690 SAINT PAUL STREET OFF-SITE

MONROE, NEW YORK

Final Engineering Report / Construction Completion Report

NYSDEC Site Number: C828159A

Prepared for:

Bausch & Lomb 1400 North Goodman Street Rochester, New York 14609

Prepared by:

LaBella Associates, D.P.C. 300 State Street, Suite 201 Rochester, New York 14614 (585) 454-6110

FEBRUARY 2021

CERTIFICATIONS

I, DANIEL P. NOLL, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Interim Remedial Measure (IRM): Remedial Action Work Plan (RAWP) was implemented and that all construction activities were completed in substantial conformance with the Department-approved IRM RAWP.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the IRM RAWP and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, DANIEL P. NOLL, of LaBella Associates, DPC, 300 State Street, Rochester, New York 14614, am certifying as Remedial Party's Designated Site Representative for the site.

081996

2/22/2021

NYS Professional Engineer #

Date

Signature

P. 111

Table of Contents

1.0	BAC	KGROUND AND SITE DESCRIPTION	1
2.0 2.1	SUM Re	IMARY OF SITE REMEDY	1 1
2	.1.1	Soil Vapor	2
2.2	De	scription of Site Remedy	2
3.0	INTI	ERIM REMEDIAL MEASURES AND REMEDIAL CONTRACTS	4
3.1	Int	terim Remedial Measures	4
4.0	DES	CRIPTION OF REMEDIAL ACTIONS PERFORMED	7
4.1	Go	overning Documents	7
4	.1.1	Site Specific Health & Safety Plan (HASP)	7
4	.1.2	Quality Control Plan (QCP)	7
4	.1.3	Community Air Monitoring Plan (CAMP)	7
4	.1.4	Community Participant Plan	8
4.2	Re	medial Program Elements	9
4	.2.1	Contractors and Consultants	9
4	.2.2	Site Preparation1	0
4	.2.3	General Site Controls 1	0
4	.2.4	Nuisance Controls1	0
4	.2.5	CAMP Results 1	0
4	.2.6	Reporting1	1
4.3	Ma	aterial Removal1	1
4	.3.1	Disposal Details1	1
4.4	Re	medial Performance/Documentation Sampling1	2
4.5	Ot	her Engineering Controls1	2
4	.5.1	Sub-Slab Depressurization System1	2
4.6	De	viations from the IRM Remedial Action Work Plan1	3

TABLE OF CONTENTS

Continued

Figures

- 1 Site Location Map
- 2 Site Location and Boundary Map
- 3A As-Built SSDS Upper Basement
- 3B As-Built SSDS Lower Basement
- 3C Sub-Slab Depressurization Details
- 4A Pressure Field Extension Contours Upper Basement
- 4B Pressure Field Extension Contours Lower Basement
- 4C Pressure Field Extension Contours Lower Basement
- 5A Post Remediation Sampling Locations Upper Basement
- 5B Post Remediation Sampling Locations Lower Basement

Tables

- 3.1 Post SSDS Start-Up U-tube Manometer Readings
- 4.2.1 Contractors and Consultants
- 4.3.2 Summary of Materials Disposal
- 4.4 Post SSDS Start-Up Sampling Results

Appendices

- 1 Order on Consent and Administrative Settlement
- 2 Electronic Copy of Construction Completion Report
- 3 Community Air Monitoring Plan Data
- 4 Daily Reports
- 5 Photo Log
- 6 Data Usability Summary Report
- 7 Laboratory Analytical Report
- 8 Waste Characterization Laboratory Analytical Report
- 9 Disposal Documentation

1.0 BACKGROUND AND SITE DESCRIPTION

Bausch & Lomb (B&L) entered into an Order on Consent with the New York State Department of Environmental Conservation (NYSDEC) on January, 25 2017, to remediate an approximate 3.7-acre property located in the City of Rochester, Monroe County, New York. The property was remediated in accordance to the Order on Consent which included completing a Soil Vapor Intrusion Assessment (SVIA) and installation a Soil Vapor Intrusion Mitigation System (SVIMS) to mitigate impacts to indoor air for the 691 St. Paul Street building. The Order is limited to addressing contaminants (primarily trichloroethene (TCE) and associated compounds) that emanated from the 690 Saint Paul Street BCP site (Site # C828159) and potentially impacted indoor air quality in the off-site areas. The off-site areas are designated as Site #C828159A. The Order was NOT to fully remediate these off-site properties as a complete Remedial Investigation of these properties was outside the scope of the Order.

The site is located in the City of Rochester, Monroe County, New York and is identified as Section 106 Subsection 53 Block 01 and Lot 11, and with the address of the 691 St. Paul Street; and Section 106 Subsection 53 Block 01 Lot11 and with the address of 705 St. Paul Street on the Monroe County Tax Map (see Figure 2A). No remedial action was needed to address soil vapor intrusion at the 705 Saint Paul Street building based on the off-site investigation results.

The site is an approximately 3.7-acre area and is bounded by a parking lot to the north, Smith Street and High Falls Brewery to the south, St. Paul Street and 690 St. Paul Street (NYSDEC BCP Site #C828159) to the east, and Suntru Street and RG&E Substation #34 to the west (see Figure 2B – Site Layout Map). The boundaries of the site are also described in the Order on Consent and Administrative Settlement provided in Appendix 1.

An electronic copy of this Final Engineering Report (FER) / Construction Completion Report (CCR) with all supporting documentation is included as Appendix 2.

2.0 SUMMARY OF SITE REMEDY

2.1 Remedial Action Objectives

Based on the results of the Soil Vapor Intrusion Investigation Report, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into the 691 St. Paul Street building at a site.

2.2 Description of Site Remedy

The site was remediated in accordance with the remedy selected by the Decision Document and the IRM: RAWP discussed in Section 3.0.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- Green remediation principals and techniques will be implemented to the extent feasible in the site management of the remedy as per DER-31. The major green remediation components are as follows:
 - Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
 - Reducing direct and indirect greenhouse gas and other emissions;
 - Increasing energy efficiency and minimizing use of non-renewable energy;
 - Conserving and efficiently managing resources and materials; and
 - Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste.
- A Site Management Plan is required, which includes the following:

An Engineering Control Plan that identifies all engineering controls and details the steps and media-specific requirements necessary to ensure the following engineering controls remain in place and effective:

Engineering Controls: The soil vapor intrusion mitigation system included installing subslab ventilation systems in the basement and sub-basement and applying a vapor barrier on a portion of the sub-basement wall. This plan includes, but may not be limited to:

- a provision for the evaluation of the potential for soil vapor intrusion for any new occupied off-site buildings, in areas of site-related contamination, including provision for implementing actions recommended to address exposures related to soil vapor intrusion;
- provisions for the management and inspection of the identified engineering controls; and
- the steps necessary for the periodic reviews and certification of the engineering controls.

A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:

- monitoring of off-site soil vapor intrusion mitigation systems to assess the performance and effectiveness of the remedy; and
- monitoring for vapor intrusion for off-site buildings, as may be required by the Engineering Control Plan discussed above.

3.1 Interim Remedial Measures

The Interim Remedial Measure (IRM) was implemented at the site when a source of contamination or exposure pathway could be effectively addressed before the issuance of the Decision Document. The following IRM was completed at the site in accordance with the following NYSDEC approved work plan:

 Interim Remedial Measure: Remedial Action Work Plan, Sub-Slab Depressurization System, NYSDEC Site C828159A, 691 and 705 Saint Paul Street, Rochester, New York by LaBella Associates, D. P.C. dated September 29, 2017

A SSDS was installed in the 691 St. Paul Street building from December 2018 to January 2018 to mitigate the potential for contaminant vapors to migrate through the sub-slab floor and into the indoor air. In addition, a portion of the lower basement eastern interior wall was coated with Drylock[®] paint to limit the potential for contaminant vapors to enter the building.

The SSDS was installed in substantial accordance with the NYSDOH *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006 (and associated amendments). The majority of the system was constructed of Schedule 40 polyvinyl chloride (PVC) piping and fittings that conformed to American Society of Testing Materials (ASTM) D3034. The SSDS was designed to influence the 691 Saint Paul Street site building shown on Figure 2. The SSDS consists of four separate sub-systems identified as SSDS-1 to SSDS-4 that connect to depressurization points that are manifolded together horizontally along the building's ceiling each connecting to one fan. One condensate drain was installed for SSDS-1 and SSDS-2 at the location shown on Figure 3A and a diagram is shown on Figure 3C. All horizontal piping was sloped away and downward from the fans from each SSDS to help prevent potential condensate build up in the horizontal pipes. The condensate is intended to drain into vertical depressurization point and beneath the floor slab. As built drawings of the SSDS are shown on Figures 3A, 3B, and 3C. Post SSDS start-up ambient air PID readings were collected from about 1 foot from each SSDS exhaust fans and the adjacent sidewalk next to the loading dock building to determine whether elevated concentration of VOCs were being discharged to frequently used spaces near the exhaust fans. All PID measurements were 0 parts per million. As such, SSDS fans are not exhausting VOCs from the sub-slab at a concentration of concern.

All exposed interior vent pipes were labeled that read "Sub-Slab Depressurization System." The labeling of this system was completed to identify to the building owner the type/use of the pipe so that it will assist with preventing potential disturbance of the soil vapor intrusion mitigation system during future work at the site.

Each individual SSDS sub-system was equipped with a U-tube type manometer and RadonAway Checkpoint IIA Mitigation Alarm that are located adjacent to the loading dock building shown on Figure 3A. The RadonAway Checkpoint IIA Mitigation Alarm will alert the building occupants if there is a loss of pressure or air flow in a system, or if a fan ceases operation. The U-tube manometer demonstrates that pressure within the pipe is below atmospheric pressure. Post SSDS start-up U-tube manometer readings for each SSDS subsystem are detailed in Table 3.1 below.

SSDS Sub System	Reading in Inches of Water Column
SSDS-1	2.7
SSDS-2	3.7
SSDS-3	2.7
SSDS-4	1.4

Table 3.1 – Post SSDS Start-Up U-tube Manometer Readings

Pressure field extension (PFE) readings were measured throughout the installation of the SSDS to confirm the SSDS would provide sufficient influence beneath the sub-slabs. Subsequent to the installation of the SSDS, pressure field extension (PFE) readings were collected periodically to measure the influence of the SSDS. PFE readings are shown on Figures 4A (Upper Basement) and 4B (Lower Basement). As shown on Figures 4A and 4B the basement sub-slabs are depressurized to -0.004 inches of water column (IWC). A portion of the lower basement along the exterior wall and within the wood shop space, can exhibit positive pressure readings during windy weather conditions that blow against the lower basement foundation stone wall. PFE readings collected from the lower basement during windy conditions are shown on Figure 4C.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the site were conducted in accordance with the NYSDEC-approved IRM RAWP for the 691 and 705 St Paul Street Off-Site site (September 29, 2017). All deviations from the IRM RAWP are noted below.

4.1 Governing Documents

4.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this IRM Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site.

4.1.2 Quality Control Plan (QCP)

The QCP was included as Appendix 2 of the IRM RAWP approved by the NYSDEC. The QCP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

4.1.3 Community Air Monitoring Plan (CAMP)

The CAMP implemented during the Remedial Action activities was completed in accordance with the NYSDOH Generic CAMP as well as the modifications included in the NYSDEC approved IRM RAWP. The CAMP was only implemented during penetrations of the floor slab and within the interior building work space where the work was taking place at that specific time and at least one monitoring station was placed near an entrance to the room or area where the work was taking place. Equipment for CAMP monitoring included upwind and downwind monitoring with a ppbRAE PID for VOC readings and TSI DustTrakTM II Aerosol Monitors (model 8530) for particulate concentrations in air. Background monitoring (upwind) location and downwind locations were positioned to monitor VOCs and concentrations of particulates in the air. Action levels for VOCs in the CAMP were specified as greater than 5 ppm, in which case work was to be halted and corrective actions are to be taken.

Actions levels for particulate concentrations downwind were specified as greater than $100 \ \mu g/m^3$ above background concentrations for a 15-minute period or if airborne dust was observed leaving the work area. In the event $100 \ \mu g/m^3$ is exceeded the CAMP specifies that fugitive dust control techniques must be employed which can include wetting down work areas and covering areas with plastic sheeting. If downwind particulate levels exceed 150 $\ \mu g/m^3$ above background concentrations work must be halted and dust control measures must be reevaluated. Actual CAMP results and response actions are provided in section 4.2.5.

Particulate concentrations in St. Michael's Woods Shop area were frequently artificially high due to the presence of saw dust throughout the space. Normal movement and work within St. Michael's Woods Shop area would move dust throughout the space resulting in false positive readings above the action level. Due to the size of the space and numerous surfaces inside the word shop coupled with the frequent operations that including the sawing and cutting of wood, the saw dust was not able to be adequately removed to allow particulate readings consistently below the action level. These observations were observed by on-site NYSDEC representatives during the work, and work was allowed to continue.

4.1.4 Community Participant Plan

This Section summarizes the pertinent elements of the Community Participation Plan that were performed during the Remedial Action and those elements that pertain to the remainder of the remedial program. Elements of the Community Participation Plan include:

- Copies of the IRM RAWP, and other project documents are located in the following document repositories for public review:
 - Central Library of Rochester and Monroe County, 115 South Avenue, Rochester, New York 14604

- Rochester City School District Offices, 131 West Broad Street, Rochester, New York 14614
- Phillis Wheatley Community Library, 33 Dr. Samuel McCree Way, Rochester, New York 14608
- o Lincoln Branch Library, 851 Joseph Avenue, Rochester, New York 14626
- o NYSDEC Region 8 Office, 6274 East Avon-Lima Road, Avon, New York 14414

4.2 Remedial Program Elements

4.2.1 Contractors and Consultants

The following provides consultants and contractors involved with the remedy.

Contractor/ Consultant	Role
LaBella Associates, D.P.C.	Environmental consultant responsible for correspondence with NYSDEC, insuring compliance with applicable IRM RAWP documents, environmental oversight, reporting, sample collection, CAMP monitoring, and monitoring work. Certifying Engineer of Record- Daniel P. Noll, P.E.
Mitigation Tech	Construction contractor responsible for Site preparation/pilot test work and installation of the SSDS.
SUN Environmental	Waste Disposal Transportation
Cycle Chem (Lewisberry, PA)	Disposal Facility

Table 4.2.1 –	Contractors and	l Consultants
---------------	------------------------	---------------

4.2.2 Site Preparation

Mitigation Tech mobilized to the Site on December 4, 2017 to implement remedial measures at the site. Preparation work included the mobilization of equipment and supplies to construct the SSDS and to review and plan out piping pathways and depressurization points. During site preparation activities the, CAMP and HASP items were implemented per the IRM RAWP. The installation of the SSDS as completed on January 31, 2018 and full start-up of the SSDS occurred on February 1, 2018. Work during this time frame, the installation of the SSDS by Mitigation Tech was conducted intermittently.

4.2.3 General Site Controls

During remedial activities the site was secured by Monroe County or it security subcontractors with alarms to access the building and locks to work spaces.

Site records including CAMP data, chain of custodies, etc. were kept with LaBella personnel and stored at the LaBella office for the duration of the project.

No problems were encountered during the remedial work.

4.2.4 Nuisance Controls

No nuisance complaints were received during the project.

4.2.5 CAMP Results

During the implementation of remedial actions VOC action levels were not exceeded (for either the nearest potential receptor or downwind VOC monitoring) and particulate concentrations did exceed the action level of $150 \ \mu g/m^3$ above background levels at the Site borders. However, these exceedances are considered background site conditions within a portion of the site building known as the wood shop where wood and saw dust were prevalent across the site surface.

Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix 3.

4.2.6 Reporting

All daily reports are included in electronic format in Appendix 4. The digital photo log is included in electronic format in Appendix 5.

4.3 Material Removal

On-site location from which materials were removed only include a limited of concrete and soil generated from the installation of the sub-slab depressurization points shown on Figures 3A and 3B. Two (2) 55-gallon drums of soil and concrete were removed as part of the installation of the sub-slab depressurization points.

4.3.1 Disposal Details

Table 4.3.2 shows the total quantity of material removed from the site and the disposal location. The waste characterization laboratory analytical reports is included in Appendix 8.

Letters from Applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in Appendix 9.

Manifests and bills of lading are included in electronic format in Appendix 9.

Date of Disposal	Total Quantity Removed	Disposal Facility	Disposal Transporter	Disposal Documents	Summary of Waste Characterization Sampling*
3/25/2020	2 55-gallon drums of soil	Cycle Chem, 550 Industrial Drive, Lewisberry, PA 17339 [EPA ID PAD067098822]	SUN Environmental, Permit No. 7A- 709	Appendix 9	Collected one composite soil sample from 2 drums of waste

TABLE 4.3.2 – Summary of Materials Disposal

Note: Waste characterization sample was tested for parameters as required by the accepting waste disposal facility.

4.4 Remedial Performance/Documentation Sampling

Post start-up indoor air sampling was conducted on March 16, 2018 to evaluate indoor air concentrations of chemicals of concern approximately 45 days subsequent to the installation and operation of the SSDS. The sampling was conducted during periods of winds speeds of low 20s miles per hour with gusts up to 35 miles per hour. Results indicate chemicals of concern are below the NYSDOH Air Guideline and background levels for samples collected within the 691 St. Paul Street building.

The Post SSDS Start-Up Sampling Results are included in Table 4.4(attached) and Figures 5A (upper basement and 5B (lower basement) summarize the results.

A Data Usability Summary Report (DUSR) was prepared for all data generated in this remedial performance evaluation program. The DUSR is included in Appendix 6, and associated raw is provided electronically in Appendix 7.

4.5 Other Engineering Controls

Since remaining contaminated soil vapor exists beneath the site, Engineering Controls (EC) are required to protect human health and the environment. The site has the following primary Engineering Controls, as described in the following subsections.

Procedures for monitoring, operating and maintaining the SSDS are provided in the Operation and Maintenance Plan in Section 5.0 of the Site Management Plan (SMP). The Monitoring Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

4.5.1 Sub-Slab Depressurization System

The SSDS depressurizes the sub-slab within the 691 Saint Paul Street building shown on Figure 2, thus mitigating potential soil vapor intrusion issues. In addition to the continual operation of the SSDS, monitoring of the effectiveness of the SSDS includes periodic checks of pressure field extension (PFE) monitoring points. The layout and components of the SSDS system is shown on Figures 3A and 3B.

The system was designed in accordance with the NYSDOH Final Guidance for Soil Vapor Intrusion in the State of New York dated October 2006. The installation of the additional vent systems was initiated on December 2018 and was completed during January 2018.

Drylock[®] paint was applied to a portion of the lower basement's eastern interior wall to the extent practical to minimize potential soil vapor intrusion issues within the lower basement and optimize the efficiency of the SSDS. The location where the vapor seal was placed in shown on Figure 3B.

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan (Section 5.0 of the SMP). As built drawings, signed and sealed by a professional engineer are included as Figures 3A, 3B, and 3C and are included in Appendix 3 – Operations and Maintenance Manual that is included in the SMP.

4.6 Deviations from the IRM Remedial Action Work Plan

The following deviations were made to the IRM RAWP:

• Section 4.4 Remedial Performance/Documentation Sampling: An outdoor ambient air or background sample was not collected during the Post SSDS start-up indoor air sampling event.

I:\BAUSCH & LOMB\2170820 - 691 ST PAUL ST SVIA BCP SITE\REPORTS\FER _CCR\2020-10-19.CCR C828159A 691 ST. PAUL STREET OFF-SITE_VER2_FINAL.DOCX

<u>TITLE</u> SITE LOCATION MAP

PROJECT FINAL ENGINEERING AND **CONSTRUCTION COMPLETION** REPORT NYSDEC SITE #C828159A 691 AND 705 SAINT PAUL ST ROCHESTER, NEW YORK

CLIENT BAUSCH AND LOMB

250	0	1,000
	-	

1 inch = 1,000 feet

Tuesday, March 10, 2020 INTENDED TO PRINT 11"X17"

<u>TITLE</u> SITE MAP

PROJECT FINAL ENGINEERING AND **CONSTRUCTION COMPLETION** REPORT

690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 AND 705 SAINT PAUL ST **ROCHESTER, NEW YORK**

<u>CLIENT</u> BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

TITLE MONROE COUNTY TAX AND AREA MAP

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT 690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 SAINT PAUL ST **ROCHESTER, NEW YORK**

> <u>CLIENT</u> BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

TITLE SUB-SLAB DEPRESSURIZATION AS BUILTS - UPPER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT

NYSDEC SITE #C828159A 691 AND 705 SAINT PAUL ST ROCHESTER, NEW YORK

> CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

1 inch = 25 feet

Tuesday, October 20, 2020

INTENDED TO PRINT 11"X17"

FIGURE 3A

	2	47	
2	X		
_	4	S	
	PREME	SIS	
\bigotimes	AREAS DESIGI LANDL ACCES	OF PI NATED ORD & SS	REME FOR ten
	OTHE	R	
×	×		
	3		
80			
nt			
rylock	Paint		
Il Pipin	g)		
ral Pip	ping)		L
li Pipin " Diam	9) Ieter Perfi	orated Pini	na
iamete	er)		ing i
59A B	oundar	y	
bsurfao r Base	ce Pit ement		

TITLE SUB-SLAB DEPRESSURIZATION AS BUILTS - LOWER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT NYSDEC SITE #C828159A 691 AND 705 SAINT PAUL ST ROCHESTER, NEW YORK

> CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

 $1 \ln ch = 25 \text{ feet}$

Tuesday, March 10, 2020

INTENDED TO PRINT 11"X17"

I:\Bausch & Lomb\2170820 - 691 St Paul St SVIA BCP Site\Drawings\RAWP SSDS

DISCHARGE IS BENT AWAY FROM ADJACENT SIDEWALK AND BUILDING

TYPICAL SUBLAB DEPRESSURIZATION VENT THRU ROOF

ROOF LINE OF LOADING DOCK

	LEGEND
	SYSTEM FLOW DIRECTION
	DRAWING NOT TO SCALE

It is Law persof a engiten seal surveng the by" of s deso	a violation of N × Article 145 See son, unless acting licensed architet • eyror is altered; 1 ineer, or land suu • eyror is altered; 1 ineer, or land suu time their seal and followed by the uch alteration, an ************************************	ew York Education .7209, for any gunder the direction ct, professional reveyor, to alter an in item bearing the engineer, or land the altering architect reveyor shall affix to an lotation "altered ir signature and date the altering architect retration.						
		300 STATE STREET P: (553) 434-414 P: (553) 434-4110 F: (585) 434-3066 www.haddup.com						
PROJECT/CLIENT	DEPRESSURZATION SYSTEM DETAIL BCP SITE #C828159A	691 AND 705 SAINT PAUL STREET ROCHESTER, NEW YORK						
DRAWING TITLE	PROPOSED SUB-SLAB DEPRESURZATION SYSTEM DETAILS	ISSERTED FOR FWAL DESERVED DF: DPW DAXWR UP: DEP DATE: AUGUST 2017 REVERVED DF: DFW						
	PROJECT/DRAV	WING NUMBER						
	217 - FIGU	IRE 3C						

<u>TITLE</u> PRESSURE FIELD EXTENSION CONTOURS -UPPER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT 690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 SAINT PAUL ST ROCHESTER, NEW YORK

CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

1 inch = 25 ieel

Tuesday, March 10, 2020

INTENDED TO PRINT 11"X17"

<u>TITLE</u> PRESSURE FIELD EXTENSION CONTOURS -LOWER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT

690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 SAINT PAUL ST ROCHESTER, NEW YORK

CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

1 inch = 25 feet

Tuesday, March 10, 2020

INTENDED TO PRINT 11"X17"

FIGURE 4B

TITLE PRESSURE FIELD EXTENSION **CONTOURS** -LOWER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT 690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 SAINT PAUL ST **ROCHESTER, NEW YORK**

CLIENT **BAUSCH AND LOMB**

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

1 inch = 25 feet

Tuesday, March 10, 2020

INTENDED TO PRINT 11"X17"

FIGURE 4C

<u>TITLE</u> POST SUB-SLAB DEPRESSURIZATION INSTALLATION INDOOR AIR SAMPLE RESULTS -UPPER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT 690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 SAINT PAUL ST ROCHESTER, NEW YORK

CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

1 Inch = 25 feet

Tuesday, March 10, 2020

INTENDED TO PRINT 11"X17"

<u>TITLE</u> POST SUB-SLAB DEPRESSURIZATION INSTALLATION INDOOR AIR LOWER BASEMENT

PROJECT FINAL ENGINEERING AND CONSTRUCTION COMPLETION REPORT 690 SAINT PAUL ST OFF-SITE NYSDEC SITE #C828159A 691 SAINT PAUL ST ROCHESTER, NEW YORK

CLIENT BAUSCH AND LOMB

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

1 inch = 25 feet

Tuesday, March 10, 2020

INTENDED TO PRINT 11"X17"

FIGURE 5B

TABLE 4.4

Post SSDS Startup Indoor Ambient Air Sample Results 690 Saint Paul Street Off-Site, NYSDEC Site #C828159A 691 Saint Paul Street, Rochester, New York LaBella Project #2170820

UPPER BASEMENT SAMPLES																	
Sample ID		Units 691-Al-01 Ambient Air 3/16/2018		691-AI-03 Ambient Air 3/16/2018		691-AI-04 Ambient Air 3/16/2018		691-AI-05	691-AI-05		691-Al-06			691-AI-08			
Sample Type	Units							Amblent Air 3/16/2018		Ambient Air 3/16/2018		Amblent Alr 3/16/2018		Ambient Air		NYSDOH Indoor Air Guideline(1)	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾
Sample Date														3/16/2018			
1,1-Dichloroethene	ug/m ³	0.16	U	0.16	UJ	0.16	U	0.16	U	0.16	U	0.16	U	0.16	U	NL	<1.4
Chloroethane	ug/m ³	0.40	U	0.40	UJ	0.40	U	0.40	U	0.40	U	0.40	U	0.40	U	NL	<1.1
cis-1,2-Dichloroethene	ug/m ³	0.16	U	0.16	UJ	0.16	U	0.16	U	0.16	U	0.55		0.87		NL	<2.0
trans-1,2-Dichloroethene	ug/m ³	0.59	U	0.59	UJ	0.59	U	0.59	U	0.59	U	0.59	U	0.59	U	NL	<10 ⁽³⁾
Trichloroethene (TCE)	ug/m ³	0.16	U	0.16	UJ	0.21		0.32		0.32		0.54		0.75		2	4.2
Vinyl chloride	ug/m ³	0.10	U	0.10	UJ	0.10	U	0.10	U	0.10	U	0.10	U	0.20		NL	<1.9

						LOW									
Sample ID	691-AI-02		691-Al-09		691-Al-10		691-AI-11/MS/MSD		691-Al-12		DUPLICATE (691-A	I-10)			
Sample Type	Units	Units Amblent Air 3/16/2018		Amblent Alr 3/16/2018		Amblent Air 3/16/2018		Ambient Air 3/16/2018		Amblent Air 3/16/2018		Amblent Alr 3/16/2018		NYSDOH Indoor Air Guideline(1)	NYSDOH Guidance Table C2 USEPA BASE Database - 90th Percentile ⁽²⁾
Sample Date															
1,1-Dichloroethene	ug/m ³	0.16	U	0.16	UJ	0.16	U	0.16	U	0.16	U	0.16	U	NL	<1.4
Chloroethane	ug/m ³	0.40	U	0.40	UJ	0.40	U	0.40	U	0.40	U	0.40	U	NL	<1.1
cis-1,2-Dichloroethene	ug/m ³	0.16	U	1.0	J	0.95		0.71		0.63		0.95		NL	<2.0
trans-1,2-Dichloroethene	ug/m ³	0.59	U	0.59	UJ	0.59	U	0.59	U	0.59	U	0.59	U	NL	<10 ⁽³⁾
Trichloroethene (TCE)	ug/m ³	0.16	U	0.64	J	0.75		0.75		0.38		0.70		2	4.2
Vinyl chloride	ug/m ³	0.10	U	0.10	UJ	0.10	U	0.10	U	0.10	U	0.10	U	NL	<1.9

Notes:

Concentrations in micrograms per cubic meter (ug/m³)

Samples analyzed by USEPA Method TO-15

NL denotes Not Listed

New York State Department of Health (NYSDOH) Air Guideline Included in Table 3.1 of the Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (and applicable updates).
 USEPA 2001 Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote *1^o) this database is referenced for the indoor air sampling results. This database is also referenced to provide initial

benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

(3) No value was listed in NYSDOH Table C2 - USEPA Base Database. A value from Table C3 NYSDOH 1997: Control home database (90th Percentile) was used.

"<" indicates the results was detected below the reported laboratory method detection limit

APPENDIX 1

Order on Consent and Administrative Settlement

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION STATE SUPERFUND PROGRAM ECL §27-1301 et seq.

In the Matter of a Remedial Program for

nedial Program forORDER ON CONSENT AND
ADMINISTRATIVE SETTLEMENT
Index No. R8-20161013-107690 St. Paul Street - Off-5 ife

DEC Site Name: DEC Site No.:

Site Address:

C828159A 691 & 705 St. Paul Street Rochester, NY 14605 Monroe County

Hereinafter referred to as "Site"

by: **Bausch + Lomb** Hereinafter referred to as "Respondent"

1. A. The New York State Department of Environmental Conservation ("Department") is responsible for inactive hazardous waste disposal site remedial programs pursuant to Article 27, Title 13 of the Environmental Conservation Law ("ECL") and Part 375 of Title 6 of the Official Compilation of Codes, Rules and Regulations ("6 NYCRR") and may issue orders consistent with the authority granted to the Commissioner by such statute.

B. The Department is responsible for carrying out the policy of the State of New York to conserve, improve and protect its natural resources and environment and control water, land, and air pollution consistent with the authority granted to the Department and the Commissioner by Article 1, Title 3 of the ECL.

C. This Order is issued pursuant to the Department's authority under, *inter alia*, ECL Article 27, Title 13 and ECL 3-0301, and resolves Respondent's liability to the State for the Matters Addressed in this Order, as provided at 6 NYCRR 375-1.5(b)(5).

2. Site C828159 (690 St. Paul Street) is located across St. Paul Street from the Site and is currently subject to a Brownfield Cleanup Agreement; the Department believes that contamination from 690 St. Paul Street may have potentially migrated and may potentially still be migrating onto the Site. Said contamination at the Site is not subject to investigation or remediation under the existing Brownfield Cleanup Agreement.

3. The Site subject to this Order has been assigned number C828159A, and consists of approximately 2 acres, including two buildings and parking lots and other land surrounding the buildings; its location is found on Tax Map/Parcel No.: Section 106 Subsection 53 Block 01 Lot 11, and with an address of 691 St. Paul Street, Rochester, NY 14605 and Tax Map/Parcel No.: Section 106 Subsection 45 Block 01 Lot 49, and with an address of 705 St. Paul Street, Rochester, NY 14605. A map depicting the Site is found at Exhibit A of this Order

1

4. Solely with regard to the Matters Addressed, as set forth below, Respondent hereby waives any right to a hearing as may be provided by law, consents to the issuance and entry of this Order, and agrees to be bound by its terms. Respondent consents to and agrees not to contest the authority or jurisdiction of the Department to issue or enforce this Order, and agrees not to contest the validity of this Order or its terms or the validity of data submitted to the Department by Respondent pursuant to this Order.

NOW, having considered this matter and being duly advised, IT IS ORDERED THAT:

I. Matters Addressed

Matters Addressed by this Order include:

(1) Respondent will develop and submit to the Department for its review and approval a soil vapor intrusion (SVI) investigation Work Plan for the two occupied buildings located at the Site (691 and 705 St. Paul Street), as more fully described below.

2) Respondent will implement the approved Work Plan.

(3) Respondent will submit to the Department a SVI report that describes the results of the SVI.

(4) Respondent will conduct any further work necessary to implement a remedial program should such a program be required by the Department following its review of the SVI report.

II. SVI Work Plan and Report

(1) The SVI Work Plan shall be submitted to the Department within sixty (60) days after the effective date of this Order. The SVI Work Plan shall provide a detailed description of the proposed work that shall include at a minimum sub-slab soil vapor and indoor air monitoring in the two buildings, outdoor air monitoring, and provide a schedule for performing the SVI.

(2) The SVI report shall be submitted to the Department for its review within sixty (60) days following the completion of the SVI investigation. The SVI report shall include a recommendation whether a remedial program should be conducted pursuant to 6 NYCRR §§375-1.8 & 2.8 to address SVI.

III. <u>Remedial Program</u>

(1) Should the Department determine that a remedial program is necessary to address SVI at the site, Respondent agrees to submit within sixty (60) days following the

2

Department's determination a Work Plan and a schedule to the Department for its review to conduct IRMs, Remedial Action(s), Site management or other measures to eliminate or minimize SVI at the Site.

(2) Once approved by the Department, Respondent agrees to implement the approved Work Plan on the schedule contained in the approved Work Plan.

IV. Site Access

The Department understands that the SVI and any subsequent remedial program will occur on property and in buildings not currently owned by Respondent. Respondent shall make all reasonable efforts to obtain access to the Site and the buildings so that the approved schedule can be met. If Respondent's efforts to obtain access to the Site and buildings are not successful, Respondent shall notify the Department and the Department will attempt to obtain said access. If the Department's attempt to obtain access is also unsuccessful, Respondent and the Department shall discuss how to conduct an alternative SVI without obtaining access to the Site and buildings.

V. Payment of State Costs

Respondent shall pay all state costs as set forth in Appendix "A". Invoices shall be sent to Respondent at the address stated below in ¶VI.A.2.

VI. <u>Communications</u>

A. All written communications required by this Consent Order shall be transmitted by United States Postal Service, by private courier service, by hand delivery, or by electronic mail.

1. Communication from Respondent shall be sent to:

Frank Sowers (1 hard copy (unbound for work plans) & 1 electronic copy) Department of Environmental Conservation Division of Environmental Remediation 6274 East Avon – Lima Road Avon, NY 14414 frank.Sowers@dec.ny.gov

Krista Anders (electronic copy only) New York State Department of Health Empire State Plaza Corning Tower Room 1787 Albany, NY 12237 krista.anders@health.ny.gov
2. Communication from the Department to Respondent shall be sent to:

Ms. Amy Butler and Mr. Frank Chiappone Bausch + Lomb. 1400 N. Goodman Street Rochester, NY 14609

B. The Department and Respondent reserve the right to designate additional or different addressees for communication on written notice to the other. Additionally, the Department reserves the right to request that the Respondent provide more than one paper copy of any work plan or report.

C. Each party shall notify the other within ninety (90) days after any change in the addresses listed in this paragraph or in Paragraph I.

VII. Miscellaneous

A. Appendix A – "Standard Clauses for All New York State Superfund Orders" is attached to and hereby made a part of this Order as if set forth fully herein.

B. In the event of a conflict between the terms of this Order (including any and all attachments thereto and amendments thereof) and the terms of Appendix A, the terms of this Order shall control.

C. The effective date of this Order is the 10th day after it is signed by the Commissioner or the Commissioner's designee.

DATED: February 14,2017

BASIL SEGGOS, COMMISSIONER NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Pokart W. Sabiak, P.F.

By: Robert W. Schick, P.E., Director Division of Environmental Remediation

CONSENT BY RESPONDENT

Respondent hereby consents to the issuing and entering of this Consent Order, waives Respondent's right to a hearing herein as provided by law, and agrees to be bound by this Consent Order.

BAUSCH.+ LOMB By: Amy R. Butlen Title: V.P. Environment, Health, Safety + Sustainability Date: 25 JAN 17)) ss:

STATE OF NEW YORK

)

COUNTY OF

On the 95^{th} day of $\boxed{\text{January}}_{\text{personally appeared}}$ in the year 2017, before me, the undersigned, me who, being duly sworn, did depose and say that he/she/they reside at 4789 Morrow Hill Rd. Canandaigua NY (full mailing address) and that he/she/they is (are) the <u>Vice President</u> (president or other officer or director or attorney in fact duly appointed) of the <u>Bausch + Lomb</u> (full legal name of corporation), the corporation described in and which executed the above instrument; and that he/she/they signed his/her/their name(s) thereto by the authority of the board of directors of said corporation.

ublic. State of tary

JENNIFER R. HATCH Notary Public - State of New York No. 01HA6111879 Qualified in Wyoming County My Commission Expires June 28, 2020

EXHIBIT "A"

• .

,

£،

¢

•

Мар

May 18, 2015

This map is intended for general reference only.

The City of Rochester makes no representation as to the accuracy or fitness of the data presented.

City of Rochester, NY

City of Rochester, NY Lovely A. Warren, Mayor

EXHIBIT "B"

☞. .

RECORDS SEARCH REPORT

1. Detail all environmental data and information within Respondent's or Respondent's agents' or consultants' possession or control regarding environmental conditions at or emanating from the Site.

2. A comprehensive list of all existing relevant reports with titles, authors, and subject matter, as well as a description of the results of all previous investigations of the Site and of areas immediately surrounding the Site which are or might be affected by contamination at the Site, including all available topographic and property surveys, engineering studies, and aerial photographs.

3. A concise summary of information held by Respondent and Respondent's attorneys and consultants with respect to:

(i) a history and description of the Site, including the nature of operations;

(ii) the types, quantities, physical state, locations, methods, and dates of disposal or release of hazardous waste at or emanating from the Site;(iii)a description of current Site security (i.e. fencing, posting, etc.); and

(iii) the names and addresses of all persons responsible for disposal of hazardous waste, including the dates of such disposal and any proof linking each such person responsible with the hazardous wastes identified.

APPENDIX "A"

I

·, Ū.,

STANDARD CLAUSES FOR ALL NEW YORK STATE STATE SUPERFUND ORDERS

8

STANDARD CLAUSES FOR ALL NEW YORK STATE SUPERFUND ADMINISTRATIVE ORDERS

The parties to the State Superfund Order (hereinafter "Order") agree to be bound by the following clauses which are hereby made a part of the Order. The word "Respondent" herein refers to any party to the Order, other than the New York State Department of Environmental Conservation (hereinafter "Department").

I. Citizen Participation Plan

Within twenty (20) days after the effective date of this Order, Respondent shall submit for review and approval a written citizen participation plan prepared in accordance with the requirements of ECL §27-1417 and 6 NYCRR sections 375-1.10 and 375-3.10. Upon approval, the Citizen Participation Plan shall be deemed to be incorporated into and made a part of this Order.

II. Initial Submittal

Within thirty (30) days after the effective date of this Order, Respondent shall submit to the Department a Records Search Report prepared in accordance with Exhibit "B" attached to the Order. The Records Search Report can be limited if the Department notifies Respondent that prior submissions satisfy specific items required for the Records Search Report.

III. <u>Development</u>, Performance, and Reporting of Work Plans

A. Work Plan Requirements

All activities at the Site that comprise any element of an Inactive Hazardous Waste Disposal Site Remedial Program shall be conducted pursuant to one or more Department-approved work plans ("Work Plan" or "Work Plans") and this Order and all activities shall be consistent with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 C.F.R. Part 300, as required under CERCLA, 42 U.S.C. § 9600 *et seq*. The Work Plan(s) under this Order shall address both on-Site and off-Site conditions and shall be developed and implemented in accordance with 6 NYCRR § 375-1.6(a), 375-3.6, and 375-6. Subject to Subparagraph III.E.3,. all Department-approved Work Plans shall be incorporated into and become enforceable parts of this Order. Upon approval of a Work Plan by the Department, Respondent shall implement such Work Plan in accordance with the schedule contained therein. Nothing in this Subparagraph shall mandate that any particular Work Plan be submitted.

The Work Plans shall be captioned as follows:

1. Site Characterization ("SC") Work Plan: a Work Plan which provides for the identification of the presence of any hazardous waste disposal at the Site;

2. Remedial Investigation/Feasibility Study ("RI/FS") Work Plan: a Work Plan which provides for the investigation of the nature and extent of contamination within the boundaries of the Site and emanating from such Site and a study of remedial alternatives to address such on-site and off-site contamination;

3. Remedial Design/Remedial Action ("RD/RA") Work Plan: a Work Plan which provides for the development and implementation of final plans and specifications for implementing the remedial alternative set forth in the ROD;

4. "IRM Work Plan" if the Work Plan provides for an interim remedial measure;

5. "Site Management Plan" if the Work Plan provides for the identification and implementation of institutional and/or engineering controls as well as any necessary monitoring and/or operation and maintenance of the remedy; or

6. "Supplemental" if additional work plans other than those set forth in II.A.1-5 are required to be prepared and implemented.

B. Submission/Implementation of Work Plans

1. Respondent may opt to propose one or more additional or supplemental Work Plans (including one or more IRM Work Plans) at any time, which the Department shall review for appropriateness and technical sufficiency. 2. Any proposed Work Plan shall be submitted for the Department's review and approval and shall include, at a minimum, a chronological description of the anticipated activities, a schedule for performance of those activities, and sufficient detail to allow the Department to evaluate that Work Plan.

i. The Department shall notify Respondent in writing if the Department determines that any element of a Department-approved Work Plan needs to be modified in order to achieve the objectives of the Work Plan as set forth in Subparagraph III.A or to ensure that the Remedial Program otherwise protects human health and the environment. Upon receipt of such notification, Respondent shall, subject to dispute resolution pursuant to Paragraph XV, modify the Work Plan.

ii. The Department may request, subject to dispute resolution pursuant to Paragraph XV, that Respondent submit additional or supplemental Work Plans for the Site to complete the current remedial phase within thirty (30) Days after the Department's written request.

3. A Site Management Plan, if necessary, shall be submitted in accordance with the schedule set forth in the IRM Work Plan or Remedial Work Plan.

4. During all field activities conducted under a Department-approved Work Plan, Respondent shall have on-Site a representative who is qualified to supervise the activities undertaken in accordance with the provisions of 6 NYCRR 375-1.6(a)(3).

5. A Professional Engineer must stamp and sign all Work Plans other than SC or RI/FS Work Plans.

C. <u>Submission of Final Reports and Periodic</u> <u>Reports</u>

1. In accordance with the schedule contained in a Work Plan, Respondent shall submit a final report as provided at 6 NYCRR 375-1.6(b) and a final engineering report as provided at 6 NYCRR 375-1.6(c). 2. Any final report or final engineering report that includes construction activities shall include "as built" drawings showing any changes made to the remedial design or the IRM.

3. In the event that the final engineering report for the Site requires Site management, Respondent shall submit an initial periodic report by in accordance with the schedule in the Site Management Plan and thereafter in accordance with a schedule determined by the Department. Such periodic report shall be signed by a Professional Engineer or by such other qualified environmental professional as the Department may find acceptable and shall contain a certification as provided at 6 NYCRR 375-1.8(h)(3). Respondent may petition the Department for a determination that the institutional and/or engineering controls may be terminated. Such petition must be supported by a statement by a Professional Engineer that such controls are no longer necessary for the protection of public health and the environment. The Department shall not unreasonably withhold its approval of such petition.

4. Within sixty (60) days of the Department's approval of a Final Report, Respondent shall submit such additional Work Plans as is required by the Department in its approval letter of such Final Report. Failure to submit any additional Work Plans within such period shall be a violation of this Order.

D. Review of Submittals

1. The Department shall make a good faith effort to review and respond in writing to each submittal Respondent makes pursuant to this Order within sixty (60) Days. The Department's response shall include, in accordance with 6 NYCRR 375-1.6(d), an approval, modification request, or disapproval of the submittal, in whole or in part.

i. Subject to Subparagraph III.E.3 and upon the Department's written approval of a Work Plan, such Department-approved Work Plan shall be deemed to be incorporated into and made a part of this Order and shall be implemented in accordance with the schedule contained therein.

ii. If the Department modifies or requests modifications to a submittal, it shall specify the reasons for such modification(s). Within fifteen (15) Days after the date of the Department's written

notice that Respondent's submittal has been disapproved, Respondent shall notify the Department of its election in accordance with 6 NYCRR 375-1.6(d)(3). If Respondent elects to modify or accept the Department's modifications to the submittal, Respondent shall make a revised submittal that incorporates all of the Department's modifications to the first submittal in accordance with the time period set forth in 6 NYCRR 375-1.6(d)(3). In the event that Respondent's revised submittal is disapproved, the Department shall set forth its reasons for such disapproval in writing and Respondent shall be in violation of this Order unless it invokes dispute resolution pursuant to Paragraph XV and its position prevails. Failure to make an election or failure to comply with the election is a violation of this Order.

iii. If the Department disapproves a submittal, it shall specify the reasons for its disapproval. Within fifteen (15) Days after the date of the Department's written notice that Respondent's submittal has been disapproved, Respondent shall notify the Department of its election in accordance with 6 NYCRR 375-1.6(d)(4). If Respondent elects to modify the submittal, Respondent shall make a revised submittal that addresses all of the Department's stated reasons for disapproving the first submittal in accordance with the time period set forth in 6 NYCRR 375-1.6(d)(4). In the event that Respondent's revised submittal is disapproved, the Department shall set forth its reasons for such disapproval in writing and Respondent shall be in violation of this Order unless it invokes dispute resolution pursuant to Paragraph XV and its position prevails. Failure to make an election or failure to comply with the election is a violation of this Order.

2. Within thirty (30) Days after the Department's approval of a final report, Respondent shall submit such final report, as well as all data gathered and drawings and submittals made pursuant to such Work Plan, in an electronic format acceptable to the Department. If any document cannot be converted into electronic format, Respondent shall submit such document in an alternative format acceptable to the Department.

E. Department's Issuance of a ROD

1. Respondent shall cooperate with the Department and provide reasonable assistance, consistent with the Citizen Participation Plan, in soliciting public comment on the proposed remedial action plan ("PRAP"), if any. After the close of the public comment period, the Department shall select a final remedial alternative for the Site in a ROD. Nothing in this Order shall be construed to abridge any rights of Respondent, as provided by law, to judicially challenge the Department's ROD.

2. Respondent shall have 60 days from the date of the Department's issuance of the ROD to notify the Department in writing whether it will implement the remedial activities required by such ROD. If the Respondent elects not to implement the required remedial activities, then this order shall terminate in accordance with Paragraph XIV.A. Failure to make an election or failure to comply with the election is a violation of this Order.

3. Nothing in this Order, in any submittal, or in any work plan(s) submitted pursuant to this Order shall modify, expand, reduce, or otherwise change the remedial activities (including site management) required by a ROD issued by the Department.

F. Institutional/Engineering Control Certification

In the event that the remedy for the Site, if any, or any Work Plan for the Site, requires institutional or engineering controls, Respondent shall submit a written certification in accordance with 6 NYCRR 375-1.8(h)(3) and 375-3.8(h)(2).

IV. Penalties

A. 1. Respondent's failure to comply with any term of this Order constitutes a violation of this Order, the ECL, and 6 NYCRR 375-2.11(a)(4). Nothing herein abridges Respondent's right to contest any allegation that it has failed to comply with this Order.

2. Payment of any penalties shall not in any way alter Respondent's obligations under this Order.

B. 1. Respondent shall not suffer any penalty or be subject to any proceeding or action in the event it cannot comply with any requirement of this Order as a result of any Force Majeure Event as provided at 6 NYCRR 375-1.5(b)(4). Respondent must use best efforts to anticipate the potential Force Majeure Event, best efforts to address any such event as it is occurring, and best efforts following the Force Majeure Event to minimize delay to the greatest extent possible. "Force Majeure" does not include Respondent's economic inability to comply with any obligation, the failure of Respondent to make complete and timely application for any required approval or permit, and non-attainment of the goals, standards, and requirements of this Order.

2. Respondent shall notify the Department in writing within five (5) Days of the onset of any Force Majeure Event. Failure to give such notice within such five (5) Day period constitutes a waiver of any claim that a delay is not subject to penalties. Respondent shall be deemed to know of any circumstance which it, any entity controlled by it, or its contractors knew or should have known.

3. Respondent shall have the burden of proving by a preponderance of the evidence that (i) the delay or anticipated delay has been or will be caused by a Force Majeure Event; (ii) the duration of the delay or the extension sought is warranted under the circumstances; (iii) best efforts were exercised to avoid and mitigate the effects of the delay; and (iv) Respondent complied with the requirements of Subparagraph IV.B.2 regarding timely notification.

4. If the Department agrees that the delay or anticipated delay is attributable to a Force Majeure Event, the time for performance of the obligations that are affected by the Force Majeure Event shall be extended for a period of time equivalent to the time lost because of the Force majuere event, in accordance with 375-1.5(4).

5. If the Department rejects Respondent's assertion that an event provides a defense to non-compliance with this Order pursuant to Subparagraph IV.B, Respondent shall be in violation of this Order unless it invokes dispute resolution pursuant to Paragraph XV and Respondent's position prevails.

V. Entry upon Site

A. Respondent hereby consents, upon reasonable notice under the circumstances presented, to entry upon the Site (or areas in the vicinity of the Site which may be under the control of Respondent) by any duly designated officer or employee of the Department or any State agency having jurisdiction with respect to matters addressed pursuant to this Order, and by any agent, consultant, contractor, or other person so authorized by the Commissioner, all of whom shall abide by the health and safety rules in effect for the Site, for inspecting, sampling, copying records related to the contamination at the Site, testing, and any other activities necessary to ensure Respondent's compliance with this Order. Upon request, Respondent shall (i) provide the Department with suitable work space at the Site, including access to a telephone, to the extent available, and (ii) permit the Department full access to all non-privileged records relating to matters addressed by this Order. Raw data is not considered privileged and that portion of any privileged document containing raw data must be provided to the Department. In the event Respondent is unable to obtain any authorization from third-party property owners necessary to perform its obligations under this Order, the Department may, consistent with its legal authority, assist in obtaining such authorizations.

B. The Department shall have the right to take its own samples and scientific measurements and the Department and Respondent shall each have the right to obtain split samples, duplicate samples, or both, of all substances and materials sampled. The Department shall make the results of any such sampling and scientific measurements available to Respondent.

VI. Payment of State Costs

A. Within sixty (60) days after receipt of an itemized invoice from the Department, Respondent shall pay to the Department a sum of money which shall represent reimbursement for State Costs as provided by 6 NYCRR 375-1.5 (b)(3)(i). Failure to timely pay any invoice will be subject to late payment charge and interest at a rate of 9% from the date the payment is due until the date the payment is made.

B. Costs shall be documented as provided by 6 NYCRR 375-1.5(b)(3). The Department shall not be required to provide any other documentation of costs, provided however, that the Department's records shall be available consistent with, and in accordance with, Article 6 of the Public Officers Law.

C. Each such payment shall be made payable to the New York State Department of Environmental Conservation and shall be sent to:

Director, Bureau of Program Management

Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7012

D. The Department shall provide written notification to the Respondent of any change in the foregoing addresses.

E. If Respondent objects to any invoiced costs under this Order, the provisions of 6 NYCRR 375-1.5 (b)(3)(v) and (vi) shall apply. Objections shall be sent to the Department as provided under subparagraph VI.C above.

F. In the event of non-payment of any invoice within the 45 days provided herein, the Department may seek enforcement of this provision pursuant to Paragraph IV or the Department may commence an enforcement action for non-compliance with ECL '27-1423 and ECL 71-4003.

VII. Release and Covenant Not to Sue

Upon the Department's issuance of a Certificate of Completion as provided at 6 NYCRR 375-1.9 and 375-2.9, Respondent shall obtain the benefits conferred by such provisions, subject to the terms and conditions described therein.

VIII. Reservation of Rights

A. Except as provided at 6 NYCRR 375-1.9 and 375-2.9, nothing contained in this Order shall be construed as barring, diminishing, adjudicating, or in any way affecting any of the Department's rights or authorities, including, but not limited to, the right to require performance of further investigations and/or response action(s), to recover natural resource damages, and/or to exercise any summary abatement powers with respect to any person, including Respondent.

B. Except as otherwise provided in this Order, Respondent specifically reserves all rights and defenses under applicable law respecting any Departmental assertion of remedial liability and/or natural resource damages against Respondent, and further reserves all rights respecting the enforcement of this Order, including the rights to notice, to be heard, to appeal, and to any other due process. The existence of this Order or Respondent's compliance with it shall not be construed as an admission of liability, fault, wrongdoing, or breach of standard of care by Respondent, and shall not give rise to any presumption of law or finding of fact, or create any rights, or grant any cause of action, which shall inure to the benefit of any third party. Further, Respondent reserves such rights as it may have to seek and obtain contribution, indemnification, and/or any other form of recovery from its insurers and from other potentially responsible parties or their insurers for past or future response and/or cleanup costs or such other costs or damages arising from the contamination at the Site as may be provided by law, including but not limited to rights of contribution under section 113(f)(3)(B) of CERCLA, 42 U.S.C. § 9613(f)(3)(B).

IX. Indemnification

Respondent shall indemnify and hold the Department, the State of New York, the Trustee of the State's natural resources, and their representatives and employees harmless as provided by 6 NYCRR 375-2.5(a)(3)(i).

X. Public Notice

A. Within thirty (30) Days after the effective date of this Order, Respondent shall provide notice as required by 6 NYCRR 375-1.5(a). Within sixty (60) Days of such filing, Respondent shall provide the Department with a copy of such instrument certified by the recording officer to be a true and faithful copy.

