SOIL VAPOR INTRUSION INVESTIGATION REPORT; 690 Saint Paul Street – Off-Site NYSDEC SITE #C828159A

Location:

691 and 705 Saint Paul Street Rochester, New York

Prepared for:

Bausch & Lomb 1400 North Goodman Street Rochester, New York 14609

LaBella Project No. 2170820

August 20, 2019

Table of Contents

1.0		UCTION
1.1	Repor	t Organization
2.0		SCRIPTION AND ENVIRONMENTAL SUMMARY
2.1	Site D	escription
2.2	Enviro	onmental Summary of NYSDEC 690 Saint Paul Street BCP Site #C828159
3.0	SUMMA	RY OF LOCAL SUBSURFACE GEOLOGIC CONDITIONS
4.0	STANDA	RDS CRITERIA AND GUIDELINES
5.0		AL INVESTIGATION FIELD ACTIVITIES
5.1	Soil G	as Point Installation, Sampling, and Laboratory Analysis
5.2	Sub-S	lab Sample Point Installation, Soil Vapor Intrusion Sampling, and Laboratory Analysis
5.3	Qualit	ry Assurance/Quality Control (QA/QC)
6.0	ANALYT	CAL RESULTS
6.1	Soil G	as Results
6.2	Soil V	apor Intrusion Sample Results
7.0	CONCLU	ISIONS
8.0	RECOMI	MENDATIONS
Figures		
Figure		Site Location Map
Figure		Site Area Map
Figure		690 Saint Paul Street Groundwater Results and Soil Gas Sample Locations
Figure	4A	Sampling Locations and Building Layout – Upper Basement
Figure	4B	Sampling Locations and Building Layout – Lower Basement
Tables		
Table 1	L.1A	Site Buildings Description
Table 1	L.1B	Adjacent Properties
Table 5	5.3	Targeted VOCs
Table 6	5.1	Soil Gas Sample Results
Table 6	5.2A	Soil Vapor Intrusion Sample Results
Table 6	5.2B	Summary of SVI Sample Results
Appen	dices	
Appen		Field Logs and NYSDOH Building Inventory Form
Appen	dix 2	Data Usability Summary Reports
Appen	dix 3	Laboratory Analytical Reports

CERTIFICATIONS

"I_Daniel P. Noll _ certify that I am currently a NYS registered professional engineer and that this Soil Vapor Intrusion Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10)."

081996 10/20/

DJ 111

1.0 INTRODUCTION

As required under the terms of the New State Department of Environmental Conservation (NYSDEC) Order of Consent and Administrative Settlement (Index No. R8-20161013-107) with Bausch & Lomb (B&L), this report details the findings of a Soil Vapor Intrusion (SVI) investigation that was performed by LaBella Associates, D.P.C. on behalf of B&L for the properties at 691 and 705 Saint Paul Street, City of Rochester, Monroe County, New York and identified by the NYSDEC as 690 Saint Paul Street – Off-Site, Site #C828159A. A site location map is included as Figures 1 and 2. The SVI investigation activities were conducted in accordance with a NYSDEC approved work plans entitled:

- Soil Gas Sampling Work Plan, NYSDEC Site #828159A, 691 and 705 Saint Paul Street, Rochester, New York dated January 30, 2017 prepared by LaBella Associates, D.P.C.
- Soil Vapor Intrusion Work Plan, NYSDEC Site #828159A, 691 and 705 Saint Paul Street, Rochester, New York dated March 24, 2017 prepared by LaBella Associates, D.P.C.

This SVI Report documents soil gas and SVI sampling at the site that is west of the 690 Saint Paul Street NYSDEC Brownfield Cleanup Program (BCP) Site #C828159. The SVI sampling was conducted to determine whether there is a SVI concern at the site with regard to the chlorinated solvent plumes associated with the 690 Saint Paul Street NYSDEC BCP Site #C828159. This report was also completed in accordance with the NYSDEC Division of Environmental Remediation (DER) BCP Guide dated May 2004 and the DER-10 (*Technical Guidance for Site Investigation and Remediation*) dated May 3, 2010 and the New York State Department of Health (NYSDOH) Final document "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," dated October 2006.

1.1 Report Organization

The remainder of this SVI Report is organized into the sections listed below.

- Section 2 provides a general description of the site and surrounding properties and an environmental summary of the 690 Saint Paul Street BCP Site #C828159
- Section 3 provides a description of the subsurface geologic conditions in the area of the site
- **Section 4** provides a description of the Standards, Criteria, and Guidance that are used to define the soil vapor cleanup guidelines for the site
- Section 5 provides a description of field activities, sampling, and analysis performed during the SVI investigation
- Section 6 provides a summary of the analytical results of samples collected and analyzed during the SVI investigation
- Section 7 provides a conclusions of the results of the SVI work completed to date
- Section 8 provides a recommendation with regard to potential mitigation measures at the site

2.0 SITE DESCRIPTION AND ENVIRONMENTAL SUMMARY

2.1 Site Description

The Site is located directly west of the NYSDEC BCP site #C828159 known as 690 Saint Paul Street. The 691 Saint Paul Street property is primarily used as commercial office space by: 1) Monroe County Social Services (primary tenant) that occupies the upper basement and the remaining upper floors (2) St. Michael's Woodshop occupies most of the lower basement space, and (3) Newport Gratings (photonics company) occupies the northern end of the upper and lower basement space. The 705 Saint Paul Street property is presently used as manufacturing by Richardson Gratings. Each property is improved with one building as outlined in Table 1.1 below.

TABLE 1.1 – Site Buildings Description

	691 Saint Paul Street	705 Saint Paul Street
Acreage of Site	2.94	0.82
Approximate Building Footprint (square feet)	30,630	10,627
Foundation Type	Basement	Unknown
Construction Date	1920	1930
Current Use	Commercial office space	Manufacturing

The basement of the 691 Saint Paul Street building is divided into two separate levels or elevations. The eastern half of the upper basement is approximately 8 to 10 ft higher in elevation than the lower basement that is located on the approximate western half of the site building as shown on Figures 4A and 4B.

The exterior of the 691 Saint Paul Street parcel primarily consists of an asphalt paved parking lot located south of the building and the exterior of the 705 Saint Paul Street parcel primarily consists of an asphalt paved parking lot located north of the building. Neighboring properties that border the site include:

TABLE 1.1B - Adjacent Properties

Location	Current Use
North	Asphalt paved parking lot
South	Smith Street, High Fall Brewery
East	690 Saint Paul Street, NYSDEC BCP Site# C828159
West	Suntru Street, RG&E Substation #34

2.2 Environmental Summary of NYSDEC 690 Saint Paul Street BCP Site #C828159

The 690 Saint Paul Street BCP site was developed prior to 1875 and was utilized primarily for residential purposes prior to approximately the 1920s. Based on the review of historical mapping and local street directories, the BCP site was primarily utilized for industrial purposes by Bausch & Lomb, Inc., formerly known as Bausch & Lomb Optical Company ("B&L") from sometime around 1920 until it was abandoned by the company in the late 1960s. The property was developed for industrial use by B&L to manufacture lenses and other products. From the early 1970s until 2000, the BCP site was used predominantly for light commercial and storage applications. Occupants and/or owners of the Site have included various individual residences, B&L, Thomas Edison Technical and Industrial High School, Geva Theater storage, and various manufacturing and industrial tenants.

Prior uses of the BCP site that appear to have led to site contamination include underground storage tanks (USTs) that may have leaked. These tanks appear to have contained chlorinated solvents including trichloroethene (TCE) and petroleum products including gasoline and fuel oil. In 2002, a 500-gallon UST was removed from the site and contaminated soil was encountered. In 2008, a Phase II Environmental Site Assessment (ESA) was performed to evaluate subsurface soil and groundwater. The Phase II ESA identified an area of petroleum contaminated soil. The investigation was followed by the excavation of approximately 1,650 cubic yards of petroleum impacted soil and a previously undocumented UST. TCE was identified in confirmation samples in soil and ground and thus the 690 Saint Paul Street site was entered into the BCP. A Remedial Investigation (RI) conducted through the BCP identified eight (8) Areas of Concern that related to elevated concentrations of metals, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum products, and/or chlorinated solvents. Interim Remedial Measures (IRMs) were completed after these and the Remedial Investigation (RI) work it was determined three areas required further remedial actions. One of these areas was petroleum product (light non-aqueous phase liquid) which is limited to within the 690 Saint Paul Street parcel. The other two locations contain chlorinated VOCs which were document to have off-site migration.

The areas of concern related to this report are two groundwater chlorinated solvent plumes that were identified to have migrated off the BCP site to the west and toward the Site as shown on Figure 3. It should be noted that the 690 Saint Paul Street site is currently undergoing remediation, including the chlorinated VOC impacts.

3.0 SUMMARY OF LOCAL SUBSURFACE GEOLOGIC CONDITIONS

This section relies upon information obtained from the 690 Saint Paul Street NYSDEC BCP site environmental investigations. The overburden material ranges in depth up to approximately 12 feet (ft) below the ground surface (bgs) and consists primarily of glacial till. Fill material is anticipated to overly the till and may consist of sand, gravel, cinders, and ash.

The Decew Dolomite underlies the overburden material. The Decew Dolomite is the uppermost formation of the Clinton Group and consists of variably bedded, dark-gray to olive-gray, argillaceous to sandy, fine-grained dolomite that contains shaly partings and interbeds, as well as frequent pits and vugs. The thickness of this unit is generally 8 to 12 ft.

The Rochester Shale underlies the Decew Dolomite, and is a relatively uniform dark- to medium-gray, pale- and platy-weathering, highly calcareous to dolomitic mudstone. It contains abundant thin interbeds of medium gray, pale-buff weathering, laminated calcisiltites. Its thickness in Western New York is generally 58 to 65 ft.

The overburden groundwater table at the BCP site ranged from 4 to 9 ft bgs in the southern portion of the site and 8 to 10 ft bgs in the northern portion of the site. The overburden groundwater flows generally to the west-southwest.

The shallow bedrock water-bearing interval was identified as the uppermost bedrock down to depths of approximately 20 ft bgs. This interval is the uppermost water-bearing unit within the bedrock, and no low permeability horizon separates this zone from the overburden. Groundwater flow direction is generally to the west.

4.0 STANDARDS CRITERIA AND GUIDELINES

This section identifies the Standards, Criteria, and Guidance (SCGs) for the site. The SCGs identified are used in order to quantify the extent of contamination at the site that may require remedial work. The SCGs will be used to evaluate the effectiveness of any remedial measures and will be used to determine if remedial actions are warranted. The SCG's for soil vapor are provided below:

- Soil Gas SCGs: Currently there are no state regulatory (NYSDEC or NYSDOH) soil gas guidance values.
- Sub-Slab Soil Vapor and Indoor Air SCGs: The NYSDOH Final document "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," dated October 2006 and updates for tetrachloroethene (September 2013), TCE (August 2015), and the soil vapor/indoor air decision matrices (May 2017). These updates are included on NYSDOH website: https://www.health.ny.gov/environmental/indoors/vapor intrusion/update.htm.

5.0 SOIL VAPOR INTRUSION INVESTIGATION FIELD ACTIVITIES

This section provides a description of the methodologies used during the field investigations of the site. The SVI work was completed from March to April 2017 and was conducted in accordance with the NYSDEC approved work plans. Specific tasks performed during the SVI investigation included the following:

- Soil gas and sub-slab vapor point installation, sampling, and laboratory analysis
- Quality Assurance/Quality Control

5.1 Soil Gas Point Installation, Sampling, and Laboratory Analysis

The purpose of this activity was to determine if subsurface impacts from the 690 Saint Paul Street site have the potential to adversely affect indoor air quality via the vapor intrusion pathway at the site. The locations of the soil gas samples were located within the Saint Paul Street right-of-way and directly across from the chlorinated solvent plumes at the 690 Saint Paul Street site. Soil gas sample locations are shown on Figure 3, whereas soil gas sample locations SV-1 and SV-2 are located adjacent to the 705 Saint Paul Street site building and soil gas sample locations SV-3 and SV-4 are located adjacent to the southern end of the 691 Saint Paul Street site building. Sampling of soil gas was conducted on March 3, 2017.

Permanent soil gas sampling points were installed using direct push technology. A 1 foot screen section was installed to a depth of approximately 8 feet (ft) below the ground surface (bgs), which is approximately the top of bedrock and approximately just below the floor of the upper basement of the 691 Saint Paul Street site. A solid PVC riser was installed above the 1 ft screen to the ground surface. A porous inert backfill material (i.e. sand) was placed around the sampling screen to approximately 1 ft above the screened section to create a sampling zone of 2 ft in length. The soil gas sampling points were sealed above the sampling zone with approximately 7 ft of a bentonite slurry (to just below the ground surface) and finished with a protective casing that was grouted in place to minimize infiltration of water, and to prevent damage to the soil gas point. The soil gas installation log is included in Appendix 1.

Prior to sampling each soil gas point, a tracer gas (helium) was utilized at each sampling point to ensure that ambient air was not being pulled into the Summa® canister during sampling. This was accomplished by placing a clean, stainless steel enclosure over the soil vapor sampling points. Non emitting VOC modeling clay was placed on the ground surface around the edge of the enclosure where it contacted the ground to make an air-tight seal. Prior to purging and sampling activities, a helium tracer gas was released via a small diameter tube, placed through a port on the exterior side of the enclosure. The subslab vapor Teflon® tubing extended up through the air-tight seal to the exterior side of the enclosure and connected to a helium detector to determine the presence of helium gas and purge the sampling point. Helium was not detected on the helium detector at each sampling point indicating that each soil gas sampling point were sealed from ambient air. All sample points passed the trace gas test (i.e. less than 10% of helium was detected during each test).

Care was taken to avoid excessive purging of the samples points and the flow rate during purging did not exceed 0.2 liters per minute (L/min) to minimize outdoor air infiltration. Soil gas points were purged with a PID.

Four soil gas and one outdoor ambient air samples were collected utilizing individually certified-clean 1-liter Summa® canisters equipped with laboratory calibrated flow controllers. The samples were collected over an approximate eight (8) hour time period. The outdoor air sample was collected at a height of approximately 5 ft above the ground surface to simulate the breathing zone. Immediately after opening each Summa® canister, the initial vacuum (inches of mercury) and time was noted and recorded on the laboratory chain-of-custody. After approximately eight (8) hours, final vacuum readings (inches of mercury) were noted and the Summa® canisters were closed. A copy of the Air Sampling Field Report for each sample collected is included in Appendix 1.

The samples (including QA/QC samples) were submitted to Centek Laboratories, LLC in Syracuse, New York. Centek is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program certified laboratory for analysis of targeted volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15.

5.2 Sub-Slab Sample Point Installation, Soil Vapor Intrusion Sampling, and Laboratory Analysis

The purpose of this activity was to assess for potential SVI at the 691 Saint Paul Street building from subsurface impacts at the 690 Saint Paul Street site. LaBella conducted SVI sampling at the locations shown on Figure 4A (upper basement) and 4B (lower basement). SVI sampling was conducted on April 1, 2017. A copy of the Air Sampling Field Report for each sample collected and the NYSDOH Indoor Air Quality and Building Inventory Form are included in Appendix 1.

Sub slab vapor sample points were collected by coring a nominal 5/8 inch diameter hole through the slab to approximately 1 to 2 inches beneath the floor slab. A 5/8 inch diameter polyethylene tube and barbed fitting was inserted into the corehole. The tubing was connected to a Summa® canister with a pre-set regulator to the barbed fitting for sub-slab vapor collection.

Prior to sampling each sub-slab vapor point, a tracer gas (helium) was placed over each sampling point to ensure that ambient air was not being pulled into the Summa® canister (i.e. sampling vessel) during sampling. This was accomplished by placing a clean, stainless steel enclosure over each sub-slab sampling point. Non-emitting VOC modeling clay or equivalent was placed on the ground surface around the edge of the enclosure where it contacts the ground to make an air-tight seal. Prior to the purging and sampling activities, a helium tracer gas was released via a small diameter tube placed through a port on the exterior side of the enclosure. The sub-slab vapor Teflon tubing that extends up through the air tight seal to the exterior side of the enclosure was connected to a helium detector to determine the presence of helium gas and to purge the sampling point. All sampling points pass the trace gas test (i.e. less than 10% tracer gas in test).

Corresponding ambient air samples were collected within 5 ft and at a height of 3 to 5 ft above the ground surface at each sample locations

SVI samples were collected utilizing individually laboratory certified-clean 1-liter Summa® canisters equipped with laboratory calibrated flow controllers. The samples were collected over an approximate 8 hour time period. Immediately after opening each Summa® canister, the initial vacuum (inches of mercury) and time was noted and recorded on the laboratory chain-of-custody. After approximately 8 hours, final vacuum readings (inches of mercury) were noted and the Summa® canisters were closed.

Each sample (including QA/QC samples) was submitted to Centek Laboratories, LLC in Syracuse, New York for analysis of targeted VOCs by USEPA Method TO-15.

5.3 Quality Assurance/Quality Control (QA/QC)

QA/QC procedures were implemented during the investigation in order to ensure accuracy, precision, and completeness of the chemical data collected during the investigation. Samples for QA/QC were taken during the portions of the environmental work in order to evaluate the validity of sampling and analytical methods employed throughout the work.

There were two types of field duplicates taken during sampling activities: "blind" duplicates and matrix spike/matrix spike duplicate (MS/MSD) samples. Blind duplicates were labeled in such a manner that the laboratory would not know which samples they were duplicating, nor that they were actually duplicates in some cases. This process allowed LaBella to verify laboratory reproducibility of analytical data. MS/MSD samples were also submitted and were identified as such on the chain-of-custody so the laboratory could perform internal quality checks on instrument performance.

During sampling activities, QA/QC samples were submitted to Centek Laboratories, LLC in Syracuse, New York for analysis. The samples were analyzed for targeted VOCs using USEPA Method TO-15 per the NYSDEC approved work plan. Targeted VOCs and their associated laboratory detection limits included:

Targeted VOCsLaboratory Detection Limit (μg/m³)TCE0.25cis-1,2-dichloroethene (CIS-1,2-DCE)1.0trans-1,2-dichloroethene1.0vinyl chloride0.251,1-Dichloroethene (1,1-DCE)1.0chloroethane1.0

TABLE 5.3 – Targeted VOCs

μg/m³ denotes micrograms per cubic meter

The samples were collected prior to the NYSDOH update to the Soil Vapor/Indoor Air Decisions Matrices in May 2017.

Full data evaluation packages were submitted to LaBella for the sampling data in accordance with NYSDEC Electronic Data Deliverables (EDD) requirements. Data usability summary reports were conducted by Dataval, Inc. based on the following parameters:

- Sample Data Reporting Format
- Preservation and Holding Time Compliance
- GC/MS Instrument Performance Check
- Initial Calibration Verification (ICV)
- Continuing Calibration Verification (CCV)
- Blank Sample Analysis
- System Monitoring/Surrogate Compound Recoveries
- Laboratory Control Sample (LCS) Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries
- Internal Standards
- Target Compound Identification
- Compound Quantitation

- Data Qualifiers
- Summary

Copies of the data usability summary reports (DUSRs) are included in Appendix 2 and the laboratory analytical reports that were provided by Centek are provided in Appendix 3 of this report. The laboratory reports are provided on a CD due to the size of the documents. Qualifiers are included in those reports as well as in the summary tables within this report.

The validation of the analytical results for samples collected from the project site indicate that the samples were processed in general compliance with applicable protocols, and the majority of results are usable as reported, or usable with minor edits or qualification as estimated or edits to non-detection. None of the results were rejected.

6.0 ANALYTICAL RESULTS

This section presents and describes the analytical results for the soil gas and SVI samples collected during the investigation. Analytical result tables for the samples collected are presented in the following subsections. The analytical results were compared to applicable NYSDOH guidance values and/or standards.

Samples submitted during the SVI investigation for laboratory analysis are summarized in the following tables:

- Soil Gas Samples Table 6.1 (attached)
- Sub-Slab Vapor Samples Table 6.2A (attached)

6.1 Soil Gas Results

VOCs were detected in two (2) of the four (4) soil gas samples above the laboratory method detection (MDL) limit as summarized in Table 6.1. Sample SV-1 and SV-2 were collected adjacent to the 705 Saint Paul Street building and in the downgradient location of the northern chlorinated VOC groundwater plume at the 690 Saint Paul Street site. Soil gas samples SV-1 and SV-2 did not detect any VOCs above the laboratory method detection limit, however, one VOC (chloroetheane) was identified as estimated below the detection limit. The samples with VOCs detected above the laboratory method detection limit were soil gas samples SV-3 and SV-4 that are located adjacent to the southern end of the 691 Saint Paul Street site building and are in the downgradient area of the southern chlorinated VOC plume from the 690 Saint Paul Street site. VOCs were not detected above the laboratory MDL in the outdoor ambient air/background air sample.

SCGs are not applicable to soil gas results, however, the results are used to assess the potential for a SVI concern in the buildings adjacent to these sample locations. Based on the soil gas samples results, the targeted VOCs present in soil gas samples SV-3 and SV-4 (adjacent to the 691 Saint Paul Street site building) warranted further evaluation (i.e. SVI testing of the 691 Saint Paul Street building).

6.2 Soil Vapor Intrusion Sample Results

The SVI (i.e. sub-slab and indoor air samples) sample results were compared to the guidance values listed in the NYSDOH SVI Guidance document. For compounds without specific indoor air guidance values, typical background levels are used for comparison purposes. The NYSDOH SVI Guidance Appendix C, includes a USEPA 2001 Building Assessment and Survey Evaluation (BASE) Database which provides background levels in indoor air of commercial and public buildings for comparison purposes. For the purposes of this evaluation, the 90th percentile values were utilized. It should be noted that this database is referenced to provide a relative benchmark for comparison to the indoor air sampling data, but does not represent regulatory standards or compliance values. The SVI sample results are summarized on Table 6.2A (attached).

Target VOCs were detected above the laboratory MDL in each of the sub-slab vapor samples and were also detected above the laboratory MDL in five (5) of the six (6) corresponding ambient air samples. The outdoor air/background ambient air sample did not detect targeted VOCs above the laboratory MDL.

A comparison of the SVI results to the NYSDOH Ambient Air Guidelines, NYSDOH Decision Matrices, and the USEPA BASE Database 90th Percentile values are summarized in Table 6.2B.

TABLE 6.2B - Summary of SVI Sample Results

	Result above	Indoor Ambient Air	NYSDOH De	cision Matrix
Sample Location	USEPA Database - 90th Percentile	Result above NYSDOH Ambient Air Guideline	Result Above Minimum NYSDOH Decision Matrix	NYSDOH Recommendation
Upper Basement				
691-NE	None	None	None	None
691-B15	TCE	TCE	TCE	Mitigate
691-B19	TCE	TCE	TCE	Mitigate
Lower Basement				
691-SB5B	TCE, CIS-1,2-DCE	TCE	TCE, CIS-1,2-DCE	Mitigate
691-SB5A	TCE, CIS-1,2-DCE	TCE	TCE, CIS-1,2-DCE	Mitigate
691-5A	TCE, CIS-1,2-DCE	None	CIS-1,2-DCE	Mitigate

Note: CIS-1,2-DCE denotes cis-1,2-Dichloroethene, TCE denotes Trichloroethene

As indicated in Table 6.2B, TCE was detected above the NYSDOH Ambient Air Guideline in samples 691-B15 and 691-B-19 from the upper basement and samples 691-SB5B and 691-SB5A in the lower basement. Comparison of the results to the NYSDOH Decision Matrices recommends mitigation at five (5) of the six (6) sample locations. The location that did not identify a recommended action (per NYSDOH Guidance) was location 691-NE which was in the upper basement and directly adjacent to the 705 Saint Paul Street building.

7.0 SUMMARY OF FINDINGS AND CONCLUSIONS

Based on the results of the SVI investigation, the following findings were made:

- The exterior soil gas sampling identified chlorinated VOCs above the laboratory detection limits in the southern two soil gas sample locations (i.e. SV-3 and SV-4). The northern soil gas locations (i.e. SV-1 and SV-2) did not identify VOCs above the laboratory detection limit.
- TCE was detected in four (4) of the six (6) ambient indoor air samples above the NYSDEC Ambient Air Guideline Value of 2.0 μg/m³ at two (2) sample locations in the upper basement (i.e. 691-B15 and 691-B19) and two (2) sample locations in the lower basement (i.e. 691-SB5B and 691-SB5A). TCE was not detected in the indoor air in the sample from the northeast corner of the 691 Saint Paul Street building. (i.e. 691-NE) which is directly adjacent to the 705 Saint Paul Street building.
- Comparison of the SVI samples results to the NYSDOH Decision Matrices (updated May 2017), indicates NYSDOH recommends mitigation at five (5) of the six (6) sample locations based on the concentrations of TCE and/or CIS-1,2-DCE detected in the SVI samples. The sample location where mitigation is not recommended by the NYSDOH guidance is the location in the northeast corner adjacent to the 705 Saint Paul Street building.

Based on the above, the following conclusions are made:

- A completed SVI pathway appears present at the 691 Saint Paul Street building.
- A completed SVI pathway does not appear present for the 705 Saint Paul Street building.

8.0 RECOMMENDATIONS

Based on the above conclusions, it is recommended that a sub-slab depressurization system (SSDS) be assessed to mitigate SVI vapors from entering the 691 Saint Paul Street building for both the upper and lower basement areas.

I:\Bausch & Lomb\2170820 - 691 St Paul St SVIA BCP Site\Reports\RI Report\RPT.2017-10-06.691 St Paul SVI Report.docx

TABLES

REFERENCE PAGE FOR SAMPLE RESULTS FOR TABLES 6.1 AND 6.2A

Soil Gas and Vapor Intrusion Sampling Results
NYSDEC Site #C828159A
691 and 705 Saint Paul Street, Rochester, New York

Concentrations displayed in micrograms per cubic meter (ug/m³)

Samples analyzed by USEPA Method TO-15

NL denotes Not Listed

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and updates for tetrachloroethene (September 2013), TCE (August 2015), and the soil vapor/indoor air decision matrices (May 2017). These updates are included on NYSDOH website:

https://www.health.ny.gov/environmental/indoors/vapor_intrusion/update.htm. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

(2) USEPA 2001 Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote "1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

(3) No value was listed in NYSDOH Table C2 - USEPA Base Database. A value from Table C3 NYSDOH 1997: Control home database (90th Percentile) was used.

U indicates the value was detected below the reported laboratory method detection limit

UJ indicates the value was detected below the estimated reported laboratory method detection limit

J indicates an estimated value

BOLD type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Sub-Slab Vapor Concentration Decision Matrix (minimum action level).

UNDERLINED type denotes that the compound was detected at a concentration that was found to exceed the NYSDOH Indoor Air Concentration (minimum action level).

RED values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of NY", October 2006 (and subsequent updates).

YELLOW HIGLIGHT indicates the compound was detected at a concentration that was found to exceed NYSDOH Guidance 90th Percentile Database Value

* NYSDOH Air Guideline Value included in Table 3.1 of NYSDOH Guidance Document

TABLE 6.1
SOIL GAS SAMPLE RESULTS
NYSDEC Site #C828159A
691 and 705 Saint Paul Street, Rochester, New York

Sample ID		SV-1		SV-2	SV-2			SV-4		DUPLICATE (SV-4)		AMBIENT AIR	
Sample Type	Units	Soil Gas		Soil Gas	5	Soil Gas	Soil Gas		5	Soil Gas		Outdoor	Air
Sample Date		3/3/201	7	3/3/2017		3/3/201	3/3/2017		3/3/2017		7	3/3/2017	
1,1-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U
Chloroethane	ug/m ³	0.34	J	0.40	U	0.29	J	0.40	U	0.40	U	0.40	U
cis-1,2-Dichloroethene	ug/m³	0.59	U	0.59	U	0.71		4.1		3.9		0.59	U
trans-1,2-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U
Trichloroethene (TCE)	ug/m³	0.81	U	0.81	U	40	J	48		47		0.21	U
Vinyl chloride	ug/m³	0.38	U	0.38	U	0.38	U	0.38	U	0.38	U	0.10	U
Total Detected VOCs	ug/m³	0		0		41.0		52.1		50.9		0	

TABLE 6.2A

SAMPLE LOCATION: 691-SB5B

Soil Vapor Intrusion Sampling Results

NYSDEC Site #C828159A

Sample ID	691-SB5B-SVI 691-SB5B-IAQ		691-OUTDO 0401201		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	NIVEDOUL Cuidones Toble				
Sample Type	Units	Sub-Slab		Indoor Air		Outdoor Air		Concentration Decision Matrix (minimum action	Concentration (minimum	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾	
Sample Date		4/1/201	.7	4/1/2017	7	4/1/2017		level) ⁽¹⁾	Air Guideline Value	John Percentile	
1,1-Dichloroethene	ug/m³	0.59	UJ	0.59	UJ	0.59	U	<6	<0.2	<1.4	
Chloroethane	ug/m³	0.40	UJ	0.40	UJ	0.40	U	NL	NL	<1.2	
cis-1,2-Dichloroethene	ug/m³	23	J	12	J	0.59	U	<6	<0.2	<1.8	
trans-1,2-Dichloroethene	ug/m³	0.71	J	0.59	UJ	0.59	U	NL	NL	<10 ⁽³⁾	
Trichloroethene (TCE)	ug/m³	58	J	6.8	J	0.21	U	<6	<0.2 / 2 *	1.3	
Vinyl chloride	ug/m³	0.28	J	0.15	J	0.10	U	<6	<0.2	<1.8	

TABLE 6.2A

SAMPLE LOCATION: 691-SB5A

Soil Vapor Intrusion Sampling Results

NYSDEC Site #C828159A

Sample ID		691-SB5A-SVI 691-SB5A-IAQ Units Sub-Slab Indoor Air		691-OUTDO 0401201		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	NWCDOU Coddayaa Tabla			
Sample Type	Units			Indoor Ai	r	Outdoor A	Air	Concentration Decision Matrix (minimum action	Concentration (minimum action level) ⁽¹⁾ / NYSDOH	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾	
Sample Date		4/1/201	7	4/1/2017	7	4/1/2017		level) ⁽¹⁾	Air Guideline Value	30th rescentile	
1,1-Dichloroethene	ug/m ³	0.59	U	0.59	U	0.59	U	<6	<0.2	<1.4	
Chloroethane	ug/m³	0.40	U	0.40	U	0.40	U	NL	NL	<1.2	
cis-1,2-Dichloroethene	ug/m³	170		13		0.59	U	<6	<0.2	<1.8	
trans-1,2-Dichloroethene	ug/m³	1.6		0.59	U	0.59	U	NL	NL	<10 ⁽³⁾	
Trichloroethene (TCE)	ug/m³	20	J	<u>6.5</u>		0.21	U	<6	<0.2 / 2 *	1.3	
Vinyl chloride	ug/m³	0.49		0.10	U	0.10	U	<6	<0.2	<1.8	

TABLE 6.2A

SAMPLE LOCATION: 691-SB1

Soil Vapor Intrusion Sampling Results

NYSDEC Site #C828159A

Sample ID	691-SB1-SVI		691-SB1-I <i>A</i>	AQ	691-OUTDO 0401201		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	NIVEDOLL Guidance Table		
Sample Type	Units	Sub-Slab		Indoor Ai	ir	Outdoor Air		Concentration Decision Matrix (minimum action	Concentration (minimum	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾	
Sample Date		4/1/201	7	4/1/2017	7	4/1/2017		level) ⁽¹⁾	Air Guideline Value	John rescendie	
1,1-Dichloroethene	ug/m³	0.59	U	0.59	UJ	0.59	U	<6	<0.2	<1.4	
Chloroethane	ug/m³	0.40	U	0.40	UJ	0.40	U	NL	NL	<1.2	
cis-1,2-Dichloroethene	ug/m³	52		2.6	J	0.59	U	<6	<0.2	<1.8	
trans-1,2-Dichloroethene	ug/m³	0.59	U	0.59	UJ	0.59	U	NL	NL	<10 ⁽³⁾	
Trichloroethene (TCE)	ug/m³	4.0		1.3	J	0.21	U	<6	<0.2 / 2 *	1.3	
Vinyl chloride	ug/m³	0.38		0.10	UJ	0.10	U	<6	<0.2	<1.8	

TABLE 6.2A

SAMPLE LOCATION: 691-NE

Soil Vapor Intrusion Sampling Results

NYSDEC Site #C828159A

Sample ID	691-NE-SVI		691-NE-IAQ		691-OUTDO 04012017		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	NIVEDOUL Cuidones Toble		
Sample Type	Units	Sub-Slab		Indoor Air		Outdoor Air		Concentration Decision Matrix (minimum action	Concentration (minimum	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾	
Sample Date		4/1/201	7	4/1/2017	,	4/1/2017		level) ⁽¹⁾	Air Guideline Value	John Fercentile	
1,1-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	<6	<0.2	<1.4	
Chloroethane	ug/m³	0.40	U	0.40	U	0.40	U	NL	NL	<1.2	
cis-1,2-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	<6	<0.2	<1.8	
trans-1,2-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	NL	NL	<10 ⁽³⁾	
Trichloroethene (TCE)	ug/m³	3.9		0.21	U	0.21	U	<6	<0.2 / 2 *	1.3	
Vinyl chloride	ug/m³	0.10	U	0.10	U	0.10	U	<6	<0.2	<1.8	

TABLE 6.2A

SAMPLE LOCATION: 691-B15

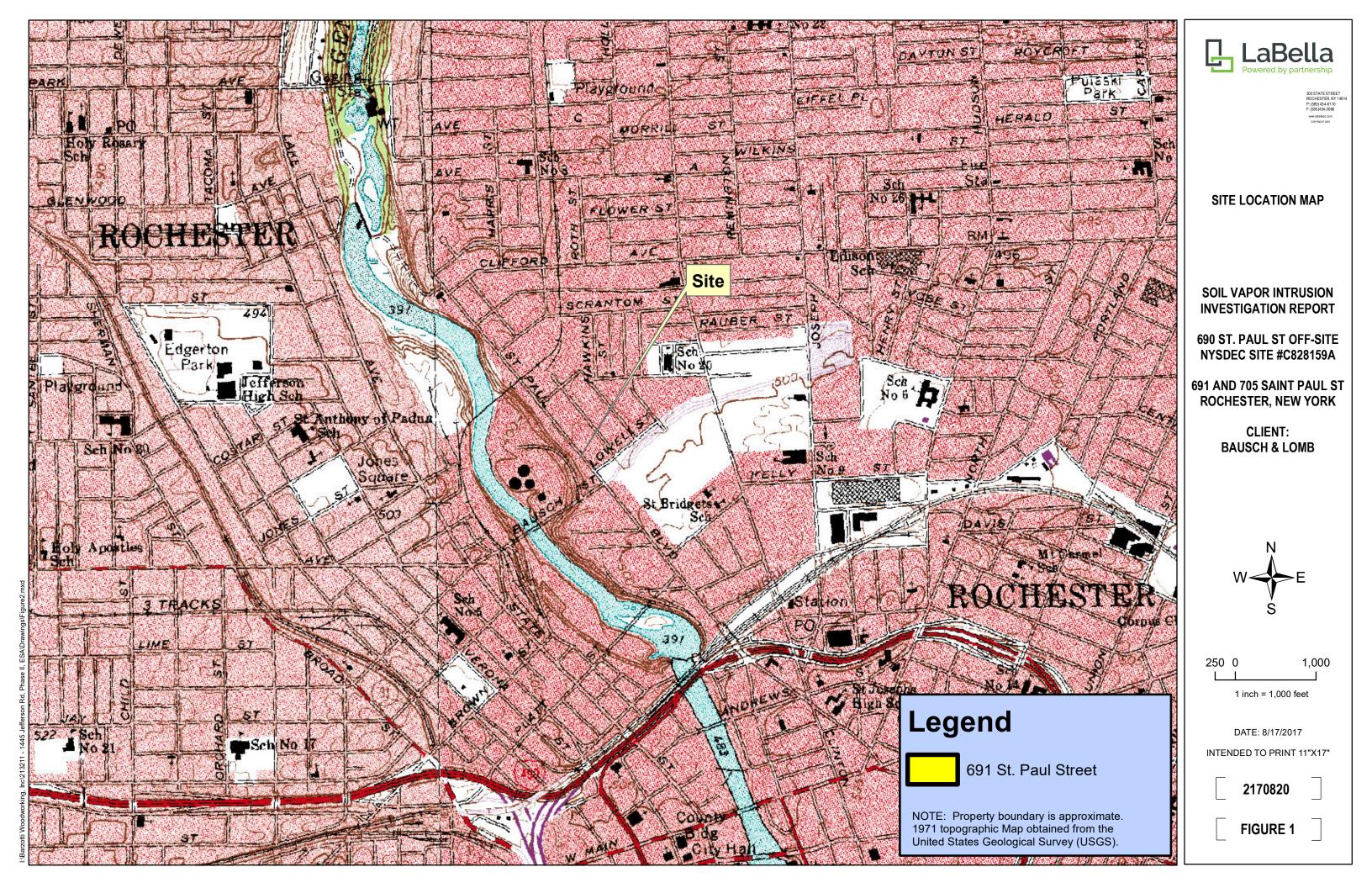
Soil Vapor Intrusion Sampling Results

NYSDEC Site #C828159A

Sample ID		691-B15-SVI Units Sub-Slab		691-B15-I <i>A</i>	AQ.	691-OUTDO 0401201		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	NVSDOU Guidance Table	
Sample Type	Units			Indoor Air		Outdoor Air		Concentration Decision Matrix (minimum action	Concentration (minimum action level) ⁽¹⁾ / NYSDOH	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾	
Sample Date		4/1/201	7	4/1/2017	7	4/1/2017		level) ⁽¹⁾	Air Guideline Value	30th rescentile	
1,1-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	<6	<0.2	<1.4	
Chloroethane	ug/m³	0.37	J	0.40	U	0.40	U	NL	NL	<1.2	
cis-1,2-Dichloroethene	ug/m³	0.59	U	1.6		0.59	U	<6	<0.2	<1.8	
trans-1,2-Dichloroethene	ug/m³	0.59	U	0.59	U	0.59	U	NL	NL	<10 ⁽³⁾	
Trichloroethene (TCE)	ug/m³	220		<u>2.2</u>		0.21	U	<6	<0.2 / 2 *	1.3	
Vinyl chloride	ug/m³	0.28		0.10	U	0.10	U	<6	<0.2	<1.8	

TABLE 6.2A

SAMPLE LOCATION: 691-B19


Soil Vapor Intrusion Sampling Results

NYSDEC Site #C828159A

Sample ID		691-B19-SVI nits Sub-Slab		691-B19-IAQ-1		691-B19-IAQ-2		691-OUTDO 04012017		NYSDOH Sub-Slab Vapor	NYSDOH Indoor Air	NYSDOH Guidance Table	
Sample Type	Units			Indoor Ai	r	Indoor Air	r	Outdoor Air		Concentration Decision Matrix (minimum action	action level) ⁽¹⁾ / NYSDOH	C2 USEPA BASE Database - 90th Percentile ⁽²⁾	
Sample Date		4/1/2017	7	4/1/2017		4/1/2017		4/1/2017		level) ⁽¹⁾	Air Guideline Value	30th rescentile	
1,1-Dichloroethene	ug/m³	0.59	UJ	0.59	UJ	0.59	U	0.59	U	<6	<0.2	<1.4	
Chloroethane	ug/m ³	0.40	UJ	0.40	UJ	0.40	U	0.40	U	NL	NL	<1.2	
cis-1,2-Dichloroethene	ug/m³	0.59	UJ	1.3	J	1.1		0.59	U	<6	<0.2	<1.8	
trans-1,2-Dichloroethene	ug/m³	0.59	UJ	0.59	UJ	0.59	U	0.59	U	NL	NL	<10 ⁽³⁾	
Trichloroethene (TCE)	ug/m³	26	J	2.1	J	<u>2.1</u>		0.21	U	<6	<0.2 / 2 *	1.3	
Vinyl chloride	ug/m³	0.20	J	0.10	UJ	0.10	U	0.10	U	<6	<0.2	<1.8	

FIGURES

ROCHESTER, NY P: (585) 454-6110 F: (585) 454-3066 www.labellapc.com

TITLE SITE LAYOUT MAP

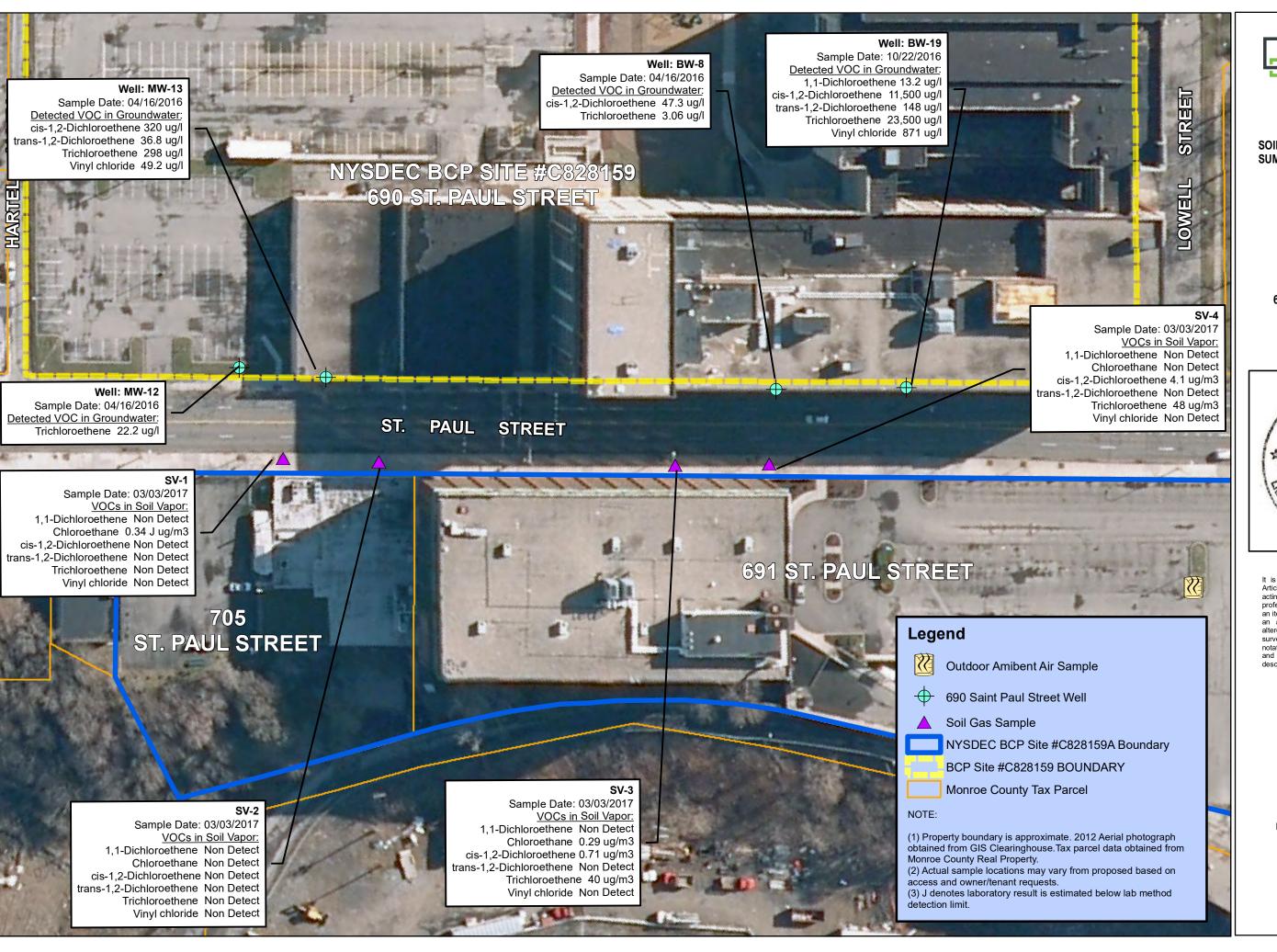
PROJECT
SOIL VAPOR INTRUSION
INVESTIGATION REPORT

690 ST. PAUL ST OFF-SITE NYSDEC SITE #C828159A

691 AND 705 SAINT PAUL ST ROCHESTER, NEW YORK

> CLIENT: BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.


25 50 100 Feet
1 inch = 100 feet

DATE: 8/17/2017

INTENDED TO PRINT 11"X17"

2170820

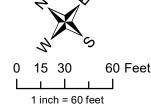
FIGURE 2

ROCHESTER, NY 14 P: (585) 454-6110 F: (585) 454-3066

IIILE

SOIL GAS SAMPLE RESULTS AND SUMMARY OF 690 SAINT PAUL ST GROUNDWATER IMPACTS

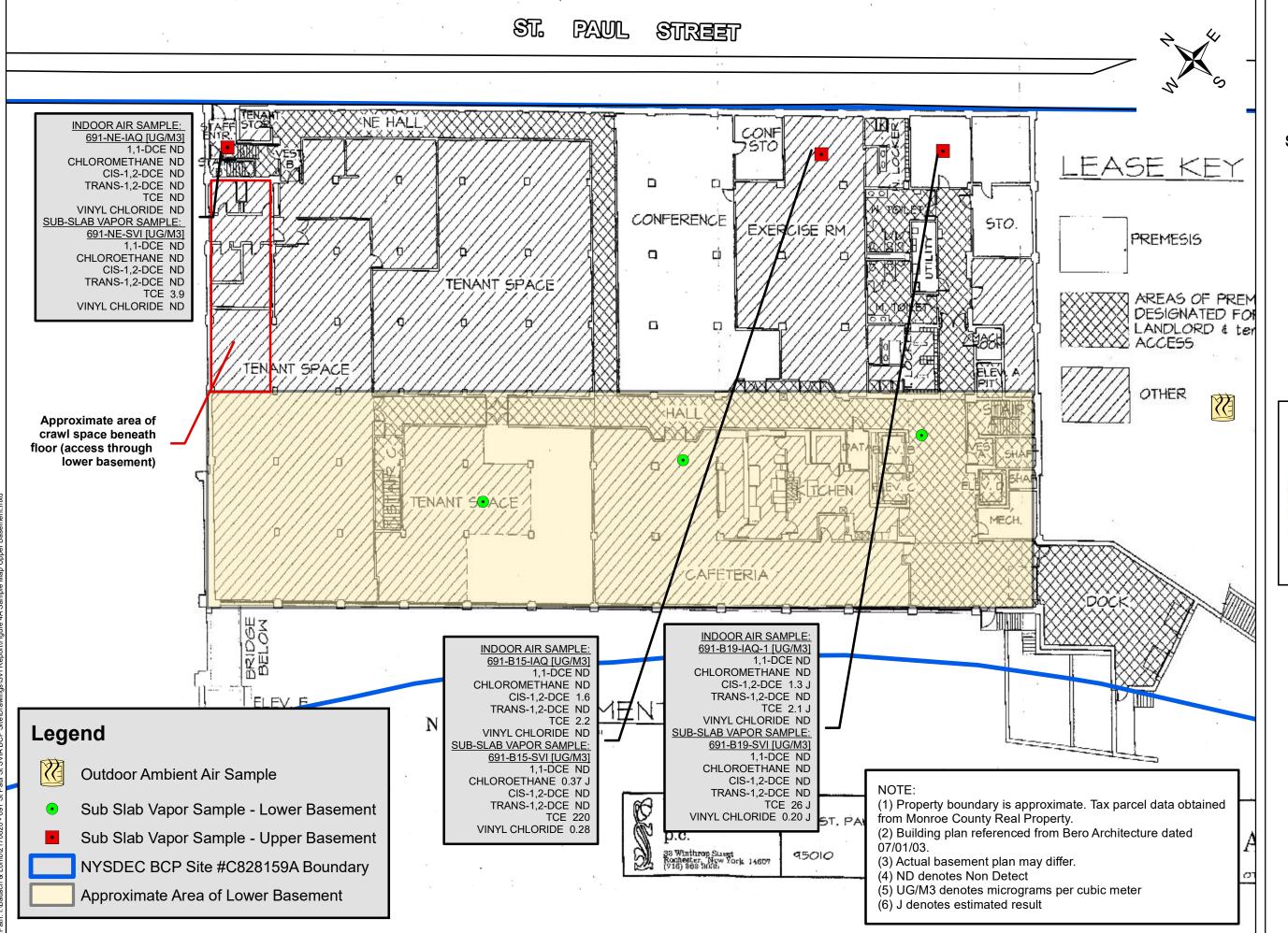
PROJECT
SOIL VAPOR INTRUSION
INVESTIGATION REPORT


690 ST. PAUL ST OFF-SITE NYSDEC SITE #C828159A

691 AND 705 SAINT PAUL ST ROCHESTER, NEW YORK

> CLIENT: BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.



DATE: 8/17/2017

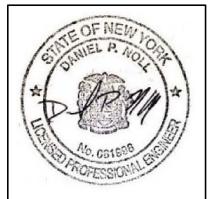
INTENDED TO PRINT 11"X17"

2170820

FIGURE 3

P: (585) 454-6110 F: (585) 454-3066 www.labellapc.com

TITLE


SOIL VAPOR INTRUSION SAMPLING -UPPER BASEMENT

PROJECT
SOIL VAPOR INTRUSION
INVESTIGATION REPORT

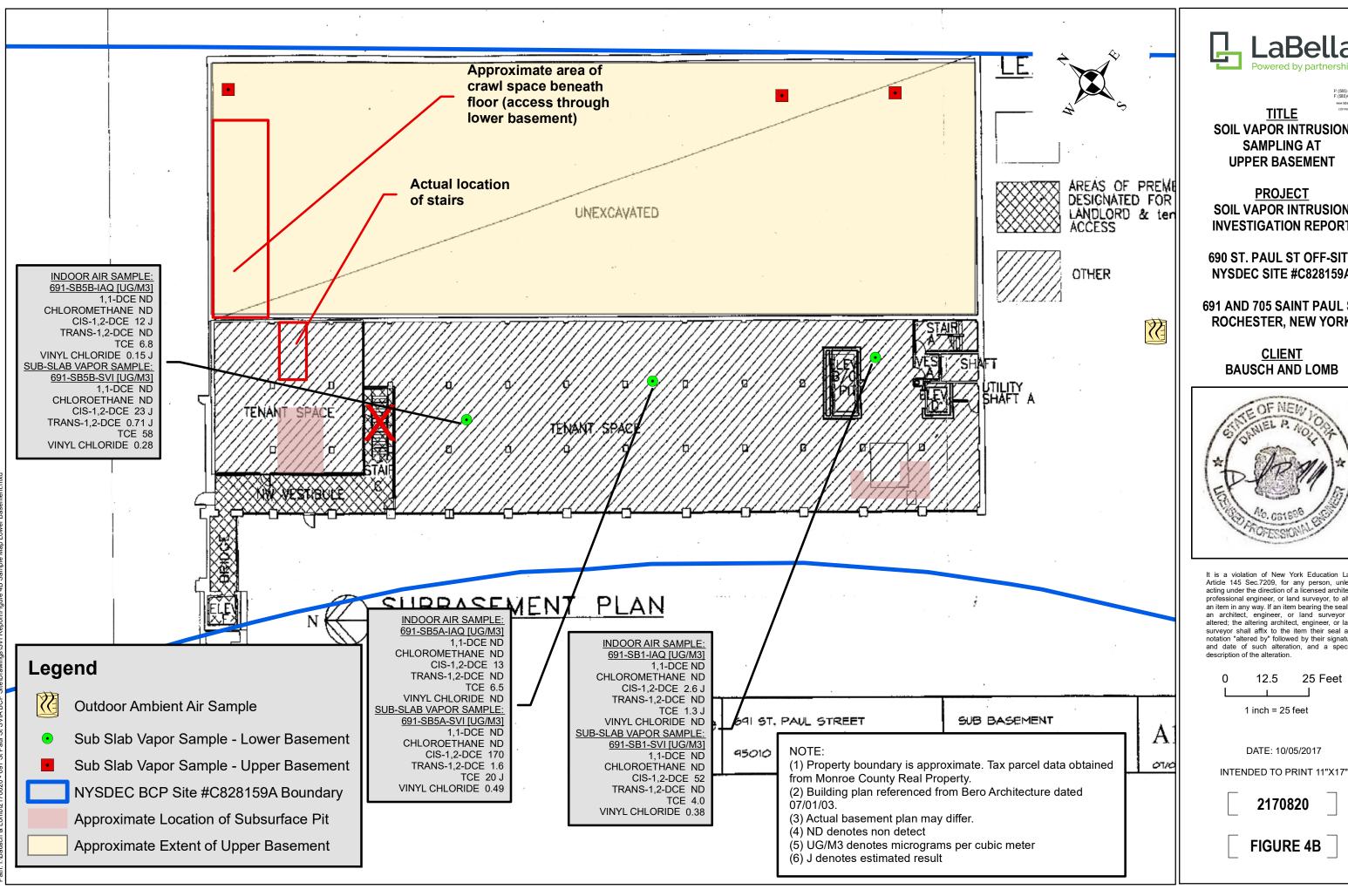
690 ST. PAUL ST OFF-SITE NYSDEC SITE #C828159A

691 AND 705 SAINT PAUL ST ROCHESTER, NEW YORK

> CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

0	12.5	25 Fe
	1	


1 inch = 25 feet

DATE: 10/05/2017

INTENDED TO PRINT 11"X17"

2170820

FIGURE 4A

SOIL VAPOR INTRUSION SAMPLING AT UPPER BASEMENT

SOIL VAPOR INTRUSION INVESTIGATION REPORT

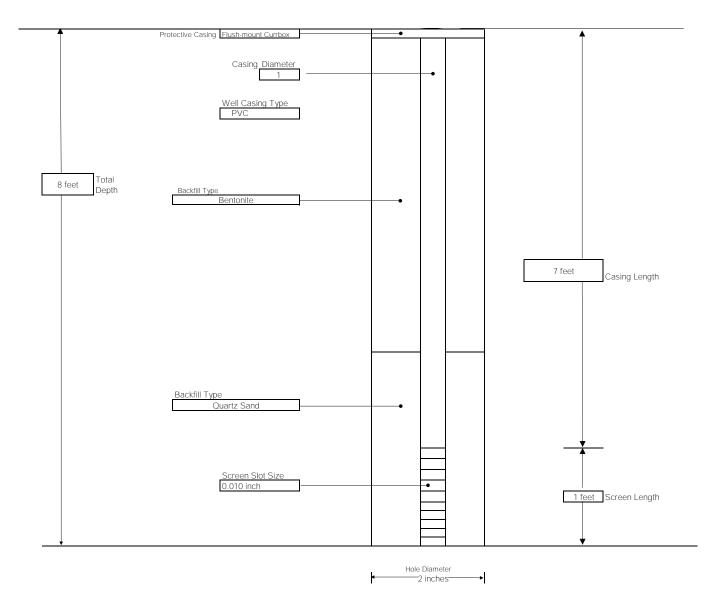
690 ST. PAUL ST OFF-SITE NYSDEC SITE #C828159A

691 AND 705 SAINT PAUL ST **ROCHESTER, NEW YORK**

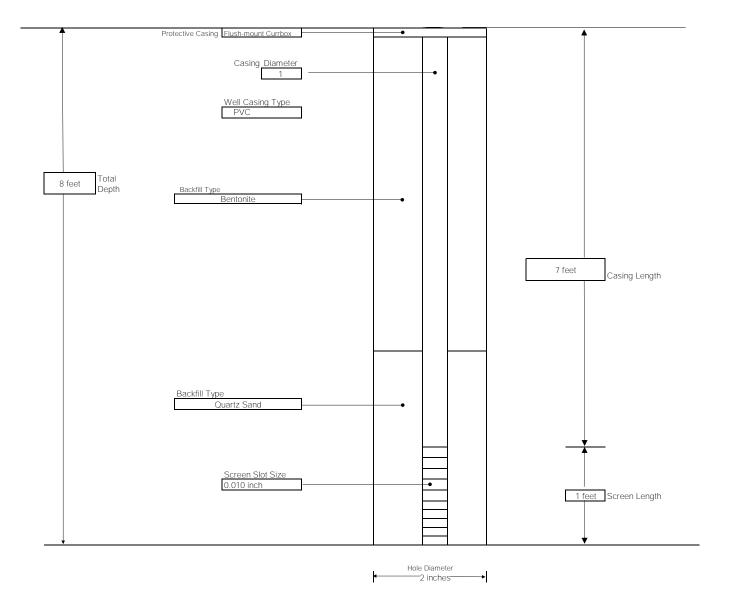
BAUSCH AND LOMB

Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect. professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific

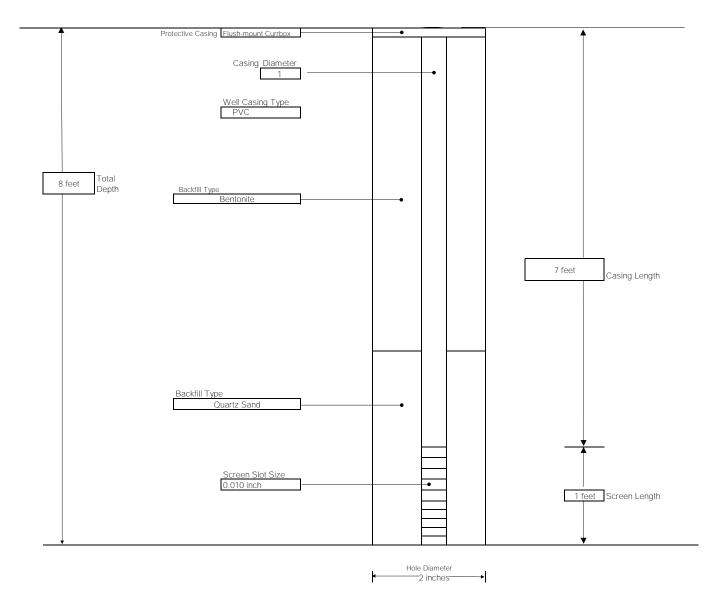
0	12.5	25 Fee

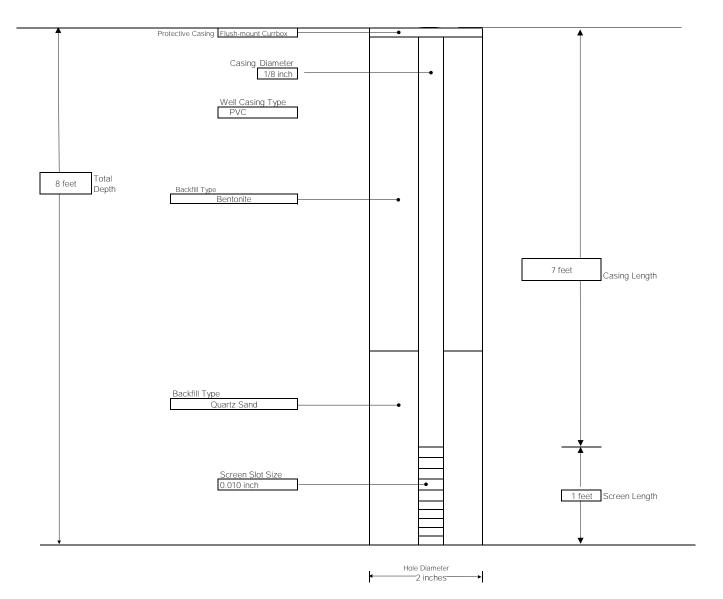


APPENDIX 1


Field Logs and NYSDOH Building Inventory Form

SOIL GAS POINT INSTALLATION LOG


PROJECT Soll Gas Sampling Point: SV-1 SHEET 1 OF 1 691 and 705 Saint Paul Street 300 STATE STREET, ROCHESTER, NEW YORK Rochester, New York Project # 2170436 ENVIRONMENTAL ENGINEERING CONSULTANTS Phase II Environmental Site Assessment Client Bausch & Lomb BORING LOCATION: CONTRACTOR: LaBella Env. LLC SV-1 DRILLER: M Pepe and M. Winderl GROUND SURFACE ELEVATION: DATUM: NA LABELLA REPRESENTATIVE: Alex Brett START DATE: 03/01/2017 END DATE: 03/01/2017 TYPE OF DRILL RIG: Geoprobe 6620 DT AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: NA ROCK DRILLING METHOD:


PROJECT Soll Gas Sampling Point: SV-2 SHEET 1 OF 1 691 and 705 Saint Paul Street 300 STATE STREET, ROCHESTER, NEW YORK Rochester, New York Project # 2170436 ENVIRONMENTAL ENGINEERING CONSULTANTS Phase II Environmental Site Assessment Client Bausch & Lomb BORING LOCATION: CONTRACTOR: LaBella Env. LLC SV-1 DRILLER: M Pepe and M. Winderl GROUND SURFACE ELEVATION: DATUM: NA LABELLA REPRESENTATIVE: Alex Brett START DATE: 03/01/2017 END DATE: 03/01/2017 TYPE OF DRILL RIG: Geoprobe 6620 DT AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: NA ROCK DRILLING METHOD:

PROJECT Soll Gas Sampling Point: SV-3 SHEET 1 OF 1 691 and 705 Saint Paul Street 300 STATE STREET, ROCHESTER, NEW YORK Rochester, New York Project # 2170436 ENVIRONMENTAL ENGINEERING CONSULTANTS Phase II Environmental Site Assessment Client Bausch & Lomb BORING LOCATION: CONTRACTOR: LaBella Env. LLC SV-1 DRILLER: M Pepe and M. Winderl GROUND SURFACE ELEVATION: DATUM: NA LABELLA REPRESENTATIVE: Alex Brett START DATE: 03/01/2017 END DATE: 03/01/2017 TYPE OF DRILL RIG: Geoprobe 6620 DT AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: NA ROCK DRILLING METHOD:

PROJECT Soll Gas Sampling Point: SV-4 SHEET 1 OF 1 691 and 705 Saint Paul Street 300 STATE STREET, ROCHESTER, NEW YORK Rochester, New York Project # 2170436 ENVIRONMENTAL ENGINEERING CONSULTANTS Phase II Environmental Site Assessment Client Bausch & Lomb BORING LOCATION: CONTRACTOR: LaBella Env. LLC SV-1 DRILLER: M Pepe and M. Winderl GROUND SURFACE ELEVATION: DATUM: NA LABELLA REPRESENTATIVE: Alex Brett START DATE: 03/01/2017 END DATE: 03/01/2017 TYPE OF DRILL RIG: Geoprobe 6620 DT AUGER SIZE AND TYPE: NA OVERBURDEN SAMPLING METHOD: NA ROCK DRILLING METHOD:

SOIL GAS SAMPLE LOG

AIR SAMPLING FIELD REPORT

AIR SAMPLING POINT

SV-1

Project: Site Location:	Soil Gas Sampliling 691 and 705 Saint Paul Street Bausch & Lomb		LaBella Project No.: LaBella Representative: Weather:	2170436 AGB	
Client:				Cloudy, moderate winds out of NW, temp in 20's	
0 11.6 "					
General Informatio	<u>on</u>				
Sample Canister L	ocation: Sidewalk near northe	east corner of 705 St Pa	aul Street building along St Paul	Street	
Sample Source:	Indoor Air	Sub-Slab	Interior Ambi	ent AirExterior Ambient Air	
	X Exterior Soil C	Gas	_Other		
Shipping Date:			Laboratory: Ce	entek	
Canister Type:	X1.0 L Summa Canist	er	_6.0 L Summa Canister	Other (specify):	
Canister Serial No.	o.: 542		Flow Controller Serial No.:	256	
Purge Information					
Leak Detection Te	st Date: 03/03/2017		Leak Detection:	X Pass Fail	
Purging Method:	Photoionization Detector	r			
PID Reading Start:	. 0	ppm	PID Reading End:	0.5 ppm_	
Volume of Gas Ext	tracted: ~10 Liters				
Sampling Informati	ion				
Sample Date:	03/03/2017		Sampler: AGB		
Sample Depth:	7-8 ft				
		Start	_	Stop	
Canistor Proceura	Cauga Panding:	-30		-5	
			_		
Sample Time:		1145	_	1925	
Comments:	ouro Doodingo 1145 20				
Time and press	sure Readings. 1145 - 30 1310 - 25				
Pressures show	wn are 1410 - 22				
negative to sho					
	1610 - 15 1710 - 12				
	1810 - 8.5				
	1925 - 5				

AIR SAMPLING POINT

SV-2

Project:	Soil Gas Samplilng			LaBella Project No.:	2170436		
Site Location:	691 and 705 Saint P	aul Street		LaBella Representative:	AGB		
Client:	Bausch & Lomb			Weather:	Cloudy, moderate	winds out of NW, temp in 20's	
General Informatio	_	alk near southea	ist corner of 705 St Pa	ul Street building along St P	aul Street		
Sample Source:		Indoor Air	Sub-Slab	Interior Ar	mbient Air	Exterior Ambient Air	
	X	Exterior Soil Ga	S	Other		_	
Shipping Date:			_	Laboratory:	Centek		
Canister Type:	X1.0 L S	Summa Canister		6.0 L Summa Canister	Other (specify):		
Canister Serial No.	.: 23	7		Flow Controller Serial N	lo.: 402		
Purge Information Leak Detection Teal Purging Method:	est Date: 03/	03/2017 zation Detector		Leak Detection:	X Pass	Fail	
PID Reading Start:		0	ppm	PID Reading End:	0.7	ppm	
_				TID Reading LIIU.	0.1	ργιι	
Volume of Gas Ext	tracted:	~10 Liters					
Sampling Informati	ion						
Sample Date:	03/03/	2017		Sampler: AG	SB .	_	
Sample Depth:	7-8	ft					
			Start	-	Stop		
Canister Pressure	Gauge Reading:		-30	-	-5		
Sample Time:			1155	-	1930		
Comments: Time and press Pressures show negative to sho	wn are	1155 - 30 1310 - 24 1410 - 22 1510 - 19 1610 - 15 1710 - 12 1810 - 9 1930 - 5					

AIR SAMPLING POINT

SV-3

Project:	Soil Gas S				LaBella Project No.:		2170436	
Site Location:		05 Saint Paul Stre	et		LaBella Representat	tive:	AGB	
Client:	Bausch &	Lomb			Weather:		Cloudy, modera	te winds out of NW, temp in 20's
General Informatio	<u>on</u>							
Sample Canister L	ocation:	Sidewalk near	southea	st corner of 691 St F	Paul Street building along S	St Paul S	Street	
Sample Source:		Indoor	Air	Sub-Sla	bInterio	r Ambier	nt Air	Exterior Ambient Air
		X Exterio	r Soil Ga	ıs	Other			
Shipping Date:				<u> </u>	Laboratory:	Cen	itek	
Canister Type:	X	1.0 L Summa	Canister		6.0 L Summa Canister	(Other (specify):	
Canister Serial No.	i.:	1206			Flow Controller Seria	al No.:	249	
Purge Information								
Leak Detection Tes		03/03/2017	7		Leak Detection:	X	Pass	Fail
Purging Method:		Photoionization D	etector					
PID Reading Start:	·. ·	0		ppm	PID Reading End:		0.	5 ppm_
Volume of Gas Ext	tracted:	~10 Lite	ers					
Sampling Informati	<u>iion</u>							
Sample Date:		03/03/2017			Sampler:	AGB		
Sample Depth:		7-8 ft						
				Start	_		Stop	
Canister Pressure	Gauge Read	ling:		-30+	_		-5	
Sample Time:				1205	<u> </u>		2000	
Comments: Time and press Pressures show negative to sho MS/MSD Collectivith Sample	wn are ow vacuum	s. 1205 1310 1410 1510 1610 1710 1810	- 30+ - 27 - 24 - 21 - 18 - 14 - 11	"Plus" symbol afte	r pressure to show vacuun	n is grea	ter than -30 upon s	tart
		2000	- 5					

AIR SAMPLING POINT

SV-4

Project: Site Location:	Soil Gas Sa 691 and 70	amplilng 5 Saint Paul Stre	et		LaBella Project No.: LaBella Representat	ive:	2170436 AGB	
Client:	Bausch & L	omb			Weather:		Cloudy, moderat	te winds out of NW, temp in 20's
General Information	<u>1</u>							
Sample Canister Lo	ocation:	Sidewalk near	southea	st corner of 691 St Pa	ul Street building along S	St Paul Str	reet	
Sample Source:		Indoor A	Air	Sub-Slab	Interior	r Ambient	Air	Exterior Ambient Air
		X Exterior	Soil Ga	s	Other			
Shipping Date:				_	Laboratory:	Cente	k	
Canister Type:	X	1.0 L Summa (Canister		6.0 L Summa Canister	Ot	her (specify):	
Canister Serial No.: Duplicate Canister		290 1184			Flow Controller Seria	al No.:	249	
Purge Information								
Leak Detection Tes	st Date:	03/03/2017	•		Leak Detection:	Χ	Pass	Fail
Purging Method:	<u>F</u>	Photoionization De	etector					
PID Reading Start:		0		ppm	PID Reading End:		0.6	S ppm_
Volume of Gas Extr	racted: _	~10 Lite	ers					
Sampling Information	<u>on</u>							
Sample Date:		03/03/2017			Sampler:	AGB		
Sample Depth:		6.8-7.8 ft						
				Start	-		Stop	
Canister Pressure (Gauge Readi	ng:		-27	_		-5	
Sample Time:				1212	-		2040	
Comments: Time and pressi	_	1310	- 27 - 25	"Plus" symbol after p	pressure to show vacuum	ı is greate	r than -30 upon st	art
Pressures show negative to show	w vacuum	1410 1510 1610	- 22 - 20 - 17					
Duplicate collec with sample.	ted	1710 1810 2040	- 15 - 12 - 5					

SOIL VAPOR INSTRUSION SAMPLE LOG

AIR SAMPLING POINT

691-OUTDOOR

Sample Canister Location: LOWER BASEMENT, ROOM SBS, WOODWORKING SHOP Sample Source: Indoor Air Sub-Slab Interior Ambient Air X Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Sampling Information Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER	Project:		BCP SITE #C828159A		LaBella Project No.:	2170820	
General Information Sample Canister Location: LOWER BASEMENT, ROOM SB5, WOODWORKING SHOP Sample Canister Location: Indoor Air Sub-Slab Interior Ambient Air X Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading (IN. HG): 28 8 Sample Time: 1030 1839							N 40s F
Sample Source: Indoor Air Sub-Slab Interior Ambient Air X Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Cheffe.	DAUGCH	a comp		vvcatrici.	OVENCASI, NAI	, TOJ I
Sample Source: Indoor Air Sub-Slab Interior Ambient Air X Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister G.O L Summa Canister Other (specify): Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading End: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: Start Stop Canister Pressure Gauge Reading (IN. HG): 28 8 Sample Time: 1030 1839	General Informa	ation_					
Exterior Soll Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: K. MILLER Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Sample Canister	Location:	LOWER BASEMENT, ROOI	M SB5, WOODV	VORKING SHOP		
Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE	Sample Source:		Indoor Air	Sub-Slab	Interior An	mbient Air X	Exterior Ambient Air
Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE			Exterior Soil Gas		Other		
Canister Serial No.: 240 Flow Controller Serial No.: 340 NOT APPLICABLE AMBIENT AIR SAMPLE	Shipping Date:		4/1/2017		Laboratory: CENTER	(LABORATORIES	
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading End: Ppm PID Reading End: Ppm Volume of Gas Extracted: Sample Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Canister Type:	X	1.0 L Summa Canister		6.0 L Summa Canister	Other (specify):	
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm P	Canister Serial N	lo.:	240		Flow Controller Serial N	No.:	340
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm P							
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: PID Reading Start: PID Reading End: PID Readin			NOT A	PPLICABLE AME	BIENT AIR SAMPLE		
Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Purge Information	<u>on</u>					
PID Reading Start: Ppm PID Reading End: ppm Volume of Gas Extracted:	Leak Detection T	Test Date:			Leak Detection:	Pass	Fail
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Purging Method:	:					
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	PID Reading Star	t:		ppm	PID Reading End:		ppm
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Volume of Gas E	xtracted:					
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839							
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839							
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Sampling Inform	nation					
Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Sample Date:		4/1/2017		Sampler: K. M	1ILLER	
Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839	Sample Depth:		NOT APPLICABLE				
Canister Pressure Gauge Reading [IN. HG]: 28 8 Sample Time: 1030 1839							
Sample Time: 1030 1839				Start	_	Stop	
· · · · · · · · · · · · · · · · · · ·	Canister Pressure	e Gauge Rea	ading [IN. HG]:	28	_	8	
Comments:	Sample Time:			1030	_	1839	
	Comments:						
	·						

AIR SAMPLING POINT

691-SB5B-SVI

Project: Site Location: Client:	_	BCP SITE #C828159A T PAUL ST, ROCHESTER, NY & LOMB	/	LaBella Project No.: LaBella Representative: Weather:	2170820 K. MILLER OVERCAST, RA	NN, 40s F
						·
General Informa	ation_					
Sample Canister	Location:	LOWER BASEMENT, RO	OM SB5, WOOL	DWORKING SHOP		_
Sample Source:		Indoor Air	X Sub-Sla	bInterior Am	nbient Air	Exterior Ambient Air
1		Exterior Soil Gas		Other		
Shipping Date:		4/1/2017		Laboratory: <u>CENTEK</u>	LABORATORIES	
Canister Type:	X	1.0 L Summa Canister		_ 6.0 L Summa Canister	Other (specify):	
Canister Serial N	lo.:	467		Flow Controller Serial N	lo.:	1167
Purge Informati	<u>on</u>					
Leak Detection 1	Test Date:	4/1/2017		Leak Detection:	X Pass	Fail
Purging Method	l:	MGD 2002 HELIUM LEAK [DETECTOR			
Volume of Gas E	extracted:	3 PROBE VOLUMES	(~0.02 L)			
Sampling Inform	nation					
Sample Date:		4/1/2017		Sampler: K. M	ILLER	
Sample Depth:		NOT APPLICABLE				
		_	Start		Stop	
Canister Pressur	e Gauge Rea	ading [IN. HG]:	29.5		0.5	
Sample Time:		_	1129		1540	
Comments:	CONC	RETE FLOOR 5-6" THICK'				

AIR SAMPLING POINT

691-SB5B-IAQ

roject:		BCP SITE #C828159A		LaBella Project No.:	2170820			
Site Location:		T PAUL ST, ROCHESTER, NY		LaBella Representative:	K. MILLER	-		
Client:	BAUSCH	& LOMB		Weather:	OVERCAST, RA	IN, 40s F		
General Informat	ution							
Jeneral Illioinia	<u>ition</u>							
Sample Canister I	Location:	LOWER BASEMENT, ROC)M SB5, WOODW	ORKING SHOP				
Sample Source:		X Indoor Air	Sub-Slab	Interior Am	bient Air	Exterior Ambient Air		
	_	Exterior Soil Gas		Juner				
Shipping Date:		4/1/2017		Laboratory: <u>CENTEK</u>	LABORATORIES			
Canister Type:	X	1.0 L Summa Canister	(6.0 L Summa Canister	Other (specify):			
Canister Serial No	0.	285		Flow Controller Serial No	n ·	344		
zamoter derrar re				The second residence of the se				
		<u>NOT /</u>	APPLICABLE AMB	BIENT AIR SAMPLE				
Purge Informatio	<u>on</u>							
Leak Detection Te	est Date:			Leak Detection:	Pass	Fail		
Purging Method:	:							
			nnm	DID Booding End.		nnm		
PID Reading Start	·:		ppm	PID Reading End:		ppm		
Volume of Gas Ex	xtracted:							
Sampling Informa	nation							
Sample Date:		4/1/2017		Sampler: K. MI	IIED			
		4/1/2017		Sampler. K. IVII	LLEN			
Sample Depth:		NOT APPLICABLE						
		<u>—</u>	Start	_	Stop			
Canister Pressure	e Gauge Rea	ading [IN. HG]:	30	_	3			
Sample Time:		_	1121	_	1541			
Comments:								
Johnnents.								

AIR SAMPLING POINT

691-SB5A-SVI

Project:		T DALIL ST. DOCUMENTED AN	,	LaBella Project No.:	21/0820	
Site Location: Client:	BAUSCH 8	T PAUL ST, ROCHESTER, NY & LOMB	·	LaBella Representativ Weather:	e: <u>K. MILLER</u> OVERCAST, RA	IN 40s F
Cheffe.	חסטכוו	~ FOIAID		vv caulet.	OVERCASI, RA	111 ₁ 100 1
General Informa	ation_					
Sample Canister	Location:	LOWER BASEMENT, RO	OM SB5. WOODW	VORKING SHOP		
sample camster	Location.	EGWEN BASEMENT, NO	0111 323, 110021	VOTIMITO STIGI		
Sample Source:		Indoor Air	X Sub-Slab	Interior A	Ambient Air	Exterior Ambient Air
I		Futarian Sail Can		Othor		
1		Exterior Soil Gas		Other		
Shipping Date:		4/1/2017		Laboratory: CENTE	EK LABORATORIES	
Canister Type:	X	1.0 L Summa Canister		6.0 L Summa Canister	Other (specify):	-
Canister Serial N	lo.:	475		Flow Controller Serial	No :	1170
		173		riow controller serial		1170
Purge Information	on					
ruige illioilliati	<u>011</u>					
Leak Detection T	Test Date:	4/1/2017		Leak Detection:	X Pass	Fail Fail
		•				
Purging Method	:	MGD 2002 HELIUM LEAK [DETECTOR			
Volume of Gas E	xtracted:	3 PROBE VOLUMES	(~0.02 L)			
		ormose vocomes	(0.02 2)			
Sampling Inform	nation					
Sampling intom	<u>iation</u>					
Sample Date:		4/1/2017		Sampler: K. I	MILLER	
Sample Depth:		NOT APPLICABLE				
		_	Start	_	Stop	
Canister Pressure	o Caugo Bos	oding [IN LIC].	20		2	
canister Pressur	e Gauge Kea	ם ביווא מוווא מווון צוווי. חטן:	28		2	
Sample Time:			1115		NA	
		_		•		
Comments:	CONIC					
-	CONCI	RETE FLOOR 5-6" THICK'				
				_	-	

AIR SAMPLING POINT

691-SB5A-IAQ

ineral Information ample Canister Location: LOWER BASEMENT, ROOM SBS, WOODWORKING SHOP ample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other A/1/2017 Laboratory: CENTEK LABORATORIES Anister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): anister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE urge Information NOT APPLICABLE AMBIENT AIR SAMPLE urging Method: ID Reading Start: ppm PID Reading End: ppm Tolume of Gas Extracted: Start Stop ample Depth: NOT APPLICABLE Start Stop ample Time: 1112 1740	roject:		BCP SITE #C828159A		LaBella Project No.:	2170820	
Seneral Information Sample Canister Location: LOWER BASEMENT, ROOM SBS, WOODWORKING SHOP Sample Canister Location: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm Additional Start: ppm PID Reading End: Sample Date: A/1/2017 Sample Depth: K. MILLER Sample Date: A/1/2017 Sampler: K. MILLER Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 2 Sample Time: 1112 1740	Site Location:				LaBella Representative:	K. MILLER	*** **
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other A/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purging Method: Purging Method: Purging Method: Purging Method: Purging Method: Sample Date: 4/1/2017 Sample Date: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	lient:	BAUSCH	₹ FOWR		Weather:	OVERCAST, RA	IN, 40s F
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Pass Fail Pol Reading Start: ppm PID Reading End: ppm PID Reading Start: ppm PID Reading End: ppm PID Reading End: sample Date: 4/1/2017 Sampler K. MILLER Sample Date: 4/1/2017 Sampler K. MILLER Canister Pressure Gauge Reading [IN. HG]: 30 2 Canister Pressure Gauge Reading [IN. HG]: 31 2 Canister Pressure Gauge Reading [IN. HG]: 30 2 Canister Pressure Gauge Reading [IN. HG]: 30 2 Canister Pressure Gauge Reading [IN. HG]: 31 2 Canist							
Sample Canister Location: LOWER BASEMENT, ROOM SBS, WOODWORKING SHOP Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection: Pass Fail Purging Method: Purging Method: PiD Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Cananal Informa	***					
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	<u>Jenerai intorma</u>	tion .					
Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Sample Canister	Location:	LOWER BASEMENT, ROO	M SB5, WOODW	ORKING SHOP		
Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Sample Source:		X Indoor Air	Sub-Slab	Interior Am	hient Air	Exterior Ambient Air
Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading End: ppm PID Reading End: ppm PID Reading End: ppm Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: 1/2017 Sampler: K. MILLER Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Jampie Source.	_				DICHE All	Exterior Ambiene Am
Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 367 Flow Controller Serial No.: 251 NOT APPLICABLE AMBIENT AIR SAMPLE			Exterior Soil Gas	(Other		
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm PID Reading End: ppm PID Reading End: Sample Date: Sample Date: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: Sample Time: 1112 1740	Shipping Date:		4/1/2017		Laboratory: <u>CENTEK</u>	LABORATORIES	
NOT APPLICABLE AMBIENT AIR SAMPLE Purgle Information Leak Detection Test Date: Leak Detection: Pass Fail Purgling Method: PID Reading End: Ppm PID Readin	Canister Type:	X	1.0 L Summa Canister	€	5.0 L Summa Canister	Other (specify):	
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading End: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Canister Serial No	0.:	367		Flow Controller Serial No	0.:	251
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740 Sample Time: 1112 Sam						<u>-</u>	
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2							
Leak Detection Test Date: Leak Detection:			NOT £	APPLICABLE AMB	IENT AIR SAMPLE		
Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	ourge Information	<u>on</u>					
PID Reading Start: Ppm PID Reading End: ppm	_eak Detection T	est Date:			Leak Detection:	Pass	Fail Fail
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER	Purging Method:	: <u> </u>					
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	PID Reading Start	t:		ppm	PID Reading End:		ppm
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740							
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	/olume ot Gas Ex	xtractea:					
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740							
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740							
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Sampling Inform	<u>iation</u>					
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Sample Date:		4/1/2017		Sampler: K. MI	LLER	
Start Stop Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740		-					
Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740	Sample Depth:	_	NOT APPLICABLE				
Canister Pressure Gauge Reading [IN. HG]: 30 2 Sample Time: 1112 1740				<u>.</u>			
Sample Time: 1112 1740				Start	_	Stop	
Sample Time: 1112 1740	Canistar Dressure	o Gauge Re:	ading (IN HG).	30		7	
		: Cauge nec	Juling [114. 116].		_		
Comments:	Sample Time:			1112		1740	
	Comments:						

AIR SAMPLING POINT

691-SB1-SVI

Project:	NYSDEC BCP SITE #C828159A	NIV/	LaBella Project No.:	2170820	
Site Location: Client:	691 SAINT PAUL ST, ROCHESTER, BAUSCH & LOMB		LaBella Representative: Weather:	K. MILLER OVERCAST, RAIN	I, 40s F
		_			,
General Informa	ation_				
Sample Canister	Location: LOWER BASEMENT,	ROOM SB1			
Sample Source:	Indoor Air	Y Sub-Sl	abInterior Amb	mient Air	Exterior Ambient Air
ample source.					EXTERIOR ARIBIERIT AII
	Exterior Soil G	as	Other		
hipping Date:	4/1/2017	_	Laboratory: <u>CENTEK L</u>	ABORATORIES	
Canister Type:	X 1.0 L Summa Caniste	r	6.0 L Summa Canister	Other (specify):	
`anister Serial N	o.:203		Flow Controller Serial No		372
amster serial iv	0 203		Tiow controller serial tvo		372
Purge Information	<u>on</u>				
eak Detection T	est Date: 4/1/2017		Leak Detection: X	Pass	Fail
Purging Method	: MGD 2002 HELIUM LEA	K DETECTOR			
Volume of Gas E	xtracted: 3 PROBE VOLUME	ES (~0.02 L)			
		, ,			
Sampling Inform	nation				
Sample Date:	4/1/2017		Sampler: K. MIL	LER	
Sample Depth:	NOT APPLICABLE				
		Start		Stop	
Canister Pressur	e Gauge Reading [IN. HG]:	30		6	
Sample Time:		1059	_	1911	
Comments:					
	CONCRETE FLOOR 4-5" THICK'				

AIR SAMPLING POINT

691-SB1-IAQ

roject:		BCP SITE #C828159A		LaBella Project No.:	2170820	
Site Location:		IT PAUL ST, ROCHESTER, NY		LaBella Representative:	K. MILLER	
Client:	BAUSCH	& LOMB		Weather:	OVERCAST, RAI	IN, 40s F
General Informa	<u>tion</u>					
Sample Canister	Location:	LOWER BASEMENT, ROOM	M <u>SB1</u>			
		Y Indoor Air	Cub Clab	Interior Aml	t-i-not Air	Futuriar Ambiant Air
Sample Source:		X Indoor Air	รนม-ราสม	interior Amic	Dient Air	Exterior Ambient Air
		Exterior Soil Gas	(Other		
Shipping Date:		4/1/2017		Laboratory: <u>CENTEK L</u>	LABORATORIES	
Canister Type:	X	1.0 L Summa Canister	(5.0 L Summa Canister	Other (specify):	
anister Serial N	0 :	170		Flow Controller Serial No	١.	387
741110 CO. C.				110.1. 35.11. 2.1.2. 2.2		
		NOT A	PPLICABLE AMB	BIENT AIR SAMPLE		
Purge Informatio	<u>nc</u>					
Leak Detection To	est Date:			Leak Detection:	Pass	Fail
ourging Method:	: <u> </u>					
PID Reading Start	t:		ppm	PID Reading End:		ppm
Volume of Gas Ex	xtracted:					
orume e. sac	· · ·					
Sampling Inform	<u>ation</u>					
Sample Date:		4/1/2017		Sampler: K. MIL	_LER	
Sample Depth:		NOT APPLICABLE				
MINE 2 - F						
			Start		Stop	
Canister Pressure	e Gauge Re	ading [IN. HG]:	NA	_	5	
Sample Time:			1101		1911	
Comments:						

AIR SAMPLING POINT

691-NE-SVI

Project: Site Location:	NYSDEC BCP SITE #C828159A 691 SAINT PAUL ST, ROCHESTER, N	IV	LaBella Project No.: LaBella Representative:	2170820 K. MILLER	
Client:	BAUSCH & LOMB		Weather:		IN, 40s F
General Informa	<u>ation</u>				
Sample Canister	Location: STAIRWELL, NORTHE	AST CORNER OF	BLDG [ROOM B12]		
Sample Source:	Indoor Air	X Sub-Sl	abnnterior Amb	nient Δir	Exterior Amhient Air
sample source.					Exterior Ambient Air
	Exterior Soil Ga	s	Other		
Shipping Date:	4/1/2017		Laboratory: <u>CENTEK L</u>	ABORATORIES	
Canister Type:	X1.0 L Summa Canister		6.0 L Summa Canister	Other (specify):	
Canister Serial N	o.: <u>1186</u>		Flow Controller Serial No	u:	145
Purge Information	on				
					- "
Leak Detection T	est Date: 4/1/2017		Leak Detection:	Pass	Fail
Purging Method:	: MGD 2002 HELIUM LEAK	DETECTOR			
Volume of Gas E	xtracted: 3 PROBE VOLUMES	S (~0.02 L)			
Sampling Inform	<u>nation</u>				
Sample Date:	4/1/2017		Sampler: K. MIL	IFR	
		_			
Sample Depth:	NOT APPLICABLE				
		Start		Stop	
	•	Start			
Canister Pressure	e Gauge Reading [IN. HG]:	30		3	
Sample Time:	•	1045		1855	
		1045	<u> </u>	1833	
Comments:	CONCRETE FLOOR 4-5" THICK'				
-					

AIR SAMPLING POINT

691-NE-IAQ

Seneral Information Sample Canister Location: STAIRWELL, NORTHEAST CORNER OF BLDG [ROOM B12] Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soll Gas Other Alipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.01.5 umma Canister 6.01.5 umma Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Read Detection: Pass Fail Purging Method: Plug Reading Start: ppm PID Reading End: ppm Yolume of Gas Extracted: Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Lample Depth: Start Stop Lample Time: 1042 1705	roject:		BCP SITE #C828159A		LaBella Project No.:	2170820	
Sample Canister Location: STAIRWELL, NORTHEAST CORNER OF BLDG [ROOM B12] Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PlD Reading Start: ppm PlD Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Site Location:				LaBella Representative:		
Sample Canister Location: STAIRWELL, NORTHEAST CORNER OF BLDG [ROOM B12] Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Pass Fail PID Reading End: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Client:	BAUSCH	& LOMB		Weather:	OVERCAST, RA	IN, 40s F
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading End: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705							
Sample Canister Location: STAIRWELL, NORTHEAST CORNER OF BLDG [ROOM B12] Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purge Information Volume of Gas Extracted: PID Reading End: ppm PID Reading End: ppm Sample Date: 4/1/2017 Sample: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705		-					
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	<u>General Informa</u>	ation_					
Exterior Soil GasOther Shipping Date:4/1/2017	Sample Canister	Location:	STAIRWELL, NORTHEAST	CORNER OF BLD)G [ROOM B12]		
Exterior Soil GasOther Shipping Date:4/1/2017	Cample Source:		Y Indoor Air		Interior Am	hiant Air	Evterior Amhient Air
Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE	sample source.					DIEIIL AII	EXTERIOR ATTIDIETT ATT
Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 94 Flow Controller Serial No.: 379 NOT APPLICABLE AMBIENT AIR SAMPLE			Exterior Soil Gas	(Other		
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading End: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Shipping Date:		4/1/2017		Laboratory: CENTEK	LABORATORIES	_
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method:	Canister Type:	X	1.0 L Summa Canister	(6.0 L Summa Canister	Other (specify):	
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method:	Canister Serial No	lo :	94		Flow Controller Serial No	n ·	379
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705 Sample Time: 1042 1705 Sample Time: 1042 1705 Sample Time: 1045 Sample Time: 1046 Sample Time: 1047 Sample Time: 1048 Sample Time: 1049 Sample Time: 1040 Sample Time: 1040 Sample Time: 1041 Sample Time: 1041 Sample Time: 1042 Sample Time: 1045 Sample Time: 1046 Sample Time: 1047 Sample Time: 1048 Sample Time: 1049 Sample Time: 1049 Sample Time: 1040 Sample Time: 1040 Sample Time: 1040 Sample Time: 1041 Sample Time: 1041 Sample Time: 1042 Sample Time: 1041 Sample Time: 1042 Sample Time: 1042 Sample Time: 1041 Sample Time: 1042 Sample Time: 1042 Sample Time: 1042 Sample Time: 1042 Sample Time: 1044 Sample Time: 1045 Sample Time: 1045 Sample Time: 1046 Sample Time: 1047 Sample Time: 1048 Sample Time: 1048 Sample Time: 1049 Sample Time: 1049 Sample Time: 1040 Sample Time: 1041 Sample Time: 1041 Sample Time: 1042 Sample Time: 1042 Sample Time: 1041 Sample Time: 1042 Sample Time: 1043 Sample	camster seriar				How controller seria	J	373
Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705 Sample Time: 1042 1705 Sample Time: 1042 1705 Sample Time: 1045 Sample Time: 1046 Sample Time: 1047 Sample Time: 1048 Sample Time: 1049 Sample Time: 1040 Sample Time: 1040 Sample Time: 1041 Sample Time: 1041 Sample Time: 1042 Sample Time: 1045 Sample Time: 1046 Sample Time: 1047 Sample Time: 1048 Sample Time: 1049 Sample Time: 1049 Sample Time: 1040 Sample Time: 1040 Sample Time: 1040 Sample Time: 1041 Sample Time: 1041 Sample Time: 1042 Sample Time: 1041 Sample Time: 1042 Sample Time: 1042 Sample Time: 1041 Sample Time: 1042 Sample Time: 1042 Sample Time: 1042 Sample Time: 1042 Sample Time: 1044 Sample Time: 1045 Sample Time: 1045 Sample Time: 1046 Sample Time: 1047 Sample Time: 1048 Sample Time: 1048 Sample Time: 1049 Sample Time: 1049 Sample Time: 1040 Sample Time: 1041 Sample Time: 1041 Sample Time: 1042 Sample Time: 1042 Sample Time: 1041 Sample Time: 1042 Sample Time: 1043 Sample							
Leak Detection Test Date: Purging Method: PID Reading Start: ppm PID Reading End: ppm PID Reading End: Sampling Information Sample Date: A/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705			NOT /	APPLICABLE AMB	BIENT AIR SAMPLE		
Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Purge Information	<u>on</u>					
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1	Leak Detection T	Test Date:			Leak Detection:	Pass	Fail
PID Reading Start: Ppm PID Reading End: ppm Volume of Gas Extracted:	Purging Method:	:					
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705				nnm	DID Pooding End		nnm
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	FID Reduing Stan			βριτι	FID Reduing End.		ррпп
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Volume of Gas Ex	xtracted:					
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705							
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705							
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Sampling Inform	nation					
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Campula Data		4/1/2017		Camandan I/ NAI	LLED	
Start Stop Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	sample Date:	-	4/1/2017		Sampier: K. Mil	LLEK	
Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705	Sample Depth:		NOT APPLICABLE				
Canister Pressure Gauge Reading [IN. HG]: 28 1 Sample Time: 1042 1705							
Sample Time: 1042 1705			_	Start	_	Stop	
Sample Time: 1042 1705							
	Canister Pressure	e Gauge Rea	ading [IN. HG]:	28	_	1	
Comments:	Sample Time:		_	1042	_	1705	
Comments.							
	Comments.						
	Comments:						
	Comments:						
	Comments:						

AIR SAMPLING POINT

691-B15-SVI

Project:	NYSDEC BCP SITE #C828159A		LaBella Project No.:	2170820	
Site Location:	691 SAINT PAUL ST, ROCHESTER,		LaBella Representative:	K. MILLER	
Client:	BAUSCH & LOMB		Weather:	OVERCAST, RAI	IN, 40s F
General Informa	ation_				
C	LIDDED DACEMENT II	ITU ITU DOOM DAO			
Sample Canister	Location: UPPER BASEMENT U	IIFILA KOOM RTA			
Sample Source:	Indoor Air	XSub-Sla	abInterior Amb	bient Air	Exterior Ambient Air
					
	Exterior Soil G	as	Other		
Shipping Date:	4/1/2017		Laboratory: CENTEK L	LABORATORIES	
		<u> </u>			
Canister Type:	X 1.0 L Summa Caniste	:r	6.0 L Summa Canister	Other (specify):	
Canister Serial N	lo.: 550		Flow Controller Serial No	o.:	266
İ					
i					
Purge Information	<u>on</u>				
l				5	5 11
Leak Detection T	Test Date: 4/1/2017		Leak Detection:>	X Pass	Fail
Purging Method:	: MGD 2002 HELIUM LEA	K DETECTOR			
Volume of Gas Ex	extracted: 3 PROBE VOLUME	<u>ES (∼0.02 L)</u>			
l					
c	*t				
Sampling Inform	<u>iation</u>				
Sample Date:	4/1/2017		Sampler: K. MIL	LLER	
المسام ا	NOT ADDUCADLE				
Sample Depth:	NOT APPLICABLE				
l					
l		Start		Stop	
ľ					
Canister Pressure	e Gauge Reading [IN. HG]:	30		2	
			_		
Sample Time:		1034		1900	
Comments:					
	CONCRETE FLOOR 4-5" THICK'				
<u></u>					

AIR SAMPLING POINT

691-B15-IAQ

lener: BAUSCH & LOMB Weather: OVERCAST, RAIN, 40s F eneral Information ample Canister Location: ROOM BLS CUSTODIAN STORAGE OFFICE ample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other hipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES anister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): anister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE urge Information BAUSCH & LORD ROOM BLS CUSTODIAN STORAGE OFFICE NOT APPLICABLE AMBIENT AIR SAMPLE Leak Detection: Pass Fail urging Method: ID Reading Start: ppm PID Reading End: ppm olume of Gas Extracted: Start Stop anister Pressure Gauge Reading [IN, HG]: 27.5 3 ample Time: 1024 1825	Project:		BCP SITE #C828159A		LaBella Project No.:	2170820		
Seneral Information sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil GasOther shipping Date: 4/1/2017	ite Location:	691 SAINT PAUL ST, ROCHESTER, NY			LaBella Representative:			
Sample Canister Location: ROOM B15 CUSTODIAN STORAGE OFFICE Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air	Client:	BAUSCH &	& LOMB		Weather:	OVERCAST, KAI	N, 40s F	
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:								
Sample Canister Location: ROOM B15 CUSTODIAN STORAGE OFFICE Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection: Pass Fall Purging Method: Papp PID Reading End: ppm PID Reading End: ppm Sample Date: 4/1/2017 Sampler: K. MILLER Sample Date: 4/1/2017 Sampler: K. MILLER Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:								
Sample Source: X Indoor Air Sub-Slab Interior Ambient Air Exterior Ambient Air Exterior Soil Gas Other Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister Other (specify): Canister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	<u>3eneral Intorma</u>	tion						
Exterior Soil Gas Other A/1/2017	Sample Canister	Location:	ROOM B15 CUSTODIAN S	TORAGE OFFICE	<u>:</u>			
Exterior Soil Gas Other Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE	Sample Source:		Y Indoor Air	Suh-Slah	Interior Amh	siont Air	Exterior Ambient Air	
Shipping Date: 4/1/2017 Laboratory: CENTEK LABORATORIES Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE	allipie source.						EXTERIOR ATTIMIENT ATT	
Canister Type: X 1.0 L Summa Canister 6.0 L Summa Canister Other (specify): Canister Serial No.: 101 Flow Controller Serial No.: 299 NOT APPLICABLE AMBIENT AIR SAMPLE			Exterior Soil Gas	(Other			
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sample Date: A/1/2017 Sample Depth: Sample Depth: Start Stop Canister Pressure Gauge Reading [IN. HG]: Sample Time: 1024 1825 Comments:	Shipping Date:		4/1/2017		Laboratory: <u>CENTEK L</u>	_ABORATORIES		
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Canister Type:	X	1.0 L Summa Canister		5.0 L Summa Canister	Other (specify):		
NOT APPLICABLE AMBIENT AIR SAMPLE Purge Information Leak Detection Test Date: Leak Detection: Pass Fail Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Canister Serial No	0.:	101		Flow Controller Serial No).:	299	
Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:								
Purging Method: PID Reading Start: ppm PID Reading End: ppm Volume of Gas Extracted: Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:								
Leak Detection Test Date: Leak Detection: Pass Fail Purging Method:			NOT A	PPLICABLE AMB	IENT AIR SAMPLE			
Purging Method: PID Reading Start: PID Reading End:	ourge Information	<u>nc</u>						
PID Reading Start: Ppm PID Reading End:	_eak Detection T	est Date:			Leak Detection:	Pass	Fail	
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Purging Method:	: <u> </u>						
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	PID Reading Starf	t:		ppm	PID Reading End:		ppm	
Sampling Information Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Volume of Gas E	vtracted:						
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	TOTALLE OF SUS	Middled.						
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments: 1024 1825								
Sample Date: 4/1/2017 Sampler: K. MILLER Sample Depth: NOT APPLICABLE Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments: 1024 1825								
Sample Depth: NOT APPLICABLE Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Sampling Informa	<u>ation</u>						
Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Sample Date:		4/1/2017		Sampler: K. MIL	LER		
Start Stop Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:	Sample Depth:		NOT APPLICABLE					
Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:								
Canister Pressure Gauge Reading [IN. HG]: 27.5 3 Sample Time: 1024 1825 Comments:				Start		Stop		
Sample Time: 1024 1825 Comments:						· · ·		
Comments:	Canister Pressure	e Gauge Rea	ading [IN. HG]:	27.5		3		
	Sample Time:			1024		1825		
	Commonts:							
		DUPLI	CATE SAMPLE ALSO COLLECT	ΓΕD (CAN <u>#87) U</u>	SING T CONNECTION			

AIR SAMPLING POINT

691-B19-SVI

Project:		BCP SITE #C828159A		LaBella Project No.:	2170820	
Site Location:		IT PAUL ST, ROCHESTER, NY		LaBella Representative: Weather:	K. MILLER	IN 40c F
Client:	BAUSCH	& LOMB		weather:	OVERCAST, RA	IIV, 405 F
General Informa	ation_					
Sample Canister	Location:	UPPER BASEMENT UTIL	ITY ROOM B19			
Sample Source:		Indoor Air	X Sub-Sla	bInterior Amb	pient Air	Exterior Ambient Air
		Exterior Soil Gas		Other		
Shipping Date:		4/1/2017		Laboratory: <u>CENTEK L</u>	ABORATORIES	
Canister Type:	X	1.0 L Summa Canister		6.0 L Summa Canister	Other (specify):	
Canister Serial N	lo.:	362		Flow Controller Serial No	h:	446
Purge Information	on_					
Leak Detection T	Test Date:	4/1/2017		Leak Detection:	〈 Pass	Fail
Purging Method	l:	MGD 2002 HELIUM LEAK [DETECTOR			
Volume of Gas E	Extracted:	3 PROBE VOLUMES ((~0.02 L)			
Sampling Inform	nation					
Sample Date:		4/1/2017		Sampler: K. MIL	LER	_
Sample Depth:		NOT APPLICABLE				
		_	Start	_	Stop	
Canister Pressur	e Gauge Re	ading [IN. HG]:	30		9	
Sample Time:		_	1010		1935	
Comments:	CONC	CRETE FLOOR 4-5" THICK'				
	23,10					

AIR SAMPLING POINT

691-B19-IAQ-2

Project:	NYSDEC BCP SITE #C828159A				LaBella Project No.:	2170820	2170820 K. MILLER OVERCAST, RAIN, 40s F		
Site Location:	691 SAINT PAUL ST, ROCHESTER, NY			LaBella Representative:					
Client:	BAUSCH & LOMB			Weather:	OVERCAST, RAI				
General Informa	ation_								
Sample Canister	Location:	UPPER BASE	MENT UTILITY	ROOM B19					
Sample Source:		XIndoc	or Air	Sub-Slab	Interior Am	nbient Air	Exterior Ambient Air		
İ									
		Exteri	ior Soil Gas	(Other				
Shipping Date:		4/1/2017			Laboratory: <u>CENTEK</u>	(LABORATORIES			
							_		
Canister Type:	X	1.0 L Summa	a Canister		6.0 L Summa Canister	Other (specify):			
Canister Serial N	lo.:		1188		Flow Controller Serial N	lo.:	306		
ľ									
l			NOT AP	PLICABLE AMF	BIENT AIR SAMPLE				
Purge Information	<u>on</u>		11011	TENORIDEE	<u> </u>				
						2			
Leak Detection T	rest Date:				Leak Detection:	Pass	Fail		
Purging Method	l:								
PID Reading Star	t:			ppm	PID Reading End:		ppm_		
Volume of Gas E	xtracted:								
ľ									
Sampling Inform	nation								
la la Data.		4/1/2	047		C 1 K M				
Sample Date:		4/1/20	<u>J1/</u>		Sampler: K. MI	ILLEK			
Sample Depth:		NOT APP	'LI <u>CABLE</u>						
ľ									
l				Start		Stop			
ľ				Juit		3.0p			
l <u>.</u>						_			
Canister Pressur	e Gauge Re	ading [IN. HG]:		30	_	9			
Sample Time:				1135	_	1940			
Comments:									
·									
· ·									
· ·									

AIR SAMPLING POINT

691-B19-IAQ-1

Project:	NYSDEC BCP SITE #C828159A			LaBella Project No.:	2170820			
Site Location: Client:	691 SAIN BAUSCH 8	F PAUL ST, ROCHESTER, NY		LaBella Representative: Weather:	K. MILLER	K. MILLER OVERCAST, RAIN, 40s F		
Jiletti.	BAUSCH	OSCIT & LOWID		weather.	OVERCASI, P	AIN, 405 F		
General Informa	ation_							
S	1 4:	LIDDED DACEMENT LITUIT	/ DOOM D10					
Sample Canister	Location:	UPPER BASEMENT UTILITY	KOOM B19					
Sample Source:		X Indoor Air	Sub-Slab	Interior Am	bient Air	Exterior Ambient Air		
		Exterior Soil Gas	(Other				
Shipping Date:		4/1/2017		Laboratory: CENTEK	LABORATORIES			
Canister Type:			4			X 1.6 LITER MS/MSD		
Janister Type:		1.0 L Summa Canister						
Canister Serial N	0.:	1321		Flow Controller Serial No	D.:	1163		
		NOT AF	PPLICABLE AMB	SIENT AIR SAMPLE				
Purge Information	<u>on</u>							
Leak Detection T	est Date:			Leak Detection:	Pass	Fail		
Purging Method:	:							
PID Reading Star			ppm	PID Reading End:		ppm		
			ррпп	TID Redding End.		μριτι_		
Volume of Gas E	xtracted: _							
Sampling Inform	nation							
Sample Date:		4/1/2017		Sampler: K. MI	LLER			
Sample Depth:		NOT APPLICABLE						
			Start		Stop			
					_			
Canister Pressure	e Gauge Rea	ding [IN. HG]:	30	<u> </u>	4			
Sample Time: 1008		1008		1834				
•				_				
Comments: FLOW REGUL	ATOR APPE	ARS TO HAVE MALFUNCTION	ED AFTER CONN	NECTION TO CANISETER, PF	RESSURE DROP FF	ROM 30" TO 7" AT 1130.		
		4" FROM 1140. DEPLOYED 1						
-								

NYSDOH BUILDING INVENTORY FORM

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

	v v
Preparer's Name Kyle R. Mill	Date/Time Prepared 4/1/17 p.m.
Preparer's Affiliation La Bella A \$500	Phone No.
Purpose of Investigation SVI A	Date/Time Prepared 4/1/17 p.m. Phone No. SPC SSESSMENT #828159A
1. OCCUPANT:	
Interviewed: YN	
Last Name: First N	Jame:
Address:	
County:	
Home Phone: Office Pho	ne:
Number of Occupants/persons at this location	Age of Occupants
2. OWNER OR LANDLORD: (Check if same as	s occupant)
Interviewed: YN	
Last Name:First N	ame:
Address:	
County:	
Home Phone: Office Phone	one:
3. BUILDING CHARACTERISTICS	
Type of Building: (Circle appropriate response)	
10010011111	Commercial/Multi-use Other:

If the property is residentia	al, type? (Circle appropria	ate response)	XI/A	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Con Other:		
If multiple units, how man	y?			
If the property is commerc	ial, type?		7	
Business Type(s)	XGre Spac	e, wook	working	Shop
Does it include residence	es (i.e., multi-use)? Y(i	If yes, ho	ow many?	
Other characteristics:	1.1.	7		
Number of floors Mu	Build	ling age		
ls the building insulated	?Y/N How n/Chown	air tight? Tight / A	verage / Not Tight	unknow
4. AIRFLOW				
Use air current tubes or tr	acer smoke to evaluate a	airflow patterns and	l qualitatively desc	ribe:
Airflow between floors	- 111			
Airflow near source				
115,		_		
Outdoor air infiltration				
Infiltration into air ducts			ileije ve si	

	:	3				
5. BASEMENT AND CONSTRUC	TION CHARA	CTERISTIC	S (Circle all that ap	ply)		
a. Above grade construction:	wood frame	concrete	stone	brick		
b. Basement type:	full	crawlspace	slab	other		
c. Basement floor:	concrete	dirt	stone	other		
d. Basement floor:	uncovered	covered	covered with_			
e. Concrete floor:	unsealed	sealed	sealed with			
f. Foundation walls:	poured	block	stone	other		
g. Foundation walls:	unsealed	sealed	sealed with			
h. The basement is:	wet	damp	dry	moldy		
i. The basement is:	finished	unfinished	partially finish	ed		
j. Sump present?	Y/N wr	Know	<u></u>			
k. Water in sump? Y/N	/ not applicable					
Basement/Lowest level depth below	grade:	_(feet)				
Identify potential soil vapor entry po	oints and appro	oximate size (e	e.g., cracks, utility	ports, drains)		
	COMPUNION	DIG (C' -1 1	1 41			
6. HEATING, VENTING and AIR						
Type of heating system(s) used in th	is building: (cir	rcle all that ap	oply – note primar	у)		
Hot air circulation	Heat pump		t water bascboard			
Space Heaters Electric baseboard	Stream radiat Wood stove		diant floor tdoor wood boiler	Other		
The primary type of fuel used is:						
The primary type of fact asea is.						
Natural Gas	Fuel Oil		rosene			
Electric	Propane	So		1		
Wood Domestic hot water tank fueled by:	(Nat.	gas	e and ol	lector 2		
Boiler/furnace located in: Bases	ment Outo	loors Ma	ain Floor	Other		

Window units Open Windows

None

9 8

Air conditioning:

Are there air	distribution	ducts	present?
---------------	--------------	-------	----------

, w

diagram.			
7. OCCUI	PANCY		
s basemen	t/lowest level occupied? Full-time Occasi	sionally	Seldom Almost Never
<u>Level</u>	General Use of Each Floor (e.g., familyroo	m, bedroo	om, laundry, workshop, storage)
_ 			
Basement			
1st Floor			
2 nd Floor			
3 rd Floor			
4 th Floor			
ያ ፑ ልሮፕርነ	RS THAT MAY INFLUENCE INDOOR AIR (DUALITY	,
	e an attached garage?		YN
	he garage have a separate heating unit?		Y/N/NA
	troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)		Y / N / NA Please specify
d. Has th	e building ever had a fire?		Y/N When?
e. Is a ke	rosene or unvented gas space heater present?		Y / N Where?
f. Is ther	e a workshop or hobby/craft area?	Y/N	Where & Type?
g. Is ther	re smoking in the building?	Y / N	How frequently?
h. Have	cleaning products been used recently?	Y/N	When & Type?
	osmetic products been used recently?	V/N	When & Type?

