gravel, wet, no odors	0.1	
		6'-8'					0.1	
8	22	S-4 8'-10.5'	8.4	Brown cmf SAND	D and mf angular GF	RAVEL, little Silt, no odors, saturated	0.1	
10							0.1	; ;
				Refusal at 10.5-	feet BGS			
12								
14								
16	<u> </u>	<u> </u>		DEPTH (FT)		NOTES:		<u> </u>
	WATER	LEVEL DATA	воттом оғ	1	GROUNDWATER	ND = Non Detect	Well MW-7 ins	talled
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
NA	NA	NA	NA	10.5	Yes	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue

Rochester, New York

BORING:

B - 27

SHEET JOB:

1 OF 206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

DRILLER:

P. Wiley

BORING LOCATION: Chemical Storage Room GROUND SURFACE ELEVATION: NA

TIME:

13:00 TO 13:20

DATUM:

NA

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 02/01/2006

END DATE: 02/01/2006

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

FEET)	-	SAMPLE			PID FIELD	
оертн (РЕЕТ)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)	VISUAL CLASSIFICATION	SCREEN (PPM)	REMARKS
0	32	S-1 0'-4'	0.5	Concrete - Not Sampled Brown mf SAND, little Silt and f angular Gravel, damp to moist, slight chemical odor	0.0	
2					0.0	
					1.2	
4	32	S-2 4'-6'		As above, some black staining, petroleum and chemical odor	18.6	
			5.6 5.8	Gray m angular limestone rock fragments Brown mf SAND, little Silt and mf angular Gravel, petroleum and chemical odor, moist to wet	31.2	
6		S-3 6'-8'			19.4 50.9	
8	20	S-4		As above, saturated, sheen	15.0	
		8'-11.2'			14.9	
10					14.8	
				Refusal at 11.2-feet BGS		
12				neusarar 11.2-leet DGS		
14						
16						
ļ				DEPTH (FT) NOTES:		
ļ		LEVEL DATA	BOTTOM OF	BOTTOM OF GROUNDWATER ND = Non Detect	MW-8	
DATE	TIME	ELAPSED TIME	CASING	BORING ENCOUNTERED BGS = Below the Ground Surface		
NA.	NA NA	NA NA	<u>NA</u>	11.2 Yes NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue

Rochester, New York

SHEET JOB:

B - 28

1 OF 1 206025 Phase 3

CHKD BY:

BORING:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental DRILLER:

P. Wiley

BORING LOCATION: Outside Chemical Storage Room

13:35 TO 13:50

GROUND SURFACE ELEVATION: NA

TIME: DATUM:

NA

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 02/01/2006

END DATE: 02/01/2006

DRIVE SAMPLER TYPE: 4-foot Macrocore

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

L							T	<u> </u>
(FEET)		SAMPLE					PID FIELD	
оертн (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	29	S-1 0'-4'		Concrete - Not S Black Cinders Brown mf SAND	ampled , little Silt, no odors		0.0	
			1.8	Brown mf SAND	, some Silt, moist, n	o odor	0.0	
2							0.0	
4	22	S-2 4'-7.9'	4.0	Brown mf SAND	and m+f angular Gr	avel, little Silt, moist	0.0	
		4-7.9					0.0	
							0.0	
6							0.0	
8				Refusal at 7.9-ft	eet BGS			
							!	
10								
"								
12								
.								
14								
16				İ				
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ	ļ	GROUNDWATER	ND = Non Detect		
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
NA	NA	NA	NA	7.9	No	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING: SHEET

B - 29

JOB:

1 OF 206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

BORING LOCATION: Maintenance Room

TIME:

14:05 TO 14:20

DRILLER:

GROUND SURFACE ELEVATION: NA

DATUM:

NA

LABELLA REPRESENTATIVE: M. Pelychaty

P. Wiley

START DATE: 02/01/2006

END DATE: 02/01/2006

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

AUGER SIZE AND TYPE:

JEPTH (FEET PID SAMPLE FIELD SCREEN SAMPLE STRATA CHANGE VISUAL CLASSIFICATION (PPM) REMARKS RECOVERY SAMPLE NO. AND (INCHES) (FEET) DEPTH 0 40 S-1 Concrete - Not Sampled 0.0 0'-4" 0.5 Black Cinders Brown mf SAND, some Silt, little f angular Gravel, moist, no odor 0.6 0.9 2 0.9 1.1 4 41 S-2 4'-6' 1.1 5.0 Brown mf SAND and SILT, little f angular Gravel, moist, no odor 1.2 6 S-3 Brown mf SAND, some m+f angular Gravel, little Silt, slightly damp, no odor 6'-8' 6.5 1.1 1.2 8 24 S-4 8'-11.2' 8.2 Gray cmf SAND, some mf angular Gravel and Silt, wet to saturated, no odor 1.1 1.1 10 slightly damp at bottom of core Refusal at 11.2-feet BGS 12 14 16 DEPTH (FT) NOTES: GROUNDWATER ND = Non Detect MW-9 WATER LEVEL DATA BOTTOM OF BOTTOM OF TIME ELAPSED TIME CASING BORING ENCOUNTERED BGS = Below the Ground Surface DATE NA NA = Not Applicable NA NA 11.2 Yes NA

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING: B - 30

1 OF 206025 Phase 3

JOB: CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

> CONTRACTOR: TREC Environmental DRILLER:

P. Wiley

BORING LOCATION: Outside West Maintenance Room GROUND SURFACE ELEVATION: NA

TIME:

SHEET

14:30 TO 14:50

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 02/01/2006

DATUM:

NA

END DATE: 02/01/2006

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

E.	 	SAMPLE					PID	
ОЕРТН (FEET)	SAMPLE RECOVERY	SAMPLE NO. AND	STRATA CHANGE		VISUAL	CLASSIFICATION	FIELD SCREEN (PPM)	REMARKS
<u> </u>	(INCHES)	DEPTH	(FEET)					
0	12	S-1 0'-4'	0.5	Concrete - Not S Brown mf SAND	ampled , some Silt, slightly o	damp, no odor	0.1	
		•					0.7	
2								
	10						0.6	
4	40	S-2 4'-6'				A A I dan	0.7	
			5.1	Brown mf SAND	, little Silt and f angu	ilar Gravel, no odor	0.7	
6		S-3 6'-8'	6.0	Brown cmf SANI	and f angular Grav	el, little Silt, slightly damp, no odor	0.6	
		-					0.7	
8	36	S-4 8'-11.0'					0.5	
							0.5	
10							0.5	
12				Refusal at 11.0-	feet BGS			
14								
16							<u></u>	
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ	воттом оғ	GROUNDWATER		MW-9	
DATE	TIME	ELAPSED TIME	CASING	BORING		BGS = Below the Ground Surface		
NA	NA	NA	NA	11.0	No	NA = Not Applicable	·	

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue

Rochester, New York

SHEET

BORING: B-31

JOB:

1 OF 1 206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

BORING LOCATION:

TIME:

1505 TO 15:30

DRILLER:

P. Wiley

GROUND SURFACE ELEVATION: NA

DATUM:

LABELLA REPRESENTATIVE: M. Pelychaty START DATE: 02/01/2006

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

END DATE: 02/01/2006

DRIVE SAMPLER TYPE: 4-foot Macrocore INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

								
(FEET)		SAMPLE					PID FIELD	
ОЕРТН (FEET)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	22	S-1 0'-4'		Concrete - Nat S Brown mf SAND	ampled , little Silt, wet, no o	dor	0.0	
							0.2	
2							0.2	
4	23	S-2					0.3	
		4'-8'	5.0	Brown cmf SANI	and mf angular GF	RAVEL, little Silt, moist, no odor	0.2	
6							0.2	
8	23	S-3		As above, no od	or, wet		0.2	
		8'-11.0'						
10							0.2	
10								
		· · · · · · · · · · · · · · · · · · ·		Refusal at 11.0-	feet BGS			
12							<u> </u>	
								•
14								
16								
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ	воттом оғ	GROUNDWATER	ND = Non Detect	MW-9	
DATE	TIME	ELAPSED TIME	CASING	BORING	ENCOUNTERED	BGS = Below the Ground Surface		
NA	NA	NA	NA	11.0	No	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment

690 Portland Avenue Rochester, New York BORING:

SHEET

JOB:

B - 32

1 OF

206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental DRILLER:

BORING LOCATION:

START DATE: 02/03/2006

GROUND SURFACE ELEVATION: NA

TIME:

08:20 TO 08:40

DATUM: NA

P. Wiley LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 02/03/2006

OTHER: NA

<u> </u>	r					······································	7	
ОЕРТН (FEET)		SAMPLE					PID FIELD	
Ī	SAMPLE		STRATA	-			SCREEN	
ļ <u>Ļ</u>	RECOVERY	SAMPLE NO. AND	CHANGE	į	VISUAL	CLASSIFICATION	(PPM)	REMARKS
ä	(INCHES)	DEPTH	(FEET)					
0	36	S-1			AND and mf angula		0.0	
	:	0'-4'	0.8	Brown mf SAND), little Silt and f ang	ular Gravel, moist, no odor		
							0.0	
							0.0	
2				ļ				
1	1						0.0	
							1	
				1				
4	28	S-2	1					
		4'-8'	-	D conf CANI	D. same Cilk and set	angular Gravel, wet, no odor	0.0	
			5.4 5.8			Gravel, little Silt, wet, no odor	l i	
					-,		0.0	
6			į.					
1			İ				0.0	
							0.0	
]	}				
8	24	S-3					0.0	
ŧ		8'-12'	}				0.0	
			1				1	
10							0.0	
	-		İ				1	
	1							
1.		· · · · · · · · · · · · · · · · · ·						İ
12	ļ			Bottom termina	ited at 12.0-feet BG	iS		
			j					
	j							
14			ĺ					
"	İ		[
							İ	
		i						
16	ļ		1]	
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	воттом оғ		GROUNDWATER			
DATE	TIME	ELAPSED TIME	1	i	1			
DATE			CASING			BGS = Below the Ground Surface		
NA	NA	NA NA	NA NA	12.0	Yes	NA = Not Applicable	 	

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING:

B - 33

1 OF

206025 Phase 3

CHKD BY:

SHEET

JOB:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

BORING LOCATION:

GROUND SURFACE ELEVATION: NA

TIME:

08:50 TO 09:20

DRILLER: P. Wiley LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 02/03/2006

END DATE: 02/03/2006

DATUM:

NA

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

AUGER SIZE AND TYPE:

OVERBURDEN SAMPLING METHOD: Direct Push

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

_ F _		SAMPLE					PID FIELD	
ОЕРТН (РЕЕТ)	SAMPLE RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	STRATA CHANGE (FEET)		VISUAL C	CLASSIFICATION	SCREEN (PPM)	REMARKS
0	20	S-1 0'-4'	0.8	Concrete - Not Sa Brown cmf SAND	ampled and mf+ angular G	ravel, little Silt, moist, no odor	0.0	
2		:					0.0	
							1.7	
4	20	S-2 4'-8'	4.4	Brown mf+ SAND), some Silt, little f a	ngular Gravel, wet, no odor	1.7	
6							4.9	
	24	S-3	8.0	Brown cmf SAND	and of apoular GF	NAVEL, trace Silt, saturated, no odor	1.4	
8	24	8'-12'	8.0	BIOWN CITY OF AND	and in Engolar Gr		1.2	
10							0.0	
12	6						0.0	
				Refusal at 12.5-	feet BGS		 	
14								
16								
		LEVEL DATA	BOTTOM OF	DEPTH (FT) BOTTOM OF	GROUNDWATER	NOTES:		
DATE	TIME	LEVEL DATA ELAPSED TIME	CASING	BOTTOM OF	ENCOUNTERED	BGS = Below the Ground Surface		
NA NA	NA NA	NA NA	NA	12.0	Yes	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING: B-34

1 OF 1

206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

BORING LOCATION: Waste chemical storage area

TIME:

SHEET

JOB:

09:50 TO 10:05

DRILLER:

P. Wiley

GROUND SURFACE ELEVATION: NA

DATUM:

NA

LABELLA REPRESENTATIVE: M. Pelychaty

START DATE: 02/03/2006

END DATE: 02/03/2006

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

AUGER SIZE AND TYPE: OVERBURDEN SAMPLING METHOD: Direct Push

OTHER: NA

6		SAMPLE					PID	
1(3)	SAMPLE		STRATA	-			FIELD SCREEN	
ОЕРТН (РЕЕТ)	RECOVERY (INCHES)	SAMPLE NO. AND DEPTH	CHANGE (FEET)	į	VISUAL	CLASSIFICATION	(PPM)	REMARKS
0	30	S-1		Concrete - Not S	ampled		0.0	
		0'-4'	0.4	Brown cmf SANI	D, some mf angular	Gravel, little Silt, damp, no odor		
							0.0	
2							0.0	
1							0.5	
							!	
4	38	S-2 4'-8'	4.0	Brown mf SAND	, some Silt, little f ar	ngular Gravel, moist, no odor	0.0	
			6.2	Brown and SAND	little Silt trace fan	guiar Gravel, wet, no odor	0.0	1
6]		0.2	BIOWII IIII SAND	, mae om, nace i an	guiar citator, wer, no odor	0.0	
	1						0.0	
8	33	S-3					0.0	
		8'-11.9'					0.0	
			9.3	Brown cmf SANI	D, little Silt and mf a	ngular Gravel, saturated, no odor		
10							0.0	
							0.0	
12				Refusal at 11.9-	feet BGS			
	ļ							
14								
"								
16								<u></u>
				DEPTH (FT)		NOTES:		
	WATER	LEVEL DATA	BOTTOM OF	воттом оғ	GROUNDWATER		-	
DATE	TIME	ELAPSED TIME	CASING	BORING		BGS = Below the Ground Surface		
NA	NA	NA NA	NA	11.9	Yes	NA = Not Applicable		

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue

Rochester, New York

BORING: SHEET

B - 35

1 OF

206025 Phase 3

JOB: CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

DRILLER:

BORING LOCATION:

START DATE: 02/03/2006

GROUND SURFACE ELEVATION: NA

TIME:

10:20 TO 10:40

DATUM: NA

P. Wilev LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted

OVERBURDEN SAMPLING METHOD: Direct Push

AUGER SIZE AND TYPE:

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

END DATE: 02/03/2006

OTHER: NA

(FEET) PID SAMPLE FIELD SCREEN SAMPLE STRATA (PPM) REMARKS VISUAL CLASSIFICATION SAMPLE NO. AND CHANGE RECOVERY (INCHES) DEPTH (FEET) 0.0 Concrete - Not Sampled n S-1 36 Black Cinders 0'-4' 0.6 Brown mf SAND, little Silt and f angular Gravel, moist, no odor 0.7 0.0 2 0.0 Brown mf SAND and SILT, moist, no odor 2.4 0.5 24 S-2 4 Brown mf SAND, little Silt and mf angular Gravel, saturated, slight 4'-8' 4.6 chemical odor 1.2 0.3 6 Brown cmf SAND and mf+ angular GRAVEL, little Silt, saturated, slight 0.0 8.0 8 24 5-3 8'-11.5' chemical odor 0.0 0.0 10 Refusal at 11.5-feet BGS 12 14 16 NOTES: DEPTH (FT) WATER LEVEL DATA BOTTOM OF **BOTTOM OF** GROUNDWATER ND = Non Detect ENCOUNTERED BGS = Below the Ground Surface DATE TIME ELAPSED TIME CASING BORING 11.5 NA = Not Applicable NΑ NA NA Yes NA

GENERAL NOTES

- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

Phase II Environmental Site Assessment 690 Portland Avenue Rochester, New York

BORING: B - 36

SHEET

1 OF

JOB: 206025 Phase 3

CHKD BY:

300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANT

CONTRACTOR: TREC Environmental

OVERBURDEN SAMPLING METHOD: Direct Push

BORING LOCATION:

TIME:

10:55 TO 11:10

DRILLER:

P. Wiley

GROUND SURFACE ELEVATION: NA START DATE: 02/03/2006

END DATE: 02/03/2006

DATUM: NΑ

LABELLA REPRESENTATIVE: M. Pelychaty

TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted AUGER SIZE AND TYPE:

NA

DRIVE SAMPLER TYPE: 4-foot Macrocore

INSIDE DIAMETER: 1.8-Inch ID

OTHER: NA

FIE SAMPLE STRATA	PID
I SAMPLE STRATA	
RECOVERY SAMPLE NO. AND CHANGE VISUAL CLASSIFICATION (PECT)	PM) REMARKS
0 24 S-1 Gray m angular Limestone GRAVEL 0'-4' 0.4 Brown cmf SAND and mf angular GRAVEL, little Silt, moist, no odor	0.0
	0.0
	0.0
	0.0
4'-8'	0.0
6	0.0
8-11	0.0
10	
Refusal at 11.0-feet BGS	
14	
16	
DEPTH (FT) NOTES:	
. WATER LEVEL DATA BOTTOM OF BOTTOM OF GROUNDWATER ND = Non Detect	
DATE TIME ELAPSED TIME CASING BORING ENCOUNTERED BGS = Below the Ground Surface	
NA NA NA NA 11.0 Yes NA = Not Applicable	

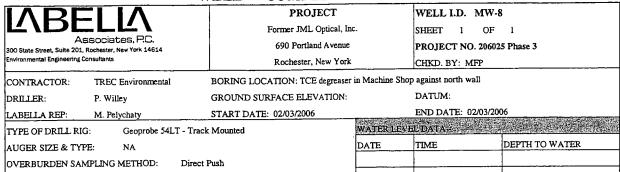
GENERAL NOTES

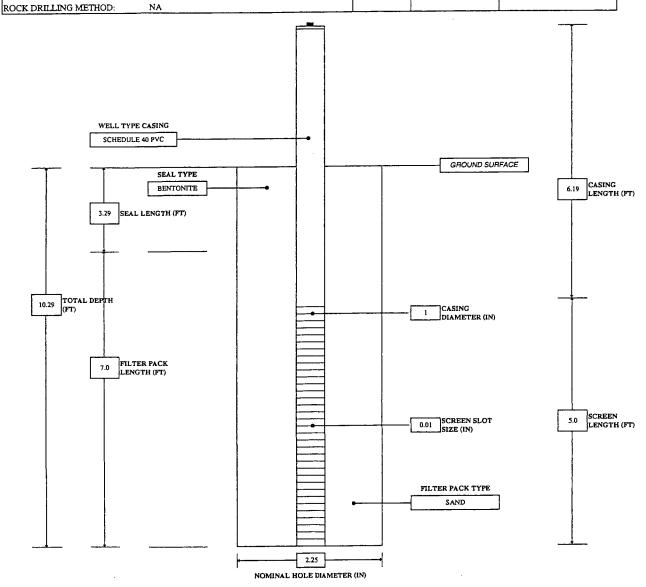
- 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
- 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER

LOG WELL COMPLETION

PROJECT WELL I.D. MW-7 Former JML Optical, Inc. SHEET 1 OF 1 Associates, P.C. 690 Portland Avenue PROJECT NO. 206025 Phase 3 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD. BY: MFP BORING LOCATION: TCE degreaser in Planetary Room against north wall CONTRACTOR: TREC Environmental DATUM: GROUND SURFACE ELEVATION: DRILLER: P. Willey START DATE: 02/03/2006 END DATE: 02/03/2006 LABELLA REP: M. Pelychaty WATER LEVEL DATA TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted DATE TIME DEPTH TO WATER

Direct Push


AUGER SIZE & TYPE:


OVERBURDEN SAMPLING METHOD:

ROCK DRILLING METHOD: WELL TYPE CASING SCHEDULE 40 PVC GROUND SURFACE SEAL TYPE CASING LENGTH (FT) BENTONITE 6.45 SEAL LENGTH (FT) TOTAL DEPTH CASING DIAMETER (IN) FILTER PACK LENGTH (FT) SCREEN LENGTH (FT) 0.01 SCREEN SLOT SIZE (IN) 5.0 FILTER PACK TYPE SAND 2.25

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NA = Not Applicable

NOMINAL HOLE DIAMETER (IN)

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable

Associetes, P.C.

300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants

PROJECT Former JML Optical, Inc. WELL I.D. MW-9

SHEET 1 OF 1

CHKD. BY: MFP

690 Portland Avenue

PROJECT NO. 206025 Phase 3

Rochester, New York

CONTRACTOR:

TREC Environmental

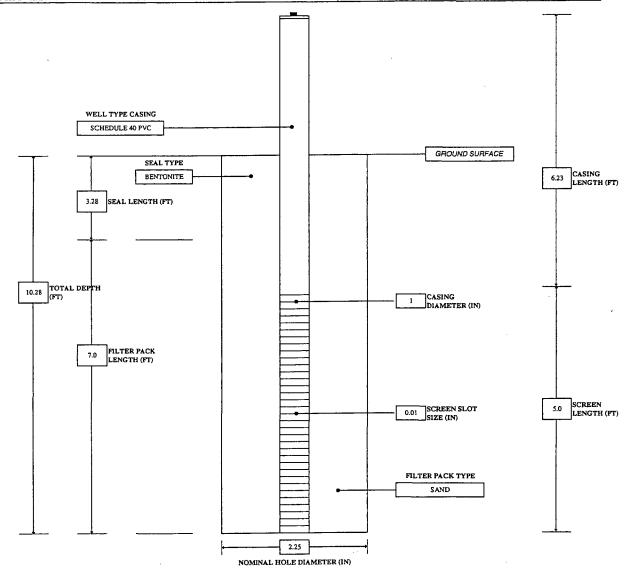
BORING LOCATION: Chemical storage room GROUND SURFACE ELEVATION:

DATUM:

DRILLER: LABELLA REP: P. Willey M. Pelychaty

START DATE: 02/03/2006

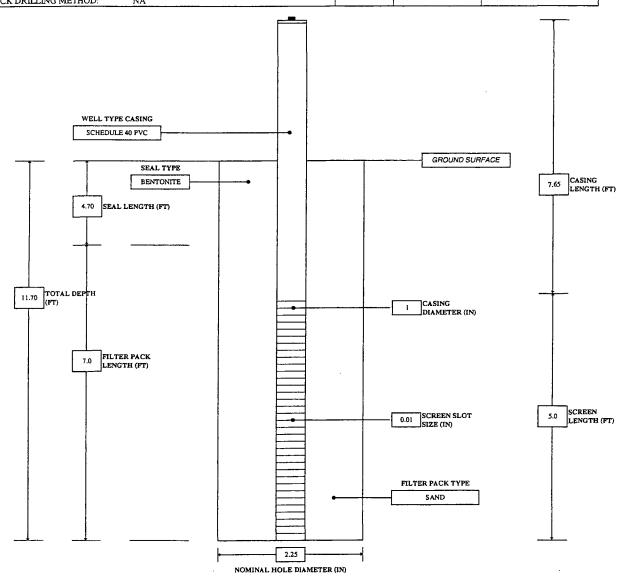
END DATE: 02/03/2006


TYPE OF DRILL RIG: AUGER SIZE & TYPE: Geoprobe 54LT - Track Mounted

NA

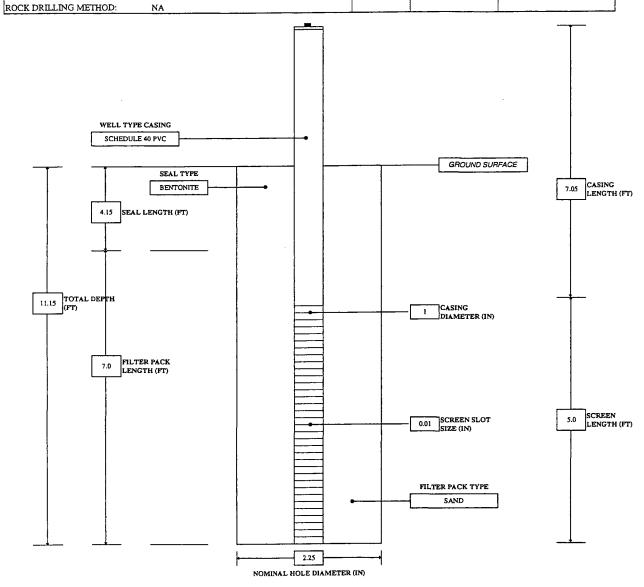
OVERBURDEN SAMPLING METHOD: Direct Push WATERLEVEL DATA DATE

TIME DEPTH TO WATER


ROCK DRILLING METHOD:

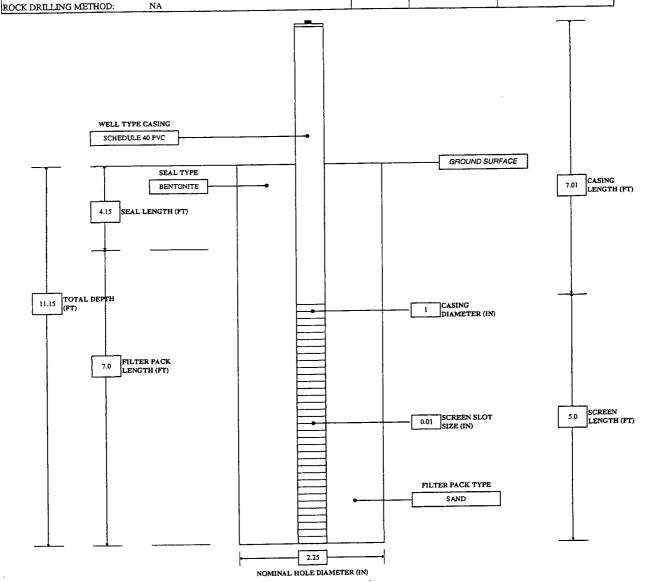
NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable


PROJECT WELL I.D. MW-10 Former JML Optical, Inc. SHEET 1 OF 1 Associates, P.C. 690 Portland Avenue PROJECT NO. 206025 Phase 3 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD. BY: MFP CONTRACTOR: TREC Environmental BORING LOCATION: Maintenance Room DRILLER: P. Willey GROUND SURFACE ELEVATION: DATUM: END DATE: 02/03/2006 LABELLA REP: M. Pelychaty START DATE: 02/03/2006 WATER LEVEL DATA TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted DATE TIME DEPTH TO WATER AUGER SIZE & TYPE: NA OVERBURDEN SAMPLING METHOD: Direct Push ROCK DRILLING METHOD:

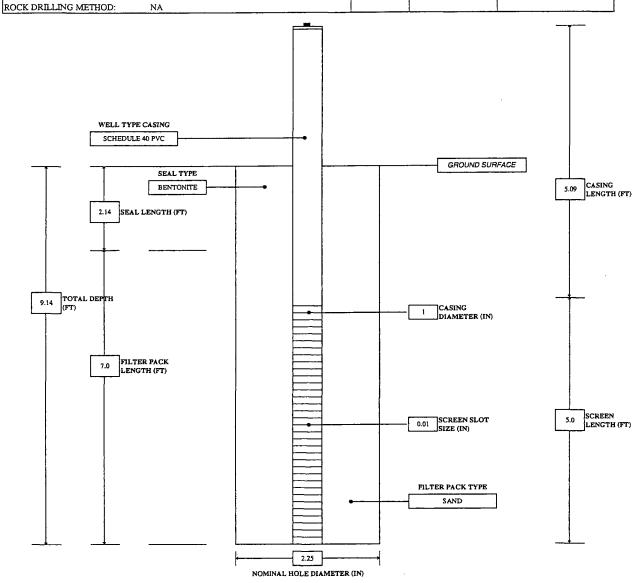
NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED,
FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable


IAR		PROJECT		WELL I.D. MW	-11	
KILL		Former JML Optical, Inc	c.	SHEET 1 OF 1		
	L Rochester, New York 14614	690 Portland Avenue		PROJECT NO. 2060	25 Phase 3	
Environmental Engineering	Consultants	Rochester, New York	Rochester, New York			
CONTRACTOR:	TREC Environmental	BORING LOCATION:				
DRILLER:	P. Willey	GROUND SURFACE ELEVATION:		DATUM:		
LABELLA REP:	M. Pelychaty	START DATE: 02/05/2006		END DATE: 02/05/20	006	
TYPE OF DRILL RI	G: Geoprobe 54LT -	Track Mounted	WATER LEVI	LDATA		
AUGER SIZE & TY	PE: NA		DATE	TIME	DEPTH TO WATER	
OVERBURDEN SA	MPLING METHOD: Di	rect Push				
i				1		