B. If Respondent proposes to transfer by sale or lease the whole or any part of Respondent's interest in the Site, or becomes aware of such transfer, Respondent shall, not fewer than forty-five (45) Days before the date of transfer, or within forty-five (45) Days after becoming aware of such conveyance, notify the Department in writing of the identity of the transferee and of the nature and proposed or actual date of the conveyance, and shall notify the transferee in writing, with a copy to the Department, of the applicability of this Order. However, such obligation shall not extend to a conveyance by means of a corporate reorganization or merger or the granting of any rights under any mortgage, deed, trust, assignment, judgment, lien, pledge, security agreement, lease, or any other right accruing to a person not affiliated with Respondent to secure the repayment of money or the performance of a duty or obligation.

XI. Change of Use

Applicant shall notify the Department at least sixty (60) days in advance of any change of use, as defined in 6 NYCRR 375-2.2(a), which is proposed for the Site, in accordance with the provisions of 6 NYCRR 375-1.11(d). In the event the Department determines that the proposed change of use is prohibited, the Department shall notify Applicant of such determination within forty-five (45) days of receipt of such notice.

XII. Environmental Easement

A. If a Record of Decision for the Site relies upon one or more institutional and/or engineering controls, Respondent (or the owner of the Site) shall submit to the Department for approval an Environmental Easement to run with the land in favor of the State which complies with the requirements of ECL Article 71, Title 36, and 6 NYCRR 375-1.8(h)(2). Upon acceptance of the Environmental Easement by the State, Respondent shall comply with the requirements of 6 NYCRR 375-1.8(h)(2).

B. If the ROD provides for no action other than implementation of one or more institutional controls, Respondent shall cause an environmental easement to be recorded under the provisions of Subparagraph XII.A.

C. If Respondent does not cause such environmental easement to be recorded in accordance with 6 NYCRR 375-1.8(h)(2), Respondent will not be entitled to the benefits conferred by 6 NYCRR 375-1.9 and 375-2.9 and the Department may file an Environmental Notice on the site.

XIII.Progress Reports

Respondent shall submit a written progress report of its actions under this Order to the parties identified in Subparagraph IV.A.1 of the Order by the 10th day of each month commencing with the month subsequent to the approval of the first Work Plan and ending with the Termination date as set forth in Paragraph XIV, unless a different frequency is set forth in a Work Plan. Such reports shall, at a minimum, include: all actions relative to the Site during the previous reporting period and those anticipated for the next reporting period; all approved activity modifications (changes of work scope and/or schedule); all results of sampling and tests and all other data received or generated by or on behalf of Respondent in connection with this Site, whether under this Order or otherwise, in the previous reporting period, including quality assurance/quality control information; information regarding percentage of completion; unresolved delays encountered or anticipated that may affect the future schedule and efforts made to mitigate such delays; and information regarding activities undertaken in support of the Citizen Participation Plan during the previous reporting period and those anticipated for the next reporting period.

XIV. Termination of Order

A. This Order will terminate upon the earlier of the following events:

1. Respondent's election in accordance with Paragraph III.E.2 not to implement the remedial activities required pursuant to the ROD. In the event of termination in accordance with this Subparagraph, this Order shall terminate effective the 5th Day after the Department's receipt of the written notification, provided, however, that if there are one or more Work Plan(s) for which a final report has not been approved at the time of Respondent's notification of its election not to implement the remedial activities in accordance with the ROD, Respondent shall complete the activities required by such previously approved Work Plan(s) consistent with the schedules contained therein. Thereafter, this Order shall terminate effective the 5th Day after the Department's approval of the final report for all previously approved Work Plans; or

2. The Department's written determination that Respondent has completed all phases of the Remedial Program (including Site Management), in which event the termination shall be effective on the 5th Day after the date of the Department's letter stating that all phases of the remedial program have been completed.

B. Notwithstanding the foregoing, the provisions contained in Paragraphs VI and IX shall survive the termination of this Order and any violation of such surviving Paragraphs shall be a violation of this Order, the ECL, and 6 NYCRR 375-2.11(a)(4), subjecting Respondent to penalties as provided under Paragraph IV so long as such obligations accrued on or prior to the Termination Date.

C. If the Order is terminated pursuant to Subparagraph XIV.A.1, neither this Order nor its termination shall affect any liability of Respondent for remediation of the Site and/or for payment of State Costs, including implementation of removal and remedial actions, interest, enforcement, and any and all other response costs as defined under CERCLA, nor shall it affect any defenses to such liability that may be asserted by Respondent. Respondent shall also ensure that it does not leave the Site in a condition, from the perspective of human health and environmental protection, worse than that which existed before any activities under this Order were commenced. Further, the Department's efforts in obtaining and overseeing compliance with this Order shall constitute reasonable efforts under law to obtain a voluntary commitment from Respondent for any further activities to be undertaken as part of a Remedial Program for the Site.

XV. Dispute Resolution

A. In the event disputes arise under this Order, Respondent may, within fifteen (15) Days after Respondent knew or should have known of the facts which are the basis of the dispute, initiate dispute resolution in accordance with the provisions of 6 NYCRR 375-1.5(b)(2).

B. All cost incurred by the Department associated with dispute resolution are State costs subject to reimbursement pursuant to this Order.

C. Nothing contained in this Order shall be construed to authorize Respondent to invoke dispute resolution with respect to the remedy selected by the Department in the ROD or any element of such remedy, nor to impair any right of Respondent to seek judicial review of the Department's selection of any remedy.

XVI.Miscellaneous

A. Respondent agrees to comply with and be bound by the provisions of 6 NYCRR Subparts 375-1 and 375-2; the provisions of such Subparts that are referenced herein are referenced for clarity and convenience only and the failure of this Order to specifically reference any particular regulatory provision is not intended to imply that such provision is not applicable to activities performed under this Order.

B. The Department may exempt Respondent from the requirement to obtain any state or local permit or other authorization for any activity conducted pursuant to this Order in accordance with 6 NYCRR 375-1.12(b), (c), and (d).

C. 1. Respondent shall use best efforts to obtain all Site access, permits, easements, approvals, institutional controls, and/or authorizations necessary to perform Respondent's obligations under this Order, including all Department-approved Work Plans and the schedules contained therein. If, despite Respondent's best efforts, any access, permits, easements, approvals, institutional controls, or authorizations cannot be obtained, Respondent shall promptly notify the Department and include a summary of the steps taken. The Department may, as it deems appropriate and within its authority, assist Respondent in obtaining same.

2. If an interest in property is needed to implement an institutional control required by a Work Plan and such interest cannot be obtained, the Department may require Respondent to modify the Work Plan pursuant to 6 NYCRR 375-1.6(d)(3) to reflect changes necessitated by Respondent's inability to obtain such interest.

D. The paragraph headings set forth in this Order are included for convenience of reference only and shall be disregarded in the construction and interpretation of any provisions of this Order.

E. 1. The terms of this Order shall constitute the complete and entire agreement between the Department and Respondent concerning the implementation of the activities required by this Order. No term, condition, understanding, or agreement purporting to modify or vary any term of this Order shall be binding unless made in writing and subscribed by the party to be bound. No informal advice, guidance, suggestion, or comment by the Department shall be construed as relieving Respondent of Respondent's obligation to obtain such formal approvals as may be required by this Order. In the event of a conflict between the terms of this Order and any Work Plan submitted pursuant to this Order, the terms of this Order shall control over the terms of the Work Plan(s). Respondent consents to and agrees not to contest the authority and

jurisdiction of the Department to enter into or enforce this Order.

2. i. Except as set forth herein, if Respondent desires that any provision of this Order be changed, Respondent shall make timely written application to the Commissioner with copies to the parties listed in Subparagraph IV.A.1.

ii. If Respondent seeks to modify an approved Work Plan, a written request shall be made to the Department's project manager, with copies to the parties listed in Subparagraph IV.A.1.

iii. Requests for a change to a time frame set forth in this Order shall be made in writing to the Department's project attorney and project manager; such requests shall not be unreasonably denied and a written response to such requests shall be sent to Respondent promptly.

F. 1. If there are multiple parties signing this Order, the term "Respondent" shall be read in the plural, the obligations of each such party under this Order are joint and several, and the insolvency of or failure by any Respondent to implement any obligations under this Order shall not affect the obligations of the remaining Respondent(s) under this Order.

2. If Respondent is a partnership, the obligations of all general partners (including limited partners who act as general partners) under this Order are joint and several and the insolvency or failure of any general partner to implement any obligations under this Order shall not affect the obligations of the remaining partner(s) under this Order.

3. Notwithstanding the foregoing Subparagraphs XVI.F.1 and 2, if multiple parties sign this Order as Respondents but not all of the signing parties elect to implement a Work Plan, all Respondents are jointly and severally liable for each and every obligation under this Order through the completion of activities in such Work Plan that all such parties consented to; thereafter, only those Respondents electing to perform additional work shall be jointly and severally liable under this Order for the obligations and activities under such additional Work Plan(s). The parties electing not to implement the additional Work Plan(s) shall have no obligations under this Order relative to the activities set forth in such Work Plan(s). Further, only those Respondents electing to implement such additional Work Plan(s) shall be eligible to receive the release and covenant not to sue referenced in Paragraph VII.

G. Respondent shall be entitled to receive contribution protection and/or to seek contribution to the extent authorized by ECL 27-1421(6) and 6 NYCRR 375-1.5(b)(5).

H. Any time limitations set forth in Section 113(g)(1) of CERCLA, as amended, 42 U.S.C. § 9613(g)(1), Section 1012(h)(2) of the Oil Pollution Act, as amended, 33 U.S.C. § 2712(h)(2), the Federal Water Pollution Control Act, the New York Navigation Law, the New York Environmental Conservation Law, or any other federal or state statute or regulation with respect to potential claims for natural resource damages against Respondent or any other time limitations for the filing of potential natural resource damages claims against Respondent under any other applicable state or federal law are tolled in their entirety from the effective date of this Order until termination of this Order.

I. Unless otherwise expressly provided herein, terms used in this Order which are defined in ECL Article 27 or in regulations promulgated thereunder shall have the meaning assigned to them under said statute or regulations.

J. Respondent's obligations under this Order represent payment for or reimbursement of response costs, and shall not be deemed to constitute any type of fine or penalty.

K. Respondent and Respondent's successors and assigns shall be bound by this Order. Any change in ownership or corporate status of Respondent shall in no way alter Respondent's responsibilities under this Order.

L. This Order may be executed for the convenience of the parties hereto, individually or in combination, in one or more counterparts, each of which shall be deemed to have the status of an executed original and all of which shall together constitute one and the same.

APPENDIX 2

Electronic Copy of Construction Completion Report

APPENDIX 3

Community Air Monitoring Plan Data

DAILY COMMUNITY AIR MONITORING LOG NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK

DATE: 12/4/17

			Upwind			Downwind	laBello-C	Work Area
Time	Wind Direction		Particulates	VOC		Particulates	VOCs	VOCs
		Location	(µg/m ³⁾	ppb	Location	(µg/m ³⁾	ppb	ppb 🗾
7.28	NIA	Basement	0.05	2.235	Mh of ps.ht	0.03	365	3,209 -
2:40	~107	5417	0.060	361	5417	007	378	759
7:53	()	~ ~ ~	01054	383	U.	0.070	395	400
3.61	11	mard 131 E	008	484	15'E 85'S.	007	342	586
3:11			.080	356		0071	362	415
			-					
_								
				· · · · · · · · · · · · · · · · · · ·				
				J				
							_	
					·			
Calibration - T	SI DustTrak Mod	lel 8520 Particulat	e Meter					
Time	Seria	l Number	With Zer	o Air Filter	Backg	round	Locat	ion
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
				mg/m³		mg/m³		
Calibration - F	hotoionization (Detector						
Ter		Andal	Carial	Number		7000 14-	abient) Air	
Time	n New State	VIDUEI	Senan			Zero (An		
							PPM	
							PPM	
							PPM	
Notes/Activit	ies:	Somell N	anish	Flaigue	r from a	ood wa	riency	
12 C	イントちょう	- s cont	ibiting of	c backgi	bund UDC	5	1 .	

DAILY COMMUNITY AIR MONITORING LOG NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK PARTICULATE AND VOC MONITORING DATE: <u>12/13//7</u>

			Upwind		Inde Mart	Downwind		w
Time	Wind Direction	Location	Particulates	VOCs	Location	Particulates	VOCs	
			(µg/m ³⁾	ppb	Location	(µg/m ³⁾	ppb	p
10:23	NIA	+16-11	0.137	4324	F-b	0.044	219	12
10:25	~1M-	1 X	0.093	314		0,024	237	-
101			0080	298		0.062	278	2
								1
								1
				l				1
-								
								1
L								1
								Î
								1
Calibration - T	SI DustTrak Mod	el 8520 Particulat	e Meter					
Time	Serial	Number	With Zer	o Air Filter	Backg	round	Loca	tion
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
				mg/m ³		mg/m³		
Calibration - P	hotoionization D	etector						
Time		ladal	for state					
Time		100ei	Serial	Number		Zero (Amb	pient) Air	
							PPM	
							PPM	
							PPM	
Notes/Activiti	es:	Dalling	testing 1	roles. +	ownetrati	ing		
)	1		3)		

\sim			PARTICU DATE	JLATE AND VOC : ヽン/ いく/	MONITORING	Bai	Agond	Hanguo
	1	1	Linwind	- 0-7	<u> </u>	Downwind	1	post".
Time	Wind Direction		Particulates	VOCs		Particulates	VOCs	VOCs
		Location	(µg/m ³⁾	ppb	Location	(µg/m ³⁾	dad	ppb
11:10	N1.2	Deve boottie	0.057	915	Down Ho Staw	0,801		E(
11.15			MOTE	7.21		0075	7441	897
11:20			6. Cit	713		C. 960	775	670
1125			CA . TO'L	727		1.54	9-26	870
1:30	V		0.344	794		M 939	749	810
> 8 4	two .	ime	DUC	Cement	1 Gilve	13 herry	gippine.	te
pipilno	dori	atte	istile de	rilling	is orcer	inor .		
75)	<i>i</i>)	0.7-74	1840		0, 388	1261	1481
11:40			CDI	LICE		0.701	1880	1490
48			0145	3647		01145	4306	3753
607			0.193	2661		1.68	2,348	2760
07.5			0.490	7415		0357	2392	2590
12.45			0.344	7985		0.376	Zearay	2,050
00			1917 e-	70.054		0170	914	824
15			264	203		0.070	923	128
1.3		-	650	0.320		0.117	684	693
D	avente	5 4 2	Entre 1	-1 pric	Kiser.	CUANT	? Ceased	
1.16	UNIA	EIL	0.092	614	ELO	ETO.CLO	580'	575
J. No			0,7,60	559		Gili Z	594	##5>90
hob	L CLOSE	24	OLE P	2:34		0.061	577	612
		· · · · ·	<u> </u>					
				-				
alibration - T	SI DustTrak Mod	lel 8520 Particulate	Meter					
Time	Seria	l Number	With Zer	ro Air Filter	Backg	round	Locat	ion
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
alibration - P	hotoionization E	Detector	(1			
Time	N	Nodel	Serial	Number	Zero (Ambient) Air			
							PPM	
							PPM	
8		0 1 1		1 11			РРМ	
otes/Activiti	ter frei	off J	Dicit-1	rates the	nt t	e 9.34	\$ 9.25	
Z (ha	enerst)	Seen -	Sto	p m Kec	* Vain	in ise	2 to 1	start
petor-	J Sterri	ing to c	who in the	penetrontin.	s- Dust	- finck a	went be	lon j
11.	- 1 N. P.P	Section	neme	From P	UL Cana	tused in	ender	ed spa
L1	m	1	and dela	ofan Ja	in a mana	1 penel	rath of	S2 She
		w V	UC ucr.			No. 1	· · · · · -	

DAILY COMMUNITY AIR MONITORING LOG NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK

PARTICULATE AND VOC MONITORING DATE: 12/14 Blegrand 223 post 376

		Upwind)-2		Downwind	Work Are	
Time Wind Directio	Wind Direction	l anti	Particulates	VOCs	lastin	Particulates	VOCe	VOCs
		Location	(µg/m ³⁾	ppb		(µg/m ³⁾	ppb	ppb
2:55		ER(E)	P.an	387	ようの	6.071	410	318
3105			6.035	378	ιç	0.066	401	407
3.12		11	0.077	3.52	11	0.033	353	374
31.20								-
> bol	e Sei	1-26.	+ HILin	fel hand	1to 1317	7 12.	to nere	pt.
100/1	In	Stitup.	- inad	e Room				
127		B17(in)	6.024	429	B17(E)	0.120	421	431
いろう			CA. SLI	431		1.06	479	434
5.40			0143	365		C 86 M	401	379
5.45			0.073	337		0:057	337	349
> Parl	end	0 3:0	17-					
2		1 A	- X-					
NET	ers	utt-s	ite					
		(
ibration - TS	I DustTrak Mod	lel 8520 Particulate	Meter					
Time	Seria	Number	With Zer	o Air Filter	Backg	round	Loc	ation
				mg/m ³		mg/m ³	1	
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
PL								
libration - Pr	otoionization E	etector			1			
Time	N	lodel	Serial I	Number		Zero (Amb	pient) Air	
					1			
							PPM	
							PPM	
		7 1 11		2			PPM	
925 St. est.		1. 1. 1. 193	En Marrie	1) 1				

ti DAILY COMMUNITY AIR MONITORING LOG NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK PARTICULATE AND VOC MONITORING

contension pends

138

6

- 274 Due in

150 8P~

Beekground

pur

	1	D-2	Upwind	Insile Km		Downwind	Ma Ilven	Work Area
Time	Wind Direction		Particulates	VOCs		Particulates	VOCs	VOCs
		Location	(ue/m ²)	ppb	Location	(ug/m ³⁾	ppb	ppb —
11' 00 14-	~1A	FIG-5	(D.717.	7 407	6-13	0.706	724-7	2444
IL'IS	NIA	1,0	0.737	1 0 2 7	~ ~	0.366	3761	1914
11.72			0074	1 2 40	·	0:078	1095	7.0
10,50	10 01	FURZ -	CHIAR	1.50	int.1	LOV C	1513	160
7 6		in the	S (pa	4 2	0.1.1	ver j		
11:00	DC &	Enaw		1.00	~ ~ ~	19,125	7 intr	1757
11.50			0041	Latel		0.031	5 61	7.01
12.05			0.(917	1822		10 LT 1	241	411
16.4			0.076	102		O.LLO MINS)16	166
6:60			2000	667		0.1-17	211	15/0
11.70			0.14.5	1,200		0.036	311	11/62
1.05			1. 12 · 12 · 1	1,001		0.007	160	1,000
1.10			() (0)	16,123		0.158	575	1,50
1 28	1 10	2			1 1	1	1	
()	LA May	<u> </u>	cased	ar	note	ha	5 lace	
	patere	d	UT CO	de t	PVC	COMAP	Ted	
		Ļ						
		B.						
alibration - T	SI DustTrak Mod	del 8520 Particul	ate Meter					
Time	Seria	al Number	With Ze	ro Air Filter	Backg	round	Loca	tion
	11th			mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
alibration - P	hotoionization l	Jetector						
Time	r r	Vlodel	Serial	Number		Zero (Am	bient) Air	
	1							
	- 2		_				PPM	
							PPM	
		A	1	1 at a	net al a	_ 221		
lotes/Activiti	es:	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	(Ong) u	n Pi	or no lin		PP Prod	a k .
enter	23 :1	+0	(ra-Ispa	ce - Apin	ng to ha	ve to	Find a .	esput
	the pe	nztration	n.	A	1	0.00	<i></i>	<u>.</u>
har	1		Sterne	Vertrations	Such,			
Offer	's presen	-Famu	a reave					
Offer All	's presen	+ cub stat	a reave		N.			
All Official	S present	f sub slab"	newski p	rt m	Drum-	1 A		
Oper All Electi	s present Lor C +	tous Ru	north p	ut m ut petrolicu	Drum- m based	lubrica t	5 , L Re	on pl

DAILY COMMUNITY AIR MONITORING LOG NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK PARTICULATE AND VOC MONITORING DATE: 2771

			Upwind			Work Area				
Time	Wind Direction	location	Particulates	VOCs	Losstian	Particulates	VOCs	VOCs		
		Location	(µg/m ³⁾	ppb	Location	(µg/m ³⁾	ppb	ppb		
9:55	Int	Lading dolk	0.049	222	E E of Fut	00010	172	144		
10:05		17' 504 JAL	B.024	199	Door	0019	-213	205		
		Door			2					
>	Drottor	cense	e- tho	re Kille	in 1 tour	& tap	lenn			
		/						1		
							-			
					· · · · · · · · · · · · · · · · · · ·					
Calibration - T	SI DustTrak Mod	el 8520 Particulate	Meter							
Time	Serial	Number	With Zero	Air Filter	Backgr	ound	Locat	ion		
				mg/m ³		mg/m³				
				mg/m ³		mg/m ³				
				mg/m³		mg/m ³				
Calibration - Pl	hotoionization De	etector								
Time	M	odel	Serial N	umber		Zero (Ambi	ent) Air			
							РРМ			
							РРМ			
		0	1				РРМ			
Notes/Activitie	-	Penetrati	~ 100	-den g	do ele t	1001 -	to sex			
	f there	are	possib	stite	of puttin	alan	1 Suction			
	nt a	there.		1			1			
B NOK -	- Gusle	13 Gallo	YXC	greger t	in Cornel	~/ 1.	in notic	<i>r</i>		
Ryround PII	D= 178	me	2 whop	& leaf	blover -	Gins 100.	mod			
7		- e	the p		2 Read					
			reading [inclegrou.		*7				
See map on	back for location i	nformation.	ral voc.	rdense 8	,692					
	_ es' -370									

DAILY COMMUNITY AIR MONITORING LOG NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK PARTICULATE AND VOC MONITORING DATE: 11년/1영

flore to open

			Upwind			Downwind [)-2	Work
Time	Wind Direction	Location	Particulates	VOCs	location	Particulates	VOCs	VO
			(µg/m ³⁾	ppb		(µg/m ³⁾	ppb	pp
15:00	N/A	NWConer off-	0.079	7,037	LO'N POUR	0.018	1,985	12,20
10:15			0.160	1980		0,176	2,146	1.2,65
10:30			0.147	2,486		0,201	2,956	2,95
10:43	13		0-134	3.891		0.707	1.4,76%	3:55
Be	se s	lealed	Dy	VOINS				
-NIOS	sting	point to	1-5 hall 0:137	a true 4,635	Cutur	4 V	0 (m 4,628	ante 4,6
16:10 11:15			0.153 0.155	1, 256		6.207 0.544	1,755	1,99
11.30		PT in Cult					RY L	U G
17:0D			0.057	5.857		10144	4969	5041
17:04	Dore	7		-,077			1,100	1000
			1					
Calibration - T	SI DuctTrak Mod	ol 8520 Particulato	Meter				J	
Time	Seria	Number	With Zer	a Air Filter	Backg	round	Lora	tion
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
				mg/m ³		mg/m ³		
Calibration - Pl Time	hotoionization D	letector Todel	Serial I	Number		Zero (Amt	pient) Air	
							РРМ	
							PPM	
							PPM	
						/	1.0.00	
Notes/Activitie	es: Caled 0	PVC CI	we set	m was	je aven	up in	Sm.	3-
Notes/Activitie EL	cialed B	PVC CH enckyrown 2 rolld	we set	M WOS	kaven	u/ in	Sm.	3-
Notes/Activitie 2 N-0 N-0 V	enalez b chalez b celector u	DVC CH encloyments roufle test as	we set	in was	tration	w/ in	5 m.	3-
Notes/Activitie eL N.v Y Arb T Alar	eline pri	PVC CH encloyments noted tel as	we set	n wos fiel pele retertion	to pue (m/ in	Sm.	3-
Notes/Activitie el N.v Y Ato Y Ato Y Marv Vapor	porval	DVC CH encloyments worke D-went by S by S	hole per hole per chole per cif & 10) Corn	n wos fiel pece eretation 27 de 4 of 1	tation to fue (Room	med	Sm. Varinas d + s	s-

(DAILY COMMUNITY AIR MONITORING LOG) NYSDEC BCP SITE #C828159A, 691 SAINT PAUL STREET, ROCHESTER, NEW YORK PARTICULATE AND VOC MONITORING DATE: <u>174844</u>118/17

			Upwind			Downwind		Work Area
Time	Wind Direction	Location	Particulates	ppb	Location	Particulates	VOCs	VOCs
			(µg/m ³⁾	(ppm)		(µg/m ³⁾	ррь	ppb
15.00		In new sitt	0.034		- wait-	0.025		38
11:42	NIA	R 5	0.092	4.326	1 BB	10,11,2	238	77500
1157	_	75	0.098	4 58	B5	K387	1,486	6,3977.
11:12	~	105	0.02F	7.468	85	0.214	218-1	4346
12:27			NIT	31972		0229	\$ 650	6.986
- hole	Seare	64	System	t in t	alt -		8 M	0,
		west of B9	J		Fact of BS			
1. D			0.029	867	- t×	014	3.386	3.370
1:45		((0.08.9	634	((0.019	700	616
2:00		. (7.1			
					·			
-								
					·			
		I						
			Meter					
Calibration - TS	SI DustTrak Mod	lel 8520 Particulate	inclei					
Calibration - 75 Time	6l DustTrak Mod Seria	del 8520 Particulate I Number	With Zero	o Air Filter	Backg	round	Locat	ion
Calibration - TS Time	6l DustTrak Mod Seria	del 8520 Particulate I Number	With Zero	o Air Filter mg/m³	Backg	round mg/m ³	Locat	ion
Calibration - TS Time	6l DustTrak Moo Seria	lel 8520 Particulate I Number	With Zero	o Air Filter mg/m³ mg/m³	Backg	round mg/m ³ mg/m ³	Locat	ion
Calibration - 75	SI DustTrak Mod Seria	del 8520 Particulate I Number	With Zero	o Air Filter mg/m³ mg/m³ mg/m³	Backg	round mg/m ³ mg/m ³	Locat	ion
Calibration - 75 Time Calibration - Ph	SI DustTrak Mod Seria	del 8520 Particulate I Number Detector	With Zero	o Air Filter mg/m ³ mg/m ³ mg/m ³	Backg	round mg/m ³ mg/m ³ mg/m ³	Locat	ion
Calibration - TS Time Calibration - Ph	SI DustTrak Mod Seria Dotoionization E	del 8520 Particulate I Number Detector	With Zero	o Air Filter mg/m ³ mg/m ³ mg/m ³	Backg	round mg/m ³ mg/m ³ mg/m ³	Locat	ion
Calibration - 75 Time Calibration - Ph Time	SI DustTrak Mod Seria Seria Dotoionization E	del 8520 Particulate I Number Detector Aodel	With Zero	o Air Filter mg/m ³ mg/m ³ mg/m ³	Backg	round mg/m ³ mg/m ³ Zero (Amb	Locat	ion
Calibration - TS Time Calibration - Ph Time	SI DustTrak Mod Seria Dotoionization D	del 8520 Particulate I Number Detector Aodel	With Zero	o Air Filter mg/m ³ mg/m ³ Mg/m ³	Backg	round mg/m ³ mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM	ion
Calibration - TS Time Calibration - Ph Time	SI DustTrak Mod Seria Dotoionization D	del 8520 Particulate I Number Detector Aodel	With Zero	o Air Filter mg/m ³ mg/m ³ mg/m ³	Backg	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM	cion
Calibration - TS Time Calibration - Ph Time	SI DustTrak Moc Seria	del 8520 Particulate I Number Detector Aodel	With Zerr	o Air Filter mg/m ³ mg/m ³ Number	Backg	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM PPM	ion
Calibration - TS Time Calibration - Pt Time Notes/Activitie	SI DustTrak Mod	lel 8520 Particulate	Serial N	ng/m ³ mg/m ³ mg/m ³ Number	lonostet	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM L. M.Chie	ion
Calibration - TS Time Calibration - Pł Time	SI DustTrak Mod Seria Dotoionization D N	letector Aodel	Serial N Serial N	D Air Filter mg/m ³ mg/m ³ Number Number	lonatet	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM PPM	cion
Calibration - TS Time Calibration - Pt Time Notes/Activitie	SI DustTrak Mod Seria Dotoionization D N N SS: Strong PED	lel 8520 Particulate	Serial N Serial N Serial N Serial N	wall to	lonatet	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM L. Michie	cion
Calibration - TS Time Calibration - Pt Time Notes/Activitie	SI DustTrak Mod Seria Dotoionization D N N SS: Stand PSD	lel 8520 Particulate	With Zero Serial M Serial M Serial M South Helloway	wall to	lonostet	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM L. M. Che	cion
Calibration - TS Time Calibration - Pt Time Notes/Activitie	SI DustTrak Mod Seria	let 8520 Particulate	Serial M Serial M South Hallney	b Air Filter mg/m ³ mg/m ³ Number Number	constra for the d	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM PPM L. M.cha	cion
Calibration - TS Time Calibration - Pł Time Notes/Activitie	SI DustTrak Mod Seria Dotoionization D M SS: Small PSD Thomas Thomas Thomas SC COTTO I gh PI I	Detector Aodel B-1	Serial P Serial P South Hallney	vall to	constrt for	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM L. M. Cha	ion
Calibration - TS Time Calibration - Pt Time Notes/Activitie	SI DustTrak Mod Seria Dotoionization E N N SS: SS: SS: SS: SS: SS: SS: SS: SS:	Detector Aodel	With Zero Serial M Serial M Serial M Hall way	Number	Lonstet for potted tama	round mg/m ³ mg/m ³ Zero (Amb	Locat ient) Air PPM PPM PPM	cion

APPENDIX 4

Daily Reports

Date: 12/4/2017

Project No: 2170820

Temperature: 32 F

Client: Bausch & Lomb

Weather: Partly Cloudy

Summary of Daily Activities:

J. Lanz (LaBella), M. Pelychaty (LaBella), Scott Miller (NYSDEC) and Mit Tech all on-Site at 691 at 13:30 for Site walk and security check in.

Walking basement and sub-basement and moving around the building reviewing areas SSDS lines will be moving through.

2:00 preparing to drill – CAMP monitors set up. Review camp logs for data. Drilling being conducted in St. Michaels woodshop area. Numerous lacquers, varnishes and wood finishing materials present along eastern wall. Wood working activities being conducted at time of drilling – particulate wood dust present in air, however it is not affecting dust monitoring readings.

3:11 – Drilling finished. Holes patched with hard plastic cover and caulking. No VOC or Dust exceedances occurred during drilling.

J. Lanz and Mit Tech – off-Site at 4:30.

Date: 12/6/2017

Project No: 2170820

Client: Bausch & Lomb

Temperature: 24 F

Weather: Cloudy

Summary of Daily Activities:

J. Lanz – on-Site at 12:00am.

M.Pelychaty on-Site conducting air monitoring and VOC monitoring.

Meeting at 2:00pm with 705 St. Paul building owner Brian Grove. Figuring out areas to install vapor points in the 705 property basement and sub basement. Also working out access issues as some machines in this property can not be run at the same time as hammer drill.

Meeting completed and workers back to St. Michaels at 3:00pm. Patching concrete holes and filling in around PVC risers with concrete in holes penetrated today. Put two holes in along SSDS-1 system in basement. All holes sealed and CAMP turned off at 3:15pm post meeting. Work area cleaned and laborers and J. Lanz – off-Site at 3:30pm.

Date: 12/7/2017

Project No: 2170820

Temperature: 35 F

Client: Bausch & Lomb

Weather: Partly Cloudy

Summary of Daily Activities:

J. Lanz – on-Site at 8:45am. Mit tech on-Site at same time. Laborers on-Site at 9:30 with equipment and tools. Staging equipment and materials in Conference room on Basement 1 and in St. Michaels woodshop.

11:00 – installing ceiling hanger bolts to connect hangers in northwest corner of St. Michaels woodshop.

Cleaning St. Michaels work area and preparing piping and materials to be installed.

12:00 – mobilized to 705 St. Paul portion of building. Working on first penetration with hammer drill. Background reading – 124 ppb. CAMP monitors deployed and turned on along with PPB ray.

Scott Miller (NYSDEC) on-Site at 11:45 am. Drilling hole against wall corner at 12:20.

Ceiling brackets installed. Pressure tests reading show negative pressure achieved. Second hole penetration begins at 1:12pm in west/south corner of the storage unit. 12" of concrete and into bedrock/dirt. Core hit abandon piping. Hole moved north 1.5 feet and redrilled.

First hole patched with fiberglass cover and caulking. No exceedances in dust track or VOC monitoring during installation process. Second penetration has been finished and concrete used to fill original penetration location. All holes being covered at remobilizing to St. Michaels woodshop area for pipe shipment. Air monitoring ceased at 2:35 pm.

J. Lanz – off-Site at 4:00pm.

Date: 12/8/2017

Project No: 2170820

Client: Bausch & Lomb

Temperature: 25 F

Weather: Snow/Cloudy

Summary of Daily Activities:

J. Lanz – on-Site at 9:00.

Mit tech measuring out area for hole penetration through wall separating 691 and 705 St. Paul. Penetration. Area found and penetration made prior to installing piping in 705 portion of building. Background VOC readings taken 63 ppb.

10:25 - Scott Miller (NYSDEC) on-Site.

Installing SSDS-1 along wall and connecting piping from St. Michaels woodshop through to 705 St. Paul St. PVC glue used to connect the PVC piping is making the PPB rae read around 2-3000 PPB. SSDS-1 installed to vapor point and run along through the south wall connecting to St. Michaels.

12:30 – installing SSDS-2 system. From the vapor point to penetration in southern wall connecting to St. Michaels woodshop.

All SSDS-1 and SSDS-2 piping has been installed in 705 St. Paul sub basement using 3" and 4" piping. 4" piping to be used and eventually transition to 6" pipe run.

J. Lanz – off-Site at 3:45pm.

Date: 12/12/2017

Project No: 2170820

Client: Bausch & Lomb

Temperature: 20 F

Summary of Daily Activities:

J. Lanz – on-Site at 8:30am. Mit Tech on-Site at 9:00am.

Scott Williams (NYSDEC) on-Site at 9:30am. Today piping in wood shop will be connected and run out into lobby south of woodshop. J. Lanz will be notified by Aaron (MitTech) if any sub-slab penetrations are to be conducted. No penetrations are anticipated for the rest of the week. No work to be done in woodshop while there are students inside working. Laborers preparing to seal eastern wall with grout.

Weather: Snow

Nick (MitTech) stats that brushing of eastern interior wall of Woodshop will occur prior to sealing. Sealing will be done with mortar first to patch all large holes and then epoxy seal (DryLok) will be used to cover the whole wall. Waiting for approval of use of Dry Lok from NYSDEC at this time.

J. Lanz – off-Site at 11:00 am.

J. Lanz – on-Site at 2:30 pm. Received notification from Frank Sowers (NYSDEC) that LaBella personnel must be on-Site during any construction activitieis related to the installation of the subslab systems at 691 and 705 St. Paul St.

Workers currently patching wall with grout and installing SSDS-1 and SSDS-2 inside of St. Michaels woodshop.

Bob and Aaron (Mit Tech) off-Site at 3:00pm. Laborers off-Site at 4:00pm.

J. Lanz – off-Site at 4:00pm.

Date: 12/13/2017

Project No: 2170820

Temperature: 20 F

Client: Bausch & Lomb

Weather: Cloudy/Snow

Summary of Daily Activities:

J. Lanz – on-Site at 9:00 am. Mit tech on-Site. Compiling PVC piping to continue hanging and installing SSDS-2 in the sub-basement.

Dan Noll (LaBella) spoke with Nick (Mit Tech) and said that all air flow testing moving forward will need to be conducted with carbon filter. 4",45" 250 CM Active Can Lite Filter with 100% Virgin Activated Charcoal used and connected to fan/vacuum system.

9:30 – Mit tech running air flow test vacuum down through PVC piping already installed and through carbon filter. No PID readings noted while test being run.

Mit tech preparing to drill sub-slab vapor points in area HG-11. CAMP set up and ppb rae turned on in work area. HG-11 test point installed and then covered. CAMP and VOC monitoring ceased after sub-slab penetration has been sealed.

Nick (Mit Tech) trying to get approval for M-32 contractor grade epoxy paint to seal wall and large cracks. Waiting for DEC approval before using.

Pipe hangers being installed to ceiling of St. Michaels woodshop and pipe installation and stringing is to continue.

12:00 – Mit tech is calculating air flow, checking pressure points and continuing to install PVC piping as part of SSDS-1.

Nick (Mit Tech) on-Site at 1:30pm. Discussing airlflow and issues with basement leaking. Patching may be needed on exterior western wall as positive air is still being encountered in subslab below St. Michaels woodshop.

M. Pelychaty on-Site at 2:15 to discuss issues with airflow and see project progress.

J. Lanz – off-Site at 4:00pm.

Date: 12/14/2017

Project No: 2170820

Temperature: 28 F

Client: Bausch & Lomb

Weather: Cloudy

Summary of Daily Activities:

J. Lanz – on-Site at 8:45 am. Mit tech on-site at 9:00am. Connecting PVC of SSDS-1 to go out of Woodshop into elevator lobby of subbasement.

10:00 – Mit tech is measuring and cutting pipe to be strung along hangers into hallway.

11:00 –NYSDEC Scott Williams on-Site. Two (2) Mit Tech laborers also on-Site.

Penetration through southern wall into hallway from woodshop has gone through.

11:20 – penetrating sub-slab vapor point in elevator lobby of sub basement. Background PID reading is 960. No release evident noted after drilling. CAMP and VOC monitoring conducted during drilling.

Vacuum fan filter came unhooked during drilling and began shooting dust into the air for approximately 20 seconds. J. lanz instantly got attention of Mit Tech who turned off the machine. Dust readings (highest of 9.00ppm) took approximately 3 minutes to go back down to background readings. Work resumed. PVC glue being used on piping during VOC and CAMP monitoring after hole has been drilled and not covered. PVC glue is causing abnormally high readings on PID.

Scott Williams off-Site at 12:30.

2:00 – mobilizing equipment upstairs to place points south of storage room.

Preparing to core E11 vapor point. CAMP and VOC monitoring conducted during penetration until hole was covered. Hole made and closed by 2:34pm. No dust or VOC hazards noted. Sealed with fiberglass and puddy.

3:00 – Mit tech measuring and trying to figure out preferential pathway to take basement 1 systems through above suspended ceiling tiles. Drilling hole at E13 about to commence. CAMP and VOC monitoring conducted during penetrations until hole is covered.

All concrete chunks and dust vacuumed that was generated by subslab drilling is being disposed of in a 55-gallon drum being stored in the loading dock of B1.

3:25 – Drilling materials mobilized to Room B17. CAMP and PID monitoring commenced prior to drilling of next point to be drilled. Background PID reading was 431ppb. No dust or VOCs generated during drilling. Vacuum used while drilling as dust suppressant. Hole finished and patched with fiber glass and caulk at 3:44pm. Mit tech is cleaning work areas and mobilizing tools/equipment to storage room.

Date: 12/15/2017

Project No: 2170820

Client: Bausch & Lomb

Temperature: 30 F

Weather: Partly Cloudy

Summary of Daily Activities:

J. Lanz – on-Site at 8:45

Mit tech on-Site at 9:00 am. Connecting piping in lower basement electric room (F/G-12) to penentration through ceiling area. Access gained to B09 to try and figure out vapor point locations in this room. 10:00 – Scott Williams and 2 Mit tech laborers on-Site.

Penetratinng holes into subbasement electric room. Generator/electric system has oil based lubricants and is running. Background PID readings around 2,000PPB. PVC glue also recently used inside room to connect PVC piping for SSDS-1. CAMP and VOC monitoring set up prior to drilling.

1st hole penetrated into unmarked crawlspace. Vapor point location moved 3' south and 1.5' east and repenetrated.

Nick (Mit Tech) on-Site at 1:00pm. Was denied on using M-32 epoxy sealer on woodshop eastern wall. Speaking with Frank Sowers (NYSDEC) on what material can be used to seal the wall.

Piping already installed to have flow tested using a vacuum, carbon filter used at end of vacuum.

CAMPS turned off at 1:30 as all penetrations have been covered and no more penetrations are to be made.

2:00pm – Nick and Laborers on site to talk about measurements, issues with positive air and plan for Basement 1 System.

Mit tech and laborers hanging 6" pipe to existing piping in SSDS-1 (4") and continuing to string pipe south towards office/electric room.

Electric Room VOCs have retreated to background levels after the holes have been sealed.

J. Lanz – off-Site at 3:30pm.

PROJECT 691 St. Paul # CB281594 SHEET OF (PROJECT NO. 2170820 CALC. BY______ SUBJECT_SSDS This tallation sc DATE 12/27/1

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

They will show up @ 7- 11:00 a.m. H Delay of start due to previously scheduled medical phys, cals. Scott WMizms / NYSOEC m) KAM on-ste 7-10:30. Bob Beck m-ste +11:15 and wh conthine work on NE leg of system in upper basement to extend the header pipe into hellway and turn 90° to see headed for loading dock. Rest of day spent figuring and running healer pipe to the NW an mo adjacent Janvin's stange / break 5. WARMS & KRM & MITTECH M-SALD 15:30 12/27/17 END

Engineering Architecture Environmental

PROJECT NAME:	NYSDEC BCP SITE #C8281S9A - 691 ST. PAUL STREET
PROJECT NO .:	2170820
LOCATION:	691 SAINT PAUL STREET, ROCHESTER, NEW YORK

CLIENT: **BAUSCH & LOMB**

DESCRIPTION OF WORK

DATE:/	2 / 201	8	
DAY OF WEEK: S	м (т) w	ΤF	S
SHEET NO.	/OF	/	
	AM	PM	1
WEATHER	WINCY -	Cold	
TEMPERATURE	15 -		

0830 - Michael F. Pelychaty (MFD) Grives on site asserve The 10 latery 1 of the SOS Mitication on-site installing INStallation PVC PIPINS erpar bajement lerel at sinth sid in Idias Mitischer Williams on site: Tec 0900 Sett. pf NYSDET 6 NS hen. zon hal Through building acting will SPERCE Inen o eve trations Conducta Sus tale 0 sur face 111 Work SUCH movitorin Fala required Om Pu Luldin Gudin dick 54 61 and Up 64 Suste att Willian Ul F. P. Latto 1/2/2018 DATE INSPECTOR'S SIGNATURE

ATTACHMENTS

YES I NO

PROJECT 691 St. Paul #CB28159A SHEET 1 OF 3 PROJECT NO. 2170BZO CALC. BY DATE 1/3/18 SUBJECT SSDS Installation SCALE

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

Kan on-sole @ 9 a.m. w/ motech with hung pike and apen up some stars peripatous in neper basement sterage room. Ussos extraction point pene fra tien through fleer slab in SW corner of Sterase room. background readings 7- 0,440 mg/m: 7-1.8 ppm Vocs (mg/m3) NOCS (PPM) part. the begin & take belyn readings 11:00 11:05 0.415 1.702 11:10 0.254 1.632 1.664 0:290 11:20 1.456 Done 0.341 1.275 11:25 screen hole in Plus starts = 1.275 ppm conc. fluet slabs 7-4 in Thick here

PROJECT 691 St. Paul 57 2828159A SHEET Z OF 3 DATE 1/3 PROJECT NO. 2170820 CALC. BY stalla 4505 SCALE SUBJECT_

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

2 SSDS extraction poilor penetration Through
fleor stat, senten well I sterage
area, to ED prev. penetration
tome 1 part 1 vecs (ppm)
12105 begn 0216 (backynd) 1.2 (bekynd)
12:10 0.236 1.1
12:15 00405 1.1
12:20 0.282 0.9
then sleep, removing sub-slab cobbles
12:25 0.223 0.9
12:30 Ou174 0.8
12:35 0,183 0.7 Kan
END Penetration
Kam Mrsh for Junch 13:00 to
13:15; upon return Scott
WARDEN / NYSDEC has
arriter on-site

PROJECT 691 St. Parel #C828159A SHEET 3 OF 3 PROJECT NO. 2170820 CALC. BY____ DATE 1/3 SUBJECT SSDS Justallation SCALE

ENGINEERING ARCHITECTURE ENVIRONMENTAL PLANNING

300 State Street, Suite 201 • Rochester, NY 14614 Phone 585.454.6110 • Fax 585.454.3066 www.labellapc.com

SSDS extraction port slorb pene tration E porton of storage nom Coleman A backs round due to sound glue VaCs mg/m3) (ppm) 0.265 14.45 begin 3.6 (bekgn) 0,125 14:50 3.5 0.133 14:55 3.2 0.129 15:00 3.6 15105 1-333 4.2 15:10 0,200 4.2 4.0 0,133 15:15 0.125 4.0 15:20 ita too END SC often = 7-62 ppm hore KRM & S- WMinns & MATECH M. S.M. @ 7/- 16:00 mD 1/3/18

	Daily Log Sheet	Date:	11-Jan-18
		SHEET	1 OF 1
		JOB:	2170820
Associates, P.C.		CHKD BY:	
300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS			
LABELLA REPRESENTATIVE: A. Brett	CONTRACTOR: Mitigation Tech		

TIME	DESCRIPTION OF ACTIVITY	MILEAGE
830	A. Brett onsite, getting badge for site access	
900	Bob of mitigation tech already on site on the roof above the loading dock sweeping water towards roof drains in orde	r
	to be able to cut though the roof for pipe runs to fans.	
930	Aaron from Mitigation Tech onsite. Scott Williams of the NYSDEC on Site.	
954	Mike Pelychaty and Dan Noll of LaBella onsite to walk through building with Nick Mouganis of Mitigation Tech.	
	- Currently Plans to have AMG Force Fans on 4" pvc lines	
	-Currently Plans to have Fantech FR-250 on 6" pvc line	
	-Discussed alarm placement. Phone calls from loading dock. Nick to assess phone alarm capabilities for calling	
	-Audio alarms and U-manometers possibile just inside of loading dock	
	separate parties and multiple parties at once.	
	- Type and construction of visual shield around fans to be determined	
	-Fan exhaust to be at least 10' above walkway	
	-Crawlspace to be assessed during testing whether or not a suction point is required.	
1020	Mitigation tech begins cutting through roof to bring PVC piping to the roof above the loading dock.	
1118	Mitigation tech continues cutting roof and running PVC through, sealing roof around PVC penetrations to prevent	
	leaks.	
1224	Mitigation tech cutting additional (2) holes in roof to be used to run electic to fans when installed.	
1315	Drylocking walls in basement area post patching.	
1325	A total of 6 holes drilling in roof, 4 for PVC piping and 2 smaller diameter holes for electrical connections	
1330	CAMP set up in loading dock area for drilling into concrete on northeast side of loading dock to install pvc drain	
	lines in to lines with low section.	
1445	CAMP stations taken down. A PPB rae was used to screen air during activities. Zero (0) ppb was recorded in the hole	е
	drilled in the floor. A maximum of approximately 1000 ppb (1ppm) was reach when mitigation tech used adhesive	
	at pvc joints and connections. Dust from the drilling cement prior to breakthrough to the subsurface caused	
	some elevated readings on the Dust Monitors. Mitigation tech turned on a shop vacuum with HEPA filter during	
	the remainder of time drilling to successfully control dust levels.	
1530	Drain Piping installed.	
1530	Mitigation tech begins cleaning up for the day	
1400	Mitigation tech offsite.	
1415	A. Brett returning badge, heading offsite.	

Total Billa	e Hourshours	

	Daily Log Sheet	Date: 12-Jan-18
		SHEET 1 OF 1
		JOB: 2170820
Associates, P.C.		
		CHKD BY:
300 STATE STREET, ROCHESTER, NY		
ENVIRONMENTAL ENGINEERING CONSULTANTS		
LABELLA REPRESENTATIVE: A. Brett	CONTRACTOR: Mitigation Tech	

TIME	DESCRIPTION OF ACTIVITY	MILEAG
830	A. Brett onsite, getting badge for site access. Bob of mitigation tech already on site, getting materials ready	
	for running electrical lines.	
915	Aarron of Mitigation tech onsite to assist in getting materials prepared	
930	Heading to loading dock area, mitigation tech begins putting up electrical infrastructure	
1000	Scott Williams of NYSDEC on Site	
1030	Mitigation tech continues with electrical infrastructure.	
1147	Scott Williams offsite.	
1200	Mitigtaion tech helps begin moving shelves and contents to tables to expose drywall that is to be removed in the	
	basement woodshop	
1300	Begin drywall removal in woodshop basement area to expose wall.	
1400	Electrical wiring being threaded through metal tubing from roof holes towards east side of the loading dock then	
	heading north.	
1500	An existing line from electircal panel to just inside the loading dock area exists in which mitigation tech could connect	
	electrical wiring to. Lines connect to LV-2 electrical panel inside a room with multiple panels. LV-2 is last panel	
	furthest from the door.	
1515	Mitigation tech cleaning up/ packing up uneeded materials and loading them out of staging room.	
1600	Plans for following week. No work to be done on the system on Monday. Photos taken of pipes into roof and of drain	
	line.	
1630	A. Brett and mitigation tech offsite. Returning badge to front security.	

Total Billa	e Hourshours	

	Daily Log Sheet	Date:	18-Jan-18
		SHEET	1 OF 1
		JOB:	2170820
Associates, P.C.		CHKD BY:	
300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS			
LABELLA REPRESENTATIVE: <u>A. Brett</u>	CONTRACTOR: Mitigation Tech		

TIME	DESCRIPTION OF ACTIVITY	MILEAGE
1050	A. Brett onsite, mitigation tech on loading dock roof to begin installing fans.	
1100	M. Pelychaty of Labella offsite.	
1125	Looking at wall in woodshop basement, completed repairs and dry locking of wall. A few spots appear to need a touc	h
	up.	
1130	Scott Williams of the DEC pointed out hole drilled by mitigation tech in the basement woodshop to be fixed	
1230	Remaining PVC 90 bends placed on top of the exhaust fans, with the exception of the 6-inch pipe.	
1355	From for fans in place and sercure to pvc on roof. Scott williams expressed concerns about frame not being bolted	
	down to roof.	
1437	System plugged in with wires to electrical outletl but not tied into panel due to different breakers, may need electricia	n
	Electical panel is located in room B-17 with wires feeding to electical panel LVP#2	
1440	Begin checking test points with digital manometer - pressure differential reader.	
1440	Room B-14: -0.03	
1440	Room B-11: Pressure was negative.	
1440	Outside stairwell B-12: +0.003	
1446	Room B-19: -0.02	
1448	Basement outside woodshop: +0.009	
1449	Hole near trench in woodshop: +0.5	
1455	Hole near inner wall of woodshop: -0.009	
1456	Hole near middle of the floor woodshop: +0.044	
1520	Four inch pipe to the right side when exiting building towards the loading dock is pulling at -2.4 inches with fans on.	
	Six inch pipe to the right side when exiting building towards the loading dock is pulling at -1.2 inches with fans on.	
1600	Mitigation tech placed tape on top of the 6-inch pipe exhaust fan until the corrent 90 bend is procured.	
1630	A. Brett offsite.	

Total Billa	e Hourshours	

300 STATE STREET,	Daily Log Sheet Date: SHEE JOB: CHKD	: 31-Jan-18 T 1 OF 1 2170820 PBY:
LABELLA REPRESEN	A. Brett CONTRACTOR: Mitigation Tech	
Project Work Phase	SSDS installation.	
TIME	DESCRIPTION OF ACTIVITY	MILEAGE
900	A. Brett on Site.	
915	Mitigation Tech on Site.	
945	Scott Williams of the NYSDEC on Site.	
1015	Mitigaiton Tech sealing cracks in basement floor of Richardson's Grating space.	
1145	Mitigation Tech getting parts together for audio/visual alarms.	
1219	Mitigation Tech drilling holes in pipes for alarms and manometers.	
1326	Alarms and visual manometer installed on wall, no electrical hook up to alarms yet,. Air tubes connected to six	inch
	and one four inch, running other two airlines through drop ceiling to the other two 4 inch pipes.	
1400	Mitigation tech searching for circuit to connect alarms to separate from eletrical curcuits with fans.	
1500	Mitigtation tech attaching 90 bend to 6-inch pipe.	
L	Hourshours	

	Daily Log Sheet	Date:	18-Jan-18
		SHEET	1 OF 1
		JOB:	2170820
Associates, P.C.		CHKD BY:	
300 STATE STREET, ROCHESTER, NY ENVIRONMENTAL ENGINEERING CONSULTANTS			
LABELLA REPRESENTATIVE: <u>A. Brett</u>	CONTRACTOR: Mitigation Tech		

TIME	DESCRIPTION OF ACTIVITY	MILEAGE
1050	A. Brett onsite, mitigation tech on loading dock roof to begin installing fans.	
1100	M. Pelychaty of Labella offsite.	
1125	Looking at wall in woodshop basement, completed repairs and dry locking of wall. A few spots appear to need a touc	h
	up.	
1130	Scott Williams of the DEC pointed out hole drilled by mitigation tech in the basement woodshop to be fixed	
1230	Remaining PVC 90 bends placed on top of the exhaust fans, with the exception of the 6-inch pipe.	
1355	From for fans in place and sercure to pvc on roof. Scott williams expressed concerns about frame not being bolted	
	down to roof.	
1437	System plugged in with wires to electrical outletl but not tied into panel due to different breakers, may need electricia	n
	Electical panel is located in room B-17 with wires feeding to electical panel LVP#2	
1440	Begin checking test points with digital manometer - pressure differential reader.	
1440	Room B-14: -0.03	
1440	Room B-11: Pressure was negative.	
1440	Outside stairwell B-12: +0.003	
1446	Room B-19: -0.02	
1448	Basement outside woodshop: +0.009	
1449	Hole near trench in woodshop: +0.5	
1455	Hole near inner wall of woodshop: -0.009	
1456	Hole near middle of the floor woodshop: +0.044	
1520	Four inch pipe to the right side when exiting building towards the loading dock is pulling at -2.4 inches with fans on.	
	Six inch pipe to the right side when exiting building towards the loading dock is pulling at -1.2 inches with fans on.	
1600	Mitigation tech placed tape on top of the 6-inch pipe exhaust fan until the corrent 90 bend is procured.	
1630	A. Brett offsite.	

