NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

February 25, 2022

Tony Kirik Vice President Commerce CRE, LLC 105 McLaughlin Road, Suite A Rochester, New York 14615

Re: Construction Completion Report Sub-Slab Depressurization System Installation 300 Commerce Drive Site No.: C828158 Henrietta (T), Monroe (C)

Dear Mr. Kirk:

The New York State Department of Environmental Conservation (Department) in conjunction with the New York State Department of Health (NYSDOH) have completed a review of the Construction Completion Report (CCR) Interim Remedial Measures Sub-Slab Depressurization System (SSDS) Installation dated September 2019 for the 300 Commerce Drive site (Site) located at 300 Commerce Drive, in the Town of Henrietta, Monroe County. Based on the information presented in the CCR subsequent information submittals requested by the Department, the CCR is approved with the following modifications and clarifications.

1. As stated in the Department's approval letter dated April 16, 2016 - An Interim Site Management Plan (ISMP) that includes an Operation & Maintenance Plan (O&M Plan) for the sub-slab depressurization system must be developed and submitted to the Department and NYSDOH for review and approval. The Department's current Site Management Plan template ISMP needs to be used for the ISMP. The ISMP will be submitted to the Department and NYSDOH for review 90 days after the installation of the SSD is complete.

To date the Department has not received the Operation & Maintenance Plan (O&M Plan) for the SSDS installed at the Site. The Department is requesting that an O&M Plan for the SSDS is drafted and submitted by the Applicant's current environmental consultant for review and approval by the Department and NYSDOH. The O&M Plan must be submitted and approved before the Department's Decision Document is executed.

<u>NOTE</u> – the Department only wants an O&M Plan for the SSDS not an Interim Site Management Plan.

Within fifteen (15) days of the day of the letter, the Applicant shall elect one of the three (3) options presented below in writing (electronic notification is acceptable) to either:

- Option A: Accept the State modified work plan; or
- Option B: Invoke dispute resolution as set forth in paragraph 375-1.5(b)(2) or
- Option C: Terminate the agreement in accordance with subdivision 375-3.5.

If the Applicant choses Option A then a complete copy of the CCR and this letter must be placed in the document repository within 7 days of acceptance of the Department's modified document. Failure to notify the Department within 15 days of the date of this letter the Department will conclude that Option A has been elected by the Applicant.

If you have any questions or concerns regarding this letter, or need further assistance with the Site, please feel free to contact me at 585-226-5354 or via e-mail at <u>charlotte.theobald@dec.ny.gov</u>.

Sincerely,

latts B. heokard

Charlotte B. Theobald Assistant Engineer

ec:

Paul Sylvestri (Harter Secrest & Emery, LLP) Nancy Van Dussen (Ravi) Peter Morton (Ravi) Lynn Zicari (Ravi) Justin Deming (NYSDOH) Melissa Doroski (NYSDOH) Mirza Begovic (MCHD) Jennifer Andaloro (NYSDEC) David Pratt (NYSDEC) Todd Caffoe (NYSDEC)

300 Commerce Drive

MONROE COUNTY, NEW YORK

Construction Completion Report

INTERIM REMEDIAL MEASURES SUB-SLAB DEPRESSURIZATION SYSTEM INSTALLATION

NYSDEC Site Number: C828158

Prepared for:

Yaro Enterprises 225 Rosemont Drive Rochester, New York 14617

Prepared by: LaBella Associates, D.P.C. 300 State Street Rochester New York 14614 (585) 454-6110

SEPTEMBER 2019

CERTIFICATIONS

I, DANTEL P. N.L., am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Interim Remedial Measures Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Interim Remedial Measures Work Plan.

I certify that all documents generated in support of this report have been or will be submitted in accordance with the DER's electronic submission protocols and have been or will be accepted by the Department.

I certify that all data generated in support of this report have been or will be submitted in accordance with the Department's electronic data deliverable and have been or will be accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Daniel P. Noll, of LaBella Associates, D.P.C., am certifying as Owner's Designated Site Representative for the site.

081916

NYS Professional Engineer #

9/3/19

Date

Signature

TABLE OF CONTENTS

CERTIFICATIONS	
TABLE OF CONTENTS	III
LIST OF ACRONYMS	V
1.0 BACKGROUND AND SITE DESCRIPTION	1
2.0 SUMMARY OF SITE REMEDY	4
2.1 REMEDIAL ACTION OBJECTIVES	4
3.0 INTERIM REMEDIAL MEASURE	4
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	4
4.1 GOVERNING DOCUMENTS	7
 4.1.1 IRM Work Plan and Associated Addendum	7 7 7
4.2 REMEDIAL PROGRAM ELEMENTS	
 4.2.1 Contractors and Consultants 4.2.2 Site Preparation 4.2.3 General Site Controls 4.2.4 Nuisance Controls 4.2.5 CAMP Results 4.2.6 Reporting 	
4.3 CONTAMINATED MATERIALS REMOVAL	

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING	10
 4.4.1 Sub-Slab Depressurization System Effluent Screening and Sampling 4.4.2 Post-Startup Air Sampling 4.4.3 Discussion of DUSRs 4.4.4 PFE Monitoring Points 	12 13
4.5 DEVIATIONS FROM THE IRM WP	15
LIST OF TABLES	16
LIST OF FIGURES	15
LIST OF APPENDICES	18

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
BCA	Brownfield Cleanup Agreement
BGS	Below Ground Surface
CAMP	Community Air Monitoring Plan
CCR	Construction Completion Report
СРР	Citizen Participation Plan
DPI	Design Phase Investigation
DUSR	Data Usability Summary Report
HASP	Health and Safety Plan
IRM	Interim Remedial Measure
IRM WP	Interim Remedial Measure Work Plan
LNAPL	Light Non-Aqueous Phase Liquid
MCPW	Monroe County Pure Waters
MDL	Method Detection Limit
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NYSDEC	New York State Department of Environmental
	Conservation
NYSDOH	New York State Department of Health
NYSDOT	New York State Department of Transportation
OSHA	Occupational Safety and Health Administration
PFE	Pressure Field Extension
PID	Photoionization Detector
ppm	Parts per million
ppb	Parts per billion
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance / Quality Control
RAA	Remedial Alternatives Analysis
RAO	Remedial Action Objective
RG&E	Rochester Gas and Electric
RI	Remedial Investigation
RIWP	Remedial Investigation Work Plan
RPSCOs	Remedial Program Soil Cleanup Objectives
SCGs	Standards, Criteria, and Guidelines
SSDS	Sub-Slab Depressurization System
SVOC	Semi-Volatile Organic Compound
TIC	Tentatively Identified Compound
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound

Construction Completion Report INTERIM REMEDIAL MEASURES SUB-SLAB DEPRESSURIZATION SYSTEM INSTALLATION

1.0 BACKGROUND AND SITE DESCRIPTION

Yaro Enterprises (Yaro) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in 2009, to investigate and remediate a 2.7-acre parcel addressed as 300 Commerce Drive, Henrietta New York (hereinafter referred to as the "Site").

The BCP Site is located in the County of Monroe, New York and is identified as Tax Account #161.10-1-18 and is improved with one (1) approximate 18,700 square foot, two (2) story slab-on-grade building constructed in 1967 with an addition constructed in 1990. The Site is a commercial/light industrial facility and is currently utilized as a commercial printing operation. The Site is located in a suburban area and is zoned for industrial use.

The Site is bordered by a trucking company to the north-northeast, Commerce Drive to the west with railroad tracks beyond, Commerce Drive to the south with industrial facilities beyond, and commercial facilities to the east.

Figures 1 and 2 (attached) illustrate the location and surrounding area of the BCP Site. The BCP Site is utilized as a commercial/light industrial facility and there are associated parking lot and landscaped areas.

Phase I Environmental Site Assessment, LaBella, 2005

A Phase I ESA completed by LaBella in 2005 identified the following Recognized Environmental Conditions (RECs) associated with the Site:

• **NYSDEC Spill # 7880522 On-Site** - One (1) inactive spill of an unknown quantity of #2 fuel oil from a tank is associated with the Site. The Spill Report did not report whether the tank was an aboveground or underground storage tank. In addition, the Spill Report noted that "During cleanup, soil penetration reportedly became evident and supported the belief this 'old' Spill was the reason for several reported Spills. Corrections made to external piping should further reduce the chances for future spills". Based on the report of a "tank" in the Spill Report, there is a potential for tanks to be present.

• NYSDEC Spill #9102947 and #0370111 on Adjacent Property- Two (2) inactive NYSDEC Spills were identified associated with the north adjacent property. According to NYSDEC information regarding Spill #9102947, a 10,000-gallon diesel underground storage tank (UST) failed tank tightness testing and was reportedly removed. According to NYSDEC information regarding Spill #0370111, a Phase II ESA revealed the presence of low-level residual contamination in the area of a formerly removed 10,000-gallon diesel UST. The apparent flow of groundwater on this northern adjacent property is to the south/ southwest, towards the Site. Based on the location of the facility adjacent to the north of the Site, and the apparent groundwater flow direction, there is the potential for contamination to have migrated on-Site from the north adjacent property.

Phase II Environmental Site Assessment, LaBella 2008

Based on the findings of the Phase I ESA, LaBella was requested to conduct a limited subsurface investigation at the Site to determine if the RECs identified in the Phase I ESA have impacted the subsurface at the Site. As such, a Limited Phase II ESA and Supplemental Phase II ESA were conducted at the Site in 2008. The following scope of work was completed:

- Seventeen (17) soil borings (designated TB-1 through TB-9 and SB-1 through SB-8) were advanced and five (5) 1-inch PVC groundwater monitoring wells were installed. Soils were continuously assessed for visual and olfactory evidence of impairment.
- The following analysis was performed:
 - Eight (8) soil samples for Target Compound List (TCL) volatile organic compounds (VOCs) using United States Environmental Protection Agency (USEPA) Method 8260.
 - Two (2) soil samples for NYSDEC Spill Technology and Remediation Series (STARS) List VOCs using USEPA Method 8260.
 - Four (4) soil samples for NYSDEC STARS List semi-volatile organic compounds (SVOCs) using USEPA Method 8270.
 - Four (4) groundwater samples for TCL VOCs using USEPA Method 8260.
 - One (1) groundwater sample for NYSDEC STARS List SVOCs using USEPA Method 8270.
 - Two (2) groundwater samples for target analyte list (TAL) using USEPA Methods 6010/7471
 - Two (2) groundwater samples for polychlorinated biphenyls (PCBs) using USEPA Method 8082
 - Two (2) groundwater samples for pesticides using USEPA Method 8081
 - One (1) sub-slab soil vapor and one (1) ambient indoor air sample for VOCs using USEPA Method TO-15.
- Evidence of impairment was observed in soil collected from soil borings SB-1 (8'-12'), SB-2 (8'-12'), and SB-8 (4'-8'). VOCs trichloroethene (TCE) in three (3) samples and tetrachloroethene (PCE) in two (2) samples were reported at concentrations that exceeded

their respective NYSDEC Part 375 Soil Cleanup Objectives (SCOs) for Unrestricted Use. (Note that at the time of this assessment, TAGM was in effect.)

- One (1) SVOC, dibenzo(a,h)anthracene was detected at a concentration that exceeded NYSDEC Part 375 Industrial Use SCOs.
- Cis-1,2-dichloroethene (cis-1,2-DCE) was reported at concentrations that exceed its NYSDEC Part 703 Groundwater Quality Standard in groundwater samples collected from monitoring wells MW-1, MW-2, MW-4, and MW-5.
- TCE was reported at concentrations that exceed its NYSDEC Part 703 Groundwater Quality Standard in groundwater samples collected from monitoring wells MW-1, MW-2, and MW-5.
- Vinyl chloride (VC) was reported at concentrations that exceed its NYSDEC Part 703 Groundwater Quality Standard in groundwater samples collected from monitoring wells MW-1 and MW-4.
- Three (3) SVOCs [benzo(a)anthracene, benzo(a)pyrene, and chrysene] were reported at concentrations that exceeded their respective NYSDEC Part 703 Groundwater Quality Standards in the groundwater sample collected from monitoring well MW-4.
- Metals including iron, manganese, and sodium were detected at concentrations above their respective NYSDEC Part 703 Groundwater Quality Standards.
- PCBs and pesticides were not detected at concentrations above their respective NYSDEC Part 703 Groundwater Quality Standards.
- The Limited Soil Vapor Intrusion Assessment detected several VOCs in the sub-slab soil gas and the indoor air. One VOC (TCE) was detected in the sub-slab soil vapor at a concentration that exceeds the minimum action level presented in the New York State Department of Health's (NYSDOH's) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006).

Remedial Investigation Work Plan, LaBella 2009

A Remedial Investigation (RI) Work Plan was developed in 2009 to evaluate the nature and extent of contamination at the Site. A majority of the RI has been completed. The results of the RI will be documented in a separate RI Report.

Due to the presence of chlorinated volatile organic compounds (CVOCs) in soil and groundwater at the Site, it was decided to install a sub-slab depressurization system (SSDS) within the Site building rather than perform extensive soil vapor intrusion testing. Mitigation Tech was retained by Yaro to complete an initial evaluation and then subsequently the installation of a SSDS. Based on the Mitigation Tech evaluation an Interim Remedial Measure Work Plan (IRM WP) dated March 2016 for the installation of the SSDS was developed and approved by NYSDEC with modifications in a letter dated April 20, 2016.

An electronic copy of this Construction Completion Report (CCR) with all supporting documentation is included as Appendix A.

2.0 SUMMARY OF SITE REMEDY

2.1 REMEDIAL ACTION OBJECTIVES

The following Remedial Action Objectives (RAOs) were identified for this IRM.

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

3.0 INTERIM REMEDIAL MEASURE

This CCR documents the first IRM for this Site; no prior IRMs, operable units, or separate construction contracts have been identified or performed.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

The primary objective of this IRM was to mitigate chlorinated VOC impacts identified in subsurface soil and groundwater at the Site. This objective was accomplished via the installation of a SSDS within the Site building. The Site is currently utilized for commercial/light industrial purposes. As such, the completion of intrusive work such as installation of the SSDS and collection of subsurface samples creates a significant disturbance to the occupants of the building.

The overall objective for the Site is its continued use for commercial/light industrial purposes.

This IRM completed at the Site was conducted in accordance with the NYSDEC-approved IRM WP dated March 2016 (approved by NYSDEC April 2016). Deviations from the IRM WP are noted in Section 4.5.

The Remedial Goals in the IRM WP were as follows:

- Install a SSDS to create negative sub-slab pressure beneath the Site Building, thus mitigating potential soil vapor intrusion issues within the Site building.
- Install gauges and alarms associated with the SSDS as well as pressure field extension (PFE) points to confirm the influence and monitor the operation of the system.

The SSDS was installed in accordance with the NYSDOH's *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006. The majority of the system was constructed of Schedule 40 polyvinyl chloride (PVC) piping and fittings.

Between July 24, 2017 and August 29, 2017 sixteen (16) depressurization points and three (3) rooftop fans were installed within the Site building, creating three (3) sub-slab systems (or "sub-systems"). Each of these sub-systems consisted of four (4) to six (6) SSDS depressurization points, manifolded together and connected to a rooftop fan. System components are depicted on the As-Built drawings included in Appendix B. PFE monitoring points were installed in the Site building's floor slab during and subsequent to the installation of the SSDS. Three (3) sets of audible/visual alarms and analog pressure gauges, a set for each rooftop fan, were installed in August 2017. As part of each alarm system, 0.25-inch diameter tubing was connected and sealed into each sub-system. The locations of the audible/visual alarms are shown on the As-Built drawings in Appendix B.

SSDS effluent screening was completed with a photoionization detector (PID) on September 29, 2017 and effluent sampling was completed on October 24, 2017. Refer to Section 4.4.1 of this report for a discussion of the SSDS Effluent Screening conducted in connection with the three-fan SSDS.

Photos of this work are included in Appendix C.

Per the IRM WP post mitigation indoor air sampling was completed to assess the efficacy of the system. The post SSDS start-up air sampling was completed on January 18, 2018. The indoor air sampling locations are depicted on As-Build drawing Figure A included in Appendix B.

Each SSDS depressurization point was constructed by coring a hole in the Site building's concrete floor slab and removing sub-slab fill material to create an approximately one (1) cubic foot void space directly under the core hole. The concrete cores and removed sub-slab material were containerized on-site in 55-gallon drums for subsequent waste characterization and appropriate disposal by others. Each SSDS depressurization point was subsequently completed with a 3-inch diameter Schedule 40 PVC pipe or a 3-inch steel pipe for the initial approximate 4-ft in areas where tow-motors operate. Locations with steel piping were then transitioned to PVC. The piping was lowered into its respective core hole, so that the bottom of the pipe was flush with the bottom of the floor slab. Then, each pipe was sealed into the concrete floor slab using backer rod and urethane caulk to create

an airtight seal between the PVC pipe and the concrete floor slab. Figure B in Appendix B depicts details of a typical SSDS depressurization point.

Depending upon the location within the Site building, as well as a tenant's use of the area and concerns, SSDS depressurization points were generally installed as follows:

- mounted on the exterior, exposed surface of an interior wall; or
- mounted against an existing structural steel column, so that the steel column can be utilized to support the vertical piping. As anticipated, due to the presence of column footers that extend approximately three (3) feet horizontally from the center of each column, "trenching" of the concrete floor slab was necessary as part of these "column" installations. The "trenching" (i.e., removal of additional floor slab so horizontal piping could be run across the top of each column footer) was necessary to ensure that the SSDS depressurization point comes in contact with the sub-slab space and not with the concrete footer, which would restrict air flow. All material removed as part of the "trenching" was containerized on-site in 55-gallon drums for characterization and disposal by others.

Each riser pipe was run vertically to the area above the suspended ceiling tiles or to the underside of the roof deck in unfinished areas of the Site building, where it was continued horizontally across the interior of the Site building and connected to a 3-inch "header" pipe.

Each header pipe was eventually connected to a 3-inch diameter PVC header pipe, which penetrated the Site building's steel roof deck and roofing materials to connect to the rooftop exhaust fans with the exception of Fan 3, which exits the building wall and then proceeds above the roofline. Figure A in Appendix B illustrates the location of the system components.

The location of each SSDS rooftop exhaust fan was selected so that effluent from the fans would be discharged: at least ten (10) feet from any air intakes; at least twelve (12) inches above the surface of the roof; and at least ten (10) feet from any opening that was less than two (2) feet below the rooftop exhaust point.

Numerous PFE monitoring points were created prior to and during the installation of the SSDS to confirm the creation of a pressure differential, sub-slab to ambient air pressure. Section 4.4.4 details the monitoring of these points. Each PFE monitoring point consisted of a small-diameter (0.5-inch or less) hole drilled in the floor slab, through which a digital

micro-manometer was utilized to measure the pressure differential between the indoor space and the sub-slab space. These PFE monitoring points were sealed with backer rod and/or caulk subsequent to their use.

4.1 GOVERNING DOCUMENTS

4.1.1 IRM Work Plan and Associated Addendum

The IRM was conducted in accordance with the IRM WP and associated addendum. Deviations from the Work Plan and associated addendum are included in Section 4.5.

4.1.2 Site Specific Health & Safety Plan (HASP)

The HASP was included as Appendix 1 of the IRM WP. All remedial work performed as part of this IRM was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and intrusive work conducted at the Site. The HASP describes safety procedures and standards followed during IRM completion.

4.1.3 Community Air Monitoring Plan (CAMP)

The CAMP was included as Appendix 2 of the IRM WP and was implemented during all ground intrusive work (i.e., the construction of SDDS depressurization points and the completion of soil borings). VOC and particulate monitoring equipment was deployed and observed within the work area during construction of each SSDS depressurization point (i.e., coring a hole in the Site building's concrete floor slab and removing sub-slab fill material to create a void space). VOC and particulate readings were recorded at regular time intervals to ensure that emission thresholds established in the CAMP were not exceeded. VOC and particulate readings recorded during construction of SSDS depressurization points are included in Appendix E.

4.1.4 Quality Control (QC) Program

The QC Program was included as Appendix 3 of the IRM WP approved by the NYSDEC. The QC Program contains procedures that provide for collected data to be properly evaluated and which document that quality control procedures have been followed in the collection of samples. The quality control program represents the methodology and measurement procedures used in collecting quality field data. This methodology includes the proper use of equipment, documentation of sample collection, and sample handling practices. Procedures used in the firm's Quality Control program are compatible with federal, state, and local regulations, as well as appropriate professional and technical standards.

4.1.5 Community Participation Plan

Copies of the IRM WP were placed in the appropriate document repositories. Remaining community participation activities include Fact Sheets and public comment periods.

4.2 REMEDIAL PROGRAM ELEMENTS

4.2.1 Contractors and Consultants

The following contractors and consultants completed work at the Site:

Contractor/ Consultant	Role
LaBella Associates, D.P.C.	Environmental consultant responsible for correspondence with NYSDEC, coordination with tenants, ensuring compliance with applicable Site documents (i.e., IRM WP and associated addendum), environmental oversight of SSDS installation/construction, reporting, sample collection, and implementation of the CAMP.
Mitigation Tech	Construction contractor responsible for installation/construction of the SSDS.
Centek Laboratories	Laboratory analysis of SSDS Effluent, air, and sub-slab vapor samples.
DATAVAL Inc.	Preparation of Data Usability Summary Reports (DUSRs).

4.2.2 Site Preparation

Pre-construction meetings were held with contractors and tenant of the Site building at various times prior to and during implementation of the IRM and construction of the SSDS. These meetings were held to discuss access to the tenant space, appropriate working schedules, and the final locations of the SSDS extractions points (based upon concerns and preferences of the tenant).

Documentation regarding agency approvals associated with this IRM is included in Appendix D. Non-agency permits were not required for this IRM.

4.2.3 General Site Controls

As noted in Sections 4.0 and 4.3, concrete floor slab material and sub-slab material removed during construction of the SSDS depressurization points were containerized onsite in 55-gallon drums for subsequent waste characterization and appropriate disposal, by others

The Site building was occupied during implementation of the IRM and construction of the SSDS and as such, Site security was provided by and coordinated with the tenant.

4.2.4 Nuisance Controls

Based upon results of the CAMP (see Section 4.2.5 and Appendix E), no significant dust/particulate or odor control mitigation was required during implementation of the IRM and construction of the SSDS. Contractors were diligent in their housekeeping and cleanup of work areas.

4.2.5 CAMP Results

Based upon results of the CAMP, no significant dust or odor control mitigation was required during implementation of the IRM and construction of the SSDS. Contractors were diligent in their housekeeping and cleanup of work areas. Copies of all field data sheets and field notes relating to the CAMP are provided in Appendix E.

4.2.6 Reporting

LaBella field notes associated with the installation of the SSDS are included in electronic format in Appendix E. Photographs associated with the installation of the SSDS are included in Appendix C.

4.3 CONTAMINATED MATERIALS REMOVAL

Each SSDS depressurization point was constructed by coring a hole in the Site building's concrete floor slab and removing sub-slab fill material to create an approximately one (1) cubic foot void space directly under the core hole. The concrete cores and removed sub-slab material was containerized on-site in 55-gallon drums for subsequent waste characterization and appropriate disposal by others.

4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

Performance sampling associated with this IRM included the following:

- SSDS effluent screening (PID);
- SSDS effluent sampling;
- PFE monitoring point measurements;
- January 2018 indoor air and outdoor air sampling; and
- Data Usability Summary Reports (DUSRs) were prepared by DATAVAL Inc. of Fayetteville, NY (DATAVAL) for the SSDS effluent sampling. DATAVAL is currently completing a DUSR for the January 2018 air sampling and subsequent to completion that will be submitted under separate cover. The available DUSR is discussed in Section 4.4.3 and included in Appendix F. The associated full laboratory analytical reports are provided electronically in Appendix G.

4.4.1 Sub-Slab Depressurization System Effluent Screening and Sampling

September 2017 SSDS Effluent Screening

The three-fan SSDS was started on August 29, 2017 and PID readings were collected from each of the three (3) vent fan discharge points using a RAE Systems ppbRAE 3000 VOC Monitor (ppbRAE) on September 29, 2017. The results of this SSDS Effluent Screening are summarized below:

Fan	Peak PID Reading (parts per billion)			
#1	495			
#2	395			
#3	38			

October 2017 SSDS Effluent Sampling

Based upon the findings of the SSDS Effluent Screening, effluent from Fan #1 & #2, the locations with the highest PID readings was sampled per the IRM WP, as follows:

- The effluent samples were collected on October 24, 2017 using liter Summa[®] canisters equipped with pre-calibrated laboratory supplied flow regulators set for a sampling time of four (4) hours; and
- The Summa[®] canisters were connected to laboratory-grade, inert, polyethylene tubing that was extended approximately one (1) foot into the rooftop vent pipe of each of the targeted sub-slab venting locations.

It should be noted that initially sample "2017_10_24_EX1A" (effluent from Fan #1) was collected but due to an issue with the regulator, the sample only ran for approximately fourteen (14) minutes. A duplicate sample was also collected on this location at this time and also only ran for this duration. Due to this a second sample was collected "2017_10_24_EX1" and this sample performed adequately. Subsequent to sample collection, the samples were sent under standard chain of custody procedures to Centek Laboratories of Syracuse, New York (Centek) for analysis of VOCs using USEPA Method

TO-15, with a minimum detection limit of 1 μ g/m³ with 0.25 μ g/m³ for TCE and Vinyl Chloride, respectively. Centek is a NYSDOH Environmental Laboratory Approval Program (ELAP) certified laboratory. An "ASP-Category B-like" deliverables package was provided by Centek, and a DUSR was prepared DATAVAL for these data.

As summarized in Table 1, several VOCs were detected above laboratory MDLs in the effluent samples collected from Fan #1 and Fan #2. TCE was detected in effluent from these fans at concentrations of 13 ug/m³ and 1.2 ug/m³, respectively.

These results were utilized to assess the need for emission controls. Per DAR-1, Flowchart #1, compounds that are considered High Toxicity Air Pollutants were assessed to determine if the mass discharge is in compliance with 6-NYCRR Part 212 regulations. The GP-501 fans have a maximum air flow of approximately 70 cubic feet per minute (CFM). Assuming a maximum air flow for all three (3) fans and assuming each fan is discharging at the highest concentration identified the following mass emissions were calculated for the system as a whole.

Compound	Compound Highest Effluent Concentration (µg/m3)		6-NYCRR Part 212- 2.2 Table 2 HTAC Mass Emission Limits (lbs/yr)		
TCE	13	0.083	500		
Carbon Tetrachloride	0.5	0.003	100		
Benzene	32	0.205	100		

Based on the above minimal emission rates, further assessment of effluent discharges were not warranted.

4.4.2 Post-Startup Air Sampling

January 2018 Indoor Air and Outdoor Air

On January 18, 2018 (more than forty-five days after the installation and full startup of the three-fan SSDS, per the IRM WP), indoor air samples were collected from four (4) locations within the building (designated 300-IA-01, 300-IA-02, 300-IA-03, and 300-IA-

04). In addition, one (1) outdoor air sample (designated 300-EXT-01) was also collected as part of this sampling event. Quality Assurance/Quality Control (QA/QC) samples were also collected and consisted of one blind duplicate designated "Dupe" (collected from location 300-IA-04) and a Matrix Spike/Matrix Spike Duplicate (collected on 300-IA-01). The sampling locations are included on As-Built drawing Figure A in Appendix B.

The indoor air sampling was completed in accordance with the procedures provided in the NYSDOH's *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006, as outlined in the IRM WP.

The samples were sent under standard chain of custody procedures to Centek for analysis of VOCs using USEPA Method TO-15, with a minimum detection limit of 1 μ g/m³ with 0.25 μ g/m³ for TCE and vinyl chloride, respectively. The results of the sampling event are summarized in the attached Table 2. The laboratory analytical results from Centek for this sampling event indicated that:

• The laboratory results indicate that the compounds detected do not exceed the NYSDOH Air Guideline Values.

Based on the post-mitigation indoor air samples, the SSDS is providing adequate mitigation of soil vapor intrusion.

4.4.3 Discussion of DUSRs

DUSR for SSDS Effluent Sampling

DATAVAL's DUSR (see Appendix F) for Centek's laboratory analytical report "C1710061" (see Appendix G) indicated the data was viable with the following notes:

• The results reported from sample "2017_10_24_EX1A" and "2017_10_24_DUPE" were rejected and "20147_10_24_EX1", "20147_10_24_EX2" and "20147_10_24_EX1" were qualified.

As noted in Section 4.4, the rejected sample (and it's duplicate) had a faulty regulator and this location was sampled via sample "20147_10_24_EX1" as such, the rejected data does not impact the data or conclusions of this report.

4.4.4 **PFE Monitoring Points**

Numerous PFE monitoring points were created across the Site Building during the installation of the SSDS to confirm the creation of a pressure differential, sub-slab to ambient air pressure. The locations of the PFE monitoring points were chosen based upon field conditions and the installed locations of the SSDS extraction points. The approximate locations of the PFE monitoring points are depicted on As-Built drawing Figure A in Appendix B. Each PFE point consists of a ± 0.5 -inch diameter hole drilled through the floor slab. A digital micro-manometer was utilized to measure the pressure differential between the indoor space and the sub-slab space. The cumulative results of the PFE readings collected to date are summarized in the Table below.

	Differential Pressure (Inches of Water Column)					
PFE Location ID	10/24/17	7/30/2019				
А	-0.075	-0.034				
В	-0.081	-0.075				
С	0.00*	-0.007				
D	-0.027	N/A				
Е	-0.071	N/A				
F	-0.042	-0.054				
G	-0.059	-0.251				
Н	N/A	-0.054				
Ι	N/A	-0.064				

* Denotes that the differential pressure at this location was measured again on November 7, 2017 and a reading of -0.005"WC was recorded

These PFE monitoring points were sealed with backer rod and/or caulk subsequent to collecting the readings. Based on the PFE measurements obtained the SSDS is providing adequate capture beneath the entire building.

4.5 DEVIATIONS FROM THE IRM WP

The IRM WP indicated that the system would consist of four (4) sub-systems; however, based on the influence observed during the system installation only three (3) sub-systems were necessary.

J:\YARO ENTERPRISE INC\208723 BCP 300 COMMERCE\IRM SSDS CCR\RPT DRAFT_2019 YARO - 300 COMMERCE.DOCX

LIST OF TABLES

Table 1 – Summary of SSDS Exhaust Sampling Results

Table 2 – Summary of Post Startup Air Sampling Results

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 BCP Site Boundary
- Figure 3 Sub-Slab Depressurization System Layout and Indoor/Sub-slab & Outdoor Air Sampling Locations

LIST OF APPENDICES

- Appendix A Electronic Copy of this CCR (Note: not included in this Draft version)
- Appendix B As-Built Drawings
- Appendix C Project Photo Log
- Appendix D Agency Approvals Associated with IRM
- Appendix E CAMP Field Data and Field Notes
- Appendix F DUSRs For Analytical Laboratory Data (Provided electronically, CD Included)
- Appendix G Raw Analytical Laboratory Data (Provided electronically, CD Included)

TABLES

TABLE 1 INTERIM REMEDIAL MEASURE - CONSTRUCTION COMPLETION REPORT 300 COMMERCE DRIVE, HENRIETTA, NEW YORK NYSDEC BCP ID No. C828158

SUMMARY OF SUB-SLAB DEPRESSURIZATION SYSTEM EFFLUENT SAMPLING RESULTS

Results in Micrograms per Cubic Meter (µg/m³) (USEPA Method TO-15)

		Indoor Air Samples			Outdoor Ambient Air	QA/QC Sample	NYSDEC DAR-1	
Parameter	CAS Number	2017_10_24_EX1A (Fan #1)	2017_10_24_EX1 (Fan #1 - Resample)	2017_10_24_EX2 (Fan #2)	2017_10_24_Outdoor	2017_10_24_DUP (Duplicate of 2017_10_24_EX1A)	Short-term Guideline Concentrations (SGCs) ¹ (µg/m ³)	Annual Guideline Concentrations (AGCs) 1 (µg/m ³)
Volatile Organic Compounds (VOCs)								
Chloromethane	74-87-3	1.6	0.89 J	ND UJ	0.81 J	NÐ	22000	90
Chloroethane	75-00-3	ND	ND UJ	0.37 J	ND UJ	NÐ	NL	NL
Chloroform	67-66-3	ND	0.63 J	0.68 J	ND UJ	NÐ	150	14.7
Acetone	67-64-1	-11	260 J	330 J	7.6 J	16	180000	30000
Isopropyl Alcohol	67-63-0	8.7	450 J	1300 J	1.3 J	17	98000	7000
Carbon Disulfide	75-15-0	ND	5.1 J	5.9 J	ND UJ	ND	6200	700
Carbon Tetrachloride	56-53-5	0.5	0.5 J	0.5 J	0.44 J	0.5	1900	0.17
cis-1,2-Dichloroethene	156-59-2	ND	17.0 J	3.2 J	ND UJ	ND	NL	63
Methylene Chloride	75-09-2	0.69	1.7 J	1.1 J	0.9 J	1.7	14000	60
Hexane	110-54-3	0.7	12 J	14.0 J	ND UJ	ND	NL	700
Methyl Ethyl Ketone	78-93-3	1.4	37 J	38 J	0.97 J	1.9	13000	5000
Cyclohexane	110-82-7	0.65	7.2 J	13 J	ND UJ	0.59	NL	6000
Ethyl acetate	141-78-6	ND	ND UJ	3.8 J	ND UJ	ND	NL	3400
Benzene	71-43-2	1.4	30.0 J	32.0 J	ND UJ	1.5	1300	0.13
Bromodichloromethane	75-27-4	ND	ND UJ	ND UJ	ND UJ	ND	NL	70
1,4-Dichlorobenzene	106-46-7	ND	ND UJ	ND UJ	ND UJ	ND	NL	0.09
Heptane	142-82-5	1.4	25 J	31 J	ND UJ	1.4	210000	3900
Tetrachloroethene	127-18-4	ND	3.7 J	ND UJ	ND UJ	ND	300	4
1,1,1-Trichloroethane	71-55-6	ND	0.76 J	ND UJ	ND UJ	ND	9000	5000
1,2-Dichloroethane	107-06-2	ND	ND UJ	ND UJ	ND UJ	ND	NL	0.038
Trichloroethene	79-01-6	NÐ	13 J	1.2 J	ND UJ	ND	20	0.2
2,2,4-Trimethylpentane	540-84-1	1.2	28 J	33 J	ND UJ	1.3	NL	3300
Toluene	108-88-3	15	270 J	260 J	2.9 J	20	37000	5000
Trichlorofluromethane (Freon 11)	75-69-4	1.2	1.6 J	1.8 J	1.2 J	1.2	9000	5000
Dichlordifluoromethane (Freon 12)	75-71-8	2.4	3.0 J	3.1 J	2.2 J	2.4	NL	12000
Ethylbenzene	100-41-4	1.8	43.0 J	44 J	ND UJ	1.9	NL	1000
Xylene (m,p)	1330-20-7	7.2	170.0 J	170.0 J	1 J	7.3	22000	100
Xylene (o)	95-47-6	2.7	50 J	54 J	0.43 J	2.8	22000	100
Vinyl Chloride	75-01-4	ND	ND UJ	ND UJ	ND UJ	NÐ	180000	0.11
Styrene	100-42-5	ND	ND UJ	ND UJ	ND UJ	ND	17000	1000
4-Ethyltoluene	622-96-8	ND	9.3 J	10 J	ND UJ	ND	NL	NL
1,3,5-Trimethylbenzene	108-67-8	NÐ	7.9 J	<mark>8.4</mark> J	ND UJ	NÐ	NL	6
1,2,4-Trimethylbenzene	95-63-6	2.0	28 J	32 J	ND UJ	2.1	NL	6

1. New York State Department of Environmental Conservation (NYSDEC) Division of Air Resources-1 (DAR-1) dated August 10, 2016.

ND - Denotes that the specific compound not detected above the reported laboratory method detection limit.

J - Denotes that the associated numerical value is an estimated quantity due to variance from quality control limits..

1.0 - Strikethrough denotes that the results were rejected by the data validator.

Yellow shading denotes that the compound was detected at a concentration greater than the DAR-1 Annual Guideline Concentration, it should be noted that the actual criteria requires air modeling; however, based on the limited mass emmission a formal modeling does not appear warranted.

NL denotes that DAR-1 does not list a value for this compound.

TABLE 2 **INTERIM REMEDIAL MEASURE - CONSTRUCTION COMPLETION REPORT 300 COMMERCE DRIVE, HENRIETTA, NEW YORK** NYSDEC BCP ID No. C828158

SUMMARY OF POST SUB-SLAB DEPRESSURIZATION SYSTEM INSTALLATION CONFIRMATORY SAMPLING Results in Micrograms per Cubic Meter (µg/m³) (USEPA Method TO-15)

Soil Boring ID		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	YSDOH Indoor Air NYSDOH Guidance Table C2. USEPA		300-IA-02	300-IA-03	300-IA-04	300-EXT-01	DUPE
Sample Depth (feet) Sample Date	Units	Concentration Decision Matrix (minimum action level) ⁽¹⁾	Concentration (minimum action level) ⁽¹⁾	BASE Database - 90th Percentile ⁽²⁾	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/18/2018
1,1,1-Trichloroethane	ug/m3	100***	3***	20.6	<0.82	<0.82	<0.82	<0.82	<0.82	<0.82
1,2,4-Trimethylbenzene	ug/m3	NL	NL	9.5	0.69 J	0.98	2.1	2.0	<0.74	2.1
Acetone	ug/m3	NL	NL	98.9	37	52	79	70.0	11.0	71.0
Benzene	ug/m3	NL	NL	9.4	0.89	1.1	1.3	1.3	0.67	1.3
Carbon tetrachloride	ug/m3	6 **	0.2**	<1.3	0.44	0.38	0.38	0.4	0.4	0.4
Chloromethane	ug/m3	NL	NL	3.7	0.99	0.93	1.2	1.2	0.8	<0.31
Cyclohexane	ug/m3	NL	NL	NL	2.8	4.5	8.4	11	<0.52	8.6
Ethyl Acetate	ug/m3	NL	NL	5.4	1.7	3.7	3.6	4.3	<0.54	4.4
Ethylbenzene	ug/m3	NL	NL	5.7	<0.65	<0.65	0.43	0.5	<0.65	0.5
Freon 11	ug/m3	NL	NL	18.1	1.1	1.1	1.1	1.1	1.1	1.2
Freon 12	ug/m3	NL	NL	16.5	2.3	2.4	2.3	2.3	2.3	2.2
Heptane	ug/m3	NL	NL	NL	0.61	0.78	0.98	1.1	<0.61	1.1
Hexane	ug/m3	NL	NL	10.2	0.78	0.99	1.9	2.0	<0.53	1.9
Isopropyl Alcohol	ug/m3	NL	NL	NL	220	380	840	1600	2.6	1,500.0
m,p-Xylene	ug/m3	NL	NL	22.2	0.65 J	1.0	1.0	1.1	<1.3	1.1
Methly Ethyl Ketone	ug/m3	NL	NL	NL	2.1	3.3	3.9	4.0	<0.88	4.3
Methylene Chloride	ug/m3	100***	3***/60*	NL	3.9	1.8	1.3	0.83	0.94	0.94
o-xylene	ug/m3	NL	NL	7.9	<0.65	0.48	0.61	0.6	<0.65	0.7
Stryene	ug/m3	NL	NL	1.9	0.43 J	0.81	1.1	1.4	<0.64	1.4
Tetrachloroethylene	ug/m3	100***	3***/30*	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	ug/m3	NL	NL	43	5.2	5.8	13	17.0	0.8	16.0
trans-1,2-Dichloroethene	ug/m3	NL	NL	NL	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59
Trichloroethene	ug/m3	6 **	0.2** / 2*	4.2	<0.16	0.59	<0.16	0.21	<0.16	0.21
Vinyl Chloride	ug/m3	6 ****	0.2****	<1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Notes:

Concentrations in micrograms per cubic meter (ug/m³)

Samples analyzed for VOCs by USEPA Method TO-15

< indicates the concentration was not detected above the reporting limit

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and subsequent updates. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database

(see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

(2) USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote "1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

* = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York and updates in September 2013 for PCE and August 2015 for TCE.

** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix A (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

*** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix B (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

**** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix C (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates).

J - Analyte detected below quantitation limit

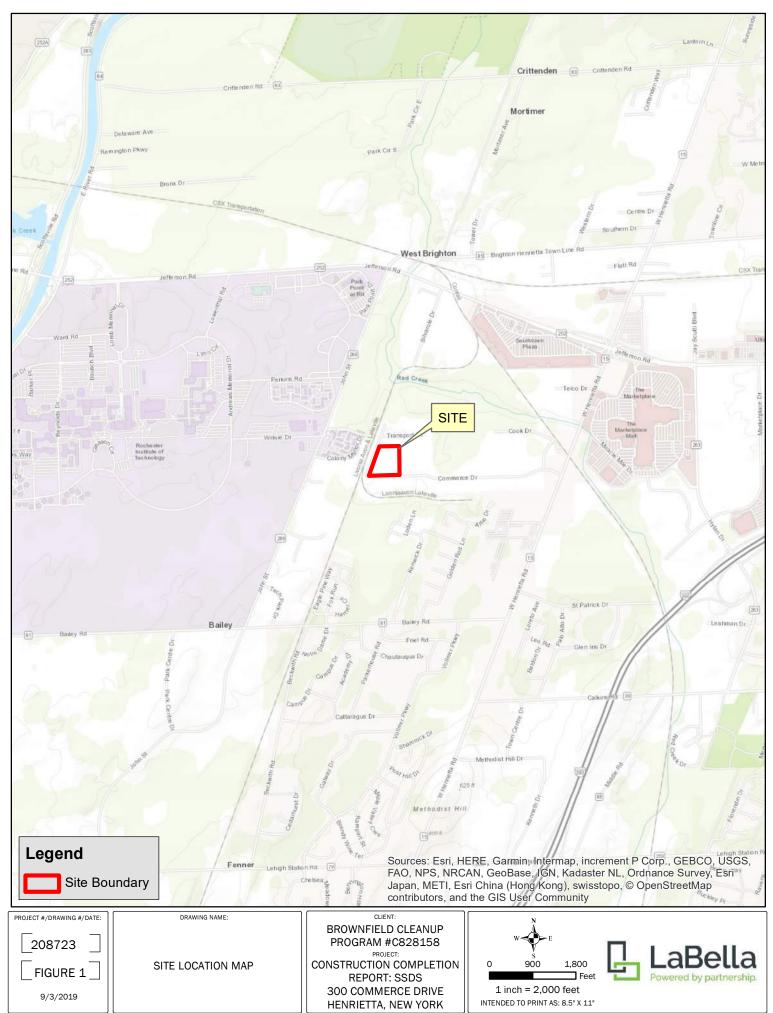
NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York , May 2017 Decision Matrices Notes:

NO FURTHER ACTION:

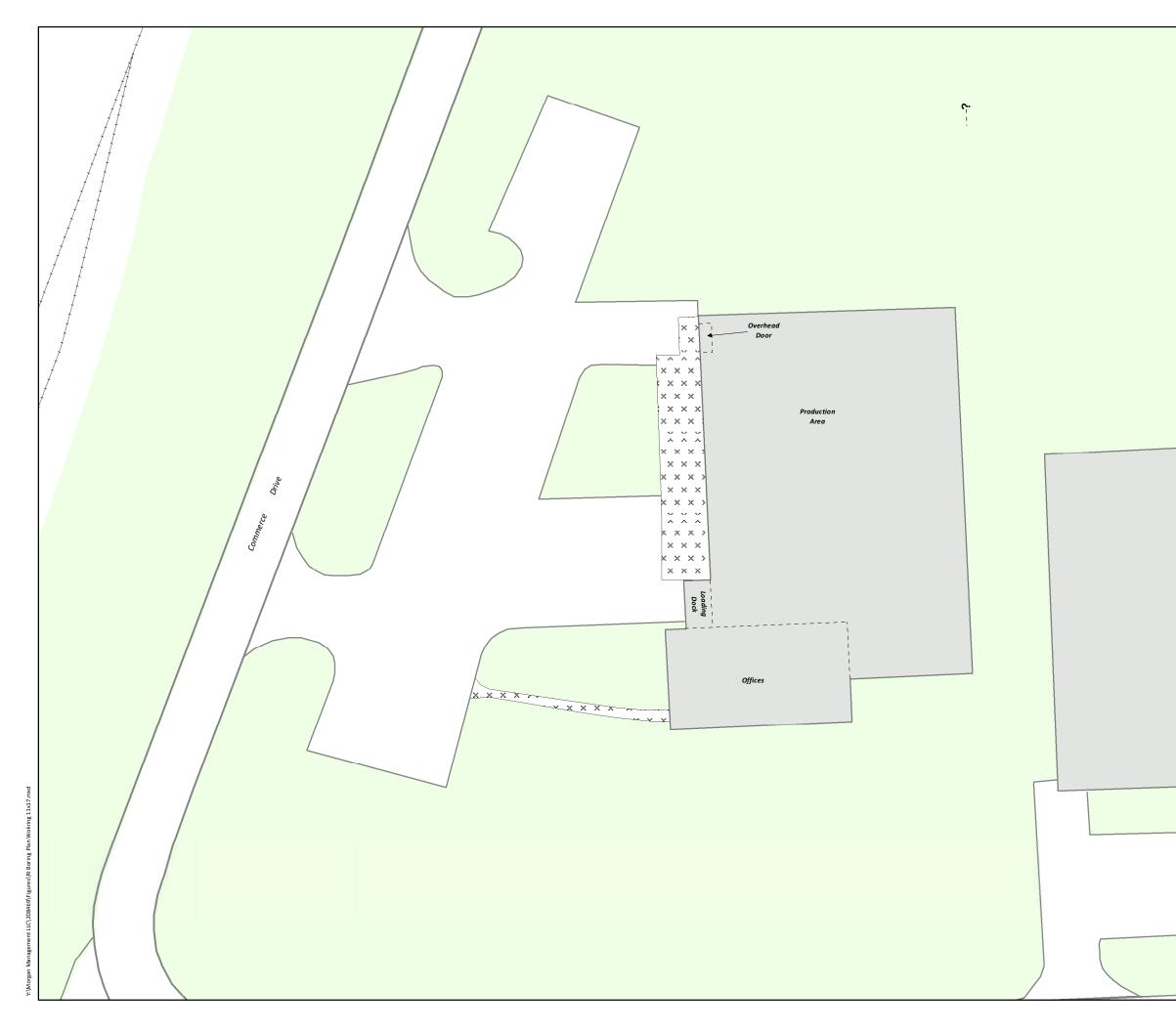
No additional actions are recommended to address human exposures

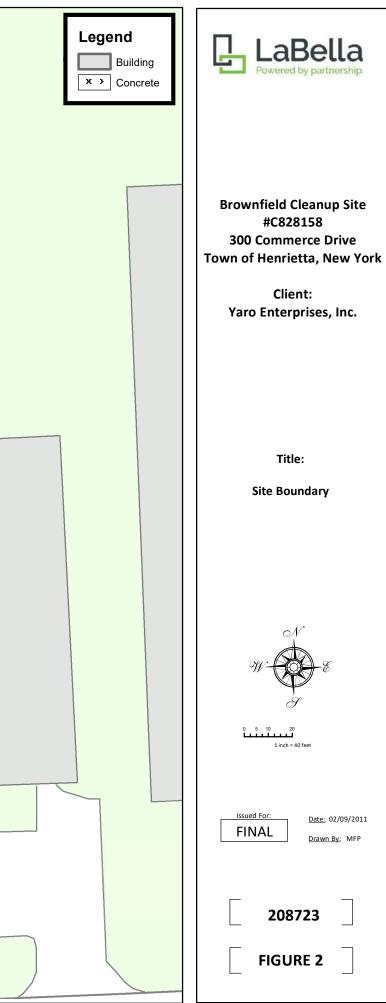
IDENTIFY SOURCE(S) AND RESAMPLE OR MITIGATE:

We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.


MONITOR:

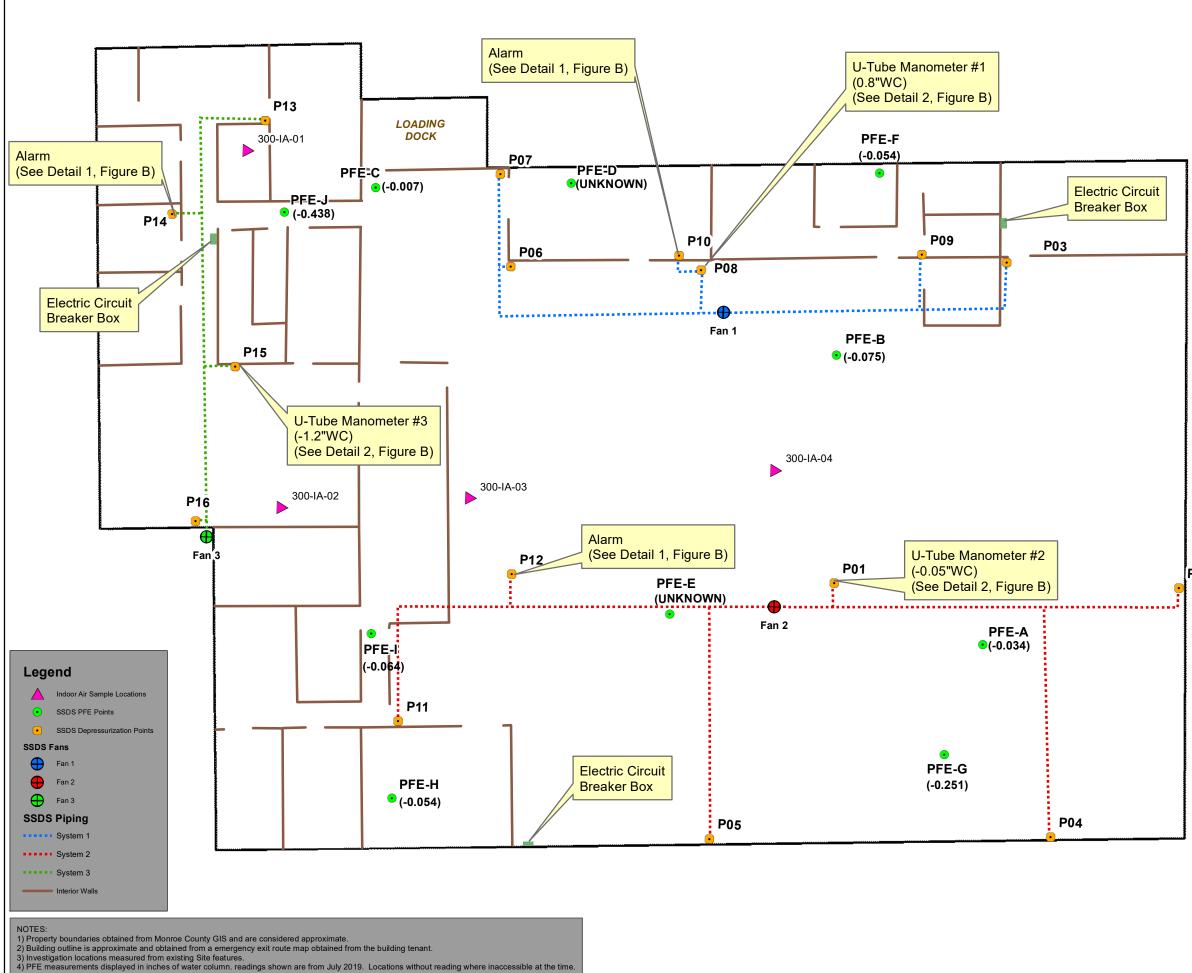
We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommend to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building-, and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

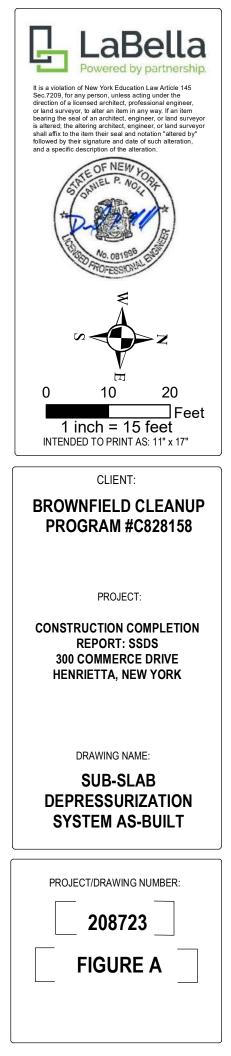

MITIGATE:


We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

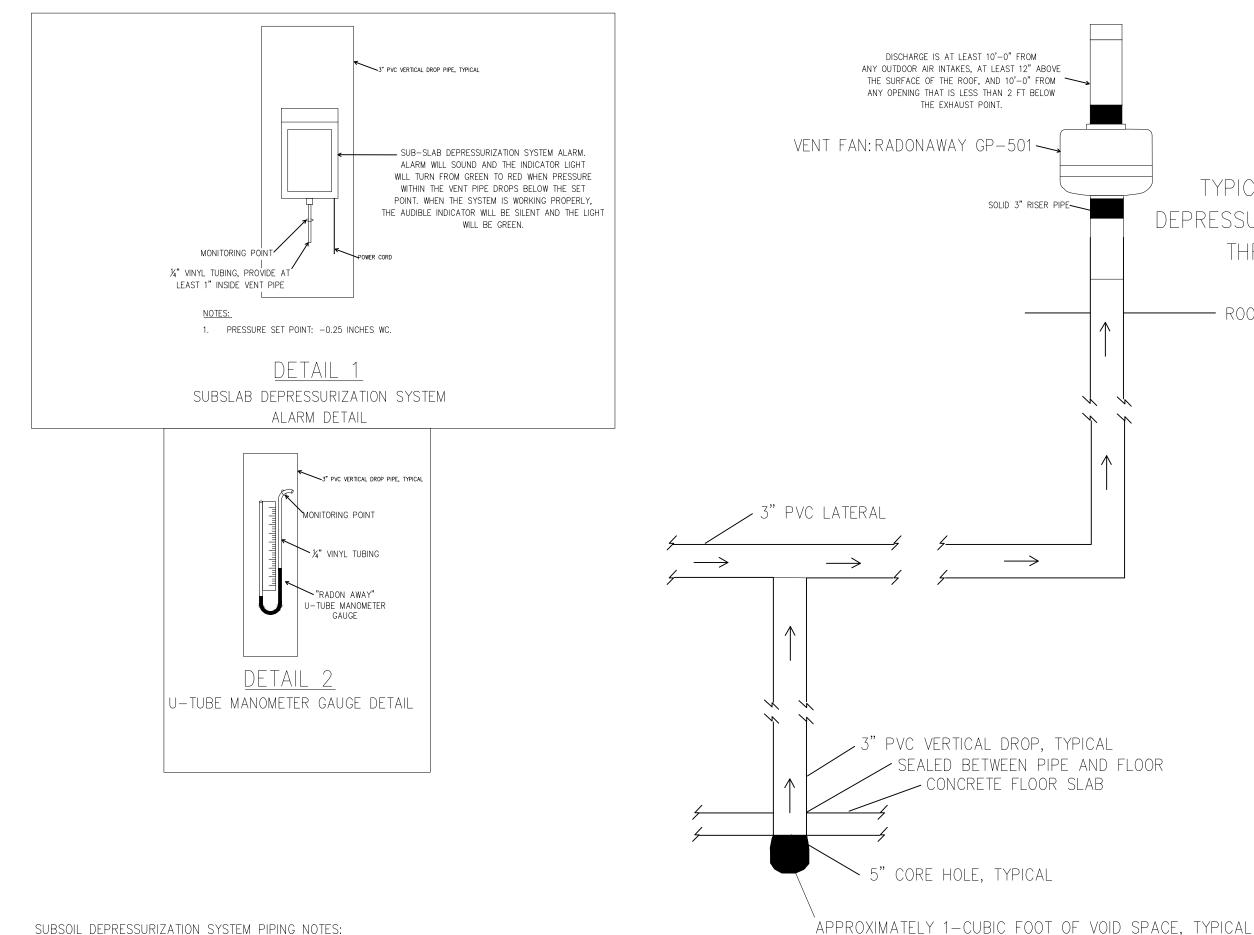
FIGURES

Path: J:\Yaro Enterprise Inc\208723 BCP 300 Commerce\Drawings\Asbuilt\FIGURE 1.mxd




APPENDIX A

ELECTRONIC VERSION OF CCR (HARD COPY ONLY)


APPENDIX B

AS-BUILT DRAWINGS

P02

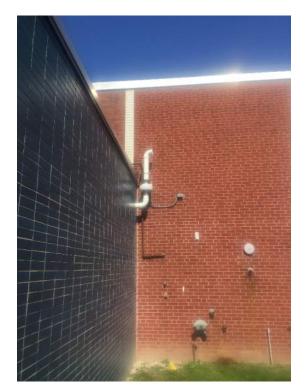
J:\YARO ENTERPRISE INC\208723 BCP 300 COMMERCE\DRAWINGS\Fig 2_SSDS Details.DWG

A. STEEL PIPE UTILIZED FOR INITIAL 3FT OF VERTICAL DROP PIPE IN SOME LOCATIONS.

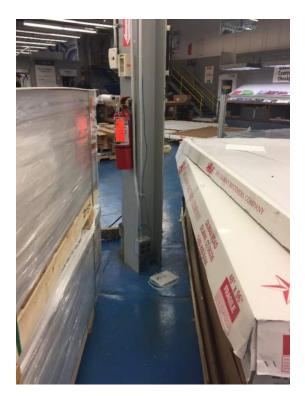
t is a violation of New York Education aw Article 145 Sec.7209, for any erson, unless acting under the direct of a licensed architect, professional engineer, or land surveyor, to alter an em in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering archite engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and da of such alteration, and a specific

TYPICAL SUBLAB DEPRESSURIZATION VENT THRU ROOF

- ROOF LINE


LEGEND

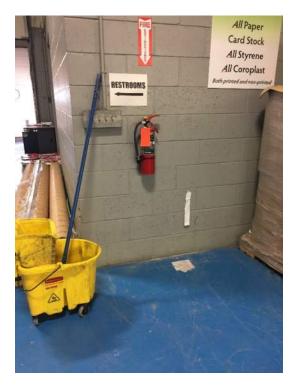
SYSTEM FLOW DIRECTION

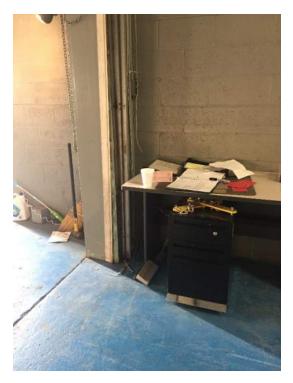

DRAWING NOT TO SCALE

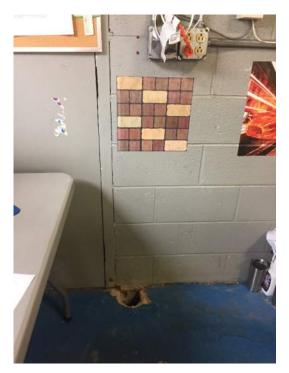
APPENDIX C PROJECT PHOTO LOG

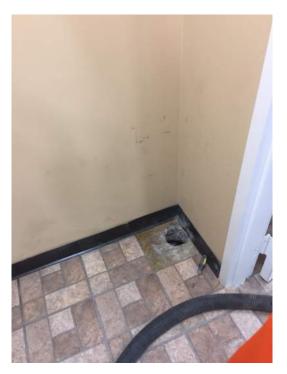


View of Fan 3


View of P-1

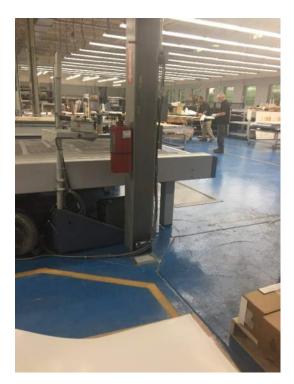

View of P-2

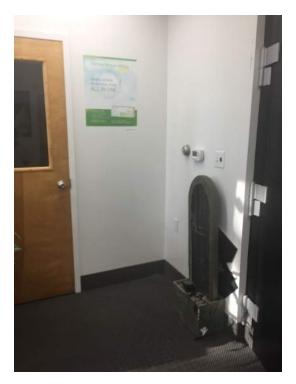

View of P-3


View of P-6

View of P-7

View of P-8


View of P-9


View of P-10

View of P-11

View of P-12

View of P-13

View of P-14

View of P-15

View of P-16

View of rooftop Fan 1

View of rooftop Fan 2

View of rooftop fans

View of u-tube manometer 1

View of u-tube manometer 2

View of u-tube manometer 3

APPENDIX D

AGENCY APPROVALS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Region 8 Main Office 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-2466 I F: (585) 226-2830 www.dec.ny.gov

April 20, 2016

Mr. Tony Kirik Yaro Enterprises, Inc. 228 Rosemont Drive Rochester, New York 14617

Re: Interim Remedial Measures Work Plan -Sub-Slab Depressurization System Installation 300 Commerce Drive Site No.: C828158 Henrietta (T), Monroe (C)

Dear Mr. Kirik:

The New York State Department of Environmental Conservation (Department) in conjunction with the New York State Department of Health (NYSDOH) have completed a review of the Interim Remedial Measures Work Plan – Sub-Slab Depressurization System Installation (IRMWP) dated March 2016 for the 300 Commerce Drive site (Site) located at 300 Commerce Drive, in the Town of Henrietta, Monroe County. Based on the information presented in the IRMWP, the IRMWP is approved with the following modifications and clarifications.

- 1. Section 4.1.2, Page 5: If the void space underneath the slab cannot be maintained to prevent clogs or blocks the suction pipe, additional measures will need to be implemented to maintain that void space for proper operation of the sub-slab depressurization system.
- 2. Section 5.2.1, Page 7: The IRMWP states that a minimum of 45 days after full startup of the SSD system indoor air sampling event will occur. Please note that if this initial indoor air sampling event does not fall during the heating season as defined in the NYSDOH guidance document then an additional indoor air sampling event will need to be completed during the heating season.

The Department requests that the indoor air samples collected be analyzed for the full USEPA Method TO-15 analytical parameter list for direct comparison purposes with the previous sampling event data.

3. Section 6.0, Page 8: The analytical data generated as part of the sub-slab depressurization system installation will be submitted to the Department in the appropriate electronic data deliverable that complies with the Department's current requirements.

The Construction Completion Report documenting the installation of the SSD system will be submitted to the Department and NYSDOH 90 days after the installation is complete.

An Interim Site Management Plan (ISMP) that includes an Operation & Maintenance Plan (O&M Plan) for the sub-slab depressurization system must be developed and submitted to the

Department and NYSDOH for review and approval. The Department's current Site Management Plan template ISMP needs to be used for the ISMP. The ISMP will be submitted to the Department and NYSDOH for review 90 days after the installation of the SSD is complete.

- 4. QAPP, Table 10-2: The holding time for samples collected starts at the time of collection not when the sample is received by the laboratory. Please revise this table for future submittals.
- 5. As per the Brownfield Cleanup Agreement, please provide the Department with 7 days advance notice of any fieldwork activities so that appropriate Department oversight can be provided.

Within fifteen (15) days of the day of the letter, the Applicant shall elect one of the three (3) options presented below in writing (electronic notification is acceptable) to either:

- Option A: Accept the State modified work plan; or
- Option B: Invoke dispute resolution as set forth in paragraph 375-1.5(b)(2) or
- Option C: Terminate the agreement in accordance with subdivision 375-3.5.

If the Applicant choses Option A then a copy of the RAAR/RAWP and this letter must be placed in the document repository within 7 days of acceptance of the Department's modified document. Failure to notify the Department within 15 days of the date of this letter the Department will conclude that Option A has been elected by the Applicant.

If you have any questions or concerns regarding this letter, or need further assistance with the Site, please feel free to contact me at 585-226-5354 or via e-mail at <u>charlotte.theobald@dec.ny.gov</u>.

Sincerely,

Charlotte B. Theobald Environmental Engineer 1

Enc.

ec: Paul Sylvestri (Harter Secrest & Emery, LLP) Dan Noll (Labella) Justin Deming (NYSDOH) Melissa Doroski (NYSDOH) Wade Silkworth (MCHD) James Mahoney (NYSDEC) Bernette Schilling (NYSDEC) Greg MacLean (NYSDEC)

APPENDIX E

FIELD NOTES AND CAMP DATA

FIELD NOTES/CAMP DATA

Mitigation System Installation Record

				Structure was sampled previously
System Information System ID: Owner Name:			Site No:	
			Site Name:	
			Owner Occupied	
System Address:			Telephone:	
City:		Zip:	Alt. Telephone:	
Contractor Information				
Installer Name:			Company:	
Telephone:				
Building Conditions	р. ч. н. — т			
Slab Integrity:	O Poor	O Avera	ge 🔿 Good	○ Excellent
Slab Penetrations: Describe:	🗌 Sump	Floor drain	Perimeter drain	C Other
Observed Water: Describe:	O Dry	🔿 Damp	 Sump only 	○ Standing
System Installation				
Installation Type:			Date Installed:	
Slab Thickess (inches):				
Subslab Material:			Subslab Moisture:	
Number of Suction Point	ts:		Number of Fans In	stalled:
	Fan #1 Opera	ting 📃 Fan #	2 Operating 📃 Fan #	⁴ 3 Operating
Fan Model No(s): Fan Serial No(s): Final U-Tube Levels:				
Additional Mitigation Ele	•		w floor 🛛 🗌 Rain cap	Other

Communication Testing

Test Method:

Meter Type/Manufacturer:_____

Location	Reading/Result	Dist. From Suction Point (ft)	Passed?

	System Sketch (indicate notable features, location of extraction points, and communication test holes)
NORTH	
	Refer to As-Built Drawings

SITE-WIDE INSPECTION FORM

Project Name: NYSDEC Site No. C835025	
Location: Canandaigua Multi-Brownfield Site	
Project No.: 208723	
Inspected By: E. Detweiler	
Date of Inspection: 7/30/19	
 Weather Conditions: 76°, Overcast	

300 State Street Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066

1. GENERAL SITE CONDITIONS Building generally in good condition. Office space is not currently occupied. Wavehouse space occupied and in good condition SSD systems (1, 2, 3) operating as intended/designed (Note: fan of sister I not aucssible at time of inspection but communication testing shows adequate 2. COVER SYSTEM OBSERVATIONS NA

3. SSDS INSPECTION (COMPLETE 1 PER	SYSTEM & SEE ATTACHED SHEET FOR	
	ING/SSDS COMMUNICATION TESTING RESU	117
Sub-Slab Depressurization System - Fan #1:	Sub-Slab Depressurization System - Fan #2:	
Operational - Yes	Operational -	
	λ / λ	
Vacuum Gauge Reading U-tube (inches of water) - maccessible	Vacuum Gauge Reading (inches of water) -	
Alarm Check - inaccessible	Alarm Check -	
due to pallets being stored by viser		
SSDS Piping Check - Damage? - YESANO		
SSDS Fan Check – Damage? – YES(NO)		

BUILDING/LOCATION SYSTEM	2	
Sub-Slab Depressurization System - Fan #1:	Sub-Slab Depressurization System - Fan #2:	
Operational - Yes	Operational - N / /1	
Vacuum Gauge Reading (inches of water) - 0.5 "WC	Vacuum Gauge Reading (inches of water) -	
Alarm Check - functional	Alarm Check -	
SSDS Piping Check – Damage? – YES/NO)		
SSDS Fan Check – Damage? – YES(NO)		

BUILDING/LOCATION SYSTEM 3		
Sub-Slab Depressurization System - Fan #1:	Sub-Slab Depressurization System - Fan #2:	
Operational - YeS	Operational -	
Vacuum Gauge Reading (inches of water) - /, 2 "WC	Vacuum Gauge Reading (inches of water) -	
Alarm Check - functiona	Alarm Check -	
SSDS Piping Check – Damage? – YES(NO) SSDS Fan Check – Damage? – YES(NO)		

BUILDING/ LOCATION		
Sub-Slab Depressurization System - Fan #1:		Sub-Slab Depressurization System - Fan #2:
Operational -	χ	/ / Operational -
Vacuum Gauge Reading		Vacuum Gauge Reading
(inches of water) -		(inclues of water) -
Alarm Check -		Alarm Check -
SSDS Piping Check – Damage? – YES/NO		
SSDS Fan Check – Damage? – YES	S/NO	

BUILDING/ LOCATION			
Sub-Slab Depressurization System - Fan #1:		Sub-Slab Depressurization System - Fan #2:	
Operational -	<u>/</u>	Operational -	
Vacuum Gauge Reading (inches of water) -	(\land)	Vacuum Gauge Reading (inches of water) -	
Alarm Check - //		Alarm Check -	
	¥		
SSDS Piping Check – Damage? – YES/NO			
SSDS Fan Check – Damage? – YES	/NO		

PROJECT <u>SSD</u>	S Inspectio	on - 300 Commerce St	HEETOF
	208723		
SUBJECT CON	MUNICATION	TESTING RESULTS	SCALE

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

COMMUNICATION TESTING POINT (PRESSURE FIELD EXTENSION POINT)	MANOMETER READING ("Water Column)
) PFE-A	-0,034 "WC
2) PFE-B	-0.075 " WC
3)PFE-C	-0,007 " WC
4)PFE-D	Inaccessible due to storage of wooden pallets of cleaner
5) PFE-E	Inaccessible due to storage of pallets of cleaning product
6) PFE-F	-0.054 " WC
> PFE-G	-0,251 "WC
8) PFE-H	-0,054 "WC
9) PFE-I	-0.064 "WC
10) PFE-J	-0.438 "WC
	λ. · ·

PROJECT BCP # C 828158 PROJECT NO. 208723 CALC. BY SHEET OF 4 DATE 7/24/17 Associates, D.P.C. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING SUBJECT 300 Commerce Dr. SSDS Mstall. SCALE 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585,454.6110 • Fax 585,454.3066 www.labellapc.com KRM on-she @ 14:55 J/ MA Tech: N. Menganis, Aaron, Bob. B. Eran & Alex (Aaron. (Aaron does Not shy Past 15:30) Following CAMP meters, Eco Rentals # FA03081 Dust Trak # # FA02532 PID MMIRAE 3000 workhy in production area B she bldg. along N wall background readings Nocs 4.8-5.3 pm part. 7-0.020 mg/m3 11 (-1 created previously during plus test (I'm unsure of how it was referred to Short the); located 2 columns to 5 of P-Z P-2 along Next wall near 4th steel column from NE corner of bldg. Using rotary hammer down to (conc. floor theme thick). PID reading on Ist sm. dia. dr. hole = 19.3 ppm on 1st sm... Gelgnd 7-5ppm) 6-8"ppm

PROJECT BC # C828158 SHEET Z OF 4 DATE 7/24/17 PROJECT NO. 208723 CALC. BY Associates D.P.C. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING SUBJECT ZO COMMERCE Dr. SCALE 300 State Street, Suite 201 • Rochester, NY 14614 SSDS Install. Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com CAMP P-2 (mg/m3) (ppm) con ments part. VQCS time beg, h hammer drilling 4.2 0,026 15:35 hammer dr.M.M.s 0,022 4.3 15:40 0.026 4.4 15:45 fihishing hole (walenihs) some son fillbut Then 0.030 15:50 4.4 0.017 4.4 more sub concrete sub-slab 15:55 0.020 4.4 16:00 videning hole @ FF 0.029 4.4 16:05 4.5 More sub-slad conc. 0.020 10:10 found. Faster? 0.026 4.4 16:15 9.2 ppm PID sarren of popen hole. 4.5 16:20 0.024 (4.4)> bcks~2 reportedly a 7-3 gap" of sen fill between gil conc. floor slas and top of footer for steel Column; whattach fans to beth P-I and screen P-1 after removal of plastic Seal PID reads 5.2ppm VI 4.5 ppm belged P-2 to see if PFE influence reaching The Eand Wext. W/ Fans on each penetration worlds exhaust readings as tellews: P-2 4.7 ppm P-1 4.1 ppm

PROJECT BCP # C828158 PROJECT NO. 208723 4 _SHEET CALC. BY _____ DATE 7 SUBJECT 300 Commerce Dr SCALE

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

Phone 585.454.6110 • Fax 585.454.3066 SS DS Thistall.
P-3 near NW Exit door way Q work on W Sole J print/production
for vois part. 11. comments
Conc. 17:15 4.2 0.018 havener dan Plear 17:20 4.1 0.020 havener dan
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MAXaton Tech is Doing a very goed jets of house keeping of dust & conc. Lebris Durny Drain, of Depressurization
Lebris during drifting of dust & conc. Lebris during drifting of depressionization points and FE monitority points. Using
ponts and FE monitority points. Using wet/dry shop vacuum, venter to outside plus dustpan and broom.
FOSCILEN om P-3 open hole 28.5 ppm (4.1 Belgend
Parity PFE testing w/ fans all exhaust is vented to outdoor air using policy sheet tubes.
outdoor air using policy sheet tubes.

#C828158 PROJECT SHEE PROJECT NO. # 208723 CALC, BY Associates, D.P.C. ENGINEERING, ARCHITECTURE, ENVIRONMENTAL, PLANNING 300 Commerce SSDS install. DA SCALE SUBJECT____ 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com biksny located on Eext. wall P-4 3.5 ppm 612 0.036 ms/m3 near NE corne P-4 CAMP (mg/m3) (ppm) part. comments the 1 Vecs begin hamn 0.032 3.0 18:55 2fM 5/ab 6" 7-19:00 3.9 0.020 0.021 19:05 Thick 4.1 19:10 Forgot to 4.1 0.016 PID Surven 19:15 4.2 0.020 0.024 4.2 19:20 0.016 befor e 4.0 19:25 temp-sealed 0.036 4.0 19:30 Qui sub-slab much War Se stance E ext. wall on -5 10 Th whilow Slab from NE bikgnd 4. (rrm 5005 Corne 整6"+ 0.024 mg/m3 part. tohe VQCS tomments Thirle 19:40 0.014 4.1 Segin hammer drm 19:45 4.2 0,023 ID 19:50 4.1 0.026 Screen 19:55 0.020 4.0 9.4 ppm 0.063 4.0 10:00 0.022 (4.4 4.0 70:05 0,018 5CKGNU, 4.1 20:10 grand Eng much Some plastic She Whe

PROJECT BCP # C828/58 OF SHEET PROJECT NO. 208723 17 DATE T CALC. BY_ Associates, D.P.C. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING \mathbb{D} SUBJECT 300 COMMUCE SCALE 300 State Street, Suite 201 • Rochester, NY 14614 SSDS Install, Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com KRM & MA Tech on-sAe @ 15:00 Aaron, Bob, Evan, Alex Backgrennd readings 7-2.6 ppn vois 4- 0.012 Mg/m3 corrilor to leading dock P-6 , men | part 1 the Vocs comments. 15:45 1.5 20gh hannes 0.013 15:50 1.0 0.0161 (Rading dock) 15:55 0.008 1 1.2 door epen, 16:00 0.007 102 16:05 0.025 chiseling out slab 0.051 loaling dock door closed 1.6 10:10 1.5 16:15 1.3 0.012 1 exc. sub slab dell fill 16:20 1.7 0.0261 1.9 done 0.012 16:25 conc. floor slab 7-8 Thick in A P-6 = 2.1 ppm ID screen Noted No elers performance testony w/ 2 types of tans placed on P-6 ded not show good air flow or PFE to ward the leading dock is will add another depress? Pt. = P-7

6

PROJECT NO. 208723 DATE 11 CALC. BY Associates, D.P.C. SUBJECT <u>300 Connerce</u> Dr. SSDS install ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING SCALE 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com P-7. locate on N Sile of interter door a loading dock O/H 0.084 mg/m3 neadings & background 1.4 ppm (ppm) (mg/m3) comments. Vecs / fart. the begin hammer droll 1.5 0,125 17:10 1.8 17:15 0,087 0.148 2.1 17:20 0.094 17:25 1.9 chiseling slas 0.1241 17-30 2.1 0.156 17:35 1.8 0.136 17:40 2.0 0.156 1.7 17:45 0.84 17:50 108 17:55 1.4 excavath, sub-slaffill 0.084 18:00 1.6 0.087 18:05 0,131 done 1.6 RID Screen of P-7 0.7 ppm conc. Gleor slab Y-B" Thick

PROJECT BCP # C828158

SHEET / OF 3

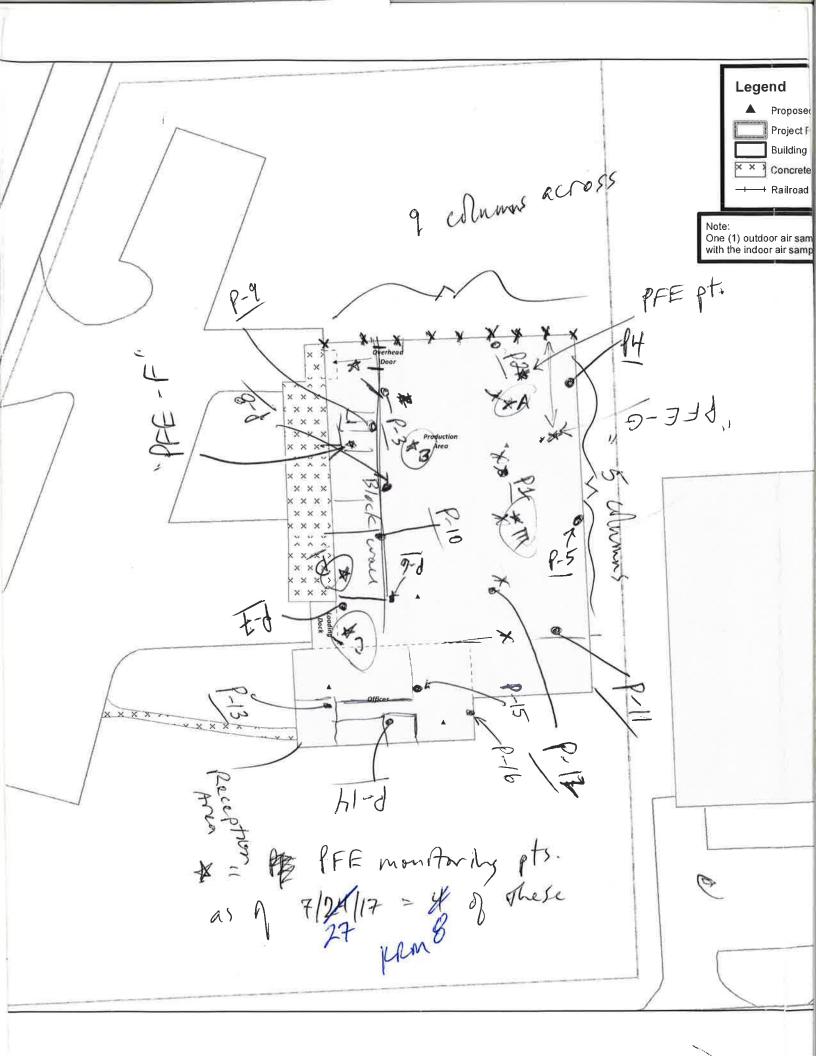
PROJECT BCK # 6828158 SHEET 3 OF 3 208723 PROJECT NO. CALC, BY DATE 7/25/17 Associates, D.P.C. SUBJECT 300 COMMERCE UN SSOS Thistall ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 location behind dest/warkstation www.labellapc.com P-8 productoon /pront NQCS 2.5 ppm Sackground part. 0.046 mg/m 3 (ppm) (ng/m3) comments the VQCS part. 0.061 begth hammer Soll 2.8 18:30 0.084 3.5 18:35 done 0.054 2.7 18:40 and. floor slab 7- 5" Thick Some Standing wester obser-ved in Sottom of Fhile hole NIDI Screen P-8 -> 6.7 ppm ø) PFE after to show mensurements Than , deal a, + Mow aroun) ener of the blogs, resulting This aren modest IFE in M-stre MA Tech a KRM 0 19:30 END 7/25/17

.....

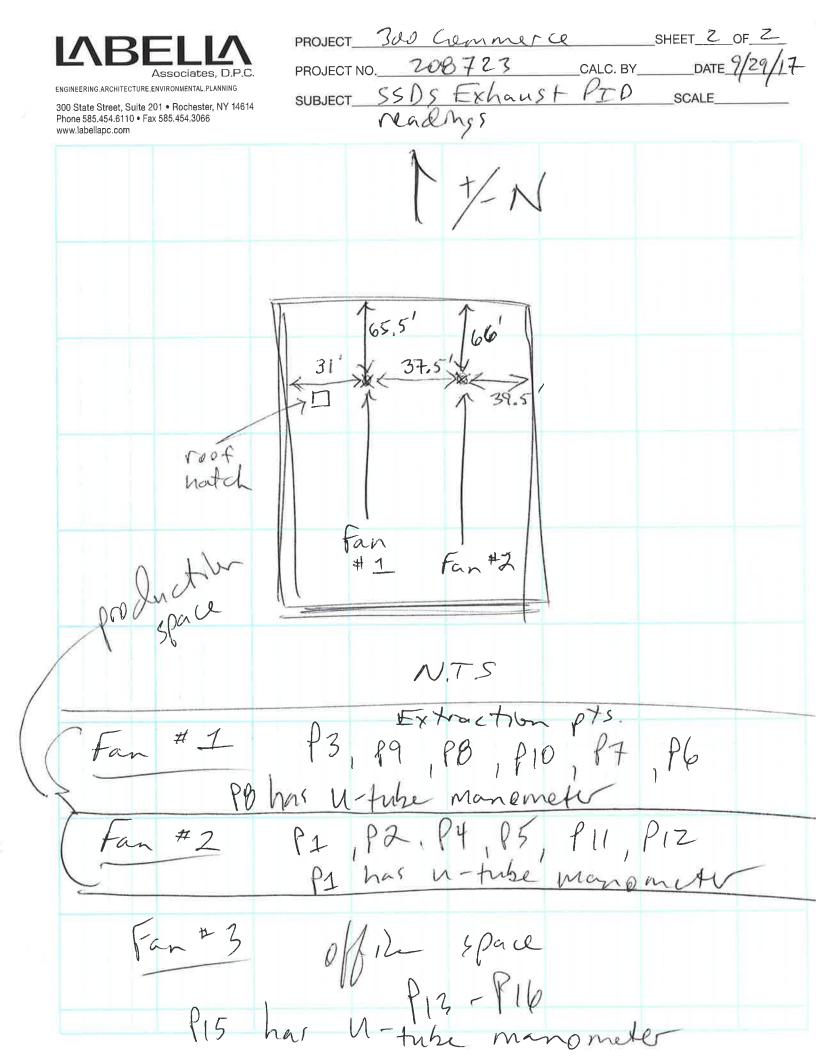
PROJECT BCI CB28158 SHEET OF 3 PROJECT NO. 208723 CALC. BY DATE 7/26/17 SUBJECT 300 Commerce Dr. SCALE 5505 Install.

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

www.labellapc.com Mit Tech on - SAL @ 15:00 KRM (Aaron, Bob, Evan, & Alex) satter von between in break neen and restrooms vocs -> 2.9 fpm backgnd. mg/m3 0.097 part. 7-6", Thick here comm Conc. floor slas part. filme Vecs 2.0 0.093 15-45 beggh hammer doru 3.1 15:50 0.063 3.4 15:55 0.045 chipping out slab 16:00 2.9 0.056 16:05 3.8 0.076 3.6 16:10 0,084 16:15 2.9 0.096 excave the sub-slab fill 16:20 31 0,112 PFE pt. dr.Me) corner at break won SW in Screen (-4 as som hammer Drill hole as arche 13 male 195 ppm w/ olors -A later PID larger hole = 48ppm Screen 51 2.110 16-25 3.2 0.096 3.3 16:30 16-35 0.070 16:40 3.6 0.118 Done w/ P-9


PROJECT BCPCB28158 SHEET 2 OF 3 PROJECT NO. 208723 CALC. BY DATE 7/25/17 Associates, D.P.C. SUBJECT 300 Commerce Dr. SSDS Finstall ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING SCALE 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com P-10 located in NE corner of 20 that storage" room Currently much inlegmans signage product on shelves here) belogned -> 0.026 ms/m3 3.2 pm part. Comments trhue / vacs besih hammer dr.M 17:00 0.056 3.1 17:05 3.2 0.066 17:10 0.052 3.3 chise ling out slab 0.118 17:15 3.0 17:20 0.084 3.1 17:25 0.059 2.9 excavating sub-slab fill 0.115 2.9 17:30 Jone 0.120 17:35 2,8 PFD Screen of P-10 yields 3.2 ppm Conc. floor slab 7-6" thick Using the shep vac. as a "fan" w/ Also 1/- 6" Hzo Vacuum, 1-10 yields from 0.007 to 0.013 ih. HzO on Re PFE pent in This room (±20'SW) P-10)

PROJECT CP # CB28158 SHEET 3 OF 3 208723 DATE 7/26/17 CALC. BY PROJECT NO. Associates, D.P.C. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING SUBJECT 200 Commerce $\left(\right)$ SCALE 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454 6110 • Fax 585.454.3066 55DS Install www.labellapc.com location in The SE corner print/preduction area the Dancer" chearleader he 'Lander rea 0.068 mg/m3 poste back grown 4.0 ppm Vocs phi pert. Vecs Commen 0,036 4.1 hang begin 18:00 0.023 4.1 18:05 0.026 4.1 180,10 chisel out 0.081 3.5 18:15 18:20 4.0 0.025 18:25 4.2 0.072 small dr M hles 8,4 screen PID n 18:30 0,134 2 excavating sub-slab 18:35 0057 1/ Fill 18:40 0.043 0.030 18:49 18:5 0.055 18:55 0.043 Q.04 4.2 19:00AB 0.045 PED screen of fihisted hole = 5.5 ppm 19:05 19:30 KAM & MA Tech off she Kem


BCP #C828158 OF 5 PROJECT SHEET PROJECT NO. 208723 CALC. BY DATE 7 Associates, D.P.C. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING 1) (. SUBJECT '300 (DMML) (2 SCALE 300 State Street, Suite 201 • Rochester, NY 14614 SDSS Install Phone 585.454 6110 • Fax 585.454 3066 www.labellapc.com 15:00 Kron & Mit Tech on-she a Aaron, Beb, Evon Alex n penetration with put 1 mor e sepore /production Sperc prat end S Space moving into office 0+ 61d, P-12 located to \$ 1 5th Whon (center) from N end of 51d, guitt Lamhatty Room) 40 0) vols 3.0 ppr part. leo2. Schand. J 2:020 mg/m 3 Ame Vecs part. Comment begin hammer dr M 2.028 15:55 3.0 3.4 0.030 16:00 childle, out slas 3.7 0.022 16:05 3.7 16:10 0.023 excavatily substab fill 3.8 0.033 1615 16:20 3.7 0.032 16:25 0.021 3.0 16-30 3.6 0.038 3.5 16:35 0.034 DONF PID Screen of P-12 once chrsaled out = 7.8 ppm

PROJECT BCP CB28/58 SHEET Z OF 5 PROJECT NO. 208723 CALC. BY____ DATE 7/27 Associates. D.P.C. SUBJECT 300 Commerce Dr. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING SCALE 300 State Street, Suite 201 • Rochester, NY 14614 SSDS Install. NE corner of Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com recepton area 1-13. Thre space of Hos. Nom on SW corner vocs 1.4 ppm part. O.105 mg/m3 bucksno. the 1 Vacs part. Comment 5 0.136 Segn hermone Soll 1.4 17:10 17:15 0.139 childlehy out slab 1.4 17:20 0.156 1.5 17:25 1.4 0.138 17:30 1.4 0.122 17:35 0.156 1,5 excavating sub slab 17:40 0.184 0.9 AU DONE 0.176 17:45 1. P-13 PID Screen 2.3 ppm NW corner P-14 Mile how hall from Wof2 Area, backgnd same as Reception Alme Nocs part + comment? begin hammer 0,152 1.3 17:25 Rom 0.153 1.3 17:30 1.3 0.176 17:35 done hanna dr. 21 0.126 1.2 17:40 chiseling out slab 0.158 18:00 1.1 0.170 18-05 1.2 18=10 0.186 101 18:15 0.180 1.2 00186 DONE 18:20 1.2

Associates, D.P.C. ENGINEERING.ARCHITECTURE.ENVIRONMENTAL.PLANNING 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com	PROJECT BCP # CB28 158 PROJECT NO. 208723 CALC. BY SUBJECT 300 Commerce Dr. SSDS Install.	SHEET 3 OF 3 DATE 2/27/17 SCALE
P-15 back gus 17:45 17:45 0.7 17:50 0.7 17:50 0.7 17:55 0.7 17:55 0.7 17:55 0.7 18:40 1.1 18:40 1.1 18:45 1.2 18:55 1.2 18:55 1.2 19:00 1.2): Noc, 0.7 ppm part. 0.107 mg/ 7 0.122 begin ha 0.126 begin ha 0.126 done her 0.176 chisel ou 0.147 0.168 excavathy	ments ments ments Monterill amerderill A slab
14 ¹⁶	E side of cubicle area Same as P-15 (a pcs part. / comm 0.046 begin har 0.175 done ham 0.120 done ham 0.104 begin chisel 0.092 0.092 begin chisel 0.092 begin chisel 0.092 Excavathy sa 0.176 0.147	bore) ents merdral merdral ih, slas

PROJECT_ 300 Commerce _SHEET OF 2-PROJECT NO. 208723 CALC. BY DATE 9/29/17 SUBJECT SSDS Fam exhaust scale PID Near Mars Associates, D.P.C. ENGINEERING ARCHITECTURE ENVIRONMENTAL PLANNING 300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com Kan on - ste C 10:45 Ko measure SSDS Fan exhanst w/ PPS RAE (rental from EcoRentals menther 60°F, sunny, rain later today tan #3 on 5 side of enough 512g and NE corner of office space Background Oppb 38 ppb, exhaust rending Fan # I roof top, western background # 70 ppb, 495 ppb feak exhaust reading, 495 ppb feak Fan # 2 mot root tep, eastern Sack ground 1/47 ppb 395 peak exhaust reading 9/27/17 tolecon. W/ Aaron of Mit. Tech, Aaron says fins mere powered on on August 29, 2017 (31 days ago)

PROJECT 300 Commerce Dr. SHEET 1 OF 3 PROJECT NO. 208723 CALC. BY _____ DATE 0 24/17 SUBJECT_SSDS Exhanst Sampling_SCALE_

ENGINEERING ARCHITECTURE ENVIRONMENTAL PLANNING

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

Khon an-site @ 12:00 O set up 1-2 can and duplicate w/"T" connector roof top on Exhaust Fan 1 Regulator malfunction here (reg # 250) start @ 12:38 w/ 26" Vacuum; end @ 12:52 w/ 2" Vacuum. $\begin{array}{c} cun # 322 \\ (1-2) \end{array} 2017 - 10 - 24 - Ex 1 A'' \\ 2017 - 10 - 24 - Dul' = can # 457 (1-2) \end{array}$ Per telecon. W/ J. G. Men, wh submA The Z above samples and conthine w/ sampling. (2) outdoor an sample, location on flag pele hook, winds from The rep#267 South and southwest, 16 mph w/ con # 484 (1.42) gusts to 24 mph (1.42) werall 68°F partly clondy, humidity 51% "2017-10-24 - outdoor" start @ 13:04 14:18/23" \$; 15:28/15" ; 16:17/9.5"; 30" 1715:07 /4" ; 17:40/2" STOP

PROJECT 300 Commerce Dr. SHEET 2 OF 3 IVBETIV PROJECT NO. 208723 CALC. BY _____ DATE 10/24/17 SUBJECT SSDS exhanst Samplingscale_____ Associates, D.P.C. ENGINEERING ARCHITECTURE ENVIRONMENTAL PLANNING 300 State Street, Suite 201 • Rochester, NY 14614 Nooftop exhaust Fan I (western Fan) Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com ["2017_10_24_Ex1" start@13:14/29"; Can 362 (12) 17121/21"; 15:21/15"; 15:55/10"; 16:42/6" (29 #281 17:31/1.5" STOP Not top exhaust Fan 2 (Rastern Fan) "2017_10_24_Ex2" start@13:19/29" [14:22/18"; 15:22 [8"; 15:56/2.5"; 16:00/2" STOP Can #96 (1-2) PFE measurements from PFE monitoring points previously installed by mitisation tech in 7/2017 (see field sketch dated 7/27/17 For locations (names) "PFE-A" - may not have been installed 7/2017 (later?) located 7-10' SE of column between P-1 + P-2 reading = -0.075" H20 "PFE-B" to WJ P-1 column (new conc. sean Time) 4-10'E of stairs to second floor reading= -0.081" H20 "PFE-C" Leading lock area on sw partim 7 blog 7.3' E of man door nealing = 0.000 in 1/20

SHEET 3 OF PROJECT 301 Commerce DATE 10/24/17 PROJECT NO. 208723 ____CALC. BY_____ SUBJECT PFE readings SCALE

ENGINEERING ARCHITECTURE ENVIRONMENTAL PLANNING

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066

www.labellapc.com "PFE - D" -0.027 30-35' to N. J. "PFE-C" "PFE-E ±5' E of column between f-1 and f-12 reading =-0.071 "PFE-F break SW corner of valing = - 0.042 PFE-G = -0.063 reading -0.059 10'-15 Elec switch mitd. on ext. WA Ist a column W 2 +1-35 NE from off-site :00

	/	Cuntek Labs	Cha	ain of Cust	ody	Site Name: 300 COMM	erce Dr.	Detection Limit	Report Level
Œ	1	143 Midler Park Driv	/	0	0.0	Project: C828158		5ppbv	Level
Centek Laboratorie	- (014			1ug/M3	Level II
	1	Syracuse, NY 13206	° /	Vapor Intrusion	RIAD	PO#: 208723 Quote # 9-5P		1ug/M3 +TCE .25	
		315-431-9730 www.CentekLabs.c	OR	vapor intrusion		Canister Order #: 6521			
ТАТ	Check	Rush TAT D	ue	Company:	Bolla A	450C. DPC	Company: Check Here If Sam	ie: 🕅	
Turnaround Time:	Qne	0	ate:				Invoice to:		
5 Business Days		0% 25%		Report to:	no State	st. Suite 201	Address:		
4 Business Days 3 Business Days		23% 50%		City State Zin	Rocha	ster , NY 14614	City, State, Zip		
2 Business Days	F	75%							
*Next Day by 5pm	\Box	100%		Email: 191	llena	tabellape, com	Email:		
*Next Day by Noon		150%		- /			Phone:		
*Same Day		200%			85) 4 Bagulatar	Analysis Request	Field Vacuum	Labs Vacuum**	Comments
*For Same and Next Day TA	AT Please	Date Sam	nlad	Canister Number	Regulator Number	Analysis Nequest	Start / Stop	RecV/Analysis	
Sample ID	/1	10/24/2013		322	250	NOLS USEPA TO -15		1	
2017-10-24_ EX1		10/01/001-	r	457	250	1	2612	1	
2017_10_24_DUP				484	267	71	3012	1	MS/MSD
2017-10-24 Outo 2017-10-24-E>				362	281		2911.5	1	1
2017-10-24-E		V		96	297	\vee	2912	1	
2017-10-27-L	XX_			1 10			1	1	
				1			1	I	
							1	1	
							1	Ĩ	
							I	1	
161							1	1	
							1	1	
							1	1	
							1	1	
							1	1	
							1	1	
							1	1	
							1	1	
Chain of Custody		Print Name		~	Signature ,	in no An	Date/Time	Courler: CIRCLE O	NE ckup/Dropoff
Sampled by:	K	yle R. M.	ille	(K	CININ	10/26/17 pm		and the second
Relinquished by:				-				**For LAB USE ONLY Work Order #	
Received at Lab by:									

*** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

INDOOR AIR SAMPLING LOGS

Soil Gas Testing Log

Post Sub-Slab Depressurization Unit Installation Indoor Air Sampling 300 Commerce Drive, Henrietta, New York BCP#C828158

Project Name: 300 Commerce BCP#C828158 **Project No: 208723**

Sampled By John Lanz Date: 18-Jan-18 Weather 25 F Partly Cloudy

ID3	300-IA-01 (MS/	MSD)	ID300-IA-02				ID300-IA-03			
Sub-Slab	Pressure	N/A "wc	Sub-Slab	PressureN	essureN/A "wc			Pressure	N/A"wc	
	Indoor Air			Indoor Air				Indoor Air		
T .	Vacuum	Helium Tracer	Time	Vacuum	Helium Tracer		Time	Vacuum	Helium Tracer	
Time	Reading	Gas Reading	Time	Reading	Gas Reading		Time	Reading	Gas Reading	
836	28.1	N/A	840	29.6	N/A		843	28.9	N/A	
931	24.9	N/A	932	26.5	N/A		925	26.2	N/A	
1100	20.0	N/A	1100	20.9	N/A		1100	21.2	N/A	
1130	17.5	N/A	1130	18.2	N/A		1130	18.9	N/A	
1207	15.5	N/A	1207	16.1	N/A		1207	16.9	N/A	
1345	7.8	N/A	1344	10.0	N/A		1345	11.9	N/A	
1430	6.9	N/A	1430	7.1	N/A		1430	9.1	N/A	
1505	4.9	N/A	1508	4.9	N/A		1511	7.2	N/A	
		N/A					1610	4.9	N/A	
<i>a</i>			<i>a</i>				~		1 1 2	
	sconnected and			sconnected and				sconnected and		
	shipment to Lab).		shipment to Lab).			shipment to La	b.	
	-									
Canister:	484		Canister:	1186			Canister:	556		
Regulator:	1170		Regulator:	310			Regulator:	1171		
regulator.	1170		reegulator.	510			reegulator.	11/1		
	<u> </u>	1			+				+	
	1				+				+	
	ł				1				1	
	ł				1				1	
	1	1			1					
	l	1							1	

Notes/Activities:

300-IA-01 located in office break room. Placed on top of small refrigerator in northwest corner of room.

300-IA-02 located in office space. Placed on top of cabinets. 300-IA-03 located in work area, placed on top of Fire Extinguisher holder on southern wall to office.

Post Sub-Slab Depressurization Unit Installation Indoor Air Sampling 300 Commerce Drive, Henrietta, New

York BCP#C828158

Soil Gas Testing Log

Project Name: 300 Commerce BCP#C828158 Project No: 208723

Sampled By John Lanz

Date: 18-Jan-18 Weather 25 F Partly Cloudy

Cal CLI T)woodanwe	N/A "wc	Sub-Slab	300-EXT-0	/A "wc	CL C1	b Duocour	"wc		
Sub-Slab F			Sub-Slab			Sub-Slab Pressure "wc Sub-Slab/ Indoor Air/ Outdoor Air				
	Indoor Air			Outdoor Ai		Sub-Slab/				
Time	Vacuum Reading	Helium Tracer Gas Reading	Time	Vacuum Reading	Helium Tracer Gas Reading	Time	Vacuum Reading	Helium Trace Gas Reading		
850	30.0	N/A	853	30.5	N/A		Reading	Gas Reading		
937	27.9	N/A N/A	1000	26.8				-		
1100		N/A N/A	1100	20.8	N/A					
1100	23.1 22.1	N/A N/A	1100	24.0	N/A N/A					
1207	22.1	N/A N/A	1207	19.1	N/A N/A			-		
1345	20.1	N/A N/A	1345	19.1	N/A N/A					
1430	17.0	N/A N/A	1430	14.1	N/A N/A					
1430	16.9	N/A N/A	1646	5.7	N/A N/A					
1540	7.2	N/A N/A	1040	5.7	11/A					
1615	3.9	N/A N/A			<u> </u>					
1015	5.9	11/74								
Canister disc	connected and	packaged for	Canister di	sconnected and	nackaged for					
	hipment to Lab			shipment to Lab						
5	inpinent to Luc									
Canister	554		Canister	366			1	1		
Cannister (D)	1177		Regulator	372						
Regulator	268									
					ļ					
		↓			<u> </u>					
		↓			<u> </u>					
		┨────┤			┥────┤		+	+		
otes/Activities:										
		tely 4-feet above the	ground hanging fi	rom the exterior	Flag Pole.					
00-IA-04 chosen	n as sample to	collecte duplicate fro	m. Sample taken	from north centr	al portion of Work a	rea. Sample place	ed on top of stack	of		
rboard product		r 110	1			F F-we	1			

APPENDIX F

DATA USABILITY SUMMARY REPORTS

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

300 Commerce Drive Project 208723 SDG: C1710061 Sampled 10/24/2017

TO-15 AIR SAMPLES

20147 10 24 EX1A	(C1710061-01)
20147 ¹⁰ 24 DUP	(C1710061-02)
20147 ¹⁰ 24 ⁰ utdoor	(C1710061-03)
20147 ¹⁰ 24 ^{EX1}	(C1710061-04)
20147 ⁻¹⁰ 24 ⁻ EX2	(C1710061-05)
\rightarrow $ -$	

DATA ASSESSMENT

A TO-15 data package containing analytical results for five air samples was received from LaBella Associates, P.C. on 29Dec17. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 300 Commerce Drive Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The results reported from 2017_10_24-EX1A and 2017_10_24_DUP have been rejected, and the results from 20147_10_24_Outdoor, 20147_10_24_EX1 and 20147_10_24_EX2 have been qualified as estimations because the samples were not collected properly.

The concentration of 1,2,4-trimethylbenzene found in every sample except 2014 10 24 Outdoor has been qualified as an estimation due to high spiked sample recoveries.

The identifications of heptane in 2014_10_24_EX2 could not be verified based on the mass spectra references included in the raw data. Heptane should be interpreted as undetected in this sample.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin DATAVAL, Inc.

Date: 08 Jan /8

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained five air samples that were collected in 1-liter SUMMA canisters. 2017_10_24_Outdoor was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples. Sampling was completed on 24Oct17. The canisters were shipped back to the laboratory, via FedEx, on 26Oct17, and were received the following morning. Although the sample canisters were received intact, custody seals were not present on the packaging.

Although each SUMMA canister was set in the laboratory to collect a 4-hour sample, the sampling of 2017_10_24-EX1A and 2017_10_24_DUP had to be terminated after fourteen minutes, and the collection of 2017_120_24_EX2 was stopped after two hours and forty-one minutes. The results from 2017_10_24-EX1A and 2017_10_24_DUP have been rejected due to the faulty flow regulators. The results from 2017_120_24_EX2 have been qualified as estimations.

The collection of each sample was terminated at a vacuum reading of -2"Hg. Because this measurement failed to satisfy the ASP requirement of $-5\pm1"$ Hg, the results from this group of samples have been qualified as estimations. The agreement between vacuum readings recorded following sample collection and at the time of analysis indicated that sample integrity was maintained during this period. The slight differences are assumed to reflect the quality of the canister vacuum gauges.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECEIPT	ANALYSIS
	("Hg)	(``Hg)	(``Hg)	(``Hg)	(``Hg)
EX1A	-30	-26	-2	-2	-2
Duplicate	-30	-26	-2	-2	-2
Outdoor	-30	-30	-2	-2	-2
EX1	-30	-29	-1.5	-2	-2
EX2	-30	-29	-2	-2	-2

The analysis of this group of samples was completed on 300ct17 and 310ct17, satisfying the ASP holding time limitation.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters for this project were cleaned in two batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination exceeding the laboratory's reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified BFB standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples on 300ct17 and 310ct17. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 24Oct17. Standards of 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A continuing calibration check standards was analyzed on 300ct17, prior to the 24-hour period of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique. Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, an acceptable recovery was reported each surrogate addition to this group of samples.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for the internal standard additions to this group of samples.

Internal standard retention times were not addressed by the laboratory. The ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

2017 10 24 Outdoor was selected for matrix spiking. The entire list of targeted analytes was added to two volumes of this sample. The recoveries reported for these spikes included elevated 1,2,4-trimehtylbenzene (149%,150%) and methyl butyl ketone (144%) results. The positive 1,2,4-trimethylbenzene results found in this group of samples have been qualified as estimations based on the indications of positive bias. The methyl butyl ketone results from this delivery group and the 1,2,4-trimethylbenzene result from 2017_10_24_Outdoor were negative and remain unqualified. It is noted that the results from 2017_10_24-EX1A and 2017_10_24_DUP were previously rejected. The remaining analyte spikes were recovered successfully.

Two spiked blanks (LCS/LCSD) were also analyzed with this group of samples. This LCS pair demonstrated acceptable levels of measurement precision and accuracy.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The duplicate sample that was included in this delivery group was not identified.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

The presence of heptane in 2014_10_24_EX2 cold not be verified based on the mass spectra references included in the raw data. Heptane should be interpreted as undetected in this sample.

SUMMARY OF QUALIFIED DATA

300 COMMERCE DRIVE

SAMPLED OCTOBER 2017

	SAMPLING	SPIKE SAMPLE 1,2,4-TRIMETHYLBENZENE	MS ID HEPTANE	<u>•</u>
20147_10_24_EX1A (C1710061-0 20147_10_24_DUP (C1710061-0 20147_10_24_Outdoor(C1710061-0 20147_10_24_EX1 (C1710061-0 20147_10_24_EX2 (C1710061-0	2) ALL R 3) ALL J/UJ 4) ALL J/UJ	28J 32J	31UJ	

CLIENT:	LaBella Associates, P.C.			Client Sample ID:	2017_	10_24_EX1A
.ab Order:	C1710061			Tag Number:	322.25	50
Project:	300 Commerce Dr			Collection Date:	10/24/	2017
Lab ID:	C1710061-001A			Matrix:	AIR	
		Result	**Limit Qua	al Units	DF	Date Analyzed
	SUG/M3 CT-TCE-VC	- 0100 -	TO-15 0.82	un im 2	1	Analyst: RJP 10/30/2017 4:59:00 PM
1,1,1-Trichloroet		< 0182	1.0	ug/m3	1	10/30/2017 4:59:00 PM
1,1,2,2-Tetrachk		< 1.0		ug/m3		
1,1,2-Trichloroet		< 0.82	0.82	ug/m3	1	10/30/2017 4:59:00 PM
1,1-Dichloroetha		< 0.61	0.61	ug/m3	1	10/30/2017 4:59:00 PM
1,1-Dichloroethe		< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM
1,2,4-Trichlorobe		< 1.1	1,1	ug/m3	1	10/30/2017 4:59:00 PM
1,2,4-Trimethylb		2.0	0.74	ug/m3	1	10/30/2017 4:59:00 PM
1,2-Dibromoetha		< 1.2	1.2	ug/m3	1	10/30/2017 4:59:00 PM
1.2-Dichlorobenz	zene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM
1.2-Dichloroetha	ne	< 0.61	0.61	ug/m3	1	10/30/2017 4:59:00 PM
1,2-Dichloroprop	ane	< 0.69	0.69	ug/m3	1	10/30/2017 4:59:00 PM
1,3,5-Trimethylb	enzene	< 0.74	0.74	ug/m3	1	10/30/2017 4:59:00 PM
1.3-butadiene		< 0.33	0.33	ug/m3	1	10/30/2017 4:59:00 PM
1,3-Dichlorobenz	zene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM
1.4-Dichlorobenz	tene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM
1,4-Dioxane		< .1	1,1	ug/m3	1	10/30/2017 4:59:00 PM
2,2,4-trimethylpe	entane	.2	0.70	ug/m3	1	10/30/2017 4:59:00 PM
4-ethyltoluene		< 0.74	0.74	ug/m3	1	10/30/2017 4:59:00 PM
Acetone		þ1 (3.6	ug/m3	5	10/31/2017 12:02:00 Al
Ally! chloride		< 0,47	0.47	ug/m3	1	10/30/2017 4:59:00 PM
Benzene		.4	0.48	ug/m3	1	10/30/2017 4:59:00 PM
Benzyl chloride		< 0.86	0.86	ug/m3	1	10/30/2017 4:59:00 PM
Bromodichtorom	ethane	< .0 /	1.0	ug/m3	1	10/30/2017 4:59:00 PM
Bromoform		< .6	1.6	ug/m3	1	10/30/2017 4:59:00 PM
Bromomethane		< 0.58	0.58	ug/m3	1	10/30/2017 4:59:00 PM
Carbon disulfide		< 0,47	0,47	ug/m3	1	10/30/2017 4:59:00 PM
Carbon tetrachio	ride	0.50	0.25	ug/m3	1	10/30/2017 4:59:00 PM
Chlorobenzene		< 0.69	0,69	ug/m3	1	10/30/2017 4:59:00 PM
Chloroethane		< 0.40	0.40	ug/m3	1	10/30/2017 4:59:00 PM
Chloraform		< 0.73	0.73	ug/m3	1	10/30/2017 4:59:00 PM
Chioromethane		.6	0.31	ug/m3	1	10/30/2017 4:59:00 PM
cis-1,2-Dichloroe	thene	< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM
cis-1,3-Dichlorop		< 0.88	0.68	ug/m3	1	10/30/2017 4:59:00 PM
Cyclohexane	• • -	0.55	0.52	ug/m3	1	10/30/2017 4:59:00 PN
Dibromochiorom	elhane	< 1.3	1.3	ug/m3	1	10/30/2017 4:59:00 PN
Ethyl acetate		< 0.54	0.54	ug/m3	1	10/30/2017 4:59:00 PM
Ethylbenzene		.8	0.65	ug/m3	1	10/30/2017 4:59:00 PM
Freon 11	.1	1.2	0.84	ug/m3	1	10/30/2017 4:59:00 PN
Freon 113	. 16	< 1.1	1,1	ug/m3	1	10/30/2017 4:59:00 PN
	∧ <i>I</i> ()	< 10/	1.0	ug/m3	1	10/30/2017 4:59:00 PM

Holding times for preparation or analysis exceeded Н

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits s

Analyte detected below quantitation limit

J ND Not Detected at the Limit of Detection

Page 1 of 10

Date: 20-Nov-17

1

1

1

1

1

5

1

1

1

1

1

1

CLIENT:	LaBella Associates, P.C.						10_24_EX1A		
Lab Order:	C1710061				ag Number:				
Project:	300 Commerce Dr			Coll	ection Date:	0/24	/2017		
Lab ID:	C1710061-001A	Matrix: AIR							
Analyses		Result	**Limit	Qual Uni	ts	DF	Date Analyzed		
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		 TO-	15			Analyst: RJP		
Freon 12		244 🔨	0.74	ug/n	3	1	10/30/2017 4:59:00 PM		
Heptane		14	0.61	ug/n	13	1	10/30/2017 4:59:00 PM		
Hexachioro-1,3	-butadiene	< 1,6	1,6	ug/n	13	t	10/30/2017 4:59:00 PM		
Hexane		0.10	0.53	ug/n	13	1	10/30/2017 4:59:00 PM		
Isopropyl alcoh	ol	87	1.8	ug/n	13	5	10/31/2017 12:02:00 AM		
m&p-Xylene		7 2	1.3	ug/n	13	1	10/30/2017 4:59:00 PM		
Methyl Butyl Ke	stone	< 12	1.2	ug/n	13	1	10/30/2017 4:59:00 PM		
Methyl Ethyl Ke		14	0.65	ug/n	13	1	10/30/2017 4:59:00 PM		
Methyl Isobutyl		< 1 2	1.2	ug/n	13	1	10/30/2017 4:59:00 PM		
Methyl tert-buty		< 0.54	0.54	ug/n	13	1	10/30/2017 4:59:00 PM		
Methylene chło		0.69	0.52	ug/n	13	1	10/30/2017 4:59:00 PM		
			()		•		40/00/0047 A-E0:00 DM		

0.65

0.26

0.64

1.0

Q.44

2.8

0.59

0.68

0,21

0.53

0.66

0.10

< 0

< 0.64

Q.

< 0.59

< 0.68

< 0.21

< 0.53

< 0.66

< 0.10

< 1.0

88

6

ug/m3

J

Qualifiers: 3

o-Xylene

Propylene

Tetrachloroethylene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Tetrahydrofuran

Trichloroethene

Vinyl acetate

Vinyl Bromide

Vinyl chloride

Styrene

Toluene

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

- IN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
 - E Estimated Value above quantitation range
 - Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Page 2 of 10

10/30/2017 4:59:00 PM

10/31/2017 12:02:00 AM

10/30/2017 4:59:00 PM

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.	Client Sample 1D: 2017_10_24_DUP
Lab Order:	C1710061	Tag Number: 457.250
Project:	300 Commerce Dr	Collection Date: 10/24/2017
Lab ID:	C1710061-002A	Matrix: AIR
		11/14/10/14/10/14/14/14/14/14/14/14/14/14/14/14/14/14/

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0 8 2 1	0.82	ug/m3	1	10/30/2017 5:39:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM
1 1.2-Trichloroethane	< 0 82	0.82	ug/m3	1	10/30/2017 5:39:00 PM
1 1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/30/2017 5:39:00 PM
1,1-Dichloroethene	< 0,59	0.59	ug/m3	1	10/30/2017 5:39:00 PM
1,2,4-Trichlorobenzene	< .1	1.1	ug/m3	1	10/30/2017 5:39:00 PM
1,2,4-Trimethylbenzene	2.1	0.74	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dibromoethane	< 2	1.2	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichlorobenzene	< 0,90	0.90	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichloroethane	< 0,61	0.61	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/30/2017 5:39:00 PM
1,3,5-Trimethylbonzene	< 0 74	0.74	ug/m3	1	10/30/2017 5:39:00 PM
1.3-butadiene	< 0 33	0.33	ug/m3	1	10/30/2017 5:39:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 5:39:00 PM
1,4-Dichlorobenzene	< 0,90	0.90	ug/m3	1	10/30/2017 5:39:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	10/30/2017 5:39:00 PM
2.2.4-trimethylpentane	.3	0.70	ug/m3	1	10/30/2017 5:39:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	10/30/2017 5:39:00 PM
Acetone	16	3.6	ug/m3	5	10/31/2017 12:39:00 AM
Allyi chloride	< 0 47	0.47	ug/m3	1	10/30/2017 5:39:00 PM
Benzene	.5 \	0.48	ug/m3	1	10/30/2017 5:39:00 PM
Benzyl chloride	< 0,86	X 0.86	ug/m3	1	10/30/2017 5:39:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM
Bromotorm	< 1.6	1.6	ug/m3	1	10/30/2017 5:39:00 PM
Bromomelhane	< 0.68	0.58	ug/m3	1	10/30/2017 5:39:00 PM
Carbon disulfide	< 0 47	0.47	ug/m3	1	10/30/2017 5:39:00 PM
Carbon tetrachloride	0.50	0.25	ug/m3	1	10/30/2017 5:39:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/30/2017 5:39:00 PM
Chloroethane	< 0,40	0.40	ug/m3	1	10/30/2017 5:39:00 PM
Chloroform	< 0.73	0.73	ug/ni3	1	10/30/2017 5:39:00 PM
Chioromethane	< 0.31	0.31	ug/m3	1	10/30/2017 5:39:00 PM
cis-1,2-Dichloroethene	< 0.69	0.59	ug/m3	1	10/30/2017 5:39:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 5:39:00 PM
Cyclohexane	0 59	0.52	ug/m3	1	10/30/2017 5:39:00 PM
Dibromochloromethane	< .3	1.3	ug/m3	1	10/30/2017 5:39:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	10/30/2017 5:39:00 PM
Ethylbenzene	.9	0.65	ug/m3	1	10/30/2017 5:39:00 PM
Freon 11	.2	0.84	ug/m3	1	10/30/2017 5:39:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	10/30/2017 5:39:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM

** Quantitation Limit Qualifiers:

Analyte detected in the associated Method Blank

В H Holding times for preparation or analysis exceeded

Non-routine analyte. Quantilation estimated. JN

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected .

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ţ, ND Not Detected at the Limit of Detection

Page 3 of 10

CLIENT:	LaBella Associates, P.C	2.	No	,	C	lient Sample ID:	2017	_10_24_DUP		
Lab Order:	C1710061		Tag Number:				457.2	457.250		
Project:	300 Commerce Dr		Collection Date:			Collection Date:	10/24/2017			
Lab ID:	C1710061-002A					Matrix:	AIR			
Analyses		Result	**Lin	nit	Qual	Units	ÐF	Date Analyzed		
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC			то	-15			Analyst: RJP		
Freon 12		2.4	0.	14		ug/m3	1	10/30/2017 5:39:00 PM		
Heptane		1.4	0.	\$ 1)	ug/m3	1	10/30/2017 5:39:00 PM		
Hexachloro-1,3	-butadiene	< 1.6		.6		ug/m3	1	10/30/2017 5:39:00 PM		
Mexane		< 0.53	0.	53	1	ug/m3	1	10/30/2017 5:39:00 PM		
isopropyl alcoh	ol	17		.a		ug/m3	5	10/31/2017 12:39:00 AI		

isopropyl alcohol	17	1.8	ug/m3	5	10/31/2017 12:39:00 AM
m&p-Xylene	7.3	1.3	ug/m3	1	10/30/2017 5:39:00 PM
Methyl Butyl Ketone	< 1.2	12	ug/m3	1	10/30/2017 5:39:00 PM
Methyl Ethyl Ketone	1.9	0.88	ug/m3	1	10/30/2017 5:39:00 PM
Methyl Isobulyl Ketone	0.45	2 3	ug/m3	1	10/30/2017 5:39:00 PM
Methyl tert-bulyl ether	< 0.54	0.54	ug/m3	1	10/30/2017 5:39:00 PM
Methylene chloride	1.7	0.52 /7	ug/m3	1	10/30/2017 5:39:00 PM
o-Xylene	2.8	0.65	ug/m3	1	10/30/2017 5:39:00 PM
Propylene	< 0.26	0.26	ug/m3	1	10/30/2017 5:39:00 PM
Styrene	< 0.64	0.64	ug/m3	1	10/30/2017 5:39:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM
Tetrahydrofuran	1.0	0.44	ug/m3	1	10/30/2017 5:39:00 PM
Toluene	20	2.8	ug/m3	5	10/31/2017 12:39:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 5:39:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 5:39:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	10/30/2017 5:39:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	10/30/2017 5:39:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	10/30/2017 5:39:00 PM
Vinyl chloride	< 0.10	o.to/	ug/m3	1	10/30/2017 5:39:00 PM

		the second s		an an an 1916 ann an ann an ann ann an ann an tarta 1960 ann an Annaichtean an an 1970 ann an an Annaichtean an
Quatifiers:		Quantitation Limit	-	Results reported are not blank corrected
-	в	Analyte detected in the associated Method Blank	Б	Estimated Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation funit

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- d
- nge
- mit
- ND Not Detected at the Limit of Detection

Page 4 of 10

CLIENT:LaBella Associates, P.C.Client Sample ID: 2017_10_24_OutdoorLab Order:C1710061Tag Number: 484.267Project:300 Commerce DrCollection Date: 10/24/2017Lab ID:C1710061-003AMatrix: AIR

Analyses	Result **	'Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0/82	0.62	ug/m3	1	10/30/2017 2:48:00 PM
1,1,2,2-Tetrachloroethene	< 1.0	1.0	ug/m3	1	10/30/2017 2:48:00 PM
1,1,2-Trichloroethane	< 0 82	0.82	ug/m3	1	10/30/2017 2:48:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/30/2017 2:48:00 PM
1,1-Dichloroetherte	< 0 59	0.59	ug/m3	1	10/30/2017 2:48:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/30/2017 2:48:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dibromoethane	< 2	1.2	ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dichlorobenzene	< 0,90	0.90	ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dichloroethane	< 061 20	0.61	ug/m3	1	10/30/2017 2:48:00 PM
1.2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/30/2017 2:48:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/30/2017 2:48:00 PM
1,3-butadiene	< 0,33	0.33	սց/m3	1	10/30/2017 2:48:00 PM
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 2:48:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 2:48:00 PM
1,4-Dioxane	< {.1	1.1	ug/m3	1	10/30/2017 2:48:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	10/30/2017 2:48:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	10/30/2017 2:48:00 PM
Acetone -	7.6 J	1.4	ug/m3	2	10/30/2017 11:25:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/30/2017 2:48:00 PM
Benzene	< 0.48	0.48	ug/m3	1	10/30/2017 2:48:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/30/2017 2:48:00 PM
Bromodichloromethana	<10507	1.0	ug/m3	1	10/30/2017 2:48:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	10/30/2017 2:48:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	10/30/2017 2:48:00 PM
Carbon disuffide	< 0.47	0.47	ug/m3	1	10/30/2017 2:48:00 PM
Carbon tetrachloride -	0.44 7	0.25	ug/m3	1	10/30/2017 2:48:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/30/2017 2:48:00 PM
Chloroethane	< 0.40 \	0.40	ug/m3	1	10/30/2017 2:48:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	10/30/2017 2:48:00 PM
Chloromethane +	0.81]	0.31	ug/m3	1	10/30/2017 2:48:00 PM
cis-1.2-Dichloroethene	ر < 0. 6 9	0.59	ug/m3	1	10/30/2017 2:48:00 PM
cis-1,3-Dichloropropane	< 0.58	0.68	ug/m3	1	10/30/2017 2:48:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	3	10/30/2017 2:48:00 PM
Dibromochloromethane		1.3	ug/m3	1	10/30/2017 2:48:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	10/30/2017 2:48:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	10/30/2017 2:48:00 PM
Freon 11 -	1.2]	0.84	ug/m3	1	10/30/2017 2:48:00 PM
Freon 113	< 111	1.1	ug/m3	1	10/30/2017 2:48:00 PM
Freon 114 ALS	< 10>07	1.0	ug/m3	1	10/30/2017 2:48:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

J

Page 5 of 10

Center La	obratories, LLC						
CLIENT:	LaBella Associates, P.C.			(Client Sample ID:		
Lab Order:	C1710061				Tag Number:	484.20	57
Project:	300 Commerce Dr				Collection Date:	10/24/	2017
Lab ID:	C1710061-003A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC			то)-15			Analyst: RJP
Freon 12		2.2 J	0,74		ug/m3	1	10/30/2017 2:48:00 PN
Heptane		< 0.61	0.61		ug/m3	1	10/30/2017 2:48:00 PN
Hexachloro-1,3-	butadiene	< 16) U.	J 1.6		ug/m3	1	10/30/2017 2:48:00 PN
Hexane		< 0.53	0.53		ug/m3	1	10/30/2017 2:48:00 PN
Isopropyl alcoho	01	1.3 J	0.37		ug/m3	1	10/30/2017 2:48:00 PN
m&p-Xylene 🗕		1.0	1.3	J	ug/m3	1	10/30/2017 2:48:00 PN
Methyl Butyl Ke	-4-2 Ù J	1.2		ug/m3	1	10/30/2017 2:48:00 PN	
Methyl Ethyl Ke	tone -	0.97 7	0,88		ug/m3	1	10/30/2017 2:48:00 PN
Methyl Isobutyl	Kelone -	0.45 J	1.2	J	ug/m3	1	10/30/2017 2:48:00 PN
Methyl tert-buty	l ether	< 9.64 (J]	0.54		ug/m3	1	10/30/2017 2:48:00 PN
Methylene chlor	fide -	0.90 J	0.52		սց/m3	1	10/30/2017 2:48:00 PN
o-Xylene 🗕		0.437	0.65	J	ug/m3	1	10/30/2017 2:48:00 PM
Propylene		< 0. p 8 \	0.26		ug/m3	7	10/30/2017 2:48:00 PN
Styrene		< 0.64 Ju	0.64		ug/m3	1	10/30/2017 2:48:00 PN
Tetrachloroethy	lene	< .0	1.0		ug/m3	1	10/30/2017 2:48:00 PM
Tetrahydrofuran	5	< 0.44	0.44		ug/m3	1	10/30/2017 2:48:00 PN
Toluene 🛶		2.9 J	0.57		ug/m3	1	10/30/2017 2:48:00 PN
trans-1,2-Dichlo	roelhene	< 0,69	0.59		ug/m3	1	10/30/2017 2:48:00 PN
trans-1.3-Dichlo	ropropene	< 0 68	0.68		ug/m3	1	10/30/2017 2:48:00 PM
Trichloroethene		< 021 SU	7 0.21		ug/m3	1	10/30/2017 2:48:00 PN
Vinyl acetate		< 0,53	0.53		ug/m3	1	10/30/2017 2:48:00 PN
Vinyl Bromide		< 0 66	0.66		ug/m3	1	10/30/2017 2:48:00 PN
Vinyl chloride		< 0 10	0.10		ug/m3	1	10/30/2017 2:48:00 PN

149

Onalifiers:	*+	Opartitation Limit		Results reported are not blank corrected
••••	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range
			,	A sales a detected below constitution limit

- Holding times for preparation or analysis exceeded H
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S
- ot blank corrected
- e quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 10

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:		_24_EX1
Lab Order:	C1710061				Tag Number:	362.281	
Project:	300 Commerce Dr				Collection Date:	10/24/20)17
Lab ID:	C1710061-004A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC)-15			Analyst: RJP
1,1,1-Trichlorae	sthane -	0.76 J	0.82	J	ug/m3	1	10/30/2017 6:19:00 PM
1,1,2,2-Tetrach		< 10)	1.0		ug/m3	1	10/30/2017 6:19:00 PM
1,1,2-Trichloroe	lhane	< 0.82	0.82		ug/m3	1	10/30/2017 6:19:00 PM
1,1-Dichloroeth	ane	< 0.61 /07	0,61		ug/m3	1	10/30/2017 6:19:00 PM
1,1-Dichloroeth	ene	< 0.\$9	0.59		ug/m3	1	10/30/2017 6:19:00 PM
1,2,4-Trichlorob	penzene	< 1 1	1.1		ug/m3	1	10/30/2017 6:19:00 PM
1,2,4-Trimethyli	benzene -	28 J	7.4		ug/m3	10	10/31/2017 1:16:00 AM
1,2-Dibromoeth	але	< 1 ²)	1.2		ug/m3	1	10/30/2017 6:19:00 PM
1,2-Dichlorober	izene	< 0.90	1 0.90		ug/m3	1	10/30/2017 6:19:00 PM
1,2-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	10/30/2017 6:19:00 PM
1,2-Dichloropro	pane	< 0.69	0.69		ug/m3	1	10/30/2017 6:19:00 PM
1,3,5-Trimethyll	benzané -	10 J	0.74		ug/m3	1 200	10/30/2017 6:19:00 PM
1-3,5-Trimethyll	benzene.	7.0	7.4			10-	10/31/2017 1:16:00 AM
1,3-butadiene		< 0.33	0.33		ug/m3	1	10/30/2017 6:19:00 PM
1.3-Dichlorober	zene	< 0.40 \ () 0.90		ug/m3	1	10/30/2017 6:19:00 PM
1.4-Dichloroben	izene	< 0.90	0.90		ug/m3	1	10/30/2017 6:19:00 PM
1,4-Dioxane		< 11	1.1		ug/m3	1	10/30/2017 6:19:00 PM
2,2,4-trimethylp	entane -	28 J	7.0		ug/m3	10	10/31/2017 1:16:00 AM
4-ethyltoluene.		9.3 J	7.4		ug/m3	10	10/31/2017 1:16:00 AM
Acetone -		260]	64		ug/m3	90	10/31/2017 8:24:00 AM
Ally: chloride		< 8.47 U	j 0.47		ug/m3	1	10/30/2017 6:19:00 PM
Benzene -		30 J	4.8		นg/ภา3	10	10/31/2017 1:16:00 AM
Benzyl chloride		< 0,86	0.86		ug/m3	1	10/30/2017 6:19:00 PM
Bromodichloron		< .0 >17	- / .		ug/m3	1	10/30/2017 6:19:00 PM
Bromoform		< .6	1.6		ug/m3	1	10/30/2017 6:19:00 PM
Bromomethane		< 0,58	0.58		ug/m3	1	10/30/2017 6:19:00 PM
Carbon disulfide		5.1]	0.47		ug/m3	1	10/30/2017 6:19:00 PM
Carbon tetrachi		0.50 1	0.25		ug/m3	1	10/30/2017 6:19:00 PM
Chlorobenzene		< 0.69 UT			ug/m3	1	10/30/2017 6:19:00 PM
Chloroethane		< 0.40	0.40		ug/m3	1	10/30/2017 6:19:00 PM
Chloroform -		0.63 7	0.73	J	ug/m3	1	10/30/2017 6:19:00 PM
Chloromethane	_	0.89 7	0.31	-	ug/m3	1	10/30/2017 6:19:00 PM
cis-1,2-Dichloro		17 1	5.9		ug/m3	10	10/31/2017 1:16:00 AM
cis-1,3-Dichloro		< ຄ.00			ug/m3	1	10/30/2017 6:19:00 PM
	whethe	7.27	0.52		ug/m3	1	10/30/2017 5:19:00 PM
Cyclohexane – Dibromochloror	nethane	< 13.17	1 1.3		ug/m3	1	10/30/2017 6:19:00 PM
	Hendle	< 0.54	0.54		ug/m3	1	10/30/2017 6:19:00 PN
Ethyl acetate		43 J	6.5		ug/m3	10	10/31/2017 1:16:00 AN
Ethylbenzene -	-	1.6 Ĵ	0.84		ug/m3	1	10/30/2017 6:19:00 PM
Freon 11 - Freon 113	.16	ر ب س جب			ug/m3	1	10/30/2017 6:19:00 PM
	** Quantithuer Limit				, Results reported	are not bla	nk corrected
Quantitierst	1°	ated Method Ri	ank		E Estimated Value		
					Analyte detected		
	H Holding times for preparation				ND Not Detected at		f Detection
1	 Non-routine analyte, Quantita Spike Recovery outside acception 				1727 THUR DESCRIPTION	See Service C.	Page 7 c

Date: 20-Nov-17

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C. C1710061 300 Commerce Dr C1710061-004A			Tag Nun Collection	nber: 362.2	: 10/24/2017			
Analyses		Result	**Limit	Qual Units	DF	Date Analyzed			
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	.15	Analyst: RJP				
Freon 114		لاس جب		ug/m3	1	10/30/2017 6:19:00 PN			
Freon 12		3.0 Ĵ	0.74	ug/m3	1	10/30/2017 6:19:00 PN			
Heptane		25 J	6.1	ug/m3	10	10/31/2017 1:16:00 AN			
Hexachloro-1,3-	-butadiene	< 1.8 Ŭ	1.6	ug/m3	1	10/30/2017 6:19:00 PM			
Hexane		12 J	5.3	ug/m3	10	10/31/2017 1:16:00 AN			
Isopropyl alcoho	pl	450 J	34	ug/m3	90	10/31/2017 8:24:00 AN			
m&p-Xylene		170 J	13	ug/m3	10	10/31/2017 1:16:00 AN			
Methyl Butyl Ke	lone	کں چبہ	1.2	ug/m3	1	10/30/2017 6:19:00 PM			
Methyl Ethyl Ke	tone	37 🗂	8.8	ug/m3	10	10/31/2017 1:16:00 AN			
Methyl isobutyi	Ketone	5.8 🕇	1.2	սց/m3	1	10/30/2017 6:19:00 PN			
Methyl tert-butyl	l ether	< 9 .5 4 ŪJ	0.54	ug/m3	1	10/30/2017 6:19:00 PM			
Methylene chlor	ide	1.7 J	0.52	ug/m3	1	10/30/2017 6:19:00 PN			
o-Xylene		50 J	6.5	ug/m3	10	10/31/2017 1:16:00 AN			
Propylene		< 0.26 い	0.26	ug/m3	1	10/30/2017 6:19:00 PN			
Styrene		ر 0.64 را	0.64	ug/m3	1	10/30/2017 6:19:00 PM			
Tetrachioroethy	lene	3.7 J	1.0	ug/m3	1	10/30/2017 6:19:00 PM			
Tetrahydrofuran		22 1	4.4	ug/m3	10	10/31/2017 1:16:00 AN			
Toluene		270 J	53	ug/m3	90	10/31/2017 8:24:00 AN			
trans-1,2-Dichlo	roethene	< 0.59 VI	0.59	ug/m3	1	10/30/2017 6:19:00 PN			
trans-1,3-Dichio	ropropene	< 9:00 (1)	0.68	ug/m3	1	10/30/2017 6:19:00 PM			
Trichloroethene		13 🕇	2.1	ug/m3	10	10/31/2017 1:16:00 AN			
Vinyl acetale		< 0.58 の	0.53	ug/m3	1	10/30/2017 6:19:00 PN			
Vinyi Bromide		<0.000	0.66	ug/m3	1	10/30/2017 6:19:00 PM			
Vinyl chloride		<0.10 03	0.10	ug/m3	1	10/30/2017 6:19:00 PN			

Qualifiers: ** Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits s
- Results reported are not blank corrected
 - Estimated Value above quantitation range
 - 3 Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Page 8 of 10

Date: 20-Nov-17

CLIENT: Lab Order:	LaBella Associates, P.C. C1710061			,	Nient Sample ID: Tag Number:		
Project:	300 Commerce Dr				Collection Date:		
Lab ID:	C1710061-005A				Matrix:		2017
Analyses	*****	Result *	*Limit	Qual		DF	Date Analyzed
1UG/M3 W/ 0.2!			то	-15			Analyst: RJF
1,1,1-Trichlorgei		< 0.82	0.82	- 19	ug/m3	1	10/30/2017 6:59:00 PM
1,1,2,2-Tetrachi	croethane	< 1.0/	1.0		ug/m3	1	10/30/2017 6:59:00 PN
1,1,2-Trichloroet		< 0.82/13	0.82		ug/m3	1	10/30/2017 6:59:00 PN
1,1-Dichloroetha		< 0.81	0.61		ug/m3	1	10/30/2017 6:59:00 PN
1.1-Dichloroethe		< 0.55	0.59		ug/m3	ſ	10/30/2017 6:59:00 PM
1.2.4-Trichiorobe		< 1.1	1.1		ug/m3	1	10/30/2017 6:59:00 PM
1,2,4-Trimethylb		32 7	7.4		ug/m3	10	10/31/2017 2:29:00 AN
1,2-Dibromaetha		< 1.2)	1.2		ug/m3	1	10/30/2017 6:59:00 PM
1,2-Dichloroben:		<0.0010	0.90		ug/m3	, 1	10/30/2017 6:59:00 PN
1.2-Dichloroetha		< 0.61	0.61		ug/m3	• 1	10/30/2017 6:59:00 PM
1,2-Dichloroprop		< 0.59	0.69		ug/m3	1	10/30/2017 6:59:00 PM
1,3,5-Trimethylb			7.4		•	10	
1.3-butadiene	51451 13 -	8.4 J	0.33		ug/m3	10	10/31/2017 2:29:00 AN
1.3-Dichlorobena		< 0,33			ug/m3	1	10/30/2017 6:59:00 PN
		<000100	0.90		ug/m3		10/30/2017 6:59:00 PN
1,4-Dichlorobenz	coner	< 0.90	0.90		ug/m3	1	10/30/2017 6:59:00 PN
1,4-Dioxane		33 J	1.1		ug/m3	1	10/30/2017 8:59:00 PN
2,2,4-trimethylpe	mane -		7.0		ug/m3	10	10/31/2017 2:29:00 AN
4-ethyltoluene -		10]	7.4		ug/m3	10	10/31/2017 2:29:00 AN
Acetone -		330 J	190		ug/m3	270	10/31/2017 9:01:00 AM
Ally chloride		CO.47 07	0.47		ug/m3	1	10/30/2017 6:59:00 PN
Benzene -		32 J	4,8		ug/m3	10	10/31/2017 2:29:00 AM
Benzyl chloride		< 0.16	0.86		ug/m3	1	10/30/2017 6:59:00 PN
Bromodichlorom	ethane	< 10 JUJ	1.0		ug/m3	1	10/30/2017 6:59:00 PN
Bromotorm		< 1.6	1.6		ug/m3	1	10/30/2017 6:59:00 PN
Bromomethane		< 0.58	0.58		ug/m3	1	10/30/2017 6:59:00 PN
Carbon disulfide		5.9 J	0.47		ug/m3	1	10/30/2017 6:59:00 PM
Carbon letrachio	ride -	0.50 J	0.25		ug/m3	1	10/30/2017 6:59:00 PN
Chlorobenzene		< 0.60 U)	0.69		ug/m3	1	10/30/2017 6:59:00 PN
Chloroelhane -		0.37 1	0.40	J	ug/m3	1	10/30/2017 6:59:00 PN
Chloroform -		0.68 7	0.73	J	ug/m3	1	10/30/2017 6:59:00 PN
Chloromethane		<dai td="" uj<=""><td>0.31</td><td></td><td>ug/m3</td><td>1</td><td>10/30/2017 6:59:00 PN</td></dai>	0.31		ug/m3	1	10/30/2017 6:59:00 PN
cis-1,2-Dichloroe		3.2 7	0.59		ug/m3	1	10/30/2017 6:59:00 PM
cis-1,3-Dichlorop	ropene	<0.60 U7	0.68		ug/m3	1	10/30/2017 6:59:00 PN
Cyclohexane		137	5.2		ug/m3	10	10/31/2017 2:29:00 AN
Dibromochlorom	ethane	-4.8 UT	1.3		ug/m3	1	10/30/2017 6:59:00 PN
Ethyl acetete -		3.8]	0.54		ug/m3	1	10/30/2017 6:59:00 PN
Ethylbenzene ~.		44 J	6.5		ug/m3	10	10/31/2017 2:29:00 AN
Freon 11 -	-	1.8 J	0.84		ug/m3	1	10/30/2017 6:59:00 PM
Frean 113	.1A	5+1 >UJ	1.1		ug/m3	1	10/30/2017 6:59:00 PM
Freon 114	ALL)	<u>-1-0</u>	1.0		ug/m3	1	10/30/2017 6:59:00 PN

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 9 of 10

CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	2017	10_24_EX2
Lab Order:	C1710061				Tag Number:	_	
Project:	300 Commerce Dr				Collection Date:		
Lab ID:	C1710061-005A				Matrix:		m-0.1.7
	C1710001-005A	n n i nikaran ilar andalar da triunna					
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC			то	-15			Analyst: RJP
Freon 12 -		3.1 J	0.74		ug/m3	1	10/30/2017 6:59:00 PM
Heptane	31UJ	6,1		ug/m3	10	10/31/2017 2:29:00 AN	
Hexachloro-1,3-	butadiene	< 1.6 VI	1.6		ug/m3	1	10/30/2017 6:59:00 PN
Hexane 🗕		14 J	5.3		ug/m3	10	10/31/2017 2:29:00 AN
Isopropyl alcoho	ol —	1300 🗇	98		ug/m3	270	10/31/2017 9:01:00 AN
m&p-Xylene -		170 J	13		ug/m3	10	10/31/2017 2:29:00 AN
Methyl Butyl Ketone		41. 207	1.2		ug/m3	1	10/30/2017 6:59:00 PN
Methyl Ethyl Ke	tone -	38 J	8.8		ug/m3	10	10/31/2017 2:29:00 AN
Methyl Isobutyl	Ketone -	5.7 7	1.2		ug/m3	7	10/30/2017 6:59:00 PN
Methyl tert-buty	lether	< 0.54 UJ	0.54		ug/m3	1	10/30/2017 6:59:00 PN
Methylene chlor	ide 🗝	1.1 7	0.52		ug/m3	1	10/30/2017 6:59:00 PN
o-Xylene +		54 J	6,5		ug/m3	10	10/31/2017 2:29:00 AN
Propylene		s-0-26	0.26		ug/m3	1	10/30/2017 6:59:00 PN
Styrene		< 0.64 > U.	J 0.64		ug/m3	1	10/30/2017 6:59:00 PN
Tetrachloroethy	lene	< 1.0/	1.0		ug/m3	1	10/30/2017 5:59:00 PN
Tetrahydrofuran		24 J	4.4		ug/m3	10	10/31/2017 2:29:00 AM
Toluene -		260 J	150		ug/m3	270	10/31/2017 9:01:00 AN
trans-1,2-Dichlo	roethene	^{< ዓ.59} እሆ) 0.59		ug/m3	1	10/30/2017 6:59:00 PN
trans-1,3-Dichio	ropropene	< 0.68	0.68		ug/m3	1	10/30/2017 6:59:00 PN
Trichloroethene		1.2 7	0.21		ug/m3	1	10/30/2017 6:59:00 PN
Vinyl acetate		~0.5 8	0.53		ug/m3	1	10/30/2017 6:59:00 PM
Vinyl Bromide		(166)0	0.66		ug/m3	1	10/30/2017 6:59:00 PN
Vinyl chloride		< 9.40	0.10		ug/m3	1	10/30/2017 6:59:00 PN

145

			Mar. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
Oualifiers:	**	Quantitation Limit		Results reported are not blank	
•	B Analyte detected in the associated Method Bla	Analyte detected in the associated Method Blank	Б	Estimated Value above quant	
	н	Holding times for preparation or analysis exceeded	1	Analyte detected below quanti	
				New Presented or the Limit of P	

- JN Non-routine analyte. Quantitation estimated.
- s Spike Recovery outside accepted recovery limits
- k corrected
- titation range
 - ititation limit
- ND Not Detected at the Limit of Detection

Page 10 of 10

Date: 20-Nov-17

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT; Work Order: Project: Test No;	LaBella Asso C1710061 300 Commer TO-15		Matrix: A					
Sample ID	BI	AFBZ						······································
ALCS1UG-103017	·····	101	E de reference de la constante de la constante La constante de la constante de La constante de la constante d La constante de la constante de		1		·	The former of th
ALCS1UGD-10301	7	103		······································	·/		a a chair a chuire na na na na mh	
AMB1UG-103017	•	92.0	·····		aler a ann an traisceanacha. 1	• ···, .• ··· <i>·</i> ··· ··	(
C1710061-001A		100			•			
C1710061-002A	<u> </u>	99.0		2			••••••••••••••••••••••••••••••••••••••	
C1710061-003A	•	100	• • . • . • . • . • . • . • . •		••••••••••••••••••••••••••••••••••••••			
C1710061-003A M	S	103			4 • · · · · · · · ····	(/ / /)		
C1710061-003A M	SD	103					(
C1710061-004A		111		•	•			
C1710061-005A	·····	108	······································			1		

Acronym	Surrogate	QC Limits
BR4FBZ	 Bromofluorobenzene 	70-130
* Surr	ogate recovery outside accept	ance limits

1

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA2\A0103002.D Tune Time : 30 Oct 2017 12:03 pm

Daily Calibration File : C:\HPCHEM\1\DATA2\A0103002.D

Daily Cali	bration 1	File :	C:\HE	CHEM	\1\DAT	A2\A0103	1002.D	38329	177279	147936
				(BFB)			(IS1)	(152)	(IS3)
$cc \vee 3$	30 Oc+ 17	12:03	\$		10.	64 12.86	17.58	27378 16427	126628 7<i>5</i>977	105664 63394
File	Sample		DĽ	Surr	ogate 1	Recovery	v 🐐 In		undard Respo	nses
A0103003.D			7	101	V	3 # # # # _		24027	109109	92655
A0103004.D	AMB1UG-1	L03017		92				20826	98039	81274
A0103005.D	C1710061	-003A		100	10.4	12.86	17,58	21360	95496	79322
A0103006.D	C1710061	-003A	MS	103				22735	100638	87522
A0103007.D	C1710061	-003A	MSD	103				21894	98555	85601
A0103008.D	C1710061	-001A		100	10.64	1 12.86	17.58	20047	91961	79059
A0103009.D	C1710063	-002A		99	10,64	12.85	17,59	20183	93298	78784
A0103010.D	C1710061	-004A		111	10,63	12.85	17.58	21824	101063	95601
A0103011.D	C1710061	-005A		108	10.64	12.86	17,58	21806	100213	95326
A0103012.D	C1710061	-003A	2x	96	10.63	12.84	17.57	26624	113590	88937
A0103013.D	C1710061	-001A	5x	95	10,62	12.95	17.58	19821	87418	70227
A0103014.D	C1710061	-002A	5×	97	10,63	12.85	17,58	18362	85308	69254
A0103015.D	C1710061	-004A	10x	98	10.63	12.85	17.58	18866	86880	73871
A0103017.D	C1710061	-005A	10x	98	10.63	12.85	17.58	18259	83706	73328
A0103019.D	ALCS1UGD	-10301	.7	103				19392	86273	74810
A0103020.D	C1710061	-004A	90x	92	10.42	12.84	17.57	23038	100057	80883
A0103021.D	C1710061	-005A	270x	94	10.64	12.86	17.58	17693	82431	68228
t - fa	ils 24hr	time c	heck	* -	fails	criter	ia			

Created: Mon Nov 20 08:49:04 2017 MSD #1/

CENTEK LABORATORIES, LLC

Centek Laboratories, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

CLIENT: LaBella Associates, P.C. Work Order: C1710061

Page 39 of 272

Project: 300 Commerce Dr

Sample ID: ALCS1UG-103017 SampType: LCS TestCode: 0.25CT-TCE- Units: pobV Prep Date: RunNo: 12887 Client |D: ZZZZZ Batch ID: R12887 TestNo: TO-15 Analysis Date: 10/30/2017 SeqNo: 149964 Analyte Result POL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 1,1,1-Trichloroethane 1.000 100 0.15 1 0 70 130 1,1,2,2-Tetrachloroethane 0.9900 0.15 1 0 99.0 70 130 1,1,2-Trichloroethane 0.9600 0.15 Ð 96.0 1 70 130 1,1-Dichloroethane 1.040 0.15 1 0 104 70 130 1.050 0.15 1,1-Dichloroethene 1 0 105 70 130 0.9800 0.15 1,2,4-Trichlorobenzene 1 0 98.0 70 130 1,2,4-Trimethylbenzene 1,130 0.15 0 113 70 130 1 1.2-Dibromoethane 0.9900 0.15 1 0 99.0 70 130 1,2-Dichlorobenzene 1.010 0.15 1 Q 101 70 130 1.2-Dichloroethane 0.9800 0.15 1 0 98.0 70 130 1,2-Dichloropropane 0.9900 0.15 1 0 99.0 70 130 1,100 0.15 0 1,3,5-Trimethylbenzene 110 70 1 130 1.3-butadiene 1.220 0.15 0 122 1 70 130 0.9900 0.15 1.3-Dichlorobenzene 1 0 99.0 70 130 1.4-Dichlorobenzene 1.010 0.15 1 0 101 70 130 1.4-Dioxane 1.230 0.30 1 0 123 70 130 0.15 2,2,4-trimethylpentarie 1.000 Q. 1 100 70 130 1,100 0.15 4-ethylitoluene ŧ 0 110 70 130 Acelone 0.9700 0.30 2 0 97.0 70 130 Allyl chloride 0.9700 0.15 ŧ Ð 97.0 70 130 Benzene 0.9700 0.15 1 0 97.0 70 130 Benzyl chloride 0.9200 0.15 1 Û 92.0 70 130 0.9800 0.15 Bromodichloromethane 1 0 98.0 70 130 Bromoform 0.9900 0.15 0 99,0 70 130 1 0.9500 0.15 Ď. 95.0 70 130 Gromomethane 1

Qualifiers:

J.

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R

Analyte detected below quantitation limit

S — Spike Recovery outside accepted recovery limits –

RPD outside accepted recovery limits

Page 1 of 5

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Project: 300 Commerce Dr

Page 40 of 272

TestCode: 0.25CT-TCE-VC

SampType: LCS	TestCoc	e: 0.25CT-TC	E Units: ppbV		Preg Dat	te:		RunNo: 12	387	
Balch ID: R12887	Test	o: TO-15		,	Analysis Dai	te: 10/30/2	017	SeqNo: 14	9964	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
0.9700	0.15	1	0	97.0	70	130				
0.9700	0.040	1	0	97.0	70	130				
0.9900	0.15	1	0	99.0	70	130				
0.9400	0.15	1	0	94.0	70	130				
1.010	0.15	1	0	101	70	130				
0.9600	0.15	1	0	96.0	70	130				
0.9600	0.15	1	0	96.0	70	130				
0.9200	0.15	1	0	92.0	70	130				
1.010	0.15	1	0	101	70	130				
1.000	0.15	1	0	100	70	130				
0.9900	0.15	1	0	99.0	70	130				
0.9700	0.15	1	٥	97.0	70	130				
0.9500	0.15	1	0	95.0	70	130				
1,070	0.15	1	0	107	70	130				
0.9500	0.15	1	0	95.0	70	130				
0.9700	0.15	1	0	97.0	70	130				
0.9500	0.15	1	0	95.0	70	130				
0.9600	0.15	1	0	96.0	70	130				
1.030	0.15	1	0	103	70	130				
0.9200	0.15	1	0	92.0	70	130				
2.030	0.30	2	0	102	70	130				
1,340	0.30	1	0	134	65 20	120	135			×
1,000	0.30	1	0	100	70	130				
1,120	0.30	1	0	112	70	130				
		1	0	104	70	130				
	0.15	1	Û	99.0	70	130				
1.000	0.15	1	0	100	70	130				
	0.15	1	D	106	70	130				
	0,15	1	0	106	70	130				
0.9900	0.15	1	Ð	99.0	70	130				
0.9900	0,15	1	0	99.0	70	130				
	Batch ID: R12887 Result 0.9700 0.9700 0.9700 0.9900 0.9400 1.010 0.9600 0.9600 0.9200 1.010 1.000 0.9900 0.9700 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9200 1.030 0.9200 1.030 0.9200 1.030 0.9200 1.030 0.9200 1.030 0.9500 0.9200 1.030 0.9200 1.030 0.9200 1.040 0.9900 0.9900 0.9900 0.9900 0.9200 0.9900 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000	Batch ID: R12887 TestN Result PQL 0.9700 0.15 0.9700 0.040 0.9700 0.15 0.9700 0.15 0.9700 0.15 0.9900 0.15 0.9400 0.15 0.9600 0.15 0.9600 0.15 0.9600 0.15 0.9600 0.15 0.9200 0.15 1.010 0.15 0.9200 0.15 1.010 0.15 0.9200 0.15 1.010 0.15 0.9200 0.15 0.9700 0.15 0.9700 0.15 0.9500 0.15 0.9500 0.15 0.9500 0.15 0.9600 0.15 0.9200 0.15 0.9200 0.15 0.9200 0.15 0.9200 0.15 0.9900 0.15	Batch ID: R12887 TestNo: TO-15 Result PQL SPK value 0.9700 0.15 1 0.9700 0.040 1 0.9700 0.15 1 0.9700 0.15 1 0.9700 0.15 1 0.9700 0.15 1 0.9700 0.15 1 0.9400 0.15 1 0.9400 0.15 1 0.9400 0.15 1 0.9600 0.15 1 0.9600 0.15 1 0.9200 0.15 1 0.9900 0.15 1 0.9700 0.15 1 0.9500 0.15 1 0.9500 0.15 1 0.9700 0.15 1 0.9700 0.15 1 0.9500 0.15 1 0.9600 0.15 1 0.9200 0.15 1 </td <td>Bakch ID: R12887 TestNo: TO-15 Result PQL SPK value SPK Ref Val 0.9700 0.040 1 0 0.9700 0.040 1 0 0.9700 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9400 0.15 1 0 0.9400 0.15 1 0 0.9400 0.15 1 0 0.9400 0.15 1 0 0.9600 0.15 1 0 0.9600 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0</td> <td>Batch ID: R12887 TestNo: TO-15 SPK value SPK Ref Val %REC 0.9700 0.15 1 0 97.0 0.9700 0.040 1 0 97.0 0.9700 0.040 1 0 97.0 0.9900 0.15 1 0 97.0 0.9900 0.15 1 0 99.0 0.9400 0.15 1 0 94.0 1.010 0.15 1 0 94.0 1.010 0.15 1 0 96.0 0.9600 0.15 1 0 96.0 0.9200 0.15 1 0 92.0 1.010 0.15 1 0 92.0 1.010 0.15 1 0 92.0 1.010 0.15 1 0 97.0 0.9200 0.15 1 0 97.0 0.9500 0.15 1 0 97.0</td> <td>Bakch ID: R12887 TestNo: TO-15 Analysis Da Result PQL SPK value SPK Ref Val %REC LowLimit 0.9700 0.040 1 0 97.0 70 0.9700 0.040 1 0 97.0 70 0.9700 0.040 1 0 97.0 70 0.9900 0.15 1 0 94.0 76 0.9400 0.15 1 0 94.0 76 1.010 0.15 1 0 94.0 76 0.9600 0.15 1 0 96.0 70 0.9600 0.15 1 0 96.0 70 0.9600 0.15 1 0 92.0 70 1.010 0.15 1 0 101 70 0.9500 0.15 1 0 97.0 70 0.9500 0.15 1 0 97.0 70</td> <td>Batch ID: R12887 TestNo: TO-15 Analysis Date: 10/307 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.9700 0.15 1 0 97.0 70 130 0.9700 0.0460 1 0 97.0 70 130 0.9900 0.15 1 0 97.0 70 130 0.9900 0.15 1 0 94.0 70 130 0.9400 0.15 1 0 94.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 1.010 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 97.0 70 130 0.9900 0.15 1 0 97.0 70 130</td> <td>Baich ID: R12887 TestNo: TO-15 Analysis Date: 19/30/2017 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 0.9700 0.15 1 0 97.0 70 130 0.9700 0.040 1 0 97.0 70 130 0.9700 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 94.0 76 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 92.0 70 130 1.010 0.15 1 0 92.0 70 130 0.9500 0.15 1 0 97.0 70 130 0.9500 0.15 1 0 97.0 70 130</td> <td>Batch ID: R12887 TestNo: TO:15 Analysis Date: 10/30/2017 SeqNo: 14/4 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 0.9700 0.15 1 0 97.0 70 130 0.9700 0.400 1 0 97.0 70 130 0.9900 0.15 1 0 94.0 70 130 0.9900 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 97.0 70 130 0.9500 0.15 1 0 97.0 70 130 0.9500 0.15 1</td> <td>Batch D: R1287 TestNo; T0:15 Analysis Date: 10/30/2017 SeqNo: 14964 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD RPDLinit 0.9700 0.15 1 0 97.0 70 130 30</td>	Bakch ID: R12887 TestNo: TO-15 Result PQL SPK value SPK Ref Val 0.9700 0.040 1 0 0.9700 0.040 1 0 0.9700 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9400 0.15 1 0 0.9400 0.15 1 0 0.9400 0.15 1 0 0.9400 0.15 1 0 0.9600 0.15 1 0 0.9600 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0 0.9900 0.15 1 0	Batch ID: R12887 TestNo: TO-15 SPK value SPK Ref Val %REC 0.9700 0.15 1 0 97.0 0.9700 0.040 1 0 97.0 0.9700 0.040 1 0 97.0 0.9900 0.15 1 0 97.0 0.9900 0.15 1 0 99.0 0.9400 0.15 1 0 94.0 1.010 0.15 1 0 94.0 1.010 0.15 1 0 96.0 0.9600 0.15 1 0 96.0 0.9200 0.15 1 0 92.0 1.010 0.15 1 0 92.0 1.010 0.15 1 0 92.0 1.010 0.15 1 0 97.0 0.9200 0.15 1 0 97.0 0.9500 0.15 1 0 97.0	Bakch ID: R12887 TestNo: TO-15 Analysis Da Result PQL SPK value SPK Ref Val %REC LowLimit 0.9700 0.040 1 0 97.0 70 0.9700 0.040 1 0 97.0 70 0.9700 0.040 1 0 97.0 70 0.9900 0.15 1 0 94.0 76 0.9400 0.15 1 0 94.0 76 1.010 0.15 1 0 94.0 76 0.9600 0.15 1 0 96.0 70 0.9600 0.15 1 0 96.0 70 0.9600 0.15 1 0 92.0 70 1.010 0.15 1 0 101 70 0.9500 0.15 1 0 97.0 70 0.9500 0.15 1 0 97.0 70	Batch ID: R12887 TestNo: TO-15 Analysis Date: 10/307 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.9700 0.15 1 0 97.0 70 130 0.9700 0.0460 1 0 97.0 70 130 0.9900 0.15 1 0 97.0 70 130 0.9900 0.15 1 0 94.0 70 130 0.9400 0.15 1 0 94.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 1.010 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 97.0 70 130 0.9900 0.15 1 0 97.0 70 130	Baich ID: R12887 TestNo: TO-15 Analysis Date: 19/30/2017 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 0.9700 0.15 1 0 97.0 70 130 0.9700 0.040 1 0 97.0 70 130 0.9700 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 94.0 76 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 92.0 70 130 1.010 0.15 1 0 92.0 70 130 0.9500 0.15 1 0 97.0 70 130 0.9500 0.15 1 0 97.0 70 130	Batch ID: R12887 TestNo: TO:15 Analysis Date: 10/30/2017 SeqNo: 14/4 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD 0.9700 0.15 1 0 97.0 70 130 0.9700 0.400 1 0 97.0 70 130 0.9900 0.15 1 0 94.0 70 130 0.9900 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 96.0 70 130 0.9600 0.15 1 0 97.0 70 130 0.9500 0.15 1 0 97.0 70 130 0.9500 0.15 1	Batch D: R1287 TestNo; T0:15 Analysis Date: 10/30/2017 SeqNo: 14964 Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit RPD Ref Val %RPD RPDLinit 0.9700 0.15 1 0 97.0 70 130 30

Qualifiers:

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exce
 R RPD outside accepted recovery limits

J Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

Page 2 of 5

LaBella Associates, P.C. CLIENT:

C1710061

Work Order:

300 Commerce Dr Project:

Page 41 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-103017	SampType: LCS	TestCo	de: 0.25CT-TCE	- Units: ppbV		Prep Dat	e:		RunNo: 12	387		
Client ID: ZZZZZ	Batch ID: R12887	Test	No: TO-15		عر	Inalysis Dat	e: 10/30/2	017	SeqNo: 149964			
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Toluene	0.9900	0.15	1	0	99.0 V	70	130					
trans-1,2-Dichloroethene	0.9500	0.15	1	0	95.0	70	130					
trans-1,3-Dichloropropene	0.8400	0.15	1	0	84.0	70	130					
Trichloroethene	0.9300	0.040	1	0	93.0	70	130					
Vinyl acetate	0.9500	0.15	1	0	95. 0	70	130					
Vinyl Bromide	0.9100	0.15	1	D	91,0	70	130					
Vinyl chloride	0.9200	0.040	1	0	92.0	70	130					
Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCo	de: 0.25CT-TC	- Units: ppbV		Prep Dat	te:		RunNo: 12	887		
Client ID: ZZZZZ	Batch ID: R12887	Test	No: TO-15		Ļ	Analysis Da	te: 10/31/2	017	SeqNo: 14	9965		
	.	201	opu sha		~~~~~	a	1 Backet Jacob		*****	DODI imit	0	

Client ID: ZZZZZ	Batch HJ: R12687	lesic	NO: 10-15		Analysis Date. 10/3/12017				3eqn0. 14		
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPÐLimit	Quat
1,1,1-Trichloroethane	1,060	0.15	1	0	106	70	130	1	5.83	30	
1,1,2,2-Tetrachloroethane	1.060	0.15	1	C	106 ^V	70	130	0.99	6.83	30	
1,1,2-Trichloroethane	1.040	0.15	1	0	104	70	130	0.96	8.00	30	
1,1-Dichloroethane	0,9900	0.15	1	0	99. 0	70	130	1.04	4.93	30	
1,1-Dichloroethene	1,050	0.15	1	0	105	70	130	1.05	0	30	
1,2,4-Trichlorobenzene	1.000	0.15	1	0	100	70	130	0,98	2.02	30	
1,2,4-Trimethylbenzene	0.9500	0,15	1	0	95.0	70	130	1.13	17.3	30	
1,2-Dibromoethane	1.010	0.15	1	0	101	70	130	0.99	2.00	30	
1,2-Dichlorobenzene	1.090	0.15	1	0	109	7 0	130	1.01	7.62	30	
1,2-Dichloroethane	0.9600	0.15	1	0	98.0	70	130	0.98	0	30	
1,2-Dichloropropane	1.000	0.15	1	0	100	70	130	0.99	1.01	30	
1,3,5-Trimelhylbenzene	1.040	0.15	1	0	104	70	130	1.1	5.61	30	
1,3-butadiene	1.030	0.15	1	0	103	70	130	1.22	16.9	30	
1,3-Dichlorobenzene	1.060	0.15	1	0	106	70	130	0.99	6.83	30	
1,4-Dichlorobenzene	1.080	0.15	1	0	108	70	130	1.01	6.70	30	
1,4-Dioxane	1.290	0.30	1	0	129	70	130	1.23	4.76	30	
2,2,4-trimethylpentane	1,010	0.15	2	0	101	70	130	1	0.995	30	
4-ethyltoluene	1.000	0.15	1	0	100	70	130	1_1	9.52	30	
-											

Qualifiers:

......

..... Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

Analyte detected below quantitation limit 1

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

LaBella Associates, P.C.

CLIENT:

C1710061 Work Order:

300 Commerce Dr Project:

Page 42 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCoc	le: 0.25CT-TC	E- Units: ppbV		Prep Dat	te:		RunNo: 128	187	
Client ID: ZZZZZ	Balch ID: R12887	Testiv	lo: TO-15			Analysis Dai	te: 10/31/2	017	SegNo: 149	965	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	0.9700	0.30	1	0	97.0 V	70	130	0,97	0	30	
Allyl chloride	0.9000	0.15	1	0	90.0	70	130	0.97	7,49	30	
Benzene	0.9900	0.15	1	0	99.0	70	130	0.97	2.04	30	
Benzyl chloride	1.090	0.15	1	0	109	70	130	0.92	16.9	30	
Bromodichloromethane	1.030	0.15	1	0	103	70	130	0.98	4.98	30	
Bromoform	1.030	0.15	1	0	103	70	130	0.99	3.96	30	
Bromomethane	1.000	0.15	1	0	100	70	130	0.95	5.13	30	
Carbon disulfide	0.9200	0.15	1	0	92.0	70	130	0.97	5.29	30	
Carbon tetrachloride	1.020	0.040	1	0	102	70	130	0.97	5.03	30	
Chiorobenzene	1.020	0.15	1	0	102	70	130	0.99	2.99	30	
Chloroethane	0.9700	0.15	1	0	97.0	70	130	0.94	3.14	30	
Chloroform	1.020	0.15	1	0	102	70	130	1.01	0.985	30	
Chloromethane	1.060	0.15	1	0	106	70	130	0.95	9.90	30	
cis-1,2-Dichloroethene	0.9600	0.15	1	D	96.0	70	130	0.95	0	30	
cis-1,3-Dichloropropene	0.9900	0.15	1	D	99.0	70	130	0.92	7.33	30	
Cyclohexane	1.000	0.15	1	0	100	70	130	1.01	0,995	30	
Dibromochloromethane	1.050	0.15	1	0	105	70	130	1	4.88	30	
Ethyl acetate	0,9300	0.15	1	0	93.0	70	130	0.99	6.25	30	
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130	0.97	0	30	
Freon 11	1.060	0.15	1	0	106	70	130	0.95	10.9	30	
Freon 113	1.080	0.15	1	0	108	70	130	1.07	0.930	30	
Freon 114	1.050	0.15	1	0	105	70	130	0.95	1 0 .D	30	
Freon 12	1.030	0.15	1	0	103	70	130	0.97	6.00	30	
Heplane	0.9400	0.15	1	0	94.0	70	130	0.95	1.06	30	
Hexactiloro-1,3-butadiene	1.030	0.15	1	0	103	70	130	0.96	7.04	30	
Hexane	0.9900	0.15	1	0	99.0	70	130	1.03	3.96	30	
isopropyl alcohol	0.9700	0.15	1	0	97.0	70	130	0.92	5.29	30	
m&p-Xylene	1.960	0.30	2	0	98.0	70	130	2.03	3.51	30	
Methyl Butyl Kelone	1.670	0.30	1	0	167	70	130	1.34	21.9	30	S
Methyl Eihyl Ketone	0.9900	0.30	1	0	99.0	70			1.01	30	
Methyl Isobulyl Ketone	1.230	0.30	1	0	123	70	130	1.12	9.36	30	

Qualifiers: .

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Page 43 of 272

300 Commerce Dr Project:

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCod	de: 0.25CT-T(E- Units: ppbV		Prep Da	te:		RunNo: 12	387		
Client ID: 22222	Batch ID: R12887	Test	TestNo: TO-15 Analysis Date: 10/31/2017						SeqNo: 149965			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai	
Methyl ten-butyl ether	1.020	0.15	1	Ð	102	70	130	1.04	1,94	30		
Methylene chloride	0.9500	0.15	1	0	95.0	70	130	0.99	4.12	30		
о-Хуіеле	1.050	0.15	1	0	105	70	130	ĩ	4.88	30		
Propylene	0.9700	0.15	1	0	97.0	70	130	1.06	8.87	30		
Styrene	0.9600	0.15	1	Ð	96.0	70	130	1.05	9.90	30		
Tetrachioroethylene	1,040	0.15	3	Ð	104	70	130	0.99	4.93	30		
Tetrahydrofuran	0.9500	0.15	1	0	95.0	70	130	0.99	4.12	30		
Toluene	0.9900	0.15	1	0	99.0	70	130	0.99	0	30		
Irans-1,2-Dichloroethane	0.9600	0.15	1	0	96.0	70	130	0.95	1.05	30		
Irans-1,3-Dichloropropene	0.9300	0.15	1	0	93.0	70	130	0.84	10.2	30		
Trichloroethene	0.9800	0.040	1	0	98.0	70	130	0.93	5.24	30		
Vinyl acetate	0.9100	0.15	1	0	91.0	70	130	0.95	4.30	30		
Vinyl Bromide	0.9900	0.15	1	0	99.0	70	130	0.91	8.42	30		
Vinyl chloride	0.9900	0.040	1	0	99 .0	70	130	0.92	7.33	30		

Qualifiers:

.....

.

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection
- Н Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

Page 5 of 5

Analyte detected below quantitation limit J Spike Recovery outside accepted recovery limits Ş

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT: LaBella Associates, P.C.

Page 44 of 272

Work Order: C1710061

300 Commerce Dr Project:

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCode:	0.25CT-TCE- Units: ppbV		Prep Da	te:		RunNo: 12887			
Client ID: ZZZZZ	Batch ID: R12887	TestNo:	TO-15		Analysis Da	ile: 10/30/	2017	SegNo: 14	9963		
Analyte	Result	PQL S	PK value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1-Trichloroethane	< 0.15	0.15									
1,1,2,2-Tetrachloroethane	< 0.15	0.15									
1,1,2-Trichloroethane	< 0.15	0.15									
1,1-Dichloroethane	< 0.15	0.15									
1,1-Dichloroethene	< 0.15	0.15									
1,2,4-Trichlorobenzene	< 0.15	0.15									
1,2,4-Trimethylbenzene	< 0.15	0.15									
1,2-Dibromoethane	< 0.15	0.15									
1.2-Dichlorobenzene	< 0.15	0.15									
1.2-Dichloroethane	< 0.15	0.15									
1.2-Dichloropropane	< 0.15	0.15									
1,3,5-Trimethylbenzene	< 0.15	0.15									
1.3-butadiene	< 0.15	0.15									
1,3-Dichlorobenzene	< 0.15	0.15									
1,4-Dichlorobenzene	< 0.15	0.15									
1.4-Dioxane	< 0.30	0.30									
2,2,4-trimethylpentane	< 0.15	0.15									
4-elhylloiuene	< 0.15	0.15									
Acetone	< 0.30	0.30									
Allyl chloride	< 0.15	0.15									
Benzene	< 0.15	0.15									
Benzyl chloride	< 0.15	0.15									
Bromodichloromelhane	< 0.15	0.15									
Bromoform	< 0.15	0.15									
Bromomethane	< 0.15	0.15									
Qualifiers: . Results rep	outed are not blank corrected		E Estimated Value above qua	ntitation rat	nge	Н	Holding times for	preparation or :	analysis exceo	ded	

, гер J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

LaBella Associates, P.C. CLIENT:

C1710061 Work Order:

300 Commerce Dr Project:

Page 45 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCode: 0.25CT-TCE- Units: ppbV Prep Date:				RunNo: 12887				
Client ID: ZZZZZ	Batch ID: R12887	TestN	lo: T O-15		Analysis Da	ite: 10/30/;	2017	SegNo: 149	963	
Analyle	Result	PQL	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	< 0.15	0.15								
Carbon tetrachloride	< 0.040 V	0.040								
Chlorobenzene	< 0.15	0.15								
Chloroethane	< 0.15	0.15								
Chloroform	< 0.15	0.15								
Chloromeinane	< 0.15	0.15								
cis-1,2-Dichloroethene	< 0.15	0.15								
cis-1,3-Dichloropropene	< 0.15	0.15								
Cyclohexane	< 0.15	0.15								
Dibromochloromethane	< 0.15	0.15								
Ethyl acetate	< 0.15	0.15								
Ethylbenzene	< 0.15	0.15								
Freon 11	< 0.15	0.15								
Freen 113	< 0.15	0,15								
Freon 114	< 0.15	0.15								
Freon 12	< 0.15	0.15								
Heptane	< 0.15	0.15								
Hexachloro-1,3-butadiene	< 0.15	0.15								
Hexane	< 0.15	0.15								
Isopropyl alcohol	< 0.15	0.15								
m&p-Xylene	< 0.30	0.30								
Methyl Bulyl Kelone	< 0.30	0.30								
Methyl Ethyl Ketone	< 0.30	0.30								
Methyl isobutyl Ketone	< 0.30	0.30								
Methyl tert-butyl ether	< 0.15	0.15								
Methylene chloride	< 0.15	0.15								
o-Xylene	< 0.15	0.15								
Propylene	< 0.15	0.15								
Styrene	< 0.15	0.15								
Tetrachioroethylene	< 0.15	0.15								
Tetrahydrofuran	< 0.15	0.15								
Cumulation .	iorted are not blank corrected tected below quantitation limit		 E Estimated Value above qua ND Not Detected at the Limit of 		+	fi R	Holding times fo RPD outside acc			ded

S Spike Recovery outside accepted recovery limits

CLIENT: LaBella Associates. P.C. Work Order: C1710061

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCode:	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	RunNo: 12887
Client ID: ZZZZZ	Batch ID: R12887	TestNo:	TO-15		Analysis Date: 10/30/2017	SeqNo: 149963
Analyte	Result	PQL S	SPK value SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Toluene	< 0.15	0.15				
trans-1,2-Dichloroethene	< 0.15	0.15				
trans-1,3-Dichloropropene	< 0.15	0.15				
Trichloroethene	< 0.040	0.040				
Vinyi acetale	< 0.15	0.15				
Vinyl Bromide	< 0.15	0.15				
Vinyl chloride	< 0.040	0.040				

.

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

- 1 Analyte detected below quantitation limit
- S Spike Recovery outside accepted recovery limits

CENTEK LABORATORIES, LLC

LaBella Associates, P.C.

.

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

Page 47 of 272

Project: 300 Commerce Dr

C1710061

CLIENT:

Work Order:

Sample ID: C1710051-003A MS	SampType: MS	TestCod	ie: 0.25CT-TC	E- Units: ppbV		Prep Dat	e:		RunNo: 128	387	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Tesit	lo: TO-15			Analysis Dat	e: 10/30/2	1017	SeqNo: 149	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9800	0.15	1	Ð	98.0	70	130				
1,1,2,2-Tetrachloroethane	0.9600	0.15	1	0	96.0	70	130				
1,1,2-Trichloroethane	0.9300	0.15	1	0	93.0	70	130				
1,1-Dichloroethane	0.9500	0.15	1	D	95.0	70	130				
1,1-Dichloroethene	0.9800	0.15	1	Ó	98.0	70	130				
1,2,4-Trichlorobenzene	1,310	0.15	1	٥	131	70	130				S
1.2.4-Trimethylbenzene	1.490	0.15	1	0	(149)	70	130				S
1.2-Dibromoethane	0.9100	0.15	1	0	91.0	70	130				
1,2-Dichlorobenzene	0.9700	0.15	1	Q	97.0	70	130				
1,2-Dichloroethane	0.9300	0.15	1	0	93.0	70	130				
1,2-Dichloropropane	0.9200	0.15	1	0	92.0	70	130				
1,3,5-Trimelhylbenzene	1.040	0.15	1	٥	104	70	130				
1,3-butadiene	1,350	0.15	1	0	135	78 (5 128	135			2
1.3-Dichlorobenzene	1.000	0.15	1	0	100	70	130				
1.4-Dichlorobenzene	1.020	0.15	1	0	102	70	130				
1,4-Dioxane	1.080	0.30	1	0	108	70	130				
2,2,4-trimethylpentane	0,9700	0.15	1	0	97.0	70	130				
4-ethyltoiuene	1.020	0.15	1	0	102	70	130				
Acetone	5.310	0.30	1	4.4	91.0	70	130				
Allyl chloride	0.9100	0.15	1	0	91.0	70	130				
Benzene	1.000	0.15	1	0	100	70	130				
Benzyl chloride	1,040	0.15	1	0	104	70	130				
Bromodichloromethane	0.9400	0.15	1	Ô	94.0	70	130				
Bromolorm	0,9400	0.15	1	0	94.0	70	130				
Bromomethane	0.9400	0.15	1	0	94.0	70	130				

الم المراجعين بالمنا ويونعونه الربان المنامين المن المن والي التي ويترون الربان ويراد والمراجع المراجع

Results reported are not blank corrected

E = Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

3 Analyse detected below quantitation limit

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Project: 300 Commerce Dr

Page 48 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MS	TestCoo	le: 0.25CT-TC	E- Units: ppbV		Prep Dat	e:		RunNo: 128	87	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	TestN	io: TO-15		,	Analysis Dat	le: 10/30/2	1017	SeqNo: 149	971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LøwLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	0.9100	0.15	1	٥	91.D)	70	130				
Carbon tetrachtoride	1.010	0.040	1	0.07	94.0	70	130				
Chlorobenzene	0.9200	0,15	1	٥	92.0	70	130				
Chloroethane	0.9400	0.15	1	0	94.0	70	130				
Chloroform	0.9600	0.15	1	0	96.0	70	130				
Chloromethane	1.290	0.15	1	0.39	90.0	70	130				
cis-1,2-Dichloroethene	0.8800	0.15	1	D	88.0	70	130				
cis-1,3-Dichloropropene	0.8800	0.15	1	٥	0.88	70	130				
Cyclohexane	0.9700	0.15	1	0	97.0	70	130				
Dibromochloromethane	0.9400	0.15	1	Ū	94.0	70	130				
Ethyl acetate	0.9200	0.15	1	D	92.0	70	130				
Ethylbenzene	0.9400	0.15	1	D	94.0	70	130				
Freon 11	1.130	0.15	1	0.21	92.0	70	130				
Freon 113	1.080	0.15	1	0	108	70	130				
Freon 114	0.9600	0.15	1	Ð	96.0	70	130				
Freon 12	1.260	0.15	1	0.44	82.0	70	130				
Heptane	1.000	0.15	1	0	100	70	130				
Hexachloro-1,3-butadiene	1.080	0.15	1	0	108	70	130				
Hexane	1.020	0.15	1	0	102	70	130				
Isopropyl alcohol	1.310	0.15	1	0.54	77.0	70	130				
m&p-Xylene	2.050	0.30	2	0.23	91.0	70	130				
Methyl Butyl Ketone	1.280	0.30	1	Ð	128	70	130				
Methyl Ethyl Ketone	1,210	0.30	1	0.33	88.0	70	130				
Methyl Isobutyl Kelone	1.130	0.30	1	0.11	102	70	130				
Methyl tert-butyl ether	0.9100	0.15	1	0	91.0	70	130				
Methylene chloride	1,680	0.15	1	0.26	142	70	130				S
o-Xylene	1.060	0.15	1	0.1	96.0	70	130				
Propylene	1,280	0.15	1	0	128	70	130				
Styrene	1.010	0.15	1	D	101	70	130				
Tetrachloroethylene	0.9600	0.15	1	0	96.0	70	130				
Tetrahydrofuran	0.9000	0.15	1	0	90.0	70	130				
Qualifiers: Results reporte	at are not black corrected		E Estim	ated Value above quar	atilation ran	ge	14	Holding times for	preparation or a	aalysis exceed	led
•	ed below quantitation fimit		ND Not D	etected at the Limit of	Detection		R	RPD outside accep	pted recovery him	nits	

S Spike Recovery outside accepted recovery limits

Page 2 of 5

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MS	TestCoo	ie: 0.25CT-TC	E- Units: ppbV	•••••••••••••••••••••••••••••••••••••••	Prep Dat	:0:		RunNo: 12	887	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	TestN	lo: TO-15		1	Analysis Dat	e: 10/30/2	017	SeqNo: 14	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	High1, imit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	1.610	0.15	1	0.77	84.0	70	130				
Irans-1,2-Dichloroethene	0.9100	0.15	1	0	91.0	70	130				
trans-1,3-Dichloropropene	0.8200	0.15	1	0	82 .0	70	130				
Trichloroethene	0.9000	0.040	1	0	90.0	70	130				
Vinyl acetate	0.8700	0.15	1	0	87.0	70	130				
Vinyl Bromide	0.9200	0,15	1	0	92.0	70	130				
Vinyl chloride	0.8900	0.040	1	0	89.0	70	130				
Sample ID: C1710061-003A MS	SampType: MSD	TeslCox	le: 0.25CT-TC	Æ- Units: ppbV		Prep Dat	e:		RunNo: 12	387	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	TestN	lo: TO-15		1	Analysis Dal	e: 10/30/2	017	SeqNo: 14	9972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9900	0.15	1	0	99.0	70	130	0.98	1.02	30	
1,1,2,2-Tetrachioroethane	0.9500	0.15	1	Q	95.0	70	130	0.96	1.05	30	
1,1,2-Trichloroethane	0.9200	0.15	1	0	92.0	70	130	0.93	1.08	30	
1,1-Dichloroethane	0.9800	0,15	1	0	98.0	70	130	0.95	3.11	30	
1,1-Dichloroethene	1.000	0.15	1	0	100	70	130	0.98	2.02	30	
1,2.4-Trichlorobenzene	1.330	0.15	1	0	133	Jø(5 1201	3 5 1.31	1.52	30	8
1,2,4-Trimethylbenzene	1.500	0.15	1	0	(150)	70	130	1.49	0.669	30	S
1,2-Dibromoethane	0.9500	0.15	1	0	95.0	70	130	0.91	4.30	30	
1,2-Dichlorobenzene	0.9900	D.15	1	D	99.0	70	130	0.97	2.04	30	
1.2-Dichloroethane	0.9400	0.15	1	D	94.0	70	130	0.93	1.07	30	
1,2-Dichloropropane	0.9500	0.15	1	D	95.0	70	130	0.92	3.21	30	
1,3,5-Trimethylbenzene	1.070	0.15	1	D	107	70	130	1.04	2.84	30	
1,3-butadiene	1.500	0.15	1	0	150	70	130	1.35	10.5	30	S
1,3-Dichlorobenzene	1.030	0.15	1	0	103	70	130	1	2.96	30	
1,4-Dichlorobenzene	1.030	0.15	1	0	103	70	130	1.02	0.976	30	
1,4-Dioxane	1.150	0.30	1	D	115	70	130	1.08	6.28	30	
2,2.4-trimethylpentane	0.9800	0.15	1	Ð	98.0	70	130	0.97	1.03	30	
4-ethyltoluene	1.020	0.15	1	0	102	70	130	1.02	0	30	

Qualifiers:

.

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Project: 300 Commerce Dr

Page 50 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MSD	TestCox	ie: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 128	387	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Testh	lo: TO-15			Analysis Da	le: 10/30/2	2017	SeqNo: 149	9972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	6.100	0.30	1 🖌	4.4	170 •	70	130	5.31	13.8	30	X
Allyl chloride	0.9900	0.15	1	0	99.0	70	130	0.91	8.42	30	-
Benzene	1.030	0.15	1	0	103	70	130	1	2.96	30	
Benzyl chloride	1.060	0.15	1	٥	106	70	130	1.04	1.90	30	
Bromodichloromethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Bromoform	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Bromomethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Carbon disulāde	0.9200	0.15	1	Û	92.0	70	130	0.91	1.09	30	
Carbon teirachioride	1.030	0.040	1	0.07	96.0	70	130	1.01	1.96	30	
Chlorobenzene	0.9400	0.15	1	0	94.0	70	130	0.92	2.15	30	
Chloroethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Chloroform	0.9900	0.15	1	0	99.0	70	130	0.96	3.08	30	
Chloromethane	1.250	0.15	1	0.39	86.0	70	130	1,29	3.15	30	
cis-1,2-Dichloroelhene	0.9300	0.15	1	D	93.0	70	130	0.88	5.52	30	
cis-1,3-Dichloropropene	0.9000	0.15	1	0	90.0	70	130	0.88	2.25	30	
Cyclohexane	0.9900	0.15	1	0	99.0	70	130	0.97	2.04	30	
Dibromochloromethane	0.9400	0.15	1	Û	94.0	70	130	0.94	0	30	
Ethyl aceiate	0.9300	0.15	1	0	93.0	70	130	0.92	1.08	30	
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130	0.94	3.14	30	
Freon 11	1.170	0.15	1	0.21	96.0	70	130	1.13	3.48	30	
Freon 113	1.060	0.15	1	0	106	70	130	1.08	1.87	30	
Freon 114	1.010	0.15	1	0	101	70	130	0.96	5.08	30	
Freon 12	1.290	0.15	1	0.44	85.0	70	130	1.25	2.35	30	
Heptane	1.010	0.15	1	Û	101	70	130	1	0.995	30	
Hexachloro-1,3-butadiene	1,100	0.15	1	D	110	70	130	1.08	1.83	30	
Hexane	1.050	0.15	1	0	105	70	130	1.02	2.90	30	
Isopropyi aicohol	1.360	0.15	1	0.54	84.0	70	130	1.31	5.20	30	
m&p-Xylene	2.060	0.30	2	0.23	91.5	70	130	2.05	0.487	30	
Methyl Bulyl Kelone	1,440	0.30	1	0	(144)	70	130	1.28	11.8	30	s
Methyl Ethyl Ketone	1.190	0.30	1	0.33	85.0	70	130	1,21	1.67	30	
Methyl Isobutyl Ketone	1.170	0.30	1	0.11	106	70	130	1.13	3,48	30	

J

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

R Holding times for preparation or analysis exceeded

Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

R RPO outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

a serve a provincia a serve a s

Work Order: C1710061

Page 51 of 272

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MSD	TestCo	de: 0.25CT-TC	CE- Units: ppbV		Prep Da	te:		RunNo: 128	387	
Client ID: 2017_10_24_Outdoo	Balch ID: R12887	Test	lo: T O-15			Analysis Da	te: 10/30/20	017	SegNo: 149	9972	
Analyte	Result	POL	SPK value	SPK Ret Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPO	RPDLimit	Qual
Methyl tert-butyl ether	0.9400	0.15	1	0	94.0	70	130	0.91	3.24	30	
Methylene chloride	2.940	0.15	1	0.26	(68)	70	130	1.68	54.5	30	SR
o-Xylene	1.100	0.15	1	0.1	100	70	130	1.06	3.70	30	
Propylene	1,350	0.15	1	0	135	6578	120/	35 1.28	5.32	30	store and a second
Styrene	1.020	0.15	1	0	102	70	130	1.01	0.985	30	
Tetrachloroethylene	0.9500	0.15	1	0	95.0	70	130	0.96	1.05	30	
Tetrahydrofuran	0.9400	0.15	1	0	94.0	70	130	0.9	4.35	30	
Toluene	1.620	0.15	1	0.77	85.0	70	130	1.61	0.619	30	
trans-1,2-Dichloroethene	0.8900	0.15	1	Û	89.0	70	130	0,91	2.22	30	
trans-1,3-Dichloropropene	0.8400	0.15	1	0	84.0	70	130	0.82	2.41	30	
Trichlozoethene	0.9200	0.040	1	D	92.0	70	130	0.9	2.20	30	
Vinyl acetale	0.8900	0.15	1	D	89.0	70	130	0.87	2.27	30	
Vinyl Bromide	0.9400	0,15	1	0	94.0	70	130	0.92	2.15	30	
Vinyt chloride	0.9500	0.040	1	0	95.0	70	130	0.89	6.52	30	

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Centek Laboratories, LLC

Qualifiers:

1

- Analyte detected below quantitation limit
- S Spike Recovery outside accepted recovery limits

September 4, 2019

Ms. Charlotte Theobald New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9516

Re: Construction Completion Report Addendum NYSDEC Site #C828158 300 Commerce Drive Henrietta, New York

Dear Ms. Theobald:

LaBella Associates, D.P.C. ("LaBella") is submitting this addendum for the above referenced Construction Completion Report. Attached please find the Data Usability Summary Report (DUSR) by DataVal, Inc. (DataVal) for the indoor air sampling completed on January 18, 2018. The DUSR indicated the following:

"Reported data should be considered technically defensible and completely usable in it's present form. Results presenting a usable estimation of the condition at the time of sampling have been flagged "J" or "U". Estimated data should be used with caution."

DataVal only made minor modifications to some of the laboratory data. The DUSR did not change any finding of the Construction Completion Report (CCR) submitted by LaBella on September 3, 2019. As indicated in the CCR, the Sub-slab Depressurization System is effectively mitigating soil vapor intrusion at the Site.

If you have any questions please do not hesitate to contact me at (585) 295-6611.

Respectfully submitted,

LABELLA ASSOCIATES, D.P.C.

1 P. M

Dan Noll, P.E. Project Manager

J:\Yaro Enterprise Inc\208723 BCP 300 Commerce\IRM SSDS CCR\LTR.2019.09.03 - DUSR Follow up letter C828159.docx

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

www.labellapc.com

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

300 Commerce Drive Project 208723 SDG: C1801059 Sampled 01/18/2018

TO-15 AIR SAMPLES

(C1801059-01)
(C1801059-02)
(C1801059-03)
(C1801059-04)
(C1801059-05)
(C1801059-06)

DATA ASSESSMENT

A TO-15 data package containing analytical results for six air samples was received from LaBella Associates, P.C. on 03Sep19. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 300 Commerce Drive Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The methylene chloride and toluene results from 300-IA-01 have been qualified as estimations due to low spiked sample recoveries.

The presence of acetone and heptane in 300-IA-01 and chloromethane in 300-IA-03 cold not be verified based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "U". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. DATAVAL, Inc. guarantees the quality of this data Secondly. assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 04 Sep 19

DATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained five air samples that were collected in 1-liter SUMMA canisters and 300-IA-01 which was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples. Sampling was completed on 18Jan18. The canisters were shipped back to the laboratory, via FedEx, on 19Jan18, and were received on 22Jan18. Although the sample canisters were received intact, custody seals were not present on the packaging.

Although each SUMMA canister was set in the laboratory to collect a 8-hour sample, sampling was terminated after 6.5-7.75 hours based on the canister vacuum readings. Each of these readings satisfied the ASP requirement of $-5\pm1"$ Hg.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECEIPT	ANALYSIS
	(``Hg)	(``Hg)	(``Hg)	(``Hg)	(``Hg)
300-IA-01	30	28	4.98	5	5
300-IA-02	30	29	4.99	5	5
300-IA-03	30	28	4.6	5	5
300-IA-04	30	30	3.9	4	4
300-EXT-01	30	30	5.7	6	6
DUPE	30	30	3.9	4	4

The analysis of this group of samples was completed on 23Jan18 and 24Jan18, satisfying the ASP holding time limitation.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability. The initial instrument calibration was performed on 16Jan18. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standards were analyzed on 23Jan18 and 24Jan18, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability during both calibration checks.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, an acceptable recovery was reported for each surrogate addition to the initial, undiluted program samples.

Each sample was also analyzed following dilutions ranging between 1:9 and 1:810. The surrogate recoveries from these samples were not evaluated because the surrogates were also highly diluted.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for the internal standard additions to this group of samples.

Internal standard retention times were not addressed by the laboratory. The ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

300-IA-01 was selected for matrix spiking. The entire list of targeted analytes was added to two volumes of this sample. The recoveries reported for these spikes included elevated 1,2,4-trichlorobenzene (139%,132%), 1,3,5-trimethylbenzene (138%), methylene chloride (206%) and propylene (210%) results, and a low recovery of toluene (65%). Based on this performance the methylene chloride and toluene results from 300-IA-01 have been qualified as estimations. The positive bias indicated by the elevated recoveries of 1,2,4-trichlorobenzene, 1,3,5-trimethyl-benzene and propylene warrant no concern because these analytes were not detected in 300-IA-01. The remaining analytes demonstrated acceptable levels of measurement precision and accuracy.

Three spiked blanks (LCS/LCSD, LCS) were also analyzed with this group of samples. The recoveries reported from these LCS samples included high results for carbon disulfide (140%) and hexane (142%), and a low recovery of methyl butyl ketone (53%). These indications of bias, however, warrant no concern because these analytes were not reported from the affected samples.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The duplicate sample that was included in this delivery group was not identified. It is noted that the previously mentioned MS/MSD samples demonstrated acceptable levels of measurement precision.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

The presence of acetone and heptane in 300-IA-01 and chloromethane in 300-IA-03 cold not be verified based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples. SUMMARY OF QUALIFIED DATA

,

300 COMMERCE DRIVE

SAMPLED JANUARY 2018

•						
MS ID CHLOROMETHANE			1.2U			
MS ID MS ID ACETONE HEPTANE	0.61U					
MS ID ACETONE	37U					
SPIKE TOLUENE	5.2J					
SPIKES SPIKE METHYLENE CHLORIDE TOLUENE	Э.9Ј					
	(C1801059-01)	(C1801059-02)	(C1801059-03)	(C1801059-04)	(C1801059-05)	(C1801059-06)
	300-IA-01	3300-IA-02	300-IA-03	300-IA-04	300-EXT-01	Dupe

,

Date: 12-Feb-18

	ала на противли и проти В 1919 години и противли и противл	
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 300-IA-01/MSMSD
Lab Order:	C1801059	Tag Number: 484.1170
Project:	300 Commerce BCP	Collection Date: 1/18/2018
Lab ID:	C1801059-001A	Matrix: AIR
· · · · · · · · · · · · · · · · · · ·		

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	тс)-15			Analyst: RJP
1.1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 4:46:00 PM
1.1.2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM
1.1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 4:46:00 PM
1.1-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 4:46:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 4:46:00 PM
1.2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	1/23/2018 4:46:00 PM
1,2,4-Trimethylbenzene 🕳	0.69	0.74	J	ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	1/23/2018 4:46:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	1/23/2018 4:46:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	1/23/2018 4:46:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 4:46:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 4:46:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	1/23/2018 4:46:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	1/23/2018 4:46:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	1/23/2018 4:46:00 PM
Acetone -	37 🕖	6.4		ug/m3	9	1/23/2018 11:01:00 PM
Ally! chloride	< 0.47	0.47		ug/m3	1	1/23/2018 4:46:00 PM
Benzene -	0.89	0,48		บฏ/m3	1	1/23/2018 4:46:00 PM
Benzyl chloride	< 0,86	0.86		ug/m3	1	1/23/2018 4:46:00 PM
Bromodichioromethane	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	1/23/2018 4:46:00 PM
B/omomethane	< 0.58	0.58		ug/m3	1	1/23/2018 4:46:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	1/23/2018 4:46:00 PM
Carbon tetrachloride 🗕	0.44	0.19		ug/m3	1	1/23/2018 4:46:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	1/23/2018 4:46:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	1/23/2018 4:46:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	1/23/2018 4:46:00 PM
Chioromethane -	0.99	0.31		ug/m3	1	1/23/2018 4:46:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 4:45:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 4:46:00 PM
Cyclohexane -	2.8	0.52		ug/m3	1	1/23/2018 4:46:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	1/23/2018 4:46:00 PM
Ethyl acetate -	1.7	0.54		ug/m3	1	1/23/2018 4:46:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	1/23/2018 4:46:00 PM
Freon 11 🕆	1.1	0.84		ug/m3	1	1/23/2018 4:46:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	1/23/2018 4:46:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM

Qualifiers: ** Quantilation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits . Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 1 of 12

.

Centek	La	boratoi	ries,)	LLC
--------	----	---------	---------	-----

Date: 12-Feb-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 300-IA-01/MSMSD
Lab Order:	C1801059	Tag Number: 484.1170
Project:	300 Commerce BCP	Collection Date: 1/18/2018
Lab ID:	C1801059-001A	Matrix: AlR
· • · · · · · · • • • · · · · • · • ·		

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	D-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12 	2.3	0.74		ug/m3	1	1/23/2018 4:46:00 PM
Heptane 🛶	0.61 U	0.61		ug/m3	1	1/23/2018 4:46:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 4:46:00 PM
Hexane 🥌	0.78	0.53		ug/m3	1	1/23/2018 4:46:00 PM
isopropyl alcohol -	220	34		ug/m3	90	1/23/2018 11:38:00 PM
m&p-Xylene 🖛	0.65	1.3	J	ug/m3	1	1/23/2018 4:46:00 PM
Methyl Butyl Ketone	< 1,2	1.2		ug/m3	1	1/23/2018 4:46:00 PM
Methyl Ethyl Ketone -	2.1	0.88		ug/m3	1	1/23/2018 4:46:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 4:46:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 4:46:00 PM
Methylene chioride -	3,9 J	0.52		ug/m3	1	1/23/2018 4:46:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	1/23/2018 4:46:00 PM
Propylene	< 0.26	0.26		ug/m3	1	1/23/2018 4:46:00 PM
Styrene 🛥	0.43	0.64	J	ug/m3	1	1/23/2018 4:46:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	1/23/2018 4:46:00 PM
Toivene -	5.2 J	0.57		ug/m3	1	1/23/2018 4:46:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 4:46:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 4:46:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 4:46:00 PM
Vinyl acetale	< 0.53	0.53		ug/m3	1	1/23/2018 4:46:00 PM
Vinyl Bromide	< 0.86	0.66		ug/m3	1	1/23/2018 4:46:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 4:46:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not
	B	Analyte detected in the associated Method Blank	Б	Estimated Value above q
	Н	Holding times for preparation or analysis exceeded	1	Analyte detected below c

- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- blank corrected

•

- quantitation range
- quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 12

CLIENT:	LaBella Associates, P	.Ç.		Client	Sample ID:	300-1/	\-02
Lab Order:	C1801059				ag Number:		
Project:	300 Commerce BCP				ection Date:		
Lab ID:	C1801059-002A			0011	Matrix:		
		Result	**1 :::+	Qual Uni		DF	Dote Annimad
Analyses	· · · · · · · · · · · · · · · · · · ·			Quai Um		UF	Date Analyzed
	UG/M3 CT-TCE-VC-DCE	•	TO				Anelyst: RJF
1,1,1-Trichloroe		< 0.82	0.82	ug/m		1	1/23/2018 6:59:00 PM
1,1,2,2-Tetracht		< 1.0	1.0	ug/m		1	1/23/2018 6:59:00 PM
1,1,2-Trichlore		< 0,82	0.82	បច្ច/ជា		1	1/23/2018 6:59:00 PM
1,1-Dichloroetha		< 0.61	0.61	ug/m		1	1/23/2018 6:59:00 PM
1,1-Dichloroethe	906	< 0.16	0.16	ug/m		1	1/23/2018 6:59:00 PM
1,2,4-Trichlorob		< 1.1	1.1	ug/m	3	1	1/23/2018 6:59:00 PM
1,2,4-Trimethylb		0.98	0.74	ug/m		1	1/23/2018 6:59:00 PM
1,2-Dibromoetha	ane	< 1.2	1.2	ug/m	3	1	1/23/2018 6:59:00 PM
1,2-Dichloroben	zene	< 0.90	0.90	ug/m	3	1	1/23/2018 6:59:00 PM
1,2-Dichloroetha	пе	< 0.61	0,61	ug/m	3	1	1/23/2018 6:59:00 PM
1,2-Dichloroprop	bane	< 0.69	0.69	ug/m	3	t	1/23/2018 6:59:00 PM
1,3,5-Trimethylb	enzene	< 0.74	0,74	ug/m	3	1	1/23/2018 5:59:00 PM
1,3-butadiene		< 0.33	0.33	ug/m	3	1	1/23/2018 6:59:00 PM
1,3-Dichloroben:	zene	< 0.90	0.90	ug/m	3	1	1/23/2018 6:59:00 PM
1,4-Dichloroben:	zene	< 0.90	0.90	ug/m	3	1	1/23/2018 6:59:00 PM
1,4-Dioxane		< 1.1	1.1	ug/m	3	1	1/23/2018 6:59:00 PM
2,2,4-trimethylpe	antane	< 0.70	0.70	ug/m	3	1	1/23/2018 6:59:00 PM
4-ethyitoluene		< 0.74	0.74	ug/m	3	1	1/23/2018 6:59:00 PM
Acetone		52 ×U	6.4	ug/m		9	1/24/2018 12:18:00 AM
Allyl chloride		< 0.47	0.47	ug/m	3	1	1/23/2018 6:59:00 PM
Benzene -		1.1	0.48	ug/m		1	1/23/2018 6:59:00 PM
Banzyl chloride		< 0.86	0.86	ug/m		1	1/23/2018 6:59:00 PM
Bromodichlorom	ethane	< 1.0	1,0	ug/m		1	1/23/2018 6:59:00 PM
Bromoform		< 1.6	1.6	ug/m		1	1/23/2018 6:59:00 PM
Bromomethane		< 0.58	0.58	ug/m		1	1/23/2018 6:59:00 PM
Carbon disulfide		< 0.47	0.47	ug/m		1	1/23/2018 6:59:00 PM
Carbon tetrachic		0.38	0.19	uġ/m		1	1/23/2018 6:59:00 PM
Chlorobenzene		< 0.69	0.69	ug/m		1	1/23/2018 6:59:00 PM
Chloroethane		< 0.40	0.40	ug/m		1	1/23/2018 6:59:00 PM
Chloroform		< 0.73	0.73	ug/m		1	1/23/2018 6:59:00 PM
Chloromethane	_	0.93	0,31	ug/m		1	1/23/2018 6:59:00 PM
cis-1.2-Dichloroe		< 0.16	0.16	ug/m		1	1/23/2018 6:59:00 PM
cis-1,3-Dichlorog		< 0.68	0.68	ug/m		1	1/23/2018 6:59:00 PM
Cyclohexana -	er ve persê ti bû	4.5	0.52	បន្ទ/៣ បន្ទ/៣		1	1/23/2018 6:59:00 PM
Dibromochlorom	ethade	4.0 < 1.3	1.3	ug/m		1	1/23/2018 6:59:00 PM
Ethyl acetate -	55-57764 15 2	3.7	0.54	ug/m		1	1/23/2018 6:59:00 PM
		< 0,65	0.65	ug/m		1	1/23/2018 6:59:00 PM
Ethylbenzene		< 0.05 1.1	0.84	ug/m		1	1/23/2018 6:59:00 PM
Freari 11 🖉		1.1 < 1.1	1.1	ug/m		1	1/23/2018 6:59:00 PM
Freen 113 Freen 114		< 1.0	1.0	ug/m		1	1/23/2018 6:59:00 PM

** Qualifiers: Quantitation Limit

.

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded н

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

and a second Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

J ND Not Detected at the Limit of Detection

\N\

Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits s

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

**

в

Н

JN

Quantitation Limit

Qualifiers:

CLIENT:	LaBella Associates, P.C.	Client Sample 1D: 30	
Lab Order:	C1801059	Tag Number: 11	86.310
Project:	300 Commerce BCP	Collection Date: 1/	18/2018
Lab ID:	C1801059-002A	Matrix: Al	R

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE	VC-DCE-1,1DCE	τÓ)-15			Analyst: RJP
Freon 12 🗕	2.4	0.74		ug/m3	1	1/23/2018 6:59:00 PM
Heptane	0.61 228 0	0.61		ug/m3	1	1/23/2018 6:59:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 6:59:00 PM
Hexane 🕳	0.99	0.53		ug/m3	1	1/23/2018 6;59:00 PM
isopropyi alcohol —	380	34		ug/m3	90	1/24/2018 12:55:00 AM
m&p-Xylene 🛥	1.0	1.3	J	ug/m3	1	1/23/2018 6:59:00 PM
Methyl Butyl Ketone	< 1.2	1.2		vg/m3	1	1/23/2018 6:59:00 PM
Methyl Ethyl Ketone -	3.3	0.88		ug/m3	1	1/23/2018 6:59:00 PM
Methyl Isobutyl Ketane	< 1.2	1.2		ug/m3	1	1/23/2018 6:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 6:59:00 PM
Methylene chloride 😁	1.8	0.52		ug/m3	1	1/23/2018 6:59:00 PM
o-Xylene 🛥	0,48	0.65	J	ug/m3	1	1/23/2018 6:59:00 PM
Propylena	< 0.26	0.25		ug/m3	t	1/23/2018 6:59:00 PM
Styrene 🛥	0.81	0.64		ug/m3	1	1/23/2018 6:59:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 6:59:00 PM
Tetrahydrofuran	< 0.44	0,44		ug/m3	1	1/23/2018 6:59:00 PM
Toluene -	5.8	5.3		ug/m3	9	1/24/2018 12:18:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 6:59:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 6:59:00 PM
Trichloroethene -	0.59	0.16		ug/m3	1	1/23/2018 6:59:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	1/23/2018 6:59:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 6:59:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 6:59:00 PM

. Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit.

ND Not Detected at the Limit of Detection

Page 4 of 12

A	x x 2		XY CI
Centek	Laborat	ories,	LLC

Page 26 of 306

**

B

Н

JN

S

Qualifiers:

Date: 12-Feb-18

Analyses		Result	**Limit Qual		DF	Date Analyzed
Lab ID:	C1801059-003A			Matrix:		
Project:	300 Commerce BCP			Collection Date:		18
Lab Order:	C1801059			Tag Number:		
CLIENT:	LaBella Associates, P.0		C	lient Sample ID:	300-1A-1	03
nann a chuir an ann an an an Ar Anna.						

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 7:40:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM
1, 1, 2-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 7:40:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 7:40:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 7:40:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	1/23/2018 7:40:00 PM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	1	1/23/2018 7:40:00 PM
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	1/23/2018 7:40:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 7:40:00 PM
1.2-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 7:40:00 PM
1.2-Dichloropropane	< 0.69	0.69		ug/m3	1	1/23/2018 7:40:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	1/23/2018 7:40:00 PM
1,3-butadiane	< 0.33	0.33		ug/m3	1	1/23/2018 7:40:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 7:40:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 7:40:00 PM
1,4-Dioxane	< 1,1	1.1		ug/m3	1	1/23/2018 7:40:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	1/23/2018 7:40:00 PM
4-ethylloluene	< 0.74	0,74		ug/m3	1	1/23/2018 7:40:00 PM
	79	64		ug/m3	90	1/24/2018 2:12:00 AM
Ailyl chloride	< 0.47	0.47		ug/m3	1	1/23/2018 7:40:00 PM
Benzene	1.3	0.48		ug/m3	1	1/23/2018 7:40:00 PN
Benzyl chloride	< 0.86	0.86		ug/m3	1	1/23/2018 7:40:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	1/23/2018 7:40:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	1/23/2018 7:40:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	t	1/23/2018 7:40:00 PN
Carbon tetrachloride -	0.38	0.19		ug/m3	1	1/23/2018 7:40:00 PM
Chiorobenzene	< 0.69	0.69		ug/m3	1	1/23/2018 7:40:00 PN
Chioroelhane	< 0.40	0.40		ug/m3	1	1/23/2018 7:40:00 PN
Chiproform	< 0.73	0.73		ug/m3	1	1/23/2018 7:40:00 PN
Chloromethane	1.2 U	0.31		ug/m3	1	1/23/2018 7:40:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 7:40:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 7:40:00 PM
Cyclohexane -	8.4	4.8		ug/m3	9	1/24/2018 1:35:00 AN
Dibromochloromethane	< 1,3	1.3		ug/m3	1	1/23/2018 7:40:00 PN
Ethyl acetate -	3.6	0.54		ug/m3	1	1/23/2018 7:40:00 PM
Ethylbenzene -	0.43	0.65	Ŀ	ug/m3	1	1/23/2018 7:40:00 PN
	1.1	0.84		ug/m3	1	1/23/2018 7:40:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	1/23/2018 7:40:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit Holding times for preparation or analysis exceeded 1

ND Not Detected at the Limit of Detection

Analyte detected in the associated Method Blank

Spike Recovery outside accepted recovery limits

Non-routine analyte. Quantitation estimated.

Quantitation Limit

Analyses

DF

Date Analyzed

Client Sample 1D: 300-1A-03

Tag Number: 556.1171

Matrix: AIR

Collection Date: 1/18/2018

CLIENT; LaBella Associates, P.C. Lab Order: C1801059 Project: 300 Commerce BCP Lab ID: C1801059-003A

**Limit Qual Units

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TQ-	15			Analyst: RJF
Freon 12 🛏	2.3	0.74		ug/m3	1	1/23/2018 7:40:00 PM
Heptane -	0.98	0.61		ug/m3	1	1/23/2018 7:40:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 7:40:00 PM
Hexane 🕳	1.9	0.53		ug/m3	1	1/23/2018 7:40:00 PM
isopropyi alcohol 🐂	840	290		ug/m3	810	1/24/2018 11:45:00 AM
m&p-Xylene =	1.0	1.3	J	ug/m3	1	1/23/2018 7:40:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 7:40:00 PM
Methyl Ethyl Ketone 🛶	3.9	0.88		ug/m3	1	1/23/2018 7:40:00 PM
Methyl Isobulyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 7:40:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 7:40:00 PM
Methylene chloride 🐂	1.3	0.52		ug/m3	1	1/23/2018 7:40:00 PM
o-Xylene 🗢	0.61	0.65	J.	ug/m3	1	1/23/2018 7:40:00 PM
Propylene	< 0.26	0.26		ug/m3	3	1/23/2018 7:40:00 PM
Styrene -	1.1	0.64		ug/m3	1	1/23/2018 7:40:00 PM
etrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM
letrahydrofuran	< 0.44	0.44		სე/ო3	1	1/23/2018 7:40:00 PM
Foluene 🛶	13	5.3		ug/m3	9	1/24/2018 1:35:00 AM
rans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 7:40:00 PM
rans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 7:40:00 PM
richloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 7:40:00 PM
/inyl acetate	< 0.53	0.53		ug/m3	1	1/23/2018 7:40:00 PM
/inyi Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 7:40:00 PM
/inyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 7:40:00 PM

Result

Qualifiers: ** Quantilation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range

,

- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 12

.

Analyses		Result	**Limit Qual		DF	Date Analyzed
Lab ID:	C1801059-004A			Matrix:	AIR	
Project:	300 Commerce BCP			Collection Date:	1/18/201	8
Lab Order:	C1801059			Tag Number:	554.268	
CLIENT:	LaBella Associates, P.(Client Sample ID:		

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-18	5		Analyst: RJ
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 8:21:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	1/23/2018 8:21:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 8:21:00 PN
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2016 8:21:00 PN
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 8:21:00 PM
1,2,4-Trichlorobenzene	< 1.1	1,1	ug/m3	1	1/23/2018 8:21:00 PM
1,2,4-Trimethylbenzene -	2.0	0.74	ug/m3	1	1/23/2018 8:21:00 PM
1.2-Dibromoethane	< 1.2	1.2	ug/m3	t	1/23/2018 8:21:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 8:21:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2018 8:21:00 PM
1,2-Dichloropropene	< 0.69	0.69	ug/m3	1	1/23/2018 8:21:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	1/23/2018 8:21:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	t	1/23/2018 8:21:00 PM
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 8:21:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 8:21:00 PN
1,4-Dioxane	< 1.1	1.1	ug/m3	1	1/23/2018 8:21:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	1/23/2018 8:21:00 PM
4-ethyltoluene 🦳	1,3	0.74	ug/m3	1	1/23/2018 8:21:00 PM
Acetone 🛥	70	7.1	ug/m3	10	1/24/2018 2:49:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	1/23/2018 8:21:00 PM
Benzene 🚄	1.3	0.48	ug/m3	1	1/23/2018 8:21:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	1/23/2018 8:21:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	1/23/2018 8:21:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	1/23/2018 8:21:00 PN
Bromomethane	< 0.58	0.58	ug/m3	1	1/23/2018 8:21:00 PN
Carbon disulfide	< 0.47	0.47	ug/m3	1	1/23/2018 8:21.00 PN
Carbon tetrachloride -	0.38	0.19	ug/m3	1	1/23/2018 8:21:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	1/23/2018 8:21:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	1/23/2018 8:21:00 PN
Chloroform	< 0.73	0.73	ug/m3	1	1/23/2018 8:21:00 PN
Chloromethane 🛏	1.2	0.31	ug/m3	1	1/23/2018 8:21:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 8:21:00 PN
cis-1,3-Dichloropropene	< 0.68	0.68	vg/m3	1	1/23/2018 8:21:00 PM
Cyclohexane 🛥 💦	11	5.2	ug/m3	10	1/24/2018 2:49:00 AN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	1/23/2018 8:21:00 PN
Ethyl acetate	4.3	0.54	ug/m3	1	1/23/2018 8:21:00 PN
Ethylbenzene 💙	0.52	0.65 J	- -	1	1/23/2018 8:21:00 PN
Freon 11 —	1.1	0.84	ug/m3	1	1/23/2018 8:21:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	1/23/2018 8:21:00 PN
Freon 114	< 1,0	1.0	ug/m3	1	1/23/2018 8:21:00 PM

Qualifiers: ** Quantitation Limit

 ${\bf B}$ — Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 7 of 12

Date: 12-Feb-18

			· . ·
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 300-IA-04	
Lab Order:	C1801059	Tag Number: 554.268	
Project:	300 Commerce BCP	Collection Date: 1/18/2018	
Lab 1D:	C1801059-004A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO)-15			Analyst: RJP
Freon 12 🛰	2.3	0.74		ug/m3	1	1/23/2018 8:21:00 PM
Heptane 🌫	1.1	0.61		ug/m3	1	1/23/2018 8:21:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 8:21:00 PM
Hexane '	2.0	0.53		ug/m3	1	1/23/2018 8:21:00 PM
Isopropyl alcohol 🗝	1600	290		ug/m3	810	1/24/2018 12:22:00 PM
m&p-Xylene 🗕	1.1	1.3	L	ug/m3	1	1/23/2018 8:21:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 8:21:00 PM
Methyl Ethyl Ketone 🗝	4.0	0,88		ug/m3	1	1/23/2018 8:21:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 8:21:00 PM
Methyl tert-bulyl ether	< 0,54	0.54		ug/m3	1	1/23/2018 8:21:00 PM
Methylene chloride –	0.83	0.52		ug/m3	1	1/23/2018 8:21:00 PM
o-Xylene	0.58	0.65	J	ug/m3	1	1/23/2018 8:21:00 PM
Propylene	< 0.26	0.26		ug/m3	1	1/23/2018 8:21:00 PM
Styrene -	1.4	0.64		ug/m3	1	1/23/2018 8:21:00 PM
Tetrachioroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 8:21:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	1/23/2018 8:21:00 PM
Toluene -	17	5,7		ug/m3	10	1/24/2018 2:49:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 8:21:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 8:21:00 PM
Trichloroethene -	0.21	0.16		ug/m3	1	1/23/2018 8:21:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	t	1/23/2018 8:21:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 8:21:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 8:21:00 PM

Qualifiers:	**	Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S
- Results reported are not blank corrected
 - E Estimated Value above quantitation range
 - J Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Lab Order: C1801059 Tag Number: 366.372 Project: 300 Commerce BCP Collection Date: 1/18/2018	
Lab ID: C1801059-005A Matrix: AIR	

Anaiyses	Result	- Dunt Qu	ai Units	VC	Mate Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 9:01:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	1/23/2018 9:01:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 9:01:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2018 9:01:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 9:01:00 PM
1,2,4-Trichlorobenzene	< 1,1	1.1	ug/m3	1	1/23/2018 9:01:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	1/23/2018 9:01:00 PM
1,2-Dibromosthane	< 1.2	1,2	ug/m3	1	1/23/2018 9:01:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 9:01:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2018 9:01:00 PM
1,2-Dichleropropane	< 0.69	0.69	ug/m3	1	1/23/2018 9:01:00 PM
1.3.5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	1/23/2018 9:01:00 PM
1,3-buladiene	< 0.33	0.33	ug/m3	1	1/23/2018 9:01:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 9:01:00 PM
1.4-Dichlorobenzene	< 0.90	0.90	ug/m3	3	1/23/2018 9:01:00 PM
1,4-Dioxane	< 1,1	1.1	ug/m3	1	1/23/2018 9:01:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	1/23/2018 9:01:00 PM
4-athyitoluene	< 0.74	0.74	ug/m3	1	1/23/2018 9:01:00 PM
Acetone -	11	7.1	ug/m3	10	1/24/2018 3:25:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	1/23/2018 9:01:00 PM
Benzene 🖕	0.67	0.48	vg/m3	1	1/23/2018 9:01:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	1/23/2018 9:01:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	1/23/2018 9:01:00 PM
Bromoform	< 1.6	1,6	ug/m3	1	1/23/2018 9:01:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	1/23/2018 9:01:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	1/23/2018 9:01:00 PM
Carbon tetrachloride-	0.44	0.19	ug/m3	1	1/23/2018 9:01:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	1/23/2018 9:01:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	1/23/2018 9:01:00 PM
Chieroform	< 0.73	0.73	ug/m3	1	1/23/2018 9:01:00 PM
Chloromethane -	0.78	0.31	ug/m3	1	1/23/2018 9:01:00 PN
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 9:01:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	1/23/2018 9:01:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	1/23/2018 9:01:00 PN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	1/23/2018 9:01:00 PN
Ethyl acelate	< 0.54	0.54	ug/m3	1	1/23/2018 9:01:00 PN
Ethylbenzane	< 0.65	0.65	ug/m3	1	1/23/2018 9:01:00 PN
Freon 11 -	1.1	0.84	ug/m3	1	1/23/2018 9:01:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	1/23/2018 9:01:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	1/23/2018 9:01:00 PM

Qualifiers: ** Quantitation Limit

Analyte detected in the associated Method Blank в

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

. . • Results reported are not blank corrected

E Estimated Value above quantitation range

.

Analyte detected below quantitation limit 1

ND Not Detected at the Limit of Detection

Page 9 of 12

Centek Laboratories, LLC					Date:	12-Fe	e b- 18
CLIENT: LaBelia Associates, P.C.				C	Illent Sample ID:		XT-01
Lab Order:	C1801059				Tag Number:	366.3	72
Project:	300 Commerce BCP				Collection Date:		
Lab ID:	C1801059-005A				Matrix:	AIR	
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE			тс)-15			Analyst: RJI
Freon 12 👡		2.3	0.74		ug/m3	1	1/23/2018 9:01:00 PM
Heptane		< 0.61	0.61		ug/m3	1	1/23/2018 9:01:00 PM
Hexachloro-1,3	-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 9:01:00 PM
Hexane		< 0.53	0.53		ug/m3	1	1/23/2018 9:01:00 PM
isopropyl alcoh	ol 👝	2.6	0.37		ug/m3	1	1/23/2018 9:01:00 PM
m&p-Xylene		< 1.3	1.3		ug/m3	1	1/23/2016 9:01:00 PM
Methyl Butyl Ke	lone	< 1.2	1,2		ug/m3	1	1/23/2018 9:01:00 PM
Methyl Ethyl Ke	lone	< 0.88	0.68		ug/m3	1	1/23/2018 9:01:00 PM
Methyl Isobutyl	Ketone	< 1.2	1,2		ug/m3	1	1/23/2018 9:01:00 PM
Methyl tert-buty	i ether	< 0.54	0.54		ug/m3	1	1/23/2018 9:01:00 PM
Methylene chiol	ride -	0.94	0.52		ug/m3	1	1/23/2018 9:01:00 PM
o-Xylene		< 0.65	0.65		ug/m3	1	1/23/2018 9:01:00 PM
Propylene		< 0.26	0.26		ug/m3	1	1/23/2018 9:01:00 PM
Styrene		< 0.64	0,64		ug/m3	1	1/23/2018 9:01:00 PM
Tetrachloroethy	lene	< 1.0	1.0		ug/m3	1	1/23/2018 9:01:00 PM
Tetrahydrofurar	1	< 0.44	0.44		ug/m3	1	1/23/2018 9:01:00 PM
Toluene 🛩		0.75	0.57		ug/m3	1	1/23/2018 9:01:00 PM
trans-1,2-Dichic	proethene	< 0.59	0.59		ug/m3	1	1/23/2018 9:01:00 PM
trans-1,3-Dichlo	propropena	< 0.68	0.68		ug/m3	1	1/23/2018 9:01:00 PM
Trichloroethene		< 0.16	0.16		ug/m3	1	1/23/2018 9:01:00 PM
					-		

0.53

0.66

0.10

ug/m3

սց/m3

ug/m3

7**1**5

< 0.53

< 0.66

< 0.10

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

1

1

1

- E Estimated Value above quantitation range
- J Analyte detected below quantitation fimit

.....

ND Not Detected at the Limit of Detection

Page 10 of 12

1/23/2018 9:01:00 PM

1/23/2018 9:01:00 PM

1/23/2018 9:01:00 PM

Vinyl acetate

Vinyl Bromide

Vinyl chiaride

.

CLIENT:	LaBella Associates, P.C.	Client Sample ID: Dupe	. • •:
Lab Order:	C1801059	Tag Number: 1177.268	
Project:	300 Commerce BCP	Collection Date: 1/18/2018	
Lab ID:	C1801059-006A	Matrix: AIR	
· · · ·		land be a fille a constant way was a constant of a constant of the state of the sta	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	D-DCE-1,1DCE	тс	-15			Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 9:41:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	1/23/2018 9:41:00 PM
1.1.2-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 9:41:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 9:41:00 PM
1,1-Dichloroethene	< 0.16	0,16		ug/m3	1	1/23/2018 9:41:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	1/23/2018 9:41:00 PM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	1	1/23/2018 9:41:00 PM
1,2-Dibromoethane	< 1.2	1.2		បg/m3	1	1/23/2016 9:41:00 PM
1,2-Dichiorobenzene	< 0.90	0.90		นg/m3	1	1/23/2018 9:41:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 9:41:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	1/23/2018 9:41:00 PM
1.3.5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	1/23/2018 9:41:00 PM
1.3-butadiene	< 0.33	0.33		ug/m3	1	1/23/2018 9:41:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 9:41:00 PN
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 9:41:00 PN
1,4-Dioxane	< 1.1	1,1		ug/m3	1	1/23/2018 9:41:00 PN
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	1/23/2018 9:41:00 PN
4-ethyltoluene	< 0.74	0.74		սց/m3	1	1/23/2018 9:41:00 PM
Acetone -	71	7.1		ug/m3	10	1/24/2018 4:03:00 AM
Allvi chloride	< 0.47	0.47		ug/m3	1	1/23/2018 9:41:00 PM
Benzene -	1.3	0.48		ug/m3	1	1/23/2018 9:41:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	1/23/2018 9:41:00 PN
Bromodichloromethane	< 1.0	1.0		ug/m3	1	1/23/2018 9:41:00 PM
Bromoform	< 1.6	1.6		ug/m3	٦	1/23/2018 9:41:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	1/23/2018 9:41:00 PN
Carbon disulfide	< 0.47	0.47		ug/m3	1	1/23/2018 9:41:00 PM
Carbon tetrachioride -	0.38	0.19		ug/m3	1	1/23/2018 9:41:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	1/23/2018 9:41:00 PM
Chloroethase	< 0.40	0.40		ug/m3	1	1/23/2018 9:41:00 PM
Chloraform	< 0.73	0.73		ug/m3	1	1/23/2018 9:41:00 PM
Chioromethane	< 0.31	0.31		ug/m3	1	1/23/2018 9:41:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 9:41:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 9:41:00 PM
Cyclohexane -	8.6	5.2		ug/m3	10	1/24/2018 4:03:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	1/23/2018 9:41:00 PM
Ethyl acetate -	4.4	0.54		ug/m3	1	1/23/2018 9:41:00 PN
Ethylbenzene -	0.52	0.65	Ĵ	ug/m3	1	1/23/2018 9:41:00 PN
Freen 11-	1.2	0.84		ug/m3	1	1/23/2018 9:41:00 PN
Freen 113	< 1.1	1.1		ug/m3	1	1/23/2018 9:41:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	1/23/2018 9:41:00 PM

.

Е

3

Results reported are not blank corrected Estimated Value above quantitation range Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Analyte detected in the associated Method Blank l

Ħ Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

** Quantitation Limit

Spike Recovery outside accepted recovery limits \$

Page 11 of 12

13

.

Qualifiers:

<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	an ann an tar an tar ann an tar ann an tar ann an ann an tar an tar an tar an tar ann an tar ann an tar ann an Tar ann an tar an tar ann an tar ann an tar ann an tar ann an tar an tar ann an tar ann an tar ann an tar ann an	ny fil for the second secon Second for the second	
CLIENT:	LaBella Associates, P.C.	Client Sample ID:	
Lab Order:	C1801059	Tag Number:	1177.268
Project:	300 Commerce BCP	Collection Date:	1/18/2018
Lab ID:	C1801059-006A	Matrix:	AIR
· · · · · · · · · · · · · · · · · · ·		ويقومونها والمرور والمرومة المراجعة المراجع والمواجع والمراجع المراجع	· · · · · · · · · · · · · · · · · · ·

Analyses	Result	**Llmit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		то	-15			Analyst: RJP
Freon 12 🛥	2.2	0.74		ug/m3	1	1/23/2018 9:41:00 PM
Heptane 🕳	1,1	0.61		ug/m3	1	1/23/2018 9:41:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2016 9:41:00 PM
Hexane -	1.9	0.53		ug/m3	1	1/23/2018 9:41:00 PM
Isopropyi alcohol —	1500	290		ug/m3	810	1/24/2018 12:59:00 PM
m&p-Xylene 🖌	1.1	1.3	J	ug/m3	1	1/23/2018 9:41:00 PM
Methyl Bulyl Ketone	< 1,2	1.2		ug/m3	1	1/23/2018 9:41:00 PM
Methyl Ethyl Ketone	4.3	0.88		ug/m3	1	1/23/2018 9:41:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 9:41:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 9:41:00 PM
Methylene chloride 🗕	0,94	0.52		ug/m3	1	1/23/2018 9:41:00 PM
o-Xyiene 😁	0.65	0.65		ug/m3	1	1/23/2018 9:41:00 PM
Propylene	< 0.26	0.26		ug/m3	1	1/23/2018 9:41:00 PM
Styrene 🗕	1,4	0.64		ug/m3	1	1/23/2018 9:41:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2016 9.41:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	1/23/2018 9:41:00 PM
Toluene 🛩	16	5.7		ug/m3	10	1/24/2018 4:03:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	t	1/23/2018 9:41:00 PM
trans+1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 9:41:00 PM
Trichloroethene -	0.21	0.16		ug/m3	1	1/23/2018 9:41:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	1/23/2018 9:41:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 9:41:00 PM
Vinyl chloride	< 0.10	0,10		ug/m3	1	1/23/2018 9:41:00 PM

Qualifiers:	**	Quantitation Limit		
	8	Analyte detected in the associated Method Blank		Е
	н	Holding times for preparation or analysis exceeded		J

- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 12

Date: 12-Feb-18

1

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: Work Order: Project: Test No:	C180105	Associates, P.C. 59 Imerce BCP	Matrix: A
Sample ID		BR4FBZ	
ALCS1UG-012318		109	
ALCSTUG-012418		106	
ALCSIUGD-01231	8	108	
AMB1UG-012318		(77.0)	
AMB1UG-012418		(74.0)	
C1801059-001A	~	85.0	
C1801059-001A M	S	(125)	
C1801059-001A M	SD	(36 *	
C1801059-002A	1	115	
C1801059-003A	/	107	
C1801059-004A	1	115	
C1801059-005A	1	90.0	Management of the second s
C1801059-006A	 	112	

Acronym		Surrogate	QC Limits
BR4FBZ	2	Bromafluorobenzene	70 <u>-130</u> 80-120
* Surr	ogate	recovery outside acceptar	ice limits

Ce	entek Laboratorie gc/ms_ga-gc_c	•	rt				
Tune File : (Tune Time : 2	C:\HPCHEM\1\DA1 23 Jan 2018 1	A\AP012304 ;19 pm	.D				
	ation File : C: 3/18 AP0[230	4 _(BFB)	DATA\AP		(IS1) 61569 36941	338867 (IS2) 242048 145229	273494 (IS3) 195353 1(72)2
File Sa	ample DL	Surrogat	e Recov	ery % I		andard Resp	
AP012305.D AI	LCS1UG-012318	109			66130	262928	209680
AP012306.D AM	4B1UG-012318	(77)			58349	226246	163681
AP012307.D C1	1801059-001A	85 [0.6	12.83	17,57	58423	232526	179447
AP012308.D C1	1801059-001A MS	<u>(125</u>)			62755	255610	214065
AP012309.D C1	1801059-001A MS	D (136)			65221	257568	214279
AP012310.D C1	L801059-002A	115 /0:6	12.83	17.56	61169	253166	201981
AP012311.D C1	L801059-003A	107 /0.6	12.85	17.56	60766	243822	202756
AP012312.D C1	L801059-004A	115 10,6	12.83	17.56	60619	247599	215464
AP012313.D C1	1801059-005A/	90 /0.61		17.57	59237	222419	171936
AP012314.D CI	L801059-006A	112 /0,61		17.56	58361	240370	190476
AP012316.D C1	801059-001A 9X	98 <i>10,</i> 6	1 12.83	17.56	57381	217134	158357
AP012317.D C1	801059-001A 90	x 76 10.4	1 12.83	17.56	53749	202996	138372
AP012318.D C1	801059-002A 9X	80 /0,6	12.82	17.56	55298	212474	153943
AP012319.D C1	1801059-002A 90	x (76) /0.0	/2.82	17.56	51964	199622	137127
AP012320.D C1	801059-003A 9X	···/		17.56	54761	216898	156826
AP012321.D C1	1801059-003A 90	x 90 /0.6	1 12.83	17.56	54813	209042	141152
AP012322.D C1	801059-004A 10			17.56	53504	205394	141466
AP012323.D C1	801059-005A 10	···/	12.83	17.56	53040	200508	135446
AP012324.D C1	801059-006A 10		12.83		54892	208049	142848
AP012326.D AL	CS1UGD-012318	108			57609	219763	175684
 	24hr time cha	 ale t - f	ചാലം നാട്	 lteria			@ @ @ @ b @ @ @ % # #

t - fails 24hr time check * - fails criteria

Created: Mon Feb 12 09:29:24 2018 MSD #1/

.

Centek Laboratories, LLC GC/MS QA-QC Cneck Report

Tune File : C:\HPCHEM\1\DATA\AP012403.D Tune Time : 24 Jan 2018 8:57 am

Daily Calibration File : C:\HPCHEM\l\DATA\AP012403.D

ccv 1/2	4/19 085	7 (1	BFB)	10.6	12.83	17.56	(IS1) 57669	(IS2) 230444	(IS3) 176593
+	ple	DL Su	rog	ate Rec	covery %	Inte	ernal Star	idard Respon	305
AP012404.D ALC		8	106				55550	221976	174698
AP012405.D AME	1UG-012418		74				54650	206952	151769
AP012406.D C18	01059-003A	810X	75	10.6	12.82	17.50	54276	201612	142792
AP012407.D C18	01059-004A	810X	73	16161	12.83	17.56	54277	200061	141236
AP012408.D C18	01059-006A	810X	3	10.6	1 12.83	17.56	49752	186319	135553
t - fails	24hr time (check	* -	fails	criteri	.ā			

Created: Mon Feb 12 09:31:44 2018 MSD #1/

Ì

đ					~4	ANALYT	ICAL QC SUN	ANALYTICAL QC SUMMARY REPORT
CLIENT: LaBella As	LaBella Associates, P.C.							
Work Order: C1801059								
Project: 300 Commerce BCP	terce BCP						TestCode: 0.20_NYS	20_NYS
Sample ID: ALCS1UG-012318	SampType: LCS	TestCoc	TestCode: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 13187
Client ID: ZZZZ	Batch ID: R13187	Tesh	TestNo: TO-15		-	Analysis Date:	1/23/2018	SeqNo: 153170
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD RPDLimit Quat
1.1.1-Trichloroethane	0:9000	0,15	-	o	90.0	Ŕ	130	
1,1,2,2-Tetrachloroethane	1.170	0.15	F	٥	117	70	130	
t,1,2-Trichloroethane	1.050	0.15	-	Q	105	70	130	
1,1-Dichloroethane	1.000	0.15	-	Ģ	100	70	130	
1,1-Dichloroethene	0.7200	0.040	4	٥	72.0	70	130	
1,2,4-Trichlorobenzene	1.110	0.15	-	0	111	70	130	
1,2,4-Trimethylbenzene	1.100	0.15	-	0	110	70	130	
1,2-Dibromoethane	1.090	0.15	-	0	109	30	130	
1,2-Dichlorobenzene	1.120	0.15	-	0	112	70	130	
1,2-Dichloroethane	0.9400	0.15	-	o	94.0	70	130	
1.2-Dichloropropane	1.120	0.15	-	0	112	70	130	
1,3,5-Trimethythenzene	1.190	0.15	-	0	119	70	130	
1,3-butadiene	0.9000	0.15	۲	o	90.0	70	130	
1,3-Dichlorobenzene	1.080	0.15	1	٥	108	70	130	
1,4-Dichlorobenzene	1.120	0.15	~~	o	112	70	130	
1,4-Dioxane	1.100	0.30	**	Ċ	110	70	130	
2.2,4-trimethylpentane	1.120	0.15	÷	Ċ	112	02	130	
4-ethyltoluene	1.110	0.15	*	σ	111	70	130	
Acetone	1.040	0.30	**	0	5	20	130	
Allyl chloride	1.000	0.15	**	Ò	100	70	130	
Benzene	1.050	0.15	1	Ð	105	70	061	
Benzyl chloride	1.070	0.15	•••	0	107	70	130	
Bromodichhoromethane	0.9400	0.15	"	¢	94.0	70	130	
Bromotorm	0.9600	0.15		¢	96.0	70	130	
Bromomethane	0.8400	0.15	***	0	84.0	70	130	

CENTEK LABORATORIES, LLC

Date: 12-Feb-18

Centek Laboratories, LLC

Page 44 of 306

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit

- s .

Results reported are not blank corrected

Page Pof 5

•

Qualifiers:

Estimated Value above quantitation range

Not Detected at the Limit of Detection

<u>а 9</u>

H Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits

RPD outside accepted recovery limits

work Urder: Project:	C1801059 300 Commerce BCP	srce BCP						TestCode:	020_NYS
18	IUG-012318	SampType: LCS	TestCode	TestCode: 0.20 NYS	Units: ppbV		Prep Date	di.	RunNo: 13187
Client ID: ZZZZ		Batch ID: R13187	TestNc	TestNo: TO-15		Υ.	Analysis Dale:	e: 1/23/2018	SeqNo: 153170
Analyle		Result	PQL	SPK value	SPK Ref Vat	%REC	yówtimit	HighLimit RPD Ref Val	%RPD RPDLimit Qual
Carbon disulfide		1.320	0.15	-	0	132 1	22	138/35	
Carbon tetrachioride	đ	0.7900	0.030	***	Q	79.0	2	130	
Chlorobenzene		1.070	0.15	*	0	107	70	130	
Chloroethane		0.8700	0.15	y m	0	87.0	20	130	
Chloroform		0.9300	0.15		¢	93.0	02	130	
Chloromethane		0.8700	0.15	***	Q	87.0	70	130	
cis-1,2-Dichtoroethene	iene	0.9300	0.040	•	0	93.0	2	130	
cis-1,3-Dichloropropene	abeue	1.050	0.15	,-	0	105	92	130	
Cyclohexane		1.130	0.15	4-	0	113	20	130	
Dibromochloromethane	hane	0.9600	0.15	*-	Ċ	9 6 .0	20	130	
Ethyl acelate		1.110	0.15	*-	0	111	02	130	
Ethylbenzene		1.080	0.15		0	108	20	130	
Freon 11		0.8400	0.15	9	0	84.D	2	130	
Freon 113		0.8700	0.15	-	¢	87.0	02	130	
Freon 114		0.8900	0.15	۴	0	89.0	2	130	
Freon 12		0.9200	0.15		0	92.0	22	130	
Heptane		1.120	0.15	ţ	C	112	67	130	
Hexachkoro-1,3-butadiene	tadiene	1.000	0.15	-	0	100 1	02	130	
Hexane		1.150	0.15	+ -	0	115	67	130	
Isopropyi alcohol		0.8800	0.15	•	0	88.0	02	130	
m&p-Xylene		2.320	0.30	N	0	116	6	130	
Methyi Butyl Ketone	ē	1.010	0.30	£.	Ð	101	02	130	
Methyl Ethyl Ketone	ē	1.100	0.30	••	¢	110	20	130	
Methyl Isobutyl Ketone	tone	1.110	0:30	-	Q	111	02	130	
Methyl tert-butyl ather	her	0.9800	0.15		¢	98.0	70	130	
Methylene chloride	A1	0.9800	0.15		0	98.0	70	130	
o-Xytene		1.180	0,15	-	Ģ	118	65	130	
Propylene		1.180	0.15	ſ	G	118	2	130	
Styrene		1.120	0.15	-	0	112	02	130	
Tetrachloroethyiene	9 9	0.9900	0.15	-	Ģ	0,99,0	02	130	
Tetrahydrofuran		1.110	0.15	-	Q	111	20	130	
Qualifiers:	Results repor	Results reported are not blank corrected			Estimated Value above quentication range	titation rangu		11 Holding times for	Helding times for preparation or analysis exceeded
	Analytic delet	Amakute detected behave ouanstitations liend		ND Not Det	Not Detected at the Limit of Detection	Detection		PDD outcide acce	2 PD outside accounted success lizzing

Work Order: C1801059										
Project: 300 Commerce BCP	erce BCP							TestCode: (0.20_NYS	
Sample ID: ALCS1UG-012318	SampType: LCS	TestCor	TestCode: 0.20_NYS	Units: ppbV		Prep Date	ài		RunNo: 13187	
Client ID: ZZZZ	Batch 10: R13187	Test	TestNo: TO-15		-	Analysis Date:	e: 1/23/2018	18	SeqNo: 153170	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Quat
Тоічеле	1.100	0.15	-	D	101	02	130			
trans-1,2-Dichloroethene	1.090	0.15	F	0	109	R	130			
Irans-1,3-Dichloropropene	1.000	0.15	-	D	100	22	130			
Trichloroethene	0.8700	0:030	~	a	87.0	2	130			
Vinył acetałe	1.060	0.15	~	0	106	02 02	130			
Vinyi Bromide	0.6900	0.15	•	D	89.0	R	130			
Vinyi chloride	0.8400	0.040	۴	0	84.0	70	130			
Sample ID: ALCS1UG-012418	SampType: LCS	TeslCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	ä		RunNo: 13189	
Client ID: ZZZZ	Batch ID: R13189	Test	TestNo: TO-15			Analysis Date:	e: 1/24/2018	18	SeqNo: 153195	
Anaiyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLinit	Quał
.1.1-Trichloroethane	0.9900	0.15	**	0	0.66	202	130			
1,1,2,2-Tetrachloroethane	1.300	0.15	~	0	130	02	130			
1,1,2-Frichloroethane	1.170	0.15	-	0	117	Q2	130			
I,1-Dichloroethane	1.130	0.15	*	¢	113	2	130			
1,1-Dichloroethene	0.9200	0.040	-	0	92.0	70	130			
1,2,4-Trichlorobenzene	0.9600	0.15	•	a	6.0	02	130			
1,2,4-Trimethylbenzene	1.060	0.15	++	0	106	2	130			
t,2-Dibromoethane	1.170	0.15	-	0	117	20	130			
3,2-Dichlorobenzene	1.160	0.15		0	116	02	130			
1,2-Dichloroe(hane	1.010	0.15	-	0	<u>101</u>	5	130			
1,2-Dichloropropane	1.230	0.15	-	0	123	02	130			
1,3,5-Trimethylbenzene	1.250	0,15	-	0	125	70	130			
1,3-butadiene	1.100	0.15		Ö	110	70	130			
1,3-Dichlorobenzene	1,140	0.15	+	0	114	20	130			
1,4-Dichkobenzene	1,160	0.15	٣	¢	116	62	130			
1,4-Dioxane	0.8700	0:30	**	Û	87.0	02	130			
2,2,4-trimethytpentane	1.230	0.15	*	0	123	92	130			
4-ethyltoiuene	1.150	0.15	÷	٥	115	02	130			
Ouxliffers: Results rep	Results reported are not blank corrected		E Estén	Estimated Value above quantitation range	ditation ran	3. 3.	H	Holding times fo	Holding times for preparation or analysis exceeded	ded
ſ	Anolyte detected helow quantitation limit		ND Not D	Not Detected at the Limit of Detection	Delection		æ	& PD outside acci	RPD outside accepted recovery limits	
•	•									

Page 46 of 306

CLIENT:	LaBella Associates, P.C.
Work Order: C18030	C1\$01059
Project:	300 Commerce BCP TestCode: 0.2

C1801059	200 Common D
k Order:	

Project:	300 Commerce BCP	erce BCP							TestCode:	le: 0.20_NYS	~	
Sample ID: ALCS1UG-012418	11UG-012418	SampType: LCS	s	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date		RunNo: 13189	13189	
Client ID: ZZZZZ	И	Balch ID: R13189	3189	TesiN	TesiNo: TO-15		~	Analysis Date:	: 1/24/2018	SeqNo: 153195	153195	
Anahle		Re	Resut	POL	SPK value	SPK Ref Val	%REC	LowLimit 1	HighLimit RPD Ref Val	if Val %RPD	D RPDLimit	Quai
Acetone		-	1.020	0.30	-	C	102	02	130			
Ally/I chloride		÷	1.140	0.15	L	0	114	02	130			
Benzene		**	1.140	0.15	**	0	114	02	130			
Benzyl chlande		*-	1.010	0.15	•	0	101	70	130			
Bromodichloramethane	thane	*-	1.050	0.15	¥.m.	Ð	105	02	130			
Bromatorm		*	1.060	0.15	**	ð	1 06	70	130			
Bromomethane			1.020	0.15	-	Ċ	<u></u> 81	02	130			
Carbon disulfide		*	1.400	0.15	÷	o	3	70	130			S
Carbon telrachloride	ide	0.5	0.8800	0.030	<i>,</i>	Ð	88.0	70	130			
Chiorobenzene		÷	1.170	0.15	-	C	117	70	130			
Chloroelhane		*	1.000	0.15	-	Ð	100	70	130			
Chloroform		÷	1.060	0.15	-	Ċ	1 0 6	70	130			
Chloromethane		*	1.150	0.15		0	115	70	130			
cis-1,2-Dichloroethene	thene	+	1.030	0.040	4	٥	103	70	130			
cis-1,3-Dichloropropene	anaqon	÷	1.110	0.15	+	0	111	70	130			
Cyclohexane		+	1.240	0.15	÷	٥	124	2	130			
Dibromochloromethane	ethane	-	1.060	0.15	ţ	0	106	20	130			
Ethyl acetate		-	1.120	0.15	*	0	112	70	130			
Ethylbenzene		Ŧ	1.160	0.15	+	۵	116	70	130			
Freen 11		0.0	0.9700	0.15	*	0	97,0	70	130			
Freon 113			1.030	0.15	¥-	0	103	70	130			
Freon 114			1.100	0.15	-	0	110	20	130			
Freon 12		~	1.080	0.15		D	108	20	130			
Heptane		÷	1.260	0.15	*-	0	126	70	130			
Hexachloro-1,3-butadiene	hutaciene	0.1	0.9600	0.15	,	0	96.0	02	130			
Hexane			1.420	0.15		o	(142)	70	130			ა
tsopropyi akcohol	_	0	0.9100	0.15	¥	0)0.1 <u>0</u>	8	130			
m&p-Xylene			2.460	0.30	2	0	123	02	130			
Methyi Butyl Ketone	one	~-	1.120	0:30	**	Ð	112	Ř	130			
Methyl Ethyl Ketone	one	F	1.090	0.30	**	0	10 0	70	130			
Methyl Isobutył Ketone	(etone	0	0.9400	0.30	~	0	94.0		130	-		
Qualifiers:	Results repor	Results reported are not blank corrected analyze detected below consultation finds	orrected riou fimit		E Estimat ND Not De	Estémated Value above quantitation range Mot Detected of the Timit of Detection	Station rang	P.	Holding tit	Holding times for preparation or analysis exceeded RPD outside accented recover limits	preparation or analysis exect mod recover limits	led
~-		Spike Recovery outside accepted recovery limits	l neovery lin	its								Page 1 of 5
											-	r 10 + 28n

Work Order: C1801059 Project: 300 Commerce BCP	berce BCP						Ĥ	TestCode: 0.20_NYS	20_NYS	
Sample ID: ALCS1UG-012418	SampType: LCS	TesiCor	TesiCode: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 13189	
Client ID: 22222	Batch ID: R13189	Tesl	TestNo: TO-15		4	Analysis Date: 1/24/2018	e: 1/24/20	18	SeqNo: 153195	
Analyte	Result	POL	SPK value	SPK Ref Vat	%REC	LowLimit	HighLimit	LowDimit HighLimit RPD Ref Val	%RPD RPDLinit	l Qual
Methyl tert-butyl ether	1.030	0.15	ſ	o	to3 //	202	130			
Methylene chloride	1.090	0.15	-	0	109	22	130			
o-Xyłene	1.300	0.15	•	0	130	20	130			
Propylene	1.260	0.15		o	126	02	130			
Styrene	1.200	0.15		Û	120	02	130			
Tetrachloroethylene	1,110	0.15	-	0	111	02	130			
Tetrahydrofuran	1.160	0.15		0	116	20	130			
Toluene	1.230	0.15		Ð	123	2	130			
trans-1,2-Dichloroelhene	1,230	0.15	-	Q	123	<u>0</u> 2	130			
trans-1, 3-Dichloropropene	1.030	0.15	•	Q	103	70	130			
Trichlonethene	0.9600	050.0	Ţ	¢	96.0	2	130			
Vinyl acetate	1.110	0.15	-	0	111	02	061			
Vinyl Bromide	1.040	0.15	-	0	104	02	130			
Vinyl chloride	1.050	0.040	-	0	105	62	130			

Page 5 of 5

1.4.4.4

Holding times for proparation or analysis excorded
 R PD outside accepted recovery limits

Estimated Value above quantifation range Not Detected at the Limit of Detection

ш <mark>О</mark>х

.

 $\neg \infty$

Qualifiers:

Results reported are not blank corrected Analyte detected below quantitation limit Spike Recovery putside accepted recovery limits

Centek Laboratories, LLC

LaBella Associates, P.C.

CLIENT:

12-Feb-18	
Date:	

CENTEK LABORATORIES, LLC

Project: 300	C1801059 300 Commerce BCP						Ţ	TestCode: 0	0.20_NYS		
Sample ID: ALCS1UGD-012318 Client ID: ZZZZZ	012318 SampType: LCSD Batch ID: R13187	TestCod TestN	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV	An	Prep Date: Analysis Date:	1/24/2018	50	RunNo: 13187 SeqNo: 153171	187 3171	
Anaiyte	Result	PQL	SPK value	SPK Ref Val	%REC 1	LowLimit H	HighLimit F	RPD Ref Val	0da%	RPDLimit	Qual
1.1.1.Trichloroethane	1.010	0.15	-	0	101	02	130	0.9	11.5	8	
1,1,2,2-Tetrachloroethane	1.270	0.15	-	0	127	70	130	1.17	8.20	8	
1,1,2-Trichloroethane		0.15	-	0	116	70	130	1,05	6 .95	30	
1,1-Dichtoroethane	1.060	0.15	-	0	106	22	130	-	5.83	30	
1.1-Dichloroethene	0.7700	0.040	-	0	0'11	70	130	0.72	6.71	30	
1,2,4-Trichlorobenzene	0.8800	0.15	-	0	88.0	70	130	1,11	23.1	30	
1,2,4-Trimethyfbenzene	1.050	0.15	-	0	105	70	130	1,1	4.65	30	
1,2-Dibromoethane	1.190	0.15	-	Ċ	119	5	130	1.09	8.77	30	
1,2-Dichlorobenzene	1.150	0.15	•	ò	115	70	130	1.12	2.64	8	
1,2-Dichloroethane	0.9900	0.15	-	Ð	0.99	02	130	0.94	5.18	30	
1,2-Dichloropropane	1.250	0.15	4	0	125	20	130	1.12	11.0	8	
I,3,5-Trimethylbenzene	1.230	0.15	++	Ð	123	52	130	1.19	3.31	B	
1,3-butadiene	0.9200	0.15	-	0	92.0	70	130	0.9	2.20	30	
1,3-Dichlorobenzene	1,120	0.15	Υ 	0	112	70	130	1.08	3.64	30	
1,4-Dichlorobenzene	1.160	0.15		¢	116	20	130	1.12	3.51	ЭС ЭС	
1,4-Dioxane	0.7700	0.30	4 44	Ģ	77.0	02	130	1.1	35.3	0E	æ
2,2,4-trimethytpentane	1.240	0.15		0	124	70	130	1.12	10.2	ЭС ЭС	
4-ethyltoluene	1.130	0.15	•••	Q	113	02	130	1.11	1.79	99	
Acetone	0.9800	0:30		Q	98.0	2	130	1.04	5.94	8	
Allyl chloride	1.070	0.15		0	107	20	130	-	6.76	96	
Benzene	1,150	0.15	-	0	115	70	130	1.05	60.6	8	
Benzył chloride	1.020	0.15	-	o	102	70	130	1.07	4.78	8	
Bromodichloromethane	1,060	0.15	*-	o	105	02	130	9	12.0	30	
Bromatorm	1.060	0.15	-	Ċ	106	70	130	96:0	9.90	8	
Bromomethane	0.9100	0.15	-	ð	91.D	70	130	0.84	8.00	8	
Qualifiers: Res	Results reported are not blank corrected		1	Estimated Value above quantitation range	litation range	:	1	oldiny times for	Holding times for preparation or analysis exceeded	unalysis excee	ded
J An	Analyte detected below quantitation limit		ND Not D	Not Detected at the Limit of Extection	Exacclicate		R R	RPD outside accepted recovery limits	pted recovery lit	nits	

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

Work Order: C1801059											
Project: 300 Commerce BCP	rce BCP						Ţ	TestCode: 0.20_NYS	SVN_02.		
Sample ID: ALCS1UGD-012318	SampType: LCSD	TestCo	estCode: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 13187	87	
Client ID: ZZZZZ	Batch ID: R13187	Test	TestNo: TO-15		-	Analysis Date:	ia: 1/24/2018	8	SeqNo: 153171	171	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	ቢዓ <u>ዓ</u> %	RPDLimit	Oual
Carbon disultide	1.310	0.15		0	131	20	130	1.32	0.760	30	ر م
Carbon letrachloride	0.9000	0:030		o	90.06	Q2	130	0.79	13.0	ନ	I
Chlorobenzene	1.160	0.15	-	0	116	8	130	1.07	8.07	0°	
Chioroethane	0.8700	0.15	*	o	87.0	02	130	0.87	0	ଟ୍ଟି	
Chloroform	1.020	0.15	-	D	102	02	130	0.93	9.23	R	
Chloromethane	0.8800	0.15		0	88.0	02	130	0.87	1.14	90	
cis-1,2-Dichloroethene	1.020	0.040	-	Ð	102	20	130	0.93	9.23	30	
cis-1,3-Dichloropropere	1.150	0.15	-	0	115	70	130	1.05	9.09	8	
Cyclohexane	1.270	0.15		Ċ	127	70	130	1.13	11.7	8	
Dibromochloromethane	1.070	0.15	-	0	107	70	130	96-0	10.8	ខ្ល	
Ethyl acetale	1.080	0.15	-	Ð	108	70	130	3.11	2.74	8	
Ethylbenzene	1.140	0,15	-	0	114	2	130	1.08	5.41	30	
Freon 11	0.9200	0.15	-	0	92.0	2	130	0.84	60.6	ŝ	
Freon 113	0.9300	0.15	-	D	93.0	2	130	0.87	6.67	30	
Freon 114	0.9100	0.15	-	0	91.0	22	130	0.89	2.22	8	
Freen 12	0.9500	0.15	-	0	95.0	02	130	0.92	3.21	30	
Heptane	1.260	0.15	-	Ċ	126	02	130	1,12	11.8	ß	
Hexachloro-1,3-butadiene	0.9100	0.15	-	Ð	91.0	02	130	-	9.42	8	
Hexane	1.230	0.15	-	0	123	02	130	1,15	6.72	8	
isopropyl alcohol	0.8100	0.15	-	0	81.0	5	130	0.88	8.28	8	
m&p-Xylene	2.490	0.30	2	o	2	2	130	2.32	7.07	30	
Methyl Butyl Ketone	0.5300	0:30		Ð	53.0 53.0	02	130	1.01	62.3	30	SR
Methyl Ethyl Ketone	1.010	0.00	~	0	101	2	130	1°.	8 .53	8	
Methyl (sobutyl Kelone	0.6800	0.30	-	ð	68.0	2	130	1,11	48.0	8	SR
Methyl tert-bulyl ether	0.9700	0.15	-	ð	97.0	ğ	130	0.58	1.03	8	
Methylene chloride	1.020	0.15	-	Ö	102	02	130	95'0	4.00	R	
o-Xylene	1.270	0.15	•	Ð	127	20	130	1.18	7.35	8	
Propylene	1.130	0.15	٣	0	113	70	130	1.18	4.33	30	
Styrene	1.150	0.15	~	Ċ	115	70	130	1.12	2.64	30	
Tetrachtoroethylene	1,110	0.15	-	Ċ	111	20	130	0.99	11.4	8	
Tetrahydrofuran	1.100	0.15	،	0	110	70	130	11.	0.905	80	

E K

Estimated Value above quantitation range Not Detected at the Limit of Detection

u Q

.....

Results reported are not blank corrected

s, .

Qualifiers:

Spike Recovery uniside accepted recovery limits Analyte detected below quantitation limit

Page 2 of 3

LaBella Associates, P.C. CLIENT:

C1801059 Work Order:

Project: 300 Commerce BCP	erce BCP						L	TestCode: 0.20_NYS	SYN_02		
Sample ID: ALCS1UGD-012318 SampType: LCSD Client ID: ZZZZZ Batch ID: R1318	SampType: LCSD Batch ID: R13187	TestCo	festCode: 0.20_NYS TestNo: TO-15	Units: ppbV	<	Prep Date: nalysis Date:	Prep Date: Analysis Date: 1/24/2018	B	RunNo: 13187 SeqNo: 153171	87 171	
Analyte	Result	PQL	SPK value	SPK vakue SPK Ref Val	%REC	Low Limit	HighLimit	%REC LewLimit HighLimit RPD Ref Val	04X%	%RPD RPDLimit Qual	Qual
Toluene	1.190	0.15	*	0	119 /	2	130	11	7.86	8]
trans-1,2-Dichloroethene	1,190	0.15	•	Ð	119	D7	130	1.09	8.77	33	
trans-1,3-Dichloropropene	1.100	0.15	-	٥	110	07	130	-	9.52	30	
Trichloroethene	0.9700	0.030	-	0	97.0	02	130	0.87	10.9	30	
Vinyl acetate	1.110	0.15	-	٥	111	10	130	1.06	4.61	30	
Vinyl Bromide	0.9600	0.15	-	0	96.0	70	130	0.89	7.57	30	
Vinyl chloride	0.8300	0.040	-	0	83.0	70	130	D.84	1.20	30	

Estimated Value above quantitation range Not Detected at the Limit of Ectection щ Spike Recovery outside secepted recovery limits Analyte detected below quantitation limit Results reported are not blonk corrected

- *- 2*2

Qualifiers:

 Holding times for preparation or analysis exceeded RPD nutside accepted recovery limits
 RPD nutside accepted recovery limits

Page 3 of 3

1						ANALYI	JICAL QC SUN	ANALYTICAL QC SUMMARY REPORT	F
CLIENT: Work Order: Project:	LaBella Associates, l C1801059 300 Commerce BCP	ssociates, P.C. terce BCP					TestCode: 0	e: 0.20_NYS	
Sample ID: AMB1UG-012318 Client ID: ZZZZZ	UG-012318 Z	SampType: MBLK Batch ID: R13187	TestCode: 0.20_NYS TestNo: TO-15	0_NYS 15	Units: ppbV	Prep Date: Analysis Date:	1/23/2018	RunNo: 13 187 SeqNo: 153169	
Analyte		Resuk	PQL SPK	SPK value SPK	SPK Ref Val 🦷	%REC LowLimit H	HighLimit RPD Ref Val	DLimit	Quai
1.1.1-Trichtoroethane	ane	< 0.15 /	0.15						
1,1,2,2-Tetrachloroethane	oethane	< 0.15	0.15						
1,1,2-Trichtoroethane	ane	< 0.15	0.15						
1,1-Dichloroethane	Ð	< 0.15	0.15						
1, t-Dichioroethene	ŧ	< 0.040	0.040						
1,2,4-Trichlorobenzene	Izene	< 0.15	0.15						
1,2,4-Trimethylbenzene	nzene	< 0.15	0.15						
1,2-Dibromoethane	Ŷ	< 0.15	0.15						
1,2-Dichlorobenzene	she	< 0.15	0.15						
1,2-Dichloroethane	¢	< 0.15	0.15						
1,2-Dichloropropane	ne	< 0.15	0.15						
1,3,5-Trimethylbenzene	nzene	< 0.15	0.15						
1.3-butadiene		< 0.15	0.15						
1,3-Dichlorobenzene	ane	< 0.15	0.15						
1.4-Dichlorobenzene	ane	< 0,15	0.15						
1,4-Dioxane		< 0.30	0.30						
2,2,4-trimethylpenlane	Mane	< 0.15	0.15						
4-ethyltoluene		< 0.15	0.15						
Acetone		< 0.30	0.30						
Aliyi chloride		< 0,15	0.15						
Benzene		< 0.15	0.15						
Benzyl chloride		< 0,15	0.15						
Bromodichloromethane	ethane	< 0.15	0,15						
Bromonom		5 U V	0 5 5						
									:
Qualifiers:		Results reported are not blank corrected	E CN		Estimated Vaiue above quantilation tange Not Dowered at the Lineir of Detections	ion tange vition	 Holding times for RPD outside acces 	Helding times for preparation or analysis exceeded RPD outside accented recovery limits	÷
•		COOR DOGON HEADTH THAT							

Work Order: C1801059 Project: 300 Conmerce BCP	C1801059 300 Commerce BCP				TestCode: 6	0.20 NVS	
						1	
Sample ID: AMB1UG-012318 Client ID: ZZZZZ	SampType: MBLK Batch ID: R13187	TestCode: 0.20_NYS TestINn: TO-15	Units: ppbV	. <u>(</u>		RunNo: 13187	
		2		Analysis Late:	1123/2018	SeqNo: 153169	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit Hig	HighLimit RPD Ref Val	%RPD RPDLImit	Qual
Carbon disulfide	< 0.15	0.15					
Carbon tetrachloride	< 0.030	0.030					
Chlorobenzene	< 0.15	0.15					
Chtoroethane	< 0.15	0.15					
Chloroform	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1,2-Dichloroethene	0.040 >	0.040					
cis-1,3-Dichloropropene	< 0.15	0.15					
Cyclohexane	< 0.15	0.15					
Dibromochloromethane	< 0.15	0.15					
Ethyl acetate	< 0.15	0.15					
Elhytbenzene	< 0.15	0.15					
Freon 11	< 0.15	0.15					
Freon 113	< 0.15	0.15					
Freon 114	< 0.15	0.15					
Freen 12	< 0.15	0.15					
Heplane	< 0.15	0.15					
Hexachloro-1, 3-butadiene	< 0.15	0.15					
Hexane	< 0.15	0.15					
isopropyi alcohol	< 0.15	0.15					
m&p-Xylene	< 0.30	0.30					
Methyl Butyl Kelone	< 0.30	0.30					
Methył Ethyl Kelone	< 0.30	0:30					
Methyl Isobutyl Ketone	< 0.30	0.30					
Methyl tert-bulyl ether	< 0.15	0.15					
Methylene chloride	< 0.15	0.15					
o-Xylene	< 0.15	0.15					
Propylene	< 0.15	0.15					
Styrene	< 0.15	0.15					
Tetrachtoroethylene	< 0.15	0.15					
Tetrahydrofuran	< 0.15	0.15					
alifiers:	Results reported are not blank corrected	1	Estimated Value above quantitation range	ปนิงษ เสนะูะ	H Holding times for p	Holding times for preparation or analysis exceeded	
	Analyte detected below quantitation limit	CIN	Not Detected at the Limit of Detection	steerinu	R RPD outside accepted recovery limits	ted recovery fimits	
	Corbs Duscenses constraints accounted for the						

Work Order: CI3 Project: 300	Labelia Associates, C1801059 300 Commerce BCP	Lateria Associates, F.C., C1801059 300 Commerce BCP						Te	TestCode: 0.	0.20_NYS	
Sample (D: AMB1UG-012318 Client (D: ZZZZ	012318	SampType: MBLK Batch ID: R13187	TestCode: 0.20_NYS TestNo: TO-15		Units: ppbV	An	Prep Dale: Analysis Date:	1/23/2018	8	RunNo: 13187 SeqNo: 153169	
Analyte		Result	PQL SPK value	elue SPK Ref Val		%REC L	LowLimit H	HighLimit I	RPO Ref Val	%RPD RPDLimit	Limit Qual
Toluene		< 0.15	0.15								
Irans-1,2-Dichloroethene	e E	< 0.15	0.15								
trans-1, 3-Dichloropropene	ene	< 0.15	0.15								
Trichloroethene		< 0.030	0.030								
Vinyl acetate		< 0.15	0.15								
Vinyl Bromide		< 0.15	0.15								
Vinyt chloride		< 0.040	0.040								
Sample ID: AMB1UG-012418	012418	SampType: MBLK	TestCode: 0.20_NYS		Units: ppbV	, ,	Prep Date:			RunNo: 13189	
Client ID: ZZZZ		Batch ID: R13189	TestNo: TO-15	15		An	Analysis Date:	1/24/2018	18	SeqNo: 153193	
Analyte		Result	PQL SPX value		SPK Rei Vai	%REC L	LowLimit H	HighLimit	RPD Ref Val	%RPD RPOLimit	Limit Qual
t 1 1-Trichlomethane		< 0.15 V	0.15								
1.1.2.2-Tetrachioroethane	ane	< 0.15	0.15								
1,1,2-Trichloroethane		< 0.15	0.15								
1,1-Dichloroethane		< 0.15	0.15								
1,1-Dichloroethene		01040 >	0.040								
1,2,4-Trichlorobenzene	بە	< 0.15	0.15								
1,2,4-Trmethylbenzene	ē.	< 0.15	0.15								
1,2-Dibromoethane		< 0.15	0.15								
1,2-Dichlorobenzene		< 0,15	0.15								
1,2-Dichloroethane		< 0.15	0.15								
1, 2-Dichloropropane		< 0.15	0.15								
1,3,5-Trimethylbenzene	ue De	< 0.15	0.15								
1, 3-butadiene		< 0,15	0.15								
1,3-Dichlorobenzene		< 0.15	0.15								
1,4-Dichlorobenzene		< 0.15	0.15								
1,4-Dioxane		< 0.30	0:30								
2,2,4-trimethyipentane	¢	< 0.15	0.15 0.15								
4-citykuade											
1	Results reported	Results reported are not hlank corrected	μļ	Estimated Val	Estimated Value above guartitation range Not Futurned of the Finite of Datastice	tation range etertion		 	fulding times for CPD outside acces	Holding times for preparation or analysis exteeded RPD outside accentral recovery limits	exterded
¢.	Areaside detect	Analyse detected below quantitations fifth		WIN LACKUNG	41 046 (

Work Urder: Project:	C1801059 300 Commerce BCP	erce BCP							TestCode: 0	0.20_NYS	
Sample ID: AMB1UG-012418 Cliant ID: ZZZZ	B1UG-012418 22	SampType: MBLK Batch ID: R13189	TestCod	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV	Ac	Prep Date: Analysis Date:	e: 1/24/2018	018	RunNo: 13189 SeqNo: 153193	
Analyte		Result	PQL	SPK value SF	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Acetone		< 0.30 /	0.30								
Aliyi chloride		< 0,15	0.15								
Benzene		< 0.15	0.15								
Benzyl chloride		< 0.15	0.15								
Bromodichloromethane	lethane	< 0.15	0.15								
Bramafarm		< 0.15	0.15								
Bromomethane		< 0.15	0.15								
Carbon disuffide	A 1	< 0.15	0.15								
Carbon tetrachloride	oride	< 0.030	0.030								
Chlorobenzene		< 0.15	0.15								
Chloroethane		< 0.15	0.15								
Chloroform		< 0,15	0.15								
Chloromethane		< 0.15	0.15								
cis-1,2-Dichloroethene	ethene	< 0.040	0.040								
cis-1,3-Dichloropropene	propene	< 0,15	0.15								
Cyclohexane		< 0.15	0.15								
Dibromochloromethane	nethane	< 0.15	0.15				·				
Ethyl acetate		< 0,15	0.15								
Ethylbenzene		< 0.15	0.15								
Freon 11		< 0.15	0.15								
Freon 113		< 0.15	0.15								
Freon 114		▲ 0.15	D, 15								
Freon 12		< 0.15	0.15								
Heplane		< 0.15	0.15								
Hexachloro-1, 3-butadiene	butadiene	< 0.15	0,15								
Hexane		< 0.15	0.15								
isopropyi atcohol	0	< 0.15	0.15								
m&p-Xylene		< 0.30	0.30								
Methyl Butyl Ketone	lone	< 0.30	0:30								
Methyl Ethyl Ketone	tone	< 0.30	0.30								
Methyl Isobutyl Kelone	Kelone	< 0.30	0.30								
Qualifiers:		Results reported are not blank corrected		E Estimated	Estimated Value above quantitation range	tion range		×	Holding times for p	Holding times for preparation or analysis exceeded	73
	J PRINTIC UCIC	Mainyre detected betow guantinium mini			MON LINERCERD at the LINNE OF LUCISON	CC1300			RPD outside accepted recovery limits	ted recovery births	

CLJENT: L Work Order: C Project: 3	LaBella Associates, I C1801059 300 Commerce BCP	LaBella Associates, P.C. C1801059 300 Commerce BCP								TestCode: 0.20_NYS	0.20_NYS		
Sample ID: AMB1UG-012418 Client ID: ZZ222	5-012418	SampType: MBLK Batch ID: R13189		estCod	TestCode: 0.20_NYS TestNo: TO-15	Units: ppbV		Prep Analysis	Prep Date: Analysis Date: 1/24/2018	W2018	RunNo: 13189 SeqNo: 153193	3189 53193	
Analyte		Result		POL	SPK value	SPK value SPK Ref Val	%REC	Lowta	mit HighLir	%REC LowLimit HighLimit RPD Ref Vat	%RPD	%RPD RPDLimit	Qual
Methyl text-butyl ather		< 0.15 V		0.15									
Methylene chloride		< 0.15		0.15									
o-Xylene		< 0.15		0.15									
Propylene		< 0.15		0.15									
Styrene		< 0.15		0.15									
Tetrachioroethylene		< 0.15		0.15									
Tetrahydrofuran		< 0.15		D. 15									
Toluene		< 0.15		0.15									
trans-1,2-Dichloroethene	Jene	< 0.15		0.15									
trans-1,3-Dichloropropene	pene	< 0.15		0.15									
Trichloroethene		< 0.030	0	0:030									
Vinyl acelate		< 0.15		0.15									
Vinyl Bromide		< 0.15		0.15									
Vinul chloride		< 0.040	<u> </u>	0.040									

Page 56 of 306

	:				
Oualifiers:		Results reported are not blank corrected	E Estimated Value above quantitation range		[i] Holding times for preparation or analysis exceeded
	~	Analyte detected below quantitation limit	ND Not Detected at the Limit of Detection	Υ.	RPD outside accepted recovery limits
	\$	Spike Recovery muside accepted recovery limits			Puge 5 of 5

12-Feb-18	
Date:	

ANALYTICAL QC SUMMARY REPORT

CENTEK LABORATORIES, LLC

Work Order: C1801029 Project: 300 Commerce BCP	lerce BCP						TestCode:	0.20_NVS	
Sample ID: C1801059-001A MS	SamoType: MS	TestCode	TestCode: 0.20 NYS	Units: ppbV		Prep Dale:	61	RunNo: 13187	
Client ID: 300-IA-01/MSMSD		TestNo	estivo: TO-15		ч,	Analysis Date:	e: 1/23/2018	SeqNo: 153178	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	al %RPD RPOLimit	Qual
1 1. Trichtocoethane	0.8800	0.15	-	0	88.0	70	130		
1.1.2. Tetrachlonethane	1.010		**	Ö	101	02	130		
1.1.2-Trichloroethane	1.020	0.15	***	0	102	70	130		
1 1-Dichlomethane	1.030	0.15	**	0	103	70	130		
1.1-Dichloroethene	0.7900	0.040	4	0	0.62	R	130		
1.2.4-Trichlorobenzene	1.390	0,15	**	0	er:	01	130		Ś
1,2,4-Trimethylbenzene	1.340	0.15	****	0,14	12	70	130		
1,2-Dibromoethane	1.020	0.15	6	0	102	70	130		
.2-Dichtorobenzene	1.030	0.15	-	¢	103	20	130		
1.2-Dichloroethane	1.000	0.15	-	o	<u>6</u>	70	130		
1,2-Dichloropropane	1.090	0.15		φ	109	62	130		
1,3,5-Tranethylbenzene	1.490	0.15	-	0	149	82	130		Ø
3-butadiene	1.130	0.15	-	0	113	02	130		
.3-Dichlorobenzene	1.060	0.15	~	0	6	02	130		
.4-Dichlorabenzene	1.020	0.15	-	σ	102	2	130		
1,4-Dioxane	1.060	0:30	-	o	106	Q2	130		
2.2.4-trimethylpentane	1.130	0.15		O	113	02	130		
4-ethyltoluene	1,120	0.15	÷-	0	112	¢,	130		
Acetone	16.31	0.30	~ ~	17.66	-135	2	130		S
Allyl chloride	1.110	0.15	-	G	113	8	130		
, Benzene	1,350	0.15	æ	0.28	107	02	130		
Benzyl chloride	0.9900	0.15	-	o	0.99.0	70	130		
Bromodichloromethane	0.9300	0.15	-	0	93.0	02	130		
Bromoform	0.8300	0.15	-	0	83.0	ę.	021		
Bromomethane	0.8700	0.15	-	0	0.78	۶ ۲	130		•
Qualifiers: Results repo	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range May Detected at the 3 imm of Detection	initiation ran d'Descution	2	H Holding time R RPD outside	Holding times for preparation or analysis exceeded RPD outside accepted recovery limits	led

Centek Laboratories, LLC

Sample ID. C1801059-001A MS Samp	300 Commerce BCP						TestCode:	: 0.20_NYS	
	SampType: MS	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date		RunNo: 13187	
Client ID: 300-IA-01/MSMSD Bat	Batch ID: R13187	TestNic	estNo: TO-15		-1	Aralysis Date:	a: 1/23/2018	SeqNo: 153178	
Analyte	Result	PQL	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	%RPD RPOLimit	Qual
Carbon disufide	1.260	0.15		¢	126 1	70	130		
Carbon tetrachloride		0:030	-	0.07	17.0	70	130		
Chlorobenzene		D.15	-	0	101	0/	130		
Chloroethane	0.8700	0.15		0	87.0	70	130		
Chloroform	1.000	0.15	7 -2	o	100	20	130		
Chloromethane	1.540	0.15	***	0.48	106 106	8	130		
cis-1,2-Dichloroethene	0.9700	0.040	-	¢	97.0	0/	130		
cis-1,3-Dichloropropene	1.010	0.15	-	0	101	70	130		
Cyclohexane	1.890	0.15	-	0.8	109	70	130		
Dibromochloromethane	0.8900	0.15	-	0	89.0	02	130		
Ethyi acetate	1.430	0.15		0.48	95.0	02	130		
Ethylbenzene	1.100	0.15	-	Ģ	110	2	130		
Freon 11	1,000	0.15	~	0.2	80.0	22	130		
Freon 113	0.9100	0.15	-	Ģ	91.0	70	130		
Freon 114	0.8700	0.15	-	o	87.0	2	130		
Freon 12	1.230	0.15	4	0.47	76.0	02	130		
Heptane	1.370	0.15		0.15	122	2	130		
Hexachloro-1,3-buladiene	0.9800	0,15		0	0.86	02	130		
Hexane	1.400	0.15		 0.22 	118	5	130		
isopropyi alcohol	92.54 🗸	0.15	~	108.4	-1590	ġ	130		S
m&p-Xytene	2.280	0.30	2	0.15	<u>8</u>	20	130		
Methyt Bulyl Ketone	0.8900	0.30		0	668	20	130		
Methyi Ethyi Ketone	1.610	0:30	*-	0.72	89.0	20	130		
Methyl Isobutyl Ketone	1.020	0.30	÷	0	102	67	130		
Methy! tert-buty! ether	0.9200	0.15	-	o		2	130		1
Methylene chlorida	2.780	0.15	-	1.12		2	130		ŝ
o-Xylene	1.110	0.15	.	0	Ξ(22	130		(
Propylene	2.390	0.15	-	0	frz)	02	130		'n
Styrene	1.150	0.15	-	0.1	105	02	130		
Tetrachioroethylene	0.9800	Q.15	┯	0	98.0		961 1		
Telrahydrofuran	1.080	0.15	-		108	2	130		
Oualifiers: Results reported are ant	Results reported are aut blank corrected		E Estimat	Estimated Value showe quantitation range	utitation ran	0		Hotding times for preparation or analysis exceeded	70
) Analyte detected be	Analyte detected foelow quantitation limit		ND Not Del	Not Detected at the Limit of Detection	f Detection		R RPJ) parsid	RPD natside accepted recovery limits	

LaBella Associates, P.C. C1801059 CLIENT: Work Order:

Page 59 of 306

Sample ID: C1801059-001A MS	SampType: NS	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date	jų į		RunNo: 13187	87	
Client tD: 300-IA-01/MSMSD	Balch ID: R13187	TestNo	FestNo: TO-15		-	Analysis Date:	le: 1/23/2018	018	SeqNo. 153178	178	
Analyle	Result	Par	SPK value	SPK Ref Val	%REC	Lowinit	HighLimit	RPD Ref Vat	%RPD	RPDLimit	Qual
Toluene	2.490	0.15		1.39	110	02	130				
trans-1,2-Dichloroethene	1.120	0.15	***	٥	112	02	130				
trans-f.3-Dichtoropropene	0.9800	0.15	**	0	98.0	8	130				
Trichtoroethene	000610	0.030		0	90.0	70	130				
Vinyl acetate	1.070	0.15	-	0	107	20	130				
Vinyl Bromide	0.9300	0.15	4	¢	93.0	70	130				
Vinyl chloride	0.6300	0.040	-	0	83.0	Q2	130				
Sample ID: C1801059-001A MS	SampType: MSD	TestCod	TestCode: 0.20_NYS	Units: ppbV		Prep Date	ju ju		RunNo: 13187	87	
Client (D: 300-IA-01/MSMSD	Batch ID: R13187	TestN	TestNo: TO-15			Analysis Date:	le: 1/23/2018	018	SeqNo: 153179	179	
Anaiyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	በብጻሦ	RPOLimit	Quai
1,1,1-Frichloroethane	0.8900	0.15		0	0.68	70	130	0.88	1.13	Ŕ	
1,1,2,2-Tekachloroethane	1.040	0.15	**	0	104	70	130	1.01	2.93	30	
l, 1,2-Trichioroethane	0.9900	0.15		o	99.0	70	130	1.02	2.99	Ŕ	
1, 1-Dichloroethane	1.010	0.15	•••	Ċ	101	02	130	1.03	1.96	ନ୍ତି	
1,1-Dichloroethene	0.8200	0.040	ψî.	Ð	82.0	20	130	0.79	3.73	R	
1,2,4-Trichlorobenzene	1.320	0.15	+-	0		70	130	1.39	5.17	8	S
1,2.4-Trimethylbenzene	1.290	0.15	ų-=	0.14	115	70	130	1.34	3.80	ŝ	
. 2-Dibromoethane	1.010	D.15	~	o	101	70	130	1.02	0.985	30	
1,2-Dichlorobenzene	1.080	0.15	~	0	108	01	130	1.03	4.74	30	
f (2-Dichloroethane	0.9500	D.15	4 	o	95.0	02	130	۴.	5.13	90 30	
1,2-Dichloropropane	1.070	0, 15	~ =	0	107	02	130	1.09	1.85	30	
I.3.5-Trimethylbenzene	1.380	0.15	*	•)	70	130	1,49	7.67	8	ŝ
(,3-butadiene	1.030	0.15	4 00	0	<u>1</u> 03	70	130	1.13	9.26	ନ୍ତି	
1,3-Dichlorobenzene	1.100	0.15	**	0	110	70	130	1.08	1.83	Ř	
I,4-Dichlorobenzene	1.050	0.15	-	0	105	01	130	1.02	2.90	8	
1,4-Dioxane	1.010	0.30		0	101	01	130	1.06	4.83	90	
2,2,4-trimethylpentane	1.130	0.15	-	Ð	113	70	130	1.13	¢	30	
4-ethyitoivene	1.140	D.15	,	0	114	70	130	1.12	1.77	30	
Oadfifiers: Results repo	Results resorted are not hiztk corrected		EEstim	Estimated Vatue above quantitation range	tilations ran		н	Holding times for preparation or analysis exceeded	preparation of 40	alvsis exceed	18
. –	Analyte described helow meantinging limit			Mot Dutanted of the J imit of Ostantian	Detaction			a Dry models a service			
				CITY ICH IN THE JUNE JUNE 101			4	NFU OUSSIC SCCC	ALLU OUSSIGG SUCCING RECOVERY BRILLS	uts	

LaBella Associates, P.C.

CLIENT:

C1801059 Work Order:

Page 60 of 306

Qual S 88 888 8 88 8 RPDLimit SeqNo: 153179 RunNo: 13187 CGA3% 1.83 8.33 2.33 3.31 5.24 4.38 27.9 0.905 4.55 3.96 1.08 1.20 0.797 2.41 0.995 4.08 13.9 2 0.995 13.6 ¢ 9.52 ¢ 0 0 TestCode: 0.20 NYS 0.98 1.89 0.89 0.87 1.23 1.37 LowLimit HighLimit RPD Ref Val <u>1</u> 4 1.35 0.99 0.93 0.83 0.87 1.26 0.84 1.0 2 0.97 53 -0.91 1.11 0.87 16.31 Analysis Date: 1/23/2018 8 0E1 8 30 8 5 20 8 8 8 8 30 8 30 130 8 8 8 8 30 8 S 8 90 8 8 Prep Date: 020202 222 %REC -534 91.0 85.0 72.0 98.0 112 75.0 87.0 96.0 66.0 96.0 85.0 89.0 82.0 72.0 115 92.0 87.0 ₿ <u>0</u> 103 125 108 110 101 84.0 Units: ppbV 0.47 0.15 0.48 0.8 0.48 02 ¢ 0 0 0.22 0.28 0.07 o ¢ ¢ Ç Φ φ 0 Q 0 Q SPK value SPK Ref Val 17.66 festCode: 0.20_NYS TestNo: TO-15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.030 0.15 0.15 0.15 0.15 0.040 0.15 ЪОЧ 0.15 0.30 0.15 12.32 0 1.190 1.300 0.9800 1.340 1,340 0.9600 1.000 1.650 0.6900 1.300 1.080 0.9200 0.9100 0.8500 1.030 0.8200 000 0.8700 0.96.0 1.250 Result 1.290 0.8400 0.8700 Batch ID: R13187 1.100 0.9200 SampType: MSD 300 Commerce BCP Sample ID: C1801059-001A MS 300-IA-01/MSMSD Hexachloro-1,3-butadiene cis-1,3-Dichloropropene Dibromochloromethane Bromodichloromethane cis-1,2-Dichloroethene Carbon tetrachioride Carbon disulfide Bromomelhane Chloromethane Chlorobenzene Benzyl chloride Ethylbenzene Chloroethane Cyclohexane Ethył acetate Allyl chloride Bromotorm Chloroform Freon 113 Freon 114 Freon 11 Freen 12 Client 10: Benzene Heptane Project: Hexane Analyte Acetone

Analyte detected below quantitation binut Results reported are not blank corrected

Spike Recovery outside accepted recovery limits ¢.

Page 4 of 5

Holding times for preparation or analysis exceeded

~ α

Estimated Value above quantitation range

0

0.72

0.30 0.30

1.460

0.9600

Methyf Isobufyl Ketone

Qualifiers:

Methyl Butyl Ketone Methyl Ethyl Ketone

m&p-Xylene

Isopropy! alcohol

Not Detected at the Limit of Detection

<u>... 9</u>

RPD outside accepted recovery limits

ЯS

35.9 2.67 3.43

92.54 2.28

30 8 130

4400 <

108.4

0.15 0.30 0.30

64.40

2.220 0.8600

8888

8

6.06

t,02

9.77

1.61

<u> 8</u> 8

22

0.89

2 2

86.0 74.0 96.0

ş

0.15 0

LaBella Associates, P.C. CLIENT:

C1801059 Work Order:

Page 61 of 306

Project: 300 Commerce BCP	stoe BCP						L	TestCode: 0.20_NYS	SAN_02		
Sample ID: C1801059-001A MS	SampType: MSD	TestCor	estCode: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 13187	87	
Client (D: 300-IA-01/MSMSD	Batch ID: R13187	Test	TestNo: TO-15		~	Analysis Dat	Analysis Date: 1/23/2018	18	SeqNo: 153179	1179	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LewLimit	%REC LowLimit HighLimit	RPD Ref Val	0d3%	RPDLimit	Quai
Methyl tert-butyf ether	0068.0	0.15	-	0	89.0	20	130	0.92	3.31	30	
Methylene chloride	3.180	0.15	•	1.12	See 2	2	130	2.78	13.4	8	S
o-Xylene	1.100	0.15	-	0)₽	02	130	1.11	0.905	30	
Propylene	2.100	0.15	*	o	210)	02	130	2.39	12.9	30	ю
Styrene	1.120	0.15	•	0.1)≌	70	130	1.15	2.64	30	
Tetrachloroethylene	0.9800	0.15	~	0	98.0	02	130	0.98	0	30	
Tetrahvdrofuran	1.050	0.15		0	105	02	130	1.08	2.82	30	
Toluene	2.040	0.15	-	1.39	65.0	70	130	2.49	19.9	8	S
trans-1,2-Dichloroethene	1.070	0.15	-	Ð)ē	02	130	1.12	4.57	30	
trans-1,3-Dichloropropene	0.9900	0.15		0	0.66	02	130	0.38	1.02	30	
Trichloroethene	0.8800	0:030	-	Ð	88.0	02	130	0.9	2.25	30	
Vinyl acetate	1.080	0.15	-	Ð	108	70	130	1.07	0:930	8	
Vinyl Bromide	0.9200	0.15		0	92.0	70	130	0.93	1.08	30	
Vinyl chłoride	0.8400	0.040	-	o	84.0	02	130	0.83	1.20	30	

E Estimated Value above quantitation range ND Not Detected at the Linnis of Detection Spike Recovery outside accepted recovery limits Analyse detected below quantitation limit Results teported are not blank corrected şŋ -Qualifiers:

Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery fimits

١

.

Page 5 of 5

APPENDIX G

RAW ANALYTICAL LABORATORY REPORTS

Cantek Loberatories		Luboratories TO-15 Pa				
<u> </u>	lient:	LaBella	Project:	300 Commerce	SDG:	C1710061
				YE	<u>s no</u>	<u>NA</u>
Analytical Baculta		Operation of Consultation				
Analytical Results TIC's Present		Present and Complete Present and Complete			<u> </u>	
		Holdin Times Met				
Comments:						
Chain of Custody		Present and Complete		<u> </u>		
Surrogate		Present and Complete		、		
		Recoveries within Limits		<u> </u>		
		Sample(s) reanalyzed				<u></u>
Internal Standards		Present and Complete		<u>`</u>		
Recovery		Recoveries within Limits		<u>></u>		
		Sample(s) reanalyzed		*********	NA <u>ALI 1997.</u>	
Comments:						
Lab Control Sample		Present and Complete		·		
(LCS)		Recoveries within Limits		$\overline{}$		
Lab Control Sample Dupe	2	Present and Complete		×.		
(LCSD)		Recoveries within Limits				
MS/MSD		Present and Complete Recoveries within Limits				
					. ゝ	UNITED IN CONTRACTOR
Comments:		* SEE CASE N	MARATIN	<u>/ [</u>		
Sample Raw Data		Present and Complete		<u> </u>		
		Spectra present				
Comments:						

Centek Laboratories TO-15 Package Review CheckList

Centek Laboratories TO-15 Package Review CheckList

Contak Laboratories	Client:	LaBella	Project:	300 Commerce	SDG:	C1710061
(Contan Cassibilities						
				YE	<u>s no</u>	NA
Standards Data				~		
Intial Calibration		Present and Complete Calibration meets criteria		2011 No.2		
Continuing Collibration		Present and Complete		~		
Continuing Calibration	F	Calibration meets criteria		~		_
Standards Raw Data		Present and Complete		2		1177-1177-1177-1177-1177-1177-1177-117
Comments:						******
Raw Quality Control [Data				_	
Tune Criteria Report		Present and Complete				
Method Blank Data		MB Results <pql< td=""><td>e"</td><td><u> </u></td><td></td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td></pql<>	e"	<u> </u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ICS Sample Data		Associated results flagged " Present and Complete	D	_		
LCS Sample Data LCSD Sample Data		Present and Complete		~		
MS/MSD Sample Data	l I	Present and Complete		2	·	
Comments:						
Logbooks						
Injection Log					<u> </u>	
Standards Log Can Cleaning Log					<u> </u>	
Calculation Sheet					•	
IDL's				 	<u> </u>	
Canister Order Form					×	
Sample Tracking Form	1				<u>.</u>	
Additional Comments						
			······			
Section Supervisor:	Will	1 Dally	Dat	ie: <u>11/22/17</u>		
QC Supervisor:	_h	fall	Dat	re: 1/28/1	7	

Page 2 of 272

NTEK LABORATORIES, LLC

 143 Midler Park Drive * Syracuse, NY 13206

 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752

 NYSDOH ELAP
 Certificate No. 11830

Analytical Report

Thursday, November 02, 2017

Order No.: C1710061

Jennifer Gillen LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

TEL: (585) 454-6110 FAX (585) 454-3066

RE: 300 Commerce Dr

Dear Jennifer Gillen:

Centek Laboratories, LLC received 5 sample(s) on 10/27/2017 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

Will Dall .

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative

- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. DL's
- g. Calculation
- 8. Sample Data

a. Form I (if requested) TIC's b. Quantitation Report with Spectra

9. Standards Data

- a. Initial Calibration with Quant Report
- b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

Date: 22-Nov-17

CLIENT:LaBella Associates, P.C.Project:300 Commerce DrLab Order:C1710061

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [3608] MS/MSD did not meet criteria.

Corrective Action Report

Date Initiated: Initiated By:	30-Oct-17 Russell Pellegrino		Corrective Action Report ID: Department:	
CAR Summary:	Co MS/MSD did not		Action Description	
Description of Nonconformand Root/Cause(s):	MS/MSD did not	: meet criter	ia for a several compounds for samples C171 omatographic evidence this is most likely due	
Description of Corrective Action w/Proposed C.A	on other QC meets	criteria. Th	r results at this time no further corrective actions are actions and the samples show many hits in the matrix which f data submitted	
Performed By:	Russell Peilegrir	10	Completion Date: 21-Oct-17	
		Clie	nt Notification	
Client Notificati Comment:	on Required: No	Not	ified By:	
		Quality	Assurance Review	
Nonconformanc				
Further Action required by QA:			sample matrix interference. At this time no fu submitted	rther corrective
		Appro	oval and Closure	
Technical Dire Deputy Tech		Doll!	Close Date:	02-Nov-17
QA Officer App	roval: MA	William D		02-Nov-17
Last Updated BY 7	us5	Updated:	22-Nov-2017 12:47 PM Reported: 2	2-Nov-2017 12:47 P

			Date: 22-Nov-17				
U CENT	EK LABORATORI	ES, LLC					
CLIENT: Project: Lab Order:	LaBella Associates, P.C. 300 Commerce Dr C1710061		Work Orde	er Sample Summary			
Lab Sample ID C1710061-001A	Client Sample ID 2017_10_24_EX1A	Tag Number 322.250	Collection Date	Date Received 10/27/2017			
C1710061-002A	2017_10_24_DUP	457.250	10/24/2017	10/27/2017			
C1710061-003A	2017_10_24_Outdoor	484.267	10/24/2017	10/27/2017			
C1710061-004A	2017_10_24_EX1	362.281	10/24/2017	10/27/2017			
C1710061-005A	2017_10_24_EX2	96.297	10/24/2017	10/27/2017			

I al Midler Park Drive Project: C. B 2 B 15 B Sprbv Lavel 1 Stransburger, NV 13206 Stransburger, NV 13206 Vapor Intrusion & Lata Points: Constant A Lavel 1 Lavel 1 <th></th> <th></th> <th>Centek La</th> <th>ibs - Ch</th> <th>ain of Cus</th> <th>tody</th> <th>Site Name: 300 COMM</th> <th>erce Dr.</th> <th>Detection Limit</th> <th>Report Level</th>			Centek La	ibs - Ch	ain of Cus	tody	Site Name: 300 COMM	erce Dr.	Detection Limit	Report Level
Syracuse, NY 13206 Yapot Intrusion 2 IAQ POR. 2.0877.2.3 TupM3 TCE 20 Land II AT Check Hass.com Caribier Order 1, 5,24 Caribier Order 1, 5,34 Caribier Ord	Centek Lobaretarie	9 .	143 Midler Par	k Drive					5ppbv	Level
315-319-30 Waar Instruction BAD Quote # Cr_SP TugMa + TCE 20 Cat 19* Like At Check Rush TAT Due Company: LaBello A502. DPC Company: LaBello A502. DPC TugMa + TCE 20 Cat 19* Like Business Days Dis Other Company: LaBello A502. DPC Company: LaBello Afdross: LaBello Company: LaBello	Jar Guide Image Musi-	-	Svracuse, NY	13206					*****	
Image: Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Constant Order: L_S_2 Diversition of the Law Business Days OW South order: Law Colspan="2">Constant Order: L_S_2 Constant Order: Law Colspan="2">Constant O			-	.0200	Vanor Intrusio	n 8 140	0uote # 0.50	, <u>`</u>	<u>ਪ</u>	N2
AT Check Rush TAT Due Untranzound Timaround T	,			abs.com	10001110000				100/MI3+1CE.2	
Business Days Ph/s Report to: Address: Invoice to: Address: Invoice to: Address: Business Days 50% City, State, Zip, ALX, Str, ALY, IL/LoL4, Str, ALY, IL/LoL4, City, State, Zip, Invoice to: Address: Business Days 50% City, State, Zip, ALX, ALY, IL/LoL4, Str, ALY, IL/LoL4, City, State, Zip, Invoice to: Address: Next Day by Spm 100% Email: Sample D Constraints Email: Start Stop Email: Phone: Sample D Date Sampled Number Number Number Filed Vacuum Labs Vacuum* Comments Sample D Date Sampled Number Number Number Start Stop Recv/Analysis Comments 2017_10_24_Ex1A 10/24/2017 322 250 Vocs USEPA To -15 26 i 2 7 AMS /en SD (M) 2017_10_24_Ex1A 10/24/2017 322 250 Vocs USEPA To -15 26 i 2 7 AMS /en SD (M) 2017_10_24_Ex1A 10/24/2017 2632 281 29 i 2 7 29 i 2 7 29 i 2 1 29 i 1.5 -2 1 20 i 2 1 1 1 1 1 1 </td <td>TAT</td> <td>Check</td> <td></td> <td></td> <td>Company: +</td> <td>0 11</td> <td></td> <td>Company:</td> <td>.1</td> <td><u></u></td>	TAT	Check			Company: +	0 11		Company:	.1	<u></u>
Business Days Ph/s Report to: Address: Invoice to: Address: Invoice to: Address: Business Days 50% City, State, Zip, ALX, Str, ALY, IL/LoL4, Str, ALY, IL/LoL4, City, State, Zip, Invoice to: Address: Business Days 50% City, State, Zip, ALX, ALY, IL/LoL4, Str, ALY, IL/LoL4, City, State, Zip, Invoice to: Address: Next Day by Spm 100% Email: Sample D Constraints Email: Start Stop Email: Phone: Sample D Date Sampled Number Number Number Filed Vacuum Labs Vacuum* Comments Sample D Date Sampled Number Number Number Start Stop Recv/Analysis Comments 2017_10_24_Ex1A 10/24/2017 322 250 Vocs USEPA To -15 26 i 2 7 AMS /en SD (M) 2017_10_24_Ex1A 10/24/2017 322 250 Vocs USEPA To -15 26 i 2 7 AMS /en SD (M) 2017_10_24_Ex1A 10/24/2017 2632 281 29 i 2 7 29 i 2 7 29 i 2 1 29 i 1.5 -2 1 20 i 2 1 1 1 1 1 1 </td <td>Turnaround Time:</td> <td>Qne</td> <td>Surcharge %</td> <td></td> <td>L</td> <td>x13e11G A</td> <td>550C. DPC</td> <td></td> <td>me: 🗙</td> <td></td>	Turnaround Time:	Qne	Surcharge %		L	x13e11G A	550C. DPC		me: 🗙	
Description Correct State 20	5 Business Days				Report to:		<i>cl</i> 0.10			
Description Corr, State, Zp.					Address: 3	<u>oo state</u>	- St. Suite ZOI			
Next Day by Spm 100% Email: 101/1110 Interference Email: 101/1110 Email: 100%					City, State, Zi	p Koche	ster , NY 14614	City, State, Zip	·	
Next Day by Noon 150% Phone: Phone: Phone: Phone: Comments Same Day 200% Phone: Canister Analysis Requilator Analysis Requilator Analysis RecVAnalysis Comments Sample ID Date Sampled Number Number Number Start Stop RecVAnalysis Comments 2017.10.24_EX1A 10/24/2017 322 250 VeL's USERA TO -15 26 i 2 -2 i -2		Ļ					f			
Same Day 200% Phone: Canister Regulator Analysis Phone: Comments Samplei ID Date Sampled Number Regulator Analysis Request Field Vacuum Labs Vacuum** Comments 2017_10_24_Ex1A 10/24/2017 322 250 Vecs USEIA TO -15 26 i 2 -2 i -2 <td>"Next Day by 5pm</td> <td>片</td> <td></td> <td></td> <td>Email: 19</td> <td>illend</td> <td>labellapc, com</td> <td>Email:</td> <td></td> <td></td>	"Next Day by 5pm	片			Email: 19	illend	labellapc, com	Email:		
For Same and Next Day TAT Please Wolfy Lab Canister Regulator Analysis Field Vacuum Labs Vacuum* Comments Sample ID Date Sampled Number Number Start / Stop RecV/Analysis Comments 2017.10.24. EX1 / Log / 1 22.2 25.0 Vel/s U/SE/A To -15 2/6 1 .2 -2 1 -2 -2 1 -2 1 -2 2 1 -2 2 1 -2 2 1 -2 2 1 -2 2 1 -2 2 1 -2 2 1 -2 2 1 -2 2 1 1		<u>⊢</u>			Dhanal	ent-1-11	-4-tota-		·····	
Sample ID Date Sampled Number Number Start / Stop RecV/Analysis Outcome 2017_10_24_Ex1A 10/24/2017 322 250 Nots USERA TO -15 26 i 2 -2 i -										
2017_10_24_Ex1A 10/24/2017 322 250 Veck USERA To -15 26 1 2 -2 1 2 2 72 1 2 1		11 Fleas		Sampled	#		Analysis Request	E Contraction of the second se	E	Comments
2017_10_24_Duf 457 250 26122_1-2_MS/MSD(MS) 1050(MS) 125 2017_10_24_Ex1 484 267 30122_1-2_MS/MSD(MS) 2917 2917_1-2_MSS(MS) 2017_10_24_Ex1 362_281 291 2917_2-2_1-2_ 11 1 2017_10_24_Ex2 96_297 2912_2-7_1-2_ 11 1 2017_10_24_Ex2 96_297 2912_2-7_1-2_ 1 1 2017_10_24_Ex2 96_297 2912_2-7_1-2_ 1 1 2017_10_24_Ex2 96_297 2912_2-7_1-2_ 1 1 1 2017_10_24_Ex2 96_297 2912_2-7_1-2_ 1 1 1 1 2017_10_24_Ex2 96_297 1		4					Level in the the		1	
2014_10.24_0UY 457 250 2612 -2 12 WS 1/M3D (*) 2017_10_24_0tdoor 484 267 30 i z -7 i-2 A45/msb 2017_10_24_Ex1 . 362 281 . 29 i .5 -2 i-2 2017_10_24_Ex1 . 362 28i . 29 i .2 -7 i-2 2017_10_24_Ex2 96 297 29 i .2 -7 i-2 i-2 2017_10_24_Ex2 96 297 29 i .2 -7 i-2 1 1 1 1 i i 2017_10_24_Ex2 96 297 29 i .2 -7 i-2 1 1 1 1 i i i 1 1 1 1 i i i i 1 1 1 1 i i i i i 2017_10_24_Ex2 916 297 1 1 i i i i i i i i i i	1		10/24/7	L01+			VOCS USERA 10-15			- AN
2017-10-24_Ex1 , 362 281 , 2911.5 -2 1.2 2017-10-24_Ex2 96 297 291.2 -2 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>1</td> <td></td> <td></td> <td>ļ</td> <td></td> <td>250</td> <td></td> <td>2612</td> <td>1-2 1-2</td> <td>MS/MSD(mg)</td>	1			ļ		250		2612	1-2 1-2	MS/MSD(mg)
2017-10-24-Ex.2 96 297 291.2 -7-1-2 I I I I	2017-10-24 Outo	100 C				267		3012	-2 1-2	AIS/MSD
201100001100001 1	2017-10-24-EX	(Ĺ		1	362	281		2911.5	-2 1-2	f
Chain of Custody Print Name Signature Date/Time Courler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/20/17 pm FedEx UPS Pickup/Dropoff	2017-10-24-E;	x2	V V	¥	96	297	$ $ \vee	2912	-2-1-2	
Chain of Custody Print Name Signature Date/Time Courler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/20/17 pm FedEx UPS Pickup/Dropoff								1	1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff								1	1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff								1	1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0//7.pm FedEx UPS Pickup/Dropoff								1	1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0//7.pm FedEx UPS Pickup/Dropoff								1	1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff					1			1	1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0//7.pm FedEx UPS Pickup/Dropoff										
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff	·····								1	
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff		<u> </u>	+			+	· · · · · · · · · · · · · · · · · · ·	······································		1
Chain of Custody Print Name Signature Date/Time Courtler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff			·····			+			· · · · · · · · · · · · · · · · · · ·	
Chain of Custody Print Name Signature Date/Time Courler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff								1	í	
Chain of Custody Print Name Signature Date/Time Courler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff				·····				1	· · · · · · · · · · · · · · · · · · ·	·
Chain of Custody Print Name Signature Date/Time Courler: CIRCLE ONE Sampled by: Kyle R. Mille MMM 10/2/0/17 pm FedEx UPS Pickup/Dropoff			· · · · · · · · · · · · · · · · · · ·				[<u> </u> /	 	
Sampled by: Kyle R. Mille MMM 10/26/17pm (FedEx UPS Pickup/Dropoff	Chain of Custoriu	1	Drint Mome		<u> </u>	Signatura				
		$\vdash \nabla$		л А ХИ		signature ,	1 MAA			
	F	[=:	<u>ne Ka</u>	1V1112/		+ MY		HUP SUT PR	¥	
	Relinquished by: Received at Lab by:		cir ma	(m. n.	A.)	++		5-5-57	-	210061 2

*** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

CENTEK LABORATORIES,	LLC		Sample Re	ceipt Checklist
Client Name LABELLA - ROCHESTER		Date and Tim	e Receive	10/27/2017
Work Order Numbe C1710061		Received by	NM	10/2//2011
Checklist completed by stynuuge	10-27-17 Date	Reviewed by		13/27/17 Date
Matrix: Car	rier name: <u>FedEx Ground</u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗔	Not Presen	
Custody seals intact on shippping container/cooler?	Yes 🗀	No 🗔	Not Presen	
Custody seals intact on sample bottles?	Yes 🛄	No 🗔	Not Presen	
Chain of custody present?	Yes 🔽	No 🗔		
Chain of custody signed when relinquished and received?	Yes 🔽	No 🗀		
Chain of custody agrees with sample labels?	Yes 🗔	No 🔽		
Samples in proper container/bottle?	Yes 🗹	No 🛄		
Sample containers intact?	Yes 🔽	No 🛄		
Sufficient sample volume for indicated test?	Yes 😿	No 🗔		
All samples received within holding time?	Yes 🔽	No 🗌		
Container/Temp Blank temperature in compliance?	Yes 🔽	No		
Water - VOA vials have zero headspace? No VOA	vials submitted 😿	Yes 🗔	No 🗌	
Water - pH acceptable upon receipt?	Yes 🎧	No 🗹		
Adjusted?	Che	cked by		
Any No and/or NA (not applicable) response must be detail	ied in the comments section	be		
Client contacted YES Date conta	acted: 10-27-17	Perso	n contacted	TEN G.
Contacted by: <u>MCCM</u> Regarding Comments: <u>MSIMSD</u> (MCOVPC	: <u>COC / S</u>	Ample	<u> </u>	
Corrective Action <u>CORRECTED</u>				

Lab Order: C1710061

Page 13 of 272

Client: LaBella Associates, P.C. Project: 300 Commerce Dr

DATES REPORT

Project:	300 Commerce Dr						
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prep Date	Analysis Date
	2017_10_24_EXIA	10/24/2017	Air	lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/31/2017
				jug/m3 w/0.25ng/M3 CT-TCE-VC			10/30/2017
C1710061-002A	2017 10_24_DUP			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/31/2017
C1/10001-002A	TOBL TATE TO A OF			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/30/2017
C1710061-003A	2017 10 24 Outdoor			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/30/2017
C1110001-005A	2011_10_24_0480000			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/30/2017
C1710061-004A	2017 10 24 EXI			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/31/2017
C1/10001-004/V	2010 10 24 27			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/31/2017
				lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/30/2017
CHENERAL 1 087 1	2017 10 24 EV2			lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/31/2017
C1710061-005A	2017_10_24_EX2			lug/m3 w/0.25ag/M3 CT-TCE-VC			10/31/2017
				lug/m3 w/ 0.25ug/M3 CT-TCE-VC			10/30/2017

CANISTER ORDER

4/r Quality Testing, 1/s a Gas 143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

CENTEK LABORATORIES, LLC

6820

22-Nov-17

Company:	LaBella Associates, P.C.	Submitted By:	
Contact: Address:	Kyle Miller 300 State Street, Suite 201	MadeBy: rjp	
	Rochester, NY 14614	Ship Date: 10/19/2017	
Phone:	(585) 454-6110	VIA: FedEx Ground	
Quote ID:	0	Due Date: 10/23/2017	
Project:			
PO:	208723		
Bottle Code	Bottie Type	TEST(s)	QTY
MC1400CC	1.41 Mini-Can	1ug/m3 w/ 0.25ug/M3 CT-TCE-VC	1
MC1000CC	11. Mini-Can	1ug/M3 by Method TO15	4
Can / Reg ID	-		
Can / Reg ID			
Can / Reg ID 281	Description		
Can / Reg ID 281 297	Description Time-Set Reg - 637 Vi		
Can / Reg ID 281 297 322	Description Time-Set Reg - 637 VI Time-Set Reg - 720 VI		
Can / Reg ID 281 297 322 362	Description Time-Set Reg - 637 Vi Time-Set Reg - 720 Vi 1L Mini-Can - 1286 Vi		
Can / Reg ID 281 297 322 362 457	Description Time-Set Reg - 637 Vi Time-Set Reg - 720 Vi 1L Mini-Can - 1285 Vi 1L Mini-Can - 1311 Vi		
Can / Reg ID 281 297 322 362 457 484	Description Time-Set Reg - 637 VI Time-Set Reg - 720 VI 1L Mini-Can - 1285 VI 1L Mini-Can - 1311 VI 1L Mini-Can - 1360 VI		
Can / Reg ID	Description Time-Set Reg - 637 VI Time-Set Reg - 720 VI 1L Mini-Can - 1285 VI 1L Mini-Can - 1311 VI 1L Mini-Can - 1360 VI 1,4L Mini-Can - 1366 VI		

Comments: 3 H. @ 4hr + dupe + 1 L4L @ 4hr + 4'tubing WAC 041217 F-G, 092217 A-C

.

.

GC/MS VOLATILES-WHOLE AIR

,

•

,

METHOD TO-15

ANALYTICAL RESULTS

.

Centek	Labora	tories,	LLC
--------	--------	---------	-----

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C			Client Sample ID:		
Lab Order:	C1710061			Tag Number:	322.25	0
Project:	300 Commerce Dr			Collection Date:	10/24/2	2017
Lab ID:	C1710061-001A			Matrix:	AIR	
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS	<u></u>	FLD			Analyst:
Lab Vacuum In		-2		"Hg		10/27/2017
Lab Vacuum Ou	Jt	-30		"Hg		10/27/2017
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroe	thane	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,1,2,2-Tetrachi	oroethane	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,1,2-Trichioroe	thane	< 0.15	0.15	ppb∨	1	10/30/2017 4:59:00 PM
1,1-Dichloroetha	ane	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,1-Dichloroethe	ene	< 0.15	0.15	opbV	1	10/30/2017 4:59:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,2,4-Trimethylb	enzene	0.41	0.15	ppb∨	1	10/30/2017 4:59:00 PM
1,2-Dibromoetha	ane	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,2-Dichloroben	zene	< 0.15	0.15	Vdqq	1	10/30/2017 4:59:00 PM
1,2-Dichloroetha	ane	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,2-Dichloroprop	oane	< 0.15	0.15	ppb∨	1	10/30/2017 4:59:00 PM
1,3,5-Trimethylb	penzene	< 0.15	0.15	ρpbV	1	10/30/2017 4:59:00 PM
1,3-butadiene		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
1,3-Dichioroben	zene	< 0.15	0.15	ppb∨	1	10/30/2017 4:59:00 PM
1.4-Dichloroben	zene	< 0.15	0.15	ppbV	1	10/30/2017 4:69:00 PM
1,4-Dioxane		< 0.30	0.30	ppbV	1	10/30/2017 4:59:00 PM
2,2,4-trimethylpe	entane	0.25	0.15	ppb∨	1	10/30/2017 4:59:00 PM
4-ethyltoluene		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Acetone		4.7	1,5	ppbV	5	10/31/2017 12:02:00 AM
Ally! chloride		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Benzene		0.45	0.15	ppbV	1	10/30/2017 4:59:00 PM
Benzyl chloride		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Bromodichlorom	lethane	< 0.15	0.15	Vdqq	1	10/30/2017 4:59:00 PM
Bromoform		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Bromomethane		< 0.15	0.15	ррbV	1	10/30/2017 4:59:00 PM
Carbon disulfide	•	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Carbon tetrachio	oride	0.080	0.040	рръV	1	10/30/2017 4:59:00 PM
Chlorobenzene		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Chloroethane		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Chloroform		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Chloromethane		0.79	0.15	Vdqq	1	10/30/2017 4:59:00 PM
cis-1,2-Dichloroe	ethene	< 0.15	0.15	ррҌ∨	1	10/30/2017 4:59:00 PM
cis-1,3-Dichioro;	propene	< 0.15	0.15	pobV	1	10/30/2017 4:59:00 PM
Cyclohexane		0.16	0.15	ppbV	1	10/30/2017 4:59:00 PM
Dibromochlorom	nethane	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Ethyi acetate		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

.

ND Not Detected at the Limit of Detection

Qualifiers:

CLIENT:LaBella Associates, PLab Order:C1710061				Tag Number:	2017_10_24_EX1A 322.250		
Project:	300 Commerce Dr			Collection Date:	10/24/	/2017	
Lab ID:	C1710061-001A			Matrix:	AIR		
Anaiyses		Result	**Limit Q	ual Units	ĎF	Date Analyzed	
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TO-18	5		Analyst: RJP	
Ethylbenzene		0.42	0.15	ppbV	t	10/30/2017 4:59:00 PM	
Freon 11		0.22	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Freon 113		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Freon 114		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Freon 12		0.49	0.15	Vdqq	1	10/30/2017 4:59:00 PM	
Heptane		0.33	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Hexachioro-1,3	-butadiene	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Hexane		0.20	0.15	Vdqq	1	10/30/2017 4:59:00 PM	
Isopropyl alcoh	ol	3.6	0.75	vdqq	5	10/31/2017 12:02:00 AM	
m&p-Xylene		1.6	0.30	ppb∨	1	10/30/2017 4:59:00 PM	
Methyl Butyl Ke	tone	< 0.30	0.30	ppbV	1	10/30/2017 4:59:00 PM	
Methyl Ethyl Ke	itone	0.47	0.30	Váqq	1	10/30/2017 4:59:00 PM	
Methyl Isobutyl	Ketone	< 0.30	0.30	ppb∨	1	10/30/2017 4:59:00 PM	
Methyl tert-buty	4 ether	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Methylene chlor	ride	0.20	0.15	ррҌ∨	1	10/30/2017 4:59:00 PM	
o-Xylene		0.62	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Propylene		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Styrene		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Tetrachloroethy	dene	< 0.15	0.15	PpbV	1	10/30/2017 4:59:00 PM	
Tetrahydrofurar	ı	0.30	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Toluene		4.2	0.75	ppbV	5	10/31/2017 12:02:00 Af	
trans-1,2-Dichic	proethene	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
trans-1,3-Dichlo	propropene	< 0.15	0,15	ppbV	1	10/30/2017 4:59:00 PM	
Trichloroethene	1	< 0.040	0.040	ppb∨	1	10/30/2017 4:59:00 PM	
Vinyl acetate		< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM	
Vinyl Bromide		< 0.15	0.15	pøb∨	1	10/30/2017 4:59:00 PM	
Vinyl chloride		< 0.040	0.040	ppbV	1	10/30/2017 4:59:00 PM	
•	luorobenzene	100	70-130	%REC	1	10/30/2017 4:59:00 PM	

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded)	Analyte detected below quantitation limit	
	зN	Non-roatine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Page 2 of 1

Spike Recovery outside accepted recovery limits

s

CLIENT: LaBella Associates, P.C. Lab Order: C1710061 **Project:** 300 Commerce Dr C1710061-001A Lab ID:

Client Sample ID: 2017_10_24_EX1A Tag Number: 322.250 Collection Date: 10/24/2017

Matrix: AlR

Analyses	Result **Limit Qual Units			DF	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	10/30/2017 4:59:00 PM	
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/30/2017 4:59:00 PM	
1,1,2-Trichloroethane	< 0.82	0.82	սց/m3	1	10/30/2017 4:59:00 PM	
1,1-Dichloroethase	< 0.61	0.61	ug/m3	1	10/30/2017 4:59:00 PM	
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM	
1,2,4-Trichlorobenzene	< 1.1	1,1	ug/m3	1	10/30/2017 4:59:00 PM	
1,2,4-Trimethylbenzene	2.0	0,74	ug/m3	1	10/30/2017 4:59:00 PM	
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/30/2017 4:59:00 PM	
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM	
1,2-Dichtoroethane	< 0.61	0.61	ug/m3	1	10/30/2017 4:59:00 PM	
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/30/2017 4:59:00 PM	
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/30/2017 4:59:00 PM	
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/30/2017 4:59:00 PM	
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM	
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM	
1,4-Dioxane	< 1.1	1,1	ug/m3	1	10/30/2017 4:59:00 PM	
2,2,4-trimethylpentane	1.2	0.70	ug/m3	1	10/30/2017 4:59:00 PM	
4-ethyltoluene	< 0,74	0.74	ug/m3	1	10/30/2017 4:59:00 PM	
Acetone	11	3.6	ug/m3	5	10/31/2017 12:02:00 AM	
Allyi chloride	< 0.47	0.47	ug/m3	1	10/30/2017 4:59:00 PM	
Benzene	1.4	0.48	ug/m3	1	10/30/2017 4:59:00 PM	
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/30/2017 4:59:00 PM	
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/30/2017 4:59:00 PM	
Bromoform	< 1.6	1.6	ug/m3	1	10/30/2017 4:59:00 PM	
Bromomethane	< 0.58	0.58	ug/m3	1	10/30/2017 4:59:00 PM	
Carbon disulfide	< 0.47	0,47	ug/m3	1	10/30/2017 4:59:00 PM	
Carbon tetrachloride	0.50	0.25	นฐ/กา3	1	10/30/2017 4:59:00 PM	
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/30/2017 4:59:00 PM	
Chloroethane	< 0.40	0.40	ug/m3	1	10/30/2017 4:59:00 PM	
Chloroform	< 0.73	0.73	ug/m3	1	10/30/2017 4:59:00 PM	
Chioromethane	1.6	0.31	ug/m3	1	10/30/2017 4:59:00 PM	
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM	
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 4:59:00 PM	
Cyclohexane	0.55	0.52	ug/m3	1	10/30/2017 4:59:00 PM	
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/30/2017 4:59:00 PM	
Ethyl acetate	< 0,54	0.54	ug/m3	1	10/30/2017 4:59:00 PM	
Ethylbenzene	1.8	0.65	ug/m3	1	10/30/2017 4:59:00 PM	
Freon 11	1.2	0.84	ug/m3	1	10/30/2017 4:59:00 PM	
Freon 113	< 1.1	1.1	ug/m3	1	10/30/2017 4:59:00 PM	
Freon 114	< 1.0	1.0	ug/m3	1	10/30/2017 4:59:00 PM	

Qualifiers: n∦r nk Quantitation Limit

в Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits Results reported are not blank corrected

£ Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C	2.		Client Sampl			
Lab Order:	C1710061			Sumber: 322.250			
Project:	300 Commerce Dr			Collection 1	Date:	10/24/	2017
Lab ID:	C1710061-001A			Ma	trix: .	AIR	
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	**Limit	Qual Units		DF	Date Analyzed
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TO-	15			Analyst: RJP
Freon 12		2.4	0.74	ug/m3		1	10/30/2017 4:59:00 PM
Heptane		1.4	0.61	ug/m3		1	10/30/2017 4:59:00 PM
Hexachloro-1,3-	butadiene	< 1,6	1,6	ug/m3		1	10/30/2017 4:59:00 PM
Hexane		0.70	0.53	ug/m3		1	10/30/2017 4:59:00 PM
Isopropyl alcoho	l	8.7	1.8	ug/m3	;	5	10/31/2017 12:02:00 AN
m&p-Xylene		7.2	1.3	ug/m3		1	10/30/2017 4:59:00 PM
Methyl Butyl Ke	tone	< 1.2	1.2	ug/m3		1	10/30/2017 4:59:00 PM
Methyl Ethyl Ke	tone	1.4	0.88	ug/m3		1	10/30/2017 4:59:00 PM
Methyl isobutyl	Ketone	< 1.2	1.2	ug/m3		1	10/30/2017 4:59:00 PM
Methyl tert-butyl	l ether	< 0.54	0.54	ug/m3		1	10/30/2017 4:59:00 PM
Methylene chlor	ide	0.69	0.52	ug/m3		1	10/30/2017 4:59:00 PM
o-Xylene		2.7	0.65	ug/m3		1	10/30/2017 4:59:00 PM
Propylene		< 0.26	0.26	ug/m3		1	10/30/2017 4:59:00 PM
Styrene		< 0.64	0.64	ug/m3		1	10/30/2017 4:59:00 PM
Tetrachloroethyl	lone	< 1.0	1.0	ug/m3		1	10/30/2017 4:59:00 PM
Tetrahydrofuran		0.88	Q.44	ug/m3		ŧ	10/30/2017 4:59:00 PM
Toluene		16	2.8	ug/m3	:	5	10/31/2017 12:02:00 AN
trans-1,2-Dichlo	roethene	< 0.59	0.59	ug/m3		1	10/30/2017 4:59:00 PM
trans-1.3-Dichlo	ropropene	< 0.68	0.68	ug/m3		1	10/30/2017 4:59:00 PM
Trichloroethene		< 0.21	0.21	ug/m3		1	10/30/2017 4:59:00 PM
Vinyl acetate		< 0.53	0.53	ug/m3	4	1	10/30/2017 4:59:00 PM
Vinyl Bromide		< 0.66	0.66	ug/m3		1	10/30/2017 4:59:00 PM
Vinyl chloride		< 0.10	0,10	ug/m3		;	10/30/2017 4:59:00 PM

Qualifiers:	* *	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Æ	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	.IN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits			Page 2 of 10

Centek Laboratories, LLC					Date:	20-Nov-17		
CLIENT:	LaBella Associates, P.C.			(Client Sample ID:	2017_	_10_24_DUP	
Lab Order:	C1710061				Tag Number:	457.2	50	
Project:	300 Commerce Dr				Collection Date:			
Lab ID:	C1710061-002A				Matrix:			
	C1710001-002A							
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed	
FIELD PARAMI	ETERS		F	LÐ			Analyst:	
Lab Vacuum In		-2			"Hg		10/27/2017	
Lab Vacuum Ou	Jt -	-30			"Hg		10/27/2017	
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP	
1,1,1-Trichloroe	thane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,1,2,2-Tetrachl	oroethane	< 0.15	0.15		Vđạq	1	10/30/2017 5:39:00 PM	
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,1-Dichloroetha	ane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,1-Dichloroethe	3NG	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,2,4-Trimethyit	oenzene	0.43	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,2-Dibromoeth:	ane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,2-Dichloroben	zene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,2-Dichloroetha	ane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,2-Dichloroprop	bane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,3,5-Trimethylb	enzene	< 0.15	0.15		Vđqq	1	10/30/2017 5:39:00 PM	
1,3-butadiene		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,3-Dichloroben	zene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,4-Dichloroben:	zene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
1,4-Dioxane		< 0.30	0.30		ppbV	1	10/30/2017 5:39:00 PM	
2,2,4-trimethylps	entane	0.28	0.15		Vdqq	1	10/30/2017 5:39:00 PM	
4-ethyltoluene		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Acetone		6.8	1.5		Vdqq	5	10/31/2017 12:39:00 AM	
Aliyi chioride		< 0.15	0.15		ppb∨	1	10/30/2017 5:39:00 PM	
Benzene		0.46	0.15		Vđqq	1	10/30/2017 5:39:00 PM	
Benzyl chloride		< 0.15	0.15		ppb∨	1	10/30/2017 5:39:00 PM	
Bromodichlorom	lethane	< 0.15	0.15		ррр∨	1	10/30/2017 5:39:00 PM	
Bromoform		< 0.15	0.15		ppb∨	1	10/30/2017 5:39:00 PM	
Bromomethane		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Carbon disulfide		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Carbon tetrachic	oride	0.080	0.040		ppbV	1	10/30/2017 5:39:00 PM	
Chlorobenzene		< 0.15	0.15		p¢bV	1	10/30/2017 5:39:00 PM	
Chloroethane		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Chloroform		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Chioromethane		< 0.15	0.15		Vdqq	1	10/30/2017 5:39:00 PM	
cis-1,2-Dichloroe		< 0.15	0,15		ppb∨	1	10/30/2017 5:39:00 PM	
cis-1,3-Dichlorop	topene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Cyclohexane		0.17	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Dibromochlorom	ethane	< 0,15	0.15		ppbV	1	10/30/2017 5:39:00 PM	
Ethyl acetate		< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM	

** Quantitation Limit

..

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected. . Ε Estimated Value above quantitation range

......

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Qualifiers:

Annivene		Regult	**[.imit		DF	Date Analyzed
Lab ID:	C1710061-002A			Matrix:		
Project:	300 Commerce Dr			Collection Date:	10/24/20	017
Lab Order:	C1710061			Tag Number:	457.250	
CLIENT:	LaBella Associates, P.C			lient Sample ID:		

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		та)-15			Analyst: RJP
Ethylbenzene	0.43	0.15		Vdqq	1	10/30/2017 5:39:00 PM
Freon 11	0.22	0.15		vdqq	1	10/30/2017 5:39:00 PM
Freon 113	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Freon 114	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Freon 12	0.49	0.15		Vdqq	1	10/30/2017 5:39:00 PM
Heptane	0.33	0.15		¢pbV	1	10/30/2017 5:39:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∨	1	10/30/2017 5:39:00 PM
Hexane	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
isopropyl alcohol	7.1	0.75		ppbV	5	10/31/2017 12:39:00 AM
m&p-Xylene	1.7	0.30		ppb∨	1	10/30/2017 5:38:00 PM
Methyl Butyl Ketone	< 0.30	0.30		opbV	1	10/30/2017 5:39:00 PM
Methyl Ethyl Ketone	0.64	0.30		ppbV	1	10/30/2017 5:39:00 PM
Methyl Isobutyl Kelone	0.11	0.30	J	ppb∨	1	10/30/2017 5:39:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Methylene chloride	0.48	0.15		ppbV	1	10/30/2017 5:39:00 PM
o-Xylene	0.64	0.15		ppbV	1	10/30/2017 5:39:00 PM
Propylene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Styrene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Tetrachloroethylene	< 0.15	0.15		ppb∨	1	10/30/2017 5:39:00 PM
Tetrahydrofuran	0.34	0.15		ppbV	1	10/30/2017 5:39:00 PM
Toluene	5.2	0.75		Vaqq	5	10/31/2017 12:39:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	10/30/2017 5:39:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Trichloroethene	< 0.040	0.040		ppbV	1	10/30/2017 5:39:00 PM
Vinył acetate	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	10/30/2017 5:39:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	10/30/2017 5:39:00 PM
Surr: Bromofluorobenzene	99.0	70-130		%REC	1	10/30/2017 5:39:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Æ	Estimated Value above quantitation range	
	J-L	Holding times for preparation or analysis exceeded	Ţ	Analyte detected below quantitation limit	
	ЛИ	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Page 4 of 10
	s	Spike Recovery outside accepted recovery limits			rage 4 of 10

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 2017_10_24_DUP
Lab Order:	C1710061	Tag Number: 457.250
Project:	300 Commerce Dr	Collection Date: 10/24/2017
Lab ID:	C1710061-002A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	10/30/2017 5:39:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	10/30/2017 5:39:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	10/30/2017 5:39:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	10/30/2017 5:39:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	10/30/2017 5:39:00 PM
1,2,4-Trichlorobenzene	< 1.1	1,1		ug/m3	1	10/30/2017 5:39:00 PM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	t	10/30/2017 5:39:00 PM
1,2-Dibromoethane	< 1,2	1.2		սց/m3	1	10/30/2017 5:39:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	10/30/2017 5:39:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	10/30/2017 5:39:00 PM
1,3-butadiene	< 0.33	0.33		սց/m3	1	10/30/2017 5:39:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/30/2017 5:39:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	10/30/2017 5:39:00 PM
1,4-Dioxane	< 1.1	1,1		ug/m3	1	10/30/2017 5:39:00 PM
2,2,4-trimethylpentane	1.3	0.70		ug/m3	1	10/30/2017 5:39:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	10/30/2017 5:39:00 PM
Acetone	16	3.6		ug/m3	5	10/31/2017 12:39:00 Al
Allyl chloride	< 0.47	0.47		ug/m3	1	10/30/2017 5:39:00 PM
Benzene	1.5	0.48		ug/m3	1	10/30/2017 5:39:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	10/30/2017 5:39:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	10/30/2017 5:39:00 PM
Bromotorm	< 1.6	1.6		ug/m3	1	10/30/2017 5:39:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	10/30/2017 5:39:00 PM
Carbon disulfide	< 0.47	Q.47		ug/m3	1	10/30/2017 5:39:00 PM
Carbon tetrachloride	0,50	0.25		ug/m3	1	10/30/2017 5:39:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	10/30/2017 5:39:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	10/30/2017 5:39:00 PM
Chioroform	< 0.73	0.73		ug/n13	1	10/30/2017 5:39:00 PM
Chioromethane	< 0.31	0.31		ug/m3	1	10/30/2017 5:39:00 PM
cis-1,2-Dichloroethene	< 0,59	0.59		ug/m3	1	10/30/2017 5:39:00 PN
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/30/2017 5:39:00 PM
Cyclohexane	0.59	0.52		ug/m3	1	10/30/2017 5:39:00 PN
Dibromochloromethane	< 1.3	1.3		ug/m3	1	10/30/2017 5:39:00 PN
Ethyl acetate	< 0.54	0.54		ug/m3	1	10/30/2017 5:39:00 PM
Ethylbenzene	1.9	0.65		ug/m3	1	10/30/2017 5:39:00 PN
Freon 11	1.2	0.84		ug/m3	1	10/30/2017 5:39:00 PN
Freon 113	< 1.1	1.1		ug/m3	1	10/30/2017 5:39:00 PN
Freon 114	< 1.0	1.0		ug/m3	1	10/30/2017 5:39:00 PM

** Qualifiers: Quantitation Limit

Analyte detected in the associated Method Blank в

Holding times for preparation or analysis exceeded H

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

.

E Estimated Value above quantitation range

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

4		Dourth	*** I imait			T) E	Data Anal	
Lab ID:	C1710061-002A				Matrix:			
Project:	300 Commerce Dr				Collection Date:	10/24/20	017	
Lab Order:	C1710061				Tag Number:	457,250		
CLIENT:	LaBella Associates, P.C			C	lient Sample ID:	2017_10	DUP	

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15					Anaiyst: RJP	
Freon 12	2.4	0.74		ug/m3	1	10/30/2017 5:39:00 PM	
Heptane	1.4	0.61		ug/m3	1	10/30/2017 5:39:00 PM	
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	10/30/2017 5:39:00 PM	
Mexane	< 0.53	0.53		ug/m3	1	10/30/2017 5:39:00 PM	
isopropyl alcohol	17	1.8		ug/m3	5	10/31/2017 12:39:00 AM	
m&p-Xylene	7.3	1.3		ug/m3	1	10/30/2017 5:39:00 PM	
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	10/30/2017 5:39:00 PM	
Methyl Ethyl Ketone	1.9	0.88		ug/m3	1	10/30/2017 5:39:00 PM	
Methyl Isobutyl Ketone	0.45	1.2	3	ug/m3	1	10/30/2017 5:39:00 PM	
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	10/30/2017 5:39:00 PM	
Methylene chloride	1.7	0.52		ug/m3	1	10/30/2017 5:39:00 PM	
o-Xylene	2.8	0.65		ug/m3	1	10/30/2017 5:39:00 PM	
Propylene	< 0.26	0.26		ug/m3	1	10/30/2017 5:39:00 PM	
Styrene	< 0.64	0.64		ug/m3	1	10/30/2017 5:39:00 PM	
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	10/30/2017 5:39:00 PM	
Tetrahydrofuran	1.0	0.44		ug/m3	1	10/30/2017 5:39:00 PM	
Toluene	20	2.8		ug/m3	5	10/31/2017 12:39:00 AM	
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	10/30/2017 5:39:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	10/30/2017 5:39:00 PM	
Trichloroethene	< 0.21	0.21		ug/m3	1	10/30/2017 5:39:00 PM	
Vinyl acetate	< 0.53	0.53		ug/m3	1	10/30/2017 5:39:00 PM	
Vinyl Bromide	< 0.66	0,66		ug/m3	1	10/30/2017 5:39:00 PM	
Vinyl chloride	< 0.10	0.10		ug/m3	1	10/30/2017 5:39:00 PM	

Quatifiers: ** Qua	intitution Limit
--------------------	------------------

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
 - . E — Estimated Value above quantitation range
 - Ĵ Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Centek	Labora	atories,	LLC
--------	--------	----------	-----

CLIENT:	LaBella Associates, P.C.		C	Client Sample ID:		
Lab Order:	C1710061			Tag Number:		
Project:	300 Commerce Dr			Collection Date:	10/24/	2017
Lab ID:	C1710061-003A			Matrix:	AIR	
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FLD			Analyst:
Lab Vacuum In		-2		üHg		10/27/2017
Lab Vacuum Or	ut	-30		"Hg		10/27/2017
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.15	0.15	Vdqq	1	10/30/2017 2:48:00 PM
1,1,2,2-Tetrach	loroethane	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
1,1,2-Trichloroe	ethane	< 0,15	0.15	ppbV	1	10/30/2017 2:48:00 PM
1,1-Dichloroeth	ane	< 0.15	0.15	νσαα	1	10/30/2017 2:48:00 PM
1,1-Dichloroeth	ene	< 0,15	0.15	ppbV	1	10/30/2017 2:48:00 PM
1,2,4-Trichlorot	penzene	< 0.15	0.15	ppb∨	1	10/30/2017 2:48:00 PM
1.2.4-Trimethyl	benzene	< 0.15	0.15	ppb∨	1	10/30/2017 2:48:00 PM
1,2-Dibromoeth	але	< 0.15	0.15	Vdqq	1	10/30/2017 2:48:00 PM
1,2-Dichlorober	nzene	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
1,2-Dichloroeth	ane	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
1.2-Dichloropro	pane	< 0.15	0.15	Vaqq	7	10/30/2017 2:48:00 PM
1.3.5-Trimethyl	benzene	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
1.3-butadiene		< 0.15	0.15	ppb∨	1	10/30/2017 2:48:00 PM
1,3-Dichlorober	nzene	< 0.15	0.15	Vdqq	1	10/30/2017 2:48:00 PM
1,4-Dichlorobe		< 0.15	0.15	Vdqq	1	10/30/2017 2:48:00 PM
1,4-Dioxane		< 0.30	0.30	ρρόν	1	10/30/2017 2:48:00 PM
2,2,4-trimethylp	pentane	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
4-ethyltoluene		< 0.15	0.15	Vđqq	1	10/30/2017 2:48:00 PM
Acetone		3.2	0.60	ppbV	2	10/30/2017 11:25:00 PM
Allyl chloride		< 0.15	0,15	Vdqq	1	10/30/2017 2:48:00 PM
Benzene		< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Benzyl chłoride	3	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Bromodichloro		< 0.15	0.15	ppb∨	1	10/30/2017 2:48:00 PM
Bromoform		< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Bromomethane	ī.	< 0.15	0.15	9¢5∀	1	10/30/2017 2:48:00 PM
Carbon disulfid		< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Carbon tetrach		0.070	0.040	pobV	1	10/30/2017 2:48:00 PM
Chlorobenzene		< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Chloroethane		< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Chloroform		< 0.15	0.15	Vdqq	1	10/30/2017 2:48:00 PM
Chloromethane	5	0.39	0.15	ρpbV	1	10/30/2017 2:48:00 PM
cis-1,2-Dichlore		< 0.15	0.15	ррь∨	1	10/30/2017 2:48:00 PM
cis-1,3-Dichlor		< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
	σμισμούσ	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
Cyclohexane Dibromochloro	methane	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM
CIDIOLOCOROLO	in our allo	< 0.15	0.15	ppbV	1	10/30/2017 2:48:00 PM

****** Quantitation Limit

в Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н Non-routine analyte. Quantitation estimated.

JN Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

Estimated Value above quantitation range Б

Analyte detected below quantitation limit ţ

ND Not Detected at the Limit of Detection

.

Qualifiers:

Date: 20-Nov-17

10

CLIENT:LaBella Associates, P.C.Client Sample ID: 2017_10_24_OutdoorLab Order:C1710061Tag Number: 484.267Project:300 Commerce DrCollection Date: 10/24/2017Lab ID:C1710061-003AMatrix: AIR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	-vc TO-15			Analyst: RJP		
Ethyibenzene	< 0.15	0,15		ppbV	1	10/30/2017 2:48:00 PM
Freon 11	0.21	0.15		ppbV	1	10/30/2017 2:48:00 PM
Freon 113	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Freon 114	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Freon 12	0.44	0.15		ppbV	1	10/30/2017 2:48:00 PN
Heptane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
Hexane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Isopropyl alcohol	0.54	0.15		ppbV	1	10/30/2017 2:48:00 PN
m&p-Xylene	0.23	0.30	J	ppbV	1	10/30/2017 2:48:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	10/30/2017 2:48:00 PN
Methyl Ethyl Ketone	0.33	0.30		Vdqq	1	10/30/2017 2:48:00 PN
Methyl Isobutyl Ketone	0.11	0.30	J	ppbV	1	10/30/2017 2:48:00 PN
Methyl tert-bulyl other	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Methylene chloride	0.26	0.15		ppbV	1	10/30/2017 2:48:00 PN
o-Xylene	0.10	0.15	J	ppbV	1	10/30/2017 2:48:00 PN
Propylene	< 0.15	0.15		ppb∨	1	10/30/2017 2:48:00 PN
Styrene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
Tetrahydrofuran	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
Toluene	0.77	0.15		ppbV	1	10/30/2017 2:48:00 PN
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	10/30/2017 2:48:00 PN
Trichioroethene	< 0.040	0.040		ppbV	1	10/30/2017 2:48:00 PN
Vinyl acetate	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
Vinyl Bromide	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
Vinyl chloride	< 0.040	0.040		ppbV	1	10/30/2017 2:48:00 PN
Surr: Bromofluorobenzene	100	70-130		%REC	1	10/30/2017 2:48:00 PN

Qualifiers:	**	Quantitation Limit	1	Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-rotatine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Owner Cart
	S	Spike Recovery outside accepted recovery limits			Page 6 of 1

Matrix: AIR

CLIENT: LaBella Associates, P.C. Client Sample ID: 2017_10_24_Outdoor Lab Order: C1710061 **Tag Number: 484.267** Project: 300 Commerce Dr Collection Date: 10/24/2017 Lab ID: C1710061-003A

Analyses	Result	**Limit	Qual U	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15					Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	u	ıg/m3	1	10/30/2017 2:48:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ų	ıg/m3	1	10/30/2017 2:48:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	u	Jg/m3	1	10/30/2017 2:48:00 PM
1,1-Dichloroethane	< 0.61	0.61	u	ig/m3	1	10/30/2017 2:48:00 PM
1.1-Dichloroethene	< 0.59	0.59	ų	ig/m3	1	10/30/2017 2:48:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	u	ig/m3	1	10/30/2017 2:48:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	Ų	ıg/m3	1	10/30/2017 2:48:00 PM
1,2-Dibromoethane	< 1.2	1.2	u	ıg/m3	1	10/30/2017 2:48:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	u	ıg/m3	1	10/30/2017 2:48:00 PM
1,2-Dichloroethane	< 0.61	0.61	ų	ig/m3	1	10/30/2017 2:48:00 PM
1,2-Dichloropropane	< 0.69	0.69	u	ig/m3	1	10/30/2017 2:48:00 PM
1,3,5-Trimethylbenzene	< 0,74	0.74	u	ig/m3	1	10/30/2017 2:48:00 PM
1,3-butadiene	< 0.33	0.33	u	ıg/m3	1	10/30/2017 2:48:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	u	ıg/m3	1	10/30/2017 2:48:00 PM
1.4-Dichlorobenzene	< 0,90	0.90	u	ig/m3	1	10/30/2017 2:48:00 PM
1,4-Dioxane	< 1.1	1.1	u	ig/m3	1	10/30/2017 2:48:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	u	ıg/m3	1	10/30/2017 2:48:00 PM
4-ethyltoluene	< 0.74	0.74	u	ig/m3	1	10/30/2017 2:48:00 PM
Acetone	7.6	1.4	u	ig/m3	2	10/30/2017 11:25:00 PM
Allyl chloride	< 0.47	0.47	ų	ig/m3	1	10/30/2017 2:48:00 PM
Benzene	< 0.48	0.48	u	ig/m3	1	10/30/2017 2:48:00 PM
Benzyl chloride	< 0.86	0.86	ų	ig/m3	1	10/30/2017 2:48:00 PM
Bromodichloromethane	< 1.0	1.0	U	g/m3	1	10/30/2017 2:48:00 PM
Bromoform	< 1.6	1.6	u	g/m3	1	10/30/2017 2:48:00 PM
Bromomethane	< 0.58	0.58	L	ig/m3	1	10/30/2017 2:48:00 PM
Carbon disulfide	< 0.47	0.47	u	ig/m3	1	10/30/2017 2:48:00 PM
Carbon tetrachloride	0.44	0.25	Ľ	g/m3	1	10/30/2017 2:48:00 PM
Chiorobenzene	< 0.69	0.69	ប	g/m3	1	10/30/2017 2:48:00 PM
Chloroethane	< 0.40	0.40	ц.	g/m3	1	10/30/2017 2:48:00 PM
Chloroform	< 0.73	0.73	U.	g/m3	1	10/30/2017 2:48:00 PM
Chloromethane	0.81	0.31	U;	g/m3	1	10/30/2017 2:48:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ម	g/m3	1	10/30/2017 2:48:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	u	g/m3	1	10/30/2017 2:48:00 PM
Cyclohexane	< 0.52	0.52	U)	g/m3	1	10/30/2017 2:48:00 PM
Dibromochloromethane	< 1.3	1.3		g/m3	1	10/30/2017 2:48:00 PM
Ethyl acetate	< 0.54	0.54		ġ/m3	1	10/30/2017 2:48:00 PM
Ethylbenzene	< 0.65	0.65		g/m3	1	10/30/2017 2:48:00 PM
Freon 11	1.2	0.84		g/m3	1	10/30/2017 2:48:00 PM
Freon 113	< 1.1	1.1		_ g/m3	1	10/30/2017 2:48:00 PM
Freon 114	< 1.0	1.0		g/m3	1	10/30/2017 2:48:00 PM

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits Results reported are not blank corrected

.

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Qualifiers:

Centek La	Gale: 20-/v0+-17						
CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C C1710061 300 Commerce Dr C1710061-003A				Client Sample ID: Tag Number: Collection Date: Matrix:	484.2 10/24	67
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		тс	-15			Analyst: RJP
Freon 12		2.2	0,74		ug/m3	1	10/30/2017 2:48:00 PM
Heptane		< 0.61	0.61		ug/m3	1	10/30/2017 2:48:00 PM
Hexachloro-1,3-	butadiene	< 1,6	1.6		ug/m3	1	10/30/2017 2:48:00 PM
Hexane		< 0.53	0.53		ug/m3	1	10/30/2017 2:48:00 PM
Isopropyl alcoho	pł.	1.3	0.37		นฐ/กา3	1	10/30/2017 2:48:00 PM
m&p-Xylene		1.0	1.3	J	ug/m3	1	10/30/2017 2:48:00 PM
Methyl Butyl Ke	tone	< 1.2	1.2		ug/m3	1	10/30/2017 2:48:00 PM
Methyi Ethyl Ke	tone	0.97	0.88		ug/m3	1	10/30/2017 2:48:00 PM
Methyl Isobutyl	Kelone	0.45	1.2	J	ug/m3	1	10/30/2017 2:48:00 PM
Methyl tert-buty	lether	< 0.54	0.54		ug/m3	1	10/30/2017 2:48:00 PM
Methylene chlor	ide	0.90	0.52		սց/m3	1	10/30/2017 2:48:00 PM
o-Xylene		0.43	0.65	J	ug/m3	1	10/30/2017 2:48:00 PM
Propylene		< 0.26	0.26		ug/m3	1	10/30/2017 2:48:00 PM
Styrene		< 0.64	0.64		นg/กา3	1	10/30/2017 2:48:00 PM
Tetrachloroethy	lene	< 1.0	1.0		ug/m3	1	10/30/2017 2:48:00 PM
Tetrahydrofuran		< 0.44	0.44		ug/m3	1	10/30/2017 2:48:00 PM
Toluene		2.9	0.57		ug/m3	1	10/30/2017 2:48:00 PM
trans-1,2-Dichlo	roethene	< 0.59	0.59		ug/m3	1	10/30/2017 2:48:00 PM
trans-1.3-Dichio	ropropene	< 0.68	0.68		ug/m3	1	10/30/2017 2:48:00 PM
Trichloroethene		< 0.21	0.21		ug/m3	1	10/30/2017 2:48:00 PM
Vinyi acetate		< 0.53	0.53		ug/m3	1	10/30/2017 2:48:00 PM
Vinyl Bromide		< 0.66	0.66		ug/m3	1	10/30/2017 2:48:00 PM
Vinyl chioride		< 0.10	0.10		ug/m3	1	10/30/2017 2:48:00 PM

Qualifiers:	*+	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Æ	Estimated Value above quantitation range	
	Ħ	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D
	S	Spike Recovery outside accepted recovery limits			Page 6 of 10

Centek	Laborat	ories,	LLC
--------	---------	--------	-----

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.	,		0	lient Sample ID:	2017_	10_24_EX1
Lab Order:	C1710061				Tag Number:	362.2	8)
Project:	300 Commerce Dr				Collection Date:	10/24/	/2017
Lab ID:	C1710061-004A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
	TERS		F	LD	******		Analyst:
Lab Vacuum in	· · · · · · · · · · · · · · · · · · ·	-2			"Hg		10/27/2017
Lab Vacuum Ou	t	-30			"Hg		10/27/2017
1UG/M3 W/ 0.25	SUG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1,1,1-Trichloroel	ihane	0.14	0.15	L	ppbV	1	10/30/2017 6:19:00 PM
1,1,2,2-Tetrachie	proethane	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PN
1,1,2-Trichloroel	ihane	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
1,1-Dichioroetha		< 0.15	0.15		Vdqq	1	10/30/2017 6:19:00 PM
1,1-Dichloroethe	ene	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PN
1,2,4-Trichlorobe		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
1,2,4-Trimethylb	enzene	5.7	1.5		ppbV	10	10/31/2017 1:16:00 AN
1,2-Dibromoetha		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PN
1,2-Dichloroben:	zene	< 0.15	0.15		Vdqq	1	10/30/2017 6:19:00 PM
1,2-Dichloroetha		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
1,2-Dichloroprop		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PN
1,3,6-Trimethylb		1.6	1.5		ppbV	10	10/31/2017 1:16:00 AM
1,3,5-Trimethylb		2.0	0.15		ppbV	1	10/30/2017 6:19:00 PN
1,3-butadiene		< 0,15	0.15		ppbV	1	10/30/2017 6:19:00 PM
1,3-Dichloroben:	zene	< 0.15	0.15		ppbV	t	10/30/2017 6:19:00 PM
1.4-Dichloroben		< 0.35	0.15		ppbV	1	10/30/2017 6:19:00 PM
1,4-Dioxane		< 0.30	0.30		ppbV	1	10/30/2017 6:19:00 PM
2,2,4-trimethylpe	entane	6.0	1,5		ppbV	10	10/31/2017 1:16:00 AM
4-ethyltoluene		1.9	1.5		ppbV	10	10/31/2017 1:16:00 AM
Acetone		110	27		ppbV	90	10/31/2017 8:24:00 Að
Allyl chloride		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
Benzene		9.4	1.5		ppbV	10	10/31/2017 1:16:00 AM
Benzyl chloride		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
Bromodichlorom	ethane	< 0,15	0.15		ppbV	1	10/30/2017 6:19:00 PM
Bromoform		< 0.15	0,15		ppbV	1	10/30/2017 6:19:00 PM
Bromomethane		< 0.15	0.15		Vdqq	1	10/30/2017 6:19:00 PM
Carbon disulfide	1	1.6	0.15		ppbV	1	10/30/2017 6:19:00 PM
Carbon tetrachic		0.080	0.040		ppbV	1	10/30/2017 6:19:00 PI
Chiorobenzene		< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 Pł
Chloroethane		< 0.15	0.15		vdqq	1	10/30/2017 6:19:00 PI
Chioroform		0,13	0.15		ppbV	1	10/30/2017 6:19:00 PI
Chioromethane		0.43	0.15		ppbV	1	10/30/2017 6:19:00 Pf
cis-1.2-Dichloros	ethene	4,3	1.5		ppbV	10	10/31/2017 1:16:00 Af
cis-1,3-Dichloro		< 0,15	0.15		ppbV	1	10/30/2017 6:19:00 Pt
Cyclohexane		2.1	0.15		vaqq	1	10/30/2017 6:19:00 Pf
Dibromochiorom	othono	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PI

**

Quantitation Limit

в Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

Non-routine analyte, Quantitation estimated. JN

Spike Recovery outside accepted recovery limits s

Results reported are not blank corrected .

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Qualifiers:

Date: 20-Nov-17

of 10

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 2017_10_24_EX1
Lab Order:	C1710061	Tag Number: 362.281
Project:	300 Commerce Dr	Collection Date: 10/24/2017
Lab ID:	C1710061-004A	Matrix: AlR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
Ethyi acetate	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Ethylbenzene	10	1.5	ррbV	10	10/31/2017 1:16:00 AN
Freon 11	0.29	0.15	ppbV	1	10/30/2017 6:19:00 PM
Freon 113	< 0.15	0.15	Vdqq	1	10/30/2017 6:19:00 PM
Freon 114	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Freon 12	0.61	0,15	ppbV	î	10/30/2017 6:19:00 PM
Heptane	6.1	1.5	ppbV	10	10/31/2017 1:16:00 AM
Hexachtoro-1,3-butadiene	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Hexane	3.4	1.5	ppbV	10	10/31/2017 1:16:00 AN
isopropy! alcohol	180	14	ppbV	90	10/31/2017 8:24:00 AM
m&p-Xylene	38	3.0	ppb∨	10	10/31/2017 1:16:00 AN
Methyi Butyi Ketone	< 0.30	0.30	ppbV	1	10/30/2017 6:19:00 PM
Methyl Ethyl Ketone	13	3.0	ppb∨	10	10/31/2017 1:16:00 AN
Methyl Isobutyl Ketone	1.4	0.30	ppbV	1	10/30/2017 6:19:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Methylene chloride	0.48	0.15	ppb∨	1	10/30/2017 6:19:00 PN
o-Xylene	12	1.5	ppb∨	10	10/31/2017 1:16:00 AM
Propylene	< 0.15	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Styrene	< 0.15	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Tetrachioroethylenø	0.54	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Tetrahydrofuran	7.3	1.5	ppb∨	10	10/31/2017 1:16:00 AM
Toluene	71	14	ppb∨	90	10/31/2017 8:24:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	10/30/2017 6:19:00 PM
Trichloroethene	2.4	0.40	Vdqq	10	10/31/2017 1:16:00 AN
Vinyl acetate	< 0.15	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Vinyl Bromide	< 0.15	0.15	Vdqq	1	10/30/2017 6:19:00 PN
Vinyl chloride	< 0.040	0.040	Vdqq	1	10/30/2017 6:19:00 PM
Surr: Bromofluorobenzene	111	70-130	%REC	1	10/30/2017 6:19:00 PM

Qualifiers:	**	Quantitation Limit	•	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	١H	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	\$	Spike Recovery outside accepted recovery limits			Page 8

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C			C	lient Sample ID:	2017	10_24_EX1
Lab Order:	C1710061				Tag Number:		
Project:	300 Commerce Dr				Collection Date:		
-					Matrix:		
Lab ID;	C1710061-004A				3913117185		
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1,1,1-Trichloroe		0.76	0.82	J	ug/m3	1	10/30/2017 6:19:00 PN
1,1,2,2-Tetrachi		< 1.0	1.0		ug/m3	1	10/30/2017 6:19:00 PN
1,1,2-Trichloroe	thane	< 0.82	0.82		นg/m3	1	10/30/2017 6:19:00 PN
1,1-Dichloroetha	ane	< 0.61	0,61		սց/m3	1	10/30/2017 6:19:00 PN
1,1-Dichloroethe	ene	< 0.59	0.59		นg/กา3	1	10/30/2017 6:19:00 PN
1,2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	10/30/2017 6(19:00 PM
1,2,4-Trimethy/b)enzene	28	7.4		ug/m3	10	10/31/2017 1:16:00 AN
1.2-Dibromoetha	ane	< 1.2	1.2		ug/m3	1	10/30/2017 6:19:00 PM
1,2-Dichloroben	zene	< 0.90	0.90		ug/m3	1	10/30/2017 6:19:00 PN
1,2-Dichloroetha	ane	< 0.61	0.61		นg/กา3	1	10/30/2017 6:19:00 PN
1.2-Dichloroprop	Dane	< 0.69	0.69		ug/m3	1	10/30/2017 6:19:00 PM
1,3,5-Trimethylb	enzone	10	0.74		ug/m3	1	10/30/2017 6:19:00 PN
1,3,5-Trimethylb	enzene	7.9	7.4		ug/m3	10	10/31/2017 1:16:00 AM
1,3-butadiene		< 0.33	0.33		ug/m3	1	10/30/2017 6:19:00 PM
1,3-Dichloroben	zene	< 0.90	0.90		ug/m3	1	10/30/2017 6:19:00 PN
1,4-Dichioroben:	żene	< 0.90	0.90		ug/m3	1	10/30/2017 6:19:00 PM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	10/30/2017 6:19:00 PN
2,2,4-trimethylpe	estane	28	7.0		ug/m3	10	10/31/2017 1:16:00 AM
4-ethyltoluene		9.3	7.4		ug/m3	10	10/31/2017 1:16:00 AN
Acetone		260	64		ug/m3	90	10/31/2017 8:24:00 AN
Ally! chloride		< 0.47	0.47		ug/m3	1	10/30/2017 6;19:00 PN
Benzene		30	4.8		นg/ภา3	10	10/31/2017 1:16:00 AM
Benzyl chioride		< 0.86	0.86		ug/m3	1	10/30/2017 6:19:00 PM
Bromodichlorom	nethane	< 1.0	1.0		ug/m3	1	10/30/2017 6:19:00 PM
Bromoform		< 1.6	1.6		ug/m3	1	10/30/2017 6:19:00 PN
Bromomethane		< 0.58	0.58		ug/m3	1	10/30/2017 6:19:00 PM
Carbon disulfide		5.1	0.47		ug/m3	1	10/30/2017 6:19:00 PN
Carbon tetrachic	nide	0.50	0.25		ug/m3	1	10/30/2017 6:19:00 PN
Chlorobenzene		< 0.69	0.69		ug/m3	1	10/30/2017 6:19:00 PN
Chloroethane		< 0.40	0.40		ug/m3	1	10/30/2017 6:19:00 PN
Chloroform		0.63	0.73	J	ug/m3	1	10/30/2017 6:19:00 PN
Chloromethane		0.89	0.31		ug/m3	1	10/30/2017 6:19:00 PN
cis-1,2-Dichloroe	ethene	17	5.9		ug/m3	10	10/31/2017 1:16:00 AN
cis-1,3-Dichlorop	propene	< 0.68	0.68		ug/m3	1	10/30/2017 6:19:00 PN
Cyclohexane		7.2	0.52		ug/m3	1	10/30/2017 6:19:00 PM
Dibromochloromethane		< 1.3	1.3		ug/m3	1	10/30/2017 6:19:00 PM
Ethyl acetate		< 0.54	0.54		ug/m3	1	10/30/2017 6:19:00 PN
Ethylbenzene		43	6.5		ug/m3	10	10/31/2017 1:16:00 AN
Freon 11		1.6	0.84		ug/m3	1	10/30/2017 6:19:00 PM
Freon 113		< 1.1	1.1		ug/m3	1	10/30/2017 6:19:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits E Estimated Value above quantitation range

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

Date: 20-Nov-17

CLIENT:LaBella Associates, P.C.Client Sample ID: 2017_10_24_EX1Lab Order:C1710061Tag Number: 362.281Project:300 Commerce DrCollection Date: 10/24/2017Lab ID:C1710061-004AMatrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 114	< 1.0	1.0	ug/m3	1	10/30/2017 6:19:00 PM
Fraon 12	3.0	0.74	ug/m3	1	10/30/2017 6:19:00 PM
Heptane	25	6.1	ug/m3	10	10/31/2017 1:16:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/30/2017 6:19:00 PM
Hexane	12	5.3	ug/m3	10	10/31/2017 1:16:00 AM
isopropyl alcohol	450	34	ug/m3	90	10/31/2017 8:24:00 AM
m&p-Xylene	170	13	ug/m3	10	10/31/2017 1:16:00 AM
Methyi Butyi Ketone	< 1.2	1.2	ug/m3	1	10/30/2017 6:19:00 PM
Methyl Ethyl Ketone	37	8.8	ug/m3	10	10/31/2017 1:16:00 AM
Methyl Isobutyi Ketone	5.8	1.2	ug/m3	1	10/30/2017 6:19:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	10/30/2017 6:19:00 PM
Methylene chloride	1.7	0.52	ug/m3	1	10/30/2017 6:19:00 PM
o-Xylene	50	6.5	ug/m3	10	10/31/2017 1:16:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/30/2017 6:19:00 PM
Styrene	< 0.64	0.64	սց/m3	1	10/30/2017 6:19:00 PM
Tetrachloroethylene	3.7	1.0	ug/m3	1	10/30/2017 6:19:00 PM
Tetrahydrofuran	22	4.4	ug/m3	10	10/31/2017 1:16:00 AM
Toluene	270	53	ug/m3	90	10/31/2017 8:24:00 AM
trans-1,2-Dichloroethene	< 0.59	0,59	ug/m3	1	10/30/2017 6:19:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 6:19:00 PM
Trichloroethene	13	2.1	ug/m3	10	10/31/2017 1:16:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	10/30/2017 6:19:00 PM
Vinyi Bromide	< 0.66	0.66	ug/m3	1	10/30/2017 6:19:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	10/30/2017 6:19:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 8 of 10

Centek Laboratories, LLC					Date: 20-Nov-17				
CLIENT:	LaBella Associates, P.C.			¢	Client Sample ID:	2017	10_24_EX2		
Lab Order:	C1710061				Tag Number:				
Project:	300 Commerce Dr				Collection Date:				
Lab ID:	C1710061-005A				Matrix:				
	C1710001-005A								
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
	ETERS		F	LD			Analyst:		
Lab Vacuum In		-2			"Hg		10/27/2017		
Lab Vacuum Oi	ut	-30			"Hg		10/27/2017		
UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		тс	-15			Analyst: RJP		
1,1,1-Trichloroe	thane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,1,2,2-Tetrachi	loroethane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,1,2-Trichloroe	thane	< 0.15	0.15		Vdqq	1	10/30/2017 6:59:00 PM		
1,1-Dichloroetha	ane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,1-Dichioroethe	ene	< 0.15	0.15		ρρθν	1	10/30/2017 6:59:00 PM		
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,2,4-Trimethylt	penzene	6.6	1.5		pobV	10	10/31/2017 2:29:00 AM		
1,2-Dibromoeth:	ano	< 0.15	0.15		ppb∨	1	10/30/2017 6(59:00 PM		
1,2-Dichloroben	izene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,2-Dichloroetha	ane	< 0.15	0.15		Vdqq	1	10/30/2017 6:59:00 PM		
1,2-Dichloroprop	pane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,3,5-Trimethylt	benzene	1.7	1.5		Vdqq	10	10/31/2017 2:29:00 AM		
1,3-butadiene		< 0.15	0.15		opb∨	1	10/30/2017 6:59:00 PM		
1,3-Dichloroben	zene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,4-Dichloroben	zene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
1,4-Dioxane		< 0.30	0.30		ρ ρ bV	1	10/30/2017 6:59:00 PM		
2,2,4-trimethylp	entane	7.0	1.5		ppbV	10	10/31/2017 2:29:00 AM		
4-ethyltoluene		2.1	1.5		ppbV	10	10/31/2017 2:29:00 AM		
Acetone		140	81		ppbV	270	10/31/2017 9:01:00 AM		
Allyl chloride		< 0.15	0.15		ppb∨	1	10/30/2017 6:59:00 PM		
Benzene		10	1.5		Vdqq	10	10/31/2017 2:29:00 AM		
Benzyl chloride		< 0.15	0.15		Vdqq	1	10/30/2017 6:59:00 PM		
Bromodichlorom	nethane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
Bromoform		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
Bromomethane		< 0.15	0.15		Pddd	1	10/30/2017 6:59:00 PM		
Carbon disulfide		1.9	0.15		ppbV	1	10/30/2017 6:59:00 PM		
Carbon tetrachic	oride	0.080	0.040		vdqq	1	10/30/2017 6:59:00 PM		
Chlorobenzene		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
Chloroethane		0.14	0.15	J	Vđợq	1	10/30/2017 6:59:00 PM		
Chloroform		0.14	0.15	J	ppbV	1	10/30/2017 6:59:00 PM		
Chloromethane		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
cis-1,2-Dichloroe		0.81	0.15		ppbV	1	10/30/2017 6:59:00 PM		
cis-1,3-Dichlorop	propene	< 0.15	0,15		ppbV	1	10/30/2017 6:59:00 PM		
Cyclohexane		3.9	1.5		ppbV	10	10/31/2017 2:29:00 AM		
Dibromochlorom)ethane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM		
Ethyl acetate		1.1	0.15		ppbV	1	10/30/2017 6:59:00 PM		

.

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

 $JN = Non-routine \ analyte. \ Quantitation \ estimated.$

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

 \mathcal{E} = Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Qualifiers:

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 2017_10_24_EX2
Lab Order:	C1710061	Tag Number: 96.297
Project:	300 Commerce Dr	Coflection Date: 10/24/2017
Lab 1D:	C1710061-005A	Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-'	15		Analyst: RJP	
Ethylbenzene	10	1.5	ppbV	10	10/31/2017 2:29:00 AM	
Freon 11	0.32	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Freon 113	< 0.15	0.15	₽₽bV	1	10/30/2017 6:59:00 PM	
Freon 114	< 0.15	0.15	ρρ¢ν	1	10/30/2017 6:59:00 PM	
Freon 12	0.62	0.15	ppb∨	1	10/30/2017 6:59:00 PM	
Heptane	7.6	1.5	vdqq	10	10/31/2017 2:29:00 AM	
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Hexane	4.1	1.5	pob∨	10	10/31/2017 2:29:00 AM	
Isopropyl alcohol	510	40	ррб∨	270	10/31/2017 9:01:00 AM	
m&p-Xylene	40	3.0	ppbV	10	10/31/2017 2:29:00 AM	
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	10/30/2017 6:59:00 PM	
Methyl Ethyl Ketone	13	3.0	ppbV	10	10/31/2017 2:29:00 AM	
Methyl Isobutyl Ketone	1.4	0.30	ppbV	1	10/30/2017 6:59:00 PM	
Methyi tert-butyl ether	< 0.15	0,15	ppbV	1	10/30/2017 6:59:00 PM	
Methylene chloride	0.32	0.15	ppb∨	1	10/30/2017 6:59:00 PM	
o-Xylene	12	1,5	ppb∨	10	10/31/2017 2:29:00 AM	
Propylene	< 0.15	0.15	ppbV	3	10/30/2017 6:59:00 PM	
Styrene	< 0.15	0.15	ppb∨	t	10/30/2017 6:59:00 PM	
Tetrachloroethylene	< 0.15	0.15	ppb∨	1	10/30/2017 6:59:00 PM	
Tetrahydrofuran	8.1	1.5	Vaqq	10	10/31/2017 2:29:00 AM	
Toluene	70	40	ppb∨	270	10/31/2017 9:01:00 AM	
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	10/30/2017 6:59:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Trichloroethene	0.23	0.040	ppb∨	1	10/30/2017 6:59:00 PM	
Viny! acetate	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Vinyl Bromide	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Vinyl chloride	< 0.040	0.040	ppbV	1	10/30/2017 6:59:00 PM	
Surr: Bromofluorobenzene	108	70-130	%REC	1	10/30/2017 6:59:00 PM	

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range	
	Ŀ	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	~
	8	Spike Recovery outside accepted recovery limits		Page 10 of 1	U

Centek La		Date:	20-Nov-17				
CLIENT: Lab Order:	LaBella Associates, P.C. C1710061			(Dient Sample ID: Tag Number:		
Project:	300 Commerce Dr				Collection Date:		
Lab ID:	C1710061-005A				Matrix:		
Anałyses		Resolt	**Limit		Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2	SUG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1,1,1-Trichioroe		< 0.82	0.82	-15	ug/m3	1	10/30/2017 6:59:00 PM
1,1,2,2-Tetrach		< 1.0	1.0		ug/m3	1	10/30/2017 6:59:00 PM
1,1,2-Trichloroe		< 0.82	0.82		ug/m3	1	10/30/2017 6:59:00 PM
1.1-Dichloroeth		< 0,61	0.61		ug/m3	1	10/30/2017 6:59:00 PM
1,1-Dichloroeth		< 0.59	0.59		ug/m3	1	10/30/2017 6:59:00 PM
1.2,4-Trichlorob		< 1.1	1.1		ug/m3	1	10/30/2017 6:59:00 PM
1,2,4-Trimethylt		32	7.4		ug/m3	10	10/31/2017 2:29:00 AM
1 2-Dibromoeth		< 1.2	1.2		ug/m3	1	10/30/2017 6:59:00 PM
1,2-Dichloroben		< 0.90	0.90		ug/m3	, 1	10/30/2017 6:59:00 PM
1,2-Dichloroeth		< 0.61	0.61		ug/m3	1	10/30/2017 6:59:00 PM
1,2-Dichloropro		< 0.69	0.69		ug/m3	1	10/30/2017 6:59:00 PM
1,3,5-Trimethylt		8.4	7.4		ug/m3	10	10/31/2017 2:29:00 AM
1.3-butadiene	- 197 - C 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 -	< 0.33	0.33		ug/m3	1	10/30/2017 6:59:00 PM
1.3-Dichloroben	2808	< 0.90	0.90		ug/m3	1	10/30/2017 6:59:00 PM
1,4-Dichloroben		< 0.90	0.90		ug/m3	1	10/30/2017 6:59:00 PM
1,4-Dioxane		< 1,1	1.1		ug/m3	1	10/30/2017 6:59:00 PM
2,2,4-trimethylp	entene	33	7.0		ug/m3	10	10/31/2017 2:29:00 AM
4-ethyltoluene		10	7.4		ug/m3	10	10/31/2017 2:29:00 AM
Acetone		330	190		ug/m3	270	10/31/2017 9:01:00 AM
Allyl chloride		< 0.47	0.47		ug/m3	1	10/30/2017 6:59:00 PM
Benzene		32	4.8		ug/m3	10	
Benzył chloride		< 0.86	4.8 0,86		-	1	10/31/2017 2:29:00 AM 10/30/2017 6:59:00 PM
Bromodichlorom	athana	< 1.0	1.0		ug/m3	י 1	10/30/2017 6:59:00 PM
Bromoform	letilatie	< 1.6	1.0		ug/m3		
Bromomethane		< 0.58	0.58		ug/m3	1	10/30/2017 6:59:00 PM
Carbon disulfide					ug/m3	1	10/30/2017 6:59:00 PM
Carbon tetrachic		5.9 0.50	0.47		ug/m3	1	10/30/2017 6:59:00 PM
Chlorobenzene	1106	< 0.69	0.25		ug/m3	1	10/30/2017 6:59:00 PM
Chioroethane			0.69	•	ug/m3	1	10/30/2017 6:59:00 PM
Chloroform		0.37	0.40	.)	ug/m3	1	10/30/2017 6:59:00 PM
Chloromethane		0.68	0.73	J	ug/m3	1	10/30/2017 6:59:00 PM
	athana	< 0.31	0.31		ug/m3	1	10/30/2017 6:59:00 PM
cis-1,2-Dichloroe		3.2	0.59		ug/m3	1	10/30/2017 6:59:00 PM
cis-1,3-Dichlorop Cyclohexane	Nopene	< 0.68	0.68		ug/m3	1	10/30/2017 6:59:00 PM
-	others	13	5.2		ug/m3	10	10/31/2017 2:29:00 AM
Dibromochlorom	enane	< 1.3	1.3		ug/m3	1	10/30/2017 6:59:00 PM
Ethyl acetete		3.8	0.54		นg/m3	1	10/30/2017 6:59:00 PM
Ethylbenzene Ethylbenzene		44	6.5		vg/m3	10	10/31/2017 2:29:00 AM
Freon 11		1.8	0.84		ug/m3	1	10/30/2017 6:59:00 PM
Freen 113		< 1.1	1.1		ug/m3	1	10/30/2017 6:59:00 PM

** Quantitation Limit в Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

< 1.0

1.0

ug/m3

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

E Estimated Value above quantitation range

1

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

10/30/2017 6:59:00 PM

Freon 114

Qualifiers:

Analyses		Result	**Limit Oual		DF	Date Analyzed	
Lab ID:	C1710061-005A			Matrix:			
Project:	300 Commerce Dr			Collection Date:	10/24/20)17	
Lab Order:	C1710061			Tag Number:	96.297		
CLIENT:	LaBella Associates, P.	с.	(Client Sample ID:	2017_10	24_EX2	
		· · · · · · · · · · · · · · · · · · ·			••••••	• • • • • • • • • • • • • • • • • • • •	

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP	
Freon 12	3.1	0.74	ug/m3	1	10/30/2017 6:59:00 PM	
Heptane	31	6.1	ug/m3	10	10/31/2017 2:29:00 AM	
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	7	10/30/2017 6:59:00 PM	
Hexane	14	5.3	ug/m3	10	10/31/2017 2:29:00 AM	
Isopropyl alcohol	1300	98	ug/m3	270	10/31/2017 9:01:00 AM	
m&p-Xylene	170	13	ug/m3	10	10/31/2017 2:29:00 AM	
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/30/2017 6:59:00 PM	
Methyl Ethyl Ketone	38	8.8	ug/m3	10	10/31/2017 2:29:00 AM	
Methyl Isobutyl Ketone	5.7	1.2	ug/m3	7	10/30/2017 6:59:00 PM	
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	10/30/2017 6:59:00 PM	
Methylene chloride	1.1	0.52	ug/m3	1	10/30/2017 6:59:00 PM	
o-Xylene	54	6,5	ug/m3	10	10/31/2017 2:29:00 AM	
Propylene	< 0.26	0.26	ug/m3	1	10/30/2017 6:59:00 PM	
Styrene	< 0.64	0.64	ug/m3	1	10/30/2017 6:59:00 PM	
Tetrachioroethylene	< 1.0	1.0	ug/m3	1	10/30/2017 6:59:00 PM	
Tetrahydrofuran	24	4,4	ug/m3	10	10/31/2017 2:29;00 AM	
Toluene	260	150	սց/m3	270	10/31/2017 9:01:00 AM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 6:59:00 PM	
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 6:59:00 PM	
Trichloroethene	1.2	0.21	ug/m3	1	10/30/2017 6:59:00 PM	
Vinył acetate	< 0.53	0.53	ug/m3	1	10/30/2017 6:59:00 PM	
Vinyl Bromide	< 0.66	0.66	ug/m3	1	10/30/2017 6:59:00 PM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	10/30/2017 6:59:00 PM	

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected				
	13	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation rang	je			
		Holding times for preparation or analysis exceeded	١,	Analyte detected below quantitation limit				
		Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 10 . 6 .			
	S	Spike Recovery outside accepted recovery limits			Page 10 of 1			

.

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

QUALITY CONTROL SUMMARY

•

.

Page 36 of 272

Date: 20-Nov-17

1

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT; Work Order: Project: Test No:	C171006	Associates, P.C I Imerce Dr	Matrix: A					
Sample ID		BR4FBZ						
ALCS1UG-103017		101			}			
ALCSTUGD-10301	7	103					1	
AMB1UG-103017		92.0			aliteration to the state the state 			
C1710061-001A		100		,				
C1710061-002A		99.0)				
C1710061-003A		100			·····························			
C1710061-003A M	S	103				[
C1710061-003A M	SD	103						
C1710061-004A		111						
C1710061-005A		108			······································			

Acronym	Surrogate		QC Limits
BR4F8Z	= Bromofluorobenze	ne	70-130
	ogate recovery outside	e acceptance lim	its

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA2\A0103002.D Tune Time : 30 Oct 2017 12:03 pm

Daily Calibration File : C:\HPCHEM\1\DATA2\A0103002.D

		(BFB)		(IS1) 27378	(IS2) 126628	(IS3) 105664
File Samp		Surrogate	Recovery %	Internal	Standard Re	sponses
A0103003.D ALCS	1UG-103017	101		24027	109109	92655
A0103004.D AMB1		92		20826	98039	81274
A0103005.D C171	0061-003A	100		21360	95496	79322
A0103006.D C171	0061-003A MS	103		22735	100638	87522
A0103007.D C171	0061-003A MSD	103		21894	98555	85601
A0103008.D C171	0061-001A	100		20047	91961	79059
A0103009.D C171	0061-002A	99		20183	93298	78784
A0103010.D C171	0061-004A	111		21824	1.01063	95601
A0103011.D C1710	0061-005A	108		21806	100213	95326
A0103012.D C1710	0061-003A 2x	96		26624	113590	88937
A0103013.D C1710	061-001A 5×	95		19821	87418	70227
A0103014.D C1710	061-002A 5x	97		18362	85308	69254
A0103015.D C1710	061-004A 10x	: 98		18866	86880	73871
A0103017.D C171(061-005A 10x	. 98		18259	83706	73328
A0103019.D ALCS:	UGD-103017	103		19392	86273	74810
A0103020.D C1710	061-004A 90x	92		23038	100057	80883
A0103021.D C1710	061-005A 270x	94		17693	82431	68228
t - fails 24	hr time check	* - fail	ls criteria			* * * * * * * * * * * * * * * * * * *

Created: Mon Nov 20 08:49:04 2017 MSD #1/

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT: Work Order: Project:

Page 39 of 272

LaBella Associates, P.C.

C1710061

300 Commerce Dr

Sample ID: ALCS1UG-103017	SampType: LCS	TestCo	de: 0.25CT-TC	E- Units: ppbV	E- Units: ppbV Prep Date: Analysis Date: 10/30/2017			RunNo: 12887			
Client ID: ZZZZZ	Batch ID: R12887	Test	No: TO-15					SeqNo: 14	9964		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.000	0.15	1	0	100	70	130				
1,1,2,2-Tetrachioroethane	0.9900	0.15	1	Ð	99.0	70	130				
1,1,2-Trichloroethane	0.9600	0.15	1	Ð	96.0	70	130				
1,1-Dichloroethane	1.040	0.15	1	0	104	70	130				
1,1-Dichloroethene	1.050	0.15	1	0	105	70	130				
1,2,4-Trichlorobenzene	0.9800	0.15	1	0	98.0	70	130				
1,2,4-Trimethylbenzene	1.130	0.15	1	0	113	70	130				
1,2-Dibromoethane	0.9900	0.15	1	0	99.0	70	130				
1,2-Dichlorobenzene	1.010	0.15	1	0	101	70	130				
1,2-Dichloroethane	0.9800	0.15	1	0	98.0	70	130				
1,2-Dichloropropane	0.9900	0.15	1	0	99.0	70	130				
1,3,5-Trimethylbenzene	1.100	0.15	1	0	110	70	130				
1,3-butadiene	1.220	0.15	1	0	122	70	130				
1,3-Dichlorobenzene	0.9900	0.15	ţ	0	99.0	70	130				
1,4-Dichlorobenzene	1.010	0.15	1	0	101	70	130				
1,4-Dioxane	1.230	0.30	1	0	123	70	130				
2,2,4-trimethylpentane	1.000	0.15	1	Û	100	70	130				
4-ethyltoluene	1.100	0.15	t	Q	110	70	130				
Acetone	0.9700	0.30	1	0	97.0	70	130				
Aliyi chloride	0.9700	0.15	1	0	97.0	70	130				
Benzene	0.9700	0.15	1	0	97.0	70	130				
Senzyl chloride	0.9200	0.15	1	0	92.0	70	130				
Bromodichloromethane	0.9800	0.15	1	0	98.0	70	130				
Bromoform	0.9900	0.15	1	0	99.0	70	130				
Bromomethane	0.9500	0.15	1	0	95.0	70	130				

l Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Еl R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Page 40 of 272

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-103017	SampType: LCS	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Dat	le:		RunNo: 1288	7	
Client ID: ZZZZZ	Balch ID: R12887	Test	lo: TO-15			Analysis Dai	te: 10/30/2	017	SeqNo: 1499	64	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	0.9700	0.15	1	Û	97.0	70	130				
Carbon tetrachloride	0.9700	0.040	1	0	97.0	70	130				
Chlorobenzene	0. 99 00	0.15	1	Û	99.0	70	130				
Chloroethane	0.9400	0.15	1	0	94.0	70	130				
Chloroform	1.010	0.15	1	0	101	70	130				
Chloromethane	0.9600	0.15	1	0	96.0	70	130				
cis-1,2-Dichloroethene	0.9600	0.15	1	Û	96.0	70	130				
cis-1,3-Dichloropropene	0.9200	0.15	1	0	92.0	70	130				
Cyclohexane	1.010	0.15	1	0	101	70	130				
Dibromochloromethane	1.000	0.15	1	0	100	70	130				
Ethyl acetate	0.9900	0.15	1	0	99.0	70	130				
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130				
Freon 11	0.9500	0.15	1	0	95.0	70	130				
Freon 113	1.070	0.15	1	0	107	70	130				
Freon 114	0.9500	0.15	1	0	95.0	70	130				
Freon 12	0.9700	0.15	1	0	97.0	70	130				
Heptane	0.9500	0.15	1	0	95.0	70	130				
Hexachloro-1,3-butadiene	0.9600	0.15	1	0	96.0	70	130				
Hexane	1.030	0.15	1	0	103	70	130				
Isopropyl alcohol	0.9200	0.15	1	0	92.0	70	130				
m&p-Xylene	2.030	0.30	2	0	102	70	130				
Methyl Butyl Ketone	1.340	0.30	1	0	134	70	130				S
Methyl Ethyl Ketone	1.000	0.30	1	0	100	70	130				
Methyl Isobulyl Ketone	1.120	0.30	f	0	112	70	130				
Methyl tert-butyl ether	1.040	0.15	4	0	104	70	130				
Methylene chloride	0.9900	0.15	1	0	99.0	70	130				
o-Xylene	1.000	0.15	1	0	100	70	130				
Propylene	1.060	0.15	1	D	106	70	130				
Styrene	1.060	0.15	1	0	106	70	130				
Tetrachioroethylene	0.9900	0.15	1	0	99.0	70	130				
Tetrahydrofuran	0.9900	0.15	1	0	99.0	70	130				
Qualifiers: Results repor	ted are not blank corrected	· · · · · · · · · · · · · · · · · · ·	E Estim	sted Value above quan	ntitation range H Holding times for pr			preparation or ana	alysis exceed	cü	
J Analyte detec	ted below quantitation limit		ND Not D	elected at the Limit of	Detection		R. E	RPD outside accep	pted recovery limi	ts	

S Spike Recovery outside accepted recovery limits

LaBella Associates, P.C.

Work Order: C1710061

CLIENT:

Page 41 of 272

300 Commerce Dr Project:

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-103017	SampType: LCS	TestCoo	le: 0.25CT-TCE-	Units: ppbV		Prep Da	le:		RunNo: 120	387	
Client ID: ZZZZZ	Batch ID: R12887	Test	lo: TO-15			Analysis Da	te: 10/30/2	017	SeqNo: 149	9964	
Analyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	0.9900	0.15	1	0	99_0	70	130				
trans-1,2-Dichloroethene	0.9500	0.15	1	0	95.0	70	130				
trans-1,3-Dichloropropene	0.8400	0.15	1	0	84.0	70	130				
Trichloroethene	0.9300	0.040	1	0	93.0	70	130				
Vinyl acetate	0.9500	0.15	1	0	95.0	70	130				
Vinyl Bromide	0.9100	0.15	1	0	91.0	70	130				
Vinyl chłoride	0.9200	0.040	1	D	92.0	70	130				
Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCoo	le: 0.25CT-TCE-	Units: ppbV		Prep Da	te:	· _ · · · · · · · · · · · · · · · · · ·	RunNo: 128	387	
Client ID: ZZZZZ	Batch ID: R12887	Test	lo: TO-15			Analysis Da	te: 10/31/2	017	SeqNo: 149	9965	
Anaiyte	Result	PQL	SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
1, 1, 1-Trichloroethane	1.060	0.15	1	0	106	70	130	1	5.83	30	<u></u>
1,1,2,2-Tetrachlorcethane	1.060	0.15	1	0	106	70	130	0.99	6.83	30	
1,1,2-Trichloroethane	1.040	0.15	1	Û	104	70	130	0.96	8.00	30	
1,1-Dichloroethane	0.9900	0.15	1	0	99.0	70	130	1.04	4.93	30	
1,1-Dichloroethene	1.050	Q.15	1	0	105	70	130	1.05	0	30	
1,2,4-Trichlorobenzene	1.000	0.15	1	0	100	70	130	0.98	2.02	30	
1,2,4-Trimethylbenzene	0.9500	0.15	1	O	95.0	70	130	1.13	17.3	30	
1,2-Dibromoethane	1.010	0,15	1	0	101	70	130	0.99	2.00	30	
1,2-Dichlorobenzene	1.090	0.15	1	0	109	70	130	1.01	7.62	30	
1,2-Dichloroethane	0.9800	0.15	1	Ð	98.0	70	130	0.98	0	30	
1,2-Dichloropropane	1.000	0.15	1	0	100	70	130	0.99	1.01	30	
1,3,5-Trimethylbenzene	1.040	0.15	1	Q	104	70	130	1.1	5.61	30	
1,3-butadiene	1.030	0.15	1	0	103	70	130	1.22	16.9	30	
1,3-Dichlorobenzene	1.060	0.15	1	0	106	70	130	0.99	6.83	30	
1,4-Dichlorobenzene	1.080	0.15	1	0	108	70	130	1.01	6.70	30	
1,4-Dioxane	1.290	0.30	1	0	129	70	130	1.23	4.76	30	
2,2.4-trimethylpentane	1,010	0.15	ž	Ð	101	70	130	1	0.995	30	
4-ethyltoluene	1.000	0.15	î	0	100	70	130	1.1	9.52	30	

S

- Results reported are not blank corrected 1

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

1996. Barren var statistik hunderstatistik ander sinder in statistik statistik i statistik statistik statistik s

LaBella Associates, P.C.

Work Order: C1710061

Project: 300 Commerce Dr

......

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 128	387	
Client ID: ZZZZZ	Batch (D: R12887	Test	lo: TO-15			Analysis Da	te: 10/31/2	017	SeqNo: 14	965	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	0.9700	0.30	1	0	97.0	70	130	0.97	0	30	
Allyl chloride	0.9000	0.15	1	0	90.0	70	130	0.97	7.49	30	
Benzene	0.9900	0.15	1	0	99.0	70	130	0.97	2.04	30	
Benzyl chloride	1.090	0.15	1	0	109	70	130	0.92	16.9	30	
Bromodichloromethane	1.030	0.15	1	0	103	70	130	0.98	4.98	30	
Bromoform	1.030	0.15	1	0	103	70	130	0.99	3.96	30	
Bromomethane	1.000	0.15	477	0	100	70	130	0.95	5.13	30	
Carbon disulfide	0.9200	0.15	1	0	92.0	70	130	0.97	5.29	30	
Carbon tetrachloride	1.020	0.040	1	0	102	70	130	0.97	5.03	30	
Chlorobenzene	1.020	0.15	1	0	102	70	130	0.99	2.99	30	
Chloroethane	0.9700	0.15	1	0	97.0	70	130	0.94	3.14	30	
Chloroform	1.020	0.15	1	0	102	70	130	1.01	0.985	30	
Chloromethane	1.060	0.15	1	0	106	70	130	0.96	9.90	30	
cis-1,2-Dichloroethene	0.9600	0.15	1	D	96.0	70	130	0.95	0	30	
cis-1,3-Dichloropropene	0.9900	0.15	1	0	99.0	70	130	0.92	7.33	30	
Cyclohexane	1.000	0.15	1	0	100	70	130	1.01	0.995	30	
Dibromochloromethane	1.050	0.15	1	0	105	70	130		4.88	30	
Ethyl acetate	0.9300	0.15	1	0	93.0	70	130	0.99	6.25	30	
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130	0.97	0	30	
Freon 11	1.060	0.15	Ŷ	0	106	70	130	0.95	10.9	30	
Freon 113	1.080	0.15	1	0	108	70	130	1.07	0.930	30	
Freon 114	1.050	0.15	1	0	105	70	130	0.95	10.0	30	
Freen 12	1.030	0.15	1	0	103	70	130	0.97	6.00	30	
Heptane	0.9400	0.15	1	Ð	94.0	70	130	0.95	1.06	30	
Hexachloro-1,3-butadiene	1.030	0.15	1	Û	103	70	130	0.96	7.04	30	
Hexane	0.9900	0.15	1	0	99,0	70	130	1.03	3.96	30	
isopropyl alcohol	0.9700	0.15	1	0	97.0	70	130	0.92	5.29	30	
m&p-Xylene	1,960	0.30	2	0	98.0	70	130	2.03	3.51	30	
Methyl Butyl Ketone	1,670	0.30	1	0	167	70	130	1.34	21.9	30	S
Methyl Ethyl Ketone	0.9900	0.30	1	0	99.0	70	130	1	1.01	30	
Methyl Isobutyl Ketone	1.230	0.30	ţ	0	123	70	130		9.36	30	

Results reported are not blank corrected
 Analyte detected below quantitation limit

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Centek Laboratories, LLC

S Spike Recovery outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Project: 300 Commerce Dr

Page 43 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCo	de: 0,25CT-T	CE- Units: ppbV		Prep Dat	te:		RunNo: 128	387	
Client ID: ZZZZZ	Batch ID: R12887	Tesit	No: TO-15			Analysis Dai	te: 10/31/2	017	SeqNo: 149	9965	
Analyte	Result	PQL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Methyl tert-bulyl ether	1.020	0.15	1	0	102	70	130	1.04	1,94	30	
Methylene chloride	0.9500	0.15	1	0	95.0	70	130	0.99	4.12	30	
о-ХуІеле	1.050	0.15	1	0	105	70	130	1	4.88	30	
Propylene	0.9700	0.15	1	0	97.0	70	130	1.06	8.87	30	
Styrene	0.9600	0.15	1	0	96.0	70	130	1.05	9.90	30	
Tetrachloroethylene	1.040	0.15	1	0	104	70	130	0.99	4.93	30	
Tetrahydrofuran	0.9500	0.15	1	0	95.0	70	130	0.99	4.12	30	
Toluene	0.9900	0.15	1	0	99.0	70	130	0.99	0	30	
trans-1,2-Dichloroethene	0.9600	0.15	1	0	96.0	70	130	0.95	1.05	30	
Irans-1,3-Dichloropropene	0.9300	0.15	1	0	93.0	70	130	0.84	10.2	30	
Trichloroethene	0.9800	0.040	1	0	98.0	70	130	0.93	5.24	30	
Vinyl acetate	0.9100	0.15	1	0	91.0	70	130	0.95	4.30	30	
Vinyl Bromide	0.9900	0.15	1	0	99.0	70	130	0.91	8.42	30	
Vinyl chloride	0.9900	0.040	1	0	99.0	70	130	0.92	7.33	30	

Qualifiers:

.

Results reported are not blank corrected

J Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Page 44 of 272

-----CLIENT:

Project:

LaBella Associates, P.C. Work Order: C1710061

300 Commerce Dr

E-1	VC	
,	E-'	E-VC

R RPD outside accepted recovery limits

Sample ID: AMB1UG-103017	SampType: MBLK	TestCode: (.25CT-TCE- Units: ppbV		Prep Da	ite:		RunNo: 12	887	
Client ID: ZZZZZ	Batch ID: R12887	TestNo: 1	°O-15		Analysis Da	ile: 10/30/	2017	SegNo: 14	9963	
Analyte	Result	PQL SI	PK value SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15	····							
1,1,2,2-Tetrachloroethane	< 0.15	0.15								
1,1,2-Trichloroethane	< 0.15	0.15								
1,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethene	< 0.15	0.15								
1,2,4-Trichlorobenzene	< 0.15	0.15								
1,2,4-Trimethylbenzene	< 0.15	0.15								
1,2-Dibromoethane	< 0.15	0.15								
1,2-Dichlorobenzene	< 0.15	0.15								
1,2-Dichloroethane	< 0.15	0.15								
1.2-Dichloropropane	< 0.15	0.15								
1,3,5-Trimethylbenzene	< 0.15	0.15								
1,3-butadiene	< 0.15	0.15								
1,3-Dichlorobenzene	< 0.15	0.15								
1,4-Dichlorobenzene	< 0.15	0.15								
1,4-Dioxane	< 0.30	0.30								
2,2,4-trimethylpentane	< 0.15	0.15								
4-ethylloluene	< 0.15	0.15								
Acetone	< 0.30	0.30								
Allyl chloride	< 0.15	0.15								
Benzene	< 0.15	0.15								
Benzyl chloride	< 0.15	0.15								
Bromodichloromethane	< 0.15	0.15								
Bromoform	< 0.15	0,15								
Bromomethane	< 0.15	0.15								
	rted are not blank corrected		Estimated Value above quan	titation rar	 1ge	 H	Holding times for	preparation or a	inalysis excee	led

Analyte detected below quantitation limit

ſ

ND Not Detected at the Limit of Detection

Spike Recovery outside accepted recovery limits S

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

••••••

Page 45 of 272

300 Commerce Dr Project:

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCod	e: 0.25CT-TCE- U	nits: ppbV	Prep Da	ite:		RunNo: 12	687	
Client ID: ZZZZZ	Batch ID: R12887	TestN	o: T O-15		Analysis Da	ite: 10/30/2	2017	SeqNo: 14	9963	
Analyte	Result	PQL	SPK value SPK R	ef Val %REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	< 0.15	0.15								
Carbon tetrachloride	< 0.040	0.040								
Chlorobenzene	< 0.15	0.15								
Chloroethane	< 0.15	0.15								
Chloroform	< D.15	0.15								
Chloromeinane	< 0.15	0.15								
cis-1,2-Dichloroethene	< 0.15	0.15								
cis-1,3-Dichloropropene	< 0.15	0.15								
Cyclohexane	< 0.15	0.15								
Dibromochloromethane	< 0.15	0.15								
Ethyl acetate	< 0.15	0.15								
Ethylbenzene	< 0.15	0.15								
Freon 11	< 0.15	0.15								
Freon 113	< 0.15	0,15								
Freon 114	< 0.15	0.15								
Freon 12	< 0.15	0.15								
Heptane	< 0.15	0.15								
Hexachloro-1,3-buladiene	< 0.15	0.15								
Нехале	< 0.15	0.15								
Isopropyl alcohol	< 0.15	0.15								
m&p-Xylene	< 0.30	0.30								
Methyl Bulyl Ketone	< 0.30	0.30								
Methyl Ethyl Ketone	< 0.30	0.30								
Methyi Isobutyl Ketone	< 0.30	0.30								
Methyl tert-butyl ether	< 0.15	0.15								
Methylene chloride	< 0.15	0.15								
o-Xylene	< 0.15	0.15								
Propylene	< 0.15	0.15								
Styrene	< 0.15	0.15								
Tetrachloroethylene	< 0.15	0.15								
Tetrahydrofuran	< 0.15	0.15								
Qualifiers: Results repo	orted are not blank corrected		E Estimated Val	ue above quantitation ra	nge		Holding times for RPD outside acce			ded

Spike Recovery outside accepted recovery limits S

CLIENT: LaBella Associates, P.C.

Page 46 of 272

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCo	de: 0.25CT-T(CE- Units: ppbV		Prep Da	ate:		RunNo: 12	387	
Client ID: ZZZZZ	Batch ID: R12887	Test	No: TO-15			Analysis Da	ate: 10/30/	2017	SeqNo: 14	9963	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	< 0.15	0.15					-				
trans-1,2-Dichloroethene	< 0.15	0.15									
trans-1,3-Dichloropropene	< 0.15	0,15									
Trichloroethene	< 0.040	0.040									
Vinyi acetale	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinyi chloride	< 0.040	0.040									

Qualifiers:

\$

Results reported are not blank corrected .1 Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

- ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded
- RPD outside accepted recovery limits R

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT: Work Order: Project:

Page 47 of 272

LaBella Associates, P.C.

C1710061

300 Commerce Dr

Sample ID: C1710061-003A MS	SampType: MS	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 12	387	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	No: TO-15			Analysis Da	te: 10/30/:	2017	SeqNo: 149	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9800	0.15	1	0	98.0	70	130				
1,1,2,2-Tetrachloroethane	0.9600	0.15	1	0	96.0	70	130				
1,1,2-Trichloroethane	0.9300	0.15	1	0	93.0	70	130				
1,1-Dichloroethane	0.9500	0.15	1	Ð	95.0	70	130				
1,1-Dichloroethene	0.9800	0.15	1	0	98.0	70	130				
1,2,4-Trichlorobenzene	1,310	0.15	1	D	131	70	130				s
1.2,4-Trimethylbenzene	1.490	0.15	1	0	149	70	130				s
1,2-Dibromoethane	0.9100	0.15	1	٥	91.0	70	130				
1,2-Dichlorobenzene	0.9700	0.15	1	Q	97.0	70	130				
1,2-Dichloroethane	0.9300	0.15	1	0	93.0	70	130				
1,2-Dichloropropane	0.9200	0.15	t	0	92.0	70	130				
1,3,5-Trimethylbenzene	1.040	0.15	1	Q	104	70	130				
1,3-butadiene	1.350	0,15	1	0	135	70	130				s
1,3-Dichlorobenzene	1.000	0.15	1	0	100	70	130				
1,4-Dichlorobenzene	1.020	0.15	1	0	102	70	130				
1,4-Dioxane	1.080	0.30	1	0	108	70	130				
2,2,4-trimethylpentane	0.9760	0.15	1	0	97.0	70	130				
4-ethyltoiuene	1.020	0.15	1	0	102	70	130				
Acetone	5.310	0.30	1	4.4	91.0	70	130				
Ailyl chloride	0.9100	0.15	1	0	91.0	70	130				
Велгеле	1.000	0.15	1	Q	100	70	130				
Benzyl chloride	1.040	0.15	1	0	104	70	130				
Bromodichloromethane	0.9400	0.15	1	0	94.0	70	130				
Bromoform	0.9400	0.15	1	0	94.0	70	130				
Bromomethane	0.9400	0.15	1	0	94.0	70	130				

Qualifiers:

S

Results reported are not blank corrected 1 Analyte detected below quantitation limit

Estimated Value above quantitation range E

Holding times for preparation or analysis exceeded Ħ

RPD outside accepted recovery limits

R

ND Not Detected at the Limit of Detection

Spike Recovery outside accepted recovery limits

TestCode: 0.25CT-TCE-VC

LaBella Associates, P.C.

Work Order: C1710061

\$

CLIENT:

Page 48 of 272

300 Commerce Dr Project:

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MS	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	le:		RunNo: 12	887	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	Vo: TO-15			Analysis Da	le: 10/30/2	2017	SeqNo: 14	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	0.9100	0.15	1	0	91.D	70	130				
Carbon letrachloride	1.010	0.040	1	0.07	94.0	70	130				
Chlorobenzene	0.9200	0.15	1	0	92.0	70	130				
Chloroethane	0.9400	0.15	1	0	94.0	70	130				
Chloroform	0.9600	0.15	1	0	96.0	70	130				
Chloromethane	1.290	0.15	1	0.39	90.0	70	130				
cis-1,2-Dichloroethene	0.8800	0.15	1	0	88.0	70	130				
cis-1,3-Dichloropropene	0.8800	0.15	1	0	0.88	70	130				
Cyclohexane	0.9700	0.15	1	0	97.0	70	130				
Dibromochloromethane	0.9400	0.15	1	0	94.0	70	130				
Ethyl acetate	0.9200	0.15	1	Û	92.0	70	130				
Ethylbenzene	0.9400	0.15	1	D	94.0	70	130				
Freon 11	1.130	0.15	1	0.21	92.0	70	130				
Freon 113	1.080	0.15	1	0	108	70	130				
Freon 114	0.9600	0.15	1	0	96.0	70	130				
Freon 12	1.260	0.15	1	0.44	82.0	70	130				
Heptane	1.000	0.15	1	0	100	70	130				
Hexachloro-1,3-butadiene	1.080	0.15	1	0	108	70	130				
Hexane	1.020	0.15	1	0	102	70	130				
Isopropyl alcohol	1.310	0.15	1	0.54	77.0	70	130				
m&p-Xylene	2.050	0.30	2	0.23	91.0	70	130				
Methyl Butyl Ketone	1.280	0.30	1	0	128	70	130				
Methyl Ethyl Ketone	1,210	0.30	1	0.33	88.0	70	130				
Methyl Isobutyl Ketone	1.130	0.30	1	0.11	102	70	130				
Methyl tert-butyl ether	0.9100	0.15	1	0	91.0	70	130				
Methylene chloride	1,680	0.15	1	0.26	142	70	130				S
o-Xylene	1.050	0.15	1	0.1	96.0	70	130				-
Propylene	1.280	0.15	1	0	128	70	130				
Styrene	1.010	0.15	1	D	101	70	130				
Tetrachloroethylene	0.9600	0.15	4	° D	96.0	70	130				
Tetrahydrofuran	0.9000	0.15	1	0	90.0	70	130				

Spike Recovery outside accepted recovery limits

LaBella Associates, P.C. CLIENT:

Work Order: C1710061

Project: 300 Commerce Dr

Page 49 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MS	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Date):		RunNo: 12	887	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	No: TO-15			Analysis Date	e: 10/30/2	017	SeqNo: 14	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	1.610	0.15	1	0.77	84.0	70	130				
trans-1,2-Dichloroethene	0.9100	0.15	1	0	91.0	70	130				
Irans-1,3-Dichloropropene	0.8200	0.15	1	0	82.0	70	130				
Trichloroethene	0.9000	0.040	1	0	90,0	70	130				
Vinyl acetate	0.8700	0.15	1	0	87.0	70	130				
Vinyl Bromide	0.9200	0.15	1	Ð	92.0	70	130				
Vinyl chloride	0.8900	0.040	1	0	89.0	70	130				
Sample ID: C1710061-003A MS	SampType: MSD	TeslCor	de: 0.25CT-TC	E- Units: ppbV		Prep Date	2		RunNo: 12	887	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	lo: TO-15			Analysis Date	: 10/30/2	017	SeqNo: 14		

		1001				ruiaiyaia De	ite. 1013014	2017	Seque. 14:	3212	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9900	0.15	1	Û	99.0	70	130	0.98	1.02	30	
1,1,2,2-Tetrachloroethane	0.9500	0.15	1	0-	95.0	70	130	0.96	1.05	30	
1,1,2-Trichloroethane	0.9200	0.15	1	Û	92.0	70	130	0.93	1.08	30	
1,1-Dichloroethane	0.9800	0.15	1	0	98.0	70	130	0.95	3.11	30	
1,1-Dichloroethene	1.000	0.15	1	0	100	70	130	0.98	2.02	30	
1,2.4-Trichlorobenzene	1.330	0.15	1	0	133	70	130	1.31	1.52	30	S
1,2,4-Trimethy/benzene	1.500	0.15	1	0	150	70	130	1.49	0.669	30	S
1,2-Dibromoethane	0.9500	0.15	1	0	95.0	70	130	0.91	4.30	30	
1,2-Dichlorobenzene	0.9900	0.15	1	0	99.0	70	130	0.97	2.04	30	
1.2-Dichloroethane	0.9400	0.15	1	0	94.0	70	130	0.93	1.07	30	
1,2-Dichloropropane	0.9500	0.15	1	0	95.0	70	130	0.92	3.21	30	
1,3,5-Trimethylbenzene	1.070	0.15	1	Ū	107	70	130	1.04	2.84	30	
1,3-butadiene	1.500	0.15	1	0	150	70	130	1.35	10.5	30	s
1,3-Dichlorobenzene	1.030	0.15	1	D	103	70	130	1	2.96	30	
1,4-Dichlorobenzene	1.030	0.15	1	0	103	70	130	1.02	0.976	30	
1,4-Dioxane	1.150	0.30	1	D	115	70	130	1.08	6.28	30	
2,2.4-trimethylpentane	0.9800	0.15	1	Ð	98.0	70	130	0.97	1.03	30	
4-ethyltoluene	1.020	0.15	1	0	102	70	130	1.02	0	30	

Qualifiers:

_ .

- Results reported are not blank corrected ļ
 - Analyte detected below quantitation limit
- E Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Page 50 of 272

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MSD	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 12	887	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	to: TO-15			Analysis Da	le: 10/30/2	2017	SeqNo: 14	9972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HìghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	6.100	0.30	1	4.4	170	70	130	5.31	13,8	30	s
Allyl chloride	0.9900	0.15	1	0	99.0	70	130	0.91	8.42	30	•
Benzene	1.030	0.15	1	Ō	103	70	130	1	2.96	30	
Benzyl chloride	1.060	0.15	1	٥	106	70	130	1.04	1.90	30	
Bromodichloromethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Bromeform	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Bromomethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Carbon disulfide	0.9200	0.15	1	٥	92.0	70	130	0.91	1.09	30	
Carbon tetrachloride	1.030	0.040	1	0.07	96.0	70	130	1.01	1.96	30	
Chlorobenzene	0.9400	0.15	1	D	94.0	70	130	0.92	2.15	30	
Chloroethane	0.9600	0.15	1	D	96.0	70	130	0.94	2.11	30	
Chloroform	0.9900	0.15	1	D	99.0	70	130	0.96	3.08	30	
Chloromethane	1.250	0.15	1	0.39	86.0	70	130	1,29	3.15	30	
cis-1,2-Dichloroethene	0.9300	0.15	1	D	93.0	70	130	0.88	5.52	30	
cis-1,3-Dichloropropene	0.9000	0.15	1	Ð	90.0	70	130	0.88	2.25	30	
Cyclohexane	0.9900	0.15	1	0	99.0	70	130	0.97	2,04	30	
Dibromochloromethane	0.9400	0.15	1	٥	94.0	70	130	0.94	0	30	
Ethyt acetate	0.9300	0.15	1	0	93.0	70	130	0.92	1.08	30	
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130	0.94	3.14	30	
Freon 11	1.170	0.15	1	0.21	96.0	70	130	1.13	3.48	30	
Freon 113	1.060	0.15	1	0	106	70	130	1.08	1.87	30	
Freon 114	1.010	0.15	1	D	101	70	130	0.96	5.08	30	
Freon 12	1,290	0.15	1	0.44	85.0	70	130	1.26	2.35	30	
Heptane	1.010	0.15	1	Ð	101	70	130	1	0.995	30	
Hexachioro-1,3-butadiene	1.100	0.15	1	D	110	70	130	1.08	1.83	30	
Hexane	1.050	0.15	1	0	105	70	130	1.02	2.90	30	
Isopropyl alcohol	1.380	0.15	1	0.54	84.0	70	130	1.31	5.20	30	
m&p-Xylene	2.060	0.30	2	0.23	91.5	70	130	2.05	0.487	30	
Methyl Bulyl Kelone	1,440	0.30	1	0	144	70	130	1.28	11.8	30	s
Methyl Ethyl Ketone	1.190	0.30	1	0.33	86.0	70	130	1.21	1.67	30	
Methyl Isobutyl Ketone	\$.170	0.30	1	0.11	106	70	130	1.13	3.48	30	
	d are not blank corrected			and Galas above source				a-Ldin - simmer Co.			

S

Results reported are not blank corrected J.

Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits

Е Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded В

R RPO outside accepted recovery limits Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Work Order: C1710061

Page 51 of 272

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MSD	TestCo	de: 0.25CT-T0	CE- Units: ppbV		Prep Da	te:		RunNo: 12	387	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	No: TO-15			Analysis Da	te: 10/30/2	1017	SegNo: 14	9972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	0.9400	0.15	1	0	94.0	70	130	0.91	3.24	30	
Methylene chloride	2.940	0,15	1	0.26	268	70	130	1.68	54.5	30	SR
o-Xylene	1.100	0.15	1	0.1	100	70	130	1.06	3.70	30	
Propylene	1.350	0.15	1	0	135	70	130	1.28	5.32	30	S
Styrene	1.020	0.15	1	0	102	70	130	1.01	0.985	30	•
Tetrachloroethylene	0.9500	0.15	1	Û	95.0	70	130	0.96	1.05	30	
Tetrahydrofuran	0.9400	0.15	1	0	94.0	70	130	0.9	4.35	30	
Toluene	1.620	0.15	1	0.77	85.0	70	130	1.61	D.619	30	
trans-1,2-Dichloroethene	0.8900	0.15	1	0	89.0	70	130	0.91	2.22	30	
trans-1,3-Dichloropropene	0.8400	0.15	1	0	84.0	70	130	0.82	2.41	30	
Trichloroelhene	0.9200	0.040	1	D	92.0	70	130	0.9	2.20	30	
Vinyl acetate	0.8900	0.15	1	D	89.0	70	130	0.87	2.27	30	
Vinyl Bromide	0.9400	0.15	1	0	94.0	70	130	0.92	2.15	30	
Vinyl chloride	0.9500	0.040	1	D	95.0	70	130	0.89	6.52	30	

Qualifiers:

1

5

. Results reported are not blank corrected

Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits

- E Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection

- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

										13		
										i.		
										1		
										3 22		
A										22		
Centek Laboratories				tug	/m3 Delect						Meth	iod TO-15
IDL Study					October 2	017						Units≍ppb
												• 2
Compound	Amt	idl #1	ЮL #2	101 42	214	101 112	101 50	Chet No.		3		
Propylene	0.3	0.33	0.33	IDL #3 0.32	IDL #4 0.32	IDL #5 0.37	IDL #8 0.33	IDL #9	AVG	StdDev	%Rec	IDL
Freen 12	0.3	0.35	0.35	0.35	0.36	0.35	0.32	0.33 0.36	0.33	0.02	111.0%	0.054
Chloromethane	0.3	0.34	0.35	0.34	0.33	0.35	0.32	(0.35	0.01	116.2%	0.042
Freon 114	0.3	0.34	0.37	0.36	0.33	0.36		0.3	0.34	0.02	112.4%	0.059
Vinyl Chicrida	0.3	0.33	0.32	0.35	0.35	0.34	0.32	0.33	0.35	0.02	117.1%	0.066
Butane	0.3	0.35	0.34	0.33	0.35		0.32	0.32	0.33	0.01	111.0%	0.043
1,3-butadiene	0.3	0.3	0.34	0.34		0.39	0_33	0.35	0.36	0.02	119.0%	0.065
Bromomethane	0.3	0.35	0.36	0.39	0.35	0.36	0.29	0.31	0.33	0.03	111.0%	0.105
Chloroethane	0.3	0.35	0.33	0.35	0.38	0.37	0.35	0,36	0.37	0.02	121.9%	0.048
Ethanol	0,3	0.44	0.33		0.38	0.41	0.36	0.34	0.36	0.03	120.5%	0.084
Acrolein	0.3	0.36	0.35	0,34 0,34	0.32	0.4	0.34	0.35	0.36	0.05	118,6%	0.152
Vinyl Bromide	0.3	0.35	0.35	-	0.36	0.37	0.35	0.35	0.36	0.01	118.6%	0.031
Freen 11	0.3	0.35	0.34	0.38	0.36	0.37	0.34	0.35	0.36	0.01	119.0%	0.043
Acetone	0.3	0.35		0.35	0.35	0.37	0.33	0.35	0.35	0.01	116.7%	0.041
Pentane	0.3	0.34	0.34	0.39	0.37	0.32	0.35	0.29	0.34	0.03	114.3%	0.102
Isopropyl alcohol	0.3	0.35	0.35	0.36	0.36	0.35	0.3	0.38	0.35	0.02	117.1%	0.078
1.1-dichlomethene			0.35	0.37	6.4	0.39	0.32	0.35	0.36	0.03 👌	121.0%	0.085
Frees 113	0.3 0.3	0.37	0.3	0.32	0.37	0.32	0.28	0.31	0.32	0.03	108.1%	0.107
t-Butyl alcohol	0.3	0.33	0.3	0.32	0.32	0.32	0.31	0.31	0.32	0.01	105.2%	0.031
Methylene chloride		0.3	0.31	0.32	0.33	0.33	0.24	0.3	0.30	0.03	101.4%	0.097
Ally chiorde	0.3 0,3	0.35	Q.34	0.35	0.35	0,35	0.33	0.31	0.34	0.02	113.3%	0.048
Carbon disulfide		0.35	0.3	0.32	0.31	0.32	0.32	0.31	0.32	0.02	106.2%	0.049
trans-1,2-dichtoroethene	0.3	0.33	0.32	0.31	0.34	0.33	0.32	0.32	0.32	0.01 🖉	108.1%	0.031
methyl test-batyl elher	0.3	0.31	0.3	0.33	0.31	0.32	0.31	0.3	0.31	0.01	103.8%	0.034
1, 1-oichiosoghane	0.3 0.3	0.31	0.3	0.32	0.32	0.33	0.3	0.31	0.31	0.01 ្	104.3%	0.035
Vinyi acetate		0.32	0.31	0.29	0.32	0.32	0.31	0.31	0.31	0.01	103.8%	0.034
Methyl Ethyl Kelone	0.3	0.32	0.32	0,29	0.32	0,33	0.32	0.32	0.32	0.01	105.7%	0.039
cis-1,2-dichloraethene	0.3	0.31 0.32	0.31	0.34	0.33	0.32	0.28	0.31	0.31	0,02 //	104.8%	0.060
Hexane	0.3	0.32	0,31	0.28	0.31	0.32	0.3	0.31	0.31	0.01	102.4%	0.043
	0.3	0,31	0.31	0.25	0.32	0.33	0.31	9.31	0,31	0,03	101.9%	0.081
Ethyl acetate	0.3	0.23	0.32	0.32	0.33	0.33	0.29	0.31	0.31	0.02	103.6%	0.051
Chloroform	0.3	0.31	0.31	0.32	0.3	0.33	0.31	0.32	0.31	0.01 💱	104.8%	0.031
Tetrahydrofuran	0.3	0.33	0.3	0.3	0.33	0.3	0.3	0.32	0.31	0.01		0.046
1,2-dichloroethane	0,3	0.31	0.32	0,33	0.3	0.33	0.31	0.32	0.32	0.01		0.035
1,1,1-irichioroethane	0.3	0.33	0.32	0,33	0.34	0.34	0.31	0.33	0.33	0.01		0.034
Cyclohexane Carbon totrable data	0.3	0.31	0.3	0.34	0.33	0.31	0.3	0.33	0.32	0.02		0.050
Carbon tetrachloride Benzene	0.3	0.32 0.31	0.31 0.32	0.32	0.32	0.33	0.29	0.33	0.32	0.01		0.043
Methyl methacrylate	0.3	0.31		0.32	0.33	0.32	0.3	0.32	0.32	0.01		0.030
MERILI DISTINGTING	0.3	0.3	0.32	0,31	0.33	0.33	0.3	0.32	0.32	0.01		0.040
Confidential												
VANDCHING												1
										2		
										Ŕ		
										2		

Page 52 of 272

Centek Laboratories, LLC

										2		
Centex Laboratories				1แต/ส	13 Detectio	n Limit					14-16	A TO 15
IDL Study				-	October 201							od TO-15 Jniis=ppb
·												טעע-אחונ
1,4-dioxane	0.3	0.28	0.29	0.31	0.32	0.32	0.24	0.26	0.29	0.03	95.2%	0.097
2,2,4-trimethylpenlane	0.3	0.32	0.31	0.31	0.28	0.31	0.31	0.31	0.31	0.01	102.4%	0.039
Heptane	0,3	0.32	0.3	0.3	0.33	0.33	0,3	0.31	0.31	0.01	104.3%	0.043
Trichicroethene	0.3	0.3	0.3	0.29	0.28	0,3	0.3	0.28	0.29	0.01	97.6%	0.030
1,2-dichloropropane	0.3	0.32	0.31	0.31	0.35	0.31	0.31	0.32	0,32	0.01	106.2%	0.046
Bromodichloromethane	0.3	0.32	0.33	0.33	0.34	0.33	0.32	0.31	0.33	0.01 §	108.6%	0.031
cis-1,3-dichloropropene	0.3	0.31	0.32	0.31	0,34	0.32	0.31	0.32	0.32	0,01	106.2%	0.034
trans-1,3-dichloropropene	0.3	0.31	0.33	0.33	0,33	0,33	0.31	0.32	0.32	0.01	107.6%	0.030
1,1,2-trichloroethane	0,3	0.32	0.34	0.33	0.32	0.33	0.3	0.32	0.32	0.01 ⁰	107.6%	0.039
Toluene	0,3	0.32	0.31	0.32	0.32	0.32	0.31	0.29	0.31	0,01	104.3%	0.035
Methyi Isobutyi Ketone	0.3	0.27	0.29	0.28	0.31	0.31	0.2	0.23	0.27	0.64	90.0%	0.130
Dibromochloromethane	0,3	0.32	0.32	0.32	0.32	0.33	0.31	0.3	0.32	0.01	105.7%	0.030
Melhyl Butyl Ketone	0.3	0.23	0.25	0.26	0.29	0.29	0.2	0.2	0.25	0.04	81.9%	0,119
1,2-dibiomoethane	0.3	0.32	0.31	0.32	0.32	0.32	0,29	0.3	0.31	0.01	103.8%	0.038
Tetrachlorcelhylene	0.3	0.31	0.3	0.32	0.31	0.31	0.29	0.3	0.31	0.01	101.9%	0,031
Chlorobenzene	0.3	0.31	0.31	0.31	0.29	0.31	0.3	0.29	0.30	0.01	101.0%	0.030
Elhylbenzene	0.3	0.31	0.32	0.32	0.3	0.32	0.28	0.3	0.31	0.01	102,4%	0.047
m&p-xylene	0.6	0.64	0.61	0.63	0.65	0.64	0.63	0.63	0.63	0.01	105,5%	0.039
Nonane	0.3	0.31	0.35	0.32	0.32	0.32	0.3	0.3	0,32	0.02	105.7%	0,054
Styrene	0.3	0.27	0.31	0.3	0.3	0.31	0.29	0.31	0.30	0.01	99.5%	0.046
Bromoform	0.3	0.3	0,32	0.32	0.32	0.33	0.31	0.31	0.32	0.01	105.2%	0.031
o-xylene	0.3	0.32	0.32	0.32	0.32	0.32	0.35	0.31	0.32	0.01	107.6%	0.039
Cumene	0.3	0.32	6.31	0.37	0.31	0.32	0.29	0.3	0.31	0.01	103.3%	0.036
Bromoliuorobenzene	1	1.01	1	3	0.99	1.01	1	t.02	1.00	0.01	100.4%	0.031
1,1,2,2-tetrachloroethane	0.3	0.32	6.33	0.32	0.33	0.33	0.31	0.31	0.32	0.01	107.1%	0.028
Propylbenzene	0.3	0.32	0,3	0.31	0.3	0.3	0.29	0.3	0.30	0.01	101.0%	0.030
2-Chlorotoluene	0,3	0,31	0.31	0.31	0.31	0.31	0,27	0.3	0.30	0.01	101.0%	0.047
4-ethylloluene	0.3	0.31	0,3	0.3	0.3	0.32	0.29	0.3	0.30	0.01	101.0%	0.039
1,3,5-trimethysbenzene	0.3	0.31	0.31	0.31	0.31	0.31	0.29	0.29	0.30	0.01	101.4%	0.031
1,2,4-trimethylbenzene	0.3	0.3	0.31	0.31	0.31	0.31	0.27	0.3	0.30	0.01	100.5%	0.046
1,3-dichlarobenzene	0.3	0.31	0,3	0.3	0.3	0.3	0.27	0.3	0.30	0.01	99.0%	0.039
benzyl chlorida	0.3	0.32	0.33	0.34	0.32	0.34	0.28	0.32	0.32	0.02	107,1%	0.064
1,4-dichlorobenzene	0.3	0.3	0.29	0.3	0.3	0.3	0.28	0.28	0.29	0.01	97.6%	0.030
1,2,3-Irimethylbenzene	0.3	0.31	0.31	0.31	0.31	0.31	0.28	0.31	0.31	0.01	101,9%	0.036
1,2-dichlorobenzene	0.3	0.3	0.3	0.3	0.3	0.3	0,27	0.3	0.30	0.01	98.6%	0.036
1,2,4-Inchlombenzene	0.3	0.27	0.28	0.27	0.27	0.28	0.25	0.27	0.27	0.01	90.0%	0.031
Naphthalene	0.3	0.27	0.27	0.27	0.27	0.28	0.22	0.25	0.26	0.02	87.1%	0.064
Hexachloro-1,3-butadiene	0.3	0.3	0.3	0.3	0.3	0.3	0.27	0.29	0.29	0.01	98.1%	0.036
				-				1				
										4		
Confidential										道法		2
												-
										4 3		
										8		

Page 53 of 272

Centek Laboratories IDL Study				0.2 1	g/m3 Dete October 2					StdDev		od TO-15 Jails=ppb
Compound Vinyl Chloride Carbon tetrachloride Trichloroethene	Amt 0.1 0.1 0.1	IDL #1 0.1100 0.0900	IDL #2 0.1300 0.1100	IDL #3 0.1100 0.1100	IDL #4 0.1300 0.1100	IDL #5 0.1200 0.1160	IDL #9 0.1100 0.0900	IDL #10 0.1300 0.1200	AVG 0.12 0.11	0.01	%Rec 120.0% 105.7%	IDL 0.031 0.036
Confidential	υ. ι	0.0900	0.1000	0,1000	0,1000	0.1000	0.0900	0.1200	0.10		100.0%	0.031

Centek Laboratories, LLC

÷

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

.,

 $\frac{RRF}{Ax * Cis}$

where: Ax = area of the characteristic ion for the compound being measured Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

% RSD = <u>Standard deviation of RRF values * 100</u> mean RRF

Percent Difference (%D)

 $\% D = \frac{(RRFc - mean RRFi) * 100}{mean RRFi}$

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

 $ppbv = \frac{Ax * Is * Df}{Ais * RRF}$

where: Ax = area of the characteristic ion for the compound being measured Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

•

.

.

,

.

GC/MS VOLATILES-WHOLE AIR

.

· ·

.

۰.

METHOD TO-15

SAMPLE DATA

.

Page 56 of 272

Centek La	boratories, LLC				Date:	20-No	ov-17
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	2017_	10_24_EX1A
Lab Order:	C1710061				Tag Number:	322.2.	50
Project:	300 Commerce Dr				Collection Date:	10/24	/2017
Lab ID:	C1710061-001A				Matrix:		
Analyses		Result	**Limit			DF	Date Analyzed
	TERS		F	LD		•	Analyst:
Lab Vacuum In		-2			"Hg		10/27/2017
Lab Vacuum Ou	t	-30			"Hg		10/27/2017
UG/M3 W/ 0.25	SUG/M3 CT-TCE-VC		тс	-15			Analyst: RJP
1.1,1-Trichloroet	hane	< 0.15	0.15		Vdqq	1	10/30/2017 4:59:00 PM
1,1,2,2-Tetrachic	proethane	< 0.15	0.15		Vdqq	1	10/30/2017 4:59:00 PM
1,1,2-Trichloroet	hane	< 0.15	0.15		Vdqq	1	10/30/2017 4:59:00 PM
1,1-Dichloroetha	ne	< 0.15	0.15		νσαα	1	10/30/2017 4:59:00 PM
1,1-Dichloroethe	ne	< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
1,2,4-Trichiorobe	30Zene	< 0.15	0.15		Vdqq	1	10/30/2017 4:59:00 PM
1,2,4-Trimethylb	enzene	0.41	0.15		opbV	1	10/30/2017 4:59:00 PM
1,2-Dibromoetha	ne	< 0.15	0.15		ρpbV	1	10/30/2017 4:59:00 PM
1,2-Dichlorobenz	zene	< 0.15	0.15		ррbV	1	10/30/2017 4:59:00 PM
1,2-Dichloroetha	ne	< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
1,2-Dichloroprop	ane	< 0.15	0.15		Vdaq	1	10/30/2017 4:59:00 PM
1.3.5-Trimethylb	enzene	< 0,15	0.15		ppbV	1	10/30/2017 4:59:00 PM
1.3-butadiene		< 0.15	0.15		ppbV	3	10/30/2017 4:59:00 PM
1,3-Dichlorobenz	zene	< 0.15	0.15		ppb∨	1	10/30/2017 4:59:00 PM
1.4-Dichlorobenz	iene	< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
1,4-Dioxane		< 0.30	0.30		Vdqq	1	10/30/2017 4:59:00 PM
2,2,4-trimethylpe	intane	0.25	0.15		PobV	1	10/30/2017 4:59:00 PM
4-ethyltoiuene		< 0.15	0.15		Vaqq	1	10/30/2017 4:59:00 PM
Acetone		4.7	1.5		ppbV	5	10/31/2017 12:02:00 AM
Allyl chloride		< 0.15	0.15		Vdqq	1	10/30/2017 4:59:00 PM
Benzene		0.45	0.15		ppbV	1	10/30/2017 4:59:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
Bromodichlorom	ethane	< 0.15	0.15		ррь∨	1	10/30/2017 4:59:00 PM
Bromoform		< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
Bromomethane		< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
Carbon disulfide		< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
Carbon tetrachio	ride	0.080	0.040		ppbV	1	10/30/2017 4:59:00 PM
Chiorobenzene		< 0.15	0.15		Vdqq	1	10/30/2017 4:59:00 PM
Chloroethane		< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
Chloroform		< 0.15	0.15		ppb∨	1	10/30/2017 4:59:00 PM
Chloromethane		0.79	0.15		ppb∨	1	10/30/2017 4:59:00 PM
cis-1,2-Dichloroe	thene	< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
cis-1,3-Dichtorop	ropene	< 0.15	Ö.15		Vdqq	1	10/30/2017 4:59:00 PM
Cyclohexane		0.16	0.15		ppb∨	1	10/30/2017 4:59:00 PM
Dibromochlorom	ethane	< 0.15	0.15		ppbV	1	10/30/2017 4:59:00 PM
Ethyl acetate		< 0.15	0.15		ррб∨	1	10/30/2017 4:59:00 PM

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

.

ND Not Detected at the Limit of Detection

Page 1 of 10

CLIENT: LaBella Associates, P.C. Client Sample ID: 2017_10_24_EX1A Lab Order: C1710061 Tag Number: 322.250 Project: Collection Date: 10/24/2017 300 Commerce Dr Lab ID: C1710061-001A Matrix: AIR Analyses Result **Limit Qual Units DF Date Analyzed

Analyses	Result		Iat Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Ethylbenzene	0.42	0.15	ppbV	1	10/30/2017 4:59:00 PM
Freen 11	0.22	0.15	ppbV	1	10/30/2017 4:59:00 PM
Freon 113	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Freon 114	< 0.15	0.15	Vdqq	1	10/30/2017 4:59:00 PM
Freon 12	0.49	0.15	ppbV	1	10/30/2017 4:59:00 PM
Heptane	0.33	0.15	Vdqq	1	10/30/2017 4:59:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	Vdqq	1	10/30/2017 4:59:00 PM
Hexane	0.20	0.15	ρρον	1	10/30/2017 4:59:00 PM
Isopropyl alcohoł	3.6	0.75	Vdqq	5	10/31/2017 12:02:00 AM
m&p-Xylene	1.6	0.30	ppbV	í	10/30/2017 4:59:00 PM
Methyl Butyl Ketone	< 0.30	0.30	vdqq	1	10/30/2017 4:59:00 PM
Methyl Ethyl Ketone	0.47	0.30	ppb∨	1	10/30/2017 4:59:00 PM
Methyl Isobutyi Ketone	< 0.30	0.30	Vdqq	1	10/30/2017 4:59:00 PM
Methyl tert-butyl ether	< 0.15	0.15	vdqq	1	10/30/2017 4:59:00 PM
Methylene chloride	0.20	0.15	ppbV	1	10/30/2017 4:59:00 PM
o-Xylene	0.62	0.15	ppbV	1	10/30/2017 4:59:00 PM
Propylene	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Styrene	< 0.15	0.15	vdqq	1	10/30/2017 4:59:00 PM
Tetrachloroethylene	< 0.15	0.15	vdqq	1	10/30/2017 4:59:00 PM
Tetrahydrofuran	0.30	0.15	ppbV	1	10/30/2017 4:59:00 PM
Toluene	4.2	0.75	ppb∨	5	10/31/2017 12:02:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	10/30/2017 4:59:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Trichloroethene	< 0.040	0.040	ppbV	1	10/30/2017 4:59:00 PM
Vinyl acetate	< 0.15	0.15	ppbV	1	10/30/2017 4:59:00 PM
Vinyl Bromide	< 0.15	0.15	Vaqq	1	10/30/2017 4:59:00 PM
Vinyl chloride	< 0.040	0.040	ppb∨	1	10/30/2017 4:59:00 PM
Surr: Bromofluorobenzene	100	70-130	%REC	1	10/30/2017 4:59:00 PM

	· · · · · · · · · ·				
Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	13	Analyte detected in the associated Method Blank	е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND		
	S	Spike Recovery outside accepted recovery limits		Page 2 of 1	0

Date: 20-Nov-17

..... CLIENT: LaBella Associates, P.C. Client Sample 1D: 2017_10_24_EX1A Lab Order: C1710061 **Tag Number: 322,250** Project: 300 Commerce Dr Collection Date: 10/24/2017 Lab ID: C1710061-001A Matrix: AIR

Analyses	Result	**Limit Q	ual Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
1.1.1-Trichloroethane	< 0.82	0.82	ug/m3	1	10/30/2017 4:59:00 PM
1,1.2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/30/2017 4:59:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	10/30/2017 4:59:00 PM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/30/2017 4:59:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/30/2017 4:59:00 PM
1,2,4-Trimethylbenzene	2.0	0.74	ug/m3	1	10/30/2017 4:59:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/30/2017 4:59:00 PM
1.2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	10/30/2017 4:59:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/30/2017 4:59:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	10/30/2017 4:59:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/30/2017 4:59:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 4:59:00 PM
1,4-Dioxane	< 1,1	1.1	ug/m3	1	10/30/2017 4:59:00 PM
2,2,4-trimethylpentane	1.2	0.70	ug/m3	1	10/30/2017 4:59:00 PM
4-ethyitoluene	< 0.74	0.74	ug/m3	1	10/30/2017 4:59:00 PM
Acetone	11	3.6	ug/m3	5	10/31/2017 12:02:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	10/30/2017 4:59:00 PM
Benzene	1.4	0.48	ug/m3	1	10/30/2017 4:59:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/30/2017 4:59:00 PM
Bromodichioromethane	< 1.0	1.0	ug/m3	1	10/30/2017 4:59:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	10/30/2017 4:59:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	10/30/2017 4:59:00 PM
Carbon disulfide	< 0.47	0,47	ug/m3	1	10/30/2017 4:59:00 PM
Carbon tetrachloride	0.50	0.25	ug/m3	1	10/30/2017 4:59:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/30/2017 4:59:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	10/30/2017 4:59:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	10/30/2017 4:59:00 PM
Chloromethane	1.6	0.31	ug/m3	1	10/30/2017 4:59:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 4:59:00 PM
Cyclohexane	0.55	0.52	ug/m3	1	10/30/2017 4:59:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/30/2017 4:59:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	10/30/2017 4:59:00 PM
Ethylbenzene	1.8	0.65	ug/m3	1	10/30/2017 4:59:00 PM
Freon 11	1,2	0.84	ug/m3	1	10/30/2017 4:59:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	10/30/2017 4:59:00 PM
Freon 114	< 1,0	1.0	ug/m3	1	10/30/2017 4:59:00 PM

B Analyte detected in the associated Method Blank

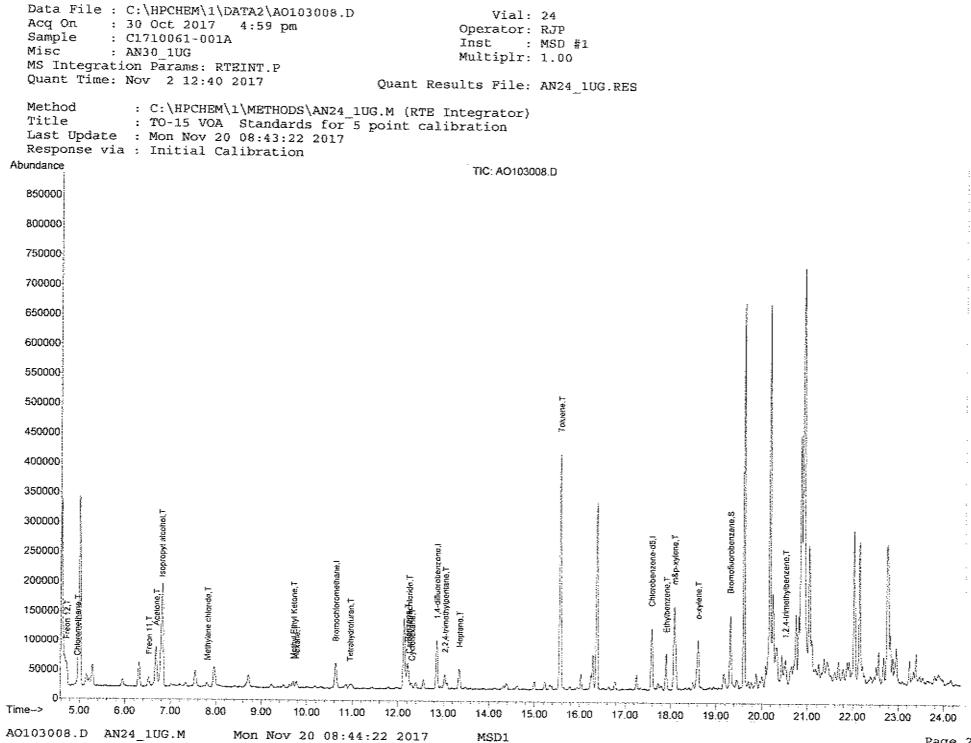
Н Holding times for preparation or analysis exceeded

JN. Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits Е Estimated Value above quantitation range

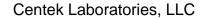
Ţ Analyte detected below quantitation limit

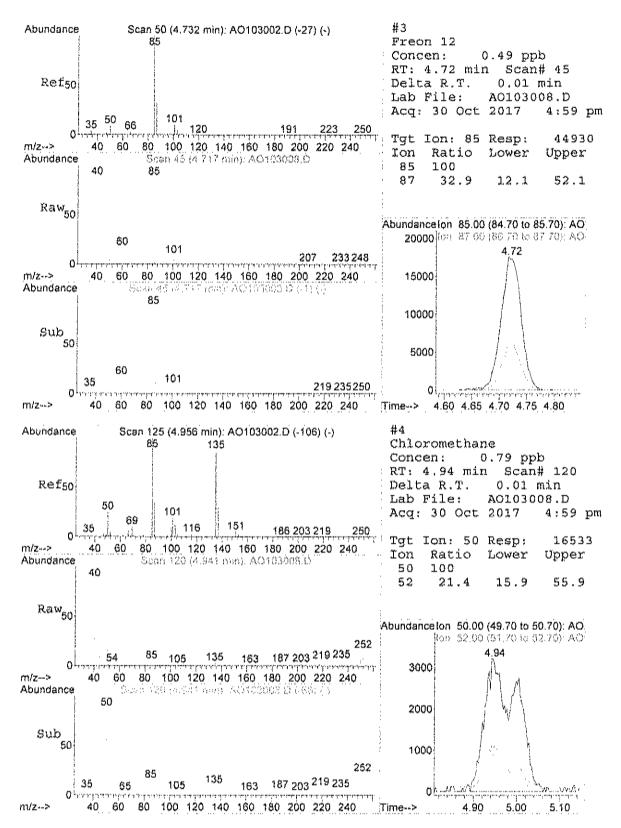
ND Not Detected at the Limit of Detection

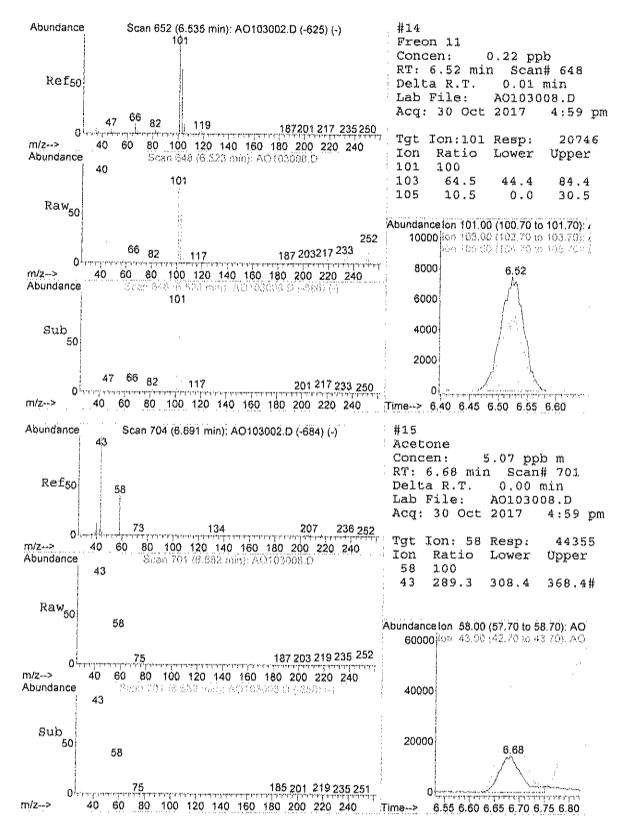

Date: 20-Nov-17

Analyses		lesult	**Limit		DF	Date Analyzed
Lab ID;	C1710061-001A			 Matrix:		
Project:	300 Commerce Dr			Collection Date:	10/24/20	17
Lab Order:	C1710061			Tag Number:	322.250	
CLIENT:	LaBella Associates, P.C.			lient Sample ID:		
	· · · · · · · · · · · · · · · · · · ·	· ··· · · · · · · · · · · · · · · · ·		 		

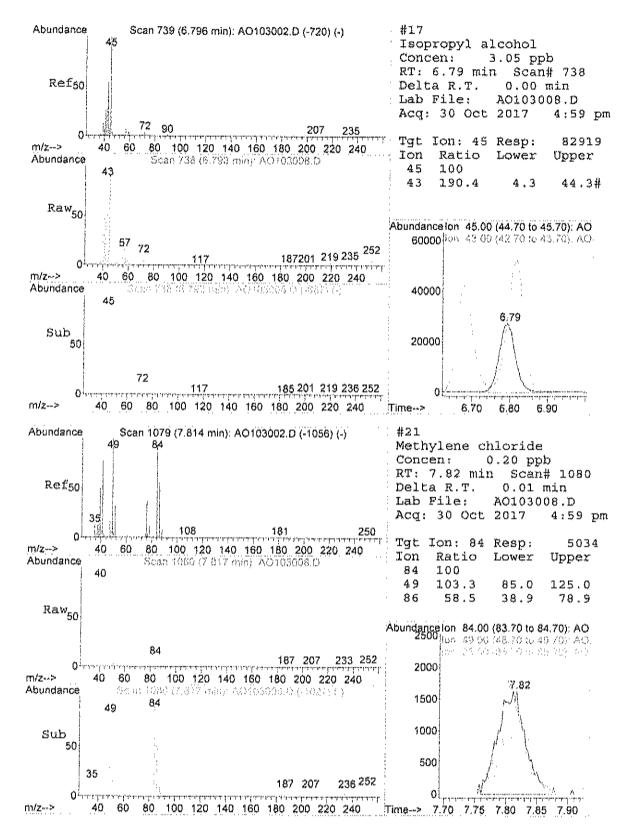
Analyses	ixesuit	Limit Qui	ai Qaits	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 12	2.4	0.74	ug/m3	1	10/30/2017 4:59:00 PM
Heptane	1.4	0.61	ug/m3	1	10/30/2017 4:59:00 PM
Hexachloro-1,3-butadiene	< 1,6	1.6	ug/m3	1	10/30/2017 4:59:00 PM
Hexane	0.70	0.53	ug/m3	1	10/30/2017 4:59:00 PM
Isopropyl alcohol	8.7	1.8	ug/m3	5	10/31/2017 12:02:00 AM
m&p-Xylene	7.2	1.3	ug/m3	1	10/30/2017 4:59:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/30/2017 4:59:00 PM
Methyl Ethyl Ketone	1.4	0.88	սց/m3	1	10/30/2017 4:59:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	10/30/2017 4:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	10/30/2017 4:59:00 PM
Methylene chloride	0.69	0.52	ug/m3	1	10/30/2017 4:59:00 PM
o-Xylene	2.7	0.65	ug/m3	1	10/30/2017 4:59:00 PM
Propylene	< 0.26	0.26	ug/m3	1	10/30/2017 4:59:00 PM
Styrene	< 0.64	0.64	ug/m3	1	10/30/2017 4:59:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	10/30/2017 4:59:00 PM
Tetrahydrofuran	0.88	0.44	ug/m3	1	10/30/2017 4:59:00 PM
Toluene	16	2.8	ug/m3	5	10/31/2017 12:02:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 4:59:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 4:59:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	10/30/2017 4:59:00 PM
Vinyf acetate	< 0.53	0.53	ug/m3	1	10/30/2017 4:59:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	10/30/2017 4:59:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	10/30/2017 4:59:00 PM


	···· ···· ···			
Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range
	łł	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit
	.íN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 2 of 10

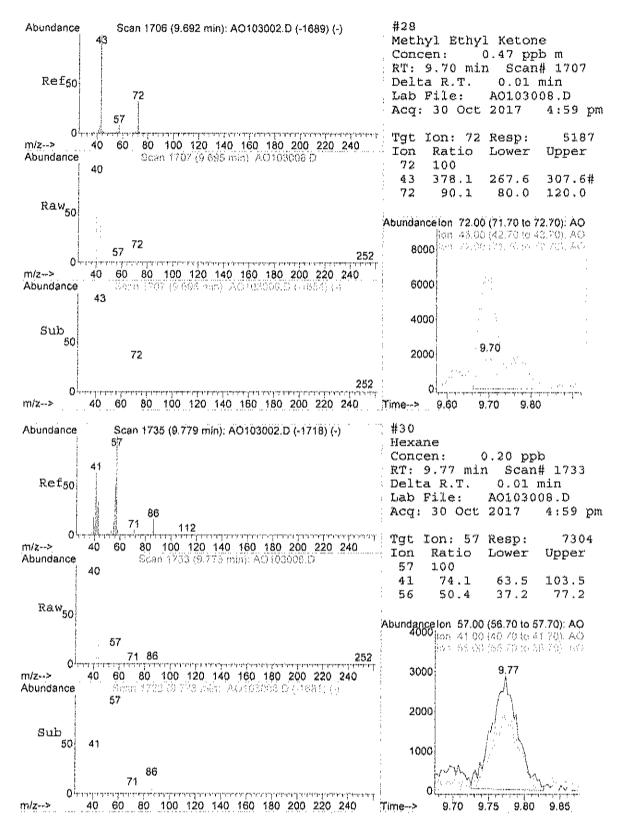

Centek Laboratories, LL	С										
	Quantitat	ion Rej	port (QT	Review	/ed)						
Data File : C:\HPCHEM\1\DATA2 Acq On : 30 Oct 2017 4:5 Sample : C1710061-001A Misc : AN30_1UG MS Integration Params: RTEINT Quant Time: Oct 30 17:28:34 2	9 pm		Oper Inst Mult	Vial: ator: iplr: File:	RJP MSD # 1.00						
Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN											
Internal Standards	R.T.	QIon	Response C	onc Un	its De	ev(Min)					
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	$10.64 \\ 12.86$		20047 91961		ppb ppb	0.00 0.00 0.00					
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.31	95 ~ 130	53240 Recovery	1.00 =	ррЪ 100.00	0.00 8					
Target Compounds					c	Qvalue					
3) Freon 12	4.72	85	44930 16533	0.49		99					
4) Chloromethane	4.94			0.79	ppb	75					
14) Freon 11	6.52		20746	0.22	dqq	100					
15) Acetone	6.68			5.07	ppb						
17) Isopropyl alcohol	6.79		82919			# 1					
21) Methylene chloride	7.82	84	5034	0.20	ppb	99					
28) Methyl Ethyl Ketone 30) Hexane		72	5187m 🛷	0.47	ppb						
33) Tetrahydrofuran	9.77 10.95		7304 6803	0.20	agg	90					
37) Cyclohexane	12.30					97					
38) Carbon tetrachloride			5813m 🛩 5707	0.16		95					
39) Benzene		79	37740	0.45		98					
42) 2,2,4-trimethylpentane	12.21 13.03	57	29334	0.25	ppb ppb	83					
43) Heptane	13.36	43	13534	0.33		81					
51) Toluene	13.36 15.56	92	214548	3.77	opb	90					
58) Ethylbenzene	17.90	91	52482	0.42	ppb	99					
59) m&p-xylene	18.08	91	148965	1.65	ppb	96					
63) o-xylene	18,60	91	60865	0.62]		92					
71) 1,2,4-trimethylbenzene	20.52	105	26184	0.41		93					


Dage 62 of 272

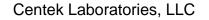
Page 2

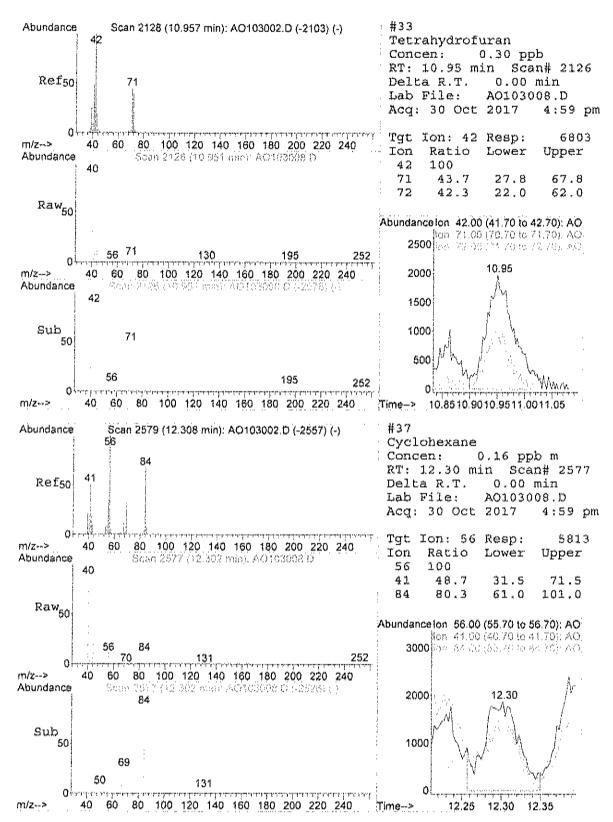


A0103008.D AN24 1UG.M

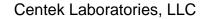


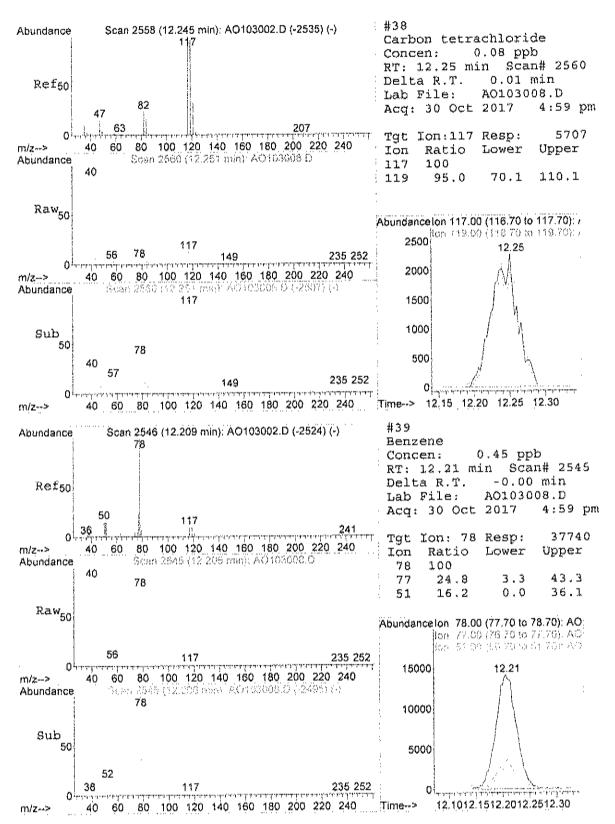
A0103008.D AN24_1UG.M


Page 64 of 272

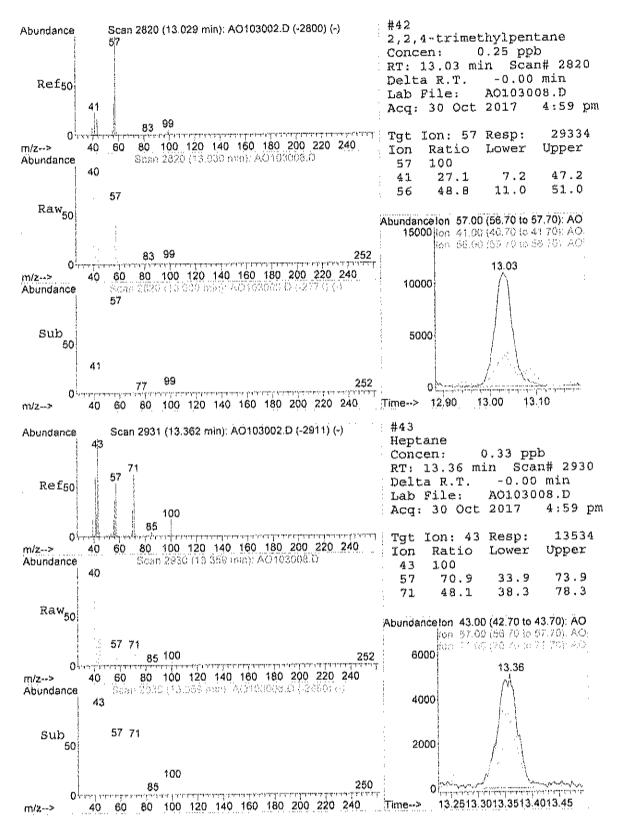


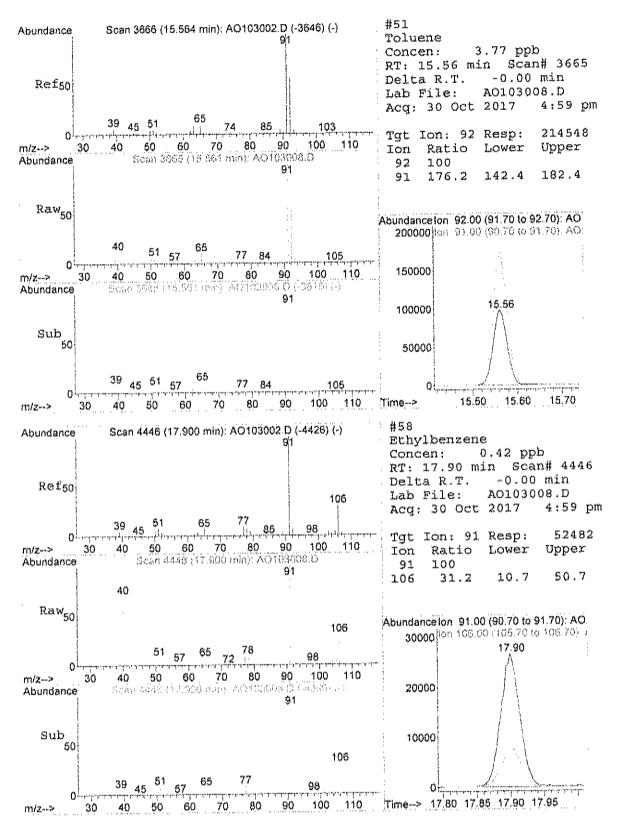
A0103008.D AN24 1UG.M


A0103008.D AN24_1UG.M



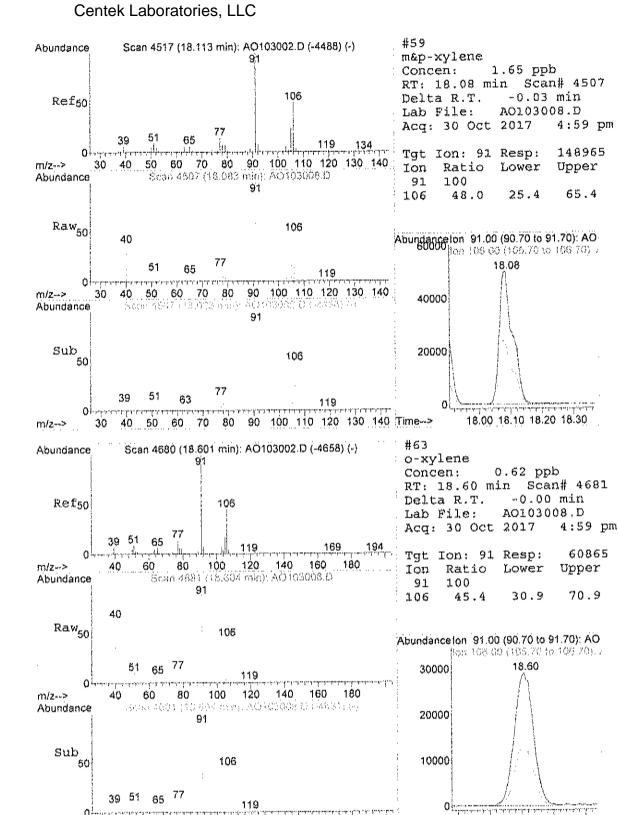
A0103008.D AN24 1UG.M


Page 67 of 272


A0103008.D AN24 1UG.M

Page 68 of 272

A0103008.D AN24 1UG.M


Page 69 of 272

A0103008.D AN24 1UG.M

MSD1

Page 70 of 272

A0103008.D AN24_1UG.M

m/z-->

Mon Nov 20 08:44:31 2017

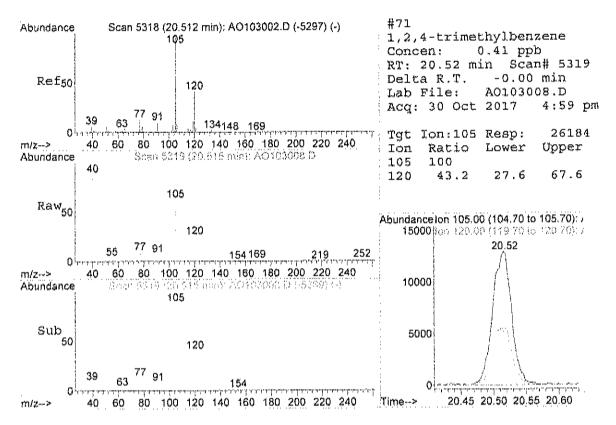
180

MSD1

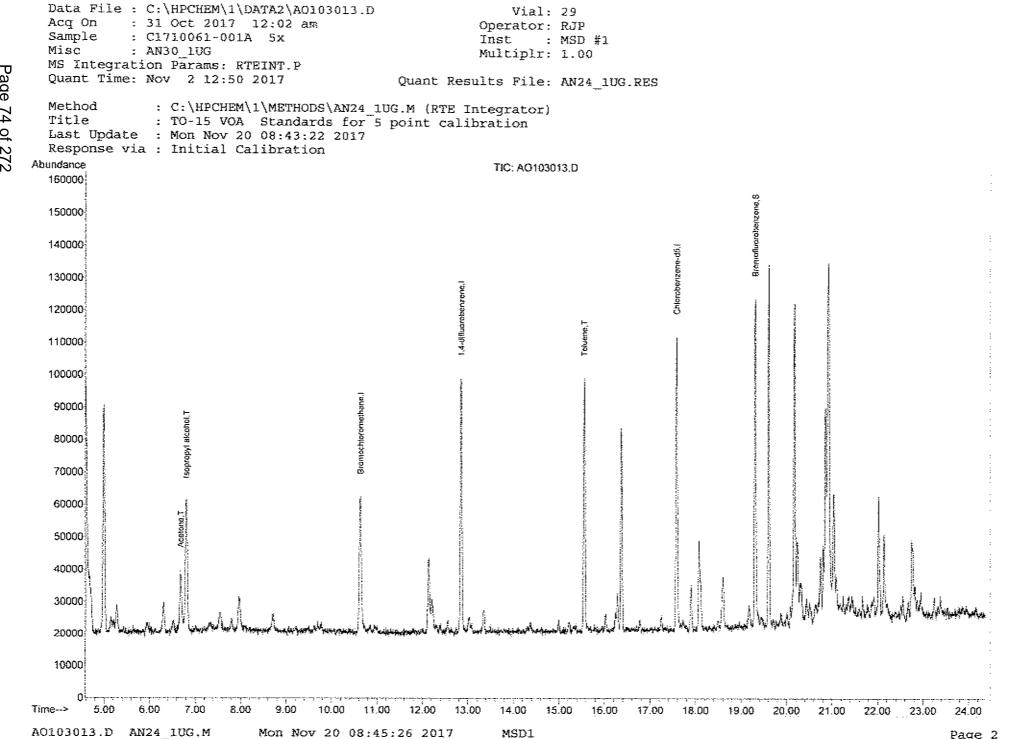
Time--> 18.50 18.55 18.60 18.65

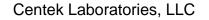
Page 11

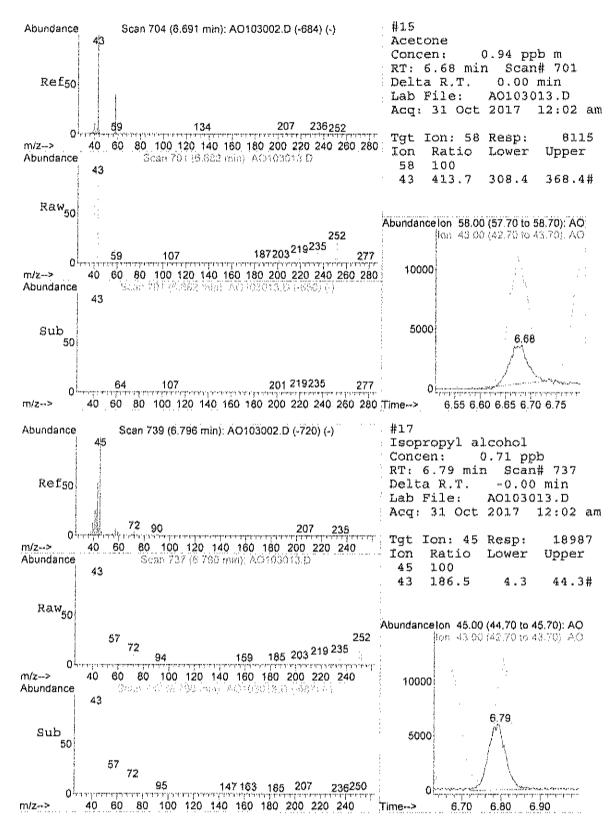
Page 71 of 272


60

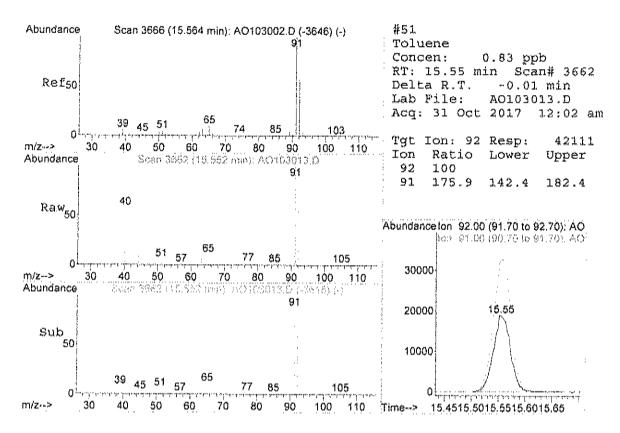
40


100


80


120 140 160

Centek Laboratories, LLC						
	Quantitat	ion Re	port (Q)	ľ Revie	wed)	
Data File : C:\HPCHEM\1\DATA2\ Acq On : 31 Oct 2017 12:02 Sample : C1710061-001A 5x Misc : AN30_1UG MS Integration Params: RTEINT. Quant Time: Oct 31 11:13:23 20	am P		Mul	tiplr:	1.00	
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Stan Last Update : Wed Oct 25 08:3 Response via : Initial Calibra DataAcq Meth : 1UG_RUN Internal Standards	dards for 2:47 2017 tion	5 poi:	nt calibrat	tion		******
	*********		*			
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.62 12.85 17.58	128 114 117	19821 87418 70227	1.00 1.00 1.00	dqq dqq dqq	-0.01 -0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 1	19.31 Range 70	95 - 130	44827 Recover	0.95 Y =	ppb 95.1	0.00 8
Target Compounds						Qvalue
15) Acetone 17) Isopropyl alcohol 51) Toluene	6.68 6.79 15.55	45	8115m 🔊 18987 42111	0.71	ppb	# 1. 90



A0103013.D AN24 1UG.M

Page 75 of 272

Page 76 of 272

MSD1

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.						10.04 0400
Lab Order:	C1710061						_10_24_DUP
Project:	300 Commerce Dr			Tag Nu			
-				Collection			1/2017
Lab ID:	C1710061-002A			N	latrix:	AIR	
Analyses		Result	**Limit	Qual Units		DF	Date Analyzed
FIELD PARAME	TERS		FL	.D			Analyst:
Lab Vacuum In		-2		"Hg			10/27/2017
Lab Vacuum Out	t	-30		"Hg			10/27/2017
UG/M3 W/ 0.25	UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1,1,1-Trichloroeth		< 0.15	0.15	ppb∨		1	10/30/2017 5:39:00 PM
1,1,2,2-Tetrachlo	roethane	< 0.15	0.15	ppbV		1	10/30/2017 5:39:00 PM
1.1.2-Trichloroet/		< 0,15	0.15	ppbV		1	10/30/2017 5:39:00 PM
1,1-Dichloroethar		< 0.15	0.15	ppb∨		1	10/30/2017 5:39:00 PM
1.1-Dichloroether	1e	< 0.15	0.15	ppbV		1	10/30/2017 5:39:00 PM
1,2,4-Trichlorobe	nzene	< 0.15	0.15	ppbV		1	10/30/2017 5:39:00 PM
1.2.4-Trimethylbe	nzene	0.43	0.15	Vdqq		, 1	
1,2-Dibromoethar	ne	< 0.15	0.15	ppbV		1	10/30/2017 5:39:00 PM
1,2-Dichlorobenze	ene	< 0.15	0.15	ppbV ppbV			10/30/2017 5:39:00 PM
1,2-Dichloroethan	e	< 0.15	0.15	ppbV ppbV		1	10/30/2017 5:39:00 PM
1,2-Dichloropropa	រោច	< 0.15	0.15	ppbV ppbV		1	10/30/2017 5:39:00 PM
1,3,5-Trimethylbe	nzene	< 0.15	0.15	Vdqq Vdqq		1	10/30/2017 5:39:00 PM
1.3-butadiene		< 0.15	0.15			1	10/30/2017 5:39:00 PM
1,3-Dichlorobenze	ene	< 0.15	0.15	ppbV		1	10/30/2017 5:39:00 PM
4-Dichlorobenze	ne	< 0.15	0.15	ppbV		1	10/30/2017 5:39:00 PM
1,4-Dioxane		< 0.30	0.10	ppbV		1	10/30/2017 5:39:00 PM
2,2,4-trimethylpen	tane	0.28		ppb∨		1	10/30/2017 5:39:00 PM
4-ethyitoluene		< 0.15	0.15	Vdqq		1	10/30/2017 5:39:00 PM
Acetone		~ 0.15 6.8	0.15	ppb∨		1	10/30/2017 5:39:00 PM
Niyi chloride			1.5	ppbV		5	10/31/2017 12:39:00 AM
3enzene		< 0.15	0.15	Vdqq		1	10/30/2017 5:39:00 PM
Benzyl chloride		0.46	0.15	ppbV	1		10/30/2017 5:39:00 PM
Bromodichloromet	h	< 0.15	0.15	Váqq	1		10/30/2017 5:39:00 PM
Bromoform	starie	< 0.15	0.15	ppb∨	1		10/30/2017 5:39:00 PM
Bromomethane		< 0.15	0.15	Vdqq	1		10/30/2017 5:39:00 PM
Carbon disulfide		< 0.15	0.15	Vdqq	1		10/30/2017 5:39:00 PM
	4	< 0.15	0.15	ppbV	1		10/30/2017 5:39:00 PM
arbon tetrachloric Norobenzene	19	0.080	0.040	Vdqq	1		10/30/2017 5(39:00 PM
		< 0.15	0.15	ppbV	1		10/30/2017 5:39:00 PM
hioroethane		< 0.15	0.15	Vdqq	1		10/30/2017 5:39:00 PM
hloroform		< 0.15	0.15	ppbV	1		10/30/2017 5:39:00 PM
hloromethane		< 0.15	0.15	ppbV	1		10/30/2017 5:39:00 PM
s-1,2-Dichloroeth		< 0.15	0.15	Vdqq	1		10/30/2017 5:39:00 PM
s-1,3-Dichloropro	pene	< 0.15	0.15	ppbV	1		10/30/2017 5:39:00 PM
yclohexane		0.17	0.15	Vdqq	1		10/30/2017 5:39:00 PM
ibromochlorometh	lane	< 0.15	0.15	ppb∨	1		10/30/2017 5:39:00 PM
thyi acetate		< 0.15	0.15	ppbV	1		10/30/2017 5:39:00 PM

.....

Qualifiers: ** Quanti

** Quantitation Limit

B Analyte detected in the associated Method Blank

H - Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 3 of 10

..... CLIENT: LaBella Associates, P.C. Lab Order: C1710061 **Project:** 300 Commerce Dr Lab ID: C1710061-002A

Client Sample ID: 2017_10_24_DUP Tag Number: 457.250 Collection Date: 10/24/2017 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то-	15			Analyst: RJP
£thyibenzene	0.43	0.15	ţ	Vdqc	1	10/30/2017 5:39:00 PM
Freon 11	0.22	0.15	ŗ	opbV	1	10/30/2017 5:39:00 PM
Freon 113	< 0.15	0.15	ł	opbV	1	10/30/2017 5:39:00 PM
Freon 114	< 0.15	0.15	F	opbV	1	10/30/2017 5:39:00 PM
Freon 12	0.49	0.15	f	opbV	1	10/30/2017 5:39:00 PM
Heptane	0.33	0.15	F	Vdqc	1	10/30/2017 5:39:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ĸ	vaqo	1	10/30/2017 5:39:00 PM
Нехале	< 0.15	0.15	Ţ	opbV	1	10/30/2017 5:39:00 PM
Isopropyl alcohol	7.1	0.75	ñ	opbV	5	10/31/2017 12:39:00 AM
m&p-Xylene	1,7	0.30	Ę	vdqc	1	10/30/2017 5:39:00 PM
Methyl Butyl Ketone	< 0.30	0.30	F	Váqo	1	10/30/2017 5:39:00 PM
Methyl Ethyl Kelone	0.64	0.30		ydqo	1	10/30/2017 5:39:00 PM
Methyl Isobułyl Ketone	0.11	0.30	J	Vdqd	1	10/30/2017 5:39:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ŗ	ppbV	1	10/30/2017 5:39:00 PM
Methylene chloride	0.48	0.15	4	Vđạc	1	10/30/2017 5:39:00 PM
o-Xylene	0.64	0.15	ŗ	vdqq	1	10/30/2017 5:39:00 PM
Propylene	< 0.15	0.15	p	vdq	1	10/30/2017 5:39:00 PM
Styrene	< 0.15	0.15	Ŗ	opbV	1	10/30/2017 5:39:00 PM
Tetrachloroethylene	< 0.15	0.15	P	pbV	1	10/30/2017 5:39:00 PM
Tetrahydrofuran	0.34	0.15	F	Vdqo	1	10/30/2017 5:39:00 PM
Toiuene	5.2	0.75	p	opbV	5	10/31/2017 12:39:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	p	pbV	1	10/30/2017 5:39:00 PM
trans-1,3-Dichtoropropene	< 0.15	0.15	ģ	vdq	1	10/30/2017 5:39:00 PM
Trichloroethene	< 0.040	0.040	•	vaqu	1	10/30/2017 5:39:00 PM
Vinyl acetate	< 0.15	0.15		vdqu	1	10/30/2017 5:39:00 PM
Vinyl Bromide	< 0.15	0.15	•	ipbV	1	10/30/2017 5:39:00 PM
Vinyl chloride	< 0.040	0.040		pbV	1	10/30/2017 5:39:00 PM
Surr: Bromofluorobenzene	99.0	70-130		6REC	1	10/30/2017 5:39:00 PM

Qualifiers:	
-------------	--

- *** Quantitation Limit
- Analyte detected in the associated Method Blank в

.....

- H Holding times for preparation or analysis exceeded
- JN. Non-routine analyte. Quantitation estimated,
- s Spike Recovery outside accepted recovery limits
- , Results reported are not blank corrected
- Æ Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- Page 4 of 10

CLIENT: LaBella Associates, P.C. Client Sample ID: 2017_10_24_DUP Lab Order: C3710061 Tag Number: 457.250 300 Commerce Dr Collection Date: 10/24/2017 Project: Matrix: AIR Lab ID: C1710061-002A Annhunge

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	10/30/2017 5:39:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	10/30/2017 5:39:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	10/30/2017 5:39:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 5:39:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	10/30/2017 5:39:00 PM
1,2,4-Trimethylbenzene	2.1	0.74	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 5:39:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	10/30/2017 5:39:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	10/30/2017 5:39:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	t	10/30/2017 5:39:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	10/30/2017 5:39:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 5:39:00 PM
1.4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	10/30/2017 5:39:00 PM
1,4-Dioxane	< 1,1	1.1	ug/m3	1	10/30/2017 5:39:00 PM
2,2,4-trimethylpentane	1.3	0.70	ug/m3	1	10/30/2017 5:39:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	10/30/2017 5:39:00 PM
Acetone	16	3.6	ug/m3	5	10/31/2017 12:39:00 AM
Allył chloride	< 0.47	0.47	ug/m3	1	10/30/2017 5:39:00 PM
Benzene	1.5	0.48	ug/m3	1	10/30/2017 5:39:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	10/30/2017 5:39:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	10/30/2017 5:39:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	10/30/2017 5:39:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	10/30/2017 5:39:00 PM
Carbon tetrachloride	0.50	0.25	ug/m3	1	10/30/2017 5:39:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	10/30/2017 5:39:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	10/30/2017 5:39:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	10/30/2017 5:39:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	10/30/2017 5:39:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 5:39:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 5:39:00 PM
Cyclohexane	0.59	0.52	ug/m3	1	10/30/2017 5:39:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	10/30/2017 5:39:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	10/30/2017 5:39:00 PM
Ethylbenzene	1.9	0.65	ug/m3	1	10/30/2017 5:39:00 PM
Freon 11	1.2	0.84	ug/m3	1	10/30/2017 5:39:00 PM
Freen 113	< 1.1	1.1	ug/m3	1	10/30/2017 5:39:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	10/30/2017 5:39:00 PM

** Qualifiers: Quantitation Limit

в Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits Results reported are not blank corrected

.

Estimated Value above quantitation range Ε

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

		ан ала сан алу суучу суучу суучу суучу алу суучу алу суучу алу алу алу алу алу суучу суучу суучу суучу алу сууч У туучу суучу суучу суучу суучу алу алу алу суучу алу сан алу сан алу суучу суучу суучу суучу суучу суучу суучу
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 2017_10_24_DUP
Lab Order:	C1710061	Tag Number: 457.250
Project:	300 Commerce Dr	Collection Date: 10/24/2017
Lab ID:	C1710061-002A	Matrix: AIR

Client Sample ID: 2017_10_24_DUP Tag Number: 457.250 Collection Date: 10/24/2017

Matrix: AIR

Апаlyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	2,4	0.74	1	ug/m3	1	10/30/2017 5:39:00 PM
Heptane	1.4	0.61	1	ug/m3	1	10/30/2017 5:39:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	1	ug/m3	1	10/30/2017 5:39:00 PM
Hexane	< 0.53	0.53	1	ug/m3	1	10/30/2017 5:39:00 PM
Isopropyi alcohoi	17	1.8		ug/m3	5	10/31/2017 12:39:00 AM
m&p-Xylene	7.3	1.3		ug/m3	1	10/30/2017 5:39:00 PM
Methyi Butyl Ketone	< 1.2	1,2		ug/m3	1	10/30/2017 5:39:00 PM
Methyl Ethyl Ketone	1.9	0.88		ug/m3	1	10/30/2017 5:39:00 PM
Methyl Isobutyl Ketone	0.45	1.2	J	ug/m3	1	10/30/2017 5:39:00 PM
Methyi tert-butyi ether	< 0.54	0.54	1	ug/m3	1	10/30/2017 5:39:00 PM
Methylene chloride	1.7	0.52	1	ug/m3	1	10/30/2017 5:39:00 PM
o-Xylene	2.8	0.65	1	ug/m3	1	10/30/2017 5:39:00 PM
Propylene	< 0.26	0.26	1	ug/m3	1	10/30/2017 5:39:00 PM
Styrene	< 0.64	0.64	,	ug/m3	1	10/30/2017 5:39:00 PM
Tetrachloroethylene	< 1.0	1.0	,	ug/m3	1	10/30/2017 5:39:00 PM
Tetrahydrofuran	1,0	0.44	ı	ug/m3	1	10/30/2017 5:39:00 PM
Toluene	20	2.8	ı	ug/m3	5	10/31/2017 12:39:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	(ug/m3	1	10/30/2017 5:39:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ı	ug/m3	1	10/30/2017 5:39:00 PM
Trichloroethene	< 0.21	0.21	ι	ug/m3	1	10/30/2017 5:39:00 PM
Vinyl acetate	< 0.53	0.53	ι	ug/m3	1	10/30/2017 5:39:00 PM
Vinyl Bromide	< 0.66	0.66		Jg/m3	1	10/30/2017 5:39:00 PM
Vinyl chloride	< 0.10	0.10	i.	√g/m3	1	10/30/2017 5:39:00 PM

Qualifiers:

....

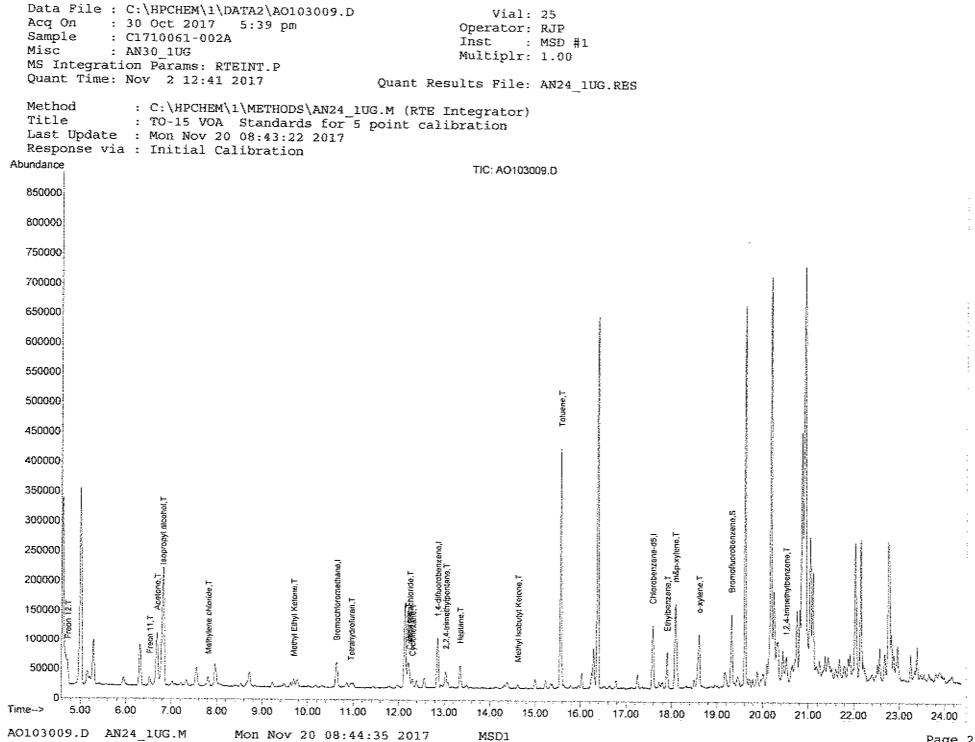
** Quantitation Limit

в Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

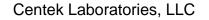
JN Non-routine analyte, Quantitation estimated.

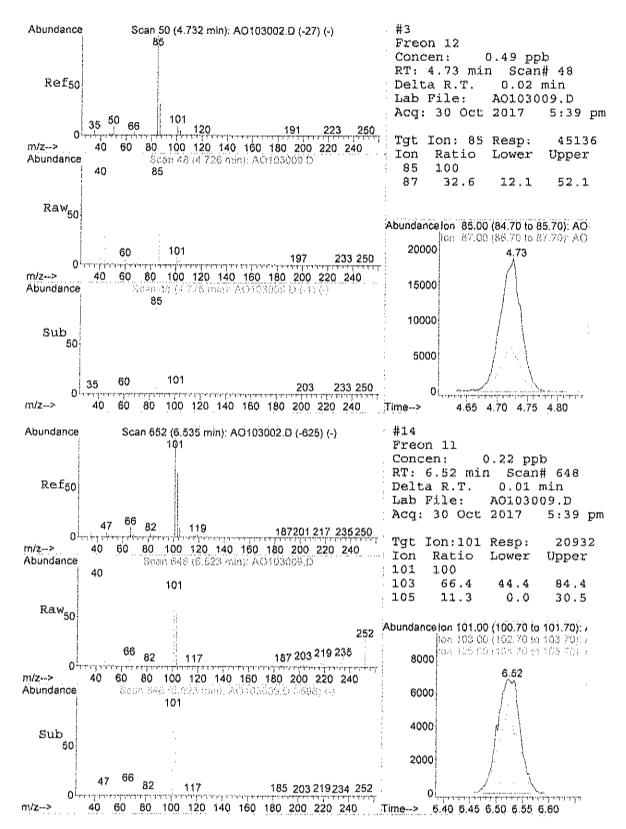
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected


.

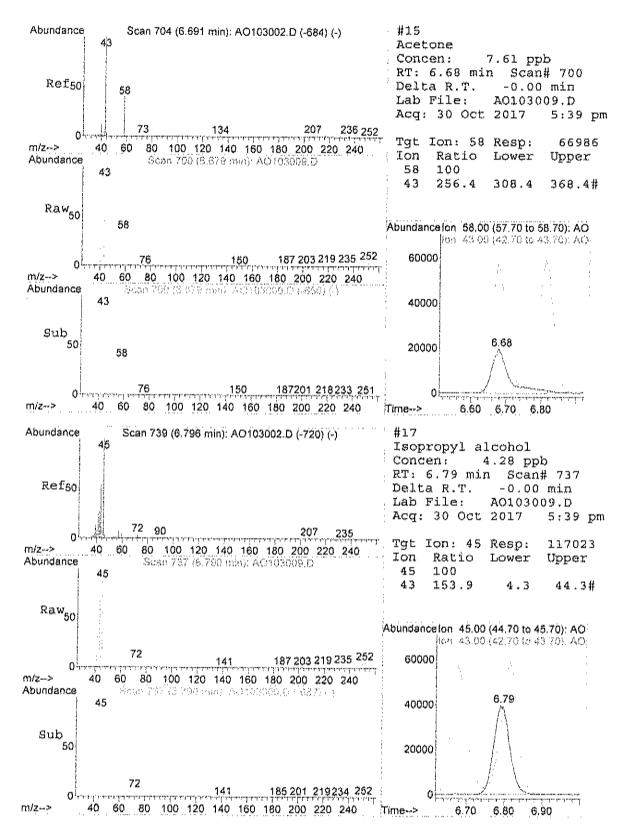
Æ Estimated Value above quantitation range

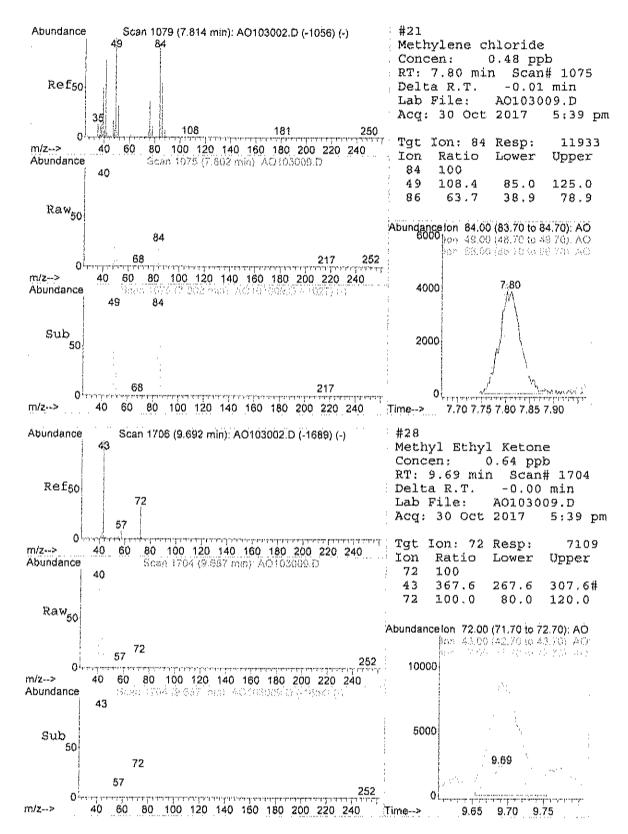
J Analyte detected below quantitation limit


ND Not Detected at the Limit of Detection

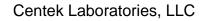

Centek Laboratories, LL	С										
	Quantitat	ion Re	port (QT	Revie	wed)						
Data File : C:\HPCHEM\1\DATA2 Acq On : 30 Oct 2017 5:3 Sample : C1710061-002A Misc : AN30_1UG MS Integration Params: RTEINT Quant Time: Oct 30 23:06:16 2	39 pm		Oper Inst Mult	Vial: ator: iplr: File:	RJP MSD 1.0	כ כ	ES				
Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN											
Internal Standards	R.T.	QION	Response C	onc U	nite	Dev(Mir	n)				
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.64 12.85 17.58	128	20183	1 00	mmh	0.0	00				
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.31	95 - 130	52373 Recovery	0.99	ppb 99.	0.0	00				
 Freon 12 Freon 11 Freon 11 Acetone Isopropyl alcohol Methylene chloride Methyl Ethyl Ketone Tetrahydrofuran Cyclohexane Carbon tetrachloride Benzene 2,2,4-trimethylpentane Heptane Heptane Toluene Methyl Isobutyl Ketone Ethylbenzene Ethylbenzene 	6.68 6.79 7.80 9.69 10.95 12.30 12.25 12.21 13.03 13.36 15.56 14.62	58 45 82 42 56 178 57 43 43 43	39395 33672 13611 216488 3848	7.61 4.28 0.48 0.64 0.34 0.17 0.07 0.46 0.28 0.33 3.82 0.11	200 200 200 200 200 200 200 200 200 200	# 6 # 9 # 6 # 7 9 8 9 8 9 8 9 9 8 9 9 9 9 9 9 9 9 9 9	99 97 97 97 97 97 97 97 97 97 97 97 97 9				
59) m&p-xylene 63) o-xylene 71) 1,2,4-trimethylbenzene	18.08 18.60 20.51	91 91 105	53724 150724 62413 27150	1.68 0.64 0.43	ppb ppb)8)3)5				

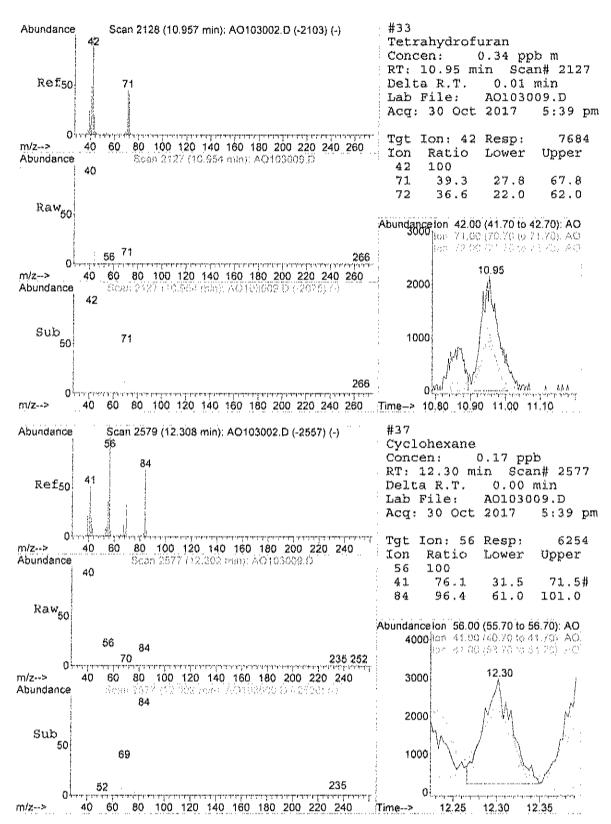
^Dage 82 of 272


Centek Laboratories, LLC

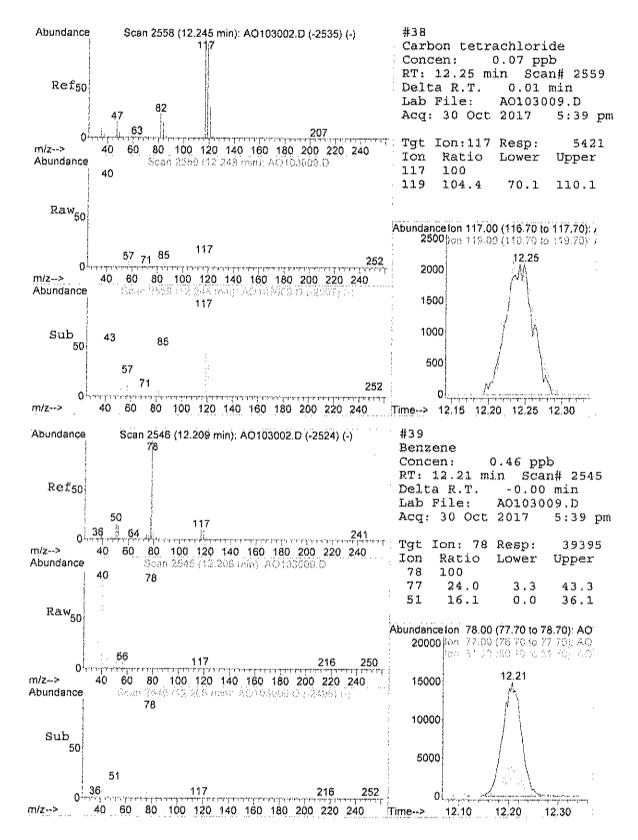


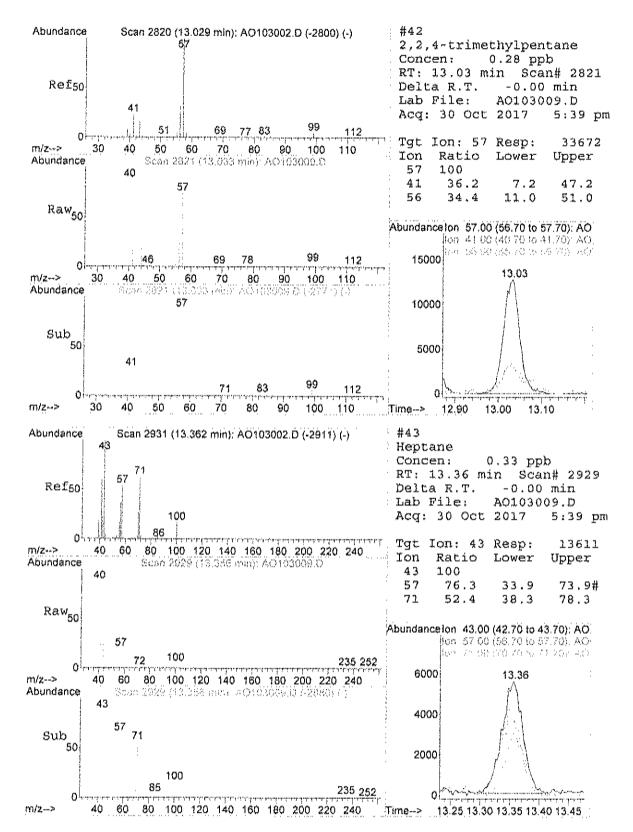
A0103009.D AN24 1UG.M


Page 83 of 272



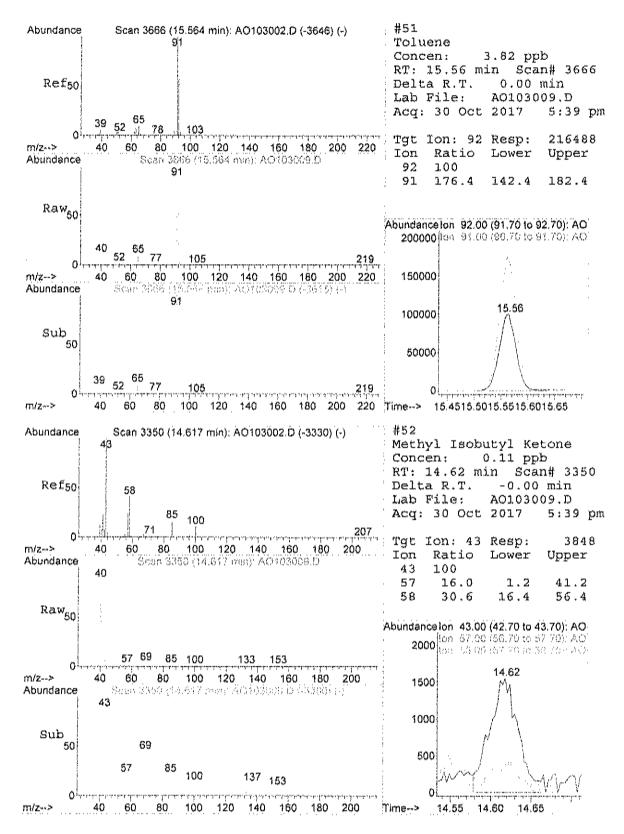
MSD1


A0103009.D AN24_1UG.M

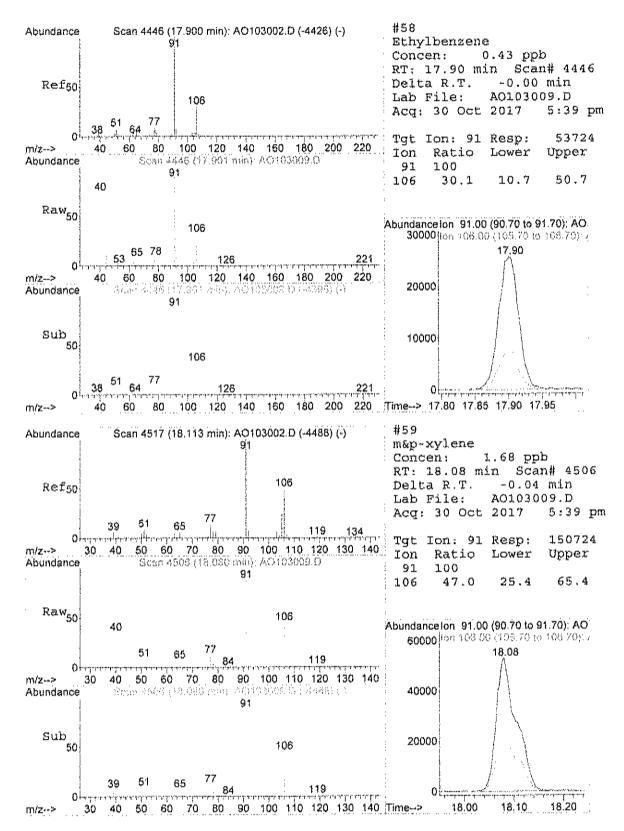


A0103009.D AN24 1UG.M

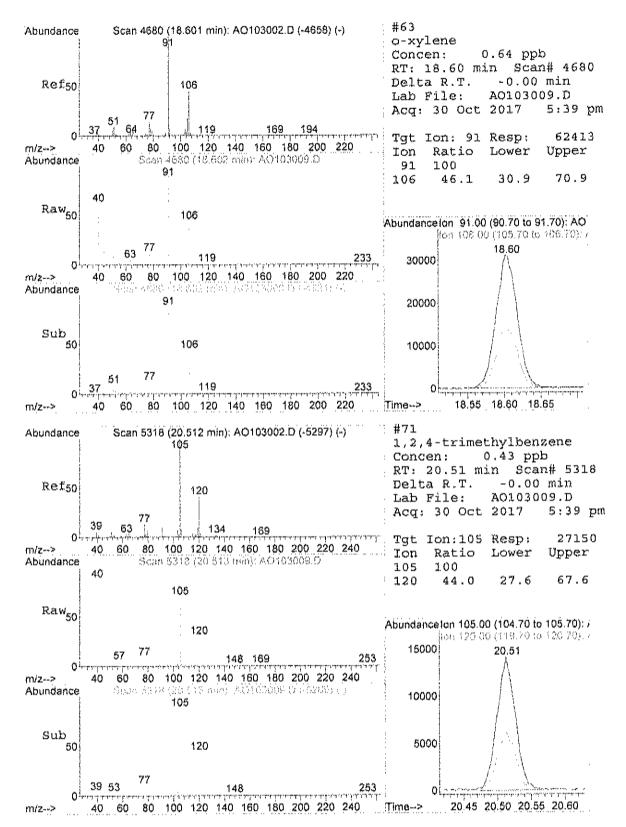
Page 86 of 272



A0103009,D AN24 1UG.M

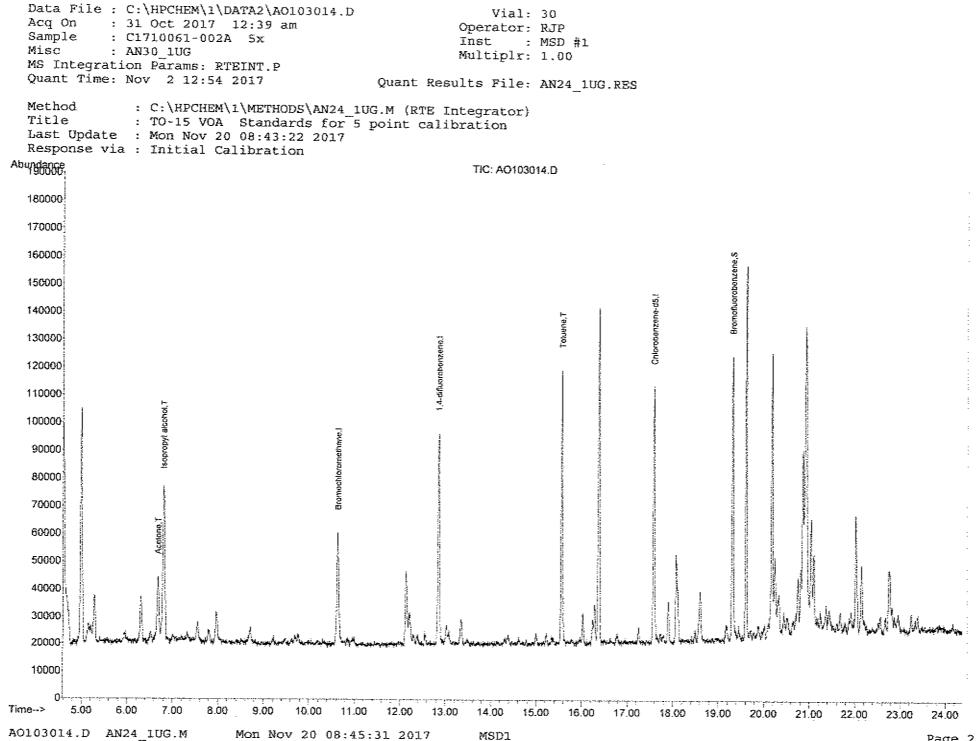

A0103009.D AN24_1UG.M

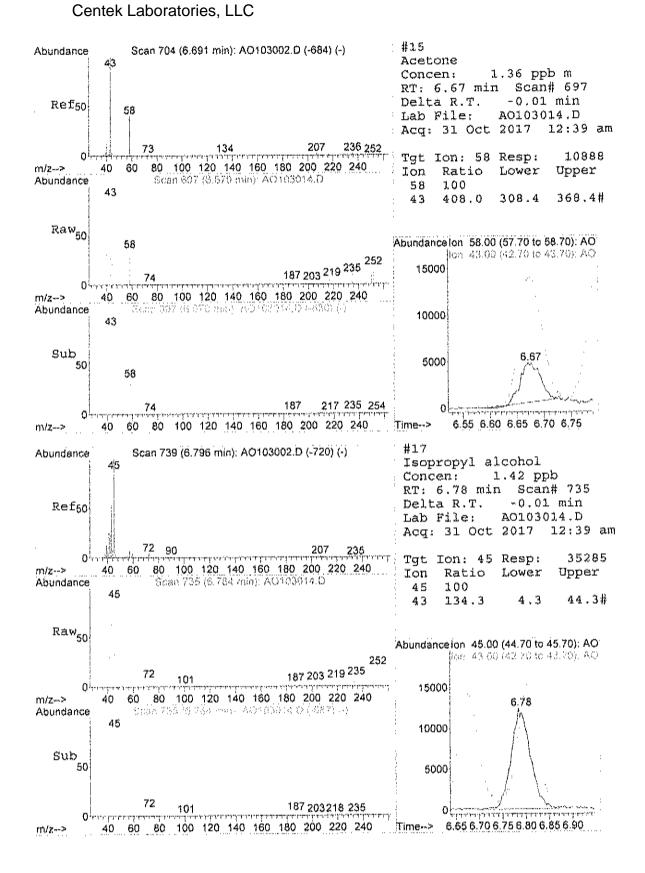
Page 88 of 272


A0103009.D AN24_1UG.M

Page 89 of 272

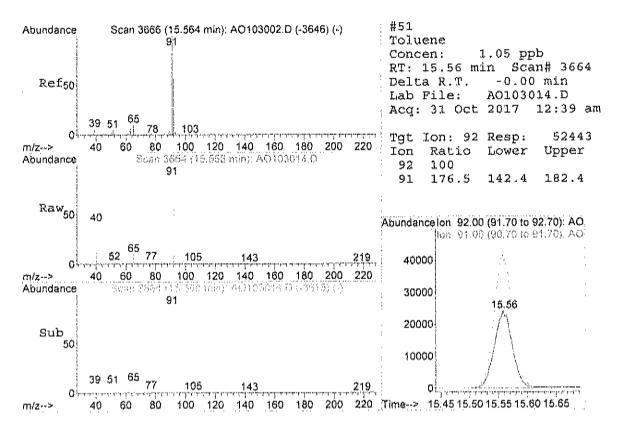
A0103009.D AN24 1UG.M


Page 90 of 272


A0103009.D AN24 1UG.M

Page 91 of 272

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103014.D Vial: 30 Acq On : 31 Oct 2017 12:39 am Sample : Cl710061-002A 5x Misc : AN30_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 31 11:13:24 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.63128183621.00ppb0.0035) 1,4-difluorobenzene12.85114853081.00ppb-0.0150) Chlorobenzene-d517.58117692541.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 45106 0.97 ppb 0.00 Spiked Amount 1.000 Range 70 ~ 130 Recovery = 97.00% Target Compounds Qvalue 15) Acetone 17) Isopropyl alcohol 6.67 58 10888m N 1.36 ppb 6.78 45 35285 1.42 ppb # 1 15.56 92 52443 1.05 ppb 89 51) Toluene


^Dage 93 of 272

A0103014.D AN24 1UG.M

Page 3

Page 94 of 272

Centek La			20-Nov-17				
CLIENT:	LaBella Associates, P.C.				Client Sample ID:		
Lab Order:	C1710061				Tag Number:		
Project:	300 Commerce Dr				Collection Date:		
*							2017
Lab ID:	C1710061-003A				Matrix:		
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FL	D			Analyst;
Lab Vacuum In		-2			"Hg		10/27/2017
Lab Vacuum Qu	Jt	-30			"Hg		10/27/2017
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
1.1.1-Trichloroe	thane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,1,2,2-Tetracht	proethane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,1,2-Trichloroe	thane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,1-Dichloroetha	hue	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,1-Dichloraethe	ene	< 0.15	0,15		ppbV	1	10/30/2017 2:48:00 PM
1,2,4-Trichlorob	enzene	< 0.15	0.15		Vdqq	1	10/30/2017 2:48:00 PM
1,2,4-Trimethylb	penzene	< 0.15	0.15		Vdqq	1	10/30/2017 2:48:00 PM
1,2-Dibromoetha	ane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1.2-Dichloroben:	zene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,2-Dichloroetha	ane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,2-Dichloroprop	bane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,3.5-Trimethylb	enzene	< 0.15	0.15		Vdqq	1	10/30/2017 2:48:00 PM
1,3-butadiene		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,3-Dichloroben:		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,4-Dichloroben:	zene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
1,4-Dioxane		< 0.30	0.30		Vdqq	1	10/30/2017 2:48:00 PM
2,2,4-trimethylpe	entane	< 0.15	0.15		Vdqq	1	10/30/2017 2:48:00 PM
4-ethyltoluene		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Acetone		3.2	0.60		vdqq	2	10/30/2017 11:25:00 PM
Allyl chloride		< 0.15	0.15		ρpbV	1	10/30/2017 2:48:00 PM
Benzene		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Benzyl chloride		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Bromodichlorom	ethane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Bromoform		< 0.15	Q.15		ppb∨	1	10/30/2017 2:48:00 PM
Bromomethane		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Carbon disulfide		< 0.15	0.15		¢pbV	1	10/30/2017 2:48:00 PM
Carbon tetrachio	nde	0.070	0.040		ppb∨	1	10/30/2017 2:48:00 PM
Chlorobenzene		< 0.15	0.15		νdqq	1	10/30/2017 2:48:00 PM
Chloroethane		< 0.15	0.15		₽₽bV	1	10/30/2017 2:48:00 PM
Chloroform		< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Chloromethane	46+++	0.39	0.15		ppbV	1	10/30/2017 2:48:00 PM
cis-1,2-Dichloroe		< 0.15	0.15		ppb∨	1	10/30/2017 2:48:00 户M
cis-1,3-Dichlorop	sobaug	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Cyclohexane	-	< 0.15	0,15		ppbV	1	10/30/2017 2:48:00 PM
Dibromochlorom	e(USU6	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Ethyl acetate		< 0,15	0.15		ppbV	1	10/30/2017 2:48:00 PM

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery fimits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 5 of 10

Page 96 of 272

Qualifiers:

0

Date: 20-Nov-17

	·	ים המסוור בין לי המסוור המסוור המסוור המסוור המסוור המסוור בין לא היה המסוור המסוור המסוור המסוור היה היה המסוו המסוור המסוור היה היה לא היה המסוור המסוור המסוור המסוור המסוור היה לא המסוור המסוור המסוור המסוור המסוור היה ה
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 2017_10_24_Outdoor
Lab Order:	C1710061	Tag Number: 484.267
Project:	300 Commerce Dr	Collection Date: 10/24/2017
Lab ID:	C1710061-003A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Freon 11	0.21	Q.15		ppb∨	1	10/30/2017 2:48:00 PM
Freon 113	< 0.15	0.15		ppb∨	1	10/30/2017 2:48:00 PM
Freon 114	< 0.15	0.15		ppb∨	5	10/30/2017 2:48:00 PM
Freon 12	0.44	0.15		ppbV	1	10/30/2017 2:48:00 PM
Heptane	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Hexane	< 0,15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Isopropyl alcohol	0.54	0.15		ppbV	1	10/30/2017 2:48:00 PM
m&p-Xylene	0.23	0.30	J	ppbV	1	10/30/2017 2:48:00 PM
Methyl Butyl Ketone	< 0.30	0.30		Vđqq	1	10/30/2017 2:48:00 PM
Methyl Ethyl Ketone	0.33	0.30		ppbV	t	10/30/2017 2:48:00 PM
Methyl Isobutyl Ketone	0.11	0.30	J	ppbV	1	10/30/2017 2:48:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Methylene chloride	0.26	0.15		ppbV	1	10/30/2017 2:48:00 PM
o-Xylene	0.10	0.15	J	Vdqq	1	10/30/2017 2:48:00 PM
Propylene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Styrene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PM
Tetrachloroethylene	< 0.15	0.15		ppb∨	1	10/30/2017 2:48:00 PM
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	10/30/2017 2:48:00 PM
Toluene	0.77	0.15		ppbV	1	10/30/2017 2:48:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	10/30/2017 2:48:00 PN
trans-1,3-Dichloropropene	< 0.15	0.15		Vơqq	1	10/30/2017 2:48:00 PN
Trichloroethene	< 0.040	0.040		ppbV	1	10/30/2017 2:48:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	10/30/2017 2:48:00 PN
Vinyl Bromide	< 0.15	0.15		ррь∨	1	10/30/2017 2:48:00 PN
Vinyl chloride	< 0.040	0.040		ppbV	1	10/30/2017 2:48:00 PM
Surr: Bromofluorobenzene	100	70-130		%REC	1	10/30/2017 2:48:00 PN

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	J'N	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Daga 6 af 10
	S	Spike Recovery outside accepted recovery limits			Page 6 of 10

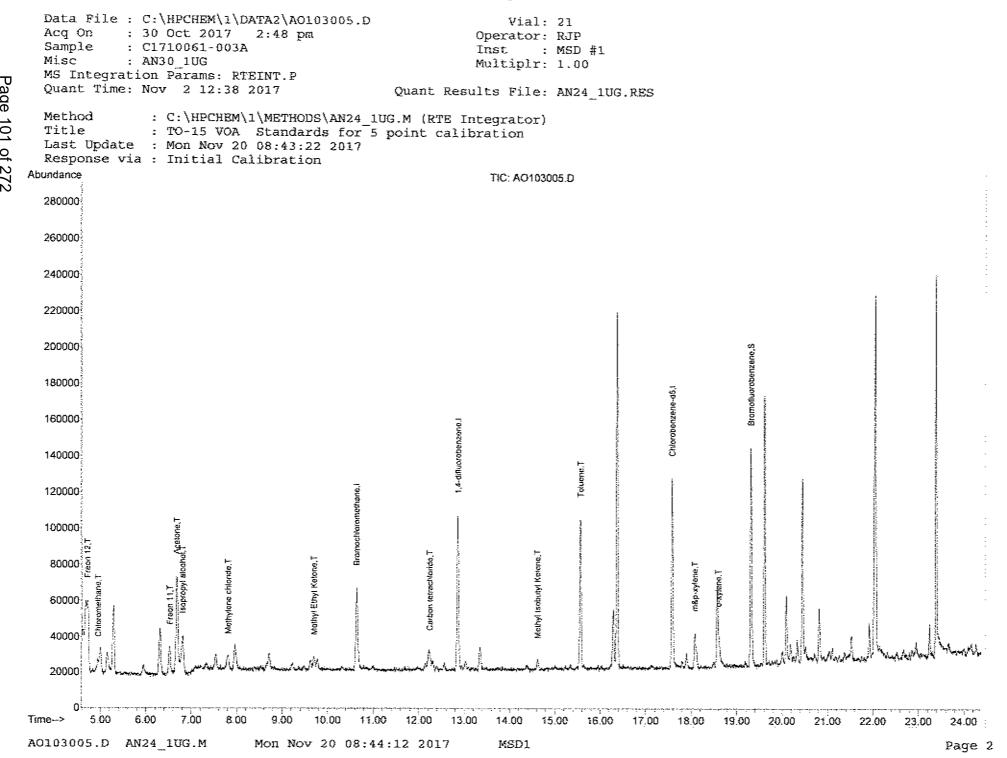
CLIENT:	LaBella Associates, P.C			C			
ab Order:	C1710061 300 Commerce Dr C1710061-003A				Tag Number: Collection Date: Matrix:		
Project:						10/24/	2017
Lab ID:						AIR	
Analyses		Result	**Limit	Qual	Units	ÐF	Date Analyzed
U.G/M3 W/ 0.2	5UG/M3 CT-TCE-VC		ΤĊ)-15			Analyst: RJP
1,1,1-Trichloroethane		< 0.82	0.82		ug/m3	1	10/30/2017 2:48:00 PM
1,1,2,2-Tetrachloroethane		< 1.0	1.0		ug/m3	1	10/30/2017 2:48:00 PM
1,1,2-Trichloroethane		< 0.82	0.82		ug/m3	1	10/30/2017 2:48:00 PM
1,1-Dichloroethane		< 0.61	0.61		ug/m3	1	10/30/2017 2:48:00 PM
1,1-Dichloroethene		< 0.59	0.59		ug/m3	1	10/30/2017 2:48:00 PM
1,2,4-Trichlorobenzene		< 1.1	1.1		ug/m3	1	10/30/2017 2:48:00 PM
		< 0.74	0.74		ug/m3	1	10/30/2017 2:48:00 PM
1,2,4-Trimethylbenzene		< 1.2	1.2		ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dibromoethane		< 0.90	0.90		ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dichlorobenzene		< 0.61	0.61		ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dichloroethane		< 0.69	0.69		ug/m3	1	10/30/2017 2:48:00 PM
1,2-Dichloropropane		< 0.89	0.74		ug/m3	1	10/30/2017 2:48:00 PM
1,3,5-Trimethylbenzene					ug/m3	1	10/30/2017 2:48:00 PM
1,3-butadiene		< 0.33	0.33		ug/m3	1	10/30/2017 2:48:00 PM
1.3-Dichlorobenzene		< 0.90	0.90		-	1	10/30/2017 2:48:00 PM
1,4-Dichlorobenzene		< 0.90	0.90		ug/m3	1	10/30/2017 2:48:00 PM
t,4-Dioxane		< 1.1	1.1		ug/m3	1	10/30/2017 2:48:00 PM
2,2,4-trimethylpentane		< 0.70	0.70		ug/m3		10/30/2017 2:48:00 PM
4-ethyltoluene		< 0.74	0.74		ug/m3	1	10/30/2017 11:25:00 Pl
Acetone		7.6	1.4		ug/m3	2	10/30/2017 11:25:00 PM
Ally) chloride		< 0.47	0.47		ug/m3	1	
Benzene		< 0.48	0.48		ug/m3	1	10/30/2017 2:48:00 PM
Benzyl chloride		< 0.86	0.86		ug/m3	1	10/30/2017 2:48:00 PM
Bromodichtoromethane		< 1.0	1.0	I	ug/m3	1	10/30/2017 2:48:00 PN
Bromoform		< 1.6	1.6	i	ug/m3	1	10/30/2017 2:48:00 PM
Bromomethane		< 0.58	0.58		ug/m3	1	10/30/2017 2:48:00 PM
Carbon disulfide		< 0.47	0.47		ug/m3	1	10/30/2017 2:48:00 PN
Carbon tetrachloride		0.44	0.25	5	ug/m3	1	10/30/2017 2:48:00 PN
Chlorobenzene		< 0.69	0.69	3	ug/m3	1	10/30/2017 2:48:00 PN
Chioroethane		< 0.40	0.40)	սց/m3	1	10/30/2017 2:48:00 PN
Chloroform		< 0.73	0.73)	ug/m3	1	10/30/2017 2:48:00 PN
Chioromethane		0.81	0,31		ug/m3	1	10/30/2017 2:48:00 PN
cis-1,2-Dichloroethene		< 0.59	0.59		ug/m3	1	10/30/2017 2:48:00 PM
cis-1,3-Dichloropropene		< 0.68	0.68		ug/m3	1	10/30/2017 2:48:00 PN
		< 0.52	0.52		ug/m3	1	10/30/2017 2:48:00 PN
Cyclohexane Dibromochloromethane		< 1.3	1.3		ug/m3	1	10/30/2017 2:48:00 PM
		< 0.54	0.54		ug/m3	1	10/30/2017 2:48:00 PM
Ethyl acetate		< 0.65	0.66		ug/m3	1	10/30/2017 2:48:00 PM
Ethylbenzene		< 0.65	0.84		ug/m3	1	10/30/2017 2:48:00 PM
Freen 11		۰.4 1.1 <	1.1		ug/m3	1	10/30/2017 2:48:00 PM
Freon 113			י. 1.(បច្ច/m3 បច្ច/m3	1	10/30/2017 2:48:00 PM
Freon 114		< 1.0					
Qualifiers: ** Quantitation Limit					 Results reported are not blank corrected Estimated Value above quantitation range 		
-,	B Analyte detected in the associated Method Blank						
	H Holding times for preparation or analysis exceeded				J Analyte detected below quantitation limit		

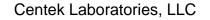
3N Non-routine analyte. Quantitation estimated.

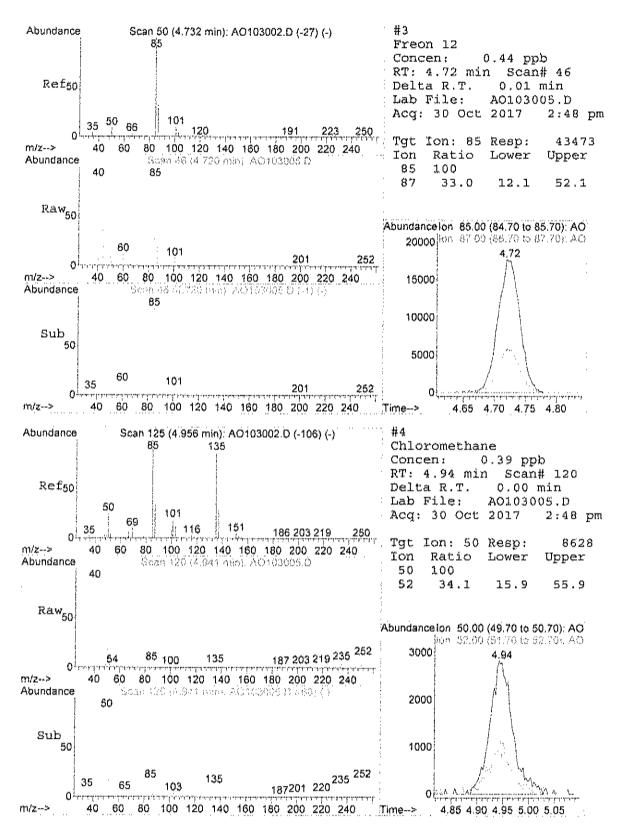
S Spike Recovery outside accepted recovery limits

ND Not Detected at the Limit of Detection

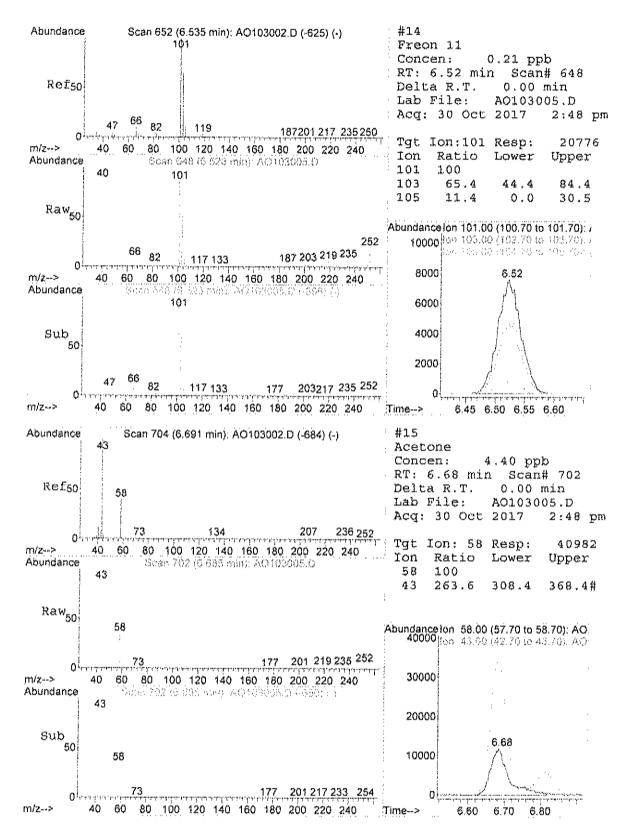
Page 5 of 10

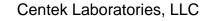

Page 98 of 272

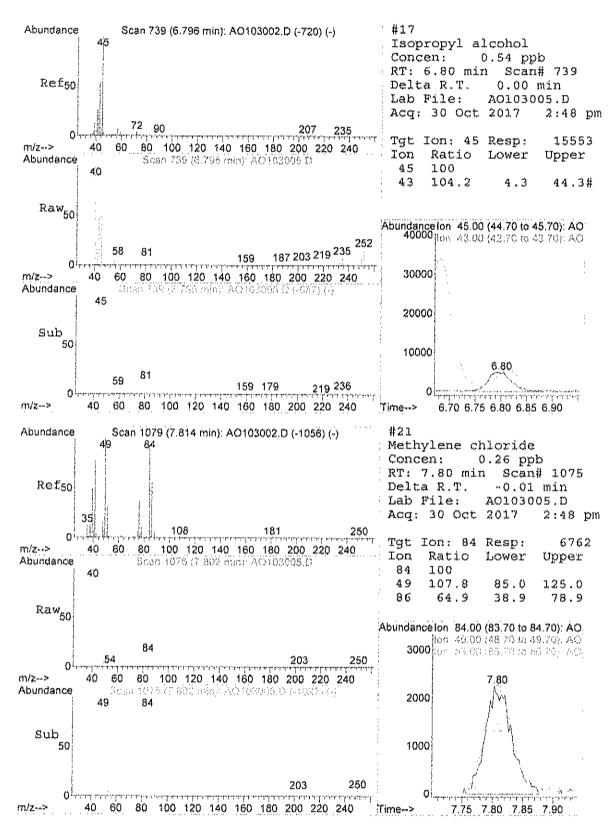

Date: 20-Nov-17


CLIENT:	LaBella Associates, P.C.			0	Client Sample ID:	2017_	10_24_Outdoor
Lab Order:	C1710061				Tag Number:	484,26	57
	300 Commerce Dr				Collection Date:	10/24/	/2017
Project: Lab ID:	C1710061-003A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
	5UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
Freen 12	50G/M3 01-10E-V0	2.2	0.74		ug/m3	1	10/30/2017 2:48:00 PM
Heptane		< 0.61	0.61		ug/m3	1	10/30/2017 2:48:00 PM
Hexachloro-1,3	-butadiene	< 1.6	1.6		ug/m3	1	10/30/2017 2:48:00 PN
Hexane	-Defection for	< 0.53	0.53		ug/m3	t	10/30/2017 2:48:00 PN
Isopropyl alcoh	al	1.3	0.37		ug/m3	1	10/30/2017 2:48:00 PM
m&p-Xylene	~	1.0	1.3	J	ug/m3	1	10/30/2017 2:48:00 PM
Methyl Butyl Ke	atone	< 1.2	1.2		ug/m3	1	10/30/2017 2:48:00 PM
Methyl Ethyl Ke		0.97	0.88		ug/m3	1	10/30/2017 2:48:00 PM
Methyl Isobutyl		0.45	1.2	Ļ	ug/m3	1	10/30/2017 2:48:00 PM
Methyl tert-buty		< 0.54	0.54		ug/m3	1	10/30/2017 2:48:00 PM
Methylene chio		0.90	0.52		ug/m3	1	10/30/2017 2:48:00 PM
o-Xylene		0.43	0.65	J	ug/m3	1	10/30/2017 2:48:00 PM
Propylene		< 0.26	0.26		ug/m3	1	10/30/2017 2:48:00 PM
Styrene		< 0.64	0.64		ug/m3	1	10/30/2017 2:48:00 PN
Tetrachloroethy	lene	< 1.0	1.0		ug/m3	1	10/30/2017 2:48:00 PN
Tetrahydrofura		< 0.44	0.44		പ്പട്ട് പ്രാപ്പായ	1	10/30/2017 2:48:00 PN
Toluene		2.9	0.57		ug/m3	1	10/30/2017 2:48:00 PN
trans-1,2-Dichl	oroethene	< 0.59	0.59		ug/m3	1	10/30/2017 2:48:00 PN
trans-1,3-Dich)	oropropene	< 0.68	0.68		ug/m3	1	10/30/2017 2:48:00 PN
Trichloroethene	, .	< 0.21	0.21		ug/m3	1	10/30/2017 2:48:00 PM
Vinyl acetate		< 0.53	0.53		ug/m3	1	10/30/2017 2:48:00 PN
Vinyl Bromide		< 0.66	0.66		ug/m3	1	10/30/2017 2:48:00 PM
Vinyi chloride		< 0.10	0.10		ug/m3	1	10/30/2017 2:48:00 PM

			10.00 At 11.0		
Oualifiers :	* *	Quantitation Limit		Results reported are not blank corrected	
•	в	Analyte detected in the associated Method Blank		Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Page 6 of 10
	S	Spike Recovery outside accepted recovery limits			rage o or ro

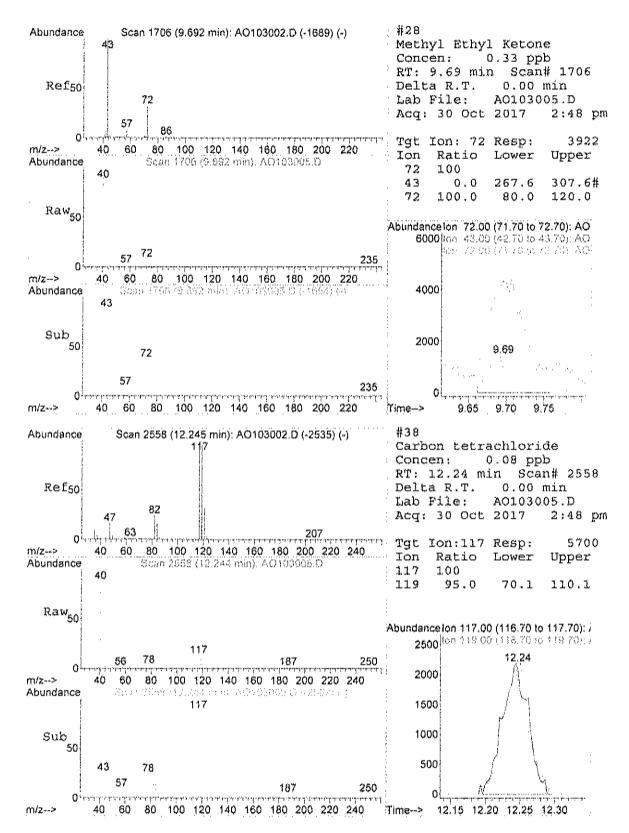

Centek Laboratories, LLC						
Q	uantitat	ion Rep	ort (QT	Revie	wed)	
Data File : C:\HPCHEM\1\DATA2\A Acq On : 30 Oct 2017 2:48 Sample : C1710061-003A Misc : AN30_1UG MS Integration Params: RTEINT.P Quant Time: Oct 30 17:28:31 201	mq		Oper Inst Mult	Vial: ator: iplr:	RJP MSD 1.00)
Quant Method : C:\HPCHEM\1\METH Title : TO-15 VOA Stand Last Update : Wed Oct 25 08:32 Response via : Initial Calibrat DataAcq Meth : 1UG_RUN	ODS\AN24 ards for :47 2017	1UG.M	(RTE Integr	ator)		
Internal Standards	R.T.	QIon	Response (one U	nits	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.63	128	21360	1.00 1.00 1.00	dqq dqq dqq	00.00 0.00 00.0
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 R.	19.31 ange 70	95 - 130	53103 Recovery	1.00	ppb 100.	0.00 00%
4) Chloromethane 14) Freon 11	4.94 6.52 6.68 6.80 7.80 9.69 12.24 15.57	50 101 58 45 84 72 117 92	5700 44220	0.39 0.21 4.40 0.54 0.26 0.33 0.08	qdd qdd qdd qdd qdd qdd qdd qdd qdd	99 # 65 # 1 95 # 1 95 88

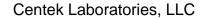


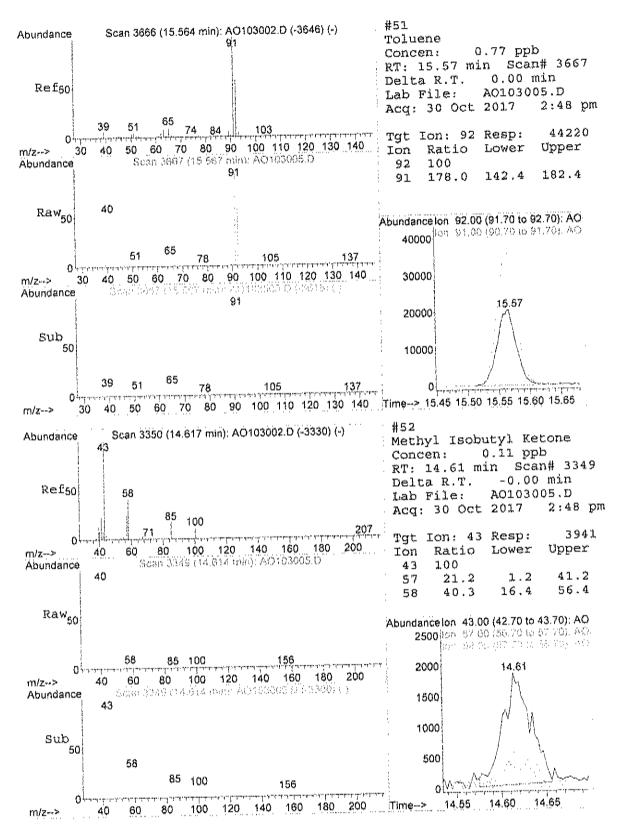


MSD1

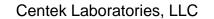
A0103005.D AN24_1UG.M

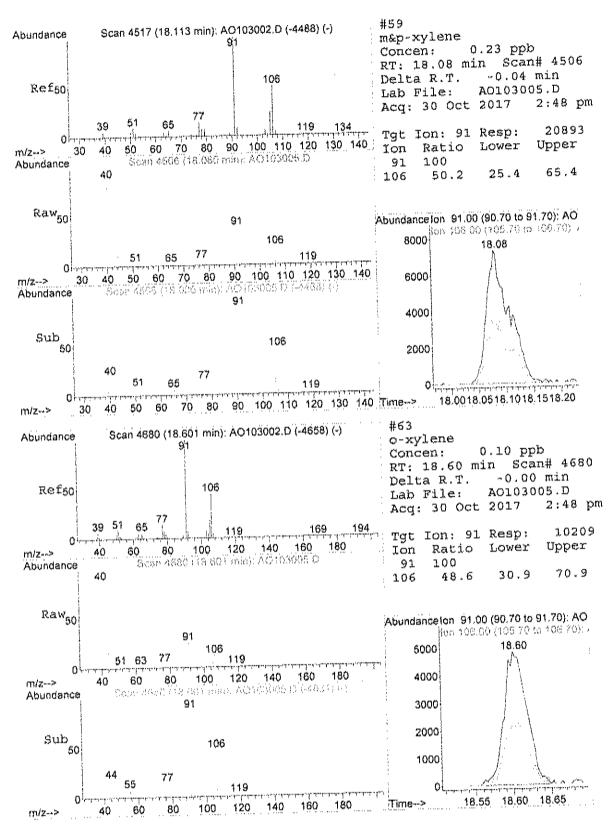



A0103005.D AN24 1UG.M


MSD1

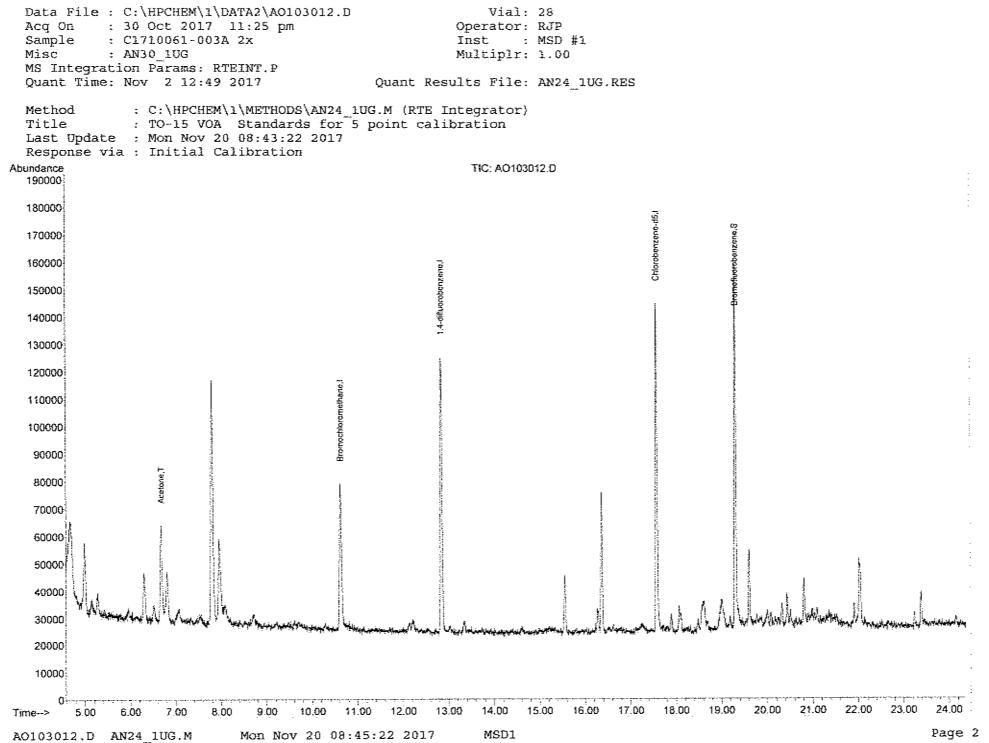
Page 104 of 272


Page 105 of 272



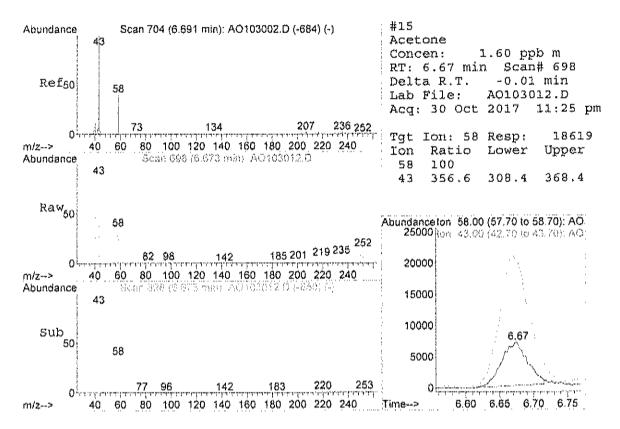
A0103005.D AN24_1UG.M

Page 106 of 272



Mon Nov 20 08:44:18 2017 MSD1

Page 107 of 272


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103012.D Vial: 28 Acq On : 30 Oct 2017 11:25 pm Sample : C1710061-003A 2x Misc : AN30_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Oct 31 11:13:22 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HFCHEM\1\METHODS\AN24 1UG.M (RTE Integrator) Title : TO~15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.63128266241.00ppb0.0035) 1,4-difluorobenzene12.841141135901.00ppb-0.0250) Chlorobenzene-d517.57117889371.00ppb-0.01 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 57548 0.96 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 96.00% Target Compounds Qvalue 15) Acetone 6.67 58 18619m 🔊 1.60 ppb

age 109 of 2

(x.

Centek Laboratories, LLC

Page 110 of 272

Date: 20-Nov-17

			-	Client Sample ID:		10_24_CA1
C1710061				Tag Number:	362.2	81
300 Commerce Dr				Collection Date:	10/24	/2017
C1710061-004A						
	Result	**Limit	Quai	Units	DF	Date Analyzed
TERS	*********	F	D			Analyst:
	-2			"Hg		10/27/2017
t	-30			"Hg		10/27/2017
5UG/M3 CT-TCE-VC			-15			Analyst: RJP
hane	0.14	0.15	J	ppbV	1	10/30/2017 6:19:00 PM
proethane	< 0.15	0.15		vdqq	t	10/30/2017 6:19:00 PN
hane	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
ne	< 0.15	0.15		ppb∨	1	10/30/2017 6:19:00 PM
në	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
anzene	< 0.15	0.15		Vdqq	1	10/30/2017 6:19:00 PM
enzene	5.7	1.5		ppbV	10	10/31/2017 1:16:00 AM
ine	< 0.15	0.15		νσα	1	10/30/2017 6:19:00 PM
zene	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
ne	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
ane	< 0.15	0.15		ppb∨	1	10/30/2017 6:19:00 PM
enzene	1.6	1.5		ppbV	10	10/31/2017 1:16:00 AM
onzene	2.0	0,15		ppbV	1	10/30/2017 6:19:00 PM
	< 0.15	0.15		ppbV	1	10/30/2017 6:19:00 PM
(ehe	< 0.15	0.15		Vdqq	1	10/30/2017 6:19:00 PM
ene	< 0.15	0.15			1	10/30/2017 6:19:00 PM
	< 0.30	0.30			1	10/30/2017 6:19:00 PM
ntane	6.0	1.5			10	10/31/2017 1:16:00 AM
	1,9	1.5			10	10/31/2017 1:16:00 AM
	110	27			90	10/31/2017 8:24:00 AM
	< 0.15	0.15				10/30/2017 6:19:00 PM
						10/31/2017 1:16:00 AM
	< 0.15					10/30/2017 6:19:00 PM
ethane						10/30/2017 6:19:00 PM
						10/30/2017 6:19:00 PM
						10/30/2017 6:19:00 PM
						10/30/2017 6:19:00 PM
ride						10/30/2017 6:19:00 PM
					1	10/30/2017 6:19:00 PM
					1	10/30/2017 6:19:00 PM
			J		-	10/30/2017 6:19:00 PM
						10/30/2017 6:19:00 PM
ihene						10/31/2017 1:16:00 AM
opono						10/30/2017 6:19:00 PM
ethane	< 0.15	0.15			1	10/30/2017 6:19:00 PM 10/30/2017 6:19:00 PM
	C1710061-004A ETERS t SUG/M3 CT-TCE-VC hane proethane hane enzene	C1710061-004A Result ETERS -2 t -30 SUG/M3 CT-TCE-VC hane hane 0.14 broethane < 0.15	C1710061-004A Result **Limit ETERS -2 -2 t -30 -2 t -30 -2 sUG/M3 CT-TCE-VC TO hane 0.14 0.15 oroethane < 0.15	C 1710061-004A Result **Limit Qual ETERS -2 t -30 SUG/M3 CT-TCE-VC TO-15 hane 0.14 0.15 J procethane < 0.15	300 Commerce Dr C1710061-004A Collection Date: Matrix: Result **Limit Qual Units Result **Limit Qual Units ETERS FLD -2 "Hg -30 "Hg SUG/M3 CT-TCE-VC TO-15 hane 0.14 0.15 ppbV protethane < 0.15	300 Commerce Dr C1710061-004A Collection Date: 10/24 Matrix: Alar Result **Limit Qual Units DF ETERS FLD

Qualifiers:

** Quantitation Limit

.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 20-Nov-17

CLIENT;	LaBella Associates, P.C.	Client Sample 1D: 2017_10_24_EX1
Lab Order;	C1710061	Tag Number: 362.281
Project:	300 Commerce Dr	Collection Date: 10/24/2017
Lab ID:	C1710061-004A	Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15		Analyst: RJP
Ethyl acetate	< 0.15	0.15	Vdqq	1	10/30/2017 6:19:00 PM
Ethylbenzene	10	1.5	vdqq	10	10/31/2017 1:16:00 AM
Freon 11	0.29	0.15	Vdqq	1	10/30/2017 6:19:00 PM
Freon 113	< 0.15	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Freon 114	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Freon 12	0.61	0.15	ppbV	1	10/30/2017 6:19:00 PM
Heptane	6.1	1.5	ppbV	10	10/31/2017 1:16:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Hexane	3.4	1.5	ppbV	10	10/31/2017 1:16:00 AM
Isopropyi alcohol	180	14	ppbV	90	10/31/2017 8:24:00 AM
m&p-Xylene	38	3.0	Vdqq	10	10/31/2017 1:16:00 AM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	10/30/2017 6:19:00 PM
Methyl Ethyl Ketone	13	3.0	ppbV	10	10/31/2017 1:16:00 AM
Methyl Isobutyl Ketone	1.4	0.30	ppb∨	1	10/30/2017 6:19:00 PM
Methyl ten-butyl ether	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Methylene chloride	0.48	0,15	vdqq	1	10/30/2017 6:19:00 PM
o-Xylene	12	1.5	ppb∨	10	10/31/2017 1:16:00 AM
Propylene	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Styrene	< 0.15	0.15	ppbV	1	10/30/2017 6:19:00 PM
Tetrachloroethylene	0.54	0.15	рръ∨	1	10/30/2017 6:19:00 PM
Tetrahydrofuran	7.3	1.5	ррь∨	10	10/31/2017 1:16:00 AM
Toluene	71	14	ррbV	90	10/31/2017 8:24:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	vdqq	1	10/30/2017 6:19:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	10/30/2017 6:19:00 PM
Trichloroethene	2.4	0.40	ppbV	10	10/31/2017 1:16:00 AM
Vinyl acetate	< 0.15	0.15	Vdqq	1	10/30/2017 6:19:00 PM
Vinyl Bromide	< 0.15	0.15	₽pbV	1	10/30/2017 6:19:00 PM
Vinyt chtoride	< 0.040	0.040	Vdqq	1	10/30/2017 6:19:00 PM
Surr: Bromofluorobenzene	111	70-130	%REC	1	10/30/2017 6:19:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	3N	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	s	Spike Recovery outside accepted recovery limits			р

Contal	Labor	antennina.	- TF	Υ.	~
Centek	Labor	ratories	, L		۰

Date: 20-Nov-17

CLIENT:	LaBella Associates, P.C.			 lient Sample 1D:	10 1 1 1)_24_EX1
Lab Order:	C1710061			Tag Number:	362.281	
Project:	300 Commerce Dr			Collection Date:	10/24/20	017
Lab ID:	C1710061-004A			Matrix:		
Analyses		Result	**Limit		DF	Date Analyzed

UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO	-15			Analyst: RJF
1,1,1-Trichloroethane	0.76	0.82	J ug)/m3	1	10/30/2017 6:19:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	μĝ	y/m3	1	10/30/2017 6:19:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug	j/m3	1	10/30/2017 6:19:00 PM
1,1-Dichloroethane	< 0.61	0.61	υg	/m3	1	10/30/2017 6:19:00 PN
1,1-Dichloroethene	< 0.59	0.59	ug	y/m3	1	10/30/2017 6:19:00 PM
1,2,4-Trichlorobenzene	< \$.1	1.1	Ug	j/m3	1	10/30/2017 6:19:00 PN
1,2,4-Trimethylbenzene	28	7,4	ug	3/m3	10	10/31/2017 1:16:00 AM
1,2-Dibromoethane	< 1.2	1.2	មថ្)/m3	1	10/30/2017 6:19:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ដព្វ	;/m3	1	10/30/2017 6:19:00 PN
1,2-Dichloroethane	< 0.61	0.61	មច្ឆ	;/m3	1	10/30/2017 6:19:00 PM
1,2-Dichloropropane	< 0.69	0.69	uģ	}/m3	1	10/30/2017 6:19:00 PM
1,3,5-Trimethylbenzene	10	0.74	μĝ	/m3	1	10/30/2017 6:19:00 PN
1,3,5-Trimethylbenzene	7.9	7.4	ug	/m3	10	10/31/2017 1:16:00 AM
1,3-butadiene	< 0.33	0.33	ug	/m3	1	10/30/2017 6:19:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug	/m3	1	10/30/2017 6:19:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	บg	;/m3	1	10/30/2017 6:19:00 PM
1,4-Oloxane	< 1.1	1.1	មថ្ម	/m3	1	10/30/2017 6:19:00 PM
2.2.4-trimethylpentane	28	7.0	ug	/m3	10	10/31/2017 1:16:00 AN
4-ethyltoluene	9.3	7.4	ug	/m3	10	10/31/2017 1:16:00 AM
Acetone	260	64	ug	/กา3	90	10/31/2017 8:24:00 AM
Allyl chloride	< 0.47	0.47	ug	/m3	1	10/30/2017 6:19:00 PM
Benzene	30	4.8	цg	/m3	10	10/31/2017 1:16:00 AM
Benzyl chioride	< 0.86	0.86	ug	/m3	1	10/30/2017 6:19:00 PM
Bromodichloromethane	< 1.0	1.0	មឲ្	/m3	1	10/30/2017 6:19:00 PM
Bromoform	< 1.6	1.6	ug	/m3	1	10/30/2017 6:19:00 PM
Bromomethane	< 0.58	0.58	ug	/m3	t	10/30/2017 6:19:00 PN
Carbon disulfide	5.1	0.47	μġ	/m3	1	10/30/2017 6:19:00 PM
Carbon tetrachloride	0.50	0.25	ug	/m3	1	10/30/2017 6:19:00 PM
Chlorobenzene	< 0.69	0.69	νg	/m3	1	10/30/2017 6:19:00 PM
Chloroethane	< 0.40	0.40	ug	/m3	1	10/30/2017 6:19:00 PM
Chioroform	0.63	0.73	J ug	/m3	1	10/30/2017 6:19:00 PA
Chloromethane	0.89	0.31	ъđ	/m3	1	10/30/2017 6:19:00 PM
cis-1,2-Dichloroethene	17	5.9	ug	/m3	10	10/31/2017 1:16:00 AN
cis-1,3-Dichloropropene	< 0.68	0.68	чÖ	/m3	1	10/30/2017 6:19:00 PN
Cyclohexane	7.2	0.52	ug	/m3	1	10/30/2017 6:19:00 PN
Dibromochloromethane	< 1.3	1.3	ug	/m3	1	10/30/2017 6:19:00 PM
Ethyl acetate	< 0.54	0.54	ug	/m3	1	10/30/2017 6:19:00 PN
Ethylbenzene	43	6.5		/m3	10	10/31/2017 1:16:00 AM
Freon 11	1.6	0.84	ug	/m3	1	10/30/2017 6:19:00 PM
Freon 113	< 1.1	1.1	ug	/m3	1	10/30/2017 6:19:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT:	LaBella Associates, P.C			lient Sample ID:		
Lab Order:	C1710061			Tag Number:	362.283	1
Project:	300 Commerce Dr			Collection Date:	10/24/2	017
Lab ID:	C1710061-004A			Matrix:		
Analyses		Result	**Limit		DF	Date Analyzed

Anaiyses	Nesan	Chini Quai	Олна	121.	Date Analyzad
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 114	< 1.0	1.0	ug/m3	1	10/30/2017 6:19:00 PM
Freon 12	3.0	0.74	սց/m3	1	10/30/2017 6:19:00 PM
Heptane	25	6.1	ug/m3	10	10/31/2017 1:16:00 AM
Hexachioro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/30/2017 6:19:00 PM
Нехале	12	5.3	ug/m3	10	10/31/2017 1:16:00 AM
isopropyl alcohol	450	34	មg/m3	90	10/31/2017 8:24:00 AM
m&p-Xylene	170	13	ug/m3	10	10/31/2017 1:16:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/30/2017 6:19:00 PM
Methyl Ethyl Ketone	37	8.8	ug/m3	10	10/31/2017 1:16:00 AM
Methyl Isobutyl Ketone	5.8	1.2	ug/m3	1	10/30/2017 6:19:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	10/30/2017 6:19:00 PM
Methylene chloride	1.7	0.52	ug/m3	1	10/30/2017 6:19:00 PM
o-Xylene	50	6.5	ug/m3	10	10/31/2017 1:16:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/30/2017 6:19:00 PM
Styrene	< 0.64	0.64	ug/m3	1	10/30/2017 6:19:00 PM
Tetrachloroethylene	3.7	1.0	ug/m3	1	10/30/2017 6:19:00 PM
Tetrahydrofuran	22	4.4	ug/m3	10	10/31/2017 1:16:00 AM
Toluene	270	53	ug/m3	90	10/31/2017 8:24:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 6:19:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	10/30/2017 6:19:00 PM
Trichloroethene	13	2.1	ug/m3	10	10/31/2017 1:16:00 AM
Vinyi acetate	< 0.53	0.53	ug/m3	1	10/30/2017 6:19:00 PM
Vinyi Bromide	< 0.66	0.66	ug/m3	1	10/30/2017 6:19:00 PM
Viny! chloride	< 0.10	0.10	ug/m3	1	10/30/2017 6:19:00 PM

Qualifiers:	**	Quantitation Limit	. Results reported are not blank corrected				
	8	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range			
	Н	Holding times for preparation or analysis exceeded	j,	Analyte detected below quantitation limit			
	ЗN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Page 8 of 10		
	s	Spike Recovery outside accepted recovery limits			rage a of to		

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103010.D Vial: 26 Acq On : 30 Oct 2017 5:19 pm Operator: RJP Sample : C1710061-004A Misc : AN30_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 30 23:06:33 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcg Meth : 1UG RUN

 Internal Standards
 R.T. QIon Response Conc Units Dev(Min)

 1) Bromochloromethane
 10.63 128 21824 1.00 ppb 0.00

 35) 1,4-difluorobenzene
 12.85 114 101063 1.00 ppb 0.00

 50) Chlorobenzene-d5
 17.58 117 95601 1.00 ppb 0.00

 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 71573 1.11 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 111.00%

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 111.00%

 Target Compounds
 Qvalue

 3) Freon 12
 4.71
 85
 60914
 0.61
 ppb
 98

 4) Chloromethane
 4.94
 50
 9787
 0.43
 ppb
 97

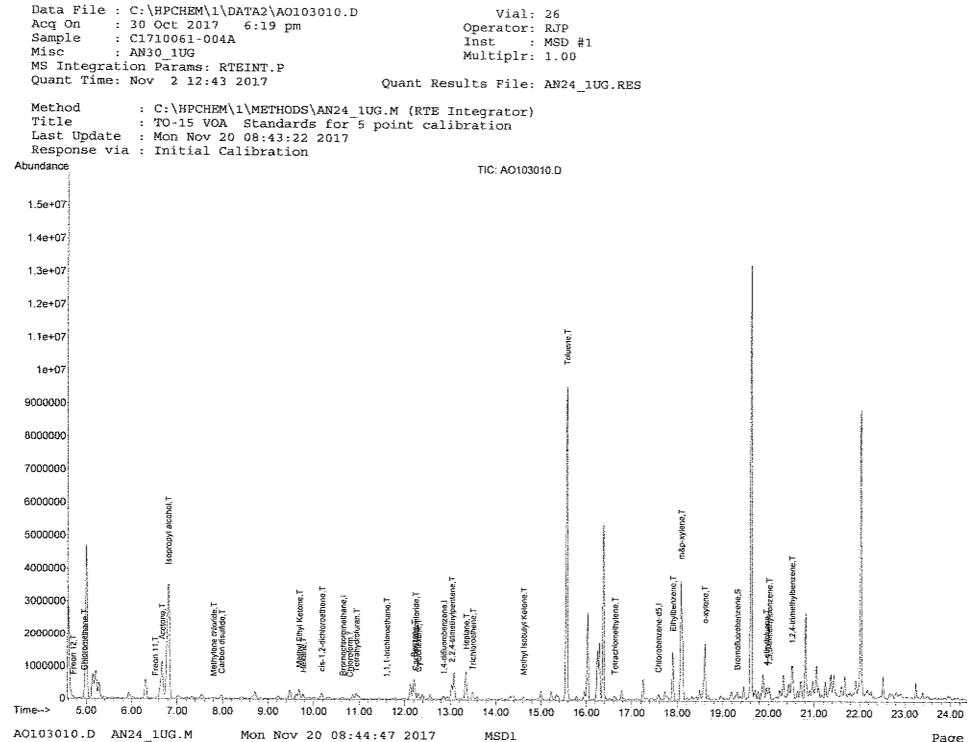
 14) Freon 11
 6.52
 101
 28958
 0.29
 ppb
 100

 15) Acetone
 6.66
 58
 664011m/⁴⁰
 69.79
 ppb
 11

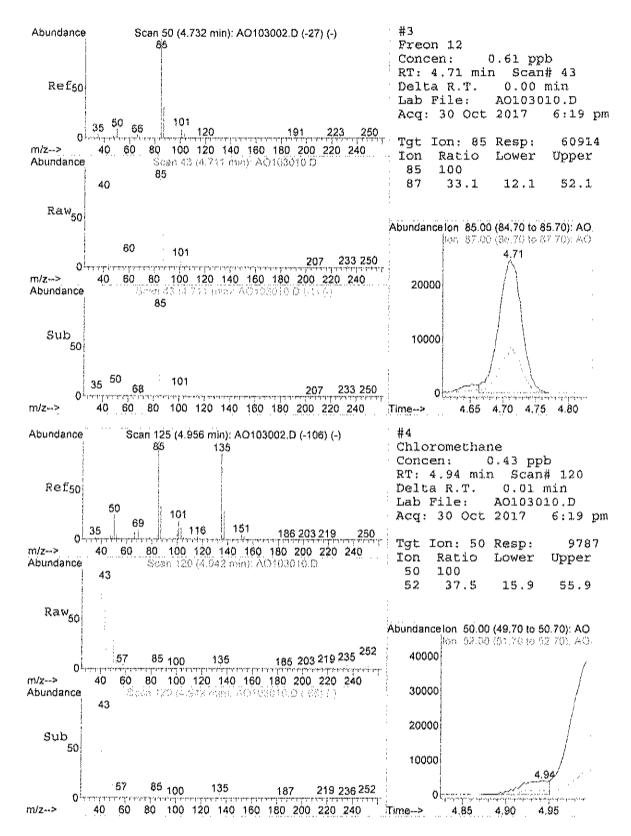
 111
 Methylene Chloride
 7.81
 84
 12967
 0.48
 ppb
 96

 23) Carbon disulfide
 7.99
 76
 145116
 1.65
 ppb
 86

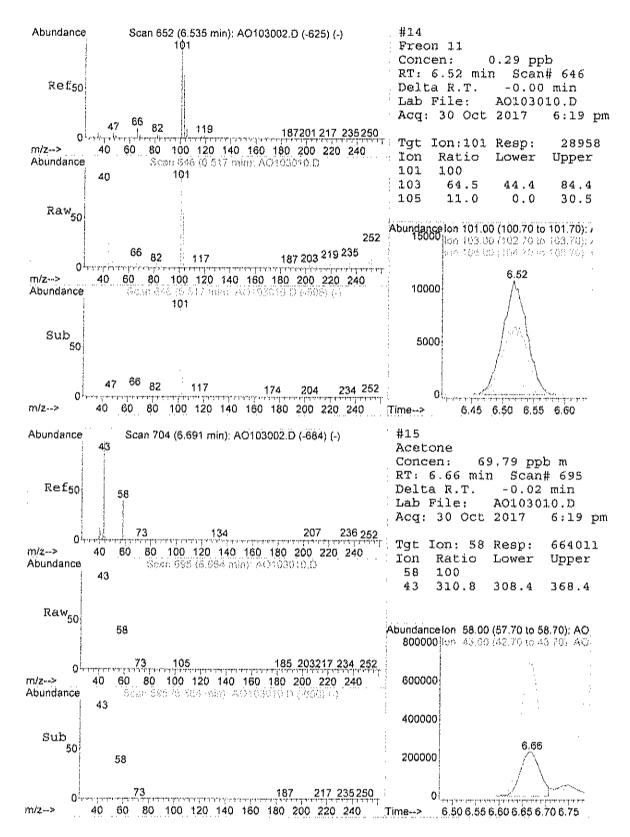
 28) Methyl Ethyl Ketone
 9.69
 72
 139667
 11.56
 ppb
 84


 30) Hexane
 9.77
 57
 105533
 2.67
 ppb
 89

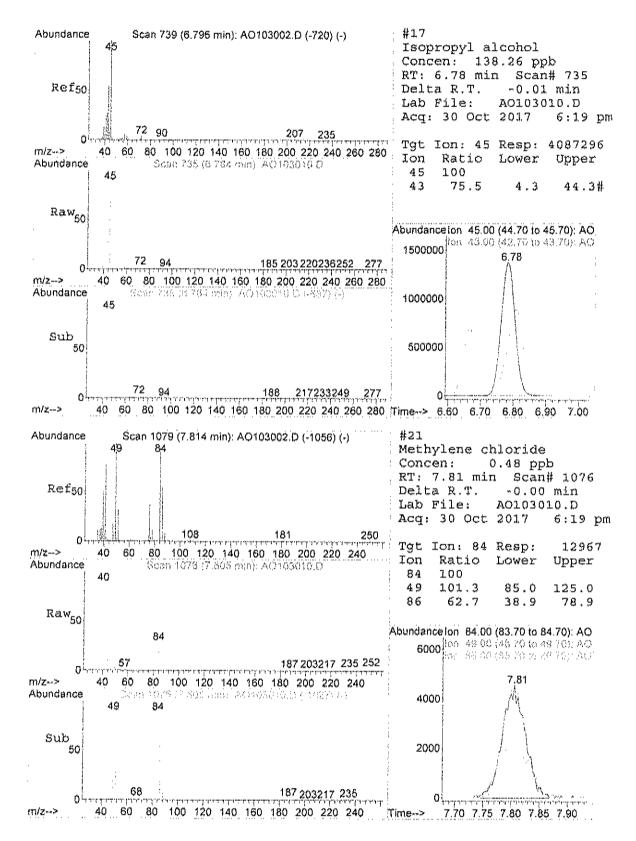
 31) Tetrahydrofuran
 10.94
 42
 158968
 6.51
 ppb
 99


 33) Tetrahydrofuran
 10.94
 42
 158968
 6.51
 ppb
 98

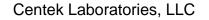
 36) Carbon tetrachloride
 12.25
 <t

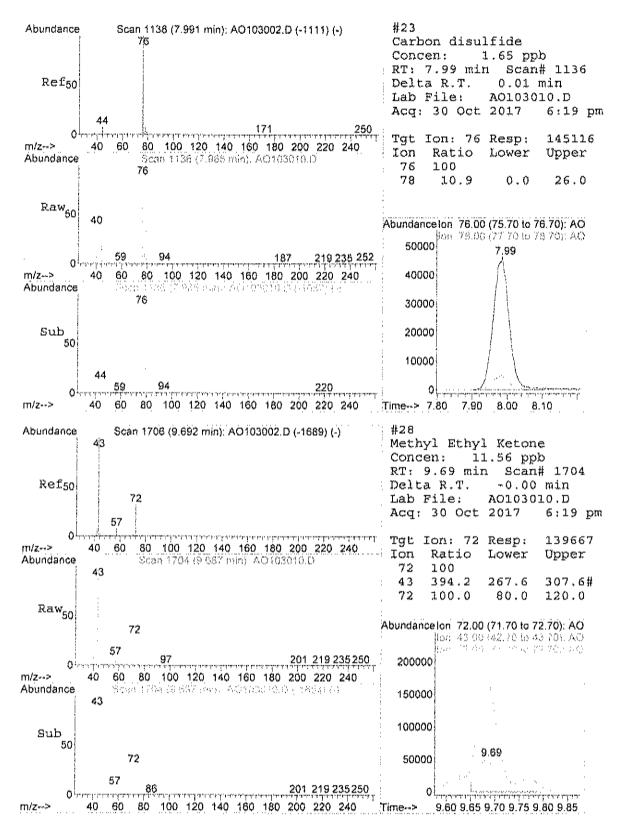

(#) = qualifier out of range (m) = manual integration (+) * signals summed A0103010.D AN24_1UG.M Mon Nov 20 08:44:46 2017 MSD1

²age 116 of 272

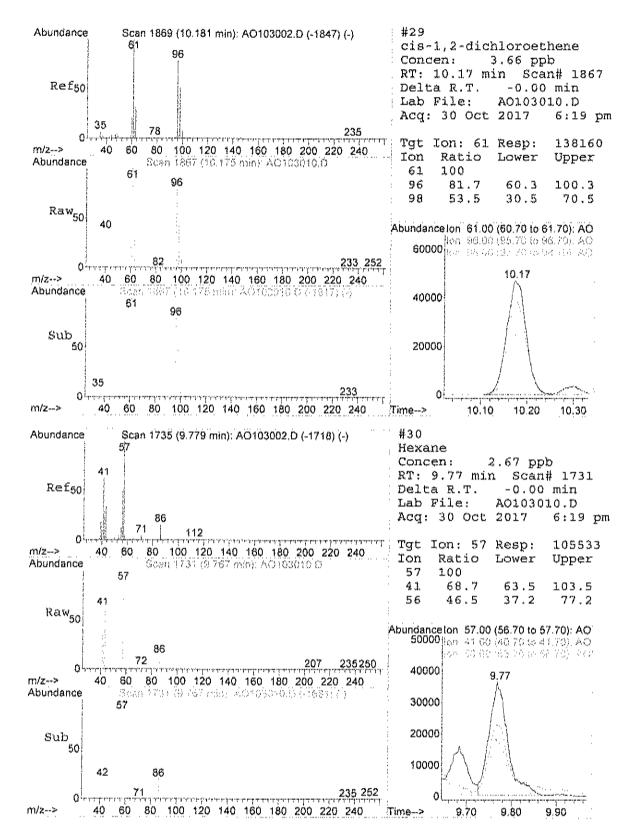


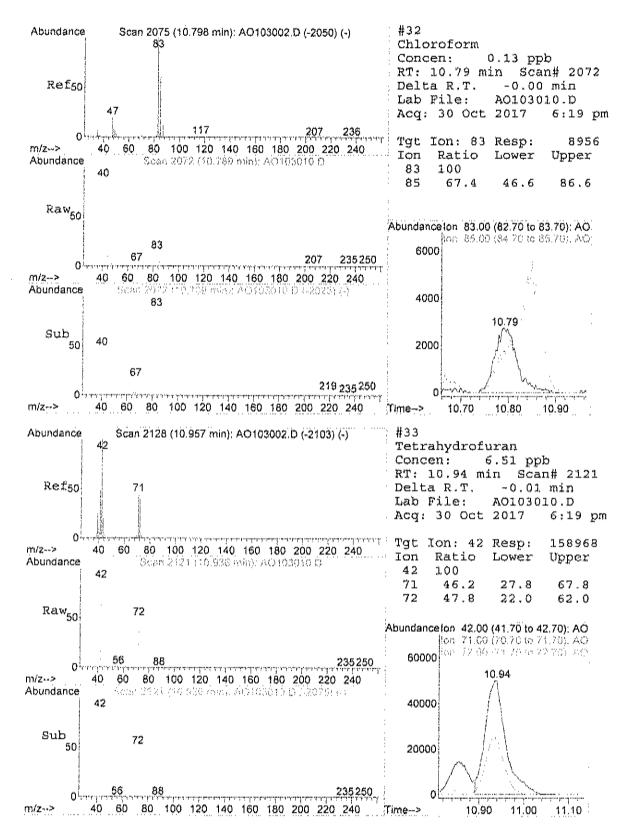
A0103010.D AN24 1UG.M


MSD1

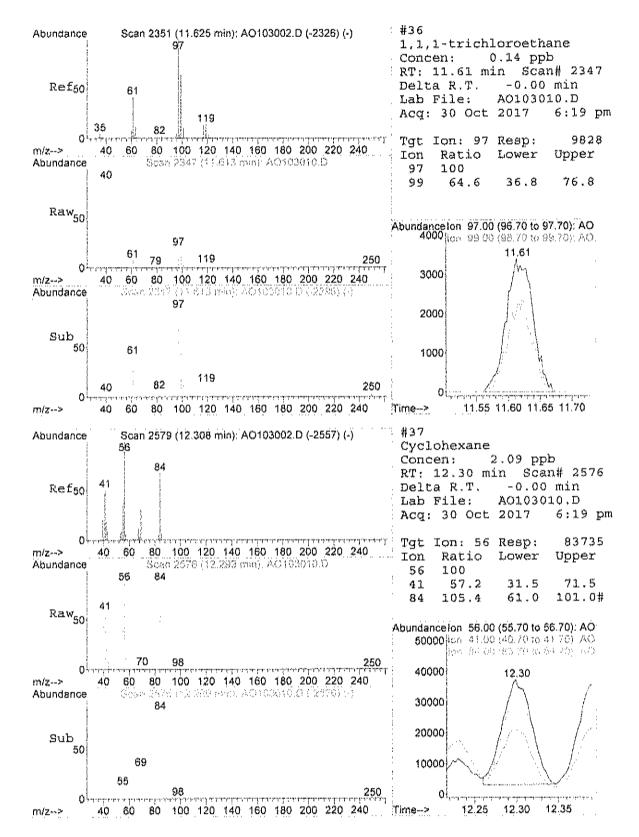

Page 118 of 272

Page 119 of 272

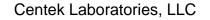

MSD1


MSD1

Page 120 of 272

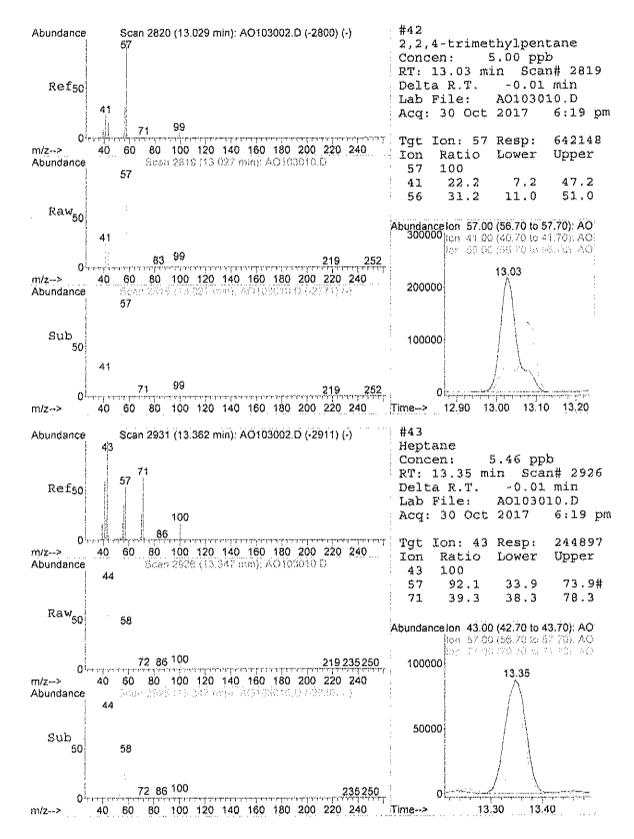

A0103010.D AN24 1UG.M

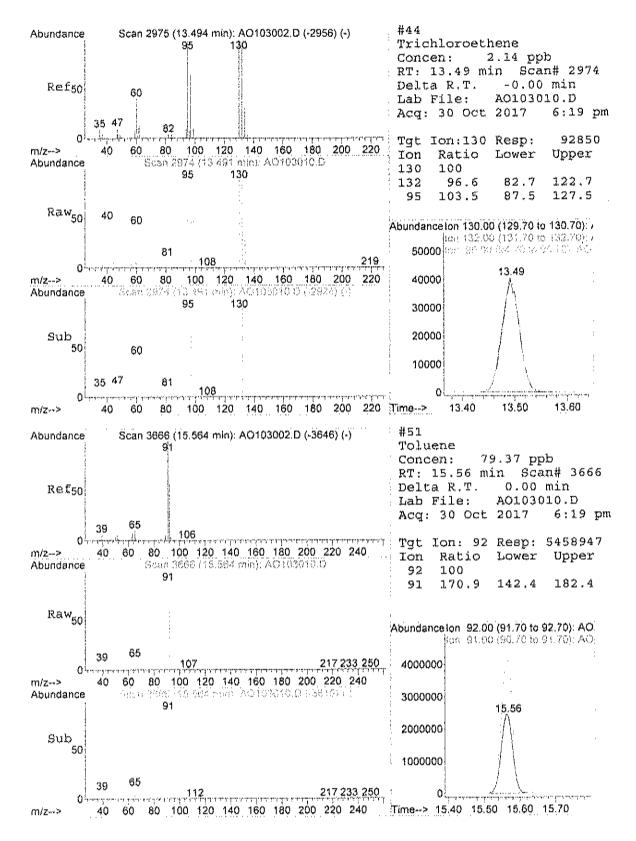
Page 121 of 272



A0103010.D AN24 1UG.M

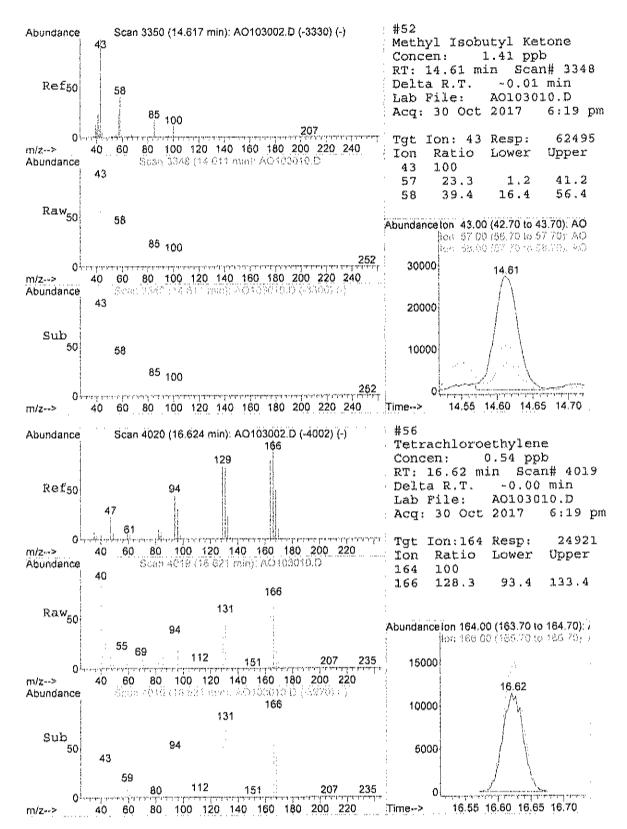
Page 122 of 272


Page 123 of 272



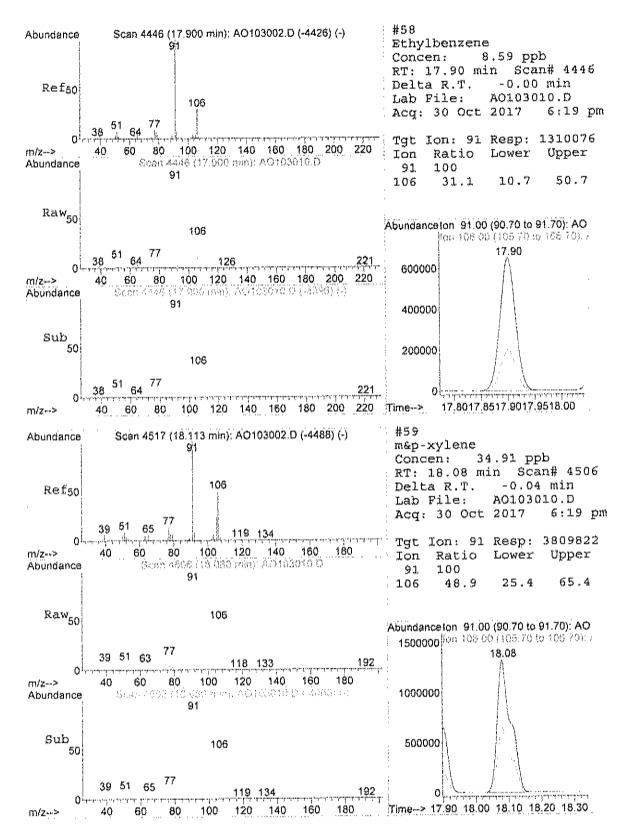
MSD1

Page 124 of 272



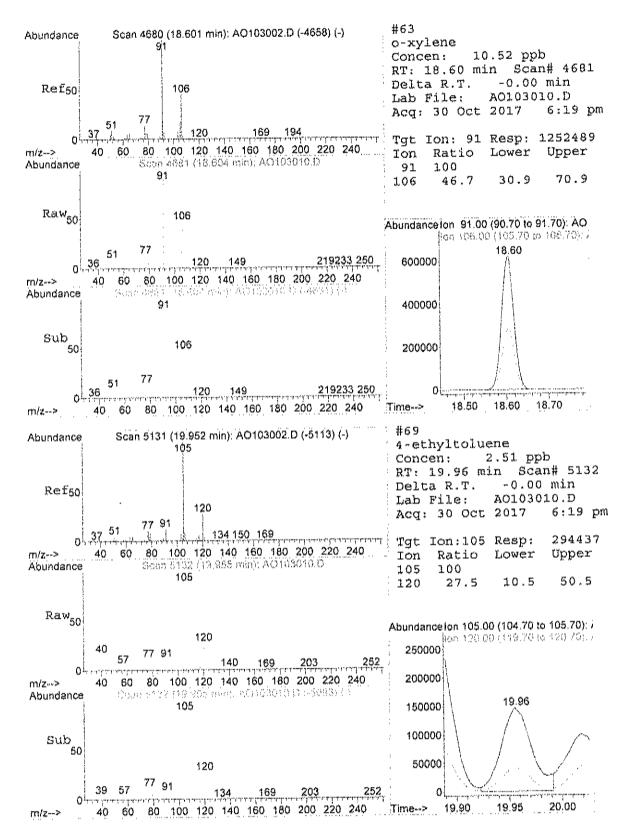
Page 125 of 272

MSD1


Page 126 of 272

A0103010.D AN24 1UG.M

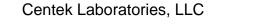
MSD1

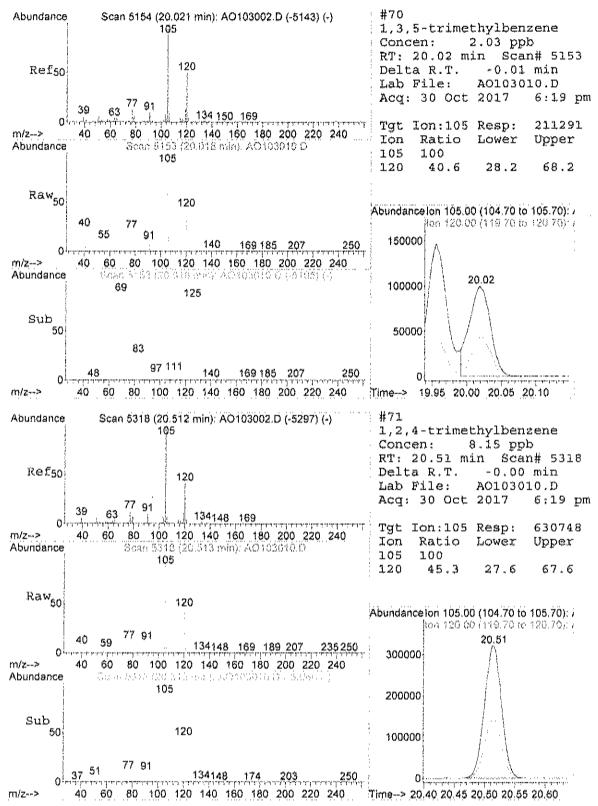

Page 127 of 272

A0103010.D AN24 1UG.M

MSD1

Page 128 of 272

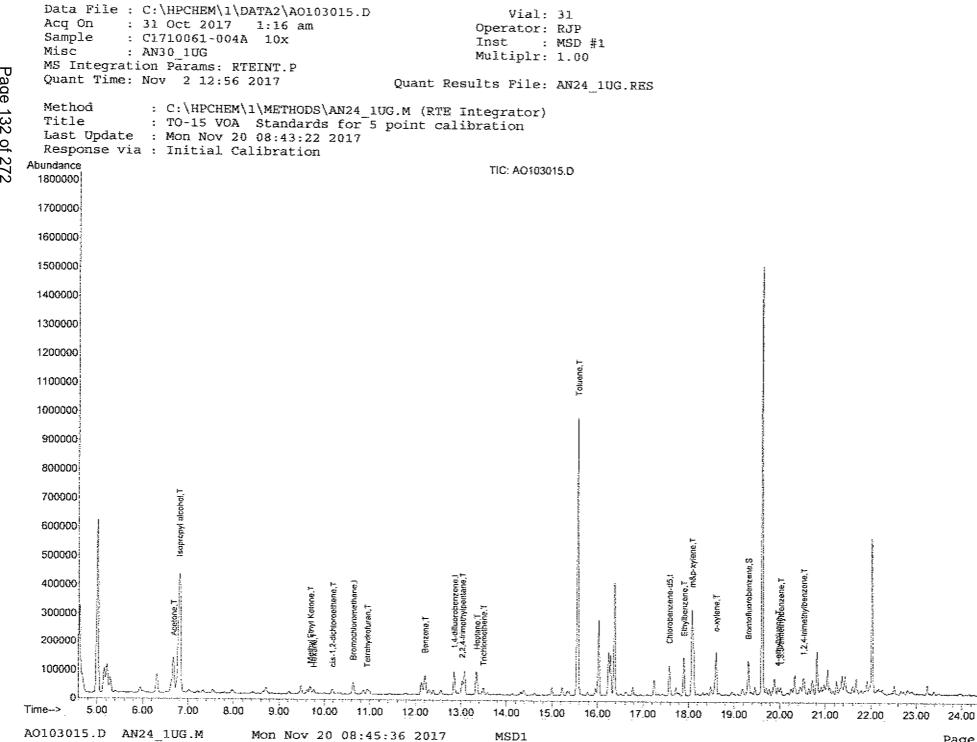


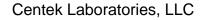

AO103010.D AN24_1UG.M

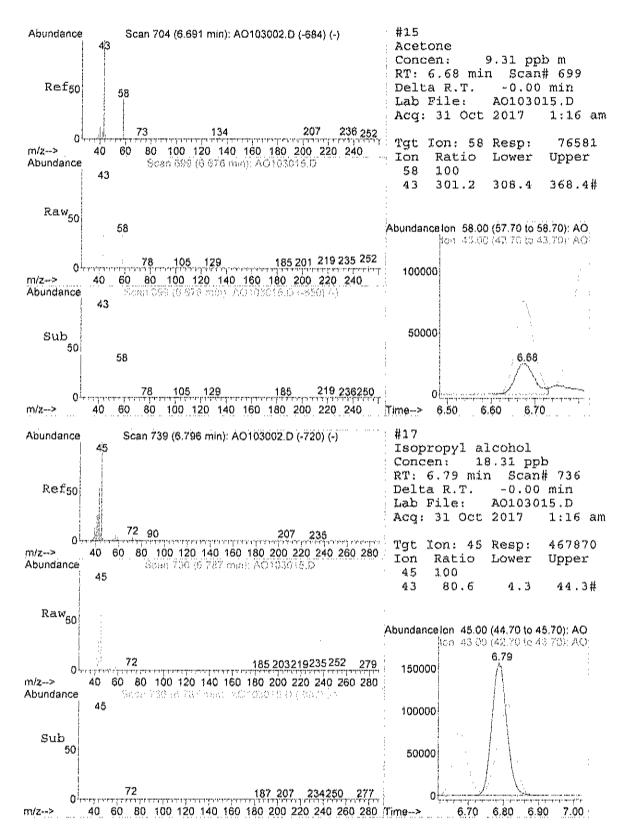
MSD1

Page 15

Page 129 of 272

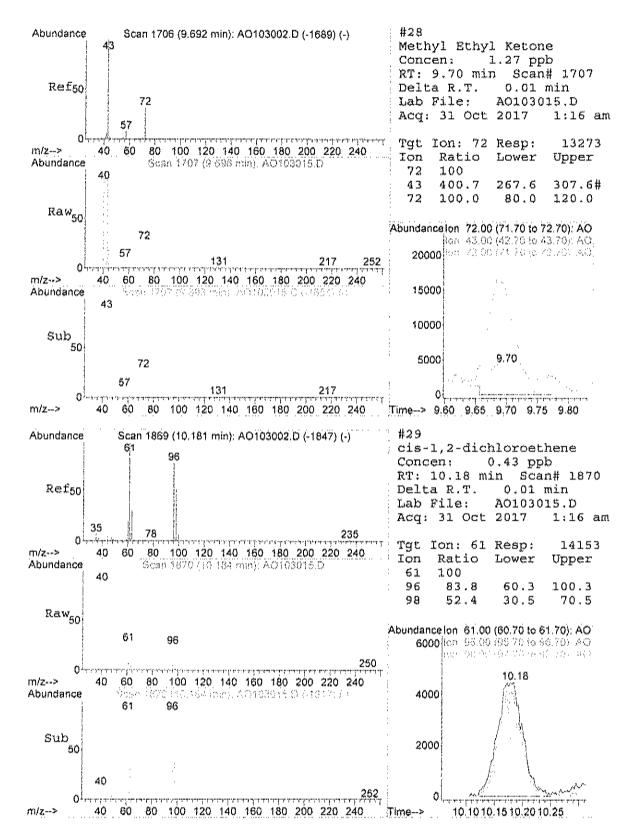


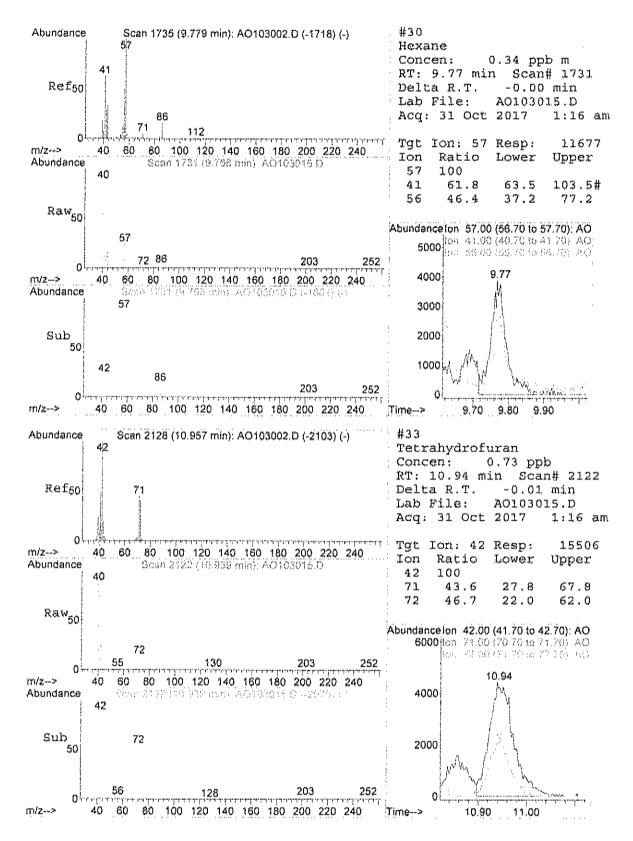



AO103010.D AN24_1UG.M

	Quantitat	ion Rej	port (QT	Revie	wed)								
Data File : C:\HPCHEM\1\DATA2 Acq On : 31 Oct 2017 1:1 Sample : C1710061-004A 10 Misc : AN30_1UG MS Integration Params: RTEINT Quant Time: Oct 31 11:13:25 2	D Vial: 31 Operator: RJP Inst : MSD #1 Multiplr: 1.00 Quant Results File: AN24_1UG.RES												
Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN													
Internal Standards	R.T.		Response (Conc U	nits	Dev	(Min)						
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.63 12.85 17.58	128	18866 86880 73871	1.00 1.00 1.00	dqq dqq dqq		0.00 0.00 0.00						
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000		95 - 130	48495 Recovery				0.00						
<pre>Target Compounds 15) Acetone 17) Isopropyl alcohol 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 30) Hexane 33) Tetrahydrofuran 39) Benzene 42) 2,2,4-trimethylpentane 43) Heptane 44) Trichloroethene 51) Toluene 58) Ethylbenzene 59) m&p-xylene 63) o-xylene 69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene</pre>	9.70 10.18 9.77 10.94	45 72 61 57 42 78 57 43 130 92 91 91 91	467870 13273 14153 11677m 15506 75204 65996 23727 9099 520781 117938 323262 105447 17645	18.31 1.27 0.43 0.34 0.73 0.94 0.60 0.61 0.24 9.80 1.00 3.83 1.15 0.19	dd dd dd dd dd dd dd dd dd dd dd dd dd	# # #	11ue 56 97 93 99 91 68 99 89 100 97 93 94 87						
71) 1,2,4-trimethylbenzene	20.51	105	13066 33966	0.57			96						

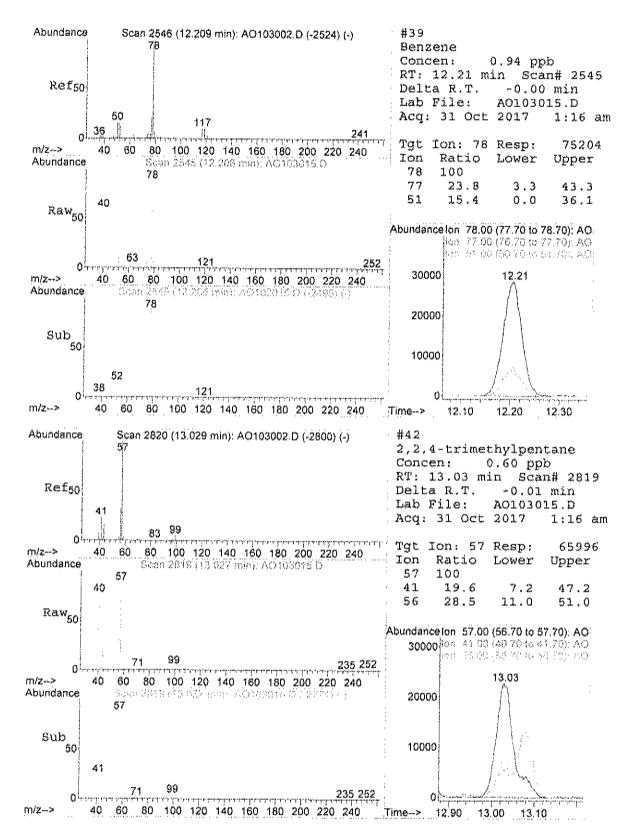
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0103015.D AN24_1UG.M Mon Nov 20 08:45:35 2017 MSD1



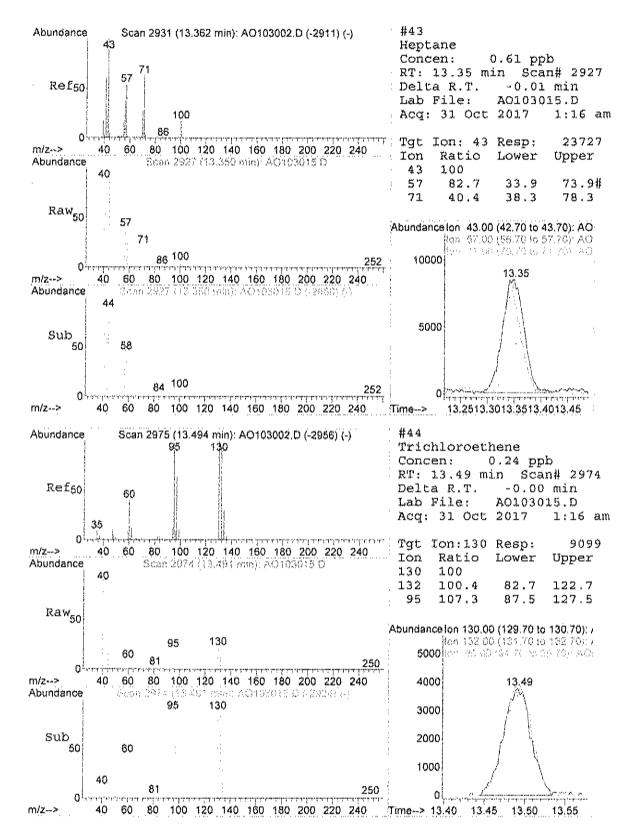

Page 133 of 272

MSDi

MSD1


Page 134 of 272

A0103015.D AN24 1UG.M

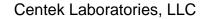

Page 135 of 272

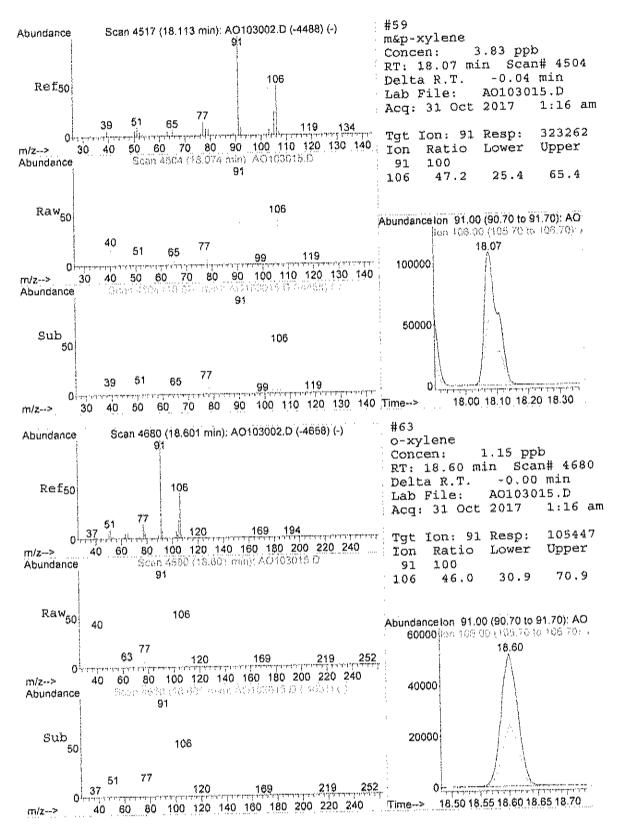
MSD1



A0103015.D AN24 1UG.M

Page 136 of 272

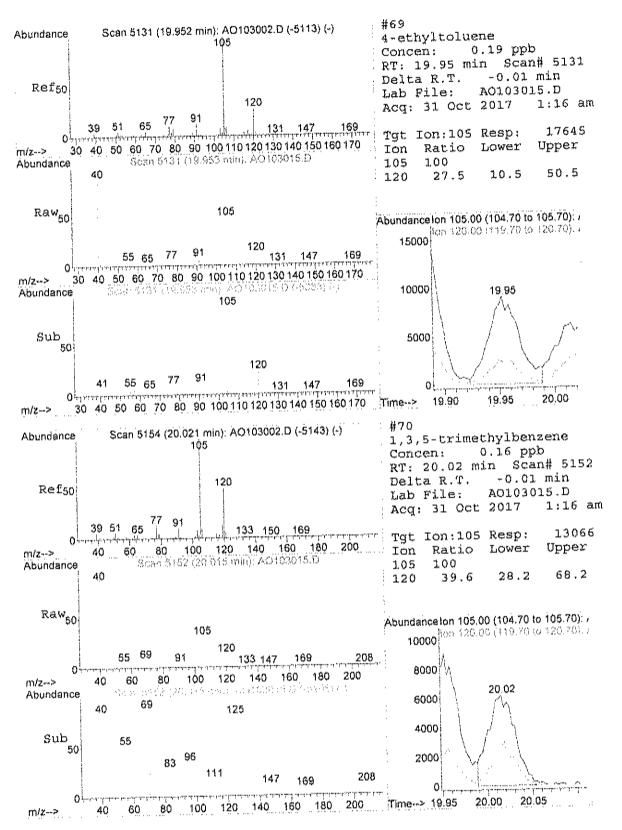

A0103015.D AN24 1UG.M



A0103015.D AN24 1UG.M

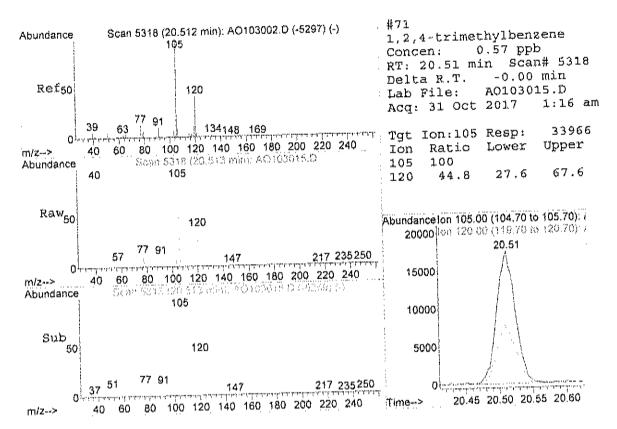
MSD1

Page 138 of 272



A0103015.D AN24_1UG.M

Page 139 of 272

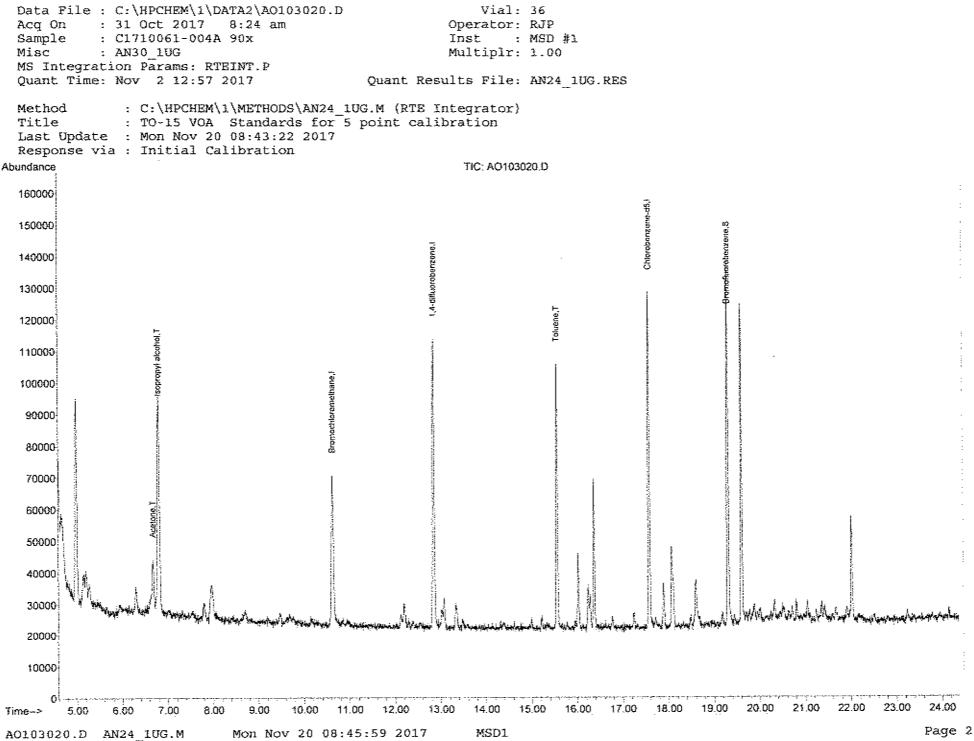

AO103015.D AN24 LUG.M

Mon Nov 20 08:45:44 2017 MSD1

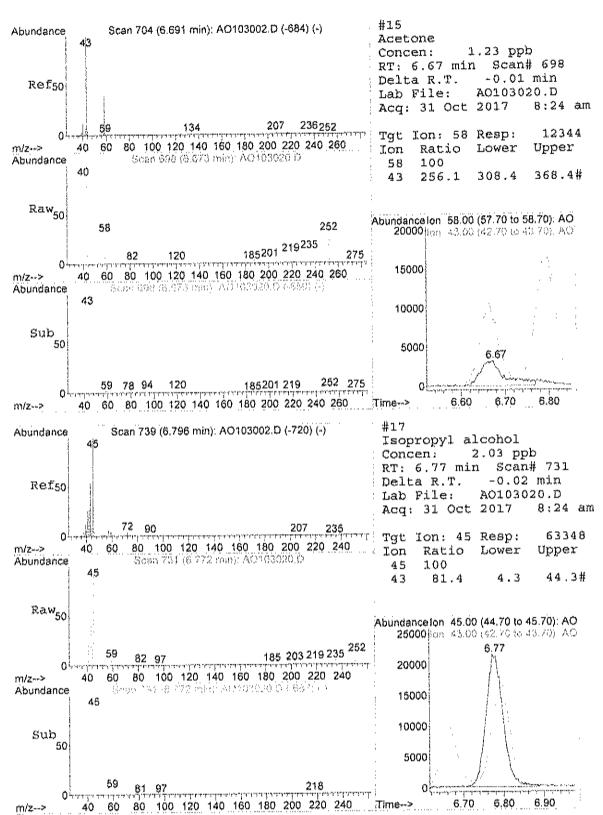
Page 10

Page 140 of 272

0 of 272

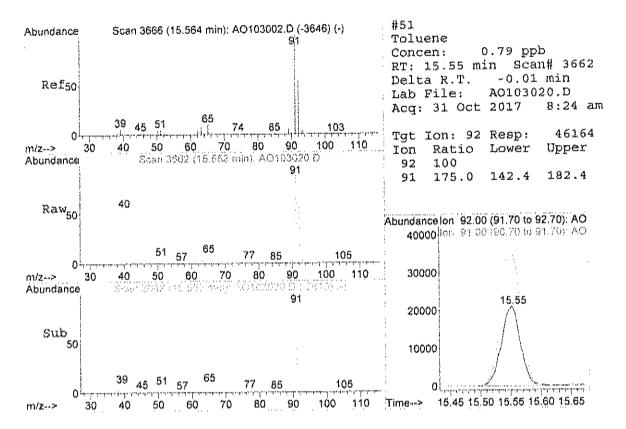


Page 141 of 272


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103020.D Vial: 36 Acq On : 31 Oct 2017 8:24 am Sample : C1710061-004A 90x Misc : AN30_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 31 11:13:30 2017 Quant Results File: AN24_1UG,RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.62128230381.00ppb-0.0235) 1,4-difluorobenzene12.841141000571.00ppb-0.0250) Chlorobenzene-d517.57117808831.00ppb-0.01 System Monitoring Compounds 65) Bromofluorobenzene 19.30 95 50008 0.92 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 92.00% Target Compounds Ovalue 6.67 58 12344 1.23 ppb # 61 6.77 45 63348 2.03 ppb # 1 15.55 92 46164 0.79 ppb 91 15) Acetone 17) Isopropyl alcohol 53) Toluene 51) Toluene

age

143 of 272



A0103020.D AN24 1UG.M

MSD1

Page 144 of 272

A0103020.D AN24_1UG.M Mon Nov 20 08:46:01 2017 MSD1

Centek Laboratories, LLC					Date: 20-Nov-17			
CLIENT:	LaBella Associates, P.C	Y.		(Client Sample ID:	2017	_10_24_EX2	
Lab Order:	C1710061				Tag Number:			
Project:	300 Commerce Dr				Collection Date:	10/24	/2017	
Lab ID:	C1710061-005A				Matrix:			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed	
	TERS		F	LD	·····		Anaiyst:	
Lab Vacuum in		-2			"Hg		10/27/2017	
Lab Vacuum Ov	t	-30			"Hg		10/27/2017	
	UG/M3 CT-TCE-VC		то	-15			Analyst: RJI	
1,1,1-Trichleroet		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,1,2,2-Tetrachic		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,1,2-Trichloroet	hane	< 0.15	0.15		ppb∨	1	10/30/2017 6:59:00 PM	
1,1-Dichloroetha		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,1-Dichloroethe	ne	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,2,4-Trichlorobe	nzene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,2,4-Trimethylbe	enzene	6.6	1.5		ppbV	10	10/31/2017 2:29:00 AM	
1,2-Dibromoetha	ne	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,2-Dichlorobenz	ene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,2-Dichloroetha	ne	< 0.15	0.15		ppb∨	1	10/30/2017 6:59:00 PM	
1,2-Dichloropropane		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1,3,5-Trimethylbenzene		1.7	1.5		ppbV	10	10/31/2017 2:29:00 AN	
1.3-butadiene		< 0,15	0.15		pobV	1	10/30/2017 6:59:00 PM	
1,3-Dichlorobenzene		< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
1.4-Dichlorobenz	ene	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PN	
1,4-Dioxane		< 0.30	0.30		Vdqq	1	10/30/2017 6:59:00 PM	
2.2,4-trimethylper	ntane	7.0	1.5			10	10/31/2017 2:29:00 AM	
4-ethyltoluene		2.1	1.5			10	10/31/2017 2:29:00 AN	
Acetone		140	81			270	10/31/2017 9:01:00 AN	
Allyl chloride		< 0.15	0.15			1	10/30/2017 6:59:00 PM	
Benzene		10	1.5			10	10/31/2017 2:29:00 AM	
Benzyi chloride		< 0.15	0.15		· · · · · · · · · · · · · · · · · · ·	1	10/30/2017 6:59:00 PM	
Bromodichlorome	thane	< 0.15	0.15		ppbV	1	10/30/2017 6:59:00 PM	
Bromoform		< 0.15	0.15			1	10/30/2017 6:59:00 PM	
Bromomethane		< 0.15	0.15			1	10/30/2017 6:59:00 PM	
Carbon disulfide		1,9	0.15			1	10/30/2017 6:59:00 PM	
Carbon tetrachlori	de	0.080	0.040			1	10/30/2017 6:59:00 PM	
Chlorobenzene		< 0.15	0.15			1	10/30/2017 6:59:00 PM	
Chioroethane		0.14	0.15			1	10/30/2017 6:59:00 PM	
Chloroform		0.14	0.15			1	10/30/2017 6:59:00 PM	
chioromethane		< 0.15	0.15			{	10/30/2017 6:59:00 PM	
is-1,2-Dichloroeth		0.81	0.15			1	10/30/2017 6:59:00 PM	
is-1,3-Dichloropro	opene	< 0.15	0.15		ppbV ·		10/30/2017 6:59:00 PM	
Cyclohexane		3.9	1.5			0	10/31/2017 2:29:00 AM	
Dibromochloromet	lhane	< 0.15	0.15		ppbV		10/30/2017 6:59:00 PM	
Ethyl acetate		1.1	0.15		pp6V 1		10/30/2017 6:59:00 PM	

Qualifiers: * * Quantitation Linut

.

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 20-Nov-17

Analyses		Result	**Limit			DF	Date Analyzed
Lab ID:	C1710061-005A				Matrix:		
Project:	300 Commerce Dr				Collection Date:)17
Lab Order:	C1710061				Tag Number:		
CLIENT:	LaBella Associates, P.C			c	lient Sample ID:	2017_10	_24_EX2

Anatyses	Result	Lunit Quar	Units	101	Date Analyzed	
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15				Analyst: RJP	
Ethylbenzene	10	1.5	ppbV	10	10/31/2017 2:29:00 AM	
Freon 11	0.32	0.15	Vdqq	1	10/30/2017 6:59:00 PM	
Freon 113	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Freon 114	< 0.15	0.15	vdqq	1	10/30/2017 6:59:00 PM	
Freon 12	0.62	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Heptane	7.6	1.5	Vđqq	10	10/31/2017 2:29:00 AM	
Hexachloro-1,3-butadiene	< 0.15	0.15	Vdqq	1	10/30/2017 6:59:00 PM	
Hexane	4.1	1.5	ρρον	10	10/31/2017 2:29:00 AM	
isopropyl alcohoł	510	40	ppbV	270	10/31/2017 9:01:00 AM	
m&p-Xylene	40	3.0	ppbV	30	10/31/2017 2:29:00 AM	
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	10/30/2017 6:59:00 PM	
Methyl Ethyl Ketone	13	3.0	Vdqq	10	10/31/2017 2:29:00 AM	
Methyl Isobutyl Ketone	1.4	0.30	ppbV	1	10/30/2017 6:59:00 PM	
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Methylene chloride	0.32	0.15	ppbV	1	10/30/2017 6:59:00 PM	
o-Xylene	12	1.5	ppbV	10	10/31/2017 2:29:00 AM	
Propylene	< 0.15	0.15	ppb∨	1	10/30/2017 6:59:00 PM	
Styrene	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Tetrachloroethylene	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Tetrahydrofuran	8.1	1.5	ppb∨	10	10/31/2017 2:29:00 AM	
Toluene	70	40	рръ∨	270	10/31/2017 9:01:00 AM	
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	10/30/2017 6:59:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Trichloroethene	0.23	0.040	ppb∨	1	10/30/2017 6:59:00 PM	
Vinyl acetate	< 0.15	0.15	ppbV	1	10/30/2017 6:59:00 PM	
Vinyl Bromide	< 0.15	0.15	vdqq	1	10/30/2017 6:59:00 PM	
Vinyl chloride	< 0.040	0.040	ppb∨	1	10/30/2017 6:59:00 PM	
Surr: Bromoßuorobenzene	108	70-130	%REC	1	10/30/2017 6:69:00 PM	

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
-	B	Analyte detected in the associated Method Black	E	Estimated Value above quantitation range	
	В	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	NÐ	Not Detected at the Limit of Detection	Page 10 of 10
	S	Spike Recovery outside accepted recovery limits			rage to of to

Centek	Labora	tories,	LLC
--------	--------	---------	-----

Date: 20-Nov-17

Page 9 of 10

LIENT:	LaBella Associates, P	С.		C	lient Sampi Tag Nun				
ab Order:	C1710061				Collection				
roject:	300 Commerce Dr							2017	
ab ID:	C1710061-005A				Ma	atrix:	AIR.		
naiyses		Result	**L/imit	Qual	Units		DF	Date Analy:	zed
UG/M3 W/ 0.3	25UG/M3 CT-TCE-VC		то	-15				Analy: 10/30/2017 6:5	st: RJP
1,1,1 Trichloro		< 0.82	0.82		ug/m3		1	10/30/2017 6:5	
1,1,2,2-Tetracl		< 1.0	0. †		ug/m3		1	10/30/2017 6:5	
1,1,2-Trichloro		< 0.82	0.82		ug/m3		1	10/30/2017 6:5	
1,1-Dichloroet		< 0.61	0.61		ug/m3		1	10/30/2017 6:5	
1.1-Dichloroet	hene	< 0.59	0.59		ug/m3		1	10/30/2017 6:5	
1,2,4-Trichloro	benzene	< 1.1	1.1		ug/m3		1	10/31/2017 2:2	
1,2,4-Trimethy		32	7.4		ug/m3		10	10/30/2017 6:	
1,2-Dibromoet	hane	< 1,2	1.2		ug/m3		1	10/30/2017 6:	
1,2-Dichlorobe		< 0.90	0.90		ug/m3		1	10/30/2017 6:	
1,2-Dichloroet		< 0.61	0.61		ug/m3		1	10/30/2017 6:	
1,2-Dichloropr		< 0,69	0.69		սց/m3		1		
1,3,5-Trimethy		8.4	7.4		ug/m3		10	10/31/2017 2:	
1,3-butadiene		< 0.33	0.33		ug/m3		1	10/30/2017 6:	
1,3-Dichlorobe		< 0.90	0,90		ug/m3		1	10/30/2017 6:	
1,4-Dichlorobe		< 0.90	0.90		ug/m3		1	10/30/2017 6:	
1,4-Dioxane		< 1.1	1.1		មg/m3		1	10/30/2017 6:	
2,2,4-trimethy	lpantane	33	7.0	I	ug/m3		10	10/31/2017 2:	
4-ethyltoluene		10	7,4		ug/m3		10	10/31/2017 2:	
Acetone	-	330	190	}	ug/m3		270	10/31/2017 9:	
Ailyl chloride		< 0.47	0.47	•	ug/m3		1	10/30/2017 6:	
Senzeñe		32	4.8	ł	ug/m3		10	10/31/2017 2	
Benzyl chlorid	le	< 0.86	0.86	5	ug/m3		1	10/30/2017 6	
Bromodichlor		< 1.0	1.0)	նց/៣3		1	10/30/2017 6	
Bromoform		< 1.6	1. €	5	ug/m3		1	10/30/2017 6	
Bromomethai	ne	< 0,58	0.58	3	սց/m3		1	10/30/2017 6	
Carbon disulf		5.9	0.47	7	ug/m3		1	10/30/2017 6	
Carbon tetrad		0.50	0.28	5	ug/m3		1	10/30/2017 6	
Chlorobenzer		< 0.69	0.69	9	ug/m3		1	10/30/2017 6	
Chloroethane		0.37	0.40) J	ug/m3		1	10/30/2017 6	
Chloroform	•	0.68	0.73	3 J	սց/m3		1	10/30/2017 6	
Chlorometha	në	< 0.31	0.3	1	មចូ/៣3		1	10/30/2017 6	
cis-1,2-Dichid		3.2	0.5	9	սց/m3		1	10/30/2017 6	
cis-1,3-Dichk		< 0.68	0.6	8	ug/m3		1	10/30/2017 6	
Cyclohexane		13	5.	Z	ug/m3		10	10/31/2017 2	
Dibromochio		< 1.3	1.	3	ug/m3		1	10/30/2017 6	
Ethyl acetate		3.8	0.5	4	ug/m3		1	10/30/2017 6	
		44	6.	5	ug/m3		10	10/31/2017	
Ethylbenzen: Freon 11	Y	1.8	0.8	4	ug/m3		1	10/30/2017 (
Freon 113		< 1.1	1.	1	ug/m3		1	10/30/2017	
Freon 114		< 1.0	1.	0	ug/m3		1	10/30/2017	6:59:00 PN
()	** Quantitation Limit						d are not	blank corrected	
Qualifiers:		associated Metho	d Blank					quantitation range	
		ration or analysis	exceeded					quantitation limit	
	H Holding times for prepa JN Non-routine analyte. Q							nit of Detection	Page 9

Page 148 of 272

S Spike Recovery outside accepted recovery limits

Date: 20-Nov-17

Analyses		Result	**Limit			DF	Date Analyzed
Lab ID:	C1710061-005A				Matrix:		
Project:	300 Commerce Dr				Collection Date:		017
Lab Order:	C1710061				Tag Number:		
CLIENT:	LaBella Associates, P.C			C	lient Sample ID:	2017_10	024_EX2

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
Freon 12	3.1	0.74	ug/m3	1	10/30/2017 6:59:00 PM
Heptane	31	6.1	ug/m3	10	10/31/2017 2:29:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	10/30/2017 6:59:00 PM
Hexane	14	5.3	ug/m3	10	10/31/2017 2:29:00 AM
Isopropyl alcohol	1300	98	ug/m3	270	10/31/2017 9:01:00 AM
m&p-Xylene	170	13	ug/m3	10	10/31/2017 2:29:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	10/30/2017 6:59:00 PM
Methyl Ethyl Ketone	38	8.8	ug/m3	10	10/31/2017 2:29:00 AM
Methyl Isobutyl Ketore	5.7	1.2	ug/m3	1	10/30/2017 6:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	10/30/2017 6:59:00 PM
Methylene chloride	1.1	0.52	ug/m3	1	10/30/2017 6:59:00 PM
o-Xyłene	54	6.5	ug/m3	10	10/31/2017 2:29:00 AM
Propylene	< 0.26	0.26	ug/m3	1	10/30/2017 6:59:00 PM
Styrene	< 0.64	0.64	ug/m3	1	10/30/2017 6:59:00 PM
Tetrachtoroethylene	< 1.0	1.0	ug/m3	1	10/30/2017 6:59:00 PM
Tetrahydrofuran	24	4.4	ug/m3	10	10/31/2017 2:29:00 AM
Toluene	260	150	ug/m3	270	10/31/2017 9:01:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	10/30/2017 6:59:00 PM
(rans-1.3-Dichloropropene	< 0.68	0.68	ug/m3	t	10/30/2017 6:59:00 PM
Trichloroethene	1.2	0.21	ug/m3	1	10/30/2017 6:59:00 PM
Vinyl acetate	< 0.53	0.53	սց/m3	1	10/30/2017 6:59:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	10/30/2017 6:59:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	10/30/2017 6:59:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
-	в	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range	:
	Ħ	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated,	ND	Not Detected at the Limit of Detection	Dage 10 of 10

S Spike Recovery outside accepted recovery limits

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103011.D Data File : U:\AFCHARYA (5.59 pm Acq On : 30 Oct 2017 6:59 pm Sample : C1710061-005A Vial: 27 Operator: RJP Sample : C1710061-005A Misc : AN30_1UG Inst : MSD #1 Multiplr: 1.00 MISC : ANSU_TOG MUTTIPIT: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 30 23:06:51 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.64128219061.00ppb0.0035) 1,4-difluorobenzene12.861141002131.00ppb0.0050) Chlorobenzene-d517.58117953261.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 68984 1.08 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 108.00%

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 > 108.00%

 Target Compounds
 Qvalue

 3) Freon 12
 4.72
 85
 61907
 0.62 ppb
 98

 10) Chloroethane
 5.86
 64
 1561
 0.14 ppb
 #
 72

 14) Freon 11
 6.52
 101
 32067
 0.32 ppb
 98

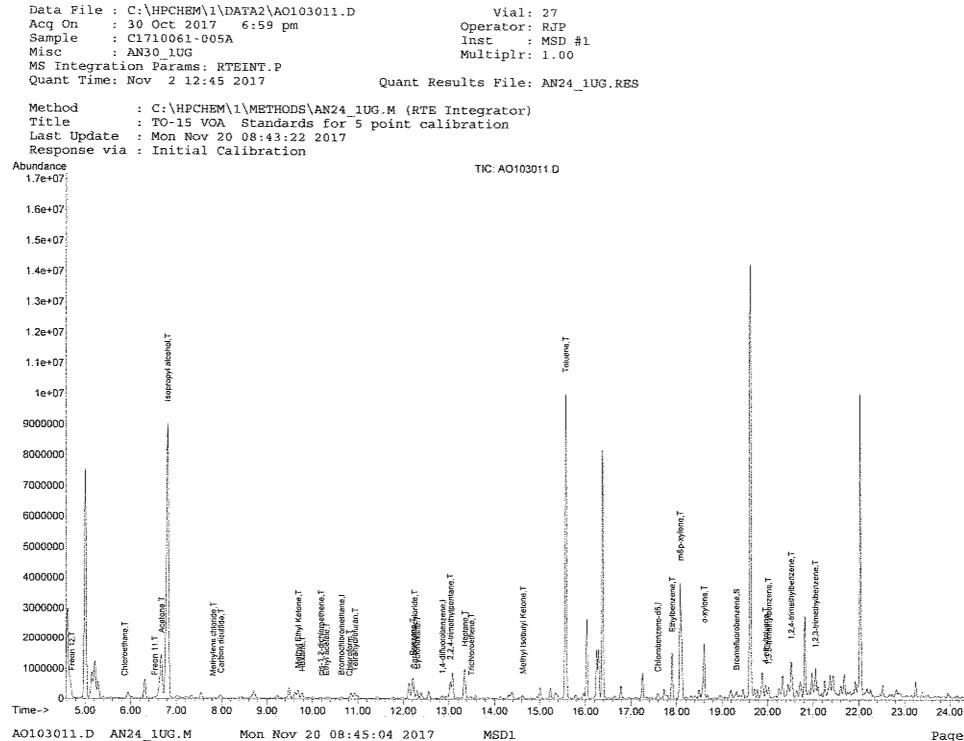
 15) Acetone
 6.67
 58
 1133953
 119.28 ppb
 #
 50

 17) Isopropyl alcohol
 6.80
 45
 1315893
 383.10 ppb
 #
 39

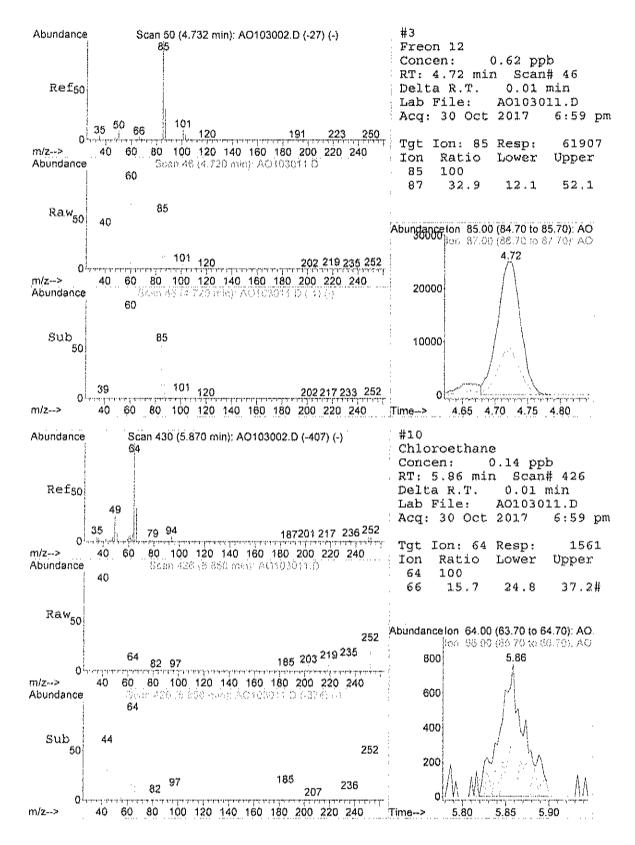
 21) Methylene chloride
 7.82
 84
 8685
 0.32 ppb
 97

 23) Carbon disulfide
 7.99
 76
 166060
 1.89 ppb
 #

 29) cis-1,2-dichloroethene
 10.18
 61
 30597
 0.81 ppb
 98

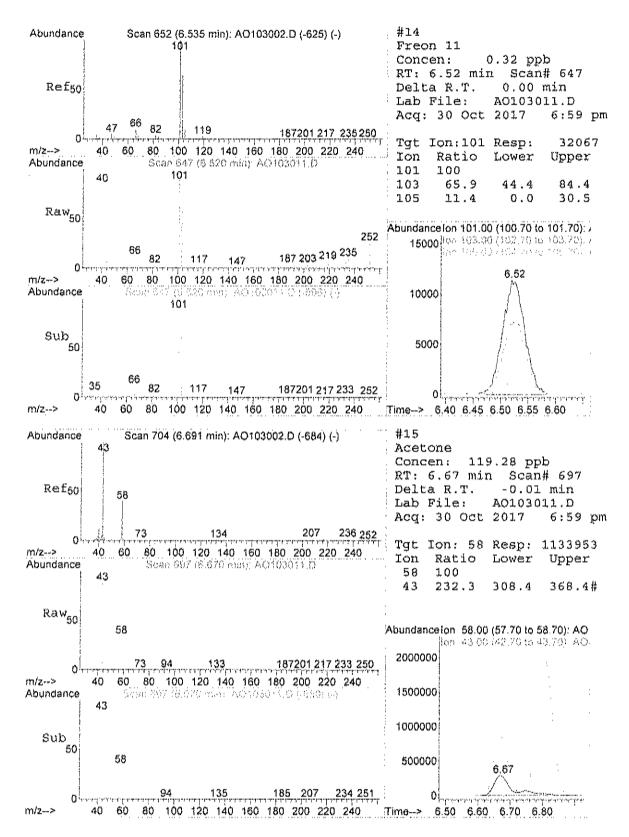

 31) Ethyl acetate
 10.30
 43
 57100
 1.06 ppb
 89

 32) Chloroform
 10.80
 83
 926
 0.14 ppb
 80


 33) Tetrahydrofuran
 10.93
 42
 169746
 6.96 ppb
 94

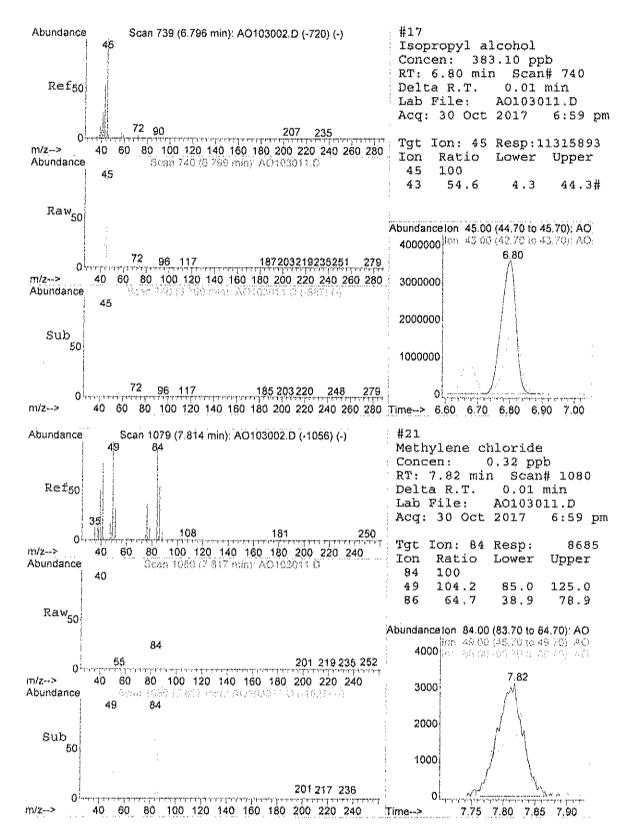
 33) Benzene
 12.21

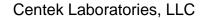
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0103011.D AN24_1UG.M Mon Nov 20 08:45:03 2017 MSD1

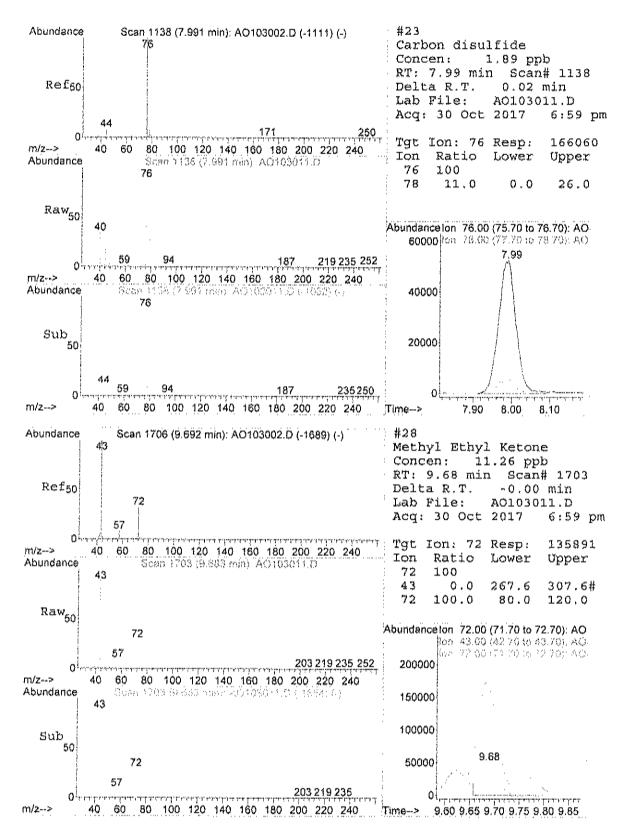


Dage 151 of 272

A0103011.D AN24_1UG.M

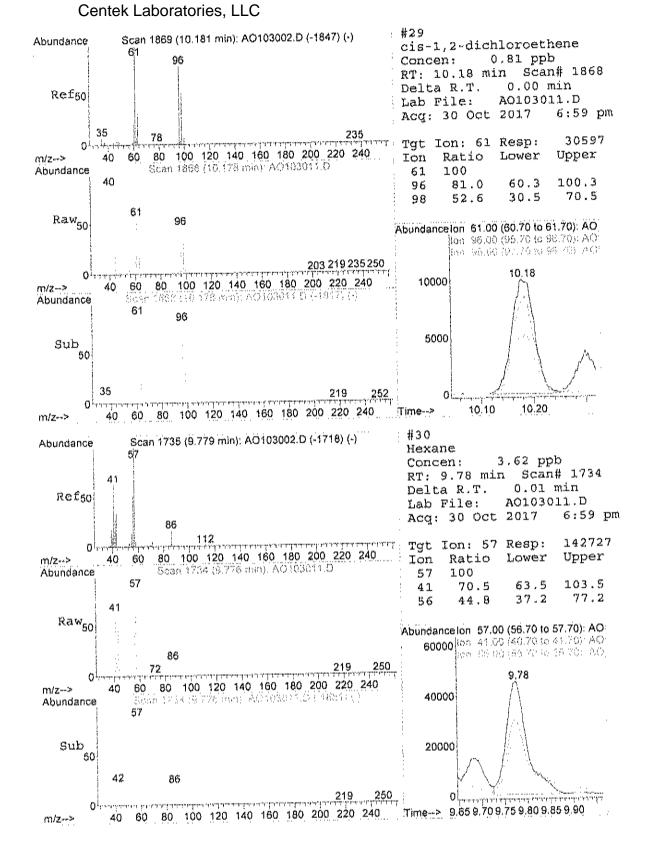

Page 152 of 272

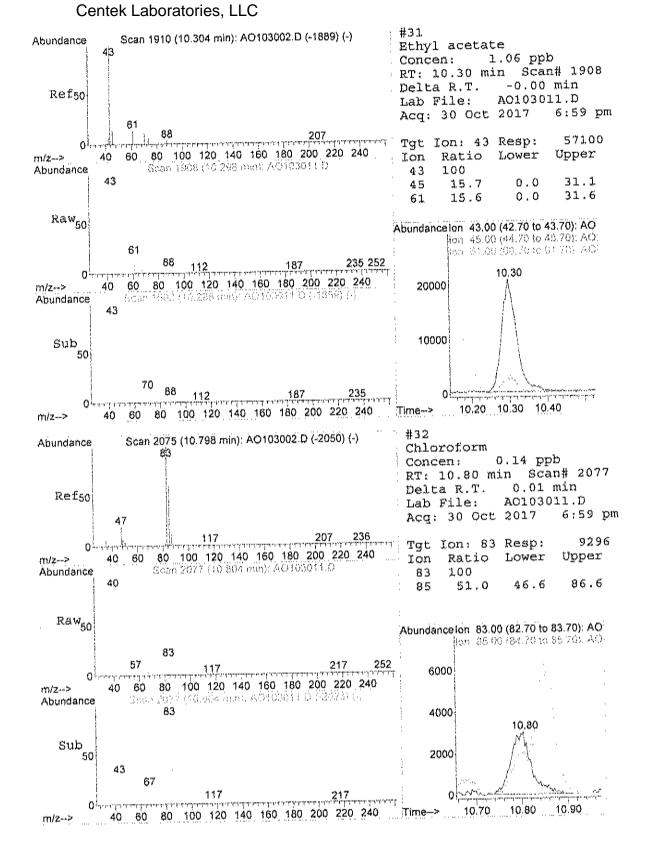

A0103011.D AN24 1UG.M


MSD1

Page 153 of 272

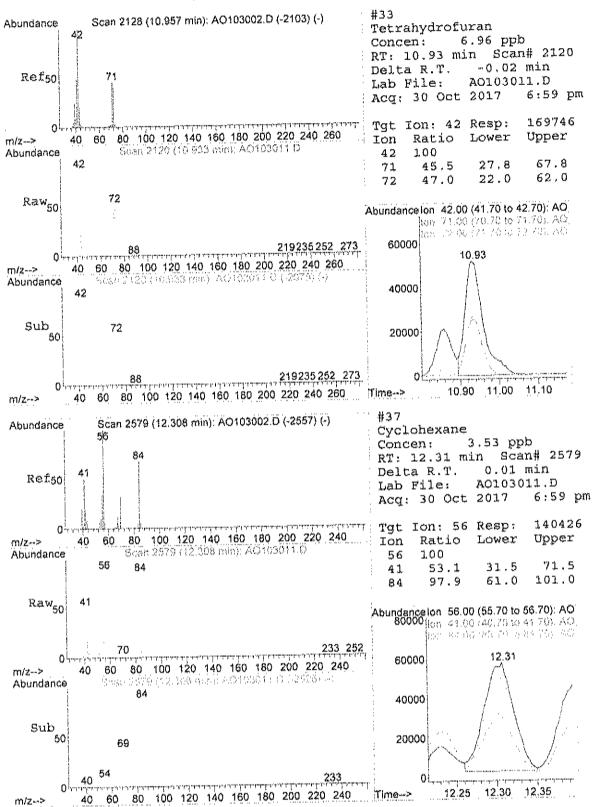
A0103011.D AN24_1UG.M



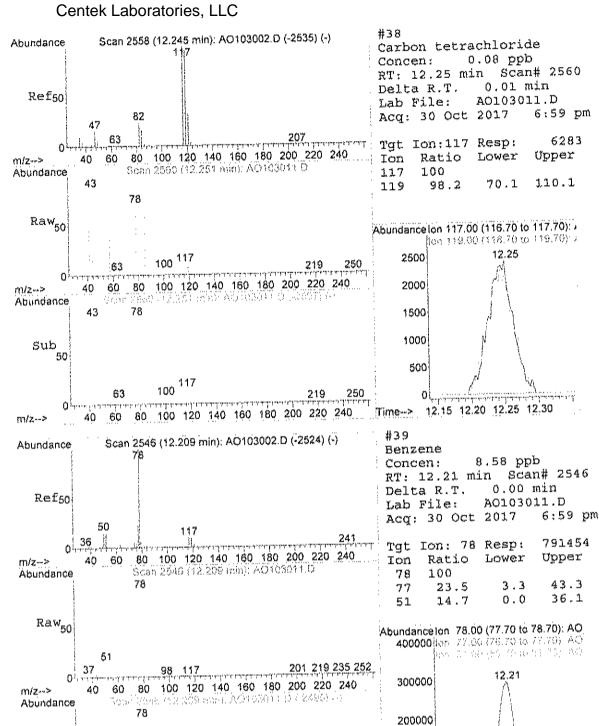


A0103011.D AN24 1UG.M


MSD1

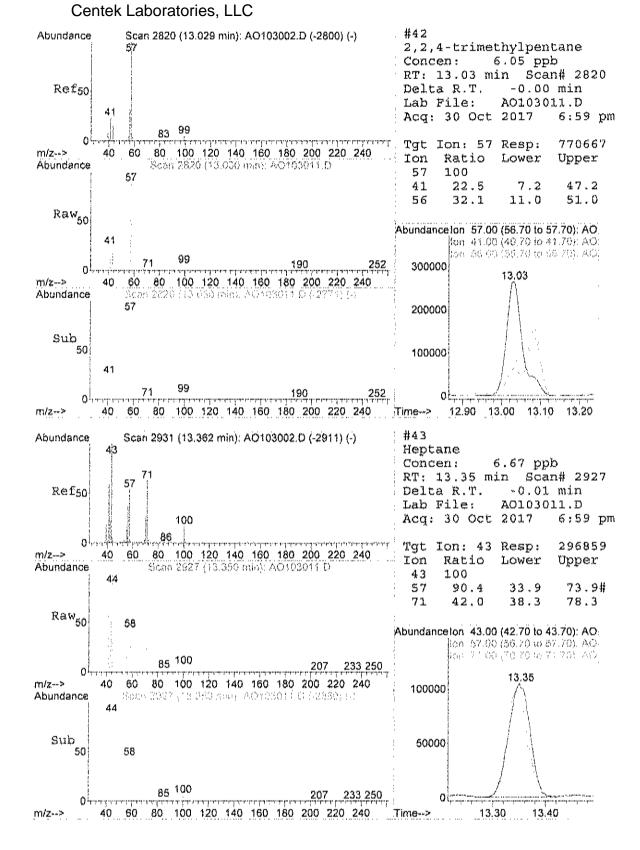

Page 155 of 272

AO103011.D AN24_1UG.M Mc



A0103011.D AN24_1UG.M

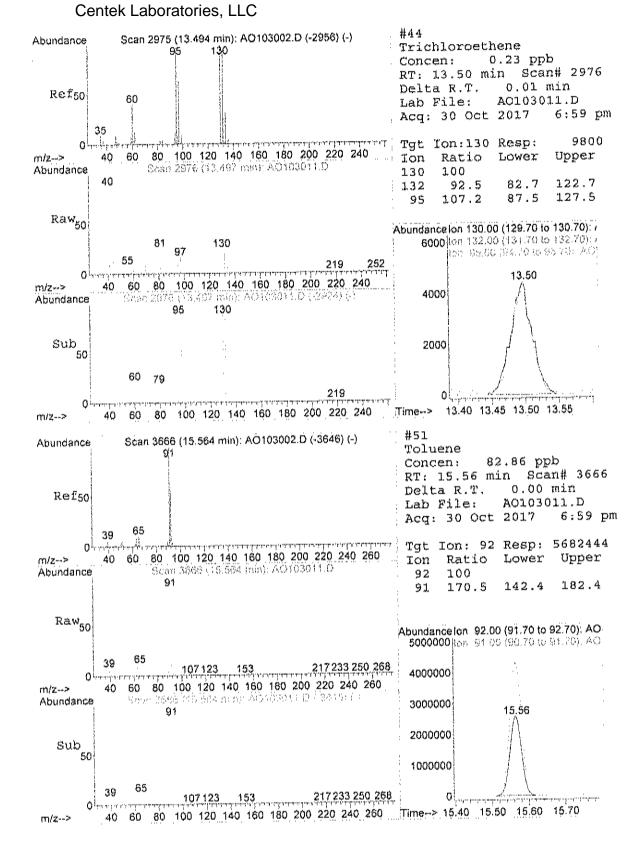
MSD1


Page 9

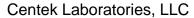
A0103011.D AN24_1UG.M

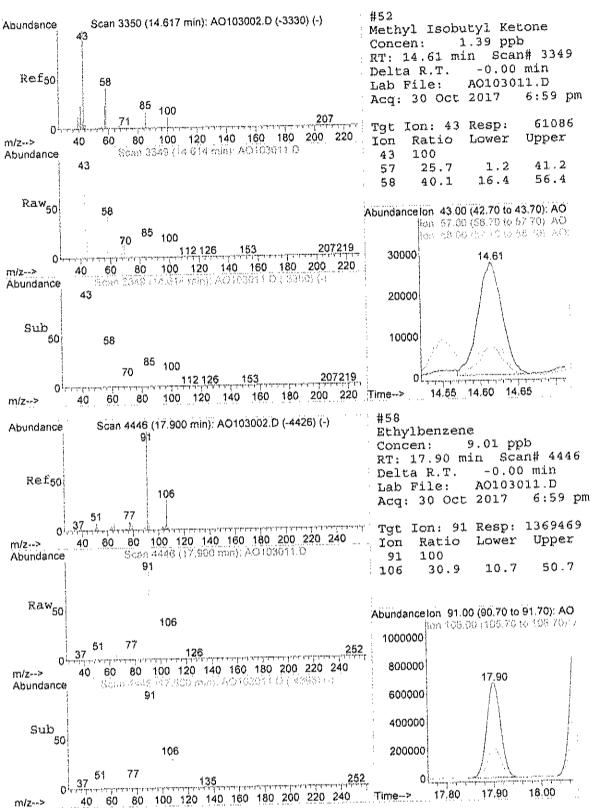
12.20

12.30



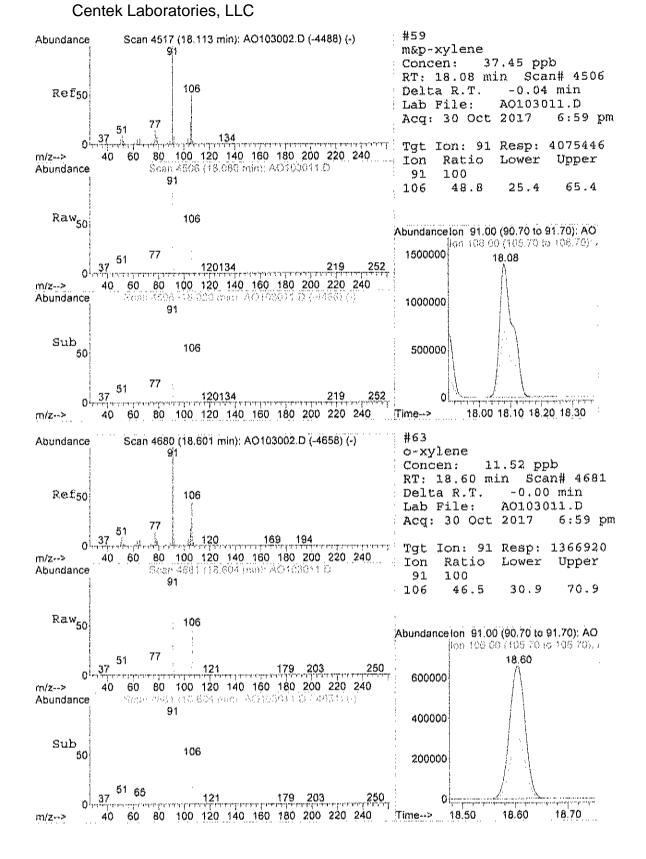
A0103011.D AN24_1UG.M Mon No


MSD1


Page 11

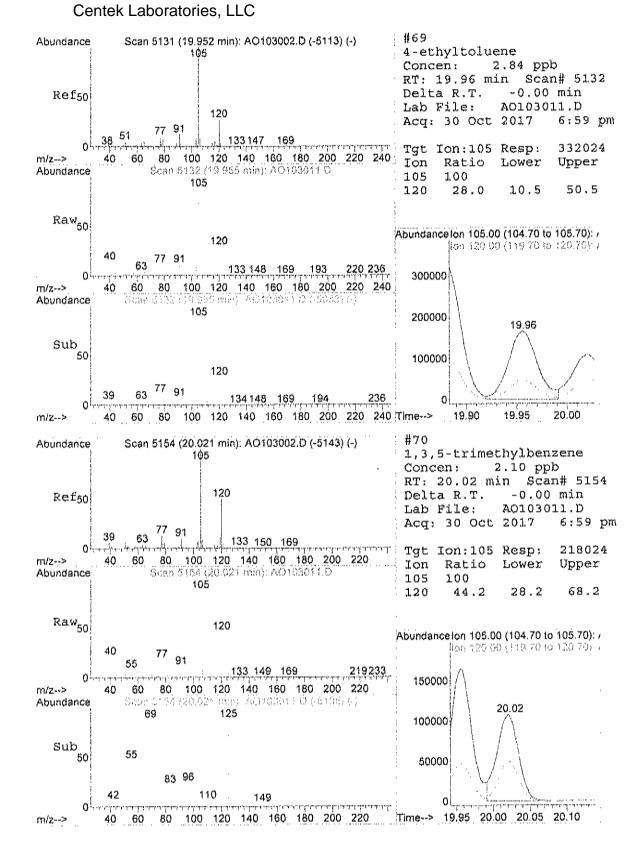
Page 160 of 272

Page 12



A0103011.D AN24_1UG.M Mon Nov 20 08:45:15 2017

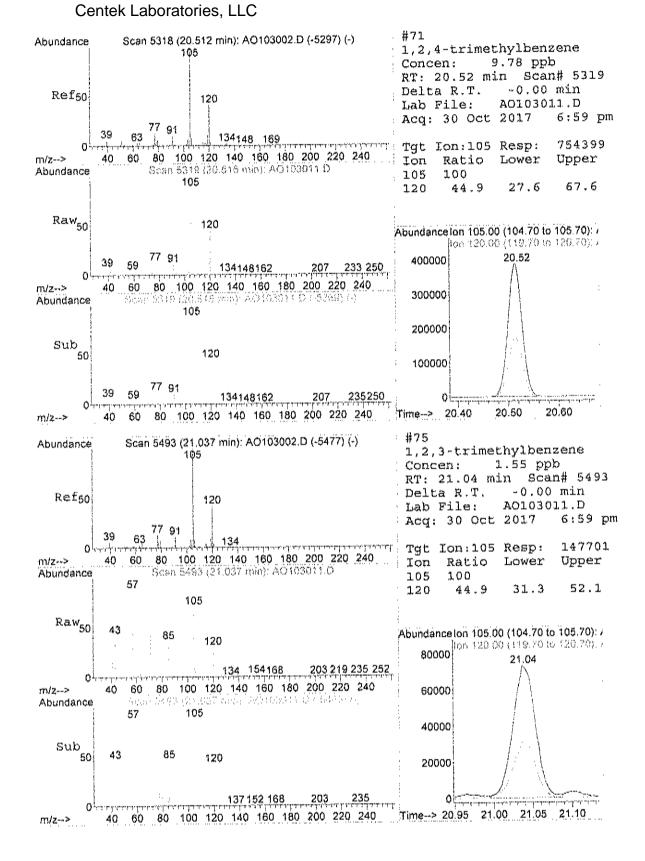
Page 13


MSD1

Page 162 of 272

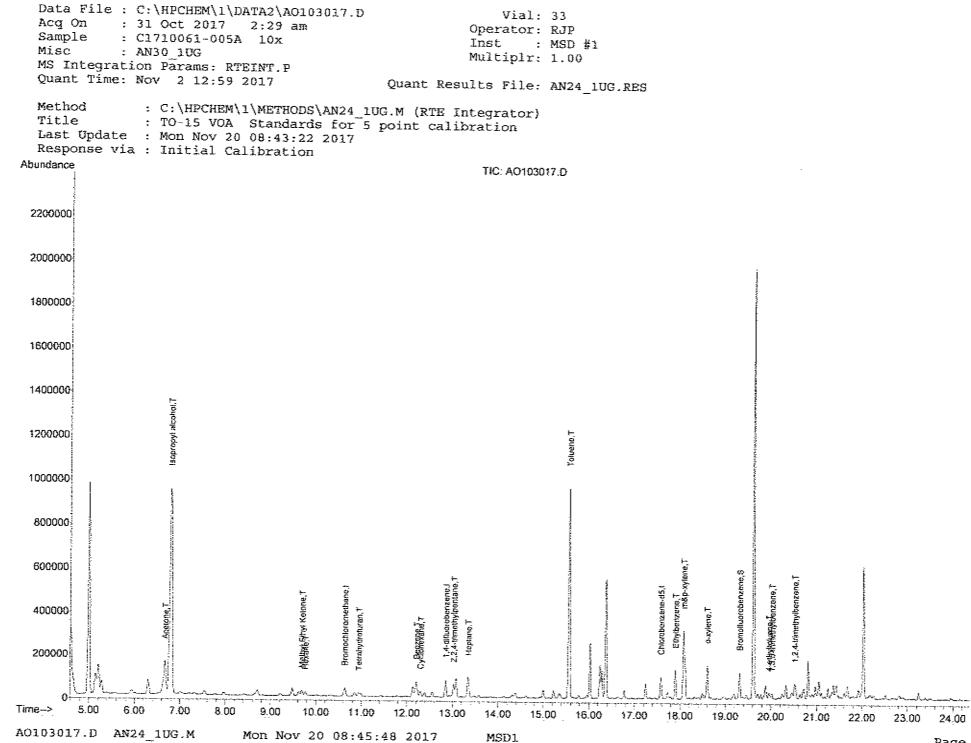
A0103011.D AN24_1UG.M Mon Nov 20 08:45:16 2017

MSD1

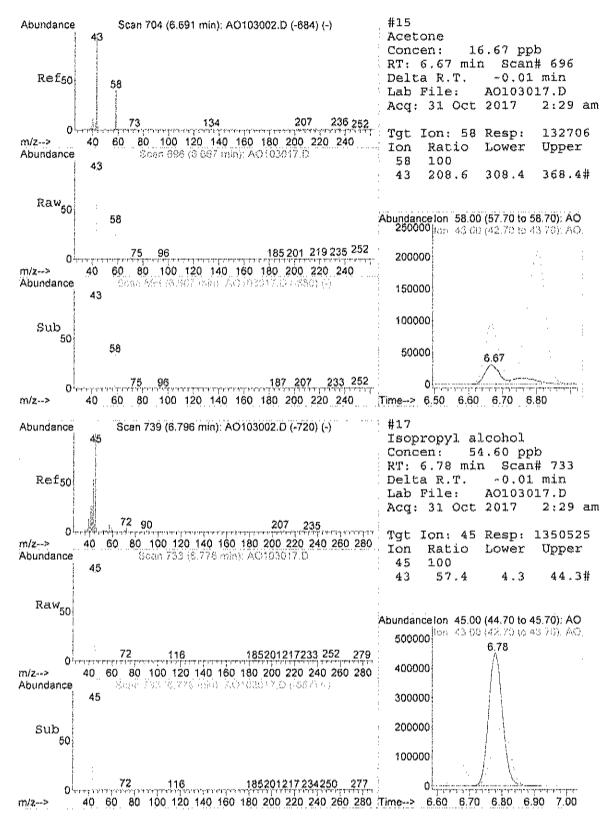


A0103011.D AN24_1UG.M M

MSD1

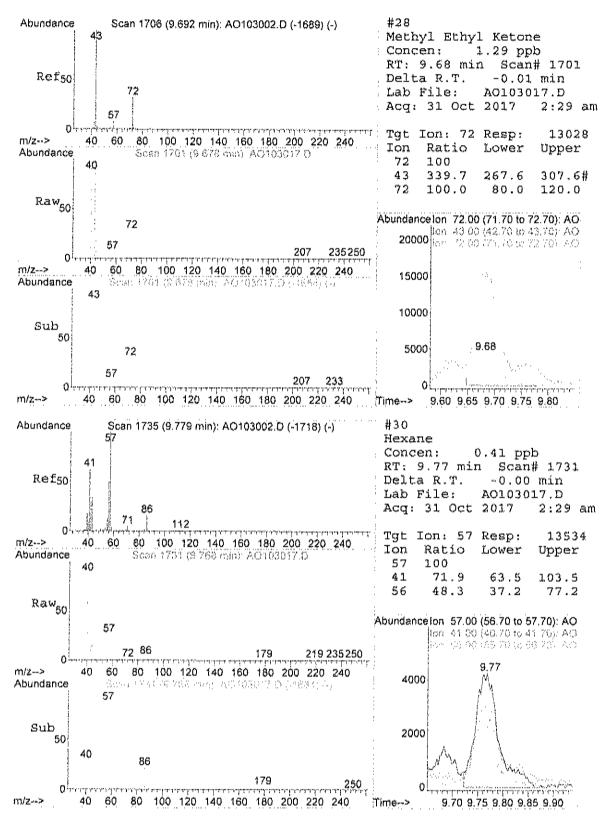

Page 15

Page 164 of 272

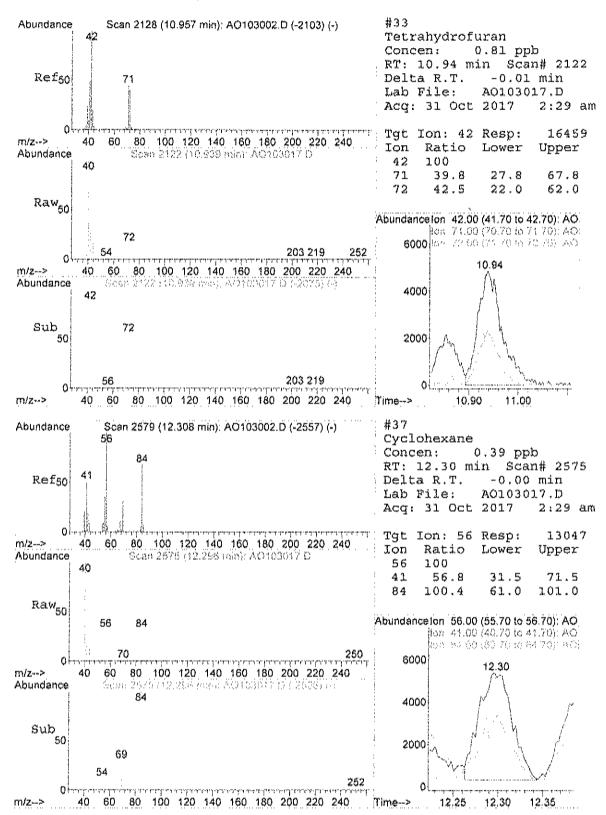


Page 16

Centek Laboratories, LLC							
Quantita	tion Report (QT Reviewed)						
Data File : C:\HPCHEM\1\DATA2\AO103017 Acq On : 31 Oct 2017 2:29 am Sample : C1710061-005A 10x Misc : AN30_1UG MS Integration Params: RTEINT.P Quant Time: Oct 31 11:13:27 2017	Operator: RJP Inst : MSD #1 Multiplr: 1.00						
Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN							
Internal Standards R.T	. QIon Response Conc Units Dev(Min)						
35) 1,4-difluorobenzene 12.8	3 128 18259 1.00 ppb 0.00 5 114 83706 1.00 ppb 0.00 3 117 73328 1.00 ppb 0.00						
System Monitoring Compounds 65) Bromofluorobenzene 19.3 Spiked Amount 1.000 Range 7	L 95 48388 0.98 ppb 0.00 D-130 Recovery = 98.00%						
Target Compounds 15) Acetone 6.67 17) Isopropyl alcohol 6.77 28) Methyl Ethyl Ketone 9.67 30) Hexane 9.77 33) Tetrahydrofuran 10.97 37) Cyclohexane 12.37 39) Benzene 12.27 42) 2,2,4-trimethylpentane 13.37 51) Toluene 15.57 58) Ethylbenzene 17.99 59) m&p-xylene 18.07 63) o-xylene 18.67 69) 4-ethyltoluene 19.99 70) 1,3,5-trimethylbenzene 20.07 71) 1,2,4-trimethylbenzene 20.57	3 45 1350525 54.60 ppb # 33 3 72 13028 1.29 ppb # 80 7 57 13534 0.41 ppb 87 4 42 16459 0.81 ppb 93 5 56 13047 0.39 ppb 84 5 56 13047 0.39 ppb 98 5 57 74733 0.70 ppb 92 5 43 28258 0.76 ppb # 67 5 92 517806 9.82 ppb 90 91 118136 1.01 ppb 100 3 91 333384 3.98 ppb 96 93 91 93 93 91 113717 1.25 ppb 93 5 105 18990 0.21 ppb 99 2 105 13387 0.17 ppb 93						

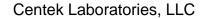


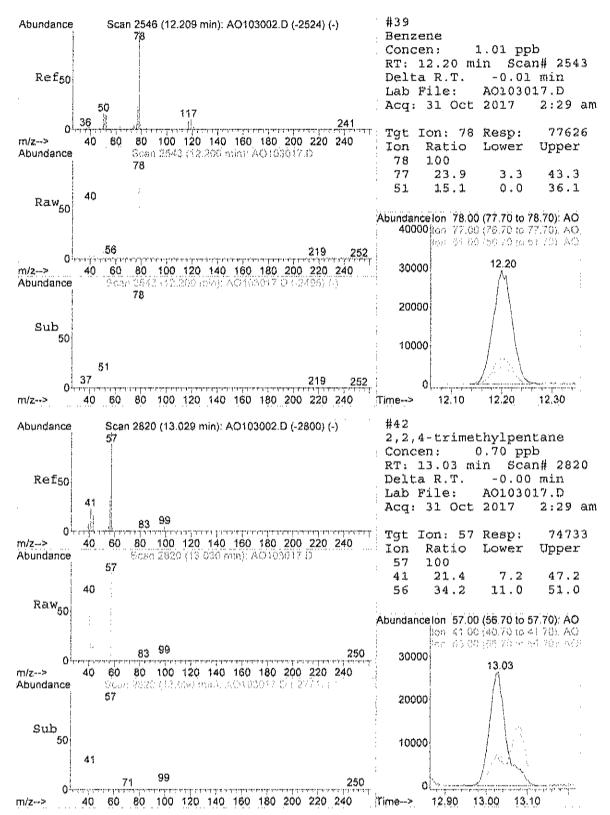
Dage 167 of 272



A0103017.D AN24_lUG.M

Page 168 of 272

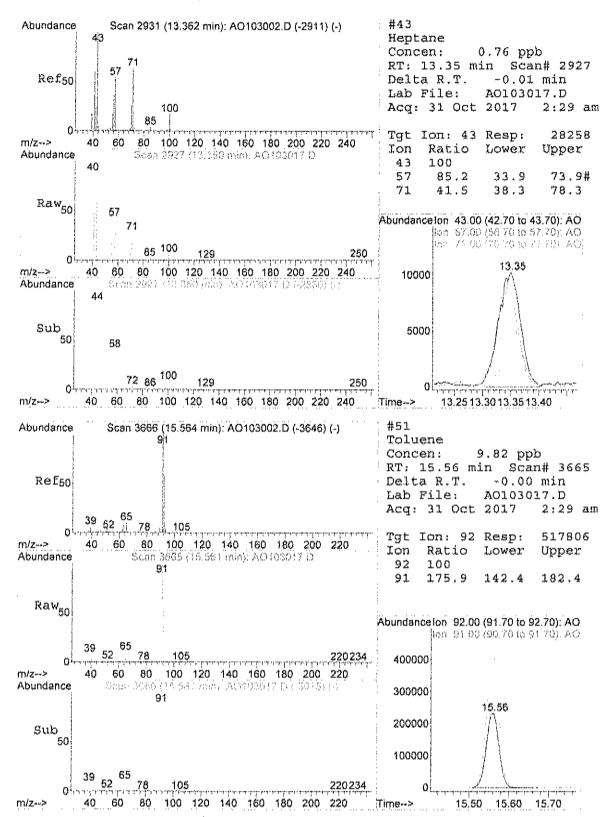

A0103017.D AN24 1UG.M



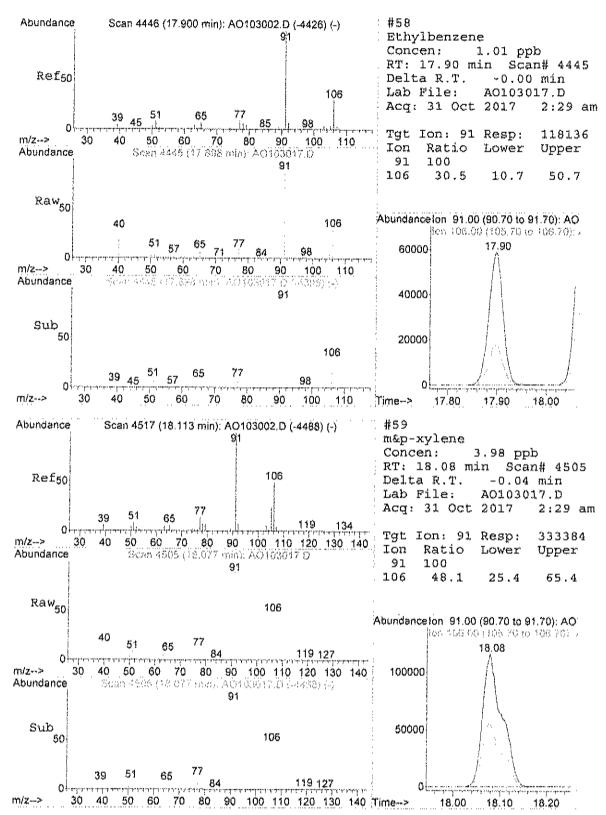
A0103017.D AN24 1UG.M

Page S

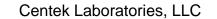
Page 170 of 272

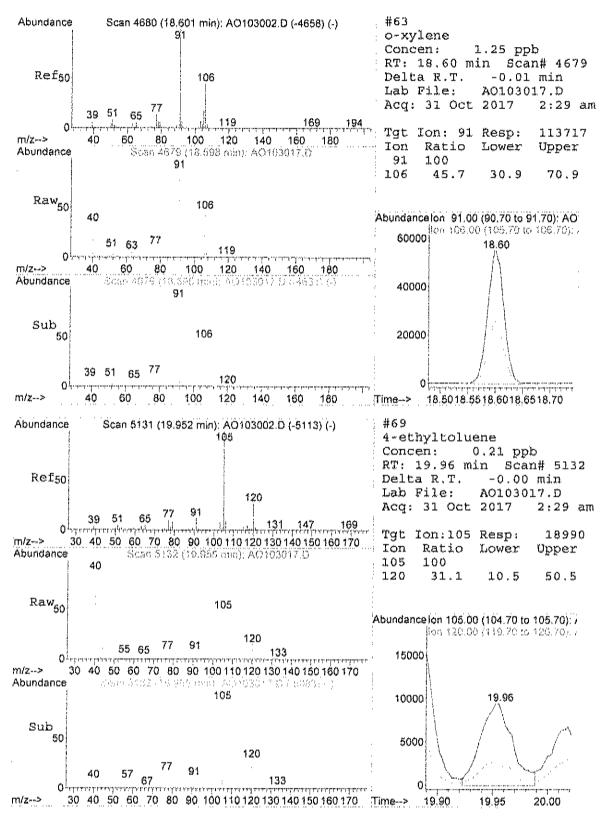


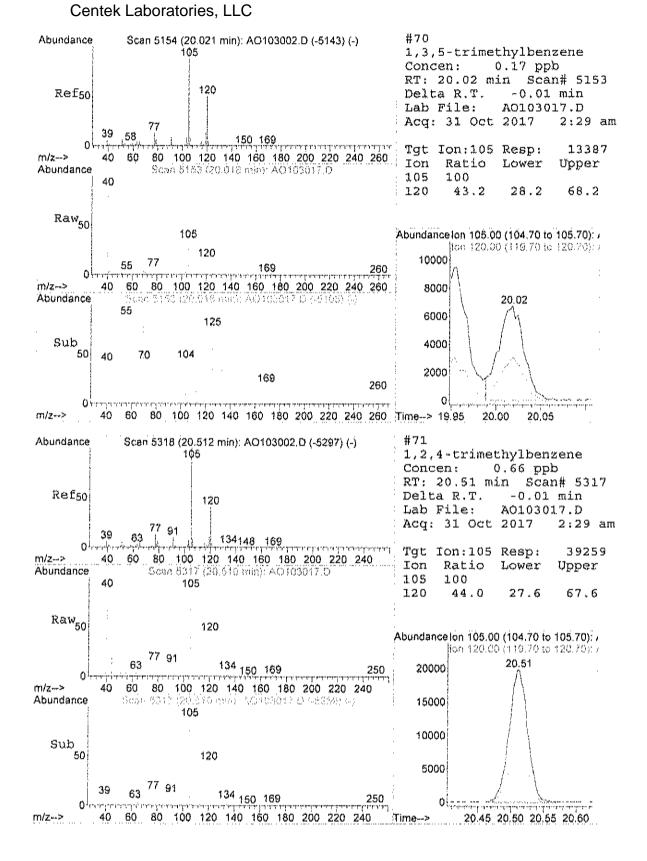
A0103017.D AN24_1UG.M


Page 171 of 272

Centek Laboratories, LLC


Page 7





A0103017.D AN24_1UG.M

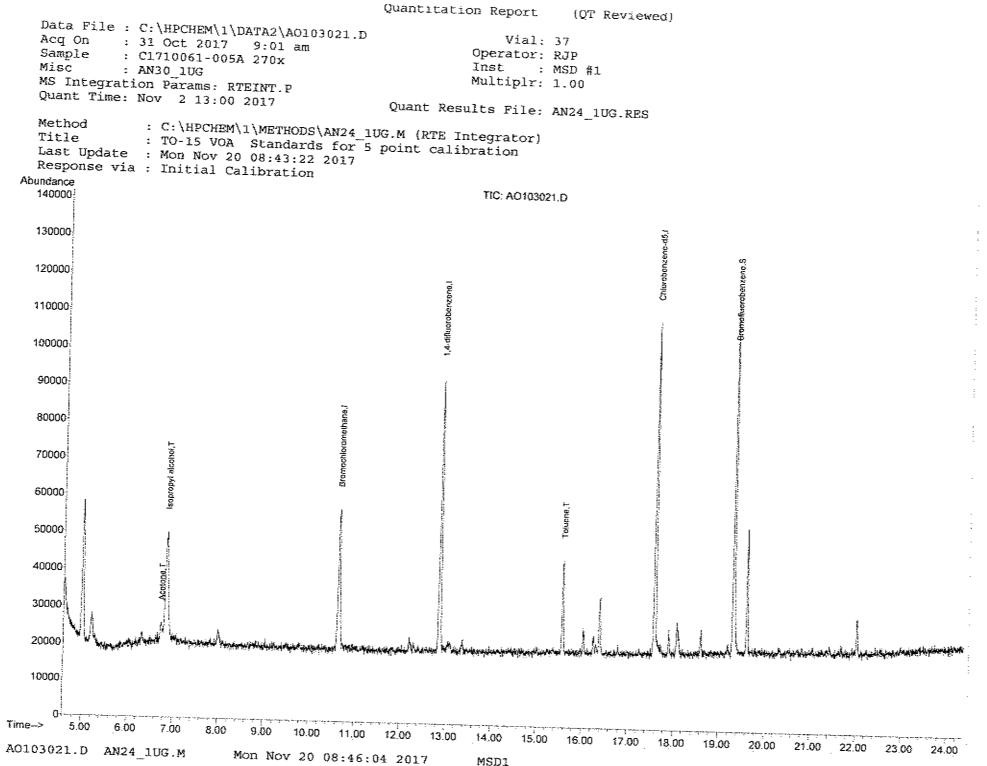
Page 173 of 272

A0103017.D AN24_1UG.M Mon Nov 20 08:45:56 2017

Page 10

MSD1

Page 175 of 272


Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103021.D Acq On : 31 Oct 2017 9:01 am Sample : C1710061-005A 270x Misc : AN30_1UG Vial: 37 Operator: RJP Inst : MSD #1 MS Integration Params: RTEINT.P Multiplr: 1.00 Quant Time: Oct 31 11:13:31 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Cond Units Dev(Min)

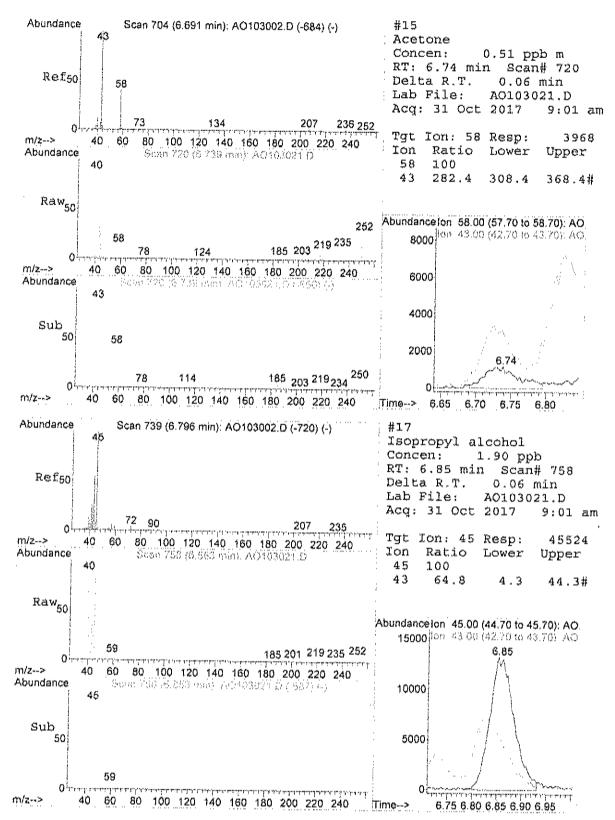
 1) Bromochloromethane
 10.64
 128
 17693
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 12.86
 114
 82431
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 17.58
 117
 68228
 1.00 ppb
 0.00

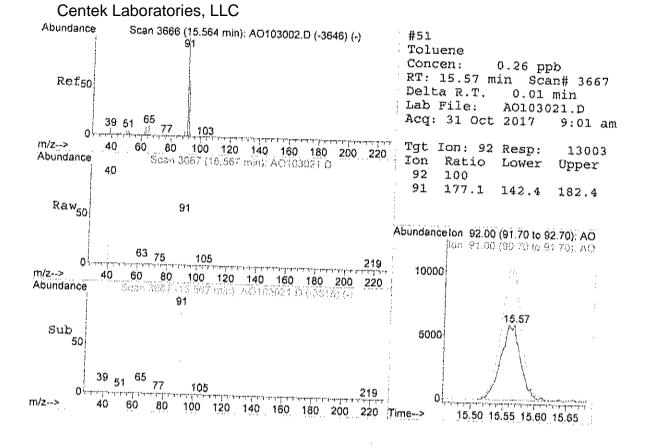
 System Monitoring Compounds 65) Bromofluorobenzene 55) Bromofluorobenzene 19.31 95 43049 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 94.00% Recovery = 94.00% Target Compounds 15) Acetone 17) Isopropyl alcohol 6.74 58 3968m /²⁰ 0.51 ppb 6.85 45 45524 1.90 ppb # 18 15.57 92 13003 0.26 ppb 89 Qvalue 51) Toluene




Jage

177 of 272

Page 2


Centek Laboratories, LLC

A0103021.D AN24_1UG.M

Page 3

Centek Laboratories, LLC

.

4

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

.

Page 180 of 272

Centek Laboratories, LLC

.

GC/MS VOLATILES-WHOLE AIR

•

METHOD TO-15

,

.

INITIAL CALIBRATION

,

.

Page 181 of 272

.

		Response Factor Report MSD #1	
Met	hod : C:\HP	CHEM\l\METHODS\AN24_1UG.M (RTE Integrator) VOA Standards for 5 point calibration	
Tit Las	le : TO-15 St Update : Wed O	VOA Standards for 5 point calibration ct 25 08:32:47 2017	
Res	ponse vía : Initi	al Calibration	
Cal	ibration Files		
0.0	4 = AO102411.D	0.10 *A0102410.D 0.15 =A0102409.D 0.50 =A0102407.D 0.75 =A0102406.D	
0.5			
	Compound	0.04 0.10 0.15 0.30 0.50 0.75 Avg	%RSD
2) T	Propylene	ane 1.303 1.017 0.973 4.825 4.563 4.681 4.631 $4.6081.199$ 1.163 1.093 1.019 $1.0434.185$ 4.077 3.913 3.907 $3.9041.303$ 1.193 1.133 1.194 1.093 1.058 $1.1141.107$ 1.186 1.118 1.183 $1.1130.735$ 0.888 0.846 0.829 $0.8021.679$ 1.545 1.536 1.493 $1.4930.565$ 0.522 0.493 0.483 $0.5010.396$ 0.359 0.330 0.278 $0.3220.452$ 0.375 0.365 0.373 $0.3711.637$ 1.538 1.581 1.518 $1.5284.913$ 4.762 4.703 4.604 $4.6100.489$ 0.419 0.495 0.422 $0.4360.888$ 1.163 0.917 0.870 $0.9191.446$ 1.773 1.299 1.319 $1.3551.307$ 1.242 1.235 1.278 $1.2442.913$ 2.725 2.831 2.762 $2.7721.962$ 1.709 1.636 1.608 $1.7441.422$ 1.246 1.245 1.236 $1.2371.517$ 1.381 1.399 1.421 $1.4044.741$ 4.064 4.051 3.912 $4.0191.914$ 1.815 1.798 1.837 $1.8233.244$ 3.038 3.130 2.831 $3.0232.449$ 2.331 2.368 2.370 $2.3482.820$ 2.561 2.850 2.492 $2.6920.558$ 0.586 0.624 0.446 0.553	10 76
3) T	Freon 12	4.825 4.563 4.681 4.631 4.608	2.54
4) T	Chloromethane	1.199 1.163 1.093 1.019 1.041	9,52
5) 1 6) T	Freon 114 Vipyl Chlorida		4.04
$\tilde{7}$ \hat{r}	Butane	1,107 1,186 1,118 1,183 1,114	8.19
8) T	1,3-butadiene	0.735 0.888 0.846 0.829 0.802	6.29
9) T	Bromomethane	1.679 1.545 1.536 1.493 1.493	6.34
11) 1	Rthanol		6.10
12) T	Acrolein	0.396 0.339 0.330 0.278 0.322	9 A5
1.3) T	Vinyl Bromide	1.637 1.538 1.581 1.518 1.528	3.76
14) T	Freon 11	4.913 4.762 4.703 4.604 4.610	3.74
1.5) T	Pentane	0.489 0.419 0.495 0.422 0.436	8.25
17) T	Isopropyl alcoh	1.446 1.773 1.299 1.319 1.355	13.52
18) T	1,1-dichloroeth	1.307 1.242 1.235 1.278 1.244	2.70
19) T 20) F	Freon 113 t-Buryl alcohol	2.913 2.725 2.831 2.762 2.772	2.56
21) T	Methylene chlor	1.962 1.709 1.636 1.608 1.744 1.427 1.246 1.246 1.246 1.227	8.95
22) T	Allyl chloride	1.517 1.381 1.399 1.421 1.404	3.49
23) T	Carbon disulfid	4.741 4.064 4.051 3.912 4.019	7.67
24) T 25) T	trans-1,2-dichl	1.914 1.815 1.798 1.837 1.823	2,23
26) T	l.1-dichloroeth	3,244 3,038 3,130 2,831 3,023	4.11
27) 'I'	Vinyl acetate	2.820 2.561 2.850 2.492 2.692 0.558 0.586 0.624 0.446 0.553 1.844 1.727 1.740 1.705 1.730 1.949 1.810 1.765 1.805 1.808 2.804 2.453 2.735 2.146 2.480	4.51
28) T	Methyl Ethyl Ke	0.558 0.586 0.624 0.446 0.553	10.13
29) T 30) T	Cls~l,2~dichlor Meyane	1.844 1.727 1.740 1.705 1.730	2.82
31) T	Ethyl acetate	2.804 2.453 2.735 2.146 2.480	3.33
32) T	Chloroform	3.281 3.129 3.096 3.073 3.093	2.76
33) T	Tetrahydrofuran	1.184 1.161 1.182 0.949 1.119	6.68
34) T	1,2-dichloroeth	1.957 1.855 1.833 1.820 1.835	2.88
35) I 36) T	1,4-difluorobenz	eneISTD	
36) T 37) T	1,1,1-trichloro Cyclohexane	0.707 0.688 0.699 0.679 0.687 0.427 0.404 0.384 0.390 0.396	1.57
38) T		0.427 0.404 0.384 0.390 $0.3960.955$ 0.833 0.787 0.771 0.755 0.746 0.782	3.53 8.57
39) T	Benzene	1.029 0.959 0.913 0.890 0.920	5.42
40) T	Methyl methacry	0.329 0.302 0.333 0.255 0.305	
41) T 42) T	1,4-dioxane 2,2,4-trimethyl	0.167 0.154 0.155 0.151 0.161	12.07
43) 7	Heptane	1.303 1.275 1.275 1.257 1.271 0.513 0.442 0.443 0.435 0.444	1.37 6.55
44) T	Trichloroethene	0.555 0.436 0.426 0.427 0.408 0.415 0.430	10.48
45) T 46) T	l,2-dichloropro	0,377 0.348 0.350 0.347 0.347	3.92
46) T 47) T	Bromodichlorome cis-1,3-dichlor	0,803 0,766 0,768 0,741 0,758 0,542 0,535 0,540 0,527 0,535	2.73
48) T	trans-1,3-dichl	0.542 0.535 0.540 0.527 0.535 0.478 0.476 0.480 0.468 0.474	1,17
49) T	1,1,2-trichloro	0.434 0.428 0.416 0.412 0.415	2.65
50) I	Chlorobenzene-d5		
51) T	Toluene	0.805 0.735 0.721 0.707 0.719	

(#) = Out of Range ### Number of calibration levels exceeded format ### AN24_1UG.M Wed Nov 15 11:30:23 2017 MSD1

Title : TO Last Update : We	:\HPCHEM\1\METHODS D-15 VOA Standard ed Oct 25 08:32:47 nitial Calibration	ls for 5 poin / 2017	(RTE Integra t calibratic	.tor) m
Calibration Files 0.04 =A0102411. 0.30 =A0102408.	.D 0.10 =A0102	410.D 0.15 407.D 0.75		
Compound	0.04 0.10	0.15 0.30	0.50 0.75	Avg %RSD
<pre>52) T Methyl Isobu 53) T Dibromochlor 54) T Methyl Butyl 55) T 1,2-dibromoe 56) T Tetrachloroe 56) T Tetrachloroe 57) T Chlorobenzen 58) T Ethylbenzene 59) T m&p-xylene 60) T Nonane 61) T Styrene 62) T Bromoform 63) T o-xylene 64) T Cumene 65) S Bromofluorob 66) T 1,1,2,2-tetr 67) T Propylbenzen 68) T 2-Chlorotolu 69) T 4-ethyltolue 70) T 1,3,5-trimet 71) T 1,2,4-trimet 72) T 1,3-dichloro 73) T benzyl chlor 74) T 1,2,4-trimet 76) T 1,2,4-trimet 76) T 1,2,4-trimet 77) T 1,2,4-trichl 78) T Naphthalene 79) T Hexachloro-1</pre>	come Ke Stha Sthy Ne Sthy Ne Stach Ne Stach Ne Stach Nyl Stach St	0.485 0.461 0.987 0.938 0.299 0.269 0.774 0.784 0.508 0.485 1.035 0.988 1.737 1.617 1.186 1.118 0.778 0.720 0.636 0.651 1.285 1.245 1.663 1.658 0.663 0.659 1.093 1.091 0.405 0.393 0.420 0.432 1.059 1.149 0.961 1.010 0.696 0.712 0.897 0.903 0.420 0.432 1.059 1.149 0.961 0.010 0.696 0.712 0.872 0.879 0.863 0.888 0.868 0.888 0.366 0.384 0.350 0.363 0.643 0.641	0.954 $0.9170.260$ $0.2770.773$ $0.7430.489$ $0.4890.993$ $0.9741.622$ $1.5321.148$ $1.0960.730$ $0.7000.698$ $0.6810.858$ $0.8291.257$ $1.1751.672$ $1.5190.675$ $0.6761.105$ $1.0090.427$ $0.3751.230$ $1.1321.102$ $0.9680.822$ $0.6950.956$ $0.8990.783$ $0.6040.950$ $0.8651.027$ $0.8390.938$ $0.8510.404$ $0.3320.360$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Response Factor Report MSD #1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102402.D Vial: 3 Operator: RJP Inst : MSD #1 Acq On : 24 Oct 2017 3:48 pm Sample : AlUG 2.0 Misc : AN24_lUG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:27 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcg Meth : 10G RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.65128439431.00 ppb0.0035) 1,4-difluorobenzene12.861141974201.00 ppb0.0050) Chlorobenzene-d517.591171732691.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 119236 1.02 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 102.00%

 65) Bromofluorobenzene
 19.32
 95
 119236
 1.02
 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 102.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.68
 41
 88602
 1.94
 ppb
 97

 3) Freon 12
 4.74
 85
 39740
 1.94
 ppb
 93

 6) Vinyl Chloride
 5.18
 62
 89620
 1.90
 ppb
 94

 6) Vinyl Chloride
 5.18
 62
 89620
 1.90
 ppb
 94

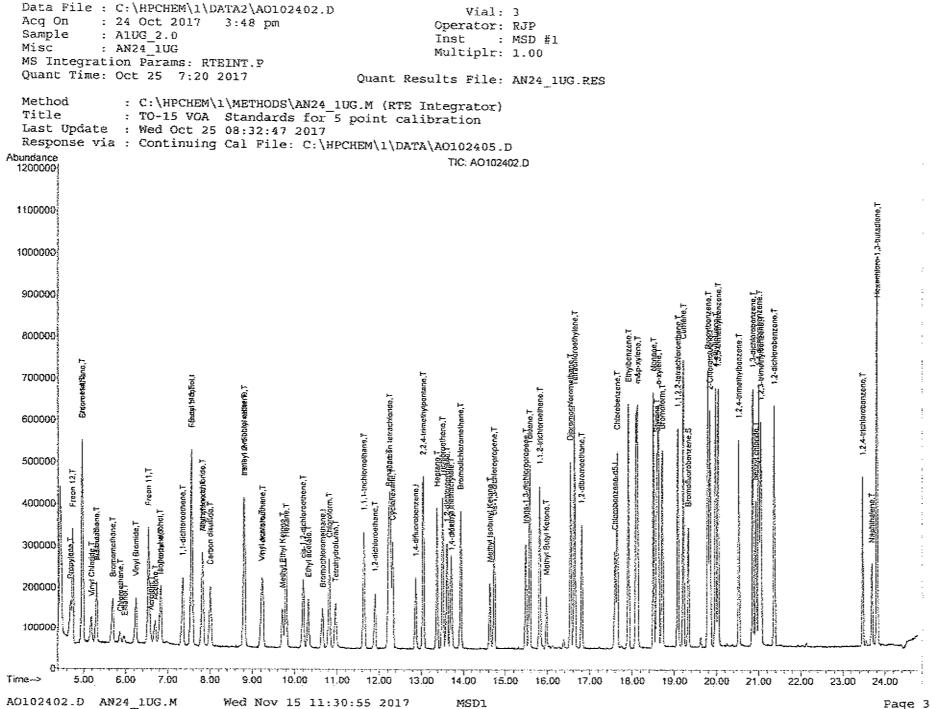
 7) Burane
 5.30
 43
 89373
 1.78
 ppb
 94

 10) Chloroethane
 5.69
 94
 122464
 1.90
 ppb
 64

 11) Ethanol
 5.95
 45
 26240
 1.91
 ppb
 61

 12) Acrolein
 6.54
 101
 387834
 1.93
 ppb
 88

 14) Freon 11
 6.54
 101
 387834
 1.93
 ppb
 71


 13) Vinyl Bromide
 6.23
 106
 164
 1.64

(#) = qualifier out of range (m) = manual integration A0102402.D AN24_1UG.M Wed Nov 15 11:30:53 2017 MSD1

Page l

Data File : C:\HPCHEM\l\DATA2\A0102402.D Vial: 3 Acq On : 24 GCt 2017 3:48 pm Operator: RJP Sample : AlUG 2.0 Inst : MSD #1 Misc : AN24_LUG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\l\METHODS\AN24_1UG.M (FTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response Via : Continuing Cal File: C.\HPCHEM\l\DATA\A0102405.D DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Unit Qvalue 46) Bromodichloromethane 13.93 83 29779C 2.02 ppb 96 47) cis-1.3-dichloropropene 14.73 75 214364 2.06 ppb 97 46) Bromodichloromethane 15.81 97 163166 2.04 ppb 92 51) Toluene 15.57 92 247434 2.03 ppb 90 52) Methyl Extone 16.54 129 317221 1.99 ppb 99 53) Dibromochloromethane 15.97 42 247434 2.03 ppb 97 54) Herbyl Betone 15.97 43 10000C 2.01 ppb 98 55) 1.2-Chloroethane 16.54 129 317221 1.99 ppb 97 55) 1.2-Chloroethane 16.63 164 166762 2.00 ppb 96 </th <th>Q</th> <th>Jantitat</th> <th>ion Re</th> <th>eport (Ç</th> <th>T Reviewed)</th> <th></th>	Q	Jantitat	ion Re	eport (Ç	T Reviewed)			
Quant Method : C:\HPCHEM\1\METHODS\AN24_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG_RUN ************************************	Acq On : 24 Oct 2017 3:48 r Sample : ALUG_2.0 Misc : AN24_LUG MS Integration Params: RTEINT.P	ותל		In Mu	erator: RJP st : MSD ltiplr: 1.00)		
46) Bromodichloromethane 13.93 83 297790 2.02 ppb 96 47) cis-1,3-dichloropropene 14.73 75 214364 2.06 ppb 97 48) trans-1,3-dichloropropene 15.48 75 190314 2.08 ppb 98 49) 1,1,2-trichloroethane 15.81 97 163166 2.04 ppb 92 51) Toluene 15.57 92 247434 2.03 ppb 90 52) Methyl Isobutyl Ketone 14.62 43 154292m/¥ 1.68 ppb 53) Dibromochloromethane 16.80 100005 2.01 ppb 98 55) 1,2-dibromoethane 16.63 164 166762 2.00 ppb 86 56) Tetrachloroethylene 16.63 164 16572 2.01 ppb 100 59 m&p-xylene 17.65 112 340242 2.02 ppb 100 59 m&p-xylene 16.56 104 255716 2.07 ppb	Quant Method : C:\HPCHEM\1\METHO Title : TO-15 VOA Standa Last Update : Wed Oct 25 08:16: Response via : Continuing Cal Fi	Quant Method : C:\HPCHEM\l\METHODS\AN24_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\l\DATA\A0102405 D						
46)Bromodichloromethane13.93832977902.02ppb9647)cis-1.3-dichloropropene14.73752143642.06ppb9748)trans-1.3-dichloropropene15.46751903142.08ppb9849)1.1.2-trichloroethane15.81971631662.04ppb9251)Toluene15.57922474342.03ppb9052)Methyl Isobutyl Ketone14.6243154292m//1.68ppb53)Dibromochloromethane16.541293172211.99ppb9854)Methyl Butyl Ketone15.97431000052.01ppb9855)1.2-dibromoethane16.631641667622.00ppb8657)Chlorobenzene17.651123402422.02ppb8658)Ethylbenzene17.91915458862.01ppb9760)Nonane18.50432557162.07ppb9661)Styrene18.581042768012.26ppb7662)Bromoform18.711732936202.03ppb9766)1.1.2.2-tetrachloroethane19.08833545671.99ppb9967)Propylhenzene19.08833545671.99ppb9967)Propylhenzene19.07105533332.05	Compound	R.T.	QIon	Response	Conc Unit	Qvalue		
77) 1,2,4-trichlorobenzene 23.47 180 150355 2.26 ppb 97 78) Naphthalene 23.69 128 181345 2.22 ppb 93	<pre>46) Bromodichloromethane 47) Cis-1,3-dichloropropene 48) trans-1,3-dichloropropene 49) 1,1,2-trichloroethane 51) Toluene 52) Methyl Isobutyl Ketone 53) Dibromochloromethane 54) Methyl Butyl Ketone 55) 1,2-dibromoethane 56) Tetrachloroethylene 57) Chlorobenzene 58) Ethylbenzene 59) m&p-xylene 60) Nonane 61) Styrene 62) Bromoform 63) o-xylene 64) Cumene 66) 1,1,2,2-tetrachloroethane 67) Propylbenzene 68) 2-Chlorotoluene 69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene 71) 1,2,4-trimethylbenzene 73) benzyl chloride 74) 1,4-dichlorobenzene 75) 1,2,3-trimethylbenzene 76) 1,2-dichlorobenzene 76) 1,2-dichlorobenzene</pre>	13.93 14.73 15.481 15.481 15.52 16.597 16.63 17.92 18.581 19.083 19.083 19.087 19.033 20.893 20.905 20.893 20.905 20.893 20.905 20.893 20.905 20.893 20.905	83 77 99 12 10 11 99 10 99 10 99 10 90 10 10 10 10 10 10 10 10 10 10 10 10 10	297790 214364 190314 163166 247434 154292m 317221 100005 262760 166762 340242 545886 815723 255716 276801 293620 442599 569333 354567 145056 145056 145001 473792 427815 330439 334596 275068 330351 390354 313156	2.02 ppb 2.06 ppb 2.08 ppb 2.03 ppb 2.03 ppb 2.01 ppb 2.01 ppb 2.02 ppb 2.02 ppb 2.02 ppb 2.02 ppb 2.03 ppb 2.05 ppb 2.05 ppb 2.02 ppb 2.05 ppb 2.02 ppb 2.05 ppb	96 97 98 92 90 99 98 97 86 100 97 86 100 97 86 97 98 97 98 98 98 98 98 98 98 98 98 98 98 98 98		

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0102402.D AN24_1UG.M Wed Nov 15 11:30:54 2017 MSD1

Page 186 of 272

Centek Laboratories, LLC

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102403.D Vial: 4 Operator: RJP Acq On : 24 Oct 2017 4:29 pm Sample : AlUG_1.50 Misc : AN24_1UG Inst : MSD #1 Multiplr: 1.00 MISC : AN24_10G Mutcipir: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:28 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.66128434481.00 ppb0.0235) 1,4-difluorobenzene12.871141949931.00 ppb0.0150) Chlorobenzene-d517.601171721641.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 116325 1.00 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 100.004

 Target Compounds
 Qvalue

 2) Propylene
 4.68
 41
 63930
 1.41
 ppb
 97

 4) Chloromethane
 4.96
 50
 63600
 1.47
 ppb
 93

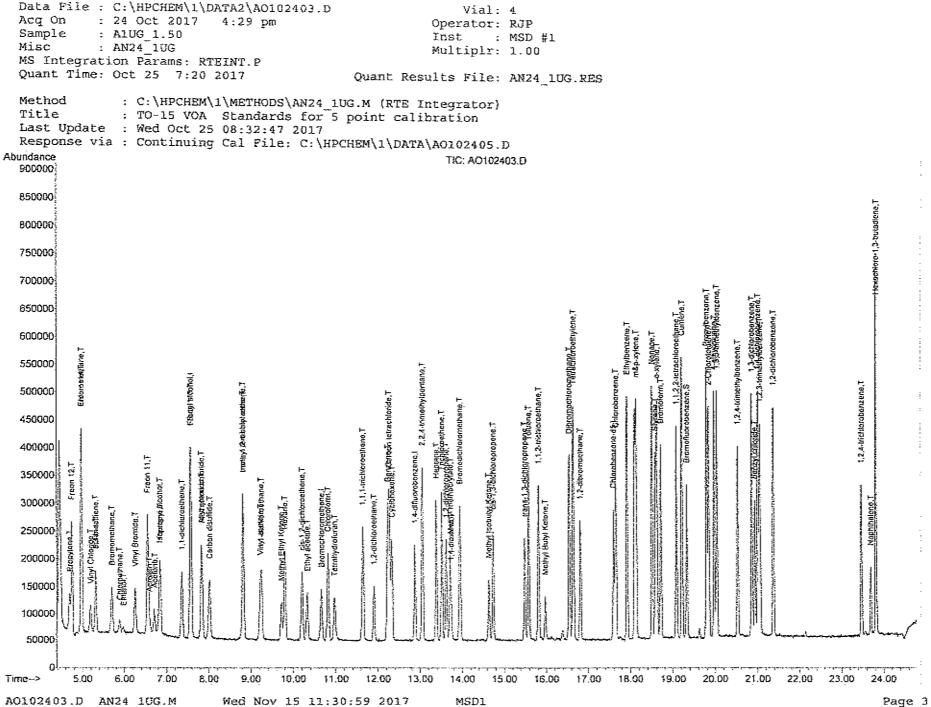
 5) Preon 114
 4.97
 85
 246148
 1.46
 ppb
 99

 6) Vinyl Chloride
 5.19
 62
 68284
 1.46
 ppb
 93

 7) Butane
 5.30
 39
 49587
 1.41
 ppb
 95

 9) Scomomethane
 5.69
 94
 9213
 1.46
 ppb
 97

 10) Chloroethane
 5.86
 44
 32028m //
 1.43
 ppb
 95


 13) Vinyl Bromide
 6.25
 106
 97025
 1.47
 ppb
 98

 13) Acetone
 6.70
 58
 2683m //
 1.44
 ppb
 98

 14) Frecon 11
 6.54
 42
 63445
 1.53
 ppb
 91
 </ Target Compounds (#) = qualifier out of range (m) = manual integration AO102403.D AN24_1UG.M Wed Nov 15 11:30:57 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102403.D Vial: 4 Acq On ; 24 Oct 2017 4:29 pm Operator: RJP Sample : A1UG_1.50 Misc : AN24_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.p Quant Time: Oct 25 08:16:28 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG_RUN CompoundR.T. QIonResponseConc UnitQvalue46)Bromodichloromethane13.94832169771.49 ppb9647)cis-1,3-dichloropropene14.73751553861.51 ppb9948)trans-1,3-dichloropropene15.48751368361.51 ppb9949)1,1,2-trichloroethane15.81971171841.48 ppb8951)Toluene15.58921774831.47 ppb8952)Methyl Isobutyl Ketone14.6343937151.03 ppb9753)Dibromochloromethane16.601071220911.47 ppb9854)Methyl Butyl Ketone15.9743649831.31 ppb9855)1,2-dibromoethane16.631641220521.47 ppb8456)Tetrachloroethylene16.651122515861.50 ppb10057)Chlorobenzene17.651122515861.50 ppb9658)Ethylbenzene17.17331.5371.50 ppb9659)map-xylene18.591041975281.62 ppb7761)Styrene18.62913210551.51 ppb9562)Orwale18.62913210551.51 ppb9661)Styrene18.62913210551.51 ppb9662)Orwale19.064157161.51 ppb9663)o-xylene18.6 Compound R.T. QION Response Conc Unit Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0102403.D AN24_1UG.M Wed Nov 15 11:30:58 2017 MSD1

Centek Laboratories, LLC

Quantitation Report (OT Reviewed) Data File : C:\HFCHEM\1\DATA2\A0102404.D Acq On : 24 Oct 2017 5:10 pm Vial: 5 Operator: RJP Sample : AlUG_1.25 Misc : AN24_lUG Inst : MSD #1 Multiplr: 1.00 MISC : AN24_10G MICLEFIT: 1.00 MS Integration Parama: RTEINT.P Quant Time: Oct 25 08:16:29 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_LUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.64128432131.00 ppb0.0035) 1,4-difluorobenzene12.861141934791.00 ppb0.0050) Chlorobenzene-d517.601171711861.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 116576 1.01 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 101.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 101.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.67
 41
 53057
 1.18 ppb
 98

 3) Freon 12
 4.72 85
 240884
 1.19 ppb
 98

 4) Chloromethane
 4.95
 50
 50612
 1.18 ppb
 96

 5) Freon 114
 4.96 85
 201428
 1.20 ppb
 95

 7) Butane
 5.29
 39
 42344
 1.21 ppb
 99

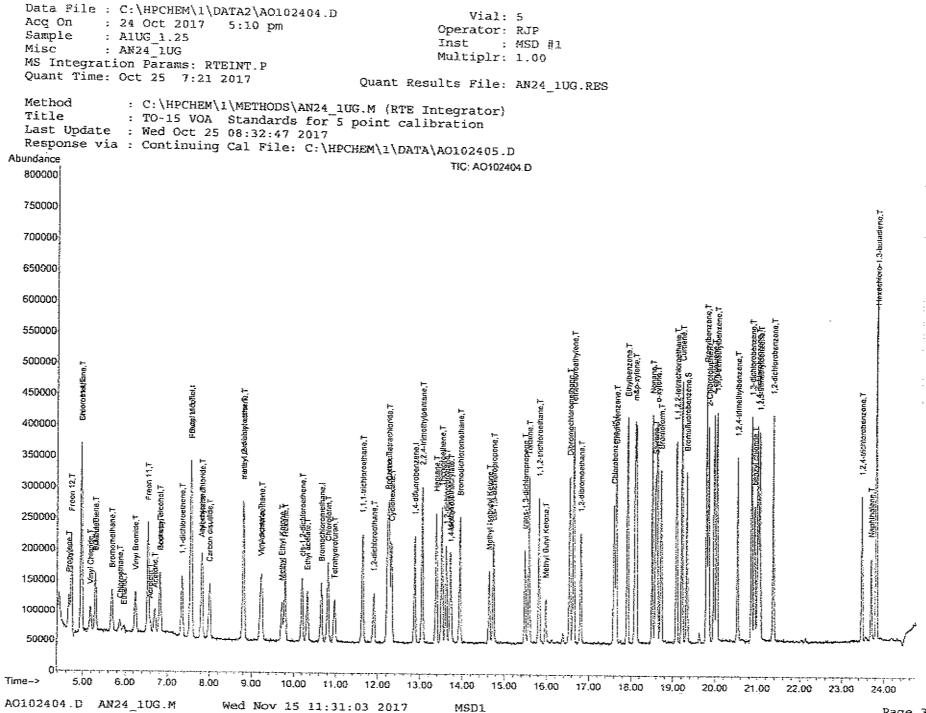
 9) Bronomethane
 5.68
 94
 75226
 1.29 ppb
 82

 101 Chloroethane
 5.66
 94
 75226
 1.29 ppb
 91

 11) Ethanol
 6.53
 101
 122 ppb
 80

 11) Vinyl Bromide
 6.23
 106
 80012
 1.22 ppb
 98

 15) Acetone
 6.82
 42
 4621m //
 1.14 ppb
 #0


 11 Spropyl alcohol
 6.81
 45
 67058
 1.24 ppb
 #0

 13) Speropyl alcohol
 Target Compounds Ovalue (#) = qualifier out of range (m) = manual integration AO102404.D AN24_1UG.M Wed Nov 15 11:31:01 2017 MSD1

Quantitation Report(QT Reviewed)Data File : C:\HPCHEM\1\DATA2\A0102404.DVial: 5Acq On : 24 Oct 2017 5:10 pmOperator: RJPSample : AlUG_1.25Inst : MSD #1Misc : AN24_1UGMultiplr: 1.00MS Integration Parame: RTEINT.PQuant Results File: AN24_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Wed Oct 25 08:16:00 2017Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.DDataAcq Meth : 1UG RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.93	83	1.80005	1.24 ppb	96
47)		14.73	75	129715	1.27 ppb	97
48)		15.48	75	114585	1.28 ppb	98
49)	1,1,2-trichloroethane	15.81	97	99289	1.27 ppb	91
51)	Toluene	15.58	92	146326	1.22 ppb	89
52)	Methyl Isobutyl Ketone	14.63	43	103514m Ø		
53)	Dibromochloromethane	16.54	129	194924	1.24 ppb	98
54)	Methyl Butyl Ketone	15.97	43	56100	1.14 ppb	98
55)	1,2-dibromoethane	16.80	1.07	157469	1.21 ppb	97
56)		16.63	164	101918	1.24 ppb	86
57)	Chlorobenzene	17.65	112	204385	1.23 ppb	86
58)	Ethylbenzene	17,91	91	330151	1.23 ppb	99
59)	m&p-xylene	18.09	91	485568	2.52 ppb	97
60)	Nonane	18.50	43	152290	1.25 ppb	97
61)	Styrene	18.58	104	158584	1.31 ppb	75
62)	Bromoform	18.71	173	176582	1.24 ppb	95
63)	o-xylene	18.61	91	265505	1.26 ppb	95
64)	Cumene	19.20	105	349611	1.28 ppb	97
66)	1,1,2,2-tetrachloroethane	19.07	83	221471	1.26 ppb	100
67)	Propylbenzenc	19,79	120	90387	1.28 ppb	# 61
68)	2-Chlorotoluene	19.84	126	88550	1.22 ppb	91
69)	4-ethyltoluene	19.96	105	281518	1.30 ppb	99
70}	1,3,5-trimethylbenzene	20.03	105	251688	1.32 ppb	98
71)	1,2,4-trimethylbenzene	20.52	105	191970	1.38 ppb	95
72)	1,3-dichlorobenzene	20.85	146	201994	1.27 ppb	98
73)	benzyl chloride	20.93	91	171704	1.35 ppb	97
74)		21.00	146	192116	1.23 ppb	95
75)	1,2,3-trimethylbenzene	21.05	105	239294	1.35 ppb	100
76)		21.36	146	196538	1.27 ppb	99
77)		23.46	180	88657	1.35 ppb	96
78)	Naphthalene	23.69	128	123863	1.53 ppb	93
79)	Hexachloro-1,3-butadiene	23.81	225	136009	1.30 ppb	94

(#) = qualifier out of range (m) ** manual integration (+) * signals summed AO102404.D AN24_1UG.M Wed Nov 15 11:31:02 2017 MSD1

Centek Laboratories, LLC

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102405.D Vial: 6 Operator: RJP Inst : MSD #1 Acq On : 24 Oct 2017 5:50 pm Sample : AlUG_1.0 Misc : AN24_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:30 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.65128420371.00ppb0.0135) 1.4-difluorobenzene12.871141926781.00ppb0.0050) Chlorobenzene-d517.591171678421.00ppb0.00 35) 1,4-difluorobenzene50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 113190 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00%

 65) Bromofluorobenzene
 19.32
 95
 131390
 1.00 ppb
 0.00

 Target Compounds
 Cvalue

 2) Propylene
 4.68
 41
 43720
 1.00 ppb
 92

 3) Frecon 12
 4.74
 85
 196185
 1.00 ppb
 92

 4) Chloromethane
 4.96
 50
 41836
 1.00 ppb
 94

 5) Frecon 114
 4.96
 65
 162804
 1.00 ppb
 95

 7) Butane
 5.30
 43
 47963
 1.00 ppb
 95

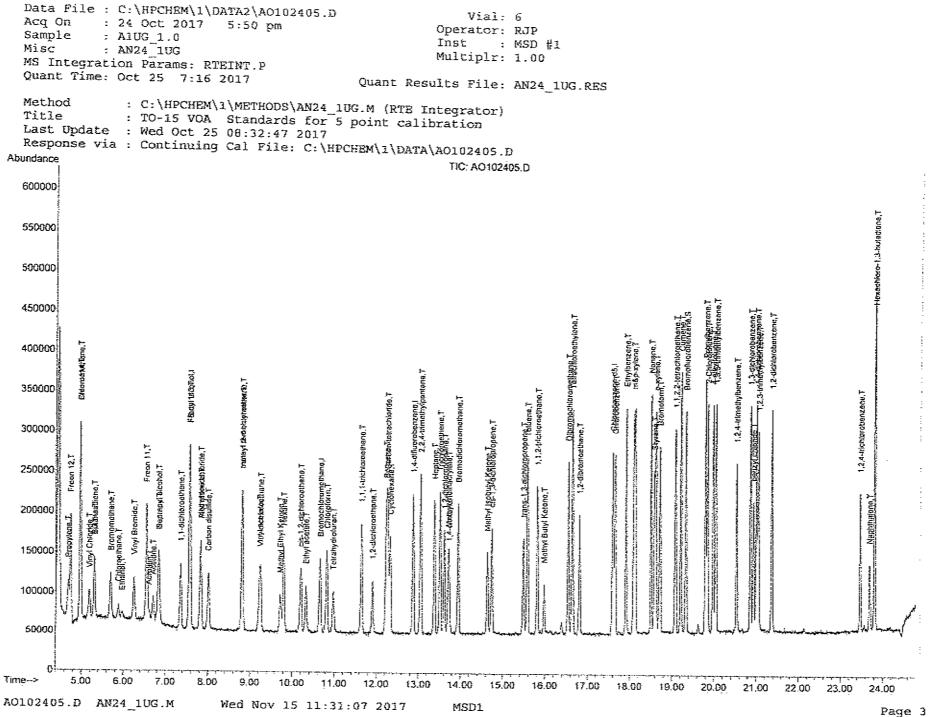
 8) 1.3-butadiene
 5.30
 43
 47963
 1.00 ppb
 95

 10) Chloroethane
 5.67
 64
 21402
 1.00 ppb
 95

 11) Ethanol
 5.96
 15291
 1.00 ppb
 95

 13) Vinyl Bromide
 6.24
 106
 63817
 1.00 ppb
 96

 14) Frecon 11
 6.53
 101
 191813
 1.00 ppb
 96


 16) Pentane
 6.83
 42
 40293
 1.00 ppb
 91

 17
 160
 7.55
 101
 15749
 1.00 ppb
 92

 (#) = qualifier out of range (m) = manual integration AO102405.D AN24_1UG.M Wed Nov 15 11:31:05 2017 MSD1

Quan	titati	on Rep	port (QI	Reviewed)			
Data File : C:\HPCHEM\1\DATA2\AQ10 Acq On : 24 Oct 2017 5:50 pm Sample : AlUG_1.0 Misc : AN24_LUG MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:30 2017			Ins Mul	Vial: 6 mator; RJP t : MSD tiplr: 1.00 File: AN24			
Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AO102405.D DataAcq Meth : 1UG_RUN							
			Response	Conc Unit	Qvalue		
53)Dibromochloromethane54)Methyl Butyl Ketone55)1,2-dibromoethane56)Tetrachloroethylene57)Chlorobenzene58)Ethylbenzene59)m&p-xylene60)Nonane61)Styrene62)Bromoform63)o-xylene64)Cumene65)1,1,2,2-tetrachloroethane66)1,1,2,2-tetrachloroethane67)Propylbenzene68)2-Chlorotoluene70)1,3,5-trimethylbenzene71)1,2,4-trimethylbenzene73)benzyl chloride74)1,4-dichlorobenzene75)1,2,3-trimethylbenzene76)1,2-dichlorobenzene77)1,2,4-trichlorobenzene	13.93 14.73 15.48 15.81 15.57 14.63 15.57 14.63 15.97 16.83 16.63 15.97 16.83 15.97 16.83 15.97 16.83 15.99 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 18.59 19.59	83 75 92 43 129 104 1162 91 104 104 1173 1073	144226 101575 89374 78107 117784 89043 154391 48264 127675 80672	1.00 ppb 1.00 ppb	## 96 97 96 97 98 99 98 99 98 99 98 99 98 99 98 99 99		

(#) w qualifier out of range (m) = manual integration (+) = signals summed A0102405.D AN24_1UG.M Wed Nov 15 11:31:06 2017 MSD1

Page 195 of 272

Centek Laboratories, LLC

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AO102406.D Via. . Operator: RJP Inst : MSD Acq On : 24 Oct 2017 6:28 pm Sample : AlUG_0.75 Misc : AN24_lUG Inst : MSD #1 Multiplr: 1.00 Misc ; AN29_100 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:31 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C;\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.65128415681.00ppb0.0035) 1,4-difluorobenzene12.861141898081.00ppb0.0050) Chlorobenzene-d517.591171674901.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 113261 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00%

 65)
 Bromofiluorobenzene
 19.32
 95
 11.3261
 1.00 ppb
 0.00

 Spiked Amount
 1.000
 Range 70 - 130
 Recovery
 = 100.00%

 Target Compounds
 Qvalue

 2
 Propylene
 4.67
 41
 31721
 0.73 ppb
 98

 3)
 Frecon 12
 4.74
 85
 144350
 0.77 ppb
 92

 5)
 Frecon 114
 4.96
 65
 121791
 0.76 ppb
 98

 6)
 Vinyl Chloride
 5.17
 62
 32973
 0.74 ppb
 88

 7)
 Butane
 5.30
 43
 3683
 0.78 ppb
 89

 8)
 1,3-butadiene
 5.29
 39
 25859
 0.77 ppb
 98

 10)
 Choroethane
 5.68
 94
 46549
 0.71 ppb
 98

 11)
 Ethanol
 5.96
 15627
 0.71 ppb
 98

 12)
 Acrolein
 6.53
 101
 43523
 0.76 ppb
 99

 13)
 Vinyl Bromide
 6.24
 106
 473210
 0.75 ppb
 98

 < (#) = qualifier out of range (m) = manual integration A0102406.D AN24_1UG.M Wed Nov 15 11:31:09 2017 MSD1

Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102406.D Vial: 7 Acg On : 24 Oct 2017 6:28 pm Operator: RJP Sample : AlUG_0.75 Misc : AN24_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:31 2017 Quant Results File: AN24 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:15:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : LUG RUN Compound R.T. QION Response Conc Unit Qvalue 46) Bromodichloromethane13.94831055090.74ppb9747) cis-1,3-dichloropropene14.7375750070.75ppb9848) trans-1,3-dichloropropene15.4875666070.76ppb96

 48)
 trans-1,3-dichloropropene
 15.48
 75
 66607
 0.76
 ppb

 49)
 1,1,2-trichloroethane
 15.81
 97
 58645
 0.76
 ppb

 51)
 Toluene
 15.57
 92
 88787
 0.76
 ppb

 52)
 Methyl Isobutyl Ketone
 14.63
 43
 57458m
 0.65
 ppb

 53)
 Dibromochloromethane
 16.54
 129
 115203
 0.75
 ppb

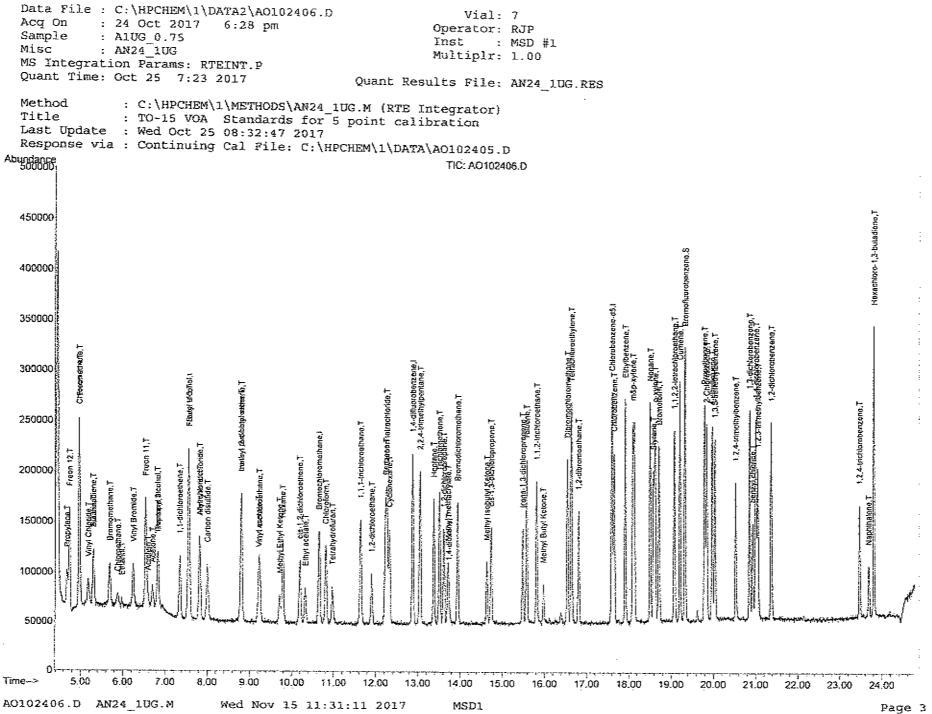
 54)
 Methyl Butyl Ketone
 15.97
 43
 34734m
 0.72
 ppb

 55)
 1,2-dibromoethane
 16.80
 107
 93287
 0.73
 ppb

 56)
 Tetrachloroethylene
 16.63
 164
 61403
 0.76
 ppb

 57)
 Chlorobenzene
 17.64
 112
 122307
 0.75
 ppb

 58)
 Ethylbenzene
 17.91
 91
 192459
 0.73
 ppb


 59)
 m&p-xylene
 18.50
 43
 87968
 0.74
 ppb

 60)
 Nonane
 18.58
 104
 85510
 0.72
 ppb
 </t 93 89 99 99 86 86 99 97 97 75 95

				0/200			
61)	Styrene	18.58	104	85510	0.72 ppb		75
62)	Bromoform	18.71	173	104189	0.75 ppb		95
63)	o-xylene	18.61	91	147604	0.71 ppb		95
64)	Cumene	19.20	105	1,90780	0.71 ppb		96
66)	1,1,2,2-tetrachloroethane	19.07	83	126731	0.73 ppb		99
67)	Propylbenzene	19.79	120	47334	0.68 ppb	#	62
68)	2-Chlorotoluene	19.84	126	49639	0.70 ppb	11	94
69)	4-ethyltoluene	19.97	105	142175	0.67 ppb		
70)	1,3,5-trimethylbenzene	20.03	105	121600	0.65 ppb		99
71)	1,2,4-trimethylbenzene	20.53	105	87340			99
72)	1,3-dichlorobenzene	20.85	146		0.64 ppb		97
73)	benzyl chloride	+		112960	0.72 ppb		98
74)		20.93	91	75908	0.61 ppb		99
75)		21.00	146	108716	0.71 ppb		95
		21.05	105	105373	0.61 ppb		99
76)	1,2-dichlorobenzene	21.37	146	106912	0.71 ppb		98
77)	, , , , , , , , , , , , , , , , , , ,	23.46	180	41761	0.65 ppb		96
78)	Naphthalene	23.69	128	45277m 🏴	0.57 ppb		
79)	Hexachloro-1,3-butadiene	23.81	225	63260	0.62 ppb		97
					T. T		

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0102405.D AN24_1UG.M Wed Nov 15 11:31:10 2017 MSD1

Page 198 of 272

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102407.DVial: 8Acq On : 24 Oct 2017 7:06 pmOperator: RJPSample : AlUG_0.50Inst : MSD #1 Sample : AlUG_0.50 Misc : AN24_LUG

 Sample
 : A105_0.50
 Inst
 : MSD #1

 Misc
 : AN24_lug
 Multiplr: 1.00

 MS Integration Params: RTEINT.P
 Multiplr: 1.00

 Quant Time: Oct 25 08:16:32 2017
 Quant Results File: AN24_luG.RES

 Quant Method : C:\NPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : lUG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.65128415241.00ppb0.0035) 1,4-difluorobenzene12.861141888801.00ppb0.0050) Chlorobenzene-d517.591171643231.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 110843 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 100.00\$

 Target Compounds
 Qvalue

 2) Propylene
 4.67
 41
 21920
 0.51
 ppb
 95

 3) Freon 12
 4.73
 85
 97174
 0.50
 ppb
 95

 4) Chloromethane
 4.95
 50
 22697
 0.55
 ppb
 73

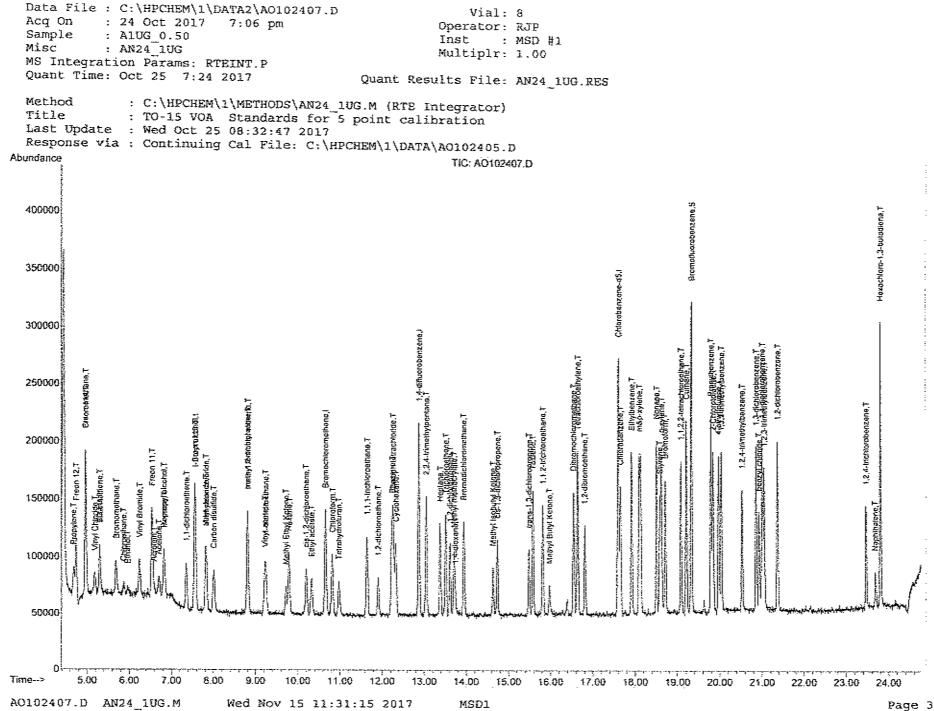
 5) Freon 114
 4.96
 85
 91234
 0.51
 ppb
 75

 6) Vinyl Chloride
 5.17
 62
 22692
 0.51
 ppb
 97

 8) 1,3-butadiene
 5.29
 33
 17571
 0.52
 ppb
 99

 9) Bromomethane
 5.66
 94
 31890
 0.52
 ppb
 90

 10) Choroethane
 5.66
 654
 0.53
 ppb
 90


 11) Ethanol
 5.95
 45
 6654
 0.53
 ppb
 90

 13) Vinyl Bromide
 6.24
 106
 32833
 0.52
 ppb
 91

 < (#) = qualifier out of range (m) = manual integration A0102407.D AN24_1UG.M Wed Nov 15 11:31:13 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102407.D Vial: 8 Acq On : 24 Oct 2017 7:06 pm Operator: RJP Sample : ALUG_0.50 Misc : AN24_LUG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:32 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcg Meth : lUG RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.9383725020.51 ppb9547)cis-1,3-dichloropropene14.7375509590.51 ppb9848)trans-1,3-dichloropropene15.4875453190.52 ppb9649)1,1.2-trichloroethane15.5197393180.51 ppb9051)Toluene15.5792592260.51 ppb9152)MethylIsobutyl Ketone14.634338910m/0.45 ppb53)Dibromochloromethane16.61129783730.52 ppb9654)MethylButyl Ketone15.9743213660.45 ppb9255)1,2-dibromochlane16.63164401780.51 ppb8557)Chlorobenzene17.64112815820.51 ppb8658)Ethylbenzene17.91911332500.52 ppb9760)Nonane18.504359830.51 ppb9761)Styrene18.51104573340.49 ppb7162)bromoform18.71173704950.51 ppb9763)o-xylene18.61911032620.51 ppb9763)o-xylene19.021051373520.52 ppb9664)Cumene19.201051373520.52 ppb9767)Propylbenzene</ R.T. QION Response Conc Unit Qvalue Compound

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0102407.D AN24_1UG.M Wed Nov 15 11:31:14 2017 MSD1

Dage 201 of 272

Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102408.D Vial: 9 Acq On : 24 Oct 2017 7:44 pm Sample : AlUG_0.30 Misc : AN24_1UG Operator: RJP Inst MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:33 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for S point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcg Meth : 106 RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) ______ 1) Bromochloromethane10.65128425051.00ppb0.0035) 1.4-difluorobenzene12.861141884851.00ppb0.0050) Chlorobenzene-d517.591171640371.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.32 95 108067 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%

 65)
 Bromofluozobenzene
 19.32
 95
 108067
 0.98
 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 98.00%

 Target Compounds
 Qvalue
 2
 Propylene
 4.66
 41
 12478
 0.28
 ppb
 84

 3)
 Freon 12
 4.73
 85
 58185
 0.32
 ppb
 93

 4)
 Choromethane
 4.955
 50
 14825
 0.32
 ppb
 92

 7)
 Butane
 5.29
 43
 15122
 0.31
 ppb
 92

 7)
 Butane
 5.30
 39
 11317
 0.33
 ppb
 93

 10)
 Choroethane
 5.86
 64
 6657m
 0.31
 ppb
 43

 11)
 Schaol
 6.53
 101
 60719
 0.31
 ppb
 93

 13)
 Vinyl Bromide
 6.23
 106
 19608
 0.30
 ppb
 93

 14)
 Freen 113
 7.55
 101
 34754
 0.30
 ppb
 93

 1

(#) = qualifier out of range (m) = manual integration A0102408.D AN24_1UG.M Wed Nov 15 11:31:17 2017 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102408.D Vial: 9 Acq On : 24 Oct 2017 7:44 pm Operator: RJP Sample : AlUG_0.30 Misc : AN24_lUG Inst : MSD #1 Multiplr: 1.00 MS Integration Parame: RTEINT.P Quant Time: Oct 25 08:16:33 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcq Meth : 1UG_RUN Compound R.T. QION Response Conc Unit Qvalue

 46)
 Bromodichloromethane
 13.93
 83
 43294
 0.31
 ppb
 94

 47)
 cis-1,3-dichloropropene
 14.73
 75
 30246
 0.30
 ppb
 99

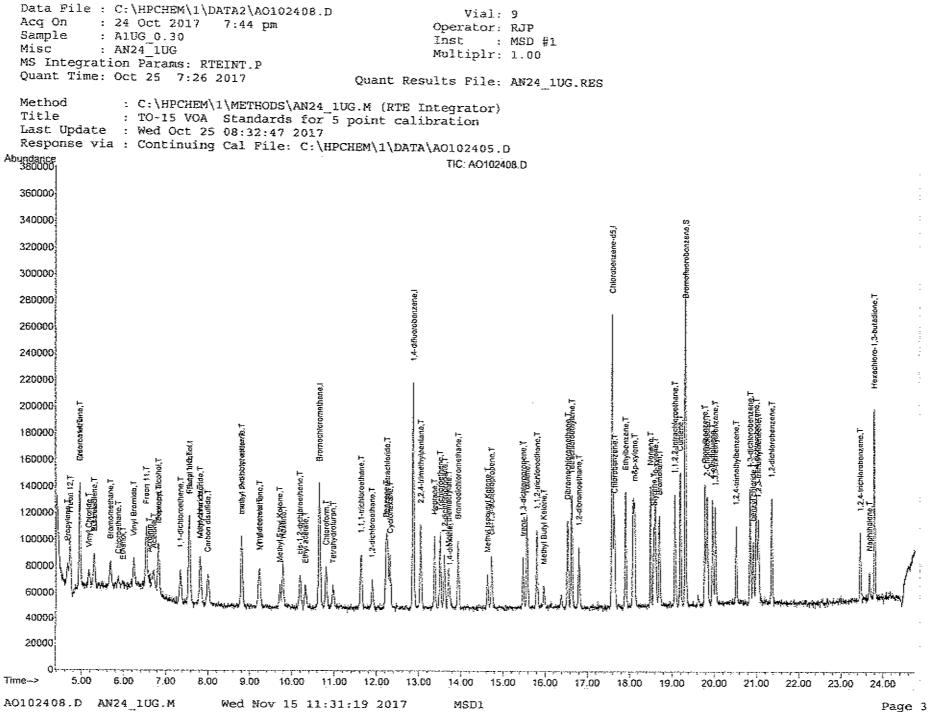
 48)
 trans-1,3-dichloropropene
 15.48
 75
 26510
 0.31
 ppb
 98

 49)
 1,1,2-trichloroethane
 15.86
 97
 24194
 0.32
 ppb
 93

 51)
 Toluene
 15.57
 92
 36173
 0.31
 ppb
 99

 52)
 Methyl Isobutyl Ketone
 14.63
 43
 22679
 0.26
 ppb
 97

 53)
 Dibromochloromethane
 16.84
 129
 46177
 0.31
 ppb
 96

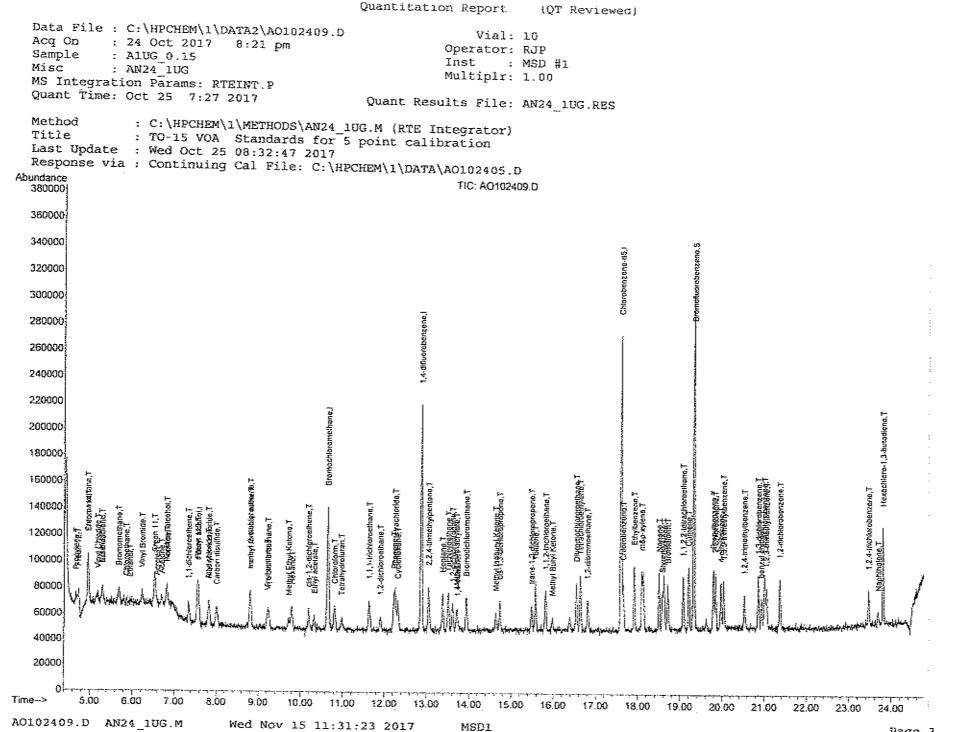

 54)
 Methyl Butyl Ketone
 16.61
 107
 38582
 0.30
 ppb
 96

 56)
 Terrachloroethylene
 16.63
 164
 23843
 0.30
 ppb
 99

 57)
 Chlorobenzene
 17.65
 112
 46636
 0.30
 ppb
 99

 58)
 Ethylbenzene
 18.51
 11
 10005
 6.60< 46)Bromodichloromethane13.9383432940.31ppb9447)cis-1,3-dichloropropene14.7375302460.30ppb99

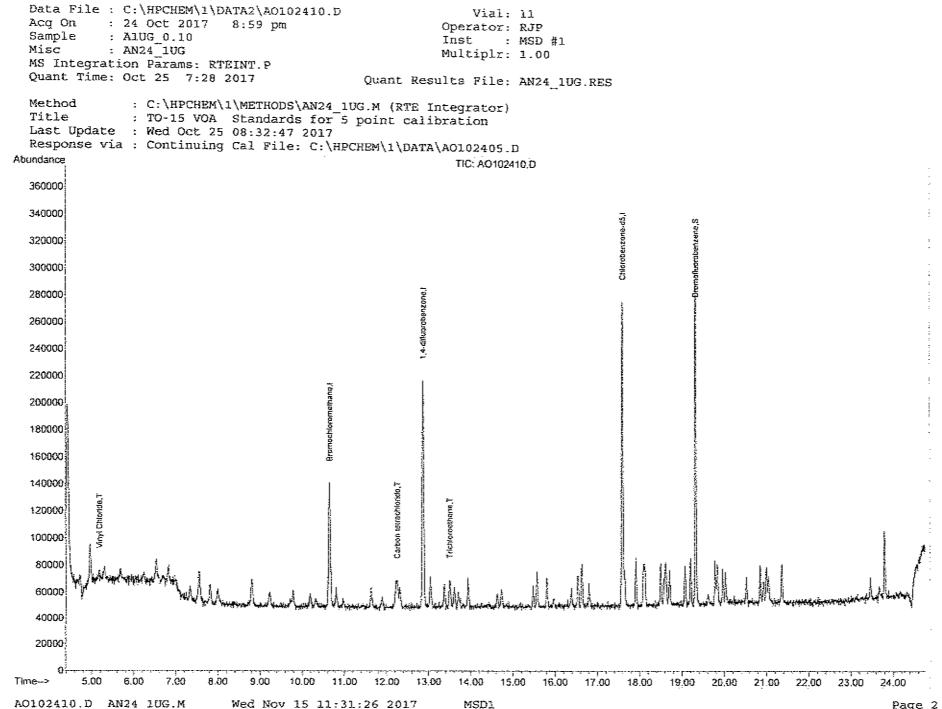
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0102408.D AN24_1UG.M Wed Nov 15 11:31:18 2017 MSD1 Page 204 of 272



	Quantitat	ion Re	port (Q)	[Reviewed)		
Data File : C:\HPCHEM\1\DATA2 Acq On : 24 Oct 2017 8:21 Sample : A1UG_0.15 Misc : AN24_1UG MS Integration Params: RTEINT.	L <u>p</u> m	D	Ope Ins	Vial: 10 erator: RJI st : MSI tiplr: 1.0) 詳ユ	
Quant Time: Oct 25 08:16:34 2()17	Qu	ant Results	; File: AN2	4_1ŬG	.RES
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Wed Oct 25 08:1 Response via : Continuing Cal DataAcq Meth : 1UG_RUN	dards for 6:00 2017	5 poi	nt calibrat	ion		
Internal Standards	R.T.	QION	Response	Cone Units	Dev (Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.65	128	41280	1 00 000		0 01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.32 Range 70	95 - 130	109574 Recover	1.01 ppb y = 101	.00%	0.00
Target Compounds 2) Propylene 3) Freon 12 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) Butane 8) 1,3-butadiene	4.67 4.73 4.94 4.95 5.17 5.29	85 50 85	4569 29881 7428 25920 7017 6855m 4551m	0.16 ppb 0.18 ppb	Ħ	93
 9) Bromomethane 10) Chloroethane 11) Ethanol 12) Acrolein 13) Vinyl Bromide 14) Freon 11 15) Acetone 	0.33		7017 6855m 4551m 10397 3497 2452m 2800m 10137 30431	orra bbp		88 62 88 99
15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 19) Freon 113	6.69 6.83 6.81 7.33 7.55	58 42 45 96	10137 30431 3031m \$501m 8954 8097 18044	0.17 ppb 0.14 ppb 0.16 ppb 0.16 ppb	#	1 94 91
 20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 	7,82 7,79 7,99	39 84 41 76	8809 9398 29364	0.18 ppb 0.18 ppb 0.16 ppb 0.18 ppb	#	90 94 86
25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Vinyl acetate 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 30) Hexane	8-80 9.23 9 ₋ 20 9.71 10.19 9.78	61 73 63 43 72 61 57	11857 20090 15169 17466 3459 11418 12069	0.16 ppb 0.16 ppb 0.16 ppb 0.16 ppb 0.15 ppb 0.15 ppb 0.16 ppb 0.16 ppb	ŧ	95 99 94 84 1 95 83
 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 36) 1,1,1-trichloroethane 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene 	11.63 12.31	78	17364 20318 7335 12119 19790 11959 22045 28807 9206	0.17 ppb 0.16 ppb 0.16 ppb 0.16 ppb 0.16 ppb 0.16 ppb 0.16 ppb 0.16 ppb 0.17 ppb 0.16 ppb		89 98 80 80 84 94 95 95 95 93
 40) Methyl methacrylate 41) 1,4-dioxane 42) 2,2,4-trimethylpentane 43) Heptane 44) Trichloroethene 45) 1,2-dichloropropane 	13.73 13.04 13.36 13.50 13.61	88 57 43 130 63	4005 36479 14364 11928 10559	0.13 ppb 0.16 ppb 0.18 ppb 0.16 ppb 0.17 ppb	Ħ	70 95 94 96 98
(#) = qualifier out of range (AO102409.D AN24_1UG.M We	m) = manu; d Nov 15 :	al int: 11:31:3	egration 21 2017	MSD1		

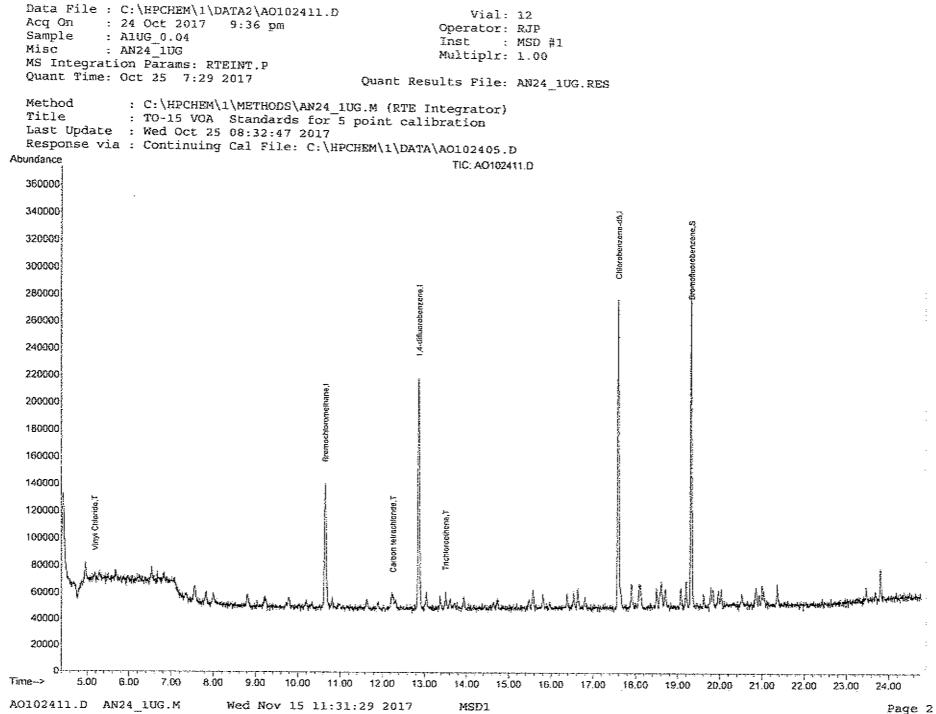
Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0102409.D Vial: 10 Acq On : 24 Oct 2017 8:21 pm Operator: RJP Sample : A1UG_0.15 Misc : AN24_100 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 25 08:16:34 2017 Quant Results File: AN24 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:16:00 2017 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0102405.D DataAcg Meth : 10G_RUN CompoundR.T. QIonResponseConc UnitQvalue46)Bromodichloromethane13.9383224740.16 ppb9547)cis-1,3-dichloropropene14.7375151740.15 ppb9948)trans-1,3-dichloropropene15.4775133710.15 ppb9249)1,1,2-trichloroethane15.6097121390.16 ppb8951)Toluene16.5692194740.17 ppb9252)Methyl Isobutyl Ketone14.6243117060.14 ppb9753)Dibromochloromethane16.60107186990.15 ppb9656)Tetrachloroethylene16.63164122790.16 ppb8856)Tetrachloroethylene17.64112249660.16 ppb8856)Tetrachloroethylene18.5043187900.16 ppb9760)Nonane18.5043187900.16 ppb9761)Styrene18.50131340.16 ppb9763)o-xylene19.0783264030.16 ppb9764)Cumene19.0783264030.16 ppb9867)Propylbenzene19.8412097920.15 ppb6868)2-Chlorotoluene19.961052558713 ppb9871)1,1,2,2-tetrachloroethane19.0783264030.16 ppb9763)o-xylene< Compound R.T. QION Response Conc Unit Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AO102409.D AN24_1UG.M Wed Nov 15 11:31:22 2017 MSD1



^Dage 207 of 272

	Quantitat	ion Re	port (QT	Revie	wed)	
Data File : C:\HPCHEM\1\DATA2 Acq On : 24 Oct 2017 8:5 Sample : A1UG_0.10 Misc : AN24_1UG MS Integration Params: RTEINT Quant Time: Oct 25 08:16:35 2	9 pm .P			t : tiplr:	MSD #1 1.00	UG.RES
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta Last Update : Wed Oct 25 08: Response via : Continuing Cal DataAcq Meth : 1UG_RUN	ndards for 16:00 2017 File: C:\;	5 роі НРСНЕМ	nt calibrat \1\DATA\AO1	ion 02405.1	,	
Internal Standards	R ,Υ.	QION	Response	Conc U	nits Dev	v(Min)
 Bromochloromethane 1, 4-difluorobenzene Chlorobenzene-d5 	12.86	114	42208 188910 161547	1.00	dqq	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.32 Range 70	95 - 130	107058 Recover	0.98 Y =	dqq ۵۵.۵۵	0.00 8
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene	5.17 12.25 13.50	62 117 130	5036 15727 8233	0.11 0.11 0.11	Q dqq dqq dqq	7alue 79 98 97


(#) = gualifier out of range (m) = manual integration (+) = signals summed A0102410.D AN24_1UG.M Wed Nov 15 11:31:25 2017 MSD1

•

Page 2

	Quantitation	Report (QT	Reviewed)
Data File : C:\HPCHEM\1\DATA2 Acq On : 24 Oct 2017 9:3 Sample : AlUG_0.04 Misc : AN24_LUG MS Integration Params: RTEINT Quant Time: Oct 25 08:16:36 2	5 pm .P 017	Quant Results	: : MSD #1 iplr: 1.00 File: AN24_1UG.RES
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Star Last Update : Wed Oct 25 08: Response via : Continuing Cal DataAcq Meth : LUG_RUN	1dards for 5 16:00 2017	point calibrati	on
Internal Standards	R.T. QI	on Response C	onc Units Dev(Min)
 Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 	10.65 1	28 42485	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.32 Range 70 -	95 105909 130 Recovery	0.97 ppb 0.00 ≃ 97.00%
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene	5.18 12.25 1 13.50 1	62 2214m /) 17 7082 30 4119	Qvalue 0.05 ppb 0.05 ppb 92 0.05 ppb 90

,

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CALIBRATION VERIFICATION

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA2\AO103002.D Vial: 5 Operator: RJP Inst : MSD #1

 Acq On
 : 30 Oct 2017 12:03 pm

 Sample
 : AlUG 1.0

 Misc
 : AN30_1UG

 Multiplr: 1.00 MS Integration Params: RTEINT.P Method: C:\HPCHEM\1\METHODS\AN24_lUG.M (RTE Integrator)Title: TO-15 VOA Standards for 5 point calibrationLast Update: Mon Nov 20 08:43:22 2017Response via: Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%
 Compound
 AvgRF
 CCRF
 % Dev Area% Dev (mi

 1
 I
 Bromochloromethane
 1.000
 1.000
 0.0
 65
 0.00

 2
 T
 Propylene
 0.975
 0.950
 2.6
 59
 0.00

 3
 T
 Freon 12
 4.608
 4.182
 9.2
 58
 0.00

 4
 T
 Chloromethane
 1.041
 1.012
 2.8
 66
 0.00

 5
 T
 Freon 114
 3.904
 3.612
 7.5
 61
 0.00

 6
 T
 Vinyl Chloride
 1.114
 1.239
 -11.2
 75
 0.00

 7
 Butane
 1.1493
 1.367
 8.4
 61
 0.00

 0
 T
 Chloroethane
 0.602
 0.907
 -13.1
 73
 0.00

 1
 T
 Ethanol
 0.322
 0.288
 10.6
 60
 0.00

 1
 T
 Choroethane
 0.4528
 1.355
 11.53
 50
 Compound AvgRF CCRF %Dev Area% Dev(min) ______

 35 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 66
 0.00

 36 T
 1,1,1-trichloroethane
 0.687
 0.647
 5.8
 63
 0.00

 37 T
 Cyclohexane
 0.396
 0.393
 0.8
 66
 0.00

 38 T
 Carbon tetrachloride
 0.782
 0.722
 7.7
 64
 0.00

 39 T
 Benzene
 0.920
 0.883
 4.0
 65
 0.00

 40 T
 Methyl methacrylate
 0.305
 0.275
 9.8
 59
 0.00

 41 T
 1,4-dioxane
 0.161
 0.189
 -17.4
 65
 0.00

 42 T
 2,2,4-trimethylpentane
 1.271
 1.247
 1.9
 66
 0.00

 43 T
 Heptane
 0.444
 0.421
 5.2
 64
 0.00

 44 T
 Trichloroethene
 0.347
 0.331
 4.6
 64
 0.00

 45 T
 1,2-dichloropropane
 0.758
 0.715
 5.7
 63
 0.00

 46 T
 Bromodichloromethane
 0.535
 0.490
 8.4
 61
 0.00

(#) = Out of Range

Page 213 of 272

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA2\A0103002.D Vial: 5 Acq On : 30 Oct 2017 12:03 pm Sample : A1UG 1.0 Misc : AN30_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Nov 20 08:43:22 2017 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF&Dev Area& Dev (mi51 TToluene0.7190.722-0.4650.0052 TMethyl Isobutyl Ketone0.4620.521-12.8620.0053 TDibromochloromethane0.9320.9082.6620.0054 TMethyl Butyl Ketone0.2740.347-26.6760.0055 T1.2-dibromoethane0.7590.7313.7600.0056 TTetrachloroethylene0.4850.4830.4630.0057 TChlorobenzene0.9840.9642.0620.0058 TEthylbenzene1.1421.167-2.2650.0060 TNonane0.7270.7201.0640.0061 TStyrene0.7190.785-10.6700.0062 TBromoform0.8420.8093.9610.0063 T0-xylene1.2451.254-0.7640.0064 T1.1,2,2-tetrachloroethane1.0511.0331.7630.0065 SBromofluorobenzene0.4090.4111.9610.0066 T1.2,2-tetrachloroethane1.0511.0331.7630.0067 TPropylbenzene0.4190.4111.9610.0067 TPropylbenzene1.0911.235-13.2700.0070 T1.3,5-trimethylbenzene1.0911.235-AvgRF CCRF &Dev Area& Dev(min) Compound

(#) = Out of Range SPCC's out = 0 CCC's out ≈ 0 A0103002.D AN24_1UG.M Mon Nov 20 08;48:08 2017 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103002.D Acq On : 30 Oct 2017 12:03 pm Sample : AlUG_1.0 Misc : AN30_1UG Vial: 5 Vial: 5 Operator: RJP Inst : MSD #1 Misc : AN30_1UG MS Integration Params: RTEINT.P Quant Time: Oct 30 12:59:25 2017 Multiplr: 1.00 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.64128273781.00ppb0.0035) 1,4-difluorobenzene12.861141266281.00ppb0.0050) Chlorobenzene-d517.581171056641.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 69608 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%

 Spiked Amount
 1.000
 Range
 70
 - 130
 Recovery
 =
 98.00%

 Target Compounds
 2
 Propylene
 4.67
 41
 26008
 0.97
 ppb
 97

 3) Freen 12
 4.73
 85
 114486
 0.91
 ppb
 94

 1) Chloromethane
 4.96
 50
 27699
 0.97
 ppb
 86

 5) Freen 114
 4.96
 85
 9884
 0.93
 ppb
 96

 6) Vinyl Chloride
 5.18
 62
 33926
 1.11
 ppb
 95

 7) Butane
 5.29
 39
 24820
 1.13
 ppb
 93

 9) Bromomethane
 5.68
 94
 37415
 0.92
 ppb
 47

 11) Ethanol
 5.96
 45
 7874
 0.89
 ppb
 90

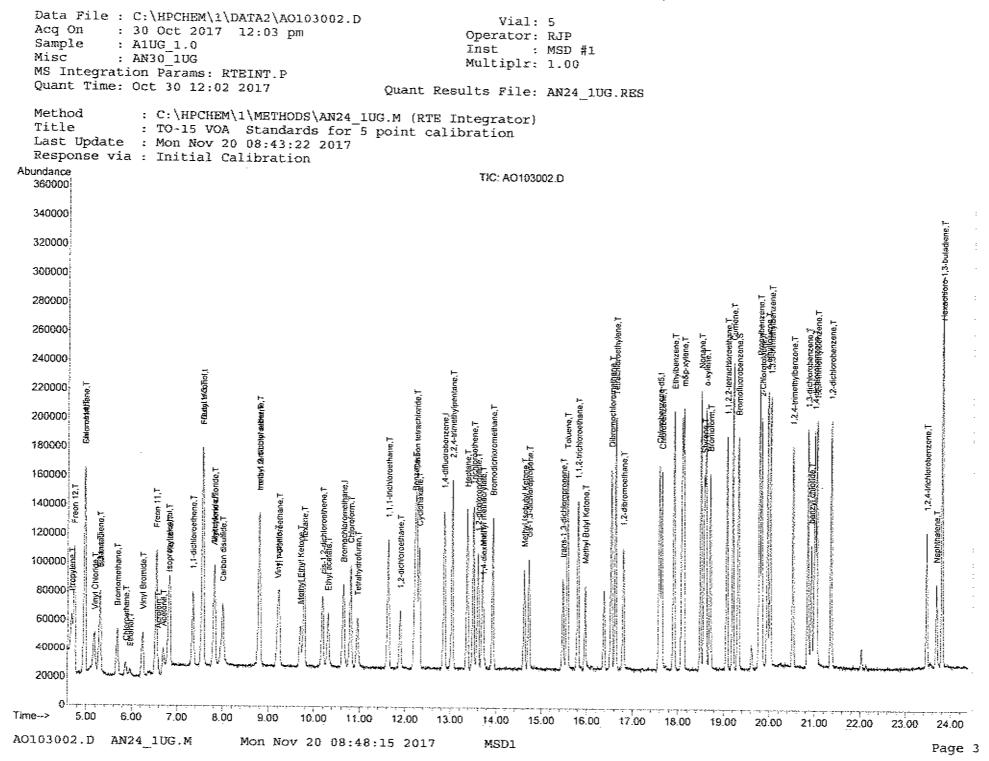
 12) Accolein
 6.58
 56
 101
 115379
 0.91
 ppb
 99

 13) Vinyl Bromide
 6.23
 106
 37106
 0.89
 ppb
 47

 14) Percon 11
 6.58
 56
 101
 15379
 91

(#) = qualifier out of range (m) = manual integration A0103002.D AN24_1UG.M Mon Nov 20 08:48:14 2017 MSD1

Page 1


Centek Laboratories, LLCQuantitation Report(QT Reviewed)Data File : C:\HPCHEM\1\DATA2\A0103002.DVial: 5Acq On : 30 Oct 2017 12:03 pmOperator: RJPSample : AlUG 1.0Inst : MSD #1Misc : AN30_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Oct 30 12:59:25 2017Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Wed Oct 25 08:32:47 2017Response via : Initial CalibrationDataAcq Meth : 1UG_RUN

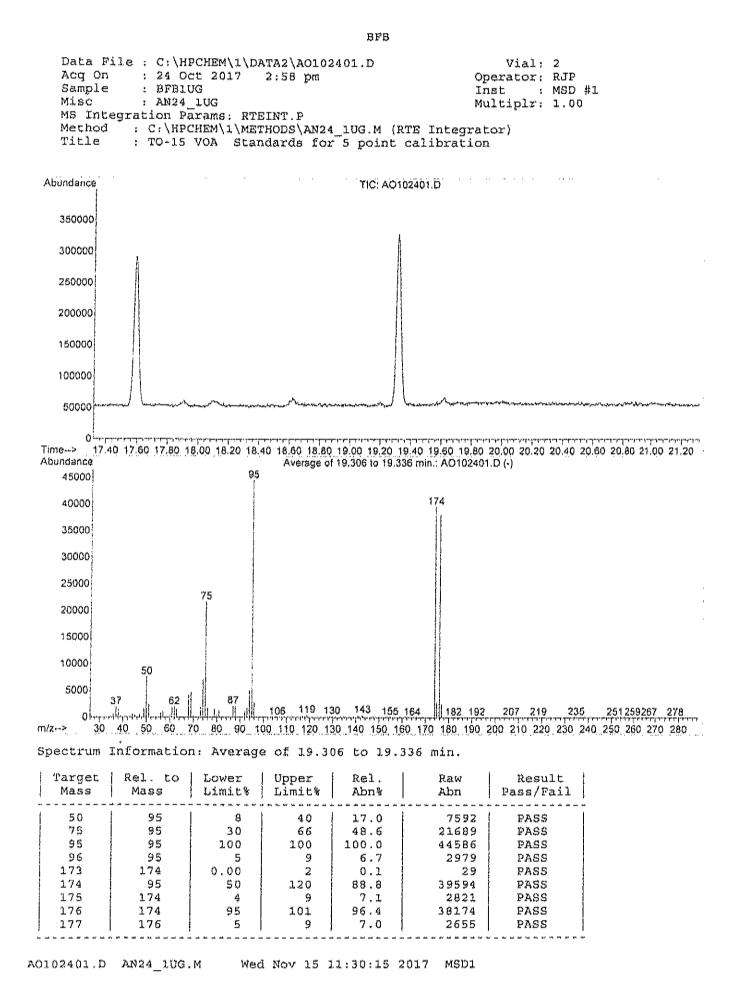
.

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)		13.92	83	90601	0.94 ppb	96
47)		14,72	75	62074	dqq 20.0	98
48)	trans-1,3-dichloropropene	15.47	75	48641	0.81 ppb	98
49)	1,1,2-trichloroethane	15.80	97	49971	0.95 ppb	92
51)	Toluene	15.56	92	76264	1.00 ppb	90
52)	Methyl Isobutyl Ketone	14.62	43	55067	1.13 ppb	93 93
53)	Dibromochloromethane	16.53	129	95896	0.97 ppb	98
54)	······································	15,96	43	36617m //9	1.26 ppb	20
55)	1,2-dibromoethane	16.79	107	77224	0.96 ppb	98
56)	Tetrachloroethylene	16.62	164	51027	1.00 ppb	87
57)		17.64	112	101830	0.98 ppb	87
58)	Ethylbenzene	17.90	91	167387	0.99 ppb	1.00
59)	m&p-xylen@	18.11	91	246613	2.04 ggb	95
60)		18.49	43	76110	dqq ee.0	96
61)		18.57	104	82989	1.11 ppb	76
	Bromoform	18.70	173	85442	0.96 ppb	97
63)	o-xylene	18.60	91	132455	1.01 ppb	96
64)	Cumene	19.19	105	171620	1.00 ppb	97
66)	1,1,2,2-tetrachloroethane	19.06	83	109194	0.98 ppb	98
67)		19.78	120	44301	1.03 ppb	# 61
68)		19.83	126	43469	0.98 ppb	
69)		19.95	105	148082	1.14 ppb	ee
70)		20.02	105	130485	1.13 ppb	98
71)	1,2,4-trimethylbenzene	20.51	105	105946	1.24 ppb	95
72)	1,3-dichlorobenzene	20.84	146	93752	dqq 36.0	98
	benzyl chloride	20.92	91	63344	0.82 ppb	99
74)	l,4-dichlorobenzene	20.99	146	91074	0.95 ppb	95
	1,2,3-trimethylbenzene	21.04	105	120952	1.15 ppb	99
	1,2-dichlorobenzene	21.35	146	91878	0.97 ppb	98
	1,2,4-trichlorobenzene	23.46	180	36635	dqq 88.0	95
78)	Naphthalene	23.68	128	54841	1.21 ppb	94
79)	Hexachloro-1,3-butadiene	23.80	225	59615	0.92 ppb	95

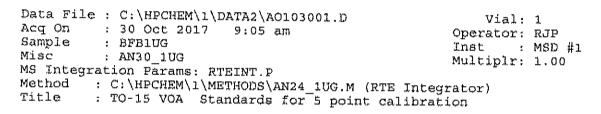
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0103002.D AN24_lUG.M Mon Nov 20 08:48:14 2017 MSD1 Page

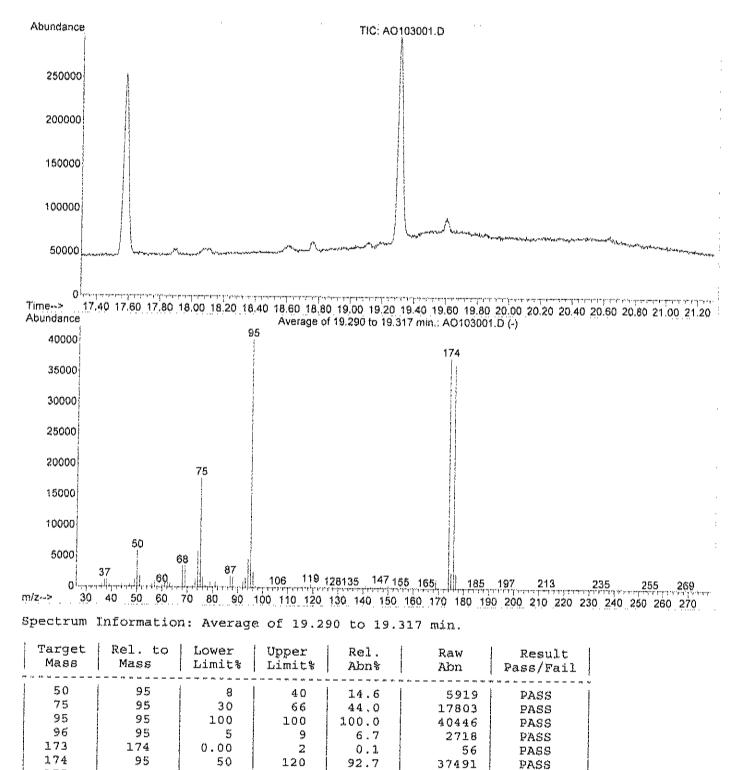
217 of 272

•


.

L


GC/MS VOLATILES-WHOLE AIR


.

METHOD TO-15 RAW DATA

Page 219 of 272

PASS

PASS

PASS

PASS

2593

2500

36464

A0103001.D AN24_1UG.M Mon Nov 20 08:48:00 2017 MSD1

9

9

101

6.9

97.3

6.9

4

95

5

Page 220 of 272

174

174

176

175

176

177

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 RAW QC DATA

Page 221 of 272

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Page 222 of 272

CLIENT: LaBella Associates, P.C.

C1710061 Work Order:

Project: 300 Commerce Dr

TestCode:	0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCod	e: 0.25CT-TCE- Units: ppbV		Prep Da	ite:		RunNo: 128	387	
Client ID: ZZZZZ	Batch ID: R12887	TestN	o: TO-15		Analysis Da	ite: 10/30	/2017	SeqNo: 149	9963	
Analyte	Result	PQL	SPK value SPK Ref Val	%REC	LowLimit	HighLimi	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15		· · · · · · · · · · · · · · · · · · ·						
1,1,2,2-Tetrachloroethane	< 0.15	0.15								
1,1,2-Trichloroethane	< 0.15	0.15								
1,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethene	< 0.15	0.15								
1,2,4-Trichlorobenzene	< 0,15	0.15								
1,2,4-Trimethylbenzene	< 0.15	0.15								
1,2-Dibromoethane	< 0.15	0.15								
1,2-Dichlorobenzene	< 0.15	0.15								
1,2-Dichloroethane	< 0.15	0.15								
1,2-Dichloropropane	< 0.15	0.15								
1,3,5-Trimelhylbenzene	< 0.15	0.15								
1,3-cutadiene	< 0.15	0.15								
1,3-Dichlorobenzene	< 0.15	0.15								
1,4-Dichlorobenzene	< 0.15	0.15								
1,4-Dioxane	< 0.30	0.30								
2,2,4-trimethylpentane	< 0.15	0.15								
4-ethyltoluene	< 0.15	0.15								
Acetone	< 0.30	0.30								
Allyl chloride	< 0.15	0.15								
Benzene	< 0.15	0.15								
Benzyl chloride	< 0.15	0.15								
Bromodichloromethane	< 0.15	0.15								
Bromoform	< 0.15	0.15								
Bromomethane	< 0.15	0.15								
· · ·	rted are not blank corrected cted below quantitation limit		E Estimated Value above quan ND Not Detected at the Limit of		18¢	H R	Holding times for RPD outside acce		•	led

Spike Recovery outside accepted recovery limits \$

LaBella Associates, P.C. CLIENT:

Work Order: C1710061 300 Commerce Dr Project:

Page 223 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 128	887	
Client ID: ZZZZZ	Batch ID: R12887	Test	lo: TO-15			Analysis Da	te: 10/30/2	2017	SeqNo: 149	9963	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	< 0.15	0.15			·····						
Carbon tetrachloride	< 0.040	0.040									
Chlorobenzene	< 0.15	0.15									
Chloroethane	< 0.15	0.15									
Chloroform	< 0.15	0.15									
Chloromethane	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.15	0.15									
cis-1,3-Dichloropropene	< 0.15	0.15									
Cyclohexane	< 0.15	0.15									
Dibromochloromethane	< 0.15	0.15									
Ethyl acetate	< 0.15	0.15									
Ethylbenzene	< 0.15	0.15									
Freon 11	< 0.15	0.15									
Freon 113	< 0.15	0.15									
Freon 114	< 0.15	0.15									
Freon 12	< 0.15	0.15									
Heptane	< 0.15	0.15									
Hexachloro-1,3-butadiene	< 0.15	0.15									
Hexane	< 0.15	0.15									
Isopropyl alcohol	< 0.15	0.15									
m&p-Xylene	< 0.30	0.30									
Methyl Butyl Ketone	< 0.30	0.30									
Methyl Ethyl Ketone	< 0.30	0.30									
Methyl isobutyl Kelone	< 0.30	0.30									
Methyl iert-bulyl ether	< 0.15	0.15									
Methylene chloride	< 0.15	0.15									
o-Xylene	< 0.15	0.15									
Propylene	< 0.15	0.15									
Styrene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
Tetrahydrofuran	< 0.15	0.15									
Qualifiers: Results repo	ried are not blank corrected		E Estim	ated Value above qua	stitation rai	186	Ĥ	Holding times for	preparation or a	analysis excee	ded

J

ND Not Detected at the Limit of Detection

R RPD outside accepted recovery limits

Spike Recovery masside accepted recovery limits \$

Work Order: C1710061

Project: 300 Commerce Dr

Page 224 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-103017	SampType: MBLK	TestCo	estCode: 0.25CT-TCE- Units: ppbV			Prep Da	te:		RunNo: 12	887		
Client ID: 22222	Batch ID: R12887	Test	TestNo: TO-15			Analysis Da	ite: 10/30/:	017 SeqNo: 149963				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	-
Toluene	< 0.15	0.15										
Irans-1,2-Dichloroethene	< 0.15	0.15										
trans-1,3-Dichloropropene	< 0.15	0.15										
Trichloroethene	< 0.040	0.040										
Vinyl acetate	< 0.15	0.15										
Vinyl Bromide	< 0.15	0.15										
Vinyl chloride	< 0.040	0.040										

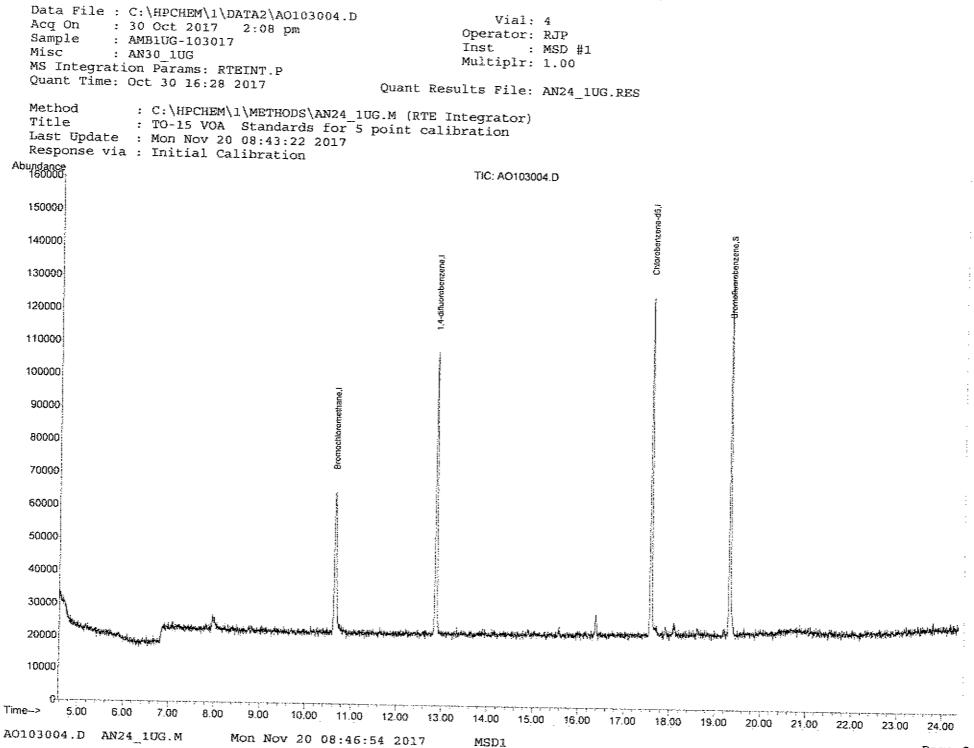
.

Results reported are not blank corrected

J Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range



ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AO103004.D Vial: 4 Acq On : 30 Oct 2017 2:08 pm Operator: RJP Sample : AMB1UG-103017 Misc : AN30_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 30 17:28:30 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.65128208261.00ppb0.0135) 1,4-difluorobenzene12.86114980391.00ppb0.0050) Chlorobenzene-d517.59117812741.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 50287 0.92 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery m 92.00% Target Compounds Qvalue

Page 2

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

CLIENT: Work Order:

Page 227 of 272

LaBella Associates, P.C. C1710061

Project: 300 Commerce Dr

Sample ID: C1710061-003A MS	SampType: MS	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	<u></u>				
Client ID: 2017_10_24_Outdoo	Batch ID: R12887			- Outs, hhow		-			RunNo: 128	387	
2011_10_24_00100	Udital ID. (C12007	resu	Vo: TO-15			Analysis Da	te: 10/30/2	2017	SeqNo: 149	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9800	0.15	1	0	98.0	70	130				
1,1,2,2-Tetrachiorcethane	0.9600	0.15	1	0	96.0	70	130				
1, 1.2-Trichloroethane	0.9300	0.15	1	0	93.0	70	130				
1,1-Dichloroethane	0.9500	0.15	~	0	95.0	70	130				
1,1-Dichloroethene	0.9800	0.15	1	0	98.0	70	130				
1,2,4-Trichlorobenzene	1.310	0.15	1	0	131	70	130				
1,2,4-Trimethylbenzene	1.490	0.15	1	0	149	70	130				S
1,2-Dibromoethane	0.9100	0.15	1	0	91.0	70	130				S
1.2-Dichlorobenzene	0.9700	0.15	1	0	97.0	70	130				
1,2-Dichloroethane	0.9300	0.15	1	0	93.0	70	130				
1,2-Dichloropropane	0.9200	0.15	1	0 0	92.0	70	130				
1,3,5-Trimethylbenzene	1.040	0.15	1	0	104	70	130				
1,3-butadiene	1.350	0.15	1	0	135	70	130				e
1,3-Dichlorobenzene	1.000	0.15	1	0	100	70	130				S
1,4-Dichlorobenzene	1.020	0.15	1	0	102	70	130				
1,4-Dioxane	1.080	0.30	1	0	108	70	130				
2,2,4-trimethylpentane	0.9700	0.15	1	0	97.0	70	130				
4-ethyltoluene	1.020	0.15	1	0	102	70	130				
Acetone	5.310	0.30	1	4.4	91.0	70	130				
Ailyl chloride	0.9100	0.15	1	0	91.0	70	130				
Benzene	1.000	0.15	1	0	100	70	130				
Benzyl chloride	1.040	0.15	1	0	104	70	130				
Bromodichloromethane	0.9400	0.15	1	0	94.0	70	130				
Bromotorm	0.9400	0.15	1	0	94.0	70	130				
Bromomethane	0.9400	0.15	1	0	94.0	70	130				

Qualifiers:

s

Results reported are not blank corrected
 Analyte detected below quantitation limit

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits

Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits

Page 1 of 5

Work Order: C1710061

Project: 300 Commerce Dr

Page 228 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MS	TestCo	de: 0.25CT-TC	E- Units: ppbV	Prep Date:				RunNo: 12	587	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	lo: TO-15			Analysis Dat	e: 10/30/2	1017	SegNo: 149	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	0.9100	0.15	1	0	91.0	70	130				
Carbon tetrachloride	1.010	0.040	1	0.07	94.0	70	130				
Chlorobenzene	0.9200	0.15	1	0	92.0	70	130				
Chloroethane	0.9400	0.15	1	0	94.0	70	130				
Chloroform	0.9600	0.15	1	0	96.0	70	130				
Chloromethane	1.290	0.1 5	1	0.39	90.0	70	130				
cis-1,2-Dichloroethene	0.8800	0.15	1	0	88.0	70	130				
cis-1.3-Dichloropropene	0.8800	0.15	1	0	88.0	70	130				
Cyclohexane	0.9700	0.15	1	0	97.0	70	130				
Dibromochloromethane	0.9400	0.15	1	0	94.0	70	130				
Ethyl acelate	0.9200	0.15	ŧ	0	92.0	70	130				
Ethylbenzene	0.9400	0.15	1	Û	94.0	70	130				
Freon 11	1.130	0.15	1	0.21	92.0	70	130				
Freon 113	1.080	0.15	1	0	108	70	130				
Freon 114	0.9600	0.15	1	0	96.0	70	130				
Freon 12	1.260	0.15	1	0.44	82.0	70	130				
Heplane	1.000	0.15	1	0	100	70	130				
Hexachloro-1,3-butadiene	1.080	0.15	1	Q	108	70	130				
Hexane	1.020	0.15	1	0	102	70	130				
isopropyl alcohol	1.310	0.15	1	0.54	77.0	70	130				
m&p-Xylene	2.050	0.30	2	0.23	91.0	70	130				
Methyl Butyl Kelone	1.280	0.30	1	Û	128	70	130				
Methyl Ethyl Kelone	1.210	0.30	1	0.33	\$8.0	70	130				
Methyl Isobutyl Ketone	1.130	0.30	1	0.11	102	70	130				
Methyl tert-butyl ether	0.9100	0.15	1	0	91.0	70	130				
Methylene chloride	1.680	0.15	1	0.26	142	70	130				s
o-Xylene	1.060	0.15	1	0.1	96.0	70	130				-
Propylene	1.280	0.15	1	D	128	70	130				
Styrene	1.010	0,15	1	0	101	70	130				
Tetrachloroethylene	0.9600	0.15	1	0	96.0	70	130				
Tetrahydrofuran	0.9000	0.15	Ť	0	9 0.0	70	130				
Qualifiers: Results reported	are not blank corrected		E Estima	ted Vasue above quant	litation cans		н н	folding times for p	reparation or a	nalysis exceed	ed
1 Analyte detected	d below quantitation limit			tected at the Limit of		-		(PD outside accep			

S Spike Recovery outside accepted recovery limits

Work Order: C1710061

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

			·····								
Sample ID: C1710061-003A MS	SampType: MS	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 12	887	
Client ID: 2017_10_24_Outdoo	Balch ID: R12887	Test	No: TO-15			Analysis Da	te: 10/30/2	2017	SeqNo: 14	9971	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	1.610	0.15	1	0.77	84.0	70	130				
trans-1,2-Dichloroethene	0.9100	0.15	1	Ð	91.0	70	130				
trans-1,3-Dichloropropene	0.8260	0.15	1	0	82.0	70	130				
Trichloroethene	0.9000	0.040	÷.	0	90.0	70	130				
Vinyl acetate	0.8700	0.15	1	0	87.0	70	130				
Vinyl Bromide	0.9200	0.15	4100	0	92.0	70	130				
Vinyl chloride	0.8900	0.040	1	0	89.0	70	130				
Sample ID: C1710061-003A MS	SampType: MSD	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	te:		RunNo: 12		
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	No: T O-15			Analysis Da	te: 10/30/2	2017	SeqNo: 149	9972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9900	0.15	f	0	99.0	70	130	0.98	1.02	30	
1,1,2,2-Tetrachloroethane	0.9500	0.15	4	O	95.0	70	130	0.96	1.05	30	
1,1,2-Trichloroethane	0.9200	0.15	*	0	92.0	70	130	0.93	1.08	30	
1,1-Dichloroethane	0.9800	0.15	1	0	98.0	70	130	0.95	3.11	30	
1,1-Dichloroethene	1.000	0.15	1	0	100	70	130	0.98	2.02	30	
1,2,4-Trichlorobenzene	1.330	0.15	1	0	133	70	130	1.31	1.52	30	S
1,2,4-Trimethylbenzene	1.500	0.15	1	0	150	70	130	1.49	0.669	30	S
1,2-Dibromoethane	0.9500	0.15	ţ	0	95.0	70	130	0.91	4.30	30	
1,2-Dichlorobenzene	0.9900	0.15	1	Ð	99.0	70	130	0.97	2.04	30	
1,2-Dichloroethane	0.9400	0.15	1	0	94.0	70	130	0.93	1.07	30	
1,2-Dichloropropane	0.9500	Q.15	1	0	95.0	70	130	0.92	3.21	30	
1,3,5-Trimethylbenzene	1.070	0.15	1	0	107	70	130	1.04	2.84	30	
1,3-butadiene	1.500	0.15	1	0	150	70	130	1.35	10.5	30	s
1,3-Dichlorobenzene	1.030	0.15	1	0	103	70	130	1	2.96	30	
1,4-Dichlorobenzene	1.030	0.15	1	Ð	103	70	130	1.02	0.976	30	
1.4-Dioxane	1.150	0.30	1	Q	115	70	130	1.08	6.28	30	
2,2,4-trimethylpentane	0.9800	0.15	1	D	98.0	70	130	0.97	1.03	30	
4-ethyltoluene	1.020	0.15	1	0	102	70	130	1.02	D	30	

Qualifiers:

s

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

3 Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

Work Order: C1710061

Project: 300 Commerce Dr

Page 230 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: C1710061-003A MS	SampType: MSD	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	le:		RunNo: 128	387	
Client ID: 2017_10_24_Outdoo	Batch ID: R12887	Test	No: TO-15			Analysis Da	te: 10/30/2	017	SeqNo: 149	972	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPÖLimit	Qual
Acelone	6.100	0.30	1	4.4	170	70	130	5.31	13.8	30	 S
Allyl chloride	0.9900	0.15	1	0	99.0	70	130	0.91	8.42	30	-
Benzene	1.030	0.15	4.00	0	103	70	130	1	2.96	30	
Benzyl chioride	1.060	0.15	ŧ	0	106	70	130	1.04	1.90		
Bromodichloromethane	0.9600	0.15	1	0	95.0	70	130	0.94	2.11	30	
Bromoform	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Bromomethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Carbon disulfide	0.9200	0.15	1	0	92.0	70	130	0.91	1.09	30	
Carbon tetrachloride	1.030	0.040	1	0.07	96.0	70	130	1.01	1.96	30	
Chlorobenzene	0.9400	0.15	1	0	94.0	70	130	0.92	2.15	30	
Chloroethane	0.9600	0.15	1	0	96.0	70	130	0.94	2.11	30	
Chloroform	0.9900	0.15	1	0	99.0	70	130	0.96	3.08	30	
Chloromethane	1.250	0.15	1	0.39	86.0	70	130	1.29	3.15	30	
cis-1,2-Dichloroethene	0.9300	0.15	1	0	93.0	70	130	0.88	5.52	30	
cis-1,3-Dichloropropene	0.9000	0.15	1	0	90.0	70	130	0.88	2.25	30	
Cyclohexane	0.9900	0.15	1	0	99,0	70	130	0.97	2.04	30	
Dibromochloromethane	0.9400	0.15	1	0	94.0	70	130	0.94	0	30	
Ethyl acetale	0.9300	0.15	1	0	93.0	70	130	0.92	1.08	30	
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130	0.94	3.14	30	
Freon 11	1.170	0.15	1	0.21	96.0	70	130	1.13	3.48	30	
Freon 113	1.060	0.15	1	0	106	70	130	1.08	1.87	30	
Freen 114	1.010	0.15	1	0	101	70	130	0.96	5.08	30	
Freon 12	1.290	0.15	1	0.44	85.0	70	130	1.25	2.35	30	
Heplane	1.010	0.15	1	0	101	70	130	1	0.995	30	
Hexachloro-1,3-butadiene	1.100	0.15	1	Û	110	70	130	1.08	1.83	30	
Hexane	1.050	0.15	1	0	105	70	130	1.02	2.90	30	
Isopropyl alcohol	1.380	0.15	1	0.54	84.0	70	130	1.31	5.20	30	
m&p-Xylene	2.060	0.30	2	0.23	91.5	70	130	2.05	0.487	30	
Methyl Butyl Ketone	1.440	0.30	1	O	144	70	130	1.28	11.8	30	s
Melhyl Ethyl Kelone	1.190	0.30	1	0.33	86.0	70	130	1.21	1.67	30	
Methyl Isobutyl Ketone	1.170	0.30	1	0.11	106	70	130	1.13	3.48	30	

E Estimated Value above quantitation range

H Holding times for preparation or analysis exceeded

Results reported are not blank corrected
 J Analyte detected below quantitation limit

Qualifiers:

S

ND Not Detected at the Limit of Detection

Spike Recovery outside accepted recovery limits

R RPD outside accepted recovery limits

0.9200

0.8900

0.9400

0.9500

0.040

0.15

0.15

0.040

1

1

1

1

Work Order: C1710061

Project: 300 Commerce Dr

Page 231 of 272

Sample ID: C1710061-003A MS SampType: MSD Client ID: 2017_10_24_Outdoo Batch ID: R12887			TestNo: TO-15			Prep Dat Analysis Dat		2017	RunNo: 12887 SeqNo: 149972		
Anaiyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	0.9400	0.15	1	0	94.0	70	130	0.91	3.24	30	
Methylene chloride	2.940	0.15	1	0.26	268	70	130	1.68	54.5	30	SR
a-Xylene	t. 100	0.15	1	0.1	100	70	130	1.06	3.70	30	0.0
Propylene	1.350	0.15	1	0	135	70	130	1.28	5.32	30	s
Styrene	1.020	0.15	1	0	102	70	130	1.01	0.985	30	v
Tetrachloroethylene	0.9500	0.15	1	0	95.0	70	130	0.96	1.05	30	
Tetrahydrofuran	0.9400	0.15	1	0	94.0	70	130	0.9	4.35	30	
Toluene	1.620	0.15	1	0.77	85.0	70	130	1.61	0.619	30	
trans-1,2-Dichloroethene	0.8900	0.15	1	0	89.0	70	130	0,91	2.22	30	
trans-1,3-Dichloropropene	0.8400	0.15	1	0	84.0	70	130	0.82	2.41	30	
Trichlanathana				-		10	100	0.02	2.47	- UG	

0

0

0

0

92.0

89.0

94.0

95.0

70

70

70

70

130

130

130

130

0.9

0.87

0.92

0.89

2.20

2.27

2.15

6.52

30

30

30

30

-- - -

Trichloroethene

Vinyl acetate

Vinyl Bromide

Vinyl chloride

Results reported are not blank corrected

J Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

·····

TestCode: 0.25CT-TCE-VC

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AO103006.D Acq On : 30 Oct 2017 3:32 pm Comple : C1710061-003A MS Vial: 22 Operator: RJP Sample : C1710061-003A MS Misc : AN30_1UG Inst : MSD #1 Misc: AN30_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Oct 30 17:28:32 2017Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)

 1) Bromochloromethane
 10.63
 128
 22735m
 1.00
 ppb
 0.00

 35) 1,4-difluorobenzene
 12.85
 114
 100638
 1.00
 ppb
 0.00

 50) Chlorobenzene-d5
 17.58
 117
 87522
 1.00
 ppb
 0.00

 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 60761 1.03 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 103.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 103.00%

 Target Compounds
 Qualue
 Qualue
 Qualue

 2) Propylene
 4.65
 41
 28456
 1.26
 ppb
 89

 3) Freon 112
 4.71
 85
 132204
 1.26
 ppb
 98

 4) Chloromethane
 4.94
 85
 95653
 0.89
 ppb
 94

 7) Butane
 5.15
 62
 22647
 0.89
 ppb
 94

 9) Bromomethane
 5.66
 94
 31818
 0.94
 ppb
 94

 10) Chloroethane
 5.66
 94
 31818
 0.94
 ppb
 94

 11) Ethanol
 5.94
 45
 16314
 2.23
 ppb
 81

 12) Accolein
 6.57
 56
 7198
 0.92
 ppb
 81

 13) Vinyl Bromide
 6.68
 52639
 5.31
 ppb
 65

 13) Portopil alcohol
 6.78
 45
 40356
 1.08
 ppb
 $(4) = \alpha_{12} \text{ if ion out of nance } (m) = \text{manual integration}$

(#) = qualifier out of range (m) = manual integration A0103006.D AN24_1UG.M Mon Nov 20 08:46:56 2017 MSD1

Centek Laboratories, LLC									
	uantitat:	ion Re	port (Q	r Reviewed)					
Data File : C:\HPCHEM\1\DATA2\A Acq On : 30 Oct 2017 3:32 Sample : C1710061-003A MS Misc : AN30_1UG MS Integration Params: RTEINT.P Quant Time: Oct 30 17:28:32 201	pm		In: Mul	Vial: 22 erator: RJP st : MSD ltiplr: 1.00 s File: AN24)				
Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN									
Compound	R.T.	QIon	Response	Conc Unit	Qvalue				
 46) Bromodichloromethane 47) cis-1,3-dichloropropene 48) trans-1,3-dichloropropene 49) 1,1,2-trichloroethane 51) Toluene 52) Methyl Isobutyl Ketone 53) Dibromochloromethane 54) Methyl Butyl Ketone 	15.80 15.56 14.62 16.53 15.96	75 97 43 129 43	71533 47628 39212 38706 101142 45813 76464 30740m	1.28 ppb	97 97 96 92 88 97 99				
55) 1,2-dibromoethane 56) Tetrachloroethylene 57) Chlorobenzene	16.79 16.62 17.64	164	60514 ' 40695 79553	0.91 ppb 0.96 ppb 0.92 ppb	97 86 88				
58) Ethylbenzene 59) m&p-xylene 60) Nonane 61) Styrene	17.90 18.08 18.49 18.57	91 43	131876 205140 59877 62520	0.94 ppb 2.05 ppb 0.94 ppb	100 97 96 71				
62) Bromoform 63) o-xylene 64) Cumene	18.70 18.60 19.19	173 91	69201 115909 133951	1.01 ppb 0.94 ppb 1.06 ppb 0.94 ppb	96 95 97				
<pre>66) 1,1,2,2-tetrachloroethane 67) Propylbenzene 68) 2-Chlorotoluene 68) 4 sthulteluene</pre>	19.78 19.82	$\frac{120}{126}$	88447 35065 34632	0.96 ppb 0.98 ppb 0.94 ppb	97 # 61 92				
69) 4-ethyltoluene 70) 1,3,5-trimethylbenzene 71) 1,2,4-trimethylbenzene 72) 1,3-dichlorobenzene	19.96 20.02 20.51 20.84	105	98973	1.02 ppb 1.04 ppb 1.49 ppb 1.00 ppb	98 96 95 98				
73) benzyl chloride 74) 1.4-dichlorobenzene	20.92 20.99	91 146	66474 80604	1.04 ppb	98 94				

20.99

21.04 105

21.35 146

23.46 180

23.68 128

23.80 225

146

80604

100184

76091

44512

85517

57905

1.02 ppb 1.15 ppb

0.97 ppb

1.31 ppb

2.27 ppb

1.08 ppb

94

98

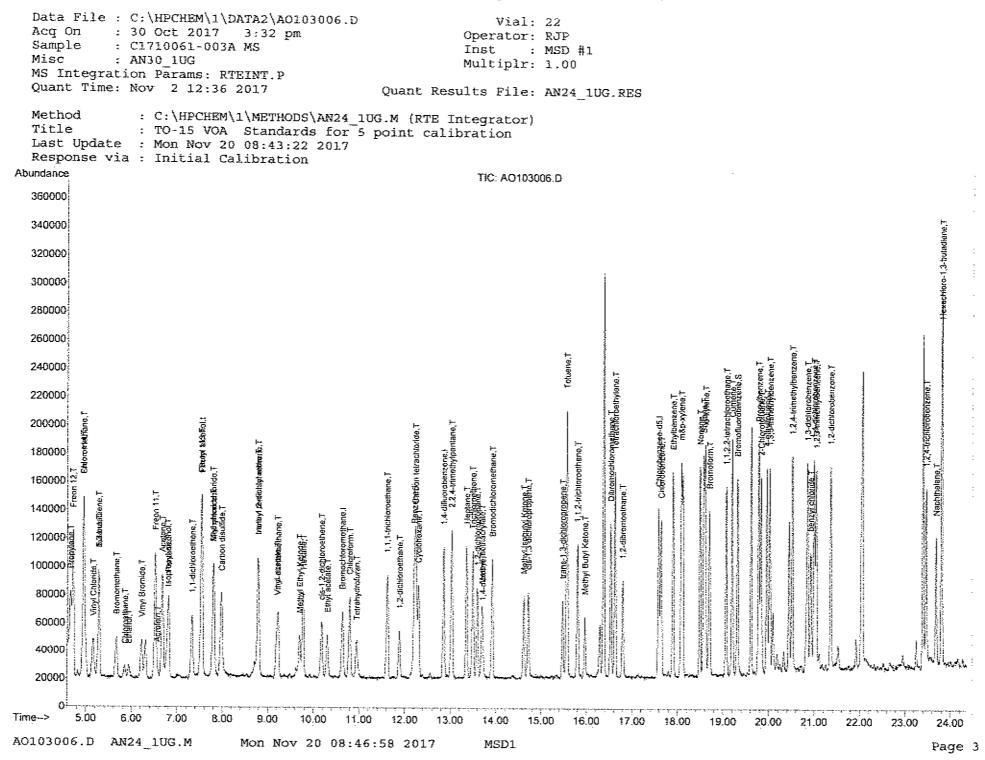
97

97

93

96

74) 1,4-dichlorobenzene


78) Naphthalene

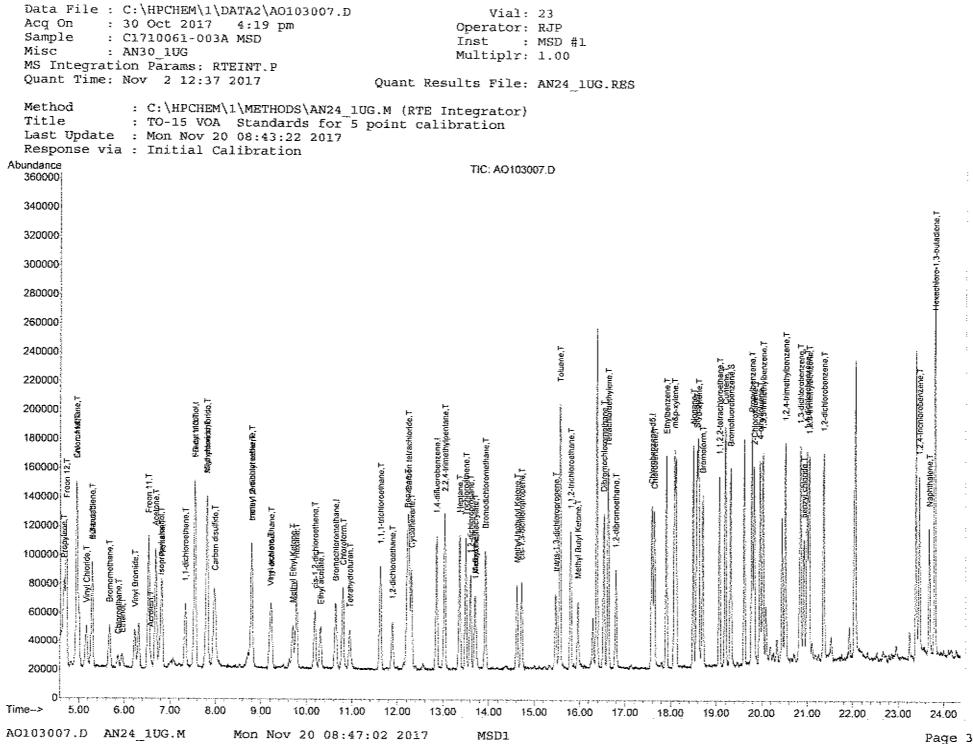
75) 1,2,3-trimethylbenzene

76) 1,2-dichlorobenzene

77) 1,2,4-trichlorobenzene

79) Hexachloro-1,3-butadiene

^Dage 234 of 272



Centek Laboratories, LL	C _{Quantitat}	tion Re	eport (Q	r Reviewed	}
Data File : C:\HPCHEM\l\DATA: Acq On : 30 Oct 2017 4: Sample : C1710061-003A MSI Misc : AN30 1UG	2\A0103007. 19 pm 2	D	Ope Ins	Vial: 23 Brator: RJ St : MS)	P > #1
MS Integration Params: RTEINT Quant Time: Oct 30 17:28:33 2		Qu	ant Results	tiplr: 1.0 File: AN:	24 1UG.RES
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta	ע מעע לפרסאיד	3 11/2 3		· · · ·	-
Last Update : Wed Oct 25 08: Response via : Initial Calibr DataAcq Meth : 1UG_RUN	32.47 2017	5 poi	nt calibrat	lon	
l) Browochlerenstere	R. т.	Qĩon	Response	Conc Units	Dev(Min)
1) Bromochloromethane	10.63	128	21894m A		· · · · · · · · · · · · · · · · · · ·
35) 1,4-difluorobenzene	12.85	114	98555	1.00 002	
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	17.58	117	85601	1.00 ppb	0.00
System Monitoring Compounds					
65) Bromofluorobenzene	19.31	95	59353	1 03 555	0.00
65) Bromofluorobenzene Spiked Amount 1.000	Range 70	- 130	Recover	y = 103	.00%
Target Compounds				-	
2) Propylene	4.66	41	28745	1 25 nnh	Qvalue
3) Freon 12	4.72	85	130585	1.29 ppb	92 99
4) Chloromethane 5) Freon 114	4.94	50	28745 130585 28534m 86241 23123 67883 26298m 31280 10504 17152 7716 31432	1.25 ppb	A.I. A.A.
6) Vinyl Chloride	4.94	85	86241	1.01 ppb	97
7) Butane	5.10 5.29	62	23123	0.95 ppb	91
8) 1,3-butadiene	5.28	39	26298m /)	2.79 ppp	91
9) Bromomethane	5.66	94	31280	0.96 000	84
10) Chloroethane 11) Ethanol	5.86	64	10504	0.96 ppb	94
12) Acrolein	5.94	45	17152	2.43 ppb	# 50
13) Vinyl Bromide	6.57	56 106	7716	0.95 ppb	77
	6.52	101	7716 31432 117600 58270	0.94 ppb	86 98
14) Freon 11 15) Acetone 16) Pentane	6.67	58	58270	6.10 ppb	# 67
16) Pentane 17) Isopropyl alcohol					
18) 1,1-dichloroethene	6.78 7.33	45	40918	1.38 ppb	# 1
19) Freon 113	7.54	96 101	27214 64510	1.00 ppb	94
20) t-Butyl alcohol	7.54	59	40663	1.06 ppb 1.06 ppb	95 93
21) Methylene chloride		84	79556	2.94 ppb	94 94
22) Allyl chloride 23) Carbon disulfide	7.79	41	30498	0.99 рръ	96
24) trans-1,2-dichloroethene	7,99 8 79	76 61	81162	0.92 ppb	
25) methyl Cert-butyl ether	8 78	73	35582 62027	0.89 ppb 0.94 ppb	96
26) 1,1-dichloroethane	9.23	63	50489	0.94 ppb	1.00 99
27) Vinyl acetate 28) Methyl Ethyl Ketone	0 10	43	52752	0.89 ppb	96
29) cis-1,2-dichloroethene	9,69	72	14372	1.19 ppb	
30) Hexane	0 77	61 57	35223 41586	0.93 ppb 1.05 ppb	98
31) Ethyl acetate	10.30 10.79	43	50623	0.93 ppb	87 91
32) Chloroform	10.79		67269 22987	0.99 ppb	99
 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 36) 1,1,1-trichloroethane 37) Cyclohexane 38) Carbon totrachloroid 	10.94			0.94 ppb	94
36) 1,1,1-trichloroethane	11.88 11.62	62 97	37970	0.94 ppb	100
37) Cyclohexane	12.30	56	66832 38855	0.99 ppb 0.99 ppb	90 94
Jel carbon retrachioride	12.24	117	79485	1.03 ppb	93
39) Benzene 40) Methyl methacrylate	12.20	78	93831	1.03 ppb	99
40) Methyl methacrylate 41) 1,4-dioxane	13.69 13.71	88	26142	0.87 ppb	96
42) 2,2,4-trimethylpentage	12 00	C 77	18115 122891	1.15 ppb 0.98 ppb	
43) Heptane	13.35	43	44405	1.01 ppb	95 94
44) Trichloroethene	13.49	130	38947	0.92 ppb	95
<pre>43) Heptane 44) Trichloroethene 45) 1,2-dichloropropane (#) = qualifier out of serve (</pre>	13.59	63	32664	0.95 ppb	92
(#) = qualifier out of range (AO103007.D AN24_1UG.M MG	$m_{i} = m_{i} m_{i} m_{i}$	1 17312	ロアラナイハウ		
		0:4/:0	L 201/	MSPL	

Centek Laboratories, LLC
Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA2\AO103007.D
Acq On : 30 Oct 2017 4:19 pm
Sample : C1710061-003A MSDVial: 23
Operator: RJP
Inst : MSD #1Misc : AN30_1UG
MS Integration Params: RTEINT.P
Quant Time: Oct 30 17:28:33 2017Quant Results File: AN24_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Oct 25 08:32:47 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.92	83	71890		
47)	cis-1,3-dichloropropene	14.72	75	47399	0.96 ppb 0.90 ppb	96 97
48)	trans-1,3-dichloropropene	15.47	75	39173	0.84 ppb	
49)	1,1,2-trichloroethane	15.80	97	37799	0.92 ppb	97 91
51)	Toluene	15.56	92	99836		90 91
52)	Methyl Isobutyl Ketone	14.62	43	46370		97
53)	Dibromochloromethane	16.53	129	75373	1.17 ppb 0.94 ppb	
54)	Methyl Butyl Ketone	15,96	43	33694	1.44 ppb	100 97
55)	1,2-dibromoethane	16.79	107	62067		
56)		16.62	164	39545	0.95 ppb 0.95 ppb	96 87
57)	Chlorobenzene	17.63	112	79005	0.94 ppb	87
58)	Sthylbenzene	17.90	91	131808		
59)	m&p-xylene	18.08	91	201511	<u> </u>	99
60)	Nonane	18.49	43	59692	4. #	97
61)	Styrene	18.57	104	62077	L L .	95
62)	Bromoform	18.69	173	68893		74
63)	o-xylene	18.60	91	116844	0.96 ppb	96
64)	Cumene	19.19	105	132709	1.10 ppb 0.95 ppb	94 96
66)	1,1,2,2-tetrachloroethane	19.06	83	85389	~ ~	
67)		19.78	120	33799		100 # 57
68)	2-Chlorotoluene	19.83	126	34081		
69)	4-ethyltoluene	19.96	105	107373		92
70)	1,3,5-trimethylbenzene	20.02	105	100146	1.02 ppb 1.07 ppb	99 95
71)	1,2,4-trimethylbenzene	20.51	105	104012	1.50 ppb	95
72)	1,3-dichlorobenzene	20,85	146	82063	1.03 ppb	97
	benzyl chloride	20.92	-91 91	66265	1.06 ppb	96
74)	1,4-dichlorobenzene	20.99	146	80349	1.03 ppb	
75)	1,2,3-trimethylbenzene	21.04	1.05	99507		94
76)	1,2-dichlorobenzene	21.36	146	75912		98
77)	1,2,4-trichlorobenzene	23.46	180	44189	0.99 ppb 1.33 ppb	98
78)	Naphthalene	23.68	128	84228	2.29 ppb	98
	Nexachloro-1,3-butadiene	23.80	225	57282		93
					1.10 ppb	95

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0103007.D AN24_1UG.M Mon Nov 20 08:47:01 2017 MSD1

CENTEK LABORATORIES, LLC

LaBella Associates, P.C.

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

CLIENT: Work Order:

^Dage 238 of 272

ler: C1710061

Project: 300 Commerce Dr

	SampType: LCS	103100	de: 0.25CT-T(CE- Units, ppbV	Prep Date: Analysis Date: 10/30/2017				RunNo: 12887 SeqNo: 149964			
Client ID: ZZZZZ	Batch ID: R12887	Testi	No: TO-15									
Analyte	Result	PQL	SPK value	SPK Rei Val	%REC	LowLimi	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1-Trichioroethane	1.000	0.15	1	 Û	100		130					
1, 1, 2, 2-Tetrachloroethane	0.9900	0.15	1	ů O	99.0	70	130					
1,1,2-Trichloroethane	0.9600	0.15	. 1	D D	96.0	70	130					
1,1-Dichloroethane	1,040	0.15	. 1	Ð	104	70 70	130					
1,1-Dichloroethene	1.050	0.15	1	0	105	70	130					
1,2,4-Trichlorobenzene	0.9800	0.15	1	õ	98.0	70						
1,2,4-Trimethylbenzene	1.130	0.15		0	113	70	130					
1,2-Dibromoethane	0.9900	0.15	, +	õ	99.0	70	130 130					
1,2-Dichlorobenzene	1.010	0.15	1	a	39.0 101	70						
1,2-Dichloroethane	0.9800	0.15	1	0	98.0	70 70	130					
1,2-Dichloropropane	0.9900	0.15	1	0	99.0		130					
1,3,5-Trimethylbenzene	1.100	0.15	1	0	99.0 110	70	130					
1,3-butadiene	1,220	0.15	1	0	122	70	130					
1,3-Dichlorobenzene	0.9900	0.15	4	0	99.0	70	130					
1,4-Dichlorobenzene	1.010	0.15	4	0 0	99.0 101	70	130					
1,4-Dioxane	1.230	0.30	1	0	123	70	130					
2,2,4-trimethy/pentane	1.000	0.15	1	0	-	70	130					
4-ethylloluene	1.100	0.15	1	0	100	70	130					
Acetone	0.9700	0.30	1		110	70	130					
Allyl chloride	0.9700	0.15	1	0 0	97.0	70	130					
Benzene	0.9700	0.15	1		97.0	70	130					
Benzyl chloride	0.9200	0.15	1	0	97.0	70	130					
Bromodichloromethane	0.9800	0.15	1	0	92.0	70	130					
Bromotorm	0.9900	0.15	۱ ۱	0	98.0	70	130					
Bromomethane	0.9500	0.15	۰ ۱	D	99.0 95.0	70 70	130 130					

J

Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Work Order: C1710061

Project: 300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-103017	SampType: LCS	TestCo	de: 0.25CT-TC	E- Units: ppbV	ppbV Prep Date:					RunNo: 12887			
Client ID: ZZZZZ	Batch ID: R12887	Tesit	TesiNo: TO-15 Analysis Date: 10/30				ie: 10/30/2	017	SeqNo: 149	964			
Analyte	Result	₽QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Carbon disulfide	0.9700	0.15	1	 0	97.0	70	130			•			
Carbon tetrachloride	0.9700	0.040	含	0	97.0	70	130						
Chlorobenzene	0.9900	0.15	ť	0	99.0	70	130						
Chloroethane	0.9400	0.15	1	0	94,0	70	130						
Chioroform	1.010	0.15	1	٥	101	70	130						
Chloromethane	0.9600	0.15	1	0	96.0	70	130						
cis-1,2-Dichloroethene	0.9600	0.15	1	0	96.0	70	130						
cis-1,3-Dichloropropene	0.9200	0.15	1	0	92.0	70	130						
Cyclohexane	1.010	0.15	1	0	101	70	130						
Dibromochloromethane	1.000	0.15	1	D	100	70	130						
Ethyl acetate	0.9900	0.15	1	0	99.0	70	130						
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130						
Freon 11	0.9500	0.15	1	Ð	95.0	70	130						
Freon 113	1.070	0.15	1	0	107	70	130						
Freon 114	0.9500	0.15	1	0	95.0	70	130						
Freon 12	0.9700	0.15	1	0	97.0	70	130						
teptane	0.9500	0.15	1	0	95.0	70	130						
Hexachloro-1,3-butadiene	0.9600	0.15	1	0	96.0	70	130						
texane	1.030	0.15	1	0	103	70	130						
sepropyl alcohol	0.9200	0.15	1	Ð	92.0	70	130						
n&p-Xylene	2.030	0.30	2	Ð	102	70	130						
Methyl Butyl Ketone	1.340	0.30	1	0	134	70	130				s		
Vethyl Ethyl Ketone	1.000	0.30	1	0	100	70	130				č		
vethyl Isobutyl Ketone	1.120	0.30	1	0	112	70	130						
Nethyl iert-bulyl ether	1.040	0.15	1	0	104	70	130						
Vethylene chloride	0.9900	0.15	1	0	99.0	70	130						
o-Xylene	1.000	0.15	1	õ	100	70	130						
Propylene	1.060	0.15	1	0	106	70	130						
Styrene	1.060	0.15	1	ő	106	70	130						
Tetrachlorcethylene	0.9900	0.15	Į	õ	99.0	70	130						
Tetrahydrofuran	0.9900	0.15	1	0	99.0	70	130						

Qualifiers:

Results reported are not blank corrected Analyte detected below quantitation limit 2

ND Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 2 of 5

Page 239 of 272

Work Order: C1710061 Project:

Page 240 of 272

300 Commerce Dr

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-103017	SampType: LCS	TestCox	TestCode: 0.25CT-TCE- Units: ppbV Prep Date:			te:	RunNo: 12887					
Client ID: ZZZZZ	Batch ID: R12887	Test	ło: TO-15			Analysis Da	le: 10/30/2	017	SeqNo: 14	9954		
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Toluene	0.9900	0.15	1	0	99.0	70	130					
trans-1,2-Dichloroethene	0.9500	0.15	1	۵	95.0	70	130					
trans-1,3-Dichloropropene	0.8400	0.15	1	0	84.0	70	130					
Trichloroethene	0.9300	0.040	1	0	93.0	70	130					
Vinyl acetate	0.9500	0.15	1	0	95.0	70	130					
Vinyl Bromide	0.9100	0.15	1	0	91.0	70	130					
Vinyl chloride	0.9200	0.040	1	0	92.0	70	130					
Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCo	le: 0.25CT-TC	E- Units: ppbV	Prep Date:				RunNo: 12887			
Client ID: ZZZZZ	Baich ID: R12887	Testh	lo: TO-15		Analysis Date: 10/31/2017			SegNo: 149965				
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,1-Trichloroethane	1.060	0.15	1	0	106	70	130	1	5.83	30		
1,1,2,2-Tetrachloroethane	1.060	0,15	1	Ð	106	70	130	0.99	6.83	30		
1,1,2-Trichloroethane	1.040	0.15	1	D	104	70	130	0.96	8.00	30		
1,1-Dichloroethane	0.9900	0.15	1	Ð	99.0	70	130	1.04	4.93	30		
1,1-Dichloraethene	1.050	0.15	1	0	105	70	130	1.05	0	30		
1,2,4-Trichlorobenzene	1.000	0.15	1	Ð	100	70	130	0.98	2.02	30		
1,2,4-Trimethylbenzene	0.9500	0.15	1	0	95.0	70	130	1.13	17.3	30		
1,2-Dibromoethane	1.010	0.15	1	0	101	70	130	0.99	2.00	30		
1,2-Dichlorobenzene	1.090	0.15	1	0	109	70	130	1.01	7.62	30		
1.2-Dichloroethane	0.9800	0.15	1	0	98.0	70	130	0,98	0	30		
1.2-Dichloropropane	1.000	0.15	1	0	100	70	130	0.99	1.01	30		
1,3,5-Trimethylbenzene	1.040	0.15	1	D	104	70	130	1.1	5.61	30		
1.3-butadiene	1.030	0.15	1	0	103	70	130	1.22	16,9	30		
1,3-Dichlorobenzene	1.060	0.15	1	0	106	70	130	0.99	6.83	30		
f,4-Dichiorobenzene	1.080	0.15	1	0	108	70	130	1.01	6.70	30		
1,4-Dioxane	1.290	0.30	1	0	129	70	130	1.23	4.76	30		
2,2,4-trimethylpentane	1.010	0.15	1	0	101	70	130	1	0.995	30		
4-ethyltotuene	1.000	0.15	1	0	100	70	130	1.1	9.52	30		

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation limit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

LaBella Associates, P.C. CLIENT:

Work Order: C1710061

Project: 300 Commerce Dr

Page 241 of 272

TestCode: 0.25CT-TCE-VC

······

Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Da	le:		RunNo: 128	187	
Client ID: ZZZZZ	Batch ID: R12887	Test	Vo: TO-15			Analysis Da	te: 10/31/2	2017	SeqNo: 149	965	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acelone	0.9700	0.30	1	0	97.0	70	130	0.97	0	30	
Allyl chloride	0.9000	0.15	4	0	90.0	70	130	0.97	7.49	30	
Benzene	0.9900	0.15	ŧ	0	99.0	70	130	0.97	2.04	30	
Benzyl chloride	1.090	0.15	ŧ	0	109	70	130	0.92	16.9	30	
Bromodichloromethane	1.030	0.15	¥.	0	103	70	130	0.98	4.98	30	
Bromoform	1.030	0.15	1	0	103	70	130	0.99	3.96	30	
Bromomethane	1.000	0.15	1	0	100	70	130	0.95	5,13	30	
Carbon disulfide	0.9200	0.15	1	0	92.0	70	130	0.97	5.29	30	
Carbon tetrachloride	1.020	0.040	ť	0	102	70	130	0.97	5.03	30	
Chiorobenzene	1.020	0.15	1	0	102	70	130	0.99	2.99	30	
Chloroethane	0.9700	0.15	1	0	97.0	70	130	0.94	3,14	30	
Chloroform	1.020	0.15	1	0	102	70	130	1.01	0.985	30	
Chioromethane	1.060	0.15	1	0	106	70	130	0.96	9.90	30	
cis-1,2-Dichloroethene	0.9600	0.15	t	0	96.0	70	130	0.96	0	30	
cis~1,3-Dichloropropene	0.9900	0.15	1	0	99.0	70	130	0.92	7.33	30	
Cyclohexane	1.000	0.15	ť	0	100	70	130	1.01	0.995	30	
Dibromochloromethane	1.050	0.15	1	0	105	70	130	\$	4.88	30	
Ethyl acetate	0.9300	0.15	1	0	93.0	70	130	0.99	6.25	30	
Ethylbenzene	0.9700	0.15	1	0	97.0	70	130	0.97	0	30	
Freon 11	1.060	0.15	1	0	106	70	130	0.95	10,9	30	
Freon 113	1.080	0.15	1	0	108	70	130	1.07	0.930	30	
Freon 114	1.050	0.15	1	0	105	70	130	0.95	10.0	30	
Freon 12	1.030	0.15	1	0	103	70	130	0.97	6.00	30	
Heptane	0.9400	0.15	4	0	94.0	70	130	0.95	1.06	30	
Hexachloro-1,3-butadiene	1.030	0.15	1	0	103	70	130	0.96	7.04	30	
Hexane	0.9900	0.15	1	0	99.0	70	130	1.03	3.96	30	
Isopropyl alcohol	0.9700	0.15	1	0	97.0	70	130	0.92	5.29	30	
m&p-Xylene	1.960	0.30	2	0	98.0	70	130	2.03	3.51	30	
Methyl Butyl Ketone	1.670	0.30	1	0	167	70	130	1.34	21.9	30	s
Methyl Ethyl Ketone	0.9900	0.30	1.	0	99.0	70	130	1	1.01	30	
Methyl isobulyl Kelone	1.230	0.30	ţ	0	123	70	130	1.12	9.36	30	

Qualifiers:

)

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits R

Analyte detected below quantitation limit S Spike Recovery outside accepted recovery limits

LaBella Associates, P.C. CLIENT:

Work Order: C1710061

Project: 300 Commerce Dr

Page 242 of 272

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UGD-103017	SampType: LCSD	TestCo	de: 0,25CT-T	CE- Units: ppbV		Prep Da	te:		RunNo: 128	387	
Client ID: ZZZZZ	Batch ID: R12887	TestNo: TO-15				Analysis Da	te: 10/31/2	SeqNo: 149965			
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	1.020	0.15	1	0	102	70	130	1.04	1,94	30	
Methylene chloride	0.9500	0.15	1	0	95.0	70	130	0.99	4.12	30	
o-Xylene	1.050	0.15	1	0	105	70	130	1	4.88	30	
Propylene	0.9700	0.15	1	0	97.0	70	130	1.06	8.87	30	
Styrene	0.9600	0.15	1	0	96.0	70	130	1.06	9.90	30	
Tetrachloroethylene	1.040	0.15	1	0	104	70	130	0.99	4.93	30	
Tetrahydrofuran	0.9500	0.15	1	0	95.0	70	130	0.99	4.12	30	
Toluene	0.9900	0.15	1	0	99.0	70	130	0.99	0	30	
trans-1,2-Dichloroethene	0.9600	0.15	1	0	96.0	70	130	0.95	1.05	30	
Irans-1,3-Dichloropropene	0.9300	0.15	1	0	93.0	70	130	0.84	10.2	30	
Trichloroethene	0.9800	0.040	1	0	98.0	70	130	0.93	5.24	30	
Vinyl acetate	0.9100	0.15	1	0	91.0	70	130	0.95	4.30	30	
Vinyl Bromide	0.9900	0.15	1	0	99.D	70	130	0.91	8.42	30	
Vinyl chloride	0.9900	0.040	1	0	99.0	70	130	0.92	7.33	30	

Qualifiers:

Ţ

.

Results reported are not blank corrected

. _ . _

E Essimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

.....

R RPD outside accepted recovery limits

Analyte detected below quantitation limit

Spike Recovery outside accepted recovery limits \$

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AO103003.D Acq On : 30 Oct 2017 1:32 pm Vial: 3 Operator: RJP Sample : ALCS1UG~103017 Misc : AN30_1UG Inst : MSD #1 Sample: Ableitos 103017Ingt: Able #1Misc: AN30_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Oct 30 17:28:29 2017Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.64128240271.00ppb0.0035) 1,4-difluorobenzene12.861141091091.00ppb0.0050) Chlorobenzene-d517.59117926551.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 62839 1.01 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 101.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 101.00%

 Target Compounds
 Ovalue

 2) Propylene
 4.66
 41
 24766
 1.06 ppb
 97

 3) Freen 12
 4.72
 95
 107356
 0.96 ppb
 92

 4) Chloromethane
 4.95
 50
 23976
 0.96 ppb
 92

 5) Freen 114
 4.95
 85
 89296
 0.95 ppb
 93

 6) Vinyl Chloride
 5.16
 62
 24753
 0.92 ppb
 95

 7) Butane
 5.28
 43
 33717
 1.26 ppb
 95

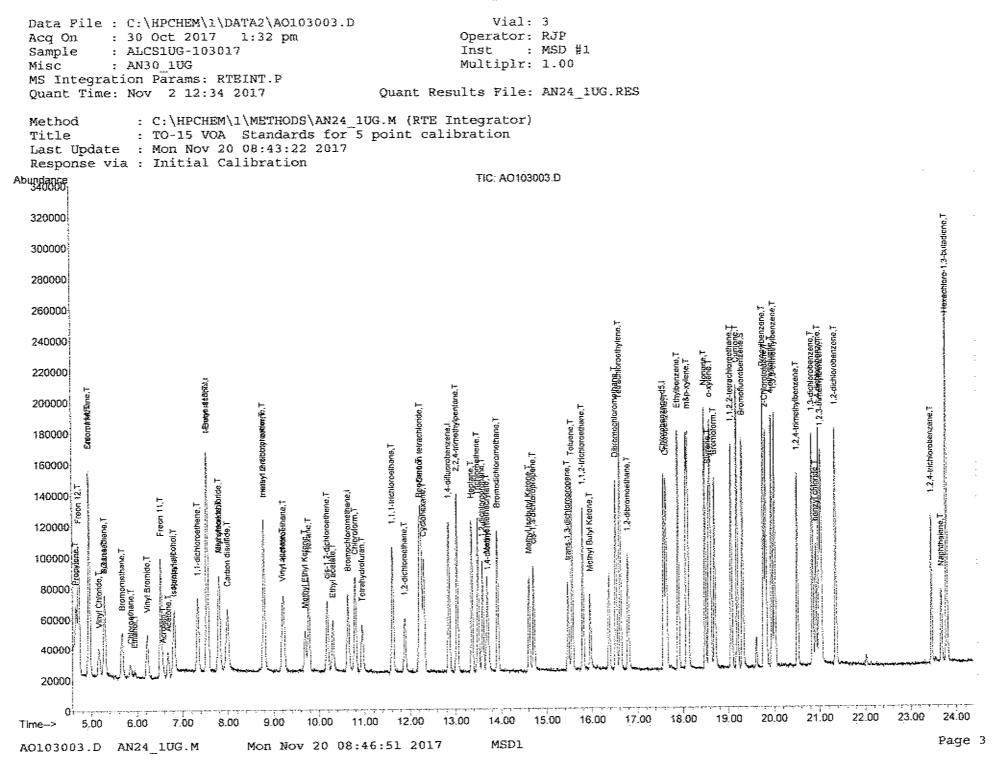
 9) Bromomethane
 5.68
 94
 33564
 0.95 ppb
 96

 10) Chloroethane
 5.68
 94
 33555
 0.89 ppb
 # 41

 12) Accolein
 6.52
 101
 105420
 0.95 ppb
 97

 13) Vinyl Bromide
 6.82
 42
 21125
 0.96 ppb
 74

 17
 Tsopropyl alcohol
 6.80
 45
 292 pb
 95



(#) = qualifier out of range (m) = manual integration AO103003.D AN24_1UG.M Mon Nov 20 08:46:49 2017 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103003.D Vial: 3 Acq On : 30 Oct 2017 1:32 pm Operator: RJP Sample : ALCS1UG-103017 Inst : MSD #1 Misc : AN30_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Oct 30 17:28:29 2017 Quant Results File: AN24_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

117 PT 107 MP	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.93	83	80875	0.98 ppb	96
47)		14.72	75	53822	0.92 ppb	97
48)		15.47	75	43584	0.84 ppb	98
49)	1,1,2-trichloroethane	15.80	97	43676	0.96 ppb	90
51)	Toluene	15.56	92	66149	0.99 ppb	90
52)	Methyl Isobutyl Ketone	14.62	43	48000	1.12 ppb	94
53)	Dibromochloromethane	16.53	129	86553	1.00 ppb	98
54)	Methyl Butyl Ketone	15.96	43	34096m 🎧	1.34 ppb	
S5)		16.79	107	69352	0.99 ppb	99
56)	Tetrachloroethylene	16.62	164	44686	0.99 ppb	84
57)	Chlorobenzene	17.64	112	90043	0.99 ppb	87
58)	Ethylbenzene	17.90	91	143669	0.97 ppb	100
59)	m&p-xylene	18.11	91	214663	2.03 ppb	97
60)	Nonane	18.49	43	66737	0.99 ppb	96
61)	Styrene	18,57	104	69725	1.06 ppb	76
62)	Bromoform	18.70	173	77077	0.99 ppb	96
63)	o-xylene	18.60	91	115149	1.00 ppb	96
64)	Cumene	19.20	105	150430	1.00 ppb	96
66)	1,1,2,2-tetrachloroethane	19.07	83	96724	0.99 ppb	99
	Propylbenzene	19,78	120	38708	1.02 ppb	# 58
68)	2-Chlorotoluene	19.83	126	39132	1.01 ppb	# 88
		19.96	105	124546	1.10 ppb	100
70)	1,3,5-trimethylbenzene	20.02	105	110825	1.10 ppb	99
71)	1,2,4-trimethylbenzene	20.52	105	84373	1.13 ppb	94
72)	1,3-dichlorobenzene	20.85	146	85471	0.99 ppb	98
	benzyl chloride	20.92	91	62447	0.92 ppb	97
74)	l,4-dichlorobenzene	20,99	146	84963	1.01 ppb	95
75)	1,2,3-trimethylbenzene	21.04	105	100984	1.09 ppb	99
	1,2-dichlorobenzene	21.35	146	83614	1.01 ppb	98
	1,2,4-trichlorobenzene	23.46	180	35251	0.98 ppb	97
	Naphthalene	23.68	128	45419	1.14 ppb	93
79)	Hexachloro-1,3-butadiene	23.80	225	54074	0.96 ppb	95

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0103003.D AN24_1UG.M Mon Nov 20 08:46:50 2017 MSD1 Page 245 of 272

Centek Laboratories, LLC_{Quantitation Report} (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\A0103019.DVial: 35Acq On : 31 Oct 2017 3:45 amOperator: RJPSample : ALCS1UGD-103017Inst : MSD #1Misc : AN30_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Oct 31 11:13:29 2017 Quant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Oct 25 08:32:47 2017 Response via : Initial Calibration DataAcq Meth : lUG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.63128193921.00ppb0.0035) 1,4-difluorobenzene12.85114862731.00ppb0.0050) Chlorobenzene-d517.58117748101.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.31 95 51711 1.03 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 103.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 103.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.64
 118391
 0.97 ppb
 99

 3) Froon 12
 4.71 85
 92325
 1.03 ppb
 99

 4) Chloromethane
 4.94
 50
 221306
 1.06 ppb
 93

 6) Vinyl Chloride
 5.15
 62
 21390
 0.99 ppb
 95

 7) Butane
 5.27
 43
 22179
 1.03 ppb
 99

 9) Eromomethane
 5.66
 94
 29033
 1.00 ppb
 88

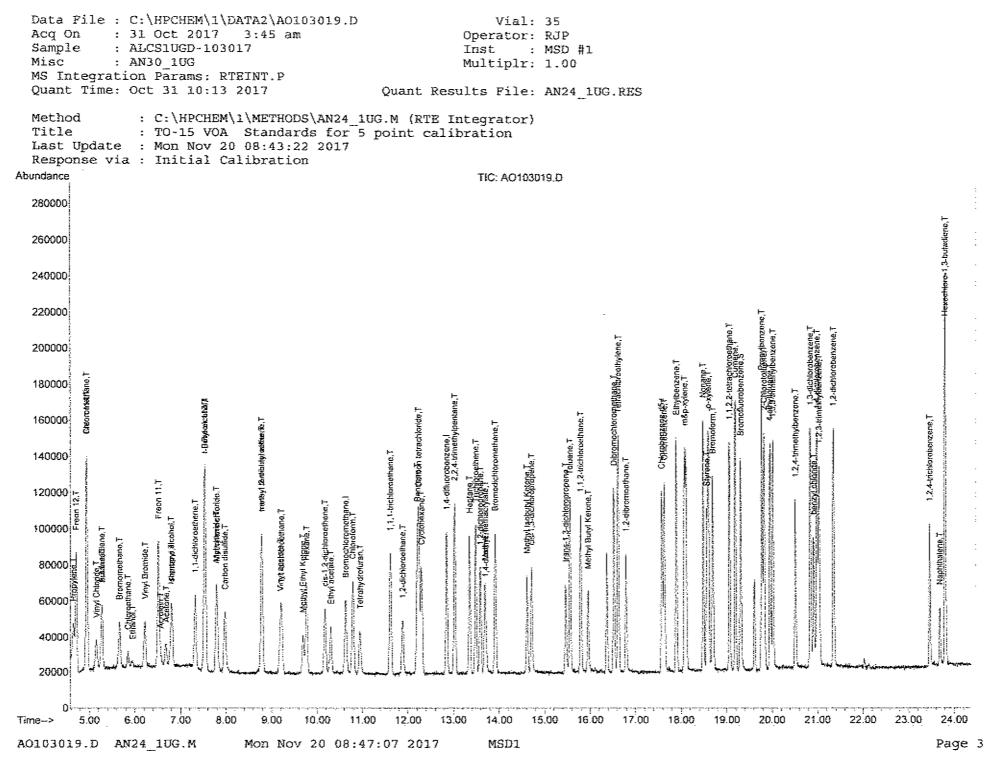
 10) Chloroethane
 5.66
 94
 29371
 0.99 ppb
 97

 11) Ethanol
 6.57
 56
 6523
 1.00 ppb
 462

 12) Accolein
 6.57
 56
 8231
 0.97 ppb
 97

 13) Freon 11
 6.68
 58
 8231
 0.97 ppb
 97

 16) Freon 11
 7.57
 51
 103
 59
 97


 14) Freon 11
 7.53

(#) = qualifier out of range (m) = manual integration AO103019.D AN24_1UG.M Mon Nov 20 08:47:05 2017 MSD1

Centek Laboratories, LLC
Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA2\A0103019.DVial: 35
Acq On : 31 Oct 2017 3:45 amAcq On : 31 Oct 2017 3:45 amOperator: RJP
Inst : MSD #1Sample : ALCS1UGD-103017Inst : MSD #1
Multiplr: 1.00Misc : AN30_1UGMultiplr: 1.00MS Integration Params: RTEINT.P
Quant Time: Oct 31 11:13:29 2017Quant Results File: AN24_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\AN24_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Oct 25 08:32:47 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.92	83	67575	1.03 ppb	96
47)	cis-1,3-dichloropropene	14.71	75	45481	0.99 ppb	97
48)	trans-1,3-dichloropropene	15.46	75	38099	0.93 ppb	99
49)	1,1,2-trichloroethane	15.80	97	37101	1.04 ppb	93
51)	Toluene	15.56	92	53265	0.99 ppb	90
52)	Methyl Isobutyl Ketone	14.62	43	42541	1.23 ppb	96
53)	Dibromochloromethane	16.53	129	73024	1.05 ppb	100
54)	Methyl Butyl Ketone	15.96	43	34225	1.67 ppb	98
55)	1,2-dibromoethane	16.79	107	57231	1.01 ppb	99
56)	Tetrachloroethylene	16.62	164	37849	1.04 ppb	88
57)	Chlorobenzene	17.63	112	74768	1.02 ppb	86
58)	Ethylbenzene	17.90	91.	116075	0.97 ppb	100
59)	m&p-xylene	18.08	91	167011	1.96 ppb	98
60)	Nonane	18.49	43	53661	0.99 ppb	95
61)	Styrene	18.57	104	51039	0.96 ppb	73
62)	Bromoform	18.69	173	64834	1.03 ppb	95
63)	o-xylene	18.60	91	97886	1.05 ppb	95
64)	Cumene	19.19	105	123523	1.02 ppb	97
66)	1,1,2,2-tetrachloroethane	19.06	83	83201	1.06 ppb	99
67)	Propylbenzene	19.77	120	31253	1.02 ppb	# 59
68)	2-Chlorotoluene	19.82	126	33080	1.06 ppb	93
69)	4-ethyltoluene	19.95	105	91494	dqq 00.1	98
70)	1,3,5-trimethylbenzene	20.02	105	85228	1.04 ppb	98
71)		20.51	105	57745	dqq 20.0	95
72)	1,3-dichlorobenzene	20.84	146	73492	1.06 ppb	99
73)	benzyl chloride	20.91	91	59909	1.09 ppb	96
74)	1,4-dichlorobenzene	20.99	146	73092	1.08 ppb	95
75)	1,2,3-trimethylbenzene	21.03	105	75772	1.02 ppb	98
76)	1,2-dichlorobenzene	21.35	146	73132	1.09 ppb	98
77)	1,2,4-trichlorobenzene	23.46	180	28993	1.00 ppb	96
78)	Naphthalene	23.68	128	28274	dqq 88.0	93
79)	Hexachloro-1,3-butadiene	23.80	225	46963	1.03 ppb	96

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0103019.D AN24_1UG.M Mon Nov 20 08:47:05 2017 MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 INJECTION LOG

.

Page 249 of 272

.

.

	ł	Directory:	C:\HPCHEM	Injection Log	Courses Standard Stock # A2	<u>271</u> 142-
Lìne	Via	FileName	Multiplier	SampleName	Misc Into Rot LPA 10-15	3. Jojeded 5
166 167 168 169 170 171 172 173 174 175	11 12 13	Ao102322.c Ao102323.c Ao102325.c Ao102325.c Ao102326.c Ao102327.c Ao102328.c Ao102329.c Ao102330.c Ao102331.c	1 1, 1 1,	C1710045-001A 5x C1710045-003A 10x C1710045-005A 10x C1710045-008A 5x C1710045-010A 10x C1710045-012A 5x C1710045-002A 10x C1710045-004A 10x C1710045-004A 40x	AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG	24 Oct 2017 00:04 24 Oct 2017 00:43 24 Oct 2017 01:22 24 Oct 2017 02:00 24 Oct 2017 02:37 24 Oct 2017 03:14 24 Oct 2017 03:51 24 Oct 2017 04:29 24 Oct 2017 05:07 24 Oct 2017 05:45
182	17 18 19 20 2 3 4 5 6	Ao102332.d Ao102333.d Ao102334.d Ao102335.d Ao102336.d Ao102401.d Ao102402.d Ao102403.d Ao102404.d Ao102404.d	1 1. 1. 1. 1. 1. 1. 1. 1.	C1710045-006A 10x C1710045-007A 10x C1710045 C1710045-011A 10x No MS or GC data present BFB1UG A1UG_2.0 A1UG_1.50 A1UG_1.25 A1UG_1.0	AN21_1UG AN21_1UG AN21_1UG-009A 10x AN21_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	24 Oct 2017 05:24 24 Oct 2017 07:03 24 Oct 2017 07:42 24 Oct 2017 08:19 24 Oct 2017 14:58 24 Oct 2017 14:58 24 Oct 2017 15:48 24 Oct 2017 16:29 24 Oct 2017 17:10 24 Oct 2017 17:50
187 188 189 190 191 192 193 194	11 12 1 2	Ao102406.d Ao102407.d Ao102408.d Ao102409.d Ao102410.d Ao102411.d Ao102412.d Ao102501.d Ao102502.d	1. 1. 1. 1. 1.	A1UG_0.75 A1UG_0.50 A1UG_0.30 A1UG_0.15 A1UG_0.10 A1UG_0.04 No MS or GC data present BFB1UG A1UG_1.0	AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	24 Oct 2017 18:28 24 Oct 2017 19:06 24 Oct 2017 19:44 24 Oct 2017 20:21 24 Oct 2017 20:59 24 Oct 2017 21:36 25 Oct 2017 07:29 25 Oct 2017 08:08
196 197 198 200 201 202 203 203	11 12	Ao102503.d Ao102504.d Ao102505.d Ao102506.d Ao102507.d Ao102508.d Ao102509.d Ao102510.d Ao102511.d Ao102512.d Ao102513.d	1, 1, 1, 1, 1, 1, 1, 1, 1,	ALCS1UG-102517 AMB1UG-102517 C1710047-002A C1710047-001A C1710047-001A 10x C1710047-001A 10x C1710045-002A 90x C1710045-006A 270x C1710045-006A 270x C1710045-009A 20x	AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	25 Oct 2017 08:53 25 Oct 2017 10:48 25 Oct 2017 12:11 25 Oct 2017 12:52 25 Oct 2017 12:52 25 Oct 2017 13:49 25 Oct 2017 14:27 25 Oct 2017 15:04 25 Oct 2017 15:41 25 Oct 2017 16:17 25 Oct 2017 16:54 25 Oct 2017 17:30
207 208 209 210 211 212 213 214	1 2 3 4 5 6 7 8	Ao102514.d Ao102515.d Ao102516.d Ao102517.d Ao102518.d Ao102519.d Ao102520.d Ao102521.d Ao102522.d Ao102522.d	1, 1, 1, 1, 1, 1, 1, 1,	C1710045-011A 90x IDL# IDL# IDL# IDL# IDL# IDL# IDL# IDL#	AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	25 Oct 2017 18:07 25 Oct 2017 18:44 25 Oct 2017 19:22 25 Oct 2017 19:59 25 Oct 2017 20:37 25 Oct 2017 21:15 25 Oct 2017 21:52 26 Oct 2017 22:30 25 Oct 2017 23:08 25 Oct 2017 23:45
217 218 219	11 1 5	Ao102524.d Ao102525.d Ao103001.d Ao103002.d Ao103003.d	1. 1. 1. 1.	BFB1UG A1UG_1.0	AN24_1UG AN24_1UG AN30_1UG AN30_1UG AN30_1UG	26 Oct 2017 00:23 26 Oct 2017 09:18 30 Oct 2017 09:05 30 Oct 2017 12:03 30 Oct 2017 13:32

	I	Directory:	C:\HPCHEN	/\1\DATA2	Injection Log	Internal Standard Stock #	10 11241 A2253 12242 - 2254
_ine	Via	l FileName	Multiplier	SampleName		Misc Into Ref. EPA TO	2233 <u>A2255</u> D-15 / JAIRCIES 9
166 167 168 169 170 171 172 173 174 175	7 8 9 10 11 12 13 14 15 16	Ao102322.d Ao102323.d Ao102324.d Ao102325.d Ao102326.d Ao102327.d Ao102328.d Ao102329.d Ao102330.d Ao102331.d	1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1.	C1710045-001A 5x C1710045-003A 10x C1710045-005A 10x C1710045-008A 5x C1710045-010A 10x C1710045-012A 5x C1710045-002A 10x C1710045-004A 10x C1710045-004A 40x		AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG AN21_1UG-002A 40x AN21_1UG AN21_1UG AN21_1UG	24 Oct 2017 00:04 24 Oct 2017 00:43 24 Oct 2017 01:22 24 Oct 2017 02:00 24 Oct 2017 02:37 24 Oct 2017 03:14 24 Oct 2017 03:51 24 Oct 2017 04:29 24 Oct 2017 05:07 24 Oct 2017 05:45
76 77 78 79 80 81 82	17 18 19 20 2 3	Ao102332.d Ao102333.d Ao102334.d Ao102335.d Ao102336.d Ao102336.d Ao102401.d Ao102402.d	1. 1. 1. 1.	C1710045-006A 10x C1710045-007A 10x C1710045 C1710045-011A 10x No MS or GC data pres BFB1UG A1UG_2.0	sent	AN21_1UG AN21_1UG AN21_1UG-009A 10x AN21_1UG AN24_1UG AN24_1UG	24 Oct 2017 06:24 24 Oct 2017 07:03 24 Oct 2017 07:42 24 Oct 2017 08:19 24 Oct 2017 14:58 24 Oct 2017 15:48
83 84 85	4 5 6	Ao102403.d Ao102404.d Ao102405.d	1.	A1UG_1.50 A1UG_1.25 A1UG_1.0		AN24_1UG AN24_1UG AN24_1UG	24 Oct 2017 16:29 24 Oct 2017 17:10 24 Oct 2017 17:50
86 87 88 90 91 92 93	11 12 1	Ao102406.d Ao102407.d Ao102408.d Ao102409.d Ao102410.d Ao102411.d Ao102411.d Ao102501.d	1. 1. 1. 1. 1. 1.	A1UG_0.75 A1UG_0.50 A1UG_0.30 A1UG_0.15 A1UG_0.10 A1UG_0.04 No MS or GC data pres BFB1UG	ent	AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	24 Oct 2017 18:28 24 Oct 2017 19:06 24 Oct 2017 19:44 24 Oct 2017 20:21 24 Oct 2017 20:59 24 Oct 2017 21:36 25 Oct 2017 07:29
94 95	3	Ao102502.d Ao102503.d	1, 1.	A1UG_1.0 ALCS1UG-102517		AN24_1UG AN24_1UG	25 Oct 2017 08:08 25 Oct 2017 08:53
97 98 99 00 01 02 03 04 05	5 6 7 8 9 10 11 12 13	Ao102504.d Ao102505.d Ao102506.d Ao102507.d Ao102508.d Ao102509.d Ao102510.d Ao102511.d Ao102511.d Ao102513.d	1, 1. 1. 1. 1. 1. 1.	AMB1UG-102517 C1710047-002A C1710047-001A C1710047-002A 10x C1710047-001A 10x C1710045-002A 90x C1710045-004A 180x C1710045-006A 270x C1710045-009A 20x		AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	25 Oct 2017 10:48 25 Oct 2017 12:11 25 Oct 2017 12:52 25 Oct 2017 13:49 25 Oct 2017 14:27 25 Oct 2017 15:04 25 Oct 2017 15:41 25 Oct 2017 16:17 25 Oct 2017 16:54 25 Oct 2017 17:30
)7)8)9 10 11 12 13 14	1 2 3 4 5 6 7 8	Ao102514.d Ao102516.d Ao102516.d Ao102517.d Ao102518.d Ao102519.d Ao102520.d Ao102521.d Ao102522.d Ao102522.d Ao102523.d	1. 1. 1. 1. 1. 1. 1.	C1710045-011A 90x IDL# IDL# IDL# IDL# IDL# IDL# IDL# IDL#		AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	25 Oct 2017 18:07 25 Oct 2017 18:44 25 Oct 2017 19:22 25 Oct 2017 19:59 25 Oct 2017 20:37 25 Oct 2017 21:15 25 Oct 2017 21:52 25 Oct 2017 22:30 25 Oct 2017 23:08 25 Oct 2017 23:45
7 8 9	11 / 1 / 5 /	Ao102524.d Ao102525.d Ao103001.d Ao103002.d Ao103003.d		IDL# BFB1UG A1UG_1.0 ALCS1UG-103017		AN24_1UG AN24_1UG AN30_1UG AN30_1UG AN30_1UG	26 Oct 2017 00:23 26 Oct 2017 09:18 30 Oct 2017 09:05 30 Oct 2017 12:03 30 Oct 2017 13:32

	Conto	Laborato	100, 220			
ing M	Directory:	C:\HPCHEN		Injection Log	Internal Standard Stock # A22	54
line Vi	ial FileName	Multiplier	SampleName		Misc Info	7 Jainjected
221 4 122 21 123 22 124 23 125 24 126 25 127 26 128 27 129 28 130 29	 Ao103005.c Ao103006.c Ao103007.c Ao103008.c Ao103009.c Ao103009.c Ao103010.c Ao103011.c Ao103011.c Ao103012.c 	1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1.	AMB1UG-103017 C1710061-003A C1710061-003A MS C1710061-003A MSD C1710061-001A C1710061-002A C1710061-004A C1710061-005A C1710061-003A 5x C1710061-001A 5x		AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG	30 Oct 2017 14:08 30 Oct 2017 14:48 30 Oct 2017 15:32 30 Oct 2017 16:19 30 Oct 2017 16:59 30 Oct 2017 17:39 30 Oct 2017 18:19 30 Oct 2017 18:59 30 Oct 2017 18:59 30 Oct 2017 23:25 31 Oct 2017 00:02
31 30 32 31 33 32 34 33 35 34 36 35 37 36 38 37 39 40	Ao103015.d Ao103016.d Ao103017.d Ao103018.d Ao103018.d Ao103019.d Ao103020.d	1. 1. 1. 1. 1. 1. 1.	C1710061-002A 5x C1710061-004A 10x C1710061-004A 40x C1710061-005A 10x C1710061-005A 40x ALCS1UGD-103017 C1710061-004A 90x C1710061-004A 90x C1710061-005A 270x No MS or GC data pres BFB1UG	ent	AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG AN30_1UG	31 Oct 2017 00:39 31 Oct 2017 01:16 31 Oct 2017 01:52 31 Oct 2017 02:29 31 Oct 2017 03:05 31 Oct 2017 03:45 31 Oct 2017 08:24 31 Oct 2017 09:01 31 Oct 2017 09:58
41 2 42 3 43 4 44 1 45 2 46 3 47 4 48 5 49 6 50 7	Ao103102.d Ao103103.d Ao103104.d Ao103105.d Ao103106.d Ao103107.d Ao103108.d Ao103109.d Ao103110.d Ao103111.d	1.	A1UG_1.0 ALCS1UG-103117 AMB1UG-103117 WAC103117A WAC103117B WAC103117C WAC103117D WAC103117E WAC103117F WAC103117F		AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	31 Oct 2017 10:41 31 Oct 2017 11:30 31 Oct 2017 12:07 31 Oct 2017 13:08 31 Oct 2017 13:45 31 Oct 2017 14:23 31 Oct 2017 14:23 31 Oct 2017 15:01 31 Oct 2017 15:39 31 Oct 2017 16:16 31 Oct 2017 16:54
51 1 52 3 53 4 55 6 57 8 9 10	Ao103112.d Ao103113.d Ao103115.d Ao103116.d Ao103116.d Ao103117.d Ao103118.d Ao103119.d Ao103120.d	1. 1. 1. 1. 1. 1. 1.	C1710066-001A C1710065-002A C1710065-003A C1710065-003A C1710065-004A C1710065-005A C1710067-001A C1710067-003A C1710067-004A C1710067-005A		AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	31 Oct 2017 17:37 31 Oct 2017 18:18 31 Oct 2017 18:59 31 Oct 2017 19:39 31 Oct 2017 20:22 31 Oct 2017 21:03 31 Oct 2017 21:46 31 Oct 2017 22:28 31 Oct 2017 23:10 31 Oct 2017 23:51
i1 11 i2 12 i3 29 i4 30 5 31 6 32 7 33 8 34 9 35 0 36	Ao103122.d Ao103123.d Ao103124.d Ao103125.d Ao103126.d Ao103127.d Ao103127.d Ao103128.d Ao103129.d Ao103130.d Ao103131.d	1, 1, 1. 1. 1. 1.	C1710067-006A C1710067-007A C1710067-008A ALCS1UGD-103117 C1710066-001A 2x C1710065-001A 10x C1710065-001A 20x C1710065-002A 10x C1710065-003A 10x C1710065-004A 5x		AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG AN24_1UG	1 Nov 2017 00:32 1 Nov 2017 01:13 1 Nov 2017 01:56 1 Nov 2017 02:36 1 Nov 2017 03:14 1 Nov 2017 03:51 1 Nov 2017 03:55 1 Nov 2017 05:05 1 Nov 2017 05:42 1 Nov 2017 06:23
1 37 2 38 3 39 4	Ao103132.d Ao103133.d Ao103134.d Ao103135.d	1. 1.	C1710065-005A 10x C1710067-001A 10x C1710067-003A 10x No MS or GC data prese	,	AN24_1UG AN24_1UG AN24_1UG	1 Nov 2017 07:00 1 Nov 2017 07:37 1 Nov 2017 08:14

٠

.

.

GC/MS VOLATILES-WHOLE AIR

.

.

.

METHOD TO-15

STANDARDS LOG

.

.

Page 253 of 272

Page 254 of

GC/MS Calibration Standards Logbook

Cente

											,×
Std #	Date Prep	Date Exp	Descript		Stock #	Stock Conc	Initial Vol (psig)	Finial Vol (psia)	Final Conc (ppb)	Prep by	
A-A1788	12/22/16	12/29/16	T015 S	5TLX	Alose	500mb	3.0	30	50	ĽĽ_	boratories,
A-1789	1	1		5ULF	A0270	loom	1.5		50		to
A-1790				125	A0269	10 ppm	1.5	30	500	·	es,
A-1791				; IS	A1782	50ppb	0,9	<u>45</u>	1	_	E C
A- 1792			1	STD	A1783			<u> </u>	ļ		
A-1793	V.	$\overline{\mathbf{V}}$	\checkmark	LCS	A1784			√	<u> </u>		
A-1794	12/29/16	115117	TOIS	TS.	A1289	1ppm	1.5	30	50	ω	<u> </u>
A17895		1	1	STD	A1203				ļ	<u> </u>	
A-1796				LCS	A1204						_
A- 1797				47CH	9519	V	<u>√</u>				
A- 1798				4 PCHS	A1797	50 ppb	3,0	30	5		<u> </u>
A-1799					A0974	11.5 ppm		45	50		<u> </u>
A-1800				SILOX	A1058 741089	500ppb		30	50	<u> </u>	
A- 180)				SULF	A0270	1ppm	1.5	30		<u> </u>	<u></u>
A-1802				HzS	1	10 ppm	1.5	30	500	<u> </u>	
A-1803			TO15 146	IS	A1794	50 ppb	0,9	45	11		
A-1804				STD	I		<u> </u>		ļ		
A-1805		$\sqrt{2}$		LCS	A1796						
A-1806	11511	1154	TOIS	IS	FF-472	66 LII	DE	2000psig	1 ppm	$\omega \delta$	
A-1807	115117	PASLE	SISTOCK~	TO15:	D FF-	45347	LINDE	2200 psig	1 ppm	WD	
A-1808	116/17			55.15	A7406	1ppm	775	38	50,000	M]
		1 1.		<i>î</i> ŋ	A1203	A	203 570	15 NOW	1 Les		
FORM 153		Izlali	<u>''</u>)		-			Page #(/		
		12/30									

Page 255 of 272

GC/MS Calibration Standards Logbook

Std #	Date Prep	Date Exp	Description	Stock #	Stock Conc	Initial Vol (psig)	Finial Vol (psia)	Final Conc (ppb)	Prep by	Chkd by
A-2227	10/2/17	ioliila	TOIS SULF	A0270	1. PAM	1.5	36	50	<u> </u>	
A-2225	1	1	1 Has	A0269	10 ppry	t	4	500	1	
A-2225			TOKTIOG IS	A 2220		0.9	45	1		
A-2230			570	A2221	<u> </u>					
A-2231	<u></u>		4 105	A2222	h	J.	Ŀ	7	V	
A-2232	rolulin	iolatin	T015 IS	12182	1 ppm	1.5	30	50	P90	
A-2233		ļ	STD STD	A2183	1					
A-2234			5 LCS	A2184						
A-2235			TO15 HOUG 4PCA	9519	6	4				
A-2236			4PCH5	A2235	50	3	1	5		
A-2237			FORM	A0974	11.5ppm	0,20	45	50		
A-2238			5140X	A1015 A150	n 500 <i>ppg</i>	3	30			
A-2239			SULF	A0270	IPPM	1.5				
A-23.40			+ H25	A0269		k	L	500		
A-2241			TOISIUG IS	A 2232		0.5	45	<u> </u>		
A-2242			570	A 1233						
A-2243			LC5	A 2234		<u> </u>		L	4	
A-2244	10/23/17	113/m	TO15 IS	AJISZ	(ppn	1.5	30	50	m	
A-2245			570	A2183						1
A-2246			LC3	A2184	<u> </u>	l				
A-2247	↓	6	\$ 4PCT	9519	b	6	1 Xo	8	6	

FORM 153

GC/MS Calibration Standards Logbook

Centek L	aborator	ries, LLC	-			GC/MS Ca	alibration Sta	indards Logb	OOK		Ce
Std #	Date Prep	Date Exp	Des	scription	Stock #	Stock Conc	Initial Vol (psig)	Finial Vol (psia)	Final Conc (ppb)	Prep by	Che
A-2248	10/23/17		7015	4PC45	A2257	50,000	3	30	5	<u>^^*</u>	
A-2249			1	FORM	A0974	11.5	0,20	45	50		_aboratories,
A-2250				SILOX	ANSE A 80	50000A	3	30			
A-2251				SULF	A0270	Ippn	1.5				
A-2252				H25	A0265	10 ppm	4	4	500		
A-2253			T015 1		A2241	50pps	0.9	45	1		
A-22.54				0 STD	A2242					 	
A-2255	4			727	A2243	4	<u> </u>		<u> </u>	4	
A-22.56			-						- 		
A-											
A-						ļ	 				
A-											
A						-					
A-											
A-									·		
A-							1				
A						<u> </u>					
A-					·						
Α-	1							1			
<u>A-</u>											
A-			1								

FORM 153

Page #_____

Page 256 of 272

· ,

GC/MS VOLATILES-WHOLE AIR

.

METHOD TO-15

CANISTER CLEANING LOG

.

Page 257 of 272

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Canister Number	Canister Size		# of Cycles	Int & Date Cleaned	QC Batch Number	Detection Limits		
243		545	30				Leak	Fest 24hr Int & Date
23			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WAC092217A	1 1 ug/m 2+0,29	7+30	+ 30 817 09/22
248 1450						<u> </u>	+ 30	
1450							+ 30	+
545		V					+ 30	+
_86		354					+ 30	+
241					WAC092217B		+ 30	+
86 241 98 188							+ 30	
188							+ 30	4
354							+ 30	+
457		96			V		+ 30	+
457 362					WAC092217C		+ 30	+
322 1175							+ 30	+
1175							+ 30	+
96							+ 30	+
189		328			V		+ 30	+
96 189 550 88 233 328 336 87 544 544 549 1185		1			WAC092217D		+ 30	+
88							+ 30	÷
233							- 30	+
328							- 30	+
336		1185			V		- 30	+
87				{	JAC092217E	+	30	+
544						+	30	+
599							30	+
1185							30	+

G.

QC Canister Cleaning Logbook

strument: Entech 3100

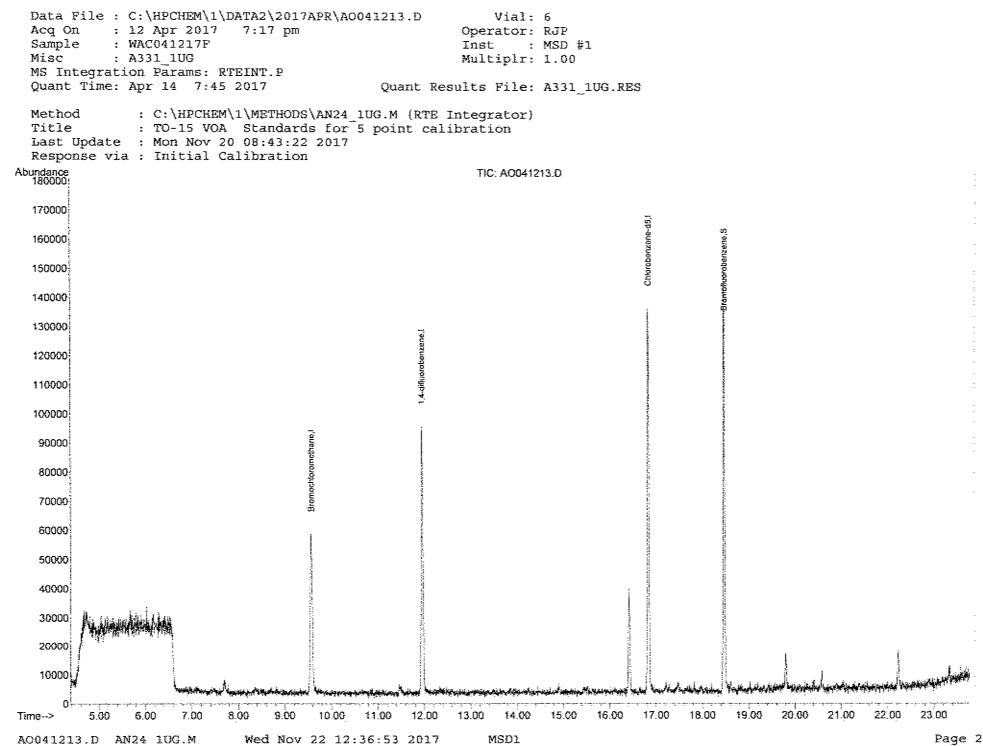
nister Number	Canister Size			Int & Date Cleaned		Detection Limits	02590570425304340536973	een aan an a	nt & Date
360	14	87	20	4/11/0	WARDYIZIJ A	1/2 + 0.25		+30	4/14/17
175						1 U	+ 30	+	
01							+ 30	} +	
360 175 101 193 87							+ 30	+	
87		4					+ 30	+	
559 54 203 550 376		370			B		+ 30	4	
<u>з</u> 5 ц							+ 30	+	ļ
101		[+ 30	+	<u> </u>
(r)							+ 30	+	<u> </u>
376							+ 30	+	
<u></u>		1186			C		+ 30	+	
221 361 285		1					+ 30	+	<u> </u>
185	 	<u> </u>					+ 30	+	
		1					+ 30	+	
1174 1186		<u> </u>]	<u>+</u>				+ 30	+	
		231			ρ		+ 30	+	
201							+ 30	+	
<u>161</u> 1155					-		+ 30	+	
240 361 1158 467	╂━━╍┨━━━╍━						+ 30	÷	
231	<u>-</u>	+					+ 30	÷	
	1.4	482			F X		+ 30	+	
212							+ 30	+	
211							+ 30	4	
215 209	<u></u>						+ 30	+	
<u></u>		+		6			+ 30	+	6
482		<u> </u>			<u></u>			152	
n C151				(usedana)	10.1137/ · · · · · · · · · · · · · · · · · · ·		Page #		Harrison

VEHICE HANDIALUHES, MEU

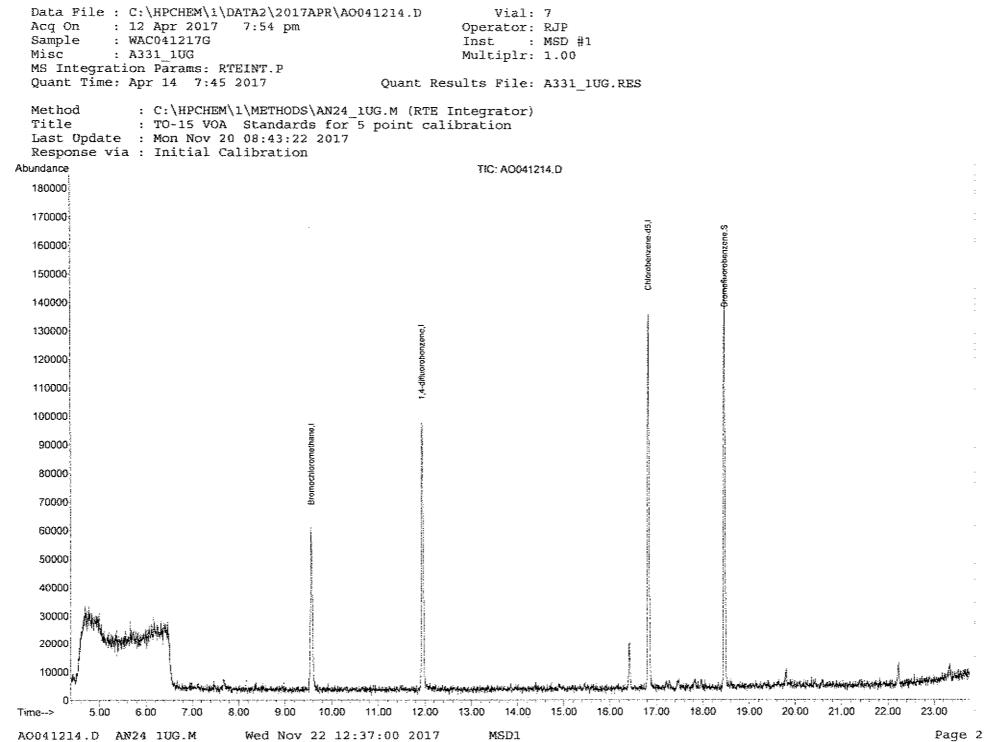
WO GARIISTEL CLEARING LOODON

Instrument: Entech 3100

Page 260 of 272

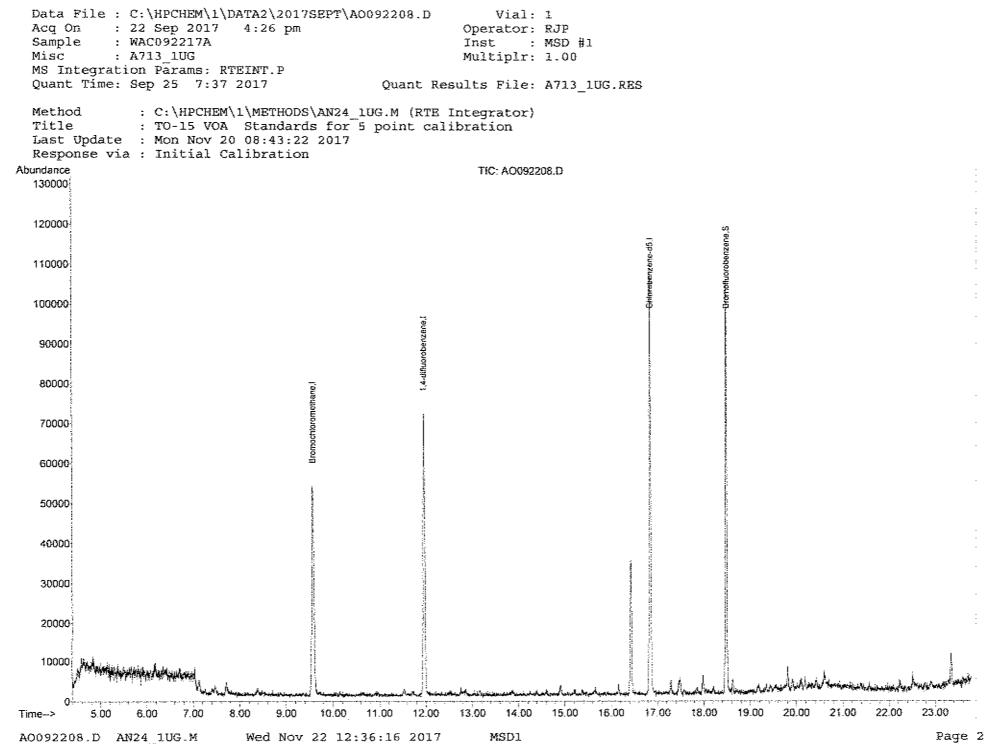

Canister Number	Canister Size	QC Can Number	# of Cycles	Int & Date Cleaned	QC Batch Number	Detection Limits	Prove Leak To	est 24hr Int & Date
1205	1.4	1323	20	Alala	WAC041211 XG	1 mg + 0.23	+ 30	+ 30 4/14/17
484				[/>	///	+ 30	+
1208							+ 30	+
481							+ 30	+
1323	イ	<u>k</u>		L	L L		+ 30	+ 1
							+ 30	+
			·····				+ 30	+
· · · · · · · · · · · · · · · · · · ·							+ 30	
							+ 30	1
							+ 30	4
							+ 30	4
- 							+ 30	+
							+ 30	
	F					····	+ 30	
							+ 30	+
						······································	+ 30	
	· · · · ·						+ 30	+
							+ 30	•
							+ 30	+
						· · · · · · · · · · · · · · · · · · ·	+ 30	
				1			+ 30	
	 						+ 30	1
							+ 30	
F 	· · · · · · · · · · · · · · · · · · ·			ļ			+ 30	+
							+ 30	+

Form C151

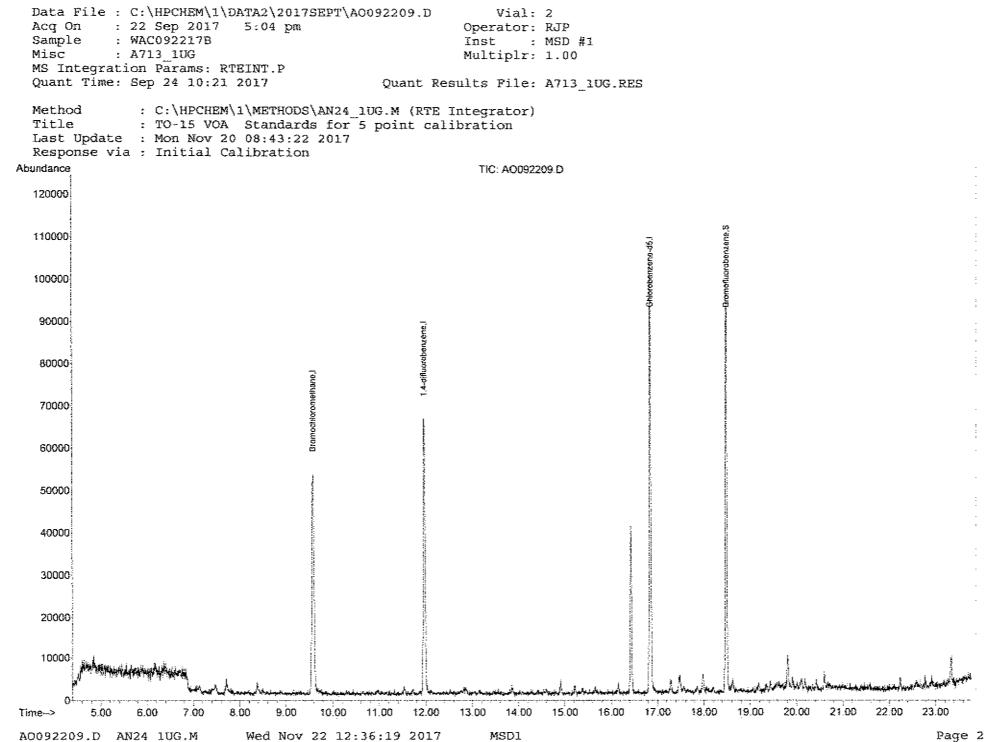

Page # 153

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2017APR\A0041213.D Vial: 6 Acq On : 12 Apr 2017 7:17 pm Sample : WAC041217F Misc : A331_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 14 08:40:02 2017 Quant Results File: A331_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.57128198651.00 ppb0.0335) 1,4-difluorobenzene11.96114867761.00 ppb0.0250) Chlorobenzene-d516.83117792791.00 ppb0.01 System Monitoring Compounds
 65) Bromofluorobenzene
 18.47
 95
 49264
 0.91
 ppb

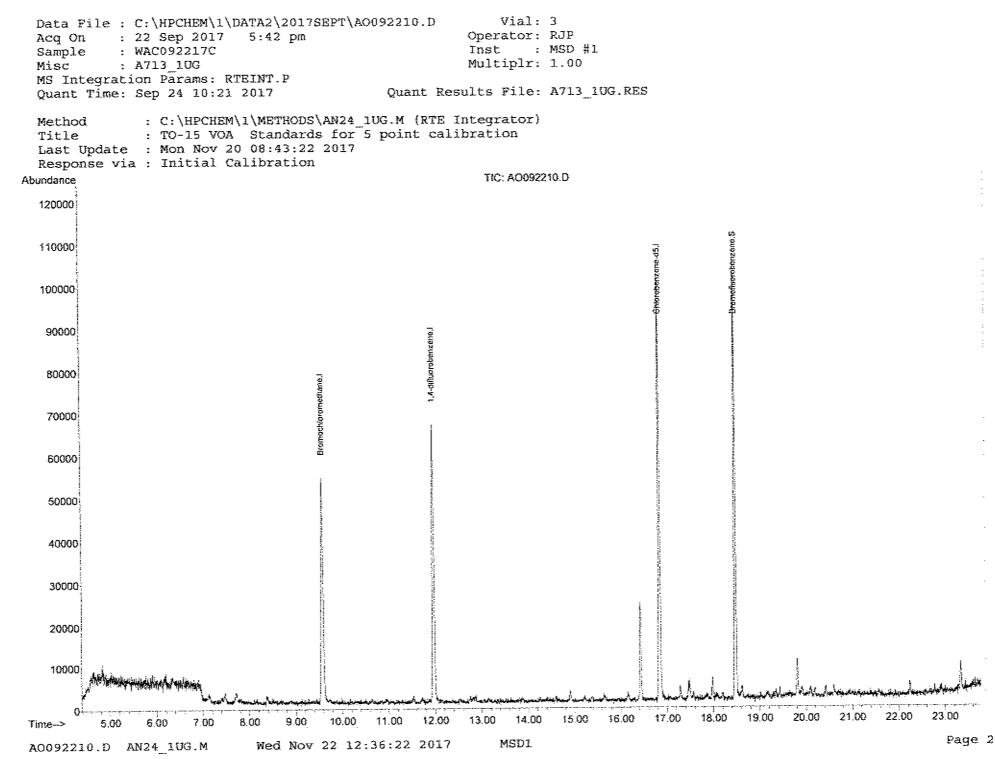
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 91.00%
 0.02 Target Compounds Qvalue



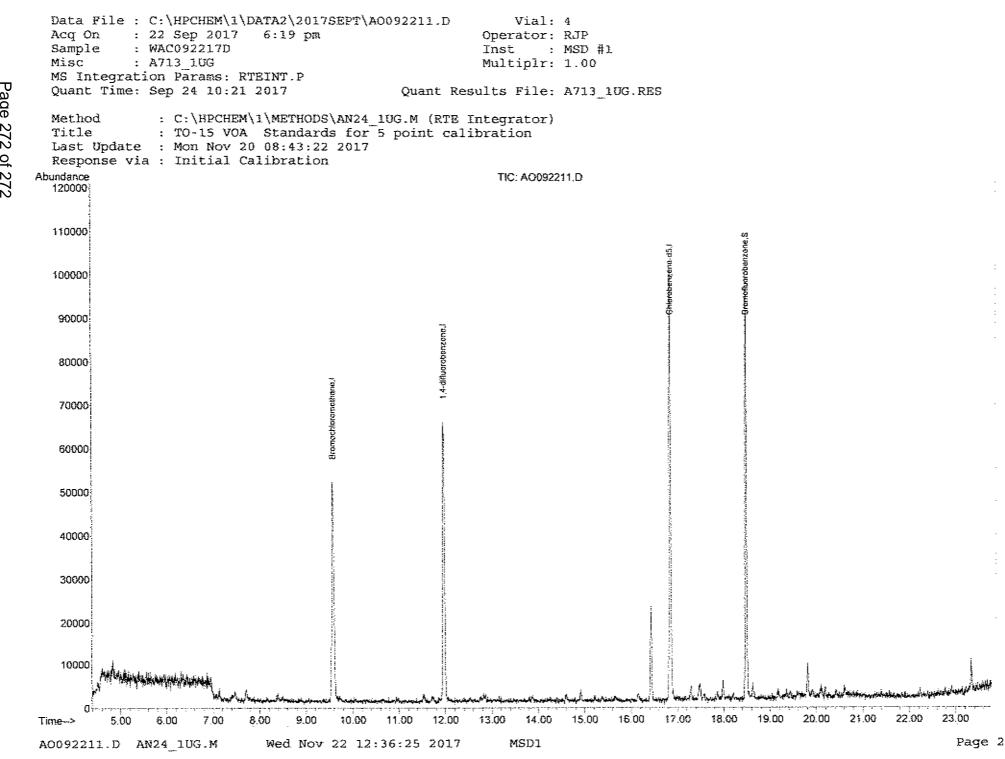
Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2017APR\A0041214.D Vial: 7 Acq On : 12 Apr 2017 7:54 pm Operator: RJP Sample : WAC041217G Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 14 08:40:03 2017 Quant Results File: A331 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A331 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration DataAcg Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.57128204381.00ppb0.0335) 1,4-difluorobenzene11.95114899041.00ppb0.0250) Chlorobenzene-d516.83117804591.00ppb0.02 System Monitoring Compounds 65) Bromofluorobenzene 18.47 95 49839 0.91 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00% Qvalue Target Compounds


^Dage 264 of 272

Centek Laboratories, LLC Quantitation Report (OT Reviewed) Vial: 1 Data File : C:\HPCHEM\1\DATA2\2017SEPT\A0092208.D Acq On : 22 Sep 2017 4:26 pm Operator: RJP Sample : WAC092217A Misc : A713_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A713_1UG.RES Quant Time: Sep 24 11:21:27 2017 Quant Method : C:\HPCHEM\1\METHODS\A713_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Sep 13 10:05:30 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.57128235631.00ppb0.0035) 1,4-difluorobenzene11.96114797331.00ppb0.0050) Chlorobenzene-d516.85117787851.00ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.48 95 39690 0.77 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 77.00% Ovalue Target Compounds


Centek Laboratories, LLC (QT Reviewed) Quantitation Report Data file : C:\HPCHEM\1\DATA2\2017SEPT\A0092209.D Vial: 2 Acq On : 22 Sep 2017 5:04 pm Operator: RJP Sample : WAC092217B Misc : A713_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Sep 24 11:21:28 2017 Quant Results File: A713_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A713 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Sep 13 10:05:30 2017 Response via : Initial Calibration DataAcq Meth : lUG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.58128231921.00 ppb0.0035) 1,4-difluorobenzene11.97114761711.00 ppb0.0050) Chlorobenzene-d516.84117746771.00 ppb0.00 System Monitoring Compounds
 65) Bromofluorobenzene
 18.48
 95
 36850
 0.75 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 75.00%
 Ovalue Target Compounds



^Dage 268 of 272

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2017SEPT\A0092210.D Vial: 3 Acq On : 22 Sep 2017 5:42 pm Operator: RJP Sample : WAC092217C Misc : A713_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A713 1UG.RES Quant Time: Sep 24 11:21:29 2017 Quant Method : C:\HPCHEM\1\METHODS\A713_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Sep 13 10:05:30 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.57128231581.00ppb0.0035) 1,4-difluorobenzene11.96114763941.00ppb0.0050) Chlorobenzene-d516.84117745821.00ppb0.00 System Monitoring Compounds 5) Bromofluorobenzene 18.48 95 38234 0.78 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% 65) Bromofluorobenzene Qvalue Target Compounds

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2017SEPT\A0092211.D Vial: 4 Acq On : 22 Sep 2017 6:19 pm Operator: RJP Sample : WAC092217D Misc : A713_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A713_1UG.RES Quant Time: Sep 24 11:21:30 2017 Quant Method : C:\HPCHEM\1\METHODS\A713_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Sep 13 10:05:30 2017 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.58128227541.00 ppb0.0135) 1,4-difluorobenzene11.96114752371.00 ppb0.0050) Chlorobenzene-d516.85117726181.00 ppb0.01 System Monitoring Compounds 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 77.00% Ovalue Target Compounds

September 4, 2019

Ms. Charlotte Theobald New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9516

Re: Construction Completion Report Addendum NYSDEC Site #C828158 300 Commerce Drive Henrietta, New York

Dear Ms. Theobald:

LaBella Associates, D.P.C. ("LaBella") is submitting this addendum for the above referenced Construction Completion Report. Attached please find the Data Usability Summary Report (DUSR) by DataVal, Inc. (DataVal) for the indoor air sampling completed on January 18, 2018. The DUSR indicated the following:

"Reported data should be considered technically defensible and completely usable in it's present form. Results presenting a usable estimation of the condition at the time of sampling have been flagged "J" or "U". Estimated data should be used with caution."

DataVal only made minor modifications to some of the laboratory data. The DUSR did not change any finding of the Construction Completion Report (CCR) submitted by LaBella on September 3, 2019. As indicated in the CCR, the Sub-slab Depressurization System is effectively mitigating soil vapor intrusion at the Site.

If you have any questions please do not hesitate to contact me at (585) 295-6611.

Respectfully submitted,

LABELLA ASSOCIATES, D.P.C.

1 P. M

Dan Noll, P.E. Project Manager

J:\Yaro Enterprise Inc\208723 BCP 300 Commerce\IRM SSDS CCR\LTR.2019.09.03 - DUSR Follow up letter C828159.docx

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

www.labellapc.com

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

300 Commerce Drive Project 208723 SDG: C1801059 Sampled 01/18/2018

TO-15 AIR SAMPLES

(C1801059-01)
(C1801059-02)
(C1801059-03)
(C1801059-04)
(C1801059-05)
(C1801059-06)

DATA ASSESSMENT

A TO-15 data package containing analytical results for six air samples was received from LaBella Associates, P.C. on 03Sep19. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 300 Commerce Drive Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The methylene chloride and toluene results from 300-IA-01 have been qualified as estimations due to low spiked sample recoveries.

The presence of acetone and heptane in 300-IA-01 and chloromethane in 300-IA-03 cold not be verified based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "U". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. DATAVAL, Inc. guarantees the quality of this data Secondly. assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 04 Sep 19

DATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained five air samples that were collected in 1-liter SUMMA canisters and 300-IA-01 which was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples. Sampling was completed on 18Jan18. The canisters were shipped back to the laboratory, via FedEx, on 19Jan18, and were received on 22Jan18. Although the sample canisters were received intact, custody seals were not present on the packaging.

Although each SUMMA canister was set in the laboratory to collect a 8-hour sample, sampling was terminated after 6.5-7.75 hours based on the canister vacuum readings. Each of these readings satisfied the ASP requirement of $-5\pm1"$ Hg.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECEIPT	ANALYSIS
	(``Hg)	(``Hg)	(``Hg)	(``Hg)	(``Hg)
300-IA-01	30	28	4.98	5	5
300-IA-02	30	29	4.99	5	5
300-IA-03	30	28	4.6	5	5
300-IA-04	30	30	3.9	4	4
300-EXT-01	30	30	5.7	6	6
DUPE	30	30	3.9	4	4

The analysis of this group of samples was completed on 23Jan18 and 24Jan18, satisfying the ASP holding time limitation.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability. The initial instrument calibration was performed on 16Jan18. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standards were analyzed on 23Jan18 and 24Jan18, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability during both calibration checks.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, an acceptable recovery was reported for each surrogate addition to the initial, undiluted program samples.

Each sample was also analyzed following dilutions ranging between 1:9 and 1:810. The surrogate recoveries from these samples were not evaluated because the surrogates were also highly diluted.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for the internal standard additions to this group of samples.

Internal standard retention times were not addressed by the laboratory. The ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

300-IA-01 was selected for matrix spiking. The entire list of targeted analytes was added to two volumes of this sample. The recoveries reported for these spikes included elevated 1,2,4-trichlorobenzene (139%,132%), 1,3,5-trimethylbenzene (138%), methylene chloride (206%) and propylene (210%) results, and a low recovery of toluene (65%). Based on this performance the methylene chloride and toluene results from 300-IA-01 have been qualified as estimations. The positive bias indicated by the elevated recoveries of 1,2,4-trichlorobenzene, 1,3,5-trimethyl-benzene and propylene warrant no concern because these analytes were not detected in 300-IA-01. The remaining analytes demonstrated acceptable levels of measurement precision and accuracy.

Three spiked blanks (LCS/LCSD, LCS) were also analyzed with this group of samples. The recoveries reported from these LCS samples included high results for carbon disulfide (140%) and hexane (142%), and a low recovery of methyl butyl ketone (53%). These indications of bias, however, warrant no concern because these analytes were not reported from the affected samples.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The duplicate sample that was included in this delivery group was not identified. It is noted that the previously mentioned MS/MSD samples demonstrated acceptable levels of measurement precision.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

The presence of acetone and heptane in 300-IA-01 and chloromethane in 300-IA-03 cold not be verified based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples.

SUMMARY OF QUALIFIED DATA

SAMPLED JANUARY 2018

•

300 COMMERCE DRIVE

		SPIKES METHYLENE CHLORIDE	SPIKE TOLUENE	MS ID ACETONE	MS ID HEPTANE	MS ID CHLOROMETHANE	
3300-IA-02 300-IA-03 300-IA-04	(C1801059-01) (C1801059-02) (C1801059-03) (C1801059-04) (C1801059-05) (C1801059-06)	3.9J	5.2J	37U	0.61U	1.2U	

,

Date: 12-Feb-18

	ала на противли и проти В 1919 години и противли и противл					
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 300-IA-01/MSMSD				
Lab Order:	C1801059	Tag Number: 484.1170				
Project:	300 Commerce BCP	Collection Date: 1/18/2018				
Lab ID:	C1801059-001A	Matrix: AIR				

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	тс)-15			Analyst: RJP
1.1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 4:46:00 PM
1.1.2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM
1.1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 4:46:00 PM
1.1-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 4:46:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 4:46:00 PM
1.2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	1/23/2018 4:46:00 PM
1,2,4-Trimethylbenzene 🕳	0.69	0.74	J	ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 4:46:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	1/23/2018 4:46:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	1/23/2018 4:46:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	1/23/2018 4:46:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 4:46:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 4:46:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	1/23/2018 4:46:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	1/23/2018 4:46:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	1/23/2018 4:46:00 PM
Acetone -	37 🕖	6.4		ug/m3	9	1/23/2018 11:01:00 PM
Ally! chloride	< 0.47	0.47		ug/m3	1	1/23/2018 4:46:00 PM
Benzene -	0.89	0,48		บฏ/m3	1	1/23/2018 4:46:00 PM
Benzyl chloride	< 0,86	0.86		ug/m3	1	1/23/2018 4:46:00 PM
Bromodichioromethane	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	1/23/2018 4:46:00 PM
B/omomethane	< 0.58	0.58		ug/m3	1	1/23/2018 4:46:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	1/23/2018 4:46:00 PM
Carbon tetrachloride 🗕	0.44	0.19		ug/m3	1	1/23/2018 4:46:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	1/23/2018 4:46:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	1/23/2018 4:46:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	1/23/2018 4:46:00 PM
Chioromethane -	0.99	0.31		ug/m3	1	1/23/2018 4:46:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 4:45:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 4:46:00 PM
Cyclohexane -	2.8	0.52		ug/m3	1	1/23/2018 4:46:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	1/23/2018 4:46:00 PM
Ethyl acetate -	1.7	0.54		ug/m3	1	1/23/2018 4:46:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	1/23/2018 4:46:00 PM
Freon 11 🕆	1.1	0.84		ug/m3	1	1/23/2018 4:46:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	1/23/2018 4:46:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM

Qualifiers: ** Quantilation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits . Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 1 of 12

.

Centek	La	boratoi	ries,)	LLC
--------	----	---------	---------	-----

Date: 12-Feb-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 300-IA-01/MSMSD
Lab Order:	C1801059	Tag Number: 484.1170
Project:	300 Commerce BCP	Collection Date: 1/18/2018
Lab ID:	C1801059-001A	Matrix: AlR
· • · · · · · · • • • · · · · • · • ·		

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE			-15			Analyst: RJP
Freon 12 	2.3	0.74		ug/m3	1	1/23/2018 4:46:00 PM
Heptane 🛶	0.61 U	0.61		ug/m3	1	1/23/2018 4:46:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 4:46:00 PM
Hexane 🥌	0.78	0.53		ug/m3	1	1/23/2018 4:46:00 PM
isopropyl alcohol -	220	34		ug/m3	90	1/23/2018 11:38:00 PM
m&p-Xylene 🖛	0.65	1.3	J	ug/m3	1	1/23/2018 4:46:00 PM
Methyl Butyl Ketone	< 1,2	1.2		ug/m3	1	1/23/2018 4:46:00 PM
Methyl Ethyl Ketone -	2.1	0.88		ug/m3	1	1/23/2018 4:46:00 PM
Methyl Isobutyl Ketone	< 1.2	1,2		ug/m3	1	1/23/2018 4:46:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 4:46:00 PM
Methylene chioride -	3,9 J	0.52		ug/m3	1	1/23/2018 4:46:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	1/23/2018 4:46:00 PM
Propylene	< 0.26	0.26		ug/m3	1	1/23/2018 4:46:00 PM
Styrene 🛥	0.43	0.64	J	ug/m3	1	1/23/2018 4:46:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 4:46:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	1/23/2018 4:46:00 PM
Toivene -	5.2 J	0.57		ug/m3	1	1/23/2018 4:46:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 4:46:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 4:46:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 4:46:00 PM
Vinyl acetale	< 0.53	0.53		ug/m3	1	1/23/2018 4:46:00 PM
Vinyl Bromide	< 0.86	0.66		ug/m3	1	1/23/2018 4:46:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 4:46:00 PM

Qualifiers:	**	Quantitation Limit		Results reported are not
	В	Analyte detected in the associated Method Blank	Б	Estimated Value above q
	Н	Holding times for preparation or analysis exceeded	1	Analyte detected below c

- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- blank corrected

•

- quantitation range
- quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 12

CLIENT:	LaBella Associates, P	.Ç.		Client	Sample ID:	300-1/	\-02
Lab Order:	C1801059				ag Number:		
Project:	300 Commerce BCP				ection Date:		
Lab ID:	C1801059-002A			0011	Matrix:		
		Result	**1 :::+	Qual Uni		DF	Dote Annimad
Analyses	· · · · · · · · · · · · · · · · · · ·			Quai Um		UF	Date Analyzed
	UG/M3 CT-TCE-VC-DCE	•	TO				Anelyst: RJF
1,1,1-Trichloroe		< 0.82	0.82	ug/m		1	1/23/2018 6:59:00 PM
1,1,2,2-Tetracht		< 1.0	1.0	ug/m		1	1/23/2018 6:59:00 PM
1,1,2-Trichloroe		< 0,82	0.82	បច្ច/ជា		1	1/23/2018 6:59:00 PM
1,1-Dichloroetha		< 0.61	0.61	ug/m		1	1/23/2018 6:59:00 PM
1,1-Dichloroethe	906	< 0.16	0.16	ug/m		1	1/23/2018 6:59:00 PM
1,2,4-Trichlorob		< 1.1	1.1	ug/m	3	1	1/23/2018 6:59:00 PM
1,2,4-Trimethylb		0.98	0.74	ug/m		1	1/23/2018 6:59:00 PM
1,2-Dibromoetha	ane	< 1.2	1.2	ug/m	3	1	1/23/2018 6:59:00 PM
1,2-Dichloroben	zene	< 0.90	0.90	ug/m	3	1	1/23/2018 6:59:00 PM
1,2-Dichloroetha	пе	< 0.61	0,61	ug/m	3	1	1/23/2018 6:59:00 PM
1,2-Dichloroprop	bane	< 0.69	0.69	ug/m	3	t	1/23/2018 6:59:00 PM
1,3,5-Trimethylb	enzene	< 0.74	0,74	ug/m	3	1	1/23/2018 5:59:00 PM
1,3-butadiene		< 0.33	0.33	ug/m	3	1	1/23/2018 6:59:00 PM
1,3-Dichloroben:	zene	< 0.90	0.90	ug/m	3	1	1/23/2018 6:59:00 PM
1,4-Dichloroben:	zene	< 0.90	0.90	ug/m	3	1	1/23/2018 6:59:00 PM
1,4-Dioxane		< 1.1	1.1	ug/m	3	1	1/23/2018 6:59:00 PM
2,2,4-trimethylpe	antane	< 0.70	0.70	ug/m	3	1	1/23/2018 6:59:00 PM
4-ethyitoluene		< 0.74	0.74	ug/m	3	1	1/23/2018 6:59:00 PM
Acetone		52 ×U	6.4	ug/m		9	1/24/2018 12:18:00 AM
Allyl chloride		< 0.47	0.47	ug/m	3	1	1/23/2018 6:59:00 PM
Benzene -		1.1	0.48	ug/m		1	1/23/2018 6:59:00 PM
Banzyl chloride		< 0.86	0.86	ug/m		1	1/23/2018 6:59:00 PM
Bromodichlorom	ethane	< 1.0	1,0	ug/m		1	1/23/2018 6:59:00 PM
Bromoform		< 1.6	1.6	ug/m		1	1/23/2018 6:59:00 PM
Bromomethane		< 0.58	0.58	ug/m		1	1/23/2018 6:59:00 PM
Carbon disulfide		< 0.47	0.47	ug/m		1	1/23/2018 6:59:00 PM
Carbon tetrachic		0.38	0.19	uġ/m		1	1/23/2018 6:59:00 PM
Chlorobenzene		< 0.69	0.69	ug/m		1	1/23/2018 6:59:00 PM
Chloroethane		< 0.40	0.40	ug/m		1	1/23/2018 6:59:00 PM
Chloroform		< 0.73	0.73	ug/m		1	1/23/2018 6:59:00 PM
Chloromethane	_	0.93	0,31	ug/m		1	1/23/2018 6:59:00 PM
cis-1.2-Dichloroe		< 0.16	0.16	ug/m		1	1/23/2018 6:59:00 PM
cis-1,3-Dichlorog		< 0.68	0.68	ug/m		1	1/23/2018 6:59:00 PM
Cyclohexana -	er ve persê ti bû	4.5	0.52	បន្ទ/៣ បន្ទ/៣		1	1/23/2018 6:59:00 PM
Dibromochlorom	ethade	4.0 < 1.3	1.3	ug/m		1	1/23/2018 6:59:00 PM
Ethyl acetate -	55-57764 15 2	3.7	0.54	ug/m		1	1/23/2018 6:59:00 PM
		< 0,65	0.65	ug/m		1	1/23/2018 6:59:00 PM
Ethylbenzene		< 0.05 1.1	0.84	ug/m		1	1/23/2018 6:59:00 PM
Freari 11 🖉		1.1 < 1.1	1.1	ug/m		1	1/23/2018 6:59:00 PM
Freen 113 Freen 114		< 1.0	1.0	ug/m		1	1/23/2018 6:59:00 PM

** Qualifiers: Quantitation Limit

.

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded н

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

and a second Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

J ND Not Detected at the Limit of Detection

\\\\

Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

**

в

Н

JN

Quantitation Limit

Qualifiers:

CLIENT:	LaBella Associates, P.C.	Client Sample 1D: 30	
Lab Order:	C1801059	Tag Number: 11	86.310
Project:	300 Commerce BCP	Collection Date: 1/	18/2018
Lab ID:	C1801059-002A	Matrix: Al	R

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE			TO-15			Analyst: RJP
Freon 12 🗕	2.4	0.74		ug/m3	1	1/23/2018 6:59:00 PM
Heptane	0.61 228 0	0.61		ug/m3	1	1/23/2018 6:59:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 6:59:00 PM
Hexane 🕳	0.99	0.53		ug/m3	1	1/23/2018 6;59:00 PM
isopropyi alcohol —	380	34		ug/m3	90	1/24/2018 12:55:00 AM
m&p-Xylene 🛥	1.0	1.3	J	ug/m3	1	1/23/2018 6:59:00 PM
Methyl Butyl Ketone	< 1.2	1.2		vg/m3	1	1/23/2018 6:59:00 PM
Methyl Ethyl Ketone -	3.3	0.88		ug/m3	1	1/23/2018 6:59:00 PM
Methyl Isobutyl Kelane	< 1.2	1.2		ug/m3	1	1/23/2018 6:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 6:59:00 PM
Methylene chloride 😁	1.8	0.52		ug/m3	1	1/23/2018 6:59:00 PM
o-Xylene 🛥	0,48	0.65	J	ug/m3	1	1/23/2018 6:59:00 PM
Propylena	< 0.26	0.25		ug/m3	t	1/23/2018 6:59:00 PM
Styrene 🛥	0.81	0.64		ug/m3	1	1/23/2018 6:59:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 6:59:00 PM
Tetrahydrofuran	< 0.44	0,44		ug/m3	1	1/23/2018 6:59:00 PM
Toluene -	5.8	5.3		ug/m3	9	1/24/2018 12:18:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 6:59:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 6:59:00 PM
Trichloroethene -	0.59	0.16		ug/m3	1	1/23/2018 6:59:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	1/23/2018 6:59:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 6:59:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 6:59:00 PM

. Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit.

ND Not Detected at the Limit of Detection

Page 4 of 12

A	x x 2		XY CI
Centek	Laborat	ories,	LLC

Page 26 of 306

**

B

н

JN

S

Qualifiers:

Date: 12-Feb-18

Analyses		Result	**Limit Qual		DF	Date Analyzed
Lab ID:	C1801059-003A			Matrix:		
Project:	300 Commerce BCP			Collection Date:		18
Lab Order:	C1801059			Tag Number:		
CLIENT:	LaBella Associates, P.0	- -,	C	lient Sample ID:	300-1A-1	03
nann a chuir an ann an an an Ar Anna.						

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 7:40:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM
1, 1, 2-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 7:40:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 7:40:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 7:40:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	1/23/2018 7:40:00 PM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	1	1/23/2018 7:40:00 PM
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	1/23/2018 7:40:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 7:40:00 PM
1.2-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 7:40:00 PM
1.2-Dichloropropane	< 0.69	0.69		ug/m3	1	1/23/2018 7:40:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	1/23/2018 7:40:00 PM
1,3-butadiane	< 0.33	0.33		ug/m3	1	1/23/2018 7:40:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 7:40:00 PM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 7:40:00 PM
1,4-Dioxane	< 1,1	1.1		ug/m3	1	1/23/2018 7:40:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	1/23/2018 7:40:00 PM
4-ethylloluene	< 0.74	0,74		ug/m3	1	1/23/2018 7:40:00 PM
	79	64		ug/m3	90	1/24/2018 2:12:00 AM
Ailyl chloride	< 0.47	0.47		ug/m3	1	1/23/2018 7:40:00 PM
Benzene	1.3	0.48		ug/m3	1	1/23/2018 7:40:00 PN
Benzyl chloride	< 0.86	0.86		ug/m3	1	1/23/2018 7:40:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	1/23/2018 7:40:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	1/23/2018 7:40:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	t	1/23/2018 7:40:00 PN
Carbon tetrachloride -	0.38	0.19		ug/m3	1	1/23/2018 7:40:00 PM
Chiorobenzene	< 0.69	0.69		ug/m3	1	1/23/2018 7:40:00 PN
Chioroelhane	< 0.40	0.40		ug/m3	1	1/23/2018 7:40:00 PN
Chiproform	< 0.73	0.73		ug/m3	1	1/23/2018 7:40:00 PN
Chloromethane	1.2 U	0.31		ug/m3	1	1/23/2018 7:40:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 7:40:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 7:40:00 PM
Cyclohexane -	8.4	4.8		ug/m3	9	1/24/2018 1:35:00 AN
Dibromochloromethane	< 1,3	1.3		ug/m3	1	1/23/2018 7:40:00 PN
Ethyl acetate -	3.6	0.54		ug/m3	1	1/23/2018 7:40:00 PM
Ethylbenzene -	0.43	0.65	Ŀ	ug/m3	1	1/23/2018 7:40:00 PN
	1.1	0.84		ug/m3	1	1/23/2018 7:40:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	1/23/2018 7:40:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit Holding times for preparation or analysis exceeded 1

ND Not Detected at the Limit of Detection

Analyte detected in the associated Method Blank

Spike Recovery outside accepted recovery limits

Non-routine analyte. Quantitation estimated.

Quantitation Limit

Analyses

DF

Date Analyzed

Client Sample 1D: 300-1A-03

Tag Number: 556.1171

Matrix: AIR

Collection Date: 1/18/2018

CLIENT; LaBella Associates, P.C. Lab Order: C1801059 Project: 300 Commerce BCP Lab ID: C1801059-003A

**Limit Qual Units

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TQ-	15			Analyst: RJF
Freon 12 🛏	2.3	0.74		ug/m3	1	1/23/2018 7:40:00 PM
Heptane -	0.98	0.61		ug/m3	1	1/23/2018 7:40:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 7:40:00 PM
Hexane 🕳	1.9	0.53		ug/m3	1	1/23/2018 7:40:00 PM
isopropyi alcohol 🐂	840	290		ug/m3	810	1/24/2018 11:45:00 AM
m&p-Xylene =	1.0	1.3	J	ug/m3	1	1/23/2018 7:40:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 7:40:00 PM
Methyl Ethyl Ketone 🛶	3.9	0.88		ug/m3	1	1/23/2018 7:40:00 PM
Methyl Isobulyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 7:40:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 7:40:00 PM
Methylene chloride 🐂	1.3	0.52		ug/m3	1	1/23/2018 7:40:00 PM
o-Xylene 🗢	0.61	0.65	J.	ug/m3	1	1/23/2018 7:40:00 PM
Propylene	< 0.26	0.26		ug/m3	3	1/23/2018 7:40:00 PM
Styrene -	1.1	0.64		ug/m3	1	1/23/2018 7:40:00 PM
etrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 7:40:00 PM
letrahydrofuran	< 0.44	0.44		სე/ო3	1	1/23/2018 7:40:00 PM
Foluene 🛶	13	5.3		ug/m3	9	1/24/2018 1:35:00 AM
rans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 7:40:00 PM
rans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 7:40:00 PM
richloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 7:40:00 PM
/inyl acetate	< 0.53	0.53		ug/m3	1	1/23/2018 7:40:00 PM
/inyi Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 7:40:00 PM
/inyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 7:40:00 PM

Result

Qualifiers: ** Quantilation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range

,

- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 12

.

Analyses		Result	**Limit Qual		DF	Date Analyzed
Lab ID:	C1801059-004A			Matrix:	AIR	
Project:	300 Commerce BCP			Collection Date:	1/18/201	8
Lab Order:	C1801059			Tag Number:	554.268	
CLIENT:	LaBella Associates, P.(Client Sample ID:		

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-18	5		Analyst: RJ
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 8:21:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	1/23/2018 8:21:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 8:21:00 PN
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2016 8:21:00 PN
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 8:21:00 PM
1,2,4-Trichlorobenzene	< 1.1	1,1	ug/m3	1	1/23/2018 8:21:00 PM
1,2,4-Trimethylbenzene -	2.0	0.74	ug/m3	1	1/23/2018 8:21:00 PM
1.2-Dibromoethane	< 1.2	1.2	ug/m3	t	1/23/2018 8:21:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 8:21:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2018 8:21:00 PM
1,2-Dichloropropene	< 0.69	0.69	ug/m3	1	1/23/2018 8:21:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	1/23/2018 8:21:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	t	1/23/2018 8:21:00 PM
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 8:21:00 PN
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 8:21:00 PN
1,4-Dioxane	< 1.1	1.1	ug/m3	1	1/23/2018 8:21:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	1/23/2018 8:21:00 PM
4-ethyltoluene 🦳	1,3	0.74	ug/m3	1	1/23/2018 8:21:00 PM
Acetone 🛥	70	7.1	ug/m3	10	1/24/2018 2:49:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	1/23/2018 8:21:00 PM
Benzene 🚄	1.3	0.48	ug/m3	1	1/23/2018 8:21:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	1/23/2018 8:21:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	1/23/2018 8:21:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	1/23/2018 8:21:00 PN
Bromomethane	< 0.58	0.58	ug/m3	1	1/23/2018 8:21:00 PN
Carbon disulfide	< 0.47	0.47	ug/m3	1	1/23/2018 8:21.00 PN
Carbon tetrachloride -	0.38	0.19	ug/m3	1	1/23/2018 8:21:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	1/23/2018 8:21:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	1/23/2018 8:21:00 PN
Chloroform	< 0.73	0.73	ug/m3	1	1/23/2018 8:21:00 PN
Chloromethane 🛏	1.2	0.31	ug/m3	1	1/23/2018 8:21:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 8:21:00 PN
cis-1,3-Dichloropropene	< 0.68	0.68	vg/m3	1	1/23/2018 8:21:00 PM
Cyclohexane 🛥 💦	11	5.2	ug/m3	10	1/24/2018 2:49:00 AN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	1/23/2018 8:21:00 PN
Ethyl acetate	4.3	0.54	ug/m3	1	1/23/2018 8:21:00 PN
Ethylbenzene 💙	0.52	0.65 J	- -	1	1/23/2018 8:21:00 PN
Freon 11 —	1.1	0.84	ug/m3	1	1/23/2018 8:21:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	1/23/2018 8:21:00 PN
Freon 114	< 1,0	1.0	ug/m3	1	1/23/2018 8:21:00 PM

Qualifiers: ** Quantitation Limit

 ${\bf B}$ — Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 7 of 12

Date: 12-Feb-18

			· . ·
CLIENT:	LaBella Associates, P.C.	Client Sample ID: 300-IA-04	
Lab Order:	C1801059	Tag Number: 554.268	
Project:	300 Commerce BCP	Collection Date: 1/18/2018	
Lab 1D:	C1801059-004A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO)-15			Analyst: RJP
Freon 12 🛰	2.3	0.74		ug/m3	1	1/23/2018 8:21:00 PM
Heptane 🌫	1.1	0.61		ug/m3	1	1/23/2018 8:21:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 8:21:00 PM
Hexane '	2.0	0.53		ug/m3	1	1/23/2018 8:21:00 PM
Isopropyl alcohol 🗝	1600	290		ug/m3	810	1/24/2018 12:22:00 PM
m&p-Xylene 🗕	1.1	1.3	L	ug/m3	1	1/23/2018 8:21:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 8:21:00 PM
Methyl Ethyl Ketone 🗝	4.0	0,88		ug/m3	1	1/23/2018 8:21:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 8:21:00 PM
Methyl tert-bulyl ether	< 0,54	0.54		ug/m3	1	1/23/2018 8:21:00 PM
Methylene chloride –	0.83	0.52		ug/m3	1	1/23/2018 8:21:00 PM
o-Xylene	0.58	0.65	J	ug/m3	1	1/23/2018 8:21:00 PM
Propylene	< 0.26	0.26		ug/m3	1	1/23/2018 8:21:00 PM
Styrene -	1.4	0.64		ug/m3	1	1/23/2018 8:21:00 PM
Tetrachioroethylene	< 1.0	1.0		ug/m3	1	1/23/2018 8:21:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	1/23/2018 8:21:00 PM
Toluene -	17	5,7		ug/m3	10	1/24/2018 2:49:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	1/23/2018 8:21:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 8:21:00 PM
Trichloroethene -	0.21	0.16		ug/m3	1	1/23/2018 8:21:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	t	1/23/2018 8:21:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 8:21:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	1/23/2018 8:21:00 PM

Qualifiers:	**	Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S
- Results reported are not blank corrected
 - E Estimated Value above quantitation range
 - J Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Lab Order: C1801059 Tag Number: 366.372 Project: 300 Commerce BCP Collection Date: 1/18/2018	
Lab ID: C1801059-005A Matrix: AIR	

Anaiyses	Result	- Dunt Qu	ai Units	VC	Mate Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 9:01:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	1/23/2018 9:01:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	1/23/2018 9:01:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2018 9:01:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 9:01:00 PM
1,2,4-Trichlorobenzene	< 1,1	1.1	ug/m3	1	1/23/2018 9:01:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	1/23/2018 9:01:00 PM
1,2-Dibromosthane	< 1.2	1,2	ug/m3	1	1/23/2018 9:01:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 9:01:00 PM
1.2-Dichloroethane	< 0.61	0.61	ug/m3	1	1/23/2018 9:01:00 PM
1,2-Dichleropropane	< 0.69	0.69	ug/m3	1	1/23/2018 9:01:00 PM
1.3.5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	1/23/2018 9:01:00 PM
1,3-buladiene	< 0.33	0.33	ug/m3	1	1/23/2018 9:01:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	1/23/2018 9:01:00 PM
1.4-Dichlorobenzene	< 0.90	0.90	ug/m3	3	1/23/2018 9:01:00 PM
1,4-Dioxane	< 1,1	1.1	ug/m3	1	1/23/2018 9:01:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	1/23/2018 9:01:00 PM
4-athyitoluene	< 0.74	0.74	ug/m3	1	1/23/2018 9:01:00 PM
Acetone -	11	7.1	ug/m3	10	1/24/2018 3:25:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	1/23/2018 9:01:00 PM
Benzene 🖕	0.67	0.48	vg/m3	1	1/23/2018 9:01:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	1/23/2018 9:01:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	1/23/2018 9:01:00 PM
Bromoform	< 1.6	1,6	ug/m3	1	1/23/2018 9:01:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	1/23/2018 9:01:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	1/23/2018 9:01:00 PM
Carbon tetrachloride-	0.44	0.19	ug/m3	1	1/23/2018 9:01:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	1/23/2018 9:01:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	1/23/2018 9:01:00 PM
Chieroform	< 0.73	0.73	ug/m3	1	1/23/2018 9:01:00 PM
Chloromethane -	0.78	0.31	ug/m3	1	1/23/2018 9:01:00 PN
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	1/23/2018 9:01:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	1/23/2018 9:01:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	1/23/2018 9:01:00 PN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	1/23/2018 9:01:00 PN
Ethyl acelate	< 0.54	0.54	ug/m3	1	1/23/2018 9:01:00 PN
Ethylbenzane	< 0.65	0.65	ug/m3	1	1/23/2018 9:01:00 PN
Freon 11 -	1.1	0.84	ug/m3	1	1/23/2018 9:01:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	1/23/2018 9:01:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	1/23/2018 9:01:00 PM

Qualifiers: ** Quantitation Limit

Analyte detected in the associated Method Blank в

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

. . • Results reported are not blank corrected

E Estimated Value above quantitation range

.

Analyte detected below quantitation limit 1

ND Not Detected at the Limit of Detection

Page 9 of 12

Centek Laboratories, LLC				Date:			12-Feb-18		
CLIENT:	LaBella Associates, P.0	с.		C	Illent Sample ID:		300-EXT-01		
Lab Order:	C1801059				Tag Number:	366.3	72		
Project:	300 Commerce BCP			Collection Date:					
Lab ID:	C1801059-005A				Matrix:	AIR			
Analyses	· · · · · · · · · · · · · · · · · · ·	Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		тс)-15			Analyst: RJI			
Freon 12 👡		2.3	0.74		ug/m3	1	1/23/2018 9:01:00 PM		
Heptane		< 0.61	0.61		ug/m3	1	1/23/2018 9:01:00 PM		
Hexachloro-1,3	-butadiene	< 1.6	1.6		ug/m3	1	1/23/2018 9:01:00 PM		
Hexane		< 0.53	0.53		ug/m3	1	1/23/2018 9:01:00 PM		
isopropyl alcoh	ol 👝	2.6	0.37		ug/m3	1	1/23/2018 9:01:00 PM		
m&p-Xylene		< 1.3	1.3		ug/m3	1	1/23/2016 9:01:00 PM		
Methyl Butyl Ke	lone	< 1.2	1,2		ug/m3	1	1/23/2018 9:01:00 PM		
Methyl Ethyl Ke	lone	< 0.88	0.68		ug/m3	1	1/23/2018 9:01:00 PM		
Methyl Isobutyl	Ketone	< 1.2	1,2		ug/m3	1	1/23/2018 9:01:00 PM		
Methyl tert-buty	i ether	< 0.54	0.54		ug/m3	1	1/23/2018 9:01:00 PM		
Methylene chiol	ride -	0.94	0.52		ug/m3	1	1/23/2018 9:01:00 PM		
o-Xylene		< 0.65	0.65		ug/m3	1	1/23/2018 9:01:00 PM		
Propylene		< 0.26	0.26		ug/m3	1	1/23/2018 9:01:00 PM		
Styrene		< 0.64	0,64		ug/m3	1	1/23/2018 9:01:00 PM		
Tetrachloroethy	lene	< 1.0	1.0		ug/m3	1	1/23/2018 9:01:00 PM		
Tetrahydrofurar	1	< 0.44	0.44		ug/m3	1	1/23/2018 9:01:00 PM		
Toluene 🛩		0.75	0.57		ug/m3	1	1/23/2018 9:01:00 PM		
trans-1,2-Dichic	proethene	< 0.59	0.59		ug/m3	1	1/23/2018 9:01:00 PM		
trans-1,3-Dichlo	propropena	< 0.68	0.68		ug/m3	1	1/23/2018 9:01:00 PM		
Trichloroethene		< 0.16	0.16		ug/m3	1	1/23/2018 9:01:00 PM		
					-				

0.53

0.66

0.10

ug/m3

սց/m3

ug/m3

7**1**5

< 0.53

< 0.66

< 0.10

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

1

1

1

- E Estimated Value above quantitation range
- J Analyte detected below quantitation fimit

.....

ND Not Detected at the Limit of Detection

Page 10 of 12

1/23/2018 9:01:00 PM

1/23/2018 9:01:00 PM

1/23/2018 9:01:00 PM

Vinyl acetate

Vinyl Bromide

Vinyl chiaride

.

CLIENT:	LaBella Associates, P.C.	Client Sample ID: Dupe	. • •:
Lab Order:	C1801059	Tag Number: 1177.268	
Project:	300 Commerce BCP	Collection Date: 1/18/2018	
Lab ID:	C1801059-006A	Matrix: AIR	
· · · ·		land be a fille a constant way was a constant of a constant of the state of the sta	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		тс	-15			Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 9:41:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	1/23/2018 9:41:00 PM
1.1.2-Trichloroethane	< 0.82	0.82		ug/m3	1	1/23/2018 9:41:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 9:41:00 PM
1,1-Dichloroethene	< 0.16	0,16		ug/m3	1	1/23/2018 9:41:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	1/23/2018 9:41:00 PM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	1	1/23/2018 9:41:00 PM
1,2-Dibromoethane	< 1.2	1.2		បg/m3	1	1/23/2016 9:41:00 PM
1,2-Dichiorobenzene	< 0.90	0.90		นg/m3	1	1/23/2018 9:41:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	1/23/2018 9:41:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	1/23/2018 9:41:00 PM
1.3.5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	1/23/2018 9:41:00 PM
1.3-butadiene	< 0.33	0.33		ug/m3	1	1/23/2018 9:41:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 9:41:00 PN
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	1/23/2018 9:41:00 PN
1,4-Dioxane	< 1.1	1,1		ug/m3	1	1/23/2018 9:41:00 PN
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	1/23/2018 9:41:00 PN
4-ethyltoluene	< 0.74	0.74		սց/m3	1	1/23/2018 9:41:00 PM
Acetone -	71	7.1		ug/m3	10	1/24/2018 4:03:00 AM
Allvi chloride	< 0.47	0.47		ug/m3	1	1/23/2018 9:41:00 PM
Benzene -	1.3	0.48		ug/m3	1	1/23/2018 9:41:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	1/23/2018 9:41:00 PN
Bromodichloromethane	< 1.0	1.0		ug/m3	1	1/23/2018 9:41:00 PM
Bromoform	< 1.6	1.6		ug/m3	٦	1/23/2018 9:41:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	1/23/2018 9:41:00 PN
Carbon disulfide	< 0.47	0.47		ug/m3	1	1/23/2018 9:41:00 PM
Carbon tetrachioride -	0.38	0.19		ug/m3	1	1/23/2018 9:41:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	1/23/2018 9:41:00 PM
Chloroethase	< 0.40	0.40		ug/m3	1	1/23/2018 9:41:00 PM
Chloraform	< 0.73	0.73		ug/m3	1	1/23/2018 9:41:00 PM
Chioromethane	< 0.31	0.31		ug/m3	1	1/23/2018 9:41:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	1/23/2018 9:41:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 9:41:00 PM
Cyclohexane -	8.6	5.2		ug/m3	10	1/24/2018 4:03:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	1/23/2018 9:41:00 PM
Ethyl acetate -	4.4	0.54		ug/m3	1	1/23/2018 9:41:00 PN
Ethylbenzene -	0.52	0.65	Ĵ	ug/m3	1	1/23/2018 9:41:00 PN
Freen 11-	1.2	0.84		ug/m3	1	1/23/2018 9:41:00 PN
Freen 113	< 1.1	1.1		ug/m3	1	1/23/2018 9:41:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	1/23/2018 9:41:00 PM

.

Е

3

Results reported are not blank corrected Estimated Value above quantitation range Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Analyte detected in the associated Method Blank l

Ħ Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

** Quantitation Limit

Spike Recovery outside accepted recovery limits \$

Page 11 of 12

13

.

Qualifiers:

<pre>interior in angles in the same set interior interior interio</pre>	an ann an tar an tar ann an tar ann an tar ann an an ann an tar an tar tar an tar ann an tar ann an tar ann an Tar ann an tar an tar an tar ann an tar ann an tar ann an tar ann an	ny fa fa fa an an ann an ann an ann an ann an	
CLIENT:	LaBella Associates, P.C.	Client Sample ID:	
Lab Order:	C1801059	Tag Number:	1177.268
Project:	300 Commerce BCP	Collection Date:	1/18/2018
Lab ID:	C1801059-006A	Matrix:	AIR
· · · · · · · · · · · · · · · · · · ·		ويقومونها والمرور والمرومة المراجعة المراجع والمواجع والمراجع المراجع	· · · · · · · · · · · · · · · · · · ·

Analyses	Result	**Llmit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12 🛥	2.2	0.74		ug/m3	1	1/23/2018 9:41:00 PM
Heptane 🕳	1,1	0.61		ug/m3	1	1/23/2018 9:41:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	1/23/2016 9:41:00 PM
Hexane -	1.9	0.53		ug/m3	1	1/23/2018 9:41:00 PM
Isopropyi alcohol —	1500	290		ug/m3	810	1/24/2018 12:59:00 PM
m&p-Xylene 🖌	1.1	1.3	J	ug/m3	1	1/23/2018 9:41:00 PM
Methyl Bulyl Ketone	< 1,2	1.2		ug/m3	1	1/23/2018 9:41:00 PM
Methyl Ethyl Ketone	4.3	0.88		ug/m3	1	1/23/2018 9:41:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	1/23/2018 9:41:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	1/23/2018 9:41:00 PM
Methylene chloride 🗕	0,94	0.52		ug/m3	1	1/23/2018 9:41:00 PM
o-Xyiene 😁	0.65	0.65		ug/m3	1	1/23/2018 9:41:00 PM
Propylene	< 0.26	0.26		ug/m3	1	1/23/2018 9:41:00 PM
Styrene 🗕	1,4	0.64		ug/m3	1	1/23/2018 9:41:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	1/23/2016 9.41:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	1/23/2018 9:41:00 PM
Toluene 🛩	16	5.7		ug/m3	10	1/24/2018 4:03:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	t	1/23/2018 9:41:00 PM
trans+1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	1/23/2018 9:41:00 PM
Trichloroethene -	0.21	0.16		ug/m3	1	1/23/2018 9:41:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	1/23/2018 9:41:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	1/23/2018 9:41:00 PM
Vinyl chloride	< 0.10	0,10		ug/m3	1	1/23/2018 9:41:00 PM

Qualifiers:	**	Quantitation Limit		
	8	Analyte detected in the associated Method Blank		Е
	н	Holding times for preparation or analysis exceeded		J

- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 12

Date: 12-Feb-18

1

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: Work Order: Project: Test No:	C180105	Associates, P.C. 59 Imerce BCP	Matrix: A
Sample ID		BR4FBZ	
ALCS1UG-012318		109	
ALCSTUG-012418		106	
ALCSIUGD-01231	8	108	
AMB1UG-012318		(77.0)	
AMB1UG-012418		(74.0)	
C1801059-001A	~	85.0	
C1801059-001A M	S	(125)	
C1801059-001A M	SD	(36 *	
C1801059-002A	1	115	
C1801059-003A	/	107	
C1801059-004A	1	115	
C1801059-005A	1	90.0	Management of the second s
C1801059-006A	 	112	

Acronym		Surrogate	QC Limits
BR4FBZ	2	Bromafluorobenzene	70 <u>-130</u> 80-120
* Surr	ogate	recovery outside acceptar	ice limits

Ce	entek Laboratorie gc/ms_ga-gc_c	•	rt				
Tune File : (Tune Time : 2	C:\HPCHEM\1\DA1 23 Jan 2018 1	A\AP012304 ;19 pm	.D				
	ation File : C: 3/18 AP0[230	4 _(BFB)	DATA\AP		(IS1) 61569 36941	338867 (IS2) 242048 145229	273494 (IS3) 195353 1(72)2
File Sa	ample DL	Surrogat	e Recov	ery % I		andard Resp	
AP012305.D AI	LCS1UG-012318	109			66130	262928	209680
AP012306.D AM	4B1UG-012318	(77)			58349	226246	163681
AP012307.D C1	1801059-001A	85 [0.6	12.83	17,57	58423	232526	179447
AP012308.D C1	1801059-001A MS	<u>(125</u>)			62755	255610	214065
AP012309.D C1	1801059-001A MS	D (136)			65221	257568	214279
AP012310.D C1	L801059-002A	115 /0:6	12.83	17.56	61169	253166	201981
AP012311.D C1	L801059-003A	107 /0.6	12.85	17.56	60766	243822	202756
AP012312.D C1	L801059-004A	115 10,6	12.83	17.56	60619	247599	215464
AP012313.D C1	1801059-005A/	90 /0.61		17.57	59237	222419	171936
AP012314.D CI	L801059-006A	112 /0,61		17.56	58361	240370	190476
AP012316.D C1	801059-001A 9X	98 <i>10,</i> 6	1 12.83	17.56	57381	217134	158357
AP012317.D C1	801059-001A 90	x (76) 10.4	1 12.83	17.56	53749	202996	138372
AP012318.D C1	801059-002A 9X	80 10,6	12.82	17.56	55298	212474	153943
AP012319.D C1	1801059-002A 90	x (76) /0.0	/2.82	17.56	51964	199622	137127
AP012320.D C1	801059-003A 9X	···/		17.56	54761	216898	156826
AP012321.D C1	1801059-003A 90	x 90 /0.6	1 12.83	17.56	54813	209042	141152
AP012322.D C1	801059-004A 10			17.56	53504	205394	141466
AP012323.D C1	801059-005A 10	···/	12.83	17.56	53040	200508	135446
AP012324.D C1	801059-006A 10		12.83		54892	208049	142848
AP012326.D AL	CS1UGD-012318	108			57609	219763	175684
 	24hr time cha	 ale t - f	ചാലം നാട്	 lteria			@ @ @ @ b & & @ & @ & @ & @ & @ & @ & @

t - fails 24hr time check * - fails criteria

Created: Mon Feb 12 09:29:24 2018 MSD #1/

.

Centek Laboratories, LLC GC/MS QA-QC Cneck Report

Tune File : C:\HPCHEM\1\DATA\AP012403.D Tune Time : 24 Jan 2018 8:57 am

Daily Calibration File : C:\HPCHEM\l\DATA\AP012403.D

ccv 1/2	4/19 085	7 (1	BFB)	10.6	12.83	17.56	(IS1) 57669	(IS2) 230444	(IS3) 176593
+	ple	DL Su	rog	ate Rec	covery %	Inte	ernal Star	idard Respon	305
AP012404.D ALC		8	106				55550	221976	174698
AP012405.D AME	1UG-012418		74				54650	206952	151769
AP012406.D C18	01059-003A	810X	75	10.6	12.82	17.50	54276	201612	142792
AP012407.D C18	01059-004A	810X	73	16161	12.83	17.56	54277	200061	141236
AP012408.D C18	01059-006A	810X	3	10.6	1 12.83	17.56	49752	186319	135553
t - fails	24hr time (check	* -	fails	criteri	.ā			

Created: Mon Feb 12 09:31:44 2018 MSD #1/

Ì

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.20 NYS

CLIENT: LaBella Associates, P.C.

Page 44 of 306

Work Order: C1801059

Project: 300 Commerce BCP

Sample ID: ALCS1UG-012318	SampType: LCS	TestCo	de: 0.20_NYS	Units: ppbV		Prep Da	te:		RunNo: 13	187	
Client ID: ZZZZZ	Batch ID: R13187	Test	No: TO-15		Analysis Date: 1/23/2018				SeqNo: 153170		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
1,1,1-Trichloroethane	0.9000	0,15	1	0	90.0	70	130				
1,1,2,2-Tetrachloroethane	1.170	0.15	1	0	117	70	130				
1,1,2-Trichloroethane	1.050	0.15	1	0	105	70	130				
1,1-Dichloroethane	1.000	0.15	1	Ð	100	70	130				
1,1-Dichloroethene	0.7200	0.040	1	0	72.0	70	130				
1,2,4-Trichlorobenzene	1.110	0.15	1	D	111	70	130				
1,2,4-Trimethylbenzene	1.100	0.15	1	0	110	70	130				
1,2-Dibromoethane	1.090	0.15	1	0	109	70	130				
1,2-Dichlorobenzene	1.120	0.15	1	0	112	70	130				
1,2-Dichloroethane	0.9400	0.15	1	0	94.0	70	130				
1,2-Dichloropropane	1.120	0.15	1	O	112	70	130				
1,3,5-Trimethylbenzene	1.190	0.15	1	0	119	70	130				
1,3-butadiene	0.9000	0.15	1	0	90.0	70	130				
1,3-Dichlorobenzene	1.080	0.15	1	0	168	70	130				
1,4-Dichlorobenzene	1,120	0.15	1	0	112	70	130				
1,4-Dioxane	1,100	0.30	1	0	110	70	130				
2.2.4-trimethylpentane	1,120	0.15	ť	O	112	70	130				
4-ethyltoluene	1.110	0.15	i	Û	111	70	130				
Acetone	1.040	0.30	1	0	104	70	130				
Allyl chloride	1.000	0.15	1	0	100	70	130				
Benzene	1.050	0.15	1	0	105	70	130				
Benzyl chloride	1.070	0.15	1	o	107	70	130				
Bromodichloromethane	0.9400	0.15	1	0	9 4.0	70	130				
Bromotorm	0.9600	0.15	1	¢.	95.0	70	130				
Bromomelhane	0.8400	0.15	1	0	84.0	7D	130				

.

1

Results reported are not blank corrected Analyte detected below quantitation limit E Estimated Value above quantitation range ND Not Detected at the Limit of Detection H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Page 45 of 306

300 Commerce BCP Project:

TestCode: 0.20_NYS

		de: 0.20_NYS	Units: ppbV		Prep Da	1 e :		RunNo: 13	187	
Batch ID: R13187	Test	No: TO-15		L	Analysis Da	ie: 1/23/20	018	SeqNo: 15	3170	
Result	PQL	SPK value	SPK Ref Val	%REC	YowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1.320	0.15	1	0	132	70	130	135			s
0.7900	0.030	1	O	79.0	70	130				-
1.070	0.15	1	0	107	70	130				
0.8700	0.15	1	0	87.0	70	130				
0.9300	0.15	1	O	93.0	70	130				
0.8700	0.15	1	0	87.0	70	130				
0.9300	0.040	1	0	93.0	70	130				
1.050	0.15	1	0	105	70	130				
1.130	0.15	1	0	113	70					
0.9600	0.15	1	0	96.0	70					
1.110	0.15	1	0	111	70	130				
1.080	0.15	1	0	108	70	130				
0.8400	0.15	1	0	84.0	70	130				
0.8700	0.15	1	0	87.0	70	130				
0.8900	0.15	1	0	89.0	70	130				
0.9200	0.15	1	0	92.0	70	130				
1.120	0.15	1	0	112	70	130				
1.000	0.15	1	0	100	70	130				
1.150	0.15	1	0	115	70	130				
0.8800	0.15	1	0	88.0	70	130				
2.320	0.30	2	0	116	70					
1.010	0.30	1	0	101	70					
1.100	0.30	1	Ð	110	70					
1.110	0.30	1	0	111	70					
0.9800	0.15	1	0	98.0						
0.9800	0.15	1	0	98.0						
1.180	0,15	1	0	118						
1.180	0.15	1	D	118	70					
1.120	0.15	1	0							
0.9900	0.15	1	Ð	99.0	70	130				
1.110	0.15	1	Ð	111	70	130				
	Result 1.320 0.7900 1.070 0.8700 0.9300 0.8700 0.9300 1.050 1.130 0.9600 1.110 1.080 0.8700 0.9600 1.110 1.080 0.8400 0.8700 0.8400 0.8400 0.8700 0.8800 0.9200 1.120 1.000 1.150 0.8800 2.320 1.010 1.100 1.100 1.110 0.9800 0.9800 1.180 1.180 1.120 0.9900	ResultPQL1.3200.150.79000.0301.0700.150.87000.150.93000.150.93000.0401.0600.151.1300.150.96000.151.1100.151.0800.151.1200.150.87000.151.1300.151.1300.151.1300.151.1500.151.1600.151.1200.151.1200.151.1500.151.1500.151.1500.150.88000.150.88000.151.1500.151.1800.151.1800.151.1800.151.1800.151.1200.151.1800.151.1800.151.1800.151.1200.150.99000.15	ResultPQLSPK value1.3200.1510.79000.03011.0700.1510.87000.1510.87000.1510.93000.04011.0500.1510.93000.04011.0500.1510.96000.1511.1300.1511.1300.1510.96000.1510.96000.1510.84000.1510.84000.1510.84000.1510.84000.1510.84000.1510.84000.1510.84000.1510.84000.1510.92000.1510.92000.1511.1200.1510.98000.1510.98000.1510.98000.1511.1800.1511.1800.1511.1800.1510.99000.151	Result PQL SPK value SPK Ref Val 1.320 0.15 1 0 0.7900 0.030 1 0 1.070 0.15 1 0 0.8700 0.15 1 0 0.8700 0.15 1 0 0.8700 0.15 1 0 0.8700 0.15 1 0 0.8700 0.15 1 0 0.9300 0.040 1 0 0.9300 0.155 1 0 1.050 0.15 1 0 0.93600 0.15 1 0 0.95600 0.15 1 0 0.8400 0.15 1 0 0.8400 0.15 1 0 0.8800 0.15 1 0 1.120 0.15 1 0 1.380 0.15 1 0 0.8800 0.15 1 </td <td>Result PQL SPK value SPK Ref Val %REC 1.320 0.15 1 0 132 / 0.7900 0.030 1 0 79.0 1.070 0.15 1 0 107 0.8700 0.15 1 0 87.0 0.9300 0.15 1 0 93.0 0.8700 0.15 1 0 93.0 0.8700 0.15 1 0 93.0 0.8700 0.15 1 0 87.0 0.9300 0.040 1 0 93.0 0.8700 0.15 1 0 113 0.9600 0.15 1 0 114 1.080 0.15 1 0 108 0.8400 0.15 1 0 89.0 0.8900 0.15 1 0 112 1.060 0.15 1 0 112 1.060</td> <td>Result PQL SPK value SPK Ref Vat %REC withink 1.320 0.15 1 0 132 70 0.7900 0.030 1 0 79.0 70 1.070 0.15 1 0 107 70 0.8700 0.15 1 0 87.0 70 0.9300 0.15 1 0 93.0 70 0.8700 0.15 1 0 87.0 70 0.9300 0.15 1 0 87.0 70 0.9300 0.15 1 0 87.0 70 0.9300 0.15 1 0 113 70 0.9600 0.15 1 0 111 70 1.080 0.15 1 0 84.0 70 0.8400 0.15 1 0 87.0 70 0.8900 0.15 1 0 89.0 70 <td>Result PQL SPK value SPK Ref Val %/REC towt.imit HighLimit 1.320 0.15 1 0 132 70 136 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 0.9300 0.040 1 0 93.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 113 70 130 1.100 0.15 1 0 111 70 130 1.100 0.15 1 0 111 70 130 0.9600<!--</td--><td>Result PQL SPK value SPK Ref Vat %REC Low Limit High Limit RPD Ref Val 1.320 0.15 1 0 132 70 136 790 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 130 130 130 1.060 0.15 1 0 84.0 70</td><td>Pol SPK value SPK Ref Vat %REC Continit HighLinit RPD Ref Val %RPD 1.320 0.15 1 0 132 70 136 %RPD 0.7900 0.030 1 0 79.0 70 130 0.7900 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 93.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.050 0.15 1 0 105 70 130 1.050 0.15 1 0 105 70 130 0.8600 0.15 1 0 84.0 70 130 0.8400 0.15 1 0 87.0 70 <td< td=""><td>Result PQL SPK value SPK Ref Val %REC Value HighLinit RPD Ref Val %RPD RPDLinit 1.320 0.15 1 0 132 70 130 %RPD RPDLinit %RPD RPDLinit 0.7900 0.030 0.15 1 0 70 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 13</td></td<></td></td></td>	Result PQL SPK value SPK Ref Val %REC 1.320 0.15 1 0 132 / 0.7900 0.030 1 0 79.0 1.070 0.15 1 0 107 0.8700 0.15 1 0 87.0 0.9300 0.15 1 0 93.0 0.8700 0.15 1 0 93.0 0.8700 0.15 1 0 93.0 0.8700 0.15 1 0 87.0 0.9300 0.040 1 0 93.0 0.8700 0.15 1 0 113 0.9600 0.15 1 0 114 1.080 0.15 1 0 108 0.8400 0.15 1 0 89.0 0.8900 0.15 1 0 112 1.060 0.15 1 0 112 1.060	Result PQL SPK value SPK Ref Vat %REC withink 1.320 0.15 1 0 132 70 0.7900 0.030 1 0 79.0 70 1.070 0.15 1 0 107 70 0.8700 0.15 1 0 87.0 70 0.9300 0.15 1 0 93.0 70 0.8700 0.15 1 0 87.0 70 0.9300 0.15 1 0 87.0 70 0.9300 0.15 1 0 87.0 70 0.9300 0.15 1 0 113 70 0.9600 0.15 1 0 111 70 1.080 0.15 1 0 84.0 70 0.8400 0.15 1 0 87.0 70 0.8900 0.15 1 0 89.0 70 <td>Result PQL SPK value SPK Ref Val %/REC towt.imit HighLimit 1.320 0.15 1 0 132 70 136 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 0.9300 0.040 1 0 93.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 113 70 130 1.100 0.15 1 0 111 70 130 1.100 0.15 1 0 111 70 130 0.9600<!--</td--><td>Result PQL SPK value SPK Ref Vat %REC Low Limit High Limit RPD Ref Val 1.320 0.15 1 0 132 70 136 790 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 130 130 130 1.060 0.15 1 0 84.0 70</td><td>Pol SPK value SPK Ref Vat %REC Continit HighLinit RPD Ref Val %RPD 1.320 0.15 1 0 132 70 136 %RPD 0.7900 0.030 1 0 79.0 70 130 0.7900 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 93.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.050 0.15 1 0 105 70 130 1.050 0.15 1 0 105 70 130 0.8600 0.15 1 0 84.0 70 130 0.8400 0.15 1 0 87.0 70 <td< td=""><td>Result PQL SPK value SPK Ref Val %REC Value HighLinit RPD Ref Val %RPD RPDLinit 1.320 0.15 1 0 132 70 130 %RPD RPDLinit %RPD RPDLinit 0.7900 0.030 0.15 1 0 70 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 13</td></td<></td></td>	Result PQL SPK value SPK Ref Val %/REC towt.imit HighLimit 1.320 0.15 1 0 132 70 136 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 0.9300 0.040 1 0 93.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 113 70 130 1.100 0.15 1 0 111 70 130 1.100 0.15 1 0 111 70 130 0.9600 </td <td>Result PQL SPK value SPK Ref Vat %REC Low Limit High Limit RPD Ref Val 1.320 0.15 1 0 132 70 136 790 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 130 130 130 1.060 0.15 1 0 84.0 70</td> <td>Pol SPK value SPK Ref Vat %REC Continit HighLinit RPD Ref Val %RPD 1.320 0.15 1 0 132 70 136 %RPD 0.7900 0.030 1 0 79.0 70 130 0.7900 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 93.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.050 0.15 1 0 105 70 130 1.050 0.15 1 0 105 70 130 0.8600 0.15 1 0 84.0 70 130 0.8400 0.15 1 0 87.0 70 <td< td=""><td>Result PQL SPK value SPK Ref Val %REC Value HighLinit RPD Ref Val %RPD RPDLinit 1.320 0.15 1 0 132 70 130 %RPD RPDLinit %RPD RPDLinit 0.7900 0.030 0.15 1 0 70 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 13</td></td<></td>	Result PQL SPK value SPK Ref Vat %REC Low Limit High Limit RPD Ref Val 1.320 0.15 1 0 132 70 136 790 0.7900 0.030 1 0 79.0 70 130 1.070 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.9300 0.040 1 0 93.0 70 130 1.050 0.15 1 0 113 70 130 1.050 0.15 1 0 130 130 130 1.060 0.15 1 0 84.0 70	Pol SPK value SPK Ref Vat %REC Continit HighLinit RPD Ref Val %RPD 1.320 0.15 1 0 132 70 136 %RPD 0.7900 0.030 1 0 79.0 70 130 0.7900 0.15 1 0 107 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 93.0 70 130 0.8700 0.15 1 0 87.0 70 130 0.8700 0.15 1 0 87.0 70 130 1.050 0.15 1 0 105 70 130 1.050 0.15 1 0 105 70 130 0.8600 0.15 1 0 84.0 70 130 0.8400 0.15 1 0 87.0 70 <td< td=""><td>Result PQL SPK value SPK Ref Val %REC Value HighLinit RPD Ref Val %RPD RPDLinit 1.320 0.15 1 0 132 70 130 %RPD RPDLinit %RPD RPDLinit 0.7900 0.030 0.15 1 0 70 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 13</td></td<>	Result PQL SPK value SPK Ref Val %REC Value HighLinit RPD Ref Val %RPD RPDLinit 1.320 0.15 1 0 132 70 130 %RPD RPDLinit %RPD RPDLinit 0.7900 0.030 0.15 1 0 70 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 13

J

Analyte detected below quantitation limit

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded H RPD outside accepted recovery limits R

S Spike Recovery outside accepted recovery limits

Page 2 of 5

a na tao amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o

CLIENT: LaBella Associates. P.C.

C1801059 Work Order:

300 Commerce BCP **Project:**

TestCode: 0.20 NYS

-											
Semple ID: ALCS1UG-012318	SampType: LCS	TestCo	de: 0.20_NYS	Units: ppbV		Prep Da	le:		RunNo: 13	187	
Client ID: ZZZZZ	Batch ID: R13187	Test	No: TO-15			Analysis Da	te: 1/23/20)18	SegNo: 15	3170	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
Тошеле	1.100	0.15	1	0	110 🗸	70	130				
trans-1,2-Dichloroethene	1.090	0.15	1	0	109	70	130				
trans-1,3-Dichloropropene	1.000	0.15	1	0	100	70	130				
Trichloroethene	0.8700	0.030	1	D	87.0	70	130				
Vinyl acetale	1,960	0.15	1	0	106	70	130				
Vinyl Bromide	0.8900	. 0.15	1	O	89.0	70	130				
Vinyl chloride	0.8400	0.040	1	0	84.0	70	130				
Sample ID: ALCS1UG-012418	SampType: LCS	TesiCo	de: 0.20_NYS	Units: ppbV		Prep Da	te:		RunNo: 13	189	
Client ID: ZZZZZ	Batch ID: R13189	Test	No: TO-15		Analysis Date: 1/24/2018			118	SeqNo: 153195		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9900	0.15	1	0	99.0	70	130				
1,1,2,2-Tetrachloroethane	1.300	0.15	1	0	130	70	130				
1,1,2-Trichloroethane	1.170	0.15	t	0	117	70	130				
1,1-Dichloroethane	1,130	0.15	1	0	113	70	130				
1,1-Dichloroethene	0.9200	0.040	1	0	92.0	70	130				
1,2,4-Trichlorobenzene	0.9600	0.15	1	0	96.0	70	130				
1,2,4-Trimethylbenzene	1.060	0.15	1	0	106	70	130				
1,2-Dibromoethane	1.170	0.15	1	0	117	70	130				
1,2-Dichlorobenzene	1.160	0.15	1	0	116	70	130				
1,2-Dichloroethane	1,010	0.15	1	0	101	70	130				
1,2-Dichloropropane	1.230	0.15	1	0	123	70	130				
1,3,5-Trimethylbenzene	1,250	0.15	1	0	125	70	130				
1,3-butadiene	1.100	0.15	1	0	110	70	130				
1,3-Dichlorobenzene	1,140	0.15	1	0	114	70	130				
1.4-Dichlorobenzene	1.160	0.15	1	0	116	70	130				

Qualifiers:

1,4-Dioxane

4-ethyltoluene

2,2,4-trimethylpentane

Results reported are not blank corrected

Estimated Value above quantitation range Г

0

0

e

87.0

123

115

1

1

1

70

70

70

130

130

130

0.30

0.15

0.15

ND Not Detected at the Limit of Detection

н Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

Analyte detected below quantitation limit J

Spike Recovery outside accepted recovery limits S

0.8700

1.230

1.150

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Project: 300 Commerce BCP

Sample ID: ALCS1UG-012418	SampType: LCS	TestCo	de: 0.20_NYS	Units: ppbV		Prep Dat	e;	RunNo: 131	189		
Client ID: ZZZZZ	Batch ID: R13189	Test	No: TO-15		Analysis Date: 1/24/2018			18	SeqNo: 153195		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Acetone	1.020	0.30	1	0	102	70	130			<u></u>	
Allyl chloride	1.140	0.15	1	0	114	70	130				
Benzene	1.140	0.15	1	0	114	70	130				
Senzyl chloride	1.010	0.15	1	0	101	70	130				
Bromodichloromethane	1.059	0.15	1	0	105	70	130				
Bromoform	1.060	0,15	1	0	106	70	130				
Bromomethane	1.020	0.15	1	0	102	70	130				
Carbon disulfide	1.400	0.15	1	0	(40)	70	130				S
Carbon telrachloride	0.8800	0.030	1	0	88.0	70	130				_
Chiorobenzene	1.170	0.15	1	٥	117	70	130				
Chloroelhane	1.000	0.15	1	0	100	70	130				
Chloroform	1.060	0.15	1	0	106	70	130				
Chloromethane	1.150	0.15	1	0	115	70	130				
cis-1,2-Dichloroethene	1.030	0.040	1	0	103	70	130				
cis-1,3-Dichloropropene	1.110	0.15	1	0	111	70	130				
Cyclohexane	1.240	0.15	1	0	124	70	130				
Dibromochloromethane	1.060	0.15	1	0	106	70	130				
Ethyl acetate	1.120	0.15	1	0	112	70	130				
Ethylbenzene	1.160	0.15	1	D	116	70	130				
Freen 11	0.9700	0.15	1	0	97.0	70	130				
Freon 113	1.030	0.15	1	0	103	70	130				
Freon 114	1,100	0.15	1	0	110	70	130				
Freen 12	1.080	0.15	1	0	108	70	130				
Heptane	1.260	0.15	1	0	126	70	130				
Hexachloro-1,3-butadiene	0.9600	0.15	1	0	96.0	70	130				
Hexane	1.420	0.15	1	0	(142)	70	130				S
Isopropyl alcohol	0.9100	0.15	1	o	91.0	70	130				-
m&p-Xylene	2.460	0.30	2	0	123	70	130				
Methyl Bulyl Ketone	1,120	0.30	1	0	112	70	130				
Methyl Elhyl Ketone	1.090	0.30	1	0	109	70	130				
Methyl Isobutyl Ketone	0.9400	0.30	1	0	94.0	70	130				

ND Not Detected at the Limit of Detection

Centek Laboratories, LLC

Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

RPD outside accepted recovery limits

R

TestCode: 0.20_NYS

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Project: 300 Commerce BCP

Page 48 of 306

TestCode: 0.20_NYS

Sample ID: ALCS1UG-012418	SampType: LCS	TesiCo	de: 0.20_NYS	Units: ppbV		Prep Dat	le:		RunNo: 13	189	
Client ID: 22222	Batch ID: R13189	Test	No: TO-15		j	Analysis Da	le: 1/24/20	18	SeqNo: 153195		
Analyte	Result	PQL	SPK value	SPK Ref Vat	%REC	LowLimit	HighLimit	RPD Ref Vəl	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	1.030	0.15	1	0	103 J	70	130				
Methylene chloride	1.090	0.15	1	0	109	70	130				
o-Xylene	1,300	0.15	1	0	130	70	130				
Propylene	1.260	0.15	1	0	126	70	130				
Styrene	1.200	0.15	1	0	120	70	130				
Tetrachloroethylene	1,110	0.15	1	0	111	70	130				
Tetrahydrofuran	1.160	0.15	1	0	116	70	130				
Toluene	1.230	0.15	1	0	123	70	130				
trans-1,2-Dichloroethene	1.230	0.15	1	0	123	70	130				
trans-1,3-Dichloropropene	1.030	0.15	1	0	103	70	130				
Trichloroethene	0.9600	0.030	1	0	96.0	70	130				
Vinyl acelate	1.110	0.15	1	0	111	70	130				
Vinyl Bromide	1.040	0.15	1	0	104	70	130				
Vinyl chloride	1.050	0.040	1	0	105	70	130				

Qualifiers:

- . Results reported are not blank corrected
- J Analyte detected below quantitation limit
- S Spike Recovery outside accepted recovery limits
- $E_{\rm c}$. Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.20_NYS

CLIENT: LaBella Associates, P.C. Work Order:

Page 49 of 306

C1801059

300 Commerce BCP Project:

Sample ID: ALCS1UGD-012318	SampType: LCSD	TestCo	de: 0.20_NYS	Units: ppbV		Prep Dat	le:		RunNo: 13	187	
Client ID: ZZZZZ	Batch ID: R13187	Testi	No: T O-15			Analysis Dat	le: 1/24/20)18	SegNo: 15	3171	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.010	0.15	1	Û	101	70	130	0.9	11.5	30	
1,1,2,2-Tetrachloroethane	1.270	0.15	1	Û	127	70	130	1.17	8.20	30	
1,1,2-Trichloroethane	1.160	0.15	1	0	116	70	130	1.05	9.95	30	
1,1-Dichloroethane	1.060	0.15	1	0	106	70	130	1	5.83	30	
1,1-Dichloroethene	0.7700	0.040	1	0	77.0	70	130	0.72	6.71	30	
1,2,4-Trichforobenzene	0.8800	0.15	1	0	88.0	70	130	1.11	23.1	30	
1,2,4-Trimethylbenzene	1.050	0.15	1	0	105	70	130	1.1	4.65	30	
1,2-Dibromoethane	1.190	0.15	1	Û	119	70	130	1.09	8.77	30	
1,2-Dichlorobenzene	1,150	0.15	1	0	115	70	130	1.12	2.64	30	
1,2-Dichloroethane	0.9900	0.15	1	0	99.0	70	130	0.94	5.18	30	
1,2-Dichloropropane	1.250	0.15	1	0	125	70	130	1.12	11.0	30	
1,3,5-Trimethylbenzene	1.230	0.15	1	0	123	70	130	1.19	3.31	30	
1.3-butadiene	0.9200	0.15	1	0	92.0	70	130	0.9	2.20	30	
1,3-Dichlorobenzene	1,120	0.15	1	0	112	70	130	1.08	3.64	30	
1,4-Dichlorobenzene	1.160	0.15	1	0	116	70	130	1.12	3.51	30	
1,4-Dioxane	0.7700	0.30	1	Đ	77.0	70	130	1.1	35.3	30	R
2,2,4-trimethylpentane	1,240	0.15	1	0	124	70	130	1.12	10.2	30	
4-ethylloluene	1.130	0.15	1	0	113	70	130	1,11	1.79	30	
Acelone	0.9800	0.30	1	0	98.0	70	130	1.04	5.94	30	
Allyl chloride	1.070	0.15	1	0	107	70	130	1	6.76	30	
Benzene	1,150	0.15	1	0	115	70	130	1.05	9.09	30	
Benzyl chloride	1.020	0.15	1	٥	102	70	130	1.07	4.78	-30	
Bromodichloromethane	1.060	0.15	1	0	105	70	130	0.94	12.0	30	
Bromoform	1.060	0.15	1	0	106	70	130	0.96	9.90	30	
Bromomethane	0.9100	0.15	1	0	91.0	70	130	0.84	8.00	30	

1

Results reported are not blank corrected Analyte detected below quantitation limit E Estimated Value above quantitation range

ND Not Detected at the Limit of Extection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

Page 1 of 3

LaBella Associates, P.C. CLIENT:

Work Order: C1801059

300 Commerce BCP Project:

TestCode: 0.20 NYS

Sample ID: ALCS1UGD-012318	SampType: LCSD	TestCoo	ie: 0.20_NYS	Units: ppbV		Prep Da	te:		RunNo: 131	187	
Client iD: ZZZZZ	Batch ID: R13187	Test	lo: TO-15			Analysis Da	ie: 1/24/20	18	SeqNo: 15:	3171	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	1.310	0.15	1	0	131	70	130	1.32	0.760	30	s
Carbon letrachloride	0.9000	0.030	1	0	90.0	70	130	0.79	13.0	30	
Chlorobenzene	1.160	0.15	1	0	116	70	130	1.07	8.07	30	
Chloroethane	0.8700	0.15	1	0	87.0	70	130	0.87	0	30	
Chieroform	1.020	0,15	1	Û	102	70	130	0.93	9.23	30	
Chioromethane	0.8800	0.15	1	0	88.0	70	130	0.87	1.14	30	
cis-1,2-Dichloroethene	1.020	0.040	1	Ó	102	70	130	0.93	9.23	30	
cis-1,3-Dichloropropene	1.150	0.15	1	0	115	70	130	1.05	9.09	30	
Cyclohexane	1.270	0.15	1	Ģ	127	70	130	1.13	11.7	30	
Dibromochloromethane	1.070	0.15	1	0	107	70	130	0.96	10.8	30	
Ethyl acetale	1.080	0.15	1	0	108	70	130	1.11	2.74	30	
Ethylbenzene	1.140	0.15	1	0	114	70	130	1.08	5.41	30	
Freon 11	0.9200	0.15	1	0	92.0	70	130	0.84	9.09	30	
Freon 113	0.9300	0.15	1	Q	93.0	70	130	0.87	6.67	30	
Freon 114	0.9100	0.15	1	0	91.0	70	130	0.89	2.22	30	
Freon 12	0.9500	0.15	1	0	95.0	70	130	0.92	3.21	30	
Heptane	1.260	0.15	1	0	126	70	130	1.12	11.8	30	
Mexachloro-1,3-butadiene	0.9100	0.15	1	0	91.0	70	130	1	9.42	30	
Hexane	1.230	0.15	1	Û	123	70	130	1.15	6.72	30	
isopropyl alcohol	0.8100	0.15	1	0	81.0	70	130	0.88	8.28	30	
m&p-Xylene	2.490	0.30	2	0	124	70	130	2.32	7.07	30	
Methyl Butyl Ketone	0.5300	0.30	1	0	(53.0)	70	130	1.01	62.3	30	SR
Methyl Ethyl Ketone	1.010	0.30	1	0	101	70	130	1.1	8.53	30	
Methyl Isobutyl Kelone	0.6800	0.30	1	O	68.0	70	130	1.11	48.0	30	SR
Methyl tert-bulyl ether	0.9700	0.15	1	Q	97.0	70	130	0.98	1.03	30	
Methylene chloride	1.020	0.15	1	0	102	70	130	0.98	4.00	30	
o-Xylene	1.270	0.15	1	0	127	70	130	1.18	7.35	30	
Propylene	1.130	0.15	1	0	113	70	130	1.18	4.33	30	
Styrene	1.150	0.15	1	0	115	70	130	1,12	2.64	30	
Tetrachtoroethylene	1.110	0.15	1	Đ	111	70	130	0.99	11.4	30	
Tetrahydrofuran	1,100	0.15	1	0	110	70	130	1.11	0.905	30	

Qualifiers:

1

Page 50 of 306

Results reported are not blank corrected Analyte detected below quantitation limit E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded [-]

R RPD outside accepted incovery limits

s Spike Recovery outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Project: 300 Commerce BCP

TestCode: 0.20_NYS

Sample ID: ALCS1UGD-012318 Client ID: ZZZZZ	SampType: LCSD Batch ID: R13187	2 4				Prep Da Analysis Da		18	RunNo: 13187 SeqNo: 153171			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Toluene	1.190	0.15	1	0	119	70	130	1.1	7.86	30		
trans-1,2-Dichloroethene	1,190	0.15	1	0	119	70	130	1.09	8.77	30		
trans-1,3-Dichloropropene	1.100	0.15	1	0	110	70	130	1	9.52	30		
Trichloroethene	0.9700	0.030	1	0	97.0	70	130	0.87	10.9	30		
Vinyl acetate	1.110	0.15	1	0	111	70	130	1.06	4.61	30		
Vinyl Bromide	0.9600	0.15	1	0	96.0	70	130	0.89	7.57	30		
Vinyl chloride	0.8300	0.040	1	0	83.0	70	130	D.84	1.20	30		

Page 51 of 306

Qualifiers:

- Results reported are not blank corrected
- J Analyte detected below quantitation limit
- S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

- H Holding times for preparation or analysis exceeded
- 8 RPD outside accepted recovery limits

.....

Page 3 of 3

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT: LaBella Associates, P.C. Work Order: C1801059

Page 52 of 306

Project: 300 Commerce BCP

TestCode: 0.20_NYS

Sample ID: AMB1UG-012318	SampType: MBLK	TestCo	de: 0.20_NYS	Units: ppbV		Prep Da	te:		RunNo: 13	187	
Client ID; ZZZZZ	Batch ID: R13187	Test	No: TO-15			Analysis Da	te: 1/23/20	118	SeqNo: 15	3169	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPÐLimit	Quai
1,1,1-Trichloroethane	< 0.15	0.15									
1,1,2,2-Tetrachloroethane	< 0.15	0.15									
1,1,2-Trichloroethane	< 0.15	0.15									
1.1-Dichloroethane	< 0.15	0.15									
1,1-Dichioroethene	< 0.040	0.040									
1,2,4-Trichlorobenzene	< 0.15	0.15									
1,2,4-Trimethylbenzene	< 0.15	0.15									
1,2-Dibromoethane	< 0.15	0.15									
1,2-Dichlorobenzene	< 0.15	0.15									
1,2-Dichloroethane	< 0.15	0.15									
1,2-Dichloropropane	< 0.15	0.15									
1,3,5-Trimethylbenzene	< 0.15	0.15									
1,3-buladiene	< 0.15	0.15									
1,3-Dichlorobenzene	< 0.15	0.15									
1,4-Dichlorobenzene	< 0.15	0.15									
1.4-Dioxane	< 0.30	0.30									
2,2,4-trimethylpenlane	< 0.15	0.15									
4-ethyltoluene	< 0.15	0.15									
Acetone	< 0.30	0.30									
Allyl chloride	< 0,15	0.15									
Benzene	< 0.15	0.15									
Benzyl chloride	< 0.15	0.15									
Bromodichloromethane	< 0.15	0,15									
Bromoform	< 0.15	0.15									
Bromomethane	< 0.15	0.15									

Analyte detected below quantitation limit

Estimated Value above quantitation ND Not Detected at the Limit of Detection

R RPD outside accepted recovery limits

Project: 300 Comm	erce BCP							TestCode: 0	.20_NYS		
Sample ID: AMB1UG-012318	SampType: MBLK	TestCo	de: 0.20_NYS	Units: ppbV		Ргер D.	ate:		RunNo: 131	87	
Client ID: ZZZZZ	Batch ID: R13187	Test	No: TO-15			Analysis D	ate: 1/23/	2018	SeqNo: 153		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLim	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	< 0.15	0.15								to share	Qua
Carbon tetrachloride	< 0.030	0.030									
Chlorobenzene	< 0.15	0.15									
Chloroelhane	< 0.15	0.15									
Chloroform	< 0.15	0.15									
Chloromethane	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.040	0.040									
:is-1,3-Dichloropropene	< 0.15	0.15									
Cyclohexane	< 0.15	0.15									
Dibromochloromethane	< 0.15	0.15									
Elhyl acetate	< 0.15	0.15									
Elhyibenzene	< 0.15	0.15									
Freon 11	< 0.15	0.15									
Freon 113	< 0.15	0.15									
reon 114	< 0.15	0.15									
Freen 12	< 0.15	0.15									
Heplane	< 0.15	0.1 5									
iexachloro-1,3-butadiene	< 0.15	0.15									
fexane	< 0.15	0.15									
sopropyl alcohol	< 0.15	0.15									
n&p-Xylene	< 0.30	0.30									
Wethyl Butyl Ketone	< 0.30	0.30									
vlethył Ethyl Ketone	< 0.30	0.30									
Methyl Isobutyl Ketone	< 0.30	0.30									
Methyl tert-bulyl ether	< 0.15	0.15									
lethylene chloride	< 0.15	0.15									
-Xylene	< 0.15	0.15									
ropylene	< 0.15	0.15									
Styrene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
Tetrahydroluran	< 0.15	0.15									

S Spike Recovery outside accepted recovery límits

Page 53 of 306

s sector the term which is the state of the sector of the se

CLIENT: LaBella Associates, P.C. C1801059 Work Order: TestCode: 0.20 NYS 300 Commerce BCP Project: TestCode: 0.20_NYS Units: ppbV Prep Date: RunNo: 13187 Sample ID: AMB1UG-012318 SampType: MSLK Analysis Date: 1/23/2018 SeqNo: 153169 Batch ID: R13187 TestNo: TO-15 Client ID: ZZZZZ %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual SPK value SPK Ref Val POL Result Analyte < 0.15 0.15 Toluene 0.15 < 0.15 trans-1.2-Dichloroethene < 0.15 0.15 trans-1.3-Dichloropropene 0.030 < 0.030 Trichloroethene < 0.15 0.15 Vinyl acetate < D.15 0.15 Vinyl Bromide < 0.040 0.040 Vinyl chloride Preo Date: RunNo: 13189 TestCode: 0.20_NYS Units: ppbV Sample ID: AMB1UG-012418 SampType: MBLK Analysis Date: 1/24/2018 SeqNo: 153193 Batch ID: R13189 TestNo: TO-15 Client ID: ZZZZZ PQL SPK value SPK Rel Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Result Analyte 0.15 < 0.15 1,1,1-Trichloroethane < 0.15 0.15 1,1,2,2-Tetrachioroethane < 0.15 0.15 1,1,2-Trichloroethane < 0.15 0.15 1,1-Dichloroethane 0.040 < 0.040 1.1-Dichloroethene 0.15 < 0.15 1.2.4-Trichlorobenzene < 0.15 0.15 1,2,4-TrimeInvibenzene 0.15 < 0.15 1,2-Dibromoethane 0.15 < 0.15 1,2-Dichlorobenzene < 0.15 0.15 1.2-Dichloroethane 0.15 < 0.15 1,2-Dichloropropane 0.15 < 0.15 1,3,5-Trimethylbenzene < 0.15 0.15 1.3-butadiene < 0.15 0.15 1.3-Dichlorobenzene 0.15 < 0.15 1,4-Dichlorobenzene 0.30 < 0.30 1 4-Divixane 0.15 < 0.15 2,2,4-trimethylpentane 0.15 < 0.15 4-ethyltoluene

Qualifiers:

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit £

Spike Recovery outside accepted recovery limits Ş.

- ND Not Detected at the Limit of Detection
- Holding times for preparation or analysis exceeded н
- R RPD outside accepted recovery limits

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Project: 300 Commerce BCP

Page 55 of 306

TestCode: 0.20_NYS

Sample ID: AM81UG-012418	SampType: MBLK	TestCoo	ie: 0.20_NYS	Units: ppbV		Prep Da	le:		RunNo: 13	189	
Client ID: ZZZZZ	Balch ID: R13189	Testh	io: TO-15			Analysis Da	le: 1/24/20)18	SeqNo: 15	3193	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	< 0.30 v	0.30									· · · · · · · · · · · · · · · · · · ·
Aliyi chloride	< 0.15	0.15									
Benzene	< 0.15	0.15									
Benzyl chloride	< 0.15	0.15									
Bromodichloromethane	< 0.15	0,15									
8 romoform	< 0.15	0.15									
Bromomethane	< 0.15	0.15									
Carbon disulfide	< 0.15	0.15									
Carbon tetrachloride	< 0.030	0.030									
Chlorobenzene	< 0.15	0.15									
Chloroethane	< 0.15	0.15									
Chloroform	< 0,15	0.15									
Chloromethane	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.040	0.040									
cis-1,3-Dichloropropene	< 0.15	0.15									
Cyclohexane	< 0.15	0.15									
Dibromochloromethane	< 0.15	0.15									
Ethyl acetate	< 0.15	D. 15									
Ethylbenzene	< 0.15	0.15									
Freen 11	< 0.15	0,15									
Freon 113	< 0.15	0.15									
Freon 114	< 0.15	D.15									
Freen 12	< 0.15	0.15									
Heplane	< 0.15	0.15									
Hexachloro-1,3-butadiene	< 0.15	0.15									
Hexane	< 0.15	0,15									
isopropyl alcohol	< 0.15	0.15									
m&p-Xylene	< 0.30	0.30									
Methyl Butyl Kelone	< 0.30	0.30									
Methyl Ethyl Ketone	< 0.30	0.30									
Methyl Isobutyl Kelone	< 0.30	0.30									

J

iot plani Analyte detected below quantitation limit

ated Value above quantitation range

ND Not Detected at the Limit of Detection

RPD outside accepted recovery limits R

S Spike Recovery outside accepted recovery limits

CLIENT: LaBella Associates, P.C.

C1801059 Work Order:

300 Commerce BCP Project:

Page 56 of 306

TestCode: 0.20_NYS

Sample ID: AMB1UG-012418 Client ID: ZZZZZ	SampType: MBLK Batch ID: R13189	TestCode: 0 TestNo: 1	-	Units: ppbV		Prep Da Analysis Da)18	RunNo: 13 SeqNo: 15		
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-bulyl ether	< 0.15	0.15									
Methylene chloride	< 0.15	0.15									
o-Xylene	< 0.15	0.15									
Propylene	< 0.15	0.15									
Styrene	< 0.15	0.15									
Tetrachloroethylene	< 0.15	0.15									
Tetrahydrofuran	< 0.15	0.15									
Toluene	< 0.15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
trans-1,3-Dichloropropene	< 0.15	0.15									
Trichloroethene	< 0.030	0.030									
Vinyl acelate	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinyl chloride	< 0.040	0.040									

Qualifiers:

.

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded
 - RPD outside accepted recovery limits R

- Analyte detected below quantitation limit t
- Spike Recovery outside accepted recovery limits \$

Page 5 of 5

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT: LaBella Associates, P.C. Work Order: C1801059

Project: 300 Commerce BCP

Prep Date: RunNo: 13187 TestCode: 0.20 NYS Units: ppbV SampType: MS Sample ID: C1801059-001A MS Analysis Date: 1/23/2018 SeqNo: 153178 TestNo: TO-15 Client ID: 300-IA-01/MSMSD Batch ID: R13187 %RPD RPOLimit Qual SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val Result POL Analyte 88.0 70 130 0 0.8800 0.15 1 1.1.1-Trichloroethane 1 o 101 70 130 1,010 0.15 1.1.2.2-Tetrachloroethane 70 130 0 102 0.15 1 1.020 1,1.2-Trichloroelhane 70 130 0.15 ŧ 0 103 1.030 1.1-Dichloroethane 70 130 0 79.0 1 0.7900 0.040 1.1-Dichloroethene s 139 0 70 130 1,390 0.15 1 1,2,4-Trichlorobenzene 70 130 0,14 120 1.340 0.15 1 1.2.4-Trimethylbenzene 102 70 130 0 1.020 0.15 1 1.2-Dibromoelhane 70 130 0 103 0.15 1 1.030 1.2-Dichlorobenzene 0 100 70 130 1,000 0.15 1 1.2-Dichloroethane 70 130 0.15 1 Ð 109 1.090 1,2-Dichloropropane S 70 130 0.15 1 0 149 1,490 1,3,5-Trimelhylbenzene 130 1 Ø 113 70 0.15 1.130 1,3-butadiene 0 108 70 130 1 1.080 0.15 1.3-Dichlorobenzene û 102 70 130 0.15 1 1.020 1.4-Dichlorobenzene 106 70 130 0 0.30 1 1.060 1,4-Dioxane 70 130 1 0 113 0.15 1.130 2,2,4-trimethylpentane 70 130 0 112 1 1.120 0.15 4-ethy/toluene S -135 70 130 17.66 51 16,31 0.30 Acetone 70 130 Ð 111 0.15 1 1,110 Allyl chloride 130 0.28 107 70 0.15 1 1.350 Benzene 130 Ð 99.0 70 0.9900 0.15 1 **Benzyl** chloride 93.0 70 130 0.15 1 0 0.9300 Bromodichloromethane 70 130 0.15 0 83.0 1 0.8300 Bromoform 130 n 87.0 70 0.15 1 0.8700 **Bromomethane**

Page 57 of 306

Qualifiers:

1

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded
 R RPD outside accepted recovery limits

Analyte detected below quantitation limit

S Spike Recovery outside accepted recovery limits

Page 1 of 5

TestCode: 0.20_NVS

.....

Centek Laboratories, LLC

LaBella Associates, P.C.

CLIENT:

C1801059 Work Order:

300 Commerce BCP Project:

Page 58 of 306

TestCode: 0.20_NYS

Sample ID: C1801059-001A MS	SampType: MS	TestCoo	te: 0.20_NYS	Units: ppbV		Prep Da	te:		RunNo: 131	87	
Client ID: 300-IA-01/MSMSD	Batch ID: R13187	TestN	io: TO-15		1	Analysis Da	te: 1/23/20)18	SeqNo: 153	178	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	1.260	0.15	1	0	126	70	130				
Carbon tetrachloride	0.8400	0.030	1	0.07	77.0	70	130				
Chlorobenzene	1.010	0.15	1	0	101	70	130				
Chloroethane	0.8700	0.15	1	0	87.0	70	130				
Chloroform	1.000	0.15	1	0	100	70	130				
Chloromethane	1.540	0.15	1	0.48	106	70	130				
cis-1,2-Dichloroethene	0.9700	0.040	1	0	97.0	70	130				
cis-1,3-Dichloropropene	1.010	0.15	1	0	101	70	130				
Cyclohexane	1.890	0.15	1	0.8	109	70	130				
Dibromochloromethane	0.8900	0.15	1	0	89.0	70	130				
Ethyl acetale	1.430	0.15	1	0.48	95.0	70	130				
Ethylbenzene	1.100	0.15	1	0	110	70	130				
Freon 11	1,000	0.15	1	0.2	0.08	70	130				
Freon 113	0.9100	0.15	1	Û	91.0	70	130				
Freon 114	0.8700	0.15	1	Q	87.0	70	130				
Freon 12	1.230	0.15	1	0.47	76.0	70	130				
Heptane	1,370	0.15	1	0.15	122	70	130				
Hexachloro-1,3-buladiene	0.9800	0,15	1	0	98.0	70	130				
Hexane	1.400	0.15	1	0.22	118	/ 70	130				
isopropyi alcohol	92.54	0.15	1	108.4	-1590	70	130				S
m&p-Xylene	2.280	0.30	2	0.15	105	70	130				
Methyl Bulyl Ketone	0.8900	0.30	1	0	89.0	70	130				
Methyl Ethyl Kelone	1.610	0.30	1	0.72	89.0	70	130				
Methyl Isobutyl Ketone	1.020	0.30	1	0	102	70	130				
Methyl tert-butyl ether	0.9200	0.15	1	0	92.0	70	130				
Methylene chlorida	2.780	0.15	1	1.12	(66)	70	130				S
o-Xylene	1.110	0.15	1	0	<u> </u>	70	130				
Propylene	2.390	0.15	1	۵	(239)	70	130				S
Slyrene	1.150	0.15	1	0.1	105	70					
	0,9800	0.15	1	Û	98.0	70					
Tetrachioroethylene			1	٥	108	70	130				

Spike Recovery outside accepted recovery limits \$

in the second second

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Project: 300 Commerce BCP TestCode: 0.20_NYS

Sample ID: C1801059-001A MS	SampType: MS	TestCoo	le: 0.20_NYS	Units: ppbV		Prep Dat	le:		RunNo: 13	187	
Client ID: 300-IA-01/MSMSD	Balch ID: R13187	Testh	lo: TO-15		4	Analysis Dat	te: 1/23/20	118	SeqNo. 15	3178	
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	2.490	0.15	1	1.39	110 🗸	70	130				
trans-1,2-Dichioroethene	1.120	0.15	1	0	112	70	130				
trans-1.3-Dichloropropene	0.9800	0.15	1	0	98 .0	70	130				
Trichloroethene	0.9000	D.030	1	0	90.0	70	130				
Vinyl acetate	1.070	0.15	1	0	107	70	130				
Vinyl Bromide	0.9300	0.15	1	0	93.0	70	130				
Vinyl chloride	0.8300	0.040	1	0	83.0	70	130				
Sample ID: C1801059-001A MS	SampType: MSD	TestCo	de: 0.20_NYS	Units: ppbV		Prep Dat	le:		RunNo: 13	187	
Client ID: 300-IA-01/MSMSD	Batch ID: R13187	Test	40: TO-15			Analysis Dal	le: 1/23/20	118	SeqNo: 15	3179	
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.8900	0.15	1	0	89.0	70	130	0.88	1.13	30	
1,1,2,2-Telrachforoethane	1.040	0.15	1	0	104	70	130	1.01	2. 9 3	30	
1,1,2-Trichloroethane	0.9900	0.15	1	0	99.0	70	130	1.02	2.99	30	
1,1-Dichloroethane	1.010	0.15	1	0	101	70	130	1.03	1.96	30	
1,1-Dichloroethene	0.8200	0.040	\$	0	82.0	70	130	0.79	3.73	30	
1,2,4-Trichlorobenzene	1.320	0.15	1	0	(32)	70	130	1.39	5,17	30	S
1,2,4-Trimethylbenzene	1.290	0.15	1	0.14	115	70	130	1.34	3.80	30	
1,2-Dibromoethane	1.010	D.15	1	0	101	70	130	1.02	0.985	30	
1,2-Dichlorobenzene	1.080	0.15	3	0	108	70	130	1.03	4,74	30	
1,2-Dichloroethane	0.9500	0.15	1	0	95.0	70	130	1	5.13	30	
1,2-Dichloropropane	1.070	D, 1 5	1	0	107	70	130	1.09	1.85	30	
1.3.5-Trimethylbenzene	1,380	0.15	1	0	(138)	70	130	1.49	7.67	30	S
1,3-butadiene	1.030	0.15	1	0	103	70	130	1.13	9.26	30	
1,3-Dichlorobenzene	1.100	0.15	1	0	110	70	130	1.08	1.83	30	
1,4-Dichlorobenzene	1.050	0.15	1	0	105	70	130	1.02	2.90	30	
1,4-Dioxane	1.010	0.30	1	0	101	70	130	1.06	4.83	30	
2,2,4-trimethylpentane	1.130	0.15	1	0	113	70	130	1.13	0	30	
4-ethyitoiuene	1,140	D.15	1	0	114	70	130	1.12	1.77	30	

Page 59 of 306

Qualifiers:

Results reported are not blank corrected

E Estimated Value above quantitation range

H Holding times for preparation or analysis exceeded

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

ĸ RPD outside accepted recovery limits

\$ Spike Recovery outside accepted recovery limits

in the structure of the second of the second s

CLIENT: LaBella Associates, P.C.

Work Order: C1801059

Project: 300 Commerce BCP

TestCode: 0.20_NYS

Sample ID: C1801059-001A MS	SampType: MSD	TestCoo	e: 0.20_NYS	Units: ppbV		Prep Dat	e:		RunNo: 131	187	
Client ID: 300-IA-01/MSMSD	Batch ID: R13187	Testh	lo: TO-15		1	Analysis Dat	e: 1/23/20	118	SeqNo: 15	3179	
Analyte	Result	POL	SPK value 5	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	12.32	0.30	1 /	17.66	-534 🗸	70	130	16.31	27.9	30	S
Allyl chloride	1.100	0.15	1	0	110	70	130	1.11	0.905	30	
Benzene	1.290	0.15	1	0.28	101	70	130	1.35	4.55	30	
Benzyl chloride	1.030	0.15	1	Ð	103	70	130	0.99	3.96	30	
Bromodichloromethane	0.9200	0.15	1	0	92.0	70	130	0.93	1.08	30	
Bromoform	0.8400	0.15	1	0	84.0	70	130	0.83	1.20	30	
Bromomelhane	0.8700	0.15	1	0	87.0	70	130	0.87	0	30	
Carbon disulfide	1.250	0.15	1	0	125	70	130	1.26	0.797	30	
Carbon letrachloride	0.8200	0.030	1	0.07	75.0	70	130	0.84	2.41	30	
Chlorobenzene	1.000	0,15	1	0	100	70	130	1.01	0.995	30	
Chloroethane	0.8700	0.15	1	0	87.0	70	130	0.87	0	30	
Chloroform	0.9600	0.15	1	Ð	96.0	70	130	1	4.08	30	
Chloromethane	1.340	0.15	1	0.48	86.0	70	130	1.54	13.9	30	
cis-1,2-Dichloroethene	0.9600	0.040	1	0	96.0	70	130	0.97	1.04	30	
cis-1,3-Dichloropropene	1.000	0.15	1	0	100	70	130	1.01	0.995	30	
Cyclohexane	1.650	0.15	1	0.8	85.0	70	130	1.89	13.6	30	
Dibromochloromethane	0.8900	0.15	1	0	89.0	70	130	0.89	0	30	
Ethyl acetate	1.300	0.15	1	0.48	82.0	70	130	1.43	9.52	30	
Ethylbenzene	1.080	0.15	1	Ð	108	70	130	1.1	1.83	30	
Frees 11	0.9200	0.15	1	0.2	72.0	70	130	1	8.33	30	
Freon 113	0.9100	0.15	1	0	91.0	70	130	0.91	Ð	30	
Freon 114	0.8500	0.15	1	0	85.0	70	130	0.87	2.33	30	
Freen 12	1.190	0.15	1	0.47	72.0	70	130	1.23	3.31	30	
Heptane	1.300	0.15	1	0.15	115	70	130	1,37	5.24	30	
Hexachloro-1,3-butadiene	0.9800	0.15	1	0	98,0	70	130	D.98	0	30	
Hexane	1.340	0.15	1	0.22	112	70	130	1.4	4.38	30	
isopropyl alcohol	64.40 🗸	0.15	1 4	108.4	-4400 🗸	70	130	92.54	35.9	30	SR
m&p-Xylene	2.220	0.30	2	0.15	104	70	130	2.28	2.67	30	
Methyl Butyl Ketone	0.8600	0.30	1	0	86.0	70	130	0.89	3.43	30	
Methyl Ethyl Ketone	1.460	0.30	1	0.72	74.0	70	130	1.61	9.77	3D	
Methyl Isobulyl Ketone	0.9600	0.30	1	D	96.0	70	130	1.02	6.06	30	

Qualifiers:

Results reported are not blank corrected

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

R Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

J Analyse detected below quantitation limit

S Spike Recovery outside accepted recovery limits

Page 4 of 5

LaBella Associates, P.C. CLIENT:

C1801059 Work Order:

300 Commerce BCP Project:

Page 61 of 306

TestCode: 0.20_NYS

Sample ID: C1801059-001A MS Client ID: 300-IA-01/MSMSD	SampType: MSD Batch ID: R13187		de: 0.20_NYS No: TQ-15	Units: ppbV		Prep Dai Analysis Da		18	RunNo: 131 SeqNo: 15		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	0.8900	0.15	1	0	89.0	70	130	0.92	3.31	30	
Methylene chloride	3,180	0.15	1	1.12	(206)	70	130	2.78	13.4	30	S
o-Xylene	1.100	0.15	1	Û	110	70	130	1.11	0.905	30	
Propylene	2.100	0.15	1	0	(210)	70	130	2.39	12.9	30	S
Styrene	1.120	0.15	1	0.1	102	70	130	1.15	2.64	30	
Tetrachloroethylene	0.9800	0,15	1	D	98.0	70	130	0.98	0	30	
Tetrahydrofuran	1.050	0,15	1	0	105	70	130	1.08	2.62	30	
Toluene	2.040	0.15	1	1.39	(65.0)	70	130	2.49	19,9	30	S
trans-1,2-Dichloroethene	1.070	0.15	1	0	107	70	130	1.12	4,57	30	
trans-1,3-Dichloropropene	0.9900	0.15	1	0	99.0	70	130	0.98	1.02	30	
Trichloroethene	0.8800	0.030	1	٥	88.0	70	130	0.9	2.25	30	
Vinyl acetate	1,080	0.15	1	0	108	70	130	1.07	0.930	30	
Vinyl Bromide	0.9200	0.15	1	0	92.0	70	130	0.93	1.08	30	
Vinyl chloride	0.8400	0.040	1	٥	84.0	70	130	0.83	1.20	30	

Qualifiers:

Results reported are not blank corrected

- ND Not Detected at the Limit of Detection
- H Holding times for preparation or analysis exceeded
- RPD outside accepted recovery limits R

Analyte detected below quantitation limit J S

Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

Page 5 of 5