.

j. Has painting/staining been done in the last 6 months?	Y/N	Where & Whe	en?
k. Is there new carpet, drapes or other textiles?	Y/N	Where & Whe	en?
l. Have air fresheners been used recently?	Y/N	When & Type	?
m. Is there a kitchen exhaust fan?	Y/N	If yes, where	vented?
n. Is there a bathroom exhaust fan?	Y/N	If yes, where	vented?
o. Is there a clothes dryer?	Y/N	If yes, is it ve	nted outside? Y / N
p. Has there been a pesticide application?	Y/N	When & Type	27
Are there odors in the building? If yes, please describe:	Y/N		
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	N auto body	y shop, painting	workh, Sh, fuel oil delivery,
If yes, what types of solvents are used?		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
If yes, are their clothes washed at work?	Y/N		
Do any of the building occupants regularly use or work at a response)	a dry-cle	aning service?	(Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service		No. Unknown	
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	re? Y/1	N Date of Insta	llation:
9. WATER AND SEWAGE			
Water Supply: Public Water Drilled Well Drive	en Well	Dug Well	Other:
Sewage Disposal: Public Sewer Septic Tank Lcac	h Field	Dry Well	Other:
10. RELOCATION INFORMATION (for oil spill resident	tial emer	gency)	
a. Provide reasons why relocation is recommended:			
b. Residents choose to: remain in home relocate to f	riends/fai	mily reloc	cate to hotel/motel
c. Responsibility for costs associated with reimbursem	ent expla	nined? Y/I	N
d. Relocation package provided and explained to resid	lents?	Y / 1	N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note. see Work Plan

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

See work plan

13. PRODUCT INVENTORY FORM

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Sub.	basement		9000	Tatex and oil		Y
INOS	lworking	Vou	bus/	based Paints		
	(585)	SIZ	es	and starks;		
				mineral spirits;		
				paint thinners;		
				spray paints;		
			>	varibus wood		-
				working putties		
				and supplies		
				and Sealants		
			0	0 600		
) cy	stocians		good	Several spay		Y
150	ray area		-	bottles and		
an) office	-		1-gal contain	ers	
an	a (1315)			of Charles		
				columba c ctem		
					4	
			-	or jan las		
	Sub-	Location Product Description Sub-basement Woodwarking Shap (SB5) Custochans Storage area and office area (B15)	Sub-basement Noodworking var Shop (SB5) Custochans Storage area and office	Location Product Description (units) Collaborate Sub-basement good Novolvarking various Shap (SB5) Custodians Storage area and office	Sub-basement good latex and oil wood working various based Paints shop (SB5) Sizes and stains; mineral spirits; paint thinners; spray paints; various wood working puthles and sealants cystodians storage area and office area (B15)	Location Product Description Size (units) Sub-basement

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Destons\SIS\Oil Spills\Guidance Does\OSR-3,doe

man door and

S 0/H door

door has

Cabinet contahing

mix and spray lube

Chemical storage in wood shop

Chemical storage in wood shop

Chemical storage in wood shop

Chemical storage in wood shop

Typical chemicals in upper basement space

Typical chemicals in upper basement space

691 Saint Paul Street-Brownfield Site # C828159A

Rochester, New York

Soil Vapor Intrusion Investigation Report

APPENDIX 2

Data Usability Summary Reports

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C. 300 State Street

Rochester, NY 14614

691 ST PAUL SITE Project 2170820 SDG: C1704014 Sampled 4/4/2017

TO-15 AIR SAMPLES

DATA ASSESSMENT

A TO-15 data package containing analytical results for fifteen air samples was received from LaBella Associates, P.C. on O8May17. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 691 St. Paul Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The results from 691-B19-IAQ-01, 691-B19SVI, 691-SB5B-IAQ and 691-SB5B-SVI have been qualified as estimations because the samples were not collected properly.

The results reported from 691-SBI-IAQ have been qualified as estimations because the sample collection was not properly documented.

The trichloroethene results from 691-SB5A-SVI, 691-SB5B-SVI and 691-B19-SVI have been qualified as estimations due to poor internal standard performance.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin DATAVAL, Inc.

_ Date: 19 MAY 17

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained fifteen air samples that were collected in 1-liter SUMMA canisters. Sampling was completed on 01Apr17. The canisters were shipped back to the laboratory, via FedEx, on 04Apr17 and were received the following morning. Although the sample canisters were received intact, custody seals were not present on the packaging. It is noted that 691-B19-IAQ-1 was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples.

Although the SUMMA canisters were set in the laboratory to collect 8-hour samples, most of the samples were terminated after 6.5-9.5 hours, based on the canister vacuum readings. collection of 691-SB5B-IAQ and 691-SB5B-SVI, however, was terminated after just four hours. The results from this pair of samples have been qualified as estimations because the samples were not collected properly.

Numerous samples failed to satisfy the ASP gauge reading requirement of 5±1"Hg at the completion of sampling. Due to the accuracy of the canister gauges, only results falling outside of the limits of -2"Hg to -8"Hg have been qualified as estimations. 691-B19-IAQ-1, 691-B19-SVI and 691-SB5B-SVI were affected.

SAMPLE	PRIOR TO SHIPMENT ("Hg)	PRIOR TO SAMPLING ("Hg)	POST SAMPLING ("Hg)	LAB ANALYSIS ("Hg)
691-B19-IAQ-1	-30	-30	-4	-4
691-B19-IAQ-2	-30	-30	-9	-9
691-B19-SVI	-30	-30	-9	-9
691-B15-IAQ	-30	-27.5	-3	-3
691-B15-SVI	-30	-30	-2	-3
691-OUTDOOR	-30	-28	-8	-8
691-DUPLICATE	-30	-27.5	-3	-3
691-NE-IAQ	-30	-28	-1	-2
691-NE-SVI	-30	-30	-3	-3
691-SB1-IAQ	-30		-5	-5
691-SB1-SVI	-30	-30	-6	-6
691-SB5A-IAQ	-30	-30	-2	-2
691-SB5B-IAQ	-30	-30	-3	-3
691-SB5A-SVI	-30	-28	-2	-2
691-SB5B-SVI	-30	-29.5	-0.5	-1

An examination of the vacuum readings following sampling and at the time of analysis indicates that the integrity of each sample was maintained during this period.

It is noted that a vacuum reading was not recorded prior to the sampling of 691-SB1-IAQ. The results reported from this sample have been qualified as estimations due to this omission. Although these results are assumed to be usable, based on the laboratory's measurement, they would not withstand a legal challenge.

The analysis of this group of samples was completed between 06Aprl7 and 08Aprl7, satisfying the ASP holding time limitation.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤0.5 psig over this period.

The canisters for this project were cleaned in four batches. A blank analysis of a clean canister from each of these batches was free of targeted analyte contamination.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples on 06Apr17 and 07Apr17. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 31Mar17. Standards of 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standards were analyzed on 06Apr17 and O7Apr17, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during these checks.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. However, when compared to the ASP requirements, acceptable surrogate recoveries were reported for each addition to this group of samples.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, unacceptable performance was reported for the 1,4-difluorobenzene and chlorobenzene-d5 additions to 691-SB5A-SVI, 691-SB5B-SVI and the 1:10 dilution of 691-B19-SVI. The trichloroethene (TCE) results from 691-SB5A-SVI, 691-SB5B-SVI and the 1:10 dilution of 691-B19-SVI have been qualified as estimations based on this performance. The remaining analytes reported from these samples were associated with the response of bromochloromethane and remain unqualified.

Internal standard retention times were not addressed. The ASP retention time acceptance criteria was calculated by this The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

691-B19-IAQ-1 was selected for matrix spiking. The six targeted analytes were added to two volumes of this sample. The recoveries reported for these additions demonstrated acceptable levels of measurement precision and accuracy.

Two pairs of spiked blanks (LCS/LCSD) were also analyzed with this delivery group. Each of these spiked blanks produced acceptable recoveries of the six targeted analytes.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The blind duplicate sample that was included in this delivery group was not identified.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument print-outs. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

SUMMARY OF QUALIFIED DATA

SAMPLED APRIL 2017

E-	3
E.	3
×	1
۳	4
t/	٦
-	1
- 13	Ŀ
-	4
'n	ń
20	ä
1	ų
Ω	ú
0	
Ŀ	4
T/	j
	-
	4
10	
10	

		SAMPLING	VACUUM	SAMPLING	INT STD TCE	
91-B19-IAO-0	1704014-0		ALL J/UJ			
B	(C1704014-02)					
91-B19	1704014-0		ALL J/UJ		26J	
91-B15	1704014-0					
91-B15	1704014-0					
91-OUTDOOF	1704014-0					
91-DUP	1704014-0					
91-NE-IAQ	1704014-0					
91-NE-S	1704014-0					
91-SBI-	1704014-1			ALL J/UJ		
91-SBI-SV	1704014-1					
91-SB5A-IA	1704014-1					
91-SB5B-I	1704014-1	ALL J/UJ				
91-SB5A-SV	1704014-1				203	
91-SB5B-SV	1704014-1	ALL J/UJ	ALL J/UJ ALL J/UJ		573	

LaBella Associates, P.C.

Lab Order: C1704014

CLIENT:

Project: 691 St Paul Street

Lab ID: C1704014-001A

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-1

Tag Number: 1321.1163

Collection Date: 4/1/2017

Motrix: AIR

	A STATE OF THE PARTY OF THE PAR	Company of Arms Arms	Address of the last of the last of the A	1 4 50 100 4 100 6	STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY.
Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	-A-Pechanica	TO-15			Analyst: RJP
1.1-Dichloroethene	< 0.59 VJ	0.59	ug/m3	-1	4/6/2017 9:55:00 PM
Chloroethane	< 0.40U]	0.40	ug/m3	- 1	4/6/2017 9:55:00 PM
cis-1,2-Dichloroethene	1.3 1	0.59	ug/m3	- 1	4/6/2017 9:55:00 PM
trans-1,2-Dichloroethene	< 0.59 UJ	XT1053171	ug/m3	- 1	4/6/2017 9:55:00 PM
Trichloroethene -	2.1 7	0.21	ug/m3	1	4/8/2017 9:55:00 PM
Vinyl chloride	< 0.10UJ	0.10	ug/m3	1	4/6/2017 9:55:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 15

Date: 04-May-17

CLIENT:

Lab Order:

Lab ID:

LaBella Associates, P.C.

C1704014

691 St Paul Street Project: C1704014-002A

Client Sample ID: 691-B19-IAQ-2

Tag Number: 1188,306 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	1 Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichlorgethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:09:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	4/7/2017 12:09:00 AM
cis-1.2-Dichloroethene -	1.1	0.59	ug/m3	1	4/7/2017 12:09:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	- 1	4/7/2017 12:09:00 AM
Trichloroethene -	2.1	0.21	ug/m3	1	4/7/2017 12:09:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 12:09:00 AM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- Non-routine analyse. Quantitation estimated.
- Spike Recovery nutside accepted recovery limits

Results reported are not blank corrected

- Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 15

Date: 04-May-17

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street Lab 1D: C1704014-003A Client Sample ID: 691-B19-SVI

Tag Number: 362,446 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichloroethene	< 0.59)	0.59	ug/m3	1.	4/7/2017 3:23:00 PM
Chloroethane	< 0.40 U	0.40	ug/m3	1	4/7/2017 3:23:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
Trichloroethene	26 J	2.1	ug/m3	10	4/7/2017 8:07:00 PM
Vinvi chloride -	0.20 J	0.10	ug/m3	1	4/7/2017 3:23:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 3 of 15

Date: 04-May-17

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-004A

Client Sample ID: 691-B15-IAQ

Tag Number: 87.299

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15		11.51	Analyst: RJP
t,t-Dichloroethene	< 0.59	0.59	ug/m3	1 -	4/7/2017 12:50:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 12:50:00 AM
cis-1,2-Dichloroethene -	1.6	0.59	ug/m3	1	4/7/2017 12:50:00 AM
trans-1 2-Dichlorgethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:50:00 AM
Trichloroethene _	2.2	0.21	ug/m3	10	4/7/2017 12:50:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 12:50:00 AM
SAME TO A STATE OF THE SAME OF	6,10,650	0.000	5501110		

- · Quantitation Limit
- Analyse detected in the associated Method Blank
- I Holding times for proporation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 15

LaBella Associates, P.C.

Lab Order: C1704014

CLIENT:

Project: 691 St Paul Street

Lab ID: C1704014-005A

Date: 04-May-17

Client Sample ID: 691-B15-SVI

Tag Number: 550.266

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Q	unl	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	200000	TO-1	5			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2017 4:03:00 PM
Chloroethane —	0.37	0.40	J	ug/m3	1	4/7/2017 4:03:00 PM
7,115	< 0.59	0.59	120	ug/m3	1	4/7/2017 4:03:00 PM
cis-1,2-Dichloroethene	0.000055	0.59		ug/m3	- 1	4/7/2017 4:03:00 PM
trans-1,2-Dichloroethene	< 0.59	170,000		110,700,000	90	4/7/2017 9:20:00 PM
Trichloroethene -	220	19		ug/m3	90	
Vinyl chloride -	0.28	0.10		ug/m3	4	4/7/2017 4:03:00 PM

- Quantitation Limit
- B Analyte detected in the associated Method Hlank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 5 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-006A

Date: 04-May-17

Client Sample ID: 691-Outdoor-04012017

Tag Number: 240.340 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
Chioroethane	< 0.40	0.40	ug/m3	31	4/7/2017 1:31:00 AM
	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
trans-1,2-Dichloroethene	11/2/27/11	0.21	ug/m3	1	4/7/2017 1:31:00 AM
Trichloroethene	< 0.21				4/7/2017 1:31:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3		The state of the s

Qualifiers:

Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 6 of 15

LaBella Associates, P.C.

Lab Order: C1704014

CLIENT:

Project: 691 St Paul Street Lnb ID: C1704014-007A Date: 04-May-17

Client Sample ID: 691-Duplicate

Tag Number: 101.299

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Anatyzed
1UG/M3 W/ 0,25UG/M3 CT-TCE-VC		TO-15		4 7	Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:12:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 2:12:00 AM
cis-1,2-Dichloroethene	1.7	0.59	ug/m3	1	4/7/2017 2:12:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:12:00 AM
Trichloroethene -	2.2	0.21	ug/m3	1	4/7/2017 2:12:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 2:12:00 AM

- .. Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project: Lab ID: 691 St Paul Street C1704014-008A 100

Client Sample ID: 691-NE-IAQ

Tag Number: 94.379

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 2:52:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
trans-1,2-Dichlorpethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	- 1	4/7/2017 2:52:00 AM
Vinvl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 2:52:00 AM

- · Quantitation Limit
- B Analyse desected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routing analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 8 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-009A

Client Sample 1D: 691-NE-SVI

Tag Number: 1186.145

Collection Date: 4/1/2017

Matrix: AJR

Analyses	Result	**Limit Qu	at Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 5:28:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 PM
Trichlorgethene _	3.9	0.21	ug/m3	1	4/7/2017 5:28:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 5:26:00 PM

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range E
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 15

LaBella Associates, P.C.

Lab Order: C1704014

CLIENT:

Project: 691 St Paul Street

Lab ID: C1704014-010A

Date: 04-May-17

Client Sample ID: 691-SB1-IAQ

Tag Number: 170.387

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result **	Limit Qu	al Units	DF	Date Analyzed
WORLD WAS SELECTED OF THE VIC		TO-15			Analyst: RJP
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	< 0.59 UJ	0.59	ug/m3	- 1	4/7/2017 3:33:00 AM
1,1-Dichloroethene	< 0.40 UJ	0.40	ug/m3	1	4/7/2017 3:33:00 AM
Chloroethane	2.6 J	0.59	ug/m3	1	4/7/2017 3:33:00 AM
cis-1,2-Dichloroethene	< 0.59 UJ	0.59	ug/m3	1	4/7/2017 3:33:00 AM
trans-1,2-Dichloroethene	1.3]	0.33	ug/m3	1	4/7/2017 3:33:00 AM
Trichloroethene		116.001	78272 145071		4/7/2017 3:33:00 AM
Vinyi chloride	< 0.10 ()	0.10	ug/m3	100	

Qualifiers:

- · Quantitation Limit
- B Analyse desected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 15

LaBella Associates, P.C.

Lab Order: C1704014

CLIENT:

Project: 691 St Paul Street

Lab ID: C1704014-011A

Date: 04-May-17

Client Sample ID: 691-SB1-SVI

Tag Number: 203.372

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	mover -	TO-15	5	LTD R	Analysi: RJP
1.1-Dichigroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:09:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 6:09:00 PM
cis-1,2-Dichloroethene —	52	5.9	ug/m3	10	4/7/2017 11:10:00 PM
trans-1.2-Dichloroethene	< 0.59	0.59	ug/m3	-1	4/7/2017 6:09:00 PM
Trichloroethene -	4.0	0.21	ug/m3	1	4/7/2017 6:09:00 PM
Vinvi chloride -	0.38	0.10	ug/m3	1	4/7/2017 6:09:00 PM

Qualifiers:

Quantitution Limit

3 Analyse detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 11 of 15

Date: 04-May-17

CLIENT: Lab Order: LaBella Associates, P.C.

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-012A

Client Sample ID: 691-SB5A-IAQ

Tag Number: 367.251

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	CONTROL AND A CO	- 1037.0	Analyst: RJP
1,1-Dichloroethene	< 0.59	0.69	ug/m3	1	4/7/2017 4:13:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 4:13:00 AM
cis-1.2-Dichloroethene	13	5.9	ug/m3	10	4/7/2017 1:50:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:13:00 AM
Trichloroethene -	6.5	0.21	ug/m3	1	4/7/2017 4:13:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 4:13:00 AM

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery fimits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-013A

Client Sample ID: 691-SB5B-IAQ

Tag Number: 285.344

Collection Date: 4/1/2017

Matrix: AlR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-18	,		Analyst: RJP
1,1-Dichloroethene	< 0.59 UJ	0.59	ug/m3	1	4/7/2017 4:53:00 AM
Chloroethana	< 0.40UJ	0.40	ug/m3	1	4/7/2017 4:53:00 AM
cis-1,2-Dichloroethene -	12]	5.9	ug/m3	10	4/7/2017 2:27:00 PM
trans-1,2-Dichloroethene	< 0.59UJ	0.59	ug/m3	1	4/7/2017 4:53:00 AM
Trichlaroethene -	6.8]	0.21	ug/m3	1	4/7/2017 4:53:00 AM
Vinyl chloride -	0.15	0.10	ug/m3	1	4/7/2017 4:53:00 AM

Qualifierst

Quantitation Limit

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

Non-toutine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range E

Analyte detected below quantitation limit

Not Detected at the Limit of Detection

Page 13 of 15

LaBella Associates, P.C.

C1704014

Project: 691 St Paul Street Lab ID: C1704014-014A

CLIENT:

Lab Order:

Date: 04-May-17

Client Sample ID: 691-SB5A-SVI

Tag Number: 475.1170

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	71111		Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:50:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 6:50:00 PM
cis-1,2-Dichloroethene -	170	55	ug/m3	90	4/8/2017 1:00:00 AM
trans-1,2-Dichloroethene -	1.6	0.59	ug/m3	1	4/7/2017 6:50:00 PM
Trichloroethene -	20.7	1.9	ug/m3	9	4/8/2017 12:23:00 AM
Vinyl chloride -	0.49	0.10	ug/m3	1	4/7/2017 6:50:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 14 of 15

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

Project: Lab ID: 691 St Paul Street C1704014-015A Date: 04-May-17

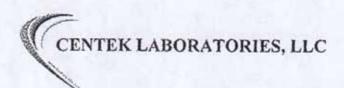
Client Sample 1D: 691-SB5B-SV1

Tag Number: 467.1167

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result **	Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59 UJ	0.59	ug/m3	1	4/7/2017 7:30:00 PM
Chloroethane	< 0.40 UJ	0.40	ug/m3	1	4/7/2017 7:30:00 PM
cis-1,2-Dichloroethene -	23 J	5.9	ug/m3	10	4/8/2017 1:37:00 AM
trans-1,2-Dichloroethene	0.71 J	0.59	ug/m3	1	4/7/2017 7:30:00 PM
Trichlorgethene -	57 J	2.1	ug/m3	10	4/8/2017 1:37:00 AM
Vinyl chloride -	0.28	0.10	ug/m3	1	4/7/2017 7:30:00 PM



Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Methna Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
-) Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 15 of 15

Date: 04-May-17

QC SUMMARY REPORT SURROGATE RECOVERIES

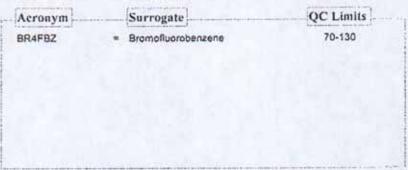
CLIENT:

LaBella Associates, P.C.

Work Order:

C1704014

Project:


691 St Paul Street

Test No:

TO-15

Matrix: A

Sample ID	BR4FBZ	
ALCS1UG-040617	95.0	
ALCS1UG-040717	97.0	
ALCSIUGD-040617	98.0	
ALCS1UGD-040717	97.0	11 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AMB1UG-040617	90.0	
AMB1UG-040717	86.0	
C1704014-001A	96.0	
C1704014-001A MS	97.0	
C1704014-001A MSD	99.0	
C1704014-002A	89.0	
C1704014-003A	109	
C1704014-004A	92.0	
C1704014-005A	118	
C1704014-006A	88.0	
C1704014-007A	91.0	
C1704014-008A	93.0	
C1704014-009A	113	
C1704014-010A	92.0	
C1704014-011A	109	
C1704014-012A	103	
C1704014-013A	102	
C1704014-014A	107	
C1704014-015A	116	

^{*} Surrogate recovery outside acceptance limits

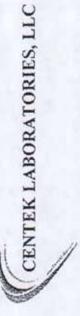
GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\A0040602.D Tune Time : 6 Apr 2017 9:31 am

M\1\DATA\A0040602.D	37398	170379	156465
	(IS1) 26713 (6028	(IS2) 121699 730194	(IS3) 111761 67057
rogate Recovery % I	internal Sta	andard Respo	onses
	26450	123600	109377
	26038	118374	102379
	24809	117535	100863
	25396	113281	97086
	26903	116940	105999
	26299	120898	106126
	24868	113360	102277
	25596	114646	102450
	25816	110508	98499
	24957	110993	99559
	25088	108028	95812
	24485	107880	98198
	25278	111053	100304
	25079	113761	101873
)	EM\1\DATA\A0040602.D	(IS1) 26713 /6028 rogate Recovery * Internal Statement	(IS1) (IS2) 26713 121699 730194 rogate Recovery * Internal Standard Response 26450 123600 26038 118374 24809 117535 25396 113281 26903 116940 26299 120898 24868 113360 25596 114646 25816 110508 24957 110993 25088 108028 24485 107880 25278 111053

t - fails 24hr time check * - fails criteria

Created: Thu May 04 12:00:40 2017 MSD #1/


GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\A0040702.D Tune Time : 7 Apr 2017 11:20 am

Daily Cali	bration File :	C:\F	PCHEM\1\DATA\A0040702.D	32494	138901	124351
File	Sample	DL	(BFB) Surrogate Recovery %	(IS1) 23210 /3926	(IS2) 99215 59529 Standard Res	(IS3) 88822 53293
	eraneneness oumpre	Manes	surrogate Recovery &		standard Res	Pouses
A0040703.D	ALCS1UG-04071	7	97	22420	98698	86489
A0040704.D	AMB1UG-040717		86	21100	92197	83384
A0040706.D	C1704014-012A	10X	91	20808	86837	77606
40040707.D	C1704014-013A	10X	92	19443	85901	76902
A0040708.D	C1704014-003A		109	20468	96070	92232
40040709.D	C1704014-005A	33525	118	24680	109137	104661
40040710.D	C1704014-009A		113	27394	125972	121869
A0040711.D	C1704014-011A		109	30170	132762	121408
40040712.D	C1704014-014A		107	31361	139148	131462
10040713.D	C1704014-015A		116	31915	147799	139968
30040714.D	C1704014-003A	10x	95	31326	(147339)	127930
30040716.D	C1704014-005A	90x	92	26112	119025	102419
A0040719.D	C1704014-011A	10x	93	21591	93800	84591
A0040721.D	C1704014-014A	9x	95	20532	89989	83171
40040722.D	C1704014-014A	90x	89	20827	88198	80228
A0040723.D	C1704014-015A	10x	94	20780	88679	79938
10040725.D	ALCS1UGD-0407	17	97	19313	89890	78098

t - fails 24hr time check * - fails criteria

Created: Thu May 04 12:02:38 2017 MSD #1/

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1704014 Work Order:

Sample ID ALCS1UG-040617	SampType: LCS	TestCor	ie: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	26		RunNo: 12114	114	
Client ID: ZZZZZ	Batch ID: R12114	Testh	TestNo: TO-15		<	Analysis Date: 4/6/2017	4,6/201	7	SeqNo: 141660	1660	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Qual
1,1-Dichloroethene	0.9700	0.15	-	0	97.0 /	70	130				
Chloroethane	1.090	0.15	-	0	109	2	130				
cis-1,2-Dichloroethene	0.9700	0.15	-	0	97.0	20	130				
trans-1,2-Dichloroethene	0.9500	0.15	-	0	95.0	70	130				
Trichloroethene	0.9700	0.040		0	97.0	70	130				
Vinyl chloride	0.9700	0.040	+	0	97.0	70	130				
Sample ID ALCS1UG-040717	SampType: LCS	TestCol	Je: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	*		RunNo: 12118	118	
Client ID: ZZZZZ	Batch ID: R12118	Test	TestNo: TO-15		4	Analysis Date: 4/7/2017	x: 4/7/201	1	SeqNo: 141731	1731	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Ousi
1,1-Dichloroethene	0.9900	0.15	-	0	99.0	70	130				
Chloroethane	1,180	0.15	*	0	118	70	130				
cis-1,2-Dichloroethene	1,000	0.15	+	0	100	70	130				

Client ID: 22222 Bat Analyte	Ratch ID: D12114								The state of the s		
nalyte		TestN	TestNo: TO-15			Analysis Dat	Analysis Date: 4/6/2017	7	SeqNo: 141661	1681	
	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1-Dichloroethene Chloroethane	0.9900	0.15		00	99.0	70 02	130	1.09	2.04	90 90	

130

222

98.0 106 115

000

0.040

1,060

trans-1,2-Dichloroethene Trichforoethene

Vinyl chloride

Page 1 of 2

Sample ID ALCS1UGD-040617 SampType: LCSD Clean ID: 777779	SampType: LCSD	TestCode: 0.25CT-TCE-	SCT-TCE-	Units: ppbV		Prep Date			RunNo: 12114	114	
Analyte	Result	POL SPK	9	SPK Ref Val	%REC	Lowlini HighLimit F	- 4 brzu KghLimit	%REC LowLimit HighLimid RPD Ref Val	%RPD RP	RPDLimit	Oual
cis-1,2-Dichloroethene	0.9600	0.15	-	0	96.0	70	130	0.97	1.04	38	
trans-1,2-Dichloroethene	0.9800	0.15		0	98.0	02	130	0.95	3.11	30	
Trichloroethens	1.000	0.040	-	0	100	02	130	0.97	3.05	30	
Vinyl chloride	1.060	0.040	1	0	106	20	130	26.0	8.87	30	
Sample ID ALCS1UGD-040717	SampType: LCSD	TestCode: 0.25CT-TCE-	SCT-TCE-	Units: ppbV		Prep Date:			RunNo: 12118	118	
Client ID: ZZZZZ	Batch ID: R12118	TestNo. TO-15	15			Analysis Date: 4/8/2017	4/8/201	1	SeqNo: 141732	1732	
Analyte	Result	PQL SPK	SPK value SF	SPK Ref Val	%REC	LowLimit	SighLimit .	HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
1,1-Dichloroethene	1.080	0.15	-	0	108	70	130	66.0	8.70	30	
Chloroethane	1,180	0.15	-	0	118	70	130	1.18	0	30	
cis-1,2-Dichloroethene	1,120	0.15	-	0	112	70	130	+	11.3	30	
trans-1,2-Dichloroethene	1.070	0.15	-	0	107	70	130	0.98	8.78	30	
Trichloroethene	1.100	0.040	-	0	110	0,	130	1.06	3.70	30	
Vinyl chloride	1.240	0.040		0	124	70	130	1.15	7.53	30	

TestCode: 0.25CT-TCE-VC

LaBella Associates, P.C.

691 St Paul Street C1704014

Work Order: CLIENT:

Project:

Holding times for preparation or analysis exceeded T & Estimated Value above quantitation range Not Detected at the Limit of Detection m Q Analyte detected below quantitation limit Results reported are not blank corrected Qualifiers:

Spike Recovery outside accepted recovery limits

RPD outside accepted recovery limits

Page 52 of 273

ANALYTICAL QC SUMMARY REPORT

CLIENT: LaBella Associates, P.C.

Work Order: C1704014

691 St Paul Street

TestCode: 0.25CT-TCE-VC

Sample ID C1704014-001A MS SampType: MS	SampType: MS	TestCoc	Je: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	in it		RunNo: 12114	14	
Client ID: 691-819-IAQ-1	Batch ID: R12114	Test	TestNo: TO-15		<	Analysis Date:	3: 4/6/2017	1	SeqNo: 141726	726	
Analyte	Result	POL	SPK value	SPK vatue SPK Ref Val	WREC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	"RPD RPDLIMIT	Qual
1,1-Dichloroethene	0.9100	0.15	1	0	91.0 /	70	130				
Chloroethane	1.040	0.15	1	0	104	20	130				
cis-1,2-Dichloroethene	1.230	0.15		0.33	90.0	70	130				
trans-1,2-Dichloroethene	0.9500	0.15	-	0	95.0	70	130				
Trichloroethene	1.390	0.040	4	0.4	0.66	20	130				
Vinyl chloride	1.030	0.040	1	0	103	20	130	The second state of	Charles Market	CONT. COMME	1
Sample ID C1704014-001A MS	SampType: MSD	TestCor	TestCode: 0.25CT-TCE-	E. Units: ppbV		Prep Date:	H		RunNo: 12114	14	
Client ID: 691-B19-IAQ-1	Batch ID: R12114	Testh	TestNo: TO-15		<	natysis Dat	Analysis Date: 4/6/2017	,	SeqNo: 141727	727	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLIMI	Qual
1,1-Dichloroethene	1.000	0.15	4	0	100	70	130	16.0	8.42	30	
Chloroethane	1,040	0.15	-	0	104	20	130	1.04	0	30	
cis-1,2-Dichloroethene	1,320	0.15	+	0.33	0.66	70	130	1.23	7.06	30	

Ounliffers: Results reported are not blank corrected

J. Analyte detected below quantitation limit

S. Spike Recovery outside accepted recovery limits

Estimated Value above quantitation range Not Detected at the Limit of Detection

E E

H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

30 30

1.45

1,39

130

222

0.0

0.040

1,370

frans-1,2-Dichloroethene Trichloroethene

Vinyl chloride

97.0

Page 1 of 1

Project:

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1704014 Work Order: 691 St Paul Street

TestCode: 0.25CT-TCE-VC

thene thene JG-040717 S	Sample ID AMB1UG-040617	11901	SampType: MBLK	TestCo	de: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	te:		RunNo: 12114	2114	
Note there	Client ID: ZZZZ		Batch ID: R12114	Test	Vo: TO-15			Analysis Da	te: 4/8/20	44	SeqNo: 1	41659	
Control	Analyte		Result	POL	SPK value	SPK Rel Val	%REC	LowLind	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Authoroethene < 0.15 0.15 0.15 Authoroethene < 0.15 0.15 Authoroethene < 0.16 0.15 Cold 0.040 0.040 Cold Cold Cold Cold Cold ld Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold	1,1-Dichloroethene		< 0.15	0.15									
Counties	Chloroethane		< 0.15	0.15									
2-Dichloroethene < 0.15 0.15 belthene < 0.040 0.040 cride < 0.040 0.040 cride < 0.040 0.040 ID AMB1UG-040717 SampType MBLK TestCode 0.25CT-TCE Units ppbV Prep Date Run 7. ZZZZZ Batch ID R12118 TestNo. TO-15 Analysis Date 4772017 Seq Increthene < 0.15 0.15 Analysis Date Analysis D	cis-1,2-Dichloroethene		< 0.15	0.15									
cellbene < 0.040 0.040 0.040 0.040 oride < 0.040	trans-1,2-Dichloroethene		< 0.15	0.15									
conde < 0.040 0.040 0.040 Prest Code: 0.25CT-TCE- Units: ppbV Prest Date: Arrizo17 Run ID AMB1UG-040717 SampType: MBLK TestCode: 0.25CT-TCE- Units: ppbV Prest Date: Arrizo17 Run Is ZZZZZ Batch ID: R12118 TestNo: TO-15 Analysis Date: 4/7/2017 Seq Result PQL SPK Kref Val %REC LowLimit HighLimit RPD Ref Val ibrotethene < 0.15	Trichloroethene		< 0,040	0.040									
ID AMRB1UG-040717 SampType: MBLK TestCode: 0.25CT-TCE- Units: ppbV Prep Date: Run Run 7. ZZZZZ Batch ID: R12118 TestNo: TO-15 TestNo: TO-16 Analysis Date: 4772017 Seq Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val Ibane < 0.15	Vinyl chloride		< 0.040	0.040		The second second							
Pol. Spk value Spk Ref Val %REC LowLimit HighLimit RPD Ref Val Ideoethene < 0.15	Sample ID AMB1UG-04	10717	SampType. MBLK	TestCo	de: 0.25CT-TC	E- Units: ppbV		Prep Das	ě		RunNo: 1	2118	
Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	Client ID. ZZZZZ		Batch ID: R12118	Tesh	Vo: TO-15		ne#	Analysis Dat	le: 4/7/201	17:	SeqNo: 14	41730	
< 0.15 < 0.15 < 0.15	Analyte		Result	POL	SPK value	SPK Ref Vat	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
< 0.15 < 0.15	1,1-Dichloroethene		< 0,15	0.15									
< 0.15	Chloroethane		< 0.15	0.15									
	cis-1,2-Dichloroethene		< 0.15	0,15									

0.15 0.040

trans-1,2-Dichloroethene

Trichloroethene

Vinyl chloride

< 0.040 < 0.15

= a Estimated Value above quantitation range Not Detected at the Limit of Detection ш 9 Spike Recovery outside accepted recovery limits Analyse detected below quantitation limit Results reported are not blank corrected Omalifiers

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits Page I of I

Project:

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

691 ST PAUL SITE Project 2170436 SDG: C1703015 Sampled 3/3/2017

TO-15 AIR SAMPLES

SV-1	(C1703015-01)
SV-2	(C1703015-02)
SV-3	(C1703015-03)
SV-2	(C1703015-04)
DUPLICATE	(C1703015-05)
AMBIENT AIR	(C1703015-06)

DATA ASSESSMENT

A TO-15 data package containing analytical results for six air samples was received from LaBella Associates, P.C. on 22May17. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 691 St. Paul Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The chloroethane concentration found in SV-1 has been qualified as an estimation due to a high surrogate standard recovery.

The trichloroethene concentration found in SV-3 has been qualified as an estimation due to a high spiked sample recovery.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin DATAVAL, Inc.

-Date: 25 May 17

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained six air samples that were collected in 1-liter SUMMA canisters. Sampling was completed on 03Mar17. The canisters were shipped back to the laboratory, via FedEx, on 04Mar17 and were received on 07Mar17. Although the sample canisters were received intact, custody seals were not present on the packaging. It is noted that SV-3 was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples.

Although the SUMMA canisters were set in the laboratory to collect 8-hour samples, sampling was terminated at a gauge reading of -5"Hg to comply with the ASP requirement of $5\pm1\text{"Hg}$. The discrepancies between vacuum readings recorded following sampling and prior to analysis are assumed to reflect the quality of the cylinder vacuum gauges.

SAMPLE	PRIOR TO SHIPMENT ("Hg)	PRIOR TO SAMPLING ("Hg)	POST SAMPLING ("Hg)	LAB ANALYSIS ("Hg)
SV-1	-30	-30	-5	-2
SV-2	-30	-30	-5	-1
SV-3	-30	-30	-5	-1
SV-4	-30	-28	-5	-3
DUPLICATE	-30	-28	-5	-3
AMBIENT AIR	-30	-30	-5	-1

The analysis of this group of samples was completed between 08Mar17 and 09Mar17, satisfying the ASP holding time limitation.

It is noted that sampling start and stop times were not provided. This made it impossible to determine if the proper sampling rate was maintained during sample collection.

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤0.5 psig over this period.

The canisters for this project were cleaned in four batches. A blank analysis of a clean canister from each of these batches was free of targeted analyte contamination.

Blanks are analyzed to evaluate various sources of sample contam-

Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank demonstrated acceptable chromatography and were free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples on O8Mar17. Both of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 27Feb17. Standards of 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A continuing calibration check standard was analyzed on 08Mar17, prior to the 24-hour period of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this check.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, unacceptably high recoveries were reported for the bromofluorobenzene additions to SV-1 and SV-2. The chloroethane (CLEANE) concentration found in SV-1 has been qualified as an estimation based on these indications of positive bias. The remaining results from SV-1 and SV-2 were negative and remain unqualified.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, unacceptable performance was reported for the chlorobenzene-d5 additions to SV-1, SV-2, SV-3 and the DUPLICATE. This performance had no impact on reported data, however, because none of the targeted analytes were associated with this internal standard.

Internal standard retention times were not addressed. The ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

SV-3 was selected for matrix spiking. The six targeted analytes were added to two volumes of this sample. The recoveries reported for these additions included a high trichloroethene (155%) result. The trichloroethene (TCE) concentration found in SV-3 has been qualified as an estimation based on this indication of positive bias.

A pair of spiked blanks (LCS/LCSD) was also analyzed with this delivery group. Both of these spiked blanks produced acceptable recoveries of the six targeted analytes.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The blind duplicate sample that was included in this delivery group was not identified.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

SUMMARY OF QUALIFIED DATA

691 ST PAUL SITE

SAMPLED 3/3/2017

		407			
0.34J					
0	0	0	0	0	C
SV-1	SV-2	SV-3	SV-2	DUPLICATE	
	(C1703015-01)	(C1703015-01) (C1703015-02)	(C1703015-01) 0.34J (C1703015-02) (C1703015-03)	(C1703015-01) 0.34J (C1703015-02) (C1703015-03) (C1703015-04)	(C1703015-01) 0.34J (C1703015-02) (C1703015-03) (C1703015-04) E (C1703015-05)

CLIENT: LaBella Associates, P.C.

Lab Order:

C1703015

Project:

691 and 705 St Paul St

Lab ID:

C1703015-001A

Date: 27-Mar-17

Client Sample ID: SV-1

Tag Number: 542.256

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
Chloroethane -	0.34 J	0.40	J ug/m3	1	3/8/2017 1:28:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	3/8/2017 1:28:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 1:28:00 PM

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 6

CLIENT: LaBella Associates, P.C.

Lab Order:

C1703015

Project:

691 and 705 St Paul St

Lab ID:

C1703015-002A

Date: 27-Mar-17

Client Sample 1D: SV-2

Tag Number: 237.402

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 2:09:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	3/8/2017 2:09:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 2:09:00 PM

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded 11
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range E
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 6

CLIENT: LaBella Associates, P.C.

Lab Order: (

C1703015

Project:

691 and 705 St Paul St

Lab ID:

C1703015-003A

Date: 27-Mar-17

Client Sample ID: SV-3

Tag Number: 1206.249 Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit ()ua	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5			Analyst: RJF
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	3/8/2017 2:48:00 PM
Chloroethane -	0.29	0.40	J	ug/m3	1	3/8/2017 2:48:00 PM
cis-1,2-Dichloroethene -	0.71	0.59		ug/m3	1	3/8/2017 2:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	3/8/2017 2:48:00 PM
Trichloroethene -	40 J	8.1		ug/m3	10	3/8/2017 11:34:00 PM
Vinyl chloride NOTES:	< 0.38	0.38		ug/m3	1	3/8/2017 2:48:00 PM

Surrogate did not meet criteria due to severe matrix interference.

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 6

LaBella Associates, P.C.

CLIENT: Lab Order:

C1703015

Project:

691 and 705 St Paul St

Lab ID:

C1703015-004A

Date: 27-Mar-17

Client Sample ID: SV-4

Tag Number: 290.299

Collection Date: 3/3/2017

Matrix: AlR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 4:59:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 4:59:00 PM
cis-1,2-Dichloroethene -	4.1	0.59	ug/m3	1	3/8/2017 4:59:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 4:59:00 PM
Trichloroethene -	48	8.1	ug/m3	10	3/9/2017 12:47:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 4:59:00 PM

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 6

LaBella Associates, P.C.

CLIENT: Lab Order:

C1703015

Project:

691 and 705 St Paul St

Lab ID:

C1703015-005A

Date: 27-Mar-17

Client Sample ID: Duplicate

Tag Number: 1184.299

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	nal Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 5:39:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 5:39:00 PM
cis-1,2-Dichloroethene -	3.9	0.59	ug/m3	1	3/8/2017 5:39:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 5:39:00 PM
Trichloroethene -	47	8.1	ug/m3	10	3/9/2017 2:01:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 5:39:00 PM

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

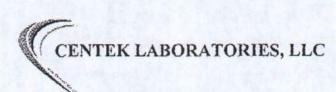
Project: 691 and 705 St Paul St

Lab ID: C1703015-006A

Date: 27-Mar-17

Client Sample ID: Ambient Air

Tag Number: 556.267


Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	nat Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 12:48:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	3/8/2017 12:48:00 PM
Vinvl chloride	< 0.10	0.10	ug/m3	1	3/8/2017 12:48:00 PM

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

QC SUMMARY REPORT SURROGATE RECOVERIES

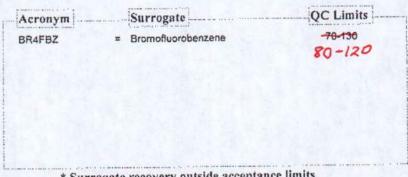
CLIENT:

LaBella Associates, P.C.

Work Order:

C1703015

Project:


-- 691 and 705 St Paul St

Test No:

TO-15

Matrix: A

Sample 1D	BR4FBZ	
ALCS1UG-030817	105	
ALCSIUGD-030817	104	
AMB1UG-030817	85.0	
C1703015-001A	239	
C1703015-002A	235.	
C1703015-003A	97.0	
C1703015-003A MS	(170 °)	
C1703015-003A MSD	(173 °)	
C1703015-004A	100	
C1703015-005A	98.0	
C1703015-006A	87.0	

GC/MS QA-QC Check Report

!une File : C:\HPCHEM\1\DATA\A0030803.D
!une Time : 8 Mar 2017 10:33 am

			(0.00)	72250	326026	275715
			(BFB)	51607 30964	(IS2) 232876 139726	(IS3) 196939 118/43
ile S	ample	DL	Surrogate Recovery %	Internal St	andard Res	ponses
0030804.D A	LCS1UG-03081	7	105	54344	232438	196865
0030805.D A	MB1UG-030817		85	51456	199472	169731
0030806.D C	1703015-006A		87	47960	186316	173836
0030807.D C	1703015-001A		239*	59338	270574	278336
0030808.D C	1703015-002A		235*	72867	317032	316562*
0030809.D C	1703015-003A		166*	80896	366728	336237*
0030810.D C	1703015-003A	MS	170*	80202	356830	344072*
0030811.D C	1703015-003A	MSD	173*	79391	370639	337498*
0030812.D C	1703015-004A		190*	76299	343779	323940*
0030813.D C	1703015-005A		187*	77699	348681	330439*
0030822.D C	1703015-003A	10X	97	53827	227536	201273
0030824.D C	1703015-004A	10X	100	46536	210199	197259
0030826.D C	1703015-005A	10X	98	46525	198463	190799
0030828.D A	LCS1UGD-03081	7	104	45106	199550	175594

t - fails 24hr time check * - fails criteria

Created: Mon Mar 27 11:04:40 2017 MSD #1/

	Ret	ention	Time 5
ccv	9.64	12.03	16.90
C1703015-1	9,65	12.04	16,90
-2 -3	9,65	12.03	16.90
-3 10X	9.65	12.04	16.90
4	9,65	12.03	16.90
-4 10x -5	9,65	12.03	16.90
-510X	9.65	12.03	16,90
-6	9.65	12.03	16,90

Date: 27-Mar-17

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. C1703015 Work Order: CLIENT:

Project:

691 and 705 St Paul St

TestCode: 0.25CT-TCE-VC

CZZZ Batch ID: R12014 TestNo: TO-15 Analysis Date: 3/8/201 Result PQL SPK value SPK Ref Val SPK	Sample ID ALCS1UG-030817	SampType: LCS	TestCo	TestCode: 0.25CT-TCE-	E- Units: ppbV		Prep Date:	le:		RunNo: 12014	2014	
Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit HighL		Batch ID: R12014	Test	No: TO-15		4	Analysis Dat		11	SeqNo: 140535	10535	
0.15 1 0 106 70 130 0.15 1 0 0 90.0 70 130 0.050 1 0 0.050 1 0 0 106 70 130 0.040 1 0 0 87.0 70 130 0.040 1 0 87.0 70 130 1 ESICode: 0.25CT-TCE- Units: ppbV	Analyte	Result	Pal		SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
0.15 1 0 0.16 11 0 110 70 130 130 0.040 1 1 0 0 110 70 130 130 0.040 1 0 0.040 1 0 87.0 70 130 130 130 130 130 130 130 130 130 13	1,1-Dichloroethene	1.060	0.15	-	0	106	70	130				
0.15	Chloroethane	0.9000	0.15	1	0	0.06	70	130		*****		
0.040 1 0 106 70 130 130 0.040 1 0 0.040 1 0 0 87.0 70 130 130 0.040 1 0 87.0 70 130 130 130 130 130 130 130 130 130 13	cis-1,2-Dichloroethene	1.100	0.15	-	0	110	70	130				
0.040	trans-1,2-Dichloroethene	1,070	0.15	-	0	107	70	130		13		
0.040	Trichloroethene	1.060	0.040	1	0	106	70	130				
TestCode: 0.25CT-TCE- Units: ppbV	Vinyl chloride	0.8700	0.040	+	0	87.0	20	130				
Batch ID: R12014 TestNo: TO-15 Analysis Date: 3/9/1201 Result PQL SPK vatue SPK Ref Val %REC LowLimit HighLimit 1.000 0.15 1 0 110 70 130 1.100 0.15 1 0 113 70 130 Ithene 1.100 0.040 1 0 110 70 130 0.9100 0.040 1 0 91.0 70 130	Sample ID ALCS1UGD-030817	SampType: LCSD	TestCo	de: 0.25CT-TCI	E- Units: ppbV		Prep Dat	e:		RunNo: 12014	2014	
Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Albane 1.100 0.15 1 0 110 70 130 Dichloroethene 1.130 0.15 1 0 113 70 130 2-Dichloroethene 1.100 0.15 1 0 113 70 130 oethene 1.100 0.040 1 0 110 70 130 oloide 0.910 0.040 1 0 91.0 70 130	Client ID: ZZZZZ	Batch ID: R12014	Test	No: TO-15		4	Analysis Dat	te: 3/9/201	21	SeqNo: 140536	40536	
1.100 0.15 1 0 110 70 1.000 0.15 1 0 100 70 1.130 0.15 1 0 113 70 1.100 0.040 1 0 110 70 0.9100 0.040 1 0 91.0 70	Analyte	Result	POL		SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,000 0.15 f 0 100 70 1,130 0.15 1 0 113 70 1,100 0.15 1 0 110 70 1,100 0.040 1 0 110 70 0,9100 0.040 1 0 91.0 70	1, 1-Dichloroethene	1.100	0.15	-	0	110	70	130	1.06	3.70	30	
1,130 0,15 1 0 113 70 1,100 0,15 1 0 110 70 1,100 0,040 1 0 91.0 70	Chloroethane	1.000	0.15	+	0	100	70	130	6.0	10.5	30	
1,100 0,15 1 0 110 70 1,100 0,040 1 0 110 70 0,9100 0,040 1 0 91.0 70	cis-1,2-Dichloroethene	1,130	0.15	-	0	113	70	130	7	2.69	30	
ne 1.106 0.040 1 0 110 70 0.910 0.910 0.040 1 0 91.0 70	trans-1,2-Dichloroethene	1,100	0.15	1	0	110	70	130	1.07	2.76	30	
0.9100 0.040 1 0 91.0 70	Trichloroethene	1.100	0.040	-	0	110	70	130	1.06	3.70	30	
	Vinyl chloride	0.9100	0.040	-	0	91.0	70	130	0.87	4.49	30	

Analyte detected below quantitation limit Results reported are not blank corrected Qualifiers:

Spike Recovery outside accepted recovery limits

Estimated Value above quantitation range Not Detected at the Limit of Detection 9 Q

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits I a

Page 1 of 1

Date: 27-Mar-17

ANALYTICAL QC SUMMARY REPORT

CLIENT:	LaBella As	LaBella Associates, P.C.				
Work Order: C1703015	C1703015					w. · Nama
Project:	691 and 70	691 and 705 St Paul St			Test	FestCode: 0.25CT-TCE-VC
						m Xo
County 10 Attent	1110 030047	Committee of the Commit	Tout ode o sert Tre Unite anhit	Haite anbit	Occas Date:	Dunklin, 42044

Sample ID AMB1UG-030817	SampType: MBLK	TestC	ode: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	te:		RunNo: 12014	014	
Client ID: ZZZZZ	Batch ID: R12014	Tes	TestNo: TO-15			Analysis Da	Analysis Date: 3/8/2017	21	SeqNo: 140534	0534	
Analyte	Result	POL	PQL SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1-Dichloroethene	< 0.15	0.15									
Chloroethane	< 0.15	0.15							w		
cis-1,2-Dichloroethene	< 0.15	0.15							***		
trans-1,2-Dichtoroethene	< 0.15	0.15									
Trichloroethene	< 0.040	0.040							W. 14 W .		
Vinyi chloride	< 0.040	0.040									

Qualifiers:		Results reported are not blank corrected	ш	Estimated
	-	Analyte detected below quantitation limit	ON	ND Not Detect

S Spike Recovery outside accepted recovery limits

H auted Value above quantitation range
Hetereted at the Limit of Detection
R

H Holding times for preparation or analysis exceeded
R RPD outside accepted recovery limits

Page 1 of 1

ANALYTICAL QC SUMMARY REPORT

CERTI	Labella Associates, F.C.
Work Order:	C1703015
Project:	691 and 705 St Paul St

Project: 691 and 70	691 and 705 St Paul St						Tes	stCode:	TestCode: lugM3_TO15	15	
Sample ID C1703015-003A MS SampType: MS	SampType: MS	TestCo	be: tugM3_TC	TestCode: 1ugM3_TO15 Units: ppbV		Prep Date:	je.		RunNo: 12014	214	
Client ID: SV-3	Batch ID: R12014	Testh	FestNo: TO-15		4	nalysis Da	Analysis Date: 3/8/2017		SeqNo: 140546	0546	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	Low imit	%REC LOWLimit HighLimit RPD Ref Val	PD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1-Dichloroethene	1.090	0.15	-	0	109 V	70	130				
Chloroethane	0.8100	0.15	-	0.11	70.0	70	130				
cis-1,2-Dichforoethene	1.400	0.15	-	0.18	122	70	130		•••		
Irans-1,2-Dichloroethene	1,140	0.15	-	0	114	70	130		*****		
Trichloroethene	9.890	0.15	-	8.34	(155)	70	130				s
Vinyt chloride	0.7200	0.15	-	0	72.0	70	130				
Sample ID C1703015-003A MS SampType: MSD	SampType: MSD	TestCo	de: fugM3_TC	TesiCode: tugM3_T015 Units: ppbV		Prep Date:	.9:		RunNo: 12014	214	
			The second secon						ACCUMATION THE CO.		

Client ID: SV-3	Batch ID: R12014	Testh	TestNo: TO-15			Analysis Date: 3/8/2017	e: 3/8/201	7	SeqNo: 140547	0547	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit Qual	Qual
1,1-Dichloroethene	1.160	0.15	1	0	116	70	130	1.09	6.22	30	
Chloroethane	0.8600	0.15	1	0.11	75.0	70	130	0.81	5.99	30	
cis-1,2-Dichloroethene	1.440	0.15	1	0.18	126	70	130	1.4	2.82	30	
trans-1,2-Dichloroethene	1,180	0.15	-	0	118	70	130	1.14	3.45	30	
Trichloroethene	9.550	0.15	-	8.34	121	02	130	9.89	3.50		
Vinyl chloride	0.7500	0.15	-	0	75.0	70	130	0.72	4.08	30	

Results reported are not blank corrected Qualifiers: Spike Recovery outside accepted recovery limits

Estimated Value above quantitation range B € Analyte detected below quantitation fimit

Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits = =

Page I of I

APPENDIX 3

Laboratory Analytical Reports

TO-15 Package Review Checklist

Centek Laboratories, LLC	Private and Confidential	Page I of 2
Comments:		· · · · · · · · · · · · · · · · · · ·
Sample Raw Data	Present and Complete Spectra present for all samples	THE STREET
Comments:		
MS/MSD	Present and Complete Recoveries within limits	<u></u>
Lab Control Sample Dupe (LCSD)	Present and Complete Recoveries within limits	AND AND AND AND AND AND AND AND AND AND
Lab Control Sample (LCS)	Present and Complete Recoveries within limits	Manager Solderster
Comments:	POINTING APPEARANCE AND ART A THE CHILD WEIGHT AND AND ART AND ART AND ART AND ART AND ART ARE ARE ARE ARE ARE ARE ARE ARE ARE ARE	
Internal Standards Recovery	Present and Complete Recoveries within limits Sample(s) reanalyzed	<u></u>
Surrogate Recovery	Present and Complete Recoveries within limits Sample(s) reanalyzed	
Chain-of-Custody	Present and Complete	AND A SECURE AND ASSESSMENT OF THE PROPERTY OF
Comments:		
Analytical Results TIC's present	Present and Complete Present and Complete Holding Times Met	Management Constitution Properties
,		<u>YES NO NA</u>
Client: La Bella	Project 69/St Paul St.	SDG: <u>& 1704014</u>

TO-15 Package Review Checklist

Client: La Bella	Project: 691 51 Paul St	sdg: <u>C1704</u>	1014
		ALEO MO	NIA
Standards Data		YES NO	<u>NA</u>
Initial Calibration Summary	Present and Complete	_	
Immai Cambradon Summary	Calibration(s) met criteria		
Continuing Colibration Summany	Present and Complete		
Continuing Calibration Summary	Calibration(s) met criteria	-	
	Campianon(s) met cineria	<u></u>	
Standards Raw Data	Present and Complete		THE CONTROL OF THE CO
Comments:			
MANAGEMENT (CONTINUE OF CONTINUE OF CONTIN	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	AANAAMII IN TOTO TOTO TOTO TOTO TOTO TOTO TOTO	
Raw Quality Control Data			
Tune Criteria Report	Present and Complete		***************************************
Method Blank Data	MB Results < PQL	***	(III-11-11-11-11-11-11-11-11-11-11-11-11-
	Associated results flagged "B"		vanilarina mere
LCS sample data	Present and Complete	<u> </u>	MANUFACTURE TO
LCSD sample data	Present and Complete		
MS/MSD sample data	Present and Complete	<u> </u>	
Comments:	NEGLECTION DATE AND A STATE AND ADDRESS OF THE STATE OF T		WALLEST OF THE STATE OF THE STA
Logbooks			
Injection Log	Present and Complete	<u> </u>	
Standards Log	Present and Complete	<u> </u>	
Can Cleaning Log	Present and Complete		
	Raw Data Present		
Calculation sheet	Present and Complete		
IDL's	Present and Complete		
Bottle Order Form	Present and Complete		· · · · · · · · · · · · · · · · · · ·
Sample Tracking Form	Present and Complete		**************************************
Additional Comments:			
A STATE AND ADDRESS OF THE STATE OF THE STAT			
	<i>f A</i>	1 1	
Section Supervisor: Walk	Date: 5	18/17	TO ANY THE TOTAL PARTY OF THE P
QC Supervisor: Ancida	Date: 5	7411-7	model modern a new control to
Centek Laboratories, LLC	Private and Confidential	,	Page 2 of 2

Centek Laboratories, LLC

Page 2 of 273

43 Midder Park Drive + Syracuse, NY 13200
Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752
NYSDOH ELAP Centificate No. 11830

Analytical Report

Daniel Noll LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

TEL: (585) 454-6110 FAX (585) 454-3066 RE: 691 St Paul Street

Dear Daniel Noll:

Wednesday, April 12, 2017 Order No.: C1704014

Centek Laboratories, LLC received 15 sample(s) on 4/5/2017 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form 1 (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - ь. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

Date: 08-May-17

CLIENT:

LaBella Associates, P.C.

Project:

691 St Paul Street

Lab Order:

C1704014

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Page 1 of 1

	Contek Lahs - Chain of Custody	ain of Custon	Γ	101/ James 101/	15 1 Ct	Defection I imit	Report Level	
	Scheen Edge Sin	TOTO TO LATE		ن ز	1		To come unadas:	
Centek Laboratories	143 Midler Park Drive		<u> </u>	Project: 2170820		Apdrés	Level	
1	Syracuse, NY 13206		<u>a</u> _	PO#: 2170820		1ug/M3	\	
1	315-431-9730	Vapor Intrusion & IAQ		Quote # Q-		tug/M3 +TCE	.25 Cat "B" Like	
	WWW.CentekLabs.com			Canister Order #:	Componer	X SEC LIMAN A		
Girnaround Time: One	Surcharge %	Cullipairy. Lassed	-V	HSERC. DPC	Check Here If Same:	ne:		
Business Days	%0 %0	Report to: Dan A	197	12 ct 54 (K 200)	Invoice to:			
OBusiness Days	50%	σï	13					
Stext Day by 5pm	100%	Email: DNØ[[હ	apellape, com	Enail:			
Slext Day by Noon	150%	Dhone: 15-KC	. 1	1 - 1/1/0	Phone.			
or Same and Next Day TAT Please Notify Lab	e Notify Lab	iter	lator	nalys	Field Vacuum	Labs Vacuum**	Comments	
Sample ID	Date Sampled		ber	•	Start / Stop	RecV/Analysis		-,
19-18-18-18-18-18	4/1/2017	1321	1163	* Kaley Cist	3011 4111	h-1 h-1	regulation mg	msa
91-B19-IAQ-A	+===	60	. 0	(9) X/5 JO	110E	1-4 p-1	Placed to replace	25 29
1619			のわた	VOCS : POST	30"1 9"	b-1 b-	-	
191-BIS-IAQ		400	299	email, Via	27.51 31	1-3 1-3		
101-8015-SVI		550	266	# 7	,	-21-3		
126	\$ 7100	240	340		126", 8"	-8 1-9		
1	_	0	299		27.5" 3"	-3 1-3		
091-NE-IAQ	E OF	4##8	-tc	79 Kin	78%	7-1 1-2		
291-NE-5VI	1811 WW	1. 4.00km	146	145 Kein	3011, 311	-3 1-3		
291-581-IAQ		170	387	¥.	3,5"	-3 1-5		
191-581-SVI		203	372		30", 6"	9-1-91		
791-5B5A-IAQ		367	152		30", 2"	21.2		
100		١	344		30", 3"	-7 13		
191-SBSA-SVI		445	1/170	****	28", 2"	7-1-2		
- 16		407	167		29,5", 0,5"	1-1 1-		
D	MONIN PLANT	4			4 ₈₄ .			
age								
Q					-	,		
Thain of Custody	Print Name	Si	Signature	F	Date/Time	Counter, CIRCLE ONE	Ā	
Sampled by:	Kyle R. Mill	2	7	Maly		redex /urs ric	rickupituropoiii	
elinquished by:	12 W 20 20 20 20 20 20 20 20 20 20 20 20 20	, e	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\left\langle \right\rangle$	447-12	Work Order # C.	& highor	
* By signing Centek Labs Chain of Custody, you are accepting Centek Labs	ain of Custody, you are ac	cepting Centek La		Terms and Conditions listed on the reverse side.	e reverse side.			

Date: 08-May-17

CLIENT:

LaBella Associates, P.C.

Project:

691 St Paul Street

Lab Order:

C1704014

Work	Order	Sample	Summar	y
------	-------	--------	--------	---

Lab Order.	01704014			
Lab Sample ID C1704014-001A	Client Sample ID 691-B19-IAQ-1	Tag Number 1321.1163	Collection Date 4/1/2017	Date Received 4/5/2017
C1704014-002A	691-B19-1AQ-2	1188.306	4/1/2017	4/5/2017
C1704014-003A	691-B19-SVI	362.446	4/1/2017	4/5/2017
C1704014-004A	691-B15-IAQ	87.299	4/1/2017	4/5/2017
C1704014-005A	691-B15-SVI	550.266	4/1/2017	4/5/2017
C1704014-006A	691-Outdoor-04012017	240.340	4/1/2017	4/5/2017
C1704014-007A	691-Duplicate	101.299	4/1/2017	4/5/2017

CLIENT: Project; Lab Order:	LaBella Associates, P.C. 691 St Paul Street C1704014		Work Order Sa	imple Summary
Lab Sample ID C1704014-008A	Client Sample ID 691-NE-1AQ	Tag Number 94.379	Collection Date 4/1/2017	Date Received 4/5/2017
C1704014-009A	691-NE-SVI	1186.145	4/1/2017	4/5/2017
C1704014-010A	691-SB1-fAQ	170.387	4/1/2017	4/5/2017
C1704014-011A	691-SB1-SVI	203.372	4/1/2017	4/5/2017
C1704014-012A	691-SB5A-IAQ	367.251	4/1/2017	4/5/2017
C1704014-013A	691-SB5B-IAQ	285.344	4/1/2017	4/5/2017
C1704014-014A	691-SB5A-SVI	475.1170	4/1/2017	4/5/2017
C1704014-015A	691-SB5B-SVI	467.1167	4/1/2017	4/5/2017

Sample Receipt Checklist

Client Name ARELLA GOCHECTES			D=1= 7"	- D:		, tm:0.0.1=	
Client Name LABELLA - ROCHESTER			Date and Tim			4/5/2017	
Work Order Numbe C1704014			Received by	NM			
Checklist completed by Signature	L/- S	5-17	Reviewed by	<u>Č</u>		4/5/17	
Matrix:	Carrier name:	FedEx Ground			ı		
Shipping container/cooler in good condition?		Yes 🗹	No 🗀	Not Presen			
Custody seals intact on shippping container/cod	oler?	Yes []	No 🗌	Not Presen	✓		
Custody seals intact on sample bottles?		Yes 🗀	No 🗀	Not Presen	\checkmark		
Chain of custody present?		Yes 🔽	No 🗔				
Chain of custody signed when relinquished and	received?	Yes 😾	No []				
Chain of custody agrees with sample labels?		Yes 🗹	No 🗀				
Samples in proper container/bottle?		Yes 🗹	No □				
Sample containers intact?		Yes 🔽	No 🗀				
Sufficient sample volume for indicated test?		Yes 🛂	No 🗀				
All samples received within holding time?		Yes 🔽	No 🗀				
Container/Temp Blank temperature in compliance	ce?	Yes 🔀	No 🗔				
Water - VOA vials have zero headspace?	No VOA viats subm	itted 🗹	Yes 🗔	No 🗀			
Nater - pH acceptable upon receipt?		Yes 🗀	No 🖾				
	Adjusted?	Chec	ked by		•••		
Any No and/or NA (not applicable) response mu	st be detailed in the co	omments section b	oe				
Client contacted	Date contacted:		Perso	n contacted		THE PARTY STATE STATE AND ADDRESS OF THE PARTY STATE AND ADDRE	- 414
Contacted by:	Regarding;						
Comments:							
John Marie M							
			/b h /		,,.,,,,		
			,				
Corrective Action	errennen vok er kristisker en en forste stille er frei blek en stille des kantalises ver	er er er en 174 Millionile en et um de millionile mellikud der Ver	en e semble e canal sem de la contrat desart la		er eenwoonstat to the Pill of P		
NOTEGORA O MORON	et all the control of the Philosophile of the ethics had been been been assured as which	MAKARIMAA	mbanas kara 1973 Milada Sand Bands (P. 1971) S	181700000000000000000000000000000000000		16	As .
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				N.Vide-100		1. (A. C.	

$\Gamma\Gamma$ C	
oratories,	
Labora	
entek]	

08-May-17

Lab Order: Client: Project:	C1704014 LaBella Associates, P.C. 691 St Paul Street	ij			DATES REPORT	E
Sample ID	Clieut Sample 10	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1704014-001A	691-B19-IAQ-1	4/1/2017	Air	fug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/6/2017
C1704014-002A	691-819-14Q-2			lug/m3 w/0.25ug/M3 CT-TCE-VC		4772017
C1704014-003A	1AS-618-169			lug/m3 w/ 0.25ug/M3 CT-FCE-VC		47/2017
				Jug/m3 w/0.25ug/M3 CT-FCE-VC		47/2017
C1704014-004A	691-B15-tAQ			Jug/m3 w/0.25ug/M3 CT-TCE-VC		4/7/2017
C1704014-005A	691-B15-SVI			lugin3 w/0.25ug/M3 CT-TCE-VC		4/7/2017
				lug/m3 w/ 0,25ug/M3 CT-TCE-VC		477/2017
C1704014-006A	691-Outdoor-04012017			Jug/m3 w/ 0.25ug/M3 CT-TCE-VC		477/2017
C1704014-007A	691-Duplicate			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/7/2017
C1704014-008A	691-NE-IAQ			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		477/2017
C1704014-009A	691-NE-SVI			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		47.000
C1704014-010A	691-SB1-IAQ			hug/m3 w/ 0.25vg/M3 CT-17CE-VC		477.2017
C1704014-011A	[NS-188-169			tog/m3 w/ 0.25ng/M3 CT-TCE-VC		4772017
				lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/7/2017
C1704014-012A	691-SB5A-1AQ			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/7/2017
				lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/7/2017
C1704014-013A	691-SB5B-1AQ			lug/m3 w/ 0.25ug/M3 CF-TCE-VC		4/7/2017
				lug/m3 w/0,25ug/M3 CT-TCE-VC		4/7/2017
C1704014-014A	691-SB5A-SVI			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		477,2017
				lug/ni3 w/ 0.25ug/M3 CT-TCE-VC		4/8/2017
				tug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/8/2017
C1704014-015A	1VS-858S-199			lug/m3 w/ 0.25ug/M3 CT-TCE-VC		4/8/2017
				Tug/m3 w/ 0.25ug/M3 CT-TCE-VC		4772017

CANISTER ORDER

Air Quality Testing, ... It's a Gas

143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

6417

08-May-17

SHIPPED TO:

Company: LaBella Associates, P.C. Contact: Benjamin Stracuzzi

Address: 300 State Street, Suite 201

Rochester, NY 14614

Description

Phone: (585) 454-6110

Quote ID:

Project:

Can / Reg ID

PO: 2170820 Submitted By:

MadeBy: jan

Ship Date: 3/28/2017

VIA: FedEx Ground

Due Date: 3/29/2017

Bottle Code	Bottle Type	TEST(s)	QTY
MC1400CC	1,4L Mini-Can	1ug/m3 w/ 0.25ug/M3 CT-TCE-VC	1
MC1000CC	1L Mini-Can	1ug/m3 w/ 0.25ug/M3 CT-TCE-VC	20

87	1L Mini-Can - 1104 VI
94	1L Mini-Can - 1086 VI
101	1L Mini-Can - 1101 VI
106	1L Mini-Can - 1056 VI
130	1L Mini-Can - 1078 VI
139	1L Mini-Can - 1113 VI
145	Time-Set Reg - 640 VI
170	1L Mini-Can - 1141 VI
203	tt Mini-Can - 1158 VI
240	1L Mini-Can - 1172 VI
251	Time-Set Reg - 689 VI
258	Time-Set Reg - 696 VI
266	Time-Set Reg - 704 VI
268	Time-Set Reg - 706 VI
285	1L Mini-Can - 1061 Vi
286	1L Mini-Can - 1262 VI
299	Time-Set Reg - 722 VI
306	Time-Set Reg - 729 VI
324	1L Mini-Can - 1287 VI
328	1L Mini-Can - 1291 VI
339	Time-Set Reg - 736 VI
340	Time-Set Reg - 737 VI
344	Time-Set Reg - 741 VI
362	1L Mini-Can - 1311 VI
367	1L Mini-Can - 1316 VI
372	Time-Set Reg - 746 VI
379	Time-Set Reg - 753 VI
387	Time-Set Reg - 761 VI
446	Time-Set Reg - 825 VI
467	1L Mini-Can - 1371 VI
475	1L Mini-Can - 1377 VI
550	1L Mini-Can - 118 VI

I of 2

SHIPPED TO:

Company: LaBella Associates, P.C. Submitted By: Contact: Benjamin Stracuzzi MadeBy: jan Address: 300 State Street, Suite 201

Ship Date: 3/28/2017 Rochester, NY 14614 VIA: FedEx Ground (585) 454-6110

Phone:

Quote ID:

Project:

PO: 2170820

QTY **Bottle Type** TEST(s) **Bottle Code**

Due Date: 3/29/2017

1163	Time-Set Reg-0676 VI
116 6	Time-Set Reg-0791 VI
1167	Time-Set Reg-0792 VI
1168	Time-Set Reg-0793 VI
1170	Time-Set Reg-0795 VI
1171	Time-Set Reg-0796 VI
1186	1L Mini-Can - 1235 VI
1188	1L Mini-Can - 1256 VI
1321	1.4L Mini-Can - 0252 VI

Comments: 20 (1L) @ 8hr + Ms/MSD +helium shroud and detector +clay +tubing WAC 031317A-C, 032017 D-H

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-001A

CLIENT:

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-1

Tag Number: 1321.1163

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-4		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/6/2017 9:55:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/6/2017 9:55:00 PM
cis-1,2-Dichloroethene	0.33	0.15	₽₽₽V	1	4/6/2017 9:55:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	1	4/6/2017 9:55:00 PM
Trichloroethene	0.40	0.040	ppbV	1	4/6/2017 9:55:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/6/2017 9:55:00 PM
Surr: Bromofluorobenzene	96.0	70-130	%REC	1	4/6/2017 9:55:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 15

LaBella Associates, P.C. CLIENT:

C1704014 Lab Order:

691 St Paul Street Project:

Lab ID:

C1704014-001A

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-1

Tag Number: 1321.1163 Collection Date: 4/1/2017

Matrix: AlR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2017 9:55:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/6/2017 9:55:00 PM
cis-1.2-Dichloroethene	1.3	0.59	ug/m3	1	4/6/2017 9:55:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2017 9:55:00 PM
Trichloroethene	2.1	0.21	ug/m3	1	4/6/2017 9:55:00 PM
Vinvl chloride	< 0.10	0.10	ug/m3	1	4/6/2017 9:55:00 PM

Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Estimated Value above quantitation range
- Analyte detected below quantitation limit Ţ
- ND Not Detected at the Limit of Detection

Page 1 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-002A

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-2

Tag Number: 1188.306 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-9		"Hg		4/5/2017
Łab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vđqq	1	4/7/2017 12:09:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 12:09:00 AM
cis-1,2-Dichloroethene	0.29	0.15	Vdqq	1	4/7/2017 12:09:00 AM
trans-1,2-Dichtoroethene	< 0.15	0.15	ppbV	1	4/7/2017 12:09:00 AM
Trichloroethene	0.39	0.040	ppbV	1	4/7/2017 12:09:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 12:09:00 AM
Surr: Bromofluorobenzene	89.0	70-130	%REC	1	4/7/2017 12:09:00 AM

Qualifiers:

- Ouantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-002A

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-2

Tag Number: 1188.306 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:09:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 12:09:00 AM
cis-1,2-Dichloroethane	1.1	0.59	ug/m3	1	4/7/2017 12:09:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:09:00 AM
Trichloroethene	2.1	0.21	ug/m3	1	4/7/2017 12:09:00 AM
Vinyl chloride	< 0.10	0,10	ug/m3	1	4/7/2017 12:09:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 15

LaBella Associates, P.C.

C1704014 Lab Order:

Project:

691 St Paul Street

Lab ID:

CLIENT:

C1704014-003A

Date: 04-May-17

Client Sample ID: 691-B19-SVI

Tag Number: 362.446

Collection Date: 4/1/2017

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-9	• •••	"Hg		4/5/2017
Lab Vacuum Out	<u>-30</u>		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vaqq	1	4/7/2017 3:23:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 3:23:00 PM
cis-1.2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/7/2017 3:23:00 PM
•••	< 0.15	0.15	ppbV	1	4/7/2017 3:23:00 PM
trans-1,2-Dichloroethene	4.8	0.40	ppbV	10	4/7/2017 8:07:00 PM
Trichloroethene	0.080	0.040	Vdqq	1	4/7/2017 3:23:00 PM
Vinyl chloride Surr: Bromoffuorobenzene	109	70-130	%REC	1	4/7/2017 3:23:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank 13
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range \mathbf{g}
- Analyte detected below quantitation limit J
- Not Detected at the Limit of Detection ND

Page 3 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Client Sample ID: 691-B19-SVI

Lab Order:

C1704014

Tag Number: 362,446

Collection Date: 4/1/2017

Project: Lab ID:

691 St Paul Street C1704014-003A

Matrix: AIR

Analyses	Result	**Limit Qı	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 3:23:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
trans-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
Trichloroethene	26	2.1	ug/m3	10	4/7/2017 8:07:00 PM
Vinyl chloride	0.20	0.10	ug/m3	1	4/7/2017 3:23:00 PM

Qualifiers:

** Quantitation Limit

Analyte detected in the associated Method Blank В

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range \mathbf{R}

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 3 of 15

Date: 04-May-17

CLIENT: Lab Order: LaBella Associates, P.C.

C1704014

691 St Paul Street

Project: Lab ID:

C1704014-004A

Client Sample ID: 691-B15-IAQ

Tag Number: 87.299

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichtoroethene	< 0.15	0.15	₽₽bV	1	4/7/2017 12:50:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 12:50:00 AM
cis-1,2-Dichloroethene	0.40	0.15	ppbV	1	4/7/2017 12:50:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 12:50:00 AM
Trichioroethene	0.41	0.040	Vdqq	1	4/7/2017 12:50:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 12:50:00 AM
Surr: Bromofluorobenzene	92.0	70-130	%REC	1	4/7/2017 12:50:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-004A

Date: 04-May-17

Client Sample ID: 691-B15-IAQ

Tag Number: 87.299

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result		ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:50:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 12:50:00 AM
cis-1,2-Dichloroethene	1.6	0.59	ug/m3	1	4/7/2017 12:50:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:50:00 AM
Trichloroethene	2.2	0.21	ug/m3	1	4/7/2017 12:50:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 12:50:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 15

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

691 St Paul Street

Project: Lab ID:

C1704014-005A

Date: 04-May-17

Client Sample ID: 691-B15-SVI

Tag Number: 550.266

Collection Date: 4/1/2017

Matrix: AlR

Analyses	Result	**Limit Q	ual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			•	Analyst:
Lab Vacuum In	-2			"Hg		4/5/2017
Lab Vacuum Out	-30			"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	;			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15		Vđqq	1	4/7/2017 4:03:00 ₽M
Chloroethane	0,14	0.15	j	Vdqq	1	4/7/2017 4:03:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		∨dqq	1	4/7/2017 4:03:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	4/7/2017 4:03:00 PM
Trichloroethene	40	3.6		ppbV	90	4/7/2017 9:20:00 PM
Vinyl chloride	0.11	0.040		ppbV	1	4/7/2017 4:03:00 PM
Surr: Bromofluorobenzene	118	70-130		%REC	1	4/7/2017 4:03:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 15

Date: 04-May-17

LaBella Associates, P.C. CLIENT:

C1704014 Lab Order:

691 St Paul Street Project:

C1704014-005A Lab ID:

Client Sample ID: 691-B15-SVI

Tag Number: 550.266

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2017 4:03:00 PM
•	0.37	0.40	J	ug/m3	1	4/7/2017 4:03:00 PM
Chloroethane	< 0.59	0.59	•	ug/m3	1	4/7/2017 4:03:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2017 4:03:00 PM
trans-1,2-Dichloroethene	*	• •		-	90	4/7/2017 9:20:00 PM
Trichloroethene	220	19		ug/m3	90	
Vinyl chloride	0.28	0.10		ug/m3	1	4/7/2017 4:03:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank 13
- Holding times for preparation or analysis exceeded Н
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range E
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-006A

Date: 04-May-17

Client Sample ID: 691-Outdoor-04012017

Tag Number: 240.340

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 1:31:00 AM
Chloroethane	< 0.15	0.15	p₽bV	1	4/7/2017 1:31:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 1:31:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 1:31:00 AM
Trichloroethene	< 0.040	0.040	ppbV	1	4/7/2017 1:31:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 1:31:00 AM
Surr: Bromofluorobenzene	88.0	70-130	%REC	1	4/7/2017 1:31:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Client Sample ID: 691-Outdoor-04012017

Lab Order:

C1704014

Tag Number: 240.340

Project:

691 St Paul Street

Collection Date: 4/1/2017

C1704014-006A Lab ID:

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
1,1-Dichloroethene	< 0.40	0.40	ug/m3	1	4/7/2017 1:31:00 AM
Chloroethane	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
trans-1,2-Dichtoroethene			•	1	4/7/2017 1:31:00 AM
Trichloroethene	< 0.21	0.21	ug/m3		
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 1:31:00 AM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- Non-routine analyte, Quantitation estimated, JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range E
- Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 6 of 15

103, 1212

Date: 04-May-17

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-Duplicate

Lab Order: C1704014 Tag Number: 101.299

Project: 691 St Paul Street Collection Date: 4/1/2017

Lab ID: C1704014-007A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-3		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	4/7/2017 2:12:00 AM
Chloroethane	< 0.15	0.15	∨dqq	1	4/7/2017 2:12:00 AM
cis-1,2-Dichloroethene	0.42	0.15	ppb∨	1	4/7/2017 2:12:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	₽₽₽V	1	4/7/2017 2:12:00 AM
Trichloroethene	0.41	0.040	ppbV	1	4/7/2017 2:12:00 AM
Vinyl chloride	< 0.040	0.040	ppb∀	1	4/7/2017 2:12;00 AM
Surr: Bromofluorobenzene	91.0	70-130	%REC	1	4/7/2017 2:12:00 AM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

Not Detected at the Limit of Detection

Page 7 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab 1D: C1704014-007A

Date: 04-May-17

Client Sample ID: 691-Duplicate

Tag Number: 101.299

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:12:00 AM
Chloroethane	< 0.40	0.40	սց/m 3	1	4/7/2017 2:12:00 AM
cis-1,2-Dichloroethene	1.7	0.59	նց/m3	1	4/7/2017 2:12:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:12:00 AM
Trichloroethene	2.2	0,21	ug/m3	1	4/7/2017 2:12:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 2:12:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 15

CLIENT: LaBella Associates, P.C.

C1704014

Lab Order: Tag Number: 94.379 Project: 691 St Paul Street Collection Date: 4/1/2017

Lab ID: C1704014-008A Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD		····	Analyst:
Lab Vacuum In	-1		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	•		Analyst: RJP
1,3-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 2:52:00 AM
Chloroethane	< 0.15	0.15	₽₽₽V	1	4/7/2017 2:52:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 2:52:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	1	4/7/2017 2:52:00 AM
Trichloroethene	< 0.040	0.040	Vdqq	1	4/7/2017 2:52:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/7/2017 2:52:00 AM
Surr: Bromofluorobenzene	93.0	70-130	%REC	1	4/7/2017 2:52:00 AM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 04-May-17

Client Sample ID: 691-NE-JAQ

......

- Ε Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-008A

Date: 04-May-17

Client Sample ID: 691-NE-IAQ

Tag Number: 94.379 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 2:52:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
Trichloroethene	< 0,21	0.21	ug/m3	1	4/7/2017 2:52:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 2:52:00 AM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C

C1704014

Project: 691 St Paul Street

Lab ID:

C1704014-009A

Date: 04-May-17

Client Sample ID: 691-NE-SVI

Tag Number: 1186.145

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 5:28:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 5:28:00 PM
cis-1,2-Dichtoroethene	< 0.15	0.15	ppbV	1	4/7/2017 5:28:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 5:28:00 PM
Trichloroethene	0.72	0.040	Vdqq	1	4/7/2017 5:28:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 5:28:00 PM
Surr; Bromofluorobenzene	113	70-130	%REC	1	4/7/2017 5:28:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-009A

Date: 04-May-17

Client Sample ID: 691-NE-SVI

Tag Number: 1186.145

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15				Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 5:28:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	t	4/7/2017 5:28:00 PM
Trichioroethene	3.9	0.21	ug/m3	1	4/7/2017 5:28:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 5:28:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-010A

Date: 04~May-17

Client Sample ID: 691-SB1-IAQ

Tag Number: 170.387 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD	Militari di Caracteria di Cara		Analyst:
Lab Vacuum In	-5		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 3:33:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 3:33:00 AM
cis-1,2-Dichloroethene	0.66	0.15	Vdqq	1	4/7/2017 3:33:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 3:33:00 AM
Trichloroethene	0.24	0.040	Vdqq	1	4/7/2017 3:33:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/7/2017 3:33:00 AM
Surr: Bromofluorobenzene	92.0	70-130	%REC	3	4/7/2017 3:33:00 AM

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 15

Centek Laboratories, LLC THE LIGHTING TO THE RESIDENCE OF THE PROPERTY

Date: 04-May-17

LaBella Associates, P.C. CLIENT:

C1704014 Lab Order:

691 St Paul Street Project:

C1704014-010A Lab ID:

Client Sample 1D: 691-SB1-IAQ

Tag Number: 170.387 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
	< 0.59	0.59	ug/m3	1	4/7/2017 3:33:00 AM
1,1-Dichloroethene	< 0.40	0.40	սց/m3	1	4/7/2017 3:33:00 AM
Chloroethane	2.6	0.59	ug/m3	1	4/7/2017 3:33:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:33:00 AM
trans-1,2-Dichloroethene	1.3	0.21	աց/ու3	1	4/7/2017 3:33:00 AM
Trichloroethene	< 0.10	0.10	ug/m3	1	4/7/2017 3:33:00 AM
Vinyl chloride	< 0.10	0.10	ugitto	·	

Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded 1-1
- Non-routine analyte, Quantitation estimated, .1N
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range Œ
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 15

Date: 04-May-17 от под одного надара, под града по станова на выполника в

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-SB1-SVI

Lab Order: C1704014 Tag Number: 203.372

Project: Collection Date: 4/1/2017 691 St Paul Street Matrix: AIR Lab ID: C1704014-011A

Analyses	Result	**Limit Qua	l Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 6:09:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 6:09:00 PM
cis-1,2-Dichloroethene	13	1.5	ppbV	10	4/7/2017 11:10:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 6:09:00 PM
Trichloroethene	0.74	0.040	ppbV	1	4/7/2017 6:09:00 PM
Vinyl chloride	0.15	0.040	Vdqq	1	4/7/2017 6:09:00 PM
Surr: Bromofluorobenzene	109	70-130	%REC	1	4/7/2017 6:09:00 PM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 揺 Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 15

LaBella Associates, P.C.

Client Sample ID: 691-SB1-SVI

CLIENT: Lab Order:

C1704014

Date: 04-May-17

Project:

691 St Paul Street

Tag Number: 203.372 Collection Date: 4/1/2017

Lab 1D:

C1704014-011A

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	W	TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:09:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 6:09:00 PM
cis-1,2-Dichloroethene	52	5.9	ug/m3	10	4/7/2017 11:10:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:09:00 PM
Trichloroethene	4.0	0.21	ug/m3	1	4/7/2017 6:09:00 PM
Viny! chloride	0.38	0.10	ug/m3	1	4/7/2017 6:09:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded H
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range E
- Analyte detected below quantitation limit ,j
- ND Not Detected at the Limit of Detection

Page 11 of 15

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-012A

Date: 04-May-17

Client Sample ID: 691-SB5A-JAQ

Tag Number: 367.251 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-2		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vđqq	1	4/7/2017 4:13:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 4:13:00 AM
cis-1,2-Dichloroethene	3.3	1.5	Vdqq	10	4/7/2017 1:50:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 4:13:00 AM
Trichloroethene	1.2	0.040	Vđạq	1	4/7/2017 4:13:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 4:13:00 AM
Surr: Bromofisorobenzene	103	70-130	%REC	1	4/7/2017 4:13:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 12 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

691 St Paul Street

Project: Lab ID:

C1704014-012A

Date: 04-May-17

Client Sample ID: 691-SB5A-IAQ

> Tag Number: 367.251 Collection Date: 4/1/2017

> > Matrix: AIR.

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichloroethene	< 0.59	0.59	აც/m3	1	4/7/2017 4:13:00 AM
Chloroethane	< 0.40	0.40	սց/m3	1	4/7/2017 4:13:00 AM
cis-1,2-Dichloroethene	13	5,9	ug/m3	10	4/7/2017 1:50:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:13:00 AM
Trichloraethene	6.5	0.21	ug/m3	1	4/7/2017 4:13:00 AM
Vinvl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 4:13:00 AM

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range Е
- Analyte detected below quantitation limit ,1
- Not Detected at the Limit of Detection

Page 12 of 15

Date: 04-May-17

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-SB5B-IAQ

Lab Order: C1704014 Tag Number: 285.344

Project: 691 St Paul Street Collection Date: 4/1/2017

Lab ID: C1704014-013A Matrix: AlR

Analyses	Result	**Limit Qu	al Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	₽₽bV	1	4/7/2017 4:53:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 4:53:00 AM
cis-1,2-Dichloroethene	3.1	1.5	Vdqq	10	4/7/2017 2:27:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 4:53:00 AM
Trichloroethene	1.3	0.040	Vdqq	1	4/7/2017 4:53:00 AM
Vinyl chloride	0.060	0.040	ppb∨	1	4/7/2017 4:53:00 AM
Surr: Bromofluorobenzene	102	70-130	%REC	1	4/7/2017 4:53:00 AM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID:

C1704014-013A

THE CONTRACTOR OF THE CONTRACTOR CONTRACTOR OF THE CONTRACTOR OF T

Date: 04-May-17

Client Sample ID: 691-SB5B-IAQ

Tag Number: 285.344 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15				Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:53:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 4:53:00 AM
cis-1,2-Dichloroethene	12	5.9	ug/m3	10	4/7/2017 2:27:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:53:00 AM
Trichloroethene	6,8	0,21	ug/m3	1	4/7/2017 4:53:00 AM
Vinyl chloride	0.15	0.10	ug/m3	1	4/7/2017 4:53:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-014A

Date: 04-May-17

Client Sample ID: 691-SB5A-SVI

Tag Number: 475.1170 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD		1	Analyst:
Lab Vacuum In	<u>-2</u>		''Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vđqq	1	4/7/2017 6:50:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 6:50:00 PM
cis-1,2-Dichloroethene	44	14	ppbV	90	4/8/2017 1:00:00 AM
trans-1,2-Dichloroethene	0.41	0.15	ppbV	1	4/7/2017 6:50:00 PM
Trichloroethene	3.7	0.36	Vdqq	9	4/8/2017 12:23:00 AM
Vinyl chloride	0.19	0.040	ppbV	1	4/7/2017 6:50:00 PM
Surr: Bromofluorobenzene	107	70-130	%REC	1	4/7/2017 6:50:00 PM

Qualiflers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 14 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-014A

Date: 04-May-17

Client Sample ID: 691-SB5A-SVI

Tag Number: 475.1170 Collection Date: 4/1/2017

Matrix: AlR

Analyses	Result	**Limit Qı	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:50:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 6:50:00 PM
cls-1,2-Dichloroethene	170	55	ug/m3	90	4/8/2017 1:00:00 AM
trans-1,2-Dichloroethene	1.6	0.59	ug/m3	1	4/7/2017 6:50:00 PM
Trichloroethene	20	1.9	ug/m3	9	4/8/2017 12:23:00 AM
Viny! chloride	0.49	0.10	ug/m3	1	4/7/2017 6:50:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 14 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-015A

Date: 04-May-17

Client Sample ID: 691-SB5B-SVI

Tag Number: 467.1167

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloraethene	< 0.15	0.15	Vdqq	1	4/7/2017 7:30:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 7:30:00 PM
cis-1,2-Dichloroethene	5.8	1.5	ppbV	10	4/8/2017 1:37:00 AM
trans-1,2-Dichloroethene	0.18	0.15	ppbV	1	4/7/2017 7:30:00 PM
Trichloroethene	11	0.40	ppbV	10	4/8/2017 1:37:00 AM
Vinyl chloride	0.11	0.040	ppbV	1	4/7/2017 7:30:00 PM
Surr: Bromofluorobenzene	116	70-130	%REC	1	4/7/2017 7:30:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 15 of 15

Date: 04-May-17

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-SB5B-SVI

 Lab Order:
 C1704014
 Tag Number: 467.1167

 Project:
 691 St Paul Street
 Collection Date: 4/1/2017

Lab ID: C1704014-015A Matrix: AIR

Analyses	Result	**Limit Qı	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 7:30:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 7:30:00 PM
cis-1,2-Dichloroethene	23	5.9	սց/m3	10	4/8/2017 1:37:00 AM
trans-1,2-Dichloroethene	0.71	0.59	ug/m3	1	4/7/2017 7:30:00 PM
Trichloraethene	57	2.1	ug/m3	10	4/8/2017 1:37;00 AM
Vinyl chloride	0.28	0.10	ug/m3	1	4/7/2017 7:30:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 15 of 15

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 04-May-17

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: L

LaBella Associates, P.C.

Work Order:

C1704014

Project:

691 St Paul Street

Test No:

TO-15

Matrix: A

Sample ID	BR4FBZ						
ALCS1UG-040617	95.0	 i		1			i
ALCS1UG-040717	97.0					} ····································	
ALCSIUGD-040617	98.0						! .'. '. '
ALCS1UGD-040717	97.0	 	· · · · · · · · · · · · · · · · · · ·			·	
AMBIUG-040617	90.0						
AMB1UG-040717	86.0	 	}	}		, ,	
C1704014-001A	96.0		Ì		!		
C1704014-001A MS	97.0	 					
C1704014-001A MSD	99.0						i
C1704014-002A	89.0	;		}			
C1704014-003A	109	 }				}	
C1704014-004A	92.0	 ļ				i !	
C1704014-005A	118	 }		}		 	
C1704014-006A	88.0)		}		
C1704014-007A	91.0	 <u> </u>					
C1704014-008A	93.0]· ···································				 	i !
C1704014-009A	113	{	<u> </u>	}		!	<u>{</u>
C1704014-010A	92.0	 f					
C1704014-011A	109	 }		}			
C1704014-012A	103	 <u> </u>		,			
C1704014-013A	102			j	<u> </u>	:	
C1704014-014A	107	 <u> </u>	<u></u>			} · · · · · · · · · · · · · · · · · · ·	{ · · · · · · · · · · · · · · · · · · ·
C1704014-015A	116		}				}

Acronym	Surrogate	QC Limits
BR4FBZ	= Bromofluorobenzene	70-130

^{*} Surrogate recovery outside acceptance limits

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AO040602.D Tune Time : 6 Apr 2017 9:31 am

Daily Calibration File : C:\HPCHEM\1\DATA\A0040602.D

(BFB)	(ISI)	(XS2)	(IS3)
	26713	121699	111761

File	Sample	DL	Surrogate	Recovery %	í	Internal	Standard	Responses	
A0040603.D	ALCSIUG-04061	7	95			26450	123600	109377	
A0040604.D	AMB1UG-040617		90			26038	118374	102379	
A0040620.D	ALCS1UGD-0406	1.7	98			24809	117535	100863	
A0040621.D	C1704014-001A		96			25396	113281	97086	
AO040622.D	C1704014-001A	MS	97			26903	116940	105999	
AO040623.D	C1704014-001A	MSD	99			26299	120898	106126	
A0040624.D	C1704014-002A		89			24868	113360	102277	
A0040625.D	C1704014-004A		92			25596	114646	102450	
A0040626.D	C1704014-006A		88			25816	110508	98499	
A0040627.D	C1704014-007A		91			24957	110993	99559	
A0040628.D	C1704014-008A		93			25088	108028	95812	
A0040629.D	C1704014-010A		92			24485	107880	98198	
A0040630.D	C1704014-012A		103			25278	111053	100304	
A0040631.D	C1704014-013A		102			25079	113761	101873	
								· · · · · - + ·	

t - fails 24hr time check * - fails criteria

Created: Thu May 04 12:00:40 2017 MSD #1/

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\A0040702.D
Tune Time : 7 Apr 2017 11:20 am

Daily Calibration File : C:\HPCHEM\1\DATA\A0040702.D

			(BFB)		(IS1) 23210	(IS2) 99215	(TS3) 88822
File	Sample	DĻ	Surrogate Recovery	og og	Internal	Standard R	esponses
A0040703.D	ALCS1UG-04071	7	97		22420	98698	86489
A0040704.D	AMB1UG-040717		86		21100	92197	83384
A0040706.D	C1704014-012A	10X	91	<i></i>	20808	86837	77606
A0040707.D	C1704014-013A	10X	92		19443	85901	76902
A0040708.D	C1704014-003A		109		20468	96070	92232
A0040709.D	C1704014-005A		118		24680	109137	104661
40040710.D	C1704014-009A		113	nr m 144	27394	125972	121869
90040711.D	C1704014-011A		109		30170	132762	121408
A0040712.D	C1704014-014A		107		31361	139148	131462
40040713.D	C1704014-015A		116		31915	147799	139968
40040714.D	C1704014-003A	10x	95		31326	147339	127930
10040716.D	C1704014-005A	90x	92		26112	119025	102419
10040719.D	C1704014-011A	10x	93		21591	93800	84591
40040721.D	C1704014-014A	9 x	95		20532	89989	83171
40040722.D	C1704014-014A	90x	89		20827	88198	80228
40040723.D	C1704014-015A	10x	94		20780	88679	79938
10040725.D	ALCSIUGD-0407	1.77	97		19313	89890	78098

t - fails 24hr time check * - fails criteria

Created: Thu May 04 12:02:38 2017 MSD #1/

ANALYTICAL QC SUMMARY REPORT

Date: 04-May-17

CLIENT:

Work Ord

Project:

		TestCode: 0.25CT-TCE-VC
LaBella Associates, P.C.	C1704014	691 St Paul Street
٠.,	rder:	

Sample ID ALCS1UG-040617	SampType: LCS	TestCo	TestCode: 0.25CT-TCE-	Valids: ppbV		Prep Date:	äi		RunNo: 12114	14	
Client ID: ZZZZ	Batch (D: R12114	Test	TestNo: TO-15			Analysis Date:	4,6/2017		SeqNo: 141660	960	
Analyte	Resuft	POL	SPK value	SPK Ref Va	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.9700	0.15	•	0	97.0	70	130				
Chloroethane	1.090	0.15	•	0	109	70	130				
cis-1,2-Dichloroethene	0.9700	0.15	•	O	97.0	7.	130				
trans-1,2-Dichloroethene	0036'0	0.15	•	Û	95.0	57	130				
Trichloroethene	0.9700	0.040		Ф	97.0	70	130				
Vinyl chloride	0.9700	0.040	-	0	97.0	70	130				
Sample ID ALCS1UG-040717	SampType: LCS	TestCo	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:	ài		RuniNo: 12118	18	
Client ID: ZZZZZ	Batch ID: R12118	Tesil	TesiNo; TO-15			Analysis Date:	3: 417/2017		SeqNo: 141731	731	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Vai	788PD	RPDLimit	Qua
1,1-Dichloroethene	0.9900	0.15	1	0	98.0	70	130				
Chloroethane	1,180	0.15	•	0	118	70	130				
cis-1,2-Dichtoroethene	1,000	0.15	+	0	100	7.0	130				
trans-t,2-Dichloroethene	0.9800	0.15	***	0	98.0	70	130				
Trichforoethene	1.060	0.040		0	196	70	130				
Viny! chloride	1.150	0.040	4	0	115	7.0	130				
Sample ID ALCS1UGD-040617	SampType: LCSD	TesfCo	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:	hi		RunNo: 12114	14	
Client ID: ZZZZ	Batch ID: R12114	Test	TestNo: TO-15			Analysis Date:	e: 4/6/2017		SeqNo: 141661	661	
Analyte	Result	Pal	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.8900	0.15	-	0	99.0	07	130	76.0	2.04	30	
Chloroethane	1.000	0.15	•	0	<u>;</u> 00	02	130	¥.09	8.61	8	
Quadifiers: Results report	Results reported are not blank corrected		E Estimate	Estimated Value above quantitation range	Etitation ran	200	H	Iding times for	Holding times for preparation or analysis exceeded	alysis exceed	3
J Analyte detec	Analyte detected below quantitation limit		ND Not Det	Not Detected at the Limit of Detection	Detection		R	D outside accep	RPD outside accepted recovery limits	its	
S Spike Recove	Spike Recovery outside accepted recovery limits	mits								ć.	Page 1 of 2

CLIENT: LaBella Associate Work Order: C1704014 Project: 691 St Paul Street	LaBella Associates, P.C. C1704014 691 St Paul Street						!	TestCode: 0.25CT-TCE-VC).25CT-TCI	EVC	
Sample ID ALCS1UGD-040617 Client ID: ZZZZZ	SampType: LCSD Batch ID: R12114	TestCo Test	FestCode: 0.25CT-TCE- TestNo: TO-15	E- Units: pobV		Prep Date: Analysis Date:	e: 4/6/2017	7	RunNo: 12114	114	
Anayte	Result	젍	SPK value	SPK Ref Vai	%REC	LowLimit	, can	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-Dichtoroethene	0.9600	0.15	4 va	0	96.0	02	130	76.0	1.04	30	
trans-1,2-Dichloroethene	0.9800	0.15	***	Đ	98.0	70	130	0.95	3.11	33	
Trichlorgethene	1.000	0.040	+	Đ	100	70	130	0.97	3.05	33	
Vinyl chloride	1.060	0.040		0	106	70	130	0.97	8.87	30	
Sample ID ALCS1UGD-040717	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	E. Units: ppbV		Prep Date:	a		RunNo: 12118	118	
Client ID: ZZZZZ	Batch ID: R12118	Test	TestNo: TO-15			Analysis Date:	e: 4/8/2017	ţ-u.	SeqNo: 141732	1732	1 1 1111
Analyte	Resuli	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%ጽዖዐ	RPDLimit	Qual
1,1-Dichloroethene	1.080	0.15	1	0	108	70	130	0.39	8.70	30	
Chloroethane	1.180	0.15	-	0	118	70	130	1.18	0	30	
cis-1,2-Dichloroethene	1.120	0.15	-	0	112	70	130	-	<u>*</u>	30	
frans-1,2-Dichloroethene	1.070	0.15	1	0	107	70	130	0.98	8.78	30	
Trichloroethene	1.100	0.040	-	0	110	70	130	1.86	3.70	8	
Vinyl chloride	1.240	0.040	-	0	124	70	130	1.15	7.53	30	

E Estimated Value above quantitation range ND Not Detected at the Limit of Detection

Qualifiers:

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1704014 Work Order: 691 St Paul Street Project:

TestCode: 0.25CT-TCE-VC

Client ID: 691-819-IAQ-1 Analyte		TestCoo	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	3. 4		RunNo: 12114	1	
Analyte 1 1-Dichlorosthene	Batch ID: R12114	Testl	TestNo: TO-15			Analysis Date: 4/6/2017	: 4/6/2017		SeqNo: 141726	726	
t 1.Dichloroethene	Result	POL	SPK value SP	SPK Ref Val	%REC	LowLimit	HighLimii RPO Ref Val	Ref Val	%RPD	RPDLimit	Qual
	0.9100	0.15	+	0	91.0	R	130				
Chloroethane	1.040	0.15	-	0	\$	70	130				
cis-1,2-Dichloroethene	1,230	0.15	+-	0.33	90.0	70	130				
trans-1,2-Dichforoethene	0.9500	0.15	,	0	95.0	70	130				
Trichloroethene	1.390	0.040	₩	0.4	96.0	70	130				
Vinyl chloride	1.030	0.040	+	0	103	70	130				
Sample ID C1704014-001A MS Sa	SampType: MSD	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date	14		RunNo: 12114	14	
Client ID: 691-B194AQ-1 E	Batch ID: R12114	TestN	TestNo: TO-15		-	Analysis Date: 4/6/2017	E 4/6/2017		SeqNo: 141727	727	
Anafyle	Result	POL	SPK value SP	SPK Ref Val	%REC	LowLimil	HighLimit RPD (RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1,000	0.15	,	0	100	7.0	130	0.91	9.42	39	
Chloroethane	1.040	0.15	+	0	1 5	70	130	1.04	O	30	
cis-1,2-Dichloroethene	1.320	0.15	+~	0.33	99.0	33	130	1.23	7.06	33	
trans-1,2-Dichloroethene	0.9766	0.55	ψw	Ö	97.0	7.0	130	0.95	2.08	33	
Trichloroethene	1,370	0.040	/	0.4	97.0	70	136	1.39	1.45	39	
Vinyl chloride	1.030	0.040	¥m	0	103	202	130	1.03	0	8	

Estimated Value above quantitation range E E Spike Recovery outside accepted recovery limits Analyte detected below quantilation limit Results reported are not blank corrected Qualifiers:

Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits 闰 氏

Page I of I

ANALYTICAL QC SUMMARY REPORT

Date: 04-May-17

LaBella Associates, P.C. CLIENT:

691 St Paul Street Project:

TestCode: 0.25CT-TCE-VC

Sample ID AMB111G-040517	SameTyne: MRI K	Tochor	io: 8 SEPT TOE	I laife: a. \$37		4				
	مستقر بقصور	S S S S S S S S S S S S S S S S S S S	regionne, attorning of the blank	outs phot		Piep Date:		Kunivo: 12114	<u>+</u>	
Client ID: ZZZZZ	Batch (D: R12114	Test	TestNo: TO-15			Analysis Date: 4/6/2017	1017	SeqNo: 141659	659	
Analyte	Result	PQ	SPK value SPK Ref Val	ok Ref Val	%REC	%REC LOWLING HighLimit RPD Ref Val	it RPD Ref Val	%RPD	%RPD RPDLimit Qual	Quat
1,1-Dichloroethene	< 0.15	0.15								
Chloroethane	< 0.15	0.15								
cis-1,2-Dichloroethene	< 0.15	0.15								
trans-1,2-Dichloroethene	< 0.15	0.15								
Frichloroethene	< 0.040	0.040								
Vinyl chloride	< 0.040	0.040								

Sample ID AMB1UG-040717	SampType: MBLK	TestCo	TestCode: 0.25CT-TCE- Units: ppbV	· Units: ppbV		Prep Date:	iti	RunNo: 12118	118	
Client ID: ZZZZZ	Batch ID: R12118	Test	TesiNo: TO-15		**	\nalysis Dat	Analysis Date: 4/7/2017	SeqNo: 141730	1730	
Алаlyte	Result	PQL	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
1, 1-Dichtoroethene	< 0.15	0.15								
Chloroethane	< 0.15	0.15								
cis-1,2-Dichloroethere	< 0.15	0,15								
trans-1,2-Dichloroethene	< 0.15	0.15								
Trichloroethene	< 0.040	0.040								
Viny! chloride	< 0.040	0.040								

			1			
Qualifiers:	,	Results reported are not blank corrected	ш	Estimated Value above quantitation range	=	Holding time
	_	Analyte detected below quantitation limit	9	ND Not Detected at the Unit of Detection	25	RPD outside
	Ş	Spike Recovery outside accepted recovery limits				

Method TO-15A	Units=ppb
1ug/M3 Detection Limit	January 2016
aboratories	

Name	Amount	IDL#1	(DL#2	IDL#3	IDL#4	S#TQI	IDL#8	IDL#7	Average	StdDev	%Rec	겁
Propylene	0.15	0.16	0.15	0.16	0.14	0.16	0.14	0.16	0.153	0.010	98.1	0.030
Freon 12	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.17	0.173	0.005	86.8	0.015
Chloromethane	0.15	0.19	0.18	0.16	0.18	0.18	0.2	0.17	0.180	0.013	83.3	0.041
Freon 114	0.15	0.18	0.17	0.17	0.17	0.18	0.17	0.18	0.174	0.005	86.1	0.017
Vinyl Chloride	0.15	0.17	0.16	0.16	0.15	0.16	0.15	0.15	0.157	0.008	95.5	0.024
Butane	0.15	0.18	0.16	0.17	0.18	0.18	0.19	0.19	0.179	0.011	84.0	0,034
1,3-butadiene	0.15	0.21	0.2	0.2	0.22	0.17	0.18	0.23	0.201	0.021	74.5	0.066
Bromomethane	0.15	0.18	0.2	0.21	0.18	0.22	0.16	0.21	0.194	0.021	77.2	0.068
Chloroethane	0.15	0.19	0.19	0.16	0.19	0.19	0.18	0.19	0.184	0.011	81.4	0.036
Ethanol	0.15	0.16	0.16	0.18	0.17	0.19	0.18	0.19	0.176	0.013	85.4	0.040
Acrolein	0.15	0.22	0.17	0.19	0.16	0.18	0.21	0.17	0.186	0.022	80.8	0.070
Vinyl Bromide	0.15	0.17	0.15	0.16	0.16	0.17	0.17	0.17	0.164	0.008	91.3	0.025
Freon 11	0.15	0.18	0.17	0.17	0.18	0.19	0.17	0.18	0.177	0.008	84.7	0.024
Acetone	0.15	0.2	0.17	0.18	0.15	0.15	0.18	0.14	0.167	0.021	89.7	0.067
Pentane	0.15	0.18	0.17	0.18	0.16	0.17	0.2	0.16	0.174	0.014	86.1	0.044
Isopropyl alcohol	0.15	0.22	0.2	0.19	0.2	0.19	0.21	0.19	0.200	0.012	75.0	0.036
1,1-dichloroethene	0.15	0.2	0.17	0.19	0.19	0.19	0.18	0.18	0.186	0.010	80.8	0.031
Freon 113	0.15	0.17	0.16	0.18	0.18	0.18	0.17	0.17	0.173	0.008	86.8	0.024
t-Butyi alcohol	0.15	0.21	0.2	0.2	0.21	0.2	0.2	0.18	0.200	0.010	75.0	0.031
Methylene chloride	0.15	0.2	0.18	0.19	0.18	0.2	0.19	0.17	0.187	0.011	80.2	0.035
Allyl chloride	0.15	0.18	0.17	0.16	0.18	0.18	0.2	0.18	0.179	0.012	84.0	0.038
Carbon disulfide	0.15	0.2	0.17	0.19	0.19	0.2	0.18	0.19	0.189	0.011	79.5	0.034
trans-1,2-dichloroethene	0.15	0.15	0.14	0.14	0.14	0.16	0.14	0.15	0.146	0.008	102.9	0.025
methyl tert-butyl ether	0.15	0.14	0.14	0.14	0.13	0.15	0.14	0.13	0.139	0.007	108.2	0.022
1,1-dichloroethane	0.15	0.17	0.15	0.16	0.15	0.17	0.16	0.16	0.160	0.008	93.8	0.026
Vinyl acetate	0.15	0.14	0.13	0,14	0.13	0.13	0.13	0.12	0.131	0.007	4	0.022
Methyl Ethyl Ketone	0.15	0.17	0.17	0.16	0.16	0.15	0.13	0.12	0.151	0.020	99.1	0.061
cis-1,2-dichloroethene	0.15	0.15	0.14	0.16	0.15	0.16	0.15	0.14	0.150	0.008	100.0	0.026
Hexane	0.15	0.12	0.14	0.13	0.13	0.13	0.12	0.12	0.127	0.008	118.0	0.024
Ethyl acetate	0.15	0,16	0.17	0.14	0.15	0.14	0.16	0,13	0.150	0.014	100.0	0,044
Chloroform	0.15	0.16	0.16	0.16	0.16	0.17	0.16	0.17	0.163	0.005	92.1	0.015
Tetrahydrofuran	0.15	0.15	0.13	0.15	0.15	0.15	0.15	0.14	0.146	0.008	102.9	0.025
1,2-dichloroethane	0,15	0.16	0.15	0,16	0.16	0.17	0.16	0.17	0.161	0.007	92.9	0.022
1,1,1-trichloroethane	0.15	0.17	0.16	0.17	0.17	0.16	0.17	0.17	0.167	0.005	89.7	0.015
Cyclohexane	0.15	0.14	0.14	0.14	0.15	0.15	0.14	0.14	0.143	0.005	105.0	0.015
Carbon tetrachloride	0.15	0.13	0.15	0.15	0.15	0.15	0.15	0.16	0.149	0.009	101.0	0.028
Benzene	0.15	0,15	0.16	0.16	0.15	0.16	0.16	0.16	0.157	0.005	95.5	0.015
Methyl methacrylate	0.15	0.15	0.15	0.14	0.14	0.14	0.15	0.13	0.140	0.014	107.1	0.044
1,4-dioxane	0.15	0.18	0.18	0.19	0.18	0.15	0.17	0.12	0.167	0.024	89.7	0.076
Confidential											1/8	1/8/2016

Centek Laboratories				145	1ug/M3 Detection Limit	ion Limit					Method TO-15A	L15A
Name	Amount	IDL#1	IDL#2	IDL#3	January 2016 IDL#4 II	:016 :01#5	1DL#6	IDL#7	Average	StdDev	Units %Rec	Units=ppb
2,2,4-trimethylpentane	0.15	0.15	0.15	0.15	0.16	0.14	0.16	0.15	0.151	0.007	99.1	0.000
	0.15	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	1180	0.015
Trichloroethene	0.15	0.14	0.15	0.14	0.15	0.15	0.14	0.15	0.146	0.005	102.9	0.017
1,2-dichloropropane	0.15	0.16	0.17	0.17	0.16	0.17	0.16	0.16	0.164	0.005	91.3	0.017
Bromodichloromethane	0.15	0.16	0.16	0.16	0.15	0.16	0.17	0.16	0.160	0.006	93.8	0.018
cis-1,3-dichloropropene	0.15	0.13	0.13	0.14	0.14	0.13	0.13	0.13	0.133	0.005	112.9	0.015
trans-1,3-dichloropropene	0.15	0.16	0.13	0.13	0.14	0.14	0.14	0.16	0.143	0.013	105.0	0.039
1,1,2-trichloroethane	0.15	0.16	0.15	0.16	0.15	0.16	0.18	0.17	0.161	0.011	92.9	0,034
	0.15	0.14	0.14	0.14	0.13	0.16	0.14	0.15	0.143	0.010	105.0	0.030
Methyl Isobutyl Ketone	0.15	0.18	0.18	0.18	0.18	0.16	0.18	0.15	0.173	0.013	86.8	0,039
Dibromochloromethane	0.15	0.16	0.16	0.17	0.18	0.16	0.17	0.18	0.169	0.009	89.0	0.028
Methyl Butyl Ketone	0.15	0.17	0.16	0.18	0.17	0.16	0.17	0.14	0.164	0.013	91.3	0.040
1,2-dibromoethane	0.15	0.16	0.17	0,16	0.16	0.16	0.16	0.17	0.163	0.005	92.1	0.015
Tetrachloroethylene	0.15	0.16	0,17	0.16	0.16	0.16	0.17	0.17	0.164	0.005	91.3	0.017
Chlorobenzene	0.15	0.16	0.16	0.16	0.17	0.15	0.17	0.17	0.163	0.008	92.1	0.024
1,1,1,2-tetrachloroethane	0.15	0.17	0.17	0.17	0.18	0.16	0.18	0.17	0.171	0.007	87.5	0.022
Ethylbenzene	0.15	0.13	0.14	0.14	0.14	0.12	0.14	0.13	0.134	0.008	111.7	0.025
m&p-xylene	0.3	0.25	0.25	0.25	0.23	0.25	0.25	0.25	0.247	0.008	121.4	0.024
	0.15	0.11	0.1	0.11	0.13	0.1	0.1	0.11	0.107	0.005	140.0	0.015
	0.15	0.12	0.13	0.13	0.13	0.12	0.13	0.12	0.123	0.008	122.1	0.024
Bromoform	0.15	0.15	0.15	0,16	0.15	0.15	0.17	0.16	0.156	0.008	96.3	0.025
	0.15	0.11	0.12	0,12	0.14	0.14	0,12	0.11	0.123	0.013	122.1	0.039
	0.15	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
Bromofluorobenzene	₹***	0.88	6.0	6.0	0.87	0.89	0.89	0.9	0.890	0.012	112.4	0.036
1,1,2,2-tetrachloroethane	0.15	0.16	0.16	0.17	0.16	0.17	0.17	0.16	0.164	0.005	91.3	0.017
Propylbenzene	0.15	0.13	0.12	0.13	0.13	0.11	0.13	0.11	0.123	0.010	122.1	0.030
2-Chlorotoluene	0.15	0.13	0.13	0.13	0.14	0.13	0.12	0.13	0.130	900'0	115,4	0.018
4-ethyltoluene	0.15	0.11	0.12	0,12	0.12	0.13	0.13	0.11	0.120	0.008	125.0	0.026
1,3,5-trimethylbenzene	0,15	0.12	0.13	0.14	0.12	0.13	0.13	0.13	0.129	0.007	116.7	0.022
1,2,4-trimethylbenzene	0.15	0.12	0.13	0.12	0.12	0.13	0.12	0.12	0.123	0.005	122.1	0.015
1,3-dichlorobenzene	0.15	0.14	0.14	0.14	0.13	0.14	0.13	0.14	0.137	0.005	109.4	0.015
benzył chłoride	0.15	0.13	0.16	0.13	0,15	0.13	0.15	0.16	0.144	0.014	104.0	0.044
1,4-dichlorobenzene	0.15	0.13	0.11	0.12	0.12	0.12	0.12	0.13	0.121	0.007	123,5	0.022
1,2,3-trimethylbenzene	0.15	0.12	0.11	0.12	0.12	0.12	0.11	0.11	0.116	0.005	129,6	0.017
1,2-dichlorobenzene	0.15	0.13	0.14	0.14	0.14	0.14	0.14	0.13	0.137	0.005	109,4	0.015
1,2,4-trichlorobenzene	0.15	0.1	0.11	0.1	0.11	0.11	0.12	0.1	0.107	0.008	140.0	0.024
Naphthalene	0.15	0.13	0.13	0.14	0.11	0.12	0.14	0.12	0.127	0.011	118.0	0.035
Hexachloro-1,3-butadiene	0.15	0,16	0.17	0.17	0.17	0.16	0.16	0.16	0.164	0.005	91.3	0.017

Confidential

1/8/2016

DL Study	vo.			0.25	25ug/M3 Detection Limi January 2016	ction Limit 1016					Method TO-15A Units=ppb	0-15A s≕ppb
Name	Amount IDL#1	10L#J	IDL#2	IDL#3	IDL#4	IDI#8	IDL#6	1DL#7	Average	StdDev	%Rec	ద
Vinyl Chloride	0.1	0.11	0.11	60.0	60'0	0.1	0.09	0.1	0.099	0.00	101 4	0.028
Carbon tetrachloride	0.1	0.1	0.11	0.08	0.09	0.09	60.0	60.0	0.093	0.010	107.7	0.020
Trichloroethene	0.1	0.1	0.1	70.0	0.08	0.08	0.08	0.08	0.084	0.013	138.5	0.000
Tetrachloroethylene	0.1	0.11	0.12	0.09	0.09	0.1	0.09	600	0.099	0.01	1014	0.000
Naphthalene	0.1	0.09	0.08	0.07	0.06	0.06	0.07	0.08	0.070	0.012	142.0	0.000
•			:			3	5	5	5	710.0	14.	

Confidential

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

$$RRF = \underbrace{Ax * Cis}_{Ais * Cx}$$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the

compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

CLIENT: LaBella Associates, P.C.

C1704014 Lab Order:

Project: 691 St Paul Street

Lab ID: C1704014-001A Date: 04-May-17

Client Sample ID: 691-B19-IAQ-1

Tag Number: 1321.1163

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-4		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/6/2017 9:55:00 PM
Chloroethane	< 0.15	0.15	∨dqq	1	4/6/2017 9:55:00 PM
cis-1.2-Dichloroethene	0.33	0.15	Vdqq	1	4/6/2017 9:55:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/6/2017 9:55:00 PM
Trichloroethene	0.40	0.040	ppbV	1	4/6/2017 9:55:00 PM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/6/2017 9:55:00 PM
Surr: Bromofluorobenzene	96.0	70-130	%REC	1	4/6/2017 9:55:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 1 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-001A

Date: 04-May-17

Client Sample 1D: 691-B19-IAQ-1

Tag Number: 1321.1163

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Q	val Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2017 9:55:00 PM
Chloroethane	< 0.40	0.40	ขg/m3	1	4/6/2017 9:55:00 PM
cis-1,2-Dichloroethene	1.3	0.59	ug/m3	1	4/6/2017 9:55:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2017 9:55:00 PM
Trichioroethene	2.1	0.21	ug/m3	1	4/6/2017 9:55:00 PM
Vinyt chloride	< 0.10	0.10	ug/m3	1	4/6/2017 9:55:00 PM

Qualifiers:

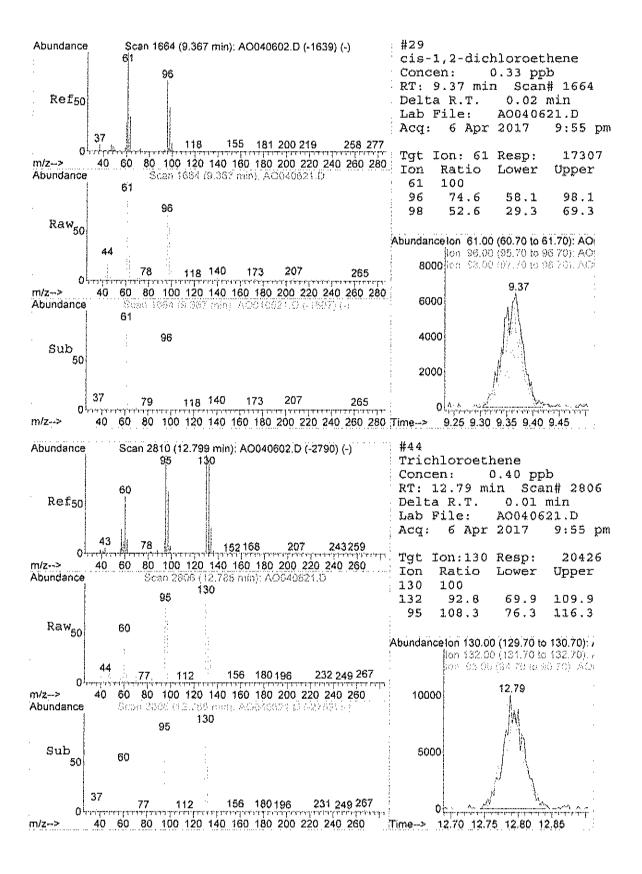
- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 15

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040621.D
Acq On : 6 Apr 2017 9:55 pm Vial: 21 Operator: RJP Sample : C1704014-001A Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 11 14:02:25 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.57 11.95 16.83	128 114 117	25396 113281 97086	1.00	ddd qdd qdd	0.03 0.02 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.47 Range 70	95 - 130	63494 Recovery		ppb 96	
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.37 12.79	61 130	17307 20426		dqq dqq	Qvalue 96 92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040621.D A331_1UG.M Thu May 04 11:28:30 2017

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-002A

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-2

Tag Number: 1188.306

Matrix: AIR.

Collection Date: 4/1/2017

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-9		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 12:09:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 12:09:00 AM
cis-1,2-Dichloroethene	0.29	0.15	ppbV	1	4/7/2017 12:09:00 AM
trans-1,2-Dichtoroethene	< 0.15	0.15	ppbV	1	4/7/2017 12:09:00 AM
Trichloroethene	0.39	0,040	ppbV	1	4/7/2017 12:09:00 AM
Vinyi chloride	< 0.040	0.040	∨dqq	1	4/7/2017 12:09:00 AM
Surr: Bromofluorobenzene	89.0	70-130	%REC	1	4/7/2017 12:09:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 2 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-002A

Date: 04-May-17

Client Sample ID: 691-B19-IAQ-2

Tag Number: 1188.306 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual Units		DF	Date Analyzed		
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15				Analyst: RJP		
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:09:00 AM		
Chloroethane	< 0.40	0.40	սց/m3	1	4/7/2017 12:09:00 AM		
cis-1,2-Dichloroethene	1.1	0.59	ug/m3	1	4/7/2017 12:09:00 AM		
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:09:00 AM		
Trichloroethene	2.1	0.21	ug/m3	1	4/7/2017 12:09:00 AM		
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 12:09:00 AM		

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range 1
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 15

 Data File : C:\HPCHEM\1\DATA\A0040624.D
 Vial: 22

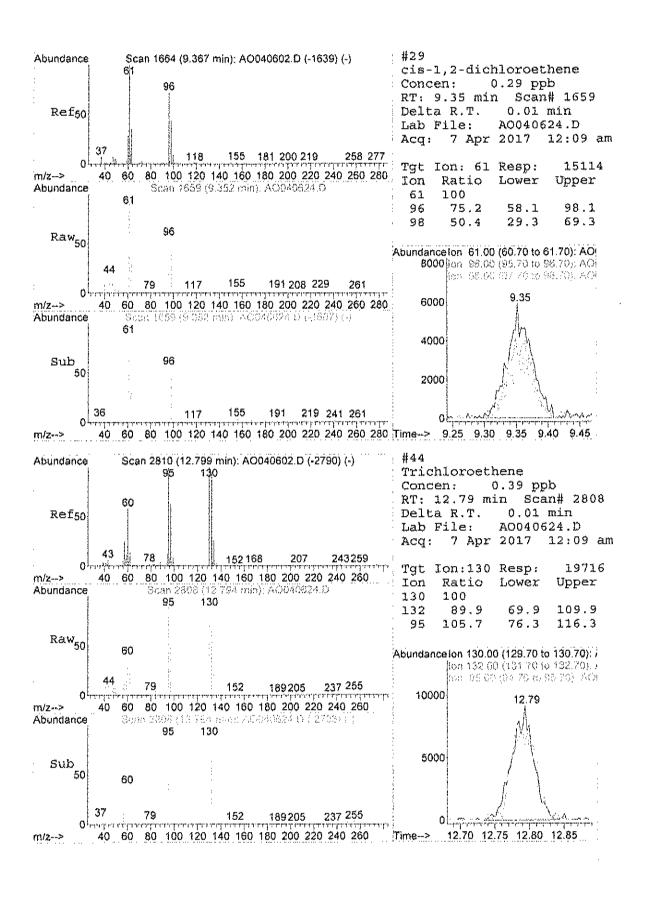
 Acq On : 7 Apr 2017 12:09 am
 Operator: RJP

 Sample : C1704014-002A
 Inst : MSD #1

 Misc : A331_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:19:04 2017 Quant Results File: A331_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response Co	one Ui	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.94 16.83	128 114 117	24868 113360 102277	1.00 1.00 1.00	ppb	0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	62337 Recovery	0.89		
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.35 12.79	61 130	15114 19716	0.29 0.39		Qvalue 97 95

MSD1

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

Project: 691 St Paul Street

Lab ID:

C1704014-003A

Date: 04-May-17

Client Sample ID: 691-B19-SVI

Tag Number: 362.446

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-9		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	₽₽₽V	1	4/7/2017 3:23:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 3:23:00 ₽M
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 3:23:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 3:23:00 PM
Trichloroethene	4.8	0.40	Vdqq	10	4/7/2017 8:07:00 PM
Vinyl chloride	0.080	0.040	opb∨	1	4/7/2017 3:23:00 PM
Surr: Bromofluorobenzene	109	70-130	%REC	1	4/7/2017 3:23:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 15

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-B19-SVI

Lab Order: C1704014 Tag Number: 362.446

Project: 691 St Paul Street Collection Date: 4/1/2017

Lab ID: C1704014-003A Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 3:23:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:23:00 PM
Trichioroethene	26	2.1	ug/m3	10	4/7/2017 8:07:00 PM
Vinyl chloride	0.20	0.10	ug/m3	1	4/7/2017 3:23:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 04-May-17

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 15

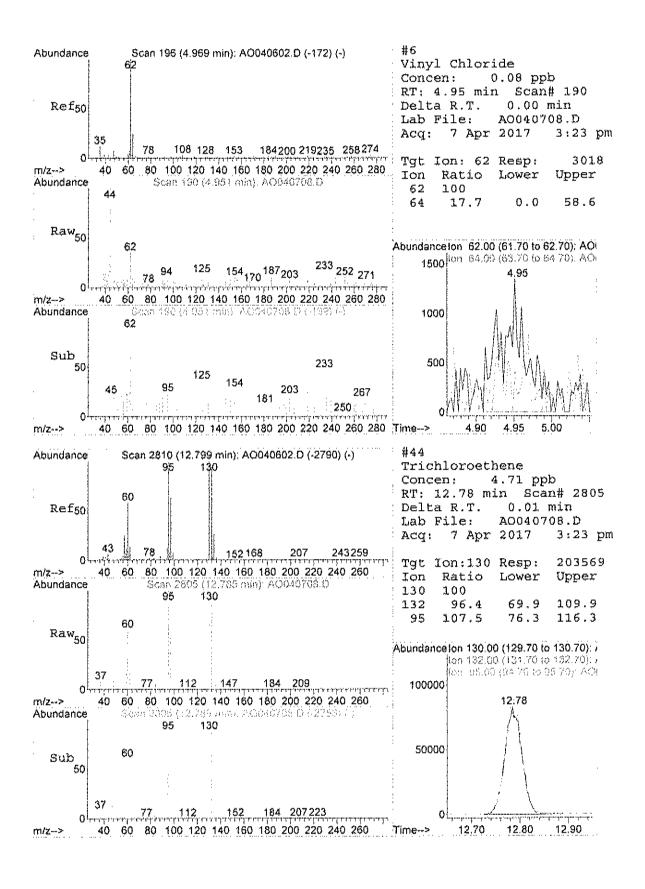
Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 07 15:59:23 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R,T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.55 11.94 16.82	128 114 117	20468 96070 92232	1.00 1.00 1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 ~ 130	68296 Recovery	1.09		
Target Compounds 6) Vinyl Chloride 44) Trichloroethene	4.95 12.78	62 130	3018 203569	0.08 4.71		Qvalue 79 91

Page 73 of 273

Centek Laboratories, LLC

MSD1

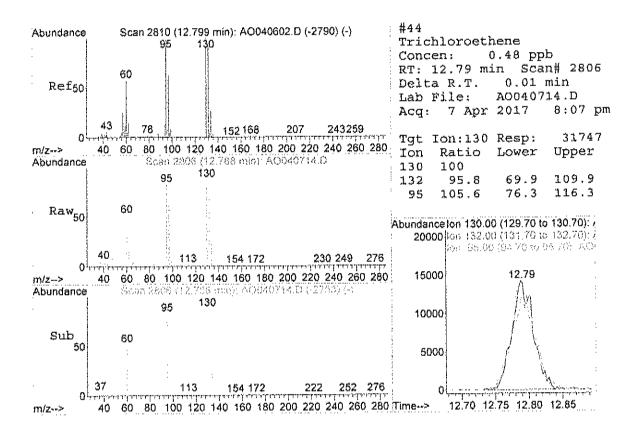
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040714.D
Acg On : 7 Apr 2017 8:07 pm
Sample : C1704014-003A 10x
Misc : A331_1UG Vial: 14 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A331_1UG.RES Quant Time: Apr 08 08:59:49 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits :	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	31326 147339 127930	1.00 1.00 1.00	ppb	0.02 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.47 Range 70	95 - 130	83018 Recovery	0.95 =	ppb 95.	0.02 00%
Target Compounds 44) Trichloroethene	12.79	130	31747	0.48	dqq	Qvalue 92

Page 76 of 273

Centek Laboratories, LLC

MSD1

CLIENT: LaBella Associates, P.C.

aBella Associates, P.C. Client Sample 1D: 691-B15-IAQ

Date: 04-May-17

Lab Order: C1704014 Tag Number: 87.299
Project: 691 St Paul Street Collection Date: 4/1/2017

Lab ID: C1704014-004A Matrix: AIR

Analyses	Result	**Limit Q	ual Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3	·	"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichloroethene	< 0.15	0.15	Vdqq	4	4/7/2017 12:50:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 12:50:00 AM
cis-1,2-Dichloroethene	0.40	0.15	Vdqq	· 1	4/7/2017 12:50:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 12:50:00 AM
Tríchloroethene	0.41	0.040	Vdqq	•	4/7/2017 12:50:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 12:50:00 AM
Surr: Bromofluorobenzene	92.0	70-130	%REC	1	4/7/2017 12:50:00 AM

Qualifiers:

Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 4 of 15

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

CLIENT:

691 St Paul Street

Lab ID:

C1704014-004A

Date: 04-May-17

Client Sample ID: 691-B15-IAQ

Tag Number: 87.299

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qı	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:50:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 12:50:00 AM
cis-1,2-Dichloroethene	1.6	0.59	ug/m3	1	4/7/2017 12:50:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 12:50:00 AM
Trichloroethene	2.2	0.21	ug/m3	1	4/7/2017 12:50:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 12:50:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- I Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 15

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040625.D
Acq On : 7 Apr 2017 12:50 am
Sample : C1704014-004A
Misc : A331_1UG Vial: 23 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 07 07:19:05 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response Co	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	25596 114646 102450	1.00 1.00 1.00	ppb	0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70		63996 Recovery			
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.37 12.79	61 130	21474 21262	0.40		Qvalue 91 95

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-005A

Date: 04-May-17

Client Sample ID: 691-B15-SVI

Tag Number: 550.266 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	.D			Analyst:
Lab Vacuum In	-2			"Hg		4/5/2017
Lab Vacuum Out	-30			"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15		₽pbV	1	4/7/2017 4:03:00 PM
Chloroethane	0.14	0.15	J	Vdqq	1	4/7/2017 4:03:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	4/7/2017 4:03:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	4/7/2017 4:03:00 PM
Trichloroethene	40	3.6		₽₽bV	90	4/7/2017 9:20:00 PM
Vinyi chioride	0.11	0.040		Vdqq	1	4/7/2017 4:03:00 PM
Surr: Bromofluorobenzene	118	70-130		%REC	1	4/7/2017 4:03:00 PM

Qualifiers: ** (

Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J. Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 5 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-005A

Client Sample ID: 691-B15-SVI

Tag Number: 550.266

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**l.imit (Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	".	TO-	15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2017 4:03:00 PM
Chloroethane	0.37	0.40	J	ug/m3	1	4/7/2017 4:03:00 PM
cis-1.2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2017 4:03:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2017 4:03:00 PM
Trichloroethene	220	19		ug/m3	90	4/7/2017 9:20:00 PM
Vinyl chloride	0.28	0.10		ug/m3	1	4/7/2017 4:03:00 PM

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded 11
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- Not Detected at the Limit of Detection ND

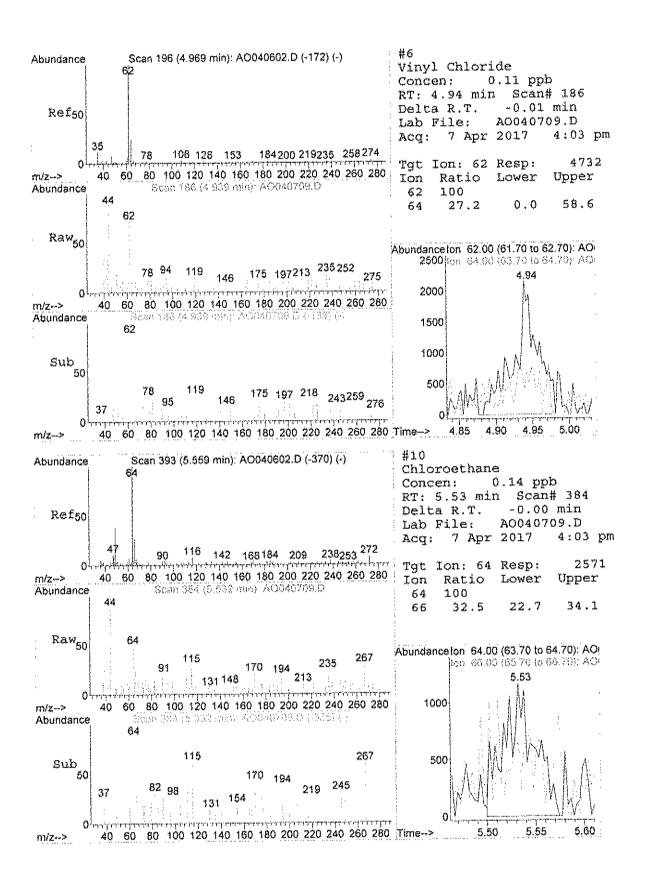
Page 5 of 15

Quantitation Report (QT Reviewed)

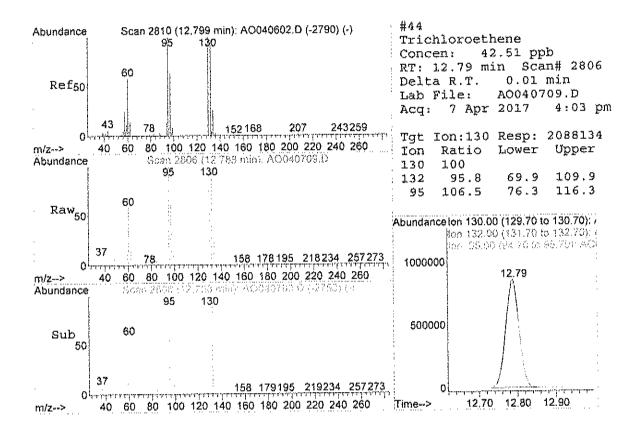
Data File : C:\HPCHEM\1\DATA\A0040709.D
Acq On : 7 Apr 2017 4:03 pm
Sample : C1704014-005A
Misc : A331_1UG Vial: 9 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 16:58:03 2017 Quant Results File: A331_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

DataAcq Meth : 1UG RUN


Internal Standards	R.T.	QIon	Response (Conc U	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9,56 11,94 16,83	128 114 117	24680 109137 104661	1.00	dqq dqq dqq	0.02 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	84188 Recovery		ppb 118.0	0.00 0%
Target Compounds 6) Vinyl Chloride 10) Chloroethane 44) Trichloroethene	4.94 5.53 12.79	62 64 130	4732 2571 2088134		ppb dqq	Qvalue 97 92 92

Page 86 of 273

Centek Laboratories, LLC

MSD1

MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AOO40716.D Vial: 16
Acq On : 7 Apr 2017 9:20 pm Operator: RJP
Sample : C1704014-005A 90x Inst : MSD #1
Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 08 08:59:51 2017 Quant Results File: A331_1UG.RES

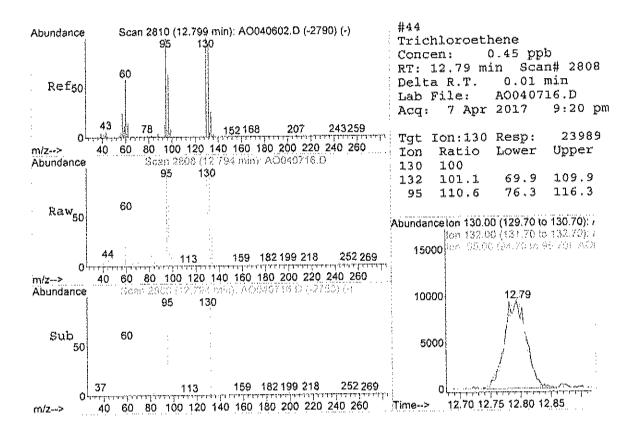
Quant Method : C:\HPCHEM\l\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Internal Standards	R.T.	QIon	Response C	onc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	26112 119025 102419	1.00 pg 1.00 pg 1.00 pg	b 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18,46 Range 70	95 - 130	63983 Recovery	0.92 pr	ob 0.01 2.00%
Target Compounds 44) Trichloroethene	12.79	130	23989	0.45 pp	Qvalue b 87


INT REVIEWELL!

תמשוורדומודומו צבהמזר

Centek Laboratories, LLC

Ŋ

Page 90 of 273

MSD1

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-006A

Date: 04-May-17

Client Sample ID: 691-Outdoor-04012017

Tag Number: 240.340 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Q	tal Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppb√	1	4/7/2017 1:31:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/7/2017 1:31:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 1:31:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdaq	1	4/7/2017 1:31:00 AM
Trichloroethene	< 0.040	0.040	Vdqq	1	4/7/2017 1:31:00 AM
Vinyl chloride	< 0.040	0.040	Voqq	1	4/7/2017 1:31:00 AM
Surr: Bromofluorobenzene	88.0	70-130	%REC	1	4/7/2017 1:31:00 AM

Qualifiers:

* Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 6 of 15

LaBella Associates, P.C.

Client Sample ID: 691-Outdoor-04012017

Date: 04-May-17

C1704014 Lab Order:

CLIENT:

Tag Number: 240.340

Project:

Collection Date: 4/1/2017

691 St Paul Street C1704014-006A Lab ID:

Matrix: AIR

Analyses	Result	**Limit Qual		DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 1:31:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
	< 0.59	0.59	ug/m3	1	4/7/2017 1:31:00 AM
trans-1,2-Dichloroethene	< 0.21	0.21	ug/m3	1	4/7/2017 1:31:00 AM
Trichloroethene	+	0.10	ug/m3	1	4/7/2017 1:31:00 AM
Viny) chloride	< 0.10	0.10	นนูกกจ	'	

Qualifiers:

- Analyte detected in the associated Method Blank В
- 14 Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated, JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range \mathbf{e}
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 6 of 15

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040626.D
Acq On : 7 Apr 2017 1:31 am Vial: 24 Operator: RJP Sample : C1704014-006A Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A331_1UG.RES Quant Time: Apr 07 07:19:06 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	Qlon	Response (Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	25816 110508 98499	1.00	dqq	0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	58874 Recovery	0.88 / <u>=</u>	dqq 88.008	0.00
Target Compounds					Q	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed Thu May 04 11:28:45 2017 MSDl A0040626,D A331_1UG.M

Page 95 of 273

INCHATACH TAL

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-007A

Date: 04-May-17

Rella Associates, P.C. Client Sample ID: 691-Duplicate

Tag Number: 101.299 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
		FLD			Analyst:
FIELD PARAMETERS	~3	`	"Ha		4/5/2017
Lab Vacuum In			"Hg		4/5/2017
Lab Vacuum Out	-30		ьã		
AND THE SELECTION OF THE VE		TO-15			Analyst: RJP
IUG/M3 W/ 0.25UG/M3 CT-TCE-VC	< 0.15	0.15	Vdqq	1	4/7/2017 2:12:00 AM
1,1-Dichloroethene	+	0.15	Vđạq	4	4/7/2017 2:12:00 AM
Chloroethane	< 0.15	•			4/7/2017 2:12:00 AM
cis-1,2-Dichloroethene	0.42	0.15	ppbV	!	.,
trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	3	4/7/2017 2:12:00 AM
	0.41	0.040	Vdqq	1	4/7/2017 2:12:00 AM
Trichloroathene	< 0.040	0.040	Vdqq	1	4/7/2017 2:12:00 AM
Vinyl chloride			%REC	1	4/7/2017 2:12:00 AM
Surr: Bromofluorobenzene	91.0	70-130	201∠E (*)	•	111111111111111111111111111111111111111

Qualifiers: **

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 15

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-Duplicate

 Lab Order:
 C1704014
 Tag Number:
 101.299

 Project:
 691 St Paul Street
 Collection Date:
 4/1/2017

Lab ID: C1704014-007A Matrix: AIR

Analyses	Result	**Limit Q	tal Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ს ე/m3	1	4/7/2017 2:12:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	4/7/2017 2:12:00 AM
cis-1,2-Dichloroethene	1.7	0.59	ug/m3	1	4/7/2017 2:12:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:12:00 AM
Trichloroethene	2.2	0.21	ug/m3	1	4/7/2017 2:12:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 2:12:00 AM

Qualifiers:

* Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Date: 04-May-17

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

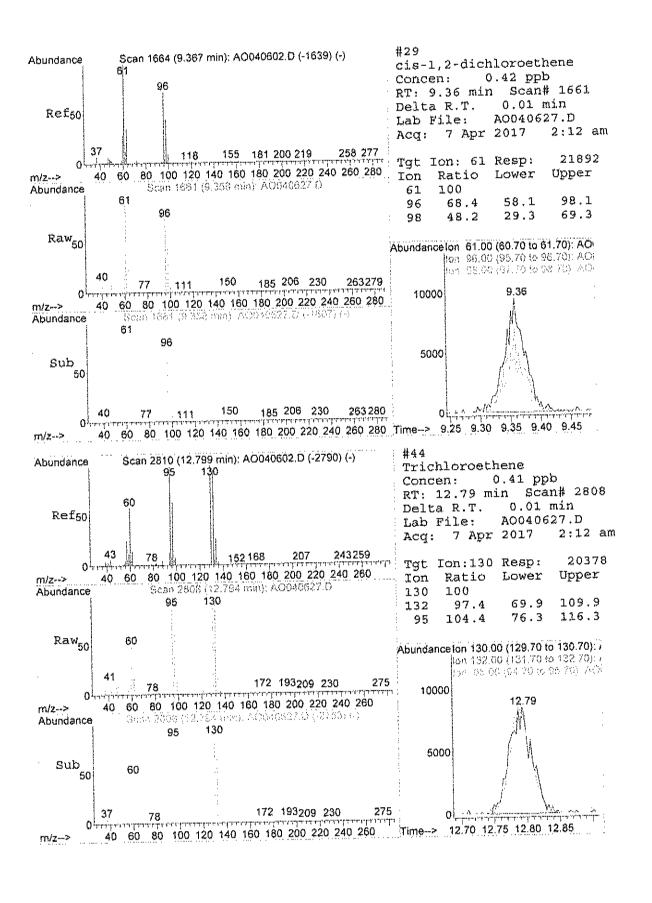
Page 7 of 15

(QT Reviewed) Quantitation Report

Vial: 25 Data File : C:\HPCHEM\1\DATA\A0040627.D Operator: RJP Acq On : 7 Apr 2017 2:12 am Inst : MSD #1 Sample : C1704014-007A Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A331_1UG.RES Quant Time: Apr 07 07:19:07 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response Co	onc Ui	nits I	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.57 11.94 16.83	128 114 117	24957 110993 99559	1.00 1.00 1.00	dqq	0.03 0.00 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70		61990 Recovery	0.91	dqq).1e	0.01
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.36 12.79	61 130	21892 20378	0.42		Qvalue 93 92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed Thu May 04 11:28:48 2017 MSD1 A0040627.D A331_1UG.M

Page 99 of 273

Centek Laboratories, LLC

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-008A

Date: 04-May-17

Client Sample ID: 691-NE-IAQ

Tag Number: 94.379

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 2:52:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 2:52:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 2:52:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 2:52:00 AM
Trichloroethene	< 0.040	0.040	Vdqq	1	4/7/2017 2:52:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/7/2017 2:52:00 AM
Surr: Bromofluorobenzene	93.0	70-130	%REC	1	4/7/2017 2:52:00 AM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range
- j Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-008A

Date: 04-May-17

Client Sample ID: 691-NE-IAQ

Tag Number: 94.379 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	5	######################################	Analyst: RJP
1,1-Dichloroethese	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 2:52:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
trans-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	4/7/2017 2:52:00 AM
Trichloroethene	< 0.21	0.21	ug/m3	,	4/7/2017 2:52:00 AM
Vinyt chtoride	< 0.10	0.10	ug/m3	1	4/7/2017 2:52:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 15

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040628.D
Acq On : 7 Apr 2017 2:52 am
Sample : C1704014-008A
Misc : A331_1UG Vial: 26 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:19:08 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response Co	onc U	nits Dev	(Min)
1) Bromochloromethan 35) 1,4-difluorobenze 50) Chlorobenzene-d5		128 114 117	25088 108028 95812	1.00 1.00 1.00	dqq	0.02 0.02 0.01
System Monitoring Comp 65) Bromofluorobenzen Spiked Amount 1		95 - 130	60915 Recovery	0.93	dqq \$00.50	0,02
					_	_

Target Compounds

Qvalue

Page 104 of 273

Centek Laboratories, LL

LaBella Associates, P.C.

C1704014

Lab Order: Project:

CLIENT:

691 St Paul Street

Lab ID:

C1704014-009A

Date: 04-May-17

Client Sample ID: 691-NE-SVI

Tag Number: 1186.145

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 5:28:00 ₽M
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 5:28:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	√dqq	1	4/7/2017 5:28:00 PM
trans-1.2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 5:28:00 PM
Trichloroethene	0.72	0.040	ppbV	1	4/7/2017 5:28:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 5:28:00 PM
Surr: Bromofluorobenzene	113	70-130	%REC	1	4/7/2017 5:28:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 9 of 15

LaBella Associates, P.C.

CLIENT: Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-009A

Date: 04-May-17

Client Sample ID: 691-NE-SVI

Tag Number: 1186.145

Collection Date: 4/1/2017

Matrix: AIR

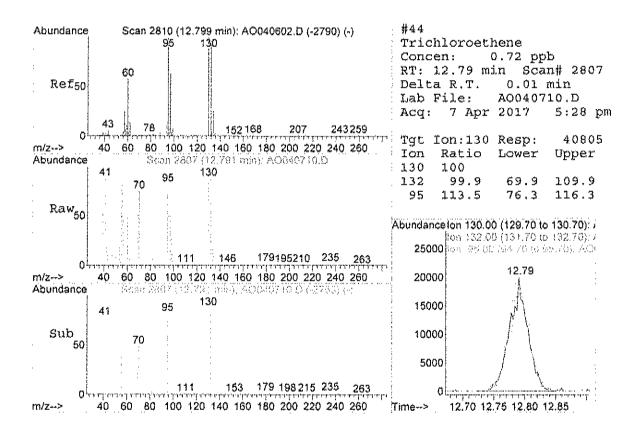
Analyses	Result		Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	սց/m3	1	4/7/2017 5:28:00 PM
Chioroethane	< 0.40	0.40	ug/m3	1	4/7/2017 5:28:00 PM
cis-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 ₽M
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 5:28:00 PM
Trichloroethene	3.9	0.21	ug/m3	1	4/7/2017 5:28:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 5:28:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 15

Data File : C:\HPCHEM\1\DATA\A0040710.D
Acq On : 7 Apr 2017 5:28 pm
Sample : C1704014-009A
Misc : A331 lUG Vial: 10 Operator: RJP Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 08 08:58:21 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits I	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	27394 125972 121869	1.00 1.00 1.00	ppb	0.02 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	94050m Recovery	1.13	ppb 113.0	
Target Compounds 44) Trichloroethene	12.79	130	40805	0.72	dqq	Qvalue 86

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040710.D A331_1UG.M Thu May 04 11:29:29 2017 MSD1

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-010A

Date: 04-May-17

Client Sample ID: 691-SB1-IAQ

Tag Number: 170.387

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"Hg		4/5/2017
Lab Vaceum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 3:33:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/7/2017 3:33:00 AM
cis-1,2-Dichloroethene	0.66	0.15	ppb∨	1	4/7/2017 3:33:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	1	4/7/2017 3:33:00 AM
Trichloroethene	0.24	0.040	ppbV	1	4/7/2017 3:33:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	4/7/2017 3:33:00 AM
Surr: Bromofluorobenzene	92.0	70-130	%REC	1	4/7/2017 3:33:00 AM

Qualifiers:

- Quantitation Limit
- 13 Analyte detected in the associated Method Blank
- 1-1 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 12 Estimated Value above quantitation range
- J Analyte detected below quantitation limit

Not Detected at the Limit of Detection

Page 10 of 15

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-SB1-IAQ

Lab Order: C1704014 Cuent Sample 10: 691-381-1AC

Project: 691 St Paul Street Collection Date: 4/1/2017

Lab ID: C1704014-010A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	ÐF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1-Dichtoroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:33:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	4/7/2017 3:33:00 AM
cis-1.2-Dichloroethene	2.6	0.59	ug/m3	1	4/7/2017 3:33:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 3:33:00 AM
Trichtoroethene	1.3	0.21	ug/m3	1	4/7/2017 3:33:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 3:33:00 AM

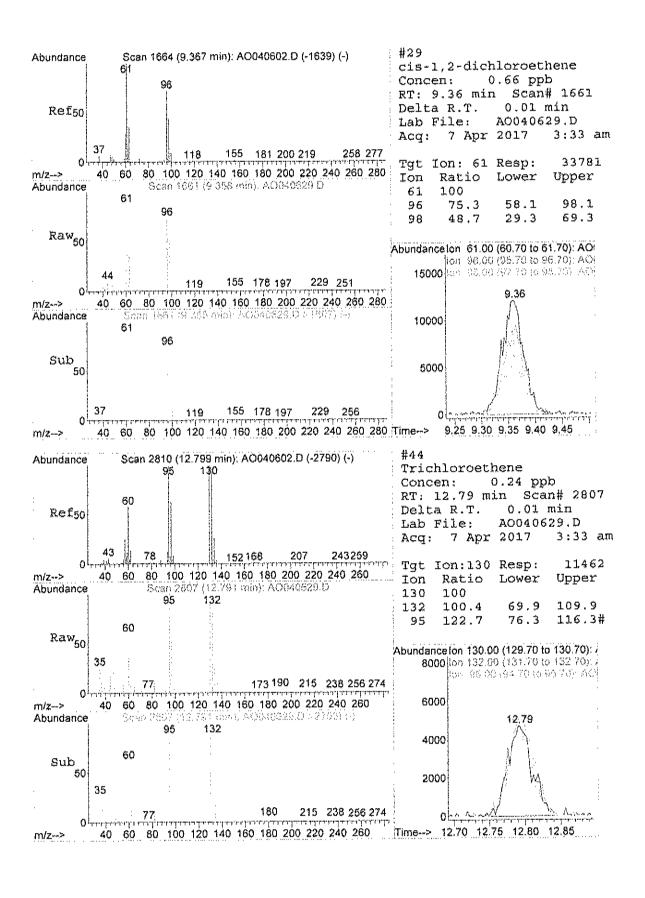
Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 04-May-17

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 15


Data File : C:\HPCHEM\1\DATA\A0040629.D Vial: 27 Acq On : 7 Apr 2017 3:33 am Operator: RJP Sample : C1704014-010A Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:19:09 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	24485 107880 98198	1.00	dqq	0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.47 Range 70	95 - 130	61676 Recovery		ppb 92.	
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.36 12.79	61. 130	33781 11462	0.66 0.24		Qvalue 98 # 81

MSD1

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

Project: 691 St Paul Street

Lab ID: C1704014-011A

Date: 04-May-17

Client Sample ID: 691-SB1-SVI

Tag Number: 203.372

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-6		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vđạq	1	4/7/2017 6:09:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 6:09:00 PM
cls-1,2-Dichloroethene	13	1.5	ppbV	10	4/7/2017 11:10:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/7/2017 6:09:00 PM
Trichloroethene	0.74	0.040	ppbV	1	4/7/2017 6:09:00 PM
Vinyl chloride	0.15	0.040	Vđqq	1	4/7/2017 6:09:00 PM
Surr: Bromofluorobenzene	109	70-130	%REC	1	4/7/2017 6:09:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 15

Date: 04-May-17

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1704014

Project:

Lab ID:

691 St Paul Street C1704014-011A

Client Sample ID: 691-SB1-SVI

Tag Number: 203.372

Collection Date: 4/1/2017

Matrix: AIR

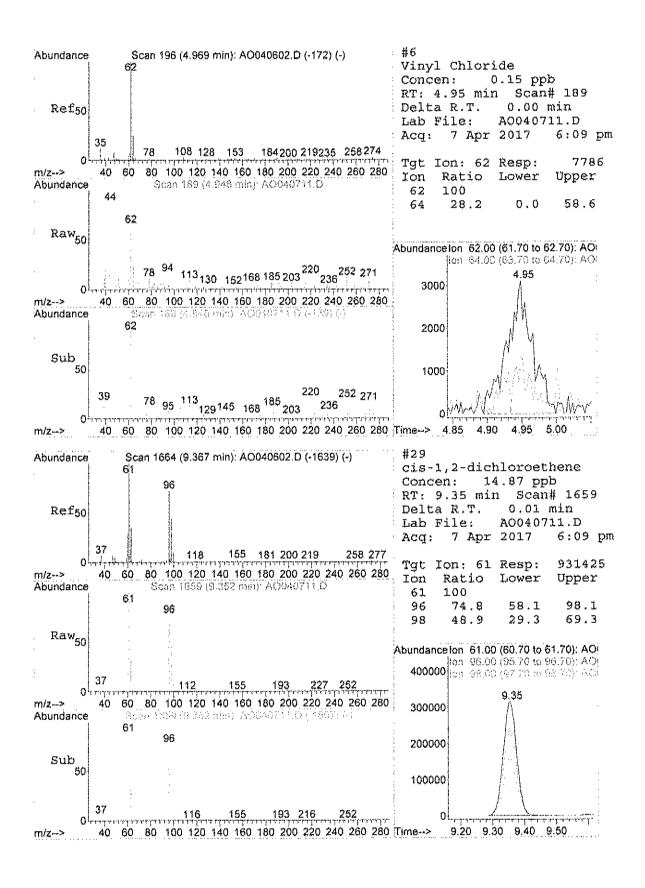
Analyses	Result	**Limit Q	iai Units	DЙ	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	" '		Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:09:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 6:09:00 PM
cis-1,2-Dichloroethene	52	5.9	ug/m3	10	4/7/2017 11:10:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 6:09:00 PM
Trichloroethene	4.0	0.21	ug/m3	1	4/7/2017 6:09:00 PM
Vinyl chloride	0.38	0.10	ug/m3	1	4/7/2017 6:09:00 PM

Qualifiers:

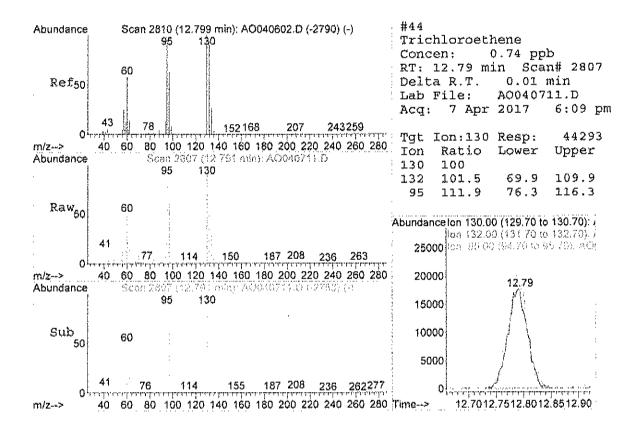
- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E2 Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- Not Detected at the Limit of Detection

Page 11 of 15

MS Integration Params: RTEINT.P


Quant Time: Apr 08 08:58:50 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

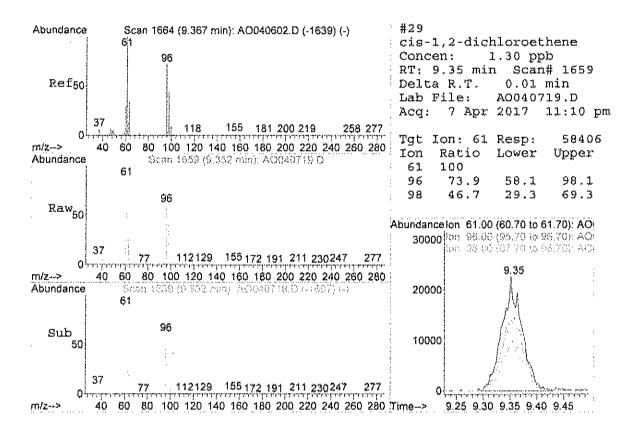

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.94 16.83	128 114 117	30170 132762 121408	1.00	ppb	0.02 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 ~ 130	90648 Recover		ppb 109	
Target Compounds 6) Vinyl Chloride 29) cis-1,2-dichloroethene 44) Trichloroethene	4.95 9.35 12.79	62 61 130	7786 931425 44293	0.15 14.87 0.74	ppb	Qvalue 99 97 86

MSD1

MSD1


Data File : C:\HPCHEM\1\DATA\A0040719.D Vial: 19 Acq On : 7 Apr 2017 11:10 pm Operator: RJP Sample : C1704014-011A 10x Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 08 08:59:54 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	21591 93800 84591	1.00	ppb	0.02 0.02 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	53420 Recovery	0.93		0.00
Target Compounds 29) cis-1,2-dichloroethene	9.35	61	58406	1.30	dqq	Qvalue 96

MSD1

Page 3

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-012A

Date: 04-May-17

Client Sample ID: 691-SB5A-IAQ

Tag Number: 367.251 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-2		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichtoroethene	< 0.15	0.15	ppbV	1	4/7/2017 4:13:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	4/7/2017 4:13:00 AM
cis-1,2-Dichloroethene	3.3	1.5	ppb∨	10	4/7/2017 1:50:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 4:13:00 AM
Trichtoroethene	1.2	0.040	ppb∨	1	4/7/2017 4:13:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/7/2017 4:13:00 AM
Surr: Bromofluorobenzene	103	70-130	%REC	1	4/7/2017 4:13:00 AM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 12 of 15

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-012A

Date: 04-May-17

Client Sample ID: 691-SB5A-IAQ

Tag Number: 367.251 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:13:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 4:13:00 AM
cis-1,2-Dichloroethene	13	5.9	ua/m3	10	4/7/2017 1:50:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:13:00 AM
Trichloroethene	ნ.5	0,21	ug/m3	1	4/7/2017 4:13:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/7/2017 4:13:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 15

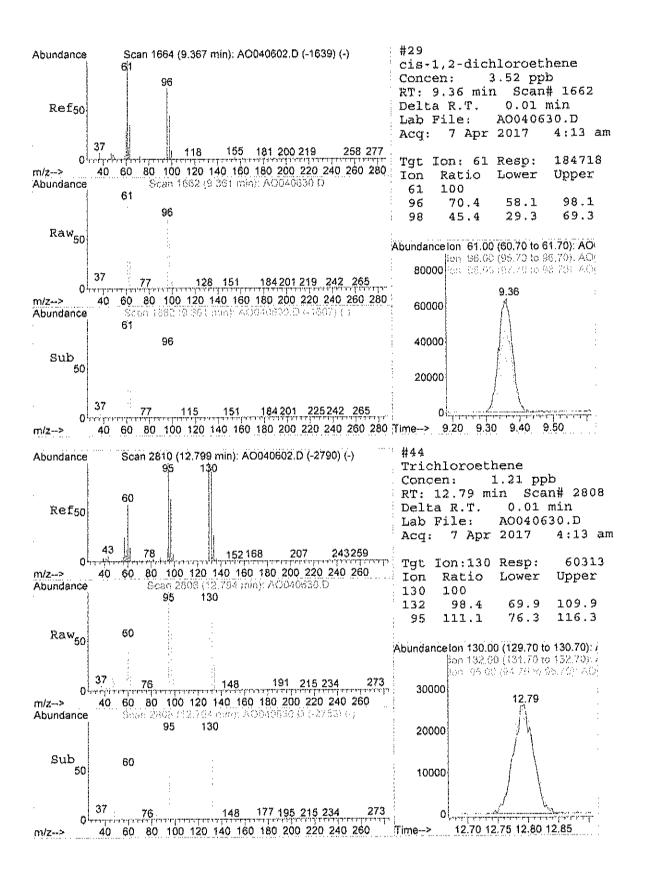
Data File : C:\HPCHEM\1\DATA\A0040630.D Vial: 28

Acq On : 7 Apr 2017 4:13 am Operator: RJP

Sample : C1704014-012A Inst : MSD #1

Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT P


Quant Time: Apr 07 07:19:10 2017 Quant Results File: A331_1UG.RES

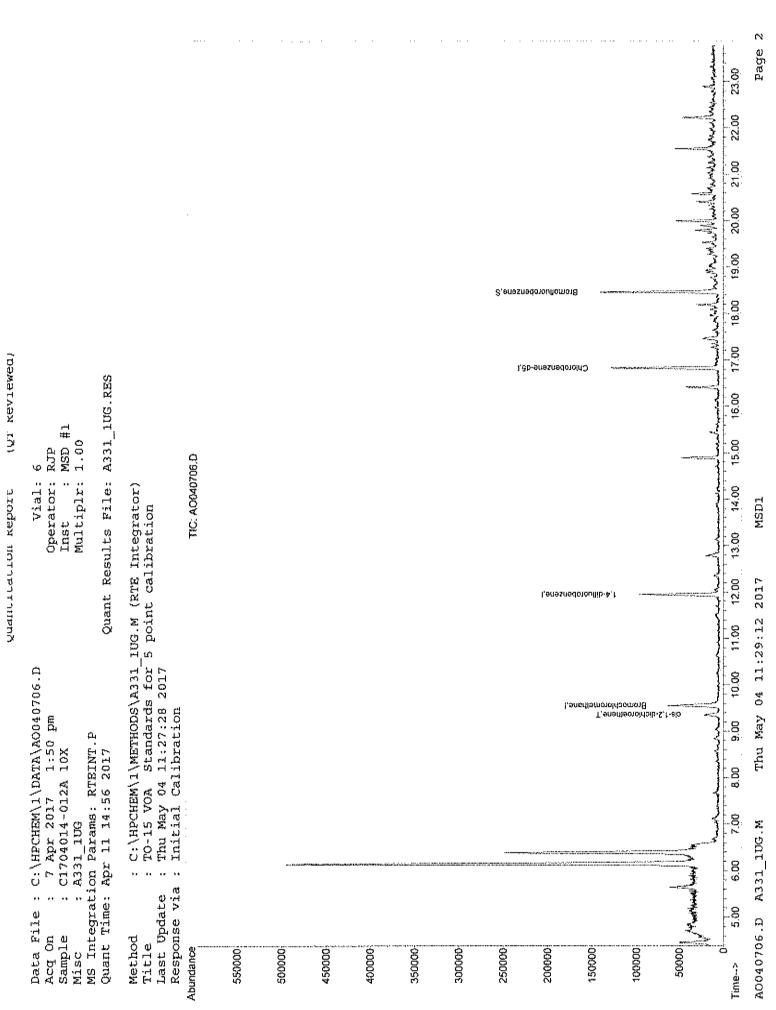
Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

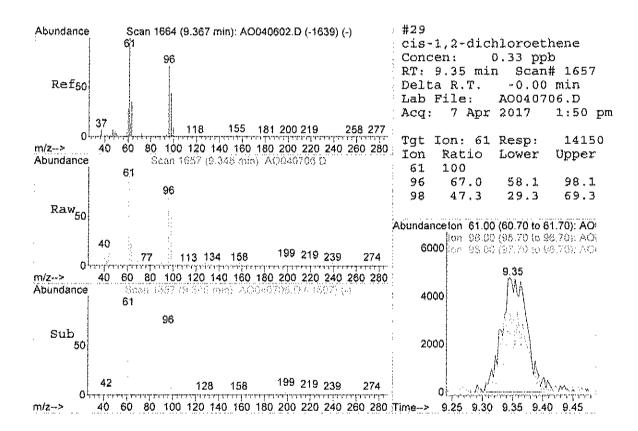
Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc U	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	25278 111053 100304	1.00 1.00 1.00	ppb	0.02 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.47 Range 70	95 130	70272 Recovery	1.03	ppb 103.0	0.02
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.36 12.79	61 130	184718 60313	3.52 1.21		Qvalue 92 88

MS Integration Params: RTEINT.P


Quant Time: Apr 07 14:58:05 2017 Quant Results File: A331_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one Ur	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.54 11.94 16.82	128 114 117	20808 86837 77606	1.00 1.00 1.00	ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	48257 Recovery	0.91	ppb 91.0	0.00 0%
Target Compounds 29) cis-1,2-dichloroethene	9.35	61	14150	0.33	_	Qvalue 91

CLIENT: LaBella Associates, P.C.

Lab Order: C1704014

Project: 691 St Paul Street

Lab ID: C1704014-013A

Date: 04-May-17

Client Sample ID: 691-SB5B-IAQ

Tag Number: 285.344 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-3		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichlaraethene	< 0.15	0.15	ppbV	1	4/7/2017 4:53:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	4/7/2017 4:53:00 AM
cis-1,2-Dichloroethene	3.1	1.5	ppbV	10	4/7/2017 2:27:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 4:53:00 AM
Trichloroethese	1.3	0.040	ppbV	1	4/7/2017 4:53:00 AM
Vinyl chloride	0.060	0.040	Vdqq	1	4/7/2017 4:53:00 AM
Surr: Bromofluorobenzene	102	70-130	%REC	1	4/7/2017 4:53:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 15

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-013A

Date: 04-May-17

Client Sample ID: 691-SB5B-IAQ

Tag Number: 285.344

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	ıal Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichforoethene	< 0.59	0.59	и g/m 3	1	4/7/2017 4:53:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 4:53:00 AM
cis-1,2-Dichloroethene	12	5.9	ug/m3	10	4/7/2017 2:27:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 4:53:00 AM
Trichloroethene	6.8	0.21	ບ໘/ກາ3	1	4/7/2017 4:53:00 AM
Vinyl chloride	0.15	0.10	ug/m3	1	4/7/2017 4:53:00 AM

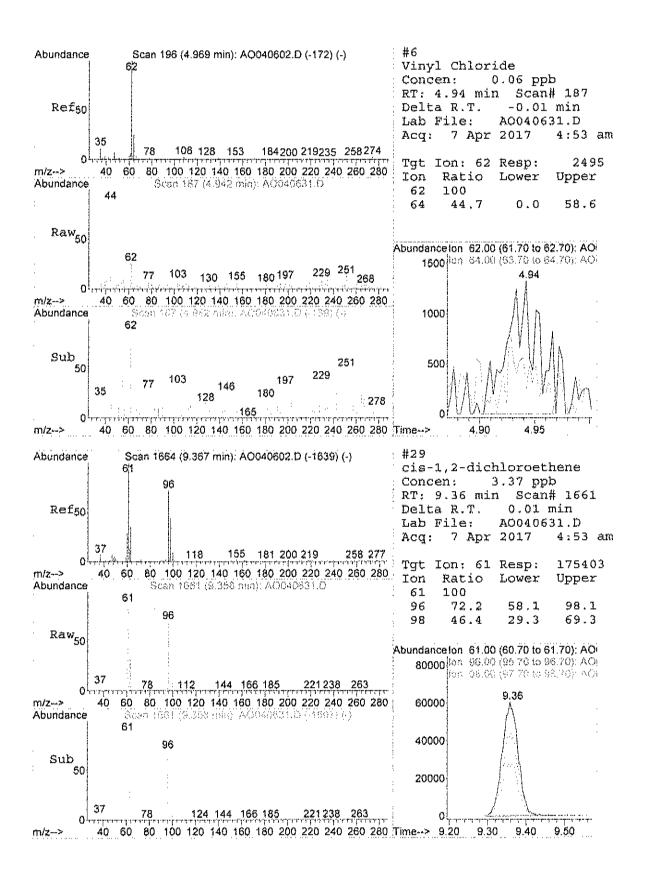
Qualifiers:

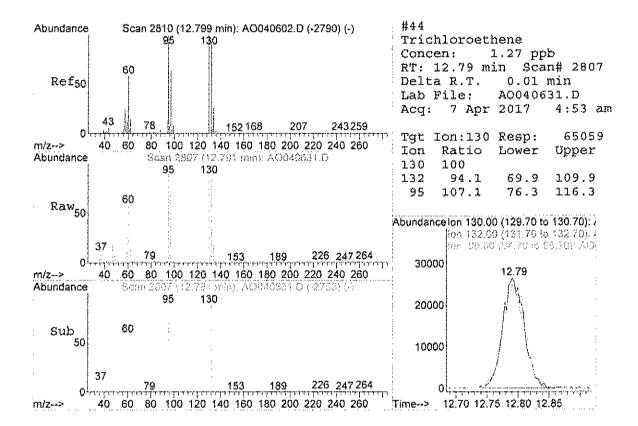
- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 15

Data File : C:\HPCHEM\1\DATA\A0040631.D Vial: 29
Acq On : 7 Apr 2017 4:53 am Operator: RJP
Sample : C1704014-013A Inst : MSD #1
Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

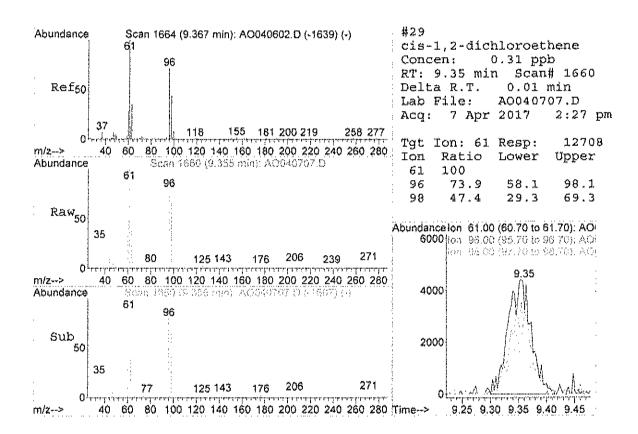

Quant Time: Apr 07 07:19:11 2017 Quant Results File: A331_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11,95 16.83		25079 113761 101873		dqq dqq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70		70702 Recovery		ppb 102.	
Target Compounds 6) Vinyl Chloride 29) cis-1,2-dichloroethene 44) Trichloroethene	4.94 9.36 12.79	62 61 130	2495 175403 65059	0.06 3.37 1.27	dqq	Qvalue 70 94 92


Data File : C:\HPCHEM\1\DATA\A0040707.D
Acq On : 7 Apr 2017 2:27 pm
Sample : C1704014-013A 10X
Misc : A331_UG Vial: 7 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 14:58:20 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc Ur	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.82	128 114 117	19443 85901 76902	1.00 1.00 1.00	ppb 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	48147 Recovery		ppb 0.00 92.00%
Target Compounds 29) cis-1,2-dichloroethene	9.35	61	12708	0.31	Qvalue ppb 96

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order:

C1704014

691 St Paul Street

Project: Lab ID:

C1704014-014A

Date: 04-May-17

Client Sample ID: 691-SB5A-SVI

Tag Number: 475.1170 Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-2		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	4/7/2017 6:50:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/7/2017 6:50:00 PM
cis-1,2-Dichloroethene	44	14	Vdqq	90	4/8/2017 1:00:00 AM
trans-1,2-Dichloroethene	0.41	0.15	ppbV	1	4/7/2017 5:50:00 PM
Trichlargethene	3.7	0.36	ppbV	9	4/8/2017 12:23:00 AM
Vinyl chloride	0.19	0.040	ppbV	1	4/7/2017 6:50:00 PM
Surr: Bromofluorobenzene	107	70-130	%REC	1	4/7/2017 6:50:00 PM

416	
(1)	litiers:
V 144	much 2

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 14 of 15

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order: C176

C1704014

Project: 691 St Paul Street

Lab ID:

C1704014-014A

Date: 04-May-17

Client Sample ID: 691-SB5A-SVI

Tag Number: 475.1170

Collection Date: 4/1/2017

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15		Analyst: RJP	
1,1-Dichloroethene	< 0.59	0.59	นg/m3	1	4/7/2017 6:50:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/7/2017 6:50:00 PM
cis-1,2-Dichloroethene	170	55	ug/m3	90	4/8/2017 1:00:00 AM
trans-1,2-Dichloroethene	1.6	0.59	ug/m3	1	4/7/2017 6:50:00 PM
Trichloroethene	20	1.9	ug/m3	9	4/8/2017 12:23:00 AM
Vinyl chloride	0.49	0.10	ug/m3	1	4/7/2017 5:50:00 PM

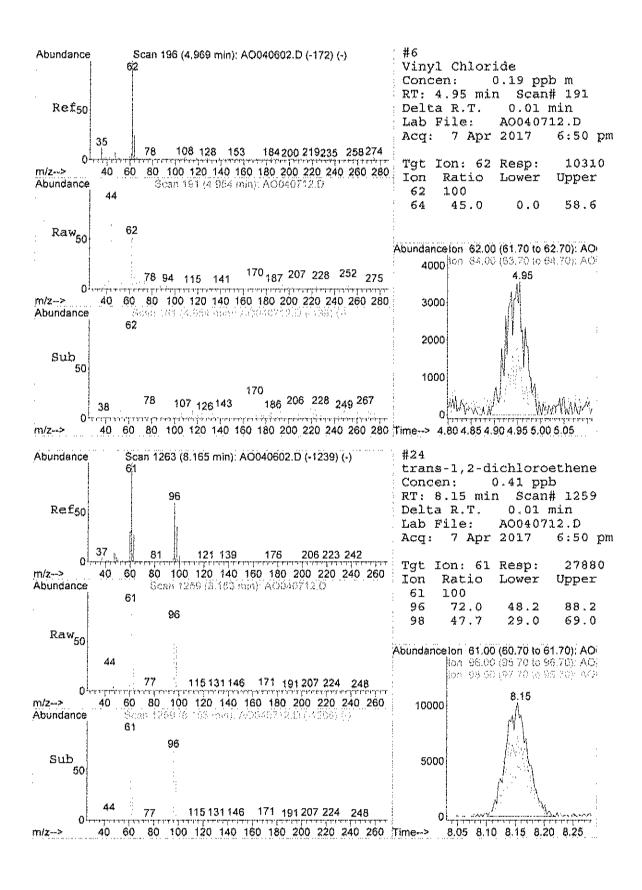
Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

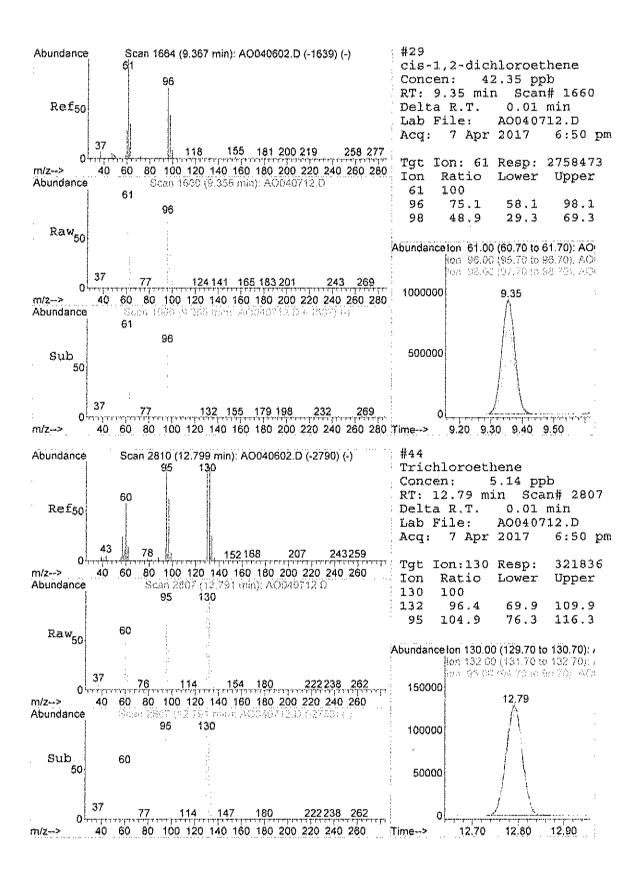
Page 14 of 15

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040712.D Vial: 12 Acq On : 7 Apr 2017 6:50 pm Operator: RJP Sample : C1704014-014A Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 08 08:59:04 2017 Quant Results File: A331_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A331 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83		31361 139148 131462	1.00 1.00 1.00	dqq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70		96106 Recovery			
Target Compounds 6) Vinyl Chloride 24) trans-1,2-dichloroethene 29) cis-1,2-dichloroethene 44) Trichloroethene	4.95 8.15 9.35 12.79	62 61 61 130	10310m / 27880 2788473 321836	0.19 0.41 42.35 5.14	dqq	Qvalue 96 98 92

MSDl

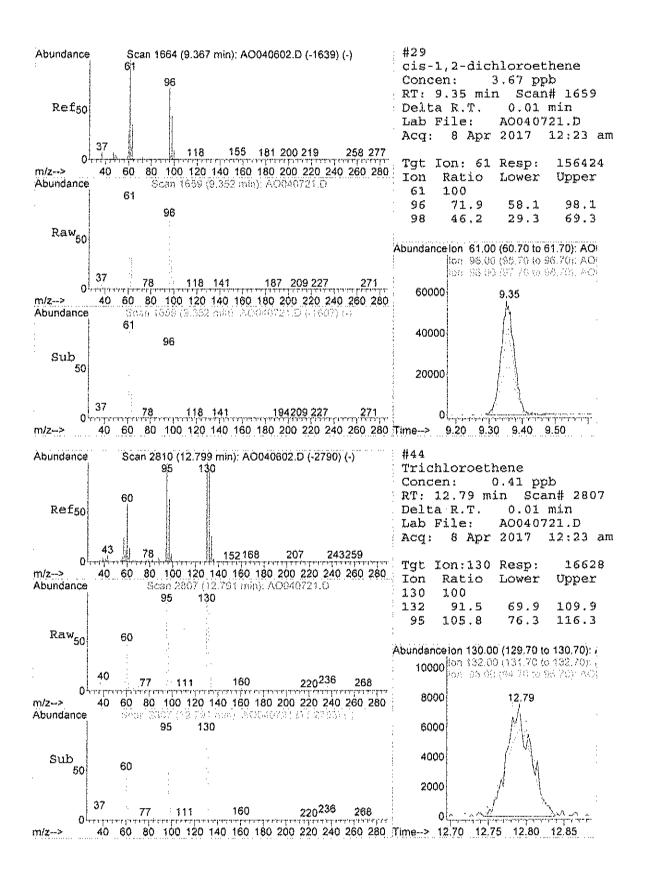
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040721.D

Vial: 21 Acq On : 8 Apr 2017 12:23 am Operator: RJP Sample : C1704014-014A 9x Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 08 08:59:56 2017 Quant Results File: A331_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

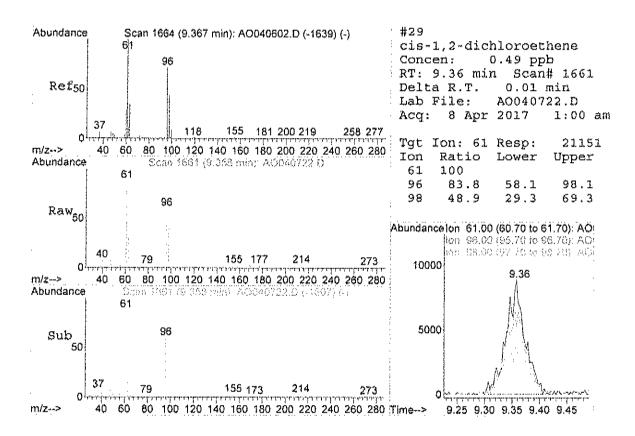
Response via : Initial Calibration

Internal Standards	к.т.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	20532 89989 83171	1.00	dqq	0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70		53731 Recovery	0.95		0.01
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.35 12.79	61 130	156424 16628	3.67 0.41		Qvalue 94 94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed A0040721.D A331_1UG.M Thu May 04 11:30:02 2017

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040722.D Vial: 22 Acq On : 8 Apr 2017 1:00 am Operator: RJP Sample : C1704014-014A 90x Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 08 08:59:57 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one Un	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.94 16.83	128 114 117	20827 88198 80228	1.00 1.00 1.00	00.0 dqq
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	48670 Recovery	0.89	ppb 0.00 89.00%
Target Compounds 29) cis-1,2-dichloroethene	9.36	61	21151	0.49	Qvalue ppb 96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040722.D A331_1UG.M Thu May 04 11:30:07 2017

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C. Client Sample ID: 691-SB5B-SVI

Lab Order:C1704014Tag Number: 467.1167Project:691 St Paul StreetCollection Date: 4/1/2017

Lab ID: C1704014-015A Matrix: AlR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	m 15		"Hg		4/5/2017
Lab Vacuum Out	-30		"Hg		4/5/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	4/7/2017 7:30:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	4/7/2017 7:30:00 PM
cis-1,2-Dichloroethene	5.8	1.5	ppb∨	10	4/8/2017 1:37:00 AM
trans-1,2-Dichloroethene	0.18	0.15	ppbV	1	4/7/2017 7:30:00 PM
Trichloroethene	11	0.40	∨dqq	10	4/8/2017 1:37:00 AM
Vinyl chloride	0.11	0.040	ppb∨	1	4/7/2017 7:30:00 PM
Surr: Bromofluorobenzene	116	70-130	%REC	1	4/7/2017 7:30:00 PM

Qualifiers: ** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Date: 04-May-17

E Estimated Value above quantitation range

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 15 of 15

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order: C

C1704014

Project:

691 St Paul Street

Lab ID:

C1704014-015A

Date: 04-May-17

Client Sample ID: 691-SB5B-SVI

Tag Number: 467.1167 Collection Date: 4/1/2017

Matrix: AIR.

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15		Analyst: RJP	
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/7/2017 7:30:00 PM
Chloroethane	< 0.40	0.40	սց/m3	1	4/7/2017 7:30:00 PM
cis-1,2-Dichloroethene	23	5.9	ug/m3	10	4/8/2017 1:37:00 AM
trans-1,2-Dichloroethene	0.71	0.59	ug/m3	1	4/7/2017 7:30:00 PM
Trichloroethene	57	2.1	ug/m3	10	4/8/2017 1:37:00 AM
Vinyl chloride	0.28	0.10	นตู/กา3	1	4/7/2017 7:30:00 PM

Qualifiers:

Ouantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

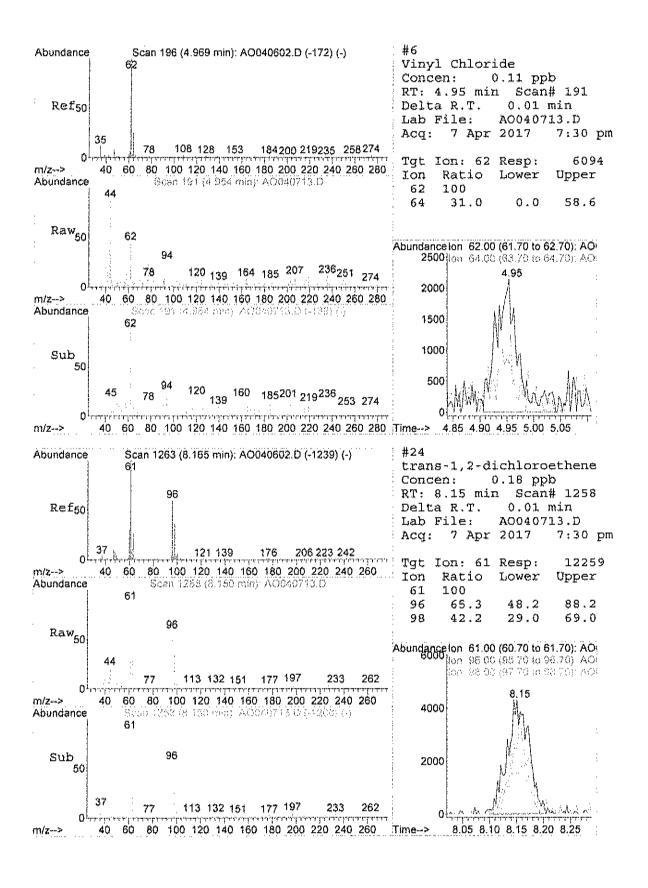
ND Not Detected at the Limit of Detection

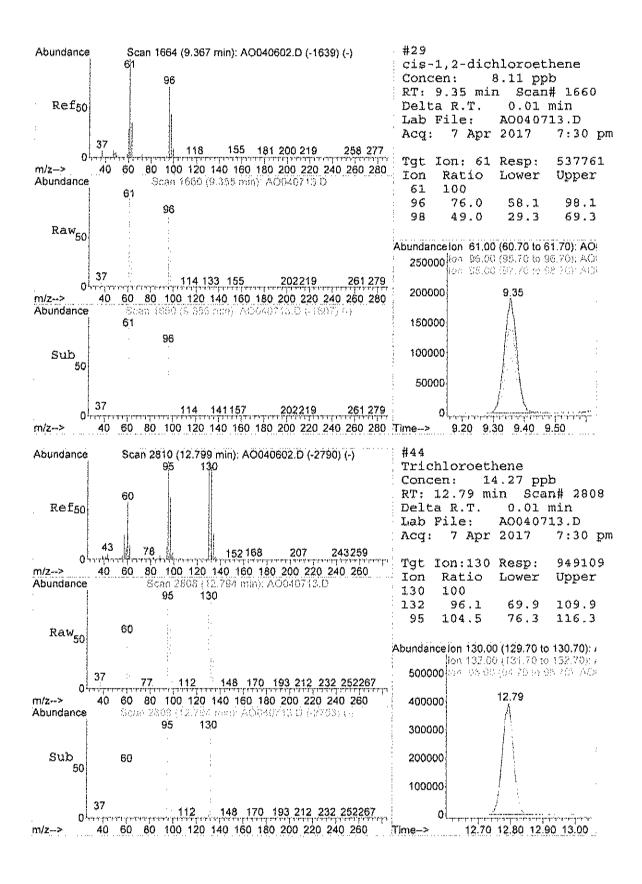
Page 15 of 15

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0040713.D Vial: I3
Acq On : 7 Apr 2017 7:30 pm Operator: RJP
Sample : C1704014-015A Inst : MSD #1
Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 08 08:59:20 2017 Quant Results File: A331_1UG.RES

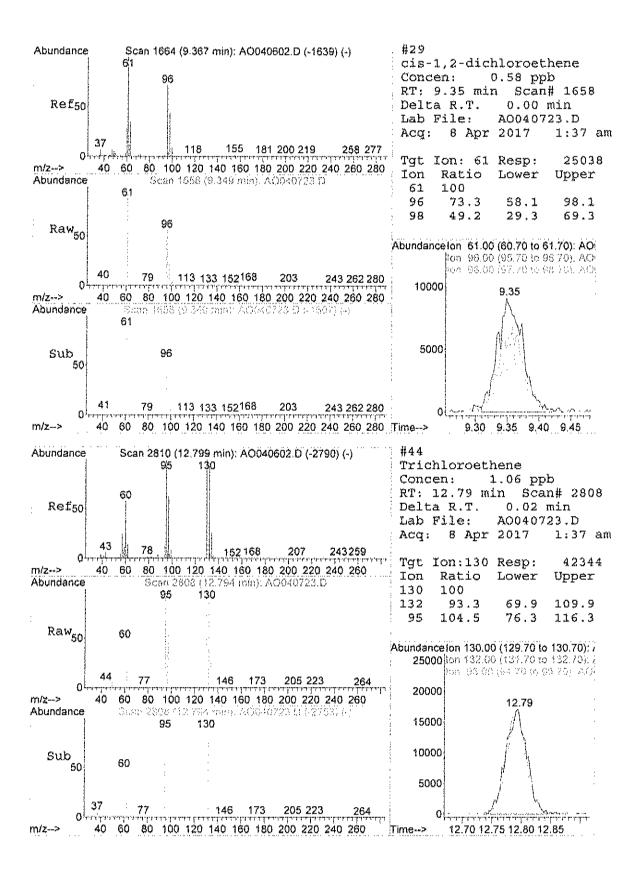

Quant Method : C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	31915 147799 139968	1.00	ppb ppb ppb ppb	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.47 Range 70		110484 Recove		ppb 116.	
Target Compounds						Qvalue
6) Vinyl Chloride	4.95	62	6094	0,11	dqq	95
24) trans-1,2-dichloroethene	8.15	61	12259	0.18	dqq	94
29) cis-1,2-dichloroethene	9.35	61	537761		dqq	
44) Trichloroethene	12.79	1.30	949109	14.27	dqq	92

Quantitation Report (QT Reviewed)


MS Integration Params: RTEINT, P

Quant Time: Apr 08 08:59:58 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.57 11.95 16.83	128 114 117	20780 88679 79938	1.00	ɗqq	0.03
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	51379 Recovery		ppb 94.	0.01
Target Compounds						Qvalue
29) cis-1,2-dichloroethene	9.35	61	25038	0.58		97
44) Trichloroethene	12.79	130	42344	1.06	agg	94

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS DATA

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INITIAL CALIBRATION

: C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu May 04 11:13:15 2017 Response via : Initial Calibration

Calibration Files

		Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	%RSD
1)	I	Bromochloromethan Propylene Freon 12 Chloromethane Freon 114	ė -			IST	D			W
2)	\mathfrak{T}	Propylene			1.544	1.513	1.429	1.374	1.425	4.95
3)	T	Freon 12			9.344	8.388	8.315	8.416	8.232	6.60 9.33
4)	\mathbf{T}	Chloromethane			1.409	1.204	1.135	1.140	1.163	9.33
5)	T	Freon 114			7.169	6.615	6.534	6.541	6.407	6.09
6)	$\overline{\mathbf{T}}$	Vinyl Chloride	1.962	2.151	1.926	1.794	1.697	1.723	1.763	11.15
7)	I.	Butane	_,,	-,	2.243	1.863	1.888	1.759	1.798	11.56
8)	T	1,3-butadiene			1.385	1.332	1.172	1.185	1.165	12.44
9)	T	Bromomethane			2 616	2 776	2.328	2.343	2.375	8.93
10)	Ť	Chloroethane			0 809	0.822	0 754	0 777	0 733	7.64
11)	Ť	Ethanol			0.005	0.022	0.733	0.73	0.755	7.64 12.29
12)		Acrolein			0.075	0.000	0.639	0.570	0.570	16.23
-		MCIOTEIN			0.023					
13)	T	Vinyl Bromide			2.1/4	2.435	2.310	2.408	2.305	7.43
14)	T	Freon 11			9.3%3	8.425	8.44%	8.349	0.43/	6.73 11.74
15)	T	Acetone			0.812					
36)	J,	Pentane			1.425					5.84
17)		Isopropyl alcoh			2.299	2.338	2.046	2.193	2.143	5.78
T8)					1.456	1.286	1.356	1.296	1.300	5.86 4.91
19)		Freon 113			3.463	3.043	3.112	3.108	3-107	4.91
20)		t-Butyl alcohol								4.82
21)	J.	Methylene chlor			1.418	1.293	1.316	1.229	1.268	5.89 5.58
22)	${f T}$	Allyl chloride			1.815	1.621	1.533	1.658	1.615	5.58
23)	\mathbf{r}	Carbon disulfid			4.523	4.199	4.065	4.123	4.058	5.82
24)	\mathbf{T}	trans-1,2-dichl			2.380	2.240	2.149	2.167	2.189	4.11
25)		methyl tert-but			4.329	4.263	4.015	4,265	4.148	3.02
26)		1,1-dichloroeth			2.962	2.740	2,777	2,701	2,710	3.02 4.53
27)					4.485	3.391	3.300	3.441	3.495	11.70
28)	Ţ	Methyl Ethyl Ke			0.644	0.662	0.679	0.661	0.665	11.70 2.29 3.80
29)		cis-1,2-dichlor			2 253	2 073	2 073	2 093	2.077	3.80
30)		Wevane			7 9/7	7 947	חום ו	7 99 T	1 ዓለማ	2 73
31)	Ť	Ethyl acetate			1,341	1 200	4 247	1.301	4 254	3 36
		Chloroform			4 7 4 7	3 770 3 770	7 00°	7 400	3 703	4 47
32)		Chloroform			4.143	3.773	3.003	3.023	2./22	3 74
33)		Tetrahydrofuran			7.577	1.442	7.477	1.445	1.421	3.36
34)	${f T}$	1,2-dichloroeth			3.011	2.729	2.856	2.889	2.807	3.36 4.47 3.36 4.09
35)	I	1,4-difluorobenze	ne -			ISTI)			
36)		1,1,1-trichloro	-							4.95
37)		1,1,1-trichloro Cyclohexane			0 447	0.521	0 424	0.446	0 444	7.93
38)	Ť	Carbon tetrachl	1 015	1 032	1 008	0.000	n asa	0.440	0 932	6 53
39)	Ť	Benzene	+ · · ·	4.002	1 006	0.016	0.907	0.000	0.332	5.07
		Methyl methacry					0.414			3.31
40)							0.173			
41)		1,4~dioxane								9.21
42)	T	2,2,4-trimethyl					1.366			3,42
43)		Heptane					0.485			2.80
44)		Trichloroethene	0.522	0.481						7.35
45)	T	1,2-dichloropro					0.340			6.32
46)	T	Bromodichlorome					0.868			3.18
	T	cis-1,3-dichlor					0.542			4.98
48)		trans-1,3-dichl					0.524			2.79
49)	T`	1,1,2-trichloro			0.427	0.425	0.407	0.399	0.407	3.32
pr ps. \	w	201-1 1				من بسر اس الله	_			
50)		Chlorobenzene-d5								
51)	\mathbf{T}	Toluene			0.836	0.781	0.724	U.731	U.750	5.44

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### A331_1UG.M Thu May 04 11:14:15 2017

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Thu May 04 11:13:15 2017 Response via : Initial Calibration

Calibration Files

0.04 =A0033112.D 0.10 =A0033111.D 0.15 =AO033110.D 0.75 =AO033107.D 0.15 =A0033110.D 0.30 =A0033109.D 0.50 =A0033108.D

	Compound	0.04	0.10	0.15	0.30	0.50	0.75	Avg	%RSD
52) T	Methyl Isobutyl			0.842	0.806	0.686	0.687	0.780	7.66
53) T					0.909				3.54
54) T					0.697		0.590		11.13
55) T	1,2-dibromoetha					0.729	0.745	0.761	3.66
56) T	retrachloroethy		0.602	0.610	0.547	0.511	0.498	0.529	8.75
57) T	Chlorobenzene			1.150	1.055	1.013	1.034	1.044	4.31
58) T	Ethylbenzene			1.900	1.763	1.709	1,719	1.750	3.78
59) T	m&p-xylene			1.484	1.529	1.451	1.491	1.477	1.75
60) T	Nonane			0.859	0.833	0.787	0.794	0.818	2.84
61) T	Styrene			0.989	0.906	0.877	0.898	0.919	3.61
62) T	Bromoform			0.798	0.762	0.730	0.753	0.761	2.79
63) T	o-xylene			1.520	1.458	1.380	1.415	1.424	3.14
64) T	Cumene				1.935	1.787			4.65
65) S	Bromofluorobenz	0.658	0.652	0.688	0.674	0.670	0.685	0.682	3.13
66) T	1,1,2,2-tetrach			1.089	1.023	0.950	0.961	0.973	5.71
67) T	Propylbenzene				0.488				4.49
68) T	2-Chlorotoluene			0.467	0.480	0.433	0.424	0.440	4.85
69) T	4-ethyltoluene				1.724				2.22
70) T	1,3,5-trimethyl			1.560	1.598	1.507	1.507	1.538	2.14
71) T	1,2,4-trimethyl			1.437	1.474	1.391	1.418	1.434	1.91
72) T	1,3-dichloroben				0.891				4.60
73) T	benzyl chloride			0.688			0.714		10.12
74) T	1,4-dichloroben			0.809	0.797	0.798	0.837		4.08
75) T	1,2,3-trimethyl				1.458				2.58
76) T	1,2-dichloroben				0.863		0.860		2.82
77) T	1,2,4-trichloro				0.215		0.242		18.07
78) T	Naphthalene				0.604			0.661	18.21
79) T	Hexachloro-1,3~			0.652	0.675	0.607	0.641	0.644	3.53

Data File : C:\HPCHEM\1\DATA\A0033103.D Vial: 2 Acq On : 31 Mar 2017 3:35 pm Operator: RJP Sample : A1UG_2.0 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:02:10 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D DataAcq Meth : 1UG_RUN

	- rew							
Inter	nal Standards	R.T.	QIon	Response (Conc U	nits	Dev	(Min)
7.3	Bromochloromethane	9.54	128	50190	1 00	dqq		0.00
35)	1,4-difluorobenzene	11 03		230091		ppb		0.00
	Chlorobenzene-d5	16.81	117	199884	1.00	ppb		0.00
507	CILLO. CARLAGIA CALC. CO	10.01	uh. uh. f	# 2 2 C C #	4.00	PP		0.00
	m Monitoring Compounds							
	Bromofluorobenzene	18.45	95			qqq		0.00
Spil	ked Amount 1.000	Range 70	- 130	Recovery	<i>₹</i>	102	.00%	
Такса	t Compounds						Ove	alue
	Propylene	4.48	41	135733	1.89	nnh	QV.	86
	Freon 12	4.55	85			dqq		98
	Chloromethane	4.71	50	771524 104844m P	1.87	ppb		
	Freon 114	4.81	85	609896	1 97	dqq		97
	Vinyl Chloride	4.94	62	156398	1.95	ppb		89
	Butane	5.13	43	164187	2.02	ppb		91
	1,3-butadiene	5.07		164187 103468m 🌶	1.80	ppb		
	Bromomethane	5.35	94	103468m / 217749	1.89	ppb		94
-	Chloroethane	5.52		67680		ppb		86
	Ethanol	5.63				ppb	17	~~
	Acrolein	5.99	56	51068m 55607m	1 85	ppb		
	Vinyl Bromide	5.89	106	226013		ppb		93
	Freon 11	6.31		757784		bbp		100
,	Acetone	6.13				dqq	#	75
	Pentane	6.68		57430 120588		ppb		36
	Isopropyl alcohol	6.37	45	120588 202779	1 88	dqq		100
	1,1-dichloroethene	6.98	96	126324		ppb		90
	Freon 113	7.38		301800		dqq		91
	t-Butyl alcohol	7.01	59	316399		dqq		98
	Methylene chloride	7.10	84	118066		ppp		77
	Allyl chloride	7.13	41	156544		dqq	π	91
	Carbon disulfide	7.44	76	303088	1 06	ppb		84
	trans-1,2-dichloroethene		61	383855 217211	2 07	dqq		90
	methyl tert-butyl ether			407448		dqq		92
	1,1-dichloroethane	8.37	63	259676		dqq		94
	Vinyl acetate	8.52	43	333912m p		dqq		24
27) 1	Methyl Ethyl Ketone	8.82	72	65520		ppp		100
20) /	cis-1,2-dichloroethene	9.34	61	201214		dqq		94
	dexane	9.59				ppb		88
	Ethyl acetate	9.60	44	185188 410515		ppb		97
	Chloroform	9.69	83	367120		dqq		98
	retrahydrofuran	10.20	42	140362	2.05			92
	1,2-dichloroethane	10.20	62	271231	1.98			98
	1,1,1-trichloroethane	10.93	97	396083	2 03	ppb		97
	Cyclohexane	11.84	56	201108	2.20			98
	Carbon tetrachloride	11.69	1.17	412399	2.05			99
	Senzene	11.50	78	414323	2.03	ppp		92
	Methyl methacrylate	13.00	41	194914		dqq		96
		12.79		86895		ppp	#	56
	1,4-dioxane 2,2,4-trimethylpentane	12.79	57			dqq	π	92
	2,2,4-trimethyrpentane Heptane	13.12			2.06	gqqq		96
	reptane Frichloroethene	12.77	130	221392 198590		dqq		93
	l,2-dichloropropane			151921		gdd		98
	r'x-dromannement					" " " " " .		

^{(#) =} qualifier out of range (m) = manual integration A0033103.D A331 1UG.M Thu May 04 11:15:29 2017

MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0033103.D Vial: 2 Acq On : 31 Mar 2017 3:35 pm Operator: RJP Sample : A1UG_2.0 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:02:10 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HFCHEM\1\DATA\A0033106.D

	Compound	R.T.	QIon	Response	Conc Unit	QV	alue
46)	Bromodichloromethane	12.72	83	401238	2.07 ppb		99
47)	cis-1,3-dichloropropene	13.77	75	254736	2.05 ppb		97
48)	trans-1,3-dichloropropene	14.36	75	247830	2.13 ppb		96
49)	1,1,2-trichloroethane	14.56	97	180605	2.01 ppb		99
51)	Toluene	14.88	92	291345	1.94 ppb	Ħ	85
52)	Methyl Isobutyl Ketone	13.81	43	322762	2.00 ppb		95
53)	Dibromochloromethane	15.35	129	364835	2.03 ppb		92
54)	Methyl Butyl Ketone	15.16	43	303971	2.09 ppb		96
55)	1,2-dibromoethane	15.62	107	300368	1.96 ppb		97
56)	Tetrachloroethylene	16.13	164	199230	1.98 ppb		98
57)	Chlorobenzene	16.86	112	411684	1.99 ppb		95
58)	Ethylbenzene	17.26	91	694504	2.04 ppb		98
59)	m&p-xylene	17.45	91	1170790	4.00 ppb		99
60)	Nonane	18.17	43	331734	2,03 ppb		92
61)	Styrene	17.84	104	371528	2.06 ppb		100
62)	Bromoform	17.54	173	311868	2.08 ppb		100
63)	o-xylene	17.95	91	562995	2.01 ppb		93
64)	Cumene	18.59	105	724745	1.99 ppb		99
66)	1,1,2,2-tetrachloroethane	17.95	83	373160	1.98 ppb		96
67)		19.16	120	186824	1.98 ppb	#	1.
68)		19.13	126	170125	1.95 ppb	#	1
69)		19.32	105	687148	1.98 ppb		100
70)	1,3,5-trimethylbenzene	19.41	105	616942	1.98 ppb		97
71)		19.88	105	578466	, 2.03 ppb		95
72)	1,3-dichlorobenzene	20.08	146	374300m 7	2.04 ppb		
73)		20.05	91	346380 /	2.26 ppb		94
74)		20.15	146	358330m V	* *		
75)		20.40	105	575572	2.03 ppb		97
76)	1,2-dichlorobenzene	20.57	146	358230	2.11 ppb		98
77)	1,2,4-trichlorobenzene	22.75	180	131000	2.46 ppb		95
78)	Naphthalene	22.89	128	336587	2.51 ppb		95
79)	Hexachloro-1,3-butadiene	23.31	225	264113	2.05 ppb		99

кемлемер

ΤΛΉ

Vuantitation Report

Vial: 3 Data File : C:\HPCHEM\1\DATA\A0033104.D Acq On : 31 Mar 2017 4:16 pm Operator: RJP Inst : MSD #1 Sample : Alug_1.5 Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Results File: A331_1UG.RES Quant Time: Mar 31 21:01:43 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : IUG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
				. – – – – –			
 Bromochloromethane 	9.54	1.28	49197	1.00	bbp		
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	11.93	114	224035	1.00	agg		0.00
50) Chlorobenzene-d5	16.81	117	194095	7.00	ppp		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.45	95	139602	1.04	ppb		0.00
Spiked Amount 1.000	Range 70		Recover	У и	104	.00%	
-							
Target Compounds						Qva	ilue
2) Propylene	4.47	41	102672	1.45			89 99
3) Freon 12	4.55	85	561521 81991m /	1.43			99
4) Chloromethane	4.71		8 T 3 3 T III / 1	1.49			95
5) Freon 114	4.81	85	440539 113742	$1.46 \\ 1.44$			91
6) Vinyl Chloride	4.93	62 43	713/4%	1.50			95
7) Butane	5.13 5.07	4.3	119938 70803m 🏲	1.25			,,,
8) 1,3-butadiene	5.07	94	161459	1.43			96
9) Bromomethane	5.52	34 54	51047	1.51			77
10) Chloroethane	5.52	45	51047 39277 37252	1.46			86
11) Ethanol	5.05	5.6	37252	1.27			87
12) Acrolein	5.88	106	161219	1.40			92
13) Vinyl Bromide 14) Freon 11	2.00	103	563957	1.43			99
15) Acetone	6.30	# V #	563957 44234 87203	1.50			84
16) Pentane	6 68	42	87203	1.40			35
17) Isopropyl alcohol	6 3B	45	150312	1.42			100
18) 1,1-dichloroethene	6 97	96	90564	1.51			88
19) Freon 113	7.38	101	90564 223955	1.53			91
20) t-Butyl alcohol	7.02	59	226794	1.47			95
21) Methylene chloride	7.10	84	90177				84
22) Allyl chloride	7.23	41	114971				89
23) Carbon disulfide	7.23 7.44	76	114971 279484	1.45			84
24) trans-1,2-dichloroethene	8.14	61.	156541	1.52			92
25) methyl tert-butyl ether	8,44	73	296555	1.48			91
26) 1,1-dichloroethane	8.36	63	190247	1.46	ppb		94
27) Vinyl acetate	8,52	43	190247 245094m 	1.52	ದೆದ್ದ		
28) Methyl Ethyl Ketone	8.82	72	48323	1.43			99
29) cis-1,2-dichloroethene	9.34	61.	148832	1.50			91
30) Hexane	9.60	57	148832 134826 306467	1.45			88
31) Ethyl acetate		43	306467	1.52	bbp		96
32) Chloroform	9,69	83	263762	1.45	dqq		97
Tetrahydrofuran			101943	1.52	bbp		90
34) 1,2-dichloroethane	10.60		197805	1.47	agg		96
36) 1,1,1-trichloroethane	10.93	97	288962	1.52			97
37) Cyclohexane	11.84	56	146732	1.65			98
38) Carbon tetrachloride	11.69		301856	1.54			100
39) Benzene	11.50		303620	1.57			91 94
40) Methyl methacrylate	13.00		145032	1.53			
41) 1,4-dioxane	12.81	58	63132	1.55			51 92
42) 2,2,4-trimethylpentane	12.82	57 43	464131	1.57			96
43) Heptane	13.12		160113	1.53			90
44) Trichloroethene	12.78		144026 110806	1.53 1.53			98
45) 1,2-dichloropropane	12.49						

^{(#) =} qualifier out of range (m) = manual integration

A0033104.D A331_1UG.M Thu May 04 11:15:33 2017

MSDI

Data File : C:\HPCHEM\1\DATA\A0033104.D

Vial: 3 Acq On : 31 Mar 2017 4:16 pm Sample : AlUG_1.5 Misc : A331_lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A331_1UG.RES Quant Time: Mar 31 21:01:43 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	Bromodichloromethane	12.72	83	289231	1.53 ppb		96
47)		13.77	75	188783	1.56 ppb		98
48)	trans-1,3-dichloropropene	14.37	75	180108	1.59 ppb		96
49)	1,1,2-trichloroethane	14.57	97	137201	1.57 ppb		97
51)	Toluene	14.88	92	213554	1.46 ppb	#	82
52)	Methyl Isobutyl Ketone	13.81	43	238170	1.52 ppb		94
53)	Dibromochloromethane	15.35	129	265843	1.52 ppb		92
54)	Methyl Butyl Ketone	15.17	43	222239	1.57 ppb		97
55)	1,2-dibromoethane	15.62	107	217690	1.46 ppb		95
56)	Tetrachloroethylene	16.13	164	145863	1.49 ppb		97
57)	Chlorobenzene	16.86		296747	1.47 ppb		94
58)	Ethylbenzene	17.26		514456	1.56 ppb		99
59)	m&p-xylene	17.45		863655	3.04 ppb		98
60)	Nonane	18.17		238695	daga 12.1		94
61)	Styrene	17.84		271617	1.55 ppb		99
62)	Bromoform	17.54		223130	1.53 ppb		99
63)	o-xylene	17.96		413467	1.52 ppb		94
64)		18.59		525741	1.49 ppb		100
66)	1,1,2,2-tetrachloroethane	17.95		277397	1.52 ppb		97
67)		19.16		134109	1.46 ppb	#	1.
68)	2-Chlorotoluene	19.12		126693	1.50 ppb	#	1
69)	4-ethyltoluene	19.32		509228	1.51 ppb		99
70)		19.40		443048	1.47 ppb		98
71)	· · · · · · · · · · · · · · · · · ·	19.88		426277	1.54 ppb		97
72)		20.08		276528	1.55 ppb		98
73)		20.06		246509	1.66 ppb		94
74)	1,4-dichlorobenzene	20,16		249352	1.55 ppb		96
75)		20.40		426217	1.55 ppb		98
76)		20.57		262645	1.60 ppb		98
77)		22.75		90071	1.74 ppb		95
78)		22.89		235547	1.81 ppb		94
79)	Hexachloro-1,3-butadiene	23.31	225	191216	1.53 ppb		99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed MSD1 Thu May 04 11:15:34 2017 A0033104.D A331_1UG.M

TEAT ADV

ťΔi

Vudiititation keport

Data File : C:\HPCHEM\1\DATA\A0033105.D
Acq On : 31 Mar 2017 4:57 pm
Sample : A1UG_1.25
Misc : A331_1UG Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A331_1UG.RES Quant Time: Mar 31 21:01:19 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : lUG_RUN							
Internal Standards			Response				
1) Bromochloromethane	9.54	128	46123	1.00	dąg		0.00
35) 1.4-difluorobenzene	11.94	1.1.4	218725	1.00	ББр		0.00
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	16.81	117	1.93903	1.00	ppb		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.45			0.97	agg		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	y =	97.	.00%	
Target Compounds							alue
2) Propylene	4.48	41	78567	1.19	bbp		84
3) Freon 12	4.55	85	467760 65723m A	1.27	ppb		98
4) Chloromethane	4.72	50	65723m M	1.28			
5) Freon 114	4.82	85	357396 96877	1.26			94
6) Vinyl Chloride	4.94	62	96877	1.31			90
7) Butane	5.14	43	100777	1.35	đąg		95
8) 1,3-butadiene	5.07	39	68213m /	1.29	bbp		0.3
9) Bromomethane	5.36	94	131929	1.25	ppb	11	93
10) Chloroethane	5.53	64	100777 68213m 131929 41303	3.30	dqq		
11) Ethanol	5 - 63	4.5	31486	1.25	bbp		88
12) Acrolein	5.99	56	32448 136500 468764	1.18	dqq		89 95
13) Vinyl Bromide	5.89	106	136500	1.26	ppb		99 99
14) Freon 11	6.31	101	468764	1.27	dqq		85
15) Acetone	6.14	58	36412	1.32	ppb		31
16) Pentane	6.68	42	71803 118797	1.23	dqq		100
17) Isopropyl alcohol	6.37	4.5	118797	1.20	ppb		89
18) 1,1-dichloroethene			74889	1.33	bbp		91
19) Freon 113	7.39	101	179185	1.30	dag i		96
20) t-Butyl alcohol	7.02	59	183128 72610 91853	1 40	ppb		
21) Methylene chloride	7.10	84	72610	1.20	bbp		95
22) Allyl chloride	7,23	41	37827	1.20	dqq i		84
23) Carbon disulfide	7.45	76	232308	1.43	dqq :		93
24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane	B.14	61 73	126965 240569	7 70	ddd (91
25) methyl tert-butyl ether	8.44	73	240307	7 26	bbp;		96
26) 1,1-dichloroethane	8.37	6.5	154227 201074m A	1 37	ppb spp		u
27) Vinyl acetate	8.54	4.5	2004a	1 23	bbp	· •	97
27) Vinyl acetate 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene	8.83	6 6 3	33000	1 30	ppb		94
	9.30	· ₽⊥	110322	1 25	ppb		90
30) Hexane	9.60	43	110322 246897		ggg l		97
31) Ethyl acetate	9.60		222198				
32) Chloroform			81151		ppt		89
33) Tetrahydrofuran	10.21	-	164628		l ppb		97
34) 1,2-dichloroethane	10.60 10.93		235511		pph		100
36) 1,1,1-trichloroethane			121625		gpt		98
37) Cyclohexane	11.85 11.69		248909		ppk		99
38) Carbon tetrachloride	11.5		246604		ppt		92
39) Benzene	13.03		117282		7 ppk		97
40) Methyl methacrylate	12.80		50550		ppł		50
41) 1,4-dioxane	12.82		379009		i ppk		91
42) 2,2,4-trimethylpentane	13.13				7 ppł		96
43) Heptane	12.78		119946		iqq o		93
44) Trichloroethene	12.49		88102		4 ppl		95
45) 1,2-dichloropropane							
(#) = qualifier out of range	(m) == mai	qual i	ntegration				

^{(#) =} qualifier out of range (m) = manual integration Thu May 04 11:15:37 2017 A0033105.D A331_1UG.M

MS Integration Params: RTEINT.P
Quant Time: Mar 31 21:01:19 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
46)	Bromodichloromethane	12.72	83	233632	1.27 ppb		98
47)	cis-1,3-dichloropropene	13.78	75	1.50325	1.27 ppb		98
48)	trans-1,3-dichloropropene	14.37	75	145587	1.32 ppb		98
49)	1,1,2-trichloroethane	14.57	97	111276	1.30 ppb		98
51)	Toluene	14.88	92	172202	1.18 ppb	#	83
52)	Methyl Isobutyl Ketone	13.82	43	190568	1.22 ppb		94
53)	Dibromochloromethane	15.35	129	219080	1.26 ppb		95
54)	Methyl Butyl Ketone	15.17	43	177195	1.25 ppb		96
55)	1,2-dibromoethane	15.62	107	180999	1.22 ppb		98
56)	Tetrachloroethylene	16.13	164	119394	1.22 ppb		97
57)	Chlorobenzene	16.86	11.2	246201	1.22 ppb		95
58)	Ethylbenzene	17.26	91	412665	1.25 ppb		100
59)	m&p-xylene	17.45	91	701907	2.47 ppb		98
60)	Nonane	18.18	43	195655	1.24 ppb		94
61)	Styrene	17.84	104	222122	1.27 ppb		88
62)	Bromoform	17.54	173	180532	1.24 ppb		98
63)	o-xylene	17.95	91	337985	1.24 ppb		93
64)		18.59	105	435179	1.23 ppb		100
66)	1,1,2,2-tetrachloroethane	17.95	83	225167	1.23 ppb		97
67)	Propylbenzene	19.16	120	112167	1.22 ppb	#	1
68)	2-Chlorotoluene	19.13	126	102454	1,21 ppb	#	1.
69)	4-ethyltoluene	19.32	105	417833	1.24 ppb		99
70)	1,3,5-trimethylbenzene	19.41	105	365290	1.21 ppb		100
71)		19.89	105	343051	1.24 ppb		94
72)	1,3-dichlorobenzene	20.08	1.4.6	222984m /	1.25 ppb		
73)	benzyl chloride	20.06	91	194194 (1.31 ppb		94
74)	1,4-dichlorobenzene	20.16	146	206810m	1.29 ppb		
75)		20.40	105	349260	1.27 ppb		97
	1,2-dichlorobenzene	20.57	146	206999	1.26 ppb		99
77)	· ·	22.75	180	66634	1.29 ppb		93
78)	±	22.89	128	171519	1.32 ppb		93
79)	Hexachloro-1,3-butadiene	23.32	225	149165	1.19 ppb		99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0033105.D A331_1UG.M Thu May 04 11:15:37 2017 MSD1

Kevlewed,

ĭ

VERHILLIALION REPORT

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0033106.D Vial: 5 Acq On : 31 Mar 2017 5:36 pm Operator: RJP Sample : AlUG_1.0 Misc : A331_1UG : MSD #1 Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:01:04 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Mar 31 21:00:46 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : 1UG_RUN

Thermal Standards								
1. Bromochloromethane 9.54 128 46112 1.00 ppb 0.00			QIon	Response	Conc (Inits	Dev (M.	in)
35								
System Monitoring Compounds System Monitoring Compounds Spiked Amount 1.000 Range 70 - 130 Recovery Significant 1.000 Ppb 0.00 Range 70 - 130 Recovery Significant 1.000 Ppb 0.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Range 70 - 130 Recovery Significant 1.000 Ppb 9.00 Range 70 - 130 Ppb 96 96 96 96 96 96 96 9	 Bromochloromethane 	9.54	128	46112	1.00	dag (0	
System Monitoring Compounds 18.45 95 128961 1.00 ppb 0.00		11.93	114	220001				
Spiked Amount 1.000 Range 70 - 130 Recovery 100.00\$ 0.00	50) Chlorobenzene-d5	16.82	1.1.7	186025	1.00) bbp	0	.00
Spiked Amount 1.000 Range 70 - 130 Recovery 100.00\$ 0.00								
Target Compounds 2) Propylene								
Target Compounds								.00
2) Propylene	Spiked Amount 1.000	Range 70	- 130	Recover	. Х 🖼	100	.00%	
2) Propylene								
3 Freon 12							Qva 1.	
6) Ványl Chloride 7) Butane 8) 1,3-butadiene 8) 1,4 43 74701 8) 1,3-butadiene 9) Bromomethane 15.36 94 105576 1.00 ppb 92 10) Chloroethane 15.36 94 105576 1.00 ppb 92 11) Ethanol 15.36 45 25232 1.00 ppb 83 12) Acrolein 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 14) Freon 11 16.31 101 370422 1.00 ppb 93 14) Freon 11 16.31 101 370422 1.00 ppb 99 15) Acetone 16.44 58 27552 1.00 ppb # 76 16) Pentane 16.68 42 58367 1.00 ppb # 40 17) Isopropyl alcohol 18) 1,1-dichloroethene 19.99 656363 1.00 ppb # 100 18) 1,1-dichloroethene 19.99 656363 1.00 ppb 91 20) t-Butyl alcohol 17.02 59 145442 1.00 ppb 95 21) Methylene chloride 17.10 84 55713 1.00 ppb 97 22) Allyl chloride 17.40 41 72786 1.00 ppb 93 23) Carbon disulfide 17.45 76 180433 1.00 ppb 93 24) trans-1,2-dichloroethene 18.14 61 96246 1.00 ppb 97 25) methyl tert-butyl ether 18.44 73 187288 1.00 ppb 95 26) 1,1-dichloroethane 18.38 63 122504 1.00 ppb 95 26) 1,1-dichloroethane 18.38 63 122504 1.00 ppb 95 26) 1,1-dichloroethane 18.44 73 187288 1.00 ppb 96 29) cis-1,2-dichloroethene 18.44 73 187288 1.00 ppb 96 29) cis-1,2-dichloroethene 19.35 61 92886 1.00 ppb 96 31) Ethyl acetate 19.61 43 188952 1.00 ppb 96 32) Chloroform 10.22 42 62907 1.00 ppb 98 33) Ethyl acetate 10.61 62 125908 1.00 ppb 98 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 98 36) 1,1,1-trichloroethane 10.61 62 125908 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 98 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,2-dichloroethene 12.78 130 92651 1.00 ppb 93 44) Trichloroethene 13.13 43 102640 1.00 ppb 93 45) 1,2-dichloropropane			41	66145	1.00			
6) Ványl Chloride 7) Butane 8) 1,3-butadiene 8) 1,4 43 74701 8) 1,3-butadiene 9) Bromomethane 15.36 94 105576 1.00 ppb 92 10) Chloroethane 15.36 94 105576 1.00 ppb 92 11) Ethanol 15.36 45 25232 1.00 ppb 83 12) Acrolein 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 14) Freon 11 16.31 101 370422 1.00 ppb 93 14) Freon 11 16.31 101 370422 1.00 ppb 99 15) Acetone 16.44 58 27552 1.00 ppb # 76 16) Pentane 16.68 42 58367 1.00 ppb # 40 17) Isopropyl alcohol 18) 1,1-dichloroethene 19.99 656363 1.00 ppb # 100 18) 1,1-dichloroethene 19.99 656363 1.00 ppb 91 20) t-Butyl alcohol 17.02 59 145442 1.00 ppb 95 21) Methylene chloride 17.10 84 55713 1.00 ppb 97 22) Allyl chloride 17.40 41 72786 1.00 ppb 93 23) Carbon disulfide 17.45 76 180433 1.00 ppb 93 24) trans-1,2-dichloroethene 18.14 61 96246 1.00 ppb 97 25) methyl tert-butyl ether 18.44 73 187288 1.00 ppb 95 26) 1,1-dichloroethane 18.38 63 122504 1.00 ppb 95 26) 1,1-dichloroethane 18.38 63 122504 1.00 ppb 95 26) 1,1-dichloroethane 18.44 73 187288 1.00 ppb 96 29) cis-1,2-dichloroethene 18.44 73 187288 1.00 ppb 96 29) cis-1,2-dichloroethene 19.35 61 92886 1.00 ppb 96 31) Ethyl acetate 19.61 43 188952 1.00 ppb 96 32) Chloroform 10.22 42 62907 1.00 ppb 98 33) Ethyl acetate 10.61 62 125908 1.00 ppb 98 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 98 36) 1,1,1-trichloroethane 10.61 62 125908 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 98 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,2-dichloroethene 12.78 130 92651 1.00 ppb 93 44) Trichloroethene 13.13 43 102640 1.00 ppb 93 45) 1,2-dichloropropane			85	368126	1.00	ववुषु (38
6) Ványl Chloride 7) Butane 8) 1,3-butadiene 8) 1,4 43 74701 8) 1,3-butadiene 9) Bromomethane 15.36 94 105576 1.00 ppb 92 10) Chloroethane 15.36 94 105576 1.00 ppb 92 11) Ethanol 15.36 45 25232 1.00 ppb 83 12) Acrolein 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 13) Vinyl Bromide 15.89 106 108238 14) Freon 11 16.31 101 370422 1.00 ppb 93 14) Freon 11 16.31 101 370422 1.00 ppb 99 15) Acetone 16.44 58 27552 1.00 ppb # 76 16) Pentane 16.68 42 58367 1.00 ppb # 40 17) Isopropyl alcohol 18) 1,1-dichloroethene 19.99 656363 1.00 ppb # 100 18) 1,1-dichloroethene 19.99 656363 1.00 ppb 91 20) t-Butyl alcohol 17.02 59 145442 1.00 ppb 95 21) Methylene chloride 17.10 84 55713 1.00 ppb 97 22) Allyl chloride 17.40 41 72786 1.00 ppb 93 23) Carbon disulfide 17.45 76 180433 1.00 ppb 93 24) trans-1,2-dichloroethene 18.14 61 96246 1.00 ppb 97 25) methyl tert-butyl ether 18.44 73 187288 1.00 ppb 95 26) 1,1-dichloroethane 18.38 63 122504 1.00 ppb 95 26) 1,1-dichloroethane 18.38 63 122504 1.00 ppb 95 26) 1,1-dichloroethane 18.44 73 187288 1.00 ppb 96 29) cis-1,2-dichloroethene 18.44 73 187288 1.00 ppb 96 29) cis-1,2-dichloroethene 19.35 61 92886 1.00 ppb 96 31) Ethyl acetate 19.61 43 188952 1.00 ppb 96 32) Chloroform 10.22 42 62907 1.00 ppb 98 33) Ethyl acetate 10.61 62 125908 1.00 ppb 98 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 98 36) 1,1,1-trichloroethane 10.61 62 125908 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 98 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 99 41) 1,2-dichloroethene 12.78 130 92651 1.00 ppb 93 44) Trichloroethene 13.13 43 102640 1.00 ppb 93 45) 1,2-dichloropropane			50	51707m /-	1,01	ppp.		
80			85	283775	1.00			
10 Chloroethane			62	73850	1.00			
10 Chloroethane			43	74701	1.00			92
10 Chloroethane		5.09	39	49285m	0.93	gqq		
11 Ethanol					1.00			
13 Vinyl Bromide				31781	1.00			
13 Vinyl Bromide	·		4.5	25232	1.00			83
14) Freon 11			56	27310m\ø		ppo		0.0
15 Acetone					1.00			
1,1-dichloroethene		6.31	101	370422	7.00		11	
1,1-dichloroethene		6.14	58	27552	1.00			
1,1-dichloroethene		6.68	42	58367	1.00			
19) Freon 113			45	99005	1.00			
21) Methylene chloride			96	56363				
21) Methylene chloride		7.39	TOT	13/328	1.00	ppp		
22) Allyl chloride 7.24 41 72786 1.00 ppb 93 23) Carbon disulfide 7.45 76 180433 1.00 ppb 83 24) trans-1,2-dichloroethene 8.14 61 96246 1.00 ppb 97 25) methyl tert-butyl ether 8.44 73 187288 1.00 ppb 90 26) 1,1-dichloroethane 8.38 63 122504 1.00 ppb 95 27) Vinyl acetate 8.53 43 148055m 0.98 ppb 28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 92 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 98 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dicxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dicxane 12.81 58 40035 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 99 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 93	20) t-Butyl alconol	7.02	59	145447	1.00			
23) Carbon disulfide 7.45 76 180433 1.00 ppb 83 24) trans-1,2-dichloroethene 8.14 61 96246 1.00 ppb 97 25) methyl tert-butyl ether 8.44 73 187288 1.00 ppb 90 26) 1,1-dichloroethane 8.38 63 122504 1.00 ppb 95 27) Vinyl acetate 8.53 43 148055m 60.98 ppb 28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 89 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 96 32) Chloroform 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 99 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99		7.10					ii	
24) trans-1,2-dichloroethene 8.14 61 96246 1.00 ppb 97 25) methyl tert-butyl ether 8.44 73 187288 1.00 ppb 90 26) 1,1-dichloroethane 8.38 63 122504 1.00 ppb 95 27) Vinyl acetate 8.53 43 148055m 60.98 ppb 28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 92 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 91 41) 1,4-dioxane 12.81 57 291037 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 99 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 99 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99			41	72780	1.00			
25) methyl tert-butyl ether 8.44 73 187288 1.00 ppb 90 26) 1,1-dichloroethane 8.38 63 122504 1.00 ppb 95 27) Vinyl acetate 8.53 43 148055m 60.98 ppb 28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 89 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 96 32) Chloroform 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 91 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.81 58 40035 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 99 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99		7.43	/O	100433				
26) 1,1-dichloroethane 8.38 63 122504 1.00 ppb 95 27) Vinyl acetate 8.53 43 148055m ○0.98 ppb 28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 89 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 96 32) Chloroform 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 91 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 99 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
27) Vinyl acetate 8.53 43 148055m/ 0.98 ppb 28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 89 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.51 78 190289 1.00 ppb 97 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 99 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
28) Methyl Ethyl Ketone 8.83 72 31753 1.00 ppb 96 29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 89 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 93 38) Carbon tetrachloride 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dioxane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99				142055m A	7 GE			
29) cis-1,2-dichloroethene 9.35 61 92886 1.00 ppb 92 30) Hexane 9.60 57 87106 1.00 ppb 89 31) Ethyl acetate 9.61 43 188952 1.00 ppb 96 32) Chloroform 9.70 83 171011 1.00 ppb 96 32) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 90 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 96 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 99	27) Vinyi acecace	0.55	770	31763	1 00			96
32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dioxane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99	20) dis-1 2-dishloroethere	0.05	61	02886	1 00			
32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dioxane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99		9 50	57	87106	1.00			
32) Chloroform 9.70 83 171011 1.00 ppb 100 33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 97 41) 1,4-dioxane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99		9.61	43	188957	1 00			
33) Tetrahydrofuran 10.22 42 62907 1.00 ppb 88 34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb # 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
34) 1,2-dichloroethane 10.61 62 125908 1.00 ppb 95 36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 96 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 99 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb					3.00	daa (
36) 1,1,1-trichloroethane 10.93 97 186177 1.00 ppb 98 37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb # 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
37) Cyclohexane 11.85 56 87220 1.00 ppb 93 38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb # 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99	•							
38) Carbon tetrachloride 11.69 117 192761 1.00 ppb 100 39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb # 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
39) Benzene 11.51 78 190289 1.00 ppb 91 40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb # 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
40) Methyl methacrylate 13.01 41 93083 1.00 ppb 97 41) 1,4-dioxane 12.81 58 40035 1.00 ppb 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99							,	
41) 1,4-dioxane 12.81 58 40035 1.00 ppb # 56 42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99	•							
42) 2,2,4-trimethylpentane 12.81 57 291037 1.00 ppb 90 43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99							#	
43) Heptane 13.13 43 102640 1.00 ppb 99 44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99							,,	
44) Trichloroethene 12.78 130 92651 1.00 ppb 93 45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								
45) 1,2-dichloropropane 12.49 63 71331 1.00 ppb 99								

^{(#) =} qualifier out of range (m) = manual integration

A0033106.D A331_1UG.M Thu May 04 11:15:41 2017

Data File : C:\HPCHEM\1\DATA\A0033106.D Vial: 5 Acq On : 31 Mar 2017 5:36 pm Sample : AlUG 1.0 Misc : A331_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:01:04 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Mar 31 21:00:46 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

	Compound	R,T,	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.72	83	185244	1.00 ppb	98
47)	cis-1,3-dichloropropene	13.78	75	118799	1.00 ppb	96
48)	trans-1,3-dichloropropene	14.37	75	111119	1.00 ppb	95
49)	1,1,2-trichloroethane	14.57	97	85955	1.00 ppb	99
51)	Toluene	14.88	92	139995	1.00 ppb	88
52)	Methyl Isobutyl Ketone	13.82	43	149970	1.00 ppb	94
53)	Dibromochloromethane	15.35	129	167207	1.00 ppb	89
54)	Methyl Butyl Ketone	15.17	43	135647	1.00 ppb	96
55)	1,2-dibromoethane	15.62	1.07	142683	1.00 ppb	97
56)	Tetrachloroethylene	16.13	164	93558	1.00 ppb	100
57)	Chlorobenzene	16.86	112	192859	1.00 ppb	96
58)	Ethylbenzene	17.26	91	316266	1.00 ppb	100
59)	m&p~xylene	17.46	91	546554	2.01 ppb	98
60)	Nonane	18.18	43	151897	1.00 ppb	93
61.)	Styrene	17.84		168155	1.00 ppb	99
62)	Bromoform	17.54	1.73	139588	1.00 ppb	98
63)	o-xylene	17.96	91	260479	1.00 ppb	93
64)	Cumerie	18.59		339221	1.00 ppb	100
66)	1,1,2,2-tetrachloroethane	17.95	83	175288	1.00 ppb	96
67)	Propylbenzene	19.16	120	87986	dqq 00.1	# 1.
68)	2-Chlorotoluene	19.12	126	81024	1.00 ppb	# 1
69)	4-ethyltoluene	19.32	105	322806	1.00 ppb	99
70)	1,3,5-trimethylbenzene	19.41	1.05	289695	1.00 ppb	98
71)	1,2,4-trimethylbenzene	19.89	105	264743	1.00 ppb	94
72)	1,3-dichlorobenzene	20.08	146	170760	1.00 ppb	99
73)	benzyl chloride	20.05	91	142227	1.00 ppb	92
74)	1,4-dichlorobenzene	20.16	146	154100	1.00 დებ	98
75)	•	20.40	105	263431	1.00 ppb	94
76)	1,2-dichlorobenzene	20.58	146	157732	1.00 ppb	97
77)	• •	22.75	180	49634	1.00 ppb	96
78)	Naphthalene	22.90	128	124780	1.00 ppb	94
79)	Hexachloro-1,3-butadiene	23.31	225	119753	1.00 ppb	98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0033106.D A331_1UG.M Thu May 04 11:15:41 2017

(namat naw

Z,

אממזרזומניזחוו מבלחזר

Data File : C:\HPCHEM\1\DATA\A0033107.D
Acq On : 31 Mar 2017 6:15 pm
Sample : AlUG_0.75
Misc : A331_1UG Vial: 6 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:02:35 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Mar 31 21:00:46 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C				
 Bromochloromethane 	9.54	128	44024	1.00	dqq		0.00
35) 1,4-difluorobenzene	11.93	1.14	210749	1.00	dqq		0.00
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	16.82	117	183483	1.00	dqq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene		95					0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	=	99	. OO\$	
Target Compounds						Qva	lue
2) Propylene	4.49	41	45360	0.72	dqq		80
3) Freon 12	4.56	85	277878	0.79	dqq		97
4) Chloromethane	4.73		37635	0.77	đąg		89
5) Freon 114	4.82	85	215987		ppb		96
6) Vinyl Chloride	4.94	85 62 43	56874	0.81	dqq		90
7) Butane	5.14	43	58073	0.81	dqq		92
8) 1,3-butadiene		39	39119m P	0 77	ppp		
9) Bromomethane		94			gpb		93
10) Chloroethane	5.36 5.54	94 64 45	77287 23478 18822m	0.77	dqq '	#	63
11) Ethanol	5.64	4.5	100000	0 79	dqq	17	0.5
•				0.70			92
12) Acrolein	6.01		19805	0.75	bbp		
13) Vinyl Bromide	5.89	106	79505 275669	0.77	ppp		94
14) Freon 11	6.31	101	275669		ppb		98
15) Acetone	6.15		20215	0.77	qqq		67
16) Pentane	6.68	42	42253	0.76	dqq		39
17) Isopropyl alcohol	6.39	45	72401 42805	0.77	bbp	#	100
18) l,l-dichloroethene					qqq		88
19) Freon 113	7.39		102624		ppb		92
20) t-Butyl alcohol	7.03	59	101096		qqq		94
21) Methylene chloride	7.11	84	40588 54748	0.75	dqq		76
22) Allyl chloride	7.24	41	54748	0.79	bbp		89
23) Carbon disulfide	7.45	76	136144	0.79	dqq		83
24) trans-1,2-dichloroethene		61	71552 140829	0.78	ppb		93
25) methyl tert-butyl ether	8.45 8.37	73			dqq		90
26) 1,1-dichloroethane	8.37	63	89176	0.76	ppb		93
27) Vinyl acetate	8.53	43	113620m PO	0.79	dqq		
28) Methyl Ethyl Ketone	8.83	72	21826	0.72	dqq		94
29) cis-1,2-dichloroethene	9.34	61	21826 69108	0.78	ppb		91
30) Hexane	9.60	57	65405	0.79	dqq		90
31) Ethyl acetate	9.61		140819		dqq		98
32) Chloroform	9.70	83	126305	0.77	dqq		99
33) Tetrahydrofuran	10.22	42	47717		dqg		88
34) 1,2-dichloroethane	10.62	62	95385		ББр		99
36) 1,1,1-trichloroethane	10.93	97	134349		dqq		98
37) Cyclohexane	11.85	56	70550		ppb		96
38) Carbon tetrachloride	11.69	117	139907		dag		98
39) Benzene	11.50	78	142039		ppb		91
40) Methyl methacrylate	13.00	41	67157m M		dqq		
41) 1,4-dioxane	12.81	58	26970		dqq	#	56
		57	218109		ppp	rτ	91
42) 2,2,4-trimethylpentane	12.82		74753		ggg		99
43) Heptane	13.13	43					94
44) Trichloroethene	12.78	130	69266 53577	0.70	dqq dqq		99
45) 1,2-dichloropropane	12.49	63	53577 		 rhn		

^{(#) =} qualifier out of range (m) = manual integration

A0033107.D A331_1UG.M Thu May 04 11:15:45 2017

MSD1

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\A0033107.D Vial: 6 Acq On : 31 Mar 2017 Operator: RJP 6:15 pm Sample : AlUG_0.75 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:02:35 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Mar 31 21:00:46 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

	Compound	R.T.	Qïon	Response	Conc Unit	Q٧	alue
46)	Bromodichloromethane	12.72	83	138457	0.78 ppb		100
47)	cis-1,3-dichloropropene	13.78	75	84571	0.74 ppb		97
48)	trans-1,3-dichloropropene	14.38	75	83731	0.79 ppb		97
49)	1,1,2-trichloroethane	14.57	97	63090	0.77 ppb		97
51)	Toluene	14.89	92	100613	0.73 ppb	Ħ	83
52)	Methyl Isobutyl Ketone	13.82	43	94497	0.64 ppb		95
53)	Dibromochloromethane	15.36	129	123463	0.75 ppb		95
54)	Methyl Butyl Ketone	15.18	43	81165	0.61 ppb		97
55)	1,2-dibromoethane	15.62	107	102493	0.73 ppb		97
56)	Tetrachloroethylene	16.13	164	68551	0.74 ppb		99
57)	Chlorobenzene	16.86	112	142252	0.75 ppb		94
58)	Ethylbenzene	17.26	91	236565	0.76 ppb		100
59)	m&p~xylene	17.45	91	410271	1.53 ppb		99
60)	Nonane	18.18	43	109229	0.73 ppb		94
61.)	Styrene	17.84	104	123584	0.75 ppb		98
62)	Bromoform	17.55	173	103675	0.75 ppb		98
63)	o-xylene	17.96	91	194699	0.76 დღხ		93
64)	Cumene	18.59	1.05	250016	0.75 ppb		99
66)	1,1,2,2-tetrachloroethane	17.95	83	132210	0.76 ppb		97
67)	Propylbenzene	19.17	120	64596	0.74 ppb	#	1.
68)	2-Chlorotoluene	19.13	126	58331	0.73 ppb	#	1
69)	4-ethyltoluene	19.33	105	232250	0.73 ppb		100
70)	1,3,5-trimethylbenzene	19.41	105	207423	0.73 ppb		98
71)	1,2,4-trimethylbenzene	19.89	105	195195	0.75 ppb		95
72)	1,3-dichlorobenzene	20.08	146	126865	0.75 ppb	#	55
73)	benzyl chloride	20.06	91	98302	0.70 დებ	.,	93
74)	1,4-dichlorobenzene	20.16	146	115236	0.76 ppb	#	52
75)	1,2,3-trimethylbenzene	20.40	105	193918	0.75 ppb		93
	1,2-dichlorobenzene	20.57	146	118355	0.76 ppb		99
	1,2,4-trichlorobenzene	22.75	180	33339	0.68 ppb		92
78)	Naphthalene	22.90	128	82942	0.67 ppb		96
79)	Hexachloro-1,3-butadiene	23.32	225	88256	0.75 ppb		98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0033107.D A331 1UG.M Thu May 04 11:15:45 2017

таматлаж

Į,

מתמוריות מתורים עבלתונ

Data File : C:\HPCHEM\1\DATA\A0033108.D Vial: 7 Acq On : 31 Mar 2017 6:53 pm Operator: RJP Sample : A1UG_0.50 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:03:17 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Fri Mar 31 21:00:46 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : 1UG_RUN

34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93		_							
Stromorphic Stromorphic	Int∈	ernal Standards	R.T.	QIon	Response C	one U	nits	Dev	(Min)
Stromorphic Stromorphic									
### System Monitoring Compounds 18.45 95 121444 0.97 ppb 0.00	1)	Bromochloromethane	9.55	128	43920				
### System Monitoring Compounds 18.45 95 121444 0.97 ppb 0.00	35)	1,4-difluorobenzene	11.93	114	204815	1.00	dqq		
Spiked Amount 1.000 Range 70 - 130 Recovery = 97.00%	50)	Chioropenzene-d5	16.82	117	181136	1.00	ppp		0.00
Spiked Amount 1.000 Range 70 - 130 Recovery = 97.00%	CT a war to	an Handhard and Mannath							
Target Compounds			16 45	0.5	101444	0.07	nnh		0 00
Target Compounds 2) Propylene									0.00
2) Propylene	بيرد،	red Amount 1.000	Kange 70	- 130	Kecovery	· · · · · · · · · · · · · · · · · · ·	97	.00%	
2) Propylene	Taro	ret Compounds						OV	alue
3 Freon 12			4.48	41	31388	0.50	daa		
Chloromethane									
Simple S				50	24920				
6) Vinyl Chloride 7) Butane 8) 1,3-butadiene 8) 1,3-butadiene 8) 1,3-butadiene 9) Bromomethane 10 Chloroethane				85	143482				
Sutane				62	37274				
10 Chloroethane				43	41459	~ -~			
10 Chloroethane				39	25730m	0.51			~-
10 Chloroethane			5.35	94	51121	0.51			96
12) Acrolein 13) Vinyl Bromide 15.89 106 50717 0.49 ppb 91 14) Freon 11 6.31 101 185391 0.53 ppb 99 15) Acetone 16.31 101 185391 0.53 ppb 99 15) Acetone 16.35 58 14318 0.55 ppb # 84 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 18) 1,1-dichloroethene 18) 1,1-dichloroethene 19) 638 45 44936 0.48 ppb # 100 18) 1,1-dichloroethene 10,18				64	16560	0.55			
12) Acrolein 13) Vinyl Bromide 15.89 106 50717 0.49 ppb 91 14) Freon 11 6.31 101 185391 0.53 ppb 99 15) Acetone 16.31 101 185391 0.53 ppb 99 15) Acetone 16.35 58 14318 0.55 ppb # 84 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 18) 1,1-dichloroethene 18) 1,1-dichloroethene 19) 638 45 44936 0.48 ppb # 100 18) 1,1-dichloroethene 10,18					11702m U	0.49			
14 Freon 11	,			56	14036	0.53			90
14 Freon 11				106	50717	0.49			
15 Acetone			6 21	101	195391	0.53			
18) 1,1-dichloroethene 6.98 96 29783 0.55 ppb 93 19) Freon 113 7.40 101 68337 0.52 ppb 91 20) t-Butyl alcohol 7.03 59 65506 0.47 ppb 94 21) Methylene chloride 7.11 84 28901 0.54 ppb # 82 22) Allyl chloride 7.23 41 33667 0.49 ppb 93 23) Carbon disulfide 7.45 76 89263 0.52 ppb 84 24) trans-1,2-dichloroethene 8.45 73 88167 0.49 ppb 95 25) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 28) Methyl Ethyl Ketone 8.84 72 14916 0.49 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 98 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 93 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99			6 75	58	14318	0.55			
18) 1,1-dichloroethene 6.98 96 29783 0.55 ppb 93 19) Freon 113 7.40 101 68337 0.52 ppb 91 20) t-Butyl alcohol 7.03 59 65506 0.47 ppb 94 21) Methylene chloride 7.11 84 28901 0.54 ppb # 82 22) Allyl chloride 7.23 41 33667 0.49 ppb 93 23) Carbon disulfide 7.45 76 89263 0.52 ppb 84 24) trans-1,2-dichloroethene 8.45 73 88167 0.49 ppb 95 25) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 28) Methyl Ethyl Ketone 8.84 72 14916 0.49 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 98 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 93 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99			6 68	42	27157	0.33			
18) 1,1-dichloroethene 6.98 96 29783 0.55 ppb 93 19) Freon 113 7.40 101 68337 0.52 ppb 91 20) t-Butyl alcohol 7.03 59 65506 0.47 ppb 94 21) Methylene chloride 7.11 84 28901 0.54 ppb # 82 22) Allyl chloride 7.23 41 33667 0.49 ppb 93 23) Carbon disulfide 7.45 76 89263 0.52 ppb 84 24) trans-1,2-dichloroethene 8.45 73 88167 0.49 ppb 95 25) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 28) Methyl Ethyl Ketone 8.84 72 14916 0.49 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 98 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 93 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99			6 38	7 E	44936	0.49			
19) Freon 113			6.30	96	29783				
21) Methylene chloride				101	49727 49727				
21) Methylene chloride			7.40	101	65506	0.38			
22) Allyl chloride 7.23 41 33667 0.49 ppb 93 23) Carbon disulfide 7.45 76 89263 0.52 ppb 84 24) trans-1,2-dichloroethene 8.15 61 47197 0.51 ppb 95 55) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99			7.03	94	29907	0.47			
23) Carbon disulfide 7.45 76 89263 0.52 ppb 84 24) trans-1,2-dichloroethene 8.15 61 47197 0.51 ppb 95 25) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 96 28) Methyl Ethyl Ketone 8.84 72 14916 0.49 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 96 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb			7 23			0.49		Υr	
25) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 96 28) Methyl Ethyl Ketone 8.84 72 14916 0.49 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99					33007				
25) methyl tert-butyl ether 8.45 73 88167 0.49 ppb 89 26) 1,1-dichloroethane 8.37 63 60989 0.52 ppb 96 27) Vinyl acetate 8.52 43 72472m 0.50 ppb 96 28) Methyl Ethyl Ketone 8.84 72 14916 0.49 ppb 96 29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 98 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99			, , , , ,	61	47107	0.52			
26) 1,1-dichloroethane				73	99167				
29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99				63	60989				
29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99				43	72472m /				20
29) cis-1,2-dichloroethene 9.35 61 45517 0.51 ppb 92 30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99				72	14916		ppp		96
30) Hexane 9.59 57 41945 0.51 ppb 88 31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99				61	45517				
31) Ethyl acetate 9.61 43 93257 0.52 ppb 96 32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 98 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99				57	41945	0.51	ppp		
32) Chloroform 9.70 83 83520 0.51 ppb 98 33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99			9 67	43	93257	0.52			
33) Tetrahydrofuran 10.23 42 30981 0.52 ppb 91 34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
34) 1,2-dichloroethane 10.61 62 62717 0.52 ppb 93 36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
36) 1,1,1-trichloroethane 10.94 97 88752 0.51 ppb 99 37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
37) Cyclohexane 11.85 56 43436 0.53 ppb 98 38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
38) Carbon tetrachloride 11.69 117 90406 0.50 ppb 95 39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99				_					
39) Benzene 11.51 78 92910 0.52 ppb 90 40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
40) Methyl methacrylate 13.01 41 42361 0.49 ppb 98 41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
41) 1,4-dioxane 12.82 58 17766 0.48 ppb # 46 42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
42) 2,2,4-trimethylpentane 12.82 57 139898 0.52 ppb 89 43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99								₽₽	
43) Heptane 13.13 43 49667 0.52 ppb 98 44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99						0.52	ひわり	'n	
44) Trichloroethene 12.78 130 43044 0.50 ppb 86 45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
45) 1,2-dichloropropane 12.50 63 34841 0.52 ppb 99									
				·					

MSDl

^{(#) =} qualifier out of range (m) = manual integration A0033108.D A331_1UG.M Thu May 04 11:15:49 2017

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:03:17 2017 Quant Results File: A331_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	Bromodichloromethane	12.72	83	88899	0.52 ppb		99
47)	cis-1,3-dichloropropene	13.78	75	55495	0.50 ppb		98
48)	trans-1,3-dichloropropene	14.37	75	53706	0.52 ppb		91
49)	1,1,2-trichloroethane	14.57	97	41634	0.52 ppb		99
51)	Toluene	14.88	92	65569	0.48 ppb	#	82
52)	Methyl Isobutyl Ketone	13.83	43	62120	0.43 ppb		94
53)	Dibromochloromethane	15.36	129	81972	0.50 ppb		94
54)	Methyl Butyl Ketone	15.17	43	51833	0.39 ppb		95
55)	1,2-dibromoethane	15.62	107	66022	0.48 ppb		97
56)	Tetrachloroethylene	16.14	164	46315	0.51 ppb		98
57)	Chlorobenzene	16.87	112	91788	0.49 ppb		93
58)	Ethylbenzene	17.26	91.	154803	$0.50 \tilde{p} \tilde{p} b$		100
59)	m&p-xylene	17.46	91	262800	dqq ee.o		100
60)	Nonane	18.18	4.3	71262	0.48 ppb		96
61)	Styrene	17.84	104	79431	0.49 ppb		97
62)	Bromoform	17.55	173	66152	0.49 ppb		98
63)	o-xylene	17.96	91	124998	0.49 ppb		94
64)	Cumene	18.60	105	161847	0.49 ppb		99
66)	1,1,2,2-tetrachloroethane	17.95	83	86064	0.50 ppb		97
67)	Propylbenzene	19.16	120	41634	0.49 ppb	#	1
68)	2-Chlorotoluene	19.13	126	39209	0.50 ppb	#	1
69)	4-ethyltoluene	19.32	105	152603	0.49 ppb		99
70)		19.41	105	136526	0.48 ppb		99
71)	1,2,4-trimethylbenzene	19.89	105	126003	0.49 ppb		94
72)	1,3-dichlorobenzene	20,08	146	76215m 🎢	° 0.46 ppb		
73)	benzyl chloride	20.05	91	61148 /	0.44 ppb		93
74)	1,4-dichlorobenzene	20.16	146	72236m _i (,	0.48 ppb		
75)	1,2,3-trimethylbenzene	20.40	105	126884	0.49 ppb		97
76)	1,2-dichlorobenzene	20.58	146	75655	0.49 ppb		97
77)	1,2.4-trichlorobenzene	22.76	180	19912	0.41 ppb		93
78)	Naphthalene	22.90	128	49444	0.41 ppb		96
79)	Hexachloro-1,3-butadiene	23,32	225	55006	0.47 დდა		96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0033108.D A331 1UG.M Thu May 04 11:15:49 2017 MSD1

/ nomer sou

ĭΚτ

ಗುಗ್ರತ್ತು

Knamerearion

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:03:49 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : 1UG_RUN

-							
Internal Standards	R.T.	QIon	Response C	Conc U	nits	Dev	(Min)
					107 V. VV NA		
1) Bromochloromethane	9.56	128	44360	1.00	bbp		
35) 1,4-difluorobenzene	11.94	114	201658	1.00	ppp		0.00
50) Chlorobenzene-d5	16.82	117	174946	1.00	ppb		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.46	95	117955	0.97	daa		0.00
Spiked Amount 1.000	Range 70					.00%	
			.				
Target Compounds						Qv	alue
2) Propylene	4.49	41	20130	0.32	dqq	#	57
3) Freon 12	4.55		111633		ppb		93
4) Chloromethane	4.72	50 85	16029		ppb		67
5) Freon 114	4.81	85	88039		ppb		96
6) Vinyl Chloride	4.94	62	23880	0.34	dqq		89
7) Butane	5.13	43	24791	0.34	$_{\rm ppb}$		92
8) 1,3-butadiene	5.09	39	24791 17729m /)	0.35	dqq		
9) Bromomethane	5.09 5.35	43 39 94	36947	0.3€	ppb		81
10) Chloroethane	5.53		10936	0.36	dqq	#	38
11) Ethanol	5.65			0.38	dqq		67
12) Acrolein	6.01	56	9308 7336m ()	0.28	ppb		
13) Vinyl Bromide	5.89		32409	0.31	dag		95
14) Freon 11	6.32	101	112125		. ppb		99
15) Acetone	6.14	58	9097		dqq		77
16) Pentane	6.69	4.2	9097 16757	0.30	dag		39
17) Isopropyl alcohol	6.39		31119	0.33	dqq		
18) 1,1-dichloroethene	6.99			0.32	dqq		92
19) Freon 113	7.39	101			dqq		92
20) t-Butyl alcohol	7.03	59	40494 43837 17210	0.31	dqq_		94
21) Methylene chloride	7.11	84	17210	0.32	ppb		
22) Allyl chloride	7.23	41	21572		dqq		90
23) Carbon disulfide	7.45		55879	0.32	dqq		84
24) trans-1,2-dichloroethen			29814		ppb		91
25) methyl tert-butyl ether					dqq		88
26) 1,1-dichloroethane	8.37	63	36458		đqq .		98
27) Vinyl acetate	8.52	43	45130m 🕖	0.31	dqq .		
28) Methyl Ethyl Ketone	8.84	72	36458 45130m /) 8808		dqq		91.
29) cis-1,2-dichloroethene	9.35	61	27589		gpb		95
30) Hexane	9.59	57	25849		dqq		89
31) Ethyl acetate	9.62	57 43	58527		ppb		97
32) Chloroform	9.70	83	50295		dqq		96
33) Tetrahydrofuran	10.23	42	19194		dqq		92
34) 1,2-dichloroethane	10.61	62	36324		dqq		93
36) 1,1,1-trichloroethane	10.94	97	56401		dqq		94
37) Cyclohexane	11.85	56	31511		qqq		87
38) Carbon tetrachloride	11.69	117	55427		dqq		96
39) Benzene	11.51	78	59047		ppb		93
40) Methyl methacrylate	13.02	41	26739		dqq		97
41) 1,4-dioxane	12.81	58	13328		ggg	#	47
42) 2,2,4-trimethylpentane	12.82	57	82460		ppb		87
43) Heptane	13.13	43	28810		ppb		97
44) Trichloroethene	12.78	130	26660		ppb		89
45) 1,2-dichloropropane	12.51	63	20460		dqq		96

^{(#) =} qualifier out of range (m) = manual integration

A0033109.D A331_1UG.M Thu May 04 11:15:53 2017

Page l

MSD1

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:03:49 2017 Quant Results File: A331_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

	Compound	R.T.	QIon	Response	Conc Unit	Qν	alue
46)	Bromodichloromethane	12.73	83	53117	dqq 18.0	W 40 14 .	95
47)	cis-1,3-dichloropropene	13.78	75	34145	0.31 ppb		95
48)	trans-1,3-dichloropropene	14.37	75	32186	0.32 ppb		94
49)	1,1,2-trichloroethane	14.57	97	25707	0.33 ppb		96
51)	Toluene	14.89	92	40986	0.31 ppb	#	83
52)	Methyl Isobutyl Ketone	13.82	43	42286	đqq 08.0		95
53)	Dibromochloromethane	15.35	129	47684	dqq 08.0		91
54)	Methyl Butyl Ketone	15.18	43	36598	0.29 ppb		96
55)	1,2-dibromoethane	15.62	107	41069	0.31 ppb		97
56)	Tetrachloroethylene	16,13	164	28697	0.33 ppb		95
57)	Chlorobenzene	16.86	112	55379	0.31 ppb		88
58)	Ethylbenzene	17.27	91	92529	0.31 ppb		97
59)	m&p-xylene	17.45	91	160464	0.63 ppb		100
60)	Nonane	18.18	43	43730	0.31 ppb		91
61)	Styrene	17.85	104	47576	dqq 0E.0		98
62)	Bromoform	17.54	173	40010	0.30 დგხ		97
63)	o-xylene	17.96	91	76534	0.31 ppb		93
64)	Cumene	18.60		101572	0.32 ppb		99
66)	1,1,2,2-tetrachloroethane	17.96		53717	ರೋಞ 88.0		98
67)	Propylbenzene	19.16		25611	dqq 1E,0	#	1
68)	2-Chlorotoluene	19.13	126	25192	ರ್ಯ 88.0	#	1
69)	4-ethyltoluene	19.32	105	90497m 🖊	0.30 ppb		
70)	1,3,5-trimethylbenzene	19.41	105	83853m 4			
	1,2,4-trimethylbenzene	19.89	105	77387	dqq 18.0		94
	1,3-dichlorobenzene	20.08	146	46758	0.29 ppb		99
73)	benzyl chloride	20.06	91	35829	0.27 ppb		91
74)	1,4-dichlorobenzene	20.16	146	41836	0.29 ppb		99
75)	1,2,3-trimethylbenzene	20.41	105	76513	dqq 16.0		95
	1,2-dichlorobenzene	20.58	146	45300	0.31 ppb		97
	1,2,4-trichlorobenzene	22.76	180 128	11306	0.24 ppb		87 95
	Naphthalene	22.89		31679	0.27 ppb		97
79)	Hexachloro-1,3-butadiene	23.32	225	35411	0.31 ppb		±7 /

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0033109.D A331 1UG.M Thu May 04 11:15:53 2017 MSD1

MS Integration Params: RTEINT.P

Quant Time: Mar 31 21:04:16 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

DataAcq Meth : 1UG_RUN

1. Bromochloromethane	Inte	ernal Standards	R.T.		Response		Units		
35 1,4-difluorobenzene									
System Monitoring Compounds 18.46 95 114097 0.99 ppb 0.00						1.0			
System Monitoring Compounds 18.46 95 114097 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00%			16 92	777	155953				
Spiked Amount	,	1	10.02	117	100000	1.1	o ppo		0.00
Target Compounds 2) Propylene									
Target Compounds									
2) Propyleme	S <u>r</u>	piked Amount 1.000	Range 70	- 130	Recove	ry -	= 99	.00%	
2) Propyleme								O	7
3) Freon 12			1 10	4.7	0011	0 1	c nnh		
6) Vinyl Chloride				0 E	5917	0.3	ro bbo	71.	
6) Vinyl Chloride				φΛ ΦΦ	232// 20/3m	Δ 0.3	re bbn		99
6) Vinyl Chloride				20	304711	y - 0.1	ra bbn		0.4
8) 1,3-butadiene 5.09 39 8893m 0.18 ppb 95 100 Chloroethane 5.36 94 16794 0.17 ppb 95 110 Chloroethane 5.56 45 4334m 0.19 ppb 112 Acrolein 6.01 56 5298 0.21 ppb 88 13) Vinyl Bromide 5.89 106 17806 0.18 ppb 100 14) Freon 11 6.32 101 59840 0.17 ppb 99 15 Acetone 6.15 58 5209 0.20 ppb # 67 16) Pentane 6.68 42 9149 0.17 ppb # 29 17) Isopropyl alcohol 6.40 45 14755m 0.18 ppb 93 19 Freon 113 7.39 101 22230 0.17 ppb 83 19 Freon 113 7.39 101 22230 0.17 ppb 83 19 Freon 113 7.39 101 22230 0.17 ppb 89 200 t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 221 Methylene chloride 7.11 84 9103 0.17 ppb # 91 23 Carbon disulfide 7.24 41 11651 0.17 ppb 80 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 89 20 0.19 ppb 88 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 89 20 0.19 ppb 99 20 0						•			
9) Bromomethane 5.36 94 16794 0.17 ppb 95 10) Chloroethane 5.54 64 5195m 0.18 ppb 11) Ethanol 5.65 45 4344m 0.19 ppb 12) Acrolein 6.01 56 5298 0.21 ppb 88 13) Vinyl Bromide 5.89 106 17806 0.18 ppb 100 14) Freon 11 6.32 101 59840 0.17 ppb 95 15) Acetone 6.15 58 5209 0.20 ppb # 67 16) Pentane 6.68 42 9149 0.17 ppb # 29 17) Isopropyl alcohol 6.40 45 14755m 0.16 ppb 18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb 86 22) Allyl chloride 7.44 76 29034 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 26) 1,1-dichloroethene 9.35 61 14449 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 95 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 38 Carbon tetrachloride 11.70 117 29251 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 96 39 Benzene 11.55 78 29211 0.17 ppb 96 39 Benzene				43	14306				
9) Bromomethane 5.36 94 16794 0.17 ppb 95 10) Chloroethane 5.54 64 5195m 0.18 ppb 11) Ethanol 5.65 45 4344m 0.19 ppb 12) Acrolein 6.01 56 5298 0.21 ppb 88 13) Vinyl Bromide 5.89 106 17806 0.18 ppb 100 14) Freon 11 6.32 101 59840 0.17 ppb 95 15) Acetone 6.15 58 5209 0.20 ppb # 67 16) Pentane 6.68 42 9149 0.17 ppb # 29 17) Isopropyl alcohol 6.40 45 14755m 0.16 ppb 18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb 86 22) Allyl chloride 7.44 76 29034 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 26) 1,1-dichloroethene 9.35 61 14449 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 95 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 38 Carbon tetrachloride 11.70 117 29251 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 96 39 Benzene 11.55 78 29211 0.17 ppb 96 39 Benzene				30	14330				00
10 Chloroethane					0073M	1 0.3	re ppo		0.5
11) Ethanol 5.65 45 4334m 0.19 ppb 88 12) Acrolein 6.01 56 5298 0.21 ppb 88 13) Vinyl Bromide 5.89 106 17806 0.18 ppb 100 14) Freon 11 6.32 101 59840 0.17 ppb 99 15) Acetone 6.15 58 5209 0.20 ppb 67 16) Pentane 6.68 42 9149 0.17 ppb 29 17) Isopropyl alcohol 6.40 45 14755m 0.16 ppb 18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb 89 21) Methylene chloride 7.11 84 9103 0.17 ppb 89 22) Allyl chloride 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 92 25) methyl tert-butyl ether 8.46						1 0.3			30
12) Acrolein				45	2132111	1 0.3			
13) Vinyl Bromide 5.89 106 17806 0.18 ppb 100									0.0
14) Freon 11 15) Acetone 16.32 101 159840 0.17 ppb 99 15) Acetone 6.15 58 5209 0.20 ppb # 67 16) Pentane 6.68 42 9149 0.17 ppb 99 17) Isopropyl alcohol 6.40 45 14755m 0.16 ppb 18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb 89 21) Methylene chloride 7.11 84 9103 0.17 ppb 87 23) Carbon disulfide 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 92 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb 89 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb									
15) Acetone 6.15 58 5209 0.20 ppb # 67 16) Pentane 6.68 42 9149 0.17 ppb # 29 17) Isopropyl alcohol 6.40 45 14755m 0.16 ppb 18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb # 91 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb # 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb # 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 87 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 27786 0.16 ppb 89 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 96 36) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96									
16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 17,04 18) 22230 18) Methylene chloride 18,12) Allyl chloride 18,13) Carbon disulfide 18,14				101	59840				
17) Isopropyl alcohol 6.40 45 14755m 0.16 ppb 18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 32) Chloroform 9.71 83 26592 0.17 ppb 96 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96				28	5209	0.2			
18) 1,1-dichloroethene 7.00 96 9344 0.18 ppb 93 19) Freon 113 7.39 101 22230 0.17 ppb 89 20) t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 96 37) Cyclohexane 11.85 56 12963 0.17 ppb 98 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96					9149	0.7			29
19) Freon 113									
20) t-Butyl alcohol 7.04 59 22290 0.17 ppb # 91 21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.61 62 19328 0.17 ppb 96 34) 1,2-dichloroethane 10.94 97 28019 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96									
21) Methylene chloride 7.11 84 9103 0.17 ppb # 68 22) Allyl chloride 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96									
22) Allyl chloride 7.24 41 11651 0.17 ppb 87 23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96						0.3			
23) Carbon disulfide 7.44 76 29034 0.17 ppb 90 24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 99 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96									
24) trans-1,2-dichloroethene 8.15 61 15274 0.17 ppb 92 25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 96				41	11651	0.3			
25) methyl tert-butyl ether 8.46 73 27786 0.16 ppb 89 26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 96 33) Tetrahydrofuran 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 96						0.1			
26) 1,1-dichloroethane 8.38 63 19013 0.17 ppb 91 27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86					T 7 2 7 4	0.1			
27) Vinyl acetate 8.53 43 28787 0.20 ppb 88 28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86									
28) Methyl Ethyl Ketone 8.85 72 4136 0.14 ppb # 80 29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86				63	19013	0.1	7 ppb		
29) cis-1,2-dichloroethene 9.35 61 14449 0.17 ppb 89 30) Hexane 9.60 57 12497 0.15 ppb 89 31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86				43	28787	0.2			
31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86						0.1	4 ppp	#	
31) Ethyl acetate 9.62 43 28876 0.16 ppb 95 32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86			9.35	61	14449	0.1			
32) Chloroform 9.71 83 26592 0.17 ppb 96 33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1.2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1.1.1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86				57	1247	U - J			
33) Tetrahydrofuran 10.24 42 9740 0.17 ppb 92 34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86						0.3	agg a.		
34) 1,2-dichloroethane 10.61 62 19328 0.17 ppb 96 36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86						0.3	dqq V.		
36) 1,1,1-trichloroethane 10.94 97 28019 0.17 ppb 99 37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86						0.1	agg 7		
37) Cyclohexane 11.85 56 12963 0.17 ppb 89 38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86									
38) Carbon tetrachloride 11.70 117 29251 0.17 ppb 96 39) Benzene 11.51 78 29211 0.17 ppb 86									
39) Benzene 11.51 78 29211 0.17 ppb 86									
- ADI BEATTAIN MARKARAMATIANA 13 AD 1990 A 1990 A 1990 A 1990 A 1990 A 1990 A 1990 A 1990 A 1990 A 1990 A 1990									
		Methyl methacrylate	13.02	41	13355			18	99
41) 1,4-dioxane 12.81 58 6152 0.17 ppb # 52								#	
42) 2,2,4-trimethylpentane 12.82 57 43239 0.17 ppb 89									
43) Heptane 13.14 43 14828 0.16 ppb 96	-	-							
44) Trichloroethene 12.78 130 13911 0.17 ppb 87									
45) 1,2-dichloropropane 12.51 63 11309 0.18 ppb 99	45)			63	11309	0.1	aqq B.		99

MSD1

^{(#) =} qualifier out of range (m) = manual integration A0033110.D A331_1UG.M Thu May 04 11:15:57 2017

MS Integration Params: RTEINT.P
Quant Time: Mar 31 21:04:16 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

^{(#) =} qualifier out of range (m) \approx manual integration (+) = signals summed A0033110.D A331_1UG.M Thu May 04 11:15:57 2017 MSD1

reviewed

Ē

δηαπιτιαιτωπ κεύωτι

MS Integration Params: RTEINT,P

Quant Time: Mar 31 22:13:02 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

Internal Standards	R.T.	QIon	Response C	onc U	nits .	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.55 11.94 16.82		41392 192052 166270	1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	108405 Recovery		ppb 94.	
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene 56) Tetrachloroethylene	4.94 11.69 12.78 16.14	62 117 130 164	8904 19812 9232 10008		dqq	

^{(#) =} qualifier out of range (m) ≈ manual integration (+) = signals summed A0033111.D A331 1UG.M Thu May 04 11:16:01 2017 MSD1

MS Integration Params: RTEINT.P

Quant Time: Mar 31 22:13:36 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Fri Mar 31 21:00:46 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0033106.D

Internal Standards	R.T.	QIon	Response C	onc U	nits D	ev(Min)
1) Bromochloromethane 35) 1,4~difluorobenzene 50) Chlorobenzene-d5	9.55 11.94 16.82	128 114 117	39334 186827 162286	1.00	dqq	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70	95 - 130	106786 Recovery		ррb 95.0	0.00 90%
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene	4.93 11.70 12.79	62 117 130	3087 7584 3902	0.05 0.05 0.05	ggg	Qvalue 89 98 # 23

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0033112.D A331_1UG.M Thu May 04 11:16:04 2017 MSD1

THEATCHOR

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CALIBRATION VERIFICATION

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\A0040602.D Vial: 2 Acq On : 6 Apr 2017 9:31 am Operator: RJP Sample : A1UG_1.0 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu May 04 11:27:28 2017

Response via : Multiple Level Calibration

MS Integration Params: RTEINT.P

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1 I	Bromochloromethane	1.000	1.000	0.0	58	0.00
2 T	Propylene	1.425	1.538			0.00
3 T	Freon 12	8.232	7.850	4.6		0.00
4 T	Chloromethane	1.163	1.228	~5.6		0.00
5 T	Freon 114	6.407		-5.3	63	0.00
6 T	Vinyl Chloride	1.763	1.645		60	0.00
7 T	Butane	1.798	1.735	3.5	62	0.00
8 T	1,3-butadiene	1.165	1.240	-6.4	67	0.00
9 T	Bromomethane	2.375	2,252	5.2	57	0.00
10 T	Chloroethane	0.733	0.732 0.494	1.0	62	0.00
ll T	Ethanol			14.2	52	0.00
12 T	Acrolein	0.604	0.474	21.5	46#	0.00
3.3 T	Vinyl Bromide	2.385	2.040	14.5		0.00
14 T	Freon 11	8.237	10.020	-21.6		0.00
15 T	Acetone	0.645	0.664	-2.9		0.00
16 T	Pentane	1.262	1.246	1.3		0.00
17 T	Isopropyl alcohol	2.143 1.300	2.170	-1.3		0.00
18 T	1,1-dichloroethene	1.300	1.185			0.00
19 T	Freon 113	3.107		1.4	60	0.00
20 t	t-Butyl alcohol	3.171	2.505			0.00
21 T	Methylene chloride	1.268	1.230	3.0		0.00
22 T	Allyl chloride	1.615	1.358	15.9		0.00
23 T	Carbon disulfide	4.058	3.972	2.1	59	0.00
24 T	trans-1,2-dichloroethene	2.189	2.057	6.0	57	0.00
25 T	methyl tert-butyl ether	4.148	3.676			0.00
26 T	1,1-dichioroethane	2,/10	2.632	2.9		0.00
27 T	Vinyl acetate	3.495	3.889			0.00 0.00
28 T	Methyl Ethyl Ketone	0.665	0.614		52 55	0.00
29 T	cis-1,2-dichloroethene	2.077	1.918 1.788	7.7 6.2	55 55	0.00
30 T	Hexane	1.907	1./00	8.6		0.00
31 T	Ethyl acetate	4.254	3.890 3.590			0.00
32 T	Chloroform	3.793 1.421	1.284	9.6		0.00
33 T	Tetrahydrofuran	2.807	2.513	10.5	53	0.00
34 T	1,2-dichloroethane	2.807	2.5.3	10.5	33	0.00
35 I	1,4-difluorobenzene	1.000	1.000		55	0.00
36 T	1,1,1-trichloroethane	0.880	0.890		58	0.00
37 T	Cyclohexane	0.444	0.426			0.00
38 T	Carbon tetrachloride	0.932	0.926	0.6		0.00
39 T	Benzene	0.920	0,911	7. O	58	0.00
40 T	Methyl methacrylate		0.389			
41 T	1,4-dioxane	0.190	0.162	14.7	49#	0.00
42 T	2,2,4-trimethylpentane	1.383	1.364	1.4	57	0.00
43 T	Heptane	0.480	0.462	3.7	55	0.00
44 T	Trichloroethene	0.450	0.443	1.6	58	0.00
45 T	1,2-dichloropropane	0.339	0.348	-2.7	59	0.00
46 T	Bromodichloromethane	0.873	0.877	-0.5	58	0.00
47 T	cis-1,3-dichloropropene	0.559	0.551	1.4	56 57	0.00
48 T	trans-1,3-dichloropropene	0.532	0.524	1.5	57 60	0.00
49 T	1,1,2-trichloroethane	0.407	0.427	-4.9	60	0.00

Page 1

^{(#) =} Out of RangeA0040602.D A331_1UG.M Thu May 04 11:59:46 2017 MSD1

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\A0040602.D Vial: 2 Acq On : 6 Apr 2017 9:31 am Sample : AlUG_1.0 Misc : A331_lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu May 04 11:27:28 2017

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	\$Dev	Area%	Dev(min)
51		Toluene	0.750	0.686	8.5	55	0.00
52	${f T}$	Methyl Isobutyl Ketone	0.780	0.558	28.5	42#	0.00
53	T	Dibromochloromethane	0.917	0.883	3.7	59	0.00
54	T'	Methyl Butyl Ketone	0.702	0.528	24.8	44#	0.00
55		1,2-dibromoethane	0.761	0.740	2.8	58	0.00
56		Tetrachloroethylene	0,529	0.507	4.2	61	0.00
	${f T}$	Chlorobenzene	1.044	0.978	6.3	57	0.00
58	\mathbf{T}	Ethylbenzene	1.750	1.612	7.9	57	0.00
59	${f T}$	m&p-xylene	1.477	1.367	7.4	56	0.00
60		Nonane	0.818	0.751	8.2	55	0.00
61		Styrene	0.919	0.821	10.7	55	0.00
		Bromoform	0.761	0.735	3.4	59	0.00
63	3.	o-xylene	1.424	1.330	6.6	57	0.00
64	T	Cumene	1.851	1.691	8.6	56	0.00
	ន	Bromofluorobenzene	0.682	0.680	0,3		0.00
66	T	1,1,2,2-tetrachloroethane	0.973	0.966	0.7	62	0.00
67	\mathbf{T}	Propylbenzene	0.476	0.460	3.4	58	0.00
68	T	2-Chlorotoluene	0.440	0.428	2.7	59	0.00
69		4-ethyltoluene	1.729	1.571	9.1	54	0.00
70		1,3,5-trimethylbenzene	1.538	1.445	6.0	56	0.00
71		1,2,4-trimethylbenzene	1.434	1.300	9.3	55	0.00
72		1,3-dichlorobenzene	0.902	0.907	-0.6	59	0.00
73		benzyl chloride	0.755	0.754	0.1	59	0.00
74		1,4-dichlorobenzene	0.834	0.822	1.4	60	0.00
75		1,2,3-trimethylbenzene	1,443	1.318	8.7	56	0.00
76		1,2-dichlorobenzene	0.869	0.850	2.2	60	0.00
77		1,2,4-trichlorobenzene	0.257	0.268	-4.3	60	0.00
78		Naphthalene	0.661	0.565	14.5	51.	0.00
79	T	Hexachloro-1,3-butadiene	0.644	0.635	1.4	59	0.00

Quantitation Report (QT

(QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Apr 06 11:05:43 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

		, Oton	Response (Conc U	nits	Dev	(Min)
1) Bromochloromethane			26713	7 00	ppb		0.03
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	17.9	114	121699	1.00	dag		0.02
50) Chlorobenzene-d5	16.83	117	111761	1 00	ppb		0.01
			111,01	1.00	PPD		0.01
System Monitoring Compounds							
65) Bromofluorobenzene	18.4		75986	1.00	ББр		0.02
Spiked Amount 1.000 F	Range 70	- 130	Recovery	/ =	100	.00%	
Target Compounds						0.00	alue
2) Propylene	4,49	41	41087	1.08	****	QV.	85
3) Freon 12	4.57		209693	0.95			98
4) Chloromethane	4.73		32806	1.06			87
5) Freon 114	4.83		180160	1.05	ppp		94
6) Vinyl Chloride	4.97		43942	0.93			93
7) Butane	5.16			0.97	ppo		93 87
8) 1,3-butadiene	5.09		33128m /	1 06			۵,
9) Bromomethane	5.38		23120W / 1	1.06			0.0
10) Chloroethane	5.56		60166 19566	0.95			89
11) Ethanol	5.68			1.00	ppp		91
12) Acrolein	6.02	# Z			તત્વવ		85
13) Vinyl Bromide	5.91		12651	0.78	ದ್ದರ		99
14) Freon 11	6.33	101	54506 267654	0.86	ppp		95
15) Acetone	6.17		17734	1.22	ppp	11	99
16) Pentane	6.69	42	7 / / D#	1.03	ppp	#	78
17) Isopropyl alcohol	6.41	46	33284 57975	0.99			45
18) 1,1-dichloroethene	7.00		31668	1.01	ppp	₩	100
19) Freon 113	7.41						89
20) t-Butyl alcohol	7.05	101 59	81782			11	91
21) Methylene chloride	7.12	59 84	66928	0.79	ppp	#	92
22) Allyl chloride	7.25	Ω÷ 4 ±		0.97	ppo		85
23) Carbon disulfide		41	36285				93
24) trans-1,2-dichloroethene	7.47			0.98			84
25) methyl tert-butyl ether			54946	0.94	agg		93
26) 1,1-dichloroethane			98209	0.89			87
27) Vinyl acetate	8.40		70315		aqq		98
28) Methyl Ethyl Ketone	8.55	4.3	103887 16394	1.11	ppp		91
20) Mectiff Edit Reform	8.87	72	16394	0.92	aqq		98
29) cis-1,2-dichloroethene 30) Hexane			51232	0.92	ppb		95
	9.63		47775	0.94	gqq		89
31) Ethyl acetate 32) Chloroform	9.63			0.91	ggg		98
	9.72		95910	0.95			96
33) Tetrahydrofuran	10.25	42	34290	0.90			87
34) 1,2-dichloroethane	10.63	62	67117	0.90			95
36) 1,1,1-trichloroethane	10.96	97	108277	1.01	qqq		95
37) Cyclohexane	11.87	56	51864	0.96			98
38) Carbon tetrachloride	11.71	117	112693	0.99			98
39) Benzene	11.52	78	110859	0.99			91
40) Methyl methacrylate	13.03	41	47367	0.90			96
41) 1,4-dioxane	12.83	58	19760	0.85		#	61
42) 2,2,4-trimethylpentane	12.84	57	165964	0.99			90
43) Heptane	13.14	43	56271	0.96			95
44) Trichloroethene	12.80		53897	0.98			93
45) 1,2-dichloropropane	12.51	63	42378	1.03	nnh		99

^{(#) =} qualifier out of range (m) = manual integration A0040602.D A331_1UG.M Thu May 04 11:59:53 2017

MSD1

Data File : C:\HPCHEM\1\DATA\A0040602.D Vial: 2 Acq On : 6 Apr 2017 Operator: RJP Sample : Alug_1.0 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 06 11:05:43 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE_Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Q٧	alue
46)	Bromodichloromethane	12.74	 83	106680	1.00 ppb		96
47)	cis-1,3-dichloropropene	13.80	75	67019	0.99 ppb		97
48)	trans-1,3-dichloropropene	14.38	75	63822	dgg 99.0		95
49)	1,1,2-trichloroethane	14.58	97	51916	1.05 ppb		97
51)	Toluene	14.90	92	76639	0.91 ppb	#	83
52)	Methyl Isobutyl Ketone	13.84	43	62379m		"	-
53)	Dibromochloromethane	15.37	129	98703 7	0.96 ppb		93
54)	Methyl Butyl Ketone	15.20	43	59023m 🕏	0.75 ppb		<i>i</i>
55)	1,2-dibromoethane	15.64	107	82733	0.97 ppb		95
56)	Tetrachloroethylene	16.15	164	56610	0.96 ppb		99
57)		16.87	112	109355	0.94 ppb		95
58)	Ethylbenzene	17.27	91.	180188	dqq \$0.0		97
59)	m&p-xylene	17.46	91	305465	1.85 ppb		100
60)	Nonane	18.19	43	83926	0.92 ppb		93
61)	Styrene	17.85	104	91731	તવુવ ૧৪.૦		98
62)		17.56	173	82114	0.97 ppb		100
63)	o~xylene	17.97	91	148687	0.93 ppb		93
64)	Cumene	18.61	105	189034	0.91 ppb		98
66)	1,1,2,2-tetrachloroethane	17.96	83	107989	0.99 ppb		97
67)		19.18	120	51380	0.97 ppb	#	1
68)	2-Chlorotoluene	19.14	126	47884	0.97 ppb	#	1
69)	4-ethyltoluene	19.34	105	175572	0.91 ppb		100
70)	1,3,5-trimethylbenzene	19.42	105	161521	0.94 ppb		99
71)	1,2,4-trimethylbenzene	19.90	105	145281	0.91 ppb		93
72)	1,3-dichlorobenzene	20.09	146	101408	1.01 ppb		97
73)	m .	20.06	91	84267	1.00 ppb		94
74)	1,4-dichlorobenzene	20.17	1.46	91864	0.99 ppb		95
75)	1,2,3-trimethylbenzene	20.41	105	147288	dag 16.0		93
76)	1,2-dichlorobenzene	20.59	146	94991	0.98 ppb		96
	1,2,4-trichlorobenzene	22.76	180	29991	1.05 ppb		99
	Naphthalene	22.91	128	63149	0.86 ppb		94
79)	Hexachloro-1,3-butadiene	23.33	225	70991	0.99 ppb		97

^{(#) =} qualifier out of range (m) ≈ manual integration (+) = signals summed A0040602.D A331_1UG.M Thu May 04 11:59:54 2017

кеулемесь

ľΛī

ллойам поглаттивать

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\A0040702.D Vial: 2 Operator: RJP Acq On : 7 Apr 2017 11:20 am : A1UG_1.0 Inst : MSD #1 Sample Misc : A331 1UG Multiplr: 1.00

: C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title

Last Update : Thu May 04 11:27:28 2017 Response via : Multiple Level Calibration

MS Integration Params: RTEINT.P

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	*Dev		Dev(min)
1.		Bromochloromethane	1.000	1.000	0.0	50	-0.02
2	T	Propylene	1.425	1.469	-3.1		0.00
3	T'	Freon 12	8.232	9.830	-19.4		-0.01
4	T	Chloromethane	1,163	1.259	~8.3		-0,02
5	${f T}$	Freon 114	6.407	7.985	-24.6		-0.03
6	T	Vinyl Chloride	1.763	1.981	-12.4		-0.02
7		Butane	1.798	2.051	-14.1		~0.02
8	\mathbf{T}	1,3-butadiene	1.165	1.307	-12.2		-0.01
9	Т	Bromomethane	2.375	2.910	-22.5	64	-0.01
1.0	\mathbf{T}	Chloroethane	0.733	0.845	-15.3		-0.03
11		Ethanol	0.576	0.568	1.4		-0.04
13		Acrolein	0.604	0.663	-9.8		-0.02
13	T	Vinyl Bromide	2.385	2.836	~18.9		-0.02
14		Freon 11	8.237	10.475	-27.2		0.00
1.5		Acetone	0.645	0.792	-22.8		-0.02
16		Pentane	1.262	1.188	5.9		
17		Isopropyl alcohol	2.143	2.346	-9.5		-0.03
18		1,1~dichloroethene	1.300	1.339	~3.0		-0.02
19	\mathbf{T}	Freon 113	3.107	3.265	-5.1		-0.01
20	Ł	t-Butyl alcohol	3.171	2.625	17.2		-0.02
21		Methylene chloride	1.268	1.314	-3.6		-0.01
22		Allyl chloride	1.615	1.415	12.4		0.00
23		Carbon disulfide	4.058	4.135	-1.9		-0.01
24	ı,Î.	trans-1,2-dichloroethene	2.189	2.150	1.8		-0.02
25	T	methyl tert-butyl ether	4.148	3.833	7.6		-0.02
26	T	1,1-dichloroethane	2.710	2.713	-0.1		-0.02
27	${f T}$	Vinyl acetate	3.495	3.170	9.3		-0.02
28	${f T}$	Methyl Ethyl Ketone	0.665	0.594	10.7		-0.03
29	\mathbf{T}	cis-1,2-dichloroethene	2.077	2.006	3.4		-0.02
30	${f T}$	Hexane	1.907	1.835	3.8		-0.02
31	Ί,	Ethyl acetate	4.254	3.961	6.9		~0.02
32	T	Chloroform	3.793	3.922	-3.4		0.00
33	${f T}$	Tetrahydrofuran	1.421	1.277	10.1		-0.02
34	T	1,2-dichloroethane	2.807	2.738	2.5	50	-0.01
35		1,4-difluorobenzene	1.000	1.000	0.0	45#	0.00
36	${f T}$	1,1,1-trichloroethane	0.880	1.005	-14.2	54	-0.01
37	ı,	Cyclohexane	0.444	0.448	-0.9		0.00
38	T	Carbon tetrachloride	0.932	1.012	-8.6		
39	T	Benzene	0.920	1.006	-9.3		0.00
40	${f T}$	Methyl methacrylate	0.431	0.421	2.3		-0.01
41	T	1,4-dioxane	0.190	0.186	2.1	46#	0.00
42	T	2,2,4-trimethylpentane	1.383	1.522	-10.1	52	0.00
43	T	Heptane	0.480	0.531	~10.6	51	0.00
44	T	Trichloroethene	0.450	0.502	-11.6	54	0.00
45	Ţ	1,2-dichloropropane	0.339	0.391	-15.3	54	0.00
46	T	Bromodichloromethane	0.873	0.977	-11.9	52	0.00
47	T	cis-1,3-dichloropropene	0.559	0.609	-8.9	51	-0.01
48	T	trans-1,3-dichloropropene	0.532	0.577	-8.5	52	0.00
	${f T}$	1,1,2-trichloroethane	0.407	0.462	-13.5	53	0.00

(#) = Out of Range A0040702.D A331_1UG.M Thu May 04 12:01:41 2017

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\A0040702.D Vial: 2 Acq On : 7 Apr 2017 11:20 am Sample : AlUG_1.0 Misc : A331_lUG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu May 04 11:27:28 2017

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF			Dev(min)
51	Ţ	Toluene	0.750	0.788	-5.1	50#	0.00
52	Ť	Methyl Isobutyl Ketone	0.780	0.724	7.2	43#	-0.02
53	${f T}$	Dibromochloromethane	0.917	1.003	-9.4	53	0.00
54	T	Methyl Butyl Ketone	0.702	0.499	28.9	33#	-0.02
55	${f T}$	1,2-dibromoethane	0.761	0.829	-8.9	52	0.00
56	T'	Tetrachloroethylene	0.529	0.570	-7.8	54	0.00
57	Т	Chlorobenzene	1.044	1.168	-11.9	54	0.00
58	T	Ethylbenzene	1.750	1.875	-7.1	53	0.00
59	T	m&p-xylene	1.477	1.572	-6.4	51.	0.00
60	\mathbf{T}	Nonane	0.818	0.866	-5.9	51	0.00
61	T	Styrene	0.919	0.969	-5.4	51.	0.00
62	${f T}$	Bromoform	0.761	0.848	-11.4	54	0.00
63	$^{\mathrm{T}}$	o-xylene	1.424	1.535	-7.8	52	0.00
64	${f T}$	Cumene	1.851	1.947	-5.2	5 L	0.00
65	ន	Bromofluorobenzene	0.682	0.628	7.9	43#	0.00
66	T	1,1,2,2-tetrachloroethane	0.973	1.144	-17.6	58	0.00
67	\mathbf{r}	Propylbenzene	0.476	0.524	-10.1	53	0.00
68	T	2-Chlorotoluene	0.440	0.474	-7.7	52	0.00
69	Ŧ	4-ethyltoluene	1.729	1.869	-8.1	51	0.00
70	T	1,3,5-trimethylbenzene	1.538	1.571	-2.1	48#	0.00
71		1,2,4-trimethylbenzene	1.434	1.465	-2.2	49#	0.00
72		1,3~dichlorobenzene	0.902	1.068	-18.4	56	0.00
73	_	benzyl chloride	0.755	0.804	-6.5	50	0.00
74	\mathbf{T}	1,4-dichlorobenzene	0.834	0.944	-13.2	54	0.00
75		1,2,3-trimethylbenzene	1.443	1.458	-1.0	49#	0.00
76		1,2-dichlorobenzene	0.869	0.976	-12.3	55	0.00
77		1,2,4-trichlorobenzene	0.257	0.273	-6.2	49#	0.00
78	${f T}$	Naphthalene	0.661	0.561	15.1	40#	0.00
79	T	Hexachloro-1,3-butadiene	0.644	0.689	-7.0	51	0.00

Data File : C:\HPCHEM\1\DATA\A0040702.D

Vial: 2 Acq On : 7 Apr 2017 11:20 am Sample : AlUG 1.0 Misc : A331 1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P

Quant Time: Apr 07 12:17:46 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc T	nits	Dev	(Min)
1) Bromochloromethane	9.55		23210m P				~ ~ ~ ~ ~
35) 1,4-difluorobenzene		114	8031E *3570⊞ (1.00	dqq		0.01
50) Chlorobenzene-d5	16.83		99215 88822	3.00	dqq (0.01
	20.00	·	00026	Ι. Ο Ο	PPN		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.46	95	55801	0.92	daa		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery				
7 7			•	•			
Target Compounds						Qv	alue
2) Propylene	4.48		34098		dąą		77
3) Freon 12	4.56	85	²²⁸¹⁵⁷ A	1.19	ppb		99
4) Chloromethane	4.71	50	29211m 💋		dqq		
5) Freon 114	4.82	85	185325m	1.25	dqq		
6) Vinyl Chloride	4.95	62	45978	1.12	ppb		88
7) Butane	5.13	43	47604	1.14	dqq		91
8) 1,3-butadiene	5.08	39 94	30333m	1.12			
9) Bromomethane	5.36	94		1.23	dqq		87
10) Chloroethane	5.53			1.15	dqq	##	81
11) Ethanol	5.64	45		0.99			
12) Acrolein	6.00	56		1.10	dqq		83
13) Vinyl Bromide	5.89	106	65815	1.19	$_{\mathrm{pp}}$		94
14) Freen 11	6.32	101	243134m 🛴	1.27	dąą		
15) Acetone	6.15	58	18392	1.23	ppb	#	773
16) Pentane	6.69	4.2	27574	0.94	$_{\mathrm{dqq}}$	#	32
17) Isopropyl alcohol	6.38	45		1.09		#	100
18) 1,1-dichloroethene	6.98	96	31071	1.03	bbp		95
19) Freon 113	7.40	101	75784 60918	1.05			90
20) t-Butyl alcohol	7.03	59	60918	0.83		#	90
21) Methylene chloride	7.11	84	30497	1.04		#	74
22) Allyl chloride	7.24	41	32834	0.88			92
23) Carbon disulfide	7.46	76 61	95964	1.02			82
24) trans-1,2-dichloroethene	8.14			0.98	dqq		94
25) methyl tert-butyl ether 26) 1,1-dichloroethane		73	88965	0.92			89
26) 1,1-dichloroethane 27) Vinyl acetate	8.38	63	62978	1.00			94
28) Methyl Ethyl Ketone	8.54	43	73585m /	0.91	ppb		
29) cis-1,2-dichloroethene	8.83	72	13784	0.89	ppp		96
30) Hexane		9.T	46549	0.97	dqq		97
31) Ethyl acetate	9.61	⊅ / 4 ⊃	42588 91942	0.96	ppp		88
32) Chloroform	9.62	43	91942	0.93	dąą		97
33) Tetrahydrofuran	9.71	83	91036	1.03	bbp		97
34) 1,2-dichloroethane	10.23	42	29641	0.90	ppp		89
36) 1,1,1-trichloroethane	10.62	62	63539	0.98			98
37) Cyclohexane	10.95	97 5 c	99692	1.14			95
38) Carbon tetrachloride	11.87	56	44460	1.01			96
39) Benzene	11.71	117	100429	1.09			97
40) Methyl methacrylate	11.52	78 43	99793	1.09			90
41) 1,4-dioxane	13.02 12.82	41	41807	0.98	bbp	11.	96
42) 2,2,4-trimethylpentane	12.83	58 57	18454	0.98		#	62
43) Heptane	13.14	57 43	151031	1.10			88
44) Trichloroethene	12.79	43 130	52704	1.11			96
45) 1,2-dichloropropane	12.50	63	49825 38777	1.12			93
**				1.15	FFr	.	97

^{(#) =} qualifier out of range (m) = manual integration A0040702.D A331_1UG.M Thu May 04 12:01:45 2017

MSD1

Page 1

Data File: C:\HPCHEM\1\DATA\A0040702.D
Acq On : 7 Apr 2017 11:20 am
Sample : AlUG_1.0
Misc : A331_1UG Vial: 2 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P Quant Time: Apr 07 12:17:46 2017

Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

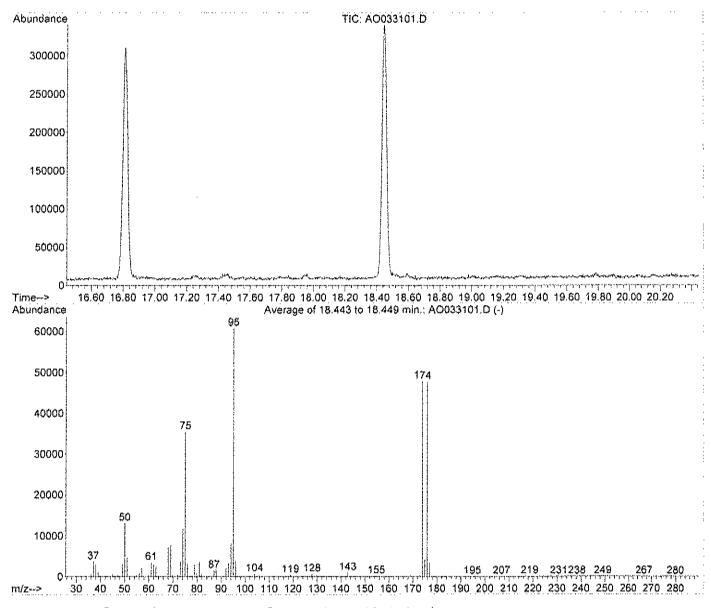
	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	Bromodichloromethane	12.74	83	96927	1.12 ppb		97
47)	cis-1,3-dichloropropene	13.79	75	60416	1.09 დებ		96
48)	trans-1,3-dichloropropene	14.38	75	57284	1.09 ppb		93
49)	1,1,2-trichloroethane	14.58	97	45788	1.13 ppb		96
51)	Toluene	14.90	92	69963	1.05 ppb	#	79
52)	Methyl Isobutyl Ketone	13.82	43	64328	dqq 60.0		90
53)	Dibromochloromethane	15.36	129	89092	1.09 ppb		90
54)	Methyl Butyl Ketone	15.18	43	44289	0.71 ppb		91
55)	1,2-dibromoethane	15.64	107	73621	1.09 ppb		92
56)	Tetrachloroethylene	16.14	164	50632	1.08 ppb		98
57)	Chlorobenzene	16.87	112	103742	1.12 ppb		98
58)	Ethylbenzene	17,27	91	166527	1.07 ppb		100
59)	m&p-xylene	17.47	91	279261	2.13 ppb		3.00
60)	Nonane	18.19	43	76907	1.06 ppb		95
61)	Styrene	17.85	104	86100	1.05 ppb		92
62)	Bromoform	17.56	173	75313	1.11 ppb		100
63)	o-xylene	17.97		136347	1.08 ppb		92
64)	Cumerie	18.60		172917	1.05 დებ		100
66)	1,1,2,2-tetrachloroethane	17.96		101634	1.18 ppb		97
67)	Propylbenzene	19.17		46509	1.10 ppb	#	1
68)	2-Chlorotoluene	19.14		42111	1.08 ppb	#	1.
69)	4-ethyltoluene	19.33		166042	1.08 ppb		99
70)		19.42		139523	1.02 ppb		97
71)	1,2,4-trimethylbenzene	19.90		130111	1.02 ppb		95
72)	1,3-dichlorobenzene	20.09		94874	1.18 ppb		97
73)	benzyl chloride	20.06		71400	1.06 ppb		93
74)		20.17		83841	1.13 ppb		98
75)		20.41		129500	1.01 ppb		96
75)	1,2-dichlorobenzene	20.59		86684	1.12 ppb		98
77)	1,2,4-trichlorobenzene	22.76		24245	1.06 ppb		95
78)		22.90		49826	0.85 ppb		92
79)	Hexachloro-1,3-butadiene	23.32	225	61181	1.07 ppb		96

^(#) = qualifier out of range (m) = manual integration (+) = signals summed Thu May 04 12:01:45 2017 A0040702.D A331_1UG.M

xevlewed,

7

guantitation keport

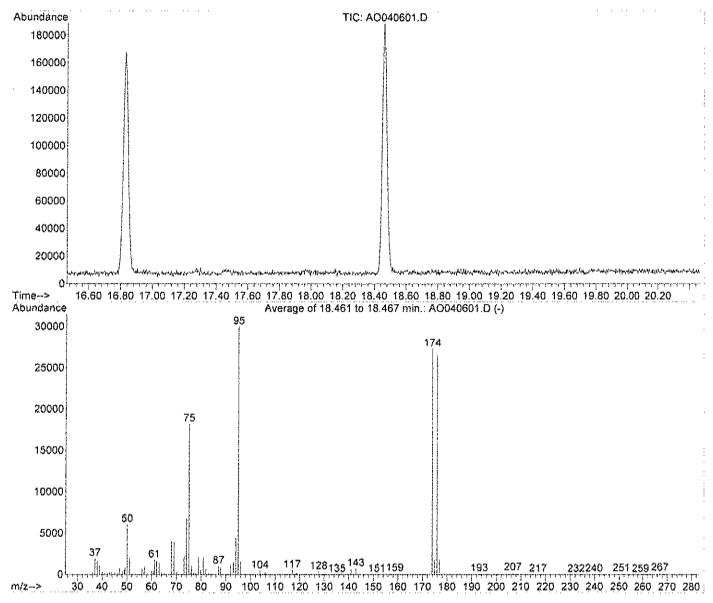

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW DATA

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

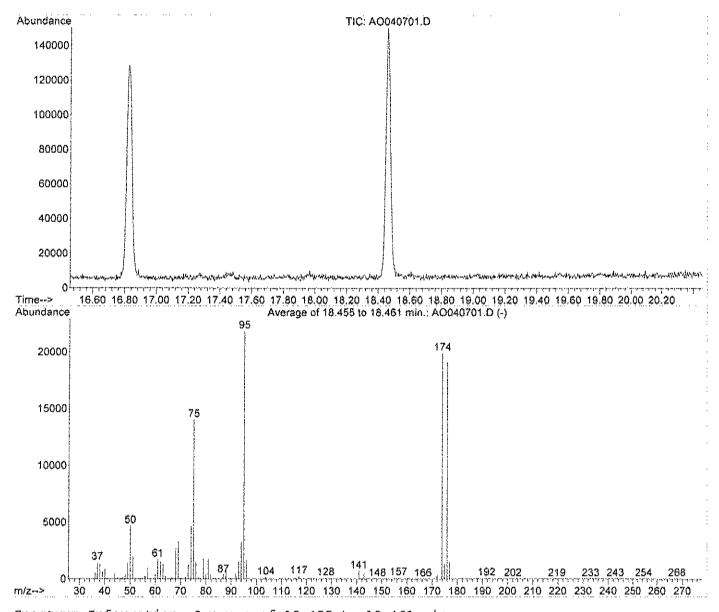


Spectrum Information: Average of 18.443 to 18.449 min.

Target Mass	Rel. to	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
50	95	8	40	21.6	13135	PASS
75	95	30	66	58.4	35541	PASS
95	95	100	100	100.0	60837	PASS
96	95	5	9	6.3	3857	PASS
1.73	174	0.00	2	0.7	324	PASS
174	95	50	120	78.6	47805	PASS
175	174	4	9	8.5	4060	PASS
176	1.74	95	101	99.4	47501	PASS
177	176	5	9	7.0	3306	PASS

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration



Spectrum Information: Average of 18.461 to 18.467 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn∜	Raw Abn	Result Pass/Fail
Ī	50	95	8	40	20.2	6069	PASS
İ	75	95	30	66	60.7	18221	PASS
	95	95	100	100	100.0	30010	PASS
	96	95	5	9	5.3	1590	PASS
	173	174	0.00	2	0.0	0	PASS
	174	95	50	120	91.1	27352	PASS
1	175	174	4	9	6.7	1838	PASS
-	176	174	95	101	97.5	26658	PASS
	3.77	176	5	9	6.6	1750	PASS
_							

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.455 to 18.461 min.

	Target Mass	Rel. to Mass	Lower Limit*	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	8	40	21.5	4711	PASS !
ĺ	75	95	30	66	64.2	14056	PASS
	95	95	100	100	100.0	21885	PASS
	96	95	5	9	7.7	1679	PASS
}	173	174	0.00	2	0.0	0	PASS
1	174	95	50	120	91.1	19946	PASS
1	175	174	4	9	7.2	1427	PASS
İ	1.76	174	95	1.01.	96.0	19150	PASS
	177	176	5	9	8.1	1550	PASS

A0040701.D A331 1UG.M

Thu May 04 12:01:33 2017 MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW QC DATA

ANALYTICAL OC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

Date: 04-May-17

LaBella Associates, P.C. CLIENT:

C1704014 Nork Order: 691 St Paul Street Project:

Qual %RPD RPDLimit SeqNo: 141659 RunNo: 12114 LowLimit HighLimit RPD Ref Val Analysis Date: 4/6/2017 Prep Date: %REC TestCode: 0.25CT-TCE- Units: ppbV SPK Ref Val SPK value TestNo: TO-15 0.15 0.15 0.040 0.15 집 Batch ID: R12114 Result < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.040 < 0.040 SampType: MBLK Sample ID AMB1UG-040617 trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1, 1-Dichloroethene 77777 Trichloroethene Chloroethane Vinyl chloride Client ID: Analyte

Sample ID AMB1UG-040717	SampType: MBLK	TestCoc	TestCode: 0,25CT-TCE- Units: ppbV	Units: ppbV		Prep Date:			RunNo: 12118	18	
Client ID: 22222	Batch ID: R12118	Test	Festivo: TO-15		۹.	Analysis Date: 4/7/2017	477201		SeqNo: 141730	730	
Analyte	Result	PQE	SPK value SPK Ref Val	≫K Ref Val	%REC	LowLimit	≺ighLimi≹	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1-Dichloroethene	< 0.15	0.15					ı				
Chloroethane	< 0.15	0,15									
cis-1,2-Dicitioroethene	< 0.15	0.15									
frans-1,2-Dichloroethene	< 0.15	0.15									
Trichloroethene	< 0.040	0.040									
Vinyt chloride	< 0.040	0.040									

Estimated Value above quantitation range ப இ Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected Ç/J Qualifiers;

Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded RPD oatside accepted recovery limits r &

Data File : C:\HPCHEM\1\DATA\A0040604.D
Acq On : 6 Apr 2017 10:47 am
Sample : AMB1UG-040617
Misc : A331_1UG Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:18:44 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83	128 114 117	26038 118374 102379	1.00 1.00 1.00	dąą	0.02 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	63192 Recovery	0.90	ppb 90.00%	0.01
Target Compounds					QV	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0040604.D A331 1UG.M Thu May 04 11:41:29 2017

MS Integration Params: RTEINT.P

Quant Time: Apr 12 08:33:52 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.55 11.95 16.82	128 114 117	21100 92197 83384	1.00 1.00 1.00	ರ್ಥರ	0.01 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	48987 Recovery	0.86	ppb 86.00	0.00
Target Compounds					Q	zalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040704.D A331_1UG.M Thu May 04 11:41:46 2017 MSD1

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1704014 Work Order: 691 St Paul Street

Project:

TestCode: 0.25CT-TCE-VC

Sample ID C1704014-001A MS	SampType: MS	TestCor	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:			RunNo: 12114	14	
Client ID: 691-819-14Q-1		Test	Festivo: TO-15		∢	Analysis Date: 4/6/2017	4/6/2017		SeqNo: 141726	726	
Analyte	Resuit	Pal	SPK value S	SPK Ref Val	%REC	LowLimit Hig	HighLimit RPD Ref Val	Ref Vai	%RPD	RPDLimit	Quai
4 4 Dishlorrodhood	0.9100	0.15	+	0	91.0	70	130				
	1040	0.55	400	φ	\$	70	130				
Chloroethans cir. 1.3 Dichlomothans	1230	0.15	-	0.33	90.0	70	130				
Claritz-Dioling octions	0056.6	0.15	-	0	95.0	70	130				
(agis-t,d-Diolatoros	1.390	0.040		0.4	0.66	70	130				
vind chloride	1.030	0.040	\$ ~~	0	103	70	130				
Campo ID CATOMAA 0048 US	SamoType: MSD	TestCo	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date:			RunNo: 12114	14	
Clear ID: 691-819-IAQ-1		Test	TestNo: TO-15		*****	Analysis Date:	4/6/2017		SegNo: 141727	1727	
o dyland	Resul	점	SpK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	Ref Val	%RPD	RPDLimit	Qual
ork pend	1 000	0.55	qu	0	100	22	130	0.91	9.42	30	
1,1-Dichiproethene	1.646	2. C	•	0	‡ 0 ‡	70	130	\$ O.5	0	8	
Chloroethane	1.350	5 7 7		0.33	98.0	70	130	1,23	7.06	30	
cis-1,2-Dichtoroethane	07010	; c	. 44	O	97.0	70	130	0.95	2.08	30	
trans-1,2-3,chloroemene	1 370	0.00	•	0.4	97.0	0.7	130	1.39	1.45	30	
Trichloroethene Views chloride	1.030	0.040	-	0	103	70	130	1.03	0	33	
VHIST GILDENA											

Page I of I Holding times for preparation or analysis exceeded RPD outside accepted recovery limits Ξ κ Estimated Value above quantitation range Not Detected at the Limit of Detection Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected Qualifiers:

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:19:02 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.56 11.95 16.83		26903 116940 105999	1.00	dqq dqq dqq		0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.47 Range 70	95 - 130	69782 Recovery			* 00 <i>&</i>	0.02
Target Compounds						Qva	alue
6) Vinyl Chloride	4.94	62	48685	1.03	dqq		88
10) Chloroethane	5.54	64	20446	1.04	dqq	#	73
18) 1,1-dichloroethene	6.99	96	31823	0.91	ppp	#	87
24) trans-1,2-dichloroethene	e 8.1 <i>6</i>	61	55866	0.95	dqq		93
29) cis-1,2-dichloroethene	9.36	61	68956		ppb		95
44) Trichloroethene	12.79	130	73147	1.39	dqq		91

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO040622.D A331_1UG.M Thu May 04 11:41:36 2017 MSD1

Data File : C:\HPCHEM\1\DATA\A0040623.D

Acq On : 6 Apr 2017 11:26 pm

Sample : C1704014-001A MSD

Misc : A331_1UG Vial: 23 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A331_1UG.RES Quant Time: Apr 07 07:19:03 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc (nits	Dev((Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.57 11.95 16.83		26299 120898 106126	1.00	dqq (dqq (0.03 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.46 Range 70		71496 Recover			. ००४	0.01
Target Compounds						Qva	ılue
6) Vinyl Chloride	4.94	62	47809	1.03	dqq 8		87
10) Chloroethane	5.54	64	20007	1.04	dqq I	#	79
18) 1,1-dichloroethene	7.00	96	34130	1.00	dqq (94
24) trans-1,2-dichloroethene	8.16	61	55898	0.97	, bbp		97
29) cis-1,2-dichloroethene	9.36	61	71906	1.32	dqq S		95
44) Trichloroethene	12.79	130	74624	1.37	dqq 7		92

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040623.D A331_1UG.M Thu May 04 11:41:39 2017 MSD1

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT

C1704014 Work Order:

Catalog State of the Contract	SampType: LCS	TestCoo	TestCode: 0.25CT-TCE- U	Units: ppbV		Prep Date:			RunNo: 12114		
Client ID: ZZZZZ	Batch ID: R12114	Testh	TesiNo: TO-15		-4.	Analysis Date:	4/6/2017	P	SeqNo: 141660		
Analyte	Result	Pol	SPK value SPK P	SPK Ref Val	%REC	LowLinia H	HighLimit	RPD Ref Val	%RPD RP[RPDLimi	Oural
1.1-Dichloroethene	0.9700	0.15	ţ	0	97.0	70	130				
Chloroethane	1.090	0.15	***	0	109	70	130 051				
cis-1.2-Dichlaroethene	0.9700	0.15	-	0	97.0	70	130				
trans-1,2-Dichloroethene	0.9500	0.15	-	0	95.0	70	130				
Frichloroethene	0.9700	0.040	,	¢	97.0	7.0	130				
Vinyl chloride	0.9708	0.040	u jonu	0	97.0	70	130				
Sample ID ALCS1UG-040717	SampType: LCS	TestCoc	TestCode: 0.25CT-TCE- U	Units: ppbV		Prep Date:			RunNo: 12118		
Client ID: ZZZZZ	Batch ID: R12118	TestN	Vo: TO-15		7	Analysis Date:	4772017	**	SeqNo: 141731		
Analyle	Result	PQ	SPK value SPK	SPK Ref Val	%REC	LowLimit	HighLimií	RPD Ref Val	%RPD RPI	RPDLimit	Qual
1 %-Dichlorcethene	0.9900	0.15	*	o	99.0	70	130				
Chloroethane	1.180	0.15	•	0	118	70	130				
cis-1.2-Dichloroethene	1.000	0.15	-	0	100	20	130				
frans-1, 2-Dichloroethene	0.9800	0.15	,	Ó	98.0	70	130				
Trichloroethene	1:060	0.040		٥	106	7.0	130				
Vinyi chloride	1.150	0.040	v	0	115	70	130				
Sample ID ALCS1UGD-040617	7 SampType: LCSD	TestCor	de: 0.25CT-TCE-	Units: ppbV		Prep Date:			RunNo: 12114		
Client ID: ZZZZZ	Batch ID: R12114	TestN	No: TO-15			Analysis Date:	4/6/2017	-	SeqNo: 141661		
Analyte	Result	200	SPK value SPK	SPK Ref Val	%REC	LowLinsit	HighLimit	RPD Ref Val	%RPD RP	RPDLimit	Qual
1 1-Dichloroefflere	0.9900	0.15	-	0	99.0	70	130	0.97	2.04	30	
Chioroethane	1.000	0.15	-	0	92	70	130	1.09	8.61	99	
Qualifiers: Results repo	Results reported are not blank corrected		E Estimated Va	Estimated Value above quantitation range	Itiliztion and	ıâ	# 4	Holding times for RPD outside wax	Holding times for preparation or analysis exceeded RPD ourside accepted recovery limits	is exceede	79
. Analyte deta	Analyte detected below glabilitation timu. Snike Recovery quiside accepted recovery limits	imis								Pa	Page 1 of 2

Sample ID ALCS1UGD-040617	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date	نة		RunNo: 12114	114	
Client ID: ZZZZZ	Batch ID: R12114	Test	TestNo: TO-15			Analysis Date:	e: 4/6/2017	7	SeqNo: 141661	1661	
Analyte	Result	POL	SPK value Si	SPK Ref Val	%REC	LowLimit	Hightimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-Dichloroethene	0.9600	0.15		¢	96.0	70	130	76.0	1.04	99	
trans-1,2-Dichloroethene	0.9800	0.15	₹***	0	98.0	70	130	0.95	3.11	33	
Trichloroethene	1,000	0.040	•	0	100	70	130	0.97	3.05	30	
Viny! chloride	1.050	0.040	**	Ç	106	70	130	0.97	8.87	30	
Sample ID ALCS1UGD-040717 SampType: LCSD	SampType: LCSD	TestCor	TestCode: 0.25CT-TCE- Units: ppbV	Units: ppbV		Prep Date	di		RunNo: 12118	118	
Client ID: ZZZZZ	Batch ID: R12118	Test	TestNo: TO-15			Analysis Date:	e: 4/8/2017	1	SegNo: 141732	1732	
Analyte	Result	POL	SPK value Si	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dicfiloroethene	1.080	0.15	1	0	108	7.0	130	0.99	8.70	99	
Chloroethane	1.180	0.15	-	ф	<u>1</u>	70	130	7.18	0	30	
cis-1,2-Dichloroethene	1.120	0.15	-	0	17.	70	82	-	11.3	33	
trans-1,2-Dichloroethene	1.070	0.15	-	0	107	70	130	0.98	8.78	30	
Trichloroethene	1.100	0.040	-	O	110	70	130	1.06	3.70	30	
Vinyl chloride	1.240	0.045	-	0	124	70	130	1.15	7.53	33	

TestCode: 0.25CT-TCE-VC

LaBella Associates, P.C.

691 St Paul Street C1704014

Work Order: CLIENT:

Project:

Qualifiers:	, .	Results reported are not blank corrected	Qualifiers: Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded	H Holding times for preparation or analysis exceeded
	- %	Anayde detected below quantitation timit Spike Recovery outside accepted recovery limits	NO Delected at the Limit of Detection	K KFJ OHISIGE ACCEPTED TECOVETY HITHS Page 2 of 3

Data File : C:\HPCHEM\1\DATA\A0040603.D Vial: 3 Acq On : 6 Apr 2017 10:10 am Operator: RJP Sample : ALCS1UG-040617 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:18:43 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

_						
Internal Standards	R.T.	QIon	Response C	one t	Inits	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene 	9.56	128	26450	1.00		0.02
	11.95	114	123600	1.00) ppb	
50) Chlorobenzene-d5	16.83	117	109377	1.00	dqq (0.01
Custom Mondtowing Compounds						
System Monitoring Compounds 65) Bromofluorobenzene	18.46	95	71003	0.05	nnh	0.01
	Range 70					.00%
opared amount a coo	wande to		*****	_	~~	
Target Compounds						Qvalue
2) Propylene	4.49	41	40888	1.08	dqq	97
3) Freon 12	4.56	85	251398 .	7 3 5	dqq	97
4) Chloromethane	4.72	50	35411m	1,15	ppb	
5) Freon 114	4.83	85	166226		dag i	
6) Vinyl Chloride	4.95		45262		ppb	
7) Butane	5.15				dag	
8) 1,3-butadiene	5.10	39	33934m 💋	1.10	dag (
9) Bromomethane	5.37	94	68097	1.08	dवृद्	90
10) Chloroethane	5.55	64	21194	1.09	dag (93
11) Ethanol	5.66	4.5	13609	0.89	daa (
12) Acrolein	6.01	45 56	፣ 37ጠ ዓ	0.86	dqq	
13) Vinyl Bromide	5.90	1.06	68500		ppb	
14) Freon 11	6.33	101	216910		dag	
15) Acetone	6.15	58	18471	1.08	ppb	
16) Pentane	6.70	58 42	18471 32579	0.98	dqq	
17) Isopropyl alcohol			59472	1.05	dqq	
18) 1,1-dichloroethene	6.99	96		0.97	bbp	
19) Freon 113	7 41	7 / 7 / 7			ppb	91
20) t-Butyl alcohol	7.03	101 59	81489 81168	0.97	ppb	
21) Methylene chloride	7.12	84	32341		dqq	
22) Allyl chloride	7.24	41	39902		ppb	
23) Carbon disulfide	7.47				dqq	
24) trans-1,2-dichloroethene			106791 54775 103728	0.95	ppb	
25) methyl tert-butyl ether		77.3	103728	0.95	ppb	
26) 1,1-dichloroethane	8.38	63	69940		ppb	
27) Vinyl acetate	8.54	4.3	69940 107835		ďqq	
28) Methyl Ethyl Ketone	8.84	72	16993		dqq '	
29) cis-1,2-dichloroethene	9.36	61	53336 47571 108734	0.97	ďąg	
30) Hexane	9.62	57	47571	0.94	dqq	
31) Ethyl acetate	9.62	43	108734	0.97	dgg	
32) Chloroform	9.71	83	98677	0.98	dqq	
33) Tetrahydrofuran	10.23	42	34525		dqq:	86
34) 1,2-dichloroethane	10.62	62	71589		dqq	98
36) 1,1,1-trichloroethane	10.95	97	108201		dag	95
37) Cyclohexane	11.86	56	52233		dqq	98
38) Carbon tetrachloride	11.71	117	112797		dqq	99
39) Benzene	11.52	78	111117		dqq	92
40) Methyl methacrylate	13.02	41	48236		dqq .	94
41) 1,4-dioxane	12.82	58	22028		dqq	# 57
42) 2,2,4-trimethylpentane	12.84	57	167978		dqq	90
43) Heptane	13.14	43	56488		dqq	95
44) Trichloroethene	12.79		53930		ď ppb	89
45) 1,2-dichloropropane	12.51	63	42172		dqq	100

(#) = qualifier out of range (m) = manual integration A0040603.D A331 1UG.M Thu May 04 11:41:25 2017

MSD1

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:18:43 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qv.	alue
461							
46)	Bromodichloromethane	12.74	83	108252	1.00 ppb		98
47)	cis-1,3-dichloropropene	13.79	75	69338	1.00 ppb		97
48)		14.38	75	64133	0.98 ppb		95
49)	1,1,2-trichloroethane	14.58	97	51263	1.02 ppb	.,	100
51)	Toluene	14.90	92	78308	0.96 ppb	#	82
52)	Methyl Isobutyl Ketone	13.83	43	6841.6	ರ್ಇಇ 08.0		95
53)	Dibromochloromethane	15.36	129	100792	1.01 ppb		93
54)	Methyl Butyl Ketone	15.19	43	53361m 🖋			
55)	1,2-dibromoethane	15.64	107	84703	1.02 ppb		98
56)	Tetrachloroethylene	16.15	164	55443	0.96 ppb		96
57)	Chlorobenzene	16.88	112	113693	1.00 ppb		98
58)	Ethylbenzene	17.27	91	183764	0,96 ppb		100
59)	m&p-xylene	17.47	91	314573	1.95 ppb		99
60)	Nonane	18.19	43	85662	0.96 ppb		94
61)	Styrene	17.85	104	95512	0.95 ppb		99
62)	Bromoform	17.56	173	82565	0.99 ppb		99
63)	o-xylene	17.97	91	148340	0.95 ppb		97
64)	Cumerie	18.60	105	199558	dqq ee.0		99
66)	1,1,2,2-tetrachloroethane	17.96	83	112277	1.06 ppb		96
67)	Propylbenzene	19.17	120	53242	1.02 ppb	#	1.
68)	2-Chlorotoluene	19.14	126	47557	0.99 ppb	#	1
69)	4-ethyltoluene	19.33	105	186873	0.99 ppb		100
70)	1,3,5-trimethylbenzene	19.42	105	161548	0.96 ppb		99
71)	1,2,4-trimethylbenzene	19.90	105	154106	0.98 ppb		95
72)	1,3-dichlorobenzene	20.09	1.46	106249	1.08 ppb		99
73)	benzyl chloride	20.07	91	97783	1,18 ppb		95
74)	1,4-dichlorobenzene	20.17	146	95059	1.04 ppb		98
75)	1,2,3-trimethylbenzene	20.41	105	151247	0.96 ppb		95
76)	1,2-dichlorobenzene	20.59	146	98338	1.04 ppb		97
	1,2,4-trichlorobenzene	22.76	180	31814	1.13 ppb		92
	Naphthalene	22.91	128	73959	1.02 ppb		94
79)	Hexachloro-1,3-butadiene	23.32	225	74843	1.06 ppb		95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040603.D A331_lUG.M Thu May 04 11:41:26 2017 MSD1

ramar nay

įζ

תחמורורטרוחוו צבלחדר

Data File : C:\HPCHEM\1\DATA\A0040703.D

Vial: 3 Acq On : 7 Apr 2017 12:00 pm Sample : ALCS1UG-040717 Operator: RJP Inst : MSD #1 Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT, P

Quant Time: Apr 12 08:33:43 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R T.	QIon	Response (ີດກດ II	nire	Detr	(Mira)
 Bromochloromethane 	9.55	128	22420	1.00	dqq		0.00
35) 1,4-difluorobenzene	11.95	114	98698	1.00	dag		0.01
50) Chlorobenzene-d5	16.83	117	86489	1.00	dqq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.46						0.01
Spiked Amount 1.000	Range 70	- 130	Recovery	<i>y</i> =	97	.00%	
Target Compounds						Oses	alue
2) Propylene	4.48	41	33409	1.05	****	200	76
3) Freon 12	4.56	85		1.19	رمم		99
4) Chloromethane	4.73	50	30609m 🖟	1.17	ppb		حی بی
5) Freon 114	4.82	85	30609m (/ 179639m	1.25	daa		
6) Vinyl Chloride	4.95	62	45445	1.15	dag		94
7) Butane	5.15	4.3	44744	7.17			89
8) 1,3-butadiene	5.09	39	30908m	1.18			
9) Bromomethane	5.09 5.37	39 94	62523	1.17			89
10) Chloroethane	5.54	64	19371	1.18			83
11) Ethanol	5.65	45		1.14		•"	88
12) Acrolein	6.01	56	12973	0.96			92
13) Vinyl Bromide	5.89	56 106	63758	1.19			96
14) Freon 11	6.32	101	238213m	1.29			
15) Acetone	6.15	58	16292	1.13		#	€4
16) Pentane		58 42	27585	0.98			38
17) Isopropyl alcohol	6.40	45	55115	1.15			100
18) 1,1-dichloroethene	6.99	96		0.99			94
19) Freon 113	7.40			1.03			90
20) t-Butyl alcohol	7.04	59	64341	0.91			92
21) Methylene chloride	7.12	84	28008	0.99		#	75
22) Allyl chloride	7.24		33731	0.93			91
23) Carbon disulfide	7.46	76 6 1	91473	1.01			84
24) trans-1,2-dichloroethene	8.15	61	47949	0.98			93
25) methyl tert-butyl ether	8.45	73	88153	0.95			87
26) 1,1-dichloroethane	8.37	63 43 72	62741	1.03			96
27) Vinyl acetate	8.54	43	92002	1.17			92
28) Methyl Ethyl Ketone	8.85	72	15128	1.01			98
29) cis-1,2-dichloroethene	9.36	61	46370	1.00	ppb		92
30) Hexane	9.60	57	40518	0.95			87
31) Ethyl acetate	9.62	57 43 83	94395	0.99			97
32) Chloroform	9.71	83	87650	1.03			96
33) Tetrahydrofuran	10.23	42	30292	0.95	dqq		84
34) 1,2-dichloroethane	10.62	62	59420	0.94	$_{\mathrm{dqq}}$		94
36) 1,1,1-trichloroethane	10.94	97	93614	1.08	ರಡ್ಡ		98
37) Cyclohexane	11.86	56	45664	1.04			95
38) Carbon tetrachloride	11.70	117	97837	1.06			1.00
39) Benzene	11.52	78	98582	1.09			92
40) Methyl methacrylate	13.02	41	43154	1.01			95
41) 1,4-dioxane	12.81	58	17665	0.94		#	55
42) 2,2,4-trimethylpentane	12.83	57	144457	1.06			88
43) Heptane	13.14	4.3	48601	1.03			98
44) Trichloroethene	12.79	130	47004	1.06			91
45) 1,2-dichloropropane	12.50	63	36145	1.08	dqq		100

(#) = qualifier out of range (m) = manual integration A0040703.D A331_1UG.M Thu May 04 11:41:42 2017

MSDl

Data File : C:\HPCHEM\1\DATA\A0040703.D
Acq On : 7 Apr 2017 12:00 pm Vial: 3 Operator: RJP Sample : ALCSIUG-040717 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 12 08:33:43 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qva	alue
46)	Bromodichloromethane	12.74	83	91783	1.06 ppb		96
47)	cis-1,3-dichloropropene	13.79	75	58172	1.06 ppb		95
48)	trans-1,3-dichloropropene	14.38	75	54481	1.04 ppb		90
49)	1,1,2-trichloroethane	14.58	97	46598	1.16 ppb		94
51)	Toluene	14.89	92	63954	0.99 ppb	#	78
52)	Methyl Isobutyl Ketone	13.83	43	60946	0.90 ppb		95
53)	Dibromochloromethane	15.36	129	84657	1.07 ppb		90
54)	Methyl Butyl Ketone	15.18	43	46099	0.76 ppb		93
55)	1,2-dibromoethane	15.63	107	72687	1.10 ppb		96
56)	Tetrachloroethylene	16.14	164	49756	1.09 ppb		99
57)	Chlorobenzene	16.87	112	96040	1.06 ppb		95
58)	Ethylbenzene	17.27	91.	157903	1.04 ppb		100
59)	m&p-xylene	17.46	91	265326	2.08 ppb		100
60)	Nonane	18.18	43	76447	1.08 ppb		93
61.)	Styrene	17.85	104	81583	1.03 ppb		95
62)	Bromoform	3.7.55	173	71209	1.08 ppb		99
63)	o-xylene	17.96	91	127835	1.04 ppb		96
64)	Cumene	18.60	105	168618	1.05 ppb		100
66)	1,1,2,2-tetrachloroethane	17.96	83	98561	1.17 ppb		96
67)	Propylbenzene	19.17	120	44751	1.09 ppb	#	1
68)	2-Chlorotoluene	19.14	126	40730	1.07 ppb	#	1.
69)		19.33	105	163130	1.09 ppb		97
70)	1,3,5-trimethylbenzene	19.42	105	138712	1.04 ppb		96
71)	1,2,4-trimethylbenzene	19.90	105	126848	1.02 ppb		93
72)	1,3-dichlorobenzene	20.09	146	91327	1.17 ppb		99
73)	benzyl chloride	20.06	91	82451	1.26 ppb		94
74)	1,4-dichlorobenzene	20.17	146	83163	1.15 ppb		97
75)	1,2,3-trimethylbenzene	20.41	105	132486	dqq 30.1		95
76)	1,2-dichlorobenzene	20.59	146	88758	1.18 ppb		96
77)	1,2,4-trichlorobenzene	22.76		25921	1.17 ppb		95
78)		22.91	128	56238	0.98 ppb		94
79)	Hexachloro-1,3-butadiene	23.32	225	68219	1.22 ppb		96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040703.D A331_1UG.M Thu May 04 11:41:43 2017

кеулемеа

[7]

תממורזוים אותיים בלהמתי

Data File : C:\HPCHEM\1\DATA\A0040620.D Vial: 49 Acq On : 6 Apr 2017 9:15 pm Operator: RJP Sample : ALCS1UGD-040617 Misc : A331_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 07 07:19:00 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 03 10:15:59 2017 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Thermal Standards		- <u>-</u>								
1) Bromochloromethane 9.56 128 24809 1.00 ppb 0.02	Int	ernal Standards	R.T.	QIon	Response	Cond	: U:	nits	Dev	(Min)
System Monitoring Compounds 18.47 95 67679 0.98 ppb 0.02) B				70 70 70 70				
## System Monitoring Compounds 18.47 95 67679 0.98 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00% Target Compounds 2 Propylene 4.50 41 35590 1.01 ppb 76 3) Freon 12 4.56 85 236111 1.16 ppb 97 4) Chloromethane 4.73 50 33866m 1.17 ppb 76 5) Freon 114 4.83 85 190689 1.20 ppb 98 6) Vinyl Chloride 4.95 62 46545 1.06 ppb 92 7) Butane 5.15 43 47237 1.06 ppb 92 8) 1,3-butadiene 5.09 39 31406m 1.09 ppb 90 8) 1,3-butadiene 5.37 94 66887 1.09 ppb 88 10) Chloroethane 5.57 94 66887 1.14 ppb 88 11) Ethanol 5.66 45 14827 1.04 ppb 84 12) Acrolein 6.01 56 13354 0.89 ppb 98 13) Vinyl Bromide 5.91 106 67026 1.13 ppb 95 14) Freon 11 6.34 101 250288m 1.12 ppb 89 15) Acetone 6.16 58 12291 1.14 ppb 69 16) Pentane 6.69 42 30218 0.97 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) L-Butyl alcohol 7.04 59 68096 0.87 ppb 93 21) Methylene chloride 7.13 84 31329 1.00 ppb 80 22) Altyl chloride 7.25 41 37083 0.93 ppb 93 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 95 26) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 27) Vinyl acctate 8.85 72 16009 0.97 ppb 96 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) Chloroform 9.71 83 94443 1.00 ppb 97 30) Hexane 1.24 42 34468 0.98 ppb 95 31) Etrahydrofuran 10.24 42 34468 0.98 ppb 95 32) Chloroform 9.71 83 94443 1.00 ppb 96 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) Carbon disulfide 1.71 117 105869 0.97 ppb 96 35) Cyclohexane 1.52 78 105761 0.98 ppb 97 36) Cyclohexane 1	2 E) Bromochioromethane	9.56	128	24809	1.	. 00	bbb		0.02
## System Monitoring Compounds 18.47 95 67679 0.98 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00% Target Compounds 2 Propylene 4.50 41 35590 1.01 ppb 76 3) Freon 12 4.56 85 236111 1.16 ppb 97 4) Chloromethane 4.73 50 33866m 1.17 ppb 76 5) Freon 114 4.83 85 190689 1.20 ppb 98 6) Vinyl Chloride 4.95 62 46545 1.06 ppb 92 7) Butane 5.15 43 47237 1.06 ppb 92 8) 1,3-butadiene 5.09 39 31406m 1.09 ppb 90 8) 1,3-butadiene 5.37 94 66887 1.09 ppb 88 10) Chloroethane 5.57 94 66887 1.14 ppb 88 11) Ethanol 5.66 45 14827 1.04 ppb 84 12) Acrolein 6.01 56 13354 0.89 ppb 98 13) Vinyl Bromide 5.91 106 67026 1.13 ppb 95 14) Freon 11 6.34 101 250288m 1.12 ppb 89 15) Acetone 6.16 58 12291 1.14 ppb 69 16) Pentane 6.69 42 30218 0.97 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) L-Butyl alcohol 7.04 59 68096 0.87 ppb 93 21) Methylene chloride 7.13 84 31329 1.00 ppb 80 22) Altyl chloride 7.25 41 37083 0.93 ppb 93 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 95 26) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 27) Vinyl acctate 8.85 72 16009 0.97 ppb 96 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) Chloroform 9.71 83 94443 1.00 ppb 97 30) Hexane 1.24 42 34468 0.98 ppb 95 31) Etrahydrofuran 10.24 42 34468 0.98 ppb 95 32) Chloroform 9.71 83 94443 1.00 ppb 96 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) Carbon disulfide 1.71 117 105869 0.97 ppb 96 35) Cyclohexane 1.52 78 105761 0.98 ppb 97 36) Cyclohexane 1	35	1,4-diriuoropenzene	11.95	114	117535	ユ.	. 00	dag		0.02
Spiked Amount	50) Chlorobenzene-d5	16.83	117	100863	1.	.00	ppb		0.01
Target Compounds										
Target Compounds 2) Propylene 4.50 41 35590 1.01 ppb 76 3) Freon 12 4.56 85 236111 1.16 ppb 97 4) Chloromethane 4.73 50 33866m 1.17 ppb 95 5) Freon 114 4.83 85 190689 1.20 ppb 98 6) Vinyl Chloride 4.95 62 46545 1.06 ppb 92 7) Butane 5.15 43 47237 1.06 ppb 90 8) 1,3-butadiene 5.09 39 31406m 1.09 ppb 90 8) 1,3-butadiene 5.537 94 66887 1.04 ppb 88 10) Chloroethane 5.54 64 18161 1.00 ppb 87 11) Ethanol 5.65 45 14827 1.04 ppb 88 12) Acrolein 6.01 56 13354 0.89 ppb 98 13) Vinyl Bromide 5.91 106 67026 1.13 ppb 95 13) Vinyl Bromide 5.91 106 67026 1.13 ppb 95 14) Freon 11 6.34 101 25028m				95	67679	0.	98	bbp		0.02
2) Propylene	S	piked Amount 1.000	Range 70	- 130	Recove	хУ	=	98	.00¥	
3 Freon 12									Qve	alue
3 Freon 12	2) Propylene	4.50	41	35590	1.	01	dqq		76
A Chloromethane	3	Freon 12	4.56	85	236111	_ 1.	16	daa		97
Section 114	4	Chloromethane	4.73	50	33866m	1.	17	daa		
3 3 3 47237 1 1 6 6 6 9 9 8 1 1 3 1 1 1 9 5 8 1 3 1 1 1 9 5 8 1 1 1 9 5 8 1 1 1 9 5 8 1 1 1 9 5 8 1 1 1 1 9 5 8 1 1 1 1 1 9 5 8 1 1 1 1 1 1 1 1 1			4.83	85	190689					98
3 3 3 47237 1 1 6 6 6 9 9 8 1 1 3 1 1 1 9 5 8 1 3 1 1 1 9 5 8 1 1 1 9 5 8 1 1 1 9 5 8 1 1 1 9 5 8 1 1 1 1 9 5 8 1 1 1 1 1 9 5 8 1 1 1 1 1 1 1 1 1			4.95	62	46545					
8) 1,3-butadiene			5.15	4.3	47237	1 7	06	dan		
9) Bromomethane				3.9	31406m	3	0.9	dad		
10			5 37	94	66887	7				88
11 Ethanol			5 54	64	18161					
12 Acrolein	-									
15) Acetone 6.16 58 18291 1.14 ppb # 69 16) Pentane 6.69 42 30218 0.97 ppb # 44 17) Isopropyl alcohol 6.39 45 57181 1.08 ppb # 100 18) 1,1-dichloroethene 7.00 96 32066 0.99 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) t-Butyl alcohol 7.04 59 68096 0.87 ppb 96 21) Methylene chloride 7.13 84 31329 1.00 ppb 80 22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 97 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb 95 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 45) Trichloroethene 13.14 43 52158 0.92 ppb 95 46) Trichloroethene 13.14 43 52158 0.92 ppb 95 47) Trichloroethene 13.14 43 52158 0.92 ppb 95 48) Trichloroethene 13.14 43 52158 0.92 ppb 95 41) Trichloroethene 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95	-		5 01	56	3.3067					
15) Acetone 6.16 58 18291 1.14 ppb # 69 16) Pentane 6.69 42 30218 0.97 ppb # 44 17) Isopropyl alcohol 6.39 45 57181 1.08 ppb # 100 18) 1,1-dichloroethene 7.00 96 32066 0.99 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) t-Butyl alcohol 7.04 59 68096 0.87 ppb 96 21) Methylene chloride 7.13 84 31329 1.00 ppb 80 22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 97 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb 95 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 45) Trichloroethene 13.14 43 52158 0.92 ppb 95 46) Trichloroethene 13.14 43 52158 0.92 ppb 95 47) Trichloroethene 13.14 43 52158 0.92 ppb 95 48) Trichloroethene 13.14 43 52158 0.92 ppb 95 41) Trichloroethene 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95			5 91	106	£3334					
15) Acetone 6.16 58 18291 1.14 ppb # 69 16) Pentane 6.69 42 30218 0.97 ppb # 44 17) Isopropyl alcohol 6.39 45 57181 1.08 ppb # 100 18) 1,1-dichloroethene 7.00 96 32066 0.99 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) t-Butyl alcohol 7.04 59 68096 0.87 ppb 96 21) Methylene chloride 7.13 84 31329 1.00 ppb 80 22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 97 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb 95 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 45) Trichloroethene 13.14 43 52158 0.92 ppb 95 46) Trichloroethene 13.14 43 52158 0.92 ppb 95 47) Trichloroethene 13.14 43 52158 0.92 ppb 95 48) Trichloroethene 13.14 43 52158 0.92 ppb 95 41) Trichloroethene 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95			5 34 3 3 3 ∓	# U O	0/020	1				73
18) 1,1-dichloroethene 7.00 96 32066 0.99 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) t-Butyl alcohol 7.04 59 68096 0.87 ppb 96 21) Methylene chloride 7.13 84 31329 1.00 ppb #80 22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 1.00769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 97	,		0.J4	707	250200M	ω, <u>†</u> .				60
18) 1,1-dichloroethene 7.00 96 32066 0.99 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) t-Butyl alcohol 7.04 59 68096 0.87 ppb 96 21) Methylene chloride 7.13 84 31329 1.00 ppb #80 22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 1.00769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 97			6.10	20	18531	÷.				
18) 1,1-dichloroethene 7.00 96 32066 0.99 ppb 93 19) Freon 113 7.41 101 77004 1.00 ppb 93 20) t-Butyl alcohol 7.04 59 68096 0.87 ppb 96 21) Methylene chloride 7.13 84 31329 1.00 ppb #80 22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 1.00769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 97			6.69	42	30578	0.				
19) Freon 113 20) t-Butyl alcohol 7.04 59 68096 21) Methylene chloride 7.13 84 31329 21.00 ppb # 80 22) Allyl chloride 7.25 41 37083 23) Carbon disulfide 7.47 76 100769 24) trans-1,2-dichloroethene 8.15 61 53306 24) trans-1,2-dichloroethene 8.15 61 53306 36087 37) Winyl acetate 8.39 63 68087 38) Methyl Ethyl Ketone 8.39 63 68087 39) Description 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 98 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.65 64951 0.95 ppb 98 38) Carbon tetrachloride 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 97 40) Methyl methacrylate 12.84 57 163528 1.01 ppb 84 31 Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 13.14 43 52158 0.92 ppb 95 45) Trichloroethene 12.80 130 52813 1.00 ppb			6.39	45	57181					
22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 12.80 58 18999 0.85 ppb #55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94				96	32066					
22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 12.80 58 18999 0.85 ppb #55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94				101	77004					
22) Allyl chloride 7.25 41 37083 0.93 ppb 90 23) Carbon disulfide 7.47 76 100769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 12.80 58 18999 0.85 ppb #55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94			7.04	59	68096	ο.				
23) Carbon disulfide 7.47 76 1.00769 1.00 ppb 83 24) trans-1,2-dichloroethene 8.15 61 53306 0.98 ppb 93 25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb			7.13	84	31329					
25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb			7.25	41	37083					
25) methyl tert-butyl ether 8.47 73 94567 0.92 ppb 91 26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb			7.47	76	100769	1.				
26) 1,1-dichloroethane 8.39 63 68087 1.01 ppb 98 27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	24)	trans-1,2-dichloroethene	8.15	61	53306	ο.	98	ppp		
27) Vinyl acetate 8.55 43 100265 1.16 ppb 93 28) Methyl Ethyl Ketone 8.85 72 16009 0.97 ppb 96 29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	25)	methyl tert-butyl ether	8.47				92	dqq		
29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94			8.39	63	68087	1.				
29) cis-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	27)	Vinyl acetate	8.55	43	100265	1.	16	bbp		
29) Cls-1,2-dichloroethene 9.36 61 49482 0.96 ppb 95 30) Hexane 9.62 57 43032 0.91 ppb 87 31) Ethyl acetate 9.62 43 99523 0.94 ppb 97 32) Chloroform 9.71 83 94443 1.00 ppb 99 33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	28)	Methyl Ethyl Ketone	8.85	72	16009		97	ppb		
33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	29)	cis-1,2-dichioroethene	9.36	61	49482	Ο.				
33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94			9.62	57	43032	Ο.	91	dqq		87
33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94				43	99523	0.	94	ppb		
33) Tetrahydrofuran 10.24 42 34468 0.98 ppb 95 34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	32)	Chloroform	9.71	83	94443	3	00	$_{\rm dqq}$		99
34) 1,2-dichloroethane 10.62 62 68052 0.98 ppb 95 36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	33)	Tetrahydrofuran	10.24				98	dqq		95
36) 1,1,1-trichloroethane 10.95 97 103974 1.00 ppb 96 37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	34)	1,2-dichloroethane	10.62	62	68052	ο.	98	ppb		95
37) Cyclohexane 11.86 56 49591 0.95 ppb 98 38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4 dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4 trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	36)	1,1,1-trichloroethane	10.95	97						96
38) Carbon tetrachloride 11.71 117 105869 0.97 ppb 99 39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4 dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4 trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	37)	Cyclohexane	11.86							
39) Benzene 11.52 78 105761 0.98 ppb 91 40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94										99
40) Methyl methacrylate 13.02 41 45439 0.90 ppb 97 41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94	39)				105761					
41) 1,4-dioxane 12.83 58 18999 0.85 ppb # 55 42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94										
42) 2,2,4-trimethylpentane 12.84 57 163528 1.01 ppb 89 43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94									#	
43) Heptane 13.14 43 52158 0.92 ppb 95 44) Trichloroethene 12.80 130 52813 1.00 ppb 94									"	
44) Trichloroethene 12.80 130 52813 1.00 ppb 94										
10, 1, a anomoropropano 12.31 03 400,4 1.00 pm 33										
		~ ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						 		

(#) = qualifier out of range (m) = manual integration A0040620.D A331_1UG.M Thu May 04 11:41:32 2017

MSD1

Data File : C:\HPCHEM\1\DATA\A0040620.D Vial: 49
Acq On : 6 Apr 2017 9:15 pm Operator: RJP
Sample : ALCS1UGD-040617 Inst : MSD #1

Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Apr 07 07:19:00 2017 Quant Results File: A331_lug.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Cone Unit	Qva	lue
46)	Bromodichloromethane	12.74	83	102280	1.00 ppb		98
47)		13.79	75	64051	dqq 8e.0		98
48)	trans-1,3-dichloropropene	14.38	75	60406	0.97 ppb		94
49)	1,1,2-trichloroethane	14.58	97	48605	1.02 ppb		1.00
51)	Toluene	14.90	92	74483	A 00 mmh		85
52)	Methyl Isobutyl Ketone	13.84	43	56491m	0.72 ppb		
53)	Dibromochloromethane	15.37	129	94470	1.02 ppb		92
54)	Methyl Butyl Ketone	15.19	43	39316m V	0.56 ppb		
55)	1,2-dibromoethane	15.64		78477	1.02 ppb		95
56)	Tetrachloroethylene	16.15	164	54001	1.01 ppb		98
57)	-	16.87	112	107457	1.02 ppb		94
58)	Ethylbenzene	17.27	91	170983	0.97 ppb		100
59)	m&p-xylene	17.47	91	296006	1.99 ppb		99
60)	Nonane	18.19	43	81677	dqq ee.o		91
61)	Styrene	17.86	104	89618	0.97 ppb		96
62)	Bromoform	17.56	1.73	75354	ർമൂമ 80.0		97
63)	o-xylene	17.97	91	140353	dqq 80.0		94
64)	Cumene	18.60	105	181432	0.97 ppb		99
66)	1,1,2,2-tetrachloroethane	17.96	83	101557	1.04 ppb	.,	94
67)	Propylbenzene	19.17	120	46499	0.97 ppb	#	1
68)	2-Chlorotoluene	19.14	126	43318	dqq 8e.o	#	_ 1
69)	4-ethyltoluene	19.34	105	172594	dqq ee.0		100
70)	1,3,5-trimethylbenzene	19.42		150070	0.97 ppb		100
71)	1,2,4-trimethylbenzene	19.90		139431	0.96 ppb		94
72)	1,3-dichlorobenzene	20.09	146	96756	1.06 ppb		96
73)	benzyl chloride	20.07	91.	78332	1.03 ppb		95
74)	1,4-dichlorobenzene	20.17		86547	1.03 ppb		96
75)		20.41		138686	0.95 ppb		94 98
76)		20.59		91284	1.04 ppb		
77)		22.77		26664	1.03 ppb		98
78)	Naphthalene	22.91		58584	0.88 ppb		94 94
79)	Hexachloro-1,3-butadiene	23.33	225	68422	1.05 ppb		.74

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040620.D A331_1UG.M Thu May 04 11:41:33 2017 MSD1

いっかんしい

MS Integration Params: RTEINT.P

Quant Time: Apr 08 09:00:00 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards			Response C	onc Ur	its	Dev	(nim)
	9.56			1.00	dqq		0.02
35) 1,4-difluorobenzene	71 95	114	89890	1.00	$_{ m ppb}$		0.01
50) Chlorobenzene-d5	16.83	117	78098	1.00	ppb		0.01
System Monitoring Compounds				0.07			0.01
65) Bromofluorobenzene	18.46				ppp	.00\$	
Spiked Amount 1.000 R	ange 70	- 130	Recovery	<i>r</i> =	97.	005	
Target Compounds					,	Qv	alue
2) Propylene	4.48		31618	1.15			72
3) Freon 12	4.56			1.29			
4) Chloromethane	4.72		27304m				
5) Freon 114	4.82		166285m	1.34			0.0
6) Vinyl Chloride	4.95	62	42200	1.24			88 93
7) Butane	5.14	4.3	45335	1.31			2.7
8) 1,3-butadiene	5.08	39	45335 27014m 57912m	1.20			
Bromomethane	5.37	94	57912m	1.26			
10) Chloroethane	5.54						84
11) Ethanol	5.65		14338	1.29			96
12) Acrolein	6.02			1.07 1.26			24
13) Vinyl Bromide	5.90		252102	1.58			99
14) Freon 11	6.32		402108	1.04	PPD		
15) Acetone	6.15		12985m W 26726 51366	1.10			43
16) Pentane	6.69		20/20	1.24			100
17) Isopropyl alcohol	6.39 7.00	96	27027	1.08			91
18) 1,1-dichloroethene		701	2/04/	1.15			89
19) Freon 113	7.40 7.03		68890 53096	0.87			92
20) t-Butyl alcohol	7.03	84	26922	1.10			78
21) Methylene chloride	7.12	41	32876	1.05			91
22) Allyl chloride	7.46	76	32876 86481 45121 81727	1.10			84
23) Carbon disulfide			45121	1.07			96
24) trans-1,2-dichloroethene 25) methyl tert-butyl ether		73	81727	1.02			96
26) 1,1-dichloroethane	8.38	63	59764	1.14			94
27) Vinyl acetate	8.54	4.3	84681	1.25			92
28) Methyl Ethyl Ketone	8.84		12658	0.99			99
29) cis-1,2-dichloroethene		61	45009	1.12			94
30) Hexane	9.61	57	38800	1.05			89
31) Ethyl acetate	9.62		86633	1.05			95
32) Chloroform	9.71	. 83	83163	1.14			96
33) Tetrahydrofuran	10.23		27309	1.00	ppb		87
34) 1,2-dichloroethane	10.62		59562	1.10	dqq		96
36) 1,1,1-trichloroethane	10.95		86730		dqq		99
37) Cyclohexane	11.86	56	42448		ppb		99
38) Carbon tetrachloride	11.71	117	92728		ppb		100
39) Benzene	11.52	. 78	90008		bbp		92
40) Methyl methacrylate	13.02	41	35136		dąg		90
41) 1,4-dioxane	12.83	58	14989m 🖊		bbp		
42) 2,2,4-trimethylpentane	12.83	57	134803		dąg		88
43) Heptane	13.14	4.3	45450		bbp		95
44) Trichloroethene	12.79	130	44637		dqq		92 100
			34787		ppb		

^{(#) =} qualifier out of range (m) = manual integration A0040725.D A331_1UG.M Thu May 04 11:41:49 2017

 Data File : C:\HPCHEM\1\DATA\A0040725.D
 Vial: 25

 Acq On : 8 Apr 2017 2:53 am
 Operator: RJP

 Sample : ALCS1UGD-040717
 Inst : MSD #1

 Misc : A331_1UG
 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 08 09:00:00 2017 Quant Results File: A331_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qv	alue
46)	Bromodichloromethane	12.73	83	86612	1.10 ppb		95
47)		13.79	75	56238	1.12 ppb		98
48)	trans-1,3-dichloropropene	14.38	75	52555	1.10 ppb		97
49)	1,1,2-trichloroethane	14.58	97	42686	1.17 ppb		98
51)	Toluene	14.90	92	62097	1.06 ppb	#	81
52)	Methyl Isobutyl Ketone	13.83	43	44573	0.73 ppb		92
53)	Dibromochloromethane	15.37	129	80598	1.13 ppb		88
54)	Methyl Butyl Ketone	15.19	43	38670m Nj	0.71 ppb		
55)	1,2-dibromoethane	15.64	107	68997	1.16 ppb		95
56)	Tetrachloroethylene	16.14	164	45478	1.10 ppb		95
57)		16.88	112	93752	1.15 ppb		97
58)	Ethylbenzene	17.27	91	149543	1.09 ppb		98
59)	m&p-xylene	17.46	91	261402	2.27 ppb		99
60)	Nonane	18.19	43	70846	1.11 ppb		93
61)	Styrene	17.86	104	79302	dqq 01.1		91
62)	Bromoform	17.55	173	64959	1.09 ppb		97
63)	o-xylene	17.97	91	123539	1.11 ppb		96
64)	Cumene	18.60	105	158840	1.10 ppb		300
66)	1,1,2,2-tetrachloroethane	17.96	83	91941	1.21 ppb		94
67)	Propylbenzene	19.17	120	41612	1.12 ppb	#	1
68)	2-Chlorotoluene	19.14	126	39508	1.15 ppb	#	1.
69)	4-ethyltoluene	19.34	105	146026	1.08 ppb		99
70)		19.42	105	131377	1.09 ppb		99
71)	1,2,4-trimethylbenzene	19.90	105	118807	1.06 ppb		96
72)	1,3-dichlorobenzene	20.09	1.46	82665	1.17 ppb		99
73)	benzyl chloride	20.07	91	58401	0.99 ppb		90
74)		20.17	146	75820	1.16 ppb		93
75)	1,2,3-trimethylbenzene	20.41	105	116294	1.03 ppb		95
76)	1,2-dichlorobenzene	20.59	146	81959	1.21 ppb		96
77)	1,2,4-trichlorobenzene	22.76	180	21679	1.08 ppb		92
78)	Naphthalene	22.91	128	42909	0.83 ppb		94
79)	Hexachloro-1,3-butadiene	23.33	225	54811	1.09 ppb		99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0040725.D A331_1UG.M Thu May 04 11:41:50 2017 MSD1

つ せいがいき

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

Internal Standard Stock # A | 937 |

Standard Stock # | 1938 |

LCS Stock # | 1938 |

						535
10	Vial	FileName	Multiplier	SampleName	Misc Misc Ref: EPA TO-1.	5 /Injectéd199
1234567890	4 5 6 7 8 9 10 11 12 13	Ao032904.d Ao032905.d Ao032906.d Ao032907.d Ao032908.d Ao032910.d Ao032911.d Ao032912.d Ao032913.d	1. 1. 1. 1. 1. 1.	ALCS1UG-032917 AMB1UG-032917 C1703058-002A C1703058-004A C1703058-005A C1703058-002A 20X C1703058-004A 20X C1703058 C1703078-001A 4X C1703078-002A 4X	A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG	29 Mar 2017 11:59 29 Mar 2017 12:35 29 Mar 2017 13:15 29 Mar 2017 13:55 29 Mar 2017 14:35 29 Mar 2017 15:19 29 Mar 2017 15:56 29 Mar 2017 16:33 29 Mar 2017 17:11 29 Mar 2017 17:49
1234557890	14 15 16 17 18 19 20 21 21 30	A0032914.d A0032915.d A0032916.d A0032917.d A0032918.d A0032919.d A0032920.d A0032921.d A0032923.d	1. 1. 1. 1. 1. 1. 1.	C1703078-003A 4X C1703079-001A 4X C1703079-002A 4X C1703079-003A 4X C1703080-001A 4X C1703080-002A 4X C1703080-003A 4X C1703058 ALCS1UGD-032917 C1703058-005A 5X	A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG A312_1UG	29 Mar 2017 18:27 29 Mar 2017 19:04 29 Mar 2017 19:42 29 Mar 2017 20:20 29 Mar 2017 20:57 29 Mar 2017 21:35 29 Mar 2017 22:13 29 Mar 2017 22:50 29 Mar 2017 23:29 30 Mar 2017 09:49
123455730	31 32 1 1 2 3 4 5 6 7	A0032924.d A0032925.d A0033101.d A0033102.d A0033103.d A0033105.d A0033106.d A0033107.d A0033108.d	1. 1. 1. 1. 1. 1. 1.	BFB1UG A1UG A1UG_2.0 A1UG_1.5 A1UG_1.25 A1UG_1.0 A1UG_0.75 A1UG_0.50	A312_1UG A312_1UG A331_1UG A331_1UG A331_1UG A331_1UG A331_1UG A331_1UG A331_1UG A331_1UG	30 Mar 2017 15:15 30 Mar 2017 15:55 31 Mar 2017 13:54 31 Mar 2017 14:52 31 Mar 2017 15:35 31 Mar 2017 16:16 31 Mar 2017 16:57 31 Mar 2017 17:36 31 Mar 2017 18:15 31 Mar 2017 18:53
123	10 11 2 3 4 5	Ao033109.d Ao033111.d Ao033112.d Ao033113.d Ao033114.d Ao033115.d Ao033116.d Ao033117.d Ao033118.d	1. 1. 1. 1. 1. 1. 1.	A1UG_0.30 A1UG_0.15 A1UG_0.10 A1UG_0.04 IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG	A331_1UG A331_1UG A331_1UG A331_1UG A331_1UG 0.50PPB A331_1UG 0.50PPB A331_1UG 0.50PPB A331_1UG 0.50PPB A331_1UG 0.50PPB A331_1UG 0.50PPB	31 Mar 2017 19:30 31 Mar 2017 20:07 31 Mar 2017 20:44 31 Mar 2017 21:20 31 Mar 2017 22:32 31 Mar 2017 23:10 31 Mar 2017 23:48 1 Apr 2017 00:26 1 Apr 2017 01:04 1 Apr 2017 01:42
	8 1 2 3 4 5 6 7 8	A0033119.d A0033120.d A0033121.d A0033122.d A0033123.d A0033125.d A0033126.d A0033127.d A0033128.d	1. 1. 1. 1. 1. 1. 1.	IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG	A331_1UG 0.50PPB A331_1UG 0.50PPB A331_1UG 0.10PPB A331_1UG 0.10PPB A331_1UG 0.10PPB A331_1UG 0.10PPB A331_1UG 0.10PPB A331_1UG 0.10PPB A331_1UG 0.10PPB A331_1UG 0.10PPB	1 Apr 2017 02:20 1 Apr 2017 02:58 1 Apr 2017 03:35 1 Apr 2017 04:11 1 Apr 2017 04:48 1 Apr 2017 05:25 1 Apr 2017 06:01 1 Apr 2017 06:38 1 Apr 2017 07:14
	2 3 4	Ao033129.d Ao033130.d Ao033131.d Ao033132.d Ao033133.d	1. 1. 1. 1.	IDL1UG IDL1UG IDL1UG IDL1UG IDL1UG	A331_1UG 0.30PPB A331_1UG 0.30PPB A331_1UG 0.30PPB A331_1UG 0.30PPB A331_1UG 0.30PPB	1 Apr 2017 08:28 1 Apr 2017 09:06 1 Apr 2017 09:43 1 Apr 2017 10:20 1 Apr 2017 10:58

Injection Log

Directory: C:\HPCHEM\1\DATA2

Instrument # Internal Standard Stock # A1549
Standard Stock # A1549 LCS Stock # A/75 Mildelfrod Ref: EPA TO-15 / Injected** Vial FileName Multiplier SampleName Ao040422.d 22 ALCS1UGD-040417 1. A331_1UG 5 Apr 2017 00:07 23 Ao040423.d 1. C1704004-005A 10X A331_1UG 5 Apr 2017 00:46 24 Ao040424.d 1. C1704004-001A 10X A331_1UG 5 Apr 2017 01:26 25 Ao040425.d 1. C1704004-001A 40X A331_1UG 5 Apr 2017 02:05 Ao040426.d 1. No MS or GC data present 1 Ao040501.d 1. BFB1UG A331_1UG 5 Apr 2017 09:11 2 Ao040502.d 1. A1UG_1.0 A331_1UG 5 Apr 2017 10:02 3 Ao040503.d ALCS1UG-040517 1. A331_1UG 5 Apr 2017 10:42 Ao040504.d 4 1. AMB1UG-040517 A331_1UG 5 Apr 2017 11:18 5 Ao040505.d 1. C1704004-002A 10X A331_1UG 5 Apr 2017 11:58 6 Ao040506.d 1. C1704004-002A 40X A331_1UG 5 Apr 2017 12:34 7 Ao040507,d 1. C1704005-001A A331_1UG 5 Apr 2017 13:14 8 A331_1UG Ao040508.d 1. C1704005-001A 20X 5 Apr 2017 14:14 9 Ao040509.d 1. WAC040517A A331_1UG 5 Apr 2017 14:52 10 Ao040510.d 1. WAC040517B N A331_1UG 5 Apr 2017 15:45 11 Ao040511.d WAC040517C N A331_1UG 1. 5 Apr 2017 16:27 12 Ao040512.d 1. WAC040517D A331_1UG 5 Apr 2017 17:04 13 Ao040513.d 1. WAC040517E A331_1UG 5 Apr 2017 17:42 14 Ao040514.d WAC040517F A331_1UG 5 Apr 2017 18:20 1. 15 Ao040515.d A331 1UG 1. WAC040517G 5 Apr 2017 18:57 1 Ao040516.d 1. C1704006-002A A331_1UG 5 Apr 2017 19:37 2 A331_1UG Ao040517.d 1. C1704006-003A 5 Apr 2017 20:17 3 Ao040518.d 5 Apr 2017 20:57 1. C1704007-002A A331_1UG 4 1. Ao040519.d C1704007-004A A331 1UG 5 Apr 2017 21:37 5 Ao040520.d 1. C1704007-005A A331_1UG 5 Apr 2017 22:17 6 A331 1UG Ao040521.d 1. C1704008-002A 5 Apr 2017 22:58 7 A331_1UG Ao040522.d 1, C1704008-004A 5 Apr 2017 23:39 A331_1UG 8 Ao040523.d C1704008-005A 1. 6 Apr 2017 00:19 A331_1UG Ao040524.d C1704006-001A 9 1. 6 Apr 2017 01:00 10 Ao040525.d 1, C1704007-001A A331_1UG 6 Apr 2017 01:40 11 Ao040526.d 1. C1704007-003A A331_1UG 6 Apr 2017 02:20 12 Ao040527.d 1. C1704008-001A A331_1UG 6 Apr 2017 03:00 13 Ao040528.d 1. C1704008-003A A331_1UG 6 Apr 2017 03:42 A331_1UG 14 Ao040529.d 1. ALCS1UGD-040517 6 Apr 2017 04:21 A331_1UG 15 Ao040530.d C1704006-002A 10X 6 Apr 2017 04:58 1. A331_1UG 16 Ao040531.d 1. C1704006-003A 10X 6 Apr 2017 05:35 6 Apr 2017 06:12 17 Ao040532.d 1. C1704007-002A 10X A331_1UG 18 Ao040533.d 1. C1704007-004A 10X A331_1UG 6 Apr 2017 06:49 19 Ao040534.d 1. C1704007-005A 10X A331_1UG 6 Apr 2017 07:25 Ao040535.d 1. No MS or GC data present Ao040601.d BFB1UG 1 1. A331_1UG 6 Apr 2017 08:51 A331_1UG 2 A1UG_1.0 Ao040602.d 6 Apr 2017 09:31 1. A331_1UG A331_1UG A331_1UG 3 6 Apr 2017 10:10 ALCS1UG-040617 Ao040603.d 1. 6 Apr 2017 10:47 4 Ao040604.d AMB1UG-040617 1. 5 C Ao040605.d C1704008-002A 10X 6 Apr 2017 11:24 1. 6 1 Ao040606.d 1. C1704008-004A 10X A331_1UG 6 Apr 2017 12:01 7 2 A331_1UG Ac040607.d 1. C1704008-005A 10X 6 Apr 2017 12:38 3 8 Ao040608.d 1. C1704006-001A 10X A331_1UG 6 Apr 2017 13:15 9 A331 1UG Ao040609.d C1704007-001A 10X 6 Apr 2017 13:59 1. C1704007-003A 10X A331_1UG 6 Apr 2017 14:36 5 10 Ao040610.d 1. A331_1UG 3 11 Ao040611.d 1. C1704008-001A 10X 6 Apr 2017 15:13 12 Ao040612.d 1. C1704008-003A 10X A331_1UG 6 Apr 2017 15:50 A331_1UG 3 42 Ao040613.d 1. C1704013-001A 6 Apr 2017 16:32 3 43 Ao040614.d 1. C1704013-002A A331_1UG 6 Apr 2017 17:12) 44 Ao040615.d 1. C1704013-003A A331_1UG 6 Apr 2017 17:54

Injection Log

ingarumoni #

Internal Standard Stock # A19 49 Standard Stock # A15 50 Directory: C:\HPCHEM\1\DATA2 A1551 LCS Stock #_ Method Ref. EPA TO-15 / Jan. 1900 ne Vial FileName Multiplier SampleName Misc Info Injected 45 Ao040616.d C1704013-004A A331_1UG 6 Apr 2017 18:33 1. 46 Ao040617.d A331_1UG A331_1UG 1. C1704013-005A 6 Apr 2017 19:14 47 Ao040618.d 6 Apr 2017 19:55 1, C1704013-007A 48 Ao040619.d 1. C1704013-008A A331_1UG 6 Apr 2017 20:35 49 Ao040620.d 1. ALCS1UGD-040617 A331_1UG 6 Apr 2017 21:15 21 Ao040621.d 1. C1704014-001A A331__1UG 6 Apr 2017 21:55 22 Ao040622.d 1. C1704014-001A MS A331_1UG 6 Apr 2017 22:40 23 Ao040623.d A331_1UG 1. C1704014-001A MSD 6 Apr 2017 23:26 22 Ao040624.d 1. C1704014-002A A331_1UG 7 Apr 2017 00:09 A331_1UG 23 Ao040625.d 1. C1704014-004A 7 Apr 2017 00:50 24 Ao040626.d 1. C1704014-006A A331_1UG 7 Apr 2017 01:31 25 7 Apr 2017 02:12 Ao040627.d 1. C1704014-007A A331_1UG 26 1. Ao040628.d C1704014-008A A331__1UG 7 Apr 2017 02:52 27 Ao040629.d 1. C1704014-010A A331_1UG 7 Apr 2017 03:33 7 Apr 2017 04:13 28 Ao040630.d A331 1UG 1. C1704014-012A A331_1UG A331_1UG A331_1UG 29 Ao040631.d 7 Apr 2017 04:53 1. C1704014-013A 30 Ao040632.d 1. C1704013-001A 10X 7 Apr 2017 05:30 31 Ao040633.d 1. C1704013-002A 10X 7 Apr 2017 06:07 32 Ao040634.d 1. C1704013-003A 10X A331_1UG 7 Apr 2017 06:44 33 Ao040635.d C1704013-004A 10X 7 Apr 2017 07:21 1. A331_1UG 34 Ao040636.d 1. C1704013-005A 10X A331_1UG 7 Apr 2017 07:58 35 A331 1UG Ao040637.d 1. C1704013-007A 10X 7 Apr 2017 08:35 36 Ao040638.d C1704013-008A 10X A331_1UG 7 Apr 2017 09:12 1. Ao040639.d No MS or GC data present 1. A331_1UG A331_1UG 1 7 Apr 2017 10:27 Ao040701.d 1. BFB1UG 2 Ao040702.d A1UG_1.0 7 Apr 2017 11:20 1. 3 ALCS1UG-040717 A331_1UG 7 Apr 2017 12:00 Ao040703.d 1. 4 A331_1UG 7 Apr 2017 12:36 Ao040704.d 1. AMB1UG-040717 5 7 Apr 2017 13:13 Ao040705.d 1. C1704013-001A 90X A331_1UG 6 A331_1UG 7 Apr 2017 13:50 Ao040706.d 1. C1704014-012A 10X 7 1. C1704014-013A 10X A331_1UG 7 Apr 2017 14:27 Ao040707.d A331 1UG 8 C1704014-003A 7 Apr 2017 15:23 Ao040708.d 1. A331_1UG 7 Apr 2017 16:03 9 Ao040709.d 1. C1704014-005A A331_1UG 7 Apr 2017 17:28 10 Ao040710.d C1704014-009A 1. 7 Apr 2017 18:09 Ao040711.d C1704014-011A A331_1UG 11 1. 7 Apr 2017 18:50 12 A331__1UG Ao040712.d 1. C1704014-014A 13 Ao040713.d C1704014-015A A331 1UG 7 Apr 2017 19:30 1. A331_1UG 7 Apr 2017 20:07 14 Ao040714.d C1704014-003A 10x 1. A331_1UG -005A 9x 7 Apr 2017 20:44 15 Ao040715.d 1. C1704014 A331 1UG C1704014-005A 90x 7 Apr 2017 21:20 16 Ao040716.d 1. A331_1UG -009A 10x 7 Apr 2017 21:57 17 Ao040717.d 1. C1704014 18 Ao040718.d 1. C1704014 A331_1UG -009A 10x 7 Apr 2017 22:33 19 Ao040719.d 1. C1704014-011A 10x A331_1UG 7 Apr 2017 23:10 20 Ao040720.d 1. C1704014 A331 1UG -011A 40x 7 Apr 2017 23:47 21 Ao040721.d 1. C1704014-014A 9x A331_1UG 8 Apr 2017 00:23 22 C1704014-014A 90x A331_1UG 8 Apr 2017 01:00 Ao040722.d 1. 23 A331_1UG 8 Apr 2017 01:37 Ao040723.d 1. C1704014-015A 10x 24 Ao040724.d 1. C1704014 A331_1UG -015A 40x 8 Apr 2017 02:13 8 Apr 2017 02:53 25 1. ALCS1UGD-040717 A331_1UG Ao040725.d No MS or GC data present Ao040726.d 1, 10 Apr 2017 11:01 1 BFB1UG A331_1UG Ao041001.d 1. 2 A331_1UG 10 Apr 2017 11:44 Ao041002.d 1. A1UG 1.0 ALCS1UG-041017 A331_1UG 10 Apr 2017 12:39 3 Ao041003.d 1. A331_1UG 10 Apr 2017 13:19 4 1. AMB1UG-041017 Ao041004.d

10 Apr 2017 14:09

A331_1UG

WAC041017A

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

3

3

9

)

1

2

3

5

3

3

3

)

2

3

5

5

Ao041005.d

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS LOG

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

Chkd b Prep by /3 3 3 Stock Conc Initial Vol (psig/Finial Vol (psia) Final Conc (ppb) 7Pm 1 Pm 500 S S B 12/18 $S_{\mathcal{O}}$ 50 3 2200 psig 2000psig 30 30 30 7/2 9 30 7 35 36 8 5 0.20 LINDE اک 3,0 ſŪ 3.0 15. 10 S S 0 E LINDE 500pp 11.5 ppm 50 pp <u> 500 pp</u> 50 ppb वळे ०५ Dow indo of 10 ppm 200 下-1534 1 pari FF-47206 A loss A0269 A02.70 AI 782 ALTEH Stock # A1203 10217 X SS PFE A1783 FORM ADGTH SULF | A0270 LCS A1796 5 1 LOX 19105X IS A 1794 9519 5771A GT2 A1289 H 25 A 0269 LECENTARY OF THE TOIS 30 SULF S LCS 42cH 702 Has NG 75 57 Description 1015 14G TOIS 7015 T015 115/18/STOCK 7015 Tois ള Date Prep Date Exp 1(69//8 12/29/16 15117 S 12/29/116 12/22/16 Hein 15117 \backslash A-A1788 193 A- 1792 A:门里95 A-1806 4-1789 A-1790 A. 1799 A-1796 Std# A- 1797 8751 4-1791 A. 1800 A. 1802 a. 1804 A-1808 A.1794 A- 1823 A-1805 A-1807 A. 180

Centek Laboratories, LLC

Page 239 of 273

FORM 153

15 NOC

570

A 1203

AIZB

Page #

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

Std #	Date Prep	Date Exp	Description		Stock #	Stock Conc	Initial Vol (psig)	Finial Vol (nsia)	Stock Conc Initial Vol (psig) Finial Vol (psig) Final Conc (poh)	Pren hy Chyd h
A. 1934	3/28/17	4 u rJ	Tois s	ž	1005 F	Socioph	3,0	30	(GA) (C)S	1
A-1935	_	,	,	ויין טע	Suc A0270	Local	15	30	200	
A- 1936			->	15.3H	H25 A0269	10001	5	30	005	
A- 1937			Tois 146	IS AIG	32.614	50 och	σ ₆ C	シンプ		
A. 1938				577 A1929	9291	-	-	? -	,	
A. 1939	-	<u> </u>	 	3	1930	->	->	-		
A-19 40	4/5/17	4115117	7015		A1806	1,000	(4)	30.805m	2,7	28
A-1941			1 3;		F071A			, (
A-1542			>7	7537	A1808					
A-1943			4.0		9515	 ->	-		-	
A- 19 44			dt	1	A1543	02	0,0	-	2	
A-1945			1 F0	FOAn /	30174	~		LY	2	
A-1946			SILOX		A.085/108	1	7 E	36	2.0	
A-1947			3000	ļ	A 0-7/2		7.4	2		
A-1949			Y HZS			100001			\$ (B)	
9461-A			Torising IS			KON 14	5/0	45	2	
A-1950			8		_			7		
A-1951	ج-	7	3		1451A			-		
A- 1957						*		4	4)
A-1533										
A-1954				-						

FORM 153

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CANISTER CLEANING LOG

Centek Laboratories, LLC

A COMMAND CONTROL AND CONTROL OF CONTROL O

Instrument: Entech 3100

le .	E	2																								
Leak Test 24hr int & Date	3/20/17	i																							7	
Leak Tes	i i	30		30	30	30	30		+ 30 +	+ 30	+ 30	+ 30	+ 30	30	30	30	30		30	+ 30 +	+ 30 +	30	+ 30 +	+ 30 +	+ 30 +	
Detection Limits	+0.25		+	+	+	+	**	-	+	+	+	+	+	+	+	+	+	+	+	+	-+-	+	+	+	+	
Deter		7				ļ																				
Jaquin	II A	1				4	,				J					9					ソゴ					
QC Batch Number	WAC0313	_																					·····	***************************************	7	
O pa																										
app Clean																										
Int & D.	1×/8																								7	
# of Cycles.	97											***************************************												_Ş		
n Number							-			>	1193				介	1(6 0				7	184				7	
l QC Ca	Ьb					35) [_					
Canister Size	<u> </u>																									
Canister Number Garister Size QC Can Number # of Cycles Int & Dajept Beaned	591	550	248	240	ort	162	362	07.1	95	327	1318	569	555	23.7	มจร	વિ3	556	523	13/	0.51	1197	વુર	Sill	562	1184	

entek Laboratories, LLC

Look Toet 24hr Int. & Date						ナ																					
ak Toet 94h	an I col Cal	- +	4	+	+	+	+	<u></u> +	+	+	<u>+</u>	41	+	±		_ +	+	+	.t	+	+	+	+		+	+	721
i o		+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	
in the second	Uetection Limits	1/4 40,25	0,			-)					1.00																
		WACOSIBILE				- >																					
	# of Cycles Int & Date Cleaned QC Batch Number	3/12/17			***	-}																					
	# of Cycles	20				1																					
	IC Can Number	554				>	>											,									
mech 3100	Canister Size G	٢					L																				
Ostrument: Entech 3100	Sanister Number	87.1	290	242	1.70	3 1	551														Pos	e 2	42	of	072		

Sentek Laboratories, LLC

nstrument: Entech 3100

\ \{\bar{2}						I	ı			i					<u>-</u>			I							}
+ 30 RTP 63/20	س مسر								**************************************									<u>,</u>	+	+	+			>	011
1,25/30 +	+ 30	+ 30 +	+ 30 ++	+ 30	+ 30	+ 30	+ 30	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30	+ 30	+ 30 +	+ 30	+ 30	4.30	+ 30	+ 30	+ 30 +	+ 30	+ 30 +	Page #
A lug/m3+0,2530					22					75			· · · · · · · · · · · · · · · · · · ·	u	9	ALLER OF THE	444			II TE	· · · · · · · · · · · · · · · · · · ·			<i>→</i>	
WACO33017A	•			\rightarrow	WACO32017B				>	JAC032017	4 Hanga)	WACOSZOI	<u>, </u>			->	1,//AC0320	- 			∍	
2.0																						7.77		>	
68				>	136	,			- >	137			-y	\rightarrow	285				→	1811	,				
) IL 89								10	•							*	₩				*~	<i>j</i> n	. 1	86	-
の い ente	222	546	1	yo Yo		_L]]] c	245	195	7	83		242	233	137	100	467	188	130	10	Pac	, , ,		4		Form C151

QC Canister Cleaning Logbook

Centek Laboratories, LLC

30 KTP 03/26/ Leak Test 24hr Int & Date ____ Page#, + 30 + 30 + 30 + 30 + 30 + 30 + 30 ÷ 30 + 30 + 30 + 30 + 30 93 88 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 VAC032017 # 149/m3+0.24+30 QC Batch Number | Detection Limits WA<032017B WAC032017H Onstrument: Entech 3100 7.83 32 Ξ, 1322 1203 306 210 36 33 1202 2 483 375 203 87 2 aboratories. L'L Page 245 of 273

Data File : C:\HPCHEM\1\DATA2\A0031310.D Vial: 26 Acq On : 13 Mar 2017 1:56 pm Operator: RJP Sample : WAC031317A Misc : A312_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 14 10:02:15 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 22:26:37 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.54 11.92 16.81	128 114 117	60201 294080 241427	1.00 1.00 1.00	ppb -0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70	95 - 130	175772 Recovery	0.97 =	ppb 0.00 97.00%
Target Compounds					Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031310.D A426_1UG.M Mon May 08 10:44:00 2017 MSD1

Page 247 of 273

Centek Laboratories, LLC

Quantitation Report

(QT Reviewed)

Data File: C:\HPCHEM\1\DATA2\AO031311.D
Acq On : 13 Mar 2017 2:34 pm

Vial: 27 Operator: RJP Inst : MSD #1 Multiplr: 1.00

Sample : WAC031317B Misc : A312_1UG

Quant Results File: A312_1UG.RES

MS Integration Params: RTEINT.P Quant Time: Mar 14 10:02:16 2017

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Sun Mar 12 22:26:37 2017 Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits Dev	(nim)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.54 11.93 16.81	128 114 117	62194 285996 238418	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70	95 ~ 130	171452 Recover	0.96 y ∞	ppb 96.00%	0.00
m					Ov	alue

Target Compounds

^{(#) =} qualifier out of range (m) \approx manual integration (+) \approx signals summed A0031311.D A426 LUG.M Mon May 08 10:44:03 2017

Page 249 of 273

היישרגונטני איישרגרווטונט

Centek Laboratories, LLC

Data File : C:\HPCHEM\1\DATA2\A0031312.D Vial: 28 Acq On : 13 Mar 2017 3:12 pm Operator: RJP Sample : WAC031317C Misc : A312_1UG Inst : MSD #1 Multiplx: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 14 10:02:17 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 22:26:37 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	ternal Standards R.T. QIor	Response Conc Units Dev(Min)
35) 1,4-difluorobenzene 11.93 114 283013 1.00 ppb 0.0	5) 1,4-difluorobenzene 11.93 114	283013 1.00 ppb 0.00
System Monitoring Compounds 65) Bromofluorobenzene 18.45 95 174331 1.00 ppb 0.0 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00%	5) Bromofluorobenzene 18.45 95	***

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0031312.D A426_1UG.M Mon May 08 10:44:06 2017 MSD1

indapragu (A)

Anametraetras schore

Data File : C:\HPCHEM\1\DATA2\A0031313.D
Acq On : 13 Mar 2017 3:49 pm
Sample : WAC031317D
Misc : A312_1UG Vial: 29 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 14 10:02:18 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 22:26:37 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QI	on Response C	onc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	11.93 1	.28 56611 .14 277027 .17 225435	1.00 ppb 0.00 1.00 ppb 0.00 1.00 ppb 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.44 Range 70 -	95 169439 130 Recovery	1.01 ppb 0.00 = 101.00%

Qvalue Target Compounds

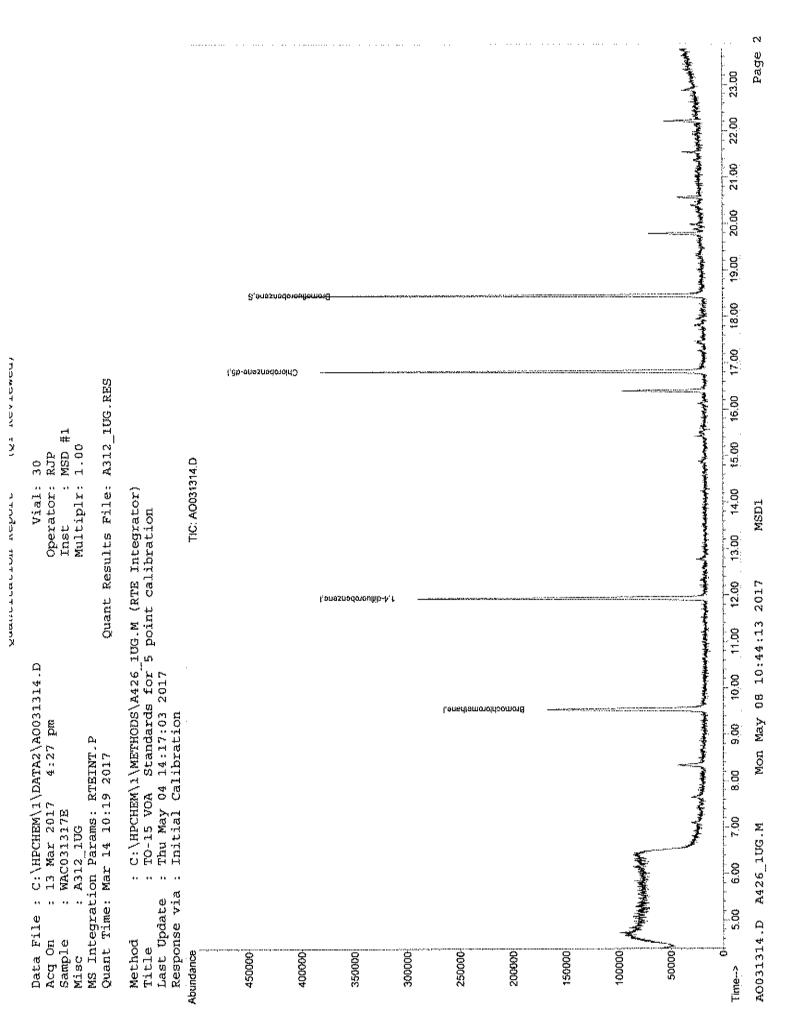
(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031313.D A426 1UG.M Mon May 08 10:44:09 2017

Data File : C:\HPCHEM\1\DATA2\A0031314.D Vial: 30 Acq On : 13 Mar 2017 4:27 pm Sample : WAC031317E Misc : A312_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 14 10:02:19 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 22:26:37 2017
Response via : Initial Calibration


DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response (conc Un	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.54 11.92 16.81	128 114 117	56965 274359 226756	1.00 1.00 1.00	ppb -0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70	95 - 130	169835 Recovery	1.00	ppb 0.00

Target Compounds

Qvalue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031314.D A426 1UG.M Mon May 08 10:44:12 2017

Data File : C:\HPCHEM\1\DATA2\A0031315.D
Acq On : 13 Mar 2017 5:05 pm
Sample : WAC031317F
Misc : A312_1UG Vial: 31 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 14 10:02:20 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Sun Mar 12 22:26:37 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.53 11.93 16.81	128 114 117	55487 273365 226312	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70	95 - 130	163837 Recovery	0.97 Y =	~ ~	0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0031315.D A426 lUG.M Mon May 08 10:44:15 2017 MSDl

Data File : C:\HPCHEM\1\DATA2\A0032006.D

Acq On : 20 Mar 2017 2:43 pm

Vial: 1 Operator: RJP

: WAC032017A Sample

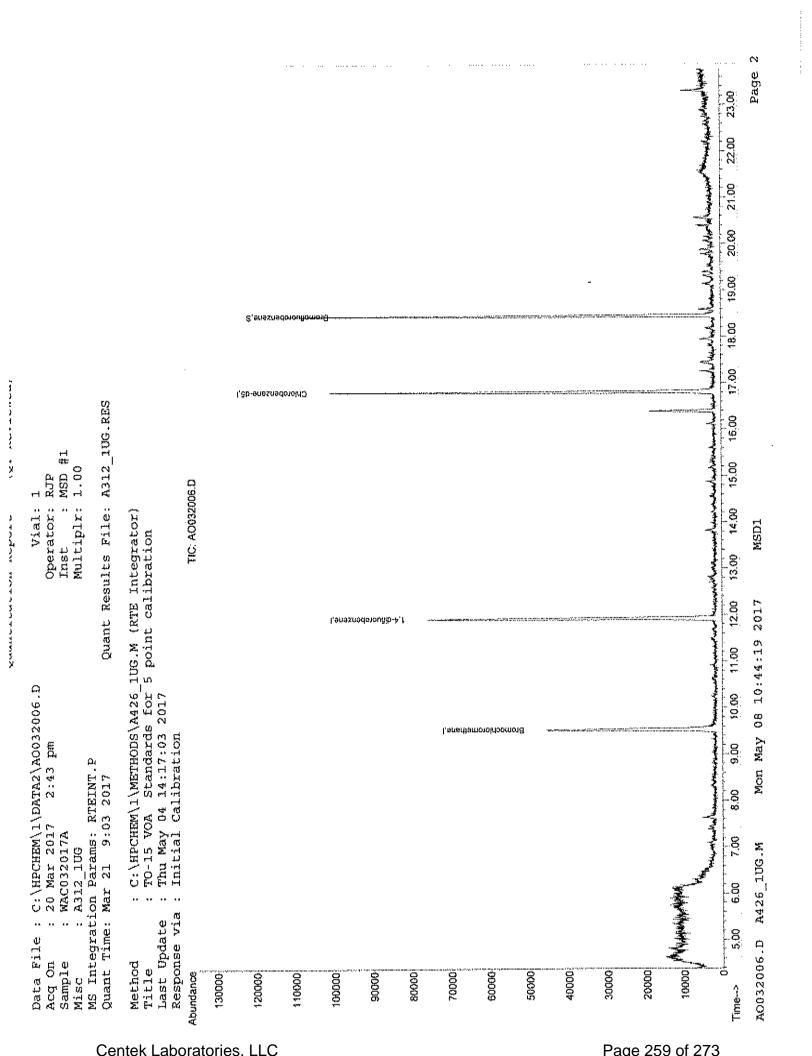
Inst : MSD #1 Multiplr: 1.00

Misc : A312_1UG

Quant Results File: A312_1UG.RES

MS Integration Params: RTEINT.P Quant Time: Mar 21 09:03:02 2017

Quant Method : C:\HPCHEM\1\METHODS\A312_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Mar 15 10:58:20 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.53 11.93 16.80	128 114 117	15562 73218 61485	1.00 ppb -0.02 1.00 ppb -0.01 1.00 ppb -0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.44 Range 70	95 - 130	42443 Recovery	0.92 ppb 0.00 = 92.00*
Target Compounds				Ovalue

Target Compounds

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:03 2017 Quant Results File: A312_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Mar 15 10:58:20 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.54 11.93 16.81	128 114 117	14949 69738 57843	1.00 1.00 1.00	ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.44 Range 70	95 - 130	39683 Recovery	0.92	ppb 92.00%	0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032007.D A426_1UG.M Mon May 08 10:44:21 2017 MSD1

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:04 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Mar 15 10:58:20 2017

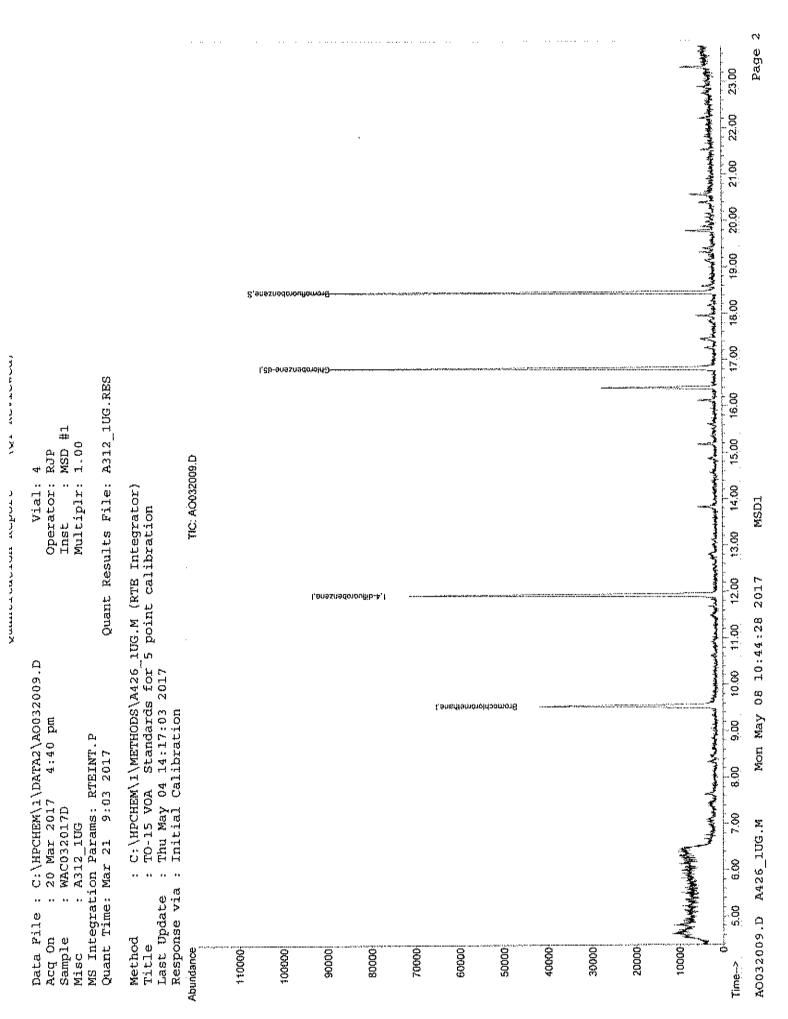
Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.52 11.92 16.80	114	14291 66450 55920	1.00 1.00 1.00	dqq	-0.02 -0.02 -0.02
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.44 Range 70	95 - 130	38009 Recovery		ppb 91.	-0.01 .00%
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0032008.D A426 1UG.M Mon May 08 10:44:24 2017 MSD1

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:05 2017 Quant Results File: A312_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Mar 15 10:58:20 2017

Response via : Initial Calibration

Internal Standards	R.T.	QIon	Response C	onc U	nits 1	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.54 11.92 16.81	128 114 117	14630 66585 54294	1.00 1.00 1.00	ppp	0.00 -0.02 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.44 Range 70	95 - 130	37248 Recovery	0.92	ppb	0.00
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0032009.D A426_1UG.M Mon May 08 10:44:27 2017 MSD1

Data File : C:\HPCHEM\1\DATA2\A0032010.D Vial: 5 Operator: RJP Acq On : 20 Mar 2017 : WAC032017E Inst : MSD #1 Sample Misc : A312_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:06 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 15 10:58:20 2017

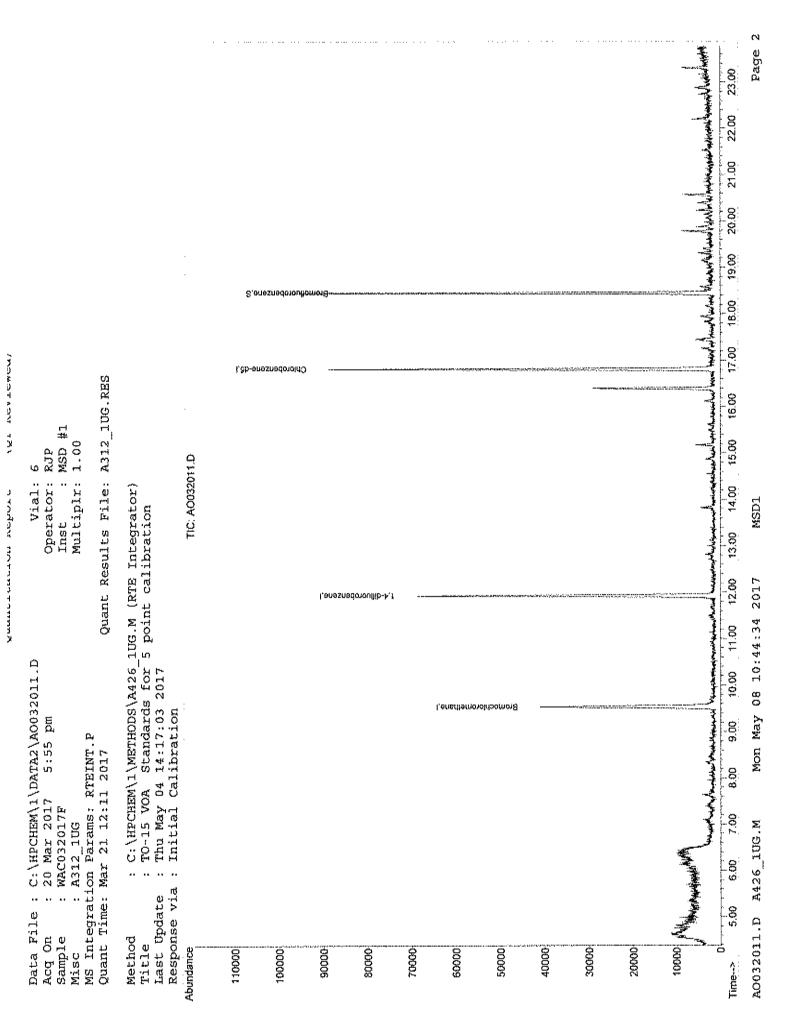
Response via : Initial Calibration

Internal Standards	R.T. QI	on Response Co	onc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5		28 13448 14 65306 17 53539	1.00 ppb 0.00 1.00 ppb -0.02 1.00 ppb 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000		95 36660 130 Recovery	0.92 ppb 0.00 = 92.00%
Target Compounds			Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0032010.D A426_IUG.M Mon May 08 10:44:30 2017

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:07 2017 Quant Results File: A312_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Mar 15 10:58:20 2017

Response via : Initial Calibration

Internal Standards	R.T. QIon	Response C	Conc Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.53 128 11.92 114 16.81 117	62760	1.00 ppb 0.00 1.00 ppb -0.01 1.00 ppb 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.44 95 Range 70 - 13		0.92 ppb 0.00 % 92.00%
Target Compounds			Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0032011.D A426 1UG.M Mon May 08 10:44:33 2017 MSD1

Data File : C:\HPCHEM\1\DATA2\A0032012.D Vial: 7 Acq On : 20 Mar 2017 6:32 pm Operator: RJP Sample : WAC032017G Misc : A312_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:08 2017 Quant Results File: A312_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 15 10:58:20 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

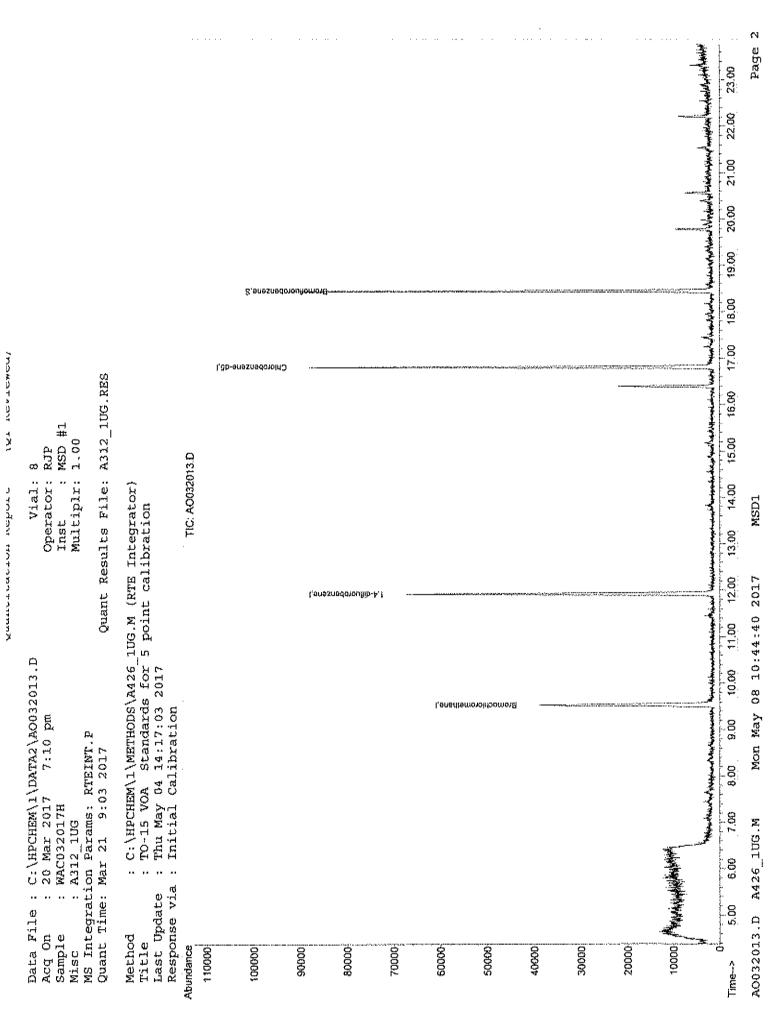
Internal Standards	R.T.	QIon	Response C	one U	nits Dev	(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	9.54 11.93 16.81	128 114 117	13214 61386 51318	1.00	dqq	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70	95 130	34657 Recovery	0.90		0.00
Target Compounds					Qv	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed A0032012.D A426 1UG.M Mon May 08 10:44:36 2017

Data File : C:\HPCHEM\1\DATA2\A0032013.D
Acq On : 20 Mar 2017 7:10 pm
Sample : WAC032017H
Misc : A312_1UG Vial: 8 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 21 09:03:09 2017 Quant Results File: A312_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A312_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 15 10:58:20 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.53 11.92 16.80	128 114 117	13439 62774 50944	1.00 pr 1.00 pr 1.00 pr	-0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.45 Range 70		35665 Recovery	0.94 pr	
We were house and a					01

Target Compounds Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0032013.D A426_1UG.M Mon May 08 10:44:39 2017

,	-15 Package Review Check			
Client: La Bella	Project: 691-705 St. Va.	u/ SDG:	1	1703015
		YES	<u>МО</u>	NA
		*.		
Analytical Results TIC's present	Present and Complete Present and Complete			
The same of Consultations	Holding Times Met			
Comments:				
	ALE ALEMAN AND ANY AND ANY AND ANY AND ANY AND AND AND AND AND AND AND AND AND AND	AMERICAN TERRETORISMENT AND TERRETORISMENT AND THE PARTY A		
Chain-of-Custody	Present and Complete			
Surrogate Recovery	Present and Complete	<u> </u>	Marie Commence	
	Recoveries within limits		-	In emissioner
	Sample(s) reanalyzed			TT-TTTM
Internal Standards Recovery	Present and Complete			
	Recoveries within limits	WINTALDIN	market are as	
	Sample(s) reanalyzed		***************************************	-acromoso years
Comments: X 5	SEE CASE NARRAT	11E		
		MATERIAL PROPERTY AND ADDRESS		· · · · · · · · · · · · · · · · · · ·
Lab Control Sample (LCS)	Present and Complete	<u> </u>		LALIA AMERIKA P
	Recoveries within limits			
Lab Control Sample Dupe (LCSD)	Present and Complete	<u> </u>		
	Recoveries within limits		414 6141 61	ATTAINED TANK
MS/MSD	Present and Complete	_		
112111122	Recoveries within limits			
Comments:				
A STATE OF THE STA	AND AND AND AND AND AND AND AND AND AND			**************************************
Sample Raw Data	Present and Complete			
	Spectra present for all samples	madenn	rizanin dali fi	
Comments:				
Centek Laboratories, LLC	Private and Confidential			Page 1 of 2

TO-15 Package Review Checklist

Client: La Bella	Project: 691-705-51. Pau	1 SDG: <u>C1703015</u>
•		4 Paris / 1
Standards Data		<u>YES NO NA</u>
Initial Calibration Summary	Brogent and Carrelate	_
xinoa Canoration Sammary	Present and Complete Calibration(s) met criteria	market and a second
Continuing Calibration Summary	Present and Complete	
	Calibration(s) met criteria	***************************************
Charles David David		**************************************
Standards Raw Data	Present and Complete	
Raw Quality Control Data	THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O	,","\"\\\\\\\\\\\\\\\\\\\\\\\\\\\
Tune Criteria Report	Present and Complete	
Method Blank Data	MB Results <pql< td=""><td></td></pql<>	
	Associated results flagged "B"	
LCS sample data	Present and Complete	**************************************
LCSD sample data	Present and Complete	THE PARTY
MS/MSD sample data	Present and Complete	
Comments:		
Logbooks		
Injection Log	Present and Complete	
Standards Log	Present and Complete	
Can Cleaning Log	Present and Complete	
	Raw Data Present	
Calculation sheet	Present and Complete	
IDL's	Present and Complete	
Bottle Order Form	Present and Complete	
Sample Tracking Form	Present and Complete	
Additional Comments:		
	(COLUMN TO THE COLUMN TO THE C	
Section Supervisor: Wat	<u> Date: 3</u>	129/17
QC Supervisor:	16 4 4 Date: 3	179/17
Centek Laboratories, LLC	Private and Confidential	Pour 2 at 2

Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752 NYSDOH ELAP Certificate No. 11830

Analytical Report

Order No.: C1703015

Friday, March 10, 2017

Michael Pelychaty

LaBella Associates, P.C.

300 State Street, Suite 201

Rochester, NY 14614

TEL: (585) 454-6110 FAX (585) 454-3066

RE: 691 and 705 St Paul St

Dear Michael Pelychaty:

Centek Laboratories, LLC received 6 sample(s) on 3/7/2017 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Page 3 of 158

Centek Laboratories, LLC

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Will Dall

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

Centek Laboratories, LLC

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- -2. Case Narrative
 - a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form I (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

Date: 29-Mar-17

CLIENT:

LaBella Associates, P.C.

Project:

691 and 705 St Paul St

Lab Order:

C1703015

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

See Corrective Action: [3488] The 3rd IS & Surrogate did not meet criteria.

Centek Laboratories, LLC

Corrective Action Report

Date initiated:	08-Mar-17	Corrective Action Report ID:	3488

Initiated By: Russell Pellegrino Department: MSVOA

Corrective Action Description

CAR Summary: The 3rd IS & Surrogate did not meet criteria.

Description of Nonconformance Root/Cause(s):

The 3rd IS & Surrogate were high and did not meet criteria for samples C1703015-001A - 005A & 003A MS/MSD. Based on the chromatographic evidence, it appears that the contamination is from the presence of very high petroleum pattern. All Compounds of

concern fall under the first 2 Internal standards which did meet criteria

Description of Corrective Action w/Proposed C.A.: Samples C1703015-003A - 005A were analyzed further as dilutions with criteria being met. Due to matrix being in a canister it is difficult to see any signs of problems. All sets

of data submitted.

Performed By: Russell Pellegrino Completion Date: 09-Mar-17

Client Notification

Client Notification Required: No Notified By:

Comment:

Quality Assurance Review

Nonconformance Type: Deficiency

Further Action

required by QA:

Since the compounds of concern fall under the first 2 internal standards and they did meet criteria and all other QC meets requirements report the 1x results. Submit all sets of

data.

Approval and Closure

Technical Director /

Deputy Tech. Dir.:

Will Dolling

Close Date: 10-Mar-17

QA Officer Approval:

William Dobbin

QA Date: 10-Mar-17

Nick Scala

Last Updated BY russ

Updated:

29-Mar-2017 9:25 AM

Reported: 29-Mar-2017 9:25 AM

i	Centek Labs - Chain of Custo	ain of Cus	tody	Sife Name: / Cl /]	7//	Ci Pari C	Detectiv	Detection Limit	Report Level	jeve
				, ,	2					
Cartek Laboratories				Project: Soil (SAS	Sumpl. 194			Spots	Leveli	
J.	Syracuse, NY 13206			PO# 217043	` 9		,	1ug/M3	☐ Levet III	
e)	ဗ်	Vapor Intrusion & IAQ	18149	Canister Order #: Or	869381	61	<u>\$</u>	1ug/M3 +TCE .25	Cat "B" Like	ike
TAT Turnaround Time:	Check Rush IAT Due One Surcharge % Date:	Company: 7	A BELCA	- ROCHESTER	Company:	Company: Check Here If Same:	6	1 ⊀		
5 Business Days 4 Business Days	25%	ii I	Ş	State Strept	Invoice to: Address:	to:		otate s	Steet	
3 Business Days 2 Business Days	\$0% 75%	City, State, Zip	3	-	4 City, State, Zip	e, Zip	Rochestor	7. V.Y	1461	-1
*Next Day by 5pm *Next Day by Noon	100%	Email: A Br	A Brothwing Gellin	Sell. Pc. 10m.	Email;					
Same Day	200%	Phone: // p.e	<u>श्री त्रिक्त्रोतील त</u>	1 6 (3 (14 PC , (2 M	Phone:					
For Same and Next Day TA Sample ID	T Please Notify Lab	Canister	Regulator	Analysis Request	Field	Field Vacuum	Labs Vacuum"	abs Vacuum"	Comments	nts
5V- 1	3/2/17	543	25%	*\!\\	-30	V	1 -	Z Z	1 toust	7
SV-2	1	25.2	45.5	****	12/2	1		1	2000	1
ζV-3	7/3/17	120g	249	10-15*	.3hx	1,5	-	-	J. March	, <u>, , , , , , , , , , , , , , , , , , </u>
50-4	3/3/17	29D	299	₹\$-15*	. L.	1	4	; (,)	1:54	<u></u>
Displicate	3/8/17	1184	Ebe	TD-15 *	C.S.	1-5	5	-3		
Ambient AN	12/3/17	988	200	TO-15*	30+	1.5		,	>	
	, ,									
,		0000	= %;	odel	Laboratory Detection Limit (µg/m³)	in Limit (ug/	m)			
	Targ	Targeted VOUS		200						
	301			C7:1)						
	, <u> </u>	cis-1,2-dichloroethene	ene	1.0						
	1	trans-1,2-dichloroethene	ethene	1.0						
	viny	vinyl chloride		0.25						Τ
	1,1	1,1-Dichloroethene	a	1.0						
		chloroethane		1.0						
) Bri	ug/m³ denotes micr	crograms pe	ograms per cubic meter						
Chain of Custody	Name		Signature	4	Date/Time	, E	Courier: C	CIRCLE ONE	E	
Samples ny.	Alex Sight		1/2/20	lour de	5-3-17	1/20kg	, kana	1	гскиргороп	
Reinquished by: Received at Lab by:	MICH MANDA	sino.	1		15		"For LAB USE ONLY Work Order # C ()	"For LAB USE ONLY Work Order #C (70 3 0)	3015	¢-
** By signing Centek Lat	*** By signing Centek Labs Chain of Gustody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.	epting Centek	Labs Terms	and Conditions listed o	in the reverse					

Date: 29-Mar-17

CLI	ENT	;
-----	-----	---

LaBella Associates, P.C.

Project: 691 and 705 St Paul St Work Order Sample Summary

Lab Order:	C1703015		Work Ordi	er Sample Summary
Lab Sample ID C1703015-001A	•	Tag Number 542.256	Collection Date 3/3/2017	Date Received 3/7/2017
C1703015-002A	SV-2	237.402	3/3/2017	3/7/2017
C1703015-003A	SV-3	1206.249	3/3/2017	3/7/2017
C1703015-004A	SV-4	290.299	3/3/2017	3/7/2017
C1703015-005A	Duplicate	1184.299	3/3/2017	3/7/2017
C1703015-006A	Ambient Aír	556.267	3/3/2017	3/7/2017

Sample Receipt Checklist

Client Name LABELLA - ROCHESTER				Date and Ti	me Receive			3/7/20	17
Work Order Numbe C1703015				Received by	y NM				
Checklist completed by Signature	Date)	17	Reviewed b	y	>		-31-117	
Matrix:	Carrier name: f	FedEx	<u> Grou</u>	<u>nd</u>					
Shipping container/cooler in good condition?	١	res (Y	No 🗀	Not Presen				
Custody seals intact on shippping container/co	oler?	es [No 🗀	Not Presen	y			
Custody seals intact on sample bottles?	`	res (No 🗀	Not Presen	\mathbf{Z}			
Chain of custody present?	. \	es 🛚	/	No 🗀					
Chain of custody signed when relinquished and	i received?	∕es ŝ	~	№ 🗀					
Chain of custody agrees with sample labels?	`	res 8	V	No 🗀					
Samples in proper container/bottle?	١	es E	Y	No 🗀					
Sample containers intact?	Y	es 8	Y	No 🗔					
Sufficient sample volume for indicated test?	Y	es (Y	No 🗀					
All samples received within holding time?	١	es (Ž	No 🗀					
Container/Temp Blank temperature in complian	ice? Y	es 8	y	No 🗀					
Water - VOA vials have zero headspace?	No VOA vials submitt	ted (/	Yes [No 🗀				
Water - pH acceptable upon receipt?	Y	es [No 🗹					
	Adjusted?	-V-MA-1-1		Checked by					
Any No and/or NA (not applicable) response m	ust be detailed in the com	menl	ts sect	ion be		==:			: -
Client contacted	Date contacted:			Per	son contacted			vran JL	
Contacted by:	Regarding:		pro esperiente des des esta esta esta esta esta esta esta es		(a) () for which to be soon to be soon to be soon to be soon to be soon to be soon to be soon to be soon to be				
Comments:									
			n da 17 and 1 anna a na an	and and and total addition to the Particle Andrews	and an about the Mark and the analysis of the Mark the actual	APPELLATING SPECIFIC	YA.TATTAFENERALI - AF		V.I AIL .TL
	- The state of the						mandadad a Arandi Arthut	****	
Corrective Action	Add William Control of the Control o	THE FLANAR	M194110-2011110		TO SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECULDA SECU			\$ A = bar/da	

Centek Lal	Centek Laboratories, LLC		;		29-Mar-17		
Lab Order: Client: Project:	C1703015 LaBella Associates, P.C. 691 and 705 St Paul St				DATE	DATES REPORT	RT
Sample 1D	Client Sample 1D	Collection Date	Matrix	Test Name	TCL,P Date	Prep Date	Analysis Date
C1703015-001A	SV-I	3/3/2017	Air	lug/M3 by Method TO15			3/8/2017
CI703015-002A	SV-2			lug/M3 by Method TO15			3/8/2017
C1703015-003A	\$V-3			lug/M3 by Method TO15			3:8/2017
				lugiM3 by Method TO15			3/8/2017
C1703015-004A	SV-4			lug/M3 by Method TO15		***************************************	3/9/2017
				Jug/MS by Method TO15			3/8/2017
C1703015-005A	Duplicate			Jug/M3 by Method TO15			3/9/2017
				lug/M3 by Method TO15		··· \ = · · · · ·	3/8/2017
C1703015-006A	Ambient Air			Jug/m3 w/ 0.25 ng/M3 CT-FCE-VC			3/8/2017
						com Sun	
							
						·m···*·· V-···	

CANISTER ORDER

CENTEK LABORATORIES, LLC

Air Quality Testing. M's a Gas.

143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

6352

29-Mar-17

SHIPPED TO:

Company: LaBella Associates, P.C. Contact:

Michael Pelychaty Address:

-300 State-Street, Suite 201

Rochester, NY 14614

Phone:

Quote ID:

Project:

Can / Reg ID

PO:

0

(585) 454-6110

Submitted By: MadeBy: NM

> Ship Date: 2/28/2017

VIA: FedEx Ground

Due Date: 3/1/2017

Bottle Code	Bottle Type	TEST(s)	QTY
MC1400CC	1.4L Mini-Can	1ug/M3 by Method TO15	1
MC1000CC	1L Mini-Can	1ug/M3 by Method TO15	6

237	1L Mini-Can - 1168 VI
249	Time-Set Reg - 687 VI
256	Time-Set Reg - 694 VI
2 6 7	Time-Set Reg - 705 VI
290	1t Mini-Can - 1266 VI
339	Time-Set Reg - 736 VI
340	Time-Set Reg - 737 VI
402	Time-Set Reg - 781 VI
459	1L Mini-Can - 1362 VI
556	1L Mini-Can - 124 VI
1184	1L Mini-Can - 1248 VI
1206	1.4L Mini-Can - 1376 VI

Description

(6) 1L @ 8hrs + (1) 1.4L @ 8hrs + dupe W/ He shroud & Meter, tubing WAC 110316 A-B, 021717A-C

Cantale	Ι.	مام	+-	.:	1.1	
Centek	Li	abo	rator	ies.	LL	.U

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

ANALYTICAL RESULTS

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

691 and 705 St Paul St

Project: Lab ID:

C1703015-001A

Date: 27-Mar-17

Client Sample ID: SV-1

Tag Number: 542.256

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit	Quai	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	Ð			Analyst:
Lab Vacuum In	-1			"Hg		3/7/2017
Lab Vacuum Out	-30			"Hg		3/7/2017
1UG/M3 BY METHOD TO15		то-	15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15		ppb∨	1	3/8/2017 1:28:00 PM
Chloroethane	0.13	0.15	J	ppbV	1	3/8/2017 1:28:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	3/8/2017 1:28:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	3/8/2017 1:28:00 PM
Trichloroethene	< 0.15	0.15		Vdq q	1	3/8/2017 1:28:00 PM
Vinyl chloride	< 0.15	0.15		ppbV	1	3/8/2017 1:28:00 PM
Surr; Bromofluorobenzene	239	70-130	S	%REC	1	3/8/2017 1:28:00 PM
NOTES:						

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- Analyte detected in the associated Method Blank 13
- Н Holding times for preparation or analysis exceeded
- JΝ Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 12 Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 6

Julios, Dane

Date: 27-Mar-17

CLIENT: LaBella Associates, P.C. Client Sample ID: SV-1
Lab Order: C1703015 Tag Number: 542.256

 Project:
 691 and 705 St Paul St
 Collection Date:
 3/3/2017

 Lab ID:
 C1703015-001A
 Matrix:
 AJR

Analyses	Result	**Limit Qı	ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
Chloroethane	0.34	0.40	J ug/m3	1	3/8/2017 1:28:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	3/8/2017 1:28:00 PM
Vinyl chloride	≺ 0.38	0.38	ug/m3	1	3/8/2017 1:28:00 PM

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection

Page 1 of 6

CLIENT: LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

C1703015-002A

Date: 27-Mar-17

Client Sample ID: SV-2

Tag Number: 237.402

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-1		"Hg		3/7/2017
Lab Vacuum Out	-30		"Hg		3/7/2017
IUG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	3/8/2017 2:09:00 PM
Chloroethane	< 0.15	0.15	₽₽bV	7	3/8/2017 2:09:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	3/8/2017 2:09:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/8/2017 2:09:00 PM
Trichloroethene	< 0.15	0.15	Vdqq	1	3/8/2017 2:09:00 PM
Vinyi chtoride	< 0.15	0.15	Vdqq	1	3/8/2017 2:09:00 PM
Surr: Bromofluorobenzene	235	70-130 S	%REC	1	3/8/2017 2:09:00 PM
NOTES:					

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

CLIENT:

C1703015-002A

Date: 27-Mar-17

Client Sample ID: SV-2

Tag Number: 237,402

Collection Date: 3/3/2017

Matrix: AIR

Result	**Limit Qt	ial Units	DF	Date Analyzed
	TO-15			Analyst: RJP
< 0.59	0.59	սց/m3	1	3/8/2017 2:09:00 PM
< 0.40	0.40	ug/m3	1	3/8/2017 2:09:00 PM
< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
< 0.81	0.81	ug/m3	1	3/8/2017 2:09:00 PM
< 0.38	0.38	ug/m3	1	3/8/2017 2:09:00 PM
	< 0.59 < 0.40 < 0.59 < 0.59 < 0.81	TO-15 < 0.59	TO-15 < 0.69	< 0.59

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 15 Estimated Value above quantitation range
- Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: LaBella Associates, P.C. Client Sample ID: SV-3

 Lab Order:
 C1703015
 Tag Number:
 1206.249

 Project:
 691 and 705 St Paul St
 Collection Date:
 3/3/2017

Lab ID: C1703015-003A Matrix: AIR

Analyses	Result	**Limit	Qua	Units	DF	Date Analyzed
FIELD PARAMETERS	•	#L	D.			Analyst:
Lab Vacuum in	1			"Hg		3/7/2017
Lab Vacuum Out	-30			"Hg		3/7/2017
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15		∨dqq	1	3/8/2017 2:48:00 PM
Chloroethane	0.11	0.15	J	ppb∨	1	3/8/2017 2:48:00 PM
cis-1,2-Dichloroethene	0.18	0.15		Váqq	1	3/8/2017 2:48:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	3/8/2017 2:48:00 PM
Trichioroethene	7.4	1.5		ppbV	10	3/8/2017 11:34:00 PM
Vinyl chloride	< 0.15	0.15		ppbV	1	3/8/2017 2:48:00 PM
Surr: Bromofluorobenzene	97.0	70-130		%REC	10	3/8/2017 11:34:00 PM
Surr: Bromofluorobenzene	166	70-130	S	%REC	1	3/8/2017 2:48:00 PM
NOTES:						

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 27-Mar-17

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 6

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID: C1703015-003A

Date: 27-Mar-17

Client Sample ID: SV-3

Tag Number: 1206.249 Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:48:00 PM
Chloroethane	0.29	0.40	J ug/m3	1	3/8/2017 2:48:00 PM
cis-1,2-Dichloroethene	0.71	0.59	ug/m3	1	3/8/2017 2:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:48:00 PM
Trichloroethene	40	8.1	ug/m3	10	3/8/2017 11:34:00 PM
Vinvi chloride	< 0.38	0.38	ug/m3	1	3/8/2017 2:48:00 PM

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

CLIENT:

C1703015-004A

Date: 27-Mar-17

Client Sample ID: SV-4

Tag Number: 290.299

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	Þ			Analyst:
Lab Vacuum In	-3			"Hg		3/7/2017
Lab Vacuum Out	~30			"Hg		3/7/2017
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJF
1,1-Dichloroethene	< 0.15	0.15		∨dqq	1	3/8/2017 4:59:00 PM
Chloroethane	< 0.15	0.15		Vdqq	1	3/8/2017 4:59:00 PM
cis-1,2-Dichloroethene	1.0	0.15		Vdqq	1	3/8/2017 4:59:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	3/8/2017 4:59:00 PM
Trichloroethene	8.9	1.5		ppbV	10	3/9/2017 12:47:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	3/8/2017 4:59:00 PM
Surr: Bromofluorobenzene	100	70-130		%REC	10	3/9/2017 12:47:00 AM
Surr: Bromofluorobenzene	190	70-130	s	%REC	1	3/8/2017 4:59:00 PM
NOTES:						

Surrogate did not meet criteria due to severe matrix interference.

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbb{E} Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

ENT: LaBella Associates, P.C.

Client Sample ID: SV-4

CLIENT:

isassetta (tassociates, 1 : c

ant Sample 1D: 5V-4

Lab Order:

C1703015

Tag Number: 290.299

Date: 27-Mar-17

Project:

691 and 705 St Paul St

Collection Date: 3/3/2017

Lab ID:

C1703015-004A

Matrix: AlR

Analyses	Result	**Limit Q	gal Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 4:59:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 4:59:00 PM
cis-1,2-Dichloroethene	4.1	0.59	ug/m3	1	3/8/2017 4:59:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 4:59:00 PM
Trichloroethene	48	8.1	ug/m3	10	3/9/2017 12:47:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 4:59:00 PM
ALO TITO					

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 6

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID:

C1703015-005A

Date: 27-Mar-17

Client Sample ID: Duplicate

Tag Number: 1184.299

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	Qual Un	its	DF	Date Analyzed
FIELD PARAMETERS		FLD)			Analyst:
Lab Vaccum In	-3		"Hg			3/7/2017
Lab Vacuum Out	-30		"Hg			3/7/2017
1UG/M3 BY METHOD TO15		TO-1	5			Analyst: RJP
1,1~Dichloroethene	< 0.15	0.15	dqq	V	1	3/8/2017 5:39:00 PM
Chloroethane	< 0.15	0.15	ppb	V	1	3/8/2017 5:39:00 PM
cis-1,2-Dichloroethene	0.99	0.15	ppb	V	1	3/8/2017 5:39:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb	V	1	3/8/2017 5:39:00 PM
Trichloroethene	8.8	1.5	ppb	V	10	3/9/2017 2:01:00 AM
Vinyl chloride	< 0.15	0.15	ppb	V	1	3/8/2017 5:39:00 PM
Surr: Bromofluorobenzene	98.0	70-130	%R	EC	10	3/9/2017 2:01:00 AM
Surr: Bromofluorobenzene	187	70-130	\$ %R	EC	1	3/8/2017 5:39:00 PM
NOTEC.						

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID:

C1703015-005A

Client Sample ID: Duplicate

Tag Number: 1184.299 Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 5:39:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 5:39:00 PM
cis-1,2-Dichtoroethene	3.9	0.59	ug/m3	1	3/8/2017 5:39:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 5:39:00 PM
Trichloroethene	47	8,1	ug/m3	10	3/9/2017 2:01:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 5:39:00 PM

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 5 of 6

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID:

C1703015-006A

Date: 27-Mar-17

Client Sample 1D: Ambient Air

Tag Number: 556.267

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Que	l Units	DF.	Date Analyzed
FIELD PARAMETERS		FLD	•		Analyst:
Lab Vacuum In	1		"Hg		3/7/2017
Lab Vacuum Out	-30		"Hg		3/7/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
		0.45			2/0/2017 42.40.00 2384

FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	1		"Hg		3/7/2017
Lab Vacuum Out	-30		"Hg		3/7/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	3/8/2017 12:48:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	3/8/2017 12:48:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/8/2017 12:48:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	Vđạq	1	3/8/2017 12:48:00 PM
Trichloroethene	< 0.040	0.040	ppbV	1	3/8/2017 12:48:00 PM
Vinyi chloride	< 0.040	0.040	Vdqq	1	3/8/2017 12:48:00 PM
Surr: Bromofluorobenzene	87.0	70-130	%REC	1	3/8/2017 12:48:00 PM

Qualifiers:

Quantitation Limit

Analyte detected in the associated Method Blank 13

14 Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range E

Analyte detected below quantitation limit 3

Not Detected at the Limit of Detection

Page 6 of 6

CLIENT: LaBella Associates, P.C.

Lab Order: C170

C1703015

Project: 691 and 705 St Paul St

Lab ID:

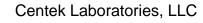
C1703015-006A

Date: 27-Mar-17

Client Sample ID: Ambient Air

Tag Number: 556.267

Collection Date: 3/3/2017


Matrix: AIR

Analyses	Result	**Limit Qu	at Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	1 1 1 1 1	TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
Chloroethane	< 0.40	0,40	ug/m3	1	3/8/2017 12:48:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	3/8/2017 12:48:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/8/2017 12:48:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 6

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

QUALITY CONTROL SUMMARY

Date: 27-Mar-17

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:

LaBella Associates, P.C.

Work Order:

C1703015

Project: 691 and 705 St Paul St

Test No:

TO-15

Matrix: A

Sample 1D	BR4FBZ	
		entrem to 19 de accompany de marco de marco de marco de marco de marco de marco de marco de marco de marco de m Company de marco de marco de marco de marco de marco de marco de marco de marco de marco de marco de marco de m
ALCS1UG-030817	105	
ALCSTUGD-030817	104	
AMB1UG-030817	85.0	
C1703015-001A	239 *	
C1703015-002A	235 *	
C1703015-003A	97.0	
C1703015-003A MS	170 *	
C1703015-003A MSD	173 *	
C1703015-004A	100	
C1703015-005A	98.0	
C1703015-006A	87.0	

Acronym	Surrogate	QC Limits	
BR4FBZ	≖ Bromofluorobenzen	ne 70-130	
l			

* Surrogate recovery outside acceptance limits

GC/MS QA-QC Check Report

!une File : C:\HPCHEM\1\DATA\A0030803.D
!une Time : 8 Mar 2017 10:33 am

)aily Calibration File : C:\HPCHEM\1\DATA\A0030803.D

(IS1) (IS2) (IS3) 51607 232876 196939 (BFB)

						31007	232070	, 4000	
rile	Sample	DL	Surrogate	Recovery	8	Internal	Standard	Responses	
0030804.D	ALCS1UG-03081	7	105			54344	232438	196865	
Q.20805.D	AMB1UG-030817		85			51456	199472	169731	
Q.30806.D	C1703015-006A		87			47960	186316	173836	
10030807.D	C1703015-001A		239*			59338	270574	278336	
,0030808.D	C1703015-002A		235*			72867	317032	316562*	
Q.60808007	C1703015-003A		166*			80896	366728	336237*	
0030810.D	C1703015-003A	MS	170*			80202	356830	344072*	
10030811.D	C1703015-003A	MSD	173*			79391	370639	337498*	
0030812.D	C1703015-004A		190*			76299	343779	323940*	
0030813.D	C1703015-005A		187*			77699	348683	330439*	
0030822.D	C1703015-003A	10X	97			53827	22753	36 201273	
0030824.D	C1703015-004A	10X	100			46536	21019	9 197259	40 W W W W W T
10030826.D	C1703015-005A	10X	98			46525	1,9846	190799	
0030828.D	ALCS1UGD-0308	17	104			45106	19955	0 175594	
	_		20 24 25 20 20 20 PM 20 10 10 ML 10 1						

t - fails 24hr time check * - fails criteria

Created: Mon Mar 27 11:04:40 2017 MSD #1/

TestCode: 0.25CT-TCE-VC

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 27-Mar-17

LaBella Associates, P.C. CLIENT:

C1703015 Work Order:

Project:

691 and 705 St Paul St

Sample ID ALCS1UG-030817	SampType: LCS	TestCor	TestCode: 0.25CT-TCE- Units: ppbV	Units: pobV		Prep Date:	je;		RunNo: 12014	014	
Client ID: ZZZZZ	Batch ID: R12014	Test	Testlvo: TO-15		7	Analysis Da	Analysis Date: 3/8/2017	.	SeqNo: 140535	0535	
Analyte	Result	占	SPK value SPK Ref Val	PK Ref Val	%REC	LowLimit	HighLimit	%REC LowLinii HighLimit RPD Ref Val	%ጽ₽ዐ	%RPD RPDLimit Qual	Qual
1,1-Dichloroethene	1.060	0.15	1	0	106	70	130				
Chloroethane	0.9000	0.15	-	0	90.06	20	130				
cis-1,2-Dichkoraethene	1.100	0.15	-	0	110	70	130				
trans-1,2-Dichloroethene	1.070	0.15	-	0	107	70	130				
Trichloroethene	1.060	0.040	-	0	35	70	£30				
Vinyl chloride	0.8700	0.040	₩.	0	87.0	70	‡30				

	Sample ID ALCS1UGD-030817 SampType: LCSD	TesfOok	le: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	હાં		RunNo: 12014	1014	
Client ID: ZZZZ	Batch ID: R12014	Test	TestNo: TO-15		- u.	Analysis Date: 3/9/2017	e: 3/9/201	7	SeqNo: 140536	10536	
Analyte	Result	PQE	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimii	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
1, t-Dichloroethene	1.100	0.15	+	0	110	70	130	1.06	3.70	30	
Chloroethane	1.000	0.15	*	¢	100	70	130	0.0	10.5	39	
cis-1,2-Dichloroethene	1,130	0.15	ų, m	0	113	70	130	***	2.69	30	
trans-1,2-Dichloroethene	1,100	0.15	4	O	110	52	130	1.07	2.76	8	
Trichloroethene	1.106	0.040	ψm	~	110	77	130	1.06	3.70	30	
Vinyl chloride	0.9100	0.040	₹"	0	91.0	70	130	0.87	4.49	30	

Results reported are not blank corrected Qualifiers:

Analyte detected below quantitation limit -- ×

Spike Recovery outside accepted recovery limits

Not Detected at the Limit of Detection ¤ €

Estimated Value above quantitation range

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits II es

Page I of I

TestCode: 0.25CT-TCE-VC

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 27-Mar-17

LaBella Associates, P.C. CLIENT:

CI 703015 Work Order: 691 and 705 St Paul St

Project:

Sample ID AMB1UG-030817	SampType: MBLK	TestCod	e: 0.25CT-TCE	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	àú		RunNo: 12014	14	
Client ID: ZZZZZ	Batch ID: R12014	Testly	TestNo: TO-15		વ	հըalysis Datı	Analysis Date: 3/8/2017		SeqNo: 140534	534	
Analyte	Result	Pa	SPK value SPK Ref Val	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	PD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
1,1-Dichloroethene	< 0.15	0.15									
Chloroethane	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
Trichforoethene	< 0.040	0.040							******		
Vinyi chloride	< 0.040	0.040									

Estimated Value above quantitation range Not Detected at the Limit of Detection ы Q Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected

-- vs

Qualifiers:

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 27-Mar-17

LaBella Associates, P.C. Work Order: CLIENT:

C1703015 Project;

691 and 705 St Paul St

TestCode: 1ugM3_TO15

Sample ID C1703015-003A MS	SampType: MS	TestCo	de: 1ugM3_TC	TestCode: 1ugM3_TO15 Units: ppbV		Prep Date:	14		RunNo: 12014	2014	
Client ID: SV-3	Batch ID: R12014	Testl	TestNo: TO-15		•	Analysis Dafe:	378/2017	7	SeqNo: 140546	10546	
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimil	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.090	0.15		O	109	70	130				
Chloroethane	0.8100	0.15	*-	0.11	70.0	70	130				
cis-1,2-Dichforoethene	1,400	0.15	+	0.18	122	22	130				
Irans-1,2-Dichloroethene	1,140	0.15	****	©	114	70	130		. *		
Trichtoroethene	9.890	0.15	+-	8.34	155	70	130				ç
Vinyl chloride	0.7200	0.15	***	0	72.0	72	130				
Sample ID C1703015-003A MS	SampType; MSD	TestCo	TestCode: fugM3_T015	115 Units: ppbV		Prep Date	ير		RunNo: 12014	2014	
Client ID: SV-3	Batch ID: R12014	Test	TestNo: TO-15		•	Analysis Date:	3/8/2017		SeqNo: 140547	10547	
Analyte	Resuli	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichleroethene	1.160	0.15	-	0	116	£	130	1.09	6.22	æ	
Chloroethane	0.8600	0.15	***	0.11	75.0	22	130	0.81	5.99	30	
cis-1,2-Dichloroethene	1.440	0.15	***	0.18	126	70	130	4.4	2.82	30	
trans-1,2-Dichloroethene	1,180	6.5	W	\$	1.5	2	130	±±.1	3.45	30	
Trichloroethene	9.550	0.15	*****	8.34	123	92	130	9.89	3.50	30	
Vinyi chloride	0.7500	0.15	4	٥	75.0	2	130	0.72	4.08	30	

Analyte detected below quantitation limit Results reported are not blank corrected Qualifiers:

Spike Recovery autside accepted recovery limits

Estimated Value above quantitation range Not Detected at the Limit of Detection ы <u>§</u>

= ~

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits Page I of I

Allyf chloride

Freon 113

Freon 11

Acrolem

Ethanol

Pentane

Acetone

vinyl acetate

Chloroform

iexane

1,4-dioxane

Centek Laboratories IDL Study

Propylene Freon 12 Freon 114

Butane

Centek Laboratories IDL Study				109	fug/M3 Detection Limit	ion Limit				. m. 11 m 3 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	Method TO-15A	15A
Name	Amount	D.#	IDL#2	IDL#3	DL#4 FT	010 101#5	1DL#6	#10	Average	StdDev	Umits %Rec	Units=ppb ac IDL
2,2,4-trimethylpentane	0.15	0.15	0.15	0.15	0.16	0.14	0.16	0.15	0.151	0.007	99.1	0000
Heptane	0.15	0.12	0.13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
1.C. Moloethene	0.15	0.14	0.15	0.14	0.15	0.15	0,14	0.15	0,146	0,005	102.9	0.017
Dyamodickichen	0.15	0.16	0.17	ب ب	0.10	0.17	0.16	0.16	0.164	0.005	913	0.017
of of a disk to the control of the c	0.15	8.16 6.16	0,16	9.0	0,15	0.16	0.17	0.16	0.160	0.006	93.8	0.018
cis-1,3-dicipolopiopene	U.35	£13	0.13	0.14	0.14	0.13	0.13	0.13	0.133	0.005	112.9	0.015
trans-1,3-dichloropropene	0.15	0.16	0.13	0.13	0.14	0.14	0.14	0.16	0.143	0.013	105.0	0.039
1, 1, 2-trichioroethane	0,15 0,15	6.16	0.15	0.16	0.15	0.16	0.18	0.17	0.161	0.011	92.8	0.034
	13 C	0.74	<u>7</u> ;	<u> </u>	0.13	0.16	0.14	0.15	0,143	0.00	105.0	0.030
Wellyl IsoCallyl Kelone	0.75	0.13	0.18	O. 33	0.18	0.16	0.18	0.15	0.173	0.013	86.8	0.039
Ulbromochioromethane	0,15	0.16	0,16	0.17	0.18	0.16	0.17	0.18	0.169	0.009	89.0	0.028
Metrnyl Buryl Ketone	0.15	1.17	0.16	0.18	0.17	0.16	0.17	0.14	0.164	0.013	91.3	0.040
1,2-dioTompelhane	0.15	0.15	0.17	0.16	0.16	0.16	0,15	0,17	0.163	0.005	92.1	0.015
letrachioroethylene	0.15	0.16	0.17	0.16	0.16	0.16	0.17	0.17	0.164	0.005	91.3	0.017
Chloropenzene	0.15	0.16	0.16	0.16	0.17	0.15	0.17	0.17	0.163	0.008	92.1	0.024
1,1,1,2-tetrachioroethane	0.15	0.17	0.17	0.17	0.18	0.16	0.18	0.17	0.171	0.007	87.5	0.022
emybenzene -	0.15	0.13	0.14	0.14	0.14	0.12	0.14	0.13	0.134	0.008	111	0.025
m&p-xylene	e :	0.25	0.25	0.25	0.23	0.25	0.25	0.25	0.247	0.008	121.4	0.024
Nonane	0.15	÷.	0.11	0.11	0.11	0.1	0.1	0,11	0.107	0.005	140.0	0.015
Styrene	0.15	0.12	0.13	0.13	0.11	0.12	0.13	0.12	0.123	0.008	122.1	0.024
Siomororm	0.15	0.15	0.15	0.16	0.15	0.15	93	0.16	0.156	0.008	96.3	0.025
o-xylene	0.15	0.11	0.12	0.12	0.14	0.14	0.12	0.11	0.123	0.013	122.1	0.039
Cumene	0.15	0.12	0,13	0.13	0.12	0.13	0.13	0.13	0.127	0.005	118.0	0.015
Bromoliuorobenzene		0,88	6.0	6.0	0.87	0.89	0.89	6.0	0.890	0.012	112.4	0.036
1,1,2,2-tetrachloroethane	0.15	0.16	0.16	0.17	0.16	0.17	0.17	0.16	0.164	0.005	91.3	0.017
Propyidenzene	0.15	0.13	0.12	0.13	0.13	<u></u>	0.13	0.11	0.123	0.010	122.1	0.030
Z-Chiorotoluene	0,15	0.13	0.13	0.13	0.14	0.13	0.12	0.13	0.130	0.006	115.4	0.018
4-ethyltottene	0.15	0.1	0.12	0.12	0.12	0.13	0.13	0.11	0.120	0.008	125.0	0.026
1,3,5-trimethy/benzene	0.15	0,12	0.13	0.14	0.12	0.13	0.13	0.13	0,129	0.007	116.7	0.022
1,2,4-trimethylbenzene	0.15	0.12	0.13	0.12	0.12	0.13	0.12	0.12	0,123	0.005	122.1	0.015
1,3-dichlorobenzene	0.15	0,14	0.14	0.14	0.13	0.14	0.13	0.14	0,137	0.005	109,4	0.015
benzyl chicride	0.15	0,13	0.16	0.13	0.15	0.13	0,15	0.16	0.144	0.014	104.0	0.044
1,4-dichlorobenzene	0.15	0.13	0.11	0.12	0.12	0,12	0.12	0.13	0.121	0.007	123.5	0.022
1,2,3-trmethylbenzene	0.15	0.12	0.11	0.12	0.12	0.12	0.11	0.11	0.116	0.005	129.6	0.017
1,2-dichiorobenzene	0.15	0.13	0.14	0.14	0.14	0.14	0.14	0.13	0.137	0.005	109.4	0.015
1,2,4 trchlorobenzene	0.15	(c)	0.11	1.0	0.11	0.11	0.12	0.1	0.107	0.008	140.0	0.024
Naphinalene	0.15	0.13	0.13	0.14	0.11	0,12	0.14	0.12	0.127	0.011	118.0	0.035
Hexachloro-1,3-butadiene	0.15	0.16	0.17	0.17	0.17	0.16	0.16	0.16	0.164	0.005	91.3	0.017

Confidential

od TO-15A Units=ppb	S	0.028	0.030	0.036	0.038	9.036	
Method TO-15A Units=ppb	92 193	101.4	107.7	118.6	101,4	24. 25. 26.	
	StdDev	0.003	0.010	0.011	0.912	N	
	Åverage	0.099	0.093	0.084	0.099	9 0.00 0.00	
	#1G	0.1	0.09	90.0	0.09		
	9F7Q	0.09	0.09	0.03	0.03		
Xion Limit 216	DL#5	0,3	0.09	6.03	[.] 20		
8,25ug/M3 Defection Limit January 2016	豆	0.03	0.09	0.08	90.0		
G.25.	DL#3	0.09	0.08	0.07	9.0 70.0		
	101#S	0.11	0.11		2).G		
	IDI#1	0.11	Č.		E09		
	Amount	0.1	c	~ c		; ;	
Centek Laboratories IOL Study	Name	Vinyl Chloride	Carbon terrachioride	Teknikologiikisi Tetrachiomodiusia	Naphthalene		

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

 $RRF = \underbrace{Ax * Cis}_{Ais} * Cx$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the

compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

% RSD = Standard deviation of RRF values * 100 mean RRF

Percent Difference (%D)

%D = (RRFc - mean RRFi) * 100 mean RRFi

where: RRFo = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

Centek Laboratories, LLC	Centek	Laboratories.	LLC
--------------------------	--------	---------------	-----

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID: C1703015-001A Date: 27-Mar-17

Client Sample ID: SV-1

Tag Number: 542.256

Collection Date: 3/3/2017

Matrix: AlR

Analyses	Resuit	**Limit	Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	.D			Analyst:
Lab Vacuum in	-1			"Hg		3/7/2017
Lab Vacuum Out	-30			"Hg		3/7/2017
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJF
1,1-Dichloroethene	< 0.15	0.15		Vdqq	1	3/8/2017 1:28:00 PM
Chioroethane	0.13	0.15	J	ppbV	1	3/8/2017 1:28:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	3/8/2017 1:28:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	3/8/2017 1:28:00 PM
Trichloroethene	< 0.15	0.15		ppbV	1	3/8/2017 1:28:00 PM
Viny! chloride	< 0.15	0.15		Vdqq	1	3/8/2017 1:28:00 PM
Surr: Bromofluorobenzene	239	70-130	s	%REC	1	3/8/2017 1:28:00 PM
NOTES:						

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

Quantitation Limit

13 Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

j Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 1 of 6

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID: C1703015-001A Date: 27-Mar-17

Client Sample ID: SV-1

Tag Number: 542.256

Collection Date: 3/3/2017

Matrix: AIR

Analyses		**Limit Q		DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichtoroethene	< 0.59	0.59	υ g/m3	1	3/8/2017 1:28:00 PM
Chloroethane	0.34	0.40	J ug/m3	1	3/8/2017 1:28:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 1:28:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	3/8/2017 1:28:00 ₽M
Vinyl chloride	< 0.38	0.38	ນ໘/ຄາ3	1	3/8/2017 1:28:00 PM
NOTES:					

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- \mathbf{s} Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathcal{E} Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

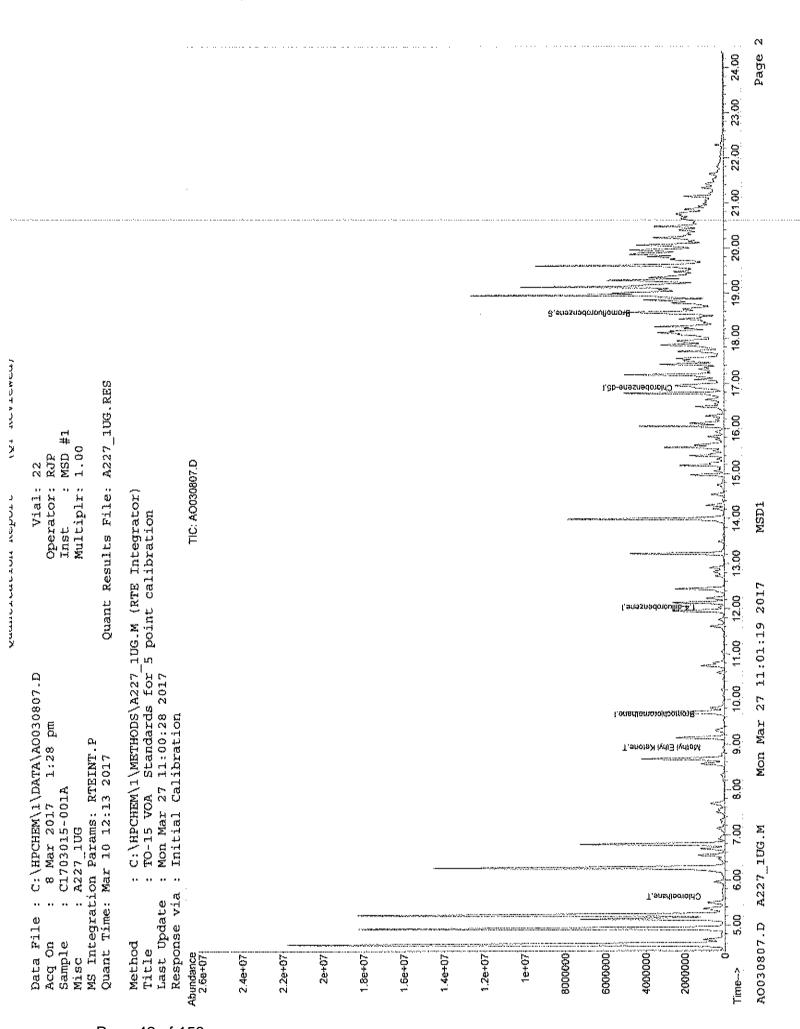
Page 1 of 6

Quantitation Report (QT Reviewed)

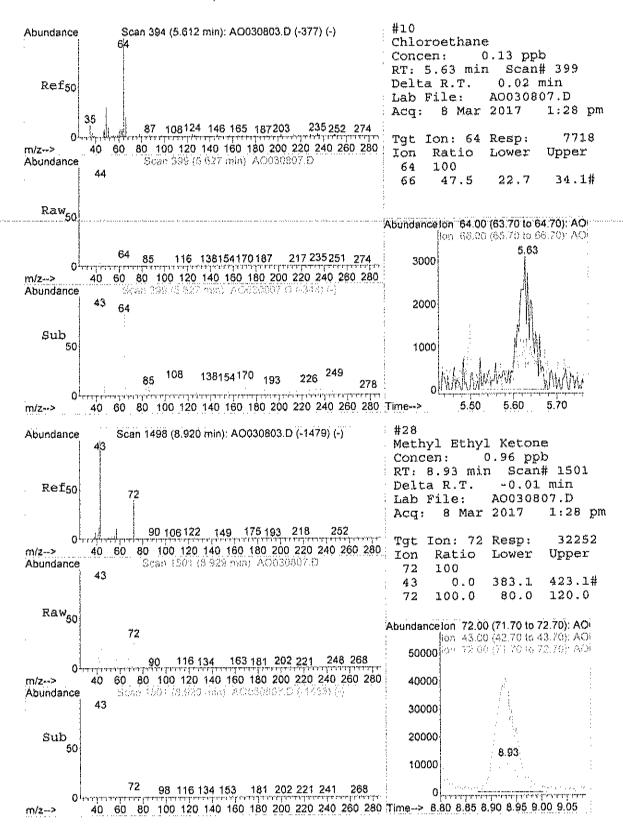
MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:17 2017 Quant Results File: A227_1UG.RES

Quant Method: C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.04 16.90	128 114 117	59338 270574 278336	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	416764m / Recovery			
Target Compounds 10) Chloroethane 28) Methyl Ethyl Ketone	5.63 8.93	64 72	7718 32252	0.13 0.96		Qvalue # 64 # 1

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0030807.D A227 1UG.M Mon Mar 27 11:01:18 2017 MSD1

Page 42 of 158

CLIENT: LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

C1703015-002A

Date: 27-Mar-17

Client Sample ID: SV-2

Tag Number: 237.402

Collection Date: 3/3/2017

Matrix:	AIR
---------	-----

Result	**Limit (Quai	Units	DF	Date Analyzed
	FLI)	•		Analyst:
-1			"Hg		3/7/2017
-30			"Hg		3/7/2017
	TO-	15			Analyst: RJP
< 0.15	0.15		ppb∨	1	3/8/2017 2:09:00 PM
< 0.15	0.15		ppbV	1	3/8/2017 2:09:00 PM
< 0.15	0.15		∨dqq	1	3/8/2017 2:09:00 PM
< 0.15	0.15		∨dąq	1	3/8/2017 2:09:00 PM
< 0.15	0.15		ppb∨	1	3/8/2017 2:09:00 PM
< 0.15	0.15		ppb∨	1	3/8/2017 2:09:00 PM
235	70-130	s	%REC	1	3/8/2017 2:09:00 PM
	-30 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15	-1 -30 TO- < 0.15	-30 TO-15 < 0.15	-1 "Hg -30 "Hg TO-15 < 0.15 0.15 ppbV < 0.15 0.15 ppbV < 0.15 0.15 ppbV < 0.15 0.15 ppbV < 0.15 0.15 ppbV < 0.15 0.15 ppbV < 0.15 0.15 ppbV	-1 "Hg -30 "Hg TO-15 < 0.15 0.15 ppbV 1 < 0.15 0.15 ppbV 1 < 0.15 0.15 ppbV 1 < 0.15 0.15 ppbV 1 < 0.15 0.15 ppbV 1 < 0.15 0.15 ppbV 1 < 0.15 0.15 ppbV 1

Surrogate did not meet criteria due to severe matrix interference.

- ** Quantitation Limit
- В Analyte detected in the associated Method Blank
- **i**·I Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- JN Non-routine analyte, Quantitation estimated.
- Results reported are not blank corrected
- Estimated Value above quantitation range E
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 6

LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

CLIENT:

C1703015-002A

Date: 27-Mar-17

Client Sample ID: SV-2

Tag Number: 237.402

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	rat Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 2:09:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:09:00 PM
Trichloroethene	< 0.81	0.81	ug/m3	1	3/8/2017 2:09:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 2:09:00 PM
NOTES-					

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- □ Estimated Value above quantitation range
- Analyte detected below quantitation limit J.
- ND Not Detected at the Limit of Detection

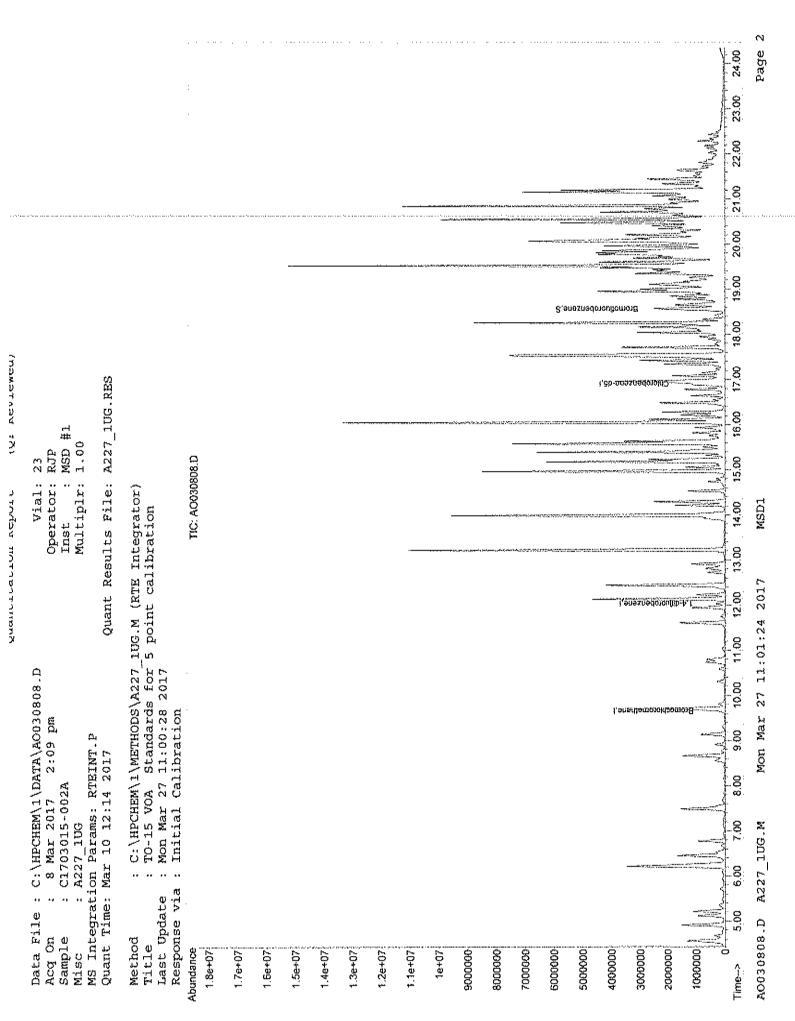
Page 2 of 6

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030808.D Vial: 23 Operator: RJP Acq On : 8 Mar 2017 2:09 pm : C1703015-002A Inst : MSD #1 Sample Misc : A227_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:18 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	onc Ur	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.03 16.90	128 114 117	72867 317032 316562	1.00 1.00 1.00	ppb 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.55 Range 70		466729m 🎢 Recovery	2.35	ppb 0.02 235.00%#
Target Compounds					Qvalue

Page 47 of 158

Date: 27-Mar-17

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID: C1703015-003A

Client Sample ID: SV-3

Tag Number: 1206.249 Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	1		"Hg		3/7/2017
Lab Vacuum Out	-30		"Hg		3/7/2017
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	3/8/2017 2:48:00 PM
Chloroethane	0.11	0.15 J	ppbV	1	3/8/2017 2:48:00 PM
cis-1,2-Dichloroethene	0.18	0.15	Vđạq	1	3/8/2017 2:48:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/8/2017 2:48:00 PM
Trichloroethene	7.4	1.5	Vdqq	10	3/8/2017 11:34:00 PM
Vinyl chloride	< 0.15	0.15	Vdqq	1	3/8/2017 2:48:00 PM
Surr: Bromofluorobenzene	97.0	70-130	%REC	10	3/8/2017 11:34:00 PM
Surr: Bromofluorobenzene	166	70-130 S	%REC	1	3/8/2017 2:48:00 PM

NOTES

Surrogate did not meet criteria due to severe matrix interference.

- Ouantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 6

CLIENT: LaBella Associates, P.C.

C1703015 Lab Order:

Project: 691 and 705 St Paul St

Lab ID;

C1703015-003A

Date: 27-Mar-17

Client Sample ID: SV-3

Tag Number: 1206.249

Collection Date: 3/3/2017

Matrix: AlR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:48:00 PM
Chloroethane	0.29	0.40 J	ug/m3	1	3/8/2017 2:48:00 PM
cis-1,2-Dichloroethene	0.71	0.59	ug/m3	1	3/8/2017 2:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 2:48:00 PM
Trichloroethene	40	8,1	ug/m3	10	3/8/2017 11:34:00 PM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 2:48:00 ₽M
NOTES:					

NOTES:

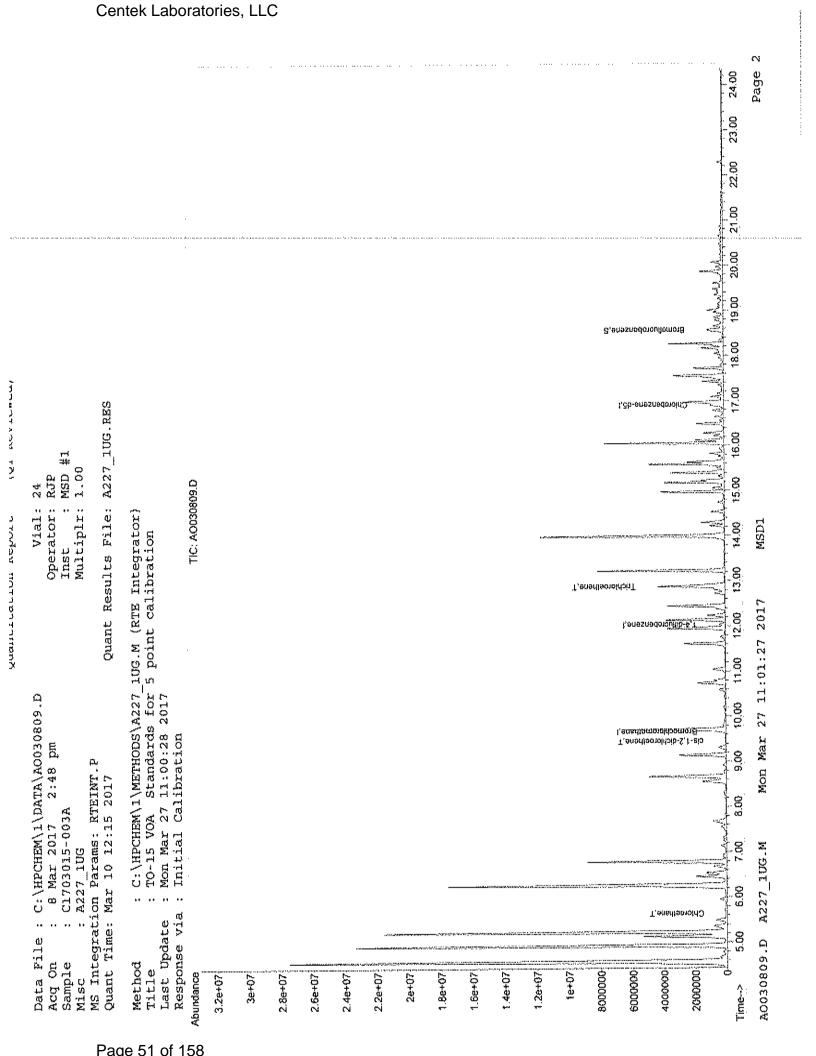
Surrogate did not meet criteria due to severe matrix interference.

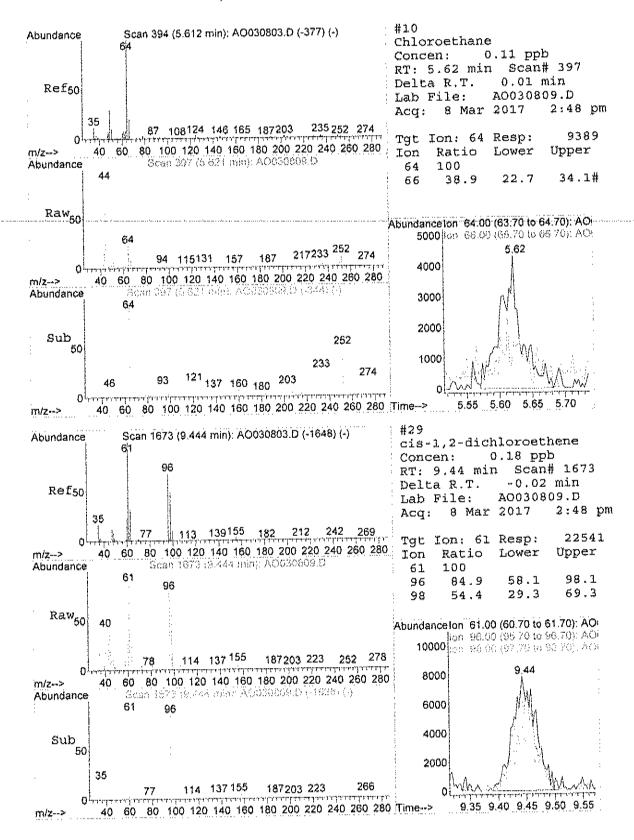
Qualifiers:

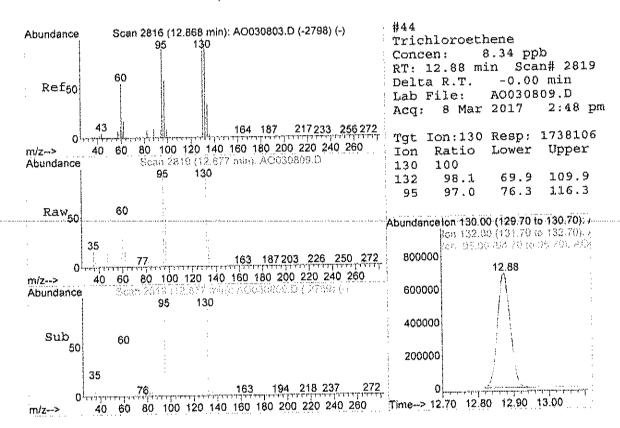
- Quantitation Limit
- 8 Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 13 Estimated Value above quantitation range
- Analyte detected below quantitation limit 3
- Not Detected at the Limit of Detection

Page 3 of 6

Quantitation Report (QT Reviewed)


Data File : C:\HPCHEM\1\DATA\A0030809.D Vial: 24 Acq On : 8 Mar 2017 2:48 pm Operator: RJP Sample : C1703015-003A Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P


Quant Time: Mar 09 11:10:19 2017 Quant Results File: A227_1UG.RES

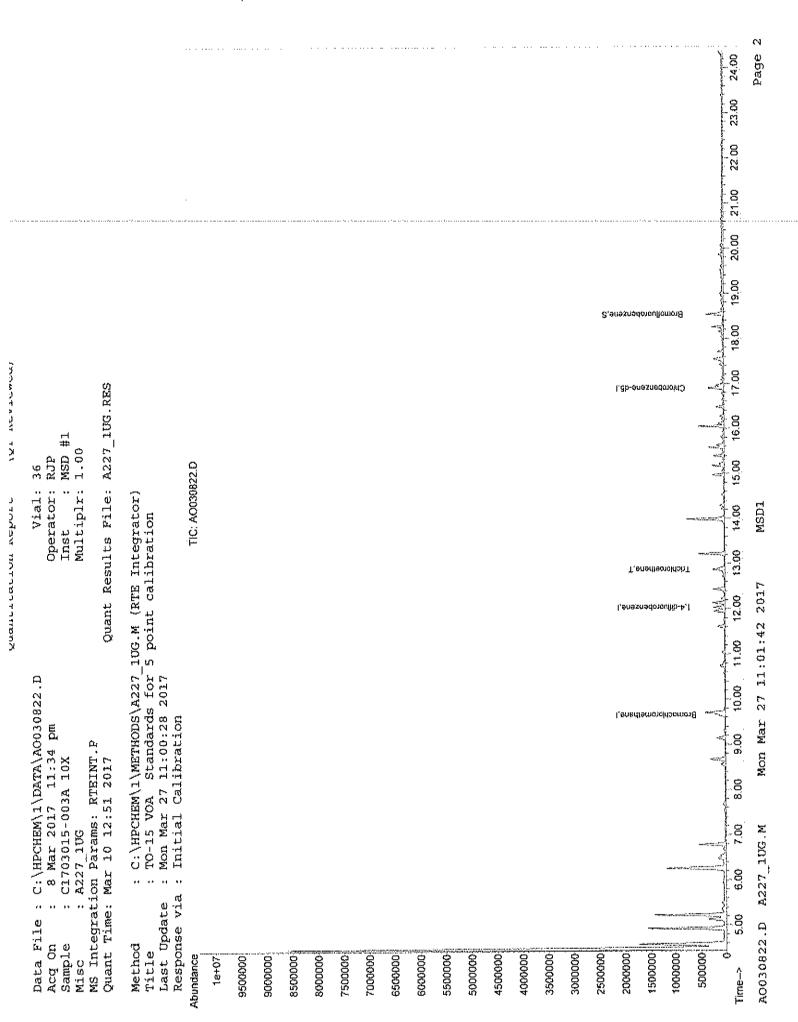
Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 06 15:15:36 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.03 16.90	128 114 117	80896 366728 336237	1.00		-0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	· ·	95 - 130	350228m ∤ Recovery			
Target Compounds 10) Chloroethane 29) cis-1,2-dichloroethene 44) Trichloroethene	5.62 9.44 12.88	64 61 130	9389 22541 1738106	0.11 0.18 8.34		

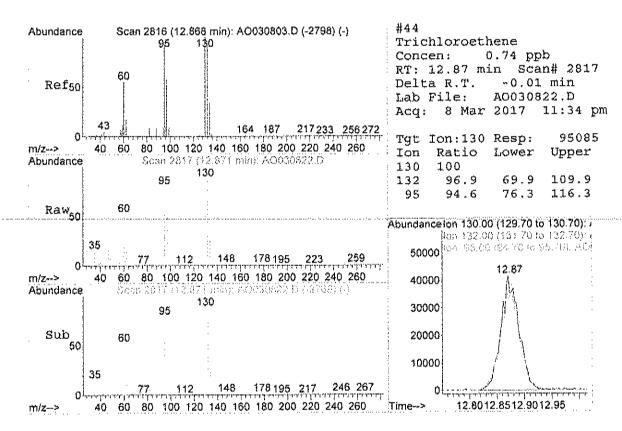
Quantitation Report (QT Revlewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:32 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.04 16.90	128 114 117	53827 227536 201273	1.00 1.00 1.00	0.00 đ ạ g
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.53 Range 70	95 - 130	122944 Recovery	0.97 y =	
Target Compounds	12.87	130	95085	0.74	Qvalue ppb 95

Page 55 of 158

CLIENT: LaBella Associates, P.C.

Lab Order:

Lab ID;

C1703015

C1703015-004A

Tag Number: 290.299

Project: 691 and 705 St Paul St Collection Date: 3/3/2017

Date: 27-Mar-17

Matrix: AIR

Client Sample ID: SV-4

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FL	D	,		Analyst:
Lab Vacuum In	-3			"Hg		3/7/2017
Lab Vacuum Out	-30		"Hg			3/7/2017
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15		Vdqq	1	3/8/2017 4:59:00 PM
Chloroethane	< 0.15	0.15		Vdqq	1	3/8/2017 4:59:00 PM
cis-1,2-Dichloroethene	1.0	0.15		ppbV	1	3/8/2017 4:59:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	3/8/2017 4:59:00 PM
Trichloroethene	8.9	1.5		Vdqq	10	3/9/2017 12:47:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	3/8/2017 4:59:00 PM
Surr: Bromofluorobenzene	100	70-130		%REC	10	3/9/2017 12:47:00 AM
Surr: Bromofluorobenzene	190	70-130	s	%REC	1	3/8/2017 4:59:00 PM
MATTO:						

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Estimated Value above quantitation runge
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 6

Date: 27-Mar-17

CLIENT:

LaBella Associates, P.C.

Client Sample ID: SV-4

C1703015

Lab Order:

Tag Number: 290.299

Project:

691 and 705 St Paul St

Collection Date: 3/3/2017

Lab ID:

C1703015-004A

Matrix: AIR

Analyses	Result		ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		·	Analyst: RJP
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 4:59:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 4:59:00 PM
cis-1,2-Dichloroethene	4.1	0.59	ug/m3	1	3/8/2017 4:59:00 PM
trans-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 4:59:00 PM
Trichloroethene	48	8.1	ug/m3	10	3/9/2017 12:47:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 4:59:00 PM
NOTES:					

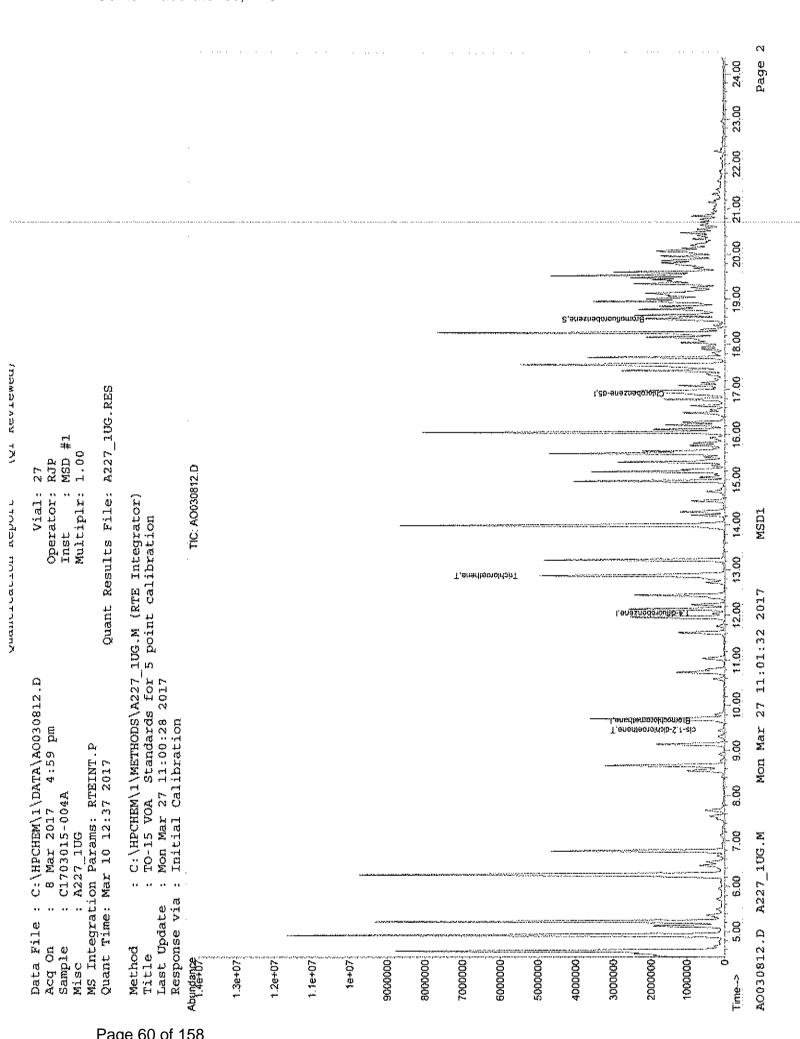
Surrogate did not meet criteria due to severe matrix interference.

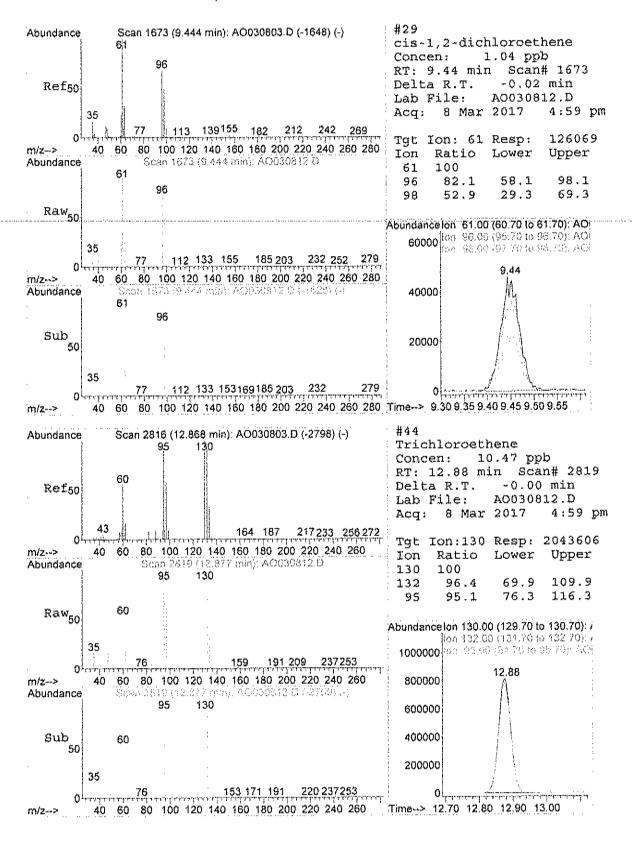
- ** Quantitation Limit
- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range £
- Analyte detected below quantitation fimit 3
- ND Not Detected at the Limit of Detection

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:22 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

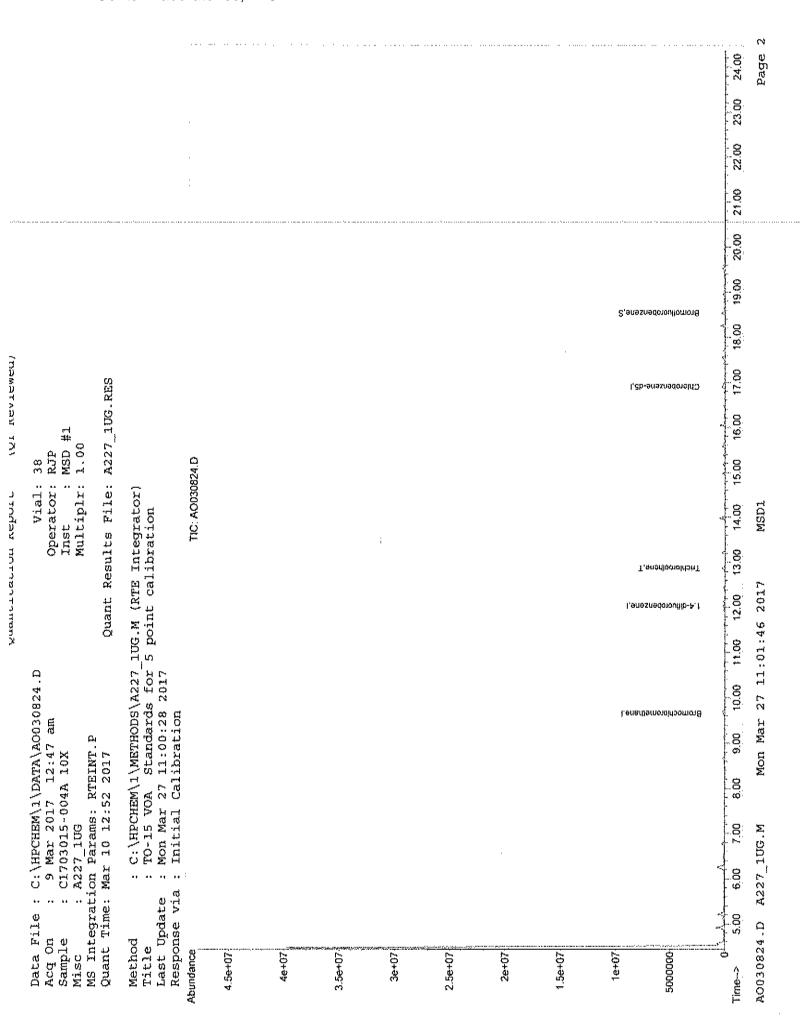
Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.03 16.90	128 114 117	76299 343779 323940	1.00 1.00 1.00	ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95	386106	1.90	ppb	
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.44 12.88	61 130	126069 2043606	1.04 10.47	m -m-	Qvalue 95 96

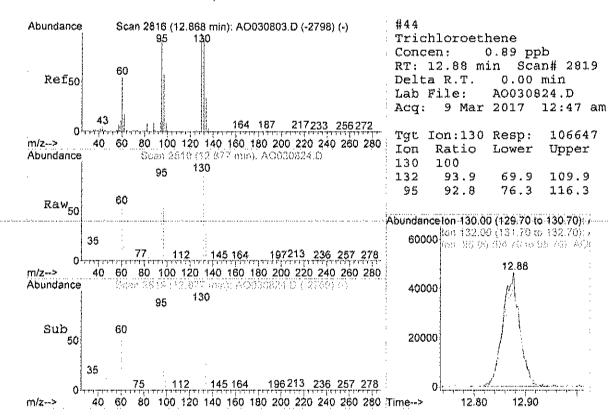
(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\A0030824.D Vial: 38 Acq On : 9 Mar 2017 12:47 am

Operator: RJP Sample : C1703015-004A 10X Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Mar 09 11:10:34 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response (Conc. Ur	nits)	Dev (Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	9.65 12.03 16.90	128 114 117	46536 210199 197259	1,00 1.00 1.00	dqq	-0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	123688 Recovery	1.00	ppb	0.00 00%
Target Compounds	12.88	130	106647	0.89	daa	Qvalue 96

Date: 27-Mar-17

Client Sample ID: Duplicate CLIENT: LaBella Associates, P.C.

Tag Number: 1184.299 Lab Order: C1703015 Collection Date: 3/3/2017 Project: 691 and 705 St Paul St

Matrix: AIR C1703015-005A Lab ID:

Analyses	Result	**Limit C	Qual Units	DF	Date Analyzed
FIELD PARAMETERS		FLC)		Analyst:
Lab Vacuum In	-3		"Hg		3/7/2017
Lab Vacuum Out	-30	"Hg			3/7/2017
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	ppb∨	7	3/8/2017 5:39:00 PM
Chloroethane	< 0.15	0.15	∨dqq	1	3/8/2017 5:39:00 PM
cis-1,2-Dichloroethene	0.99	0.15	V¢qq	1	3/8/2017 5:39:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∀	1	3/8/2017 5:39:00 PM
Trichloroethene	8.8	1.5	∨dqq	10	3/9/2017 2:01:00 AM
Vinyl chloride	< 0.15	0.15	γdαq	1	3/8/2017 5:39:00 PM
Surr: Bromofluorobenzene	98.0	70-130	%REC	10	3/9/2017 2:01:00 AM
Surr: Bromofluorobenzene	187	70-130	S %REC	1	3/8/2017 5:39:00 PM
NOTES.					

Surrogate did not meet criteria due to severe matrix interference.

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 6 Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Date: 27-Mar-17

CLIENT: LaBella Associates, P.C.

Lab Order: C1703015

Project: 691 and 705 St Paul St

Lab ID: C1703015-005A

Client Sample ID: Duplicate

Tag Number: 1184.299 Collection Date: 3/3/2017

Matrix: AlR

Analyses	Result	**Limit Q	ial Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 5:39:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 5:39:00 PM
cis-1,2-Dichloroethene	3.9	0.59	ug/m3	1	3/8/2017 5:39:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 5:39:00 PM
Trichloroethene	47	8.1	ug/m3	10	3/9/2017 2:01:00 AM
Vinyl chloride	< 0.38	0.38	ug/m3	1	3/8/2017 5:39:00 PM
NOTEC.			-		

NOTES:

Surrogate did not meet criteria due to severe matrix interference.

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

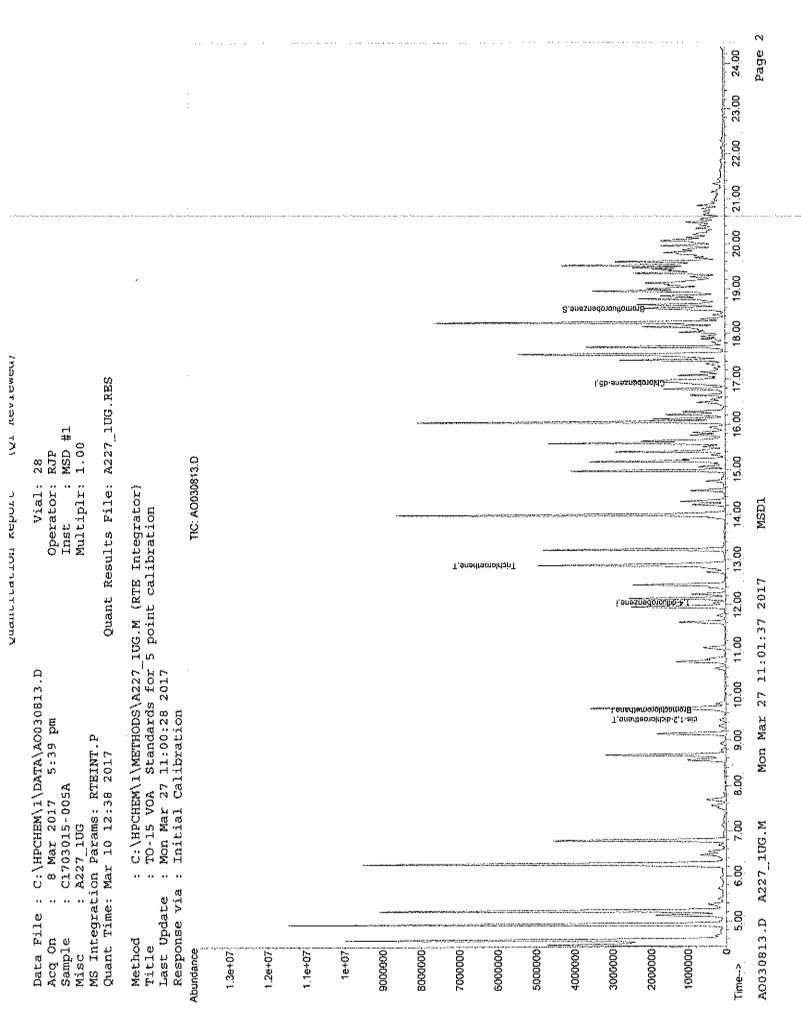
Page 5 of 6

Quantitation Report (QT Reviewed)

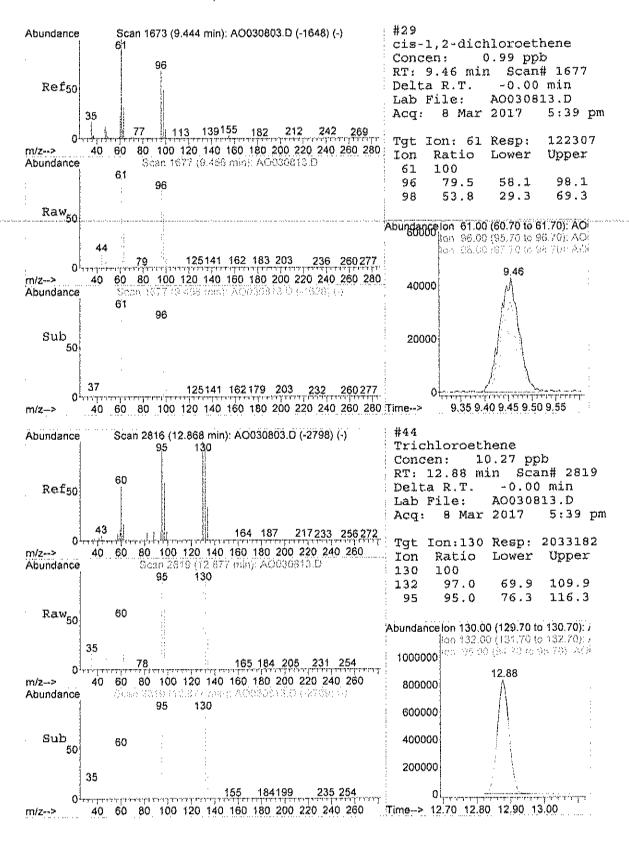
Vial: 28 Data File : C:\HPCHEM\1\DATA\A0030813.D Acq On : 8 Mar 2017 5:39 pm Sample : C1703015-005A Operator: RJP Inst : MSD #1 Misc : A227_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:23 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) ; TO-15 VOA Standards for S point calibration

Last Update : Mon Mar 06 15:15:36 2017


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

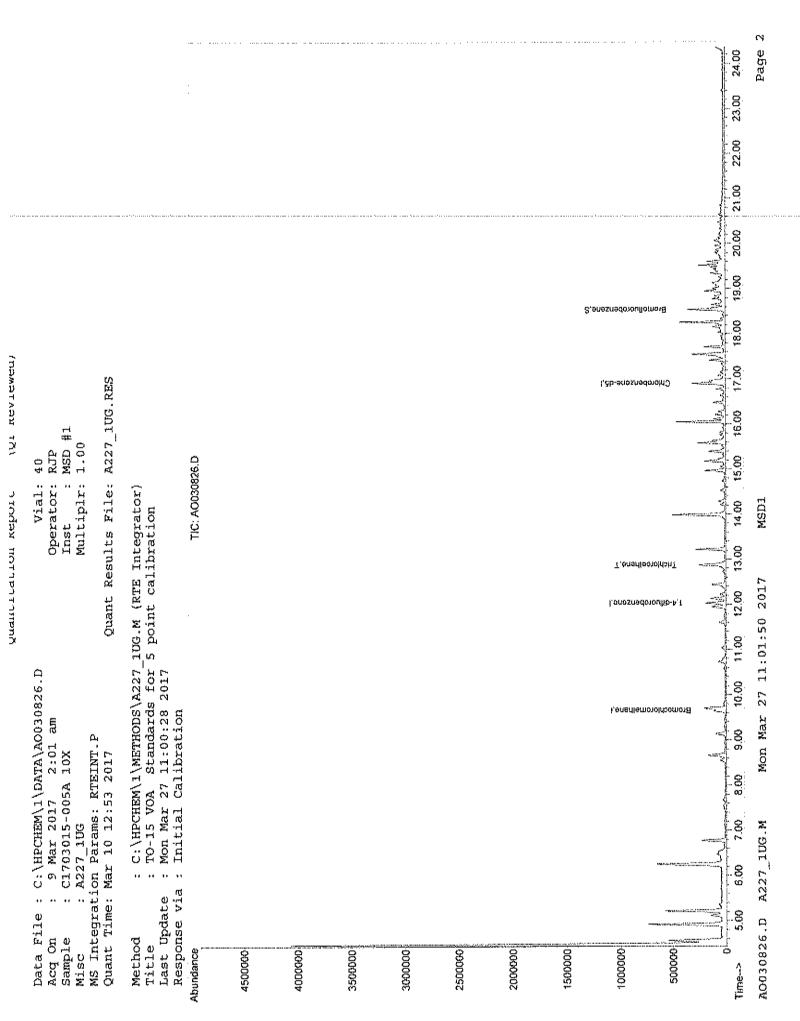
Internal Standards	R.T.	QIon	Response	Conc Ur	rits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.03 16.90	128 114 117	77699 348681 330439	1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	387056 Recove:	1.87 Ty =	-	0.00 .00%#
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	9.46 12.88	61 130	122307 2033182	0.99 10.27	* ~	Qvalue 96 96

Page 68 of 158

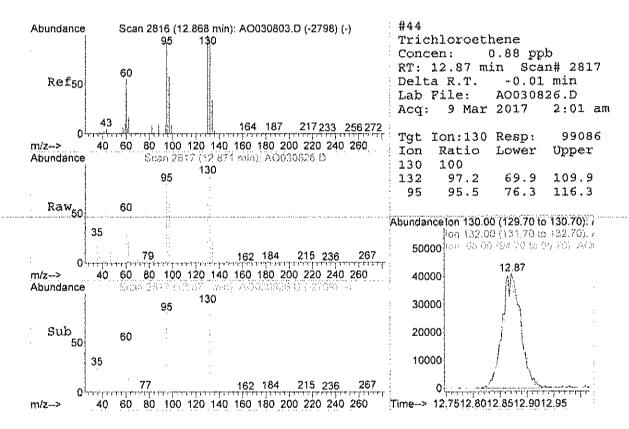
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030826.D
Acq On : 9 Mar 2017 2:01 am
Sample : C1703015-005A 10X
Misc : A227_1UG Vial: 40 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Mar 09 11:10:36 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 06 15:15:36 2017


Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.03 16.90	128 114 117	46525 198463 190799	1.00 1.00 1.00	ppb	-0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	117295 Recovery	0.98 / =		0.00
Target Compounds 44) Trichloroethene	12.87	130	99086	0.88	dag	Qvalue 96

Page 71 of 158

LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

CLIENT:

C1703015-006A

Date: 27-Mar-17

Client Sample ID: Ambient Air

Tag Number: 556.267

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	ini Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	1		"Hg		3/7/2017
Lab Vaccum Out	-30		"Hg		3/7/2017
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.15	0.15	∨dqq	1	3/8/2017 12:48:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	3/8/2017 12:48:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	3/8/2017 12:48:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	3/8/2017 12:48:00 PM
Trichloroethene	< 0.040	0.040	₽₽bV	1	3/8/2017 12:48:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/8/2017 12:48:00 PM
Surr: Bromofluorobenzene	87.0	70-130	%REC	1	3/8/2017 12:48:00 PM

Qualifiers:

* Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range
 J Analyte detected below quantitation limit

ID Not Detected at the Limit of Detection

Page 6 of 6

CLIENT: LaBella Associates, P.C.

Lab Order:

C1703015

691 and 705 St Paul St

Project: Lab ID:

C1703015-006A

Date: 27-Mar-17

Client Sample ID: Ambient Air

Tag Number: 556.267

Collection Date: 3/3/2017

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/8/2017 12:48:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/8/2017 12:48:00 PM
Trichloroethene	< 0.21	0.21	ug/m3	1	3/8/2017 12:48:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/8/2017 12:48:00 PM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ε Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- Not Detected at the Limit of Detection

Page 6 of 6

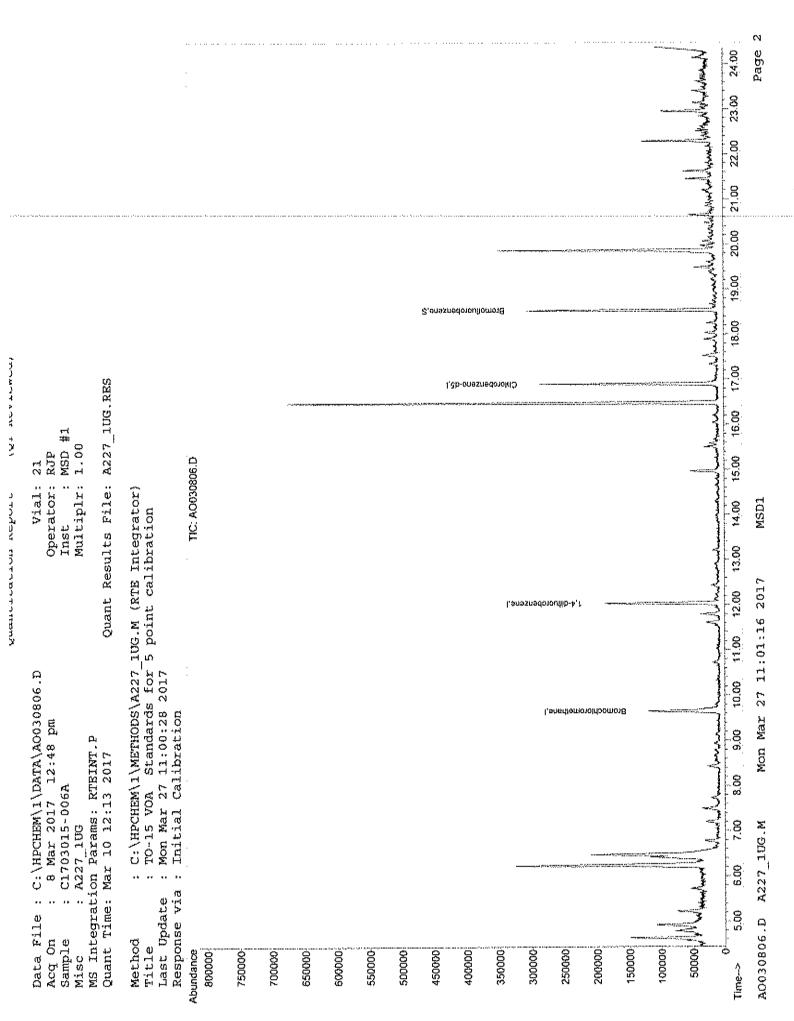
Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:16 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards		R.T.	QIon	Response (onc U	nits	Dev(Min)
1) Bromochlorome: 35) 1,4-difluorobe 50) Chlorobenzene	enzene	9.65 12.03 16.90	128 114 117	47960 186316 173836	1.00 1.00 1.00	dqq	-0.01 0.00 0.00
System Monitoring (65) Bromofluorober Spiked Amount		18.54 Range 70	95 - 130	94823 Recovery	0.87	ppb 87.	0.00
							A

Target Compounds

Qvalue

Page 76 of 158

~			$\overline{}$
('Antak	Laboratorie	აი II	1
CELIER	Labulatuli	50. LL	_

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
STANDARDS DATA

Centel	i - I	مام	+-		1.1	
Cente	ΚL	ลบบ	เลเบเ	ies.	ᄔ	U

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
INITIAL CALIBRATION

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Feb 27 19:25:53 2017

Response via : Initial Calibration

Calibration Files

0.04 =A0022712.D 0.10 =A0022711.D 0.15 =A0022710.D 0.30 =A0022709.D 0.50 =A0022707.D 0.75 =A0022706.D

Compound 0.04 0.10 0.15 0.30 0.50 0.75 Avg %RSD

							5			
7.)	<u> </u>	Bromochloromethan Propylene Freon 12	e			1511	,			E 20
2)	T	Propyrene			1.077	1.105	1.080	0.984	1.042	5.29
3)	\mathbf{T}	Freon 12			9.752	9.472	9.687	8.524	9.266	6.10
4)	${f T}$	Chloromethane			1.751	1.749	1.818	1.443	1.659	8.01
5)	ፗ	Freon 114			8.517	7.919	8.532	6,688	7.921	8.76
6)	${f T}$	Vinyl Chloride	3.341	2.514	2,380	2.148	2.278	1.786	2.301	18.51
7)	T	Chloromethane Freon 114 Vinyl Chloride Butane			2.756	2.539	2,580	1.994	2.394	10.89
8)	T	Butane 1,3-butadiene Bromomethane Chloroethanc Ethanol Acrolein Vinyl Bromide Freon 11 Acetone Pentane Isopropyl alcoh 1,1-dichloroeth Freon 113			1.629	1.592	1.691	1.273	1.535	8.91
9)		Bromomethage			3.134	2.822	3.057	2.237	2.831	10.14
10)		Chloroethare			1.080	1.119	1.066	0.854	1.014	8.78
11)	_	Ethanoj			0.839	0.898	0.844	0.579	0.748	14.21
12)	Ť	Acroloin			0.771	0.030	0.880	0.592	0 765	11.09
		Mines Decoming			2 936	2 000	3 017	2 090	2 844	11.03
13)		vinyi biomide			2 7 2 2 0	1 1/1	1 175	0.020	1 100	E1 7.97
14)		Freon LL			1.103	* + + + + +	0.014	0.310	Y 400	7 72
15)		Acetone			0.963	0.913	0.714	0.735	0.00%	1.12
16)		Pentane			1.085	1.027	1.052	0.989	1.010	4.5/
1.7)		Isopropyl alcoh			3.908	3.987	3.323	2.514	3.221	15.59
18)	${f T}$	1,1-dichloroeth			1.301	1.299	1.276	1.251	1.282	2.86
19)	Ţ	Freon 113			3.735	3.519	3.538	3.425	3.515	3.18
20)	t	t-Butyl alcohol			2.463	2.764	2.516	2,361	2.527	6.16
21)	Ţ	Methylene chlor			1.543	1.399	1.386	1.274	1.335	3.18 6.16 7.91
22)	Т	Allyl chloride			1.127	1.004	1.070	1.093	1.090	4.30
23)	T	Carbon disulfid			4.409	4.088	4.065	3.870	3.995	5.01
24)	Tr.	trans-1.2-dichl			1.946	1.773	1.849	1.747	1.805	4.67
25)	Ţ	methyl tert-but			2.987	2.995	3.154	3.000	3.166	5.59
26)	nr.	7 3-dichloroeth			2 3 9 1	2.383	2.517	2 330	2.386	4 14
	T.	#, r-dichiologen			2.17	1 655	2 250	2 245	2 361	9.31
27)	τ.	ATHAT GCCCGC			0 500	0 585	0 550	0.563	0.565	4 43
28)	Ţ.	metnyi Echyi Ke			0.5AA	7.202	1 504	3 534	1 595	3 97
29)	T	crs-1,2-dientor			1.004	1.370	1 202	1 201	7 200	10.63
30)	T	Hexane			7.770	1,103	1.404	2.431	2.300	40.00
31)	${f T}$	Ethyi acetate			2.660	2.650	2.881	4 050	4.7/1	7.96
32)	${f T}$	Chloroform			4.123	3.930	4.220	4.052	4.078	4.35
33)	${f T}$	Tetrahydrofuran			0.820	0.841	0.811	0.830	0.865	6.76
34)	${f T}$	Freon 113 t-Butyl alcohol Methylene chlor Allyl chloride Carbon disulfid trans-1,2-dichl methyl tert-but 1,1-dichloroeth Vinyl acetate Methyl Ethyl Ke cis-1,2-dichlor Hexane Ethyl acetate Chloroform Tetrahydrofuran 1,2-dichloroeth			2.785	2.589	2.684	2.703	2.716	3.35
35)		1,4-difluorobenze	ne		<u>-</u>	IST)·			
36)	${f T}$	1,1,1-trichloro			1.256	1.165	1.160	1.101	1.135	2.13
37)		Cyclohexane			0.315	0.350	0.352	0.343	0.341	3.81
38)		1,1,1-trichloro Cyclohexane Carbon tetrachl	2.731	1.619	1.596	1.468	1.467	1.428	1.580	26.26
39)	J.	D			0.955	0.876	0.891	0.875	0.891	3.00 11.04 4.56
40)	${f T}$	Methyl methacry 1,4-dioxane			0.247	0.283	0.298	0.315	0.312	11.04
43.)	Ţ	1,4-dioxane			0.163	0.185	0.163	0.165	0.172	4.56
42)		2,2,4-trimethyl			1.039	1.054	1.153	1.208	1.185	7.86
43)		Heptane			0.320	0.302	0.349	0.377	0.360	9.29
44)		Trichloroethene	0.903	0.552			0.507			20.69
45)	Ť	1,2-dichloropro	4 4 3 4 4 4		0.334	0.299	0.303	0.300	0.306	4.13
46)		Bromodichlorome					1.098			
							0.500			2.94
47)		cis-1,3-dichlor					0.491			
48)		trans-1,3-dichl					0.491			
49)	\mathtt{T}	1,1,2-trichloro			0.598	0.512	U.48V	0.435	0.400	٠, ١٥
F 4.	_	Chlamaharra 35				+	D~			
50)		Chlorobenzene-d5								6.06
51)	.1.	Toluene			0./31	0.020	Ų. 12U	U./30	Q., 700	0.00

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### A227 1UG.M Mon Mar 06 09:22:09 2017 MSD1

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\A227_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Feb 27 19:25:53 2017

Response via : Initial Calibration

Calibration Files

0.04 =A0022712.D 0.10 =A0022711.D 0.15 =A0022710.D 0.30 =A0022709.D 0.50 =A0022707.D 0.75 =A0022706.D

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022703.D Vial: 1 Operator: RJP : 27 Feb 2017 12:01 pm Sample : A1UG_2.0 Inst : MSD #1 Misc : A120 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 27 13:34:31 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Feb 27 13:34:10 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

DataAcq Meth : 1UG_RUN

	rnal Standards		QIon	Response Co	nc-0	nits	Dev	(Min)
	Promochloromethane	9.66	128	34488	1.00	daa		0.00
35)	1.4-difluorobenzene	1.2.04	114	147413	1.00	daa		0.00
50)	1,4-difluorobenzene Chlorobenzene-d5	16.91	117	118307	1.00	ppb		0.00
	em Monitoring Compounds Bromofluorobenzene	10 54	95	80069	1.01	nnh		0.00
		Range 70						0.00
aga	iked Amount 1.000	Kange /V	~ £30	Kecovery	_	1.0.1.	00.0	
	et Compounds						Qva	alue
2)	Propylene	4.56	41	67283m 🎢	2.01	dqq		
3)	Freon 12	4.63	85	637506 / 113936m	1.94			98
,	Chloromethane	4.80	50	113936m	1.90	dqq		
	Freon 114	4.90	85	558550	1.90			98
	Vinyl Chloride	5.03	62	151882 159751	2.04			91
	Butane	5.23	43	159751	1.86			89
	1,3-butadiene	5.17		107879m	1.87			
	Bromomethane	5.45			1.83			95
	Chloroethane	5.63	64	67257	1.91			89
	Ethanol	5.73	45	47585m 💋	2.00			
	Acrolein	6.09	56	52048	1.83			91
	Vinyl Bromide	5.98	106	202045 776050	1.91			96
14)	Freon 11	6.42	101	776050	1.88			98
15)	Acetone	6.23	58	61266	1.98			76
	Pentane	6.79	42	68027 204229 89203	1.94			41
17)	Isopropyl alcohol	6.47	45	204229	1.87			100
18)	1,1-dichloroethene	7.10	96	89203	1.96			99
	Freon 113	7.50	101	238988	1.99			96
	t-Butyl alcohol	7.12	59	182177 87576		ppp	Ħ	91.
21)	Methylene chloride	7.21	84	87576 78216	1.93			93
	Allyl chloride	7.34	41	78216	2.02			94
	Carbon disulfide	7.56	76	261881	1.90	qqq		82
24)	trans-1,2-dichloroethene	8.25	61	123974 236087	2.01			93
25)	methyl tert-butyl ether	8.55 8.48	73	236087	2.07	qqq		91
26)	1,1-dichloroethane			167678 178454m /	1.96			96
27)	Vinvi acetate	8.63		178454m 🚩	2.19	ppp		
28)	Methyl Ethyl Ketone	8.93	72	40336 115901	2.07	aqq		1
29)	cis-1,2-dichloroethene	9.46	61	115901		bbp		93
	Hexane	9.71		102300	2.08			88
	Ethyl acetate	9.72		225431	2.06	ppp		98
	Chloroform	9.81	83	284156	1.92		•	96
	Tetrahydrofuran	10.32	42	65779	2.13		#	70
34)	1,2-dichloroethane	10.73	6.2	190579	1.99			96
36)	1,1,1-trichloroethane	11.05	97	326280	1.94			97
37)	Cyclohexane	11.96	56	104270	2.12			88
38)	Carbon tetrachloride	11.80	117	402678	1.93			98
39)	Benzene	11.62	78	260440	1.99			94
	Methyl methacrylate	13.10	41	103894m 🦼	2.12		, .	
	1,4-dioxane	12.89	58	51011		$_{ m ppb}$	#	33
	2,2,4-trimethylpentane	12.92	57	374982	2.06			88
	Heptane	13.23	43	117429	2.17			85
44)	Trichloroethene	12.88	130	157508	2.00			92
45)	1,2-dichloropropane	12.60	63	89213	2.05	dqq		99
								MV PA

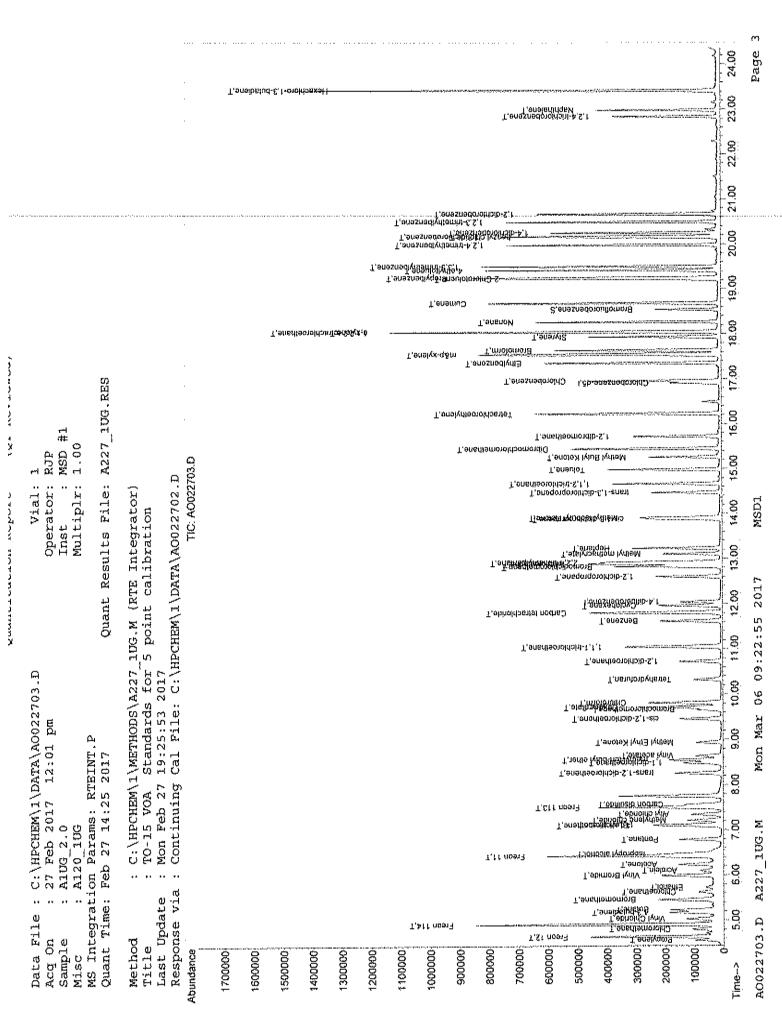
^{(#) =} qualifier out of range (m) = manual integration A0022703.D A227_1UG.M

MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022703.D Vial: 1 Acq On : 27 Feb 2017 12:01 pm Operator: RJP Sample : AlUG_2.0 Misc : Al20_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Feb 27 13:34:31 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QTon	Response	Conc Unit	Qve	lue
46)	Bromodichloromethane	12.83	83	313826	1.95 ppb		98
47)		13.88	75	161710	2.10 ppb		95
48)	trans-1,3-dichloropropene	14.47	75	160601	2.11 ppb		95
49)	1,1,2-trichloroethane	14.66	97	140491	1,98 ppb		97
51)	Toluene	14.98	92	198866	2.09 ppb		87
52)	Methyl Isobutyl Ketone	13.91	43	185015	1.95 ppb		96
53)	Dibromochloromethane	15.44	129	352272	2.00 ppb		93
54)	Methyl Butyl Ketone	15.26	43	176699	1.90 ppb		98
55)	1,2-dibromoethane	15,72	107	231834	1.96 ppb		97
56)	Tetrachloroethylene	16.22	164	170159	2.04 ppb		97
57)	Chlorobenzene	16.95	112	307845	1.98 ppb		97
58)	Ethylbenzene	17.35	91	482120	2.21 ppb		98
59)	m&p-xylene	17.54	91.	936602	4.26 ppb		99
60)	Nonane	18.26	43	197031	2.13 ppb		95
61)	Styrene	17.93	104	269222	2.27 ppb		92
62)	Bromoform	17.63	173	327396	1.96 ppb		99
63)	o-xylene	18.05	91	452697	2.16 ppb		95
64)	Cumene	18.68	105	604876	2.15 ppb		99
66)	1,1,2,2-tetrachloroethane	18.04	83	304924	1.95 ppb		95
67)	Propylbenzene	19.25	120	170201	2.12 ppb	#	1
68)	2-Chlorotoluene	19.22	126	142423	2.22 ppb	#	1.
69)	4-ethyltoluene	19.41	105	576004	2.16 ppb		98
70)	1,3,5-trimethylbenzene	19.49	105	536902	2.07 ppb		98
71)	1,2,4-trimethylbenzene	19.97	105	464766	2.20 ppb		93
72)	1,3-dichlorobenzene	20.16	146	336426	2.04 დღბ		98
73)	benzyl chloride	20.14	91	289019	1.97 ppb		89
74)	1,4-dichlorobenzene	20.25	1.46	295119	2.02 ppb		96
75)	1,2,3-trimethylbenzene	20.49		489968	2.13 ppb		95
76)	1,2-dichlorobenzene	20.66	146	318561	1.95 ppb		98
77)	1,2,4-trichlorobenzene	22,83		129235	1.98 ppb		95
78)	Naphthalene	22.97		376207	2.05 ppb		94
79)	Hexachloro-1,3-butadiene	23.41	225	314561	1.80 ppb		98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO022703.D A227_1UG.M Mon Mar 06 09:22:54 2017 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022704.D Vial: 2 : 27 Feb 2017 12:42 pm Acq On Operator: RJP Sample : Alug 1.5 : MSD #1 Multiplr: 1.00 Misc : A120 1UG

MS Integration Params: RTEINT.P

Quant Time: Feb 27 13:37:02 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227 1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Last Update : Mon Feb 27 13:34:10 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

DataAcq Meth : 1UG_RUN

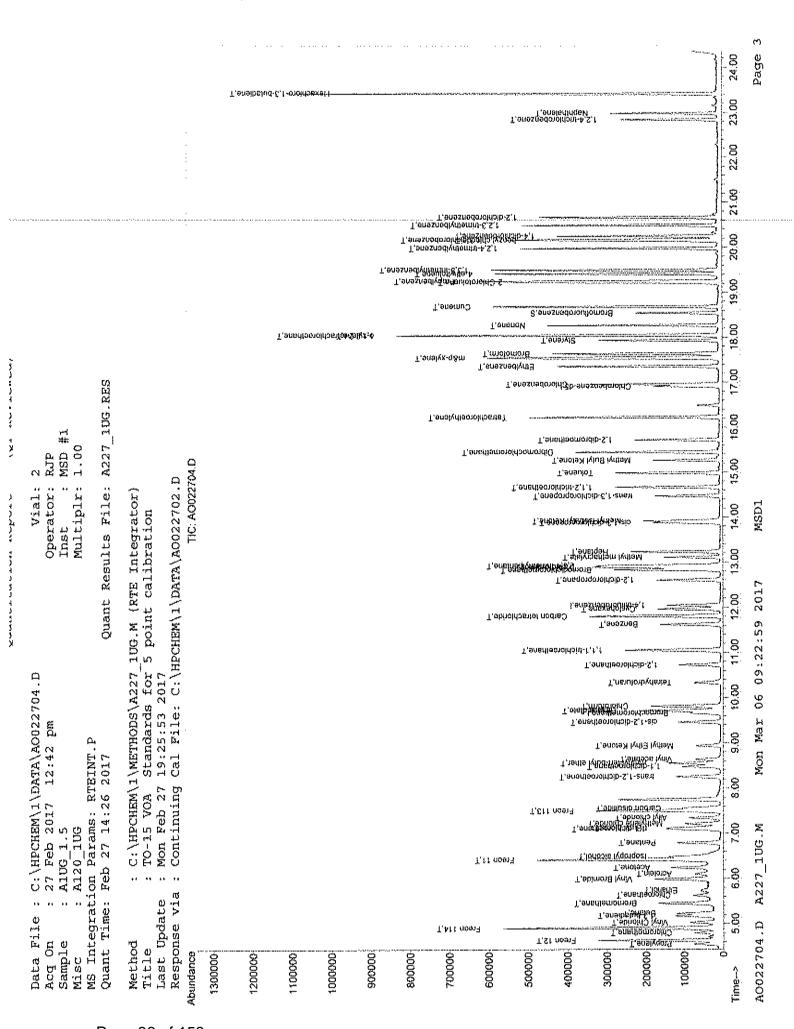
Thickman Standards		_ _							
1. Bromochloromethane 9.65 1.28 36100 1.00 ppb 0.00			R.T.	QIon	Response Co	one U	nits	Dev	(Min)
System Monitoring Compounds 18.54 95 81420 1.00 ppb 0.00			0 65	120	26100				0 00
System Monitoring Compounds 18.54 95 81420 1.00 ppb 0.00	-) I / difluerabences	7.00	7.24	36100 36100				
System Monitoring Compounds 18.54 95 81420 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00k			12.04	117	130401				
Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00%	50) Chlorobenzene-ds	16.91	7.1.	120601	1.00	ppp		0.00
Target Compounds				~ **	04.400				0 00
Target Compounds 2) Propylene 4.55 41 55806 1.59 ppb 89 3) Freon 12 4.63 85 447890 1.30 ppb 98 4) Chloromethane 4.80 50 80196m									0.00
Propylene	ş	piked Amount 1.000	Range 70	- 130	Recovery	<u></u>	100.	004	
3) Freom 12							_	QV	
Solution Solution				41	55806	1.59			
Solution Solution				85	447890	1.30	aqq		98
Solution Solution				50	80196m /J	1.27			
Sutane									
11) Chloroethane	6) Vinyl Chloride		62	101642	1.30			
11) Chloroethane	7) Butane		43	113187	1.26			90
11) Ethanol 5.52 64 505/8 1.37 ppb # 84 12) Acrolein 6.10 56 40470 1.36 ppb 86 13) Vinyl Bromide 5.99 106 155521 1.41 ppb 94 14) Freon 11 6.42 101 578839 1.34 ppb 100 15) Acetone 6.23 58 45684 1.41 ppb # 62 16) Pentane 6.78 42 52005 1.42 ppb # 36 17) Isopropyl alcohol 6.48 45 159740 1.40 ppb # 100 18) 1,1-dichloroethene 7.09 96 68749 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 97 20) t-Butyl alcohol 7.12 59 129743 1.37 ppb # 87 21) Methylene chloride 7.22 84 65431 1.38 ppb 92 22) Allyl chloride 7.34 41 59816 1.48 ppb 92 23) Carbon disulfide 7.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 95 27) Vinyl acetate 8.48 63 127822 1.43 ppb 95 28) Methyl Ethyl Ketone 8.93 72 300556 1.48 ppb 95 29) cis-1,2-dichloroethene 8.48 63 127822 1.43 ppb 95 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 98 30) Hexane 9.72 57 76403 1.48 ppb 98 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb 97 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb 97 34) 1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 35) Carbon tetrachloride 11.80 117 304694 1.42 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 37) Cyclohexane 11.96 56 77508 1.53 ppb 98 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 98 39) Renzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb 98 41 1,4-dioxane 12.90 58 39753 1.60 ppb 48 42 1,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 44 Trichloroethene 13.28 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 97	8) 1,3-butadiene	5.17	39	78428m /)	1.30	ppb		
11) Ethanol 5.52 64 505/8 1.37 ppb # 84 12) Acrolein 6.10 56 40470 1.36 ppb 86 13) Vinyl Bromide 5.99 106 155521 1.41 ppb 94 14) Freon 11 6.42 101 578839 1.34 ppb 100 15) Acetone 6.23 58 45684 1.41 ppb # 62 16) Pentane 6.78 42 52005 1.42 ppb # 36 17) Isopropyl alcohol 6.48 45 159740 1.40 ppb # 100 18) 1,1-dichloroethene 7.09 96 68749 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 97 20) t-Butyl alcohol 7.12 59 129743 1.37 ppb # 87 21) Methylene chloride 7.22 84 65431 1.38 ppb 92 22) Allyl chloride 7.34 41 59816 1.48 ppb 92 23) Carbon disulfide 7.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 95 27) Vinyl acetate 8.48 63 127822 1.43 ppb 95 28) Methyl Ethyl Ketone 8.93 72 300556 1.48 ppb 95 29) cis-1,2-dichloroethene 8.48 63 127822 1.43 ppb 95 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 98 30) Hexane 9.72 57 76403 1.48 ppb 98 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb 97 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb 97 34) 1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 35) Carbon tetrachloride 11.80 117 304694 1.42 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 37) Cyclohexane 11.96 56 77508 1.53 ppb 98 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 98 39) Renzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb 98 41 1,4-dioxane 12.90 58 39753 1.60 ppb 48 42 1,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 44 Trichloroethene 13.28 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 97			5.45	94	143623	1.29			
13 Vinyl Bromide	10) Chloroethane		64	50578	1.37			
13 Vinyl Bromide				45	36233			#	
14) Freon 11 15) Acetone 16.23 58 45684 1.41 ppb # 62 16) Pentane 16.78 42 52005 1.42 ppb # 36 17) Isopropyl alcohol 18) 1,1-dichloroethene 17.09 96 68749 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 97 20) t-Butyl alcohol 17.12 59 129743 1.37 ppb # 87 21) Methylene chloride 17.22 84 65431 1.38 ppb 92 22) Allyl chloride 17.34 41 59816 1.48 ppb 92 23) Carbon disulfide 17.34 41 59816 1.48 ppb 92 23) Carbon disulfide 17.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 18.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 18.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 18.48 63 127822 1.43 ppb 95 27) Vinyl acetate 18.64 43 130963m / 1.54 ppb 95 28) Methyl Ethyl Ketone 18.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 19.72 57 76403 1.48 ppb 98 30) Hexane 19.72 57 76403 1.48 ppb 98 31) Ethyl acetate 19.71 43 167003 1.46 ppb 98 32) Chloroform 19.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40 Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.90 58 39753 1.60 ppb # 30 44) Trichloroethene 12.98 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 97	12) Acrolein		56	40470				
15) Acetone 6.23 58 45684 1.41 ppb # 62 16) Pentane 6.78 42 52005 1.42 ppb # 36 17) Isopropyl alcohol 6.48 45 159740 1.40 ppb # 100 18) 1,1-dichloroethene 7.09 96 68749 1.44 ppb 96 19) Freon 113 7.50 101 181865 1.44 ppb 97 20) t-Butyl alcohol 7.12 59 129743 1.37 ppb # 87 21) Methylene chloride 7.22 84 65431 1.38 ppb 92 22) Allyl chloride 7.34 41 59816 1.48 ppb 92 23) Carbon disulfide 7.56 76 206115 1.43 ppb 92 23) Carbon disulfide 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 95 27) Vinyl acetate 8.64 43 130963m/3 1.54 ppb 95 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 97 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 11.05 97 242355 1.40 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39 Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 34) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 97	13) Vinyl Bromide		106	155521				
1,1-dichloroethene	14) Freon 11	6.42	101	578839	1.34			
1,1-dichloroethene	15) Acetone	6,23	58	45684	1.41			
1,1-dichloroethene	16) Pentane	6.78	42	52005	1,42			
19) Freon 113	17) Isopropyl alcohol	6.48	45	159740	1.40			
20) t-Butyl alcohol 7.12 59 129743 1.37 ppb # 87 21) Methylene chloride 7.22 84 65431 1.38 ppb 92 22) Allyl chloride 7.34 41 59816 1.48 ppb 92 23) Carbon disulfide 7.56 76 206115 1.43 ppb 93 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 94 25) methyl tert-butyl ether 8.64 43 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m / 1.54 ppb 95 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	18) 1,1-dichloroethene			68749				
21) Methylene chloride 7.22 84 65431 1.38 ppb 92 22) Allyl chloride 7.34 41 59816 1.48 ppb 92 23) Carbon disulfide 7.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 8.48 63 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m / 1.54 ppb 95 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.98 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	19) Freon 113	7.50	1.01	181865				
21) Methylene Chloride 7.22 84 5451 1.38 ppb 92 22) Allyl chloride 7.34 41 59816 1.48 ppb 92 23) Carbon disulfide 7.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 8.48 63 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m / 1.54 ppb 95 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 32) Chloroform 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.98 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			7.12	59	129743			#	
23) Carbon disulfide 7.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 8.48 63 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m// 1.54 ppb 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.48 ppb 98 32) Chloroform 9.81 83 21706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dichane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.98 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			1 - 16- 1	04					
23) Carbon disulfide 7.56 76 206115 1.43 ppb 83 24) trans-1,2-dichloroethene 8.26 61 94649 1.47 ppb 94 25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 8.48 63 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m/ 1.54 ppb 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			7.34	4.1	59816				
25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 8.48 63 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m/ 1.54 ppb 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			7.56	76	206115				
25) methyl tert-butyl ether 8.55 73 175245 1.47 ppb 90 26) 1,1-dichloroethane 8.48 63 127822 1.43 ppb 95 27) Vinyl acetate 8.64 43 130963m/ 1.54 ppb 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 97 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	24) trans-1,2-dichloroethene			94649				
27) Vinyl acetate 8.64 43 130963m // 1.54 ppb 28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	25) methyl tert-butyl ether	8.55	73	175245				
28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 86 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	26) 1,1-dichloroethane	8.48		127822	1.43			95
28) Methyl Ethyl Ketone 8.93 72 30056 1.48 ppb # 83 29) cis-1,2-dichloroethene 9.46 61 84779 1.45 ppb 92 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 86 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	27) Vinyl acetate	8.64	43	130963m //	1.54			
29) cls-1,2-dichloroethene 9.46 81 84779 1.45 ppb 32 30) Hexane 9.72 57 76403 1.48 ppb 87 31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	28) Methyl Ethyl Ketone	8.93						
31) Ethyl acetate 9.71 43 167003 1.46 ppb 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	29) cis-1,2-dichloroethene	9.46	61	84779				
31) Ethyl acetate 9.71 43 167003 1.46 ppp 98 32) Chloroform 9.81 83 211706 1.36 ppb 98 33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	30) Hexane	9.72	57	76403	1.48	bbp		
33) Tetrahydrofuran 10.33 42 48492 1.50 ppb # 70 34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			9.71	43					
34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			9.81	83	211706	1.36	bbp		
34) 1,2-dichloroethane 10.72 62 145890 1.46 ppb 98 36) 1,1,1-trichloroethane 11.05 97 242355 1.40 ppb 96 37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	33) Tetrahydrofuran	10.33	42	48492	1.50	dqq	#	
37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			10.72	62	145890	1.46	$_{\mathrm{ppb}}$		
37) Cyclohexane 11.96 56 77508 1.53 ppb 88 38) Carbon tetrachloride 11.80 117 304694 1.42 ppb 100 39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	36) 1,1,1-trichloroethane	11.05	97	242355	1.40	qqq		96
39) Benzene 11.62 78 198866 1.48 ppb 94 40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.98 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	37) Cyclohexane	11.96	56	77508				
40) Methyl methacrylate 13.10 41 74232 1.47 ppb # 82 41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	38) Carbon tetrachloride	11.80	117	304694				
41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.98 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	39) Benzene	11.62	78	198866				
41) 1,4-dioxane 12.90 58 39753 1.60 ppb # 30 42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98	40) Methyl methacrylate	13.10	41	74232				
42) 2,2,4-trimethylpentane 12.92 57 281936 1.51 ppb 88 43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			12.90	58	39753				
43) Heptane 13.23 43 86145 1.55 ppb 86 44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			12.92	57	281936				
44) Trichloroethene 12.88 130 119387 1.48 ppb 97 45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			13.23						
45) 1,2-dichloropropane 12.60 63 66632 1.49 ppb 98			12.88						
	45) 1,2-dichloropropane	12.60	63	66632				98
							AV 85. 8F		

^{(#) =} qualifier out of range (m) = manual integration Mon Mar 06 09:22:57 2017 A0022704.D A227_1UG.M

MSDl

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022704.D Vial: 2 Acq On : 27 Feb 2017 12:42 pm Operator: RJP Sample : AlUG_1.5 Misc : Al20_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Feb 27 13:37:02 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.83	83	233846	1.41 ppb	96
47)	cis-1,3-dichloropropene	13.87	75	119377	1.51 ppb	96
48)	trans-1,3-dichloropropene	14.47	75	116355	1.49 ppb	96
49)	1,1,2-trichloroethane	14.67	97	104823	1.44 ppb	1.00
51)	Toluene	14.98	92	143255	1.48 ppb	86
52)	Methyl Isobutyl Ketone	13.91	43	136808	1.41 ppb	96
53)	Dibromochloromethane	15.45	129	260970	1.46 ppb	93
54)	Methyl Butyl Ketone	15.26	43	127927	1.35 ppb	98
55)	1,2-dibromoethane	15.72	107	171510	1.42 ppb	96
56)	Tetrachloroethylene	16.22	164	126330	1.49 ppb	97
57)	Chlorobenzene	16.95	112	230234	1.46 ppb	96
58)	Ethylbenzene	17.35	91	344400	1.55 ppb	98
59)	m&p-xylene	17.54	91	674977	3.01 ppb	100
60)	Nonane	18,26	43	139459	1.48 ppb	96
61)	Styrene	17.93	104	197650	1.63 ppb	88
62)	Bromoform	17.63	173	244288	1.43 ppb	98
63)	o-xylene	18.05	91	319499	1.49 ppb	96
64)	Cumene	18.68	105	436193	1.52 ppb	99
66)	1,1,2,2-tetrachloroethane	1.8.04	83	230628	1.44 ppb	97
67)	Propylbenzene	19.24	120	124849	1.52 ppb	# 1
68)	2-Chlorotoluene	19.22	126	98971	1.52 ppb	# 1
69)	4-ethyltoluene	19.41	105	417512	1.54 ppb	99
70)	1,3,5-trimethylbenzene	19.49	105	388020	1.47 ppb	97
71)	1,2,4-trimethylbenzene	19.97	105	329611	, 1.53 ppb	94
72)	1,3-dichlorobenzene	20.16	146	244983m j	🦸 1.46 ppb	
73)	benzyl chloride	20.14	91	215675	1.44 ppb	92
74)	1,4-dichlorobenzene	20.25	1.46	218869m	1.47 ppb	
75)	1,2,3-trimethylbenzene	20.49	105	346422	1.48 ppb	94
76)	1,2-dichlorobenzene	20.66	146	240399	1.44 ppb	97
77)	1,2,4-trichlorobenzene	22.83	180	95449	1.44 ppb	96
78)	Naphthalene	22.97	128	259809	1,39 ppb	95
79)	Hexachloro-1,3-butadiene	23.41	225	234742	1.32 ppb	100

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0022704.D A227_1UG.M Mon Mar 06 09:22:57 2017 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022705.D Vial: 3 Acq On : 27 Feb 2017 1:22 pm Operator: RJP Sample : AlUG_1.25 Misc : A227_1UG : MSD #1 Inst Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 27 14:21:04 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D
DataAcq Meth : 1UG_RUN

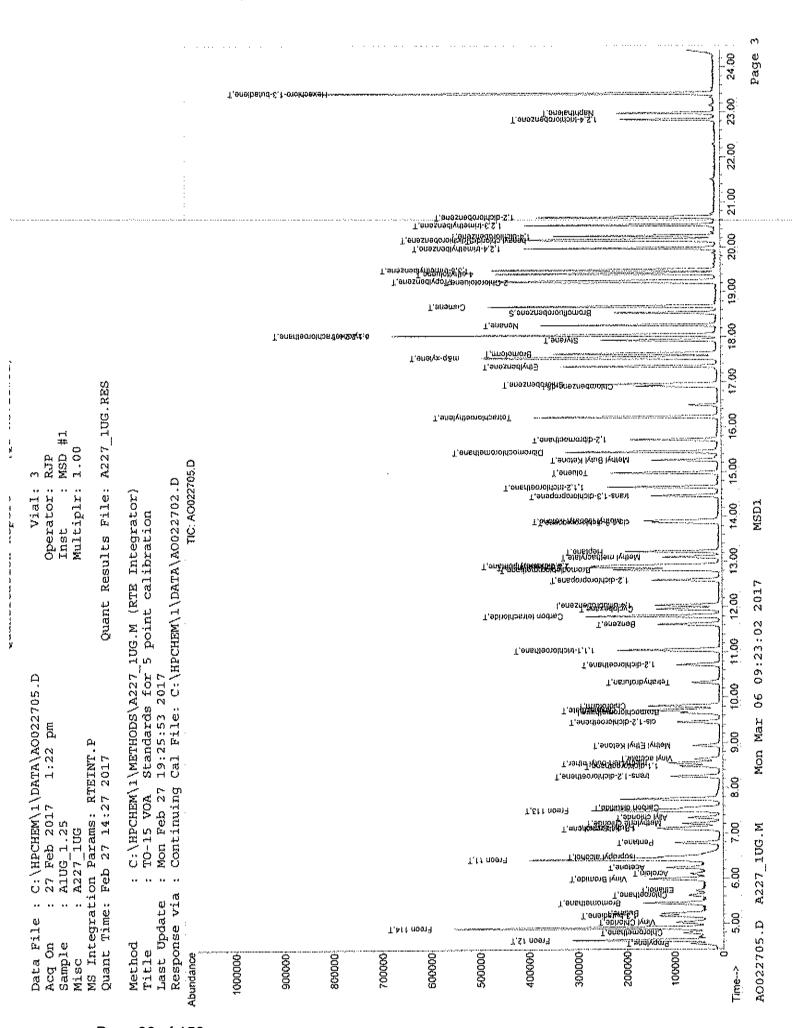
Inte	rnal Standards	R., T.,	QIon	Response Co	on cUi	nits.	Dev	(ntm)
								0.00
25)	1,4-difluorobenzene	32.04	114	33434 145107 118466	1.00			0.00
22)	Chlorobenzene-d5	15.07	117	118466	1.00	DDD.		0.00
50)	Curoropeuseus-do	10.30	11,	********	1.00	PP~		0.00
	em Monitoring Compounds			****				0 00
	Bromofluorobenzene	18.54						0.00
sp	iked Amount 1.000	Range 70	~ 130	Recovery	=	98.	.00%	
Tarq	et Compounds						Q٧٥	alue
	Propylene	4.55	41					82
	Freon 12	4.63	85	405753	1.27			97
	Chloromethane	4.79	50	405753 71614m ∮}	1.23			
5)	Freon 114	4.89	85	355820 [°] 96809	1.25			98
	Vinyl Chloride	5.02	62	96809	1.34	ppb		90
	Butane	5.22	43	106701	1.28	dqq		93
	1,3-butadiene	5.17	39	106701 68251m 🧳	1.22	ppb		
-	Bromomethane	5.44	94	127291	1.24	ppb		94
	Chloroethane	5.63	64	45045	1,32	dqq		89
	Ethanol	5.74	45	30805	1.33	ppb		82
	Acrolein	6.09	56	34273	1.25	dqq		88
	Vinyl Bromide	5.99	106	34273 129727	1.27	dqq		96
	Freon 11	6.42	101	478226	1.19	ppb		99
	Acetone	6.23	58	38074	1.27			67
-	Pentane	6.78	42	43027 129586	1.26			40
	Isopropyl alcohol	6.47	45	129586	1.22	dąg	#	100
18)	1,1-dichloroethene	7.10	96	56144	1.27			97
	Freon 113	7.50	101	149371 112735 55538	1.28			97
	t-Butyl alcohol	7.11	59	112735	1.28			90
	Methylene chloride	7.21	84	55538	1.26			94
	Allyl chloride	7.33	41	47631	1.27			93
	Carbon disulfide	7.56	76	47631 166949 78916	1.25			83
24)	trans-1,2-dichloroethene	8.25		78916	1.32			94
	methyl tert-butyl ether			142379	1.29			88
26)	1,1-dichloroethane	8.48		103193	1.25			93
27)	Vinyl acetate	8.64			1,31			
28)	Methyl Ethyl Ketone	8.94	72	25140	1.33			1
	cis-1,2-dichloroethene	9.45		69788	1.29			94
30)	Hexane	9.72	57	59417 135614 176976	1.24			90
31)		9.72	43	135614	1.28			99
	Chloroform	9.81						100
33)	Tetrahydrofuran	10.33	42	39561	1.32			76
	1,2-dichloroethane	10.72	62	120237	1.30			97
36)	1,1,1-trichloroethane	11.05	97	199154	1.20			98
	Cyclohexane	11.95	56	62283	1.28			88
	Carbon tetrachloride	11.80	117	247922	1.21			97
	Benzene	11.61	78	160434	1.24			94
	Methyl methacrylate	13.10	41.	61746	1.28			84
41)	1,4-dioxane	12.91	58	32323	1.36			29
	2,2,4-trimethylpentane	12,92	57	228477	1.28			88 01
	Heptane	13.22		69030	1.29			81. 96
	Trichloroethene	12.88		98431	1.27			99
45)	1,2-dichloropropane	12.59		54586	1.28	- # = = =		77
~ ~ ~ ~							– –	

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022705.D Vial: 3 Operator: RJP Acq On ; 27 Feb 2017 1;22 pm Sample : A1UG_1.25 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A227_1UG.RES Quant Time: Feb 27 14:21:04 2017


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

Last Update : Mon Feb 27 13:34:10 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.83	83	1.91.263	1.21 ppb	96
	cis-1,3-dichloropropene	13.87	75	96035	1.27 ppb	95
48)	trans-1,3-dichloropropene	14.46		96628	1.29 ppb	99
49)	1,1,2-trichloroethane	14.66		85391	1.23 ppb	99
51)	Toluene	14.97		115953	1.22 ppb	87
52)	Methyl Isobutyl Ketone	13.91	43	105820	1.11 ppb	96
53)	Dibromochloromethane	15.44	1.29	209627	1.19 ppb	92
54)	Methyl Butyl Ketone	15.26	43	99894	1.07 ppb	96
55)	1,2-dibromoethane	15.72	107	140106	1.18 ppb	98
56)	Tetrachloroethylene	16.23	164	101954	$1.22~\mathrm{ppb}$	98
57)	Chlorobenzene	16.95	112	188047	1.21 ppb	97
58)	Ethylbenzene	17.35	91	270529	1.24 ppb	97
59)	m&p-xylene	17.54	91	539522	2.45 ppb	100
60)	Nonane	18.26	43	113508	1.23 ppb	97
61)	Styrene	17.93	104	150564	1.27 ppb	89
62)	Bromoform	17.63		197222	1.18 ppb	98
63)	o-xylene	18.04		258358	1.23 ppb	95
64)	Cumene	18.68		344068	1.22 ppb	98
66)	1,1,2,2-tetrachloroethane	18.04		186037	1.19 ppb	94
67)	Propylbenzene	19.24		98861	1.23 ppb	# 1
68)	2-Chlorotoluene	19.21		81240	1,27 ppb	# 1
69)	4-ethyltoluene	19.41		329649	1.24 ppb	99
70)	1,3,5-trimethylbenzene	19.49		313638	1.21 ppb	99
71)		19.97		260242	1.23 ppb	94
72)	1,3-dichlorobenzene	20.16	146	192000m	1.16 ppb	-
73)	benzyl chloride	20.14		174719	1.19 ppb	91
74)	1,4-dichlorobenzene	20.24		178085m	1.22 ppb	***
75)	1,2,3-trimethylbenzene	20.49		265866	1.15 ppb	92
76)	1,2-dichlorobenzene	20.66		191377	1.17 ppb	98
77)	1,2,4-trichlorobenzene	22.83		71785	1.10 ppb	93
78)	Naphthalene	22.97		204556m (0.0
79)	Hexachloro-1,3-butadiene	23.43	225	191140	1.09 ppb	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed Mon Mar 06 09:23:01 2017 MSD1 A0022705.D A227_10G.M

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022706.D Vial: 4 Operator: RJP Acq On : 27 Feb 2017 2:01 pm Sample : A1UG_0.75 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A227_1UG.RES Quant Time: Feb 27 14:27:59 2017

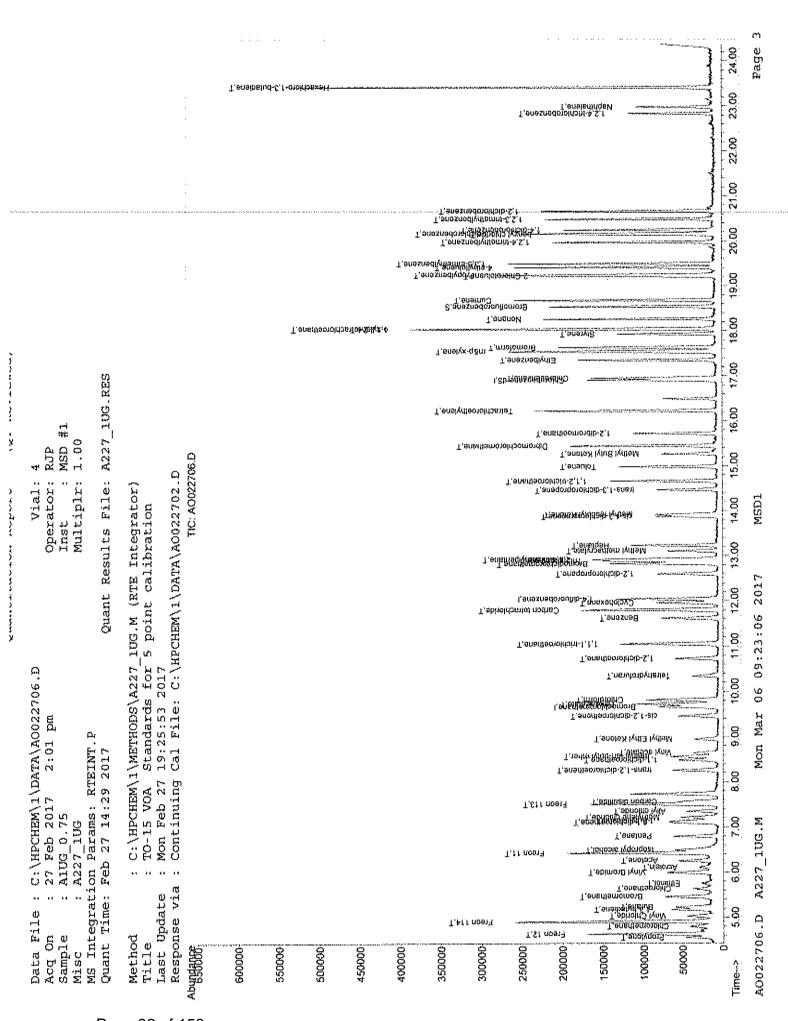
Quant Method : C:\HPCHEM\1\METHODS\A227_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

Internal Standards		QIOn	Response C	onc U	nits.	Dev	(MTD)
1) Bromochloromethane	9.66	128	34548	1.00	dag		0.00
35) 1,4-difluorobenzene	12.04	114	139180		bbp		0.00
50) Chlorobenzene-d5	16.90	117	114597	1.00	dąq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.54			0.97	agg		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	<i>*</i> =	97	.00%	
Target Compounds						Qv	alue
2) Propylene	4.56		25499	0.76			77
3) Freon 12	4.64		220863	0.67	ppb		98
4) Chloromethane	4.81		37377m 👫	0.62			
5) Freon 114	4.90		173292 46269 51654				93
6) Vinyl Chloride	5.03		46269	0.62	bbp		93
7) Butane	5.23	43	51654	0.60			91
8) 1,3-butadiene	5.18			0.57	aqq		
9) Bromomethane	5.45		57960	0.54			94
10) Chloroethane	5.63		22140 14995	0.63			90
11) Ethanol	5.74	45					82
12) Acrolein	6.1						89
13) Vinyl Bromide	5.99		54158	0.51			91
14) Freon 11	6.42		235743	0.57			99
15) Acetone	6.25		19048				64
16) Pentane	6.80		25624				51
17) Isopropyl alcohol	6.45		65135 32415	0.60			100
18) 1,1-dichloroethene	7.10		32415	0.71			99
19) Freon 113	7.50		88734				96
20) t-Butyl alcohol	7.14	59	61182				86
21) Methylene chloride	7.2		33001	0.72			93
22) Allyl chloride	7.3		28333	0.73			93
23) Carbon disulfide	7.50		100285				18
24) trans-1,2-dichloroethene	8.26		45269	0.73			92
25) methyl tert-butyl ether	8.5	5 73 3 63	77736	0.68			91
26) 1,1-dichloroethane	8.48	3 63	60381	0.71			94
27) Vinyl acetate	8.6	43	58164m 🖟				
28) Methyl Ethyl Ketone	8.9		14528	0.75			76
29) cis-1,2-dichloroethene	9.4	5 61	39739	0.71			90
30) Hexane	9.7	2 57	33440	0.68			86
31) Ethyl acetate	9.7		76325	0.70	agg		98
32) Chloroform	9.83		104984	0.71			100
33) Tetrahydrofuran	10.39		21496	0.69			71
34) 1,2-dichloroethane	10.7		70040	0.73	ppp	•	94
36) 1,1,1-trichloroethane	11.0		114950	0.72			98
37) Cyclohexane	11.9		35814	0.77			88
38) Carbon tetrachloride	11.8		149024	0.76			99
39) Benzene	11,6	2 78	91372	0.74			94
40) Methyl methacrylate	13.1		32920	0.71			80
41) 1,4-dioxane	12.9		17273		ppb		17
42) 2,2,4-trimethylpentane	12.9		126105		bbp		87
43) Heptane	13.2	3 43	39307		bbp		84
44) Trichloroethene	12.8		55754	0.75			97
45) 1,2-dichloropropane	12.6	163	31317	0.76	ppb)	99

^{(#) =} qualifier out of range (m) = manual integration A0022706.D A227_1UG.M Mon Mar 06 09:23:05 2017

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022706.D Vial: 4 Acq On : 27 Feb 2017 2:01 pm Operator: RJP Sample : A1UG_0.75 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Feb 27 14:27:59 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\I\DATA\A0022702.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.83	83	114702	0.75 ppb	99
47)		13.88	75	54268	0.75 ppb	96
48)	trans-1,3-dichloropropene	14.46	75	53258	0.74 ppb	94
49)	1,1,2-trichloroethane	14.66	97	51718	0.77 ppb	100
51)	Toluene	14.98	92	64300	0.70 ppb	87
52)	Methyl Isobutyl Ketone	13.92	4.3	55839	0.61 ppb	98
53)	Dibromochloromethane	15.44	129	125722	0.74 ppb	94
54)	Methyl Butyl Ketone	15.26	43	48541	0.54 ppb	99
55)	1,2-dibromoethane	15.72	107	80352	0.70 ppb	96
56)	Tetrachloroethylene	16.23	164	57805	0.72 ppb	94
57)	Chlorobenzene *	16.95	1.1.2	108029	0.72 ppb	96
58)	Ethylbenzene	17.35	91	146857	0.70 ppb	96
59)	m&p-xylene	17.55	91.	267284m 🖊	1.25 ppb	
60)	Nonane	18.26	43	61387	0.69 ppb	97
61)	Styrene	17.92	104	80315	0.70 ppb	87
62)	Bromoform	17.63	173	113759	0,70 ppb	97
63)	o-xylene	18.05	91	141768	0.70 ppb	93
64)	Cumene	18.68	105	1,92362	0.70 ppb	97
66)	1,1,2,2-tetrachloroethane	18.04	83	111551	0.74 ppb	98
67)	Propylbenzene	19.25	120	54005	0.69 ppb	# 1
68)	2-Chlorotoluene	19.22	126	45788	0.74 ppb	# 1
69)	4-ethyltoluene	19.41	105	178881	0.69 ppb	100
70)	1,3,5-trimethylbenzene	19.49	105	173200	0.69 ppb	99
71)	1,2,4-trimethylbenzene	19.97	105	138646 🔏	0.68 ppb	94
72)	1,3-dichlorobenzene	20.16	1.46	112138m 👫	0.70 ppb	
73)	benzyl chloride	20,14	91	95731 {	0.67 ppb	91
74)	1,4-dichlorobenzene	20.24	146	100495m\\		
75)	1,2,3-trimethylbenzene	20.48	105	143014	0.64 ppb	93
76)	1,2-dichlorobenzene	20.66	146	113886	0.72 ppb	97
77)	1,2,4-trichlorobenzene	22.83		37319	0.59 ppb	94
78)	Naphthalene	22.98		98076	0.55 ppb	96
79)	Hexachloro-1,3-butadiene	23.41	225	109840	0.65 ppb	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0022706.D A227_1UG.M Mon Mar 06 09:23:05 2017 MSD1

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Feb 27 15:23:11 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Feb 27 13:34:10 2017

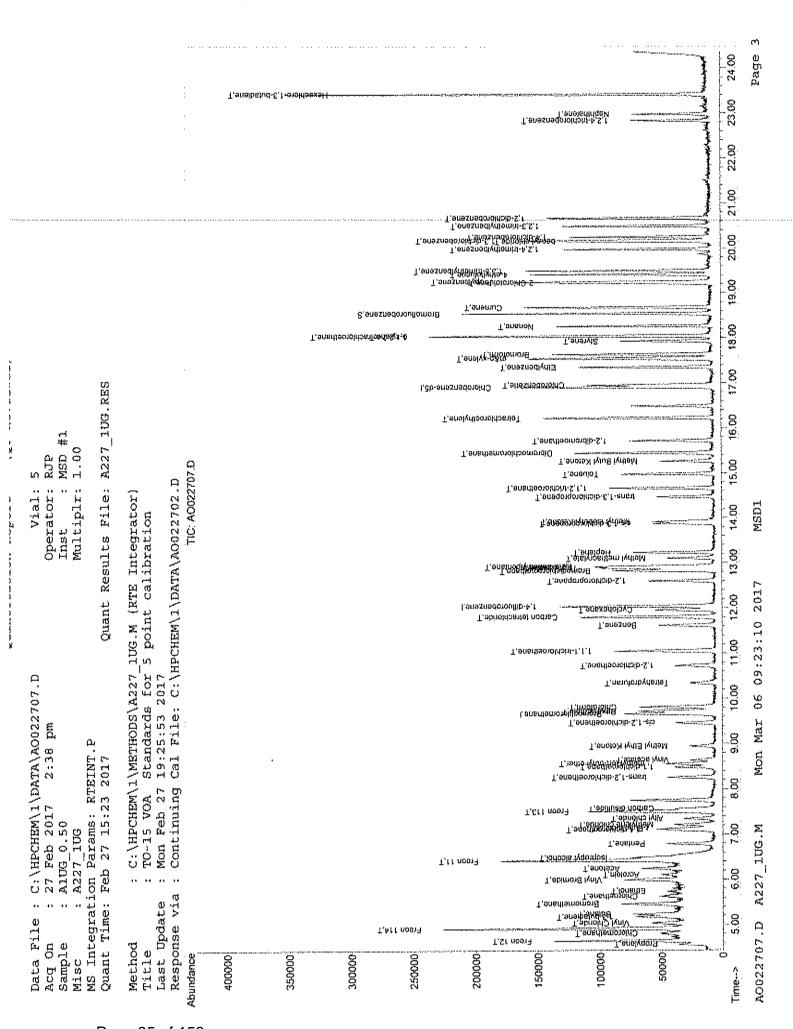
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

	rnal Standards	·····	··· /*\ *** /~~ wa ·····	· Daeronea·····C	nn e e Th	-4-+- e-	·· Frank	·(Min)····
1)	Bromochloromethane	9.66	128	32086	1.00	ppb		0.00
35)	1,4-difluorobenzene Chlorobenzene-d5	12.04	114	132674	1.00	bbp		0.00
50)	Chlorobenzene-d5	16.91	117	112670	1.00	dąą		0.00
Syste	em Monitoring Compounds							
	Bromofluorobenzene	18.54	95					0.00
Sp	iked Amount 1.000	Range 70	- 130	Recovery	=	95	.00%	
Targe	et Compounds						Qv	alue
	Propylene	4.56	41	17331	0.56	ppb		79
	Freon 12	4.64	85	155415	0.51	ppb		97
	Chloromethane	4.80	50	155415 29173m /	0.52	ppb		
	Freon 114	4.90	85	136873	0.50	dqq		96
	Vinyl Chloride	5.04	62	36547 41383 27126m /\(\beta\)	0.53	ppb		87
	Butane	5.04 5.23	62 43	41383	0.52	ББр		91
	1,3-butadiene	5,17	39	27126m 🗥	0.51	dqq		
	Bromomethane	5.23 5,17 5.46 5.62 5.74	94	49045 17099 13536	0.50	ppb		91
	Chloroethane	5.62	64	17099	0.52	qqq	#	74
	Ethanol	5.74	45	13536	0.61	dqq	#	75
	Acrolein	6.10	50	14121	0.53	PPP		84
	Vinyl Bromide	5.99	106	48399 188460	0.49	dqq		91
	Freon 11	6.42	101	188460	0.49			99
	Acetone	6.24		14669	0.51	ppb	#	64
	Pentane	6.79	42		0.52	dqq	#	47
	Isopropyl alcohol	6.48	45	53316	0.52	ppb	#	100
18)	1,1-dichloroethene	6.48 7.10	96	20467	0.48	dqq		98
	Freon 113	7.50	1.01	56765	0.51	ppb		97
20)	t-Butyl alcohol	7,14	59 84 41	40359	0.48	dqq	#	87
21)	t-Butyl alcohol Methylene chloride Allyl chloride	7.21	84	40359 22237 17163	0.53	ppb		89
22)	Allyl chloride	7.34	41	17163	0.48	ppb		89
23)	Carbon disulfide	7.56	76	65215	0.51	ppb		81
	trans-1,2-dichloroethene			29663	0.52	ppb		95
25)	methyl tert-butyl ether	8.56	73	50598	0.48			92
26)	methyl tert-butyl ether 1,1-dichloroethane	8.48	63	40382	0.51	ppb		94
27)	Vinvl acetate	8 63	43	36091m 👫	0.48			
28)	Methyl Ethyl Ketone	8.94	72	8973	0.50			1
29)	cis-1,2-dichloroethene	9.47	61	8973 24130	0.46	daa		89
	Hexane	9.71	57	20572	0.45	ppb		88
	Ethyl acetate	9.72		46227	0.45	dqq		98
	Chloroform	9.81	8.3	67700	0,49	ppb		98
	Tetrahydrofuran	10.34	42	13012	0.45			71
34)	1,2-dichloroethane	10.73	62	43067	0.48			93
	1,1,1-trichloroethane	11.05	97	76976	0.51			98
	Cyclohexane	11.96	56	23337	0.53			90
	Carbon tetrachloride	11.80	117	97284	0.52			99
	Benzene	11.62	78	59123	0.50			95
	Methyl methacrylate	13.10	41	19757	0.45	dqq	#	83
	1,4-dioxane	12.90	58	10792	0.50			22
	2,2,4-trimethylpentane	12.92	57	76483	0.47			87
	Heptane	13.22		23168	0.47			88
	Trichloroethene	12.88	130	33635	0.47			91
45)	1,2-dichloropropane	12,60	63	20090	0.51			97
	1,2 "drotttotoptopeno							w

^{(#) =} qualifier out of range (m) = manual integration A0022707.D A227_1UG.M Mon Mar 06 09:23:09 2017

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P


Quant Time: Feb 27 15:23:11 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Feb 27 13:34:10 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.83	83	72852	0.50 ppb	96
47)	cis-1,3-dichloropropene	13.87	75	33191	0.48 ppb	94
48)	trans-1,3-dichloropropene	14.46	75	32559	0.47 ppb	94
49)	1,1,2-trichloroethane	14.66	97	31820	0.50 ppb	93
51)	Toluene	14.98	92	40547	0.45 ppb	89
52)	Methyl Isobutyl Ketone	13.91	43	32500	0.36 ppb	97
53)		15.45	129	77782	0.46 ppb	92
54)	Methyl Butyl Ketone	15.26	43	29867	0.34 ppb	98
55)	1,2-dibromoethane	15.71	107	50516	0.45 ppb	94
56)	Tetrachloroethylene	16.23	164	37382	0.47 ppb	93
57)	Chlorobenzene	16.95	112	67067	0.45 ppb	97
58)	Ethylbenzene	17.35	91	90343	0.44 ppb	96
59)	m&p-xylene	17.54	91	171931	0.82 ppb	98
60)	Nonane	18.26	43	35556	0.40 ppb	98
61)	Styrene	17.92		50031	0.44 ppb	87
62)	Bromoform	17.63	173	71380	0.45 ppb	98
63)	o-xylene	18,05	91	81347	0.41 ppb	96
64)	Cumene	18.68		115251	0.43 ppb	98
66)	1,1,2,2-tetrachloroethane	18.04		68065	0.46 ppb	94
67)	Propylbenzene	19.25		31968	0.42 ppb	# 1
68)		19.22	126	26957	0.44 ppb	# 1
69)		19.41	105	1.09155	0.43 ppb	100
70)		19.49	105	99045	0.40 ppb	94
71)	1,2,4-trimethylbenzene	19.97	105	79227	0.39 ppb	88
72)	1,3-dichlorobenzene	20.16	146	67990	dqq E4.0	98
73)		20.13	91.	58313	0.42 ppb	88
74)		20.24		59437	0.43 ppb	95
75)	1,2,3-trimethylbenzene	20.49		85990	0.39 ppb	91
76)	1,2-dichlorobenzene	20.66	146	70376	0.45 ppb	95
77)	1,2,4-trichlorobenzene	22.83		22620	0.36 ppb	92
78)		22,97	128	58170	0.33 ppb	95
79)	Hexachloro-1,3-butadiene	23.41	225	70735	0.42 ppb	99

Page 95 of 158

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\A0022708.D Vial: 6 Acq On : 27 Feb 2017 Operator: RJP 3:18 pm Sample : AlUG_1.0 : MSD #1 Inst Misc : A227_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 27 19:08:49 2017 Quant Results File: A227_lUG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

DataAcq Meth : 1UG_RUN

Spiked Amount 1.000 Range 70 - 130 Target Compounds	33193 35563 12581 74287 Recovery	1.00	ppb ppb ppb	0.00 0.01 0.00
35) 1,4-difluorobenzene 12.05 114 1 50) Chlorobenzene-d5 16.91 117 1 System Monitoring Compounds 65) Bromofluorobenzene 18.54 95 Spiked Amount 1.000 Range 70 - 130 Target Compounds	35563 12581 74287 Recovery	0.98	ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene 18.54 95 Spiked Amount 1.000 Range 70 - 130 Target Compounds	74287 Recovery	0.98	ppb	0.00
65) Bromofluorobenzene 18.54 95 Spiked Amount 1.000 Range 70 - 130 Target Compounds	Recovery	0.98	dqq 00.86	0.00
Spiked Amount 1.000 Range 70 - 130 Target Compounds	Recovery	0.98	98.00	0.00
Target Compounds		=	98.00	
	32616			*
7\ Dwamu3ana	32616			value
-, <u></u>	T-111	1.01	ppb	82
3) Freon 12 4.63 85 3	1.4355	0.99		97
4) Chloromethane 4.80 50	55242m 🎊			
5) Freon 114 4.91 85 2		0.94		98
6) Vinyl Chloride 5.03 62		1.00		88
7) Butane 5.23 43	47992m //	0.93		87
8) 1,3-butadiene 5.17 39	4/992m //	0.87		0.5
9) Bromomethane 5.45 94 10) Chloroethane 5.63 64	95659 33347	0.94		92 93
	24047	0.99		87
11) Ethanol 5.73 45	24461	1.05		97
	24401	0.95		95
13) Vinyl Bromide 5.99 106 14) Freon 11 6.42 101 3	96108 71968	0.93	ppp	98
14) Freon 11 6.42 101 3 15) Acetone 6.24 58	29555		ppb #	
15) Acetone 6.24 58 16) Pentane 6.79 42	31576	0.93		
16) Pentane 6.79 42 17) Isopropyl alcohol 6.47 45 1	00359		# dqq	
16) Pentane 6.79 42 17) Isopropyl alcohol 6.47 45 1 18) 1,1-dichloroethene 7.10 96	40530	0.93		98
19) Freon 113 7.50 101 1	16271	1.00		97
20) t-Butyl alcohol 7.12 59		0.91		
21) Methylene chloride 7.21 84	42167	0.96		95
22) Allyl chloride 7.35 41		0.94		94
23) Carbon disulfide 7.57 76 1	30323	0.98		81
		0.95		92
24) trans-1,2-dichloroethene 8.26 61 25) methyl tert-butyl ether 8.55 73 1 26) 1,1-dichloroethane 8.48 63		0,95		90
26) 1,1-dichloroethane 8.48 63	79911	0.97		98
27) Vinyl acetate 8.63 43	77184m 🇳	0.99		
27) Vinyl acetate 8.63 43 28) Methyl Ethyl Ketone 8.94 72 29) cis-1,2-dichloroethene 9.46 61	18231	0.97	ppb #	1
29) cis-1,2-dichloroethene 9.46 61	52575	0.98	dqq	93
30) Hexane 9.71 57	44374	0.94		87
31) Ethyl acetate 9.72 43 1		0,96		98
		0.94		97
		0.92		
34) 1,2-dichloroethane 10.73 62	87348	0.95		95
· - · - · · · · · · · · · · · · · ·	.52512	0.98		97
+·/ -1	44782	0.99		88
	.92671	1.00		99
- · · ·	19767	0.99		95
10, 1100-11	44765	0.99		
	23899	1.08		
	.69708	1.01		89
- # ,E	50744	1.02		84
	72013	1.00		96
	42501	1.06	ppp	99

^{(#) =} qualifier out of range (m) = manual integration

A0022708.D A227 1UG.M

Mon Mar 06 09:23:13 2017

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022708.D

Acq On : 27 Feb 2017 3:18 pm

Vial: 6 Operator: RJP Inst : MSD #1

Sample : AlUG_1.0 Misc : A227_lUG

Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Feb 27 19:08:49 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Feb 27 13:34:10 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.82	83	145355	dqq 80.0	97
47)	cis-1,3-dichloropropene	13.87	75	72816	1.03 ppb	97
48)	trans-1,3-dichloropropene	14.47		71040	1.01 ppb	98
49)	1,1,2-trichloroethane	14.67	97	67705	1.04 ppb	95
51)	Toluene	14.97		86837	0.96 ppb	88
52)	Methyl Isobutyl Ketone	13.92	43	74181	0.82 ppb	97
	Dibromochloromethane	15.45	129	162151	0.97 ppb	92
	Methyl Butyl Ketone	15.26	43	65439	0.74 ppb	99
55)	1,2-dibromoethane	15.72	107	107224	0.95 ppb	97
56)	Tetrachloroethylene	16.22	164	78753	0.99 ppb	1.00
57)	Chlorobenzene	16.95	112	140548	0.95 ppb	98
58)	Ethylbenzene	17.35	91	199134	0.96 ppb	98
59)	m&p-xylene	17.54	91	399403	1.91 ppb	100
60)	Nonane	18.26	43	84171	0.96 დებ	98
61)	Styrene	17.92	104	109876	0.97 ppb	87
62)	Bromoform	17.63	173	153180	0.96 ppb	98
63)	o-xylene	18.04	91	195397	dqq 88.0	94
64)	Cumene	18.68		257295	0.96 ppb	99
66)	1,1,2,2-tetrachloroethane	18.03	83	142956	ი.96 დდხ	96
67)	Propylbenzene	19.24		73966	0.97 ppb	# 1
68)		19.21	126	59127	0.97 ppb	# 1
69)		19.41		234955	dag Ee.0	94
70)		19.49		232316	0.94 ppb	98
71)		19.98		186326	dqq Ee.0	91
72)	1,3-dichlorobenzene	20.16		148198	0.94 ppb	# 35
73)	benzyl chloride	20.14		129063	0.92 ppb	88
74)		20.24		132228	0.95 ppb	# 25
75)	1,2,3-trimethylbenzene	20.49		198131	0.91 ppb	93
76)		20.66		145697	0.94 ppb	96
77)		22.83		51354	0.83 ppb	96
78)	Ms.	22.97		128684	0.74 ppb	94
79)	Hexachloro-1,3-butadiene	23.41	225	142832	0.86 ppb	98

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA\A0022709.D Vial: 7 Operator: RJP Acq On : 27 Feb 2017 3:55 pm Sample : AlUG_0,30 Inst : MSD #1 Misc : A227_lUG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 27 19:09:15 2017 Quant Results File: A227_1UG.RES

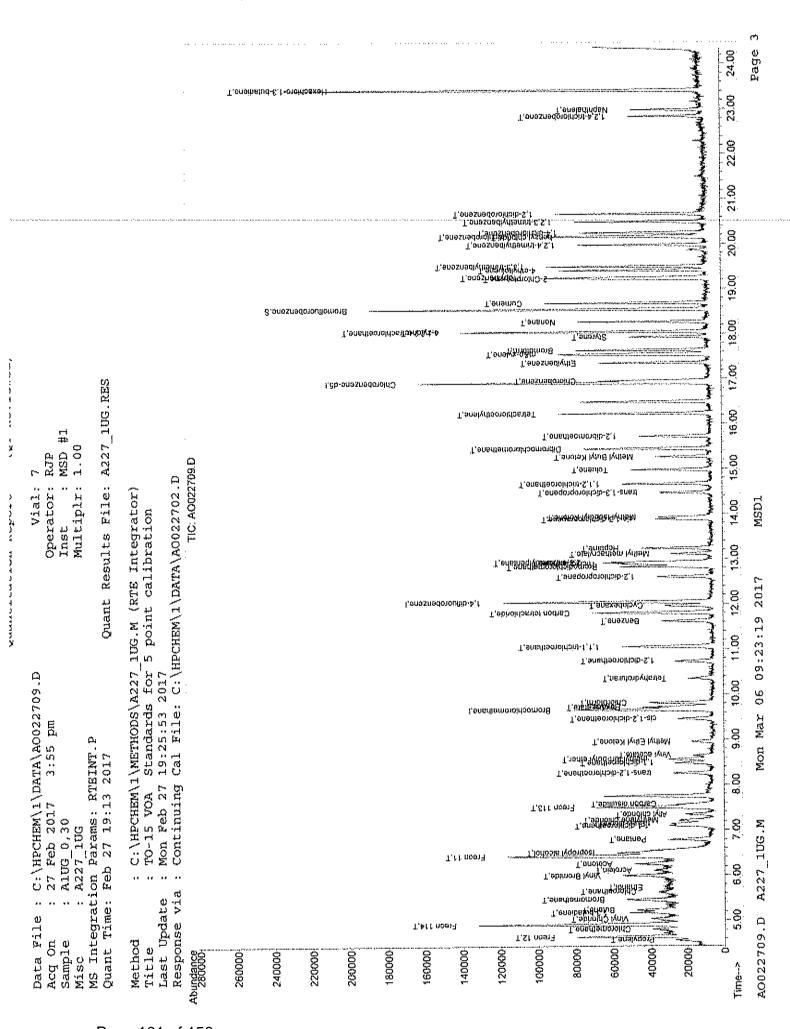
Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

Inte	rnal Standards	······································	QIon	Response Co	onc Ur	nits	Dev	(Min)
1)	Bromochloromethane	9.66	128	31.550	1.00	ppb		0.00
35)	1,4-difluorobenzene				1.00			0.00
50)	Chlorobenzene-d5	16.91	117	107408	1.00	dqq		0.00
Syst	em Monitoring Compounds							
65)	Bromofluorobenzene	18.54	95					0.00
sp	iked Amount 1.000	Range 70	- 130	Recovery	=	90	.00%	
Targ	et Compounds							alue
	Propylene	4.56	41	10462	0.34			80
	Freon 12	4.64	85	89651	0.30	ppb		99
4)	Chloromethane	4.80	50	16559	0.30			68
5)	Freon 114	4.90	85	74954	0.28			97
6)	Vinyl Chloride	5.03	62	20335	0.30			96
	Butane	5.23	4.3	24032	0.31	ppb		94
8)	1,3-butadiene	5.18	39		0.29			
	Bromomethane	5.45	94	26711	0.27			94
	Chloroethane	5.63	94 64 45	26711 10587m	0.33			
	Ethanol	5.73	40 - 10	8502	0.39			77
	Acrolein	6.11	56	7749	0.30			89
	Vinyl Bromide	5.99	106	27527 107968 8644	0.28			96
	Freon 11	6.42	101	107968	0.29			99
	Acetone	6.25	58	8644	0.30			52
	Pentane	6.79	4.2	9719	0.30			45
	Isopropyl alcohol	6.49	45	37741 12295	0.38			100
	1,1-dichloroethene	7.10	96	12295	0,30			95
	Freon 113	7,51	101	33311	0.30			98
	t-Butyl alcohol	7.14	59	26163	0.32	dqq	Ħ	87
	Methylene chloride	7.21 7.33	84	13237m 💋	0.32	bbp		
	Allyl chloride	7.33	41	9501 (0.27			86
23)	Carbon disulfide	7.57	76		0.31			79
24)	trans-1,2-dichloroethene	8.25	61	16783	0.30			92
25)	methyl tert-butyl ether	8.56	73	28349	0.27			94
26)	1,1-dichloroethane	8.48	63	22556	0.29			92
27)	Vinyl acetate	8.65	43	18505m //	0.25			
28)	Methyl Ethyl Ketone	8.94	72 61 57	5537	0.33			1
29)	cis-1,2-dichloroethene	9.46	61	15110	0.30			96
30)	Hexane	9.72	57	10444	0.23			85
31)	Ethyl acetate	9.72		25081	0.25			98
	Chloroform	9.81	83	37202	0.27			95
33)	Tetrahydrofuran	10.34	42	7963	0.28			61
34)	1,2-dichloroethane	10.73	62	24501	0.28			88
36)	1,1,1-trichloroethane	11.05	97	43540	0.31	ppb		98
	Cyclohexane	11.95	56	13093	0.31			89
38)	Carbon tetrachloride	11.80	117	54833	0.31			99
39)	Benzene	11.62	78	32717	0.30			95
40)	Methyl methacrylate	13.11	41	10561	0.25			75
41)	1,4-dioxane	12.92	58	6900	0.34	dqq	#	23
	2,2,4-trimethylpentane	12.92	57		0.26			78
43)	Heptane	13,23	43		0.25			76
44)	Trichloroethene	12.89		19504	0.29			94
45)	1.2-dichloropropane	12.60	63	11186	0.30	ppb		94

^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022709.D Vial: 7 Acq On : 27 Feb 2017 3:55 pm Operator: RJP Sample : AlUG_0,30 Misc : A227_lUG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Feb 27 19:09:15 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

	Compound	R.T.	QIon	Response (Conc Unit	Qvalue
46)	Bromodichloromethane	12.83	83	41743	0.31 ppb	93
	cis-1,3-dichloropropene	13.88	75	19493	0.30 ppb	93
48)		14.46	75	17923	0.28 ppb	91
49)	1,1,2-trichloroethane	14.66	97	19136	0.32 ppb	99
51)	Toluene	14.98	92	22427	0.26 ppb	87
52)	Methyl Isobutyl Ketone	13.92	43	20602	0.24 ppb	96
53)	-	15.44	129	45949	0.29 ppb	94
54)		15.26	43	19265	0.23 ppb	98
55)		15.71	107	29196	0,27 ppb	99
56)	Tetrachloroethylene	16.23	164	20923	0.28 ppb	91
57)	Chlorobenzene	16.95	112	37466	0.27 ppb	93
58)	Ethylbenzene	17.35	91	49406	0.25 ppb	99
59)	m&p-xylene	17.54	91	92629m /j	0.46 ppb	
60)		18.26	43	16910	0.20 ppb	89
61)	Styrene	17.92		26733	0.25 ppb	84
62)		17.63	173	40478	0.27 ppb	98
63)	o-xylene	18.04	91	43261	0.23 ppb	96
64)	Cumene	18.68	105	64995	0.25 ppb	98
66)	1,1,2,2-tetrachloroethane	18.04	83	39374	0.28 ppb	95
67)	Propylbenzene	19.25	120	17405	0.24 ppb	# 1
68)	2-Chlorotoluene	19.22	126	15954	0.27 ppb	# 3
69)		19.41	105	57355	0.24 ppb	99
70)		19.49	1.05	53840	0.23 ppb	93
71)	1,2,4-trimethylbenzene	19.97	105	46850	0.24 ppb	88
72)	1,3-dichlorobenzene	20.16	146	41823	0.28 ppb	# 60
73)	benzyl chloride	20.14	91.	33683	0.25 ppb	92
74)	1,4-dichlorobenzene	20.25	146	35292m ///	0.27 ppb	
75)		20.49	1.05	48489	0.23 ppb	90
76)	1,2-dichlorobenzene	20.66	146	40713	0.27 ppb	100
77)	1,2,4-trichlorobenzene	22.83	180	13945	0.24 ppb	87
78)		22.97	128	39073	0.23 ppb	97
79)	Hexachloro-1,3-butadiene	23.41	225	46959	0.30 ppb	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0022709.D A227_1UG.M Mon Mar 06 09:23:17 2017 MSD1

Page 101 of 158

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022710.D Vial: 8 Acq On : 27 Feb 2017 4:31 pm Operator: RJP Sample : A1UG_0.15 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 27 19:09:36 2017 Quant Results File: A227_1UG.RES

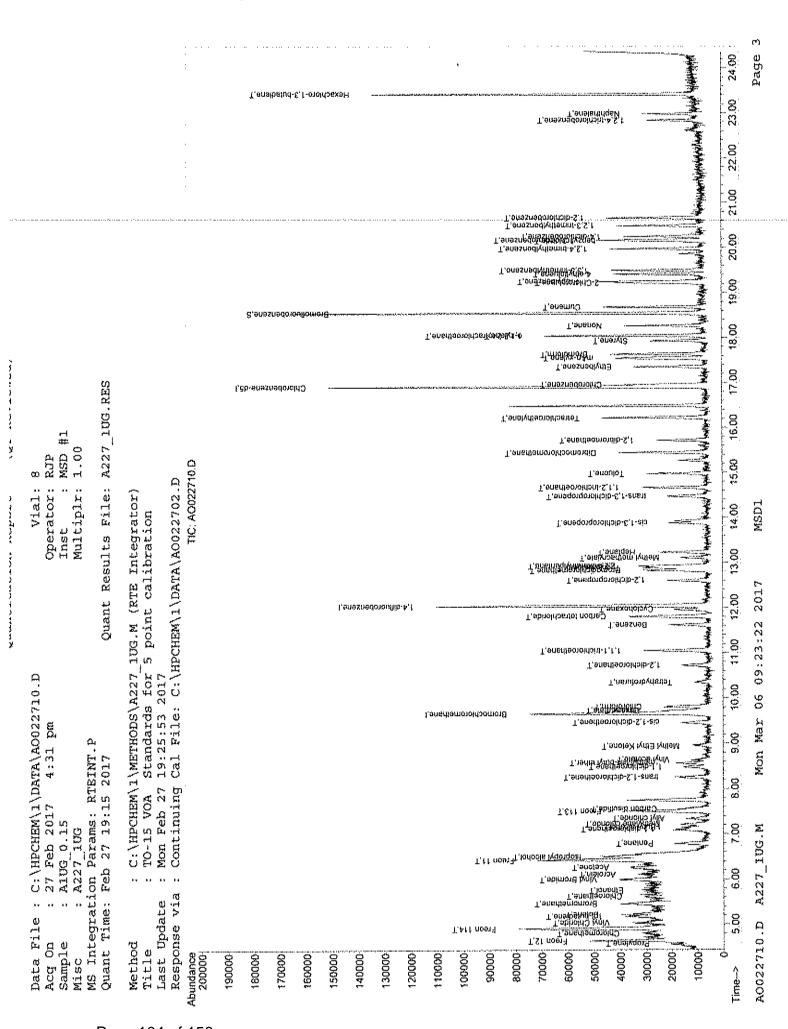
Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

Inter	rnal Standards	R.T.	QTon-	Response Co	one-U	nits	Dev	(Min)
1)	Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	9.66	128	29609	1.00	dqq		0.00
35)	I,4-difluorobenzene	12.04	114	114280	1.00	ppb		0.00
50)	Chlorobenzene-d5	16.91	1.17	101915	1.00	đąq		0.00
Syste	em Monitoring Compounds							
	Bromofluorobenzene	18.54	95		0.88	dqq		0.00
	iked Amount 1.000	Range 70	- 130		=	88	.00%	
Targe	et Compounds						QV	alue
	Propylene	4.56	41	4783	0.17	ppb		89
	Freon 12	4.63						99
	Chloromethane	4.80	50	43314 7779m () 37829 10571	0.15	ďďď		
	Freon 114	4.90	85	37829	0.15	daa		96
	Vinyl Chloride	5.03	62	10571	0.17	dag		84
	Butane	5.22	43	12241	0.17	dag		92
,		5.17	30	7233m	0 15	ppb		2- 44
	1,3-butadiene	5.45	24	7233m 13921 4796 3726m	0.15	£7£7}		92
	Bromomethane	5.62	2 4	4796	0.15	PPD	#	68
	Chloroethane		46	2/70 Km	0.10	P.D.D	π	
	Ethanol	5.74	4.D	3/20111	0.14	ppp		7,9
	Acrolein	6.10		3425 13042 52808	0.14			89
	Vinyl Bromide	5.99	106	13044	0.14			99
	Freon 11	6.42	7. O.T	52808	0.15	ppp	ш	
	Acetone	6.25	58	4275 4819 17359	0.16	ppp	#	63
	Pentane	6.78	42	4819	0.16	ppo	#	48
17)	Isopropyl alcohol	6.49	4.5	17359	0.19	bbb	#	100
18)	1,1-dichloroethene	7.10	96	5776				92
	Freon 113	7.50	101	16587	0.16	bbp	.,	95
20)	t-Butyl alcohol	7.15 7.22	59	10937 6851	0.14	qqq	#	88
21)	Methylene chloride	7.22	84	6851	0.18	ppb		93
22)	Allyl chloride	7.34	41	5007m /				
23)	Carbon disulfide	7.56	76	19583	0.17			87
24)	trans-1,2-dichloroethene	8.25	61	8641	0.16			90
25)	methyl tert-butyl ether	8.57	73	19583 8641 13267	0.14	dqq		94
26)	1,1-dichloroethane	8.49	63	3/32	0.13	ppb		88
27)	Vinvl acetate	8.63	43	9732 11754 2318	0.17	đąg		83
28)	Vinyl acetate Methyl Ethyl Ketone cis-1,2-dichloroethene	8.93	72	Z310	O + # *			80
29)	cis-1,2-dichloroethene	8.93 9.46	61	6901	0.14	dqq		86
30)	Hexane	9.72	57	4955				83
	Ethyl acetate	9.72	43	11816	0.13			91
	Chloroform	9.81		18312	0.14			93
	Tetrahydrofuran	10.35		3640m //	0.14	daa		
	1,2-dichloroethane	10.72		12370	0.15	daa		93
		11.05		21536	0.16			96
	1,1,1-trichloroethane			5394	0.14			76
37)	Cyclohexane	11.97		27365	0.17			98
	Carbon tetrachloride	11.81		16374	0.16			94
	Benzene	11.62						$\tilde{64}$
	Methyl methacrylate	13.10		4234	0.11			1.4
	1,4-dioxane	12.91		2799	0.15			
	2,2,4-trimethylpentane	12.93		17819	0.13			84
	Heptane	13.24		5482	0.13			73
	Trichloroethene	12.88		9089	0.15			86
45)	1,2-dichloropropane	12.60	63	5722	0.17	ppö		95

^{(#) =} qualifier out of range (m) = manual integration Mon Mar 06 09:23:21 2017 AO022710.D A227_IUG.M

Quantitation Report (QT Reviewed)

Vial: 8 Data File : C:\HPCHEM\1\DATA\A0022710.D Acq On : 27 Feb 2017 4:31 pm Operator: RJP Sample : AlUG_0.15 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Results File: A227_1UG.RES Quant Time: Feb 27 19:09:36 2017

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

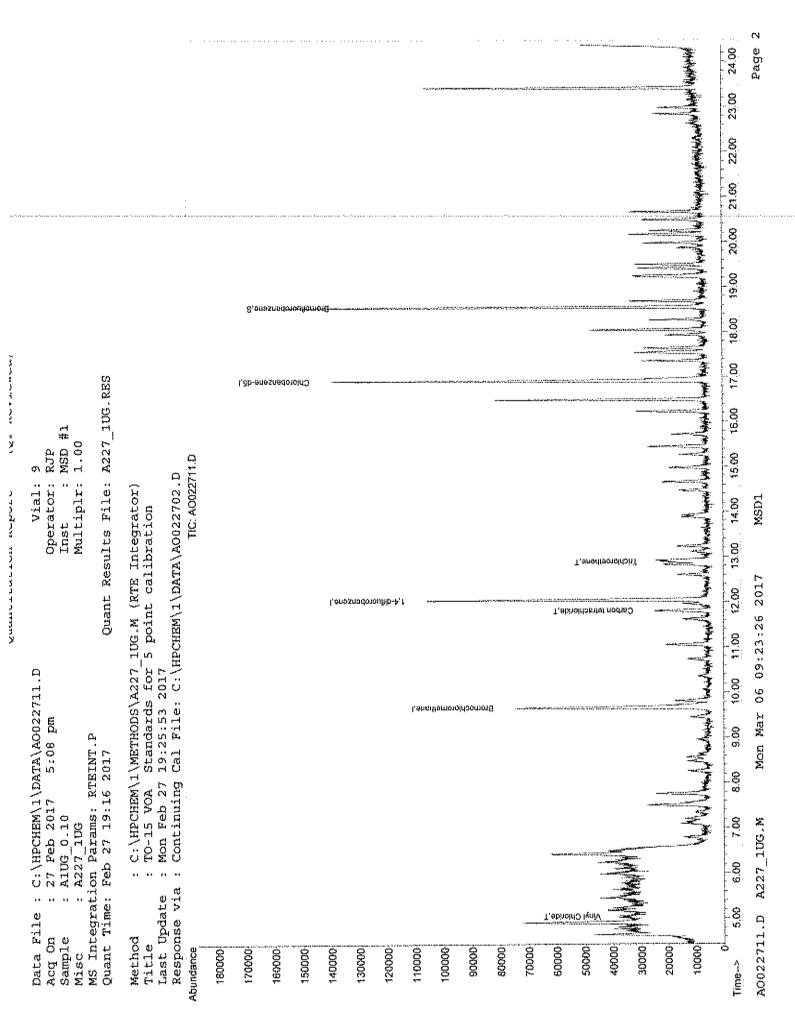
	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
46)	Bromodichloromethane	12.83	83	20004	0.16 ppb		98
47)	cis-1,3-dichloropropene	13.87		8700	0.15 ppb		90
48)	trans-1,3-dichloropropene	14.46		8707	$0.15 \stackrel{\circ}{ppb}$		98
49)	1,1,2-trichloroethane	14.67		8712	dqq 31.0		99
51)		14.98		11171	0.14 ppb		94
53)	Dibromochloromethane	15.44	129	22261	0.15 ppb		100
55)	1,2-dibromoethane	15.72	107	13395	0.13 ppb		94
56)		16.23	164	11207	0.16 ppb		95
57)		16.95	112	18365	0.14 ppb		96
58)	Ethylbenzene	17.35	91	24082	0.13 ppb		95
59)	m&p-xylene	17.55	91	41618 👊	0.22 ppb		98
60)		18.26	43	41618 8797m []	0.11 ppb		
61)	Styrene	17.93	104	13421	0.13 ppb		81
62)	Bromoform	17.63	173	18122	0.13 ppb		94
63)	o-xylene	18.05	91	19911	dqq 11.0		99
64)	Cumene	18.68	105	29600	0.12 ppb		95
66)	1,1,2,2-tetrachloroethane	18.04	83	18805	0.14 ppb		94
67)	Propylbenzene	19.25	120	8095	0.12 ppb	Ħ	1
68)		19.22	126	7562	0.14 ppb	#	1
69)	4-ethyltoluene	19.41	1.05	25058	dqq 11.0		98
70)	1,3,5-trimethylbenzene	19.49	105	22630	0.10 ppb		87
71)	· · · · · · · · · · · · · · · · · · ·	19.97	105	22333	0.12 ppb		81
72)	1,3-dichlorobenzene	20.17	146	17500	0.12 ppb		99
73)	benzyl chloride	20.14	91	15570	0.12 ppb		87
74)	1,4-dichlorobenzene	20.24	146	14264	0,11 ppb		97
75)	1,2,3-trimethylbenzene	20.48		22396	0.11 ppb	#	83
76)	1,2-dichlorobenzene	20.66		19520	0.14 ppb		96
77)	1,2,4-trichlorobenzene	22.83	180	7102	0.13 ppb		98
78)	Naphthalene	22.97		17274	0.11 ppb		91
79)	Hexachloro-1,3-butadiene	23.41	225	25872	0.17 ppb		98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0022710.D A227_1UG.M Mon Mar 06 09:23:21 2017 MSD1

Page 104 of 158

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0022711.D Vial: 9 Acq On : 27 Feb 2017 Operator: RJP 5:08 pm Sample : A1UG_0.10 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Feb 27 19:10:00 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Feb 27 13:34:10 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

Internal Standards	R.T.	QIon	Response Co	one U	nita Dev	(Min)
1) Bromochloromethane	9.66	128	29938	1.00	ppb	0.00
35) 1,4-difluorobenzene	12.04	114	109904	1.00	dqq	0.00
50) Chlorobenzene-d5	16.91	117	98325	1.00	ББР	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	54341 Recovery	0.82	ppb 82.00%	0.00
Target Compounds					Qv	alue
6) Vinyl Chloride	5.04	62	7526	0.12	dqq	84
38) Carbon tetrachloride	11.80	117	17794		ppb	97
44) Trichloroethene	12.89	130	6065	0.10	dqq	87

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summedA0022711.D A227_1UG.M Mon Mar 06 09:23:25 2017 MSD1

Page 106 of 158

Quantitation Report

(QT Reviewed)

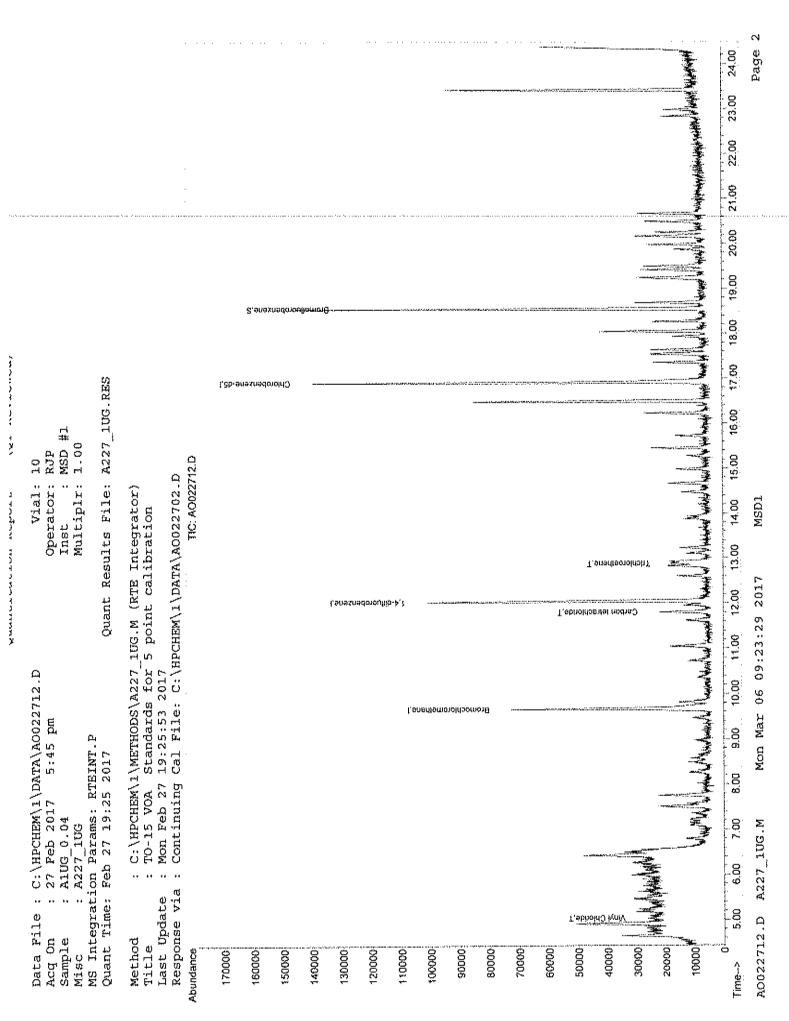
Data File : C:\HPCHEM\1\DATA\AO022712.D

Vial: 10 Operator: RJP

Inst : MSD #1

Acq On : 27 Feb 2017 5:45 pm Sample : AlUG_0.04 Misc : A227_1UG

Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Feb 27 19:10:27 2017

Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Feb 27 13:34:10 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0022702.D

Internal Standards		QIon	Response Co	mcU	nits De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.66 12.05 16.91		29129 103388 93432	1.00 1.00 1.00	dqq	0.00 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70		51957 Recovery		ppb 83.00	
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene	5.03 11.80 12.88	62 117 130	3893m (11296m / 3725m (0.06 0.08 0.07	dqq dqq	value

Page 108 of 158

~			_
(`Antak	Laboratories.		•
CELIER	Labulatulies.	ᆫᆫ	

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CALIBRATION VERIFICATION

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\A0030803.D Vial: 3 Acq On : 8 Mar 2017 10:33 am Operator: RJP Sample : A1UG 1.0 Inst : MSD #1 Misc : A227_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title

Last Update : Mon Mar 27 11:00:28 2017 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev A	rea%	Dev(min)
	I	Bromochloromethane	1.000	1.000	0.0	155#	0.00
	T'	Propylene	1.042	0.908		144	
	\mathbf{T}	Freon 12		10.061		165#	
	Т	Chloromethane	1.659	1.378		129	
		Freon 114	7.921	1.378 7.623	3.8	148	0,00
6	T	Vinyl Chloride		1.895	17.6	136	0.00
	T	Butane	2.394	2.055		138	
	T,	1,3-butadiene	1.535	1.410	8.1	152#	
	T	Bromomethane	2.831	2.442	13.7	132	0.00
10		Chloroethane	1.014			124	0.00
11		Ethanol				119	
12		Acrolein	0.765	0.556 0.583	23.8	123	0.00
		Vinyl Bromide	2.844	2.497	12.2	134	
14		Freon 11		11.621	-4.8	161#	
15		Acetone	0.882			128	
16		Pentane	1.010	0.734 0.835	17.3	137	
17		Isopropyl alcohol	3.221	2.645	17.9	136	
18		1,1-dichloroethene		1.389	-8.3	177#	
19		Freon 113				171#	
20		t-Butyl alcohol	2 527	3.854 2.816	-11.4	184#	
21		Methylene chloride	1.335	1.268	5.0	155#	
22		Allyl chloride	1.090	1 100	.1 7	164#	
23		Carbon disulfide	3.995	2 725		148	
24		trans-1,2-dichloroethene	1 0AC	1.947	-7 0	179#	
25			2 166	3.784	-19.5	188#	
		methyl text-butyl ether	3.100	3 · / 0 4	-3.9	160#	
26		1,1-dichloroethane	2.386 2.361	2.480 3.637	-3.9 -54.0#		
27		Vinyl acetate Methyl Ethyl Ketone	0.565	0.600	-34.0#	170#	
28		metnyi Etnyi ketone	0.565			176#	
29		cis-1,2-dichloroethene	1.586	1.793	-13.1	156#	
30		Hexane	1.306 2.971	1.346 2.955	-3.1		
31		Ethyl acetate			0.5	152#	
32		Chloroform	4.078			185#	
33		Tetrahydrofuran	0.865	0.815		154#	
34	Т	1,2-dichloroethane	2.716	3.358	-23.6	198#	0.00
35	I	1,4-difluorobenzene	1.000	1.000		172#	
36	${f T}$	1,1,1-trichloroethane	1.135	1.381	-21.7	211#	0.00
37	T	Cyclohexane	0.341	0.312	8.5	162#	0.00
38		Carbon tetrachloride	1.580	0.312 1.763	-11.6	213#	0.00
39	T	Benzene	0.891	0.884	0.8	172#	0.00
40		Methyl methacrylate		0.340	-9.0		0.00
41		1,4-dioxane	0.172	0.137		134	0.00
42		2,2,4-trimethylpentane	1.185	1.052		144	0.00
43		Heptane	0.360	0.322		148	0.00
44		Trichloroethene	0.568	0.593		192#	0.00
45		1,2-dichloropropane	0.306	0.250		137	0.00
46		Bromodichloromethane	1.088	1.203		193#	0.00
47		cis-1,3-dichloropropene	0.524	0.528		169#	0.00
48		trans-1,3-dichloropropene	0.513	0.594		195#	0.00
49		1,1,2-trichloroethane	0.488	0.457		157#	0.00
iki uw	•	_,_,_	01,00	# · - - · ·		"	

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\A0030803.D Vial: 3 Acq On : 8 Mar 2017 10:33 am Operator: RJP Sample : Alug_1.0 Misc : A227_lug Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 27 11:00:28 2017

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
51	T	Toluene	0.760	0.831	~9.3	188#	0.00
52	T	Methyl Isobutyl Ketone	0.683	0.530	22.4	141	0.00
53		Dibromochloromethane	1.439	1.560	-8.4	189#	
54		Methyl Butyl Ketone	0.629	0.478	24.0	144	0.00
55	\mathbf{T}	1,2-dibromoethane	0.930	0.924	0.6	170#	
56	${f T}$	Tetrachloroethylene	0.691	0.815	-17.9		
57	T	Chlorobenzene	1.238	1.346	-8.7	189#	0.00
58	${f T}$	Ethylbenzene	1.745	2.006	~15.0	198#	0.00
59	\mathbf{T}	m&p-xylene	1.665	1.964	-18.0		0.00
60		Nonane	0.695	0.624	10.2	146	0.00
61	\mathbf{T}	Styrene	0.969	1.148	-18.5	206#	0.00
62	${f T}$	Bromoform	1.307	1.428	-9.3	184#	0.00
63		o-xylene	1.612	1.859	~15.3	187#	0.00
64	${f T}$	Cumene	2.227	2.617	-17.5	200#	0.00
65	Ş	Bromofluorobenzene	0.627	0.662	-5.6	ユフ5弁	0.00
66	T	1,1,2,2-tetrachloroethane	1.256	1.031	17.9	142	0.00
67		Propylbenzene	0.625	0.728	-16.5	194井	0.00
68		2-Chlorotoluene	0.528	0.633	-19.9	211#	0.00
69		4-ethyltoluene	2.062	2.438	-18.2	204#	0.00
70		1,3,5-trimethylbenzene	1.940	2.323	-19.7	197#	0.00
71	_	1,2,4-trimethylbenzene	1.642	2.082	-26.8	220#	0.00
72	${f T}$	1,3-dichlorobenzene	1,293	1.536	-18.8	204#	0.00
73	\mathbf{T}	benzyl chloride	1.119	1.365	-22.0	208#	0.00
74	_	1,4-dichlorobenzene	1.136	1.366			
75	${f T}$	1,2,3-trimethylbenzene	1.713	2.104	-22.8	209#	0.00
76	T	1,2-dichlorobenzene	1.297	1.504	-16.0	203#	0.00
77	${f T}$	1,2,4-trichlorobenzene	0.468	0.562	~20.1	215#	0.00
78	T	Naphthalene	1.258	1.266	-0.6	194#	0.00
79	T	Hexachloro-1,3-butadiene	1.359	1.375	-1.2	1.90#	0.00

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030803.D Vial: 3 Acq On : 8 Mar 2017 10:33 am Operator: RJP Sample : AlUG_1.0 Misc : A227_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:13 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Inte	rnal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
	Bromochloromethane			51607				-0.02
361	1,4-difluorobenzene	7.04 EU CE	114	232876	1.00			0.00
	Chlorobenzene-d5	16.90			1.00			0.00
30,	CITIOTODEIIZEIIE-GS	.0.50	An also y	* 20 22 2	1.00	PPD		0.00
Syst	em Monitoring Compounds							
	Bromofluorobenzene	18.53	95	130288	1.06	qqq		0.00
sp	iked Amount 1.000	Range 70	- 130	Recovery	Y =	106	.00%	
Ti a more	et Compounds						Ove	alue
	Propylene	4.54	41	46864	0.87	anh	24	67
	Freon 12	4.62	85	にょのウラ 4	1 00			97
	Chloromethane	4.78	50	71090m /0	0.83	רוניון		
	Freon 114	4.89	85	393406	0.96			98
	Vinyl Chloride	5.02	62	97776	0.82			96
	Butane	5.21	43	3 ለፍለፍፍ	വ ഒട			86
	1,3-butadiene	5.16	39	72754m	0.92			
	Bromomethane	5.44	94	126042	0.86			94
	Chloroethane	5.61	64	41479	0.79			81
	Ethanol	5.72	45	28685	0.74		"	84
	Acrolein	6.08	56	30071	0.76			94
	Vinyl Bromide	5.98	106	128853				94
	Freon 11	6.40	101	599733	1.05			99
	Acetone	6.23	58	37904	0.83			32
	Pentane	6.78		43107	0.83			18
	Isopropyl alcohol	6.46			0.82			100
	1,1-dichloroethene	7,08	96	136507 71696 198900	1.08			97
	Freon 113	7.49	101	198900	1.10			98
	t-Butyl alcohol	7.11	59	145313	1.11		#	93
	Methylene chloride	7.20	84	65431	0.95		"	94
	Allyl chloride	7.33	41	57216	1.02			88
	Carbon disulfide	7.55	76	192233	0.93			78
	trans-1,2-dichloroethene		61	100476	1.08			93
	methyl tert-butyl ether		73	195286m /	1.20			
	1,1-dichloroethane	8.47	63	127980	1.04			93
	Vinyl acetate	8,62	43	187691	1.54			96
	Methyl Ethyl Ketone	8.92		30974	1.06			ı
	cis-1,2-dichloroethene				1.13			95
	Hexane	9.70	57	92536 69443	1.03			82
	Ethyl acetate	9.71	43	152501	0.99			99
32)	Chloroform	9.80	83	247201	1.17			99
	Tetrahydrofuran	10.32	42		0.94		#	51
	1,2-dichloroethane	10.71	62	173309m 🖊	1.24		-,	
	1,1,1-trichloroethane	11.03	97	321582	1.22	daa		98
37)	Cyclohexane	11.95	56	72657	0.91		#	72
38)	Carbon tetrachloride	11.79	117	410561	1.12	dog	.,	98
39)	Benzene	11.61	78	205947	0.99	daa		92
40)	Methyl methacrylate	13.10	41.	79152	1.09		#	88
41)	1,4-dioxane	12.90	58	31932	0.80		#	22
42)	2,2,4-trimethylpentane	12.91	57	244875	0.89		#	77
	Heptane	13.22	43	74984	0.89			76
	Trichloroethene	12.87	130	138089	1.04		"	95
	1,2-dichloropropane	12.59	63	58298	0.82			97
,	-,							

^{(#) =} qualifier out of range (m) = manual integration

A0030803.D A227 1UG.M Mon Mar 27 11:03:52 2017

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:13 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO~15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.81	83	280105	1.11 ppb	96
47)	• • • •	13.87	75	122992	1.01 ppb	91
48)	trans-1,3-dichloropropene	14.45	75	138346	1.16 ppb	97
49)	1,1,2-trichloroethane	14.66	97	106404	0.94 დდახ	98
51)	Toluene	14.97	92	163558	1.09 ppb	89
52)	Methyl Isobutyl Ketone	13.90	43	104327	0.78 დებ	94
53)	Dibromochloromethane	15.44	129	307235	1.08 ppb	93
54)	Methyl Butyl Ketone	15.26	43	94051	0.76 ppb	95
55)	1,2-dibromoethane	15.70	107	181895	0.99 ppb	97
56)	Tetrachloroethylene	16.22	164	160582	1.18 ppb	99
57)	Chlorobenzene	16.94	112	265103	dqq 00.1	94
58)	Ethylbenzene	17.34	91	395136	1.15 ppb	96
59)	m&p-xylene	17.53	91	773530	2.36 ppb	99
60)	Nonane	18.26	4.3	122957	dqq 0e.0	93
61)	Styrene	17,92	104	226068	1.18 ppb	90
62)	Bromoform	17.62	173	281276	dqq 00.1	98
63)	o-xylene	18.04	91	366065	1.15 ppb	97
64)	Cumene	18.67	105	515313	1.18 ppb	96
66)	1,1,2,2-tetrachloroethane	18.03	83	203066	0.82 ppb	96
67)	Propylbenzene	19.24	120	143415	1.17 ppb	# 1
68)	2-Chlorotoluene	19.20	126	124731	1.20 ppb	# 1
69)	4-ethyltoluene	19.40	105	480060	1.18 ppb	96
70)		19.48	1.05	457565	, 1.20 ppb	96
71)	1,2,4-trimethylbenzene	19.96	105	410061m/	1.27 ppb	
72)	1,3-dichlorobenzene	20.16	146	302405	1.19 ppb	# 38
73)	benzyl chloride	20.13	91	268754	1.22 ppb	91
74)	1,4-dichlorobenzene	20.24	146	268946	1.20 ppb	# 25
75)	1,2,3-trimethylbenzene	20.48	1.05	414336	1.23 ppb	92
76)	1,2-dichlorobenzene	20,65	146	296198	1.16 ppb	94
77)	1,2,4-trichlorobenzene	22.82	180	110615	1.20 ppb	97
78)	Naphthalene	22.97	128	249307	$1.01 \stackrel{\circ}{ppb}$	94
79)	Hexachloro-1,3-butadiene	23.40	225	270885	1.01 ppb	100

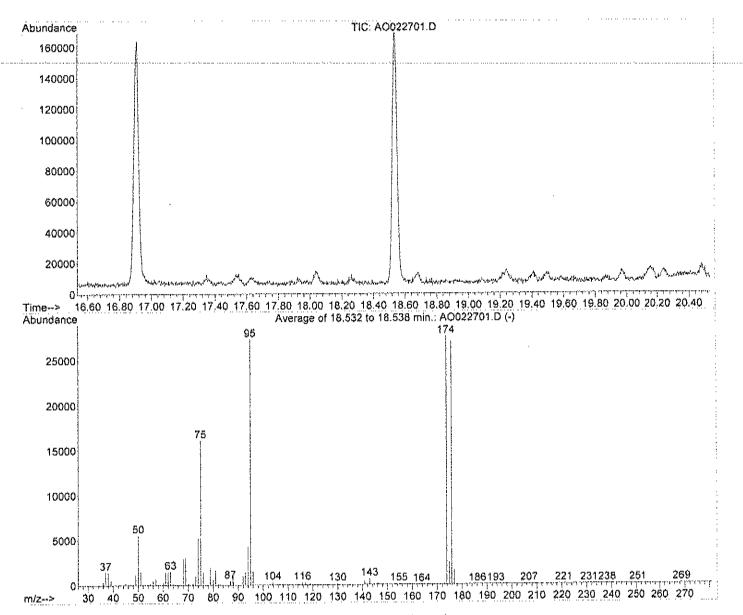
Page 114 of 158

^			
(`Antak	Laboratori	മല	1 (
CCHICK	Labulatuli	53. L	-

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW DATA

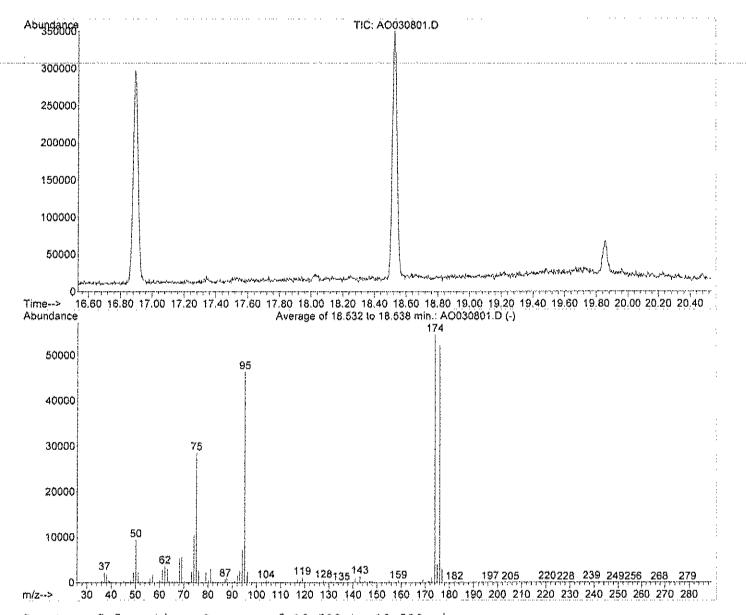

BFB

Data File : C:\HPCHEM\1\DATA\A0022701.D Vial: 1 : 27 Feb 2017 10:36 am Operator: RJP Acq On

Inst : MSD #1 Sample : BFB1UG Misc Multiplr: 1.00 : A120_1UG - 200cc

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration


Spectrum Information: Average of 18.532 to 18.538 min.

Target	Rel. to	Lower	Upper	Rel.	Raw	Result
Mass		Limit%	Limit%	Abn%	Abn	Pass/Fail
50 75 95 96 173 174 175 176	95 95 95 95 174 95 174 174	8 30 100 5 0.00 50 4 95	40 66 100 9 2 120 9	20.4 58.8 100.0 5.4 0.4 100.9 8.8 98.0 6.1	5563 16074 27336 1473 108 27589 2430 27042 1638	PASS PASS PASS PASS PASS PASS PASS PASS

BFB

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 18.532 to 18.538 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
Ĭ	50	95	8 Ì	40	20.4	9459	PASS
Ì	75	95	30	66	61.6	28567	PASS
i	95	95	100	100	100.0	46394	PASS
İ	96	95	5	9	5.2	2408	PASS
	173	174	0.00	2	2.0	1068	PASS
	274	95	50	120	117.6	54570	PASS
	175	174	4.	9	7.5	4117	PASS
İ	176	174	95	101	95.8	52253	PASS
	177	176	5	9	5.6	2913	PASS

A0030801.D A227 lUG.M Mon Mar 27 ll:03:39 2017 MSD1

Cantale	1 0 6 0		1.1	\sim
Centek	Labo	ratories.	. LL	U

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
RAW QC DATA

TestCode: 0.25CT-TCE-VC

or analysis exceeded

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 27-Mar-17

LaBella Associates, P.C. CLIENT:

C1703015 Work Order: 691 and 705 St Paul St

Project:

Quai **RPDLimit** SeqNo: 140534 RunNo: 12014 %RPD LowLimit HighLimit RPD Ref Vai Analysis Date: 3/8/2017 Prep Date: %REC Units: ppbV SPK Ref Val FestCode: 0.25CT-TCE. SPK value TestNo: TO-15 0.15 0.15 0.15 짇 Batch ID: R12014 Result < 0.15 SampType: MBLK Sample ID AMB1UG-030817 17777 1,1-Dichlorcethene Client ID: Analyte

0.15

trans-1,2-Dichloroethene cis-1,2-Dichloroethene

Chloroethane

Тіклюгоемене

Vinyi chloride

< 0.15 < 0.15 < 0.15 < 0.046

0.040

reported are not blank corrected detected below quantisation limit	E Estimated Value above quantitation	ins range []	Holding times for preparation or analysis
and a second distribution in 1974	INC. THE PERSON AS AS ASSESSED IN THE CASE OF THE CASE	110	ALL CHESING ACCEPTOR RECOVERY TRIBITS

Spike Recovery outside accepted recovery limits

Qualifiers:

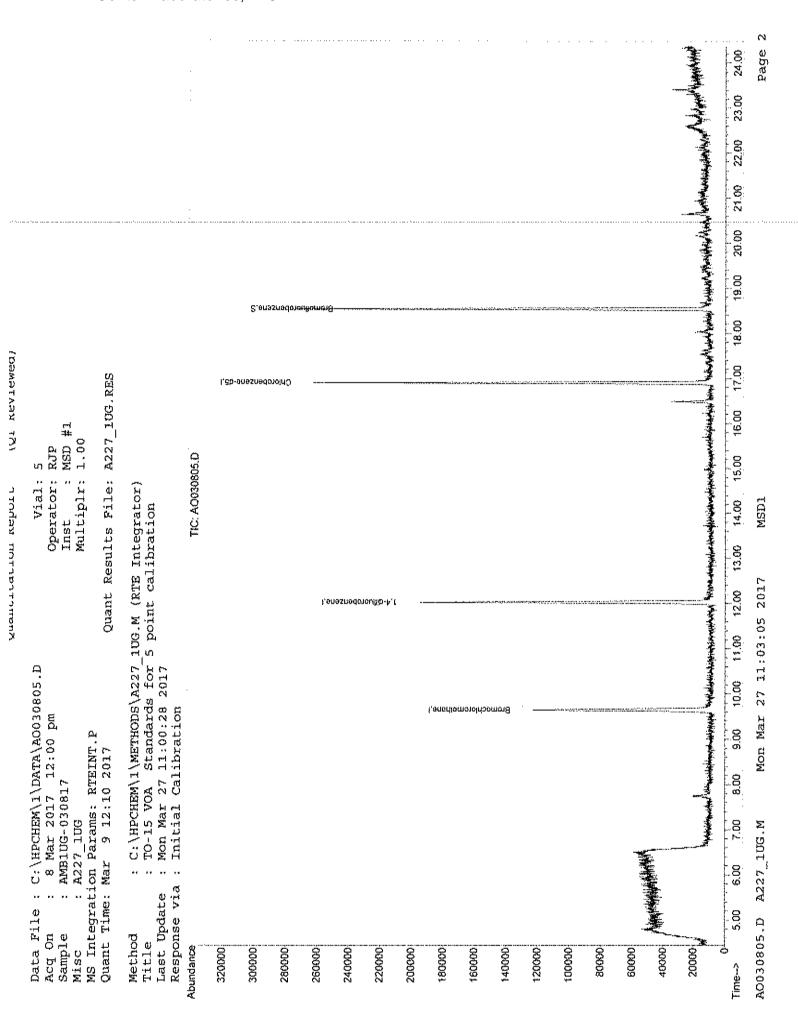
Page 119 of 158

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030805.D Vial: 5 Acq On : 8 Mar 2017 12:00 pm Operator: RJP Sample : AMB1UG-030817 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:15 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 06 15:15:36 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards		QIon-	Response Co	one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.64 12.03 16.90	128 114 117	51456 199472 169731	1.00 1.00 1.00	dqq	-0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.53 Range 70	95 - 130	90186 Recovery	0.85	ppb 85.00%	0.00
Targar Compounds					0.7	ra l'ue

Target Compounds

Ovaine

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0030805.D A227_1UG.M Mon Mar 27 11:03:04 2017 MSD1

Page 121 of 158

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. CLIENT:

C1703015 Work Order: 691 and 705 St Paul St

Project:

TestCode: lugM3_TO15

Sample ID C1703015-003A MS	SampType: MS	TestCo	de: 1ugM3_TO	TestCode: tugM3_TO15 Units: ppbV		Prep Date:	ai		RunNo: 12014	2014	
Client ID; SV-3	Batch ID: R12014	Fest	Vo. TO-15			Analysis Date:	ie: 3/8/2017	11	SegNo: 140546	40546	
Anayte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimil	HighLimil RPD Ref Val	%RPD) RPDLimit	Qual
1,1-Dickleroethene	1,090	0.15	*Çmn	0	109	70	130				
Chloroethane	0.8100	0.15	Aun	0.11	70.0	72	130				
cis-1,2-Dichloroethene	1,400	0.15	•	0.18	122	7.0	130				
trans-1,2-Dichloroethene	1.140	0.15	\$***	0	134	62	130				
Trichloroethene	9.890	0.15	up to	8.34	155	20	130				S
Vinyl chloride	0.7200	0.15	•	Ф	72.0	70	130				
Sample ID C1703015-003A MS	SampType: MSD	TestCo	de: 1ugM3_T0	TestCode: 1ugM3_T015 Units: ppbV		Prep Date	ia:		Runko: 12014	2014	
Client ID: SV-3	Batch ID: R12014	Test	TestNo: TO-15			Analysis Date:	le: 3/8/2017	13	SeqNo: 140547	40547	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD) RPDLimit	Qual
1,1-Dichloroethene	1.160	0.15	-	0	116	70	130	1.09	6.22	2 30	
Chioroethane	0.8600	0.15	•	0.11	75.0	0,	130	0.81	5.99	9 30	
cis-1,2-Dichloroethene	1.440	0.15	-	0.18	126	70	130	1.4	2.82	2 30	
trans-1,2-Dichloroethene	1.180	0.15	-	Ö	118	20	130	1.14	3.45	5 30	
Trichloroethene	9.550	0.15	**	8.34	121	70	130	9.89	3.50	90 30	_
Vinyi chloride	0.7500	0.15	**	0	75.0	70	130	0.72	4.08	8 30	

Estimated Value above quantitation range Not Detected at the Limit of Detection ლ 💆

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected

S

Qualifiers:

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits **#** &

Page I of I

Centek Laboratories, LLC Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030810.D
Acq On : 8 Mar 2017 3:32 pm
Sample : C1703015-003A MS
Misc : A227_1UG Vial: 25 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:20 2017 Quant Results File: A227 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 06 15:15:36 2017

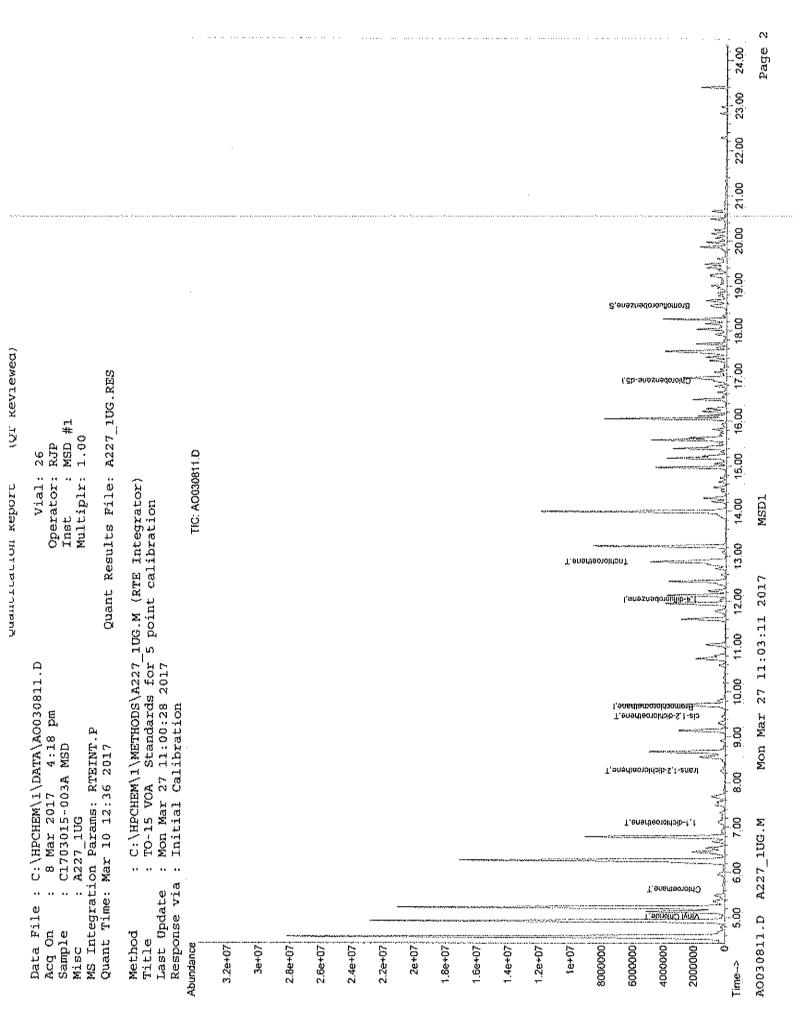
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.04 16.90	128 114 117	80202 356830 344072	1.00	dqq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	367606 Recovery	1.70		0.00 .00%#
Target Compounds 6) Vinyl Chloride 10) Chloroethane 18) 1,1-dichloroethene 24) trans-1,2-dichloroethene 29) cis-1,2-dichloroethene 44) Trichloroethene	5.02 5.62 7.08 8.25 9.45 12.88	62 64 96 61 61	133363 66208 111749 165630 177576 2005119	0.72 0.81 1.09 1.14 1.40 9.89	dqq dqq dqq	Qvalue 89 # 84 # 88 99 95

Page 124 of 158

Quantitation Report (QT Reviewed)


Data File : C:\HPCHEM\1\DATA\A0030811.D Vial: 26 Acq On : 8 Mar 2017 4:18 pm Operator: RJP Sample : C1703015-003A MSD Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:21 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 06 15:15:36 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards		QIon	Response	Conc-U	nits	Dev(Min)
1) Bromochloromethane	9.66	128	79391	1.00	ppb	0.00
35) 1,4-difluorobenzene	12.03	114	370639		dqq	
50) Chlorobenzene-d5	16.90	117	337498	1.00		
System Monitoring Compounds						
65) Bromofluorobenzene	18.54	95	366795	1.73	qqq	0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	y =	173	.00%#
Target Compounds						Qvalue
6) Vinyl Chloride	5.03	62	137142	0.75	ppb	89
10) Chloroethane	5.63	64	69599	0.86	dqq	93
18) 1,1-dichloroethene	7.09	96	117735	1.16	dqq	92
24) trans-1,2-dichloroethene	8.25	61	169371	1.18	ppb	94
29) cis-1,2-dichloroethene	9.45	61	181684		dqq	
44) Trichloroethene	12.87	130	2010156	9.55	ppb	96

Page 126 of 158

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 27-Mar-17

LaBella Associates, P.C. CLIENT:

C1703015 Work Order: 691 and 705 St Paul St

Project:

TestCode: 0.25CT-TCE-VC

Sample ID ALCS1UG-030817	SampType: LCS	TestCo	TestCode: 0.25CT-TCE-	E- Units: ppbV		Prep Date	e,		RunNo: 12014	014	
Client ID: ZZZZZ	Batch ID: R12014	Test	TestNo: TO-15			Analysis Date:	e. 3/8/2017	-	SeqNo: 140535	0535	
Anaiyie	Result	PQ	SPK value	SPK Ref Vai	%REC	%REC LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.060	0.15	-t-u-r	0	106	æ	130				
Chloroethane	0.9000	0.15	Αm	0	90.0	55	130				
cis-1,2-Dichloroethene	1,100	0.15	₩.	0	110	22	130				
trans-1,2-Dichloroethene	1,070	0.15	+1111	Û	107	25	130		. *		
Trichloroethene	\$.060	0.040	400	Ф	106	70	130				
Vinyi chloride	0.8700	0.040	Aura	0	87.0	70	130				
Sample ID ALCS1UGD-030817	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	E. Units: ppbV		Prep Date	.: Gi		RunNo: 12014	014	
Client ID: ZZZZZ	Batch ID: R12014	Test	TestNo: TO-15			Analysis Date: 3/9/2017	e: 3/9/201	٠.	SeqNo: 140536	0536	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	HighEimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.100	0.15	-	0	110	0,	130	1.06	3.70	30	
Chioroethane	1.000	0.15	-	0	100	70	130	0.9	10.5	30	
cis-1,2-Dichforoethene	1.130	0.15	-	0	113	70	130	1.1	2.69	30	
trans-1,2-Dichloroethene	1.100	0.15	-	0	110	57	130	1.07	2.76	30	
Trichloroethene	1.100	0.040	-	0	110	02	130	1.05	3.70	30	
Vinyl chloride	0.9100	0.040	•	0	910	70	130	0.87	4.49	30	

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits **≖** ~ Estimated Value above quantitation range Not Detected at the Limit of Detection ы <u>Б</u> Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected

Qualifiers:

Page 127 of 158

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030804.D Vial: 4 Acq On : 8 Mar 2017 11:24 am Operator: RJP Sample : ALCS1UG-030817 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:14 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Mar 06 15:15:36 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

	• –							
Inte	rnal Standards		QIon	Response Co	one U	nits	Dev	(Min)
	Bromochloromethane			54344	1.00	daa		-0.01
35)	1,4-difluorobenzene	9.65 12.03	114	232438	1.00			0.00
50)	Chlorobenzene-d5	16.90	117	196865	1.00	daa		0.00
20,	directed de	10.50	11,	130000	AM. # 50 TV	FF-		
	em Monitoring Compounds							
	Bromofluorobenzene	18.53		129241	1.05			0.00
Sp	iked Amount 1.000	Range 70	- 130	Recovery	Σ νυ	105	.00%	
Targ	et Compounds						Qv	alue
2)	Propylene	4.55	41	45237	0.80			60
3)	Freon 12	4.62	85	538483	1.07	dqq		98
4)	Chloromethane	4.79	50	79156m 🌈	0.88	ppb		
5)	Freon 114	4.89	85	420501	0.98	dqq		98
6)	Vinyl Chloride	5.02	62	108615	0.87			91
7)	Butane	5.22	43	121082	0.93	qqq		91
8)	1,3-butadiene	5.16	39	80846m 🕖	0.97	dqq		
9)	Bromomethane	5.44	94	150085	0.98	ppb		91
10)	Chloroethane	5.62	64	49422	0.90	ďąg	#	85
11)	Ethanol	5.72	45	33607	0.83	ppb		86
12)	Acrolein	6.09	56	37853	0.91	dqq		85
13)	Vinyl Bromide	5.97	106	156665	1.01	ppb		97
	Freon 11	6.41	101	622060	1.03	bbp		99
	Acetone	6.22	58	44784	0.93			56
_	Pentane	6.78	42	44290	0.81			19
	Isopropyl alcohol	6,47		151920	0.87			100
	1,1-dichloroethene	7.09	96	74055	1.06			97
	Freon 113	7.49		203450	1.07			98
	t-Butyl alcohol	7.11	59	149440	1.09			95
	Methylene chloride	7.20		66709	0.92			89
	Allyl chloride	7.34	41	57833	0.98			88
	Carbon disulfide	7.55		194545	0.90			78
	trans-1,2-dichloroethene			104717	1.07			95
	methyl tert-butyl ether	8.54		221033	1.28			98
		8.46	63	129810	1.00			94
	Vinyl acetate	8,62	4.3	135796m / 1	1.06			
	Methyl Ethyl Ketone	8.91		29584	0.96			83
	cis-1,2-dichloroethene	9.45	61	94397	1.10			92
30)	Hexane	9.70		72624	1.02			78
31)	Ethyl acetate	9.70		156257	0.97			97
_	Chloroform	9.81	83	247209	1.12			98
33)	Tetrahydrofuran	10.32	42	44151	0.94		#	57
34)	1,2-dichloroethane	10.71	62	189436	1.28			98
	1,1,1-trichloroethane	11.03	97	329169	1.25			98
	Cyclohexane	11.95	5€	79057	1.00			82
	Carbon tetrachloride	11.79	117	415954	1.13			99
39)	Benzene	11.61	78	209409	1.01			93
*		13.10	41	77526	1.07			83
	1,4-dioxane	12.89	58	30085	0.75			16
	2,2,4-trimethylpentane	12.91	57	250343	0.91			77
	Heptane	13,22	43	77615	0.93			81
	Trichloroethene	12.87		140034	1.06			94
	1,2-dichloropropane	12.59	63	58386	0.82			97

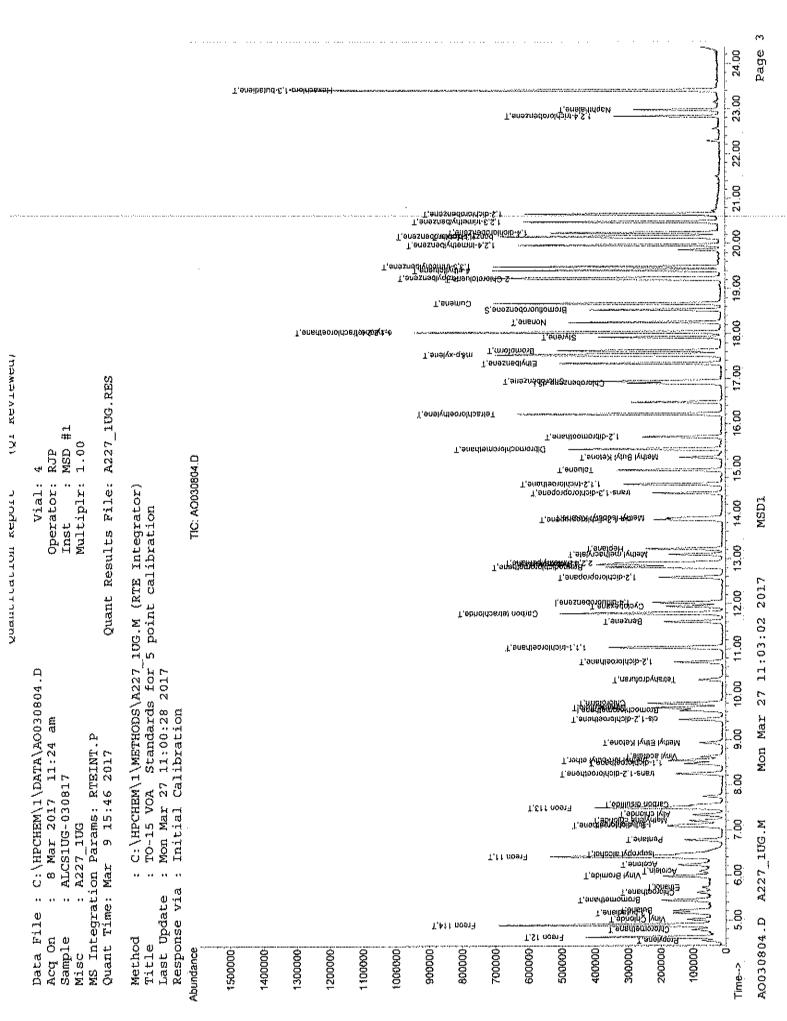
^{(#) =} qualifier out of range (m) = manual integration

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\A0030804.D Vial: 4 Operator: RJP Acq On : 8 Mar 2017 11:24 am Sample : ALCS1UG-030817 Misc : A227_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:14 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.82	83	282463	1.12 ppb	97
47)		13.87	75	128833	1.06 ppb	93
48)	trans-1,3-dichloropropene	14.46	75	142832	1.20 ppb	97
49)	1,1,2-trichloroethane	14.66	97	106228	0.94 ppb	98
51)	Toluene	14.97	92	164977	dgg 01.1	87
52)	Methyl Isobutyl Ketone	13.90	43	106895	dqq 08.0	93
53)	Dibromochloromethane	15.44	129			93
54)	Methyl Butyl Ketone	15.25	43	307301 88414m /	0.71 ppb	
55)	1,2-dibromoethane	15.71	107	181960	0.99 ppb	95
56)	Tetrachloroethylene	16.22	164	160622	1.18 ppb	98
57)	Chlorobenzene	16.94	112	266095	1.09 ppb	96
58)	Ethylbenzene	17.35	91	403144	1.17 ppb	97
59)	m&p-xylene	17.53	91	772113	2.36 ppb	100
60)	Nonane	18.25	43	123526	0.90 ppb	93
61)	Styrene	17.92	104	226633	1.19 ppb	92
62)	Bromoform	17.62	173	287231	1.12 ppb	99
63)	o-xylene	18.04	91	367128	1.16 ppb	95
64)	Cumerie	18.67	1.05	509222	1.16 ppb	97
66)	1,1,2,2-tetrachloroethane	18.04	83	201677	0.82 ppb	90
67)	Propylbenzene	19.24	120	144853	1.18 ppb	# 1
68)	2-Chlorotoluene	19.21	126	120955	1.16 ppb	# 1
69)	4-ethyltoluene	19.40	105	482912	1.19 ppb	98
70)	1,3,5-trimethylbenzene	19.49	105	451264	1.18 ppb	100
71)	1,2,4-trimethylbenzene	19,96	105	407582	1.26 ppb	95
72)	1,3-dichlorobenzene	20.16	145	297360	1.17 ppb	97
73)	benzyl chloride	20.14	91	263130	1.19 ppb	87
74)	1,4-dichlorobenzene	20.24	146	263735	1.18 ppb	94
75)	1,2,3-trimethylbenzene	20.48	105	404680	1.20 ppb	95
76)	1,2-dichlorobenzene	20.66	146	284291	1.11 ppb	96
77)	1,2,4-trichlorobenzene	22.83	180	112850	1.22 ppb	95
78)	Naphthalene	22.97	128	249180	1.01 ppb	95
79)	Hexachloro-1,3-butadiene	23.41	225	273829	1.02 ppb	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0030804.D A227_1UG.M Mon Mar 27 11:03:01 2017 MSD1

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:38 2017 Quant Results File: A227_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

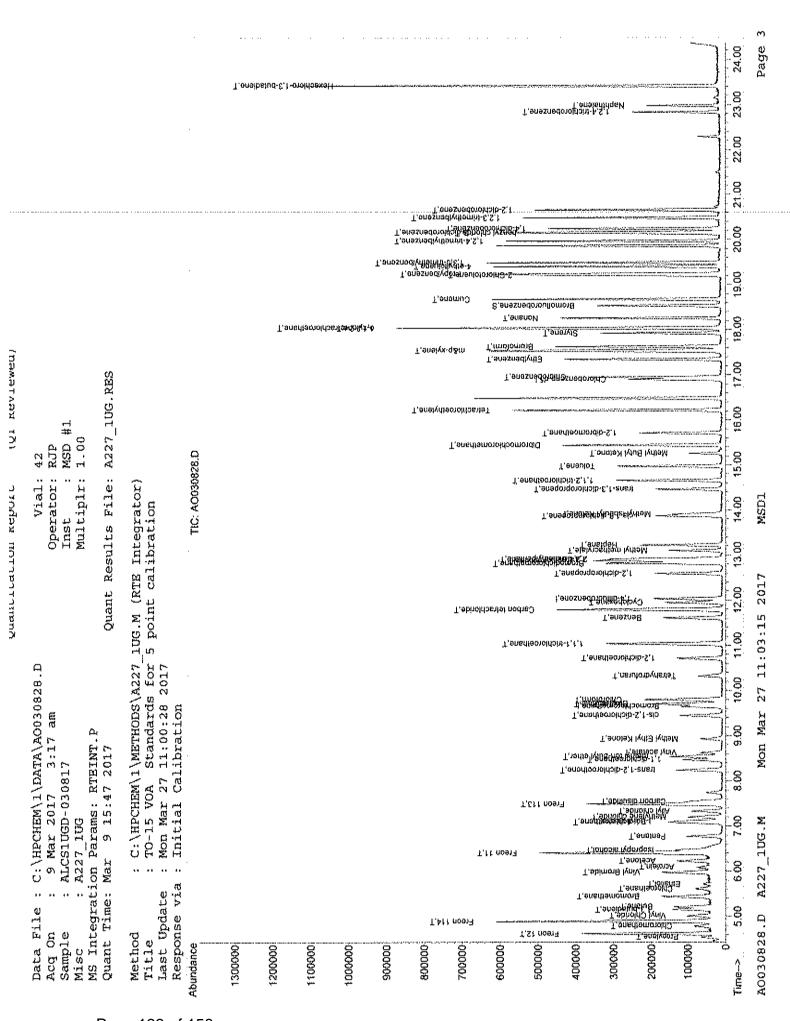
- -							
Internal Standards	R.T.	QIon	Response Co	one Ui	nits	Dev	(Min)
4) 7			45306				
1) Bromochioromethane	9.65	138	45106	1.00			-0.01
35) 1,4 ~ dilluorobenzene	12.03	114	199550	1.00	agg		0.00
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	16.90	117	175594	1.00	aqq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	18.53		114997	1.04	ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	=	1.04	. ০০%	
Target Compounds						Ov	alue
2) Propylene	4.55	41	39639	0.84	chac		70
3) Freon 12	4.62			1.18			98
4) Chloromethane	4,79		67019m /	0.90			
5) Freon 114	4.89		377457	1.06			98
6) Vinyl Chloride	5.02	62	377457 94793	0.91			94
7) Butane	5.22	43		0.98			90
8) 1,3-butadiene	5.16	39	74542m #	1.08			30
		04	74542m A				88
9) Bromomethane	5.44	94 64		1.05			
10) Chloroethane	5.61		45895	1.00			91
11) Ethanol	5.71	45	28285	0.84			81
12) Acrolein	6.09	56	32467 131346	0.94			85
13) Vinyl Bromide	5.97	106	131346	1.02	agg		92
14) Freon 11	6.40		575654	1.15			98
15) Acetone	6.23	58	37110	0.93			38
16) Pentane	6.77	42	38902	0.85			22
17) Isopropyl alcohol	6.46		130448	0.90			100
18) 1,1-dichloroethene	7.08		63717	1.10			97
19) Freon 113	7.49			1.13			98
20) t-Butyl alcohol	7.11	59	114628	1.01	dqq	#	93
21) Methylene chloride	7,21	84	58332	0.97	$_{\rm ddd}$		92
22) Allyl chloride	7.33	41	50490	1.03	ppb		88
23) Carbon disulfide	7.55	76		1.01	dqq		82
24) trans-1,2-dichloroethene	8.25	63.	89836	1.10	ppb		94
25) methyl tert-butyl ether	8.54	73	181878	1.27	dqq		97
26) 1,1-dichloroethane	8.47	63	115379	1.07			95
27) Vinyl acetate	8.63	43	110010m P	1.03			
28) Methyl Ethyl Ketone	8.93	72	25499	1.00			1
29) cis-1,2-dichloroethene	9.45	61	80954	1.13	dqq		90
30) Hexane	9.70	57	64532	1.10			81.
31) Ethyl acetate	9.71	43	64532 136266	1.02	dag		97
32) Chloroform	9,80	83		1.21			96
33) Tetrahydrofuran	10.32	42	38670	0.99	daa	#	62
34) 1,2-dichloroethane	10.71	62	167113	1.36	daa		95
36) 1,1,1-trichloroethane	11.04	97	292539	1.29			96
37) Cyclohexane	11.95	56	68437	1.01		#	79
38) Carbon tetrachloride	11.79	117	374325	1.19			99
39) Benzene	11.61	78	185808	1.05			91
40) Methyl methacrylate	13.10	41	69019m	1.11			
41) 1,4-dioxane	12.90	58	27466	0.80		#	24
42) 2,2,4-trimethylpentane	12.90	57	222268	0.94		#	75
43) Heptane		43	70110	0.98		#	75
44) Trichloroethene	13.22		124500			17	94
·	12.88	130		1.10			97
45) 1,2-dichloropropane	12.59 	63	54520	0.89	 ppp		,
	, ,						

^{(#) =} qualifier out of range (m) = manual integration A0030828.D A227_1UG.M Mon Mar 27 11:03:13 2017

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Mar 09 11:10:38 2017 Quant Results File: A227_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A227_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Mar 06 15:15:36 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	12.81	83	252724	1.16 ppb	97
47)	cis-1,3-dichloropropene	13.87	75	111902	1.07 ppb	95
48)	trans-1,3-dichloropropene	14.46	75	122008	1.19 ppb	98
49)	1,1,2-trichloroethane	14.66	97	97565	1.00 ppb	98
51)	Toluene	14.97	92	146157	1.09 ppb	88
52)	Methyl Isobutyl Ketone	13.90	43	80273	0.67 ppb	96
53)		15.44	129	275186	1.09 ppb	92
54)	Methyl Butyl Ketone	15.25	43	55926	0.51 ppb	98
55)	1,2-dibromoethane	15.71	107	161381	0.99 ppb	95
56)	Tetrachloroethylene	16.22	1.64	144159	1.19 ppb	98
57)	Chlorobenzene	16.95	112	236772	1.09 ppb	96
58)	Ethylbenzene	17.34	91.	354727	1.16 ppb	95
59)	m&p-xylene	17.54	91	688068	2.35 ppb	98
60)	Nonane	18.26	43	116714	0.96 დებ	96
61)	Styrene	17.92	104	197514	1.16 ppb	90
62)	Bromoform	17.62	173	250414	1.09 ppb	100
63)	o-xylene	18.04	91	331452	1.17 ppb	96
64)	Cumene	18,68	105	450851	1.15 ppb	97
66)	1,1,2,2-tetrachloroethane	18.03	83	187265	0.85 ppb	94
67)	Propylbenzene	19.24	120	126078	1.15 ppb	# 1
68)	2-Chlorotoluene	19.21	126	106543	1.15 ppb	# 1
69)		19.40	105	422495	1.17 ppb	99
70)	1,3,5-trimethylbenzene	19.49	105	404941	1.19 ppb	99
71)	1,2,4-trimethylbenzene	19.96	105	382574	1.33 ppb	93
72)	1,3-dichlorobenzene	20.16	146	263375	1.16 ppb	99
73)	benzyl chloride	20.13	91	224469	1.14 ppb	87
74)	1,4-dichlorobenzene	20.24	146	229005	1.15 ppb	96
75}	1,2,3-trimethylbenzene	20.48	105	349230	1.16 ppb	90
76)	•	20.65	146	242933	1.07 ppb	95
77)	1,2,4-trichlorobenzene	22.82	180	84549	1.03 ppb	94
78)	Naphthalene	22.97	158	191434	0.87 ppb	95
79)	Hexachloro-1,3-butadiene	23.40	225	233885	dqq 86.0	98

Page 133 of 158

Centek Laboratories, LLC

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

	[Directory:	C:\HPCHEM	\1\DATA	Injection Log	Instrumer Internal Star Standard	idard Stock#A	1901
ne	Vial	FileName	Multiplier	SampleName	N	LOS Sted lisc Info nced R	Stock # A k # A kar: EPA YO-1	역 0 3 Binjected(음식의
		Ao030601.d Ao030602.d Ao030603.d Ao030605.d Ao030605.d Ao030607.d Ao030608.d Ao030609.d Ao030609.d	1. 1. 1. 1. 1. 1.	BFB1UG A1UG A1UG ALCS1UG-030617 AMB1UG-030617 WAC030617A WAC030617B WAC030617D WAC030617D	A A A A A	.227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG		6 Mar 2017 08:36 6 Mar 2017 09:38 6 Mar 2017 10:17 6 Mar 2017 10:58 6 Mar 2017 11:33 6 Mar 2017 13:43 6 Mar 2017 14:20 6 Mar 2017 14:58 6 Mar 2017 15:36 6 Mar 2017 16:13
1 2 3 4 5 5 7 3 9 0	26 27 28 29 1 2 3 4 5	Ao030611.d Ao030612.d Ao030613.d Ao030614.d Ao030615.d Ao030616.d Ao030617.d Ao030618.d Ao030619.d Ao030620.d	1. 1. 1. 1. 1. 1.	WAC030617F N WAC030617G WAC030617H WAC030617I C1703007-001A C1703006-001A C1703006-002A C1703006-003A C1703006-004A C1703006-005A	A A A A A A	.227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG		6 Mar 2017 16:51 6 Mar 2017 17:28 6 Mar 2017 18:06 6 Mar 2017 18:43 6 Mar 2017 19:23 6 Mar 2017 20:03 6 Mar 2017 20:43 6 Mar 2017 21:23 6 Mar 2017 22:03 6 Mar 2017 22:43
_ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	7 8 9 10 10 11 12 13 14 15	Ao030621.d Ao030622.d Ao030623.d Ao030624.d Ao030625.d Ao030626.d Ao030627.d Ao030628.d Ao030629.d Ao030630.d	1. 1. 1. 1. 1. 1. 1.	C1703005-001A C1703005-002A ALKCS1UGD-030617 ALKCS1UGD C1703007-001A 10X C1703006-001A 10X C1703006-002A 10X C1703006-003A 10X C1703006-004A 10X C1703006-005A 10X	A A A A A A	.227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG		6 Mar 2017 23:24 7 Mar 2017 00:06 7 Mar 2017 00:45 7 Mar 2017 01:25 7 Mar 2017 02:01 7 Mar 2017 02:38 7 Mar 2017 03:15 7 Mar 2017 03:52 7 Mar 2017 04:29 7 Mar 2017 05:06
	16 17 18 19 20 30 31	Ao030631.d Ao030632.d Ao030633.d Ao030635.d Ao030636.d Ao030637.d Ao030638.d Ao030801.d Ao030802.d	1. 1. 1. 1. 1. 1. 1.	C1703005-001A 10X C1703005 C1703005-002A 10X C1703006-003A 20X C1703006-004A 20X C1703006-004A 270X C1703006-005A 20X No MS or GC data pres BFB1UG A1UG	A A A A A sent	.227_1UG .227_1UG -00 .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG .227_1UG	01A 40X	7 Mar 2017 05:43 7 Mar 2017 06:19 7 Mar 2017 06:56 7 Mar 2017 07:33 7 Mar 2017 08:10 7 Mar 2017 09:15 7 Mar 2017 09:52 8 Mar 2017 09:00 8 Mar 2017 09:54
	22 23 24 25	Ao030803.d Ao030804.d Ao030805.d Ao030806.d Ao030807.d Ao030809.d Ao030810.d Ao030811.d Ao030812.d	1. 1, 1. 1. 1. 1. 1.	A1UG_1.0 ALCS1UG-030817 AMB1UG-030817 C1703015-006A C1703015-001A C1703015-002A C1703015-003A C1703015-003A MS C1703015-003A MSD C1703015-004A	A A A A A A	227_1UG 227_1UG 227_1UG 227_1UG 227_1UG 227_1UG 227_1UG 227_1UG 227_1UG 227_1UG 227_1UG		8 Mar 2017 10:33 8 Mar 2017 11:24 8 Mar 2017 12:00 8 Mar 2017 12:48 8 Mar 2017 13:28 8 Mar 2017 14:09 8 Mar 2017 14:48 8 Mar 2017 15:32 8 Mar 2017 16:18 8 Mar 2017 16:59
	29 30 31	Ao030813.d Ao030814.d Ao030815.d Ao030816.d Ao030817.d	1. 1. 1. 1.	C1703015-005A C1703014-001A C1703014-002A C1703014-003A C1703014-001A RE	A A A	227_1UG 227_1UG 227_1UG 227_1UG 227_1UG		8 Mar 2017 17:39 8 Mar 2017 18:20 8 Mar 2017 19:00 8 Mar 2017 19:48 8 Mar 2017 20:31

	r	Directory:	C:\HPCHEM	\1\DATA	Injection Log	Incleurnor Internal Star Stundard	wlard Stock # Asj	90 <u>1</u> 101
ine	Vial	FileName	Multiplier	SampleName		Misc Info 7	k# /3.79 lof: EPA 10-157	03 Jajecteda
3 7 B 9 3 1 2 3 4	33 34 35 36 37 38 39	Ao030818.d Ao030819.d Ao030820.d Ao030821.d Ao030822.d Ao030823.d Ao030825.d Ao030826.d	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	C1703015 C1703015 C1703015 C1703015-003A 10X C1703013 C1703015-004A 10X C1703013 C1703015-005A 10X		A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG	-001A 20X -002A 10X -002A 20X -003A 10X -004A 10X	8 Mar 2017 21:07 8 Mar 2017 21:44 8 Mar 2017 22:20 8 Mar 2017 22:57 8 Mar 2017 23:34 9 Mar 2017 00:10 9 Mar 2017 00:47 9 Mar 2017 01:24 9 Mar 2017 02:01
5 7 3 1 2 3 4	41 42 43 44 45 46 47 1	A0030827.d A0030828.d A0030830.d A0030831.d A0030832.d A0030833.d A0030834.d A0030901.d A0030902.d	1. 1. 1. 1. 1. 1.	C1703013 ALCS1UGD-030817 C1703014-001A 10X C1703014-002A 10X C1703014-003A 90X C1703014-003A 90X No MS or GC data pres BFB1UG A1UG_1.0	sent	A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG	-005A 10X	9 Mar 2017 02:37 9 Mar 2017 03:17 9 Mar 2017 03:54 9 Mar 2017 04:30 9 Mar 2017 05:07 9 Mar 2017 08:55 9 Mar 2017 09:31 9 Mar 2017 13:43 9 Mar 2017 14:37
5 57390+2345	23 4123451234	A0030903.d A0030904.d A0030905.d A0030906.d A0030907.d A0030909.d A0030910.d A0030911.d A0030912.d A0030913.d	1. 1. 1. 1. 1. 1. 1.	ALCS1UG-030917 AMB1UG-030917 WAC030917A WAC030917B WAC030917C WAC030917D WAC030917E C1703026-004A C1703026-008A C1703026-001A C1703026-002A		A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG		9 Mar 2017 15:35 9 Mar 2017 16:11 9 Mar 2017 16:48 9 Mar 2017 17:25 9 Mar 2017 18:03 9 Mar 2017 18:40 9 Mar 2017 19:17 9 Mar 2017 19:58 9 Mar 2017 20:40 9 Mar 2017 21:20 9 Mar 2017 22:01
3739012345	9 10 11 12 13	Ao030914.d Ao030915.d Ao030916.d Ao030917.d Ao030918.d Ao030920.d Ao030921.d Ao030922.d Ao030923.d Ao030924.d	1. 1. 1. 1.	C1703026-003A C1703026-005A C1703026-006A C1703026-007A C1703026-004A 10x C1703026-001A 10x C1703026-002A 10x C1703026-003A 10x ALCS1UGD-030917 C1703028-001A		A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG		9 Mar 2017 22:43 9 Mar 2017 23:25 10 Mar 2017 00:07 10 Mar 2017 00:48 10 Mar 2017 01:25 10 Mar 2017 02:02 10 Mar 2017 02:38 10 Mar 2017 03:15 10 Mar 2017 04:33 10 Mar 2017 04:33
))))))))))))))))))	16 17 18 19 20 21 22 23	A0030924.d A0030925.d A0030927.d A0030928.d A0030929.d A0030930.d A0030931.d A0030932.d A0030933.d	1, 1, 1, 1, 1, 1, 1,	C1703028-001A C1703028-002A C1703028-003A C1703026-005A 10x C1703026-006A 10x C1703026-007A 10x C1703028-001A 9x C1703028-002A 20x C1703028-003A 10x		A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG A227_1UG		10 Mar 2017 08:43 10 Mar 2017 09:23 10 Mar 2017 10:03 10 Mar 2017 10:41 10 Mar 2017 11:18 10 Mar 2017 11:55 10 Mar 2017 12:34 10 Mar 2017 13:11 10 Mar 2017 13:48
	26 1	Ao030934.d Ao030935.d Ao030936.d Ao031201.d Ao031202.d	1. 1. 1. 1.	C1703028-004A 20x C1703028-001A 90x No MS or GC data pres BFB1UG A1UG	sent	A227_1UG A227_1UG A311_1UG A312_1UG		10 Mar 2017 14:24 10 Mar 2017 15:01 12 Mar 2017 12:01 12 Mar 2017 12:52

				_
Cantak	lahara	torioc		•
Centek	Labula	เบเเธอ.	ᆫ	_\

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS LOG

ŭ [entek I	Centek Laboratories, LLC	ries, LL(ر ع			GC/MS C	alibration Sta	GC/MS Calibration Standards Logbook	ook		Cente
	Std#	Date Prep	Date Exp		Description	Stock #		Stock Conc Initial Vol (psig)	Finlal Vol (psia)	Final Conc (ppb)	Prep by Ch	kŦ
₹	A-A1788	12/22/11	12/29/16	7015	STLX	AIOEE	40005	3.0	30	0 <i>5</i>	77	abo
<u> </u>	A-1789	2-7-1/4			SULF	A0270		1,5	30	50		rato
4	A-1790			→	Has	A0269	Madal	1,5	30	500		ries
4	[<u>P</u> [Tois	NG IS	A1782	90°05	6,0	15	T		, LL
Ą	A- 1792			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	STD	A1.783	,	,,				.C
4	A-1793	>	>	\rightarrow	LCS	AITEH	•	\rightarrow	\downarrow	- >	۲	
÷.	A-1794	12229116	1115117	7015	IS	A1289	wed (<u> </u>	30	55	7	
A:	A-173995	_			577)	Aisas						
Ą	A-1796				res	12021						
₹	1797			ATTRA TANDA	47cH	9519	⇒	→	7	>		
₹	1798				HPCH5 A	T.PT.I.A.	50 pol	3,0	36	۱,	######################################	
Ą	bbil				FORM	Aogad	11.5 ppm		72	50		
4	A- 1800	***************************************				1905X 1089	500 pab		30	50		
Ą	A. 180]				SULF	A0270	I pom		30	25		
_ ₹	A. 1802			->			10 ppm	1.5	30	Soc		
'	A. 1803			าังเร านด	15	A May	150 lob	0,9	Sh	1		
¥	A- 1804				STD	A1795	.			***************************************		
Ą	A-1805	_>	_>	<u>-</u> >	405	A1796	->	- >	→	<u> </u>	Ş	
¥	A-1806	115117		115/18/TO15	15	FF-47206	ļ	INDE	2000pslg	1 ppm	(্	
¥	A-1807	115117	115/18	115/18 STOCK	TOISSID	1	347	LINDE	5150022		VM	
4	A-1808	116/17	1/6/18 TOK	7015	XX ESS	7.45	Ippm	Ė) F	F 200	M	
5	FORM 153				ę	AIZOB	A	A1203 570	15 NOW	46		
									Page #			
									,			

Page 138 of 158

-Spaces

i S

a de la constanta

Transcent Co.

Target State

\$ Parties

A1502 A1504 A1
50 pps 3.0 L 50 pps 1.5 50 pps 1.5 50 pps 1.5 50 pps 1.5 50 pps 1.5 50 pps 1.5 10pps 1
50pps 3.0 & 5 11.5pps 0.20 45 500pps 3.0 30 1 pps 1.5 1 pps 1.
50pps 3.0 4 5 50 11.5ppn 0.20 46 50 10ppn 3.0 30 10ppn 1.5 45 10pp
59pps 3.0 45 50 11.5pps 0.10 45 50 500pps 3.0 30 40 1.5pps 1.5 1.5pps 1.5 50pps 2.0 45 50pps 2.0 45 50pps 2.0 45 1.0pps 1.5 50pps 2.0 45 50pps 2.0
500pps 3.0 30 46 5.0 46 5.0 30 30 30 30 30 30 30 30 30 30 30 30 30
500 on 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
2000 Vodos
30 observed to the state of the
3,000

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
CANISTER CLEANING LOG

Centek Laboratories, LLC Instrument: Entech 3100

Ce	ntel	k La •	bor	atoı	ies,	, LL	С																			
& Date	11/63/16. R																								-	
Leak Test 24hr int 8 Date	+ 30		+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	4	4	+	+		4	+	+	+	_+	15
Leak T	30	30	30	30	30	30	30	30	30	30	30	30	+ 30	30	30	30	30	30	30	8	+ 30	30	30	+ 30	30	
Detection Limits	10.24 m	+	+	+	+	+	+	+	4	vije	+	+	+	+	4	4	eğr	+	+	+	- ufu		+		*	1
90200	-110316A 149	,				0316R					331BC					7110316.D					AC1103 ILE	•				
QC Batch Number	WACIII	- and angle gas any		<u>.</u>	\Rightarrow	WACII	4			>	INACTIO316C		in the second se		う	I WACIII				7	MACI				→	
Date Cleaned	102 116 ROP							 .			<u></u>			775 W Th. 17		, , , , , , , , , , , , , , , , , , ,			**************************************	erromana.					>	
# of Gycles Int & Dal	30 111/6																······································								->-	36
>an Number # o	218				1	707		owen sol for	######################################	-	215				>	1203	<u>.</u>			>	5		TVX*		>	
Canister Number Canister Size QC Can Number																				>	71				-	×
ter Number Ca	202		00	7.09	218	120	208	7007	H8H	1207	2	1323	210	U87	215	319	7%7	483	201	1203) F	102	100 m	12	ロコ	
V		41			4	41	7]	12	7		7]]	7	()	İ	1 7		15	1-	1		1	13	

Form C151

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Instrument: Entech 3100	ntech 310	` o						Ž	
Canister Number	Canister Size	QC Can Numbe	st # of Cycles	Canister Number Canister Size QC Can Number # of Cycles Int & Date Cleaned	OC Batch Number	Detection Limits	Leak Te	ĔÌ	Date
(7)	<u> </u>	512	20	3/16/17 #	7 USERSON	150,25	+ 30	+ 30	2/19/11
10	-	7 7 -					+ 30	_	
							+ 30	+	
							+ 30	+	
100							+ 30	4	
765		3 5 5 5			<u> </u>		+ 30		
777		0.50					+ 30	+	
							+ 30		
243							+ 30		
231							+ 30		
1315							+ 30	+	
556		£					+30	+	
#2		,					+ 30		
45					,		+ 30	+	
250							+ 30	1	
124		ا من المر					+ 30	4	
136		1964			7		£ 43	+	
35%				-			+ 30	+	
723							+ 30	_	
751							+ 30		
362					n		+ 30	-4-	
233		2			1		+ 30		
515							+ 30	+	
							+ 30		
95	3			\ -\ -	+3	3	+ 30)	
3	<u>```</u>	4					D30e #	123	

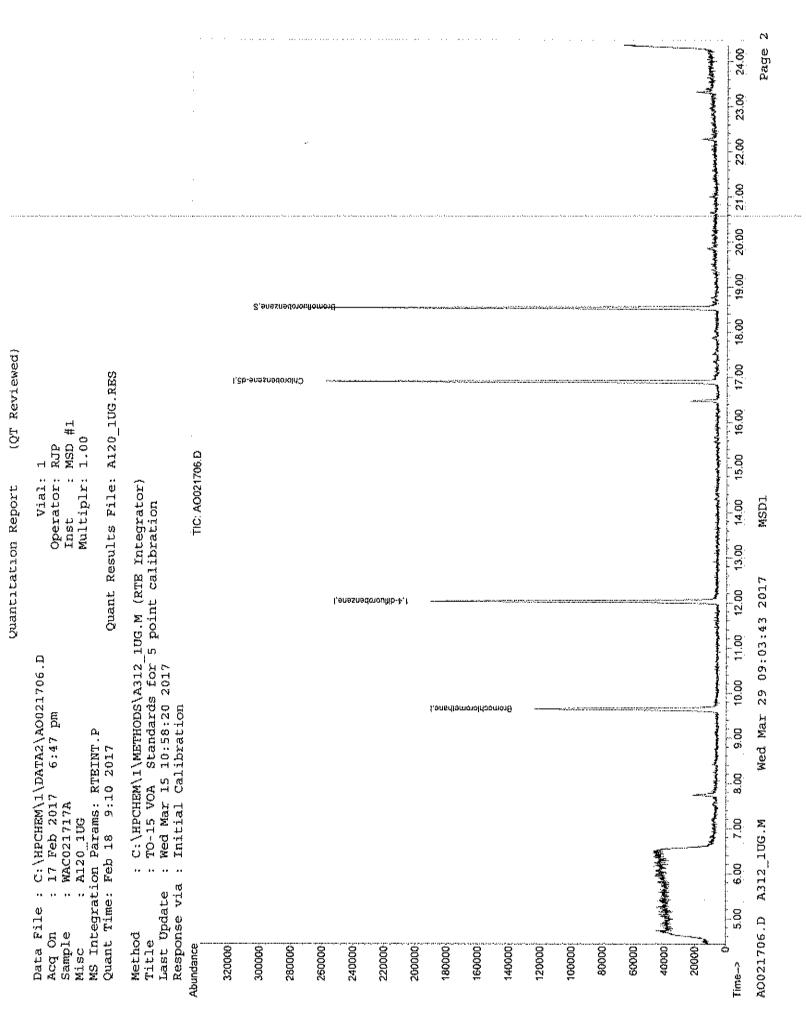
m C151

Page 142 of 158

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\A0021706.D
Acq On : 17 Feb 2017 6:47 pm
Sample : WAC021717A
Misc : Al20_1UG Vial: 1 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Feb 18 08:10:52 2017 Quant Results File: A120_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A120_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Jan 30 16:04:21 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards		·QIon	Response Co	one U	nits Dev(Min
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.64 12.02 16.90	128 114 117	52270 198116 175690	1.00 1.00 1.00	ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.54 Range 70	95 - 130	99310 Recovery	0.89	ppb 89.00%	0.00
Target Compounds					Qva	lue

Page 144 of 158

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Feb 18 08:10:53 2017 Quant Results File: A120_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\Al20_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Jan 30 16:04:21 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	conc_Un:	its De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.63 12.03 16.90	128 114 117	49106 191028 168917	1.00 p 1.00 p	dqq	-0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.53 Range 70	95 - 130	93615 Recovery	0.87 p	ppb 87.00	0.00 %

Target Compounds Qvalue

Page 146 of 158

Quantitation Report (QT Reviewed)

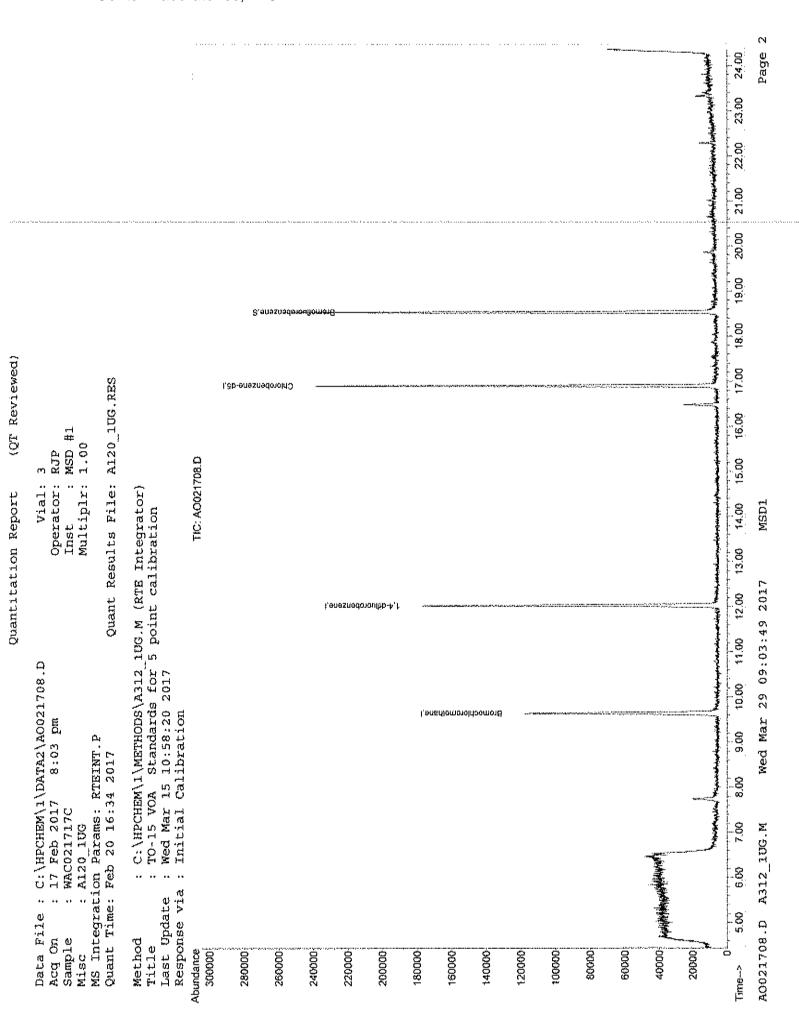
MS Integration Params: RTEINT.P

Quant Time: Feb 18 08:10:54 2017 Quant Results File: Al20_1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\A120_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Jan 30 16:04:21 2017

Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards		QIon	Response C	onc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.64 12.02 16.89	128 114 117	48029 188739 164706	1.00	dqq	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.53 Range 70	95 - 130	93087 Recovery	0.89	ppb 89.00%	0.00

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0021708.D A312_1UG.M Wed Mar 29 09:03:48 2017 MSD1

Page 148 of 158

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\A0021709.D

Acq On : 17 Feb 2017 8:41 pm Sample : WAC021717D Misc : Al20 1UG

Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 18 08:10:55 2017

Quant Results File: A120_1UG.RES

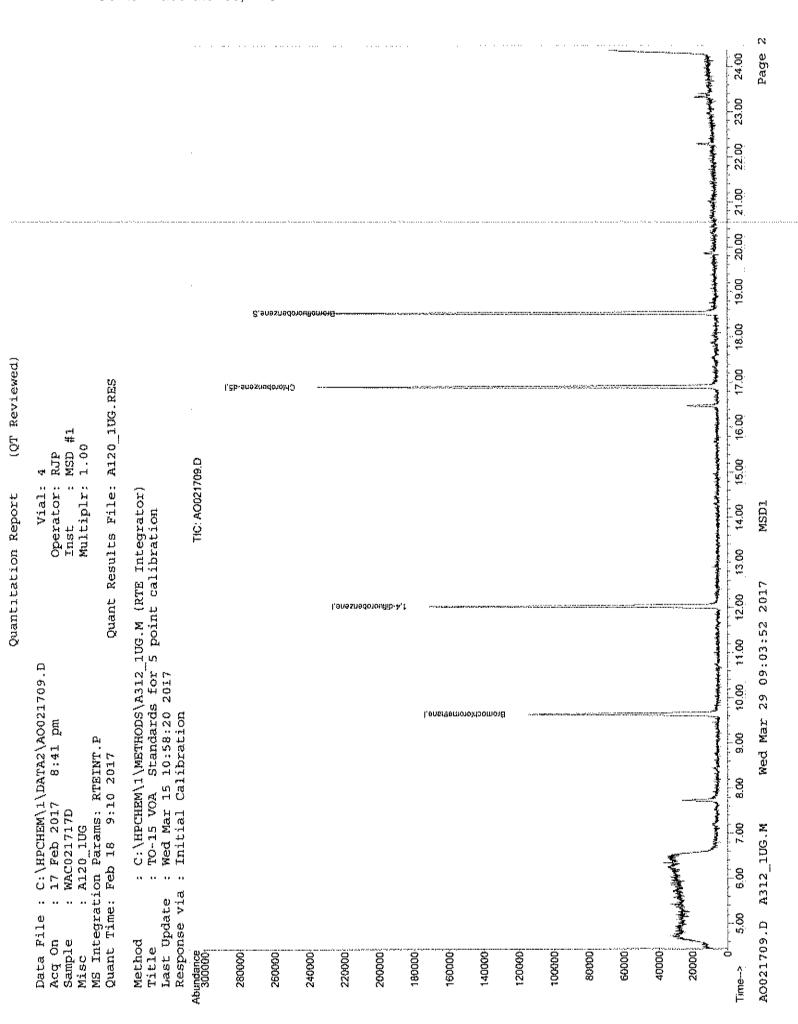
Quant Method : C:\HPCHEM\1\METHODS\A120_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Jan 30 16:04:21 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards R.T. QIon Response Conc Units Dev(Min)


1) Bromochloromethane 9.64 128 47964 1.00 ppb 0.00 35) 1,4-difluorobenzene 12.03 114 178904 1.00 ppb 0.00 50) Chlorobenzene-d5 16.90 117 160775 1.00 ppb 0.00

System Monitoring Compounds

55) Bromofluorobenzene 18.53 95 89341 0.87 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 87.00% 65) Bromofluorobenzene

Target Compounds

Qvalue

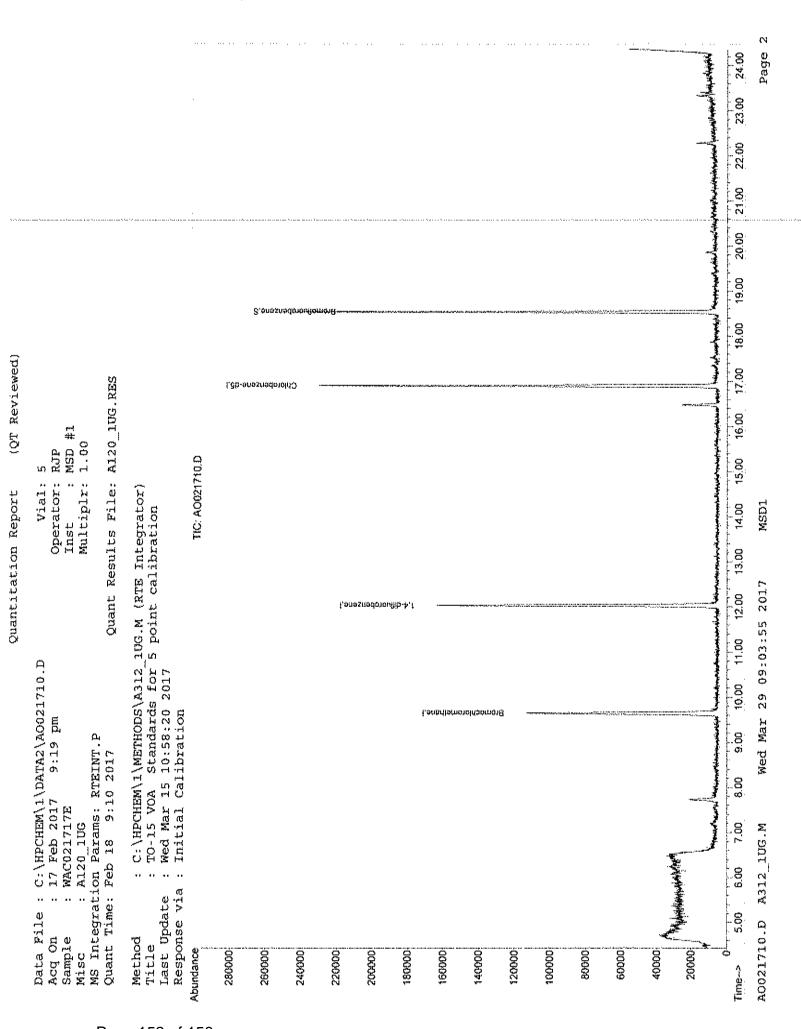
Page 150 of 158

Quantitation Report (QT Reviewed)

Data File : C:\MPCHEM\1\DATA2\A0021710.D Vial: 5 Acq On : 17 Feb 2017 9:19 pm Sample : WAC021717E Misc : A120_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Feb 18 08:10:56 2017 Quant Results File: A120_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A120_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Jan 30 16:04:21 2017

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Internal Standards	R.T	QIon	Response	Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.64 12.03 16.90	128 114 117	48138 175951 158218	1.00 pp 1.00 pp 1.00 pp	ob 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.53 Range 70	95 - 130	88691 Recovery	79 88.0 9 = 8	00.00 de

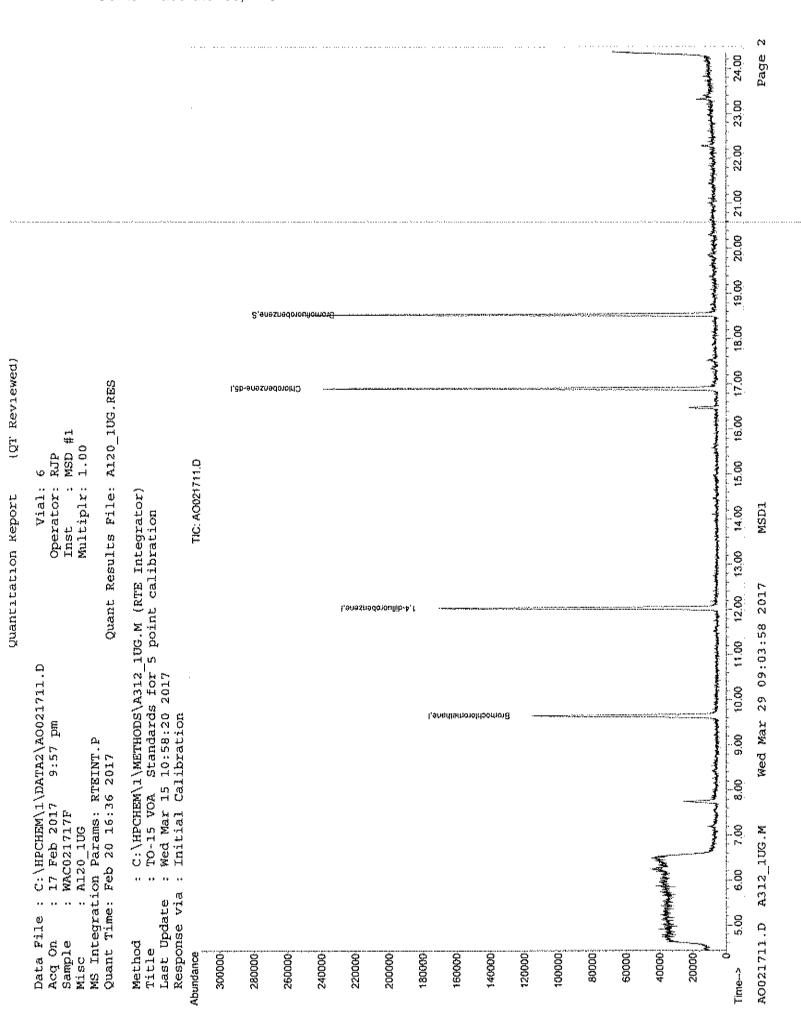
Qvalue Target Compounds

Page 152 of 158

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P
Quant Time: Feb 18 08:10:57 2017 Quant Results File: A120_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A120_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration


Last Update : Mon Jan 30 16:04:21 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc_Uni	ts Dev	(Min)	
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.65 12.03 16.90	128 114 117	46520 179438 160329	1.00 g 1.00 g 1.00 g	dqc	0.00 0.00 0.00	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	18.53 Range 70	95 - 130	89777 Recover	40	opb 88.00%	0.00	

Target Compounds Qvalue

Page 154 of 158

Quantitation Report

(QT Reviewed)

Data File: C:\HPCHEM\1\DATA2\2016NOV\AN110306.D

Acq On : 3 Nov 2016 12:34 pm

Vial: 6 Operator: RJP Inst : MSD #1

Sample : WAC110316A Misc : A026_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 08 15:11:32 2016 Quant Results File: AO26 1UG.RES

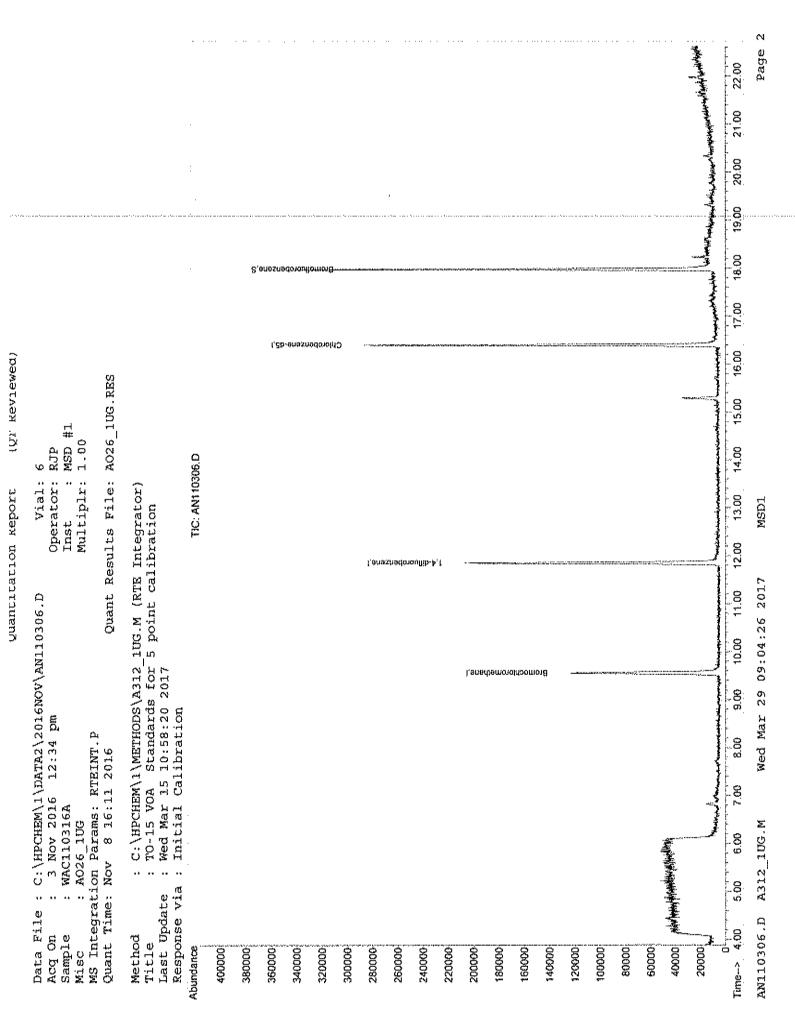
Quant Method : C:\HPCHEM\1\METHODS\AO26_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Thu Oct 27 07:19:53 2016

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

In	te	17.1	nа	1	S	t.a	ı, T.	la	.XX	ls	 	٠	 	 	 	 	I	₹	T		Q	ΙÇ	n.	 R	25	pc	n	s 6	à	(20	nc	:	Uı	1	t.	S	D	e١	7.0	Μi	.Yl)
	w				a ver		ш.					 .	 		 	 -			-	u.	-			 		- w				-		-				-				-			-


1)	Bromochloromethane	9.55	128	51628	1.00 ppb	0.00
35)	1,4-difluorobenzene	11.85	114	215735	1.00 ppb	0.01
50)	Chlorobenzene-d5	16.39	117	192732	1.00 ppb	0.00

System Monitoring Compounds

66) Bromofluorobenzene 17.96 95 109128 0.84 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 84.00%

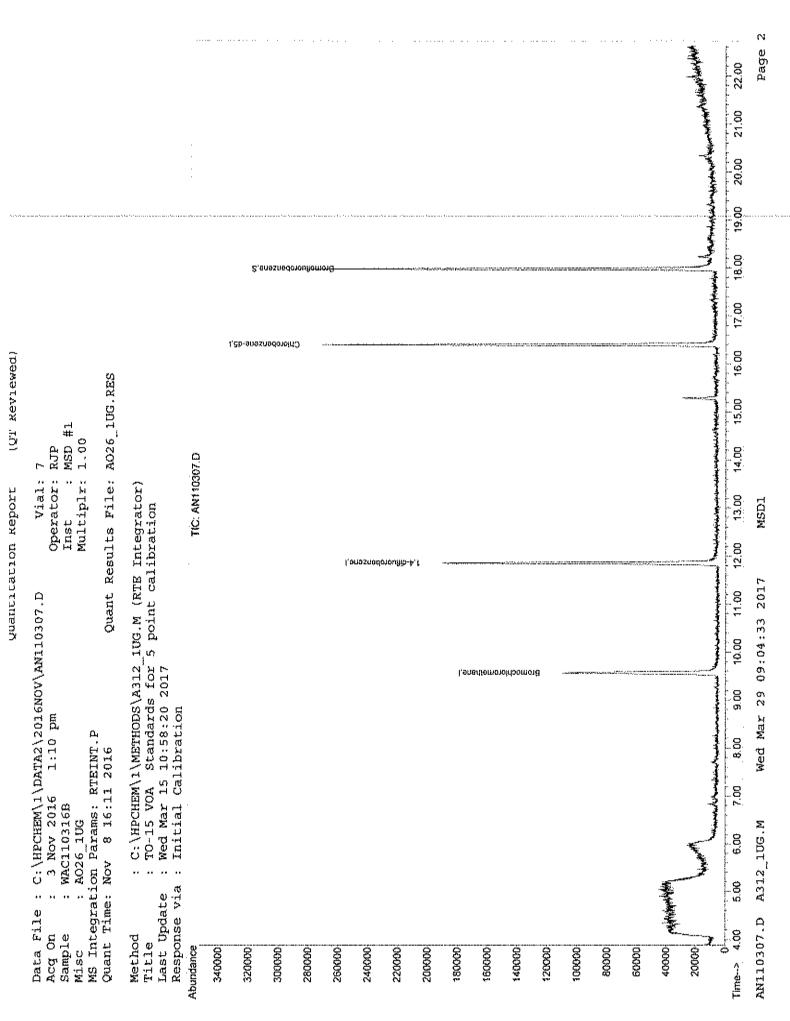
Target Compounds

Qvalue

Page 156 of 158

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2016NOV\AN110307.D Vial: 7 Acq On : 3 Nov 2016 1:10 pm Operator: RJP Sample : WAC110316B Misc : AO26_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Nov 08 15:11:33 2016 Quant Results File: A026_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AO26_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Thu Oct 27 07:19:53 2016
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards		QIon	Response C	one U	nits Dev	(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	9.56 11.84 16.39	128 114 117	46894 198486 177747	1.00 1.00 1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 66) Bromofluorobenzene Spiked Amount 1.000	17.96 Range 70	95 - 130	95638 Recovery	0.80		0.00
Target Compounds					Qva	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AN110307.D A312_1UG.M Wed Mar 29 09:04:32 2017 MSD1

Page 158 of 158