Total Billa	Total Billable Hourshours						

300 STATE STREET,	Daily Log Sheet Date: SHEE JOB: CHKD	: 31-Jan-18 T 1 OF 1 2170820 PBY:
LABELLA REPRESEN	A. Brett CONTRACTOR: Mitigation Tech	
Project Work Phase	SSDS installation.	
TIME	DESCRIPTION OF ACTIVITY	MILEAGE
900	A. Brett on Site.	
915	Mitigation Tech on Site.	
945	Scott Williams of the NYSDEC on Site.	
1015	Mitigaiton Tech sealing cracks in basement floor of Richardson's Grating space.	
1145	Mitigation Tech getting parts together for audio/visual alarms.	
1219	Mitigation Tech drilling holes in pipes for alarms and manometers.	
1326	Alarms and visual manometer installed on wall, no electrical hook up to alarms yet,. Air tubes connected to six	inch
	and one four inch, running other two airlines through drop ceiling to the other two 4 inch pipes.	
1400	Mitigation tech searching for circuit to connect alarms to separate from eletrical curcuits with fans.	
1500	Mitigtation tech attaching 90 bend to 6-inch pipe.	
L	Hourshours	

APPENDIX 5

Photo Log

Drylock Seal Placed on Lower Basement Wall in Wood Shop

SSDS pipe in loading dock with insulation

Sealing of crack within floor

SSDS Lateral and Label identifying pipe

Pilot test for SSDS

SSDS piping penetrating through loading dock roof to fans

Woodshop basement wall before drylock

Audible alarms and manometers for SSDS

Pressure field extension monitoring point

Fan installation for SSDS

APPENDIX 6

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

691 ST PAUL SITE Project 2170820 SDG: C1803045 Sampled 3/16/2018

TO-15 AIR SAMPLES

691-AI-01	(C1803045-01)	691-AI - 02	(C1803045-02)
691-AI-03	(C1803045-03)	691-AI-04	(C1803045-04)
691-AI-05	(C1803045-05)	691-AI-06	(C1803045-06)
691-AI-07	(C1803045-07)	691-AI-08	(C1803045-08)
691-AI-09	(C1803045-09)	691-AI - 10	(C1803045-10)
691-AI-11	(C1803045-11)	691-AI - 12	(C1803045-12)
DUPLICATE	(C1803045-13)		

DATA ASSESSMENT

A TO-15 data package containing analytical results for thirteen air samples was received from LaBella Associates, P.C. on 04Apr18. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 691 St. Paul Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of six volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, <u>Volatile Organic Analysis of</u> Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The results reported from 691-AI-03 and 691-AI-09 have been qualified as estimations because the sampling equipment failed to function properly.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 10 May 18

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained thirteen air samples that were collected from the 691 St. Paul site on 16Mar18. With the exception of 691-AI-11, the samples were collected in 1-liter SUMMA canisters. 691-AI-11 was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples. The canisters were shipped to the laboratory, via FedEx, on the day of collection and were received on 19Mar18. The sample canisters were received intact, with custody seals in place on the packaging.

Although each SUMMA canister was set in the laboratory to collect an 8-hour sample, the collection of samples was terminated after between 4.0 and 9.3 hours based on the canister vacuum readings. At that time the vacuum reading from every cylinder except 691-AI-03 and 691-AI-09 satisfied the ASP requirement of $-5\pm1"$ Hg. 691-AI-03 and 691-AI-09 produced readings of -1.8"Hg and -1.1"Hg, respectively. The results from this pair of samples have been qualified as estimations because the sampling equipment did not function properly.

The agreement between vacuum readings following sampling and at the time of analysis indicates that the integrity of the samples was maintained during that period.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECEIPT	ANALYSIS
	("Hg)	("Hg)	("Hg)	("Hg)	(` Hg)
691-AI-01	-30	-30.2	-5.9	-6	-6
691-AI-02	-30	-30.2	-5.75	-6	-6
691-AI-03	-30	-30.5	-1.8	-2	-2
691-AI-04	-30	-30.7	-5.4	-6	-6
691-AI-05	-30	-29.1	-5.5	-6	-6
691-AI-06	-30	-29.0	-5.6	-6	-6
691-AI-07	-30	-28.1	-5.5	-6	-6
691-AI-08	-30	-31.0	-5.9	-6	-6
691-AI-09	-30	-29.6	-1.1	-2	-2
691-AI-10	-30	-26.9	-5.8	-6	-6
691-AI-11	-30	-30.2	-5.8	-6	-6
691-AI-12	-30	-30.8	-5.1	-6	-6
DUPLICATE	-30	-26.9	-5.8	-6	-6

CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters for this project were cleaned in five batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination exceeding the laboratory's reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples on 20Mar18. Both of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 18Mar18. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A continuing calibration check standard was analyzed on 20Mar18, prior to the 24-hour period of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability during this check.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique. Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, an acceptable recovery was reported for each surrogate addition to this group of samples.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported; they were calculated by this reviewer. When compared to these limits, acceptable performance was reported for the internal standard additions to each program sample.

Internal standard retention times were not addressed by the laboratory. The ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

691-AI-11 was selected for matrix spiking. The entire list of targeted analytes was added to two volumes of this sample. The recoveries reported for these additions demonstrated acceptable levels of measurement precision and accuracy.

A pair of spiked blanks (LCS/LCSD) was also analyzed with this group of samples. The recoveries reported from these LCS samples satisfied the ASP acceptance criteria.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The duplicate sample that was included in this delivery group was not identified.

Page 4

REPORTED ANALYTES

•

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

Page 5

SUMMARY OF QUALIFIED DATA

690 ST PAUL SITE

SAMPLED MARCH 2018

۰I

SAMPLING			ALL UJ						ALL J/UJ				
	(C1803045-01)	(C1803045-02)	(C1803045-03)	(C1803045-04)	(C1803045-05)	(C1803045-06)	(C1803045-07)	(C1803045-08)	(C1803045-09)	(C1803045-10)	(C1803045-11)	(C1803045-12)	(C1803045-13)
	691-AI-01	691-AI-02	691-AI-03	691-AI-04	691-AI-05	691-AI-06	691-AI-07	691-AI-08	691-AI-09	691-AI-10	691-AI-11	691-AI-12	DUPLICATE

Date: 28-Mar-18

CLIENT: LaBella Associates, P.C.			Client Sample ID: 691-A1-01					
Lab Order:	C1803045				Tag Number:	188.338		
Project:	691 St Paul St.			C	Collection Date:	3/16/2	2018	
Lab ID:	C1803045-001A				Matrix:	AIR		
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO	1-15			Analyst: RJP	
1,1-Dichloroeth	ene	< 0,16	0.16	ı	vg/m3	1	3/21/2018 12:16:00 AM	
Chloroethane		< 0.40	0.40	1	ıg/m3	1	3/21/2018 12:16:00 AM	
cis-1,2-Dichloro	ethene	< 0.16	0.16	1	ıg/m3	1	3/21/2018 12:16:00 AM	
vans-1,2-Dichloroethene <		< 0.59	0.59	L	Jg/m3	1	3/21/2018 12:16:00 AM	
Trichloroethene < 0.16		< 0.16	0.16	L	ig/m3	1	3/21/2018 12:16:00 AM	
Vinyl chloride		< 0,10	0.10		io/m3	1	3/21/2018 12:16:00 AM	

115

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected
	₿	Analyte detected in the associated Method Blank	Ē	Estimated Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	IN	Non-routine analyte. Quantitation estimated.	DM	Not Detected at the Limit of Detection

Date: 28-Mar-18

							ana agaman na sana ana ana ana ana ana ana ana a
CLIENT:	Client Sample ID: 691-AI-02						
Lab Order:	C1803045				Tag Number:	365.3	42
Project:	691 St Paul St.				Collection Date:	3/16/2	2018
Lab ID:	C1803045-002A				Matrix:	AIR	
Analyses		Result	**Limit	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TC)-15			Analyst: RJP
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 12:57:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 12:57:00 AM
cis-1,2-Dichloro	ethene	< 0.16	0.16		ug/m3	1	3/21/2018 12:57:00 AM
trans-1,2-Dichloroethene <		< 0.59	0.59		ug/m3	1	3/21/2018 12:57:00 AM
Trichioroethene < (< 0.16	0.16		ug/m3	1	3/21/2018 12:57:00 AM
Vinyl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 12:57:00 AM

11⁽⁵

Qualifiers: ** Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
 - J Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Centek	Laboratories	. I	Ł	С
NATION	DUDOI HTVI IVO	, -	_	~

OVIII DA						and the second sec		
CLIENT:	LaBella Associates, P.C.				(lient Sample ID:	691-A	1-03
Lab Order:	C1803045					Tag Number:	189.29	96
Project:	691 St Paul St.					Collection Date:	3/16/2	018
Lab ID:	Lab ID: C1803045-003A					Matrix:	AIR	
Analyses		Result	# #	Limit	Qual	Units	DF	Date Analyzed
A11/2/0422 VAULO /	UCMI CT.TCE.VC.BCE.1	1DCF		тс	-15		-	Analyst: RJP
t 1.Dichlometh	sene	< 0.16		0.16	-	ug/m3	1	3/21/2018 1:38:00 AM
Chloroethaoe	5W413	< 0.40		0.40		ug/m3	1	3/21/2018 1:38:00 AM
cis-1,2-Dichloroethene		< 0.16	11	0.16		ug/mS	1	3/21/2018 1:38:00 AM
		< 0.59	,	0.59		ug/m3	1	3/21/2018 1:38:00 AM
CO II		< 0.16		0.16		ug/m3	1	3/21/2018 1:38:00 AM
Vinyt chloride < 0		< 0.10		0,10		ug/m3	1	3/21/2018 1:38:00 AM

ß

Qualifiers:	**	Quantitation Limit

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits \$
- والمستعهد والأرب والاركام والمركز كالأراط والمتروو والمتحاصر والمناز المتراوي والمتحاوي والمتحاف والمرازع . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 13

Date: 28-Mor-18

CLIENT:	CLIENT: LaBella Associates, P.C.		Client Sample ID: 691-Al-04						
Lab Order:	C1803045			Tag Number:			539.346		
Project:	691 St Paul St.			Collection Date: Matrix:		/16/201	8		
Lab ID;	C1803045-004A					AIR			
Analyses		Result	**Limit	Qual Units	ם	F	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	то	-15			Analyst: RJP		
1,1-Dichloroeth	608	< 0.16	0.16	ug/m3	1		3/21/2018 2:18:00 AM		
Chloroethane		< 0.40	0.40	ug/m3	1		3/21/2018 2:18:00 AM		
cis-1,2-Dichloro	ethene	< 0.16	0.16	ug/m3	1		3/21/2018 2:18:00 AM		
trans-1,2-Dichlo	proethene	< 0.59	0.59	ug/m3	1		3/21/2018 2:18:00 AM		
Trichloroethene	r	0.21	0.16	ug/m3	1		3/21/2018 2:18:00 AM		
Vinyl chloride		< 0.10	0.10	ug/m3	1		3/21/2018 2:18:00 AM		

1H1

Qualifiers: ** Q

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

والمستحدية والرواف والمحارج والمحار المتحال والمستحد المرار والمحاول مراوعه والمحاوية والمحار

Date: 28-Mar-18

CLIENT:	LaBella Associates, P	P.C.		CI	ent Sample 1D:	691-AI-05		
Lab Order:	C1803045		Tag Number:		170.1	170.1168		
Project:	691 St Paul St.			Collection Date: 3 Matrix: 3		3/16/2	2018	
Lab ID:	C1803045-005A					AIR	AIR	
Analyses		Result	**Limit	Qual I	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс	-15			Analyst: RJP	
1,1-Dichloroeth	ene	< 0.16	0,16	Ľ	ıg/m3	1	3/21/2018 3:00:00 AM	
Chloroethane		< 0.40	0.40	t	ıg/m3	1	3/21/2018 3:00:00 AM	
cis-1,2-Dichloro	ethene	< 0,16	0.16	U	ig/m3	1	3/21/2018 3:00:00 AM	
trans-1,2-Dichlo	roethene	< 0.59	0.59	u	ıg/m3	1	3/21/2018 3:00:00 AM	
Trichloroethene		0.32	0.16	U	ig/m3	1	3/21/2018 3:00:00 AM	
Vinyl chloride		< 0.10	0.10	u	ig/m3	1	3/21/2018 3:00:00 AM	

1A

Qualifiers:	**	Quantitation Limit	

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

and the second second to be a second decision of the second second second second second second second second s

- E Estimated Value above quantitation range
 - J Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection

Page 5 of 13

Trichloroethene

Vinyl chloride

1

1

3/21/2018 4:21:00 AM

3/21/2018 4:21:00 AM

to the grade of the second second second		and the local distance in the second s						
CLIENT:	LaBella Associates, P.((Client Sample 1D:	691-Al-06			
Lab Order: C1803045 Project: 691 St Paul St. Lab ID: C1803045-006A			Tag Number:			131.340		
				Collection Date:	3/16/2018 AIR			
				Matrix:				
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-	I,1DCE	TO-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16	ug/m3	1	3/21/2018 4:21:00 AM		
Chloroethane		< 0.40	0.40	ug/m3	t	3/21/2018 4:21:00 AM		
cis-1,2-Dichloro	einene	< 0.16	0.16	ug/m3	1	3/21/2018 4:21:00 AM		
Irans-1,2-Dichic	roethene	< 0.59	0.59	ug/m3	1	3/21/2018 4:21:00 AM		

0.16

0.10

0.32

< 0.10

ug/m3

ug/m3

Qualifiers: ** Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

- E Estimated Value above quantitation range
- I Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 13

Date: 28-Mar-18

CLIENT: Lab Order: Project: Lab ID:	SNT:LaBella Associates, P.C.Client Sample IDOrder:C1803045Tag Numberect:691 St Paul St.Collection DateID:C1803045-007AMatrix		: 691-AI-07 : 133.1164 : 3/16/2018 : AIR				
Analyses	y an a suman . That an an an ann ann ann an an an an an an	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT+TCE-VC-DCE	E-1.1DCE	τC)-15			Analyst: RJP
1.1-Dictiloroeth	lene	< 0.16	0.16		ug/m3	1	3/21/2018 5:03:00 AM
Chloroethane		< 0.40	Q.40		ug/m3	1	3/21/2018 5:03:00 AM
cis.1 7-Dichlor	veihene	0.55	0.16		ug/m3	1	3/21/2018 5:03:00 AM
trane.1 2 Dioble	oraethene	< 0.59	0,59		Em/gu	1	3/21/2018 5:03:00 AM
Trichiomathene		0.54	0.16		ug/m3	1	3/21/2018 5:03:00 AM
Vinyl chloride	u L	< 0.10	0.10		ug/m3	1	3/21/2018 5:03:00 AM

145

.....

- Qualifiers: ** Quantitation Limit
 - B Analyte detected in the associated Method Blank
 - H Holding times for preparation or analysis exceeded

- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 28-Mar-18

					The second second second second second				
CLIENT:	ENT: LaBella Associates, P.C. Client Sample I		lient Sample ID:	691-AI-08					
Lab Order:	C1803045			Tag Number:			287.380		
Project:	691 St Paul St.			Collection Date: Matrix:		3/16/2	3/16/2018 AIR		
Lab ID;	C1803045-008A					AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO	.15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 5:44:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 5:44:00 AM		
cis-1,2-Dichlord	oethene	0.87	0.16		ug/m3	1	3/21/2018 5:44:00 AM		
trans-1,2-Dichk	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 5:44:00 AM		
Trichloroethene	}	0.75	0.16		ug/m3	1	3/21/2018 5:44:00 AM		
Vinyl chloride		0.20	0.10		ug/m3	1	3/21/2018 5:44:00 AM		

1H-

Qualificrs:	44	Quantitation Limit		Results reported are not blank corrected	
	8	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 14
	s	Spike Recovery outside accepted recovery limits			Page 8 of 13

CLIENT:	LaBella Associates, P.C.		Client Sample ID:				691-AI-09		
Lab Order:	C1803045		Tag Number: 8 Collection Date: 3		88.406	88,406 3/16/2018			
Project:	691 St Paul St.				3/16/2				
Lab ID:	C1803045-009A				Matrix:	AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-1,	IDCE	TC	-15			Analyst: RJI		
1,1-Dichloroeth	êne -	< 0.18	0.16		ug/m3	1	3/21/2018 6:24:00 AM		
Chloroethane		< 0.40/	0.40		ug/m3	1	3/21/2018 5:24:00 AM		
cis-1,2-Dichloro	ethene	1.0 J	0.16		ug/m3	1	3/21/2018 6:24:00 AM		
trans-1,2-Dichlo	roethena	< 0.59 ŪJ	0.59		ug/m3	1	3/21/2018 6:24:00 AM		
Trichloroethene	•	0.64]	0.16		ug/m3	1	3/21/2018 6:24:00 AM		
					-				

Date: 28-Mar-18

Qualifiers:	4 ¥	Quantitation Limit		Results reported are not blank corrected	
-	в	Analyte detected in the associated Method Blank	Ê	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	ļ	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Seen Balit
	5	Spike Recovery outside accepted recovery limits			Page 9 01 15

Date: 28-Mar-18

CLIENT:	LaBella Associates, P	[.] .C.		C	lient Sample ID:	691-A	691-A1-10		
Lab Order:	C1803045			Tag Number: 1 Collection Date: 1 Matrix: 7		324.1	324.1171 3/16/2018 AIR		
Project:	691 St Paul St.					3/16/2			
Lab ID:	C1803045-010A					: AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TC)-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 7:06:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 7:06:00 AM		
cis-1,2-Dichloro	bethene	0.95	0.16		սց/m3	1	3/21/2018 7:06:00 AM		
trans-1,2-Dichle	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 7:06:00 AM		
Trichloroethene	3	0.75	0.15		ug/m3	1	3/21/2018 7:06:00 AM		
Vinvl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 7:05:00 AM		

Af-

ualifiers:	**	Quantitation Limit
------------	----	--------------------

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyse detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 28-Mar-18

CLIENT:	LaBella Associates, P.C.		Client Sample ID: 691-AI-11 MS/MSD				
Lab Order:	C1803045			Tag Number:	1196.	1418	
Project:	691 St Paul St.			Collection Date:	3/16/2	018	
Lab ID:	C1803045-011A			Matrix;	AIR		
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		1DCE	TO-15			Analyst: RJP	
1,1-Dichloroeth	ອກອ	< 0.16	0.16	ug/m3	1	3/20/2018 10:02:00 PM	

Chloroethane	< 9.40	0.40	ug/m3	1	3/20/2018 10:02:00 PM
cis-1,2-Dichloroethene	0.71	0.15	ug/m3	1	3/20/2018 10:02:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/20/2018 10:02:00 PM
Trichlorosthene	0.75	0,16	ug/m3	1	3/20/2018 10:02:00 PM
Vinyt chloride	< 0.10	0.10	ug/m3	1	3/20/2018 10:02:00 PM

Qualifiers:	⊧+ B H N	Quantitation Limit Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Non-routine analyte. Quantitation estimated.	E J ND	Results reported are not blank corrected Estimated Value above quantitation range Analyte detected below quantitation limit Not Detected at the Limit of Detection	Page 11 of 13
:	S	Spike Recovery outside accepted recovery limits			

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID: C180)3045-012A				Matrix:	AIR	
Project: 691	St Paul St.				Collection Date:	3/16/201	8
Lab Order: C18)3045				Tag Number:	92.266	
CLIENT: LaB	ella Associates, P.C			C	lient Sample ID:	691-Al-I	2

< 0,16	0.16	ug/m3	1	3/21/2018 7:47:00 AM
< 0.40	0.40	ug/m3	1	3/21/2018 7;47;00 AM
0.63	0.16	ug/m3	1	3/21/2018 7:47:00 AM
< 0.59	0.59	ug/m3	1	3/21/2018 7:47:00 AM
0.38	0.16	ug/m3	1	3/21/2018 7:47:00 AM
< 0.10	0.10	ug/m3	1	3/21/2018 7:47:00 AM
	< 0,16 < 0.40 0.63 < 0.59 0.38 < 0,30	< 0.16 0.16 < 0.40 0.40 0.63 0.16 < 0.59 0.59 0.38 0.16 < 0.10 0.10	< 0,16 0.16 ug/m3 < 0.40 0.40 ug/m3 0.63 0.16 ug/m3 < 0.59 0.59 ug/m3 0.38 0.16 ug/m3 < 0.10 ug/m3	 < 0,16 0.16 0.40 0.63 0.16 0.10 0.10 0.10 0.10 0.10

NA

Qualifiers:	*#	Quantitation Limit
-------------	----	--------------------

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

- JN Non-routine analyse. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 13

CLIENT:	LaBella Associates, F	P.C.		Clie	ot Sample ID:	Duplie	cate
Lab Order:	C1803045				Tag Number:	359.1	171
Project:	691 St Paul St.			Ce	llection Date:	3/16/2	018
Lab ID:	C1803045-013A				Matrix:	AIR	
Analyses	anna ann an t-ann an	Result	**Limit	Qual U	nlts	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO	-15			Analyst: RJI
1,1-Dichloroeth	6NB	< 0,16	0.16	UÇ	y/m3	1	3/21/2018 8:29:00 AM
Chloroethane		< 0.40	0.40	υç	j/m3	1	3/21/2018 8:29:00 AM
cis-1,2-Dichloro	ethene	0.95	0.16	uç	y/m3	1	3/21/2018 8:29:00 AM
trans-1,2-Dichic	proethene	< 0,59	0.59	uş	y/m3	1	3/21/2018 8:29:00 AM
Trichloroethene	ł	0.70	0,16	មុខ	j/m3	1	3/21/2018 8:29:00 AM
Vinvt chloride		< 0.10	0,10	UÇ	1/m3	1	3/21/2018 8:29:00 AM

AK.

Date: 28-Mar-18

** Quantitation Limit Qualifiers:

- B Analyte detected in the associated Method Blank

and a second second

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 13

Date: 28-Mar-18

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:	LaBella Associates, P.C.										
Work Order:	C1803045	1803045									
Project:	691 St Paul St.										
Test No:	TO-15	Matrix: A									
Sample ID	BR4FBZ										
ALCS1UG-032018	117										
ALCSIUGD-03201	18 113										
AMB1UG-032018	(74.0)										
C1803045-001A	87.0										
C1803045-002A	87.0										
C1803045-003A	87.0										
C1803045-004A	89.0										
C1803045-005A	94,0										
C1803045-006A	104										
C1803045-007A	92.0										
C1803045-008A	93.0										
C1803045-009A	99.0		·····								
C1803045-010A	98.0										
C1803045-011A	96.0										
C1803045-011A N	45 107										
C1803045-011A N	ASD 110										
C1803045-012A	97.0										
C1803045-013A	98.0										

Acronym	Surrogate	QC Limits
BR4FBZ	= Bromofluorobenzene	70-130
* Surr	ogate recovery outside acceptan	ice limits

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AP032003.D Tune Time : 20 Mar 2018 11:17 am

Daily Calibration File : C:\HPCHEM\1\DATA\AP032003.D

			(BFB)			(IS1)	(1S2)	(IS 3)	
car ab	1/18 11:17					46099	180776	134559	
			10.50	0_12:74	17:48	-			
File	Sample	DL	Surrogate	Recovery	rt Int	cernal	Standard Res	ponses	
AP032004.D	ALCSIUG-03201	3	117	╤╦╤╤╡╡ ╤ ╕	********	45642	184633	137362	
AP032005.D	AMB1UG-032018		(74)			42656	173156	111783	
AP032017.D	C1803045-011A	*****	95 10.56	12.73	17.48	46044	176727	139424	
AP032018.D	C1803045-011A	MS	107			4797B	185659	154700	
AP032019.D	C1803045-011A	MSD	110			49533	191428	152131	
AP032020.D	C1803045-001A		87 10.48	12.73	17.48	52385	197971	149199	
AP032021.D	C1803045-002A		87 10.49	12.73	17.48	48637	191827	146559	
AP032022.D	C1803045-003A		87/0,41	12.73	17.47	53744	197860	151590	
AP032023.D	C1803045-004A		89 10149	12.73	17.47	52181	198634	151530	
AP032024.D	C1803045-005A		94 10.49	12.73	17.47	51874	199002	158457	
AP032025.D	ALCS1UGD-0320	18	113			44474	178734	141780	
AP032026.D	C1803045-006A		104 10.49	12.73	17.48	51192	191764	142990	
AP032027.D	C1803045-007A		92 Bi49	12.75	17.48	50470	188806	146012	* * * *
AP032028.D	C1803045-008A		93 K, Y	(12.73	17.48	49557	187620	144764	
AP032029.D	C1803045-009A		99 10,49	1 12.73	17.47	47202	180426	144567	
AP032030.D	C1803045-010A		98 10,4	9 12,73	17.48	48088	184167	142740	
AP032031.D	C1803045-012A	*****	97 10,5	1 12.73	17.48	46283	179108	143253	
AP032032.D	C1803045-013A	• •	98 10,4°	9 12.73	17.48	47464	181186	141584	
t - fai	lls 24hr time (check	* - Éa	ils crite	eria				

Created: Wed Mar 28 07:37:49 2018 MSD #1/
80
28-Mar-
Dute:

CENTEK LABORATORIES, LLC

Page 46 of 207

Qual Quai ANALYTICAL QC SUMMARY REPORT *** %RPD RPDUimit RPDLimit SeqNo: 155422 SeqNo: 155423 RunNo: 13408 RunNo: 13408 %RPD 5,13 Ö 3.87 TestCode: 0.20 NYS 0.76 96.0 0.95 HighLimit RPD Ref Val HighLimit RPD Ref Val Analysis Date: 3/21/2018 Analysis Date: 3/20/2018 130 130 130 130 130 8 130 130 <u> 동</u> 5 Prep Date: Prep Date: LowLimit 222222 LowLimit 222222 % REC 76.0 i 10.67 96.0 %REC <u>5 5 5</u> 96.0 95.0 **1**02 95.0 90.06 Units: ppbV Units: ppbV 000 0 0 ¢ 0 000 SPK Ref Vat o SPK Ref Val FastCode: 0.20_NYS festCode: 0.20_NYS SPK value SPK value TestNo: TO-15 TestNo: TO-15 0,040 ğ 0.15 0,040 0.15 0.030 0,040 0.040 0, 15 ğ 0.040 1.000 Batch ID: R13408 Result 0096.0 Batch ID: R13408 Result 0.9600 0.9500 1.020 0.9500 0.9000 0.7900 0.7600 SempType: LCSD SampType: LCS LaBella Associates, P.C. 691 St Paul St. Sample ID: ALCS1UGD-032018 C1803045 Sample ID: ALCS1UG-032018 trans-1,2-Dichloroethene cis-1,2-Dichloroethene cis-1,2-Dichloroethene Client ID: ZZZZ 1,1-Dichloroethene Client ID: ZZZZ 1,1-Dichlonethene Trichlonethene Work Order: Chloroethane Chloroethane Vinyl chloride CLAENT: Project: Analyte Analyta

Analyre detected below quantitation limit Results reported are not blank corrected . *** Qualifiers

Spike Recovery outside accepted recovery limits

S

Estimated Value above quantitation range Not Detected at the Limit of Detection щQ

H Holding times for preparation or analysis exceeded
 R RD outside accepted recovery limits

3.85 5.13 1.10

1,02 0.95

0.0

91.0

ò

0.15

1.060 1.000 0.9100

trans-1,2-Dichloroethene

Trichloroethene

Vinyi chloride

0.030 0.040

Page 1 of 1

an analysis was from a solution of the second state of the solution of the sol

Date: 28-Mar-18

	չեր, ենչ էն հեն ենչերները ենչերները ընդերությունը ու հետում է հետում որոշորդությունը հետում որոշորդությունը կա Այն հետում էր ենչերներին ենչերները ընդերությունը ու հետում ու հետում հետումումը հետում որոշորդությունը կատեղ են	LaBelta Associates, P.C.
*	anna ann an ann an ann an an an an ann ann ann aide	CLIENT :

Page 47 of 207

Work Order: C1803045

Project: 691 St Paul St.

TestCode: 0.20_NYS

Sample ID: AMB1UG-032018	SampType: MBLK	TestCo	xde: 0.20_NY5	Units: ppbV		Prep Da	lle:		RunNo: 13	408		_
Client ID: 22222	Batch ID: R13406	Test	No: 70-15		-	Analysis Da	le: 3/20/2(31.8	SeqNo: 15	5421		
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1-Dichloroethene	< 0.040 V	0.040										
Chloroethane	< 0.15	0.15										
cis-1,2-Dichloroethene	< 0.040	0.040										
trans-1,2-Dichloroethene	< 0,45	0, 15										
Trichloroethene	< 0.030	0:030										
Vinyi chloride	< 0.040	0.040										

Spike Recovery autside accepted recovery linths

φź

- E Estimated Value above quantitation range ND Not Detected at the Limit of Defection
- H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits
- Page I of I

÷۵
÷.,
- CC
<u>~</u>
~
¥G .
1.1
1.
-
- 62
A
<u> </u>

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

VT: LaBella Associates, P.C.	Order: C1803045
CLIENT:	Work Orc

691 St Paul St. 2+2020010 Project:

TestCode: 0.20 NYS

Sample ID: C1803045-011A MS	SampType: MS	TestCod	IS 0.20 NYS	Units: ppbV		Prep Date:			RunNo: 134	80	
Client ID: 691-AI-11 MS/MSD	Batch 1D: R13408	TastN	lo: TO-15		4	oatysis Date:	3/20/20	18	SeqNo: 155	437	
Anaiyte	Result	POL	SPK value	SPK Rei Vai	%REC	LowLimit +	lighLimit	RPD Ref Val	%RPD	RPDLimit	Quat
1.1-Dichloroathane	0,7300	0.040	-	0	70.67	70	130				
Chioroethane	0.9000	0.15	4	0	0.06	ğ	130				
cis-1.2-Dichloroethene	1.130	0.040	T	0,18	95.0	02	130				
trans-1.2-Dichloncethene	1.010	0.15	1	0	101	70	130				
Trichtonethene	1,110	0000	-	0.14	0.78	70	130				
Vinyl chioride	0.8300	0.040	-	Q	83.0	5	130				
Samole ID: C1803046-011A MS	SampType: MSD	TestCot	de: 0.20 NYS	Units: ppbV		Prep Date			RunNo: 134	09	
Client ID: 691-AI-11 MS/MSD	Balch ID: R13408	Testh	4o: TO-15			Analysis Date	: 3/20/20	18	SeqNo: 155	438	
Analyte	Result	bot	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	Odb%	RPDLimit	Quel
4 d.Ficklonethane	0.7300	0,040	+	0	73.0 /	70	130	62.0	0	30	
	0.8200	0.15	ź	0	82.0	02	130	0,8	9.30	30	
cis-1 2-Dichleroetheae	1.060	0.040		0,18	86.0	02	130	1.13	6.39	30	
trans-1.2-Dichlomethene	0.9800	0,15		0	96.0	67	130	1.01	3.02	30	
Trichlomethene	1.060	0,030		0.14	92°D	5	130	1.11	4.61	Đ	
	0.8260	0.040	ب	0	82.0	07 07	130	0.83	1.21	90	

Analyte detected below quantitation limit Results reported are not blank corrected . -Qualifiers:

Spike Rucovery outside accepted recovery limits

5

Estimated Value above quantitation range Not Detected at the Limit of Detection щ <mark>Q</mark>

14 Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

ちじんしん ふうしょう ましん

R

82.0

0.040

0.8200

Vinyl chloride

RPD outside scorepted recovery limits

Page I of I

APPENDIX 7

Laboratory Analytical Report

Constant hadron barbar	Center		ichuge nei	new checklist			
	Client:	LaBella	Project:	691 St Paul St	5	DG:	C1803045
					<u>YES</u>	<u>N0</u>	<u>NA</u>
nalvtical Results		Present and Complete			`		
IC's Present		Present and Complete			1		
		Holdin Times Met					
Comments:							
Chain of Custody		Present and Complete			<u> </u>		
Surrogate		Present and Complete			2		
		Recoveries within Limits			<u> </u>		
		Sample(s) reanalyzed			<u></u>		\geq
nternal Standards		Present and Complete			\geq	<u> </u>	
Recovery		Recoveries within Limits			<u> </u>		
		Sample(s) reanalyzed					>
Comments:							
ab Control Sample		Present and Complete			<u> </u>		
LCS)		Recoveries within Limits			<u> </u>	<u></u>	
ab Control Sample D	upe	Present and Complete			<u> </u>		
LCSD)		Recoveries within Limits			<u> </u>	_	
MS/MSD		Present and Complete			×		
		Recoveries within Limits			<u> </u>	TATIONAL	
Comments:							
							· · · · · · · · · · · · · · · · ·
Sample Raw Data		Present and Complete			<u> </u>		
		Spectra present			mapan	******	2010/2010/10/
Comments:						[.] .	

Centek Laboratories TO-15 Package Review CheckList

Contek Laboratories	Client:	LaBella	Project:	691 St Paul St	S	iDG:	C1803045
					<u>YES</u>	<u>N0</u>	NA
<u>Standards Data</u>					~		
Intial Calibration		Present and Complete					
m is matrices		Calibration meets criteria			<u> </u>		
Continuing Calibratio	n	Present and Complete					·····
		Campration meets criteria					
Standards Raw Data		Present and Complete			>		
Comments:							
			, , , , , , , , , , , , , , , , , , ,				
Raw Quality Control	Data						
Tune Criteria Report		Present and Complete			Ì		<u></u>
Method Blank Data		Accorded results flagged "F	211				
LCS Sample Data		Present and Complete	,				<u> </u>
LCSD Sample Data		Present and Complete			~		
MS/MSD Sample Dat	а	Present and Complete			~		
Comments:							
Logbooks							
Injection Log					·····		
Standards Log					<u>~</u>		·
Can cleaning Log							*********
Calculation Sheet					<u> </u>		
IDL's					<u> </u>		
Canister Order Form					<u> </u>		
Sample Tracking Forr	n				\rightarrow	<u> </u>	
Additional Comment	5:	******					
				······································			
Section Supervisor:	15M	Dall	Date	: 412/18	3		
QC Supervisor: Page 2 of 1	207	flenle	Date	: <u>4/2//</u>	4		

Centek Laboratories TO-15 Package Review CheckList

QC	Supervisor:

Date: 4/2/18

CENTEK LABORATORIES, LLC

 143 Midler Park Drive * Syracuse, NY 13206

 Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752

 NYSDOH ELAP
 Certificate No. 11830

Analytical Report

John Lanz LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614 Thursday, March 22, 2018 Order No.: C1803045

TEL: (585) 454-6110 FAX (585) 454-3066

RE: 691 St Paul St.

Dear John Lanz:

Centek Laboratories, LLC received 13 sample(s) on 3/19/2018 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

Wall Dall

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

Page 5 of 207

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative

a. Corrective actions

- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation

8. Sample Data

a. Form 1 (if requested) TIC's b. Quantitation Report with Spectra

9. Standards Data

- a. Initial Calibration with Quant Report
- b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

Date: 02-Apr-18

CLIENT:LaBella Associates, P.C.Project:691 St Paul St.Lab Order:C1803045

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

		Centek Labs - Ch	ain of Cust	<u>vov</u>	Site Name.	691 St faul	St:	Detection L	imi.	Report Level	
Centek Laborator	vies.	(43 Midler Park Drive			Project 61	71 St. Paul		, Addds		Level	**
	1	Syracuse, NY 13206			PO# 2	40820		1ug/M3	ا ا	Level I	. ¥
Pa	** 5	315-431-9730 vww.CenfekLabs.com	Vapor Intrusion	8 140	Canister 0	0.50° Ider# 7097		100M3+	0.2 NYS	Cat 79" Like	
Dut Ornaround Time:	Check One	Rush TAT Due Surcharge % Date:	Company: (2. Relia Ars	いた		Company: Check Here If Sam	ي ان ان			
Gusiness Days	de	0% 75%	Report to;	Villa Asso:	Cig tes		Invoice to:				
Cousiness Days		50%	City, State, Zip	3005144	x 54 5	101 344	City_State, Zip				Ţ
Business Days		75%	Escl.	<u> </u>	1(77)						
lext Day by 5pm][100%		<u>16 6 14 14 14 14 14 14 14 14 14 14 14 14 14 </u>	197		EMail.				
iext Uay by Noon lame Day][]	200%	Phone: 545 -	- 454 - 611	10.10		Phone:				
or Same and Next Day T.	rAT Please	Notify Lab	Canister	Regulator	Analysis	Request	Field Vacuum	Labs Vacut	# #	Comments Trade L/CL o	
Sample ID		Date Sampled	Number	Number			otart / otop	KecviAnal	ysis	1	
691-AT-01		3/16/2018	180	338	101	- 2	30.2 15.9	- 9 1	ý	8:00-114.S	2
641 - HI-02		3/16/2018	345	342		5	20.2 1 5.75	101	e e	5:01/ 14:2]
641-42-03		3/16/15	199	79 L		-	30.511.8	1 2-	7	8:10/12:10	
41 - 45 - 04		3164.2	539	346		1	34.715.4	1 21	$\overline{\mathbf{x}}$	01:51/M3	
641 - AI - 05		3/16/18	1740	1165		18	29.1 1 5.5	-10 -1	4	11-11-13	5
(91 - AI - 06		3/16/15	131	340	; ;	41	79.015.2	د _ 1	Ą	5:17/ 14:3	~
641 - AI- U7		Silelis	133	1-911			78.115.5	- 9-	e	8:71 114:26	T
641 - AT -03		3/11 /18	767	380		ł.	31.0 15.9	- 9-	9	8:24 / IS:4	٦
691-AI-09		3/14/18	90 90	40P		41	79.6111	121	Ņ	8:28 /12:1	
691-45-10		5/16/13	428	1171		11	769158	- 2 1	<i>.</i> ,	8:31 /14. M	
1/5/1 - 7/1- 16	(mSD	3/16/18	191	14/18		• •	30,21 5.8	- 9 1	9	3'32 / IS'. S	2
61-11-12		3/16/18	42	746	1 1 1	11	30.B15.1	- 2 1	-6	8.34 /15'.c	لم
Duplicate		3/14/3	359	11-7-1		11	34.915,8	۔ رو ا	2	8:31 /14:4	7
								-			
							4 4	•			
							- -	•••			
							1				
hain of Custody	-	Print Name		Signature			Date/Time	Courier: CIR(CLE ONE		
ampted by:		IN (212		J-E	K		3/16/18/15/2	Federal UPS	S Pick	up/Dropoff	
elinquished by:	12	N INN H		H.	Pro la		3/14/3/16:30	For LAB USE	CONLY CONLY		
eceived at Lab by:		CC Mariou	20/12	ソ			5-17-18	Work Order #	키	20/0	-
* By signing Centek L	Labs Chai	n of Custody, you are a	ccepting Centel	k Labs Term	s and Cond	Nions listed on the	reverse side.				

CENT	EK LABORATORI	ES, LLC	Date: 0	2-Apr-18
CLIENT: Project: Lab Order:	LaBella Associates, P.C. 691 St Paul St. C1803045		Work Orde	er Sample Summary
Lab Sample ID C1803045-001A	Client Sample ID 691-AI-01	Tag Number 188.338	Collection Date 3/16/2018	Date Received 3/19/2018
C1803045-002A	691-AI-02	365.342	3/16/2018	3/19/2018
C1803045-003A	691-AI-03	189.296	3/16/2018	3/19/2018
C1803045-004A	691-AI-04	539.346	3/16/2018	3/19/2018
C1803045-005A	691-Al-05	170.1168	3/16/2018	3/19/2018
C1803045-006A	691-AI-06	131.340	3/16/2018	3/19/2018
C1803045-007A	691-A1-07	133.1164	3/16/2018	3/19/2018

CLIENT: Project: Lab Order:	LaBella Associates, P.C. 691 St Paul St. C1803045		Work Orde	er Sample Summary
Lab Sample ID C1803045-008A	Client Sample ID 691-Al-08	Tag Number 287.380	Collection Date 3/16/2018	Date Received 3/19/2018
C1803045-009A	691-AJ-09	88.406	3/16/2018	3/19/2018
C1803045-010A	691-AI-10	324.1171	3/16/2018	3/19/2018
C1803045-011A	691-Al-11 MS/MSD	1196.1418	3/16/2018	3/19/2018
C1803045-012A	691-AI-12	92.266	3/16/2018	3/19/2018
C1803045-013A	Duplicate	359.1171	3/16/2018	3/19/2018

CENTEK LABORATO	RIES, LLC					ŝ	Sample Re	ceipt	Checkli	st	
Client Name LABELLA - ROCHESTER					Date and	Tim	e Receive			3/19/2018	
Work Order Numbe C1806045/					Received	by	NM				
Checklist completed by		(१-	-(8	} I	Reviewed	Бу	رت thilials	ere samonanere	3/19	118 ate	
Matrix:	Carrier name:	Fed	<u>Ex Gro</u>	ound					ſ		
Shipping container/cooler in good condition?		Yes		ł	No 🗀		Not Presen				
Custody seals intact on shippping container/co-	pler?	Yes	\checkmark	ł	No 🗀		Not Presen				
Custody seals intact on sample bottles?		Yes		1	No 🛄		Not Presen				
Chain of custody present?		Yes		i	No 🗔						
Chain of custody signed when relinguished and	received?	Yes		1	No 🛄						
Chain of custody agrees with sample labels?		Yes	$\mathbf{\nabla}$	i	No 🗋						
Samples in proper container/bottle?		Yes	\mathbf{V}	I	No 🗔 🖉						
- Sample containers infact?		Yes		·	No 🗔		:				
"-Sufficient somale volume figuralizated last?		(Yaşı			мо 🗇 👘						
All samples received within holding time?		Yes	$\mathbf{\Sigma}$. • !	No.E.		•				n 1970) Brinner A
Container/Temp Blank temperature in complian	ce?	Yes	$\mathbf{\Sigma}$	1	No 🗋 👘						, e
Water - VOA vials have zero headspace?	No VOA vials subm	nitled	\mathbf{V}		Yes		No 🗔				
Water - pH acceptable upon receipt?		Yes	\Box	1	No 🔽						
	Adjusted?			Check	ed by						
Any No and/or NA (not applicable) response mu	ust be detailed in the c 	omme	nts se	ection be	P	erso	n contacted				
Contacted by:	Regarding:										
Commente:											_
	1992 - 1997 - 1997 (1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								· · · · · · · · · · · · · · · · · · ·	
Corrective Action											_
N=							,				

<i>۲</i> ٦	
~	į.
-	i
1	{
	Į.
- 86 T	
·	÷.
L.	
0	1
ببه	÷.
6 4	Į.
<u>.</u>	
<u> </u>	
	ł
C .	ł.
) and the second	11
<u> </u>	
0	
-	ł.
_	ł.
e	
()	
<u> </u>	i

Page 13 of 207

02-Apr-18

Lab Order:	C1803045					
Client:	LaBella Associates, P.C.				DATES REPORT	
Project:	691 St Paul St.					
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date An	nalysis Date
C1803045-001A	69t-AL-01	3/16/2018	Air	lug/mJ w/0.2ug/M3 CT-TCE-VC-DCE. 1.1DCE		3/21/2018
C1803045-002A	691-AI-02			lugim3 w/0.2kg/M3 CT-TCE-VC-DCE- 1,tDCE		3/21/2018
C1803045-003A	691-AL-03			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,IDCE		3/21/2018
C1803045-004A	691-AI-04			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,tDCE		3/21/2018
C1803045-005A	691-A1-05			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,tDCE		3/21/2018
CI803045-006A	691-Al-06			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		3/21/2018
C1803045-007A	691-AJ-07			lugimà w/ 0.2ug/M3 CT-TCE-VC-DCE- L,1DCE		3/21/2018
C1803045-008A	691-Al-08			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		3/21/2018
C1803045-009A	60-1V-169			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		3/21/2018
C1803045-010A	01-14-109			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		3/21/2018
C1803045-011A	691-AI-11 MS/AfSD			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,tDCE		3/20/2018
C1803045-012A	691-AI-12			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- L, IDCE		3/21/2018
Ct803045-013A	Duplicate			lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		3/21/2018

100

CANISTER ORDER

CENTEK LABORATORIES, LLC Air Quality Testing, ...It's a Gas 143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731

7097

02-Apr-18

SHIPPE	D TO;		
Company:	LaBella Associates, P.C.	Submitted By:	
Contact:	John Lanz	MadeBy: rip	
Address:	300 State Street, Suite 201		
	Rochester, NY 14614	Ship Date: 3/9/2018	
Phone:	(585) 454-6110	VIA: FedEx Ground	
Quote ID:	0	Due Date: 3/12/2018	
Project:			
PO:			1
Bottle Code	Bottle Type	TEST(s)	QTY
Can / Reg ID) Description		
88	1L Mini-Can - 1107 VI		
92	1L Mini-Can - 1103 VI		
131	1L Mini-Can - 1079 VI		
133	1L Mini-Can - 1082 Vł		
170	1L Mini-Can - 1141 VI		
188	1L Mini-Can - 1143 VI		
1418	Time-Set Reg-2197 IAQ		
406	Time-Set Reg - 785 VI		
539	1L Mini-Can - 107 VI		
1164	Time-Set Reg-0677 VI		
1168	Time-Set Reg-0793 VI		
1171	Time-Set Reg-0796 VI		
1196	1.4L Mini-Can - 1374 VI		
340	Time-Set Reg - 737 VI		
342	Time-Set Reg - 739 VI		
346	Time-Set Reg - 743 Vi		
359	1L Mini-Can - 1308 Vi		
365	1L Mini-Can - 1314 VI		
380	Time-Set Reg - 754 VI		
189	1L Mini-Can - 1144 VI		
266	Time-Set Reg - 704 VI		
287	1L Mini-Can - 255 VI		
296	Time-Set Reg - 719 VI		
324	1L Mini-Can - 1287 VI		
338	Time-Set Reg - 735 VI		
1158	Time-Set Reg-0671 VI		
419	1L Mini-Can - 1343 VI		
370	1L Mini-Can - 1319 VI		
339	Time-Set Reg - 736 VI		
267	Time-Set Reg - 705 VI		
352	1L Mini-Can - 1301 VI		
343	Time-Set Reg - 740 VI		
161	1L Mini-Can - 1131 VI		
272	Time-Set Reg - 710 VI		
237	1L Mini-Çan - 1168 VI		_
		1	,

SHIPPED TO:

Company:	LaBella Associates, P.C.	Submitted By:	
Contact: Address:	John Lanz 300 State Street, Suite 201	MadeBy: rjp	
	Rochester, NY 14614	Ship Date: 3/9/2018	
Phone:	(585) 454-6110	VIA: FedEx Ground	
Quote ID:	0	Due Date: 3/12/2018	
Project:			
PO:			
Bottle Code	Bottle Type	TEST(s)	QTY
261	Time-Set Reg - 699 VI		
265	Time-Set Reg - 703 VI		
171	1L Mini-Can - 1142 VI		
168	1L Mini-Can - 1138 VI		
Comments	18 1L @ 8hr + 1 L4 @ 8r + Dupe WAC	011518A-B. 022618A-C. 022818A-C	

GC/MS VOLATILES-WHOLE AIR

,

.