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable


PROJECT WELL I.D. MW-12 Former JML Optical, Inc. OF SHEET 1 Associates, P.C 690 Portland Avenue PROJECT NO. 206025 Phase 3 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD. BY: MFP BORING LOCATION: CONTRACTOR: TREC Environmental DATUM: GROUND SURFACE ELEVATION: P. Willey DRILLER: END DATE: 02/05/2006 START DATE: 02/05/2006 LABELLA REP: M. Pelychaty WATER LEVEL DATA Geoprobe 54LT - Track Mounted TYPE OF DRILL RIG: DEPTH TO WATER DATE AUGER SIZE & TYPE: OVERBURDEN SAMPLING METHOD: Direct Push

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED, FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable

PROJECT WELL I.D. MW-13 Former JML Optical, Inc. SHEET 1 OF 1 Associates, P.C. 690 Portland Avenue PROJECT NO. 206025 Phase 3 300 State Street, Suite 201, Rochester, New York 14614 Environmental Engineering Consultants Rochester, New York CHKD. BY: MFP CONTRACTOR: TREC Environmental BORING LOCATION: DRILLER: GROUND SURFACE ELEVATION: DATUM: P. Willey END DATE: 02/05/2006 START DATE: 02/05/2006 LABELLA REP: M. Pelychaty WATER LEVEL DATA TYPE OF DRILL RIG: Geoprobe 54LT - Track Mounted DATE DEPTH TO WATER AUGER SIZE & TYPE: OVERBURDEN SAMPLING METHOD: Direct Push

NOTE: NOT TO SCALE, DIMENSIONS IN FEET UNLESS OTHERWISE NOTED, WATER READINGS HAVE BEEN MADE UNDER TIME AND CONDITIONS STATED,
FLUCTUATION OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NA = Not Applicable

690 Portland Avenue, City of Rochester, Monroe County, New York Mostly cloudy, light snow, ~20s °F Former JML Optical, Inc. February 8, 2006 206025 Phase 3 M. Pelychaty Project Name: Sampled By: Project No.: Location: Weather: Date: WELL I.D.: MW-3 Telephone: (585) 454-6110 Facsimile: (585) 454-3066 300 State Street Rochester, New York 14614

等于进步
200
13000
few.
1
24.00
2000
100
ALL SHE
13000
200
Total S
No.
100
100
330 Tr
100 (200
1.00
ESSEN.
Sec. 3
DOM:
1000
35
200
100
SALPLANE
\$3,517821
200
100
10 mm
(A)
35.00
12
100
8
130
130
97
100
Sec. Source
100
(Sep. 249).
0
U
1
100
Const.
\$137 m
30 March
PLIN
200
20 Charles
AN
80 A
100
300
1000
200
100
15385
200
117-7
100
200
Que la
Example
· madi

					Comments								
		er			Iron (II)					*			
4 feet	~0.2 gallons	signated baile			Alkalinity					*			
	;;				Redox (mV) Alkalinity Iron (II)		-22	-47	-49	-63			
Static Water Level:	One Well Volume:	Purging Device:	Other:		Temperature	၁့	8.0	5.9	5.8	5.7			
					Dissolved O ₂ Temperature	(g/L)	08.6	13.79	11.44	12.28			
					Turbidity	(NTU)	-5.0	-5.0	-5.0	-5.0			
		7.)	bailer	MIDNIT	Conductivity	(mS/cm)	2.99	1.78	1.77	1.60			
1-inch	9.37 feet	Top of PVC	Designated bailer	MEASORE	Hd		7.47	7.20	7.14	7.15			
eter:			[]	THELD PARAMETER MEASUREMENT	Gallons	Purged	0	20.0	0.013	0.2			
Well Diameter:	Depth of Well:	Measuring Point:	Sampling Device:	Valuation PA	Time		11:39	11:43	11:47	11:56			

Gallons Purge
0.2
Total

Sample I.D.:	MW-3	Sample Time:	11:58
No. of Containers:	3	Sample Preservation:	HCL (VOCs only)
Sampled For:	▼ VOCs - 8260B TCL + NYSDEC STARS▼ SVOCs - 8270C NYSDEC STARS Only	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals	□ PCBs □ Other:
(OBSERVATITO)	SN		

- (1) Sheen observed on purge water (2) * Not available Turbidity high

	_		1
<	<u> </u>	J	
_		j	
Ī]	
7	Y	7	

Rochester, New York 14614 300 State Street

Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL I.D.: MW-4

Former JML Optical, Inc. Project Name:

690 Portland Avenue, City of Rochester, Monroe County, New York 206025 Phase 3 Location:

M. Pelychaty Sampled By: Project No.:

February 8, 2006 Date: Mostly cloudy, light snow, ~20s °F Weather:

44	300	
w	100	
er.	F 23	
28	975	
68	100	
٤.	331	
S.	485	
æ,		
Σr.		
ĸ.	27.73	
76	3.1	
36	2.3	
ш	200	
-31	3.5	
×	M.	
36		
7	200	
S.	2.00	
w	2.5	
27	2.3	
32	15%	
7	24	
ď.	RAIP.	
ж.		
3		
2	70.	
38	V D	
81	71	
ž.	-40	
2		
4	\$30	
25	الان	
97	e LEV	
23	3023	
35	ж.	
66	300	
	71.7	
22	26	
У.	ari	
31	-	
ĸ.		
S)	5.66	
26	100	
æ		
B		
į	4	
3	9	
1		
To the state of		
T X T P S A S A S A S A S A S A S A S A S A S		
は、大利は、大利の人は、大利は、		
は、 ないは、 はないは、 はないはない		
は大利を受けている。		
はない。		
はない はいかい はいけい かいかいかい		
は、 では、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は		
は、 では、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は		
はないは、これには、これには、これには、これには、これには、これには、これには、これに		
は、 ない はい はい はい はい はい はい はい		
は、 一年 は、 日 は、 日 は、 日 は、 日 は、 日 は、 日 は、 日 は、		
はない。		
はない。		
はない。世界はは、神経は世界には、一般に対して		
はない。		
はない。		
は文字はははは、はいいはいはない。		
は文字ははは、はいいは、はいいは、これには、はいいは、		
以 Tip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
以 ()		

					() Comments
	S	bailer		10000	ity Iron (I.
5.68 feet	~0.2 gallons	Designated bailer	NA		V) Alkalin
,	,	. !			Redox (m/
Static Water Level:	One Well Volume:	Purging Device:	Other:		Temperature
					Turbidity Dissolved O, Temperature Redox (mV) Alkalinity Iron (II)
					Turbidity
		C	l bailer	BMENT	pH Conductivity
1-inch	10.09 feet	Top of PV	Designated bailer	MEASUREM	
		ıt:		RAMETER	Gallons
Well Diameter	Depth of Well:	Measuring Point:	Sampling Device:	APIBLIDIPA	Time

(mS/cm) 0.732 2.50 0.543 0.0.35 7.13 6.85 Purged 0.07 0.2 11;00 11:06 11:15 11:11

6 4 6 6

8.2 7.1 7.3 6.2

10.24 10.37 10.42 10.92

-5.0 -5.0 -5.0 -5.0

(NTU)

Gallons Purged 0.2 Total

WELLSAMPLING

11:22	HCL	☐ PCBs	
Sample Time:	Sample Preservation:	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals	
MW-4	2	☑ VOCs - 8260B TCL + NYSDEC STARS ☐ SVOCs - 8270C NYSDEC STARS Only	SN
Sample I.D.:	No. of Containers:	Sampled For:	OBSERVATION

- (1) Slow recharge(2) * Not available Turbidity high

Project Name: Former JML Optical, Inc.	bes, P.C. Location:	100 State Street Project No.: 206025 Phase 3	tochester, New York 14614 M. Pelychaty	elephone: (585) 454-6110 Date: February 8, 2006	WELL I.D.: MW-5 Weather: Mostly cloudy
otical, Inc.	690 Portland Avenue, City of Rochester, Monroe County, New York			9)	Mostly cloudy, light snow, ~20s °F

		į	Location:		O O O CHANG	reduct, City Or	Tronger trong	1	***************************************	
300 State Street	reet		Proje	Project No.:	206025 Phase 3	3	•			
Rochester, No	Rochester, New York 14614		Sampled	led Bv:	M. Pelvchatv					
Telephone: (Telephone: (585) 454-6110		Date		February 8 2006	900				
מכאוווומי (ס		ı	Date.	•	1 col daily 0, 20	200				
WELL I.D.:	.D.: MW-5	5	Weather:	her:	Mostly cloudy	Mostly cloudy, light snow, ~20s °F	20s F			
WELLSA	WELLSAMPLINGINFORMATION	FORMATI	ON.							
Well Diameter		1-inch				Static Water Level		5 74 feet		
Denth of Well-	•	10 13 fact				One Well Volume:		20 2 mallone		
Meganting.	rell. Deint:	Ton of DVC	r			Durging Device	ı	ganons		
Sampling Device:	rount. Jevice	Designated hailer	hailer			other:	ł	NA		
empine -	WIND NOV DANKETING WITH STANKING TO STANKING THE STANKING	MEKKINDE								
.E	A COLUMN TO THE PARTY OF THE PA	1		E		E	(1) T	- 11 - 11 v	Tree (III)	
lime	Gallons Purged	Hd —	Conductivity (mS/cm)	lurbidity (NTU)	Dissolvea O ₂ (g/L)	l emperature °C	Kedox (mv)	Alkalinity	Iron (II)	Comments
12:47	0	7.57	3.85	5.0	9.52	11.7	63			
12:50	0.07	7.26	4.50	5.0	9.49	11.5	17			
12:53	0.12	7.24	3.04	5.0	10.15	11.4	23			
12:26	0.2	7.20	3.05	5.0	6.67	11.6	24	*	*	
Total	0.2	Gallons Purged	ırged							
WELL	WELLSAMPLING									
Sample I.D.:		\mathbf{Z}	MW-5			Sampl	Sample Time:		13:00	
No. of Containers:	ainers:	2				Sampi	Sample Preservation:		HCL	
Sampled For:	× × ×	OCs - 8260B T	▼ VOCs - 8260B TCL + NYSDEC STARS ■ SYOCs - 8270C NYSDEC STARS Only	RS nly		☐ VOCs - 8260E ☐ Total RCRA N	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals			PCBs Other:
OBSERV	A'THONS		OBSERVATIONS							
Notes:	Notes: (1) * Not available - Turbidity bigh	hidity high								
(1)	i valiacio 🕆 i ui	משייו ליושום								
 0.042 gallo	0.042 gallon per liner foot for one-inch well	ot for one-in	ich well							
0										

IABELIA	Proje
Associates, P.C.	Loca
300 State Street Rochester, New York 14614	Proje
Telephone: (585) 454-6110	Sam
Facsimile: (585) 454-3066	Date

Former JML Optical, Inc. ect Name:

ect No.:

ipled By: Date:

Mostly cloudy, light snow, ~20s °F Weather:

690 Portland Avenue, City of Rochester, Monroe County, New York February 8, 2006 206025 Phase 3 M. Pelychaty ation:

С	и	Š,
C	g	š
÷	ξ	Š
Ē	š	2
	Š	200
8		
*		200
		200
8		
		The second
		2000年の日本の
S 80 80 80		The second second
		The second of the second
		The second second
		では ないのかい 人をないか
		では のできる のの のの のの のの のの のの のの のの のの のの のの のの のの
		でいる のである のの 人を行いた かっこ
		The second second
		The second second second
		The second second second
		The second secon
		The state of the s
		The state of the s
	とうしていりてい	
		では、 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の
		を 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の
		の 日本の大利の大利の大利の大利の大利の大利の大利の大利の大利の大利の大利の大利の大利の
		では、これになった。 かいけん かっとうかい
		では、これのことをいうという。 はいはない できるかん
		では、 一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一
		では、一般のである。 では、一般のできると
		では、これになった。 これには、 これできること
		では、これのことをなって、これは、これできないという。
		では、これのことになって、 アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アンドラー・アントラー・アンドアンドアンドアンドアンドアンドアンドアンドアンドアンドアンドアンドアンドア
		The state of the s
		これにあるから、 大川県 いっちかから
		では、これには、これに対している。
		では、 一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一
		The state of the s
		これにあるからない。 かいがく かんしゅうかん かいかん
		では、これのことには、 これに対しているのできないという。
		では、 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の
		では、 一般のできないのでは、 一般のできないというできない。
		これにあることがある。 ではない からかない ちょうしゅうかい
		では、 一般のできないのでは、 一般のできないというできないのできない。
		これにあることには、 できないとうできるという
		これにあることがある。 大川 別一日であるとしていることをあるして
		これにあることには、 できることには、 これできることには、
		これにあるから、 では、 できることになっているとうと

WELL I.D.: MW-6

Well Diameter:	1-inch	Static Water Level:	4.64 feet
).09 feet	One Well Volume:	~0.2 gallons
	Top of PVC	Purging Device:	Designated bailer
••	Designated bailer	Other:	NA

	;
	,
	-
	_
	(
	١.
	•
	į
	_
	:
i.	١.
	•
	1
	_
M	L
<u>orividrasviridividivir</u>	
ETER	١.
2	
IELD PARAN	
a	
B	ļ
H	

			_	_	_	_	_	_	_	_
Comments										
Iron (II)					*					
Alkalinity					*					
Redox (mV) Alkalinity		121	-19	15	8-					
Temperature	ာ	7.3	7.7	8.0	8.0					
Dissolved O ₂ Temperature	(mg/L)	9.41	7.35	6.82	7.07					
urbidity	(NTU)	-5.0	0.0	0.0	0.0					
Time Gallons pH Conductivity T	(mS/cm)	1.86	2.83	1.52	1.23					
Hd		7.12	6.84	6.74	6.71					
Gallons	Purged	0	90.0	0.13	0.2					
Time		09:53	09:59	10:03	10:06					

Gallons Purged 0.2 Total

R	Ø
	V,
g,	7
ä	
16	71
14	×
S	S.
H	i.
Ŋ,	-
S	\mathbf{z}
è	190
Ų.	
8	-
ă	
ö	W
	2
7	
7	
7	
7	
	2 4 <i>7</i>
7	

	10:10	HCL	☐ PCBs
	Sample Time:	Sample Preservation:	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals
NG	MW-6	2	☑ VOCs - 8260B TCL + NYSDEC STARS ☐ SVOCs - 8270C NYSDEC STARS Only
WELL SAMPLING	Sample I.D.:	No. of Containers:	Sampled For:

OBSERVATIONS

Notes:	(1) * Not available - Turbidity high

	-	
IABELIA	Project Name:	Former JML Optical, Inc.
Associates, P.C.	Location:	690 Portland Avenue, City of Rochester, Monroe County, New York
300 State Street	Project No.:	206025 Phase 3
Kochester, New York 14614	Sampled By:	M. Pelychaty
l elepnone: (585) 454-6110 Facsimile: (585) 454-3066	Date:	February 8, 2006
WELL I.D.: MW-7	Weather:	Mostly cloudy, light snow, ~20s °F

	1	į	2007	Courtou:	O'O I O'I'MING	ove i or traine Aveille, city of invented, monthly county, them I of the	י דיני י והספרוויסטדי	JILOS COURTY,	, INCW LUIN	
300 State Street	reet		Project	ect No.:	206025 Phase 3	3.3				:
Rochester, N	Rochester, New York 14614 Telephone: (585) 454 6110		Sam	Sampled By:	M. Pelychaty					
Facsimile: (E	Facsimile: (585) 454-0110		Date:		February 8, 2006	900				
WELL I.D.:	i.D.: MW-7	1-7	Weather:	ther:	Mostly cloudy	Mostly cloudy, light snow, ~20s °F	20s ºF			
WEILSW	WELL SAVIPEING INFORMATION	PORWATI	ON THE							
Well Diameter:	efer:	1-inch				Static Water I evel.		7 37_fapt		
Depth of Well:	Vell:	11 45-feet				One Well Volume:		~0.2 aallons		
Measuring Point:	Point:	Top of PVC	()			Purging Device:	į	Designated hailer	10	
Sampling Device:	Jevice:	Designated bailer	bailer			Other:	1 [1		
RITELD PA	HEIEUDPARAMETER MEASUREMENT	MEASURE					Committee and the second			
Time	Gallons Purged	Hd	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂	Temperature °C	Redox (mV)	Alkalinity	Iron (II)	Comments
14:22	0	7.27	2.61	0.0	7.68	14.0	95			
14:25	0.1	7.13	1.42	0.0	9.73	14.1	105	*	*	Purged dry
Total	0.1	Gallons Purged	ırged							
MIIIM	SAMEDING		WELL SAMPLING							
Cample 1 D .		,	TW 7				H			
No. of Containers:	ainers:	2	1VI VV - /			Samp. Sampl	Sample 1 me: Sample Preservation:	•	14:40 HCI	
Sampled For:		OCs - 8260B T	▼ VOCs - 8260B TCL ▼ SVOCs - 8270C NYSDEC STARS Only	nly		☐ VOCs - 8260E ☐ Total RCRA №	UOCs - 8260B NYSDEC STARS Total RCRA Metals			PCBs
ØBSERV	SNOILI		OBSERVATIONS							
Notes: (1) Well pt (2) * Not A	Notes: (1) Well purged dry, sampled at 14:40 (2) * Not Available – Turbidity high	pled at 14:4 rbidity high	01							
0.042 gallc	0.042 gallon per liner foot for one-inch well	ot for one-in	ch well							

IABELIA	Project Name:	Former JML Optical, Inc.
Associates, P.C.	Location:	690 Portland Avenue, City of Rochester
300 State Street	Project No.:	206025 Phase 3
Rochester, New York 14614	Sampled Bv:	M. Pelychaty
Telephone: (585) 454-6110	· Companyation	
Facsimile: (585) 454-3066	Date:	February 8, 2006
WITH I ID. MIN. Q	Washan	Monthy olonder light enough

<u> </u>			rroje	Project ivame:	FUILLE JIMIL OPIICAL, IIIC	Jucai, inc.				
	Associates PC		Local	Location:	690 Portland	690 Portland Avenue. City of Rochester. Monroe County, New York	Rochester, Mor	nroe County.	New York	
300 State Street	et .		Proie	Project No.:	206025 Phase 3	3				
Rochester, Ne	Rochester, New York 14614		Samı	Sampled Bv:	M. Pelvchatv					
Telephone: (5	Telephone: (585) 454-6110				T-1-1-0	700				
Facsimile: (5)	Facsimile: (585) 454-3066		Date:	••	repruary 8, 2000	000				
WELL I.D.:	D.: MW-8	8-	Weather:	ther:	Mostly cloud	Mostly cloudy, light snow, ~20s °F	.0s °F			
WELL SA	WELL SAMPLING INFORMATION	FORMATIL	NO							
Well Diameter:	ter:	1-inch				Static Water Level:		5.82-feet		
Depth of Well:	ell:	11.19-feet				One Well Volume:		~0.2 gallons		
Measuring Point: Sampling Device:	t: ce:	Top of PVC Designated bailer	bailer			Purging Device: Other:	1 1	Designated bailer NA	1t	
FILET IN P.A.	HEITELD PARANCESTER WITH STRING	MEASTIRE	MIDNE							
Time	Gallons	Hd	Conductivity	Turbidity	Dissolved O ₂	Temperature	Redox (mV)	Alkalinity	Iron (II)	Comments
14.41	nagra 1	7.39	6.82	-5.0	6.50	17.8	108			
14:44	0.07	7.26	1.79	-5.0	8.00	16.9	130			
14:47	0.13	7.04	1.63	-5.0	7.82	17.0	136			
14:50	0.2	7.07	1.56	-5.0	7.56	16.8	145	*	*	
Total	0.2	_ Gallons Purged	ırged							
WELLS	WELL SAMPLING									
Sample I.D.:		W	MW-8			Sampl	Sample Time:	•	14:53	
No. of Containers:	uners:	2				Sampl	Sample Preservation:	•	HCI	
Sampled For:	× × ×	OCs - 8260B T	▼ VOCs - 8260B TCL ■ SVOCs - 8270C NYSDEC STARS Only	hly		☐ VOCs - 8260B ☐ Total RCRA N	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals			PCBs
OBSERVA	OBSERVATIONS									
Notes: (1) * Not A	Notes: (1) * Not Available – Turbidity high	rbidity high								

Project Name: Former JML Optical. Inc.	es, P.C. Location:	Project No.:	Sampled By: M. Pelychaty	Facsimile: (585) 454-3066 Date: February 8, 2006	WELL I.D.: MW-9 Weather: Mostly cloudy,
ical, Inc.	690 Portland Avenue, City of Rochester, Monroe County, New York				Mostly cloudy, light snow, ~20s °F

300 State Street	eet		Proie	Project No.:	206025 Phase 3	3				
Rochester, Ne	Rochester, New York 14614		Samt	Sampled By:	M. Pelychaty					
Telephone: (\$ Facsimile: (58	Telephone: (585) 454-6110 Facsimile: (585) 454-3066		, Date:	,	February 8, 2006	900				
WELL LD:	D.: MW-9	6-,	Weather	her:	Mostly clouds	Mostly cloudy light snow 20c 9E	10° 00°			
					IMOSELY CIOURY	y, iigiit siiow, ~.	SUS F			
WELLSA	WELL SAMPLING INFORMATION	FORMATI	e. · ·NO							
Well Diameter:	ter:	1-inch				Static Water Level		4 10-feet		
Depth of Well:	ell:	11.23-feet				One Well Volume:		~0 3 gallone		
Measuring Point:	Point:	Top of PVC	(1)			Purging Device:	1	Designated hailer	J.	
Sampling Device:	evice:	Designated bailer	bailer			Other:	ľ	1		
FIELDPA	RAMETER	MEASURE	FIEED PARAMETIER WIEASUREMENT							
Time	Gallons	Hd	Conductivity		Dissolved O ₂	Temperature	Redox (mV)	Alkalinity	Iron (II)	Comments
12.14	o o	7.63	(IIIS/CIII)	264.0	(J/g)	ي ر	į			
12.14	0	7.41	24.7	354.0	5.09	1.6	-34			
17:33	1.0	7.41	2.10	-5.0	9.37	10.3	-58			
77:71	0.2	7.27	2.43	-5.0	9.10	10.1	-27			
17.70	0.3	+77./	2.43	-5.0	8.80	10.0	-29	*	*	
Total	0.3	Gallons Purged	ırged							
SIDIAM	WELLSAMPLING			4					1	
		ACTION AND AND ACTION								
Sample I.D.: No. of Containers:	iners:	X C	MW-9			Sampl	Sample Time:	•	12:32 UC! (VOC: cml.)	(1)
						oamp	c i icsci vationi.	•	nCI (VOCS	omy
Sampled For:	×	OCs - 8260B TV /OCs - 8270C I	 ☒ VOCs - 8260B TCL + NYSDEC STARS ☒ SVOCs - 8270C NYSDEC STARS Only 	RS aly		U VOCs - 8260B	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals			☐ PCBs
OBSERVA	OBSERVATIONS							B		
Notes: (1) Sheen ob	Notes: (1) Sheen observed on purge water	irge water								
(2) Strong odor	(2) Strong odor (3) * Not Available Turbiditu biob	tidite district								
Y 10NI . (c)	vaniaoje – 1 u.	rotatry nign								
0.042 gallor	0.042 gallon per liner foot for one-inch well	ot for one-inc	ch well							

300 State Street Rochester, New York 14614

WELL I.D.: MW-10 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

Former JML Optical, Inc. Project Name:

Location:

690 Portland Avenue, City of Rochester, Monroe County, New York

206025 Phase 3 M. Pelychaty Project No.: Sampled By:

Date:

Weather:

Mostly cloudy, light snow, ~20s °F **February 8, 2006**

$\tilde{\omega}_{2}$	23
¥.	
Š	
	Ť.
	ととこれとな
	して コンマイ
	システン マイ
	し
	サスト コレマグ
	して「コマイン
	システントンマス・
	して「ママケー
	して「ママイニー
	して マイス・
	シスニュ レマス・ニュ
	システン マイス・ニュー
	レス T スタス エ ~
	レスー・コンタイプ ニュム
	<u> </u>
	レス・ションタグ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	上 アーマンマグラーエス

	4.64-feet	~0.3 gallons	Designated bailer	NA	
	Static Water Level:	One Well Volume:	Purging Device:	Other:	
INFORMATION	1-inch	12.65-feet	Top of PVC	Designated bailer	
WELLSAWPLING	Well Diameter:	Depth of Well:	Measuring Point:	Sampling Device:	

FIELD PARAMETER MEASUREMENT

_		Г	Г	Т	Г	<u> </u>	_	Г	1
Comments									
Iron (II)					*				
Alkalinity					*				
Redox (mV)		252	56	15	2				
Temperature	၁့	13.4	14.3	14.5	14.7				
Dissolved O ₂	(g/L)	9.40	9.16	99'L	-5.0 6.85 14.7 2 * *				
Turbidity	(NTU)	250.0	-5.0	-5.0	-5.0				
Conductivity	(mS/cm)	2.15	2.20	2.37	2.73				ırged
Hd		6.25	6.74	08.9	6.82				Gallons Purged
Gallons	Purged	0	0.1	0.2	0.3				0.3
Time		09:17	09:22	09:27	06:30				Total

)			
•			
[

	09:37	HCI	☐ PCBs	
	Sample Time:	Sample Preservation:	☐ VOCS - 8260B NYSDEC STARS ☐ Total RCRA Metals	
FING	MW-10	2	☑ VOCs - 8260B TCL + NYSDEC STARS ☐ SVOCs - 8270C NYSDEC STARS Only	S
WELLSAMPLING	Sample I.D.:	No. of Containers:	Sampled For:	OBSERVATIONS

		high,		
		bidity		
		- Tui		
Q I		ilable		
		ot Ava		
Texnacao	otes:	(1) * Not Available - Turbidity high		
	Ź	<u> </u>	 	

Project Name: Former JML Optical, Inc.	es, P.C. Location:	Project No.:	fochester, New York 14614 Sampled By: M. Pelychaty	relephone: (585) 454-6110 -acsimile: (585) 454-3066 -acsimile: (585) 454-3066 -acsimile: (585) 454-6110	WELL I.D.: MW-11 Weather: Mostly cloudy
ical, Inc.	690 Portland Avenue, City of Rochester, Monroe County, New York				Mostly cloudy, light snow, ~20s °F

	Associates, P.C.	9, P.C.	Loca	Location:	690 Portland	690 Portland Avenue, City of Rochester, Monroe County, New York	Rochester, Mc	onroe County	New York	
300 State Street	et		Project]	ect No.:	206025 Phase 3	93				
Rochester, New York 14614	v York 14614		Sam	Sampled By:	M. Pelvchatv	i			÷	
Telephone: (585) 454-6110	35) 454-6110		,	,						
Facsimile: (585) 454-3066	5) 454-3066		Date:	••	February 8, 2006	900				
WELL I.D.:).: MW-11	/-11	Weather:	ther:	Mostly cloud	Mostly cloudy, light snow, ~20s °F	20s °F			
WELL SAMPLING INFORMATION	PLINGIN	FORMATE	NO.							
		1 to the				T T T T T T T T T T T T T T T T T T T				
well Diameter:	er:	I-inch				Static Water Level:		5./8-teet		
Depth of Well:		12.05-feet				One Well Volume:	l	~0.3 gallons		
Measuring Point:	oint:	Top of PVC	r.)			Purging Device:	l f	Designated bailer	er	
Sampling Device:	vice:	Designated bailer	bailer			Other:	Z	4		
FEIFLD PARAMIEMER WIFAS UREMENT	AMETER	MEASURE	MENT							
Time	Gallons	Hd	Conductivity	Turbidity	Dissolved O ₂	Temperature	Redox (mV)	Alkalinity	Iron (II)	Comments
	Purged		(mS/cm)	(NTU)	(g/L)	္ပင				
10:27	0	96.9	9.55	-5.0	7.94	7.8	-118			
10:33	0.1	7.00	2.02	-5.0	9.53	8.9	-131			
10:37	0.2	7.13	2.47	-5.0	9.91	8.9	-64			
10:45	0.3	7.35	2.99	-5.0	9.46	T.T	-32	*	*	
Total	0.3	_ Gallons Purged	ırged							
WELLSAVIPUING	MATHEMAC									
	And the second s					C	·			
Sample 1.D.:		Σþ	11-W1/V			Sampi	Sample 1 me:		00:01	
INO. OI CONTAINERS:		7				Sampl	Sample Preservation:		HCI	
Sampled For:		OCs - 8260B T		ARS inly		☐ VOCs - 8260E ☐ Total RCRA №	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals	το.		□ PCBs
OBSERVATIONS	TONS									
Notes:										
(1) Well able to be purged dry (2) Slow recharge	to be purge	ed dry								
(3) * Not Available – Turbidity high	ailable – Tu	ırbidity high								
0.042 gallon	per liner for	0.042 gallon per liner foot for one-inch well	ch well		-					
)										