METHOD TO-15

ANALYTICAL RESULTS

Page 16 of 207

	Result	**Limit	Qual	Units	DF	Date Analyzed
1803045-001A				Matrix:	AIR	
91 St Paul St.				Collection Date:	3/16/20	18
1803045				Tag Number:	188.338	}
aBella Associates, P.C	2.		C	lient Sample ID:	691-Al-	-01
	LaBella Associates, P.C 21803045 91 St Paul St. 21803045-001A	LaBella Associates, P.C. C1803045 91 St Paul St. C1803045-001A	LaBella Associates, P.C. C1803045 91 St Paul St. C1803045-001A	ABella Associates, P.C. C C1803045 991 St Paul St. C1803045-001A	LaBella Associates, P.C.Client Sample ID:C1803045Tag Number:C91 St Paul St.Collection Date:C1803045-001AMatrix:	LaBella Associates, P.C. Client Sample ID: 691-Al- C1803045 Tag Number: 188.338 G91 St Paul St. Collection Date: 3/16/20 C1803045-001A Matrix: AlR

FIELD PARAMETERS		FLD			Anaiyat.
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	vdqq	1	3/21/2018 12:16:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	3/21/2018 12:16:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 12:16:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/21/2018 12:16:00 AM
Trichloroethene	< 0.030	0.030	ppbV	1	3/21/2018 12:16:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 12:16:00 AM
Surr: Bromofluorobenzene	87.0	70-130	%REC	1	3/21/2018 12:16:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	Ţ	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated,	ND	Not Detected at the Limit of Detection	Deep 1 of 12
	S	Spike Recovery outside accepted recovery limits			Page 1 01 15

Analyses		Result	**ï.imit	Oual	Units	DF	Date Analyzed
Lab ID:	C1803045-001A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/2018	8
Lab Order:	C1803045				Tag Number:	188.338	
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	691-AI-0	1
 A second sec second second sec							

Analyses	nesun	""Limit Q	uai Units	1)F	Date Analyzeu
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	,		Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 12:16:00 AM
Chloroethane	< 0.40	0.40	սց/m3	1	3/21/2018 12:16:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 12:16:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 12:16:00 AM
Trichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 12:16:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 12:16:00 AM

A finder of the same as any first from some some some forbe	·····				
Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 4 643
	\mathbf{s}	Spike Recovery outside accepted recovery limits			Page 1 of 13

CLIENT:	LaBella Associates, I	P.C.		Client Sam	ple ID:	691-A	1-02
Lab Order:	C1803045			Tag Ni	mber:	365.34	42
Project:	691 St Paul St.			Collection	Date:	3/16/2	2018
Lab ID:	C1803045-002A			ת	1atrix:	AIR	
Analyses		Result	**Limit	Qual Units		DF	Date Analyzed
FIELD PARAM	ETERS		FL	Ď			Analyst:
Lab Vacuum In		-6		"Hg			3/19/2018
Lab Vacuum O	ut	-30		"Hg			3/19/2018
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCI	E-1,1DCE	то	15			Analyst: RJP
1,1-Dichloroeth	ene	< 0.040	0.040	ppb∨		1	3/21/2018 12:57:00 AM
Chloroethane		< 0.15	0.15	ppbV		1	3/21/2018 12:57:00 AM
cis-1,2-Dichlore	ethene	< 0.040	0.040	ppbV		1	3/21/2018 12:57:00 AM

Chloroethane	< 0.15	0.15	ppbV	1	3/21/2018 12:57:00 AM
cís-1,2-Dichloroethene	< 0.040	0.040	ppb∨	1	3/21/2018 12:57:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/21/2018 12:57:00 AM
Trichloroethene	< 0.030	0.030	ppb∨	1	3/21/2018 12:57:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	3/21/2018 12:57:00 AM
Surr: Bromofluorobenzene	87.0	70-130	%REC	1	3/21/2018 12:57:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Б	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D. D. 610
	S	Spike Recovery outside accepted recovery limits			Page 2 of 13

Centek La			Date:	28-Mar-18			
CLIENT:	LaBella Associates, P.C			C	lient Sample ID:	691-A	1-02
Lab Order:	C1803045				Tag Number:	365.34	42
Project:	691 St Paul St.				Collection Date:	3/16/2	018
Lab ID:	C1803045-002A				Matrix:	AIR	
Analyses		Result	**Limit	Quai	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-1	.1DCE	тс)-15			Analyst: RJP
1.1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 12:57:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 12:57:00 AM
cis-1 2-Dicblord	pethene	< 0.16	0.16		ug/m3	1	3/21/2018 12:57:00 AM
trans-1 2-Dichl	oroethene	< 0.59	0.59		ug/m3	1	3/21/2018 12:57:00 AM
Trichloroethene	a	< 0.16	0,16		ug/m3	1	3/21/2018 12:57:00 AM
Vinyi chloride	•	< 0.10	0.10		ug/m3	1	3/21/2018 12:57:00 AM

Qualifiers: ** Quantitation Limit Results reported are not blank corrected B Analyte detected in the associated Method Blank E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit JN Non-routine analyte. Quantitation estimated. ND Not Detected at the Limit of Detection Solide Berowery outside accepted recovery limits I	Page 2 of 13
S Spike Recovery outside accepted recovery limits	

CLIENT:	LaBella Associates, F	Р.С.		Client Sample ID:	691-A	.I-03
Lab Order:	C1803045			Tag Number:	189.2	96
Project:	691 St Paul St.			Collection Date:	3/16/2	2018
Lab ID:	C1803045-003A			Matrix:	AÍR	
Anałyses		Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAM	ETERS		FLD			Analyst:
Lab Vacuum In		-2		"Hg		3/19/2018
Lab Vacuum O	ut	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO-15			Analyst: RJP
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/21/2018 1:38:00 AM
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 1:38:00 AM
cis-1,2-Dichlord	ethene	< 0.040	0.040	Vdqq	1	3/21/2018 1:38:00 AM
trans-1,2-Dichio	proethene	< 0.15	0.15	ppbV	1	3/21/2018 1:38:00 AM
Trichloroethene	,	< 0.030	0.030	ppbV	1	3/21/2018 1:38:00 AM
Vinyl chloride		< 0.040	0.040	Vdqq	1	3/21/2018 1:38:00 AM
Surr: Bromof	luorobenzene	87.0	70-130	%REC	1	3/21/2018 1:38:00 AM

Qualifiers: *

** Quantitation Limit

- ${\bf B}$ Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Vinyl chioride

Date: 28-Mar-18

1

3/21/2018 1:38:00 AM

CLIENT:	LaBella Associates, P	.С.		Client Sample ID:		D: 691-A	691-AI-03		
Lab Order:	C1803045				Tag Numbe	r: 189.2	96		
Project:	691 St Paul St.				Collection Da	te; 3/16/2	2018		
Lab ID:	C1803045-003A				Matr	x: AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 1:38:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 1:38:00 AM		
cis-1,2-Dichloro	pethene	< 0.16	0.16		ug/m3	1	3/21/2018 1:38:00 AM		
trans-1,2-Dichle	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 1:38:00 AM		
Trichloroethene	2	< 0.16	0.16		ug/m3	1	3/21/2018 1:38:00 AM		

0.10

ug/m3

< 0.10

Qualifiers:

** Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
 - Page 3 of 13

CLIENT:	LaBella Associates, P.C.	Client Sample ID:	691-Al-04
Lab Order:	C1803045	Tag Number:	539.346
Project:	691 St Paul St.	Collection Date:	3/16/2018
Lab ID:	C1803045-004A	Matrix:	AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	i		Analyst: RJP
1,1-Dichloroethene	< 0,040	0.040	Vdqq	1	3/21/2018 2:18:00 AM
Chioroethane	< 0.15	0.15	ppbV	1	3/21/2018 2:18:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040	ppb∨	1	3/21/2018 2:18:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/21/2018 2:18:00 AM
Trichloroethene	0.040	0.030	ppbV	t	3/21/2018 2:18:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 2:18:00 AM
Surr: Bromofluorobenzene	89.0	70-130	%REC	1	3/21/2018 2:18:00 AM

Qualifiers:	**	Quantitation Limit	,	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 4 -612
	s	Spike Recovery outside accepted recovery limits			rage 4 of 13

Vinyl chloride

CLIENT:	LaBella Associates, F	P.C.		С	lient Sample ID:	691-A	1-04
Lab Order:	C1803045				Tag Number:	539.34	46
Project:	691 St Paul St.				Collection Date:	3/16/2	2018
Lab ID:	C1803045-004A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1.1DCE	тс)-15			Analyst: RJI
1,1-Dichloroeth	епе	< 0.16	0.16		ug/m3	1	3/21/2018 2:18:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 2:18:00 AM
cis-1,2-Dichlord	oethene	< 0.16	0.16		ug/m3	1	3/21/2018 2:18:00 AM
trans-1.2-Dichl	oroethene	< 0.59	0.59		ug/m3	1	3/21/2018 2:18:00 AM
Trichloroethen	0	0.21	0.16		ug/m3	1	3/21/2018 2:18:00 AM
Vinvl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 2:18:00 AM

0.10

< 0.10

					· , · · · · · · · · · · · · · · · · · ·
Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Dage 4 of 12
	s	Spike Recovery outside accepted recovery limits			Page 4 of 15

A		Danuald	WWT Secult	Qual	linite	KN 87	Data Analyzad
Lab ID:	C1803045-005A		No. No. 1997		Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/201	8
Lab Order:	C1803045				Tag Number:	170.1168	
CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	691-A1-0	5

Kesun		a Onits	DF	Date Analyzeu
	FLD			Analyst:
-6		"Hg		3/19/2018
-30		"Hg		3/19/2018
CE-1,1DCE	TO-15			Analyst: RJP
< 0.040	0.040	ppbV	1	3/21/2018 3:00:00 AM
< 0.15	0.15	ppbV	1	3/21/2018 3:00:00 AM
< 0.040	0.040	ppbV	1	3/21/2018 3:00:00 AM
< 0.15	0.15	ppb∨	1	3/21/2018 3:00:00 AM
0.060	0.030	ppbV	1	3/21/2018 3:00:00 AM
< 0.040	0.040	opbV	1	3/21/2018 3:00:00 AM
94.0	70-130	%REC	1	3/21/2018 3:00:00 AM
	-6 -30 CE-1,1DCE < 0.040 < 0.15 < 0.040 < 0.15 0.060 < 0.040 94.0	FLD -6 -30 CE-1,1DCE TO-15 < 0.040 0.040 < 0.15 0.15 < 0.040 0.040 < 0.15 0.15 0.060 0.030 < 0.040 0.040 94.0 70-130	FLD -6 "Hg -30 "Hg 2004D 0.040 ppbV < 0.04D	FLD -6 "Hg -30 "Hg 2000 0.040 ppbV < 0.040

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 6 6 12
	S	Spike Recovery outside accepted recovery limits			Page 5 of 15

CLIENT:	LaBella Associates, P.C.		1	С	lient Sample ID:	691-AI-0	5
Lab Order:	C1803045				Tag Number:	170.1168	
Project:	691 St Paul St.				Collection Date:	3/16/201	8
Lab ID:	C1803045-005A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed

1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 3:00:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 3:00:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 3:00:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 3:00:00 AM
Trichloroethene	0.32	0.16	ug/m3	1	3/21/2018 3:00:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 3:00:00 AM

Qualifiers:	**	Quantitation Limit	-	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Ε	Estimated Value above quantitation range	;
	н	Holding times for preparation or analysis exceeded	l	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 6 - 6 10
	s	Spike Recovery outside accepted recovery limits			rage 5 of 13

Date: 28-Mar-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID:	691-AI-06
Lab Order:	C1803045	Tag Number:	131.340
Project:	691 St Paul St.	Collection Date:	3/16/2018
Lab ID:	C1803045-006A	Matrix:	AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 4:21:00 AM
Chloroethane	< 0.15	0.15	Vaqq	1	3/21/2018 4:21:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 4:21:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/21/2018 4:21:00 AM
Trichloroethene	0.060	0.030	ppbV	1	3/21/2018 4:21:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 4:21:00 AM
Surr: Bromofluorobenzene	104	70-130	%REC	1	3/21/2018 4:21:00 AM

Qualifiers:	* *	Quantitation Limit	,	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 6 € 12
	S	Spike Recovery outside accepted recovery limits			rage o or 13

					· · · · · · · · · · · · · · · · · · ·		
CLIENT:	LaBella Associates, P	.C.		CI	ient Sample ID:	691-A	1-06
Lab Order:	C1803045				Tag Number:	131,34	40
Project:	691 St Paul St.			•	Collection Date:	3/16/2	2018
Lab ID:	C1803045-006A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJP
1,1-Dichioroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 4:21:00 AM
Chloroethane		< 0,40	0.40		ug/m3	1	3/21/2018 4:21:00 AM
cis-1,2-Dichlord	pethene	< 0.16	0.16		ug/m3	1	3/21/2018 4:21:00 AM
trans-1,2-Dichle	oroethene	< 0.59	0.69		ug/m3	1	3/21/2018 4:21:00 AM
Trichloroethene	9	0.32	0.16		ug/m3	1	3/21/2018 4:21:00 AM
Vinyl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 4:21:00 AM

Qualifiers:	**	Quantitation Limit	,	Results reported are not blank corrected	
-	B	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Dec. 6 .612
	s	Spike Recovery outside accepted recovery limits			Page 6 of 13

CLIENT:	LaBella Associates, P	P.C.	(lient Sample ID:	691-A	I-07
Lab Order:	C1803045			Tag Number:	133.1	164
Project:	691 St Paul St.			Collection Date:	3/16/2	2018
Lab ID:	C1803045-007A			Matrix:	AIR	
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS			FLD			Analyst:
Lab Vacuum Ir	1	-6		"Hg		3/19/2018
Lab Vacuum O	Dut	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2	2UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-15			Analyst: RJP
1,1-Dichloroeth	iene	< 0.040	0.040	ppbV	1	3/21/2018 5:03:00 AM
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 5:03:00 AM
cis-1,2-Dichlord	oethene	0.14	0.040	ppbV	1	3/21/2018 5:03:00 AM
trans-1,2-Dichi	oroethene	< 0.15	0,15	ppbV	1	3/21/2018 5:03:00 AM
Trichloroethend	ē,	0.10	0.030	opbV	1	3/21/2018 5:03:00 AM
Vinyl chloride		< 0.040	0.040	ppbV	1	3/21/2018 5:03:00 AM
Surr: Bromo	fluorobenzene	92.0	70-130	%REC	1	3/21/2018 5:03:00 AM

Qualifiers:	++	Quantitation Limit		Results reported are not blank corrected	
	B	Analyte detected in the associated Method Blank	£	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Dama 7 of 12
	s	Spike Recovery outside accepted recovery limits			Page / 01 15

Analyses	······································	Result	**Limit O	ual Un	its	DF	Date Analyzed
Lab ID:	C1803045-007A				Matrix:	AIR	
Project:	691 St Paul St.			Col	lection Date:	3/16/2013	3
Lab Order:	C1803045			า	ag Number:	133.1164	
CLIENT:	LaBella Associates, P.C			Clien	t Sample ID:	691-AI-0	7

		~ ~ ~			2.000 (
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJP	
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 5:03:00 AM	
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 5:03:00 AM	
cis-1,2-Dichloroethene	0.55	0.16	ug/m3	1	3/21/2018 5:03:00 AM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 5:03:00 AM	
Trichloroethene	0.54	0.16	ug/m3	1	3/21/2018 5:03:00 AM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 5:03:00 AM	

					\
Qualifiers:	+*	Quantitation Limit	,	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D # - 610
	s	Spike Recovery outside accepted recovery limits			Page 7 of 13

Date: 28-Mar-18

CLIENT:	LaBella Associates, F	Р.С.		Client Sample ID:	691-1	\I-08	
Lab Order:C1803045Project:691 St Paul St.				Tag Number:	287.3	80	
				Collection Date:	3/16/2	2018	
Lab ID:	C1803045-008A		Matrix:		AIR		
Analyses		Result	**Limit Qua	l Units	DF	Date Analyzed	
FIELD PARAMETERS			FLD			Analyst:	
Lab Vacuum In		-6		"Hg		3/19/2018	
Lab Vacuum O	ut	-30		"Hg		3/19/2018	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1.1DCE		TO-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/21/2018 5:44:00 AM	
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 5:44:00 AM	
cis-1,2-Dichloro	ethene	0.22	0.040	ppbV	1	3/21/2018 5:44:00 AM	
trans-1,2-Dichle	voethene	< 0.15	0.15	ppb∨	1	3/21/2018 5:44:00 AM	
Trichloroethene		0.14	0.030	ppb∨	1	3/21/2018 5:44:00 AM	
Vinyt chloride		0.080	0.040	Vďqq	1	3/21/2018 5:44:00 AM	
Surr: Bromof	iuorobenzene	93.0	70-130	%REC	1	3/21/2018 5:44:00 AM	

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 28-Mar-18

		 		the mean of the second		
Lab ID;	C1803045-008A			Matrix:	AIR	
Project:	691 St Paul St.			Collection Date:	3/16/2018	1
Lab Order:	C1803045			Tag Number:	287.380	
CLIENT:	LaBella Associates, P.C.	 	С	lient Sample ID:	691-AI-0	8

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	TO-15			Analyst: RJP	
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 5:44:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 5:44:00 AM
cis-1,2-Dichloroethene	0.87	0.16	ug/m3	1	3/21/2018 5:44:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 5:44:00 AM
Trichloroethene	0.75	0.16	ug/m3	1	3/21/2018 5:44:00 AM
Vinyl chloride	0.20	0.10	ug/m3	1	3/21/2018 5:44:00 AM

Qualifiers: ** Q

Quantitation Limit

B Analyte detected in the associated Method Blank

......

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

CLIENT:	LaBella Associates, P.	.C.		Client Sample 1D:			691-A1-09		
Lab Order:	C1803045			Tag Number:		88,40	88.406		
Project:	691 St Paul St.		Collection Date:		3/16/2018				
Lab ID:	C1803045-009A				Matrix:	AIR			
Analyses		Result	**Limit	Qual Ur	lits	DF	Date Analyzed		
FIELD PARAM	ETERS		FLD				Analyst:		
Lab Vacuum In		-2		"Hç	3		3/19/2018		
Lab Vacuum O	ut	~30		"Hç)		3/19/2018		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	то	0-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.040	0.040	ppt	V	1	3/21/2018 6:24:00 AM		
Mala a sala a ma		- 0.45	0.45			4	3/31/2019 C-24-00 AM		

Chloroothana	~ 0.45	0 1 F	nob\/	1	3/21/2018 6·24·00 AM
CHOICE(HARE	< 0.15	0.15	ppov	1	0/21/2010 0.24:00 / 0/
cis-1,2-Dichloroethene	0.26	0.040	ppb∨	1	3/21/2018 6:24:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	3/21/2018 6:24:00 AM
Trichloroethene	0.12	0.030	ppbV	1	3/21/2018 6:24:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	3/21/2018 6:24:00 AM
Surr: Bromofluorobenzene	99.0	70-130	%REC	1	3/21/2018 6:24:00 AM

				11110011111111111111111111111111111111		
Qualifiers:	**	Quantitation Limit	,	Results reported are not blank corrected		
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range		
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit		
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Dana () +6.12	
S		Spike Recovery outside accepted recovery limits			Page 9 of 13	

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1803045-009A				Matrix:	AIR	m.,
Project:	691 St Paul St.				Collection Date:	3/16/201	8
Lab Order:	C1803045				Tag Number:	88.406	
CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	691-Al-(09

1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TO-15	;	Analyst: RJP		
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 6:24:00 AM	
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 6:24:00 AM	
cis-1,2-Dichloroethene	1.0	0.16	ug/m3	1	3/21/2018 6:24:00 AM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 6:24:00 AM	
Trichloroethene	0.64	0.16	ug/m3	1	3/21/2018 6:24:00 AM	
Vinyi chloride	< 0.10	0.10	ug/m3	1	3/21/2018 6:24:00 AM	

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 . 610
	S	Spike Recovery outside accepted recovery limits			lage 9 of 13

Date: 28-Mar-18

OL LENT.	LaDalla Assasiata - F				601 4	7.10		
CLIENT:	Labena Associates, P		Chent Sampie 1D:			091-741-10		
Lab Order:	C1803045			Tag Number:	324.1	324.1171		
Project:	691 St Paul St.			Collection Date:	3/16/2	2018		
Lab ID:	C1803045-010A			Matrix:	AIR			
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed		
FIELD PARAMETERS			FLD			Analyst:		
Lab Vacuum In	1	-6		"Hg		3/19/2018		
Lab Vacuum O	lut	-30		"Hg		3/19/2018		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/21/2018 7:06:00 AM		
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 7:06:00 AM		
cis-1,2-Dichlord	pethene	0.24	0.040	ppb∨	1	3/21/2018 7:06:00 AM		
trans-1,2-Dichie	oroethene	< 0.15	0.15	ppbV	1	3/21/2018 7:06:00 AM		
Trichloroethene	3	0.14	0.030	ppb∨	1	3/21/2018 7:06:00 AM		
Vinyl chloride		< 0.040	0.040	ppb∨	1	3/21/2018 7:06:00 AM		
Surr: Bromol	fluorobenzene	98.0	70-130	%REC	1	3/21/2018 7:06:00 AM		

a a marana da sera da s Qualifiers: ** Quantitation Limit Results reported are not blank corrected . Analyte detected in the associated Method Blank Ε Estimated Value above quantitation range в Analyte detected below quantitation limit Н Holding times for preparation or analysis exceeded J ND Not Detected at the Limit of Detection JN Non-routine analyte. Quantitation estimated. Page 10 of 13 S Spike Recovery outside accepted recovery limits

CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	691-AI-1	0
Lab Order:	C1803045				Tag Number:	324.1171	
Project:	691 St Paul St.				Collection Date:	3/16/2018	3
Lab ID:	C1803045-010A				Matrix:	AIR	
Analyses	******	Result	**Limit	Qual	Units	DF	Date Analyzed

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15	l		Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 7:06:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 7:06:00 AM
cis-1,2-Dichloroethene	0.95	0.16	ug/m3	1	3/21/2018 7:06:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 7:06:00 AM
Trichloroethene	0.75	0.16	ug/m3	1	3/21/2018 7:06:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 7:06:00 AM

	_					
Qualifiers:	**	Quentitation Limit	•	Results reported are not blank corrected		
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	c	
	H	Holding times for preparation or analysis exceeded	Ţ	Analyte detected below quantitation limit	L	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 10 - 612	
S		Spike Recovery outside accepted recovery limits			Page 10 of 13	

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, F C1803045 691 St Paul St. C1803045-011A	P.C.	Client Sample ID: 691-AI-11 MS/MSD Tag Number: 1196.1418 Collection Date: 3/16/2018 Matrix: AlR					
Analyses		Result	**Lìmit Qua	l Units	DF	Date Analyzed		
FIELD PARAMETERS			FLD			Analyst:		
Lab Vacuum In		-6		"Hg		3/19/2018		
Lab Vacuum O	ut	-30		"Hg		3/19/2018		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO-15		Analyst: RJP			
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/20/2018 10:02:00 PM		
Chloroethane		< 0.15	0.15	ppbV	1	3/20/2018 10:02:00 PM		
cis-1,2-Dichloro	ethene	0.18	0.040	ppbV	1	3/20/2018 10:02:00 PM		
trans-1,2-Dichle	proethene	< 0.15	0.15	ppbV	1	3/20/2018 10:02:00 PM		
Trichloroethene	•	0.14	0.030	ppb∨	1	3/20/2018 10:02:00 PM		
Vinyl chloride		< 0.040	0.040	ppbV	1	3/20/2018 10:02:00 PM		
Surr: Bromof	luorobenzene	96.0	70-130	%REC	1	3/20/2018 10:02:00 PM		

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 11 of 13

Angivees		Recult	**I imit	Qual	Enits	DF	Date Analyzed	
Lab ID:	C1803045-011A				Matrix:	AIR		
Project:	691 St Paul St.				Collection Date:	3/16/201	8	
Lab Order:	C1803045				Tag Number:	1196.141	8	
CLIENT:	LaBella Associates, P.C.	•		C	lient Sample ID:	691-Al-1	1 MS/MSD	
						• • • • • • • • • • • • • • • • • • •	No martin Ma Add - Wall Are an and a second s	

Analyses	Result	**Limit Qi	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/20/2018 10:02:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/20/2018 10:02:00 PM
cis-1,2-Dichloroethene	0.71	0.16	ug/m3	1	3/20/2018 10:02:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/20/2018 10:02:00 PM
Trichloroethene	0.75	0.16	սց/m3	1	3/20/2018 10:02:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/20/2018 10:02:00 PM

Qualifiers:	**	Quantitation Limit	,	Results reported are not blank corrected	
	8	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	14	Holding times for preparation or analysis exceeded	ţ	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits		Page 11 of 1	13

Date: 28-Mar-18

CLIENT:	LaBella Associates, F	.C.	C	lient Sample ID:	691-A	.I-12
Lab Order:	C1803045			Tag Number:	92.26	5
Project:	691 St Paul St.			Collection Date:	3/16/2	2018
Lab ID:	C1803045-012A			Matrix:	AIR	
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAM	ETERS		FLD			Analyst:
Lab Vacuum In)	-6		"Hg		3/19/2018
Lab Vacuum O	ut	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-15			Analyst: RJI
1,1-Dichloroeth	ene	< 0.040	0.040	ppb∨	1	3/21/2018 7:47:00 AM
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 7:47:00 AM
cis-1,2-Dichlord	bethene	0.16	0.040	ppbV	1	3/21/2018 7:47:00 AM
trans-1,2-Dichle	oroethene	< 0,15	0.15	ppbV	1	3/21/2018 7:47:00 AM
Trichloroethene	9	0.070	0.030	ppbV	1	3/21/2018 7:47:00 AM
Vinyl chloride		< 0.040	0.040	ppbV	1	3/21/2018 7:47:00 AM
Surr: Bromo	fluorobenzene	97.0	70 <u>-</u> 130	%REC	1	3/21/2018 7:47:00 AM

······ ** Quantitation Limit Qualifiers: Results reported are not blank corrected . Estimated Value above quantitation range Analyte detected in the associated Method Blank Ε в J Analyte detected below quantitation limit н Holding times for preparation or analysis exceeded ND Not Detected at the Limit of Detection JN. Non-routine analyte, Quantitation estimated. Page 12 of 13 Spike Recovery outside accepted recovery limits S

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1803045-012A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/201	8
Lab Order:	C1803045				Tag Number:	92.266	
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	691-AI-1	2
(1) Constraints and the second secon second second sec					and the second		

Analyses	Result	**Limit Qi	ial Units	Dr	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15			Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 7:47:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 7:47:00 AM
cis-1,2-Dichloroethene	0.63	0.16	ug/m3	1	3/21/2018 7:47:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 7:47:00 AM
Trichloroethene	0.38	0.16	ug/m3	t	3/21/2018 7:47:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 7:47:00 AM

				17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19
Qualifiers:	* *	Quantitation Limit	,	Results reported are not blank corrected
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range
	н	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	S	Spike Recovery outside accepted recovery limits		Page 12 of 13
	S	Spike Recovery outside accepted recovery limits		rage 12 01 15

Analyses		Decuit	**** ::*	Qual	Finita	D.D.	T
Lab ID:	C1803045-013A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/2013	3
Lab Order:	C1803045				Tag Number:	359.1171	
CLIENT:	LaBella Associates, P.C	Ξ.		C	lient Sample ID:	Duplicate	
		· · · · · · · · · · · · · · · · · · ·					

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 8:29:00 AM
Chloroathane	< 0.15	0.15	ppbV	7	3/21/2018 8:29:00 AM
cis-1,2-Dichloroethene	0.24	0.040	ppbV	ť	3/21/2018 8:29:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	3/21/2018 8:29:00 AM
Trichloroethene	0.13	0.030	Vaqq	1	3/21/2018 8:29:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 8:29:00 AM
Surr: Bromofluorobenzene	98.0	70-130	%REC	1	3/21/2018 8:29:00 AM

Qualifiers: ** Quantitat

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 28-Mar-18

CLIENT:	LaBella Associates, F	?.С.		C	lient Sample ID	: Dupli	cate
Lab Order:	C1803045				Tag Number	: 359.1	171
Project:	691 St Paul St.				Collection Date	: 3/16/2	2018
Lab ID:	C1803045-013A				Matrix	: AIR	
Analyses		Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	5-1,1DCE	тс)-15			Analyst: RJP
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 8:29:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 8:29:00 AM
cis-1,2-Dichloro	ethene	0.95	0.16		ug/m3	1	3/21/2018 8:29:00 AM
trans-1,2-Dichle	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 8:29:00 AM
Trichloroethene	!	0.70	0.16		ug/m3	1	3/21/2018 8:29:00 AM
Vinyl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 8:29:00 AM

Qualifiers: ** Q

** Quantitation Limit

.....

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- ${\bf S}_{\rm c}$. Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

J

GC/MS VOLATILES-WHOLE AIR

۰.

METHOD TO-15

QUALITY CONTROL SUMMARY

Page 43 of 207

Date: 28-Mar-18

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: Work Order: Project: Test No:	LaBella Associates, P C1803045 691 St Paul St. TO-15	.C. Matrix: A					
Sample ID	BR4FBZ						
ALCS1UG-032018	£17						
ALCS1UGD-0320	18 113	• • • • • • • • • • • • • • • • • • •					
AMB1UG-032018	74.0		1	{			
C1803045-001A	87.0		}				
C1803045-002A	87.0		1				
C1803045-003A	87.0]
C1803045-004A	89.0					<u>.</u>	
C1803045-005A	94,0			ļ			
C1803045-006A	104						
C1803045-007A	92.0						<u>}</u>
C1803045-008A	93.0						
C1803045-009A	99.0						
C1803045-010A	98.0			}	······································		
C1803045-011A	96.0						
C1803045-011A N	1S 107						{
C1803045-011A N	4SD 110				1 1 2		}
C1803045-012A	97.0			}			
C1803045-013A	98.0					1	

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AP032003.D Tune Time : 20 Mar 2018 11:17 am

Daily Calibration File : C:\HPCHEM\1\DATA\AP032003.D

			(BFB)		(IS1) 46099	(IS2) 180776	(IS3) 134559
File	Sample	DL	Surrogate	Recovery %	Internal	Standard Re	sponses
AP032004.D	ALCS1UG-03201	==== В	117		45642	184633	137362
AP032005.D	AMB1UG-032018		74		42656	173156	111783
AP032017.D	C1803045-011A		96		46044	176727	139424
AP032018.D	C1803045-011A	MS	107		47978	185659	154700
AP032019.D	C1803045-011A	MSI	> 110		49533	191428	152131
AP032020.D	C1803045-001A		87		52385	197971	149199
AP032021.D	C1803045-002A		87		48637	191827	146559
AP032022.D	C1803045-003A		87		53744	197860	151590
AP032023.D	C1803045-004A		89		52181	198634	151530
AP032024.D	C1803045-005A		94		51874	199002	158457
AP032025.D	ALCS1UGD-0320	18	113		44474	178734	141780
AP032026.D	C1803045-006A		104		51192	191764	142990
AP032027.D	C1803045-007A		92		50470	188806	146012
AP032028.D	C1803045-008A		93		49557	187620	144764
AP032029.D	C1803045-009A		99	דד עד רה הם נה רא של אני או אי או אי הא אחר איר	47202	180426	144567
AP032030.D	C1803045-010A		98		48088	184167	142740
AP032031.D	C1803045-012A		97		46283	179108	143253
AP032032.D	C1803045-013A		98		47464	181186	141584

t - fails 24hr time check * - fails criteria

Created: Wed Mar 28 07:37:49 2018 MSD #1/

28-Mar-18	
Date:	

ANALYTICAL QC SUMMARY REPORT

CENTEK LABORATORIES, LLC

LaBella Associates, P.C. C1803045 Work Order: CLAENT:

691 St Paul St.

Project:

TestCode: 0.20 NYS

		•									
Sample ID: ALCS1UG-032018	SampType: LCS	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 134(30	
Client ID: ZZZZ	Batch ID: R13408	TestN	o: TO-15		-	Anatysis Date:	3/20/2018		SeqNo: 155	122	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit }	lighLimit RPI	D Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.7600	0.040	1	0	76.0	02	130				
Chloroethane	0.9600	0,15	****	0	96.0	70	130				
cis-1,2-Dichloroethene	0.9500	0.040	***	0	95.0	70	130				
trans-1,2-Dichloroethene	1.020	0.15	-	0	102	70	130				
Trichloroethene	0.9500	0.030	F	Q	95.0	70	130				
Vinyl chłoride	0.9000	0.040	-	٥	0.06	02	130				
Sample ID: ALCS1UGD-032018	SampType: LCSD	TestCod	le: 0.20 NYS	Units: ppbV		Prep Date:			RunNo: 134	8	
Client ID: ZZZZ	Batch ID: Rt3408	TestN	io: TO-15			Analysis Date	3/21/2018		SeqNo: 155	123	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	lighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	0.7900	0.040		0	79.0	70	130	0.76	3.87	30	
Chloroethane	0.9600	0,15	۴	Q	96.0	70	130	0.96	0	œ	
cis-1,2-Dichioroethene	1.000	0.040	-	0	100	2	130	0.95	5.13	æ	
trans-1,2-Dichloroethene	1.060	0.15	۴۳	D	1 8	02	130	1.02	3.85	90 90	
Trichloroethene	1.000	0:030	ų.	Ð	100	02	130	0.95	5.13	30	
Vinyl chlorate	0.9100	0.040	-	0	91.0	70	130	0.9	1.10	8	

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

нч

Page I of I

Estimated Value above quantitation range Not Detected at the Limit of Detection ы МО

Results reported are not blank corrected

Analyte detected below quantitation limit

· ~ va

Qualifiers:

Spike Recovery outside accepted recovery limits

Centek Laboratories, LLC

Page 46 of 207

	ГС	
	IES, L	
	ATOR	
	BOR	
	SK LA	
1	ENT	
	ر مرتب	

ANALYTICAL QC SUMMARY REPORT

Date: 28-Mar-18

LaBella Associates, P.C. C1803045 Work Order: CLIENT;

Page 47 of 207

691 St Paul St. Project:

TestCode: 0.20 NYS

Sample ID: AMB1UG-032018	SampType: MBLK	TestCod	e: 0.20_NYS	Units: ppbV		Prep Da	le:		RunNo: 134	108	
Client ID: ZZZZ	Batch ID: R13408	TestN	o: TO-15		4	inatysis Da	te: 3/20/2(018	SeqNo: 155	5421	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	Q97%	RPDLimit	Qual
1,1-Dichloroethene	< 0.040	0.040									
Chloroethane	< 0.15	0.15									
cis-1,2-Dichloroethene	< 0.040	0.040									
trans-1,2-Dichloroethene	< 0.15	0.15									
Trichloroethene	< 0.030	0:030									
Vinyl chloride	< 0.040	0.040									

Results reported are not blank corrected Qualifiers:

- Analyte detected below quantitation limit
- Spike Recovery autside accepted recovery limits

Estimated Value above quantilation range

H Z

28-Mar-18
Date:

CENTEK LABORATORIES, LLC

}	F		1	
	Qual		Qual	
	08 437 RPDLimit		08 438 RPDLimit	<u>କୁ କୁ କୁ କୁ କୁ</u>
20_NYS	RunNo: 134 SeqNo: 155 %RPD		RunNo: 134 SeqNo: 155 %RPD	0 9.30 3.02 4.61 1.21
stCode: 0.	t PD Ref Val		s RPD Ref Val	0.73 0.9 1.13 1.01 1.11 0.83
Ţ	e: 3/20/2018 HighLimit F	130 130 130 130 130	e: 3/20/2016 HighLimit F	130 130 130 130 130
	Prep Date Anatysis Date LowLimit	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Prep Date Analysis Date LowLimit	02 02 02 02 02 02 02 02 02 02 02 02 02 0
	%REC	73.0 90.0 95.0 97.0 83.0	%REC	73.0 82.0 88.0 98.0 92.0 82.0
	Units: ppbV SPK Ref Val	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Units: ppbv SPK Ref Val	0 0 1 0 2 0 2 0 2 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 2 0
	e: 0.20_NYS 0: TO-15 SPK value		e: 0.20_NYS o: TO-15 SPK value	An da da da da da da
	TestCode TestNr PQL	0.040 0.15 0.040 0.050 0.030 0.040	TestCode TestNi PQL	0.040 0.15 0.040 0.15 0.030 0.040
ociatos, P.C. St.	SampType: MS Batch ID: R13408 Result	0.7300 0.9000 1.130 1.010 1.110 0.8300	SampType: MSD Batch ID: R13408 Result	0.7300 0.8200 1.060 0.9800 1.060 0.8200
LaBella Ass C1803045 691 St Paul S	803045-011A MS 1-AI-11 MS/MSD	hene oethene oroethene e	1803045-011A MS	hene cethene loroethene e
CLIENT: Work Order: Project:	Sample ID: C1 Client ID: 69 Analyte	1, 1-Dichloroeth Chloroethane cis-1,2-Dichlon trans-1,2-Dichl Trichloroethenk Vinyl chloride	Sample ID: C1 Client ID: 69 Analyte	1,1-Dichtoroett Chkoroethane cis-1,2-Dichlor trans-1,2-Dichlor trans-1,2-Dichlor trichloroethen Vinyl chtoride

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

н×

Estimated Value above quantitation range Not Detected at the Limit of Detection

щ

Results reported are not blank corrected Analyte detected below quantitation limit Spike Recovery outside accepted recovery fimits

•

Qualifiers:

luorm3 Defect	

ö	
8	~
,	÷.
×	2
Ŧ.	Ω.

	Method TO-1 Units=pp	KRec IDI	111.0% 0.054	116.2% 0.042	112.4% 0.059	117.1% 0.066	111.0% 0.043		121.9% 0.048	120.5% 0.084	118.6% 0.152	118.6% 0.031	119.0% 0.043	116.7% 0.041	114.3% 0.102	117.1% 0.078	121.0% 0.085	100.4% U.TU/ 405.5% 0.704	101.4% 0.031	113.3% 0.046	106.2% 0.049	108.1% 0.031	103.8% 0.634	104.3% 0.035	103.8% 0.034	105.7% 0.039	104.07% U.000 107.67% 0.743	101.9% 0.081	103.8% 0.051	104.8% 0.031	103.8% 0.046	105.7% 0.035	109.5% 0.034	105.7% 0.050	105.7% 0.043	105.2% 0.040		~		
te litter og som for som	Metrolando a de la dela	SidDev	0.02	0.0	0.02	0.02	500		000	0.03	0 ⁰ 90		000 1000	0.01	0.83	0.02	0.03	3 2	088 0	0.02	00	0 :0	0.01	0.01	00	55	>>> 500	003	0.02		6.0	50 100	0.01	0.02	900 50 50 0		A-422-	(900406	inter Ag	<u>he</u> ve i
		AVG	0.33	0.35	0.34	0.35	0.33		250	0.36	0.36	0.36	0.36	0.35	0.34	0.35	9.00	222	030	0.34	0.32	0.32	0.31	0.31	0.33	32.0	134	0.31	0.31	0.31	0.31	0.32	0.33	0.32	0.32	032				
		1D1, #5	0.33	0.36	0.3	0.33	22.0	22.0	0.06	0.34	0.35	0.35	0.35	523	0.29	0.38	68.0	0.24	0.3	0.31	0.31	0.32	0.3	0.31	150		12	0.31	0.31	2.32	0.32	0.32	0.33	0.33	35	0.22	-			
		10L#8	0.33	0.32	0.34	0,32	032	2000	0.35	0.36	0.34	0.36	0.24	0.33	0.35	50	0.32	0.20	0.24	0.33	0.32	0.32	0.31	03	6.33	0.32	070	0.31	0.29	0.31	0.3	0.31	0.31	0.3	570	6.9				
	ion Limit 017	IDI, #5	0.37	0.35	0.36	0.37	0.34	0.36	0.37	14:0	0.4	0.37	0.37	0.37	0.13 1	2.0 2.0	0.13	20	0.33	0,35	0.32	0.33	0.32	0.33	25.5	3 2	032	0,33	0.33	0.33	0.3	0.33	0.34	0.31	570 570	0.33				
	fm3 Defect October 2	101 #4	0.32	0.36	0.33	0.37	0.35	0.35	0.38	0.38	0.32	0.36	0.36	98.0	150	0°'N	0.4 7 7 7	030	0.33	0.35	0.31	0.34	631	0.32	35	3 2	0.31	0.32	0.33	0.3	C.3	0.3	0.34	633	250	0.33				
	ចិក្	101.#3	0.32	0.35	50 7 7 7	第1	0.35	0.34	0.39	0.35	5. C	50	0.38	88	87 0	00.0	1.0	032	0.32	0.35	0.32	0.31	0,33	032		570 770	0.28	0.25	0.32	20	63		EE D		63	0.31				
		101 #2	0.33	0.35	0.35	0.3/	25.0	0.38	0,35	0.33	0.3	8.0	0.35	5.2	5 X	25.0	0.35 0.3	03	0.31	0.34	0.3	0.32	0.3	0.3	177) 177)	031	0,31	0.31	0.22	0.31	10	0.32	0.32	0.3	0.32	0.32				
		10, #1	0.33	0.35	6.34		0.35 0.35	0.3	0.35	0:36	40	0.35	0.45	600	950		0.37	0.33	0.3	0.35	0.35	0.33	0.31	5.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.31	6.3	0.31	0.26	0.31	0.33	120	0.33	0.31	0.31	0.3				
		Amt	0.3	63	5 C C	2	203	0.3	0.3	0.3	6 G G G	5.0	5.0	0 0 0 0	0 C C) (*) (*	030	0	0.3	0.3	0.3	6.9	6.9	200		9 0	0.3	0.3	03	203	200		5.0	5.0	0.3	0.3				
	Center Lanoratories IDL Study	Compound	Propyene		Leionnemane Eiron 114	Minut Chicada	Butane	1,3-butadiene	Bromomethane	Chioroethane		Mudian Vind Browice		Amatina Amatina	Periano	isomoví alodad	1,1-dichiosoelhene	Freon 113	t-Butyl alcohol	Methylene chloride	Allyl chipride	Carron disultade	mather that had been and	theing) terruscy exist 1 1-dimilionelbane	Vinvi acetate	Methyl Ethyl Ketone	cis-1,2-citchiomethene	Hexane	Ethyl acetate	L'ANORTORNA Transferrance	i truany dolu (aq			Optimiexane Cartxin tetrachionida	Benzene	Methyl methacrylate	Pastitudial			

Centek Laboratories, LLC

	od TO-15	Jnits=ppb	0.097	0.039	0100	0,046	0.031	0.034	0.030	0.039	0.035	0.130	0.030	0.038	0.035	0.030	0.047	0,039	0.054	0.046	0.031	0,039	0,036	1000	0.030	0.047	0.030	0.031	0.046	0.039	0.064	1) 202 C	0 3 1 0	0.020	0.854	90.036			N		
	theth		82.38	102.4%	87 F.S	106.2%	108.8%	106.2%	107.6%	107.6%	104.3%		100.7% 81 005	103 FTK	101.9%	10.01	102,4%	105.5%	105.7%	39.5%	105.2%	107.6%		101 14K	101.0%	101.0%	101.0%	101 4%	100.5%	80 86 80	107.1%	R0.77	101. JA	80 0% 80 0%	87.1%	98.1%					
14.000 A.2000	9.62.634	****	0,03	000	580 5 5 5 6	500	0.01	0.01	0.01	000	800 500 500 500 500 500 500 500 500 500	8475 500 0	5 8 5 0	60	0.0	0.01	0.01	6.03	0.02	50	0 .01	60 1	60 X		00	500	6.0	0.01	ः २० ०	0.01 0.01	0.02		े~् 100	500 000	200	0.01	1021422	:4673:	9949 Y	994494 1	errate.
			0.29	63	200	0.32	0.33	0.32	0.32	0.32	0.31	/70	0.25	0.31	0.31	0.30	0.31	0.63	0.32	0.30	0.32	0.32	0.31 + 00	32	0.30	0.30	0.30	0:30	0.30	0.30	220	0.23	0.00		0.26	0.29					
			0.26	0.31	50	20	0,31	0.20	0.32	220	020	122	5 6	03	0.3	0.29	63	0.63	0.3	0.31	0.31	0.31	3.8	E	03	03	0.3	0.29	0.3	C.O.	6.50		22	2.0	0.25	0.29					
			0.24	0.31		0.31	0.32	0.31	0.31	63	0.31	770	10.0	0.25	0.29	0.3	0.28	0.63	0,3	0.29	0.31	0.35	67.0	0.34	0.29	0,27	0.29	0.23	0.27	023	0.28	070	122	0.25	0.22	0.27					
·	sa Lina) 17		0.32	0.34	03	150	0,33	0.32	0.33	0,33		15 U	57 D	0.32	0.31	0.31	0.32	0.64	0.32	031	0.33	0.32	101	0.35	0.3	0.31	0.32	0.31	0.31	03	0.34	0.0		0.2B	0.28	0.3					
	n3 Detectio		0.32	0.28	0.28	0.35	0.34	0.34	0.33	0.32	0.32		979 979	0.32	6.31	0.29	0.3	0.65	0.32	0.3	0.32	0.32	50	0.33	0.3	0.31	0.3	0.31	0.31	6.0	0.32	3 6	5	0.27	0.27	0.3					
	1ugut 1		0.31	0.3	0.29	0.31	0.33	0.31	0.33	0.33	22.0	2 C	0.26	0.32	0.32	0.31	0.32	0.63	0.32	0.3	0.32	0.32	75.0	0.32	0.31	0.31	0.3	0.31	0.31	0.3	\$. 1		5.0	0.27	0.27	0.3					
			0.29	0.3	0.3	0.31	0.33	0.32	0.33	634	50	63 D	0.25	0.31	0.3	0.35	0.32	0.61	0.35	0.31	76.0	757)	10.11	0.33	0.3	0.31	0,3	0.31	0.31	5,0	370	0 24	0.3	0.26	12.0	0,3					
			0.28	220	0.3	0.32	0.32	0.31	0.35	0.32	75 U	170 033	0.23	0.32	0.31	0.31	0.31	50	631	17.0	5.0 2	25.0	191	0.32	032	0.31	0.31	0.31	S j	5	2.2	22.4	1	0.27	0.27	0.3					
			63	0.3	0.3	0.3	0.3	0.3	6.9 9	5	2 C		18	0.3	0.3	0.3	03	0.0	500	5.0	200	5 C	? ;	0.3	0.3	0.3	0.3	0.3	63	1 1 1 1	5.0	770	0	0.3	0,3	0.3					
	Centek Laboratories 101. Study			t, c, **********************************	Trichloroethene	1,2-dichloropropane	Bromodichlonomethane	cts-1,3-dictiloropropere	trans-1,3-dichioropropene	1,1,2-ucholoenane Toirasa	Methyl Isohishel Kefone	Distructionethan	Methyl Butyl Ketone	1,2-dibromoethane	Tetrachloroethylene	Chlorobenzene	Elhylbenzene	måp-xylene	and the second	Civilette Dromotoren	OLUTION OF THE OLUTION		Bromolkorobenzene	1,1,2,2-tetrachioroethane	Propybenzene	2-Chiorotoluene	4-ethyttoivene	1,3,5-trimethylbenzene	1.2.4-tranethylbenzege	t, 3-91001000000000000000000000000000000000	uerskys cincilate † Autivilombersene	1.2 Linnelbeiheozene	1.2-dichtoroberzene	1.2.4 Inchlorobenzene	Naphthatene	Hexachlaro-1,3-butadiene			Confectial		

ಾಜಾನ

	od TO-15 Julis=ppb	D	0.031 0.031					**
	Meth	%Rec	105.7% 100.0%					
sastettaata ariikkeesii ta	an an tha an	StdDev	000	elenter entre entre entre for	aa ahada da	an 1990 an	un menender kan der für der statiske förstatiske som	sing and a state of the state o
		AVG	0.10					
		DL #10	0.1200					
		6# 10	0.0900					
	lion Limit 717	DL#5	0,001.0					
	g/m3 Detec October 21	101. #4	0.1000					
	0.2 ц	10L#3	0100					
		0.1300	0.1000					
		0.3100	0.0900					
		Amt						
	Center Laboratories IDL Study	Compound Viryl Chloride	Trichtorettene					Confidentiat

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

Υ.

where: Ax = area of the characteristic ion for the compound being measured
 Ais = area of the characteristic ion for the specific internal standard of the compound being measured
 Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFo = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

- Ais = area of the characteristic ion for the specific internal standard of the compound being measured
- Is = Concentration of the internal standard injected (ppbv)
- RRF= relative response factor for the compound being measured

Df = Dilution factor

•

-

.

.

,

.

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

.

.

•

.

,

۰.

Page 53 of 207

Analyses		Result	**Limit	Oual	Units	DF	Date Analyzed
Lab ID:	C1803045-001A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/201	3
Lab Order:	C1803045				Tag Number:	188.338	
CLIENT:	LaBella Associates, P.0	с.		C	lient Sample ID:	691-AI-0	1
	per construction de la grande de la construction de la construction de la construction de la construction de la La construction de la construction d			et to esta et construit to to			

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 12:16:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	3/21/2018 12:16:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040	ppb∨	1	3/21/2018 12:16:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	3/21/2018 12:16:00 AM
Trichloroethene	< 0.030	0.030	ppbV	1	3/21/2018 12:16:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	3/21/2018 12:16:00 AM
Surr: Bromofivorobenzene	87.0	70-130	%REC	1	3/21/2018 12:16:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Ë	Estimated Value above quantitation range	
	Ħ	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	S	Spike Recovery outside accepted recovery limits			Page 1 of 13

Vinyl chloride

Date: 28-Mar-18

1

3/21/2018 12:16:00 AM

CLIENT:	LaBella Associates, P	2.C.		C	lient Sample	D:	691-A	1-01
Lab Order:			Tag Num	ber:	188.3	38		
Project: 691 St Paul St.					Collection E)ate:	3/16/2	018
Lab ID:			Ma	trix:	AIR			
Analyses		Result	**Limit	Qual	Units		DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	то)-15				Analyst: RJP
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3		1	3/21/2018 12:16:00 AM
Chloroethane		< 0.40	0.40		ug/m3		1	3/21/2018 12:16:00 AM
cis-1,2-Dichloroethene <		< 0.16	0.16		ug/m3		1	3/21/2018 12:16:00 AM
trans-1,2-Dichloroethene < 0.59		0.59		ug/m3		1	3/21/2018 12:16:00 AM	
Trichloroethene < 0.16		< 0.16	0.16		ug/m3		1	3/21/2018 12:16:00 AM

0.10

ug/m3

< 0.10

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

(OT Reviewed) Quantitation Report Vial: 20 Data File : C:\HPCHEM\1\DATA\AP032020.D Operator: RJP Acq On : 21 Mar 2018 12:16 am Inst : MSD #1 Sample : C1803045-001A Multiplr: 1.00 Misc : A318 1UG MS Integration Params: RTEINT.P Quant Results File: A318_1UG.RES Quant Time: Mar 21 07:34:44 2018 Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.48128523851.00 ppb0.0035) 1,4-difluorobenzene12.731141979711.00 ppb0.0050) Chlorobenzene-d517.481171491991.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 89458 0.87 ppb 0.00 Spiked Amount 1,000 Range 70 - 130 Recovery = 87.00% Ovalue Target Compounds

Trichloroethene

Surr: Bromofluorobenzene

Vinyl chloride

Date: 28-Mar-18

1

1

1

3/21/2018 12:57:00 AM

3/21/2018 12:57:00 AM

3/21/2018 12:57:00 AM

CLIENT:	LaBella Associates,	P.C.		Client Sample ID	: 691-A	1-02
Lab Order:	C1803045			Tag Number	: 365.3	42
Project:	691 St Paul St.			Collection Date	: 3/16/2	2018
Lab ID:	C1803045-002A			Matrix	: AIR	
Analyses		Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS			FLD			Analyst:
Lab Vacuum In		-6		"Hg		3/19/2018
Lab Vacuum O	ut	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DC	E-1,1DCE	TO-15			Analyst: RJP
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/21/2018 12:57:00 AM
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 12:57:00 AM
cis-1,2-Dichloroethene		< 0.040	0.040	Vdqq	1	3/21/2018 12:57:00 AM
trans-1,2-Dichloroethene		< 0.15	0.15	ppbV	1	3/21/2018 12:57:00 AM

0.030

0.040

70-130

ppbV

ppbV %REC

< 0.030

< 0.040

87.0

Qualifiers: ** Quantitation Limit Results reported are not blank corrected . Ε Estimated Value above quantitation range в Analyte detected in the associated Method Blank Analyte detected below quantitation limit Holding times for preparation or analysis exceeded J Н Not Detected at the Limit of Detection Non-routine analyte, Quantitation estimated. ND JN Spike Recovery outside accepted recovery limits S

1UG/M3 W/ 0.2 1,1-Dichloroethe	UG/M3 CT-TCE-VC-DCE-1, ene	1DCE < 0.16	TO-15 0.16	ug/m3	1 :	Analyst: RJP 3/21/2018 12:57:00 AM
Analyses		Result	**Limit Qua	l Units	DF	Date Analyzed
Lab ID:	C1803045-002A			Matrix:	AIR	
Project:	691 St Paul St.			Collection Date:	3/16/2018	8
Lab Order:	C1803045			Tag Number:	365.342	
CLIENT:	LaBella Associates, P.C.			Client Sample ID:	691-AI-0	2

Date: 28-Mar-18

			_		
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 12:57:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 12:57:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 12:57:00 AM
Trichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 12:57:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 12:57:00 AM

Qualifiers:

- ** Quantitation Limit
- В Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- s Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected .
- Е Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

(QT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AP032021.D Vial: 21 Acq On : 21 Mar 2018 12:57 am Operator: RJP Sample : C1803045-002A Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 07:34:45 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcg Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128486371.00 ppb0.0035) 1,4-difluorobenzene12.731141918271.00 ppb0.0050) Chlorobenzene-d517.481171465591.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 87877 0.87 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 87.00% Ovalue Target Compounds

Date: 28-Mar-18

CLIENT:	LaBella Associates, P.	.C.		Client Sample ID:	691-A	AI-03			
Lab Order:	C1803045			Tag Number:	189.2	189.296			
Project:	691 St Paul St.			3/16/2	2018				
Lab ID:	: C1803045-003A Matri								
Analyses		Result	**Limit Qu	al Units	DF	Date Analyzed			
FIELD PARAM	ETERS		FLD			Analyst:			
Lab Vacuum In)	-2		"Hg		3/19/2018			
Lab Vacuum O	ut	-30		"Hg		3/19/2018			
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-15			Analyst: RJP			
1,1-Dichloroeth	iène	< 0.040	0.040	ppbV	1	3/21/2018 1:38:00 AM			
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 1:38:00 AM			
cis-1,2-Dichlord	pethene	< 0.040	0.040	ppbV	1	3/21/2018 1:38:00 AM			
trans-1,2-Dichie	proethene	< 0.15	0.15	ppb∨	1	3/21/2018 1:38:00 AM			
Trichloroethene	5	< 0.030	0.030	ppbV	1	3/21/2018 1:38:00 AM			
Vinyl chloride		< 0.040	0.040	ppbV	1	3/21/2018 1:38:00 AM			
Surr: Bromot	fluorobenzene	87.0	70-130	%REC	1	3/21/2018 1:38:00 AM			

Qualifiers: ** 0

** Quantitation Limit

B Analyte detected in the associated Method Blank

.....

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- , Results reported are not blank corrected

.....

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 3 of 13

	LaBella Associates P (······································		C	lient Sample ID:	691-A	.1-03		
Lab Order: C1803045 Project: 691 St Paul St.		<i></i>		-	189.29	189.296			
					Collection Date:	3/16/2018			
Lab ID:	C1803045-003A				Matrix:	AIR			
Analyses	ANNUMER OF THE 1797 (1997) IN THE AND INCOMES AND	Result	**Limit	Qual	Units	DF	Date Analyzed		
	ZUG/M3 CT-TCE-VC-DCE-	1.1DCE	τc)-15			Analyst: RJP		
1.1-Dichloroeth		< 0.16	0.16		ug/m3	1	3/21/2018 1:38:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 1:38:00 AM		
cis-1.2-Dichlon	oethene	< 0.16	0.16		ug/m3	1	3/21/2018 1:38:00 AM		
trans_1 2-Dichl	oroethene	< 0.59	0.59		ug/m3	1	3/21/2018 1:38:00 AM		
Trichlorgethene < 0.16		< 0.16	0.16		ug/m3	1	3/21/2018 1:38:00 AM		
Vinyl chloride	-	< 0.10	0.10		ug/m3	1	3/21/2018 1:38:00 AM		

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
-14	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Daga 3 of 13
	S	Spike Recovery outside accepted recovery limits			Fage 5 Ot 15

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032022.D Vial: 22 Acg On : 21 Mar 2018 1:38 am Operator: RJP Sample : C1803045-003A Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 07:34:46 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.48128537441.00ppb0.0035) 1.4-difluorobenzene12.731141978601.00ppb0.0050) Chlorobenzene-d517.471171515901.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 91288 0.87 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 87.00% Target Compounds Qvalue

		:																	24.00	Page 2
		:																	23.00	
																		adT	55.09	i
																			21.00	
																			20.00	ł
																∂,onasr	າອຕ່ອງດາຍໃນ	പ്പാദ	19.00	1
																('Sb	enessedi	evel(L)	00 18.00	1
UG. RES																			17.	
22 AJP HSD #1 1.00		0																	8	
tor: F tor: F plr: 1 ile: <i>P</i>	tor) n	P032022																	0 15	đ
V Opera Inst Multi (lts F	ttegra bratio	TIC:/																	0 14.	W
t Resu	RTE Ir calib															i,əno;	kindoloul	Nib.4,1	0 13.(018
Quan	G.M () point																		0 12.0	:49 2
2.D	318_10 for 5 018															l,everb	entorone	omona	0 11.0	07:32
032022 am	ODS\A ards 1 :52 2(ion																		10.0	ar 28
NTA\AP 1:38 1:38 1:38 1:38 1:38	.\METH Stand 07:31 ibrat																		00.6	Wed M
M/1/D7 018 -003A 5: RTF 4:14 2	CHEM\J VOA ar 28 al Cal										_		****	an ta shinta a shi	<u></u>			9796au (1966) (1977)	8.00	
HPCHEN Mar 2(03045- 03045- 21 14 21 14	C:\HP(TO-15 Wed M: Initia							<i></i>				//////////////////////////////////////	***************			.vi=1).~				1 UG. M
:: C:V : 21 1 :	00 m - CD																		6.00	A318_
File M e tegra	od Updat mse v																		5.00	12.D
Data Acq C Sampl Misc MS In Quant	Methc Title Last Respo	Abundance	3.2e+07	3e+07	2.8e+07	2.6e+07	2.4e+07	2.2e+07	2e+07	1.8e+07	1.6e+07	1.4e+07	1.2e+07	1e+07	800000	600000	4000%00	2000000	Time->	AP03202

Page 65 of 207

Centek Laboratories, LLC

Date: 28-Mar-18

CLIENT:	LaBella Associates, F	?. С.	(Client Sample ID:	691-A	.I-04			
Lab Order:	C1803045			Tag Number:	539.34	539.346			
Project:	691 St Paul St.			Collection Date:	3/16/2	2018			
Lab ID:	C1803045-004A			Matrix:	AIR				
Analyses		Result	**Limít Qua	Units	DF	Date Analyzed			
FIELD PARAM	IETERS		FLD			Analyst:			
Lab Vacuum Ir	ו	-6		"Hg		3/19/2018			
Lab Vacuum O)ut	-30		"Hg		3/19/2018			
1UG/M3 W/ 0.2	2UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO-15			Analyst: RJP			
1,1-Dichloroeth	rene	< 0.040	0.040	Vdqq	1	3/21/2018 2:18:00 AM			
Chloroethane		< 0,15	0.15	ppbV	1	3/21/2018 2:18:00 AM			
cis-1,2-Dichlore	oethene	< 0.040	0.040	ppbV	1	3/21/2018 2:18:00 AM			
trans-1,2-Dichl	oroethene	< 0.15	0.15	ppbV	1	3/21/2018 2:18:00 AM			
Trichloroethene	ġ	0.040	0.030	рръ∨	1	3/21/2018 2:18:00 AM			
Vinyl chloride		< 0.040	0.040	ppb∨	1	3/21/2018 2:18:00 AM			
Surr: Bromo	fluorobenzene	89.0	70-130	%REC	1	3/21/2018 2:18:00 AM			

Qualifiers: ** Qua

.....

Quantitation Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1803045-004A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/2018	}
Lab Order:	C1803045				Tag Number:	539.346	
CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	691-AI-0-	4

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15)		Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 2:18:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 2:18:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 2:18:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 2:18:00 AM
Trichloroethene	0.21	0.16	ug/m3	1	3/21/2018 2:18:00 AM
Vinyl chlorid e	< 0.10	0.10	ug/m3	1	3/21/2018 2:18:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected		
	в	Analyte detected in the associated Method Blank	Ε	Estimated Value above quantitation range		
	Η	Holding times for preparation or analysis exceeded	3	Analyte detected below quantitation limit		
	JN	Non-routine analyte. Quantitation estimated.	itation estimated. ND Not Detected at the Limit of Detection		D 4 6 1 2	
	S	Spike Recovery outside accepted recovery limits			Page 4 of 13	

Centek Laboratories, LLC	2										
	Quantitat:	ion Rej	port (QT	Revie	wed)						
Data File : C:\HPCHEM\1\DATA\A Acq On : 21 Mar 2018 2:18 Sample : C1803045-004A Misc : A318_1UG MS Integration Params: RTEINT.	AP032023,D 3 am .P		Ope Ins Mul	Vial: rator: t : tiplr:	23 RJP MSD 1.00	#1					
Quant Time: Mar 21 07:34:47 20	018	Qua	ant Results	File:	A318	_1UG.RES					
Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min)											
1) Bromochloromethane	10.49	128	52181	1.00	daa	0.00					
35) 1.4-difluorobenzene	12.73	114	198634	1.00	dqq	0.00					
50) Chlorobenzene-d5	17.47	117	151530	1.00	dqq	0.00					
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	92951 Recover	0.89 V =	22 ppb 89.	0.00 00%					
-	-			-							
Target Compounds 44) Trichloroethene	13.36	130	5789	0.06	dqq	Qvalue 96					

Date: 28-Mar-18

	<i>,</i>						
CLIENT:	LaBella Associates, P.C.			c	lient Sample ID:	691-A	1-05
Lab Order:	C1803045				Tag Number:	170.11	68
Project:	691 St Paul St.				Collection Date:	3/16/2	018
Lab ID:	C1803045-005A				Matrix:	AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS			FLD				Analyst:
Lab Vacuum In		-6 "Hg			3/19/2018		

Lab Vacuum Out	-30		"Hg	3/19/2018		
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15	i i	Analyst: RJP		
1,1-Dichloroethene	< 0.040	0.040	Vdqq	1	3/21/2018 3:00:00 AM	
Chloroethane	< 0.15	0.15	ppbV	1	3/21/2018 3:00:00 AM	
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 3:00:00 AM	
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	3/21/2018 3:00:00 AM	
Trichloroethene	0.060	0.030	ppbV	1	3/21/2018 3:00:00 AM	
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 3:00:00 AM	
Surr: Bromofluorobenzene	94.0	70-130	%REC	1	3/21/2018 3:00:00 AM	

Qualifiers: **

Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 28-Mar-18

CLIENT:	LaBella Associates, P	.C.		C	lient Sample ID:	691-AI-05			
Lab Order:	C1803045				Tag Number:	170.1	168		
Project:	691 St Paul St.			Collection Date: Matrix:			3/16/2018 AIR		
Lab ID:	C1803045-005A								
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 3:00:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 3:00:00 AM		
cis-1,2-Dichloro	ethene	< 0.16	0.16		ug/m3	1	3/21/2018 3:00:00 AM		
trans-1,2-Dichlo	roethene	< 0.59	0.59		ug/m3	1	3/21/2018 3:00:00 AM		
Trichloroethene		0.32	0.16		ug/m3	1	3/21/2018 3:00:00 AM		
Vinyl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 3:00:00 AM		

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

	Quantitati	on Repo	ort (QT	Revie	wed)				
Data File : C:\HPCHEM\1\DATA\A Acq On : 21 Mar 2018 3:00 Sample : C1803045-005A Misc : A318_1UG MS Integration Params: RTEINT Quant Time: Mar 21 07:34:48 20	AP032024.D) am .P)18	Quar	Open Inst Mult nt Results	Vial: rator: t tiplr: File:	24 RJP MSD # 1.00 A318_	1 1UG.RES			
Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN									
Internal Standards	R.T.	QION I	Response (Conc U	nits D	ev(Min)			
 Bromochloromethane 1, 4-difluorobenzene Chlorobenzene-d5 	10.49 12.73 17.47	1.28 114 117	51874 199002 158457	1.00 1.00 1.00	dqq dqq dqq	0.00 0.00 0.00			
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	103072 Recover	0.94 Y ≕	ppb 94.0	0.00			
Target Compounds 44) Trichloroethene	13.36	130	5516	0.06	dqq	Qvalue 95			

Page 74 of 207

FIELD PARAM	TELD PARAMETERS Lab Vacuum In		FLD -6 "Hg			Analyst: 3/19/2018		
Analyses		Result	**Limit	Quai	Units	DF	Date Analyzed	
Lab ID:	C1803045-006A				Matrix:	AIR		
Project:	691 St Paul St.				Collection Date:	3/16/20)18	
Lab Order:	C1803045				Tag Number:	131.34	0	
CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	691-AI	-06	

Lab Vacuum Out	-30	"Hg		3/19/2018	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	1		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	vdqq	1	3/21/2018 4:21:00 AM
Chioroethane	< 0.15	0,15	ppbV	1	3/21/2018 4:21:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 4:21:00 AM
trans-1,2-Dichloroethene	< 0.15	0,15	ppbV	1	3/21/2018 4:21:00 AM
Trichloroethene	0.060	0.030	ppbV	1	3/21/2018 4:21:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 4:21:00 AM
Surr: Bromofluorobenzene	104	70-130	%REC	1	3/21/2018 4:21:00 AM

Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected		
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range		
	н	Holding times for preparation or analysis exceeded	j	Analyte detected below quantitation limit		
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 6 - 6 1 2	
	S	Spike Recovery outside accepted recovery limits			Page 6 of 15	

Vinyl chloride

1

3/21/2018 4:21:00 AM

CLIENT:	LaBella Associates, F	P.C.	Client Sample ID: 691-Al-06						
Lab Order:	Order: C1803045 Tag Number:				-: 131.3	131.340			
Project:	691 St Paul St.			Collection Date:			3/16/2018		
Lab ID:	C1803045-006A				Matri	: AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	TC)-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 4:21:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 4:21:00 AM		
cis-1,2-Dichloro	bethene	< 0.16	0.16		ug/m3	1	3/21/2018 4:21:00 AM		
trans-1,2-Dichic	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 4:21:00 AM		
Trichloroethene	1	0.32	0.16		ug/m3	1	3/21/2018 4:21:00 AM		
					-				

0.10

ug/m3

< 0.10

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit

.

- ND Not Detected at the Limit of Detection
- Page 6 of 13

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032026.D Vial: 25 Acq On : 21 Mar 2018 4:21 am Operator: RJP Sample : C1803045-006A Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 07:34:50 2018 Quant Results File: A318 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128511921.00ppb0.0035) 1.4-difluorobenzene12.731141917641.00ppb0.0050) Chlorobenzene-d517.481171429901.00ppb0.00 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 103093 1.04 ppb 0.00 1.000 Range 70 - 130 Recovery = 104.00% Spiked Amount Target Compounds Qvalue 13.37 130 5516 0.06 ppb 44) Trichloroethene 89

CLIENT: LaBella Associates, P.C. Client Sar			Client Sample 1D:	691-A	1-07			
Lab Order:	C1803045			Tag Number:	133.1	133.1164 3/16/2018		
Project:	691 St Paul St.			Collection Date:	3/16/2			
Lab ID:	C1803045-007A							
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed		
FIELD PARAMETERS		FLD		Analyst:				
Lab Vacuum In	1	-6		"Hg		3/19/2018		
Lab Vacuum O	ut	-30		"Hg		3/19/2018		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO-15		Analyst: RJP			
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/21/2018 5:03:00 AM		
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 5:03:00 AM		
cis-1,2-Dichlord	pethene	0.14	0.040	ppbV	1	3/21/2018 5:03:00 AM		
trans-1,2-Dichk	proethene	< 0.15	0.15	ρpbV	1	3/21/2018 5:03:00 AM		
Trichloroethene	,	0.10	0.030	ppbV	1	3/21/2018 5:03:00 AM		
Vinyl chloride		< 0.040	0.040	ppbV	1	3/21/2018 5:03:00 AM		
Surr: Bromol	fluorobenzene	92.0	70-130	%REC	1	3/21/2018 5:03:00 AM		

Qualifiers:	**	Quantitation Limit	,	Results reported are not blank corrected		
	8	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range		
	Ы	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit		
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 010	
S		Spike Recovery outside accepted recovery limits			Page 7 of 13	

Trichloroethene

Vinyl chloride

Date: 28-Mar-18

1

1

3/21/2018 5:03:00 AM

CLIENT:	LaBella Associates, F	P.C.		Client Sa	imple ID:	691-A	.1-07		
Lab Order:	C1803045			Tag	Number:	133.1	133.1164		
Project:	691 St Paul St.		Collection Date:			3/16/2	3/16/2018		
Lab ID:	C1803045-007A				Matrix:	AIR			
Analyses	, , , , , , , , , , , , , , , , , , ,	Result	**Limit	Qual Units		DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO	-15		-	Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16	սց/m3		1	3/21/2018 5:03:00 AM		
Chloroethane		< 0.40	0.40	ug/m3		1	3/21/2018 5:03:00 AM		
cis-1,2-Dichlord	pethene	0.55	0.16	ug/m3		1	3/21/2018 5:03:00 AM		
trans-1,2-Dichi	oroethene	< 0.59	0.59	ug/m3		1	3/21/2018 5:03:00 AM		
Tricbloroethene		0.54	0.16	ua/m3		1	3/21/2018 5:03:00 AM		

0.16

0.10

ug/m3

ug/m3

0.54

< 0.10

Qualifiers: ** Quantitation Limit

Analyte detected in the associated Method Blank ₿

- Holding times for preparation or analysis exceeded ŀ
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits s
- Results reported are not blank corrected .
- Е Estimated Value above quantitation range
- Analyte detected below quantitation limit 3
- ND Not Detected at the Limit of Detection

.

	Quantitat:	ion Rer	ort (QT	Review	ved)				
Data File : C:\HPCHEM\1\DATA\. Acq On : 21 Mar 2018 5:0 Sample : C1803045-007A Misc : A318_1UG MS Integration Params: RTEINT Quant Time: Mar 21 07;34;51 2	AP032027.D 3 am .P 018	Qua	Oper Inst Mult ant Results	Vial: ator: iplr: File:	26 RJP MSD 1.00 A318	#1 _1UG.RES			
Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Fitle : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN									
Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)			
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.49 12.73 17.48	128 114 117	50470 188806 146012	1.00 1.00 1.00	dqq dqq dqq	0.00 0.00 0.00			
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	93214 Recovery	0.92	ppb 92.	0.00 00%			
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	10.03 13.37	61 130	15003 9656	0.14 0.10	dqq dqq	Qvalue 84 94			

AP032027.D A318_1UG.M Page 85 of 207 Wed Mar 28 07:33:05 2018

CLIENT:LaBella Associates, P.C.Client Sample ID: 691-AI-08Lab Order:C1803045Tag Number: 287.380Project:691 St Paul St.Collection Date: 3/16/2018Lab ID:C1803045-008AMatrix: AIR	nahrand
CLIENT:LaBella Associates, P.C.Client Sample ID: 691-AI-08Lab Order:C1803045Tag Number: 287.380Project:691 St Paul St.Collection Date: 3/16/2018	
CLIENT:LaBella Associates, P.C.Client Sample ID: 691-A1-08Lab Order:C1803045Tag Number: 287.380	
CLIENT: LaBella Associates, P.C. Client Sample ID: 691-AI-08	
	a ya a sa ay ya ya ya na manana na ya

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15	5		Analyst: RJP
1.1-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 5:44:00 AM
Chloroethane	< 0.15	0.15	ppb∨	1	3/21/2018 5:44:00 AM
cis-1,2-Dichloroethene	0.22	0.040	ppb∨	1	3/21/2018 5:44:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	3/21/2018 5:44:00 AM
Trichloroethene	0.14	0.030	ppbV	1	3/21/2018 5:44:00 AM
Vinyl chloride	0.080	0.040	ppbV	1	3/21/2018 5:44:00 AM
Surr: Bromofluorobenzene	93.0	70-130	%REC	1	3/21/2018 5:44:00 AM

Qualifiers:	**	Quantitation Limit	-	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded	t	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 010
s		Spike Recovery outside accepted recovery limits			Page 8 of 13

Date: 28-Mar-18

CLIENT:	CLIENT: LaBella Associates, P.C.			C	lient Sample II	: 691-A	691-AI-08		
Lab Order:	C1803045				Tag Number	: 287.3	287.380		
Project:	691 St Paul St.				Collection Date	: 3/16/2	2018		
Lab ID;	C1803045-008A				Matri	: AIR			
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	E-1,1DCE	то)-15			Analyst: RJF		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 5:44:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 5:44:00 AM		
cis-1,2-Dichlord	bethene	0.87	0.16		ug/m3	1	3/21/2018 5:44:00 AM		
trans-1,2-Dichlo	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 5:44:00 AM		
Trichloroethene	,	0.75	0.16		ug/m3	1	3/21/2018 5:44:00 AM		
Vinvi chloride		0.20	0.10		ua/m3	1	3/21/2018 5:44:00 AM		

Qualifiers: ** Qu

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

	Quantitat	ion Re <u>r</u>	port (QT)	Review	ved)	
Data File : C:\HPCHEM\1\DATA\ Acq On : 21 Mar 2018 5:4 Sample : C1803045-008A Misc : A318_1UG MS Integration Params: RTEINT Ouant Time: Mar 21 07:34:52 2	AP032028.D 4 am .P	Ouz	Opera Inst Mult: ant Results 1	Vial: ator: iplr: File:	27 RJP MSD #1 1.00 A318 11	JG.RES
Quant Method : C:\HPCHEM\1\ME Title : TO-15 VOA Sta Last Update : Mon Mar 19 10: Response via : Initial Calibr DataAcq Meth : 1UG_RUN	THODS\A318 ndards for 19:13 2018 ation	_1UG.M 5 poir	(RTE Integra it calibratio	ator) on		
Internal Standards	R.T.	QION	Response Co	onc ur	nts per	v(mru)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.48 12.73 17.48	128 114 117	49557 187620 144764	1.00 1.00 1.00	dqq dqq dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	92899 Recovery	0.93 =	ppb 93.00	0.00 %
Target Compounds					Q	value
6) Vinyl Chloride	5.05	62	5453	0.08	dqq	84
29) cis-1,2-dichloroethene	10.04	61	22702	0.22	ppb	92
44) Trichloroethene	13.37	130	12630	0.14	t agg	80

AP032028.D A318_1UG.M Page 90 of 207

Date: 28-Mar-18

CLIENT:	LaBella Associates, P.C.	. Client Sample ID:				691-A1-09		
Lab Order:	C1803045	Tag Number:			88.406			
Project:	691 St Paul St.			Collection Date:	3/16/201	8		
Lab ID:	C1803045-009A			Matrix:	AIR			
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed		
FIELD PARAM	ETERS		FLD			Analyst:		
Lab Vacuum In		-2		"Hg		3/19/2018		
Lab Vacuum O	ut	-30		"Ha		3/19/2018		

			-		
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	5		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	ppb∨	1	3/21/2018 6:24:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	3/21/2018 6:24:00 AM
cis-1,2-Dichloroethene	0.26	0.040	opbV	1	3/21/2018 6:24:00 AM
trans-1,2-Dichloroethene	< 0.15	0,15	ppbV	1	3/21/2018 6:24:00 AM
Trichloroethene	0.12	0.030	ppb∨	1	3/21/2018 6:24:00 AM
Vinyl chloride	< 0.040	0.040	Vdqq	1	3/21/2018 6:24:00 AM
Surr: Bromofluorobenzene	99.0	70-130	%REC	1	3/21/2018 6:24:00 AM

				м. т	
Qualifiers:	**	Quantitation Limit		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	1	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 -612
	s	Spike Recovery outside accepted recovery limits			Page 9 of 13

Date: 28-Mar-18

CLIENT:	LaBella Associates, P	es, P.C. Client Sample ID: (691-A	691-AI-09		
Lab Order:	C1803045				Tag Number:	88.40	6		
Project:	691 St Paul St.				Collection Date:	3/16/2	2018		
Lab ID:	C1803045-009A				Matrix:	AIR			
Analyses		Result	**Limit	Quai	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/21/2018 6:24:00 AM		
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2018 6:24:00 AM		
cis-1,2-Dichlore	ethene	1.0	0.16		ug/m3	1	3/21/2018 6:24:00 AM		
trans-1,2-Dichle	proethene	< 0.59	0.59		ug/m3	1	3/21/2018 6:24:00 AM		
Trichloroethene	1	0.64	0.16		ug/m3	1	3/21/2018 6:24:00 AM		
Vinyl chloride		< 0.10	0.10		ug/m3	1	3/21/2018 6:24:00 AM		

Qualifiers:	**	Quantitation Limit

- B Analyte detected in the associated Method Blank
- ${\rm H}$ Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range

- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

(QT Reviewed) Quantitation Report Vial: 28 Data File : C:\HPCHEM\1\DATA\AP032029.D Operator: RJP Acg On : 21 Mar 2018 6:24 am Inst : MSD #1 Sample : C1803045-009A Multiplr: 1.00 Misc : A318 1UG MS Integration Params: RTEINT.P Quant Results File: A318_1UG.RES Quant Time: Mar 21 07:34:53 2018 Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128472021.00 ppb0.0035) 1,4-difluorobenzene12.731141804261.00 ppb0.0050) Chlorobenzene-d517.471171445671.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 98383 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00% Qvalue Target Compounds 29) cis-1,2-dichloroethene10.0361251990.26 ppb44) Trichloroethene13.36130107020.12 ppb 94 89

CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P C1803045 691 St Paul St. C1803045-010A	.C.	C	ient Sample ID: Tag Number: Collection Date: Matrix:	691-A 324.1 3/16/2 AIR	1-10 171 2018
Analyses		Result	**Limit Qual	Units	ÐF	Date Analyzed
FIELD PARAM	ETERS	•	FLD			Analyst:
Lab Vacuum In		-6		"Hg		3/19/2018
Lab Vacuum O	ut	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1.1DCE	TO-15			Analyst: RJP
1,1-Dichloroeth	ene	< 0.040	0.040	ppbV	1	3/21/2018 7:06:00 AM
Chloroethane		< 0.15	0.15	ppbV	1	3/21/2018 7:06:00 AM
cis-1,2-Dichlord	bethene	0.24	0.040	ppbV	1	3/21/2018 7:06:00 AM
trans-1,2-Dichk	proethene	< 0.15	0.15	ppbV	1	3/21/2018 7:06:00 AM
Trichloroethene	2	0.14	0.030	ppbV	1	3/21/2018 7:06:00 AM
Vinyl chloride		< 0.040	0.040	ppbV	1	3/21/2018 7:06:00 AM
Surr: Bromol	fluorobenzene	98.0	70-130	%REC	1	3/21/2018 7:06:00 AM

				۲	
Qualifiers:	**	Quantitation Limit	,	Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte, Quantitation estimated.	ND	Not Detected at the Limit of Detection	10 -612
S		Spike Recovery outside accepted recovery limits		Fage	10 01 15

Centek La	boratories, LLC			Date:	28-Mar-18				
CLIENT:	LaBella Associates, P	.C.	Client Sample ID: Tag Number:			691-AI-10 324.1171			
Lab Order:	C1803045								
Project:	691 St Paul St.			Collection Date:			3/16/2018		
Lab ID:	C1803045-010A		Matrix:			AIR			
Analyses	n men hanne e men anna e men e mer d'arren ar e mener emere e mener e mener e ha ha	Result	**Limit	Qual Units		DF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	то	-15			Analyst: RJP		
1,1-Dichloroeth	ene	< 0.16	0.16	ug/m3		1	3/21/2018 7:06:00 AM		
Chloroethane		< 0.40	0.40	ug/m3		1	3/21/2018 7:06:00 AM		
cis-1,2-Dichlord	bethene	0.95	0.16	ug/m3		1	3/21/2018 7:06:00 AM		
trans-1,2-Dichloroethene <		< 0.59	0.59	ug/m3		1	3/21/2018 7:06:00 AM		
Trichloroethene		0.75	0.16	ug/m3		1	3/21/2018 7:06:00 AM		
Vinyl chloride		< 0.10	0.10	ug/m3		1	3/21/2018 7:05:00 AM		

Results reported are not blank corrected Qualifiers: ** Quantitation Limit . Analyte detected in the associated Method Blank Е в Holding times for preparation or analysis exceeded H J JN Non-routine analyte. Quantitation estimated. S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation limit

Date: 28-Mar-18

ND Not Detected at the Limit of Detection

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032030.D Vial: 29 Acq On : 21 Mar 2018 7:06 am Operator: RJP Sample : C1803045-010A Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 07:34:54 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : LUG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.49128480881.00ppb0.0035) 1,4-difluorobenzene12.731141841671.00ppb0.0050) Chlorobenzene-d517.481171427401.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.22 95 96411 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00% Target Compounds Qvalue 29) cis-1,2-dichloroethene10.0461238540.24 ppb9544) Trichloroethene13.37130124770.14 ppb92

AP032030.D A318 LUG.M

Page 101 of 207

						· · · · · · · · · · · · · · · · · · ·		
CLIENT: LaBella Associates, P.C.			Client Sample ID: 691-AI-11 MS/MSD					
Lab Order:	C1803045			Tag Number:	1196.1418			
Project: 691 St Paul St.		Collection Date:			3/16/2018			
Lab ID:	C1803045-011A			Matrix:	AIR			
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed		
	IFTERS		FLD			Analyst:		
Lab Vacuum ir)	-6		"Hg		3/19/2018		
Lab Vacuum O)ut	-30		"Hg		3/19/2018		
1110/003 00/ 0 3	UG/M3 CT-TCE-VC-DCE-1.	1DCE	TO-15			Analyst: RJP		
1 1-Dichloroeth		< 0.040	0.040	ppbV	1	3/20/2018 10:02:00 PM		
r, r-monoroen	the second s							

1.1.Dichloroethene	< 0.040	0.040	Vdqq	1	3/20/2018 10:02:00 PM
Chioroethane	< 0.15	0.15	ppbV	1	3/20/2018 10:02:00 PM
cis-1 2-Dichloroethene	0.18	0.040	ppbV	1	3/20/2018 10:02:00 PM
trans-1 2-Dichloroethere	< 0.15	0.15	ppbV	1	3/20/2018 10:02:00 PM
Trichloroethene	0.14	0.030	ppbV	1	3/20/2018 10:02:00 PM
Vinvl chloride	< 0.040	0.040	ppbV	1	3/20/2018 10:02:00 PM
Surr: Bromofiuorobenzene	96.0	70-130	%REC	1	3/20/2018 10:02:00 PM

Qualifiers: ** Quantitation Limit Ref B Analyte detected in the associated Method Blank E Es H Holding times for preparation or analysis exceeded J A JN Non-routine analyte, Quantitation estimated. ND N Spike Recovery outside accepted recovery limits S S S	esults reported are not blank corrected Estimated Value above quantitation range Analyte detected below quantitation limit fot Detected at the Limit of Detection Page 11 of 13
--	---

Date: 28-Mar-18

CLIENT:LaBella Associates, P.C.Lab Order:C1803045Project:691 St Paul St.			Ċ	lient Sample ID:	691-AI-11 MS/MSD			
		Tag Number:				1196.1418		
		Collection Date:			3/16/2018			
Lab ID:	C1803045-011A		Matrix:			AIR		
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс)-15	1 1		Analyst: RJP	
1,1-Dichloroeth	ene	< 0.16	0.16		ug/m3	1	3/20/2018 10:02:00 PM	
Chloroethane		< 0.40	0.40		ug/m3	1	3/20/2018 10:02:00 PM	
cis-1,2-Dichiora	ethene	0.71	0.16		ug/m3	1	3/20/2018 10:02:00 PM	
trans-1,2-Dichloroethene < 0.59		0.59 ug/m3		1 3/20/2018 10:02:00 PM				
Trichloroethene 0.75		0.16		ug/m3	1	3/20/2018 10:02:00 PM		
Vinyl chloride < 0.10		0.10		ug/m3	1	3/20/2018 10:02:00 PM		

Qualifiers:	**	Quantitation Limit				
	в	Analyte detected in the associa				

B Analyte detected in the associated Method Blank
 H Holding times for preparation or analysis exceeded

.....

- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected

.....

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

	Quantitat:	ion Rep	port (QT	Review	wed)	
Data File : C:\HPCHEM\l\DATA\Z Acq On : 20 Mar 2018 10:02 Sample : C1803045-011A Misc : A318_1UG MS Integration Params: RTEINT. Quant Time: Mar 21 07:34:41 20	AP032017.D 2 pm .P 018	Qua	Oper Inst Mult ant Results	Vial: ator: iplr: File:	17 RJP MSD 1.00 A318	#1 _1UG.RES
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Mon Mar 19 10:1 Response via : Initial Calibra DataAcq Meth : 1UG_RUN	THODS\A318 1dards for 19:13 2018 ation	10G.M 5 poir	(RTE Integr nt calibrati	ator) on		
Internal Standards	R.T.	QION	Response C	onc U	nits)	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.50 12.73 17.48	128 114 117	46044 176727 139424	1.00 1.00 1.00	dqq dqq dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	92332 Recovery	0.96 =	ppb 96.	0.00 00%
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	10.04 13.38	61 130	17162 11811	0.18 0.14	dqq dqq	Qvalue 94 92

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP032017.D A318_1UG.M Wed Mar 28 07:32:37 2018 MSD1

Page 105 of 207

AP032017.D A318_1UG.M Page 106 of 207

Centek Laboratories, LLC

Date: 28-Mar-18

CLIENT:	LaBella Associates, P.C.	Client Sample ID:	691-Al-12
Lab Order:	C1803045	Tag Number:	92.266
Project:	691 St Paul St.	Collection Date:	3/16/2018
Lab ID:	C1803045-012A	Matrix:	AIR
	2445	and a stand of the first of the second stands and the second standard standard standard standard standard stand	

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15			Analyst: RJP
1,1-Dichloraethene	< 0.040	0.040	ppbV	1	3/21/2018 7:47:00 AM
Chloroethane	< 0.15	0.15	Vđqq	1	3/21/2018 7:47:00 AM
cis-1,2-Dichloroethene	0.16	0.040	ppbV	1	3/21/2018 7:47:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	3/21/2018 7:47:00 AM
Trichloroethene	0.070	0.030	ppbV	1	3/21/2018 7:47:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 7:47:00 AM
Surr: Bromofluorobenzene	97.0	70-130	%REC	1	3/21/2018 7:47:00 AM

Qualifiers: ** Q

** Quantitation Limit

B Analyte detected in the associated Method Blank

.....

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Centek Laboratories, LL	C
-------------------------	---

Date: 28-Mar-18

Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1803045-012A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/2018	3
Lab Order:	C1803045				Tag Number:	92.266	
CLIENT:	LaBella Associates, P.C			C	lient Sample ID:	691-AI-1	2
an a							

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	3/21/2018 7:47:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 7:47:00 AM
cis-1,2-Dichloroethene	0.63	0.16	ug/m3	1	3/21/2018 7:47:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 7:47:00 AM
Trichloroethene	0.38	0.16	ug/m3	1	3/21/2018 7:47:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 7:47:00 AM

Qualifiers: **

Quantitation Limit

- ${\bf B}$ Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

•	Quantitati	ion Rej	port (QT	Review	wed)		
Data File : C:\HPCHEM\1\DATA\A Acq On : 21 Mar 2018 7:47 Sample : C1803045-012A Misc : A318_1UG MS Integration Params: RTEINT. Quant Time: Mar 21 09:38:43 201	P032031.D am P 18	Qua	Oper Inst Mult ant Results	Vial: ator: iplr: File:	30 RJP MSD 1.00 A318	#1 1UG	.RES
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Stand Last Update : Mon Mar 19 10:1 Response via : Initial Calibra DataAcq Meth : lUG_RUN	HODS\A318 dards for 9:13 2018 tion	1UG.M 5 poin	(RTE Integr nt calibrati	ator) .on			
Internal Standards	R.T.	QION	Response C	one U	nits :	Dev (Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.51 12.73 17.48	128 114 117	46283 179108 143253	1.00 1.00 1.00	qqq dqq dqq		0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.22 Range 70	95 - 130	95863 Recovery	0.97	ppb 97.	00%	0.00
Target Compounds 29) cis-1,2-dichloroethene 44) Trichloroethene	10.04 13.38	61 130	15075 6390	0.16 0.07	dqq dqq	Qva #	lue 93 80

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP032031.D A318_1UG.M Wed Mar 28 07:33:23 2018 MSD1

<pre>cg 0n : 21 March 2013 7:11 cm the : cm03045-012 7:11 cm the : cm03045-012 7:11 cm the : cm03045-012 month hand file; i00 the : cm13045-012 month hand file; i00 the : cm14012 month hand file; i00 the intervent espense via : March 2013 File; i00 the intervent espense via : March 2013 file; end end end end end end end end end end</pre>	7 V V3 Wat			ζ	- mo h om -	CT F							
Autor Trate: Mar 21 14:22 JUG. RES Autor Trate: Mar 21 14:24 JUG.	Acq Un : Z1 No. Sample : C18030 Misc : A318_1	r 2018 7:47 am)45-012A UG		9 t y	erator: st : ltiplr:	RJP MSD #1 1.00							
echold astrophere: C.Vincenter/Variation for 5 point calibration astrophere: Record for 5 point calibration	MS Integration Par Quant Time: Mar 21	cams: RTEINT.P 14:21 2018	Quan	t Result	s File:	A318_1	UG. RES						
14-1-1 2-1-1 2-1-1 2-1-1-1	Method : C:\ Title : TO- Last Update : Wed Response via : Ini	\HPCHEM\1\METHODS -15 VOA Standard 1 Mar 28 07:31:52 itial Calibration	\A318_1UG.M (s for 5 point 2018	RTE Inte calibra	grator) ttion								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Indance				TIC: AP032	031.D		V 1 1 1 1 1 1 1 1					
38-401	1.5e+U/												
28-1-1 24-1-1 24-1-1 24-1-1 24-1-1 25-00000 000000 000000 000000 000000 000000	.4e+07												
24-0-0 16-0-0 000000 000000 000000 000000 000000	1.3e+07												
1-1-1 000000 0000000000000000000000000	1.2e+07												
1 1	t.1e+07												
600 600 600 600 600 600 600 600	1e+07												
000000 000000000000000000000000000000	000000												
000 000 000 000 000 000 000 000	300000												
000 000 000 000 000 000 000 000	200000												
00000000000000000000000000000000000000	2000000												
000000 000000000000000 1.enertierronoficionord 1.enertierronoficiono	2000000												
000000 1.enertleoroldoomorg (.enesnedoroldoomorg f.enesnedoroldoomorg	400000								-				
0000000 0000000 0000000 0000000 000000	3066900		T,enert Lønsch	(,en s z	L			i,2b-ø	5 00000-	נאימוים'ר			
	500000		ຊາຍເດັ່ງຊີ່ ເຊິ່ງ ເຊິ ເຊິ່ງ ເຊິ່ງ ເຊິ່	snedotou∯ib-	F.eneri)savolr			aneznedoroir		VID IODIIOUIDI			
0 24.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 24.00 24.00 24.00 24.00	1000000		,t-ria Nong	τ * ,Γ	rich"			iQ					
	0 	7.00 8.00 9.00	10.00 11.00 12	13.00	14,00	15.00 1	6.00 17	00 18.(19.0	0 20.00	21.00	2.00 2	3.00 24

AP032031.D A318_1UG.M Page 111 of 207

Centek Laboratories, LLC

Date: 28-Mar-18

Analyza		Degult	*** inn i*	Anal	V Tunkén	DD	D -4- 41
Lab ID:	C1803045-013A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/201	8
Lab Order:	C1803045				Tag Number:	359.117	l
CLIENT:	LaBella Associates, P.	С.		С	lient Sample ID:	Duplicat	e
	and a state of the	• • • • • • • • • • • • • • • • • • • •					

Analyses	Kesuit	**Limit Q	ual Units	ØF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		3/19/2018
Lab Vacuum Out	-30		"Hg		3/19/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	5		Analyst: RJP
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	3/21/2018 8:29:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	3/21/2018 8:29:00 AM
cis-1,2-Dichloroethene	0.24	0.040	ppbV	1	3/21/2018 8:29:00 AM
trans-1,2-Dichloroethene	< 0.15	0,15	ppbV	1	3/21/2018 8:29:00 AM
Trichloroethene	0.13	0.030	ppbV	1	3/21/2018 8:29:00 AM
Vinyl chloride	< 0.040	0.040	ppbV	1	3/21/2018 8:29:00 AM
Surr: Bromofluorobenzene	98.0	70-130	%REC	1	3/21/2018 8:29:00 AM

Qualifiers:

** Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S = Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Centek Laboratories, LLC

1UG/M3 W/ 0.20	JG/M3 CT-TCE-VC-DCE-1.	1DCE	тс)-15			Analyst: RJP
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
Lab ID:	C1803045-013A				Matrix:	AIR	
Project:	691 St Paul St.				Collection Date:	3/16/201	8
Lab Order:	C1803045				Tag Number:	359.117	1
CLIENT:	LaBella Associates, P.C.			C	lient Sample 1D:	Duplicat	e

1,1-Dichloroethene	< 0,16	0.16	ug/m3	1	3/21/2018 8:29:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/21/2018 8:29:00 AM
cis-1,2-Dichloroethene	0.95	0.16	ug/m3	1	3/21/2018 8:29:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2018 8:29:00 AM
Trichloroethene	0.70	0,16	ug/m3	1	3/21/2018 8:29:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2018 8:29:00 AM

** Qualifiers:

Quantitation Limit

в Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

- s Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected ,
- Ε Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

J

Quantitation Report (QT Reviewed) Vial: 31 Data File : C:\HPCHEM\1\DATA\AP032032.D Acq On : 21 Mar 2018 8:29 am Operator: RJP Sample : C1803045-013A Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 09:38:27 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards ______ 1) Bromochloromethane10.49128474641.00ppb0.0035) 1,4-difluorobenzene12.731141811861.00ppb0.0050) Chlorobenzene-d517.481171415841.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 95444 0.98 ppb 0.00 Recovery = 98.00% Spiked Amount 1.000 Range 70 - 130 Target Compounds Qvalue 29) cis-1,2-dichloroethene10.0461238300.24 ppb9144) Trichloroethene13.38130116580.13 ppb89

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP032032.D A318_1UG.M Wed Mar 28 07:33:28 2018 MSD1

AP032032.D A318_1UG.M Page 116 of 207 Centek Laboratories, LLC

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

Page 117 of 207

ı.

Centek Laboratories, LLC

.

GC/MS VOLATILES-WHOLE AIR

*

METHOD TO-15

INITIAL CALIBRATION

.

.

Page 118 of 207

Response Factor Report MSD #1 : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title Last Update : Wed Mar 21 12:56:38 2018 Response via : Initial Calibration Calibration Files 1.5 =AP031805.D 1.25 =AP031806.D 0.75 =AP031808.D 0.5 =AP031809.D =AP031804.D 2 1 -AF031807.D &RSD 2 1.5 1.25 1 0.75 0.5 Avg Compound _____ _____ 1) I Bromochloromethane Propylene 1.245 1.321 1.265 1.254 1.209 1.287 1.300 5.80 2) T

 Propyrene
 1.245
 1.321
 1.265
 1.254
 1.203
 1.287
 1.300

 Preon 12
 5.553
 5.626
 5.568
 5.665
 5.687
 5.788
 5.814

 Chloromethane
 1.327
 1.254
 1.324
 1.323
 1.355
 1.361
 1.445

 Freon 114
 4.598
 4.530
 4.525
 4.679
 4.747
 4.737
 4.917

 Vinyl Chloride
 1.175
 1.169
 1.178
 1.197
 1.196
 1.227
 1.350

 Butane
 1.413
 1.432
 1.431
 1.454
 1.467
 1.506
 1.563

 1,3-butadiene
 0.944
 0.936
 0.915
 0.911
 1.003
 1.030

 6.58 3) T 16.09 4) T 10.88 5) T 6) T 19.67 7) T 13.51 15.88 8) T 1.517 1.433 1.463 1.475 1.448 1.506 1.559 10.40 9) T Bromomethane 0.496 0.472 0.478 0.489 0.491 0.523 0.522 11.21 10) T Chloroethane Ethanol0.2920.2900.3160.3190.2910.3420.344Acrolein0.3190.2980.2940.2970.3210.3290.329Vinyl Bromide1.3951.3841.3801.3671.4001.4061.447Freon 115.7025.6425.5705.7425.7315.8205.991Acetone0.3790.3690.3780.3680.3870.3700.379Pentane0.7920.7770.8080.8040.8470.866 18.46 11) T 12.33 12) T 7.86 13) T 9.35 14) T 2.98 15) T 16) T 24.15 Isopropyl alcoh 1.151 2.121 1.136 1.180 1.232 1.244 1.399 25.46 17) T 1,1-dichloroeth 1.539 1.480 1.564 1.584 1.602 1.554 1.715 16.73 18) T 3.706 3.623 3.715 3.734 3.767 3.762 3.720 5,84 19) T Freon 113 t-Butyl alcohol 2.479 2.396 2.522 2.435 2.532 2.490 2.517 Methylene chlor 1.455 1.429 1.419 1.427 1.488 1.469 1.519 Allyl chloride 1.801 1.756 1.774 1.860 1.735 1.742 1.828 Carbon disulfid 3.369 3.318 3.351 3.327 3.448 3.474 3.533 4.26 20) t 21) T 22) T 23) T 9.43 6.85 8.40 24) T trans-1,2-dichl 1.979 1.965 1.940 1.966 1.984 1.847 1.967 3.16 25) T methyl tert-but 3.357 3.191 3.207 3.180 3.236 3.093 3.255 4.43 7.83 1,1-dichloroeth 3.075 3.016 3.020 3.051 3.064 3.053 3.197 26) T Vinyl acetate 3.158 2.983 2.948 2.959 2.773 2.677 2.877 5.60 27) T Methyl Ethyl Ke 0.678 0.634 0.631 0.630 0.625 0.638 0.646 4.83 28) T cis-1,2-dichlor1.9761.8911.9071.9221.8831.8842.054Hexane2.0412.0031.9791.9971.9081.8931.999Ethyl acetate3.1213.0142.9852.9992.9052.9493.018Chloroform3.6513.5883.6433.6733.6693.6383.756 13.89 29) T 4.02 30) T 31) T 2.73 32) T 5.66 Tetrahydrofuran 1.503 1.426 1.393 1.397 1.382 1.293 1.414 4.80 33) T 1,2-dichloroeth 2.339 2.280 2.267 2.311 2.283 2.342 2.352 4,40 34) T _____ISTD-____ISTD-____ 35) I 1,4-difluorobenzene 1,1,1-trichloro 0.849 0.852 0.831 0.845 0.840 0.872 0.873 5.92 36) T Cyclohexane0.5130.4840.4740.4610.4480.4320.461Carbon tetrachl0.9290.9260.9130.9200.9030.9371.033Benzene1.0571.0471.0291.0141.0531.059 6.18 37) T 38) T 16.56 4.30 39) T Methyl methadry 0.456 0.425 0.398 0.378 0.365 0.354 0.380 40) T 11.66 41) T 8,35 1,4-dioxane 0.220 0.219 0.207 0.203 0.202 0.191 0.200 5.45 2,2,4-trimethyl 1.669 1.601 1.564 1.525 1.472 1.467 1.523 42) T 0.601 0.580 0.544 0.528 0.508 0.491 0.524 9.29 43) T Heptane Trichloroethene 0.461 0.468 0.451 0.455 0.451 0.450 0.489 11.06 44) T 1,2-dichloropro 0.438 0.444 0.426 0.422 0.431 0.432 0.442 4.36 45) T Bromodichlorome 0.924 0.922 0.909 0.915 0.897 0.911 0.930 3,46 46) T c1s-1,3-dichlor0.5830.5610.5340.5170.4960.4800.511trans-1,3-dichl0.4170.3940.3810.3650.3420.3290.3631,1,2-trichloro0.4730.4740.4600.4520.4660.4680.471 8.93 47) T 0.417 0.394 0.381 0.365 0.342 0.329 0.363 8.71 48) T 2,79 49) T 50) I Chlorobenzene-d5 0.848 0.799 0.773 0.751 0.701 0.674 0.743 8.52 51) T Toluene

(#) » Out of Range ### Number of calibration levels exceeded format ### A318_1UG.M Wed Mar 28 06:58:37 2018 MSD1 Response Factor Report MSD #1

	Met) Titl Last Resp	nod : C:\HPC le : TO-15 : Update : Wed Ma ponse via : Initia	HEM\1\ME VOA Sta r 21 12: l Calibr	THODS\ ndards 56:38 ation	A318_1 for 5 2018	UG.M (point	RTE In calib	tegrat ration	or)	
	Cal: 2 1	ibration Files =AP031804.D =AP031807.D	1.5 = 0.75 =	AP0318 AP0318	105.D 108.D	1.25 0.5	=APC =APC)31806.)31809.	D D	
		Compound	2	1.5	1.25	1	0.75	0.5	Avg	%RSD
5555555566666666667777775		Methyl Isobutyl Dibromochlorome Methyl Butyl Ke 1,2-dibromoetha Tetrachloroethy Chlorobenzene Ethylbenzene McD-xylene Nonane Styrene Bromoform o-xylene Cumene Bromofluorobenz 1,1,2,2-tetrach Propylbenzene 2-Chlorotoluene 4-ethyltoluene 1,3,5-trimethyl 1,2,4-trimethyl 1,3-dichloroben benzyl chloride 1,4-dichloroben 1,2,3-trimethyl	$\begin{array}{c} 0.919\\ 1.105\\ 0.851\\ 0.866\\ 0.598\\ 1.154\\ 1.848\\ 1.612\\ 1.181\\ 1.236\\ 1.080\\ 1.800\\ 2.097\\ 0.794\\ 1.384\\ 0.571\\ 0.616\\ 2.295\\ 1.958\\ 1.657\\ 1.239\\ 1.056\\ 1.239\\ 1.789\\ 1.$	-0.842 0.742 0.576 1.722	0.852 1.108 0.52 1.108 0.52 1.108 1.105 1.055 1.037 1.0360 0.502 2.1100 1.1500 1.12000 1.12000 1.12000 1.120	$\begin{array}{c} 0.832\\ 1.095\\ 0.724\\ 0.843\\ 0.576\\ 1.122\\ 1.538\\ 1.449\\ 1.051\\ 1.766\\ 1.776\\ 1.776\\ 0.772\\ 1.051\\ 1.766\\ 0.772\\ 1.478\\ 0.580\\ 1.337\\ 1.906\\ 1.576\\ 1.176\\ 1.$	$\begin{array}{c} 0.806\\ 1.097\\ 0.681\\ 0.826\\ 0.577\\ 1.096\\ 1.444\\ 1.333\\ 0.977\\ 1.645\\ 0.443\\ 0.977\\ 1.645\\ 0.443\\ 1.645\\ 0.4553\\ 1.238\\ 0.8081\\ 1.2096\\ 1.386\\ 1.2096\\ 1.477\\ 1.666\\ 1.4553\\ 1.2096\\ 1.2096\\ 1.4553\\ 1.2096\\ 1.4553\\ 1.2096\\ 1.2096\\ 1.4553\\ 1.2096\\ 1.2006\\ 1.$	0.808 1.110 0.659 0.599 1.078 1.337 1.68 0.593 1.523 1.523 1.523 1.523 1.418 0.583 1.6316 1.0564 1.0564 1.0583 1.6316 1.0564	$\begin{array}{c} 0.827\\ 1.125\\ 0.715\\ 0.848\\ 0.607\\ 1.124\\ 1.526\\ 1.329\\ 0.958\\ 1.072\\ 1.060\\ 1.621\\ 1.711\\ 0.690\\ 1.459\\ 0.557\\ 1.911\\ 1.693\\ 1.311\\ 1.113\\ 0.897\\ 1.073\\ 1.449\\ 1.090\end{array}$	5.64 4.80 10.02 2.73 7.74 4.629 17.33 17.32 13.04 14.75 14.75 14.350 14.350 14.320 12.560 9.256 7.220
76 77 78 79) T) T) T	1,2,4-trichloro Naphthalene Hexachloro-1,3-	0.431 0.842 0.887	0.398 0.796 0.878	0.377 0.759 0.857	0.349 0.694 0.863	0.323 0.641 0.860	0.299 0.569 0.899	0.340 0.646 0.885	17.64 18.86 3.14

Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA\AP031804.D Acq On : 18 Mar 2018 5:47 pm Sample : A1UG 2.0 Misc : A318_1UG Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:34:59 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128509671.00ppb0.0035) 1,4-difluorobenzene12.731142106641.00ppb0.0050) Chlorobenzene-d517.481171668411.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 132542 1.03 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 103.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 103.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.57
 41
 126873
 1.98
 ppb
 95

 3) Freon 12
 4.63
 85
 566028
 1.96
 ppb
 100

 4) Chloromethane
 4.84
 50
 135293
 2.01
 ppb
 98

 5) Freon 114
 4.85
 85
 466698
 1.96
 ppb
 98

 6) Vinyl Chloride
 5.18
 43
 144021
 1.94
 ppb
 98

 1.3.butAdiene
 5.16
 39
 96192
 1.97
 ppb
 94

 9) Bromomethane
 5.74
 64
 50602
 2.03
 ppb
 97

 10) Chloroethane
 5.64
 45
 29812m
 1.00
 100
 106
 142191
 2.04
 ppb
 97

 10
 Theoroethane
 6.57
 58
 36617
 2.06
 ppb
 99

 10
 Freon 113
 7. Ovalue

(#) = qualifier out of range (m) = manual integration AP031804.D A318_1UG.M Wed Mar 28 06:59:17 2018 MSD1

(QT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AP031804.D Vial: 4 Acq On : 18 Mar 2018 5:47 pm Operator: RJP Sample : AlUG_2.0 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:34:59 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.80833893402.02 ppb9947)cis-1,3-dichloropropene14.61752455342.25 ppb9648)trans-1,3-dichloropropene15.36751756542.29 ppb9849)1,1,2-trichloroethane15.69971992872.09 ppb10051)Toluene15.45922828622.26 ppb10052)Methyl Isobutyl Ketone14.51433066392.21 ppb9353)Dibromochloromethane16.431293687352.02 ppb10054)Methyl Sobutyl Ketone15.86432838072.35 ppb9455)1,2-dibromoethane16.691072891062.05 ppb9956)Tetrachloroethylene17.531122850072.06 ppb9956)Tetrachloroethylene18.39433942112.29 ppb8559)m&p-xylene18.471044125702.16 ppb9960)Nonane18.50916007792.09 ppb10061)Styrene18.601733603642.06 ppb9962)Bromoform18.601733603642.06 ppb9963)1,2,2-tetrachloroethane19.961056596522.37 ppb9964)1,2,2-tetrachloroethane19.3101056596522. R.T. QION Response Conc Unit Qvalue Compound

79) Hexachloro-1,3-butadiene 23.71 225 295829 2.06 ppb 98

Quantitation Report (QT Reviewed) Vial: 5 Data File : C:\HPCHEM\1\DATA\AP031805.D Acq On : 18 Mar 2018 6:28 pm Sample : AlUG_1.50 Misc ; A318_1UG **Operator:** RJP Inst : MSD #1 Multiplr: 1.00 MISC , ASIS_10G MS Integration Params: RTEINT.P Quant Time: Mar 19 08:34:41 2018 Quant Results File: A318_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcg Meth : lUG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.50128511901.00ppb0.0035) 1,4-difluorobenzene12.731142082361.00ppb0.0050) Chlorobenzene-d517.481171672671.00ppb0.00 System Monitoring Compounds65) Bromofluorobenzene19.22951312301.02ppbSpiked Amount1.000Range70 - 130Recovery=102.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 102.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.56
 41
 101405
 1.58
 ppb
 90

 3) Precon 12
 4.62
 85
 432007
 1.49
 ppb
 99

 4) Chloromethane
 4.84
 50
 96298
 1.45
 ppb
 98

 5) Frecon 114
 4.85
 85
 347832
 1.45
 ppb
 98

 6) Vinyl Chloride
 5.05
 62
 89793
 1.46
 ppb
 98

 1.1
 5.05
 94
 10011
 1.46
 ppb
 97

 9) Bromomethane
 5.73
 64
 36269
 1.45
 ppb
 96

 11) Bthanol
 5.65
 45
 22289
 1.36
 ppb
 96

 12) Acronein
 6.45
 58
 28300
 1.50
 ppb
 #6

 13) Corporpt alcohol
 6.66
 42
 122620
 2.96
 pb
 6
 Qvalue

(#) = qualifier out of range (m) = manual integration
AP031805.D A318_1UG.M Wed Mar 28 06:59:21 2018 MSD1

(QT Reviewed) Quantitation Report Vial: 5 Data File : C:\HPCHEM\1\DATA\AP031805.D Operator: RJP Acg On : 18 Mar 2018 6:28 pm Inst : MSD #1 Sample : AlUG_1.50 Misc : A318_LUG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:34:41 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.80832880921.51ppb9947)cis-1,3-dichloropropene14.61751752641.63ppb9748)trans-1,3-dichloropropene15.36751229741.62ppb9749)1,1,2-trichloroethane15.69971481221.57ppb10051)Toluene15.45922003461.59ppb9952)Methyl Isobutyl Ketone14.51432112281.52ppb9353)Dibromochloromethane16.641292696091.47ppb9355)1,2-dibromoethane16.691072110711.50ppb9856)Tetrachloroethylene16.521641444051.67ppb9458)Bthylbenzene17.80914303691.67ppb9959)map-xylene18.071042968331.55ppb9960)Nonane18.39432731931.58ppb9561)Styrene18.60712659611.51ppb10063)o-xylene18.50914343491.50ppb9161)rescond19.731261485201.55ppb10063)o-xylene18.60732659611.51ppb100<td R.T. QION Response Conc Unit Qvalue Compound

	Quantitati	ion Reg	port (QT)	Review	ved)							
Data File : C:\HPCHEM\1\DATA\A Acq On : 18 Mar 2018 7:09 Sample : A1UG_1.25 Misc : A318_1UG MS Integration Params: RTEINT.	₽031806.D Pm		Oper Inst Mult	Vial: ator: ; iplr:	6 RJP MSD 1.00	#1						
Quant Time: Mar 19 08:34:24 20	18	Qua	ant Results	File:	A318	_100	.RES					
Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN												
Internal Standards	R.T.	QION	Response C	onc U	nits 	Dev	(Min)					
3) Bromochloromethane	10.50	128	51032	1.00	ppb		0.00					
25) 1 4-difluorobenzene	12.74	114	209013	1.00	dqq		0.00					
50) Chlorobenzene-d5	17.48	117	161243	1.00	\mathbf{ppb}		0.00					
joj chrosopanoono ar												
System Monitoring Compounds							0 00					
65) Bromofluorobenzene	19.22	95	125469	1.01	ppb		0.00					
Spiked Amount 1.000	Range 70	- 130	Recovery	· 55	101.	00%						
-						0.0	- 3 + 1.0					
Target Compounds			00000	1 95	nnh	200	97.06 94					
2) Propylene	4.56	41	80709	1 22	ppp		99					
3) Freon 12	4.62	60 60	3332409	1 25	222		100					
4) Chloromethane	4.84	50 66	288644	1 21	npb		98					
5) Freen 114	4.00	60	200044	1.23	ppb		97					
2) SHEARS	5.18	43	91267	1.23	dqq		98					
0) 1 3-butadiene	5.18	39	58373	1.20	ppb		100					
9) Bromomethane	5.56	94	93300	1,24	ppb		97					
10) Chloroethane	5.75	64	30460	1.22	$\mathbf{p}\mathbf{p}\mathbf{b}$	#	81					
11) Ethanol	5.84	45	20169m 🖊	1.24	ppb							
12) Acrolein	6.46	56	18750	1.24	qqq		91					
13) Vinyl Bromide	6.11	106	88023	1.26	ppp		98					
14) Freon 11	6,40	101	355314	1.21	ppp	н	100					
15) Acetone	6,57	58	24090	1.28	ppp	Ħ	00					
16) Pentane	6.70	42	49591 49591	1 20	որե		98					
17) Isopropyl alconol	6.68	45	72400	1 23	npb	#	84					
18) 1,1-dichioroethene	7.40	101	236964	1.24	ppb	•)	88					
19) Freen II3	7.44	59	160875	1.29	dďď		93					
20) C-Bucy: arconor 21) Methylene chloride	7.68	84	90524	1.24	dqq	#	78					
22) Allyl chloride	7.66	41	113184	1.19	ppb		85					
23) Carbon disulfide	7.85	76	213760	1.26	$\mathbf{p}\mathbf{p}\mathbf{p}$		98					
24) trans-1,2-dichloroethene	¥ 8.65	61	123758	1.23	bbp		89					
25) methyl tert-butyl ether	8.67	73	204567	1,26	ppp		86					
26) 1,1-dichloroethane	9.09	63	192673	1.24	ppo		99					
27) Vinyl acetate	9.06	43	188061	1,20	opp ppb	#	100					
28) Methyl Ethyl Ketone	9.57	72	40201 101630	7 24	ppb ppb	π	90					
29) dis-1,2-dichioroethene	10.04	67	126240	1.24	ppb		97					
30) Hexane	7.03 10 18	43	190401	1.24	daa		98					
31) ECNYI acetate	10.56	83	232403	1,24	dqq		99					
32) Terrebydrofuren	10.83	42	88884	1.25	ppb		84					
34) 1.2-dichloroethane	11.76	62	144615	1.23	ppb		99					
36) 1.1.1-trichloroethane	11.49	97	217079	1.23	dqq i		99					
37) Cyclohexane	12.17	56	123804	1.28	ppb		86					
38) Carbon tetrachloride	12.11	117	238507	1.24	ppb		±00					
39) Benzene	12.08	78	273418	1.27	ppb	11	30 0 E					
40) Methyl methacrylate	13.59	41	104107	1.3¥	aqq	Ħ	00 27					
41) 1,4-dioxane	13.62	88	34103 400734	1 22	, ppp		99					
42) 2,2,4-trimethylpentane	12.91	27	300/40 140010	1,20	, pp5		88					
43) Heptane	איש, כב מי רי	120	117723	1.24	daa		94					
44) Tricnioroetnene	13.30 13 AQ	63	111174	1.26	5 ppb		99					
40) T'%.GTOUTOTODIODGUG												

(#) = qualifier out of range (m) = manual integration AP031805.D A318_1UG.M Wed Mar 28 06:59:24 2018

MSD1

Page 127 of 207

Quantitation Report (QT Reviewed) Vial: 6 Data File : C:\HPCHEM\1\DATA\AP031806.D **Operator:** RJP Acq On : 18 Mar 2018 7:09 pm Sample : AlUG_1.25 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Mar 19 08:34:24 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.81832374601.24 ppb9947)cis-1,3-dichloropropene14.61751394241.29 ppb9648)trans-1,3-dichloropropene15.3675996581.31 ppb9849)1,1,2-trichloroethane15.69971200851.27 ppb9851)Toluene15.46921558621.29 ppb9952)Methyl Isobutyl Ketone14.51431716481.26 ppb9853)Dibromochloromethane16.691071695711.25 ppb9854)Methyl Extone16.691071695711.25 ppb9855)1,2-dibromoethane16.691071695711.25 ppb9856)Tetrachloroethylene16.621641165271.25 ppb9857)Chlorobenzene17.541122244291.24 ppb9458)Ethylbenzene17.80913228131.34 ppb9859)mép-xylene18.01916026392.58 ppb9960)Nonane18.39432175631.31 ppb8461)Styrene18.51913508461.22 ppb9963)o-xylene18.51913508461.22 ppb9963)o-xylene18.51913508461.22 ppb9964)Sty R.T. QION Response Conc Unit Qvalue Compound

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP031806.D A318_1UG.M Wed Mar 28 06:59:24 2018 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP031807.D Vial: 7 Operator: RJP Acq On : 18 Mar 2018 7:48 pm Sample : AlUG 1.0 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:33:58 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via ; Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.49128496221.00ppb0.0035) 1,4-difluorobenzene12.731142052361.00ppb0.0050) Chlorobenzene-d517.481171559031.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 120375 1.00 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 100.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.56
 41
 62241
 1.00
 ppb
 98

 3) Freon 12
 4.63
 85
 281128
 1.00
 ppb
 99

 4) Chloromethane
 4.84
 50
 65533
 1.00
 ppb
 99

 5) Frecon 114
 4.85
 95
 22191
 1.00
 ppb
 99

 7) Butane
 5.18
 39
 47497
 1.00
 ppb
 98

 81
 1, 3-butadiene
 5.16
 94
 71911
 1.00
 ppb
 99

 9) D'chloroethane
 5.75
 64
 24252
 1.00
 ppb
 91

 11
 Bromomethane
 5.66
 94
 7191
 1.00
 ppb
 92

 12) Accolein
 6.11
 106
 6722
 1.00
 ppb
 93

 13) Vinyl Bromide
 6.17
 42
 40099
 1.00
 Ovalue

(OT Reviewed) Quantitation Report Data File : C:\HPCHEM\1\DATA\AP031807.D Vial: 7 Acq On : 18 Mar 2018 7:48 pm Operator: RJP Inst : MSD #1 Sample : AlUG_1.0 Misc : A318_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:33:58 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HFCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN CompoundR.T. Qion Response Conc Unit Qvalue46)Bromodichloromethane13.81831878181.00 ppb9947)cis-1,3-dichloropropene14.60751061281.00 ppb9748)trans-1,3-dichloropropene15.3775748851.00 ppb9849)1,1,2-trichloroethane15.6997926921.00 ppb9951)Toluene15.46921171111.00 ppb9052)Methyl Isobutyl Ketone14.51431297391.00 ppb9053)Dibromochloromethane16.621071314771.00 ppb9956)Tetrachloroethylene16.52164897241.00 ppb9757)Chlorobenzene17.531121749111.00 ppb9458)Ethylbenzene17.80912398061.00 ppb9959)m&p-xylene18.471041788931.00 ppb9960)Nonane18.40431606901.00 ppb9961)styrene18.50912690491.00 ppb9962)promoform18.601731637971.00 ppb9963)o-xylene18.50912690491.00 ppb9964)Cumene19.73126904761.00 ppb9965)rependence19.73126904761.00 ppb9966)1,2,2,2-tetrachloroethane19.93</t R.T. QIon Response Conc Unit Qvalue Compound

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP031808.D Vial: 8 Acq On : 18 Mar 2018 8:27 pm Operator: RJP Inst : MSD #1 Sample : AlUG_0.75 Misc : A318_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:35:43 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 10G_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128491701.00ppb0.0035) 1,4-difluorobenzene12.741142015761.00ppb0.0050) Chlorobenzene-d517.481171521941.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 116546 0.99 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00% 0,00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 99.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.57
 41
 44573
 0.72 pph
 99

 3) Frecon 12
 4.63
 85
 209721
 0.75 pph
 99

 4) Chloromethane
 4.85
 85
 175066
 0.76 pph
 96

 5) Frecon 114
 4.85
 85
 175076
 0.76 pph
 96

 6) Vinyl Chloride
 5.17
 39
 33577
 0.71 pph
 97

 10) Chloroethane
 5.74
 64
 18114
 0.75 pph
 89

 11) Sthancl
 5.85
 94
 54055
 0.68 pph
 82

 12) Acrolein
 6.47
 56
 112133
 0.75 pph
 98

 13) Vinyl Bromide
 6.10
 106
 51621
 0.77 pph
 98

 13) Vinyl Bromide
 6.69
 42
 29644
 0.76 pph
 90

 14) Frecon 113
 7.41
 101
 138918
 0.76 pph
 90 Qvalue

(#) = qualifier out of range (m) = manual integration APO31808.D A318_1UG.M Wed Mar 28 06:59:31 2018 MSD1

(OT Reviewed) Quantitation Report Data file : C:\HPCHEM\1\DATA\AP031808.D Acq On : 18 Mar 2018 8:27 pm Sample : AlUG_0.75 Misc : A318_1UG Vial: 8 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File; A318_1UG.RES Ouant Time: Mar 19 08:35:43 2018 Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Unit Qvalue Compound 46)Bromodichloromethane13.80831355940.74 ppb10047)cis-1,3-dichloropropene14.6175749210.72 ppb9748)trans-1,3-dichloropropene15.3675517310.70 ppb9749)1,1,2-trichloroethane15.6997704380.77 ppb100

49)	1,1,2-trichioroethane	TD'03	<i>91</i>	/0430	0 E.F	
51)	Toluene	15.45	92	80052	0.70 ppb	97
52)	Methyl Isobutyl Ketone	14.52	43	92058	0.73 ppb	92
53)	Dibromochloromethane	16.42	129	125186	0.75 ppb	99
54)	Methyl Butyl Ketone	15.86	43	77750	0.71 ppb	93
55)	1,2-dibromoethane	16.69	107	94325	0.73 ppb	99
56)	Tetrachloroethylene	16.52	164	65902	0.75 ppb	96
57)	Chlorobenzene	17.54	112	125063	0.73 ppb	95
58)	Ethylbenzene	17.80	91	164825	0.70 ppb	98
59)	m&p-xylene	18.01	91	304224	1.38 ppb	100
60)	Nonane	18.40	43	107303	0.68 ppb	84
61)	Styrene	18.47	104	122912	0.70 ppb	98
62)	Bromoform	18.60	173	118988	0.74 ppb	100
63)	o-xylene	18.50	91	193360	0.74 ppb	97
54)	Cumene	19.10	105	187812	0.70 ppb	99
66)	1,1,2,2-tetrachloroethane	18.97	83	161498	0.75 ppb	97
67)	Propylbenzene	19.68	120	50608	0.70 ppb	82
68)	2-Chlorotoluene	19.73	126	63108	0.71 ppb	93
69)	4-ethyltoluene	19,86	105	217544	0.71 ppb	99
70)	1,3,5-trimethylbenzene	19.93	105	197564	0.71 ppb	99
71)	1,2,4-trimethylbenzene	20.42	105	141353	0.69 ppb	100
72)	1,3-dichlorobenzene	20,75	146	125134	0.72 ppb	99
73)	benzyl chloride	20,83	91	98314	0.71 ppb	96
74)	1,4-dichlorobenzene	20.90	146	123451	0.73 ppb	98
75)	1,2,3-trimethylbenzene	20.95	105	167924	0.70 ppb	100
76)	1,2-dichlorobenzene	21.26	146	121765	0.72 ppb	98
77)	1,2,4-trichlorobenzene	23.38	180	36872	0.69 ppb	99
78)	Naphthalene	23,59	128	73133	0.69 ppb	90
79)	Hexachloro-1,3-butadiene	23.72	225	98159	0.75 ppb	98

(OT Reviewed) Quantitation Report Vial: 9 Data File : C:\HPCHEM\1\DATA\AP031809.D Acq On : 18 Mar 2018 9:05 pm Sample : AlUG_0.50 Misc : A318_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:36:20 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth ; 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.50128490521.00ppb0.0035) 1.4-difluorobenzene12.731141952491.00ppb0.0050) Chlorobenzene-d517.481171434731.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 103699 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 94.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 94.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.57
 41
 31577
 0.51
 ppb
 93

 3) Freon 12
 4.63
 85
 141953
 0.51
 ppb
 94

 1 Chloromethane
 4.84
 50
 3370
 0.51
 ppb
 99

 5) Freon 114
 4.85
 85
 141953
 0.52
 ppb
 97

 6) Vinyl Chloride
 5.19
 39
 24589
 0.52
 ppb
 97

 1) 3-butadiene
 5.15
 39
 24589
 0.52
 ppb
 97

 10) Chloroethane
 5.75
 64
 12816
 0.51
 ppb
 97

 11) Ethanol
 5.85
 8076
 0.50
 ppb
 97

 12) Accolein
 6.70
 42
 20784
 0.52
 ppb

 13) Vinyl Bromide
 6.70
 43
 30507
 0.53
 ppb

 13) Acetone
 <td Qvalue _____

(QT Reviewed) Quantitation Report Vial: 9 Data File : C:\HPCHEM\1\DATA\AP031809.D Acg On : 18 Mar 2018 9:05 pm Operator: RJP Sample : AlUG_0.50 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params; RTEINT.P MS Integration Params; RTEINT.P Quant Time: Mar 19 08:36:20 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG RUN CompoundR.T. QIon ResponseConc UnitQvalue46)Bromodichloromethane13.8183889220.50 ppb9947)cis-1,3-dichloropropene14.6175469080.46 ppb9648)trans-1,3-dichloropropene15.3675320800.45 ppb9849)1,1,2-trichloroethane15.6997457270.52 ppb9852)Methyl Isobutyl Ketone14.5243579390.45 ppb9853)Dibromochloromethane16.43129796470.51 ppb10054)Methyl Butyl Ketone15.6743472650.45 ppb9855)1,2-dibromoethane16.69107592000.49 ppb9856)Tetrachloroethylene16.52164429980.52 ppb10057)Chlorobenzene17.53112773290.48 ppb9958)Ethylbenzene17.8091959360.43 ppb19959)mép-xylene18.47104733800.45 ppb9960)Nonane18.47104733800.45 ppb9961)styrene18.51911135400.46 ppb9762)Cumene19.101051093300.43 ppb9963)o-xylene18.51911135400.46 ppb9764)Cumene19.73126386140.46 ppb9765)1,2,2-tetrachlo R.T. QION Response Conc Unit Qvalue Compound

Quantitation Report (QT Reviewed) Vial: 10 Data File : C:\HPCHEM\1\DATA\AP031810.D Acq On : 18 Mar 2018 9:42 pm Sample : AlUG 0.30 Misc : A318_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:36:46 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 10G RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128455651.00ppb0.0035) 1.4-difluorobenzene12.731141855861.00ppb0.0050) Chlorobenzene-d517.481171362951.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 93453 0.89 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 89.00% 0.00
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 # 89.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.57
 41
 19407
 0.34
 ypb
 92

 3) Preon 12
 4.63
 65
 80730
 0.31
 ppb
 99

 4) Chloromethane
 4.85
 50
 26121
 0.43
 ppb
 95

 5) Freon 114
 5.06
 62
 22133
 0.41
 ppb
 93

 3) 1,3-butadiene
 5.19
 43
 26441
 0.40
 ppb
 97

 9) Bromomethane
 5.77
 94
 25367
 0.38
 ppb
 91

 13) Sthanol
 6.47
 56
 5667m
 0.42
 ppb
 91

 13) Kinpl Bromide
 6.11
 106
 21376
 0.33
 ppb
 91

 13) Konpopyl alcohol
 6.70
 42
 101
 56387
 0.33
 ppb

 13) Vinyl Bromide
 7.41
 101
 56387
 0.33
 ppb

 Ovalue

(#) = qualifier out of range (m) = manual integration AP031810.D A318_1UG.M Wed Mar 28 06:59:38 2018 MSD1

Quantitation Report (QT Reviewed) Vial: 10 Data File : C:\HPCHEM\1\DATA\AP031810.D Acq On : 18 Mar 2018 9:42 pm **Operator:** RJP Sample : AlUG_0.30 Misc : A318_1UG Inst ; MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:36:46 2016 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG RUN CompoundR.T. QION ResponseConc UnitQvalue46)Bromodichloromethane13.8063540740.32 ppb9847)cis-1,3-dichloropropene14.6275260680.27 ppb9748)trans-1,3-dichloropropene15.3775184430.27 ppb9349)1,1,2-trichloroethane15.6997271440.32 ppb9751)Toluene15.4692271250.26 ppb10052)Methyl Isobutyl Ketone14.5243326230.29 ppb8253)Dibromochloromethane16.63129483170.32 ppb9854)Methyl Butyl Ketone15.8743263830.27 ppb8255)1,2-dibromoethane16.69107344090.30 ppb9756)Tetrachloroethylene16.52164264510.34 ppb9757)Chlorobenzene17.54112438820.29 ppb9258)Ethylbenzene17.8091540480.26 ppb10059)m&p-xylene18.6191864930.44 ppb10060)Nonane18.404331943m fl0.33 ppb9961)Styrene18.5191591900.25 ppb9862)Cumene19.10105602510.25 ppb9863)o-xylene18.5191591900.25 ppb9964)Cumene1 R.T. QIon Response Conc Unit Qvalue Compound ______

Data File : C:\BCKEM\LDATA\AP031811.D Vial: 11 Acg On : 10 MG 2018 10:19 pm Mignet : All5_106 Vial: 11 Tint : MSD H1 Multiplr: 1.00 Mignet : All5_106 Tint : MSD H1 Multiplr: 1.00 Tint : MSD H1 Multiplr: 1.00 Mignet : C:\BCKEML1\METHODS\A318_100.M (RTS File: All8_100.RES Quant Keeults File: All8_100.M (RTS Integrator) Tint : 10 Tile : TO-15 VOA Standards for 5 point calibration Last Update : Mon Nar 19 08:37:18 2018 Tuternal Standards R.T. QVon Response Conc Units Dev(Min) Titernal Standards R.T. QVon Response Conc Units Dev(Min) Dev(Min) 11 Bromochlocromethane 10.49 128 44541 1.00 ppb 0.000 35) 1.4-difluorobenzene 17.46 114 144645 1.00 ppb 0.000 50) Chlorobenzene-C5 17.46 117 129043 1.00 ppb 0.000 Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% Target Compounds CValue 21 Propylene 4.57 41 9446 0.17 ppb 95 6 Vinyl Chlords 6.01 8 ppb 99 0.10 19 ppb 48 6 Vinyl Chlords 6.07 56 9060 0.18 ppb 99 91 7 Butane 5.8 61473 0.18 ppb 99 91 10 Chorocthane 5.8 57 94 11369 0.17 ppb 92 92 11 Bromochlocromethane 5.8 56 45013 0.19 ppb 99 91 11 Chorocthane 5.8 56 45013 0.19 ppb		Quantitat	ion Rej	port (QT	Review	wed)		
Quant Time: Mar 19 08:37:18 2018 Quant Results File: Alls_LUG.RES Quant Method : C:\HFCHEM\1\METHODS\Alls_LUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response Via : Continuing Cal File: C:\HFCHEM\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN Response Cond Units Dev(Min) Internal Standards R.T. Qion Response Cond Units Dev(Min) 1. Bromochloromethane 10.49 128 44391 1.00 ppb 0.00 50 Chlorobenzene 12.74 114 184489 1.00 ppb 0.00 50 Stomofluorobenzene 19.21 95 77409 0.78 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% Target Compounds Cyalue 2) Propylene 4.67 41 9446 0.17 ppb 95 3) Treen 12 4.63 66 45273 0.18 ppb 0.100 7) Butane 5.18 43 12587 0.13 ppb 48 9) Bromomethane 5.75 94 11969 0.20 ppb 0.100 10 Chlorobenzene 5.85 45 3013m 0.17 ppb 95 9) Bromomethane 5.76 94 11969 0.20 ppb 0.10 pp 48 11) Ethanol 5.85 45 3013m 0.21 ppb 48 12) Arcolein 6.47 62 24068 0.18 ppb 91 13) Yinyl Bromide 6.10 106 11343 0.18 ppb 91 14) Freen 11 6.44 1	Data File : C:\HPCHEM\1\DATA Acq On : 18 Mar 2018 10: Sample : AlUG_0.15 Misc : A318_1UG MS Integration Params: RTEIN	\AP031811.D 19 pm T.P		Oper Inst Mult	Vial: ator: iplr:	11 RJP MSD ; 1.00	#1	
Quant Method : C:\HPCHEN\1\METHODE\A318_100 (MTF Integrator) Last Update : Mon Mar 19 08:33:45 2018 Response Val : Continuing Cal File: C:\HPCHEN\1\DATA\AP031807.D DataAcq Meth : 1UG_RUN Internal Standards R. T. Qion Response Conc Units Dev(Min) 1. Bromochloromethane 10.49 128 44941 1.00 ppb 0.000 50] Chlorobenzene 12.748 117 129043 1.00 ppb 0.000 50] Chlorobenzene 17.46 117 129043 1.00 ppb 0.000 System Monitoring Compounds 65 577409 0.78 ppb 0.000 System Monitoring Compounds 65 37.46 117 129043 1.00 ppb 0.000 System Monitoring Compounds 65 377409 0.78 ppb 0.000 System Monitoring Compounds 65 37668 0.18 ppb 99 9 10 choromethane 4.65 65 37668 0.18 ppb 98 91 Choromethane 5.18 43 12887 0.18 ppb 92 91 Dichoromethane 5.57 94 11969 0.18 ppb 92 91 Dichoromethane 5.57 94 113669 0.18 ppb 92 91 Dichoromethane 5.57 94 11369 0.18 ppb 92 91 Dichoromethane	Quant Time: Mar 19 08:37:18	2018	Qua	ant Results	File:	A318	100	RES
Internal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane 10.49 126 44941 1.00 ppb 0.00 35) 1,4-difluorobenzene 12.74 114 184469 1.00 ppb 0.00 50 Chlorobenzene-d5 17.46 117 129043 1.00 ppb 0.00 System Monitoring Compounds 55 Bromofluorobenzene 19.21 95 77409 0.78 ppb 0.00 System Monitoring Compounds 10.00 Range 70 - 130 Recovery = 78.00% 78.00% Target Compounds 2 9446 0.17 ppb 944 0.17 ppb 944 1) Chloromethane 4.65 50 11471 0.19 ppb 84 5) Freen 114 4.66 85 37658 0.18 ppb 92 1) Chloromethane 5.17 34 112567 0.19 ppb 84 1) Jackatdiene 5.18 36 8416m 0.16 ppb 92 1) Chloroethane 5.17	Quant Method : C:\HPCHEM\1\M Title : TO-15 VOA St Last Update : Mon Mar 19 08 Response via : Continuing Ca DataAcq Meth : 1UG_RUN	ETHODS\A318 andards for :33:45 2018 1 File: C:\	_1UG.M 5 poin HPCHEM	(RTE Integn nt calibrati \1\DATA\AP03	ator) .on 1807.1	D		
1) Bromochloromethane 10.49 128 44941 1.00 ppb 0.00 35 1,4-difluorobenzene 12.74 114 144489 1.00 ppb 0.00 50 Chlorobenzene-d5 17.46 117 129043 1.00 ppb 0.00 System Monitoring Compounds 5 77409 0.78 ppb 0.00 System Monitoring Compounds 6 5 77409 0.78 ppb 0.00 System Monitoring Compounds 6 5 77409 0.78 ppb 0.00 System Monitoring Compounds 6 5 77409 0.78 ppb 0.00 System Monitoring Compounds 6 5 77409 0.78 ppb 0.00 System Monitoring Compounds 6 5 7 94 0.16 ppb 95 System Monitoring Compounds 6 101 114 114 114 <td< td=""><td>Internal Standards</td><td>R.T.</td><td>QIon</td><td>Response (</td><td>one U</td><td>nits I</td><td>Dev</td><td>(Min)</td></td<>	Internal Standards	R.T.	QIon	Response (one U	nits I	Dev	(Min)
1) Browellingtomethale 10.45 125 125 125 100 ppb 0.00 50) Chlorobenzene-d5 17.48 117 129043 1.00 ppb 0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 77409 0.78 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% Zarget Compounds 2 20 propylene 4.57 41 9446 0.17 ppb 95 3) Freon 12 4.63 86 45273 0.18 ppb 99 4) Chromethane 4.85 50 14471 0.19 ppb 84 5) Freon 114 5.07 62 9054m 0.17 ppb 95 7) Butane 5.18 33 8416m 0.20 ppb 20 ppb 21 7) Butane 5.14 3648 0.13 ppb 92 21 0.16 ppb 92 10) Chloroethane 5.74 64 4005m 0.21 ppb 92 11) Ethanol 5.85 4513 0.18 ppb 92 12) Acrolein 6.47 56 4005m	1) Buomash awamakhawa		100	AA941	1 00	 		0.00
35) 1, 100 There and the set of the	L) Bromocnioromeenane	10.49	140	1947941 194489	1 00	ppp		0.00
System Monitoring Compounds 11.40 <t< td=""><td>50) Chlorobenzene_d5</td><td>37 49</td><td>117</td><td>129043</td><td>1.00</td><td>nnb</td><td></td><td>0.00</td></t<>	50) Chlorobenzene_d5	37 49	117	129043	1.00	nnb		0.00
System Monitoring Compounds 19.21 95 77409 0.78 ppb 0.00 Spikked Amount 1.000 Range 70 - 130 Recovery = 78.00* Target Compounds Qvalue 2) Propylene 4.57 41 9446 0.17 ppb 95 3) Freon 12 4.63 65 45273 0.18 ppb 98 4) Chloromethane 4.85 50 11471 0.18 ppb 98 6) Vinyl Chloride 5.07 62 9054m 0.20 ppb 99 7) Butane 5.18 39 8416m 0.20 ppb 92 10) Chloroethane 5.47 94 10569 0.18 ppb 92 11) Ethanol 5.85 45 3013m 0.21 ppb 92 11) Sthacol 6.10 106 11343 0.18 ppb 92 12) Acctolan 6.10 106 11343 0.18 ppb 92 13) Vinyl Bromide 6.10 106 11343 0.18 ppb 92 14) Freon 11 6.11 104 40012 0.19 ppb 93	20) Curotopertreue-02	71,40		*******	1.00	E.E.		
65) Bromofluorobenzene 19.21 95 77409 0.78 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery 78.00% 2) Propylene 4.57 41 9446 0.17 ppb 95 3) Freen 12 4.63 85 45273 0.18 ppb 94 61 Coromethane 4.65 50 11471 0.19 ppb 84 5) Freen 114 4.86 85 37668 0.18 ppb 98 7) Butane 5.18 43 12587 0.19 ppb 49 8) 1, 3-butadiene 5.77 94 1169 0.18 ppb 92 10) Chloroethane 5.74 64 4005m 0.21 ppb 11) Ethanol 5.85 2408 0.18 ppb 92 11) Chloroethane 6.10 106 11343 0.16 pb 92 12) Acrolein 6.41 101 48012 0.1	System Monitoring Compounds							
Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% Target Compounds Cvalue 2) Propylene 4.57 41 9446 0.17 ppb 95 3) Freen 12 4.63 85 45273 0.18 ppb 99 4) Chloromethane 4.85 50 11471 0.19 ppb 84 5) Freen 114 4.86 85 37668 0.18 ppb 98 6) Vinyl Chloride 5.07 62 9054m 0.19 ppb 89 9) Eromomethane 5.77 94 1969 0.20 ppb 92 10) Chloroethane 5.74 64 4005m 0.18 ppb 92 11) Ethanol 5.85 45 3013m 0.21 ppb 92 12) Acrolein 6.41 106 11343 0.18 ppb 92 13) Vinyl Bromide 6.10 106 11343 0.18 ppb 92 14) Freon 11 6.41 101 48012 0.17 ppb 93 14) Johnorethene 7.21 96 1258actone 0.16 ppb <	55) Bromofluorobenzene	19.21	95	77409	0.78	ppb		0,00
Target Compounds Qvalue 2) Propylene 4.57 41 9446 0.17 ppb 95 3) Freon 12 4.63 65 45273 0.18 ppb 94 5) Freon 114 4.86 65 37668 0.18 ppb 98 6) Vinyl Chloride 5.07 62 9054m 0.17 ppb # 99 7) Butane 5.18 43 12587 0.19 ppb # 99 9) Bromomethane 5.77 41 1969 0.18 ppb 92 10) Chloroethane 5.74 64 4005m 0.20 ppb 91 11) Ethanol 5.85 58 2408 0.18 ppb 92 13) Vinyl Bromide 6.10 11343 0.18 ppb 92 14) Freon 11 6.51 10420 0.19 ppb 97 15) Acetone 6.56 58 2543 0.13 ppb 94 17) Tsopropyl alcohol 7.45 9204 0.17 ppb 93	Spiked Amount 1.000	Range 70	- 130	Recovery	r =	Ĩ78.	800	
Target Compounds Qvalue 2) Propylene 4.57 41 9446 0.17 95 3) Freen 12 4.63 85 45273 0.18 95 4) Chloromethane 4.85 50 11471 0.19 95 6) Vinyl Chloride 5.07 62 9054m 0.18 9b 99 6) I.3-butadiene 5.18 43 12567 0.19 9b 89 7) Butane 5.18 43 12567 0.19 9b 89 9) Eronomethane 5.77 94 11969 0.20 9b 92 10) Choroethane 5.74 64 4005m 0.21 9b 91 11) Ethanol 5.85 45 3013m 0.21 pb 92 13) Vinyl Bromide 6.10 106 11343 0.18 pb 91 13) Vinyl Bromide 6.10 106 11343 0.15 pb 91 14) Freen 11 6.41 101 48012 0.17 pb 92 15) Acetone <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
2) Propylene 4.57 41 9446 0.17 ppb 95 3) Freon 12 4.63 85 5273 0.18 ppb 99 4) Chloromethane 4.65 50 11471 0.19 ppb 84 5) Freon 114 4.86 85 37669 0.18 ppb 98 6) Viyl Chloride 5.07 62 9054m 0.19 ppb #8 98 1) J-butadiene 5.18 43 12587 0.18 ppb #8 9) Bromomethane 5.57 94 11969 0.18 ppb 92 10) Chloroethane 5.85 53 0.33m 0.21 ppb 92 11) Ethanol 6.47 56 2406 0.18 ppb 92 12) Acrolein 6.41 101 48012 0.13 ppb 92 13) Viyll Bromide 6.10 106 11343 0.15 ppb 90 14) F	Target Compounds						Q∨ð	lue
3) Freen 12 4.63 85 45273 0.16 ppb 94 4) Chloromethame 4.85 50 11471 0.19 ppb 84 5) Freen 114 4.86 65 37668 0.18 ppb 96 7) Butane 5.18 39 8416m 0.18 ppb #29 8) 1,3-butadiene 5.18 39 8416m 0.20 ppb #29 9) Bromomethane 5.57 94 11969 0.16 ppb 92 10) Chloroethane 5.74 44005m 0.18 ppb 91 11) Ethanol 5.85 45 3013m 0.20 ppb 91 13) Vinyl Bromide 6.10 106 11343 0.18 ppb 92 14) Freen 11 6.41 101 48012 0.15 ppb 90 16) Pentane 6.70 42 4754 0.17 ppb 93 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 7.45 9204	2) Propylene	4.57	41	9446	0,17	dqq		95
4) Chloromethane 4.85 50 11471 0.19 ppb 84 5) Freeon 114 4.86 85 37668 0.18 ppb 98 6) Vinyl Chloride 5.07 62 9054m 0.17 ppb 99 7) Butane 5.18 43 12567 0.19 ppb #89 9) Bromomethane 5.57 94 11959 0.18 ppb 92 10) Chloroethane 5.74 64 4005m 0.18 ppb 92 11) Ethanol 5.65 45 3013m 0.21 ppb 92 12) Acrolein 6.47 56 2408 0.18 ppb 92 13) Vinyl Bromide 6.10 106 11343 0.16 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 7.21 96 12586 0.18 ppb 89 18) 1.1-dichloroethene 7.67 41 14272 0.17 ppb 40 22) Allyl choride	3) Freon 12	4,63	85	45273	0,18	ppb		99
5) Freen 114 4.86 85 37668 0.18 ppb 98 6) Vinyl Chloride 5.07 62 9054m 0.17 ppb 7) Butane 5.18 43 12587 0.19 ppb #89 8) 1,3-butadiene 5.18 39 8416m 0.20 ppb 92 10) Chloroethane 5.77 64 4005m 0.18 ppb 92 11) Ethanol 5.65 45 3013m 0.21 ppb 92 12) Acrolein 6.47 56 400 0.18 ppb 91 13) Vinyl Bromide 6.10 106 11343 0.18 ppb 92 14) Freon 11 6.41 101 40012 0.19 ppb 97 15) Acetone 6.70 42 4754 0.13 ppb #0 17) Isoprogyl alcohol 6.70 42 4754 0.13 ppb #0 17) Isoprogyl alcohol 7.45 59 12746 0.13 ppb #6 20 t.Butyl alcohol 7.45 59 12746 0.17 ppb #83 21) I.j-dichloroethene 8.65 <td< td=""><td>4) Chloromethane</td><td>4,85</td><td>50</td><td>11471</td><td>0.19</td><td>dqq</td><td></td><td>84</td></td<>	4) Chloromethane	4,85	50	11471	0.19	dqq		84
6) Vinyl Chloride 5.07 62 9054m ^P 0.17 ppb # 89 7) Butane 5.18 43 12587 0.19 ppb # 89 8) 1,3-butadiene 5.18 39 8416m 0.20 ppb 9) Bromomethane 5.77 94 11969 0.18 ppb 92 10) Chloroethane 5.74 94 11969 0.18 ppb 92 11) Ethanol 5.85 45 3013m 0.21 ppb 91 12) Acrolein 6.47 56 2406 0.18 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17) Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1,1-dichloroethene 7.21 96 112588 0.18 ppb 89 19) Freon 113 7.41 101 22446 0.13 ppb # 83 21) Methylen chloride 7.66 41 12331 0.19 ppb # 83 22) Allyl chloride 7.67 41 14272 0.17 ppb # 83 22) Allyl chloride 7.67 41 14272 0.17 ppb # 60 23) Carbon disulfide 7.67 41 14272 0.17 ppb # 60 24) trans-1,2-dichloroethene 8.65 73 24016 0.17 ppb # 83 25) methyl tert-butyl ether 8.68 73 24016 0.17 ppb # 83 26) methyl tert-butyl ether 8.68 73 24016 0.17 ppb # 83 26) methyl tert-butyl ether 8.68 73 24016 0.17 ppb # 83 26) methyl tert-butyl ether 8.68 73 24016 0.17 ppb # 83 26) methyl tert-butyl ether 8.68 73 24016 0.17 ppb 80 26) 1,1-dichloroethene 9.09 63 24279 0.16 ppb 95 26) 1,1-dichloroethene 9.09 64 57 14498 0.16 ppb 95 27) Vinyl acetate 9.07 43 18625 0.14 ppb 81 28 Methyl Ethyl Ketone 9.60 72 4735m / 0.17 ppb 87 30 Hexane 9.64 57 14498 0.16 ppb 97 31) Ethyl acetate 10.04 42 10134 0.16 ppb 97 32) Chloroform 10.66 83 27994 0.17 ppb 86 33) Tetrahydrofuran 10.84 42 10134 0.16 ppb 97 34) 1,2-dichloroethane 11.76 62 17392 0.17 ppb 96 33] Tetrahydrofuran 10.84 42 10134 0.16 ppb 97 34) 1,2-dichloroethane 11.76 41 38227 0.17 ppb 96 34) 1,2-dichloroethane 11.76 41 8862 0.13 ppb 88 37) Cyclohexane 12.17 56 11961 0.14 ppb 97 39] Benzene 12.08 78 32242 0.17 ppb 97 30] Heytane 13.37 130 13631 0.16 ppb 93 31] 1,2-dichloroethene 13.37 130 13631 0.16 ppb 93 34] 1,2-dichloroethene 13.37 130 13631	5) Freon 114	4.86	85	37668	0.18	ppb		98
7) Butane 5.18 43 12567 (0.19 ppb # 89 8) I.3-butadiene 5.18 39 8416m (0.20 ppb 0.18 ppb 92 10) Chloroethane 5.74 64 4005m (0.18 ppb 92 11) Ethanol 5.85 3013m (0.21 ppb 92 12) Accolein 6.47 56 2408 (0.18 ppb 92 13) Vinyl Bromide 6.10 106 11343 (0.19 ppb 97 15) Acetone 6.58 58 2408 (0.19 ppb 97 15) Acetone 6.70 42 4754 (0.13 ppb #41 17 Isopropyl alcohol 6.70 45 9204 (0.17 ppb 93 19) Frecon 113 7.41 101 22446 (0.13 ppb #63 20) t-Butyl alcohol 7.45 59 18574 (0.17 ppb #63 21) Methylene chloride 7.66 84 12331 (0.19 ppb 90 22) Allyl chloride 7.67 41 1272 (1.7 ppb #63 22) trans-1,2-d	6) Vinyl Chloride	5.07	62	9054m 🧨	0.17	ppb		
8) 1,3-butadiene 5.18 39 8416m 0.20 0pb 9) Bromomethane 5.57 94 11969 0.18 0pb 92 10) Chloroethane 5.74 64 4005m 0.21 ppb 11) Ethanol 5.85 45 3013m 0.21 ppb 12) Acrolein 6.47 56 2408 0.18 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Accetone 6.58 58 2543 0.13 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb 91 17 Isopropyl alcohol 6.70 42 4754 0.13 ppb 81 19) Freon 113 7.41 101 22446 0.13 ppb 82 20 trans-1,2-dichloroethene 7.67 41 14272 0.17 ppb 83 21 Methylene chloride 7.66 61 13972 0.16 ppb 99 22) Allyl chloroethene 9.60<	7) Butane	5.18	43	12567	0.19	ppb	#	89
9) Bromomethane 5.57 94 11959 0.18 ppb 92 10) Chloroethane 5.74 64 4005m 0.18 ppb 91 11) Ethanol 5.85 45 3013m 0.21 ppb 92 12) Acrolein 6.47 56 2408 0.18 ppb 92 13) Vinyl Bromide 6.10 106 11343 0.18 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17 Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1, 1-dichloroethene 7.21 96 12546 0.13 ppb # 63 20) t-Butyl alcohol 7.45 59 18574 0.17 ppb # 63 21) Methylene chloride 7.66 84 1231 0.19 ppb # 63 21) Alty chloride 7.67 41 14272 0.16 ppb 89 22) Carbon disulfide	8) 1,3-butadiene	5.18	39	8416m	0.20	dqq		
10) Chloroethane 5.74 64 405m J 0.16 ppb 11) Ethanol 5.85 45 3013m J 0.21 ppb 12) Acrolein 6.47 56 2408 0.18 ppb 92 13) Vinyl Bromide 6.10 106 11343 0.18 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Acetone 6.58 56 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17) Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1,1-dichloroethene 7.21 96 12588 0.18 ppb 89 20 t-Sutyl alcohol 7.45 59 18574 0.17 ppb # 63 21) Methylene chloride 7.68 84 12331 0.19 ppb # 62 22) Allyl chloroethane 9.65 61 13972 0.16 ppb 99 23) Carbon disulfide 7.86 74 24016 0.17 ppb # 63 23) carbon disulfide 7.67 41<	9) Bromomethane	5.57	94	11969	0.18	ggb		92
11) Ethanol 5.85 45 303m 4 0.21 ppb 12) Acrolein 6.47 56 2408 0.18 ppb 91 13) Vinyl Bromide 6.10 106 11343 0.16 ppb 92 14) Freon 11 6.41 101 48012 0.13 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17 Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1.1-dichloroethene 7.21 96 12586 0.18 ppb 89 20) t-Butyl alcohol 7.45 59 18574 0.17 ppb # 63 21) Methylene chloride 7.66 84 12331 0.19 ppb # 60 22) Allyl chloride 7.67 41 14272 0.17 ppb # 60 23) Carbon disulfide 7.66 76 24016 0.17 ppb 99 24)	10) Chloroethane	5.74	64	4005m	0.10	dqq		
12) Acrolein 6.47 56 2408 0.18 ppb 91 13) Vinyl Bromide 6.10 106 11343 0.16 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17 Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1,1-dichloroethene 7.21 96 12588 0.16 ppb 89 19) Freon 113 7.41 101 22466 0.17 ppb # 83 21) Methylene chloride 7.68 84 12331 0.19 ppb # 82 21) Allyl chloride 7.67 41 14272 0.16 ppb 89 22) Allyl chloroethene 8.65 61 13972 0.16 ppb 89 23) Carbon disulfide 7.86 724279 0.18 ppb 89 24) trans-1,2-dichloroethene 9.60 72 4793m fl 0.17 ppb 26) 1,1-dichloro	11) Ethanol	5.85	45	3013m 🗸	0,21	ppb		
13) Vinyl Bromide 6.10 106 11343 0.16 ppb 92 14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17) Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1.1-dichloroethene 7.21 96 12588 0.18 ppb 89 19) Freon 113 7.41 101 22446 0.13 ppb # 83 21) Methylene chloride 7.68 84 1231 0.19 ppb # 83 22) Allyl chloride 7.67 41 14272 0.17 ppb # 83 22) Allyl chloride 7.67 41 13972 0.16 ppb 99 23) Carbon disulfide 7.86 73 24016 0.17 ppb 91 24) trans-1.2-dichloroethene 8.65 61 13972 0.16 ppb 95	12) Acrolein	6.47	56	2408	0.18	ppb		91
14) Freon 11 6.41 101 48012 0.19 ppb 97 15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb #41 17) Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1.1-dichloroethene 7.21 96 12588 0.16 ppb 89 19) Freon 113 7.41 101 22446 0.13 ppb #6 20) t-Butyl alcohol 7.45 59 18574 0.17 ppb #83 21) Methylene chloride 7.68 84 12331 0.19 ppb #60 22) Allyl chloride 7.67 41 14272 0.17 ppb #92 23) Carbon disulfide 7.86 76 27864 0.19 ppb 90 24) trans-1.2-dichloroethene 8.65 61 13972 0.16 ppb 95 26) 1.4 chloroethene 9.09 63 24279 0.18 ppb 95	13) Vinyl Bromide	6.10	106	11343	0.18	qqq		92
15) Acetone 6.58 58 2543 0.15 ppb 90 16) Pentane 6.70 42 4754 0.13 ppb # 41 17) Isopropyl alcohol 6.70 42 4754 0.13 ppb # 41 17) Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1,1-dichloroethene 7.21 96 12586 0.16 ppb 89 20) t-Butyl alcohol 7.45 59 18574 0.17 ppb # 83 21) Methylene chloride 7.68 84 12331 0.19 ppb # 82 22) Allyl chloride 7.67 41 14272 0.17 ppb # 82 23) Carbon disulfide 7.86 76 27864 0.19 ppb 90 90 24) trans-1,2-dichloroethene 8.68 73 24016 0.17 ppb 95 26) nethyl Ettyl ketone 9.60 72 4793m 0.18 ppb 97 26) distributyl Ettyl Ketone 9.64 57 14498 0.16 ppb 97 30) Hexane 9.64	14) Freon 11	6.41	101	48012	0.19	ppb		97
16) Pentane 6.70 42 4754 0.13 ppD # 41 17) Isopropyl alcohol 6.70 45 9204 0.17 ppb 93 18) 1,1-dichloroethene 7.21 96 12588 0.18 ppb 89 19) Freon 113 7.41 101 22446 0.13 ppb #63 20) t-Butyl alcohol 7.45 59 16574 0.17 ppb #83 21) Methylene chloride 7.68 84 1231 0.19 ppb #82 21) Methylene chloride 7.67 41 14272 0.17 ppb #60 23) Carbon disulfide 7.86 76 27864 0.19 ppb #92 24) trans-1,2-dichloroethene 8.68 73 24016 0.17 ppb 79 26) 1,1-dichloroethane 9.60 72 4793m // 0.18 ppb 95 27) Vinyl acetate 9.60 72 4793m // 0.17 ppb 87 30) Hexane 9.64 57 14498 0.16 ppb 97 31) Ethyl acetate 10.19 43 21247 0.16 ppb 97	15) Acetone	6.58	58	2543	0.15	dad		à0
17) Isopropyl alcohol 6.70 45 9204 0.17 Ppb 93 18) 1,1-dichloroethene 7.21 96 12588 0.18 Ppb 89 19) Freen 113 7.41 101 22446 0.13 Ppb # 83 20) t-Butyl alcohol 7.45 59 18574 0.17 Ppb # 83 21) Methylene chloride 7.66 84 12331 0.19 Ppb # 83 22) Allyl chloride 7.67 41 14272 0.17 Ppb # 60 23) Carbon disulfide 7.86 76 27864 0.19 Ppb 99 24) trans-1,2-dichloroethene 8.68 73 24016 0.17 Ppb 79 25) methyl Ethyl Ketone 9.07 43 18625 0.14 Ppb 81 26) 1,1-dichloroethene 10.04 61 14608 0.17 Ppb 87 30) Hexane 9.64 57 <td< td=""><td>16) Pentane</td><td>6.70</td><td>42</td><td>4754</td><td>0.13</td><td>aqq</td><td>Ŧ</td><td>41</td></td<>	16) Pentane	6.70	42	4754	0.13	aqq	Ŧ	41
18) 1,1-dichloroethene 7.21 96 12588 0.18 ppb 89 19) Freon 113 7.41 101 22446 0.13 ppb #6 20) t-Butyl alcohol 7.45 59 18574 0.17 ppb # 83 21) Methylene chloride 7.68 84 12331 0.19 ppb # 82 22) Allyl chloride 7.67 41 14272 0.17 ppb # 60 23) Carbon disulfide 7.66 786 27864 0.19 ppb 90 24) trans-1,2-dichloroethene 8.65 61 13972 0.16 ppb 97 26) 1,1-dichloroethane 9.09 63 24279 0.18 ppb 95 27) Vinyl acetate 9.07 43 18625 0.14 ppb 81 28) Methyl Ethyl Ketone 9.64 57 14498 0.16 ppb 97 30) Hexane 9.64 57 14498 0.16 ppb 96 </td <td>17) Isopropyl alcohol</td> <td>6.70</td> <td>45</td> <td>9204</td> <td>0.17</td> <td>ppb</td> <td></td> <td>93</td>	17) Isopropyl alcohol	6.70	45	9204	0.17	ppb		93
19) Freen 113 7.41 101 22446 0.13 ppb % 20) t-Butyl alcohol 7.45 59 18574 0.17 ppb # 83 21) Methylene chloride 7.66 84 1231 0.19 ppb # 92 22) Allyl chloride 7.67 41 14272 0.17 ppb # 60 23) Carbon disulfide 7.86 76 27864 0.19 ppb 90 24) trans-1,2-dichloroethene 8.65 61 13972 0.16 ppb 79 25) methyl tert-butyl ether 8.68 73 24016 0.17 ppb 81 26) 1,1-dichloroethene 9.60 72 4793m 0.17 ppb 81 27) Vinyl acetate 9.64 57 14498 0.16 ppb 97 30) Hexane 9.64 57 14498 0.16 ppb 96 31) Ethyl acetate 10.19 43 21247 0	18) 1,1-dichloroethene	7.21	96	12588	0.18	ppp		89
20) t-Butyl alcohol 7.45 59 18574 0.17 Dpb # 63 21) Methylene chloride 7.68 84 12331 0.19 Dpb # 62 22) Allyl chloride 7.67 41 14272 0.17 Dpb # 60 23) Carbon disulfide 7.86 76 27864 0.19 Dpb # 60 24) trans-1,2-dichloroethene 8.65 61 13972 0.16 Dpb 79 25) methyl tert-butyl ether 8.68 73 24016 0.17 Dpb 89 26) 1,1-dichloroethane 9.09 63 24279 0.18 Dpb 95 27) Vinyl acetate 9.07 43 18625 0.14 Dpb 81 28) Methyl Ethyl Ketone 9.60 72 4793m 0.17 Dpb 97 30) Hexane 9.64 57 14498 0.16 Dpb 97 31) Ethyl acetate 10.19 43	19) Freon 113	7.41	101	22446	0.13	ppp	22	99
21) Methylene chloride 7.68 84 12331 0.15 ppD # 62 22) Allyl chloride 7.67 41 14272 0.17 ppb # 60 23) Carbon disulfide 7.86 76 27864 0.19 ppb 90 24) trans-1,2-dichloroethene 8.65 61 13972 0.16 ppb 89 25) methyl tert-butyl ether 8.68 73 24016 0.17 ppb 95 26) 1,1-dichloroethane 9.09 63 24279 0.18 ppb 95 26) Methyl Ethyl Ketone 9.60 72 4793m 0.17 ppb 87 27) Vinyl acetate 10.04 61 14608 0.17 ppb 97 30 Hexane 9.64 57 14498 0.16 ppb 97 31) Ethyl acetate 10.19 43 21247 0.15 ppb 97 31 7.2-dichloroethane 11.76 62 17392 0.17 ppb 96 33) Tetrahydrofuran 10.84	20) C-Butyl alcohol	7.45	59	18574	0.17	aqq	# #	60
22) Aliyi Chioride 7.87 41 1272 0.17 9D # 00 23) Carbon disulfide 7.86 76 27864 0.19 9pb 90 24) trans-1,2-dichloroethene 8.65 61 13972 0.16 9pb 99 25) methyl tert-butyl ether 8.68 73 24016 0.17 9pb 95 26) 1,1-dichloroethane 9.09 63 24279 0.18 9pb 81 28) Methyl Ethyl Ketone 9.60 72 4793m 0.17 9pb 87 29) cis-1,2-dichloroethene 10.04 61 14608 0.17 9pb 97 31) Ethyl acetate 10.19 43 21247 0.16 9pb 97 32) Chloroform 10.66 83 27994 0.17 ppb 96 33) Tetrahydrofuran 10.84 42 10134 0.16 ppb 97 34) 1,2-dichloroethane 11.76 62 17392 0.17	21) Metnylene chloride	7.68	84	14000	0.13	ppp	#	50 50
23) Carbon disulting 7.86 7.86 7.86 0.15 ppb 90 24) trans-1,2-dichloroethene 8.65 61 13972 0.16 ppb 99 25) methyl tert-butyl ether 8.68 73 24016 0.17 ppb 95 26) 1,1-dichloroethane 9.09 63 24279 0.18 ppb 95 27) Vinyl acetate 9.07 43 18625 0.14 ppb 81 28) Methyl Ethyl Ketone 9.60 72 4793m 0.17 ppb 87 29) cis-1,2-dichloroethene 10.04 61 14603 0.17 ppb 87 30) Hexane 9.64 57 14498 0.16 ppb 97 31) Ethyl acetate 10.19 43 21247 0.16 ppb 97 32) Chloroform 10.66 83 27994 0.17 ppb 96 33) Tetrahydrofuran 10.84 42 10134 0.16 ppb 98 37) Cyclohexane 11.76 62 17392 0.17 ppb	22) Allyi Chioride	1.01	** **	142/2	0.10	555 555	17	90
24) Clais-1,2-dichtoroethene 0.05 0.1 133,2 0.13 0.12 0.14 0.15 0.16 0.17 0.15 0.16 0.17 0.15 0.16 0.17 0.15 0.16 0.17 0.15 0.16 0.17 0.15 0.16 0.17 0.15 0.17 0.16 0.17 0.17 0.16 0.17 0.17 0.17	23) CARDON CISUITICE		57	12070	0.16	pph		A 9
26) 1.1-dichloroethane 9.09 63 24279 0.18 ppb 95 26) 1.1-dichloroethane 9.07 43 18625 0.14 ppb 81 28) Methyl Ethyl Ketone 9.60 72 4793m 0.17 ppb 81 29) cis-1,2-dichloroethene 10.04 61 14608 0.17 ppb 97 30) Hexane 9.64 57 14498 0.16 ppb 97 31) Ethyl acetate 10.19 43 21247 0.16 ppb 97 32) Chloroform 10.66 83 27994 0.17 ppb 96 33) Tetrahydrofuran 10.84 42 10134 0.16 ppb # 34) 1,2-dichloroethane 11.76 62 17392 0.17 ppb 90 36) Carbon tetrachloride 12.17 56 11961 0.14 ppb 98 37) Cyclohexane 12.17 28227 0.17 ppb 97 <t< td=""><td>24/ Clams-1/2-dichioideche 25) methul tert-hutul ethe</td><td>ne 0.05 v 8.68</td><td>73</td><td>24016</td><td>0.17</td><td>ppb</td><td></td><td>79</td></t<>	24/ Clams-1/2-dichioideche 25) methul tert-hutul ethe	ne 0.05 v 8.68	73	24016	0.17	ppb		79
27)Vinyl acetate9.0743186250.14ppb8128)Methyl Ethyl Ketone9.60724793m0.17ppb8729)cis-1,2-dichloroethene10.0461146080.17ppb8730)Hexane9.6457144980.16ppb9731)Ethyl acetate10.1943212470.16ppb9732)Chloroform10.6683279940.17ppb9633)Tetrahydrofuran10.8442101340.16ppb#3134)1,2-dichloroethane11.7662173920.17ppb10036)1,1trichloroethane11.4997272790.16ppb9837)Cyclohexane12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb#41)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb97 <td>26) 1.1-dichloroethane</td> <td>9.09</td> <td>63</td> <td>24279</td> <td>0.18</td> <td>dag</td> <td></td> <td>95</td>	26) 1.1-dichloroethane	9.09	63	24279	0.18	dag		95
28)Methyl Ethyl Ketone9.60724793m0.17 ppb29)cis-1,2-dichloroethene10.0461146080.17 ppb8730)Hexane9.6457144980.16 ppb9731)Ethyl acetate10.1943212470.16 ppb9732)Chloroform10.6683279940.17 ppb9633)Tetrahydrofuran10.8442101340.16 ppb#34)1,2-dichloroethane11.7662173920.17 ppb10036)1,1,1-trichloroethane11.4997272790.18 ppb9837)Cyclohexane12.1756119610.14 ppb8838)Carbon tetrachloride12.12117282270.17 ppb9739)Benzene12.0878322420.17 ppb9440)Methyl methacrylate13.594188620.13 ppb#841)1,4-dioxane13.648849150.13 ppb8542)2,2,4-trimethylpentane12.9157402510.14 ppb9043)Heptane13.37130136310.16 ppb9344)Trichloroethene13.37130136310.16 ppb9345)1,2-dichloropropane13.4863130370.17 ppb79	27) Vinvl acetate	9.07	43	18625	0.14	ppb		81
29)cis-1,2-dichloroethene10.0461146080.170pb8730)Hexane9.6457144980.16ppb9731)Ethyl acetate10.1943212470.16ppb9732)Chloroform10.6683279940.17ppb9633)Tetrahydrofuran10.8442101340.16ppb#34)1,2-dichloroethane11.7662173920.17ppb10036)1,1,1-trichloroethane11.4997272790.16ppb9837)Cyclohexane12.1756119610.14ppb8838)Carbon tetrachloride12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb8541)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.37130136310.16ppb9344)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	28) Methyl Ethyl Ketone	9.60	72	4793m /	0.17	ppb		
30)Hexane9.6457144980.16ppb9731)Ethyl acetate10.1943212470.16ppb9732)Chloroform10.6683279940.17ppb9633)Tetrahydrofuran10.8442101340.16ppb#34)1,2-dichloroethane11.7662173920.17ppb10036)1,1,1-trichloroethane11.4997272790.18ppb9837)Cyclohexane12.1756119610.14ppb6838)Carbon tetrachloride12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb8541)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	29) cis-1,2-dichloroethene	10.04	61	14608	0.17	dqq		87
31) Ethyl acetate10.1943212470.16 ppb9732) Chloroform10.6683279940.17 ppb9633) Tetrahydrofuran10.8442101340.16 ppb#34) 1,2-dichloroethane11.7662173920.17 ppb10036) 1,1,1-trichloroethane11.4997272790.18 ppb9837) Cyclohexane12.1756119610.14 ppb6838) Carbon tetrachloride12.12117282270.17 ppb9739) Benzene12.0878322420.17 ppb9440) Methyl methacrylate13.594188620.13 ppb#41) 1,4-dioxane13.648849150.13 ppb8542) 2,2,4-trimethylpentane12.9157402510.14 ppb9043) Heptane13.2443130260.13 ppb8844) Trichloroethene13.37130136310.16 ppb9345) 1,2-dichloropropane13.4863130370.17 ppb79	30) Hexane	9.64	57	14498	0.16	qq		97
32)Chloroform10.6683279940.17ppb9633)Tetrahydrofuran10.8442101340.16ppb#3134)1,2-dichloroethane11.7662173920.17ppb10036)1,1,1-trichloroethane11.4997272790.18ppb9837)Cyclohexane12.1756119610.14ppb6838)Carbon tetrachloride12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb8541)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	31) Ethyl acetate	10.19	43	21247	0.16	ppb		97
33) Tetrahydrofuran10.8442101340.16 ppb#3134) 1,2-dichloroethane11.7662173920.17 ppb10036) 1,1,1-trichloroethane11.4997272790.18 ppb9837) Cyclohexane12.1756119610.14 ppb6838) Carbon tetrachloride12.12117282270.17 ppb9739) Benzene12.0878322420.17 ppb9440) Methyl methacrylate13.594188620.13 ppb#41) 1,4-dioxane13.648849150.13 ppb8542) 2,2,4-trimethylpentane12.9157402510.14 ppb9043) Heptane13.2443130260.13 ppb8844) Trichloroethene13.37130136310.16 ppb9345) 1,2-dichloropropane13.4863130370.17 ppb79	32) Chloroform	10.66	83	27994	0.17	ЪЪр		96
34)1,2-dichloroethane11.7662173920.17ppb10036)1,1,1-trichloroethane11.4997272790.18ppb9837)Cyclohexane12.1756119610.14ppb8838)Carbon tetrachloride12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb#8441)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	33) Tetrahydrofuran	10.84	42	10134	0.16	ppb	ŧ	31
36)1,1,1-trichloroethane11.4997272790.16ppb9837)Cyclohexane12.1756119610.14ppb6838)Carbon tetrachloride12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb#41)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	34) 1,2-dichloroethane	11.76	62	17392	0.17	dqq		100
37)Cyclohexane12.1756119610.14ppb8838)Carbon tetrachloride12.12117282270.17ppb9739)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb#41)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	36) 1,1,1-trichloroethane	11,49	97	27279	0.16	aqq		98 89
38) Carbon tetrachloride 12.12 117 28227 0.17 ppb 97 39) Benzene 12.08 78 32242 0.17 ppb 94 40) Methyl methacrylate 13.59 41 8862 0.13 ppb 84 41) 1,4-dioxane 13.64 88 4915 0.13 ppb 85 42) 2,2,4-trimethylpentane 12.91 57 40251 0.14 ppb 90 43) Heptane 13.24 43 13026 0.13 ppb 88 44) Trichloroethene 13.37 130 13631 0.16 ppb 93 45) 1,2-dichloropropane 13.48 63 13037 0.17 ppb 79	37) Cyclohexane	12,17	56	11961	0.14	ppo		00
39)Benzene12.0878322420.17ppb9440)Methyl methacrylate13.594188620.13ppb8441)1,4-dioxane13.648849150.13ppb8542)2,2,4-trimethylpentane12.9157402510.14ppb9043)Heptane13.2443130260.13ppb8844)Trichloroethene13.37130136310.16ppb9345)1,2-dichloropropane13.4863130370.17ppb79	38) Carpon tetrachloride	12.12	117	28227	0.17	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		⇒7 04
40) Methyl methacrylate 13.59 41 8862 0.13 ppb 84 41) 1,4-dioxane 13.64 88 4915 0.13 ppb 85 42) 2,2,4-trimethylpentane 12.91 57 40251 0.14 ppb 90 43) Heptane 13.24 43 13026 0.13 ppb 88 44) Trichloroethene 13.37 130 13631 0.16 ppb 93 45) 1,2-dichloropropane 13.48 63 13037 0.17 ppb 79	39) Benzene	12.08	78	32242	0.17	ppp	#	74 94
41) 1,4-dloxane 13.64 88 4915 0.13 ppb 63 42) 2,2,4-trimethylpentane 12.91 57 40251 0.14 ppb 90 43) Heptane 13.24 43 13026 0.13 ppb 88 44) Trichloroethene 13.37 130 13631 0.16 ppb 93 45) 1,2-dichloropropane 13.48 63 13037 0.17 ppb 79	40) Metnyi methacrylate	13.59	41	8882	0,1J	555 255	11	21°C 216
42) 2,2,4-trimetnyipentane 12.91 57 40251 0.14 ppb 90 43) Heptane 13.24 43 13025 0.13 ppb 98 44) Trichloroethene 13.37 130 13631 0.16 ppb 93 45) 1,2-dichloropropane 13.48 63 13037 0.17 ppb 79	41) 1,4~dloxane	13.64	98	4910 40051	0.14	555 555		00 00
43) Heptane 13.24 43 13026 0.15 ppb 56 44) Trichloroethene 13.37 130 13631 0.16 ppb 93 45) 1,2-dichloropropane 13.48 63 13037 0.17 ppb 79	42) 2,2,4-trimethylpentane	12.91	27	10401	0.14	555		9 T. Q Q
44) Trichloroethene 13.37 130 13831 0.10 000 <td>43) Heptane</td> <td>13.24</td> <td>430</td> <td>12621</td> <td>0.12</td> <td>ppb</td> <td></td> <td>93</td>	43) Heptane	13.24	430	12621	0.12	ppb		93
45) 1,2-dichtoropropane 15,40 05 1303/ 0,++/ PPS / /	44) Tricnicroetnene	13.31	53 730	12034	0.17	555 575		79
	42) T'S-droutorobrobaue	+7.40 		,	·			

(#) = qualifier out of range (m) = manual integration AP031811.D A318_1UG.M Wed Mar 28 06:59:41 2018

MSD1

Page 1

(QT Reviewed) Quantitation Report Vial: 11 Data File : C:\HPCHEM\1\DATA\AP031811.D Acq On : 18 Mar 2018 10:19 pm Operator: RJP Sample : A1UG 0.15 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 19 08:37:18 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:33:45 2018 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP031807.D DataAcq Meth : 10G RUN CompoundR.T. QIONResponseConc UnitQvalue46)Bromodichloromethane13.8183273310.16 ppb9847)cis-1,3-dichloropropene14.6075125260.13 ppb#48)trans-1,3-dichloropropene15.367596540.14 ppb9449)1,1,2-trichloroethane15.6997135800.16 ppb9551)Toluene15.4592141500.15 ppb8952)Methyl Isobutyl Ketone14.5143147430.14 ppb9653)Dibromochloromethane16.70107173390.16 ppb9856)Tetrachloroethylene16.52164136670.18 ppb9757)Chlorobenzene17.53112239030.17 ppb9158)Ethylbenzene17.6091261210.13 ppb#59)mkp-xylene18.0191384790.21 ppb#61)Styrene18.4710415946m /0.11 ppb62)Bromoform18.60173210680.12 ppb9563)0.42105264300.12 ppb9664)1.1,2,2-tetrachloroethane19.6612079030.13 ppb66)1,1,2,2-tetrachloroethane19.6612079030.13 ppb66)1,1,2,2-tetrachloroethane19.6612079030.13 ppb66)1,1,2,2-tetrachloroethane19.66</ R.T. QION Response Conc Unit Qvalue Compound

	Quantitat	ion Rep	port (QT	Review	wed)	
Data File : C:\HPCHEM\1\DATA\A Acq On : 18 Mar 2018 10:56 Sample : AlUG_0.10 Misc : A318_1UG M5 Integration Params: RTEINT.	P031812.D 5 pm		Oper Inst Mult	Vial: rator: t ; tiplr:	12 RJP MSD # 1,00	1
Quant Time: Mar 19 08:37:37 20	18	Qua	ant Results	File:	A318_	lug.res
Quant Method : C:\HPCHEM\1\MET Title : TO-15 VOA Star Last Update : Mon Mar 19 08:3 Response via : Continuing Cal DataAcq Meth : lUG_RUN	HODS\A318 dards for 3:45 2018 File: C:\H	10G.M 5 Poin 4PCHEM	(RTE Integ) nt calibrat: \l\DATA\AP03	rator) ion 31807.1	þ	
Internal Standards	R.T.	QIon	Response (Conc Ur	nits D	ev(Min)
						0 00
1) Bromocalorometaane	10.50	114	40113	1,00	ppp	0.00
55) 1,4-dilluorobenzene	12.14	117	122701	1 00	p_{PD}	0.00
30) Chiorobenzene-da	*/*#0	**/	122101	3.100	PP-4	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	19.22	95	71966	0.76	dơg	0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	Y =	76.0	0%
• E · · · · · · · · · · · · · · · · · ·	- /					
Target Compounds					I	Qvalue
6) Vinyl Chloride	5.06	62	5711	0.10	dqq	91
18) 1,1-dichloroethene	7.21	96	8649	0,12	ppb	# 82
26) 1,1-dichloroethane	9.09	63	16786	0.12	ppb	99
29) cis-1,2-dichloroethene	10.05	61	9586	0.11	ppb	# 76
38) Carbon tetrachloride	12.12	117	20538	0.12	ppb	98
44) Trichloroethene	13,38	130	8999	0.11	dqq	89
78) Naphthalene	23.58	128	6809m 🎤	0.08	dqq	

(Quantitat:	ion Rep	port (QT	Review	ved)	
Data File : C:\HFCHEM\1\DATA\A) Acq On : 18 Mar 2018 11:32 Sample : AlUG 0.04 Misc : A318_1UG MS Integration Farams: RTEINT.)	9031813.D pm		Oper Inst Mult	Vial: ator: iplr:	13 RJP MSD #1 1.00	
Quant Time: Mar 19 08:37:54 201	18	Qua	ant Results	File:	A318_1	JG.RES
Quant Method : C:\HPCHEM\1\METH Title : TO-15 VOA Stand Last Update : Mon Mar 19 08:3 Response via : Continuing Cal H DataAcq Meth : 1UG_RUN	HODS\A318 lards for 3:45 2018 File; C:\}	1UG.M 5 poi: HPCHEM	(RTE Integr nt calibrati \1\DATA\AP03	ator) on 1807.I)	
Internal Standards	R.T.	QION	Response C	onc Ur	its Dev	r(Min)
1) Bromochloromethane	10.50	1.28	44739	1.00	 dog	0.00
35) 1.4-difluorobenzene	12.74	114	175091	1.00	ດດີດ	0.00
50) Chlorobenzene-d5	17.48	117	115441	1.00	ppb	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	19.21	95	63362m	0.71	ppb	0.00
Spiked Amount 1.000 F	lange 70	- 130	Recovery	रूल	71.00	¥
Target Compounds					Q	value
6) Vinyl Chloride	5.06	62	3611	0.07	ppb	79
18) 1,1-dichloroethene	7.19	96	4364	0,06	ppb #	74
29) cis-1,2-dichloroethene	10.04	61	5131m 🎢	0,06	dqq	
38) Carbon tetrachloride	12.11	117	9776 1	0.06	ppb	95
44) Trichloroethene	13.37	130	4263	0.05	ppb	87
78) Naphthalene	23.59	128	2731	0.03	ppb	82

	Quantitat:	ion Rep	port (QT)	Review	/ed)	
Data File : C:\HPCHEM\1\DATA\; Acq On : 19 Mar 2018 12:0 Sample : A1UG_0.03 Misc : A318_1UG MS Integration Params: RTEINT	AP031814.D 9 am .P		Opera Inst Mult:	Vial: ator: iplr:	14 RJP MSD #1 1.00	
Quant Time: Mar 19 08:38:12 2:	01.8	Qua	ant Results 1	File:	A318_10	G.RE5
Quant Method : C:\HPCHEM\1\ME' Title : TO-15 VOA Sta Last Update : Mon Mar 19 08: Response via : Continuing Cal DataAcq Meth : 1UG_RUN	THODS\A318 ndards for 33:45 2018 File: C:\}	_10G.M 5 poin HPCHEM'	(RTE Integra nt calibration) \1\DATA\AP03	ator) on 1807.1	>	
Internal Standards	R.T.	QION	Response C	onc Ur	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.50 12.73 17.48	128 114 117	44468 171032 113766	1.00 1.00 1.00	ਰਰੁਰ ਰਰੁਰੁ ਰਰੁਰੁ	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	62889m/N Recovery	0.72	ppb 72.00%	0.00
Target Compounds					Qv	alue
6) Vinyl Chloride	5.06	62	1991	0.04	ppb	70
29) cis-1,2-dichloroethene	10,05	61	2744	0.03	h dqq	52
38) Carbon tetrachloride	12.11	117	6660	0.04	ppb #	69
44) Trichloroethene	13.39	130	2957	0.04	# ជថ្មជ្	T T

Centek Laboratories, LLC

.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

CALIBRATION VERIFICATION

,

Page 151 of 207

Evaluate Continuing Calibration Report

	Data Acg (Samp] Misc MS In	File : C:\HPCHEM\1\DATA\AP032 Dn : 20 Mar 2018 11:17 am Le : AIUG_1.0 : A318_1UG htegration Params: RTEINT.P	2003.D		Vial: Operator: Inst : Multiplr:	3 RJP MSD #1 1.00
	Metho Title Last Respo	od : C:\HPCHEM\1\METHODS ; TO-15 VOA Standard Update : Wed Mar 28 07:31:52 onse via : Multiple Level Cali	S\A318_1U Is for 5 2018 Ibration	G.M (RTE I point cali	ntegrator) bration	
	Min. Max.	RRF : 0.000 Min. Rel. RRF Dev : 30% Max. Rel.	Area : Area : 1	50% Max. 50%	R.T. Dev	0.33min
		Compound	AvgRF	CCRF	&Dev Are	a% Dev(min)
1	I	Bromochloromethane	1.000	1.000	0.0 9	3 0.00
2	r	Propylene	1,300	1.271	2.2 9	4 0.00
3	т	Freon 12	5.814	5.858	-0.8 9	6 0.00
4	T	Chloromethane	1.445	1.283	11.2 9	0 0.00
5	T	Freen 114	4.917	4.566	7.1 9	
5	T.	Vinyi Chioride	1.350	1.144	10.0 0	9 0.00
6	T	Bucane 1 3-butadione	7.202	1,3/1 0 015	11 2 8	8 0.00 9 0.00
8	**** ****	Promomethane	1.030	כביב.ט	104 9	8 0.00
10	т Т	Chloroethane	0 522	0 484	7.3 9	2 0.00
1 1	т • үч	Ethanol	0.341	0.286	16.1 8	3 0.00
12	Ť	Acrolein	0 329	0.306	7.0 9	6 0.00
13	Ť	Vinvl Bromide	1.447	1.388	4.1 9	4 0.00
14	Ť	Freon 11	5.991	5.617	6.2 9	1 0.00
15	Ť	Acetone	0.379	0.349	7,9 8	8 0.00
16	т	Pentane	0,866	0.797	8.0 9	2 0.00
17	т	Isopropyl alcohol	1.399	1.150	17.8 9	1 0.00
18	Т	1,1-dichloroethene	1.715	1.299	24.3 7	6 0.00
19	т	Freon 113	3.720	3.928	-5.6 9	8 0.00
20	t	t-Butyl alcohol	2.517	2.550	-1.3 9	7 0.00
21	т	Methylene chloride	1,519	1,467	3.4 9	6 0.00
22	Т	Allyl chloride	1.828	1.718	6.0 8	6 0.00
23	T	Carbon disulfide	3.533	3.346	5.3 9	3 0.00
24	T	trans-1,2-dichioroethene	1.967	1.924	2.2 9	1 0.00
25	T	methyl tert-butyl ether	3.255	3.161	2.9 9	2 0.00
26	T. 	1,1-dichioroethane	3.197	2.994	v., v v. v	
57 50	-1. -1.	Marbyl acelate Marbyl Ethyl Katona	2.0//	2./00 0 638	3,4 0	4 0.00
20	т Т	cis-1 2-dichloroethene	0.040	1,930	و <u>م</u> .د	3 0.00
¢ <i>⊋</i> ₹∩		Hexane	1.999	1.884	5.8 8	8 0.00
31	Ţ	Ethyl acetate	3.018	2,920	3.2 9	0 0.00
32	Ŷ	Chloroform	3.756	3.625	3.5 9	2 0.00
33	Ť	Tetrahydrofuran	1.414	1.352	4.4 9	0 0.00
34	T	1,2-dichloroethane	2.352	2.287	2.8 9	2 0.00
35	I	1,4-difluorobenzene	1.000	1.000	0.0 8	8 0.00
36	T	1,1,1-trichloroethane	0.873	0.861	1.4 9	0 0.00
37	Т	Cyclohexane	0.461	0.473	-2.6 9	0 0.00
38	\mathbf{T}	Carbon tetrachloride	1.033	0.916	11.3 8	8 0.00
39	T	Benzene	1.059	1.080	-2.0 9	2 0.00
± 0	T.	Metnyi metnacryiate	0.380	U.38% 0.215	 "" " " "	3 0.00
±⊥ 1つ	T T	1,2 fluxane 2 2 A_trimethul mertena	0.200 3 600	1 536	-0.0 2	9 0.00
1 Å	÷	2,2,4-crimechyipencane Hantana	1.3%3 0.524	0.528	-0.8 A	8 0.00
	т Т	Trichloroethene	0.499	0.475	2.9 9	2 0.00
15	τ [*]	1.2-dichloropropage	0.442	0.446	-0.9 9	3 0.00
16	т Т	Bromodichloromethane	0.930	0.927	0.3 8	9 0.00
17	Ť	cis-1.3-dichloropropene	0.511	0.516	-1.0 8	8 0.00
8	$\bar{\mathbf{T}}$	trans-1,3-dichloropropene	0.363	0.381	-5.0 9	2 0.00
19	т	1,1,2-trichloroethane	0.471	0.480	-1.9 9	4 0.00

(#) = Out of Range AP032003.D A318_1UG.M

Centek Laboratories, LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AP032003.D Operator: RJP Acq On : 20 Mar 2018 11:17 am Sample : AlUG_1.0 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 28 07:31:52 2018 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	*Dev	Area*	Dev(min)
51	T	Toluene	0.743	0.756	-1.7	87	0.00
52	т	Methyl Isobutyl Ketone	0.827	0.842	-1.8	87	0.00
53	т	Dibromochloromethane	1.125	1.114	1.0	88	0.00
54	т	Methyl Butyl Ketone	0.715	0.671	6.2	80	0.00
55	Ŧ	1,2-dibromoethane	0.848	0.891	-5.1	91	0.00
56	т	Tetrachloroethylene	0.607	0.604	0.5	91	0.00
57	т	Chlorobenzene	1.124	1,158	-3.0	89	0.00
58	т	Ethylbenzene	1.526	1.566	-2,6	88	0.00
59	т	m&p-xylene	1,329	1.493	-12.3	89	0.00
60	т	Nonane	0.958	1.050	-9.6	88	0.00
61	т	Styrene	1,072	1.200	-11.9	90	0.00
62	т	Bromoform	1.060	1.052	0.8	86	0.00
63	т	o-xylene	1.621	1.851	-14.2	93	0.00
64	Ť	Cumene	1.711	1,829	-6.9	89	0.00
65	s	Bromofluorobenzene	0.690	0.793	-14.9	89	0.00
66	т	1,1,2,2-tetrachloroethane	1,459	1.508	-3.4	92	0.00
67	т	Propylbenzene	0.469	0.500	-6.6	90	0.00
68	т	2-Chlorotoluene	0.557	0.622	-11.7	92	0.00
69	т	4-ethyltoluene	1.911	2,160	-13.0	92	0.00
70	т	1,3,5-trimethylbenzene	1.693	1.934	-14.2	91	0.00
71	Ť	1,2,4-trimethylbenzene	1.311	1,406	~7.2	91	0,00
72	т	1,3-dichlorobenzene	1.113	1.233	-10.8	93	0.00
73	т	benzyl chloride	0.897	0.957	-6.7	91	0.00
74	т	1,4-dichlorobenzene	1.073	1.216	-13.3	94	0.00
75	r	1,2,3-trimethylbenzene	1.449	1.636	-12.9	90	0.00
76	т	1,2-dichlorobenzene	1.090	1.227	-12.6	95	0.00
77	т	1,2,4-trichlorobenzene	0.340	0.375	-10.3	93	0.00
78	Ť	Naphthalene	0.646	0.676	-4.6	84	0.00
79	т	Hexachloro-1,3-butadiene	0.885	0.955	-7.9	96	0.00

Page 153 of 207

Vial: 3

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Vial: 3 Data File : C:\HPCHEM\1\DATA\AP032003.D Acq On : 20 Mar 2018 11:17 am Sample : AlUG_1.0 Misc : A318_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 11:55:40 2018 Quant Results File: A318_1UG.RES Ouant Method : C:\HPCHEM\1\METHODS\A318 1UG,M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.50128460991.00 ppb0.0035) 1,4-difluorobenzene12.741141807761.00 ppb0.0050) Chlorobenzene-d517.481171345591.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 106757 1.15 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 115.00%
 Spiked Amount
 1.000
 Range
 70
 130
 Recovery
 =
 115.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.57
 41
 58609
 0.98
 ppb
 93

 3) Freen 12
 4.63
 85
 270063
 1.01
 ppb
 99

 4) Chloromethane
 4.85
 85
 210472
 0.93
 ppb
 98

 6) Vinyl Chloride
 5.18
 43
 63218
 0.88
 ppb
 92

 9) Bromomethane
 5.75
 64
 22315
 0.93
 ppb
 98

 10) Chloroethane
 5.75
 64
 22315
 0.93
 ppb
 91

 2) Accrolein
 6.46
 56
 14123
 0.93
 ppb
 98

 11) Choroethane
 6.58
 58
 16106
 0.92
 ppb
 99

 12) Accrolein
 6.40
 101
 258941
 0.94
 ppb
 99

 13) Freen 113
 7.41
 101
 181067
 1.06
 ppb

(#) = qualifier out of range (m) = manual integration AP032003.D A318_1UG.M Wed Mar 28 07:36:52 2018 MSD1

Page 154 of 207

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP032003.DVial: 3Acq On : 20 Mar 2018 11:17 amOperator: RJPSample : A1UG_1.0Inst : MSD #1Misc : A318_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 20 11:55:40 2018Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Mon Mar 19 10:19:13 2018Response via : Initial Calibration

DataAcq Meth : lUG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.81	83	1.67583	1.00 ppb	100
47)	cis-1,3-dichloropropene	14.61	75	93357	1.01 ppb	97
48)	trans-1,3-dichloropropene	15.36	75	68940	1.05 ppb	99
49)	1,1,2-trichloroethane	15.69	97	86788	1.02 ppb	100
51)	Toluene	15.46	92	101756	1.02 ppb	96
52)	Methyl Isobutyl Ketone	14.52	43	113254	1.02 ppb	91
53)	Dibromochloromethane	16.43	129	149871	0.99 ppb	100
54)	Methyl Butyl Ketone	15.86	43	90343	0.94 ppb	91
55)	1,2-dibromoethane	16.69	107	119858	1.05 ppb	98
56)	Tetrachloroethylene	16.52	164	81284	0.99 ppb	96
57)	Chlorobenzene	17.53	112	155802	1.03 ppb	96
58)	Ethylbenzene	17.80	91	210770	1.03 ppb	100
59)	m&p-xylene	18.02	91	401899	2.25 ppb	99
60)	Nonane	18.40	43	141260	1.10 ppb	85
61)	Styrene	18.47	104	161496	1.12 ppb	98
62)	Bromoform	18.60	173	141586	dqq ee.0	99
63)	o-xylene	18.51	91	249068	1.14 ppb	98
64)	Cumene	19.10	105	246097	1.07 ppb	100
66)	1,1,2,2-tetrachloroethane	18.97	83	202974	1.03 ppb	98
67)	Propylbenzene	19.69	120	67342	1.07 ppb	87
68)	2-Chlorotoluene	19.73	126	83655	1.12 ppb	96
69)	4-ethyltoluene	19.86	105	290689	1.13 ppb	99
70)	1,3.5-trimethylbenzene	19,93	105	260246	1.14 ppb	99
71)	1,2,4-trimethylbenzene	20.42	105	189132	1.07 ppb	100
72)	1,3-dichlorobenzene	20.75	146	165920	1.11 ppb	99
73)	benzyl chloride	20.83	91	128831	1.07 ppb	97
74)	1,4-dichlorobenzene	20.90	146	163618	1.13 ppb	99
75)	1,2,3-trimethylbenzene	20.95	105	220114	1.13 ppb	100
76)	1,2-dichlorobenzene	21.26	146	165072	1.13 ppb	98
77)	1,2,4-trichlorobenzene	23.38	180	50494	1.11 ppb	99
78)	Naphthalene	23.60	128	90976	1.05 ppb	96
79)	Hexachloro-1,3-butadiene	23.72	225	128567	1.08 ppb	98

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP032003.D A318_1UG.M Wed Mar 28 07:36:52 2018 MSD1

Page 156 of 207

Centek Laboratories, LLC

1

.

L L

.

.

GC/MS VOLATILES-WHOLE AIR

.

.

.

METHOD TO-15

RAW DATA

.

Page 157 of 207

Vial: 1 Data File : C:\HPCHEM\1\DATA\AP031801.D Operator: RJP Acq On : 18 Mar 2018 2:19 pm : MSD #1 Inst Sample : BFB1UG Multiplr: 1.00 : A301_1UG Misc MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title

AP031801.D A318_1UG.M Wed Mar 28 06:58:25 2018 MSD1

Page 158 of 207

Centek Laboratories, LLC

Vial: 1 Data File : C:\HPCHEM\1\DATA\AP032001.D Operator: RJP : 20 Mar 2018 9:48 am Acq On : MSD #1 Inst : BFB1UG Sample Multiplr: 1.00 : A318_1UG Misc MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Method : TO-15 VOA Standards for 5 point calibration Title

6.7

PASS

1286

BFB

AP032001.D A318_1UG.M Wed Mar 28 07:36:40 2018 MSD1

9

5

Page 159 of 207

177

176

Centek Laboratories, LLC

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 RAW QC DATA

ت ک	
T	
S.	
RIE	
[0]	
RA,	
B0]	
[Y]	
X	
(T)	
I E	1
	STREET, STREET

ANALYTICAL QC SUMMARY REPORT

Date: 28-Mar-18

Bella /	Bella Associates, P.C.
ella /	ella A

691 St Paul St. C1803045 Work Order: Project:

TestCode: 0.20 NYS

Sample ID: AMB1UG-032018	SampType: MBLK	TestCod	e: 0.20 NYS	Units: ppbV		Prep Da	ie:		RunNo: 134	108	
Client ID: 22222	Batch ID: R13408	TestN	o: TO-15		~	4nalysis Da	le: 3/20/20	18	SeqNo: 151	3421	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichlorpethene	< 0.040	0.040									
Chloroethane	< 0.15	0.15									
cis-1,2-Dichlorcethene	< 0.040	0.040									
trans-1,2-Dichloroethene	< 0.15	0.15									
Trichloroethene	< 0.030	0:030									
Vinyl chloride	< 0.040	0.040									

CLIENT:

ъĝ Analyte detected below quantitation limit Results reported are not blank corrected

.

Qualifiers:

Spike Recovery outside accepted recovery limits s

Estimated Value above quantitation range Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032005.D Vial: 5 Acq On : 20 Mar 2018 12:53 pm Operator: RJP Sample : AMB1UG-032018 Misc : A318_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 20 14:20:58 2018 Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.50128426561.00ppb0.0035) 1,4-difluorobenzene12.741141731561.00ppb0.0050) Chlorobenzene-d517.481171117831.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.22 95 56724m/ 0.74 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 74.00% Qvalue Target Compounds

ŝ

ບ
ES, LL(
TORI
BORA
EK LA
CENT

ANALYTICAL QC SUMMARY REPORT

Date: 28-Mar-18

LaBella Associates, P.(C1803045
CLIENT:	Work Order:

TestCode: 0.20 NYS

Project: 691 St Paul S	Ŕ						-	SILUUK: U	61 L - 07			
SH FFFY Freedom of the	ComeTime US	TextCode	SAN 02 0	Units: pobV		Prep Date			RunNo: 134	88		
Sample IU: C180345-V11A ms Client ID: 691-AI-11 MS/MSD	Batch ID: R13408	TestNic	× TO-15	-	~	Analysis Date	3/20/201	80	SeqNo: 155	437		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quat	
4 1 Dicklamethene	0.7300	0.040	4	0	73.0	70	130					
Chlomothane	0.9000	0.15	*	0	0.06	02	130					
Cilications air 1 2 Cichlomathana	1 130	0.040	•	0.18	95.0	02	130					
CIS-1,2-UCUM/VCUICUICUC	1 010	0.15	-	0	101	70	130					
Halls" (, z-uk llubotericale Tricklorodhono	1.110	0.030	ł	0.14	97.0	02	130					
Tranuoenere Vinyi chloride	0.8300	0.040	Ţ	0	83.0	Q2	130					_
Comole ID: C1802045_0114_MS	SamoTvoe: MSD	TestCod	e: 0.20 NYS	Units: ppbV		Prep Dat	jaj		RunNo: 134	103		
Client ID: 691-AI-11 MS/MSD	Batch ID: R13408	TestN	o: TO-15		-	Anatysis Dal	e: 3/20/20	18	SeqNo: 15	438		
l and to	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Audyte	0002.0	0.040	-	0	73.0	2	130	0.73	0	8		
1,1-Dichloroethere	0.7300	0.15	• -	• a	82.0	70	130	0'0	9.30	30		
Chloroethane	0.0200		•	0.18	88.0	02	130	1.13	6.39	Ŕ		
cis-1,2-Dichloroethene	000'I		•	. C	98.0	02	130	1.01	3.02	30		
trans-1,2-Dichloroethene	0.960	0.030	• •	, 14 1	92.0	02	130	1.11	4.61	90 S		
Trichforoethene Viewd chloride	0.8200	0.040	- +	đ	82.0	70	130	0.83	1.21	30		

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected · Qualifiers:

ŝ

E Estimated Value above quantitation range ND Not Detected at the Limit of Detection

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H H

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032018.D Vial: 18 Acq On : 20 Mar 2018 10:48 pm Sample : C1803045-011A MS Misc : A318_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A318 1UG.RES Quant Time: Mar 21 07:34:42 2018 Quant Method : C:\HPCHEM\1\METHODS\A318 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.49128479781.00ppb0.0035) 1,4-difluorobenzene12.731141856591.00ppb0.0050) Chlorobenzene-d517.481171547001.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 113993 1.07 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 107.00% 0.00 Qvalue Target Compounds GovernmentGovernmentGovernment6) Vinyl Chloride5.0462535880.83 ppb9910) Chloroethane5.7364225330.90 ppb9418) 1,1-dichloroethene7.1996599940.73 ppb9624) trans-1,2-dichloroethene8.6461956181.01 ppb9229) cis-1,2-dichloroethene10.0461111171.13 ppb9144) Trichloroethene13.371301010781.11 ppb94

Page 166 of 207

	Centek Laboratories, LLC						
	(Quantitat	ion Rej	port (Q1	[Review	ved)	
Data 1 Acg 0 Sample Misc MS In Ouapt	File : C:\HPCHEM\1\DATA\A n : 20 Mar 2018 11:35 e : C1803045-011A MSD : A318_1UG tegration Parame: RTEINT.H	P032019.D pm	ÓW	Ope Ing Mul	Vial: erator: st : ltiplr:	19 RJP MSD 1.00	#1)
Quant Title Last Respon DataAd	Method : C:\HPCHEM\1\METH : TO-15 VOA Stand Update : Mon Mar 19 10:19 nse via : Initial Calibrat cq Meth : 1UG_RUN	HODS\A318 äards for 9:13 2018 tion	10G.M 5 poin	(RTE Integ nt calibrat	grator) tion	<u>با</u>	
Inte	rnal Standards	R.T.	QION	Response	Conc Ur	nits	Dev(Min)
1) 35) 50)	Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5	10.49 12.73 17.47	128 114 117	49533 191428 152131	1.00 1.00 1.00	dqq dqq dqq	0.00 0.00 0.00
Syst 65) Sp:	em Monitoring Compounds Bromofluorobenzene iked Amount 1.000 H	19.21 Range 70	95 - 130	115019 Recover	1.10 cy =	ppb 110.	0.00 00%
Targe	et Compounds						Qvalue
6)	Vinyl Chloride	5.05	62	54714	0.82	dqq	99
10)	Chloroethane	5.73	64	21178	0.82	ppb	96
18)	1,1-dichloroethene	7.19	96	62076	0.73	ppb	93
24)	trans-1,2-dichloroethene	8.64	61	95555	0.98	qqq	93
29)	cis-1,2-dichloroethene	10.03	61	107704	1.06	ppp	90
44)	Trichloroethene	13.37	130	99095	1.06	ppb	94

Page 167 of 207

Page 168 of 207

28-Mar-18	
Date:	

ANALYTICAL QC SUMMARY REPORT

CENTEK LABORATORIES, LLC

CLIENT: LaBella As	sociates, P.C.										
Work Order: C1803045											
Project: 691 St Paul	St.						T	estCode: 0	SV. 02		
Sample ID: ALCS1UG-032018	SampType: LCS	TestCoo	le: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 134	38	
Client ID: ZZZZ	Balch ID: R13408	Test	o: TO-15			Analysis Date	3/20/20	18	SeqNo: 1554	122	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	Q47%	RPDLimit	Qual
1,1-Dichloroethene	0.7600	0.040	·	0	76.0	70	130				
Chloroethane	0.9600	0.15	-	0	96.0	70	130				
cis-1,2-Dichloroethene	0.9500	0.040	4 ~*	0	95.0	70	130				
trans-1,2-Dichloroethene	1.020	0.15	*	0	f02	<u>م</u>	130				
Trichloroethene	0.9500	0.030	۹um	¢	95.0	70	130				
Vinyl chloride	0.005.0	0.040	•	0	90.0	02	130				
Sample ID: ALCS1UGD-032018	SampType: LCSD	TestCot	le: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 134	8	
Client ID: ZZZZ	Batch ID: R13408	Testh	lo: TO-15			Analysis Date	: 3/21/20	1 8	SeqNo: 155	423	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	0da%	RPDLimit	Qual
1,1-Dichloroethene	0.7900	0.040	-	0	0.67	02	130	0.76	3.87	30	
Chloroethane	0.9600	0.15	4	0	96.0	2	130	0.96	0	30	
cis-1,2-Dichlorcethene	1.000	0.040	***	Q	100	70	130	0.95	5.13	ŝ	
trans-1,2-Dichioroethene	1.060	0.15	Ł	0	106	70	130	1.02	3.85	30	
Trichtoroethene	1.000	0.030	F	o	100	70	130	0.95	5.13	90 30	
Vinyi chloride	0.9100	0.040	-	0	91.0	70	130	0.0	1.10	œ	

RPD outside accepted recovery limits н×

Holding times for preparation or analysis exceeded

Estimated Value above quantitation range Not Detected at the Limit of Detection щQ

> Analyte detected below quantitation limit **....**,

Results reported are not blank corrected

.

Qualifiers:

Spike Recovery outside accepted recovery limits s

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032004.DVial: 4Acq On : 20 Mar 2018 12:16 pmOperator: RJPSample : ALCS1UG-032018Inst : MSD #1Misc : A318_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 20 13:24:52 2018Quant Time: Mar 20 13:24:52 2018Quant Results File: A318_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN
 Internal Standards
 R.T. Qion
 Response
 Conc Units Dev(Min)

 1) Bromochloromethane
 10.49
 128
 45642
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 12.73
 114
 184633
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 17.48
 117
 137362
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 19.22 95 110475 1.17 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 117.00%

 65)
 Bromofluorobenzene
 19.22
 95
 110475
 1.17 ppb
 0.00

 Spiked Amount
 1.000
 Range 70 - 130
 Recovery
 =
 117.00%

 Target Compounds
 Qvalue

 2
 Propylene
 4.56
 41
 58720
 0.99 ppb
 94

 3)
 Freon 12
 4.62
 85
 276267
 1.04 ppb
 99

 4)
 Chioromethane
 4.84
 85
 215281
 0.96 ppb
 98

 6)
 Vinyl Chloride
 5.05
 62
 55495
 0.90 ppb
 99

 7)
 Butane
 5.17
 43
 65101
 0.91 ppb
 98

 8)
 1.3-butadiene
 5.17
 44
 22731
 0.96 ppb
 97

 9)
 Bromomethane
 5.65
 94
 70747
 0.99 ppb
 98

 10)
 Chioroethane
 5.65
 130441m/
 0.89 ppb
 92

 11)
 Echanol
 6.45
 56
 130441m/
 0.89 ppb
 93

 11)
 Echanol
 6.69
 42
 36940
 0.93 ppb
 93</td

(#) = qualifier out of range (m) = manual integration AP032004.D A318_1UG.M Wed Mar 28 07:35:19 2018 MSD1

Page 1

Page 170 of 207

Centek Laboratories, LLCQuantitation Report(QT Reviewed)Data File : C:\HPCHEM\1\DATA\AP032004.DVial: 4Acq On : 20 Mar 2018 12:16 pmOperator: RJPSample : ALCS1UG-032018Inst : MSD #1Misc : A318_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Results File: A318_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator)Title : TO-15 VOA Standards for 5 point calibrationLast Update : Mon Mar 19 10:19:13 2018Response via : Initial CalibrationDataAcq Meth : 1UG_RUN

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.80	83	169604	dqq ee.o	98
47)	cis-1,3-dichloropropene	14.61	75	93357	0.99 ppb	98
48)	trans-1,3-dichloropropene	15,36	75	67855	1.01 ppb	98
49)	1,1,2-trichloroethane	15.69	97	86891	1.00 ppb	98
51)	Toluene	15.45	92	102285	1.00 ppb	99
52)	Methyl Isobutyl Ketone	14.52	43	87536	0.77 ppb	90
53)	Dibromochloromethane	16.42	129	147548	0.95 ppb	99
54)	Methyl Butyl Ketone	15.86	43	72710	0.74 ppb	89
55)	1,2-dibromoethane	16.69	107	118812	1.02 ppb	99
56)	Tetrachloroethylene	16.51	164	83151	1.00 ppb	100
57)	Chlorobenzene	17.53	112	153617	1.00 ppb	93
58)	Ethylbenzene	17.80	91	209584	1.00 ppb	99
59)	m&p-xylene	18.01	91	402706	2.21 ppb	98
60)	Nonane	18.40	43	142172	1.08 ppb	84
61)	Styrene	1.8.47	104	154980	1.05 ppb	99
62)	Bromoform	18.60	173	141171	0.97 ppb	99
63)	o-xylene	18.50	91	244983	1.10 ppb	100
64)	Cumene	19.10	105	242498	1.03 ppb	99
66)	1,1,2,2-tetrachloroethane	18,97	83	200159	1.00 ppb	99
67)	Propylbenzene	19.68	120	65561	1.02 ppb	81
68)	2-Chlorotoluene	19.73	126	84612	1.11 ppb	99
69)	4-ethyltoluene	19.86	105	284250	1.08 ppb	99
70)	1,3,5-trimethylbenzene	19.93	105	254994	1.10 ppb	98
71)	1,2,4-trimethylbenzene	20.42	105	183587	1.02 ppb	100
. 72)	1,3-dichlorobenzene	20.75	146	166954	1.09 ppb	99
73)	benzyl chloride	20.82	91	123479	1.00 ppb	96
74)	1,4-dichlorobenzene	20.90	146	159993	1.09 ppb	98
75)	1,2,3-trimethylbenzene	20.95	105	215668	1.08 ppb	100
76)	1,2-dichlorobenzene	21.26	146	160801	1.07 ppb	99
77)	1,2,4-trichlorobenzene	23.38	180	53188	1.14 ppb	97
78)	Naphthalene	23.59	128	83741	0.94 ppb	98
79)	Hexachloro-1,3-butadiene	23.71	225	122441	1.01 ppb	98

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP032004.D A318_1UG.M Wed Mar 28 07:35:19 2018 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AP032025.D Acq On : 21 Mar 2018 3:40 am Sample : ALCS1UGD-032018 Misc : A318_1UG Vial: 25 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MISC : A318_10G Multiplit. 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 21 07:34:49 2018 Quant Results File: A318_10G.RES Ouant Method : C:\HPCHEM\1\METHODS\A318 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane10.48128444741.00ppb-0.0135) 1,4-difluorobenzene12.731141787341.00ppb0.0050) Chlorobenzene-d517.471171417801.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.21 95 110828 1.13 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 113.00%

 65)
 Bromofluorobenzene
 19.21
 95
 110828
 1.13 ppb
 0.00

 Spiked Amount
 1.000
 Range 70 - 130
 Recovery
 = 113.00%

 Target Compounds
 Qvalue

 2)
 Propylene
 4.61
 85
 28461
 1.12 ppb
 99

 3)
 Freon 12
 4.61
 85
 28461
 1.12 ppb
 99

 4)
 Chloromethane
 4.83
 50
 6.710
 0.96 ppb
 99

 9)
 Freon 114
 4.84
 85
 215822
 0.99 ppb
 99

 7)
 Butane
 5.17
 43
 66679
 0.36 ppb
 93

 9)
 Frecon 114
 5.84
 45
 152797
 1.01 ppb

 10)
 Choroethane
 5.73
 64
 22372
 0.96 ppb
 94

 13)
 Winyl Bromide
 6.09
 106
 62085
 0.96 ppb
 97

 14)
 Precn 11
 6.67
 42
 38373
 1.00 ppb
 97

 14)
 Precon 11
 6.67
 42
 38373
 1.00 ppb
 97

0.00

AP032025.D A318_1UG.M Wed Mar 28 07:35:32 2018 MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Vial: 25 Data File : C:\HPCHEM\1\DATA\AP032025.D Operator: RJP Acq On : 21 Mar 2018 3:40 am : ALCS1UGD-032018 Inst : MSD #1 Sample Misc : A318_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A318_1UG.RES Quant Time: Mar 21 07:34:49 2018 Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title Last Update : Mon Mar 19 10:19:13 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Un	iit.	Qvalue
46)	Bromodichloromethane	13.80	83	168418	1.01	dqq	98
47)	cis-1,3-dichloropropene	14.60	75	94474	1.03	ppb	98
48)	trans-1,3-dichloropropene	15.36	75	64312	0.99	dqq	95
49)	1,1,2-trichloroethane	15.69	97	90570	1.07	ppb	99
51)	Toluene	15.44	92	109791	1.04	dđđ	97
52)	Methyl Isobutyl Ketone	14.51	43	114458	0.98	dqq	90
53)	Dibromochloromethane	16.42	129	149812	0.94	ppb	100
54)	Methyl Butyl Ketone	15.85	43	76879m	1 0.76	ppb	
55)	1,2-dibromoethane	16.69	107	123106	1.02	ppb	98
56)	Tetrachloroethylene	16.51	164	87984	1.02	dqq	98
57)	Chlorobenzene	17.53	112	168770	1.06	ppb	96
58)	Ethylbenzene	17.79	91	234319	1.08	ppb	98
59)	m&p-xylene	18.01	91	423241	2.25	ppb	99
60)	Nonane	18.39	43	146542	1.08	ррь	85
61)	Styrene	18.47	104	166029	1.09	dqq	97
62)	Bromoform	18.59	173	138056	0.92	ppb	100
63)	o-xylene	18.50	91	253376	1.10	dqą	98
64)	Cumene	19.09	105	289801	1,19	ppb	99
66)	1,1,2,2-tetrachloroethane	18.97	83	216651	1.05	$\mathbf{p}\mathbf{p}\mathbf{p}$	99
67)	Propylbenzene	19.68	120	74213	1.12	ppb	93
68)	2-Chlorotoluene	19.73	126	89232	1.13	\mathbf{ppb}	92
69)	4-ethyltoluene	19.86	105	299311	1.10	dqq	98
70)	1,3,5-trimethylbenzene	19.92	105	272597	1.14	ppb	99
71)	1,2,4-trimethylbenzene	20.42	105	208599	1.12	ppb	98
72)	1,3-dichlorobenzene	20.75	146	174871	1.11	ppb	99
73)	benzyl chloride	20.82	91	130412	1.03	ppb	99
74)	1,4-dichlorobenzene	20.89	146	170513	1,12	ppb	99
75)	1,2,3-trimethylbenzene	20.94	105	234826	1.14	pp_{D}	99
76)	1,2-dichlorobenzene	21.25	146	172501	1.12	dqq	99
77)	1,2,4-trichlorobenzene	23.37	180	54941	1.14	ppb	99
78)	Naphthalene	23.58	128	105500	1.15	bbp	96
79)	Hexachloro-1,3-butadiene	23.71	225	137959	1.10	dqq	99

(#) = qualifier out of range (m) = manual integration (+) = signals summed AP032025.D A318_1UG.M Wed Mar 28 07:35:32 2018 MSD1

Centek Laboratories, LLC

.

.

GC/MS VOLATILES-WHOLE AIR

.

METHOD TO-15 INJECTION LOG

.

,

. .

.
					Injection Log		Instrument #	i
	C)irectory:	C:\HPCHEM	1\DATA			Internal Standard Stock #	A2449
							Standard Stock #	<u>A 2750</u>
Line	Viał	FileName	Multiplier	SampleName		Misc In	LCS Slock #/	
							Memod Ker EPA P	0-157Jan. 1999
276	1	Ap031801.c	\$ 1.	BFB1UG		A301	1UG	18 Mar 2018 14:19
277	2	Ap031802.c	1 1.	A1UG		A318_	10G	18 Mar 2018 16:24
278	3	Ap031803.c	1 1.	A1UG		A318_	106	18 Mar 2016 17:04
279	4	Ap031804.c	1 1.	A1UG_2.0		A310	103	18 Mar 2018 18:28
280	5	ADU31805.0	2 1. 2 4	A10G_1.50		A310	106	18 Mar 2018 19:09
207	7	Ap031807 a	21. 41	A1UG 10		A318	100	18 Mar 2018 19:48
283	Ŕ	Ap031808 c	1 1. 1	A1UG 0 75		A318	1UG	18 Mar 2018 20:27
284	ğ	Ap031809.0	1 1.	A1UG 0.50		A318	1ŪG	18 Mar 2018 21:05
285	10	Ap031810.c	1 1.	A1UG_0.30		A318	1UG	18 Mar 2018 21:42
288	44	An031811 c	1 1	A1UG 0 15		A318	1UG	18 Mar 2018 22:19
287	12	Ap031812.c	1 1	A1UG 0.10		A318	1ŬĜ	18 Mar 2018 22:56
288	13	Ap031813.0	1	A1UG 0.04		A318	1ÚG	18 Mar 2018 23:32
289	14	Ap031814.0	1 1.	A1UG 0.03		A318	1UG	19 Mar 2018 00:09
290		Ap031815.c	1 1.	No MS or GC data pres	ent			
291	1	Ap031901.d	I 1.	BFB1UG		A318_	1UG	19 Mar 2018 09:15
292	2	Ap031902.c	1 1.	A1UG		A318_	1UG	19 Mar 2018 10:06
293	3	Ap031903.d	1.	A1UG_1.0		A318_	10G	19 Mar 2018 10:45
294	4	Ap031904.d	1 1.	ALCS1UG-031918		A318_	106	19 Mar 2010 11.51
295	5	Ap031905.d	1 1.	AMB10G-031918		A310	100	ONEL ZOTO IZZI
296	1	Ap031906.d	1 1.	C1803040		A318_	1UG -007A VA	19 Mar 2018 13:55
297	2	Ap031907.d	1 1.	C1803040-001A		A318_	1UG	19 Mar 2018 14:38
298	3	Ap031908.d	1.	C1803040-002A		A318_	106	19 Mar 2018 15:10
299	4	Ap031909.d	1.	C1803040-003A		A310_	106	19 Mar 2018 16:38
300	5	Ap031910.0		C1803040-004A		A310	106	19 Mar 2018 17:18
301	7	Ap031911.0	· · ·	C1803040-005A		A318	100	19 Mar 2018 17:58
302	8	Ap031913 d	1 1	C1803040		A318	1UG	19 Mar 2018 18:35
304	ğ	Ap031914.d	1.	C1803040-001A 5x		A318	1UG	19 Mar 2018 21:38
305	10	Ap031915.d	1.	C1803040-002A 5x		A318_	1UG	19 Mar 2018 22:16
206	4-1	Ap031916 d	-	C1803040-003A 5v		A318	1UG	19 Mar 2018 22:53
307	12	Ap031917 d	· · ·	C1803040-004A 5x		A318	1UG	19 Mar 2018 23:30
308	13	Ap031918.d	1.	C1803040-005A 5x		A318	1UG	20 Mar 2018 00:07
309	14	Ap031919.d	1.	C1803040-006A 10x		A318	1UG	20 Mar 2018 00:44
310	15	Ap031920.d	1.	C1803040-006A 40x		A318_	1UG	20 Mar 2018 01:20
311	16	Ap031921.d	1.	ALCS1UGD-031918		A318_	1UG	20 Mar 2018 02:00
312	17	Ap031922.d	1.			A318_	106	20 Mar 2018 08:16
313		Ap031923.d	1.	No MS or GC data pres	ent	4040	110	20 Mar 2018 09-48
314	1	Ap032001.d	1.	BFB1UG		A310_	106	20 Mar 2018 10:37
310	2	Ap032002.0	1.	ATUG		<u></u>	100	00 Max 0040 4447
316	3	Ap032003.d	1,	A1UG_1.0		A318_	10G	20 Mar 2018 11:17
317	4	Ap032004.d	1.	ALCS1UG-032018		A318_	1UG	20 Mar 2018 12:10
318	5	Ap032005.d	1.	AMB10G-032018		A310_	11/6	20 Mar 2018 12:30
319	6	Ap032006.0	3.	C1803040-007A		A318	103	20 Mar 2018 14:48
320	7 8	Ap032007.0	1.	C1803046-001A		A318	106	20 Mar 2018 15:45
322	9	Ap032009.d	1.	C1803046-002A		A318	1UG	20 Mar 2018 16:25
323	10	Ap032010.d	1.	C1803046-003A		A318	1UG	20 Mar 2018 17:05
324	11	Ap032011.d	1.	C1803046-001A 10x		A318	1UG	20 Mar 2018 18:17
325	12	Ap032012.d	1.	C1803046-001A 40x		A318_	1UG	20 Mar 2018 18:54
326	13	Ap032013 d	1.	C1803046		A318	1UG -002A 10x	20 Mar 2018 19:31
327	14	Ap032014.d	1.	C1803046-002A 20x		A318	1UG	20 Mar 2018 20:08
328	15	Ap032015.d	1.	C1803046		A318	1UG -003A 10x	20 Mar 2018 20:45
329	16	Ap032016.d	1.	C1803046-003A 20x		A318_	1UG	20 Mar 2018 21:22
330	17	Ap032017.d	1.	C1803045-011A		A318_	1UG	20 Mar 2018 22:02

				Injection Log	3	Instrument #	ł	
	C)irectory: (C:\HPCHEM	1\DATA		Internal Standard Stock # Standard Stock #	A2449 A2450	
ine	Vial	FileName	Multiplier	SampleName	Misc I	LCS Stock #/ Method Ref: EPA TO	D-197 Jan. 1999	
76 77 78 80 81 82 83 84 85	1 2 3 4 5 6 7 8 9 10	Ap031801.d Ap031802.d Ap031803.d Ap031805.d Ap031805.d Ap031806.d Ap031807.d Ap031808.d Ap031809.d Ap031810.d	1, 1, 1, 1, 1, 1, 1, 1,	BFB1UG A1UG A1UG_2.0 A1UG_1.50 A1UG_1.25 A1UG_1.0 A1UG_0.75 A1UG_0.50 A1UG_0.30	A301 A318 A318 A318 A318 A318 A318 A318 A31	1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG	18 Mar 2018 14:19 18 Mar 2018 16:24 18 Mar 2018 17:04 18 Mar 2018 17:47 18 Mar 2018 18:28 18 Mar 2018 19:09 18 Mar 2018 19:48 18 Mar 2018 20:27 18 Mar 2018 21:05 18 Mar 2018 21:42	
86 87 88 90 91 92 93 94 95	11 12 13 14 1 2 3 4 5	Ap031811.d Ap031812.d Ap031813.d Ap031814.d Ap031815.d Ap031901.d Ap031902.d Ap031903.d Ap031903.d Ap031904.d	1. 1. 1. 1. 1. 1. 1. 1.	A1UG_0.15 A1UG_0.10 A1UG_0.04 A1UG_0.03 No MS or GC data present BFB1UG A1UG A1UG_1.0 ALCS1UG-031918 AMB1UG-031918	A318 A318 A318 A318 A318 A318 A318 A318	1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG	18 Mar 2018 22:19 18 Mar 2018 22:56 18 Mar 2018 23:32 19 Mar 2018 00:09 19 Mar 2018 09:15 19 Mar 2018 10:06 19 Mar 2018 10:45 19 Mar 2018 11:51 19 Mar 2018 12:27	
96 97 98 99 00 01 02 03 04 05	1 2 3 4 5 6 7 8 9 10	Ap031906.d Ap031907.d Ap031908.d Ap031909.d Ap031910.d Ap031911.d Ap031912.d Ap031913.d Ap031913.d Ap031913.d	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	C1803040 C1803040-001A C1803040-002A C1803040-003A C1803040-005A C1803040-005A C1803040-006A C1803040-006A C1803040-007A C1803040-001A Sx C1803040-002A Sx	A318 A318 A318 A318 A318 A318 A318 A318	1UG -007A VA 1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG	19 Mar 2018 13:55 19 Mar 2018 14:38 19 Mar 2018 15:18 19 Mar 2018 15:58 19 Mar 2018 16:38 19 Mar 2018 17:18 19 Mar 2018 17:58 19 Mar 2018 18:55 19 Mar 2018 21:38 19 Mar 2018 22:16	
26 27 28 29 10 11 12 13 14	11 12 13 14 15 16 17 1 2	Ap031916.d Ap031917.d Ap031918.d Ap031919.d Ap031920.d Ap031921.d Ap031922.d Ap031923.d Ap032001.d Ap032002.d	1. 1. 1. 1. 1. 1. 1. 1. 1.	C1803040-003A 5x C1803040-004A 5x C1803040-005A 5x C1803040-006A 10x C1803040-006A 40x ALCS1UGD-031918 No MS or GC data present BFB1UG A1UG	A318_ A318_ A318_ A318_ A318_ A318_ A318_ A318_ A318_	1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG	19 Mar 2018 22:53 19 Mar 2018 23:30 20 Mar 2018 00:07 20 Mar 2018 00:44 20 Mar 2018 01:20 20 Mar 2018 02:00 20 Mar 2018 08:18 20 Mar 2018 09:48 20 Mar 2018 10:37	
16 17 18 19 20 21 22 23 24 25	3 4 5 6 7 8 9 10 11 12	Ap032003.d Ap032004.d Ap032005.d Ap032006.d Ap032007.d Ap032009.d Ap032009.d Ap032010.d Ap032011.d Ap032012.d	1. 1. 1. 1. 1. 1. 1.	A1UG_1.0 ALCS1UG-032018 AMB1UG-032018 C1803040-007A C1803040-006A 270X C1803046-001A C1803046-002A C1803046-003A C1803046-001A 10x C1803046-001A 40x	A318 A318 A318 A318 A318 A318 A318 A318	1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG 1UG	20 Mar 2018 11:17 20 Mar 2018 12:16 20 Mar 2018 12:53 20 Mar 2018 13:30 20 Mar 2018 14:48 20 Mar 2018 15:45 20 Mar 2018 16:25 20 Mar 2018 16:25 20 Mar 2018 18:17 20 Mar 2018 18:54	
26 27 28 29 30	13 14 15 16 17	Ap032013.d Ap032014.d Ap032015.d Ap032016.d Ap032017.d	1. 1. 1. 1. 1.	C1803046 C1803046-002A 20x C1803046 C1803046-003A 20x C1803045-011A	A318_ A318_ A318_ A318_ A318_	10G -002A 10X 10G 10G -003A 10X 10G 10G	20 Mar 2018 19:31 20 Mar 2018 20:08 20 Mar 2018 20:45 20 Mar 2018 21:22 20 Mar 2018 22:02	

11; Ωv.

	5	Directory:	C:\HPCHEM	Injection	Log trument # 1 Internal Standard Stock # <u>A2449</u> Standard Stock # <u>A2450</u>	
_ine	Vial	FileName	Multiplier	SampleName	LCS Stock # <u>A2457</u> Met MiecRafo EPA TO-15 / Jan.	19fifected
331 332 333 334 335 336 337 338 339 339	18 19 20 21 22 23 24 25 25 26	Ap032018.d Ap032019.d Ap032020.d Ap032021.d Ap032022.d Ap032023.d Ap032024.d Ap032025.d Ap032025.d Ap032026.d Ap032027.d	1. 1. 1. 1. 1. 1.	C1803045-011A MS C1803045-011A MSD C1803045-001A C1803045-002A C1803045-003A C1803045-004A C1803045-005A ALCS1UGD-032018 C1803045-006A C1803045-007A	A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG	20 Mar 2018 22:48 20 Mar 2018 23:35 21 Mar 2018 00:16 21 Mar 2018 00:57 21 Mar 2018 01:38 21 Mar 2018 02:18 21 Mar 2018 03:00 21 Mar 2018 03:40 21 Mar 2018 04:21 21 Mar 2018 05:03
341 342 343 345 345 346 347 348 349 350	27 28 29 30 31 32 1 2 3	Ap032028.d Ap032029.d Ap032030.d Ap032031.d Ap032032.d Ap032033.d Ap032034.d Ap032101.d Ap032102.d Ap032103.d	1. 1. 1. 1. 1. 1. 1. 1.	C1803045-008A C1803045-009A C1803045-010A C1803045-012A C1803045-013A C1803045 No MS or GC data present BFB1UG A1UG A1UG_1.0	A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG -011A 10X A318_1UG A318_1UG A318_1UG A318_1UG	21 Mar 2018 05:44 21 Mar 2018 06:24 21 Mar 2018 07:06 21 Mar 2018 07:47 21 Mar 2018 07:47 21 Mar 2018 09:06 21 Mar 2018 10:36 21 Mar 2018 11:21 21 Mar 2018 12:00
351 352 353 354 355 356 357 358 359 360	4 5 6 7 8 1 2 3 4 5	Ap032104.d Ap032105.d Ap032106.d Ap032107.d Ap032108.d Ap032109.d Ap032110.d Ap032111.d Ap032112.d Ap032113.d	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ALCS1UG-032118 AMB1UG-032118 C1803053-001A C1803053-002A C1803052-002A C1803052-002A C1803052-002A MSD C1803052-002A MSD C1803052-001A C1803052-001A C1803052-003A	A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG	21 Mar 2018 12:47 21 Mar 2018 13:23 21 Mar 2018 15:17 21 Mar 2018 15:57 21 Mar 2018 15:57 21 Mar 2018 16:38 21 Mar 2018 17:44 21 Mar 2018 19:78 21 Mar 2018 19:58 21 Mar 2018 20:38
361 362 363 364 365 365 366 365 369 370	6 7 9 10 11 12 13 14	Ap032114.d Ap032115.d Ap032116.d Ap032117.d Ap032118.d Ap032119.d Ap032120.d Ap032122.d Ap032122.d	1. 1. 1. 1. 1. 1. 1. 1.	C1803052-004A C1803052-005A C1803050-002A C1803050-003A C1803050-004A C1803050-006A C1803050-007A C1803050-010A C1803050-010A C1803050-012A	A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG	21 Mar 2018 21:19 21 Mar 2018 21:59 21 Mar 2018 22:39 21 Mar 2018 23:20 22 Mar 2018 00:01 22 Mar 2018 00:41 22 Mar 2018 01:21 22 Mar 2018 02:04 22 Mar 2018 02:44 22 Mar 2018 03:25
371 372 373 374 375 376 377 378 379 379	16 17 18 20 21 22 23 24 24	Ap032124.d Ap032125.d Ap032126.d Ap032127.d Ap032128.d Ap032129.d Ap032130.d Ap032131.d Ap032132.d	1, 1, 1, 1, 1, 1, 1, 1,	C1803050-013A C1803050-014A ALCS1UGD C1803050-001A C1803050-005A C1803050-008A C1803050-009A ALCS1UGD-032118 C1803050-002A 5x	A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG A318_1UG	22 Mar 2018 04:05 22 Mar 2018 04:45 22 Mar 2018 05:25 22 Mar 2018 06:05 22 Mar 2018 06:45 22 Mar 2018 07:25 22 Mar 2018 08:06 22 Mar 2018 08:46 22 Mar 2018 09:26 22 Mar 2018 10:03
81 82 83 84 85	1 2 3 4	Ap032134.d Ap032201.d Ap032202.d Ap032203.d Ap032204.d	1. 1. 1. 1. 1.	No MS or GC data present BFB1UG A1UG A1UG_1.0 ALCS1UG-032218	A318_1UG A318_1UG A318_1UG A318_1UG	22 Mar 2018 11:06 22 Mar 2018 11:51 22 Mar 2018 12:30 22 Mar 2018 13:14

Centek Laboratories, LLC

.

,

GC/MS VOLATILES-WHOLE AIR

,

.

.

METHOD TO-15

STANDARDS LOG

.

Page 180 of 207

Centek I	Laboratories,	LLC			GC/MS Ca	libration Sta	ndards Logbo	Jok		
Std #	Date Prep Date	Exp Desc	ription	Stock #	Stock Cone	Initial Vol (psig)	Finial Vol (psia)	Final Conc (ppb)	Prep by Chkc	d by
A-23]]	12/08/17 12/	isht tois	SULF	A0270	loom	ا بح	30	50	$\mathcal{I}_{\mathcal{I}_{i}}$	
A- 2312		,	H 25	ACCG	10000	Ý	Ŷ	500	· · · ·	
A- 2313		1015	NG IS	A 2304	SUPPH	0,9	нS	0,1		
A-2314			en s	A2305	 		-			
A-2315			LCS LCS	A2306	h.	Ţ	\uparrow	\rightarrow	\rightarrow	
a-2316	12 4-1/ ho/ 21	Mulle TO	15 TS	1-4-4	24X2	LINDE	2000	G I PPM	22.	
A-2317	12/12/14 13	VI IZ I IZ CO	< T015 5		-47281	LIND	: 2200 P	Wod 1 STES	25	
A. 2318	12/18/17/2	18/18 TO15	LCS	AISO7	1 ppm	A 1807	STUTSN	W LCS	22,	
2 - 23 15	where inda	AINT TOIS	4	A 2.376	1001		9C	50	W	
A- 2330			STD	CIERA		Dey)			
A- 2321			105	P2318	;	The second se		7		
A- JJJJ			4 pch	9515	1 nnM	1.<	+	50		
ELEL-A			# PCHS	A2322	50000	3.0		ŕ		
A- 2321			FORM	P0974	11. 20014	01 20	45	50		
A- 2325			SILOK	ANTERNA	5 00 PM	3,0	3,0			
A-2326			SULF	100 V	PRD 0CTA	1,5		Ţ		
LAUS-A			1425	A0269	(ONDA	~	-y	500		
J.J.J.J.		T0151	04 73	2752A	56,004	0.9	45	1.0		
A-2,3,2,9			55	A 2320						
A-2330	*******		165	42321		-s	-2	P	3	
A-233)	-9	ম 								[

GC/MS Calibration Standards Lopbook

1 •

Page 181 of 207

FORM 153

and the state of the

Page # 34

a vo statuta tura tura tura eta kakututa da teta masana tura da ata kakututa kakutu ata baka kalanan kakutu ka

			>			
ion Stock #	Stock Conc	Inițial Vol (psig)	Finial Vol (psia)	Final Conc (ppb)	Prep by (Chkd by
ZS REAL		and the last	30	500	(<u>)</u> 3	
ITS A2425	50 al	ۍ ک د	чS	Ţ	,	
577 में रमद						1
LCS A 2430		->	\rightarrow	->	>	
IS AZSIL	1 POW	1.57	30	50	A3	
5也 A2317			_		,	
Les A2318						
4RH 9519		\rightarrow	\uparrow	->		
HPCHS (J2413	20005 0	3.O	30	ما		
Foly A7331	11.9 por	0.19	ЧS	000		
S ILUX HILLS	500000	3.0	30	<u>()</u>		
SULT AUZIO	1 Jam	1.5	30	So		
H25 A0269	10 DAWN	کئا	30	500		
1 13 A2460	SOM	6.0	45	Ŧ		
5+3 A2441		1	_			
LCS A 2442		>	シ	7	\rightarrow	
IS A2316	mag 1	<u>/</u>	30	R	63	
5 D A2317		_				
LCS A2318						
424 9519	م	\mathbf{i}	4	~		
4Ruts A2455	1 50 mb	3.0	30	رآل	\geq	
			Page #	40		
了也自己的意意意意意的的人们的可是是	AZ442 AZ440 AZ440 AZ440 AZ440 AZ440 AZ2400 AZ240 AZ2400 AZ2400 AZ240 AZ240 AZ240 AZ240 AZ240 AZ240 AZ240 AZ2	AZUES 50 ph	Azures 50 mb 0.5 Azures 50 mb 0.5 Azures 50 mb 0.5 Azures 50 mb 0.19 Azures 500 pb 3.0 Autors 11.5 Autors 500 pb 3.0 Autors 10 pp 1.5 Autors 10 pp 1.5 Autors 10 pp 1.5 Autors 10 pp 1.5 Azures 1	RZVES SO μ b 0.5 45 RZVES SO μ b 0.5 45 RZVES SO μ b 0.5 45 RZ316 1 R2m 1.5 30 RZ318 1 1.6 2 30 30 RZ318 1 1.6 2 30 30 RZ316 1 1.6 3.0 30 30 RZ318 1 1.5 3.0 30 30 RZ4440 50 ph 0.5 1.5 30 30 RZ316 1 1.5 3.0 30 30 RZ4410 50 ph 0.5 4.45 4.5 4.5 RZ316 1 1.5 3.0 3.0 30 RZ316 1 1.5 3.0 3.0 3.0 RZ316 1 1.5 3.0	R2465 50 μ b 6.5 45 1 R2465 1245 50 μ b 6.5 45 1 R2316 1 ρ m 1.5 30 50 50 R2316 1 ρ m 1.5 30 50 50 R2316 1 ρ m 1.5 30 50 50 R2318 16 1 1 1 1 1 R2318 1.0 1.5 3.0 3.0 50 50 R2318 1.0 1.5 3.0 3.0 3.0 50 50 R2318 1.6 1.5 3.0 3.0 3.0 50 50 R2440 50 1.5 3.0 3.0 50 50 R2440 50 1.5 1.5 4.5 4.5 4.5 4.5 R24410 50 0.5 3.0 5.0 50 50 50 R24412 1 1.5 3.0 5.0 50 50 50 R2318 1 1.5 <td< td=""><td>R245 50 μ 0.5 45 2 R246 1 ρ 1 1 1 1 R236 1 ρ 1 1 1 1 1 R236 1 ρ 1 1 1 1 1 1 1 R236 1 <td< td=""></td<></td></td<>	R245 50 μ 0.5 45 2 R246 1 ρ 1 1 1 1 R236 1 ρ 1 1 1 1 1 R236 1 ρ 1 1 1 1 1 1 1 R236 1 <td< td=""></td<>

ł

ć -(

. . . .

Centek Laboratories, LLC

Page 182 of 207

Cent	tek d Pyy	ab	orat	orie	s, L	LC																		
	Prep by (A3						5	,					-										
yoc	Final Conc (ppb)	50	010	50	005	-	;																	
andards Logb	Finial Vol (psia)	4N N	30	30	30	L SH	- - -																	Page # 41
libration St	Initial Vol (psig	0.19	3.0	15	1.5	6.0			8															
GC/MS Ca	Stock Conc	Mag Poll	500005	10001	10.00m	50 ent									i, i									
	Stock #	A 2331	A1085	A0270	Aozlef	A 2452	92453	Azusy									1							
	tion	FOLM	Xmis	105	NS	54	余。	LC.																
<i>v</i> ,	Descrip	Tols	_		لر ا	TOIS IUG	 																	
ies, LLC	Date Ęxp	3/27/18						\rightarrow																
aborator	Date Prep	3/22/18						\rightarrow		-														
Centek I	Std #	A.2457	A. 2458	A-2459	A. 2460	A. 246	A-2462	A. 2463	A-	A-	A-	A-	A-	A-	A-	A-	FORM 153							

Page 183 of 207

) Second

1051032

Concernance Concernance

i norazona

different.

Second

30142422

200

recenter.

.

GC/MS VOLATILES-WHOLE AIR

.

,

i

METHOD TO-15

CANISTER CLEANING LOG

Page 184 of 207

ss, LLC	
ratorie	
t Labo	
entek	

QC Canister Cleaning Logbook

estrument: Entech 3100

	T		1		- 1	— .						T	-1		ł	<u> </u>	[
r Int & Date	> 1/16/18																			9.ur	/*						
est 24hr	+ 30	+	 	+	+	+	+	+		+	+	+	<u>+</u> ,				+ _	+		+	+	+	<u></u> 4	<u>+</u>	.4	4	<u>~</u>
Leak T	+ 30	+ 30		+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	# # 0
Detection Limits	114+0.2	1 0 /																	TOT BOULS BY		_9						
umber	5/8.B						U					9	2				лл Г										
QC Batch N	AJACOLI							 ,	<u>.</u>												>						
Int & Date Cleaned	1/1/14	2					-	-) }					
# of Cvcles	07	3-	_														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			 	-, -,						
OC Can Numbed	116	-					482					6661						1				è					
Conjetar Siya (L. L																					4			_		
Note:			5 11 4 C	22	Jac 1	711		215	1)04		142		1000	000	-1-1-1-1	1701	482	N 141	0701		210	10001					

1

		Co Cas Nitmber	# of Oucles	Int & Date Cleaned	QC Batch Number	Detection Limits	Leak 16	SI 2411 111 & nam
Number	Canister Size			1 1 1 1 1	V NULVAULA	1.1.24090	+ 30	+ 30 2/12/19
\sim		1-27	07	0/100/00	LT 0 107 Y N N I I I			
		·····					+ 30	
							+ 30	+
							+ 30	
		,			+		+ 30	
					N M > 11 1 1 4 2		1+ 3U	+
		0			14/1/ USJU1 2			
							R5 +	
				•	:		+ 30	
							+ 30	
					->		+ 30	+
) []			1 (D > 1791 14 2		+ 30	
_		216					1.20	
							D:C +	
						*	+ 30	*
	9	 -,	→				+ 30	+
							+ 30	4
							+ 30	
							+ 30	+
	-		-				+ 30	
							- 30	
							+ 30	
							+ 30	- 47-
		-					+ 30	_
							+ 30	
							+ 30	+
							+ 30	+

QC Canister Cleaning Logbook

∍ntek Laboratories, LLC

Centek Laboratories, LLC

tek Laboratories, LLC		QC Ca	nister Cleaning Lo	gbook
iment: Entech 3100				
	# of Cvcles Int & Date Cleaned	QC Batch Number Detectio	on Limits Leak Tes	st 24hr int & Date
er Number Canister Size du Canister		VILLACOTTERA 1~	بر 0' JO + 30 +	1111E 0E 1
37 14 234	<u>+0 812707 -</u>	MUNTER AND	+ 30	·
5			+ 30	
53			+ 30	+
			+ 30	+
39		VIDCKO72() & A	+ 30	
		1	98 +	+
10			4 30	+
			+ 30	+
8			+ 30	+
		1112CN77818C1	+ 30	+
39 189		MILANT	+ 30	
2			+ 30	+
8			8 +	
5			+ 30	
Ro V			+ 30	
07 388		110 NSULAULA U	66 +	
01			06 +	
13			+ 30	h
26			+ 30	n na
88		1 20.02715 E	+ 30	*
64 136			+ 30	+
20			+ 30	-+
ELI			+ 30	-#
95			+ 30	-) +
$3 6 \Rightarrow w $	K. 1			

Centek Laboratories, LLC

nister Cleaning Lodbook

E.C.

and the second

amoldes

- Estatut

Page 187 of 207

Lumber Canist								
	er Size OC	Can Number	# of Cycles	Int & Date Cleaned	QC Batch Number	Detection Limits	Leak Te	st 24hr int & Date
		2 4	0	21/22/2	WACQIASISF	1 15 + 0.30	+ 30	0675111E +
							+ 30	
		-				V******	+ 30	+
						nine-14944	+ 30	
) :		+ 30	->
-* 		>					+ 30	
							+ 30	+
							+ 30	
							+ 30	+
	-						+ 30	-+-
							+ 30	
							+ 30	+
							+ 30	4
	-						+ 30	+
	_						+ 30	
							+ 30	
							+ 30	
-							+ 30	+
							+ 30	+
							+ 30	<u>+</u>
104000							+ 30	+
			-				+ 30	+
							+ 30	+
							+ 30	
							0E +	<u>+</u>
								146

...

QC Canister Cleaning Logbook

Centek Laboratories, LLC (QT Reviewed) Quantitation Report Vial: 6 Data File : C:\HFCHEM\1\DATA2\2018JAN\AP011506.D Operator: RJP Acq On : 15 Jan 2018 1:24 pm Inst : MSD #1 : WAC011517B Sample Multiplr: 1.00 Misc : All3_1UG MS Integration Params: RTEINT.P Quant Results File: A113_1UG.RES Quant Time: Jan 15 15:52:42 2018 Quant Method : C:\HPCHEM\1\METHODS\A113_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 13 19:19:06 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.60128268411.00ppb0.0135) 1,4-difluorobenzene12.821141015831.00ppb0.0050) Chlorobenzene-d517.56117737571.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.29 95 38620 0.79 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 79.00% Qvalue

Target Compounds

Page 190 of 207

Centek Laboratories, LLC (QT Reviewed) Quantitation Report Vial: 7 Data file : C:\HPCHEM\1\DATA2\2018JAN\AP011507.D Operator: RJP Acg On : 15 Jan 2018 2:01 pm Inst : MSD #1 Sample : WAC011517C Misc : Al13_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A113_1UG.RES Quant Time: Jan 15 15:52:32 2018 Quant Method : C:\HPCHEM\1\METHODS\All3_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 13 19:19:06 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.60128278701.00ppb0.0135) 1,4-difluorobenzene12.831141023141.00ppb0.0050) Chlorobenzene-d517.56117718061.00ppb0.00 System Monitoring Compounds 55) Bromofluorobenzene 19.29 95 37132 0.78 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 78.00% 65) Bromofluorobenzene **Ovalue** Target Compounds

Page 191 of 207

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AP022605.D Vial: 1 Acq On : 26 Feb 2018 5:38 pm Sample : WAC022618A Misc : A220_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 27 07:16:41 2018 Quant Results File: A220_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A220 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane10.51128406851.00 ppb0.0135) 1,4-difluorobenzene12.751141848251.00 ppb0.0150) Chlorobenzene-d517.491171365341.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 19.23 95 76860 0.77 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 77.00% 0.02 Qvalue Target Compounds

Centek Laboratories, LLC

Page 194 of 207

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Vial: 2 Data File : C:\HPCHEM\1\DATA2\AP022606.D Operator: RJP Acq On : 26 Feb 2018 6:16 pm Inst : MSD #1 Sample : WAC022618B Misc : A220_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A220_1UG.RES Quant Time: Feb 27 07:16:42 2018 Quant Method : C:\HPCHEM\1\METHODS\A220_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.51128401141.00 ppb0.0135) 1,4-difluorobenzene12.761141756671.00 ppb0.0250) Chlorobenzene-d517.501171301101.00 ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 19.23 95 71865 0.76 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 76.00% **Qvalue** Target Compounds

Page 196 of 207

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Vial: 3 Data File : C:\HPCHEM\1\DATA2\AP022607.D Acq On : 26 Feb 2018 6:54 pm Operator: RJP Sample : WAC022618C Misc : A220_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A220_1UG.RES Quant Time: Feb 27 07:16:43 2018 Quant Method : C:\HPCHEM\1\METHODS\A220_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards _____ 1) Bromochloromethane10.52128389581.00 ppb0.0235) 1,4-difluorobenzene12.751141705001.00 ppb0.0250) Chlorobenzene-d517.501171261151.00 ppb0.02 System Monitoring Compounds
 65) Bromofluorobenzene
 19.23
 95
 70141
 0.77 ppb

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 77.00%
 0.02 Qvalue Target Compounds

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AP022806.D Vial: 6 Acq On : 28 Feb 2018 1:09 pm Sample : WAC022818A Misc : A220_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A220_1UG.RES Ouant Time: Feb 28 14:32:25 2018 Quant Method : C:\HPCHEM\1\METHODS\A220_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.52128283841.00ppb0.0235) 1,4-difluorobenzene12.761141232051.00ppb0.0250) Chlorobenzene-d517.50117876641.00ppb0.01 System Monitoring Compounds 55) Bromofluorobenzene 19.23 95 46318 0.73 ppb 0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% 65) Bromofluorobenzene **Ovalue** Target Compounds

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AP022807.D Vial: 7 Operator: RJP Acq On : 28 Feb 2018 1:47 pm Sample : WAC022818B Misc : A220_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A220_1UG.RES Quant Time: Feb 28 14:32:34 2018 Quant Method : C:\HPCHEM\1\METHODS\A220_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.52128273931.00 ppb0.0235) 1,4-difluorobenzene12.761141207331.00 ppb0.0250) Chlorobenzene-d517.50117874411.00 ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 19.23 95 46308 0.73 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 73.00% Ovalue Target Compounds

Centek Laboratories, LLC (OT Reviewed) Quantitation Report Vial: 8 Data File : C:\HPCHEM\1\DATA2\AP022808.D Operator: RJP Acq On : 28 Feb 2018 2:26 pm Inst : MSD #1 Sample : WAC022818C Misc : A220_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A220_1UG.RES Ouant Time: Mar 01 08:53:47 2018 Quant Method : C:\HPCHEM\1\METHODS\A220_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG RUN R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.52128259971.00ppb0.0235) 1,4-difluorobenzene12.761141109601.00ppb0.0250) Chlorobenzene-d517.50117809591.00ppb0.01 System Monitoring Compounds
 55) Bromofluorobenzene
 19.24
 95
 41665
 0.71 ppb
 0.02

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 71.00%
65) Bromofluorobenzene Ovalue Target Compounds

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AP022809.D Acg On : 28 Feb 2018 3:04 pm Vial: 9 Operator: RJP Sample : WAC022818D Misc : A220_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 01 08:54:21 2018 Quant Results File: A220_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A220_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Feb 21 07:52:31 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane10.53128277921.00 ppb0.0335) 1,4-difluorobenzene12.761141154001.00 ppb0.0250) Chlorobenzene-d517.50117857081.00 ppb0.01 System Monitoring Compounds 55) Bromofluorobenzene 19.23 95 43941 0.71 ppb 0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 71.00% 65) Bromofluorobenzene Target Compounds Ovalue

Centek Laboratories, LLC Quantitation Report (QT/LSC Reviewed)

 Data File : C:\HPCHEM\1\DATA\DI033018.D
 Vial: 8

 Acq On : 30 Mar 2018 7:03 pm
 Operator: WD

 Sample : C1803073-001A 10X
 Inst : GCN

 Misc : T015
 Multiplr: 1.0

Inst : GCMS3 Multiplr: 1.00 Multipir: 1.00 MS Integration Params: rteint.p Quant Time: Apr 2 9:30 2018 Quant Results File: J0318T15.RES Quant Method : C:\HPCHEM\1\METHODS\J0318T15.M (RTE Integrator) Title : VOA Standards for 5 point calibration Last Update : Mon Mar 19 08:07:20 2018 Response via : Initial Calibration DataAcq Meth : NEW1 Internal Standards R.T. QIon Response Conc Units Dev(Min)

 1) Bromochloromethane
 10.00
 128
 145157
 50.00
 ppb
 -0.06

 40) 1,4-difluorobenzene
 12.20
 114
 906339
 50.00
 ppb
 -0.03

 57) Chlorobenzene-d5
 16.48
 117
 988624
 50.00
 ppb
 0.00

System Monitoring Compounds 67) Bromofluorobenzene 17.94 95 691730 49.92 ppb Spiked Amount 50.000 Range 70 - 130 Recovery = 99.84% 0.00

 Spiked amount
 50.000
 Range
 70 - 130
 Recovery
 =
 99.84%

 Target Compounds
 Qvalue

 2) Propylene
 4.27
 41
 3511104
 827.32
 ppb

 3) Freen 12
 4.34
 85
 296070
 24.67
 ppb
 99

 4) Freen 114
 4.55
 85
 26164
 1.87
 ppb
 95

 7) Vinyl Chloride
 4.75
 62
 218671
 43.65
 ppb
 95

 8) Butane
 4.85
 43
 4866346
 499.58
 ppb
 96

 12) Ethanol
 5.47
 45
 3834057
 2628.03
 ppb
 93

 14) Freen 11
 6.16
 43
 10771491
 2219.91
 ppb
 78

 13) Isopropyl alcohol
 6.28
 45
 8537592
 1208.40
 ppb
 4

 23) Methylene Chloride
 7.25
 84
 96386
 2.472
 ppb
 93

 24) Carbon disulfide
 7.41
 76
 95349
 10.09 ppb
 88

 25) 1,1-Dichloroethane
 9.14
 920
 236
 24.62
 Qvalue Target Compounds

(#) = qualifier out of range (m) = manual integration DI033018.D J0318T15.M Mon Apr 02 08:38:12 2018

APPENDIX 8

Waste Characterization Laboratory Analytical Report

Analytical Report For

LaBella Associates, P.C.

For Lab Project ID

201124

Referencing

691 St. Paul St, 2170820 Prepared

Wednesday, March 18, 2020

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Lab Project ID: 201124

Client:	<u>LaBella Associates, P.C.</u>		
Project Reference:	691 St. Paul St, 2170820		
Sample Identifier:	WCS01-Drums-20200313		
Lab Sample ID:	201124-01	Date Sampled:	3/13/2020
Matrix:	Soil	Date Received:	3/13/2020

<u>PCBs</u>

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analy	vzed
PCB-1016	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1221	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1232	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1242	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1248	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1254	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1260	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1262	< 0.274	mg/Kg			3/13/2020	18:44
PCB-1268	< 0.274	mg/Kg			3/13/2020	18:44
Surrogate	Percent Recovery		<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
Tetrachloro-m-xylene		49.4	18.3 - 89.6		3/13/2020	18:44
Method Reference(s):	EPA 8082A					
	EPA 3546					
Preparation Date:	3/13/2020					

Lab Project ID: 201124

Client:	<u>LaBella Associates, P.C.</u>			
Project Reference:	691 St. Paul St, 2170820			
Sample Identifier:	WCS01-Drums-20200313			
Lab Sample ID:	201124-01A	Date Sampled:	3/13/2020	
Matrix:	TCLP Extract	Date Received:	3/13/2020	

TCLP Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Regulatory Lim	it Qualifier	Date Analy	<u>yzed</u>
1,1-Dichloroethene	< 20.0	ug/L	700		3/16/2020	14:38
1,2-Dichloroethane	< 20.0	ug/L	500		3/16/2020	14:38
2-Butanone	< 100	ug/L	200000		3/16/2020	14:38
Benzene	< 20.0	ug/L	500		3/16/2020	14:38
Carbon Tetrachloride	< 20.0	ug/L	500		3/16/2020	14:38
Chlorobenzene	< 20.0	ug/L	100000		3/16/2020	14:38
Chloroform	< 20.0	ug/L	6000		3/16/2020	14:38
Tetrachloroethene	< 20.0	ug/L	700		3/16/2020	14:38
Trichloroethene	< 20.0	ug/L	500		3/16/2020	14:38
Vinyl chloride	< 20.0	ug/L	200		3/16/2020	14:38
<u>Surrogate</u>	Percent Recovery		<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4		85.8	74.3 - 138		3/16/2020	14:38
4-Bromofluorobenzene		102	66.3 - 125		3/16/2020	14:38
Pentafluorobenzene		91.9	87.4 - 111		3/16/2020	14:38
Toluene-D8		107	85.8 - 113		3/16/2020	14:38
Method Reference(s):	EPA 8260C EPA 1311 / 5030C					
Data File:	x69079.D					

Client:	<u>LaBella Associates, P.C.</u>		
Project Reference:	691 St. Paul St, 2170820		
Sample Identifier:	WCS01-Drums-20200317		
Lab Sample ID:	201124-02	Date Sampled:	3/17/2020
Matrix:	TCLP Extract	Date Received:	3/17/2020

TCLP Semi-Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Regulatory Lim	it Qualifier	Date Analy	yzed
1,4-Dichlorobenzene	< 40.0	ug/L	7500		3/18/2020	12:34
2,4,5-Trichlorophenol	< 40.0	ug/L	400000		3/18/2020	12:34
2,4,6-Trichlorophenol	< 40.0	ug/L	2000		3/18/2020	12:34
2,4-Dinitrotoluene	< 40.0	ug/L	130		3/18/2020	12:34
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000		3/18/2020	12:34
Hexachlorobenzene	< 40.0	ug/L	130		3/18/2020	12:34
Hexachlorobutadiene	< 40.0	ug/L	500		3/18/2020	12:34
Hexachloroethane	< 40.0	ug/L	3000		3/18/2020	12:34
Nitrobenzene	< 40.0	ug/L	2000		3/18/2020	12:34
Pentachlorophenol	< 80.0	ug/L	100000		3/18/2020	12:34
Pyridine	< 40.0	ug/L	5000		3/18/2020	12:34
<u>Surrogate</u>	Percent Recovery		<u>Limits</u>	Outliers	Date Analyzed	
2,4,6-Tribromophenol		102	59.6 - 114		3/18/2020	12:34
2-Fluorobiphenyl		86.8	36.2 - 99.1		3/18/2020	12:34
2-Fluorophenol		68.9	14.9 - 105		3/18/2020	12:34
Nitrobenzene-d5		87.7	53.7 - 102		3/18/2020	12:34
Phenol-d5		65.4	10 - 106		3/18/2020	12:34
Terphenyl-d14		94.6	58.7 - 116		3/18/2020	12:34
Method Reference(s):	EPA 8270D					
Preparation Date: Data File:	EPA 1311 / 3510C 3/18/2020 B45161.D					

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns. "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.

"*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted. "(1)" = Indicates data from primary column used for QC calculation.

"A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.

"F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.	Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.
Scope and Compensation.	LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order. Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required
Prices.	Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.
Limitations of Liability.	In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to re- perform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services. LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results. All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.
Hazard Disclosure.	Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.
Sample Handling.	Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report. Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples. LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.
Legal Responsibility.	LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.
Assignment.	LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.
Force Majeure.	LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.
Law.	This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Other Rush 1 day Rush 2 day Rush 3 day 10 day Standard 5 day please indicate date needed: 3-13-2020 DATE COLLECTED **Turnaround Time** 2021 691 St. Paul St PROJECT REFERENCE Availability contingent upon lab approval; additional fees may apply. PARADIGM TIME COLLECTED 08 y X Category A Category A Other Category B Batch QC please indicate package needed None Required Ý 2 - 00 0 2 0 0 ພັກມີບ N. NY **Report Supplements** Ruchester 12 WCSOL- drums -Matrix Codes: CLIENT: ADDRESS: HONE Wisoi - dawns - 2020 \$309 6 NQ - Non-Aqueous Liquid AQ - Aquebus Liquid Jou Starte Lukellu 10 4 NYSDEC EDD Basic EDD Other EDD None Required Other EDD SAMPLE IDENTIFIER Chut REPORT TO: 2020 0313 persample labels 503/13/2020 Associates STATE 1/9 Lake Avenue, Rocnester, NY 14608 Office (585) 64/-2530 Fax (585) 64/-3311 20200317 Received @ Lab By By signing this form, client agrees to Paradigm Terms and Conditions (reverse). **Received By** 13<u>6</u>/~ CHAIN OF CUSTODY Relinguished By WA - Water WG - Groundwater), p/ 00 marted By ICLive 2 Ser - ⊼ ⊣ > s 3/13/2020 0 m o o o ATTN: PHONE: CLIENT: CITY: ADDRESS: Dervidua л о そう VUC ru REQUESTED ANALYSIS Fal SVU(**DW** - Drinking Water **WW** - Wastewater Same V CP 3/ RCB 51:30 13/20/20 INVOICE TO: ഹ 3/13/2000 STATE: 1 2020-03-17 113/2020 2020-0213 Date/Time Date/Time Date/Time Date/Time PSVOL SO - Soil SL - Sludge ZIP See additional nage for sample conditions ancelled Peplacemen. Insufficient re-cxhart P 0000 213 3020 09:05 048 0769 17 SD - Solid PT - Paint Quotation #: and Email: mpetychats @ lakellepc.com 1 C S REMARKS 01124 volume 2170820 ठ P.I.F. Total Cost: ŝ extact LAB PROJECT ID S. C. WP - Wipe CK - Caulk 200 8 3/17/ otho 1020 PARADIGM LAB SAMPLE NUMBER OL - Oil AR - Air OLA 2.01 670/ 9:20 Page 7 of 8 8

Chain of Custody Supplement

<u></u>			
Client:	La Bella Associates	Completed by:	Glenn Pezzulo
Lab Project ID:	201124	Date:	3/13/2020
	Sample Condition Per NELAC/ELAP 210	n Requirements //241/242/243/244	
Condition	NELAC compliance with the sample co Yes	ondition requirements No	upon receipt N/A
Container Type	X		
Comments	3		
Transferred to method- compliant container			$\square \not \square$
Headspace (<1 mL) Comments	TCLP VOA		
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip)			
Comments			
Holding Time Comments			
Temperature Comments	12°C	X	
Compliant Sample Quantity/" Comments	Туре		
	e		

APPENDIX 9

Disposal Documentation

OCTOBER 19, 2020 VSQG

BAUSCH & LOMB

691 ST. PAUL STREET

ROCHESTER, NY 14605

Re: Certificate of Disposal/Recycling Work Order# 49025 VSQG BAUSCH & LOMB 691 ST. PAUL STREET ROCHESTER, NY 14605

Dear Sir/Madam:

This letter is to certify that Cycle Chem, Inc. (EPA ID No. PAD067098822) has accepted and processed the following shipments. This acceptance is in accordance with all state and federal regulations and with the requirements set forth in Cycle Chem's Hazardous Waste Facility Permit.

Date In	Manifest In	Prod Code (Off Spec)	Date Out	Manifest Out	Disposal Facility	Disposal Method	Drum Id	Serial #	Mgt. Code
03/27/2020	SUN-3806-1	LD	04/08/2020	6436828	MODERN LANDFILL		D47801-1		
03/27/2020	SUN-3806-1	LD	04/08/2020	6436828	MODERN LANDFILL		D47801-2		

If there are any further questions about the management of your waste, please call 717-938-4700

Broker:

SUN ENVIRONMENTAL CORP. (CCI-PA) 4655 CROSSROADS PARK DRIVE LIVERPOOL, NY 13088

Sincerely,

Terry Earnest General Manager Cycle Chem, Inc. EPA ID No. PAD067098822

NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2. Page 1	1 of 3. Emergency Respons	e Phone	4. Waste 1	Fracking Nur	mber - 3806
5. Generator's Name and Mail BAUSCH & LOME CONSTRUCTION BOCHESTER M	Ing Address At	E MIKE PELYCHAT	Generator's Site Addre:	ss (if different	l than mailing addr	ress)	
Generator's Phone: 6000000000000000000000000000000000000	295-6263				U.S. EPA ID	Number	
SUN ENVIRON	MENTAL CORP.			194, <u>9</u>	NYR	000	176958
'. Transporter 2 Company Na	me		amostic.	1947 - A	U.S. EPA ID	Number	
. Designated Facility Name a	ind Site Address			14 14 14 14 14 14 14 14 14 14 14 14 14 1	U.S. EPA ID	Number	
CYCLE CHEM, IN 660 INDUSTRIAL	NC. DR.				a d ere 1	ntegnite .	lite Ste
acility's Phone:	38-4700	in the second			PAD	067	098822
9. Waste Shipping Nam	ne and Description		10. Con No.	Type	11. Total Quantity	12. Unit Wt./Vol.	
1. NON RORA	NON DOT REGULATED SO	LIDS (SOIL AND					
CONCRETE)	The second state of the second state of the		0.0.2	044	01000	D	
2.		a inisi a sa	002	Lower	01000		
				1.1.1	a new s		
3.				langer.	Y I I		
					4		ALL PROPERTY AND
4.					1		
				1.0	1.4.18	1.5.1	A CAR
3 Special Handling Instruction JCB# LABL. 1(1. 110470-1	ons and Additional Information 063 SUN PO# R41022 LD (55-GALLONS)						
Special Handling Instruction JOB LABL 10 1. 110470-3 GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/	DR'S CERTIFICATION: I hereby declare that rded, and are in all respects in proper condition Typed Name	the contents of this consignment	nt are fully and accurately de pplicable international and nat	scribed above	e by the proper sh nental regulations	ipping name,	, and are classified, packaged Month Day
Special Handling Instruction JOB4 LABL.1(1. 110470-3 GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/	ons and Additional Information 063 SUN POI R41022 LD (55-GALLONS) DR'S CERTIFICATION: I hereby declare that rded, and are in all respects in proper conditi Typed Name N11 Wull Poi	the contents of this consignmention for transport according to ap	nt are fully and accurately de plicable international and nat Signature	scribed above ional governm	e by the proper sh nental regulations	ipping name,	, and are classified, packaged
Special Handling Instruction JOB4 LABL. 1(1. 110470-1	DR'S CERTIFICATION: I hereby declare that roled, and are in all respects in proper conditi Typed Name Mill Wull Poll Import to U.S.	the contents of this consignme ion for transport according to ap	nt are fully and accurately de plicable international and nat Signature om U.S. Port of e Date les	scribed above ional governm	e by the proper sh nental regulations	ipping name,	, and are classified, packaged
Special Handling Instruction JOB4 LABL.1(1. 110470-3 GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/ International Shipments ransporter Signature (for exp 6. Transporter Acknowledgem memory 1. Briefed/Turned h	DR'S CERTIFICATION: I hereby declare that reded, and are in all respects in proper conditi Typed Name Mill Wull Poll Import to U.S. ports only: term of Receipt of Materials	the contents of this consignment on for transport according to ap	nt are fully and accurately de plicable international and nat Signature om U.S. Port of e Date lea	scribed above ional governm 	e by the proper sh nental regulations	ipping name,	, and are classified, packaged
Special Handling Instruction JOB LABL 1 110470-3 GENERATOR'S/OFFERO marked and labeled/placar enerator's/Offeror's Printed/ International Shipments ransporter Signature (for exp Transporter Acknowledgm aneporter 1 Printed/Typed N marked Printed/Typed N	Drs and Additional Information 063 SUN POIR R41022 LD (55-GALLONS) DR'S CERTIFICATION: I hereby declare that reded, and are in all respects in proper condition Typed Name Poil Mill Wull Poil Import to U.S. ports only): event of Receipt of Materials Jame Build J Jame	the contents of this consignment ion for transport according to ap	Int are fully and accurately de oplicable international and nat Signature om U.S. Port of a Date lease Signature Signature	scribed above ional governm mtry/exit: vring U.S.:	e by the proper sh nental regulations	ipping name,	and are classified, packaged
Special Handling Instruction JOB LABL. 1 I. 110470-3 GENERATOR'S/OFFERO marked and labeled/placar enerator's/Offeror's Printed/ International Shipments ransporter Signature (for exp S. Transporter Acknowledgm ransporter 2 Printed/Typed N Discrepancy A. Discrepancy Indication Si	Design and Additional Information 063 SUN POI R41022 LD (55-GALLONS) DR'S CERTIFICATION: I hereby declare that Inded, and are in all respects in proper condition Typed Name Mill Wull Poil Import to U.S. borts only): tent of Receipt of Materials Name Build J Pace	the contents of this consignment ion for transport according to ap	nt are fully and accurately de plicable international and nat Signature om U.S. Port of a Date lea Signature Signature	scribed above ional governm /// ontry/exit: vving U.S.: // B.	e by the proper sh nental regulations	ipping name,	and are classified, packaged
Special Handling Instruction JOB4 LABL. 1 110470-1 GENERATOR'S/OFFERO marked and labeled/placar enerator's/Offeror's Printed/1 International Shipments ansporter Signature (for exp Transporter Acknowledgm maneporter 1 Printed/Typed N ansporter 2 Printed/Typed N ansporter 2 Printed/Typed N . Discrepancy /a. Discrepancy Indication Sp	DR'S CERTIFICATION: I hereby declare that roted, and are in all respects in proper condition Mill bulk for the second se	the contents of this consignment ion for transport according to ap	Int are fully and accurately de plicable international and national an	scribed above ional governm ontry/exit: vring U.S.:	e by the proper sh nental regulations	ipping name,	and are classified, packaged
Special Handling Instruction JOB4 LABL. 1 110470-3 GENERATOR'S/OFFERO marked and labeled/placar enerator's/Offeror's Printed/7 International Shipments ransporter Signature (for exp S. Transporter Acknowledgm ransporter 2 Printed/Typed N ransporter 2 Printed/Typed N T. Discrepancy Table Comparison Signature (Instruction Signature) To Discrepancy Table Comparison Signature (Instruction Signature) Table Comparison Signature (Instruction Signature) Table Comparison Signature Table Compari	Instant Additional Information 063 SUN POIL R41022 LD (55-GALLONS) PR'S CERTIFICATION: I hereby declare that reded, and are in all respects in proper condition Inded, and are in all respects in proper condition Typed Name Pol Import to U.S. ports only: erent of Receipt of Materials Name Build of Materials Name Pace Quantity	the contents of this consignment on for transport according to ap	Int are fully and accurately de plicable international and nat Signature om U.S. Port of e Date lea Signature Signature Residue Manifest Reference	scribed above ional government ontry/exit: ving U.S.: DBL	e by the proper sh nental regulations Market Market Departial Re U.S. EPA ID	ipping name,	and are classified, packaged
Special Handling Instruction JOB4 LABL. 1 110470-1 1. 110470-1	Instant Additional Information 063 SUN POIR R41022 LD (55-GALLONS) DR'S CERTIFICATION: I hereby declare that reded, and are in all respects in proper condition Typed Name Pole Mit Will Pole Import to U.S. Norts only): went of Receipt of Materials Jame Data Additional integral Pace Quantity	the contents of this consignment ion for transport according to ap	nt are fully and accurately de plicable international and nat Signature om U.S. Port of e Date lea Signature Signature Residue Manifest Reference	scribed above ional governm wing U.S.: B.	e by the proper sh nental regulations	ipping name,	and are classified, packaged
Special Handling Instruction JOB4 LABL. 1 1. 110470-3 GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/ for the second structure (for exp for the second structure	Instant Additional Information 063 SUN POI R41022 LD (55-GALLONS) PR'S CERTIFICATION: I hereby declare that Inded, and are in all respects in proper condition Typed Name Mill Wull Import to U.S. vorts only): terme Pace Quantity cility (or Generator)	the contents of this consignment ion for transport according to ap	Int are fully and accurately de plicable international and nat Signature om U.S. Port of e Date lea Signature Signature Residue Manifest Reference	scribed above ional governm wing U.S.: B.B.	e by the proper sh nental regulations	ipping name, 2	And are classified, packaged
Special Handling Instruction JOB4 LABL. 11 1. 110470-3 GENERATOR'S/OFFERO marked and labeled/placar enerator's/Offeror's Printed/1 f. International Shipments ransporter Signature (for exp f. Transporter Acknowledgm ransporter 2 Printed/Typed N ransport	Instant Additional Information 063 SUN POI R41022 LD (55-GALLONS) PR'S CERTIFICATION: I hereby declare that reded, and are in all respects in proper condition Typed Name Millow fold Import to U.S. Norts only: eent of Receipt of Materials Jame Pace Quantity cillity (or Generator)	the contents of this consignment ion for transport according to ap	Int are fully and accurately deplicable international and nat Signature Date lea Signature Signature Manifest Reference	scribed above ional government ontry/exit: ving U.S.: 2 B.c. Number:	e by the proper sh nental regulations	ipping name,	And are classified, packaged
Special Handling Instruction JOB LABL 11 110470-3 GENERATOR'S/OFFERO marked and labeled/placar ienerator's/Offeror's Printed/ International Shipments ransporter Signature (for exp G. Transporter Acknowledgm remoporter 1 Printed/Typed N Discrepancy A. Discrepancy Discrepancy A. Discrepancy Indication Sp Do Alternate Facility (or Gen acility's Phone: C. Signature of Alternate Fac Signature of Alternate Fac Signature of Alternate Fac Substant of Alternate Fac Substan	Instant Additional Information 063 SUN POI R41022 LD (55-GALLONS) PR'S CERTIFICATION: I hereby declare that road, and are in all respects in proper condition Typed Name Mill Wull following Import to U.S. Norts only): ware Build of Materials Jame Build of Materials Jame Build of Materials Jame Data of Receipt of Materials Jame Pace Quantity cillity (or Generator)	the contents of this consignment ion for transport according to ap	nt are fully and accurately de plicable international and nat Signature om U.S. Port of e Date lea Signature Signature Anifest Reference	scribed above ional governm wing U.S.: B.B.	e by the proper sh nental regulations	ipping name,	And are classified, packaged Month Day Month Day 3 25 Month Day Full Rejection Month Day
Special Handling Instruction JOB4 LABL. 1 110470-3 GENERATOR'S/OFFERO marked and labeled/placar enerator's/Offeror's Printed/7 International Shipments ransporter Signature (for exp Transporter Acknowledgm annoporter 1 Printed/Typed N Discrepancy Abiscrepancy Abiscrepan	Instant Additional Information 063 SUN POIL R41022 LD (55-GALLONS) PR'S CERTIFICATION: I hereby declare that rided, and are in all respects in proper condition Typed Name Pol Import to U.S. ports only: errent of Receipt of Materials Jame Pace Quantity cility (or Generator)	the contents of this consignment on for transport according to ap	aept as noted in item 17a Signature	scribed above ional governm wing U.S.: DBL Number:	e by the proper sh nental regulations	ipping name,	and are classified, packager Month Day Month Day Month Day Built Rejection Month Day Comparison Month Day Comparison Month Day Comparison Month Day Comparison Compar