Telephone: (.	Telephone: (585) 454-6110		•	•						
Facsimile: (5	Facsimile: (585) 454-3066		Date:	••	February 8, 2006	900				
WELL I.D.:	.D.: MW-12	7-12	Weather	ther:	Mostly cloudy	Mostly cloudy, light snow, ~20s °F	20s °F			
WEEL SA	WEELSAWPIINGINRORMATION	FORMATI	NO.							
Well Diameter:	ster:	1-inch				Static Water Level:		5.76-feet		
Depth of Well:	'ell:	12.01-feet				One Well Volume:		~0.3 gallons		
Measuring Point:	Point:	Top of PVC	נ			Purging Device:	ı	Designated bailer	er	
Sampling Device:	evice:	Designated bailer	bailer			Other:	' '			
INTOIND PA	HIELD PÄRÄMETER MEASUREMENT	MEASURE								
Time	Gallons Purged	Hd	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (g/L)	Temperature °C	Redox (mV)	Alkalinity	Iron (II)	Comments
13:21	0	7.40	4.20	-5.0	6.93	9.5	61			
13:25	0.1	7.34	1.87	-5.0	8.12	9.7	-25			1977
13:29	0.2	7.16	1.46	-5.0	8.95	9.6	-36			
13:32	0.3	7.03	1.08	-5.0	8.56	9.6	-45	*	*	
Total	0.3	Gallons Purged	ırged							
TIGM	WELL SAMPLING									
Sample I.D.:		N	MW-12	:		Samp	Sample Time:		13:40	
No. of Containers:	niners:	3				Sampi	Sample Preservation:	•	HCI (VOCs only)	s only)
Sampled For:	> <u>\</u>	OCs - 8260B T VOCs - 8270C	 X VOCs - 8260B TCL + NYSDEC STARS X SVOCs - 8270C NYSDEC STARS Only 	.R.S nly		VOCs - 8260I Total RCRA N	U VOCs - 8260B NYSDEC STARS Total RCRA Metals	10		□ PCBs
OBSERV.	SNOJAN		OBSERVATIONS							
Notes: (1) * Not A	Notes: (1) * Not Available – Turbidity high	ırbidity high								
0.042 gallo	0.042 gallon per liner foot for one-inch well	ot for one-in	ch well							

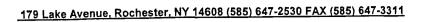
NBELLA

Project Name: Former JML Optical, Inc.

Well Diameter:	ı	1-inch				Static Water Level:	'	5.22-feet		
Depth of Well:	ı	10.09-feet				One Well Volume:		2 gallons		
Measuring Point:	į	Top of PVC	()			Purging Device:		Designated bailer	er	
Sampling Device:		Designated bailer	bailer			Other:		ارا		
FIEIDD PARAWIETER MEASUREMENT	METER	MEASURE	MENT							
Time	Gallons	Hd	Conductivity	Turbidity	Dissolved O ₂	Temperature	Redox (mV)	Alkalinity	Iron (II)	Comments
]	Purged		(mS/cm)	(NTU)	(g/L)	ွိ		•		
13:50	0	7.22	7.59	-5.0	9:26	10.4	66-			
13:52	0.07	7.03	1.06	-5.0	71.6	9.2	-64			
13:54	0.13	6.97	1.09	-5.0	10.23	9.0	-50			
13:56	0.2	6.91	1.19	-5.0	90.6	8.8	-52	*	*	
			,							
Total	0.2	Gallons Purged	ırged							
WELL SAMPLING	PEING									
Sample I.D.:		Z	MW-13			Sampl	Sample Time:		14:00	
No. of Containers:	S:	3				Sampl	Sample Preservation:	. '	HCl (VOCs only)	nly)
Sampled For:	o v N N	Cs - 8260B T OCs - 8270C	▼ VOCs - 8260B TCL + NYSDEC STARS ▼ SYOCs - 8270C NYSDEC STARS Only	RS ıly		☐ VOCs - 8260E ☐ Total RCRA №	☐ VOCs - 8260B NYSDEC STARS ☐ Total RCRA Metals		PCBs	CBs ther:

OBSERVATIONS

Notes: (1) * Not Available – Turbidity high


Groundwater Levels and Elevations (Feet)

MW-13	100.01	5.22	94.79
MW-12	100.43	5.76	94.67
MW-11	101.05	5.78	95.27
MW-10	101.05	4.64	96.41
WW-9	100.68	4.10	96.58
MW-8	100.23	5.82	94.41
MW-7	100.44	7.32	93.12
MW-6	99.50	4.64	94.86
MW-5	100.19	5.74	94.45
MW-4	102.40	5.68	96.72
MW-3	100.51	5.14	95.37
MW-2	99.94	2.74	97.20
MW-1	100.32	2.72	97.60
Location	Top of PVC Riser	Static Groundwater Level	Groundwater Elevation

Note: (1) All measurements are in feet. (2) Groundwater elevation is site specific. (3) Groundwater measurements collected on February 8, 2006 and were taken from too of PVC riser.

Appendix 2

ient:

LaBella Assoicates, P.C.

Lab Project No.: 06-0472

jent Job Site:

690 Portland Avenue

Lab Sample No.:

1983

Rochester, NY 206025 Phase 3 Sample Type:

Soil

Jlient Job No.:

Date Sampled:

02/01/2006

eld Location: ield ID No.:

B-27/S-3 N/A

Date Received:

02/07/2006

Laboratory Report for Solid Waste Analysis

Parameter	Date Analyzed	Analytical Method	Result (mg/kg)
Arsenic	02/10/2006	SW846 6010	5.01
Barium	02/10/2006	SW846 6010	31.7
Cadmium	02/10/2006	SW846 6010	<0.503
Chromium	02/10/2006	SW846 6010	6.36
Lead	02/10/2006	SW846 6010	9.51
Mercury	02/14/2006	SW846 7471	<0.0189
Selenium	02/13/2006	SW846 6010	<0.503
Silver	02/10/2006	SW846 6010	<1.00

ELAP ID No.:10958

comments:

^pproved By: _

Bruce Hoogesteger, Technical Director

Semi-Volatile STARS Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Project Number: 06-0472 Lab Sample Number: 1983

Client Job Number:

206025 Phase 3

Date Sampled:

Field Location:

B-27 / S-3

Date Received:

02/01/2006

Field ID Number: Sample Type:

N/A Soil

02/07/2006

Date Analyzed:

02/10/2006

Base / Neutrals	Results in ug / Kg
Acenaphthene	ND< 308
Acenaphthylene	ND< 308
Anthracene	ND< 308
Benzo (a) anthracene	ND< 308
Benzo (a) pyrene	ND< 308
Benzo (b) fluoranthene	ND< 308
Benzo (g,h,i) perylene	ND< 308
Benzo (k) fluoranthene	ND< 308
Chrysene	ND< 308
Dibenz (a,h) anthracene	ND< 308
Fluoranthene	ND< 308
Fluorene	ND< 308
Indeno (1,2,3-cd) pyrene	ND< 308
Naphthalene	ND< 308
Phenanthrene	535
Pyrene	ND< 308

ELAP Number 10958

Method: EPA 8270C

Data File: S28244.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472S1.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: B-23 / S-2

Sample Type:

N/A Soil Lab Project Number: 06-0472

Lab Sample Number: 1980

Date Sampled:

02/01/2006

Date Received:

02/07/2006

Date Analyzed:

02/09/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 7.27
Bromomethane	ND< 7.27
Bromoform	ND< 7.27
Carbon Tetrachloride	ND< 7.27
Chloroethane	ND< 7.27
Chloromethane	ND< 7.27
2-Chloroethyl vinyl Ether	ND< 7.27
Chloroform	ND< 7.27
Dibromochloromethane	ND< 7.27
1,1-Dichloroethane	ND< 7.27
1,2-Dichloroethane	ND< 7.27
1,1-Dichloroethene	ND< 7.27
cis-1,2-Dichloroethene	ND< 7.27
trans-1,2-Dichloroethene	ND< 7.27
1,2-Dichloropropane	ND< 7.27
cis-1,3-Dichloropropene	ND< 7.27
trans-1,3-Dichloropropene	ND< 7.27
Methylene chloride	ND< 18.2
1,1,2,2-Tetrachloroethane	ND< 7.27
Tetrachloroethene	ND< 7.27
1,1,1-Trichloroethane	ND< 7.27
1.1.2-Trichloroethane	ND< 7.27
1'''	

Aromatics	Results in ug / Kg
Benzene	ND< 7.27
Chlorobenzene	ND< 7.27
Ethylbenzene	ND< 7.27
Toluene	ND< 7.27
m,p-Xylene	ND< 7.27
o-Xylene	ND< 7.27
Styrene	ND< 7.27
1.2-Dichlorobenzene	ND< 7.27
1,3-Dichlorobenzene	ND< 7.27
1,4-Dichlorobenzene	ND< 7.27

Ketones	Results in ug / Kg
Acetone	ND< 36.4
2-Butanone	ND< 18.2
2-Hexanone	ND< 18.2
4-Methyl-2-pentanone	ND< 18.2

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 18.2
Vinyl acetate	ND< 18.2

ELAP Number 10958

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Method: EPA 8260B

9.23

ND< 7.27

ND< 7.27

Data File: V34559.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Matrix spike outlier indicates probable matrix effect.

Signature:

Bruce Hoogesteger. Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V1,XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

206025 Phase 3 Client Job Number:

Field Location:

B-24 / S-3

Field ID Number: Sample Type:

N/A Soil Lab Project Number: 06-0472

Lab Sample Number: 1981

Date Sampled:

02/01/2006

Date Received:

02/07/2006

Date	Analyzed:	
------	-----------	--

02/09/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 6.31
Bromomethane	ND< 6.31
Bromoform	ND< 6.31
Carbon Tetrachloride	ND< 6.31
Chloroethane	ND< 6.31
Chloromethane	ND< 6.31
2-Chloroethyl vinyl Ether	ND< 6.31
Chloroform	ND< 6.31
Dibromochloromethane	ND< 6.31
1,1-Dichloroethane	ND< 6.31
1,2-Dichloroethane	ND< 6.31
1,1-Dichloroethene	ND< 6.31
cis-1,2-Dichloroethene	ND< 6.31
trans-1,2-Dichloroethene	ND< 6.31
1,2-Dichloropropane	ND< 6.31
cis-1,3-Dichloropropene	ND< 6.31
trans-1,3-Dichloropropene	ND< 6.31
Methylene chloride	ND< 15.8
1,1,2,2-Tetrachloroethane	ND< 6.31
Tetrachloroethene	ND< 6.31
1,1,1-Trichloroethane	ND< 6.31
1,1,2-Trichloroethane	ND< 6.31
Trichloroethene	16.9
Trichlorofluoromethane	ND< 6.31
Vinyl chloride	ND< 6.31

Aromatics	Results in ug / Kg
Benzene	ND< 6.31
Chlorobenzene	ND< 6.31
Ethylbenzene	ND< 6.31
Toluene	ND< 6.31
m,p-Xylene	ND< 6.31
o-Xylene	ND< 6.31
Styrene	ND< 6.31
1,2-Dichlorobenzene	ND< 6.31
1,3-Dichlorobenzene	ND< 6.31
1,4-Dichlorobenzene	ND< 6.31

Ketones	Results in ug / Kg
Acetone	ND< 31.6
2-Butanone	ND< 15.8
2-Hexanone	ND< 15.8
4-Methyl-2-pentanone	ND< 15.8

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 15.8
Vinyl acetate	ND< 15.8
,	

ELAP Number 10958

Method: EPA 8260B

Data File: V34562.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogestege: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V2.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location:

B-25 / S-2

Field ID Number: Sample Type:

N/A Soil Lab Project Number: 06-0472

Lab Sample Number: 1982

Date Sampled:

02/01/2006

Date Received:

02/07/2006

Date Analyzed:

02/10/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 163
Bromomethane	ND< 163
Bromoform	ND< 163
Carbon Tetrachloride	ND< 163
Chloroethane	ND< 163
Chloromethane	ND< 163
2-Chloroethyl vinyl Ether	ND< 163
Chloroform	ND< 163
Dibromochloromethane	ND< 163
1,1-Dichloroethane	ND< 163
1,2-Dichloroethane	ND< 163
1,1-Dichloroethene	ND< 163
cis-1,2-Dichloroethene	677
trans-1,2-Dichloroethene	ND< 163
1,2-Dichloropropane	ND< 163
cis-1,3-Dichloropropene	ND< 163
trans-1,3-Dichloropropene	ND< 163
Methylene chloride	ND< 409
1,1,2,2-Tetrachloroethane	ND< 163
Tetrachloroethene	ND< 163

Aromatics	Results in ug / Kg
Benzene	ND< 163
Chlorobenzene	ND< 163
Ethylbenzene	ND< 163
Toluene	ND< 163
m,p-Xylene	ND< 163
o-Xylene	ND< 163
Styrene	ND< 163
1.2-Dichlorobenzene	ND< 163
1,3-Dichlorobenzene	ND< 163
1.4-Dichlorobenzene	ND< 163

Ketones	Results in ug / Kg
Acetone	ND< 817
2-Butanone	ND< 409
2-Hexanone	ND< 409
4-Methyl-2-pentanone	ND< 409

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 409
Vinyl acetate	ND< 409

ELAP Number 10958

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichiorofluoromethane

Method: EPA 8260B

ND< 163

ND< 163

ND< 163 ND< 163

8,420

Data File: V34583.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger Fechnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V3.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

206025 Phase 3

Client Job Number: Field Location:

B-27 / S-3

Field ID Number: Sample Type:

N/A Soil Lab Project Number: 06-0472 Lab Sample Number: 1983

Date Sampled:

02/01/2006

Date Received:

02/07/2006

Date Analyzed:

02/09/2006

Haiocarbons	Results in ug / Kg
Bromodichloromethane	ND< 62.1
Bromomethane	ND< 62.1
Bromoform	ND< 62.1
Carbon Tetrachloride	ND< 62.1
Chloroethane	ND< 62.1
Chloromethane	ND< 62.1
2-Chloroethyl vinyl Ether	ND< 62.1
Chloroform	ND< 62.1
Dibromochloromethane	ND< 62.1
1,1-Dichloroethane	ND< 62.1
1,2-Dichloroethane	ND< 62.1
1,1-Dichloroethene	ND< 62.1
cis-1,2-Dichloroethene	ND< 62.1
trans-1,2-Dichloroethene	ND< 62.1
1,2-Dichloropropane	ND< 62.1
cis-1,3-Dichloropropene	ND< 62.1
trans-1,3-Dichloropropene	ND< 62.1
Methylene chloride	ND< 155
1,1,2,2-Tetrachloroethane	ND< 62.1
Tetrachloroethene	ND< 62.1
1,1,1-Trichloroethane	ND< 62.1
1,1,2-Trichloroethane	ND< 62.1
Trichloroethene	ND< 62.1
Trichlorofluoromethane	ND< 62.1
Vinyl chloride	ND< 62.1
	N 4-45

Results in ug / Kg
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1
ND< 62.1

Ketones	Results in ug / Kg
Acetone	ND< 310
2-Butanone	ND< 155
2-Hexanone	ND< 155
4-Methyl-2-pentanone	ND< 155

Miscellaneous	Results in ug / Kg
Carbon disulfide Vinyl acetate	ND< 155 ND< 155

ELAP Number 10958

Method: EPA 8260B

Data File: V34564.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Project Number: 06-0472 Lab Sample Number: 1983

Client Job Number:

206025 Phase 3

Date Sampled:

02/01/2006

Field Location: Field ID Number: B-27 / S-3

Date Received:

02/07/2006

Field ID Number Sample Type: N/A Soil

Date Analyzed:

02/09/2006

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 62.1	1,2,4-Trimethylbenzene	ND< 62.1
sec-Butylbenzene	ND< 62.1	1,3,5-Trimethylbenzene	ND< 62.1
tert-Butylbenzene	ND< 62.1		
n-Propylbenzene	ND< 62.1	Miscellaneous	
Isopropylbenzene	ND< 62.1	Methyl tert-butyl Ether	ND< 62.1
p-Isopropyltoluene	ND< 62.1		
Naphthalene	2,450		D. I. Ell. (04504 D

ELAP Number 10958

Method: EPA 8260B

Data File: V34564.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: B-29 / S-3

Sample Type:

N/A Soil Lab Project Number: 06-0472 Lab Sample Number: 1984

Date Sampled:

Date Received:

02/01/2006 02/07/2006

Date Analyzed:

02/09/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 10.3
Bromomethane	ND< 10.3
Bromoform	ND< 10.3
Carbon Tetrachloride	ND< 10.3
Chloroethane	ND< 10.3
Chloromethane	ND< 10.3
2-Chloroethyl vinyl Ether	ND< 10.3
Chloroform	ND< 10.3
Dibromochloromethane	ND< 10.3
1,1-Dichloroethane	ND< 10.3
1,2-Dichloroethane	ND< 10.3
1,1-Dichloroethene	ND< 10.3
cis-1,2-Dichloroethene	ND< 10.3
trans-1,2-Dichloroethene	ND< 10.3
1,2-Dichloropropane	ND< 10.3
cis-1,3-Dichloropropene	ND< 10.3
trans-1,3-Dichloropropene	ND< 10.3
Methylene chloride	ND< 25.8
1,1,2,2-Tetrachloroethane	ND< 10.3
Tetrachloroethene	ND< 10.3
1,1,1-Trichloroethane	ND< 10.3
1,1,2-Trichloroethane	ND< 10.3
Trichloroethene	ND< 10.3
Trichlorofluoromethane	ND< 10.3
Vinyl chloride	ND< 10.3

[Aation	Results in ug / Kg
Aromatics	ND< 10.3
Benzene	1,12
Chlorobenzene	ND< 10.3
Ethylbenzene	ND< 10.3
Toluene	ND< 10.3
m,p-Xylene	ND< 10.3
o-Xylene	ND< 10.3
Styrene	ND< 10.3
1,2-Dichlorobenzene	ND< 10.3
1,3-Dichlorobenzene	ND< 10.3
1,4-Dichlorobenzene	ND< 10.3

esults in ug / Kg
ND< 51.7
ND< 25.8
ND< 25.8
ND< 25.8

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 25.8
Vinyl acetate	ND< 25.8
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V34565.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location:

Field ID Number: Sample Type:

B-30 / S-3 N/A

Soil

Lab Project Number: 06-0472

Lab Sample Number: 1985

Date Sampled:

02/01/2006

Date Received:

02/07/2006

Date Analyzed:

02/09/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 10.3
Bromomethane	ND< 10.3
Bromoform	ND< 10.3
Carbon Tetrachloride	ND< 10.3
Chloroethane	ND< 10.3
Chloromethane	ND< 10.3
2-Chloroethyl vinyl Ether	ND< 10.3
Chioroform	ND< 10.3
Dibromochloromethane	ND< 10.3
1,1-Dichloroethane	ND< 10.3
1,2-Dichloroethane	ND< 10.3
1,1-Dichloroethene	ND< 10.3
cis-1,2-Dichloroethene	ND< 10.3
trans-1,2-Dichloroethene	ND< 10.3
1,2-Dichloropropane	ND< 10.3
cis-1,3-Dichloropropene	ND< 10.3
trans-1,3-Dichloropropene	ND< 10.3
Methylene chloride	ND< 25.7
1,1,2,2-Tetrachioroethane	ND< 10.3
Tetrachloroethene	ND< 10.3
1,1,1-Trichloroethane	ND< 10.3
1,1,2-Trichloroethane	ND< 10.3
Trichloroethene	ND< 10.3
Trichlorofluoromethane	ND< 10.3
Vinyl chloride	ND< 10.3
	Moth

Aromatics	Results in ug / Kg
Benzene	ND< 10.3
Chlorobenzene	ND< 10.3
Ethylbenzene	ND< 10.3
Toluene	ND< 10.3
m,p-Xylene	ND< 10.3
o-Xylene	ND< 10.3
Styrene	ND< 10.3
1.2-Dichlorobenzene	ND< 10.3
1,3-Dichlorobenzene	ND< 10.3
1,4-Dichlorobenzene	ND< 10.3

Ketones	Results in ug / Kg
Acetone	ND< 51.5
2-Butanone	ND< 25.7
2-Hexanone	ND< 25.7
4-Methyl-2-pentanone	ND< 25.7

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 25.7
Vinyl acetate	ND< 25.7
•	

ELAP Number 10958

Method: EPA 8260B

Data File: V34566.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location:

B-31 / S-2

Field ID Number: Sample Type:

N/A Soil Lab Project Number: 06-0472

Lab Sample Number: 1986

Date Sampled:

02/01/2006

Date Received:

02/07/2006

Date Analyzed:

02/09/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 10.6
Bromomethane	ND< 10.6
Bromoform	ND< 10.6
Carbon Tetrachloride	ND< 10.6
Chloroethane	ND< 10.6
Chloromethane	ND< 10.6
2-Chloroethyl vinyl Ether	ND< 10.6
Chloroform	ND< 10.6
Dibromochloromethane	ND< 10.6
1,1-Dichloroethane	ND< 10.6
1,2-Dichloroethane	ND< 10.6
1,1-Dichloroethene	ND< 10.6
cis-1,2-Dichloroethene	44.1
trans-1,2-Dichloroethene	ND< 10.6
1,2-Dichloropropane	ND< 10.6
cis-1,3-Dichloropropene	ND< 10.6
trans-1,3-Dichloropropene	ND< 10.6
Methylene chloride	ND< 26.6
1,1,2,2-Tetrachloroethane	ND< 10.6
Tetrachioroethene	ND< 10.6
1,1,1-Trichloroethane	ND< 10.6
1,1,2-Trichloroethane	ND< 10.6
Trichloroethene	212

Aromatics	Results in ug / Kg
Benzene	ND< 10.6
Chlorobenzene	ND< 10.6
Ethylbenzene	ND< 10.6
Toluene	ND< 10.6
m,p-Xylene	ND< 10.6
o-Xylene	ND< 10.6
Styrene	ND< 10.6
1,2-Dichlorobenzene	ND< 10.6
1,3-Dichlorobenzene	ND< 10.6
1,4-Dichlorobenzene	ND< 10.6

Ketones	Results in ug / Kg
Acetone	ND< 53.2
2-Butanone	ND< 26.6
2-Hexanone	ND< 26.6
4-Methyl-2-pentanone	ND< 26.6

Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 26.6
Vinyl acetate	ND< 26.6
1	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 8260B

ND< 10.6

ND< 10.6

Data File: V34567.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Lechnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V7.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Project Number: 06-0472 Lab Sample Number: 1986

Client Job Number:

206025 Phase 3

Date Sampled:

02/01/2006

Field Location:

B-31 / S-2

Date Received:

02/07/2006

Field ID Number:

N/A

Sample Type:

Soil

Date Analyzed:

02/09/2006

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 10.6 ND< 10.6	1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ND< 10.6 ND< 10.6
sec-Butylbenzene tert-Butylbenzene	ND< 10.6		
n-Propylbenzene Isopropylbenzene	ND< 10.6 ND< 10.6	Miscellaneous Methyl tert-butyl Ether	ND< 10.6
p-Isopropyltoluene	ND< 10.6 ND< 26.6		
Naphthalene	ND< 20.0		Data File: V34567 F

ELAP Number 10958

Method: EPA 8260B

Data File: V34567.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V7.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Project Number: 06-0472 Lab Sample Number: 1987

Client Job Number:

206025 Phase 3

Date Sampled:

02/03/2006

Field Location: Field ID Number: B-33 / S-2

Date Received:

02/07/2006

N/A

ample T	ype:
---------	------

Soil

Date Analyzed:

02/09/2006

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 7.89
Bromomethane	ND< 7.89
Bromoform	ND< 7.89
Carbon Tetrachloride	ND< 7.89
Chloroethane	ND< 7.89
Chloromethane	ND< 7.89
2-Chloroethyl vinyl Ether	ND< 7.89
Chloroform	ND< 7.89
Dibromochloromethane	ND< 7.89
1,1-Dichloroethane	ND< 7.89
1,2-Dichloroethane	ND< 7.89
1,1-Dichloroethene	ND< 7.89
cis-1,2-Dichloroethene	20.8
trans-1,2-Dichloroethene	ND< 7.89
1,2-Dichloropropane	ND< 7.89
cis-1,3-Dichloropropene	ND< 7.89
trans-1,3-Dichloropropene	ND< 7.89
Methylene chloride	ND< 19.7
1,1,2,2-Tetrachloroethane	ND< 7.89
Tetrachloroethene	ND< 7.89
1,1,1-Trichloroethane	ND< 7.89
1,1,2-Trichloroethane	ND< 7.89
Trichloroethene	22.5
Trichlorofluoromethane	ND< 7.89
	NO - 7 00

Aromatics	Results in ug / Kg
Benzene	ND< 7.89
Chlorobenzene	ND< 7.89
Ethylbenzene	ND< 7.89
Toluene	ND< 7.89
m,p-Xylene	ND< 7.89
o-Xylene	ND< 7.89
Styrene	ND< 7.89
1.2-Dichlorobenzene	ND< 7.89
1,3-Dichlorobenzene	ND< 7.89
1,4-Dichlorobenzene	ND< 7.89

Ketones	Results in ug / Kg
Acetone	ND< 39.4
2-Butanone	ND< 19.7
2-Hexanone	ND< 19.7
4-Methyl-2-pentanone	ND< 19.7

Miscellaneous	Results in ug / Kg
Carbon disulfide Vinyl acetate	ND< 19.7 ND< 19.7

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 7.89

Data File: V34568.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V8.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: B-35 / S-2

Sample Type:

N/A Soil Lab Project Number: 06-0472

Lab Sample Number: 1988

Date Sampled:

02/03/2006

Date Received:

02/07/2006

Date Analyzed:

02/09/2006

	Halocarbons	Results in ug / Kg
Ì	Bromodichloromethane	ND< 7.91
1	Bromomethane	ND< 7.91
1	Bromoform	ND< 7.91
-	Carbon Tetrachloride	ND< 7.91
	Chloroethane	ND< 7.91
Ì	Chloromethane	ND< 7.91
	2-Chloroethyl vinyl Ether	ND< 7.91
	Chloroform	ND< 7.91
1	Dibromochloromethane	ND< 7.91
	1,1-Dichloroethane	ND< 7.91
	1,2-Dichloroethane	ND< 7.91
	1,1-Dichloroethene	ND< 7.91
	cis-1,2-Dichloroethene	ND< 7.91
ĺ	trans-1,2-Dichloroethene	ND< 7.91
	1,2-Dichloropropane	ND< 7.91
	cis-1,3-Dichloropropene	ND< 7.91
	trans-1,3-Dichloropropene	ND< 7.91
	Methylene chloride	ND< 19.8
	1,1,2,2-Tetrachloroethane	ND< 7.91
	Tetrachloroethene	ND< 7.91
	1,1,1-Trichloroethane	ND< 7.91
	1,1,2-Trichloroethane	ND< 7.91
	Trichloroethene	ND< 7.91
	Trichlorofluoromethane	ND< 7.91

Aromatics	Results in ug / Kg
Benzene	ND< 7.91
Chlorobenzene	ND< 7.91
Ethylbenzene	ND< 7.91
Toluene	ND< 7.91
m,p-Xylene	ND< 7.91
o-Xylene	ND< 7.91
Styrene	ND< 7.91
1.2-Dichlorobenzene	ND< 7.91
1,3-Dichlorobenzene	ND< 7.91
1,4-Dichlorobenzene	ND< 7.91

Ketones	Results in ug / Kg
Acetone	ND< 39.6
2-Butanone	ND< 19.8
2-Hexanone	ND< 19.8
4-Methyl-2-pentanone	ND< 19.8

Miscellaneous	Results in ug / Kg
Carbon disulfide Vinyl acetate	ND< 19.8 ND< 19.8

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 7.91

Data File: V34569.D

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V9.XLS requirements upon receipt.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Sample Number: 1988

Lab Project Number: 06-0472

Client Job Number:

206025 Phase 3

Date Sampled:

02/03/2006

Field Location: Field ID Number: B-35 / S-2

Date Received:

02/07/2006

Sample Type:

N/A Soil

Date Analyzed:

02/09/2006

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 7.91	1,2,4-Trimethylbenzene	ND< 7.91
sec-Butylbenzene	ND< 7.91	1,3,5-Trimethylbenzene	ND< 7.91
tert-Butylbenzene	ND< 7.91		
n-Propylbenzene	ND< 7.91	Miscellaneous	
Isopropylbenzene	ND< 7.91	Methyl tert-butyl Ether	ND< 7.91
p-Isopropyltoluene	ND< 7.91		
Naphthalene	ND< 19.8		Deta File: \/34569

ELAP Number 10958

Method: EPA 8260B

Comments: ND denotes Non Detect

ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060472V9.XLS requirements upon receipt.

PARADIGM

CHAIN OF CUSTODY

ENVIRONMENTAL SERVICES, INC.

Rochester, NY 14608 179 Lake Avenue

OTHER PARADIGM LAB SAMPLE NUMBER 06 -047 2 206025 Phase 3 G CLIENT PROJECT #: 0 ਠ TURNAROUND TIME: (WORKING DAYS) STO X LAB PROJECT #: REMARKS 4'-6' BGS 6'-8' BGS 6'-8' BGS 4'-8' BGS 4'-8' BGS 4'-8' BGS 4'-8' BGS 6'-8' BGS 6'-8' BGS REQUESTED ANALYSIS INVOICE TO: FAX: SAME BCRA METALS STOC NYSDEC STARS Dennis Porter 608 TCL PLUS NYSDEC STARS × × × × COMPANY: ADDRESS: PHONE ATTN: CITY: SOIL SOIL SOIL SOIL SOIL 14614 SOIL SOIL SOIL SOIL ZIP; 585-770-2553 SAMPLE LOCATION/FIELD ID REPORT TO: 300 State Street, Sulte 201 FAX: LaBella Associates, P.C. 585-454-6110 B-29 / S-3 B-30 / S-3 B-31 / S-2 B-23 / S-2 B-24 / S-3 B-25 / S-2 B-27 / S-3 B-33 / S-2 B-35 / S-2 Rochester COMMENTS: COMPANY: ADDRESS: PHONE: ATTN: 0 E < 0 690 Portland Avenue, Rochester, New York × × × × (716) 647-2530 * (800) 724-1997 **LAB USE ONLY** TIME PROJECT NAME/SITE NAME: 2/1/2006 2/3/2006 2/1/2006 2/3/2006 2/1/2006 2/1/2006 2/1/2006 2/1/2006 2/1/2006 DATE

Total Cost: P.I.F. TEMPERATURE: 8 Date/Time: Date/Time: Date/Time: 7/00 HOLDING TIME: Received a Lab By: FEBRUARY 1 Relinguished By: AND 3, 2006 Received By: PRESERVATIONS: > Date/Time: Date/Time: Date/Time: CONTAINER TYPE: Sampled By: MICHAEL F. PELYCHATY SAMPLE CONDITION: Check box if acceptable or note deviation: Relinquished By: Received By:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type: MW-3 N/A Water Lab Project Number: 06-0492 Lab Sample Number: 2035

Date Sampled:

02/08/2006

Date Received: Date Analyzed: 02/08/2006 02/15/2006

Dan / Noutrala	Results in ug / L
Base / Neutrals	ND< 20.0
Acenaphthene	****
Acenaphthylene	ND< 20.0
Anthracene	ND< 20.0
Benzo (a) anthracene	ND< 20.0
Benzo (a) pyrene	ND< 20.0
Benzo (b) fluoranthene	ND< 20.0
Benzo (g,h,i) perylene	ND< 20.0
Benzo (k) fluoranthene	ND< 20.0
Chrysene	ND< 20.0
Dibenz (a,h) anthracene	ND< 20.0
Fluoranthene	ND< 20.0
Fluorene	27.6
Indeno (1,2,3-cd) pyrene	ND< 20.0
1	ND< 20.0
Naphthalene	112
Phenanthrene	
Pyrene	25.5

ELAP Number 10958

Method: EPA 8270C

Data File: S28279.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060492S1.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

206025 Phase 3

Lab Project Number: 06-0492 Lab Sample Number: 2041

Client Job Number: Field Location:

MW-9

Date Sampled: Date Received: 02/08/2006 02/08/2006

Field ID Number: Sample Type:

N/A Water

Date Analyzed:

02/15/2006

Base / Neutrals	Results in ug / L
Acenaphthene	174
Acenaphthylene	46.3
Anthracene	182
Benzo (a) anthracene	ND< 40.0
Benzo (a) pyrene	ND< 40.0
Benzo (b) fluoranthene	ND< 40.0
Benzo (g,h,i) perylene	ND< 40.0
Benzo (k) fluoranthene	ND< 40.0
Chrysene	ND< 40.0
Dibenz (a,h) anthracene	ND< 40.0
Fluoranthene	ND< 40.0
Fluorene	213
Indeno (1,2,3-cd) pyrene	ND< 40.0
Naphthalene	586
Phenanthrene	646
Pyrene	135

ELAP Number 10958

Method: EPA 8270C

Data File: S28287.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060492S2.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Sample Number: 2044

Lab Project Number: 06-0492

Client Job Number:

206025 Phase 3

Date Sampled:

02/08/2006

Field Location: Field ID Number:

MW-12 N/A

Date Received:

02/08/2006

Sample Type: Water

Date Analyzed:

02/15/2006

Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0
Acenaphthylene	ND< 10.0
Anthracene	ND< 10.0
Benzo (a) anthracene	ND< 10.0
Benzo (a) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0
Chrysene	ND< 10.0
Dibenz (a,h) anthracene	ND< 10.0
Fluoranthene	ND< 10.0
Fluorene	ND< 10.0
Indeno (1,2,3-cd) pyrene	ND< 10.0
Naphthalene	ND< 10.0
Phenanthrene	ND< 10.0
Pyrene	ND< 10.0

ELAP Number 10958

Method: EPA 8270C

Data File: S28281.D

Comments: ND denotes Non Detect
ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

206025 Phase 3

Client Job Number: Field Location:

Field ID Number: Sample Type:

MW-13 N/A Water

Lab Project Number: 06-0492 Lab Sample Number: 2045

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/15/2006

Base / Neutrals	Results in ug / L
Acenaphthene	ND< 10.0
Acenaphthylene	ND< 10.0
Anthracene	ND< 10.0
Benzo (a) anthracene	ND< 10.0
Benzo (a) pyrene	ND< 10.0
Benzo (b) fluoranthene	ND< 10.0
Benzo (g,h,i) perylene	ND< 10.0
Benzo (k) fluoranthene	ND< 10.0
Chrysene	ND< 10.0
Dibenz (a,h) anthracene	ND< 10.0
Fluoranthene	ND< 10.0
Fluorene	ND< 10.0
Indeno (1,2,3-cd) pyrene	ND< 10.0
Naphthalene	ND< 10.0
Phenanthrene	ND< 10.0
Pyrene	ND< 10.0

ELAP Number 10958

Method: EPA 8270C

Data File: S28282.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060492S4.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Results in ug / L

ND< 2.00 ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00 ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 5.00

ND< 2.00

ND< 2.00

ND< 2.00

ND< 2.00 70.8

ND< 2.00

8.46

68.3

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: MW-3 N/A

Sample Type:

Bromodichloromethane

Carbon Tetrachloride Chloroethane

2-Chloroethyl vinyl Ether

Dibromochloromethane

1.1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1.2-Dichloropropane

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane

trans-1.2-Dichloroethene

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

Halocarbons

Bromomethane

Chloromethane

Bromoform

Chloroform

Water

Lab Project Number: 06-0492

Lab Sample Number: 2035

Date Sampled:

02/08/2006

Date Received: Date Analyzed:

02/08/2006 02/13/2006

_		
	7	Ī
		- i
	- 1	-
		ŀ

Aromatics	Results in ug / L	
Benzene	ND< 0.700	
Chlorobenzene	ND< 2.00	
Ethylbenzene	ND< 2.00	
Toluene	ND< 2.00	
m,p-Xylene	ND< 2.00	
o-Xylene	ND< 2.00	
Styrene	ND< 2.00	
1.2-Dichlorobenzene	ND< 2.00	
1,3-Dichlorobenzene	ND< 2.00	

Ketone: Acetone
Acetone
2-Butan

1,4-Dichlorobenzene

Ketones	Results in ug / L	
Acetone	ND< 10.0	
2-Butanone	ND< 5.00	
2-Hexanone	ND< 5.00	
4-Methyl-2-pentanone	ND< 5.00	

Miscellaneous	
Carbon disulfide √inyl acetate	

Vinyl acetate	ND< 5.00	

ELAP Number 10958

Method: EPA 8260B

Data File: V34609.D

ND< 2.00

Results in ug / L

ND< 5.00

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location:

MW-3 N/A Water

Field ID Number: Sample Type:

Lab Project Number: 06-0492

Lab Sample Number: 2035

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/13/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	10.2	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	2.27	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propyibenzene	5.30	Miscellaneous	
Isopropylbenzene	2.14	Methyl tert-butyl Ether	ND< 2.00
p-isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00		Data File: V34600 F

ELAP Number 10958

Method: EPA 8260B

Data File: V34609.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number:

Sample Type:

MW-4 N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2036

Date Sampled:

02/08/2006

Date Received: Date Analyzed: 02/08/2006 02/14/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 4.00
Bromomethane	ND< 4.00
Bromoform	ND< 4.00
Carbon Tetrachloride	ND< 4.00
Chloroethane	ND< 4.00
Chloromethane	ND< 4.00
2-Chloroethyl vinyl Ether	ND< 4.00
Chloroform	ND< 4.00
Dibromochloromethane	ND< 4.00
1,1-Dichloroethane	ND< 4.00
1,2-Dichloroethane	ND< 4.00
1,1-Dichloroethene	ND< 4.00
cis-1,2-Dichloroethene	ND< 4.00
trans-1,2-Dichloroethene	ND< 4.00
1,2-Dichloropropane	ND< 4.00
cis-1,3-Dichloropropene	ND< 4.00
trans-1,3-Dichloropropene	ND< 4.00
Methylene chloride	ND< 10.0
1,1,2,2-Tetrachloroethane	ND< 4.00
Tetrachloroethene	ND< 4.00
1,1,1-Trichloroethane	ND< 4.00
1,1,2-Trichloroethane	ND< 4.00
Trichloroethene	ND< 4.00

Aromatics	Results in ug / L
Benzene	ND< 1.40
Chlorobenzene	ND< 4.00
Ethylbenzene	261
Toluene	ND< 4.00
m,p-Xylene	574
o-Xylene	ND< 4.00
Styrene	ND< 4.00
1,2-Dichlorobenzene	ND< 4.00
1.3-Dichlorobenzene	ND< 4.00
1,4-Dichlorobenzene	ND< 4.00

Ketones	Results in ug / L
Acetone	ND< 20.0
2-Butanone	ND< 10.0
2-Hexanone	ND< 10.0
4-Methyl-2-pentanone	ND< 10.0

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 10.0
Vinyl acetate	ND< 10.0
•	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 8260B

ND< 4.00

ND< 4.00

Data File: V34628.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

206025 Phase 3

Client Job Number: Field Location:

Field ID Number: Sample Type:

MW-4 N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2036

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/14/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 4.00	1,2,4-Trimethylbenzene	13.1
sec-Butylbenzene	ND< 4.00	1,3,5-Trimethylbenzene	9.16
tert-Butylbenzene	ND< 4.00		
n-Propylbenzene	ND< 4.00	Miscellaneous	
Isopropylbenzene	ND< 4.00	Methyl tert-butyl Ether	ND< 4.00
p-isopropyltoluene	ND< 4.00		
Naphthalene	ND< 10.0		

ELAP Number 10958

Method: EPA 8260B

Data File: V34628.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type:

MW-5

N/A

Water

Lab Project Number: 06-0492

Lab Sample Number: 2037

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/14/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 400
Bromomethane	ND< 400
Bromoform	ND< 400
Carbon Tetrachloride	ND< 400
Chloroethane	ND< 400
Chloromethane	ND< 400
2-Chloroethyl vinyl Ether	ND< 400
Chloroform	ND< 400
Dibromochloromethane	ND< 400
1,1-Dichloroethane	ND< 400
1,2-Dichloroethane	ND< 400
1,1-Dichloroethene	ND< 400
cis-1,2-Dichloroethene	30,200
trans-1,2-Dichloroethene	ND< 400
1,2-Dichloropropane	ND< 400
cis-1,3-Dichloropropene	ND< 400
trans-1,3-Dichloropropene	ND< 400
Methylene chloride	ND< 1,000
1,1,2,2-Tetrachloroethane	ND< 400
Tetrachloroethene	ND< 400
1,1,1-Trichloroethane	ND< 400
1,1,2-Trichloroethane	ND< 400
Trichloroethene	5,280
Trichlorofluoromethane	ND< 400
Vinyl chloride	574
ELAD Number 10059	Metho

Results in ug / L
ND< 140
ND< 400
ND< 400
ND< 400
ND< 400
ND< 400
ND< 400
ND< 400
ND< 400
ND< 400

Ketones	Results in ug / L
Acetone	ND< 2,000
2-Butanone	ND< 1,000
2-Hexanone	ND< 1,000
4-Methyl-2-pentanone	ND< 1,000

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 1,000
Vinyl acetate	ND< 1,000

ELAP Number 10958

Method: EPA 8260B

Data File: V34643.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 060492V3.XLS requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

206025 Phase 3

Lab Project Number: 06-0492

Lab Sample Number: 2037

Client Job Number: Field Location:

MW-5

Date Sampled: Date Received: 02/08/2006

Field ID Number:

N/A

02/08/2006

Sample Type:

Water

Date Analyzed:

02/14/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
In-Butylbenzene	ND< 400	1,2,4-Trimethylbenzene	ND< 400
sec-Butylbenzene	ND< 400	1,3,5-Trimethylbenzene	ND< 400
tert-Butylbenzene	ND< 400		
n-Propylbenzene	ND< 400	Miscellaneous	
Isopropylbenzene	ND< 400	Methyl tert-butyl Ether	ND< 400
p-Isopropyltoluene	ND< 400		
Naphthalene	ND< 1,000		D-4- File: \/24642 D

ELAP Number 10958

Method: EPA 8260B

Data File: V34643.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type:

MW-6 N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2038

Date Sampled:

02/08/2006

Date Received:

02/08/2006

02/14/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	17.7
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	ND< 2.00
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	11.2

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 2.00
1.2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
	,

ELAP Number 10958

Method: EPA 8260B

Data File: V34626.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type:

MW-6 N/A Water Lab Project Number: 06-0492 Lab Sample Number: 2038

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/14/2006

Va	Results in ug / L	Aromatics	Results in ug / L
Aromatics n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	ND 4 0 00
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00		D-4- Fil- 1/24626 F

ELAP Number 10958

Method: EPA 8260B

Data File: V34626.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number: Field Location:

206025 Phase3

Field ID Number: Sample Type:

MW-7 N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2039

Date Sampled:

02/08/2006

Date Received: Date Analyzed: 02/08/2006 02/14/2006

Results in ug / L	Z

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 20.0
Bromomethane	ND< 20.0
Bromoform	ND< 20.0
Carbon Tetrachloride	ND< 20.0
Chloroethane	ND< 20.0
Chloromethane	ND< 20.0
2-Chloroethyl vinyl Ether	ND< 20.0
Chloroform	ND< 20.0
Dibromochloromethane	ND< 20.0
1,1-Dichloroethane	ND< 20.0
1,2-Dichloroethane	ND< 20.0
1,1-Dichloroethene	ND< 20.0
cis-1,2-Dichloroethene	250
trans-1,2-Dichloroethene	ND< 20.0
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Methylene chloride	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	ND< 20.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichloroethene	1,310
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0
m. A.D. 11 (0000	Math

Aromatics	Results in ug / L
Benzene	ND< 7.00
Chlorobenzene	ND< 20.0
Ethylbenzene	ND< 20.0
Toluene	ND< 20.0
m,p-Xylene	ND< 20.0
o-Xylene	ND< 20.0
Styrene	ND< 20.0
1.2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0

Ketones	Results in ug / L
Acetone	ND< 100
2-Butanone	ND< 50.0
2-Hexanone	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 50.0
Vinyl acetate	ND< 50.0

ELAP Number 10958

Method: EPA 8260B

Data File: V34630.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase3

Field Location: Field ID Number: Sample Type: MW-8 N/A

N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2040

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/13/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	20.2
trans-1,2-Dichloroethene	6.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	118
Trichlorofluoromethane	ND< 2.00
1	ND - 0.00

Results in ug / L
ND< 0.700
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00

Vinyl chloride ELAP Number 10958

Method: EPA 8260B

ND< 2.00

Data File: V34614.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type:

MW-9 N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2041

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/14/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 20.0
Bromomethane	ND< 20.0
Bromoform	ND< 20.0
Carbon Tetrachloride	ND< 20.0
Chloroethane	ND< 20.0
Chloromethane	ND< 20.0
2-Chloroethyl vinyl Ether	ND< 20.0
Chloroform	ND< 20.0
Dibromochloromethane	ND< 20.0
1,1-Dichloroethane	ND< 20.0
1,2-Dichloroethane	ND< 20.0
1,1-Dichloroethene	ND< 20.0
cis-1,2-Dichloroethene	ND< 20.0
trans-1,2-Dichloroethene	ND< 20.0
1,2-Dichloropropane	ND< 20.0
cis-1,3-Dichloropropene	ND< 20.0
trans-1,3-Dichloropropene	ND< 20.0
Methylene chloride	ND< 50.0
1,1,2,2-Tetrachloroethane	ND< 20.0
Tetrachloroethene	ND< 20.0
1,1,1-Trichloroethane	ND< 20.0
1,1,2-Trichloroethane	ND< 20.0
Trichloroethene	ND< 20.0
Trichlorofluoromethane	ND< 20.0
Vinyl chloride	ND< 20.0

Aromatics	Results in ug / L
Benzene	ND< 7.00
Chlorobenzene	ND< 20.0
Ethylbenzene	ND< 20.0
Toluene	ND< 20.0
m.p-Xylene	24.3
o-Xylene	23.4
Styrene	ND< 20.0
1,2-Dichlorobenzene	ND< 20.0
1,3-Dichlorobenzene	ND< 20.0
1,4-Dichlorobenzene	ND< 20.0

Ketones	Results in ug / L
Acetone	ND< 100
2-Butanone	ND< 50.0
2-Hexanone	ND< 50.0
4-Methyl-2-pentanone	ND< 50.0

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 50.0
Vinyl acetate	ND< 50.0

ELAP Number 10958

Method: EPA 8260B

Data File: V34631.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number: 20

206025 Phase 3

Field Location: Field ID Number:

Sample Type:

MW-9 N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2041

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/14/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 20.0	1,2,4-Trimethylbenzene	191
sec-Butylbenzene	ND< 20.0	1,3,5-Trimethylbenzene	48.3
tert-Butylbenzene	ND< 20.0		
n-Propylbenzene	ND< 20.0	Miscellaneous	
Isopropylbenzene	ND< 20.0	Methyl tert-butyl Ether	ND< 20.0
p-Isopropyltoluene	ND< 20.0		
Naphthalene	2,040		Data File: \/34631

ELAP Number 10958 Method: EPA 8260B Data File: V34631.D

Comments: ND denotes Non Detect
ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type:

MW-10 N/A Water

Lab Project Number: 06-0492

Lab Sample Number: 2042

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/14/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	45.5
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	2.09
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	17.9
Trichlorofluoromethane	ND< 2.00
Vinyl chloride	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide Vinyl acetate	ND< 5.00 ND< 5.00

ELAP Number 10958

Method: EPA 8260B

Data File: V34627.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: LaBella Associates, P.C.

Client Job Site:

Sample Type:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number:

MW-10 N/A Water

Lab Project Number: 06-0492

Lab Sample Number: 2042

Date Sampled:

02/08/2006 02/08/2006

Date Received:

Date Analyzed:

02/14/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00		Data 5110-1/24527 D

ELAP Number 10958

Method: EPA 8260B

Data File: V34627.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: Sample Type: MW-11

N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2043

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/13/2006

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 2.00
Bromomethane	ND< 2.00
Bromoform	ND< 2.00
Carbon Tetrachloride	ND< 2.00
Chloroethane	ND< 2.00
Chloromethane	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00
Chloroform	ND< 2.00
Dibromochloromethane	ND< 2.00
1,1-Dichloroethane	ND< 2.00
1,2-Dichloroethane	ND< 2.00
1,1-Dichloroethene	ND< 2.00
cis-1,2-Dichloroethene	ND< 2.00
trans-1,2-Dichloroethene	ND< 2.00
1,2-Dichloropropane	ND< 2.00
cis-1,3-Dichloropropene	ND< 2.00
trans-1,3-Dichloropropene	ND< 2.00
Methylene chloride	ND< 5.00
1,1,2,2-Tetrachloroethane	ND< 2.00
Tetrachloroethene	ND< 2.00
1,1,1-Trichloroethane	ND< 2.00
1,1,2-Trichloroethane	ND< 2.00
Trichloroethene	4.09
Trichlorofluoromethane	ND< 2.00

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
•	

ELAP Number 10958

Vinyl chloride

Method: EPA 8260B

ND< 2.00

Data File: V34617.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number: 206025 Phase 3

Field Location: Field ID Number: Sample Type:

MW-11

N/A Water

Date Sampled: Date Received:

Lab Project Number: 06-0492

Lab Sample Number: 2043

02/08/2006

02/08/2006

Date Analyzed:

02/13/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00		
51 4 D 14 40050	Madhaa	I EDA GOCOD	Data File: V34617

ELAP Number 10958 Method: EPA 8260B Data File: V34617.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: MW-12

Sample Type:

N/A Water Lab Project Number: 06-0492

Lab Sample Number: 2044

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/13/2006

Results in ug / L
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
146
ND< 2.00
ND< 2.00
ND< 2.00
ND< 2.00
ND< 5.00
ND< 2.00
ND< 2.00
ND< 2.00

[A	Results in ug / L
Aromatics	
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	ND< 2.00
o-Xylene	ND< 2.00
Styrene	ND< 2.00
1,2-Dichlorobenzene	ND< 2.00
1,3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
•	

ELAP Number 10958

Trichloroethene

Vinyl chloride

1,1,2-Trichloroethane

Trichlorofluoromethane

Method: EPA 8260B

ND< 2.00

ND< 2.00

70.1

62.5

Data File: V34618.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number:

Sample Type:

MW-12 N/A Water Lab Project Number: 06-0492

Lab Project Number: 06-04
Lab Sample Number: 2044

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/13/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-isopropyitoluene	ND< 2.00		
Naphthalene	ND< 5.00		

ELAP Number 10958

Method: EPA 8260B

Data File: V34618.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Client Job Number:

206025 Phase 3

Field Location: Field ID Number: MW-13 N/A

Sample Type:

Water

Lab Project Number: 06-0492

Lab Sample Number: 2045

Date Sampled:

02/08/2006

Date Received:

02/08/2006

Date Analyzed:

02/13/2006

Halocar	bons	Results in	
Bromodi	chloromethane	ND<	
Bromom	ethane	ND<	2.00
Bromofo	rm .	ND<	2.00
Carbon '	Tetrachloride	ND<	2.00
Chloroet	hane	ND<	2.00
Chlorom	ethane	ND<	2.00
2-Chloro	ethyl vinyl Ether	ND<	2.00
Chlorofo	rm	ND<	2.00
Dibromo	chloromethane	ND<	2.00
1,1-Dich	loroethane	ND<	2.00
1,2-Dich	loroethane	ND<	2.00
1,1-Dich	loroethene	ND<	2.00
cis-1,2-[Dichloroethene		38.9
trans-1,	2-Dichloroethene	ND<	2.00
1,2-Dich	loropropane	ND<	2.00
cis-1,3-l	Dichloropropene	ND<	2.00
trans-1,	3-Dichloropropene	ND<	2.00
Methyle	ne chloride	ND<	5.00
1,1,2,2	Tetrachloroethane	ND<	2.00
	oroethene	ND<	2.00
1,1,1-Tr	ichloroethane	ND<	2.00
1,1,2-Tr	ichloroethane	ND<	2.00
Trichlor			174

Aromatics	Results in ug / L
Benzene	ND< 0.700
Chlorobenzene	ND< 2.00
Ethylbenzene	ND< 2.00
Toluene	ND< 2.00
m,p-Xylene	29.2
o-Xylene	ND< 2.00
Styrene	ND< 2.00
1.2-Dichlorobenzene	ND< 2.00
1.3-Dichlorobenzene	ND< 2.00
1,4-Dichlorobenzene	ND< 2.00

Ketones	Results in ug / L
Acetone	ND< 10.0
2-Butanone	ND< 5.00
2-Hexanone	ND< 5.00
4-Methyl-2-pentanone	ND< 5.00

Miscellaneous	Results in ug / L
Carbon disulfide	ND< 5.00
Vinyl acetate	ND< 5.00
•	

ELAP Number 10958

Vinyl chloride

Trichlorofluoromethane

Method: EPA 8260B

ND< 2.00

6.02

Data File: V34619.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

Client: LaBella Associates, P.C.

Client Job Site:

690 Portland Avenue

Rochester, New York

Lab Sample Number: 2045

Lab Project Number: 06-0492

Client Job Number:

206025 Phase 3

MW-13

Date Sampled:

02/08/2006

Field Location: Field ID Number: Sample Type:

N/A Water **Date Received:**

02/08/2006

Date Analyzed:

02/13/2006

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00	- EDA 0000D	Data File: V34619 D

ELAP Number 10958

Method: EPA 8260B

Data File: V34619.D

Comments: ND denotes Non Detect ug / L = microgram per Liter

Signature:

CHAIN OF CUSTODY

PARADIGM ENVIRONMENTAL SERVICES, INC.

INVIRONMENTAL INVIRONMENTAL		1	REPOR
ERVICES, INC.	COMPANY:	LaBella Ass	lates, P.C.
9 Lake Avenue	ADDRESS:	300 State Street, Suite 20	et, Suite 20
ochester, NY 14608	CITY:	CITY: Rochester	
16) 647-2530 * (800) 724-1997	PHONE:	585-454-6110	FAX

ENVIRONMENTAL		REPORT TO:	INVOICE TO	Address of the second s	
SERVICES, INC.	COMPANY:	LaBella Ass	COMPANY:	LAB PROJECT #: CLIEN	CLIENT PROJECT #:
179 Lake Avenue	ADDRESS:	SS: 300 State Street, Suite 201	ADDRESS: SAME	10-30 L	206025 Phase 3
Rochester, NY 14608	CITY:	Rochester STATE: NY Z	ZIP: 14614 CITY: STATE:	ZIP: TURNAROUND TIME: (WC	DAYS)
(716) 647-2530 * (800) 724-1997	PHONE:	: 585-454-6110 FAX: 585-770-2553	PHONE: FAX:		STD OTHER
PROJECT NAME/SITE NAME:	ATTN:	Michael Pelychaty	ATTN: Dennis Porter	1 3	×
690 Portland Avenue, Rochester, New York	er, COMMENTS	ENTS;			
	•		REQUESTED ANALYSIS	SIS	
	O N A		SDEC STARS		
DATE TIME	O O - F H	SAMPLE LOCATION/FIELD ID	3570C NYSDEC S 3560B TCL PLUS NY 00 37 m 27 − 5 27 m m 27 − 27 − 17 − 17 − 17 − 17 − 17 − 17 −	REMARKS	PARADIGM LAB SAMPLE NUMBER
1 2/8/2006 // : 5/8		MW-3	×		2000
2 2/8/2006 11,33		MW-4	WATER 2 X		9 800
3 2/8/2006 13.co		MW-5	WATER 2 X		2037
4 2/8/2006 10:10		MW-6	WATER 2 X		2020
5 2/8/2006 1 4; yC		MW-7	WATER 2 X		9030
6 2/8/2006 /4',53	_	MW-8	WATER 2 X		0400
7 2/8/2006 12/73		WW-9	WATER 3 X X		ー 万 0 人
8 2/8/2006 0°9 137		MW-10	WATER 2 X		000
9 2/8/2006 [0.50		MW-11	WATER 2 X		Myol
10 2/8/2006 13; 41C		MW-12	WATER 3 X X		7000
11 2/8/2006 14,00		MW-13	WATER 3 X X		2045
LAB USE ONLY					
SAMPLE CONDITION: Check box if acceptable or note deviation:	box 1:	CONTAINER TYPE: 4 PRESERVATIONS	IONS: (U	U TEMPERATURE:	
Sampled By: MICHAEL F. PELYCHATY	ELYCHAT	Date/Time: 8-Feb-06	Relinguished By:	Date/Time: Total Cost:	sst:

Received By:

Relinquished By:

Received By:

Date/Time:

