SITE INVESTIGATION REPORT Former Vacuum Oil Company Site #828089P City of Rochester, Monroe County

March 2001

Prepared for:

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 Erin M. Crotty, *Acting Commissioner*

Division of Environmental Remediation Michael J. O'Toole, Jr. P.E., *Director*

By:

Frank Sowers, P.E.
Environmental Engineer 1
New York State Department of Environmental Conservation
Division of Environmental Remediation
Region 8
6274 East Avon-Lima Road

SITE INVESTIGATION REPORT Former Vacuum Oil Company Site #828089P Rochester, Monroe County

Prepared for:

Division of Environmental Remediation
New York State Department of Environmental Conservation
50 Wolf Road
Albany, New York 12233

Prepared by:

Frank Sowers, P.E.
Environmental Engineer 1
New York State Department of Environmental Conservation
Division of Environmental Remediation
Region 8
6274 East Avon-Lima Road
Avon, NY 14414

TABLE OF CONTENTS

SECTION		
1.0	EXECUTIVE SUMMARY	1-1
2.0	PURPOSE	2-1
2.1	EXTENT OF CONTAMINATION	2-1
2.2	THE NYS LISTING OF INACTIVE HAZARDOUS WASTE DISPOSAL SITES	2-1
3.0	SCOPE OF WORK	3-1
3.1	PASSIVE SOIL GAS SURVEY	3-1
3.2	SUBSURFACE SOIL SAMPLING AND ANALYSIS	3-1
3.2.1	Test Pit Excavations	3-2
3.2.2	Soil Borings	3-3
3.3	SURFACE SOIL SAMPLING AND ANALYSIS	3-4
3.4	MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING AND ANALYSIS	3-4
3.4.1	Groundwater Monitoring Well Installation	3-5
3.4.2	Groundwater Monitoring Well Sampling	3-5
3.5	SITE SURVEY AND MAP PREPARATION	3-5
3.6	GROUNDWATER ELEVATION MEASUREMENTS	3-6
4.0	SITE ASSESSMENT	4-1
4.1	SITE HISTORY	4-1
4.2	SITE TOPOGRAPHY	4-2
4.3	SITE GEOLOGY	4-2
4.4	CONTAMINANT ASSESSMENT	4-3
4.4.1	Passive Soil Gas Survey	4-3
4.4.1.1 Petroleum-Related Compounds		
4.4.1.2 Total Chlorinated Volatiles 4-4		

TABLE OF CONTENTS (Continued)

SECTION		
4.4.2 Surface Soil	4-5	
4.4.2.1 Surface Soil- Semi-Volatile Organic Compounds	4-5	
4.4.2.2 Surface Soil- Volatile Organic Compounds	4-6	
4.4.2.3 Surface Soil- Inorganic Compounds	4-6	
4.4.2.4 Surface Soil- Pesticides and PCBs	4-7	
4.4.3 Subsurface Soil	4-7	
4.4.3.1 Subsurface Soil- Semi-Volatile Organic Compounds	4-8	
4.4.3.2 Subsurface Soil- Total Petroleum Hydrocarbons	4-9	
4.4.3.3 Subsurface Soil- Volatile Organic Compounds	4-9	
4.4.3.4 Subsurface Soil- Inorganic Compounds	4-9	
4.4.3.5 Subsurface Soil- Pesticides and PCBs	4-10	
4.4.3.6 Subsurface Soil- Toxicity Characteristic Leachate Procedure (TCLP)	4-10	
4.4.4 Groundwater Quality	4-10	
4.4.4.1 Groundwater- Semi-Volatile Organic Compounds	4-11	
4.4.4.2 Groundwater- Total Petroleum Hydrocarbons	4-11	
4.4.4.3 Groundwater- Volatile Organic Compounds	4-11	
4.4.4.4 Groundwater- Inorganic Compounds	4-12	
4.4.5 Quality Assurance Quality Control (QA/QC) Sample Results	4-12	
4.5 CONCLUSIONS	4-16	
4.5.1 Extent of Contamination	4-16	
4.5.1.1 Semi-Volatile Organic Compounds and Total Petroleum Hydrocarbons	4-17	
4.5.1.2 Volatile Organic Compounds		
4.5.1.3 Inorganic Compounds		
4.5.1.4 Pesticides		
4.5.2 The NYS Listing of Inactive Hazardous Waste Disposal Sites	4-20	
5.0 RECOMMENDATIONS	5-1	

LIST OF FIGURES

Figure 1	Rochester, New York; Location of Former Vacuum Oil Company
Figure 2	Site Boundaries fir the 1999-2000 Site Investigation
Figure 3	Location of Sludge Pits Removed in 1992
Figure 4	Sample Point Location Map
Figure 5	Overburden Groundwater Contour Map - May 4, 2000
Figure 6	Extent of Former Vacuum Oil Company
Figure 7	Passive Soil Gas Survey Results and Contour Map: Total Petroleum Hydrocarbons
Figure 8	Passive Soil Gas Survey Results and Contour Map: Total Chlorinated Volatiles
Figure 9	Summary of Surface Soil Results Exceeding SCGs Plus Total Tentatively Identified Compounds
Figure10	Summary of Subsurface Soil Results Exceeding SCGs Plus Total Tentatively Identified Compounds and Total Petroleum Hydrocarbons
Figure11	Summary of Groundwater Results Exceeding SCGs Plus Total Tentatively Identified Compounds and Total Petroleum Hydrocarbons

LIST OF TABLES

Table 1	Sample Collection/Analytical Matrix; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 2	Site Survey Data; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 3	Groundwater Elevation Data; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 4	Surface Soil Statistical Summary of Detected Compounds; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 5	Subsurface Soil Statistical Summary of Detected Compounds; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 6	Groundwater Statistical Summary of Detected Compounds; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 7	Summary of Surface Soil Sample Results; Semi-Volatile Organic Compounds Sorted by Location; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 8	Summary of Surface Soil Sample Results; Semi-Volatile Organic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 9	Summary of Surface Soil Sample Results; Volatile Organic Compounds; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 10	Summary of Surface Soil Sample Results; Inorganic Compounds Sorted by Location; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 11	Summary of Surface Soil Sample Results; Inorganic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 12	Summary of Surface Soil Sample Results; Pesticides and PCBs; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 13	Summary of Subsurface Soil Sample Results; Semi-Volatile Organic Compounds Sorted by Depth; Former Vacuum Oil Company - 1999-2000 Site Investigation

LIST OF TABLES (Continued)

Table 14	Summary of Subsurface Soil Sample Results; Semi-Volatile Organic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 15	Summary of Subsurface Soil Sample Results; Total Petroleum Hydrocarbons; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 16	Summary of Subsurface Soil Sample Results; Volatile Organic Compounds Sorted by Depth; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 17	Summary of Subsurface Soil Sample Results; Volatile Organic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 18	Summary of Subsurface Soil Sample Results; Inorganic Compounds Sorted by Depth; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 19	Summary of Subsurface Soil Sample Results; Inorganic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 20	Summary of Subsurface Soil Sample Results; Pesticides and PCBs; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 21	Summary of Subsurface Soil Sample Results; Toxicity Characteristic Leachate Procedure; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 22	Summary of Groundwater Sample Results; Semi-Volatile Organic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 23	Summary of Groundwater Sample Results; Total Petroleum Hydrocarbons; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 24	Summary of Groundwater Sample Results; Volatile Organic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation

LIST OF TABLES (Continued)

Table 25	Summary of Groundwater Sample Results; Inorganic Compounds Sorted by Location; Former Vacuum Oil Company - 1999-2000 Site Investigation
Table 26	Summary of Groundwater Sample Results; Inorganic Compounds Sorted by Compound; Former Vacuum Oil Company - 1999-2000 Site Investigation

APPENDICES

APPENDIX A	1999-2000 SITE INVESTIGATION; TEST PIT LOGS, SOIL BORING LOGS; WELL INSTALLATION LOGS; WELL DEVELOPMENT LOGS; AND GROUNDWATER SAMPLING FIELD PARAMETER MEASUREMENTS
APPENDIX B	HISTORICAL SITE MAPS
APPENDIX C	1999-2000 SITE INVESTIGATION ANALYTICAL DATA
APPENDIX D	SUMMARY OF 1989 CITY OF ROCHESTER SITE INVESTIGATION
APPENDIX E	1999 SOIL GAS SURVEY REPORT

1.0 EXECUTIVE SUMMARY

The site for this 1999-2000 investigation consisted of a 24-acre portion of the former Vacuum Oil Company facility located on the western bank of the Genesee River (see Figure 1 and Figure 2) in the City of Rochester, New York, Monroe County.

The Vacuum Oil Company (the predecessor of Mobil Oil) operated an oil refinery at this location from c.1866 to c.1935. The Vacuum Oil facility consisted of several process and storage buildings, a railyard, tank farms, and pipelines. The processing operations reportedly entailed distilling crude petroleum under pressure to produce a variety of petroleum products. Reports from 1887 indicated that there were 135 tanks and six boilers at the works, and that the facility refined over 4 million gallons of crude oil per year. Many of the Vacuum Oil refinery structures were reportedly demolished in place. Remnants of the Vacuum Oil facility were observed at the site during the 1999-2000 site investigation. These remnants included concrete tank foundations, fire hydrants and building foundations.

The site is currently under multiple ownership and most of the properties are either vacant or under utilized. The site is located in a commercial, residential, and recreational area south of downtown Rochester. Commercial businesses are primarily located northwest and southwest of the site. A residential area is adjacent to the site to the west, and there is a bike path through the site. There are no known private or public wells nearby.

In September 1992, the NYSDEC removed approximately 400-500 tons of petroleum sludge located in the former railyard area at the southeastern portion of the Vacuum Oil facility near what is currently the Genesee River bike trail (Figure 3). The sludge was tested and was found to be non-hazardous.

In 1999-2000, the NYSDEC conducted an investigation of a 24-acre portion of the former Vacuum Oil facility. The investigation consisted of a point passive soil gas survey, surface soil samples, subsurface soil samples, and groundwater samples from three monitoring wells. Sample locations are provided on Figure 4. The results of the NYSDEC investigation indicated widespread petroleum-related contamination (SVOCs and BTEX) in the surface soil, subsurface soil, and groundwater at the site. The most significant petroleum contamination was detected in the northern section of the site in the vicinity of MW-1 and MW-2. To a lesser extent, chlorinated VOCs, metals, and pesticides were also detected above NYS standards at the site.

The results of the 1999-2000 investigation indicated that site contamination was not the result of disposal of a consequential amount of hazardous waste. NYSDEC will not include the site in the New York State Listing of Inactive Hazardous Waste Disposal Sites at this time.

2.0 PURPOSE

The site for this investigation consisted of approximately 24 acres located on the western bank of the Genesee River south of Flint Street in the City of Rochester, New York, Monroe County (Figures 1 and 2). The purpose of this site investigation was to obtain initial information regarding environmental contamination at the site. Specific objectives for this investigation, as stated in the document entitled "Former Vacuum Oil Preliminary Site Investigation Project Work Plan January 22, 1999" (work plan) were to:

- further define the nature and extent of contamination at the site; and
- determine if this site should be listed in the NYS Listing of Inactive Hazardous Waste Disposal Sites. If listed, determine the appropriate classification.

2.1 EXTENT OF CONTAMINATION

In September 1992, the NYSDEC removed approximately 400 to 500 tons of petroleum sludge located in the former railyard area at the southeastern portion of the property near what is currently the Genesee River bike trail. The sludge was discovered during construction of the bike trail. The approximate location of the sludge pits are shown on Figure 3. The 1999-2000 investigation was designed to provide additional information concerning the nature and extent of contamination in the overburden on the Vacuum Oil property.

2.2 THE NYS LISTING OF INACTIVE HAZARDOUS WASTE DISPOSAL SITES

The New York State Department of Environmental Conservation (NYSDEC) is charged by ECL Section 27-1305 with maintaining a list of inactive hazardous waste disposal sites in a statewide Registry and updating it on an annual basis. The Division of Environmental Remediation (DER) is responsible for listing all sites in the Registry where it believes there is confirmed disposal of a consequential amount of waste which conforms with the characteristics of a hazardous waste (as defined in 6 NYCRR Part 371.3) or listed hazardous wastes (as defined in 6 NYCRR Part 371.4). The results of site investigations will be evaluated to help determine if the disposal of a consequential amount of hazardous waste has occurred.

3.0 SCOPE OF WORK

A work plan specifying the scope of work for this investigation was prepared by the NYSDEC Region 8 and reviewed by personnel from the NYSDEC in Albany, the New York State Department of Health (NYSDOH), the Monroe County Health Department (MCHD), and the City of Rochester Division of Environmental Quality. Included in the work plan were the data collection procedures identified to fulfill the objectives of the investigation. These data collection activities included the following tasks:

- a passive soil gas survey;
- surface and subsurface soil sampling and analysis;
- monitoring well installation and groundwater sampling and analysis; and
- site survey and map preparation.

Details of the specific procedures used in performing each task are presented in the following sections.

3.1 PASSIVE SOIL GAS SURVEY

A passive soil gas survey was conducted across the site in an effort to identify potential sources of contamination. The survey consisted of 53 EMFLUX modules plus two trip blank modules. The modules were deployed on October 20, 1999 and retrieved November 4, 1999. Fifty of the modules were placed in a roughly 120'x120' grid across the site. Two modules (E-6 and H-8) were placed in potentially contaminated areas based on field observations and one module (C-2D) was collocated with module C-2. Figure 4 shows the location of each soil gas module.

At each survey point, the soil gas module was placed into a hole approximately 4" deep and 3/4" in diameter. The holes were created using a pointed metal stake provided by the vendor. After retrieval, the modules were sent to a laboratory for analyses. The modules were analyzed for 25 specific compounds including some volatile organic compounds (VOCs), some semi-volatile organic compounds (SVOCs), and total petroleum hydrocarbons (TPH).

3.2 SUBSURFACE SOIL SAMPLING AND ANALYSIS

The subsurface soil sampling program used during this project was designed to aid in the collection of subsurface information relative to the overburden materials at the site. The subsurface soil sampling program consisted of two phases:

- test pit excavations; and
- soil borings.

3.2.1 Test Pit Excavations

The primary goals of the test pit program were to:

- characterize the overburden materials with respect to textural classifications;
- collect soil samples for analysis;
- determine if there is a water bearing zone in the overburden; and
- characterize and describe the bedrock surface.

Ten test pit excavations were completed at the site on December 6, 1999. Prior to mobilization, an Underground Facility Protection Organization (UFPO) underground utility stakeout was performed to document the position of public utilities. The test pits were primarily located in areas of elevated soil gas concentrations. The test pits were completed using a track mounted Komatsu PC35R excavator. Test pit locations are shown on Figure 4.

For each excavation, a geologist described and logged the subsurface soils with respect to their geologic character features and properties. Bedrock was not encountered in any of the test pits; therefore the bedrock surface was not characterized. The excavated pits were also photographed. Test pit logs and photographs are provided in Appendix A.

Excavated soil was screened for VOCs using a hand held photoionization detector (PID) instrument. The PID measurements included in the test pit logs were collected from just above the soil in the excavator bucket. PID measurements were also obtained in the breathing zone.

A concrete slab was encountered at about one foot below the ground surface at several locations in the vicinity of test pits TP-2 and TP-3. The excavator was not capable of penetrating the slab. When a slab was encountered, the excavation was backfilled and a new test pit was attempted several yards away. The full extent of the concrete slab was not determined, but it can be estimated by reviewing building locations from aerial photograph or site maps of the Vacuum Oil facility (See Appendix B).

The work plan specified that two soil samples from each test pit would be collected for analysis. A total of 8 soil samples were actually collected from the 10 test pits. Two samples were collected from test pit TP-1. No samples were collected from test pits TP-6, TP-7 and TP-9 as there were no indications that these soils were contaminated (i.e. no visual signs of staining, no detectable odors, and no detections on the PID). One sample was collected from each of the remaining test pits (TP-2, TP-3, TP-4, TP-5, TP-8, and TP-10) either because the subsurface materials were homogeneous or there were no indications of contamination (i.e. no visual signs of staining, no detectable odors, and no detections on the PID).

The work plan specified that each soil sample from the test pits would be analyzed for volatile organics, semi-volatile organics, and metals, and that one sample from each test pit would be analyzed for cyanide, pesticides, and polychlorinated biphenyls (PCBs). This protocol was followed for the test pits where samples were collected. Additionally, the Toxicity Characteristic Leachate Procedure (TCLP) analysis was performed on both soil samples from test pit TP-1 as these soils were stained black, PID readings up to 200 ppm were measured just above the soil, and there was

a strong petroleum odor. A sample collection and analytical matrix is provided in Table 1. Samples were placed into glass jars, labeled, and placed into a cooler chilled with ice or ice packs. The samples were shipped for analysis via UPS to RECRA LabNet, Lionville, Pennsylvania. Chain of Custody forms are provided in Appendix C.

3.2.2 Soil Borings

Three soil borings, which were all later completed as groundwater monitoring wells, were advanced at the site from February 7-9, 2000. Prior to mobilization, an Underground Facility Protection Organization (UFPO) underground utility stakeout was performed to document the position of public utilities. Soil boring locations were selected based on:

- test pit soil sample results;
- locations of site features such as tank foundations and concrete slabs; and
- results of the UFPO stakeout.

The soil boring locations are shown on Figure 4. Boring MW-1 was located in the vicinity of test pit TP-1, boring MW-2 was located in the vicinity of test pit TP-2, and boring MW-3 was located in the vicinity of test pit TP-10 at the base of a former tank farm.

The work plan specified that additional soil classification and sampling were optional activities during the monitoring well installation task. It was determined that these activities were necessary based on the following:

- the test pits did not extend to bedrock, so split spoon sampling was necessary to characterize soil conditions below the base of the test pits;
- one of the borings, MW-2, was located where a concrete slab was encountered during test pitting, so split spoon sampling was necessary to characterize soil conditions below the concrete slab; and
- the analytical results of the test pit soil samples indicated the presence of petroleum compounds, so additional soil samples were required for Total Petroleum Hydrocarbon (TPH) analysis.

A track-mounted CME 850 drill rig was used to advance the soil borings. Continuous split-spoon samples were collected to refusal (presumed top of bedrock) at each of the soil boring locations. Depth to refusal varied from 6 to 16.5 feet below the ground surface. All down-hole tools and equipment used during the advance of the borings were steam cleaned prior to their introduction into a boring. Split spoons were cleaned with an Alconox solution after each sample was collected.

A qualified geologist described and logged the extracted subsurface soil materials with respect to their geologic character, features, and properties. The extracted subsurface soil materials were also screened visually for signs of obvious contamination. Additionally, soil from each spoon was screened for the presence of volatile organic vapors using a PID monitoring instrument. Information on sample characterization was later used to prepare boring logs which are presented in Appendix A.

Two soil samples were collected for analysis from each of the borings, except MW-3. No soil samples were collected from boring MW-3 since there were no indications of contamination (i.e. no visual signs of staining, no detectable odors, and no detections on the PID). A duplicate soil sample was also collected at boring MW-1. All of the soil samples were analyzed for TPH. In addition to TPH, soils from boring MW-2 were analyzed for VOCs, SVOCs, and metals, and soils from boring MW-1 were analyzed for metals. A sample collection/analytical matrix for this investigation is provided in Table 1. Samples were placed into glass jars, labeled, and placed into a cooler chilled with ice or ice packs. The samples were shipped for analysis via UPS to RECRA LabNet, Lionville, Pennsylvania. Chain of Custody forms are provided in Appendix C.

3.3 SURFACE SOIL SAMPLING AND ANALYSIS

As specified in the work plan, five surface soil samples were collected at the site. Each sample was analyzed for:

- TAL metals;
- Cyanide;
- TCL VOCs;
- TCL SVOCs; and
- TCL pesticides and PCBs.

All of the surface soil samples obtained during this investigation were collected on December 7, 1999. Surface soil sample locations were selected based on the soil gas survey results, visual indications of contamination, and a desire to collect data from across the entire site. Surface soil sample SS-4 was collected from a wet, low-lying area at the site. The surface soil sample locations are shown on Figure 4.

Surface soil samples obtained from the site were collected from the first two inches of soil after sod, surface debris, or gravel cover were removed. A new disposable plastic scoop was used to collect each sample. A sample collection/analytical matrix for this investigation is provided in Table 1. Samples were placed into glass jars, labeled, and placed into a cooler chilled with ice or ice packs. The samples were shipped for analysis via UPS to RECRA LabNet, Lionville, Pennsylvania. Chain of Custody forms are provided in Appendix C.

3.4 MONITORING WELL INSTALLATION AND GROUNDWATER SAMPLING AND ANALYSIS

The groundwater sampling program implemented during this project was designed to aid in the collection of subsurface information relative to the overburden materials at the site. More specifically, the program was designed to further define the extent of contamination at the site and evaluate suspected source areas. The groundwater sampling program consisted of completing the three soil borings as monitoring wells and collecting groundwater samples for analyses.

3.4.1 Groundwater Monitoring Well Installation

All three of the soil borings advanced on February 7, 8 and 9, 2000 were completed as 2-inch diameter overburden monitoring wells. The purpose of these wells was to allow long-term monitoring of overburden groundwater conditions at the site. The monitoring wells were located to investigate groundwater conditions in areas where soil contamination was identified, and allow development of groundwater flow contours. Monitoring well locations are shown on Figure 4.

The borings were advanced to the top of bedrock using 4.25-inch I.D. hollow stem augers. The monitoring wells consisted of 2-inch diameter schedule 40 PVC casing. The well screens consisted of 0.010-inch slotted PVC and varied in length from 4 feet at MW-3 to 10 feet at MW-1 and MW-2. Construction logs for each monitoring well are provided in Appendix A.

The wells were developed on February 9, 10, and 11, 2000 using new dedicated polyethylene bailers. Several days were needed to develop the wells because they would become dry after several well volumes of water were removed and recovery was slow. Well development logs, including field parameter measurements, are provided in Appendix A.

3.4.2 Groundwater Monitoring Well Sampling

The three groundwater monitoring wells were sampled on February 23, 2000. Prior to sampling, approximately 3 well volumes of groundwater were purged from each well using dedicated polyethylene bailers.

After being purged, each well was allowed to recover for approximately one hour before samples were collected. The three wells were sampled for VOCs, SVOCs, metals, and TPH using dedicated polyethylene bailers. There was not enough water in the wells to collect all of the samples at one time. The VOC, SVOC, and TPH samples were collected in the morning, then the wells were allowed to recover for several hours and the metals samples were collected in the afternoon. Water samples were also collected from each well during sampling to measure pH, specific conductivity, temperature, and turbidity. Field parameter measurements are provided in Appendix C. A sample collection/analytical matrix for this investigation is provided in Table 1.

Samples were placed into the appropriate container, labeled, and placed into a cooler chilled with ice or ice packs. The samples were shipped for analysis via UPS to RECRA LabNet, Lionville, Pennsylvania. Chain of Custody forms are provided in Appendix C.

3.5 SITE SURVEY AND MAP PREPARATION

A survey was performed at the site in two phases. First a surveyor was on-site in March 2000 to make such measurements as were necessary to create a plot plan of the site showing the locations of the property boundaries, buildings, the bike path, monitoring wells, and test pits. The surveyor also established well elevations at the top of the PVC riser for each of the three wells plus a location along the concrete wall at the edge of the Genesee River.

The second phase of the survey was completed on April 12 and 13, 2000. NYSDEC personnel used a Corvallis Microtechnology Inc. March II hand-held Global Positioning System (GPS) unit to record the location of soil gas sample points which were marked in the field by flagging. The raw GPS data collected in the field were corrected using PC-GPS version 3.6D. The corrected data were provided to the surveyor for inclusion on the plot plan. The survey data are provided in Table 2.

After plotting the soil gas points, one sample (I-7) appeared to be incorrect. NYSDEC personnel revisited the site and manually measured the location of soil gas point I-7 using a tape measure. The correct location of I-7 was determined to be approximately 100 ft. south-southwest from the location measured by the GPS. The plot plan (Figure 4) was corrected to better reflect the actual location of I-7.

The location of the surface soil sample points on the plot plan (Figure 4) are based on field observations of the distance of the surface soil sample location to the nearest soil gas sample location.

3.6 GROUNDWATER ELEVATION MEASUREMENTS

Groundwater elevations at the site were measured twice during this investigation. The first measurements, obtained on February 23, 2000, included only the three overburden monitoring wells. The second measurements, obtained on May 4, 2000, included the three overburden monitoring wells and the elevation of the Genesee River. The water level measurements are provided in Table 3. Groundwater contours for May 4, 2000 are provided in Figure 5.

4.0 SITE ASSESSMENT

4.1 SITE HISTORY

The former Vacuum Oil Company occupied approximately 40 acres on the western bank of the Genesee River (see Figure 1 and Figure 6) in the City of Rochester, New York, Monroe County. The Vacuum Oil Company (the predecessor of Mobil Oil) operated an oil refinery at this location from c.1866 to c.1935.

The "site" for the 1999-2000 investigation was an approximately 24-acre portion of the former Vacuum Oil facility consisting of seven parcels of land (Figure 2). After 1935, the parcels were sold separately and used for a variety of commercial purposes. Owners included a university, a scrap bailing company, and government agencies. The site is currently under multiple ownership and most of the properties are either vacant or under utilized. The site is located in a commercial, residential, and recreational area south of downtown Rochester. Commercial businesses are primarily located northwest and southwest of the site. A residential area is adjacent to the site to the west, and there is a bike path through the site. There are no known private or public wells nearby.

The Vacuum Oil facility consisted of several process and storage buildings, a railyard, tank farms, and pipelines. The processing operations reportedly entailed distilling crude petroleum under pressure to produce a variety of materials including: lubricating oils, vacuum oil blacking for harnesses, naptha, refined petroleum and high test kerosene oils, neutral oils, also sperm whale, elephant, lard, neats foot, straits, bank, laborador, salad, signal, and other oils. Reports from 1887 indicated that there were 135 tanks and six boilers at the works, and that the facility refined over 4 million gallons of crude oil per year.

In 1989, a portion of the former Vacuum Oil facility (bounded by Flint St., Exchange St., Violetta St., and the Genesee River) was investigated as a potential site for a new elementary school by the City of Rochester, but environmental conditions at the site made it unfavorable for development. A summary of the 1989 investigation is provided in Appendix D.

In September 1992, the NYSDEC removed approximately 400-500 tons of petroleum sludge located in the former railyard area at the southeastern portion of the Vacuum Oil facility near what is currently the Genesee River bike trail. The sludge was tested and was found to be non-hazardous. The location of the sludge pits are shown on Figure 3.

Many of the Vacuum Oil refinery structures were reportedly demolished in place. For example, tank foundations in the former tank farm area are evident in the 1960s aerial photographs. Additionally, remnants of the Vacuum Oil facility were observed at the site during the 1999-2000 site investigation. These remnants included concrete tank foundations, fire hydrants and building foundations.

4.2 SITE TOPOGRAPHY

The former Vacuum Oil site is located on the western bank of the Genesee River. A concrete retaining wall separates the river from the ground. On May 4, 2000, the top of the retaining wall was measured to be 6.5 ft. above the river. West of the river, the terrain appeared to slope gently downward before a steep rise to the residential area on Cottage Street and Riverview Place. The lowest spot on the site appeared to be in the vicinity of soil gas sample point H-8 and surface soil sample point SS-4 (See Figure 4). This area was consistently moist and often contained standing water. The portion of the bike path between soil gas sample points A-2 and H-3 was elevated with what appeared to be fill material. This portion of the bike path was formerly part of the Erie Railroad system. The building foundations observed at the site were generally located west of the bike bath. The tank foundations were roughly located in the area bounded by soil gas sample points D-5, D-7 and E-5.

With the exception of the bike path, most of the surface was overgrown with trees, bushes, wild grapevines, and weeds. Poison ivy was also prevalent at the site both as vines on trees and as patches of plants less than about 2 ft. tall. Dense swarms of insects, especially mosquitoes, were encountered at the site during the spring.

4.3 SITE GEOLOGY

Based on the test pits and soil borings, the site consisted of 6 to 16.5 feet of overburden on top of bedrock. The overburden generally consisted of three layers:

- topsoil;
- fill material; and
- native soil.

The topsoil layer was typically 3 to 6 inches thick. Fill material was encountered up to 6 ft. below the ground surface. The fill consisted of a variety of materials including:

- bricks;
- slag;
- sand;
- shingles;
- a material that resembled ground coal;
- gravel; and
- wood.

The native soil consisted of a mixture of silt, sand, and clay. The bedrock at the site is mapped as the Lockport Dolomite.

The depth to groundwater at the site ranged from 3 to 7.5 feet below ground. Groundwater elevations at the site were measured twice during this investigation. The first measurements, obtained on February 23, 2000, included only the three overburden monitoring wells. The second

measurements, obtained on May 4, 2000, included the three overburden monitoring wells and the elevation of the Genesee River. The water level measurements are provided in Table 3. The results indicated that the groundwater at the site flows to the west and away from the Genesee River. Figure 5 presents groundwater elevation contours for the overburden based on the May 4, 2000 measurements. Groundwater elevation contours developed using the February 23, 2000 measurements were similar to the May 4, 2000 contours and are not included in this report.

4.4 CONTAMINANT ASSESSMENT

The following sections provide the analytical data generated during the 1999-2000 investigation. The information is organized according to sample media (soil gas, surface soil, subsurface soil, and groundwater) and compounds of concern. Analytical data were compared to environmental New York State Standards, Criteria, and Guidance (SCGs) values. Groundwater SCGs for this site were based on the groundwater quality standards contained in 6 NYCRR Part 703 and the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. NYSDEC Technical Assistance Guidance Memorandum (TAGM) 4046 was used to evaluate surface and subsurface soils. TCLP analytical results were compared to the toxicity characteristic regulatory levels contained in 6 NYCRR 371.3(e).

Sample point locations are shown on Figure 4. The analytical data for the 1999 soil gas survey are provided in Appendix E. The analytical data for surface soil, subsurface soil, and groundwater samples collected by the NYSDEC as part of the 1999-2000 investigation are provided in Appendix C. Statistical summaries of the analytical results are provided in Tables 4 through 6. All detected values for field samples, field duplicates, and trip blanks are presented in Tables 7 through 25 in data summary forms.

4.4.1 Passive Soil Gas Survey

A passive soil gas survey was performed at the site to identify potential areas of contamination and to help focus later phases of the investigation. A 53 point passive soil gas survey was conducted across the site between October 20, 1999 and November 4, 1999. Figure 4 shows the location of each soil gas module. Upon retrieval, each module was analyzed for 25 specific compounds including some volatile organic compounds (VOCs), some semi-volatile organic compounds (SVOCs), and total petroleum hydrocarbons (TPH) The complete list of compounds is provided in Appendix E.

The following limitations should be considered when reviewing the results of the soil gas survey:

- The soil gas sample points were placed approximately 120 feet apart. This spacing was considered acceptable for identifying large areas of contamination at this site, but this spacing may miss smaller contaminated areas and is not appropriate for defining the extent of contamination.
- Some of the soil gas results may be biased low. Buried building slabs were encountered during test pitting and these slabs may have restricted contaminated soil gas located below the slab from migrating to the soil gas modules located above the slab.

Appendix E contains the data report from the vendor who supplied and analyzed the soil gas modules. Petroleum-related compounds and chlorinated compounds were the primary contaminants detected during the survey.

4.4.1.1 Petroleum-Related Compounds

The soil gas survey detected petroleum-related compounds in two categories: total petroleum hydrocarbons (TPH) and individual petroleum related compounds (benzene, toluene, ethyl benzene, xylene, trimethylbenzenes, and napthalene). The soil gas data in Appendix E indicate a strong correlation between elevated TPH results and elevated results for the individual petroleum-related compounds.

Figure 7 shows soil gas concentration contours for TPH at the site. Five distinct plumes are identified on Figure 7. The plumes are identified as follows (with maximum concentrations in parentheses) based on the soil gas point in the apparent center of the plume:

- the B-3 plume (14,000 nanograms);
- the F-5 plume (58,000 nanograms);
- the J-8 plume (900 nanograms);
- the L-6 plume (400 nanograms); and
- the E-1/E-2 plume (260 nanograms).

Of the five plumes, the B-3 and F-5 plumes were of the greatest significance in terms of lateral extent and maximum concentration. The B-3 and F-5 plumes were determined to have the greatest potential for contamination and were the focus of subsequent sampling activities for petroleum compounds.

4.4.1.2 Total Chlorinated Volatiles

Figure 8 shows soil gas concentration contours for total chlorinated compounds at the site. Chlorinated compounds were detected in the following five soil gas samples:

- C-3 at 1096 nanograms;
- D-3 at 194 nanograms;
- C-1 at 87 nanograms;
- F-5 at 42 nanograms; and
- D-6 at 29 nanograms.

C-3 was the focus of subsequent sampling activities for chlorinated compounds since the concentration of chlorinated compounds at C-3 was an order-of-magnitude greater than the other four locations.

4.4.2 Surface Soil

A total of five surface soil samples were collected from five different locations across the site and analyzed for the parameters shown in Table 1. Metals, VOCs, SVOCs and pesticides were detected in some of the surface soil samples at levels above SCGs. Compounds detected at levels above SCGs in at least one surface soil sample, and the concentration range for each compound, are identified in the following sections.

The VOC and SVOC analyses also detected the presence of a number of additional compounds that are not on the standard Target Compound List (TCL). The laboratory only calibrates the analytical instruments to identify and quantify the TCL compounds. Compounds that are not on the TCL, but are detected during analysis, are called Tentatively Identified Compounds (TICs) and the identity and concentration of these compounds are estimated. As indicated in Tables 7,8, and 9, total TIC concentrations in the surface soil samples ranged from not detected to 20 ppb for VOCs and 15,800 to 114,000 ppb for SVOCs. Concentration estimates for individual TICs are provided with the analytical data in Appendix C.

Surface soil sample point locations are shown on Figure 4. Surface soil sample locations are denoted by "SS-" in the tables and figures. Figure 9 presents a summary of surface soil results exceeding SCGs and total TICs.

The results of the 1999-2000 investigation, including comparisons to SCGs, are summarized in the following tables:

- Table 4 provides a statistical summary of the surface soil results;
- Table 7 summarizes the SVOC results sorted by sample location;
- Table 8 summarizes the SVOC results sorted by compound;
- Table 9 summarizes the VOC results;
- Table 10 summarizes the inorganic compound results sorted by sample location;
- Table 11 summarizes the inorganic compound results sorted by compound; and
- Table 12 summarizes the pesticide and PCB results.

The analytical data from RECRA Environmental Inc. are provided in Appendix C.

4.4.2.1 Surface Soil - Semi-Volatile Organic Compounds

A total of 20 different SVOCs, plus TICs, were detected in the five surface soil samples analyzed for TCL SVOCs. Eight of the compounds were detected at concentrations above TAGM 4046 recommended soil cleanup values. SVOCs detected at levels above SCGs in at least one surface soil sample, and the concentration range for each compound, are identified below:

- benzo(a)anthracene (330 28,000 ppb);
- benzo(a)pyrene (440 23,000 ppb);
- benzo(b)fluoranthene (470 20,000 ppb);
- benzo(k)fluoranthene (420 22,000 ppb);

- chrysene (480 30,000 ppb);
- dibenzo(a,h)anthracene (85 5,700 ppb);
- fluoranthene (700 63,000 ppb); and
- indeno(1,2,3-c,d)pyrene (310 14,000 ppb).

The remaining 12 SVOCs were detected at levels below TAGM 4046 recommended soil cleanup values. As indicated on Figure 9, surface soils containing SVOCs exceeding SCGs were located across the site; however, the TCL SVOC concentrations at SS-2 were typically a factor of 10 higher than the other four sample points. Surface soil sample SS-2 also contained the highest concentration of TICs (114,000 ppb). Surface soil sample SS-4, which had the lowest concentration of TCL SVOCs based on Figure 9, contained second highest TIC concentration (96,800 ppb).

4.4.2.2 Surface Soil - Volatile Organic Compounds

The following VOCs were detected in the surface soils at the site:

- acetone;
- methylene chloride; and
- TICs.

Acetone was detected in surface soil sample SS-3. Methylene chloride was detected in each of the five surface soil samples at concentrations between 24 ppb and 150 ppb. The methylene chloride concentration in sample SS-3 (150 ppb) exceeded the TAGM 4046 recommended soil cleanup value for methylene chloride of 100 ppb. As discussed in another section of this report, the methylene chloride surface soil sample results may be biased high due to laboratory contamination.

4.4.2.3 Surface Soil - Inorganic Compounds

A total of 22 different inorganic compounds were detected in the five surface soil samples analyzed for TAL metals. Eight of the compounds were detected at concentrations above TAGM 4046 recommended soil cleanup values. Inorganic compounds detected at levels above SCGs in at least one surface soil sample, and the concentration range for each compound, are identified below:

- arsenic (4.3 60.7 ppm);
- calcium (11,900 167,000);
- copper (17.9 75.8 ppm);
- lead (119 972 ppm);
- magnesium (2,490 30,600 ppm);
- mercury (0.12 2.1 ppm);
- selenium (not detected 7.40 ppm); and
- zinc (103 772 ppm).

The remaining 14 inorganic compounds were detected at levels below TAGM 4046 recommended soil cleanup values. As indicated on Figure 9, surface soils containing inorganic compounds exceeding SCGs were located across the site. Additionally, the inorganic compound concentrations were fairly consistent in the five samples.

4.4.2.4 Surface Soil - Pesticides and PCBs

A total of six pesticides were detected in the five surface soil samples at the site. Two of the pesticides were detected at concentrations above TAGM 4046 recommended soil cleanup values. Pesticides detected at levels above SCGs in at least one surface soil sample, and the concentration range for each compound, are identified below:

- dieldrin (not detected 74 ppb); and
- heptachlor epoxide (not detected 30 ppb).

No PCBs were detected in the five surface soil samples at the site.

The remaining four pesticides were detected at levels below TAGM 4046 recommended soil cleanup values. As indicated on Figure 9, SS-1 was the only surface soil sample location where pesticides exceeded SCGs.

4.4.3 Subsurface Soil

A total of twelve subsurface soil samples were collected from ten test pit excavations and three overburden monitoring wells completed at the site. The samples were analyzed for the parameters shown in Table 1. Several metals, VOCs, and SVOCs were detected in subsurface soil samples at levels above SCGs. Compounds detected at levels above SCGs in at least one subsurface soil sample, and the concentration range for each compound, are identified in the following sections.

The VOC and SVOC analyses also detected the presence of a number of additional compounds that are not on the standard TCL. The laboratory only calibrates the analytical instruments to identify and quantify the TCL compounds. Compounds that are not on the TCL, but are detected during analysis, are called TICs and the identity and concentration of these compounds are estimated. As indicated in Tables 13, 14, 16, and 17, total TIC concentrations in the subsurface soil samples ranged from not detected to 133,000 ppb for VOCs and 1,450 to 2,240,000 ppb for SVOCs. Concentration estimates for individual TICs are provided with the analytical data in Appendix C.

Sample point locations are shown on Figure 4. Subsurface soil sample locations from a test pit are denoted by "TP-" in the tables and figures. Subsurface soil sample locations from a soil boring that was later converted into a monitoring well are denoted by "MW-" in the tables and figures. Figure 10 presents a summary of subsurface soil results exceeding SCGs, total TICs, and TPH.

The results of the 1999-2000 investigation, including comparisons to SCGs, are summarized in the following tables:

- Table 5 provides a statistical summary of the results;
- Table 13 summarizes the SVOC results sorted by soil boring interval;
- Table 14 summarizes the SVOC results sorted by compound;
- Table 15 summarizes the TPH results;
- Table 16 summarizes the VOC results sorted by soil boring interval;

- Table 17 summarizes the VOC results sorted by compound;
- Table 18 summarizes the inorganic compound results sorted by soil boring interval;
- Table 19 summarizes the inorganic compound results sorted by compound;
- Table 20 summarizes the pesticide and PCB results; and
- Table 21 summarizes the TCLP results.

The analytical data from RECRA Environmental Inc. are provided in Appendix C.

4.4.3.1 Subsurface Soil - Semi-Volatile Organic Compounds

A total of 21 different SVOCs, plus TICs, were detected in the nine subsurface soil samples analyzed for TCL SVOCs. Seventeen of the compounds were detected at concentrations above TAGM 4046 recommended soil cleanup values. SVOCs detected at levels above SCGs in at least one surface soil sample, and the concentration range for each compound, are identified below:

- acenaphthene (not detected 170,000 ppb);
- anthracene (not detected 510,000 ppb);
- benzo(a)anthracene (not detected 760,000 ppb);
- benzo(a)pyrene (not detected 530,000 ppb);
- benzo(b)fluoranthene (not detected 480,000 ppb);
- benzo(g,h,i)perylene (not detected 280,000 ppb);
- benzo(k)fluoranthene (not detected 470,000 ppb);
- chrysene (not detected 710,000 ppb);
- dibenzo(a,h)anthracene (not detected 100,000 ppb);
- dibenzofuran ((not detected 220,000 ppb);
- fluoranthene (not detected 1,500,000 ppb);
- fluorene (not detected 360,000 ppb);
- indeno(1,2,3-c,d)pyrene (not detected 280,000 ppb);
- 2-methylnaphthalene (not detected 110,000 ppb);
- naphthalene (not detected 320,000 ppb);
- phenanthrene (29 1,600,000 ppb); and
- pyrene (not detected 960,000 ppb).

The SVOC compounds most frequently detected above SCGs were:

- benzo(a)anthracene (5 of 9 samples exceeded SCG);
- benzo(a)pyrene (5 of 9 samples exceeded SCG);
- chrysene (5 of 9 samples exceeded SCG); and
- dibenzo(a,h)anthracene (5 of 9 samples exceeded SCG).

As indicated on Table 5, maximum concentrations for all 17 SVOCs detected at levels above SCGs were obtained from test pit TP-2 approximately 5 ft. below ground surface. Subsurface soils from test pit TP-2 also contained the highest concentration of SVOC TICs (2,240,000 ppb 5 ft. below ground surface). The second highest concentration of SVOC TICs was detected in test pit TP-1 (814,000 ppb 7 to 8 ft. below ground surface). TP-1 and TP-2 are located on the northern portion of

the site (see Figure 10).

4.4.3.2 Subsurface Soil - Total Petroleum Hydrocarbons

Four subsurface soil samples were collected and analyzed for TPH during the installation of the groundwater monitoring wells. Two of the samples were collected from boring MW-1 (located adjacent to test pit TP-1), and two of the samples were collected from boring MW-2 (located adjacent to test pit TP-2). As shown on Table 15, TPH results ranged from 22.3 ppm at the 10 to 12 ft. interval of TP-2 to 1140 ppm at the 8 to 10 ft. interval of TP-1. There are no SCGs for TPH.

4.4.3.3 Subsurface Soil - Volatile Organic Compounds

A total of nine different VOCs, plus TICs, were detected in the nine subsurface soil samples analyzed for TCL VOCs. Two of the compounds were detected at concentrations above TAGM 4046 recommended soil cleanup values. VOCs detected at levels above SCGs in at least one subsurface soil sample, and the concentration range for each compound, are identified below:

- methylene chloride (24 750 ppb);and
- xylene (total) (not detected 6,300 ppb)

Overall two analytical results (One result for each compound identified above) exceeded subsurface soil SCGs for VOCs. Four-additional analytical results for acetone (2 results) and methylene chloride (2 results) were detected at levels above SCGs, but these results were considered invalid due to laboratory contamination.

The xylene analytical result exceeding the subsurface soil SCG was collected from test pit TP-1. The methylene chloride result exceeding the subsurface soil SCG was collected from boring MW-2. TP-1 and MW-2 are located on the northern portion of the site (see Figure 10).

Subsurface soils from test pit TP-1 also contained the highest concentration of VOC TICs (133,000 ppb 7 to 8 ft. below ground surface and 109,000 ppb 3 to 5 ft. below ground surface). None of the other subsurface soil samples had a VOC TIC concentration above 300 ppb.

4.4.3.4 Subsurface Soil - Inorganic Compounds

A total of 23 different inorganic compounds were detected in the 10 subsurface soil samples analyzed for TAL metals. Ten of the compounds were detected at concentrations above TAGM 4046 recommended soil cleanup values. Inorganic compounds detected at levels above SCGs in at least one subsurface soil sample, and the concentration range for each compound, are identified below:

- arsenic (4.7 113 ppm);
- barium (28.5 828 ppm);
- beryllium (0.15 2.20 ppm);
- calcium (1280 85,100 ppm);

- chromium (9.40 59.3 ppm);
- copper (8.10 143 ppm);
- magnesium (396 35800 ppm);
- nickel (14 to 35.6 ppm);
- mercury (not detected 4 ppm); and
- zinc (54.7 663 ppm).

The remaining 13 inorganic compounds were detected at levels below TAGM 4046 recommended soil cleanup values. As indicated on Figure 10, subsurface soils containing inorganic compounds exceeding SCGs were located across the site. Maximum concentrations for five of the nine inorganic compounds detected at levels above SCGs were obtained from test pit TP-2 approximately 5-ft. below ground surface.

4.4.3.5 Subsurface Soil - Pesticides and PCBs

Eight subsurface soil samples were collected and analyzed for pesticides and PCBs. PCBs were not detected in any of the subsurface soil samples. The pesticide Aldrin was detected at low levels (2.6 ppb) in one subsurface soil sample. No other pesticides were detected in the subsurface soil. The analytical results for pesticides and PCBs are summarized in Table 20.

4.4.3.6 Subsurface Soil - Toxicity Characteristic Leachate Procedure (TCLP)

Two subsurface soil samples from TP-1 were analyzed for TCLP parameters. No compounds were detected above regulatory levels in the two samples analyzed for TCLP compounds. The TCLP analytical results are provided in Table 21.

4.4.4 Groundwater Quality

A total of three groundwater samples were collected from the three overburden monitoring wells completed at the site and analyzed for the parameters shown in Table 1. Several metals, VOCs, and SVOCs were detected in groundwater samples at levels above SCGs. Compounds detected at levels above SCGs in at least one groundwater sample, and the concentration range for each compound, are identified in the following sections.

The VOC and SVOC analyses also detected the presence of a number of additional compounds that are not on the standard TCL. The laboratory only calibrates the analytical instruments to identify and quantify the TCL compounds. Compounds that are not on the TCL, but are detected during analysis, are called TICs and the identity and concentration of these compounds are estimated. As indicated in Tables 22 and 24, total TIC concentrations in the groundwater samples ranged from not detected to 650 ppb for VOCs and 67 to 1,250 ppb for SVOCs. Concentration estimates for individual TICs are provided with the analytical data in Appendix C.

Groundwater sample locations are shown on Figure 4. Groundwater locations are identified as MW-1, MW-2, and MW-3 in the tables and figures. Figure 11 presents a summary of groundwater results exceeding SCGs.

People in the area are not using area groundwater for a source of drinking water. Residents and businesses in the area are served by a public water supply provided by the City of Rochester Water Bureau and there are no known private or public wells nearby.

The results of the 1999-2000 investigations are summarized in the following tables:

- Table 6 provides a statistical summary of the results;
- Table 22 summarizes the SVOC results sorted by compound;
- Table 23 summarizes the TPH results;
- Table 24 summarizes the VOC results sorted by compound;
- Table 25 summarizes the inorganic compound results sorted by sample location; and
- Table 26 summarizes the inorganic compound results sorted by compound.

The analytical data from RECRA Environmental Inc. are provided in Appendix C.

4.4.4.1 Groundwater - Semi-Volatile Organic Compounds

A total of eight different SVOCs, plus TICs, were detected in the three groundwater samples analyzed for TCL SVOCs. As indicated on Figure 11, the compound phenol was detected at a concentration above the TOGS 1.1.1 groundwater standard in one sample (MW-1). The phenol concentration in the groundwater samples ranged from not detected to 7 ppb. The remaining seven SVOCs were detected at levels below TOGS 1.1.1 groundwater standards and guidance values.

SVOC TICs were detected in each of the three groundwater samples. The highest concentration of SVOC TICs was detected at well MW-1 (1,250 ppb), followed by well MW-2 (125 ppb) and well MW-3 (67 ppb).

4.4.4.2 Groundwater - Total Petroleum Hydrocarbons

One groundwater sample from each of the three wells was collected and analyzed for TPH. As shown on Figure 11, TPH was detected in the groundwater at one well, MW-1, at a concentration of 3.7 ppm. TPH was not detected at wells MW-2 or MW-3. There are no SCGs for TPH.

4.4.4.3 Groundwater - Volatile Organic Compounds

A total of seven different VOCs, plus TICs, were detected in the three groundwater samples analyzed for TCL VOCs. Five of the compounds were detected at concentrations above TOGS 1.1.1 groundwater standards and guidance values. VOCs detected at levels above SCGs in at least one groundwater sample, and the concentration range for each compound, are identified below:

- benzene (not detected 95 ppb);
- 1,1,1-dichloroethane (not detected 13 ppb);
- ethyl benzene (not detected 49 ppb);
- 1,1,2-trichloroethane (not detected 2 ppb); and
- xylene (total) (not detected 190 ppb).

Methylene chloride was also detected at levels above SCGs in the samples collected at the site, but the methylene chloride results were considered invalid due to laboratory contamination.

Table 6 also indicates that well MW-1 contained the highest groundwater concentration of each detected VOC except 1,1-dichloroethane. VOC TICs were detected in one of the three groundwater samples. VOC TICs were detected at well MW-1 at a concentration of 650 ppb (Figure 11).

4.4.4.4 Groundwater - Inorganic Compounds

A total of 19 different inorganic compounds were detected in the three groundwater samples analyzed for TAL metals. Five of the compounds were detected at concentrations above TOGS 1.1.1 groundwater standards and guidance values. Inorganic compounds detected at levels above SCGs in at least groundwater sample, and the concentration range for each compound, are identified below:

- iron (9360 21,700 ppb);
- lead (11.1 62.4 ppb);
- magnesium (49600 76,200 ppb);
- manganese (181 1,730 ppb);
- sodium (10800 152,000 ppb);

The remaining 14 inorganic compounds were detected at levels below TOGS 1.1.1 groundwater standards and guidance values. As indicated on Figure 11, inorganic compounds exceeding groundwater SCGs were detected in each of the three wells.

4.4.5 Quality Assurance/Quality Control (QA/QC) Sample Results

The QA/QC program implemented for this project included both field and analytical components. Field components included use of acceptable sample collection methods, use of clean equipment to minimize the potential for cross contamination, and trip blank samples. Analytical components included instrument calibration, laboratory blanks, and MS/MSD samples. Overall, the quantitative results of the QA/QC program indicated the data collected by the NYSDEC at Vacuum Oil were of acceptable quality for the objectives of the investigation except for methylene chloride. As discussed below, laboratory contamination of methylene chloride resulted in the sample results for methylene chloride to be invalidated or considered biased high.

Trip blanks consisted of vials filled in the RECRA Labnet laboratory with uncontaminated water. These vials accompanied sample collection personnel in the field and were treated identically to other water samples but were never opened. One (1) trip blank sample was collected by NYSDEC during this investigation for VOC analysis. The trip blank results provided in Table 24 indicate the presence of methylene chloride at a concentration of 9 ppb. The concentration of methylene chloride in the associated groundwater samples (B70622, B70623, and B70624) and method blank samples was 8 ppb. These results indicate that the methylene chloride detected in samples B70622, B70623, and B70624 was the result of laboratory contamination.

MS/MSD results, method blank results and additional QA/QC data are provided along with the analytical results in Appendix C. The results of the analytical QA/QC program are summarized below:

SVOCs

- The samples were extracted and analyzed within required holding times.
- Non-target compounds were detected in the samples.
- Due to a suspected GPC malfunction, a reserve pre-GPC aliquot was analyzed and reported in association with sample B70617.
- Samples B70601 and B70602 required a 20-fold dilution due to high levels of non-target compounds.
- All samples B70603 to B70615 (except B70605 and B70612) required 2 to 1000-fold dilutions due to high levels of both target and non-target compounds.
- Sample B70623 required a 5-fold dilution due to high levels of non-target compounds.
- Three of 32 surrogate recoveries were outside EPA QC limits for samples B70601 and B70602. However, EPA CLP surrogate recovery criteria were met (i.e. no more than one outlier per fraction {acid and base neutral} and no recoveries less than 10%).
- Two of 104 obtainable surrogate recoveries were outside EPA QC limits for samples B70603 to B70615. However, EPA CLP surrogate recovery criteria were met (i.e. no more than one outlier per fraction {acid and base neutral} and no recoveries less than 10%).
- All surrogate recoveries were within EPA QC limits for samples B70617, B70622, B70623, and B70624.
- Five of 11 blank spike recoveries were outside EPA QC limits for samples B70601 and B70602. The out of limit recoveries were slightly high; however, there was no impact on the data.
- Five of 11 blank spike recoveries were outside EPA QC limits for samples B70603 to B70615.
- Two of 11 blank spike recoveries were outside EPA QC limits for sample B70617.
- Two of 11 blank spike recoveries were outside EPA QC limits for samples B70622 to B70624.
- Two of 22 matrix spike recoveries were outside EPA QC limits for samples B70603 to B70615. The spike concentration of Pyrene proved to be too low for the sample matrix (Pyrene was present in the sample).
- Five of 22 matrix spike recoveries were outside EPA QC limits for samples B70622 to B70624.
- Some method blanks contained the common laboratory contaminants Di-n-butylphthalate and bis(2-ethylhexyl)phthalate at levels less than the CRQL.
- All internal standard area and retention time criteria were met.

TPH

- For samples B70616 to B70620, the matrix spike recovery for total petroleum hydrocarbons was below the 75 to 125% control limits.
- For samples B70616 to B70620, the replicate analysis for percent solids was within the 20% RPD control limit, however replicate analysis for TPH was outside the control limit.
- The poor recovery and reproducibility for TPH for samples B70616 to B70620 may be

attributed to low spike level and sample inhomogeneity.

VOCs

- The required holding time for analysis was met.
- Non-target compounds were detected in the samples.
- Samples B70601, B70602, and B70617 required medium level analysis due to high levels of both target and non-target compounds.
- Four of 18 surrogate recoveries were outside EPA QC limits for samples B70601 and B70602. The analysis of the method blank fulfills the reanalysis requirement of sample 99LVN492-MB1 BS. The surrogate recovery criteria were not met for samples B70601 and B70602 due to the TIC interferences; however, samples were not reanalyzed because no significant target compounds were detected in the samples.
- Two of 60 surrogate recoveries were outside EPA QC limits for samples B70603 to B70615. Sample B70610 was reanalyzed due to internal standard, surrogate recoveries being out of range and the contamination of methylene chloride. The initial analysis also had surrogate, internal standard out of criteria and higher concentration of methylene chloride contamination. Further analysis was not performed due to exceeded holding time.
- All surrogate recoveries were within EPA QC limits for samples B70617, B70622, B70623, and B70624.
- The soil method blank samples associated with samples B70603 to B70615 contained the common laboratory contaminants methylene chloride, acetone, and 2-butanone at concentrations not exceeding 23 ppb, 10 ppb, and 2 ppb, respectively. The analytical results for these compounds, especially methylene chloride, for samples B70603 to B70615 may be biased high due to laboratory contamination as indicated by the method blank results.
- The soil method blank, 99LVN490-MB1, contained the common laboratory contaminants methylene chloride, acetone, and 2-butanone at concentrations of 2000 ppb, 420 ppb, and 130 ppb, respectively. Method blank sample 99LVN490-MB1 is associated with samples B70601 and B70602. The analytical results for methylene chloride, acetone, and 2-butanone for samples B70601 and B70602 were similar to or less than the associated method blank results indicating that the methylene chloride detected in the samples was the result of laboratory contamination and not site soil contamination. Based on this information, the analytical results for methylene chloride, acetone, and 2-butanone for samples B70601 and B70602 were considered invalid.
- The soil method blank, 00LVH052-MB1, contained the common laboratory contaminants methylene chloride and acetone at concentrations of 530 ppb and 380 ppb, respectively. Method blank sample 00LVH052-MB1 is associated with sample B70617. Acetone was not detected in sample B70617. Methylene chloride was detected in sample B70617 at a concentration of 750 ppb. The concentration of methylene chloride in sample B70617 may be biased high due to laboratory contamination as indicated by the method blank results.
- The water method blank samples associated with samples B70622 to B70624 contained the common laboratory contaminants methylene chloride and acetone at concentrations of 8 ppb each. The analytical results for methylene chloride for samples B70622 to B70624 were the same as the associated method blank results indicating that the methylene chloride detected

in the samples was the result of laboratory contamination and not groundwater contamination. Based on this information, the analytical results for methylene chloride for samples B70622 to B70624 were considered invalid.

- All matrix spike recoveries were within EPA QC limits.
- One blank spike recovery was outside EPA QC limits.
- All internal standard area and retention time criteria were met.

Inorganic Compounds

- All analyses were performed within the required hold times.
- All initial and continuing calibration verifications (ICV/CCVs) were within control limits.
- All initial and continuing calibration blanks (ICB/CCBs) were within control limits.
- All preparation/method blanks were within method criteria.
- All ICP interference check samples (ICSA and ICSAB) were within control limits with the exception of the ending ICSAB for selenium at 126.6% in TA1215A associated with samples B70601 and B70602. All of the samples were surrounded by CCVs which were within the control limits. The concentration of the interfering analytes was lower in the samples as compared to the ICSAB solution. Therefore, it is unlikely that the samples are significantly impacted.
- All laboratory control samples (LCS) were within the 80 to 120% control limits.
- All serial dilution percent differences were within method control limits.
- The TCLP extract from sample B70601 was selected for the matrix spike for this analytical batch. All TCLP matrix spike recoveries were greater than 50% as per method criteria.
- The matrix spike recovery for 1 analyte for samples B70617 to B70620, was outside the 75 to 125% control limits.
- The matrix spike recoveries for 2 analytes for samples B70603 to B70615 were outside the 75 to 125% control limits.
- The matrix spike recoveries for 2 analytes for samples B70622 to B70624 were outside the 75 to 125% control limits.
- The duplicate analysis for 1 analyte for samples B70617 to B70620 was outside the method criteria.

Pesticide/PCB

- Linearity and breakdown criteria were met for each of the analytical columns.
- Retention time criteria were met for all compounds on both analytical columns.
- Resolution of all pesticides in the Resolution Check Standard were within EPA QC limits.
- The RPDs of the pesticides in the Individual Mixes analyzed for calibration verification were within 25% for both analytical columns.
- The RPDs of the pesticides in the Performance Evaluation Mixes analyzed for calibration verification were within 25% for both analytical columns.
- All obtainable surrogate recoveries were within the advisory EPA QC limits.
- All blank spike recoveries were within EPA QC limits.
- Matrix spike recoveries for samples for samples B70603 to B70615 were unobtainable due to the dilution required for analysis.
- Recoveries of pesticides for the Florisil Cartridge Check were within EPA QC limits.
- Recoveries of pesticides for the GPC Calibration Check were within EPA QC limits.

SVOCs - TCLP

- All required holding times for extraction and analysis were met.
- All surrogate recoveries were within EPA QC limits.
- All blank spike recoveries were within EPA QC limits.
- Internal standard area criteria were not met for the method blank spike 99LE1549-MB1 BS. The analysis of associated blank spike duplicate 99LE1549-MB1 BSD fulfills the reanalysis requirement.

VOC - TCLP

- The required holding time for analysis was met.
- The samples were analyzed at five-fold dilution due to the leachate matrix.
- All surrogate recoveries were within EPA OC limits.
- Internal standard area and retention time criteria were met.

Pesticide - TCLP

- All required holding times for extraction and analysis were met.
- All method blanks were below the reporting limits for all target compounds.
- All surrogate recoveries were within acceptance criteria.
- All blank spike recoveries were within acceptance criteria.
- All continuing calibration standards analyzed prior to sample extracts were within acceptance criteria.

Herbicide - TCLP

- All required holding times for extraction and analysis were met.
- All method blanks were below the reporting limits for all target compounds.
- One of six surrogate recoveries were outside acceptance criteria.
- All blank spike recoveries were within acceptance criteria.
- All initial calibrations were within acceptance criteria.
- All continuing calibration standards analyzed prior to sample extracts were within acceptance criteria.

4.5 CONCLUSIONS

Significant findings of this investigation relative to project objectives are provided below.

4.5.1 Extent of Contamination

The 1999-2000 investigation was designed to provide additional information concerning the nature and extent of contamination in the overburden on a portion of the property formerly occupied by the Vacuum Oil Company. The 1999-2000 investigation was not designed to completely define the nature and extent of contamination at the site. Rather the scope of work was designed to provide some information about all areas of the site, identify some heavily contaminated areas, and, if possible, determine if a consequential amount of hazardous waste was disposed of on the site.

Elevated levels of SVOCs, VOCs, inorganic compounds, and pesticides were detected throughout the site. The extent of contamination for specific compounds is discussed below. No PCBs were detected at the site during the 1999-2000 investigation.

4.5.1.1 Semi-Volatile Organic Compounds and Total Petroleum Hydrocarbons

The TPH soil gas results indicated that there were two large areas with the potential for significant petroleum related contamination at the site. The first area was centered around soil gas sample point B-3 and the second area was centered around soil gas sample point F-5 (see Figure 7). All of the test pits, except TP-10, were located within these two TPH plumes. The test pit and soil boring sampling results indicated that the soils in the B-3 plume area contained more SVOC compounds at higher concentrations than the soils in the F-5 plume. For example, Figure 10 indicates that a total of 17 different SVOCs were detected at concentrations above SCGs in the subsurface soils at TP-2 (in the B3 plume area) and all of those compounds were detected at concentrations between 100,000 ppb and 1,600,000 ppb. By comparison, 7 different SVOCs were detected at concentrations above SCGs in the subsurface soils at TP-8 (in the F-5 plume area) and none of those compounds were detected at concentrations above 10,000 ppb.

SVOCs were detected above SCGs in surface and subsurface soil samples collected throughout the B-3 plume area. The most heavily SVOC contaminated soils were encountered in the vicinity of soil gas location C-3. The C-3 area included surface soil location SS-2, test pit TP-2 and well MW-2 (see Figures 7, 9, and 10). SVOCs exceeding SCGs were also detected in the B-3 plume in surface soil sample SS-1 and test pit TP-3 indicating that the SVOC contamination may be widespread.

Test pit TP-1 and well MW-1 were located immediately adjacent to soil gas point B-3 (Figure 7). No SVOCs were detected above SCGs in the subsurface soil samples collected from TP-1 or MW-1, but soils from MW-1 contained the highest TPH concentration (1,140 ppm) and soils from TP-1 contained the second highest concentration of SVOC TICs (814,000 ppb; Figure 10). The nature of the contamination in the soils at TP-1 and MW-1 also appeared to be different from TP-2, MW-2, and TP-3. The PID field screening results, provided in Appendix A, did not indicate the presence of contamination in the soils at TP-2 or TP-3. The PID did indicate the presence of some contamination in the 6 to 12 ft. interval of MW-2. At TP-1 and MW-1, the contamination was more volatile in nature as the PID results indicated contamination was present from 4 ft. until refusal at 16.5 ft and the soils had a strong petroleum odor.

The groundwater results (see Figure 11), indicate that the SVOC contamination at the site has primarily impacted site soils as phenol was the only SVOC detected in the groundwater at concentrations above SCGs. Phenol was detected at a concentration of 7 ppb at well MW-1, the NYS groundwater standard for phenol is 1 ppb. Phenol was not detected in the groundwater at wells MW-2 or MW-3.

Figure 11 also indicates that the groundwater at MW-1 was more contaminated with SVOCs and TPH than MW-2. This is based on the following:

Phenol at MW-1 was the only SVOC detected in the groundwater at concentrations above

SCGs;

- The groundwater at MW-1 contained a higher concentration of SVOC TICS (1,250 ppb) than MW-2 (125 ppb); and
- The groundwater at MW-1 contained a higher concentration of TPH (3.7 ppm) than MW-2 (not detected).

These groundwater results do not correlate well with the soil results which indicated that the soils in the vicinity of MW-2 were more contaminated with SVOCs than the soils in the vicinity of MW-1.

4.5.1.2 Volatile Organic Compounds

The VOC soil gas results detected the presence of petroleum-related VOCs (BTEX, trimethylbenzenes, and naphthalene) and chlorinated VOCs (1,1,1-trichloroethane, trichloroethene, and tetrachloroethene). The soil gas data, presented in Appendix E, indicated a correlation between the petroleum VOC soil gas results and the TPH soil gas results. Subsequent sampling of the surface soil, subsurface soil and groundwater indicated that petroleum-related VOC contamination was present in the subsurface soil and groundwater in the vicinity of MW-1 and TP-1 (see Figures 10 and 11). In the subsurface soil from TP-1, xylene was detected at a concentration of 6,300 ppb at MW-1. The TAGM 4046 recommended soil cleanup objective for xylene is 1,200 ppb. Subsurface soil samples from TP-1 also contained the highest level of VOC TICs (133,000 ppb). The next highest level of VOC TICs in the subsurface soil was 237 ppb from TP-3. In the groundwater, the petroleum-related compounds benzene, ethyl benzene, and xylene were detected above NYS groundwater standards at well MW-1 which is adjacent to test pit TP-1 (see Figure 11). Petroleum-related VOCs were not detected in wells MW-2 or MW-3.

Chlorinated VOCs were detected less frequently in the soil vapor than the petroleum VOCs and there was not a strong correlation between the chlorinated VOC soil gas results and the soil gas results for other compounds. Total chlorinated VOC concentrations detected in the soil gas are shown on Figure 8. Figure 8 indicated that the area around soil gas points C-3 and D-3 was a potential source of chlorinated compound contamination, but additional sampling at the site did not identify the presence of a consequential chlorinated VOC source area. This conclusion was based on the following:

- Except for methylene chloride, no chlorinated VOCs were detected in the surface soil samples (Table 9).
- In the subsurface, chlorinated VOCs (excluding methylene chloride) were detected in one sample (TP-3) at a total concentration of about 42 ppb. Trichloroethene was the individual chlorinated VOC detected at the highest concentration, 28 ppb, which was much lower than the TAGM 4046 recommended soil cleanup objective of 700 ppb (see Tables 16 and 17).
- In the groundwater, chlorinated compounds (excluding methylene chloride) were detected at concentrations above NYS groundwater standards at wells MW-1 and MW-2 (Figure 11). 1,1-Dichloroethane was detected at the highest concentration, 13 ppb, which is only slightly higher than the NYS groundwater standard of 5 ppb.
- As discussed in Section 4.4.5, laboratory contamination resulted in invalid and biased high

analytical data for methylene chloride.

4.5.1.3 Inorganic Compounds

A total of 14 different inorganic compounds that were detected at concentrations above SCGs in either the surface soil, subsurface soil, or groundwater during the 1999-2000 investigation. The following two compounds were identified as compounds of concern for additional review:

- arsenic; and
- mercury.

These compounds were identified based on the number and magnitude of SCG exceedances (see Tables 4, 5 and 6) and the potential hazards of the compound in the environment.

Arsenic: Elevated levels of arsenic were detected throughout the site, particularly in the surface soil and subsurface soil. In the surface soil, elevated levels of arsenic (greater than the Eastern USA background concentration of 12 ppm) were detected in two of the five surface soil samples: SS-2 (60.7 ppm) and SS-5 (13.5 ppm). As shown on Figure 9, SS-2 was located in the northern portion of the site. SS-5 was located in the southern portion of the site in the vicinity of former "sludge pits" that were excavated in 1992 (Figure 3). The sludge pit soils reportedly contained arsenic at concentrations up to 930 ppm.

In the subsurface soils, elevated levels of arsenic (greater than the Eastern USA background concentration of 12 ppm) were detected in three of the nine test pits and borings sampled for metals at concentrations ranging from 16.1 ppm to 113 ppm (see Figure 10). The highest concentration of arsenic detected in the subsurface soil was 113 ppm at test pit TP-8. Elevated levels of arsenic were also detected in TP-5 (37.7 ppm) and TP-2 (16.1 ppm). Test pit TP-2 was located in the vicinity of surface soil sample location SS-2 where elevated levels of arsenic were also detected. Test pit TP-8 was located in the western portion of the site and TP-5 was located in the southeastern portion of the site. There were no other sample locations in the immediate vicinity of either TP-8 or TP-5. Figure 9 and Figure 10 indicate that there may be a correlation between elevated arsenic concentrations and elevated SVOC concentrations in the soil.

Site specific background samples were not collected as part of the 1999-2000 investigation, but samples collected at other sites in the City of Rochester indicated that the Eastern USA background concentration of 12 ppm identified in TAGM 4046 is an appropriate upper limit to use as a background level for arsenic. Based on these data, the elevated levels of arsenic detected at the site are likely the result of past site activities.

Arsenic was detected in each of the three groundwater samples, but the results were all less than the NYS groundwater standard of 25 ppb (Tables 25 and 26). The highest concentration of arsenic detected in the groundwater was 17 ppb at well MW-2. Well MW-2 was located adjacent to surface soil sample point SS-2 and test pit TP-2 where elevated levels of arsenic were detected.

Mercury: Elevated levels of mercury were detected throughout the site in the surface and

subsurface soils. In the surface soil, elevated levels of mercury (greater than the TAGM 4046 recommended cleanup value of 0.1 ppm) were detected in each of the five surface soil samples. The highest mercury concentration was 2.1 ppm at SS-4 located in the southwest portion of the site (see Figure 9).

In the subsurface soil, elevated levels of mercury (greater than the TAGM 4046 recommended cleanup value of 0.1 ppm) were detected in three of the nine test pits and borings sampled for metals at concentrations ranging from 0.12 ppm to 4 ppm (see Figure 10). The highest concentration of mercury detected in the subsurface soil was 4 ppm at test pit TP-1. Elevated levels of arsenic were also detected in TP-3 (0.12 ppm), TP-2 (1 ppm), and TP-10 (1.5 ppm). TP-1, TP-2, TP-3, and TP-10 are located in the northern portion of the site.

Site specific background samples were not collected as part of the 1999-2000 investigation, but samples collected at other sites in the City of Rochester indicated that approximately 1 ppm is an appropriate upper limit to use as a background level for mercury. Based on these data, two surface soil samples (SS-4 and SS-5) and three subsurface soil samples (TP-1, TP-2, and TP-10) contained levels of mercury that are likely the result of past site activities.

Mercury was not detected in the groundwater at concentrations above NYS groundwater standards.

4.5.1.4 Pesticides

The 1999-2000 investigation indicated the potential for limited pesticide contamination. Elevated levels of the pesticides dieldrin and heptachlor epoxide were detected in surface soil sample SS-1 (Figure 9). Dieldrin was detected at a concentration of 74 ppb and heptachlor epoxide was detected at a concentration of 30 ppb. The TAGM 4046 recommended cleanup objectives for dieldrin and heptachlor epoxide are 44 ppb and 20 ppb, respectively.

4.5.2 The NYS Listing of Inactive Hazardous Waste Disposal Sites

As discussed below, the results of the 1999-2000 investigation indicated that site contamination resulted from the disposal of petroleum-related compounds at the site. Some hazardous waste may have also been disposed of at the site, but the 1999-2000 investigation results did not identify a consequential amount of hazardous waste. Based on the results of the investigation NYSDEC will not include the Vacuum Oil site in the NYS Listing of Inactive Hazardous Waste Disposal Sites. This conclusion is based on the following:

- The primary contaminants at the site are petroleum related SVOCs and VOCs. This is consistent with the site's former use as an oil refinery.
- Site contamination could not be identified as a characteristic hazardous waste as defined in 6 NYCRR 371.3. Waste soils and water generated during the 1999-2000 investigation were tested and were not ignitable, corrosive, reactive, or toxic. TCLP analytical results for subsurface soil samples from TP-1 (see Table 21), were below regulatory levels. During the 1992 soil removal at the site, arsenic was detected in the sludge pit soils at concentrations up to 930 ppm, but TCLP results for the sludge pit soils were below regulatory levels. The

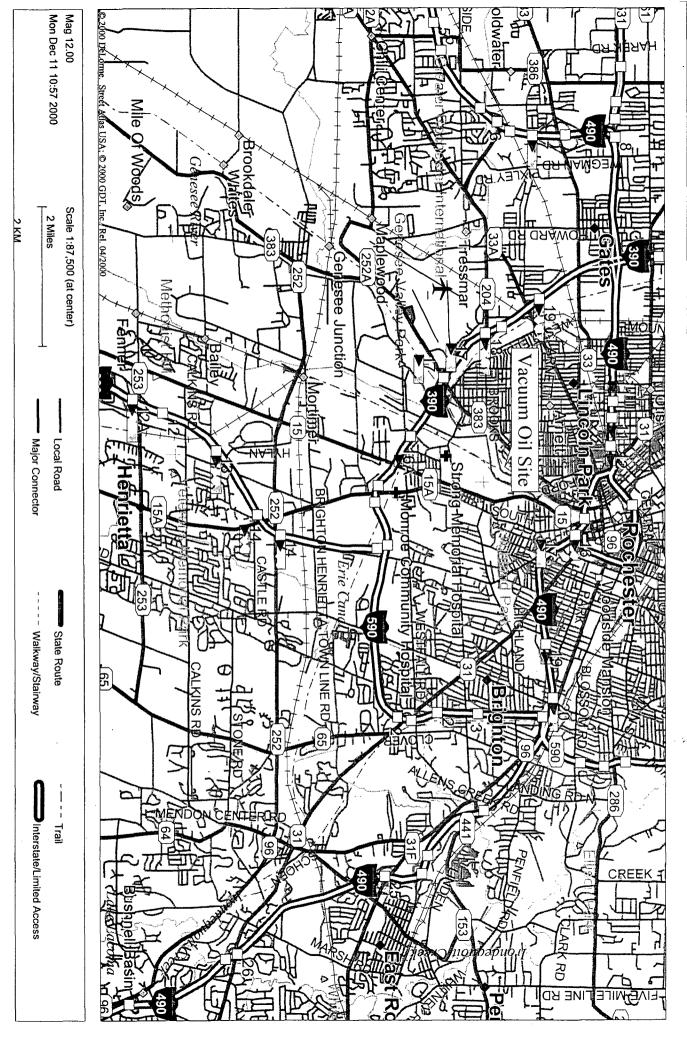
highest arsenic concentration detected in the soil during the 1999-2000 investigation was 113 ppm.

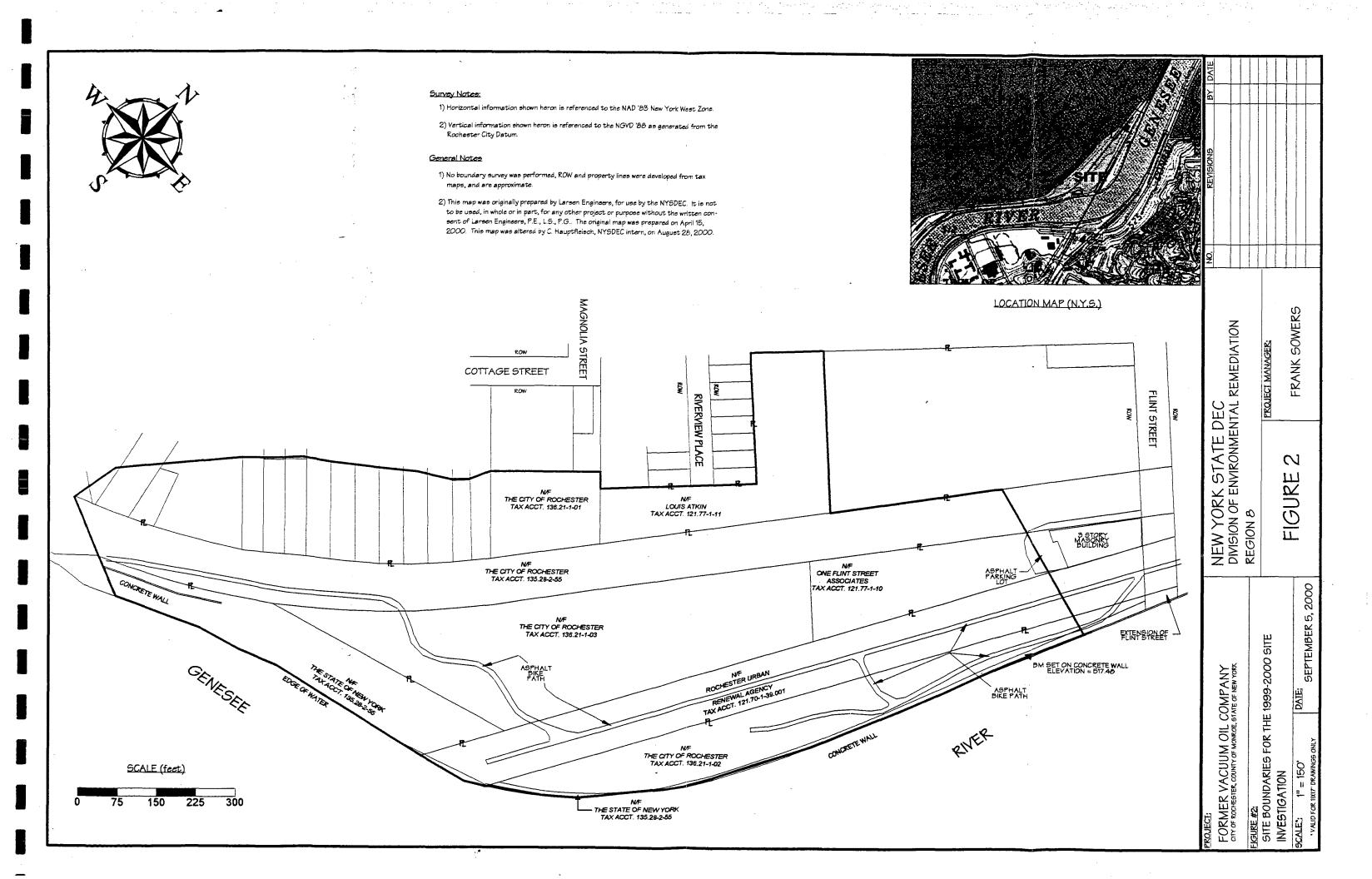
- The petroleum contamination at the site could not be identified as a listed hazardous waste as defined in 6 NYCRR 371.4. The following hazardous waste codes apply to specific wastes from petroleum refineries: F037, F038, and K048 to K052. Since the NYSDEC has no knowledge as to what operations at Vacuum Oil caused the petroleum contamination, it is not appropriate to classify the site using the listed hazardous waste codes.
- The chlorinated compounds detected at the site may have been caused by the disposal of listed hazardous waste (either waste code F001 or F002), but the sampling results indicated that the amount of hazardous waste disposed was not consequential.

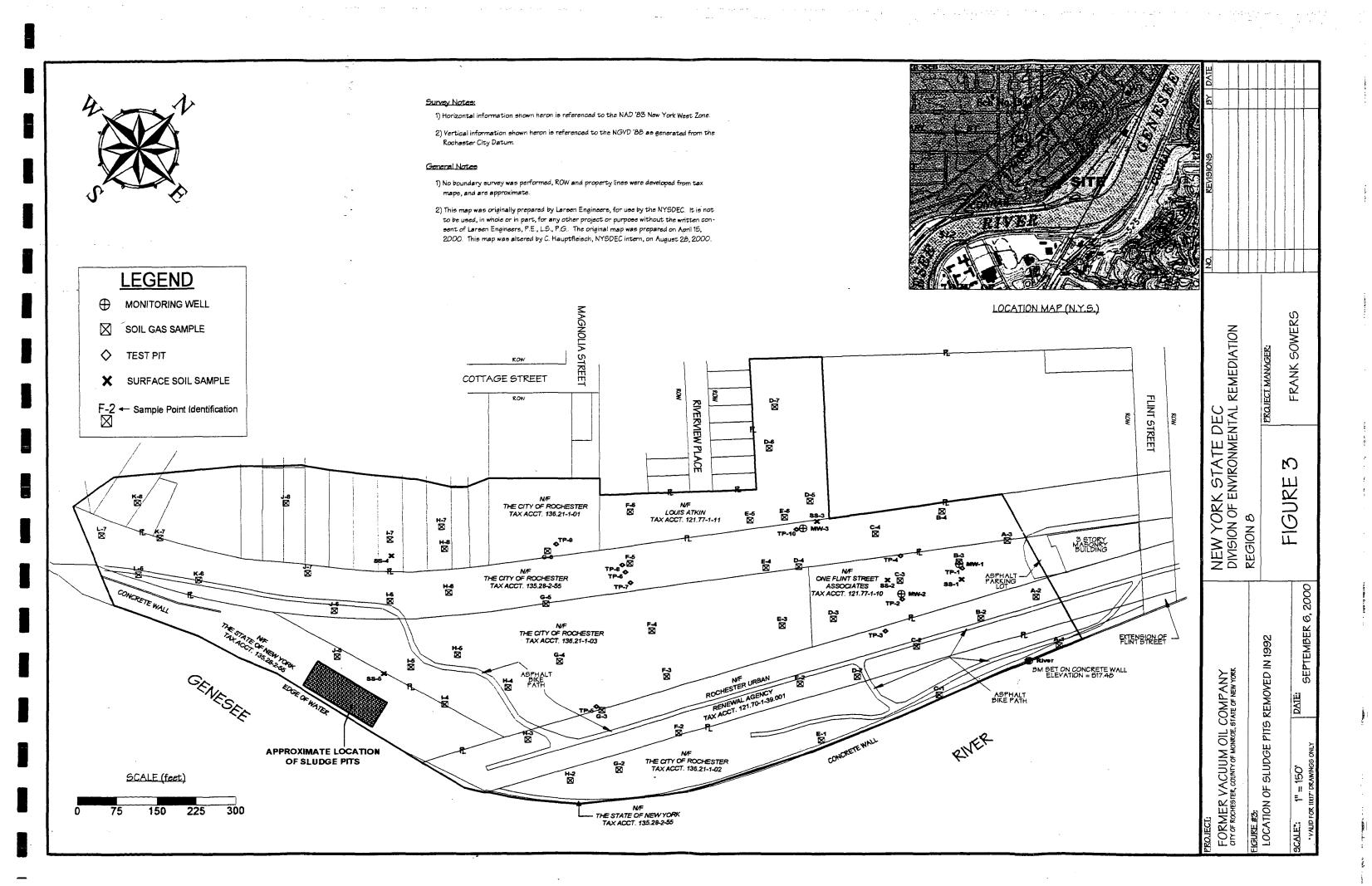
5.0 RECOMMENDATIONS

In 1999-2000, the NYSDEC conducted a site investigation of a portion of the former Vacuum Oil Company facility in Rochester, New York. Soil gas, surface soil, subsurface soil, and groundwater samples were collected at the site and analyzed for TCL SVOCs, TPH, TCL VOCs, TAL metals, cyanide, pesticides, PCBs, and TCLP.

The results of the NYSDEC investigation indicated widespread petroleum contamination in the surface soil, subsurface soil, and groundwater at the site. To a lesser extent, chlorinated VOCs, metals, and pesticides were also detected above NYS standards at the site


The results of the 1999-2000 investigation indicated that site contamination was not the result of disposal of a consequential amount of hazardous waste. NYSDEC will not include the site in the New York State Listing of Inactive Hazardous Waste Disposal Sites at this time.




•

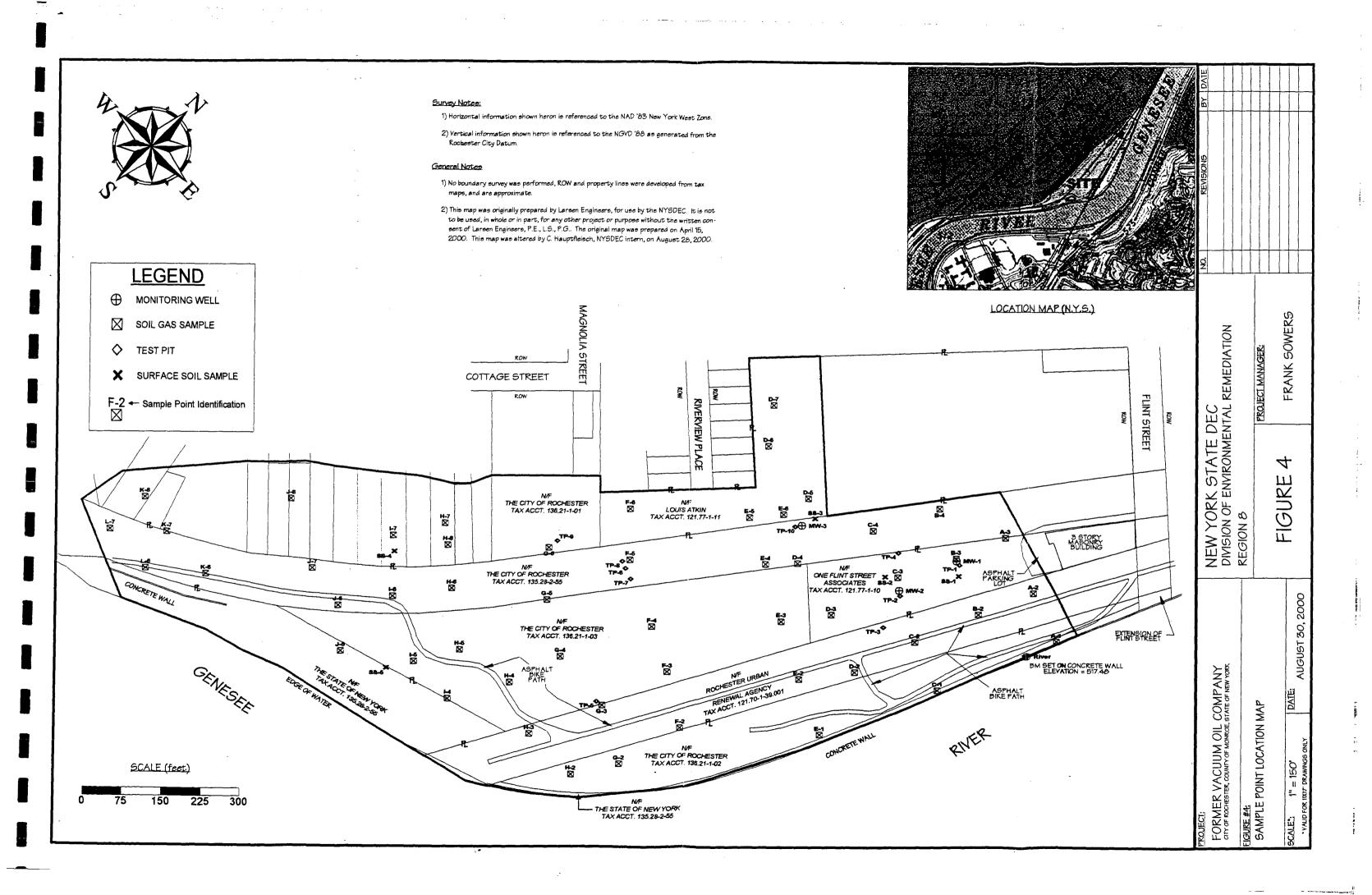
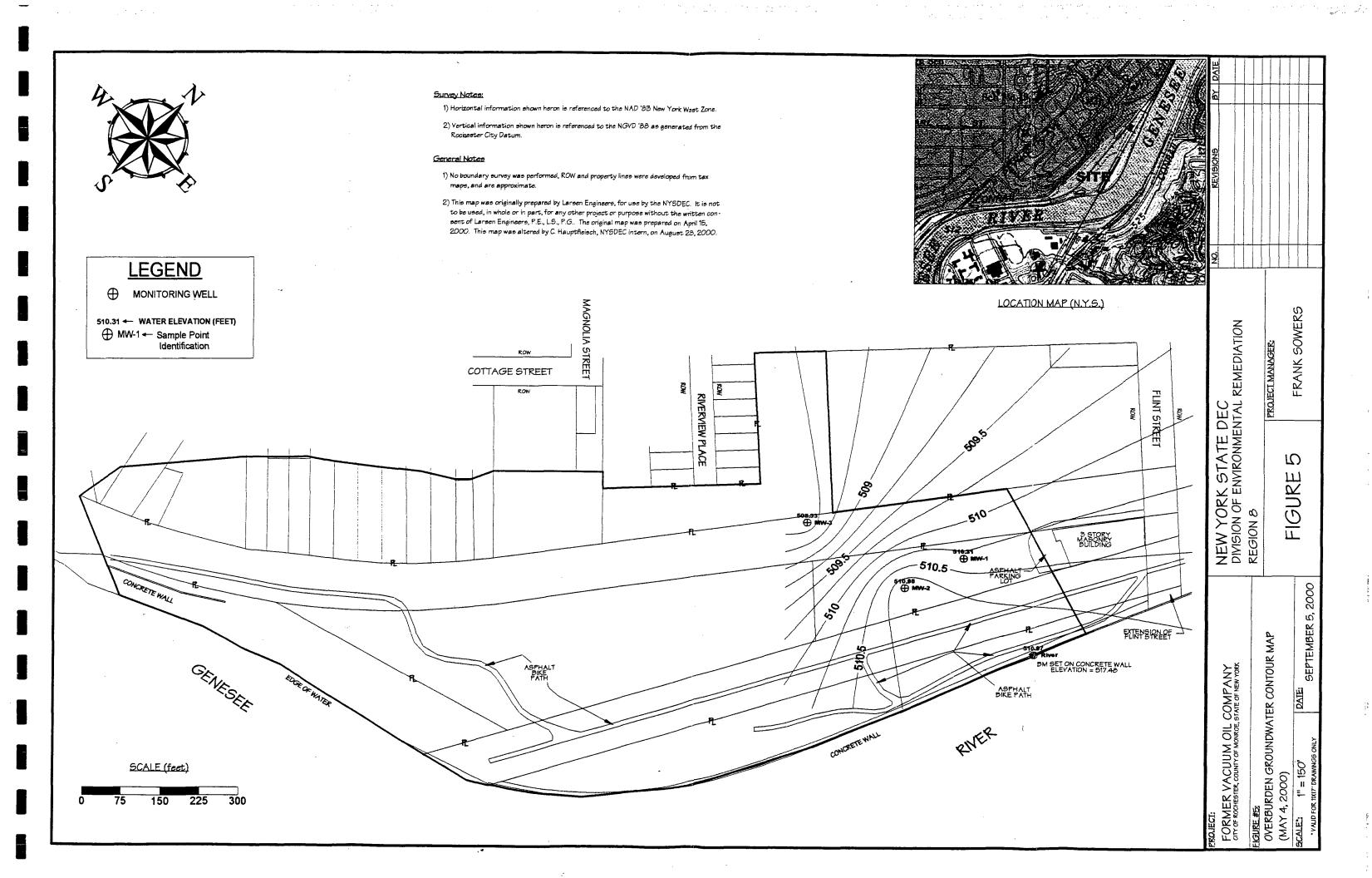
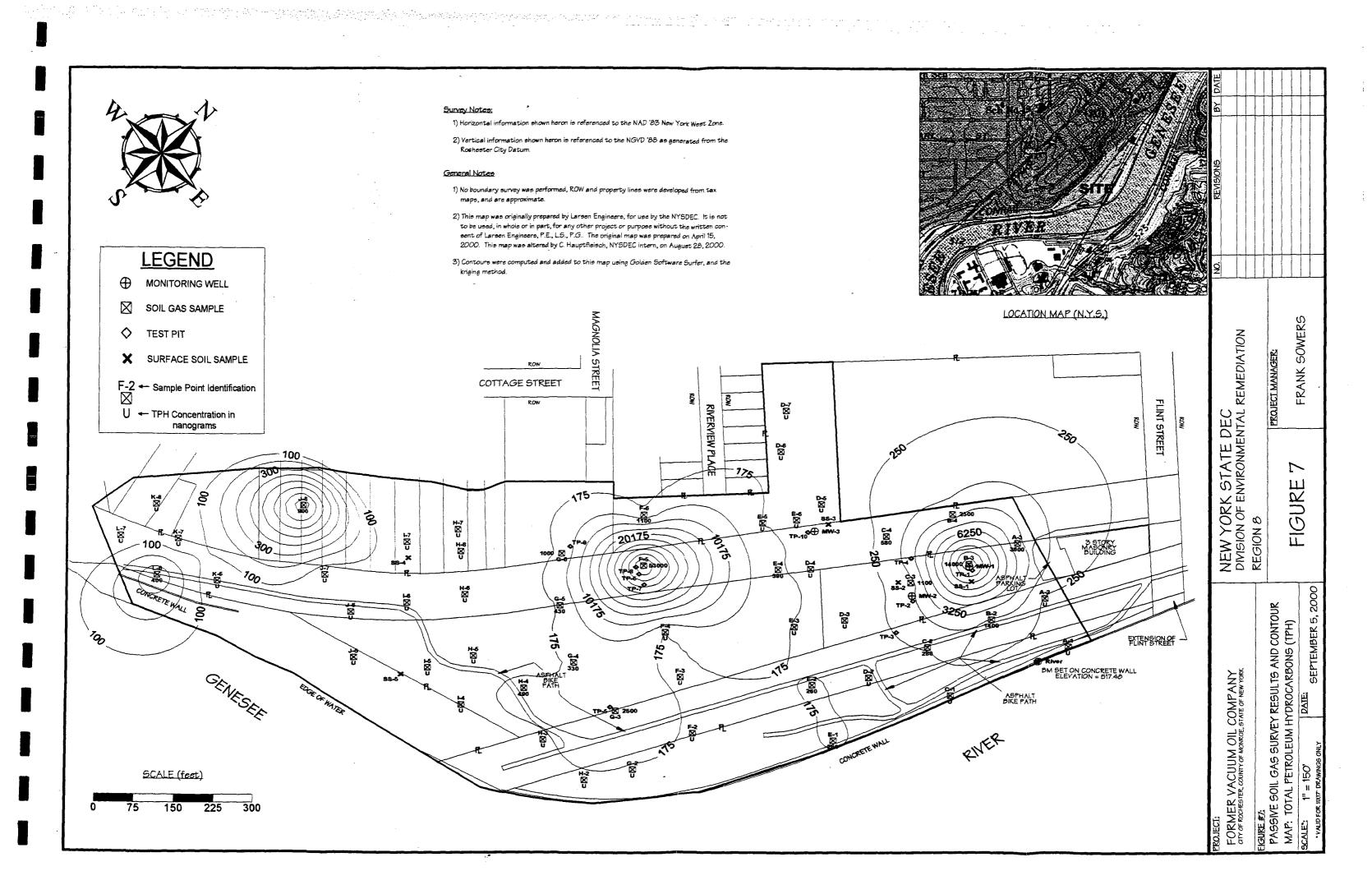
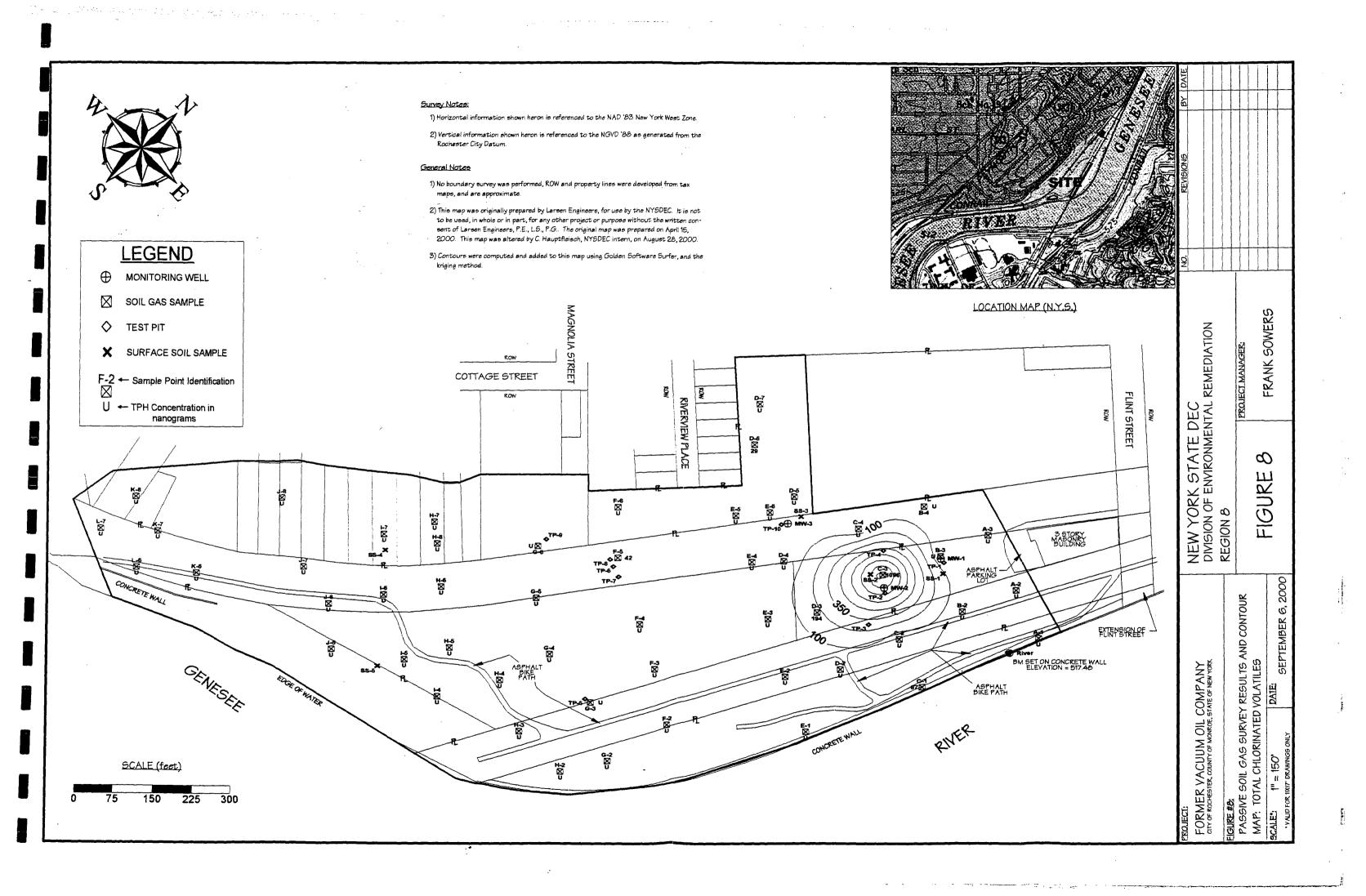
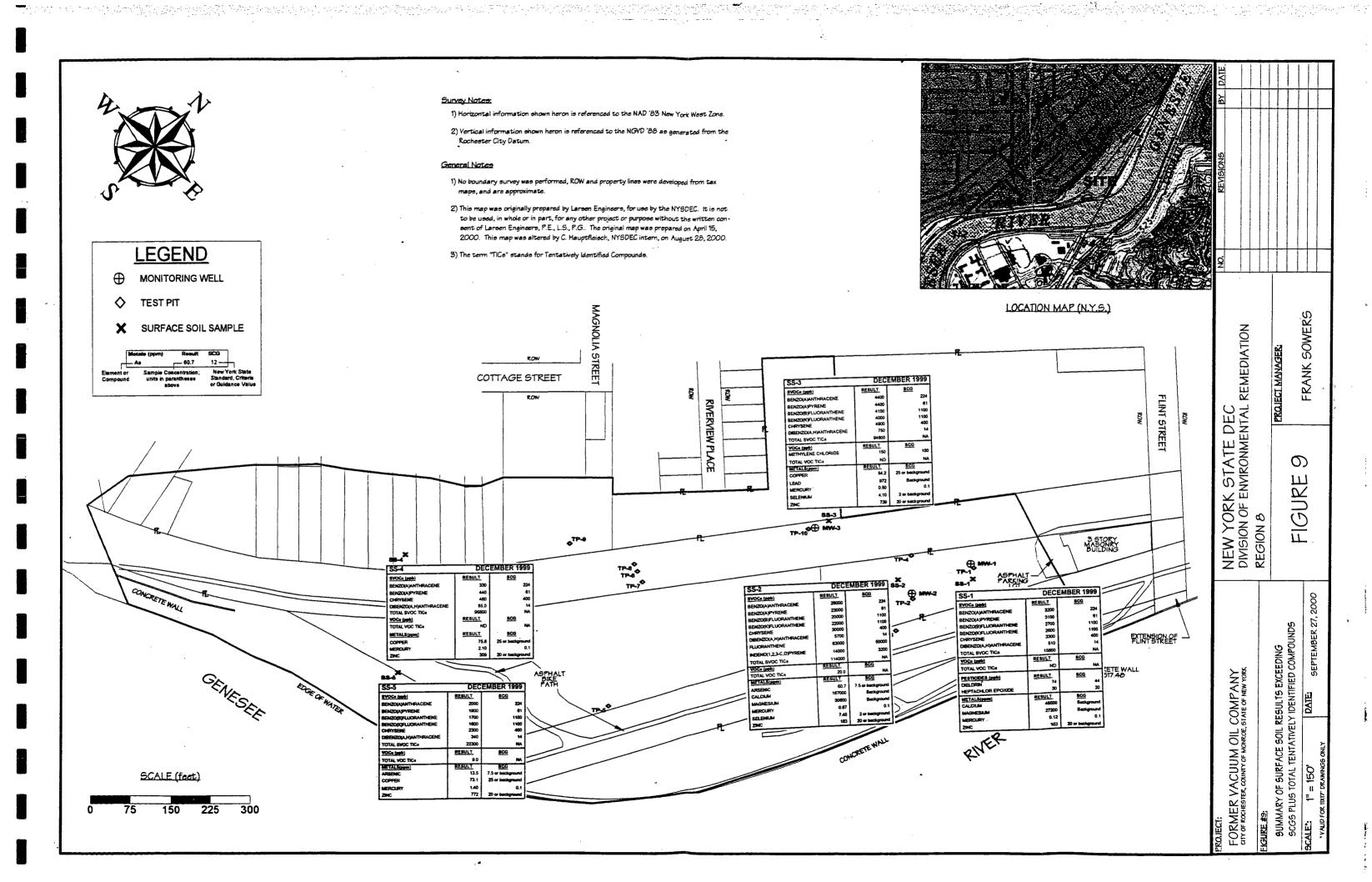

FIGURES

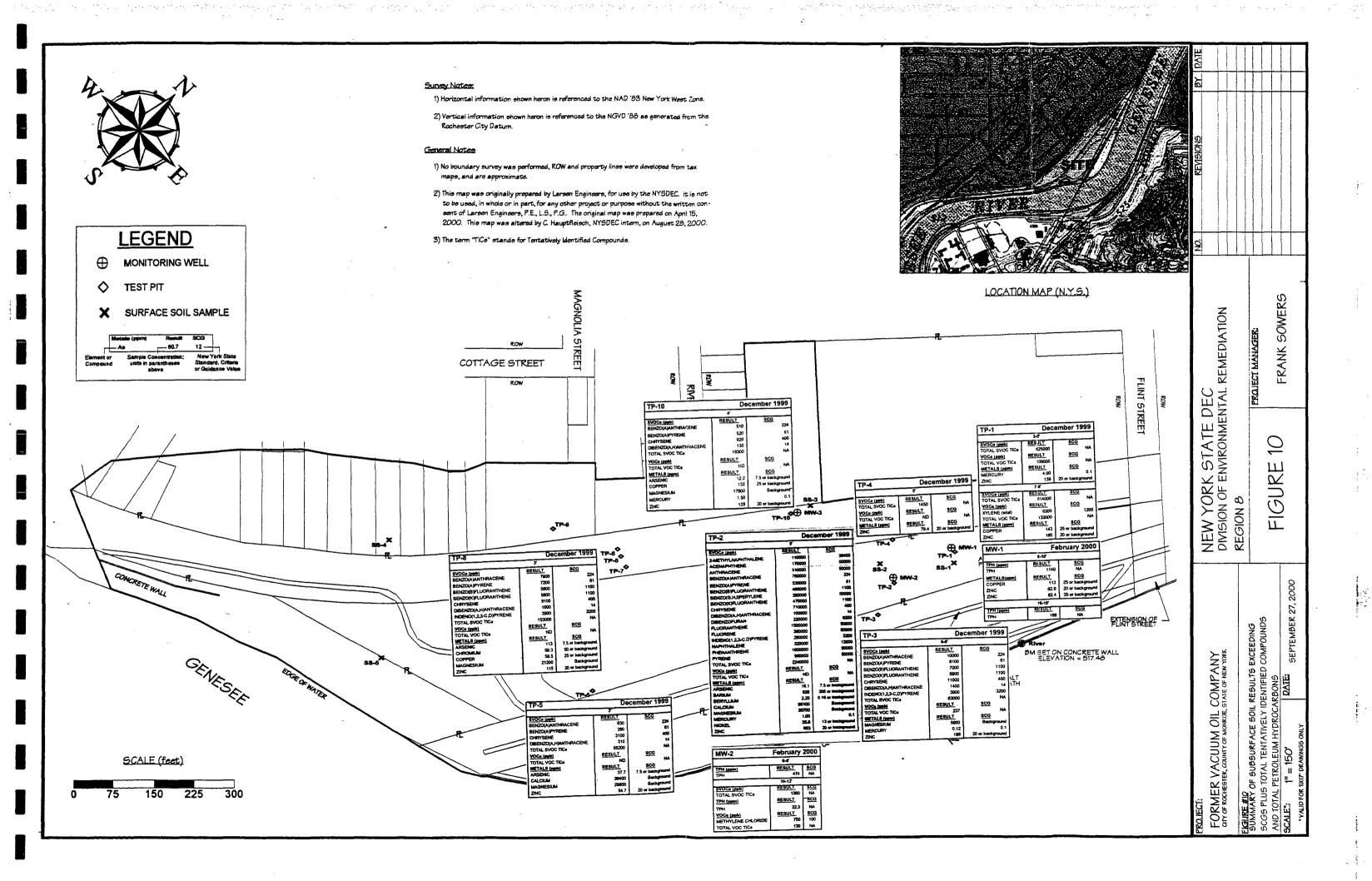
Figure 1. Rochester, New York Location of Former Vacuum Oil Facility

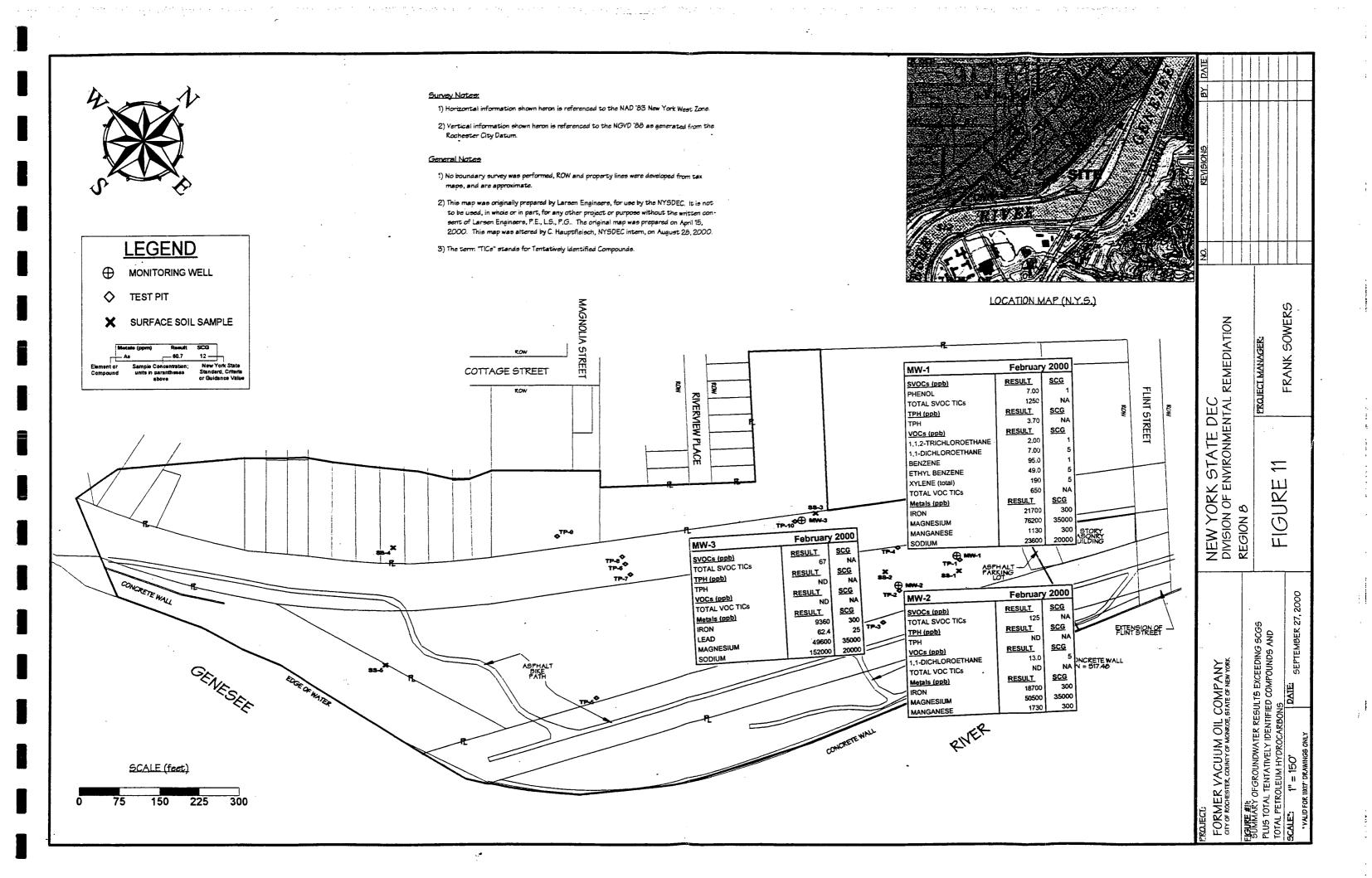





FIGURE 6.




Extent of Vacuum Oil Company
1999-2000 Investigation Area
1989 Investigation Area



TABLES

Table 1. Sample Collection/Analytical Matrix Former Vacuum Oil Company - 1999-2000 Site Investigation

Notes	7K/W - 3	MW-2	MW-I	MW-1 (16-18')	MW-1 (8-10')	MW-2 (10-12')	MW-2 (6-8')	TP-10 (4')	TP-8 (3')	TP-5 (3')	TP-4 (4')	TP-3 (8-9')	TP-2 (5')	TP-1 (7-8')	TP-1 (3-5')	SS-5	SS-4	SS-3	SS-2	SS-1	Sample Location	
Walci	Water	Water	Water	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Surface Soil	Matrix	
2/23/00	00/16/1	2/23/00	2/23/00	2/08/00	2/08/00	2/08/00	2/08/00	12/06/99	12/06/99	12/06/99	12/06/99	12/06/99	12/06/99	12/06/99	12/06/99	12/07/99	12/07/99	12/07/99	12/07/99	12/07/99	Sample Collection Date	
*	•	x (+MS/MSD)	x			Х		×	x (+MS/MSD)	×	×	x	Х	×	×	Х	X	х	Х	Х	VOCs (ASP Method 95-1)	
×	¥	x (+MS/MSD)	х			×		х	x (+MS/MSD)	×	×	×	x	×	×	х	X	х	Х	Х	SVOCs (ASP Method 95-2)	
								×	x (+MS/MSD)	×	×	×	×	×	×	x	x	x	x	×	Pesticides/ PCBs (ASP Method 95-3)	Analy
×	ť	x (+MS/MSD)	×		хо	·	×	×	x (+MS/MSD)	×	×	×	×	×	×	×	×	×	x	x	Total Metals	Analytical Parameter
								×	x (+MS/MSD)	×	x	x	Х	×	х	Х	х	х	Х	х	Cyanide	
×	ŭ	x (+MS/MSD)	X	х	ХO	×	×														ТРН	
														×	×						TCLP	

Notes
X - Field sample.
O - Field duplicate sample.
VOC - Volatile Organic Compound
SVOC - Semi-Volatile Organic Compound

TPH - Total Petroleum Hydrocarbon
TCLP- Toxicity Characteristic Leachate Procedure
MS/MSD- Matrix Spike/Matrix Spike Duplicate

Table 2. Site Survey Data Former Vacuum Oil Company 1999-2000 Site Investigation

SAMPLE	NORTH	EAST	ELEVATION (ft.)	DESCRIPTION
MW-1	1144237.05	1405147.46	515.67	TOP OF CONC. PAD
			518.02	CASE
			517.81	PVC RISER
MW-2	1144117.41	1405111.91	513.20	TOP OF CONC. PAD
0			514.98	CASE
			514.88	PVC RISER
MW-3	1144095.65	1404885.62	510.12	TOP OF CONC. PAD
			512.42	CASE
			511.95	PVC RISER
GENESEE RIVER	NOT AVAILABLE	NOT AVAILABLE	517.48	TOP OF WALL
TP-1	1144237.1	1405147.5	515.7	TEST PIT
TP-2	1144117.4	1405111.9	512.9	TEST PIT
TP-3	1144040.4	1405143.9	511.8	TEST PIT
TP-4	1144175.2	1405056.0	511.2	TEST PIT
TP-5	1143561.6	1404863.0	514.0	TEST PIT
TP-6	1143804.2	1404707.7	510.1	TEST PIT
TP-7	1143794.9	1404729.8	510.5	TEST PIT
TP-8	1143811.8	1404693.1	509.6	TEST PIT
TP-9	1143760.8	1404576.0	513.6	TEST PIT
TP-10	1144084.9	1404878.3	509.3	TEST PIT
A-1	1144237.5	1405399.3	N/A	SOIL GAS SAMPLE
A-2	1144283.6	1405297.6	N/A	SOIL GAS SAMPLE
A-3	1144333.5	1405177.5	N/A	SOIL GAS SAMPLE
B-2	1144182.0	1405254.8	N/A	SOIL GAS SAMPLE
B-3	1144239.2	1405143.2	N/A	SOIL GAS SAMPLE
B-4	1144297.3	1405050.2	N/A	SOIL GAS SAMPLE
C-1	1144011.1	1405309.4	N/A	SOIL GAS SAMPLE
C-2	1144059.3	1405200.9	N/A	SOIL GAS SAMPLE
C-3	1144133.5	1405089.7	N/A	SOIL GAS SAMPLE
C-4	1144175.7	1404987.9	N/A	SOIL GAS SAMPLE
D-2	1143936.1	1405172.6	N/A	SOIL GAS SAMPLE
D-3	1143994.6	1405054.6	N/A	SOIL GAS SAMPLE
D-4	1144030.7	1404936.4	N/A	SOIL GAS SAMPLE
D-5	1144145.0	1404854.8	N/A	SOIL GAS SAMPLE
D-6	1144176.4	1404725.8	N/A	SOIL GAS SAMPLE
D-7	1144245.3	1404671.8	N/A	SOIL GAS SAMPLE
E-1	1143793.6	1405214.4	N/A	SOIL GAS SAMPLE
E-2	1143852.7	1405103.1	N/A	SOIL GAS SAMPLE
E-3	1143920.7	1404997.2	N/A	SOIL GAS SAMPLE
E-4	1143989.3	1404893.0	N/A	SOIL GAS SAMPLE
E-5	1144042.8	1404804.2	N/A	SOIL GAS SAMPLE
E-6	1144090.5	1404844.9	N/A	SOIL GAS SAMPLE
F-2	1143625.2	1405012.5	N/A	SOIL GAS SAMPLE
F-3	1143697.9	1404913.4	N/A	SOIL GAS SAMPLE
F-4	1143747.4	1404827.8	N/A	SOIL GAS SAMPLE
F-5	1143825.9	1404702.6	N/A	SOIL GAS SAMPLE
F-6	1143905.2	1404630.9	N/A	SOIL GAS SAMPLE
G-2	1143494.3	1404983.2	N/A	SOIL GAS SAMPLE

Table 2. Site Survey Data Former Vacuum Oil Company 1999-2000 Site Investigation

SAMPLE	NORTH	EAST	ELEVATION (ft.)	DESCRIPTION
G-3	1143562.9	1404875.1	N/A	SOIL GAS SAMPLE
G-4	1143585.9	1404747.3	N/A	SOIL GAS SAMPLE
G-5	1143656.5	1404647.2	N/A	SOIL GAS SAMPLE
G-6	1143738.6	1404571.5	N/A	SOIL GAS SAMPLE
H-2	1143418.6	1404933.8	N/A	SOIL GAS SAMPLE
H-3	1143426.2	1404816.9	N/A	SOIL GAS SAMPLE
H-4	1143481.0	1404715.9	N/A	SOIL GAS SAMPLE
H-5	1143467.2	1404599.2	N/A	SOIL GAS SAMPLE
H-6	1143552.2	1404499.6	N/A	SOIL GAS SAMPLE
H-7	1143644.0	1404395.8	N/A	SOIL GAS SAMPLE
H-8	1143613.6	1404432.7	N/A	SOIL GAS SAMPLE
1-4	1143377.8	1404653.6	N/A	SOIL GAS SAMPLE
I-5	1143389.5	1404550.7	N/A	SOIL GAS SAMPLE
I-6	1143465.2	1404430.5	N/A	SOIL GAS SAMPLE
1-7	1143617.9	1404372.6	N/A	SOIL GAS SAMPLE
J-5	1143315.2	1404440.2	N/A	SOIL GAS SAMPLE
J-6	1143381.8	1404369.5	N/A	SOIL GAS SAMPLE
J-7	1143406.0	1404281.2	N/A	SOIL GAS SAMPLE
J-8	1143487.3	1404150.6	N/A	SOIL GAS SAMPLE
K-6	1143258.3	1404139.3	N/A	SOIL GAS SAMPLE
K-7	1143274.1	1404027.2	N/A	SOIL GAS SAMPLE
K-8	1143302.3	1403946.8	N/A	SOIL GAS SAMPLE
L-6	1143193.9	1404051.6	N/A	SOIL GAS SAMPLE
L-7	1143206.4	1403946.9	N/A	SOIL GAS SAMPLE

Vertical information is referenced to the NGVD '88 as generated from the Rochester City Datum.
 Horizontal information is referenced to the NAD'83 New York West Zone.

Table 3. Groundwater Elevation Data Former Vacuum Oil Company 1999-2000 Site Investigation

Location Id.	Date	Reference Elevation (ft. AMSL)	Depth to Water (ft.)	Water Elevation (ft. AMSL)
MW-1	02/23/2000	517.81	9.78	508.03
MW-2	02/23/2000	514.88	6.70	508.18
MW-3	02/23/2000	511.95	4.65	507.30
MW-1	05/04/2000	517.81	7.50	510.31
MW-2	05/04/2000	514.88	3.90	510.98
MW-3	05/04/2000	511.95	3.62	508.33
Genesee River	05/04/2000	517.48	6.51	510.97

AMSL - Above Mean Sea Level

Table 4. Surface Soil Statistical Summary of Detected Compounds Former Vacuum Oil Company - 1999-2000 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Aluminum	TAL Metals	5	5	Background	33,000	0	11,900 ppm	SS-4
Antimony	TAL Metals	5	2	Background	Not Available	0	3.7 ppm	SS-5
Arsenic	TAL Metals	5	5	7.5 ppm or background	3 - 12	2	60.7 ppm	SS-2
Barium	TAL Metals	5		300 ppm or background	15 - 600	0	366 ppm	SS-2
Beryllium	TAL Metals	5	4	0.16 ppm or background	0 - 1.75	0	0.63 ppm	SS-2
Cadmium	TAL Metals	5	. 5	10 ppm or background	0.1 - 1	0	3.5 ppm	SS-3
Calcium	TAL Metals	5	5	Background	130 - 35,000	2	167,000 ppm	SS-2
Chromium	TAL Metals	5	5	50 ppm or background	1.5 - 40	0	24 ppm	SS-4
Cobalt	TAL Metals	5	5	30 ppm or background	2.5 - 60	. 0	8.4 ppm	SS-4
Copper	TAL Metals	5	5	25 ppm or background	1 - 50	3	75.8 ppm	SS-4
Iron	TAL Metals	5	5	2000 ppm or background	2,000 - 550,000	0	22,800 ppm	SS-4
Lead	TAL Metals	5	5	Background	200 - 500	1	972 ppm	SS-3
Magnesium	TAL Metals	5	5	Background	100 - 5,000	. 2	30,600 ppm	SS-2
Manganese	TAL Metals	5	5	Background	50 - 5,000	0	1,500 ppm	SS-2

Table 4. Surface Soil Statistical Summary of Detected Compounds (Continued) Former Vacuum Oil Company - 1998-1999 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Mercury	TAL Metals	\$	5	0.1 ppm	0.001 - 0.2	5	2.1 ppm	SS-4
Nickel	TAL Metals	5	5	13 ppm or background	0.5 - 25	0	24.2 ppm	SS-4
Potassium	TAL Metals	5	5	Background	8,500 - 43,000	0	2,240 ppm	SS-2
Selenium	TAL Metals	5	4	2 ppm or background	0.1 - 3.9	2	7.4 ppm	SS-2
Silver	TAL Metals	5	4	Background	Not Available	0	1.2 ppm	SS-3
Sodium	TAL Metals	5	5	Background	6,000 - 8,000	0	497 ppm	SS-2
Vanadium	TAL Metals	5	5	150 ppm or background	1 - 300	0	28.6 ppm	SS-2
Zinc	TAL Metals	5	5	20 ppm or background	9 - 50	5	772 ppm	SS-5
4,4-DDE	ASP 95-3	5		2,100 ppb	Not Applicable	0	19 ppb	SS-5
4,4'-DDT (P,P'-DDT	ASP 95-3	5		2,100 ppb	Not Applicable	0	21 ppb	SS-5
Alpha Chlordane	ASP 95-3	5	1	540 ppb	Not Applicable	0	210 ppb	SS-1
Gamma Chlordane	ASP 95-3	5	1	540 ppb	Not Applicable	0	170 ppb	SS-1
Dieldrin	ASP 95-3	5	2	44 ppb	Not Applicable		74 ppb	SS-1
Heptachlor Epoxide	ASP 95-3	5	-	20 ppp	Not Applicable	1	30 ppp	SS-1
2-Methylnaphthalene	ASP 95-2	5	2	36,400 ppb	Not Applicable	0	140 ppb	SS-5
Acenaphthene	ASP 95-2	5	4	50,000 ppb	Not Applicable	0	3,700 ppb	SS-2

Table 4. Surface Soil Statistical Summary of Detected Compounds (Continued) Former Vacuum Oil Company - 1998-1999 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Acenaphthylene	ASP 95-2	5	1	41,000 ppb	Not Applicable	0	190 ppb	SS-3
Anthracene	ASP 95-2	5	4	50,000 ppb	Not Applicable	0	12,000 ppb	SS-2
Benzo(a)anthracene	ASP 95-2	5	5	224 ppb	Not Applicable	5	28,000 ppb	SS-2
Benzo(a)pyrene	ASP 95-2	5	5	61 ppb	Not Applicable	5	23,000 ppb	SS-2
Benzo(b)fluoranthene	ASP 95-2	5	5	1,100 ppb	Not Applicable	4	20,000 ppb	SS-2
Benzo(k)fluoranthene	ASP 95-2	5	5	1,100 ppb	Not Applicable	4	22,000 ppb	SS-2
Benzo(g,h,i)perylene	ASP 95-2	5	5	50,000 ppb	Not Applicable	0	15,000 ppb	SS-2
Bis(2-ethylhexyl)phthalate	ASP 95-2	5	2	50,000 ppb	Not Applicable	0	230 ppb	E-SS
Carbazole	ASP 95-2	5	4	Not Available	Not Applicable	0	4,000 ppb	SS-2
Chrysene	ASP 95-2	5	5	400 ppb	Not Applicable	5	30,000 ppb	SS-2
Dibenzo(a,h)anthracene	ASP 95-2	5	5	14 ppb	Not Applicable	5	5,700 ppb	SS-2
Dibenzofuran	ASP 95-2	5	5	6,200 ppb	Not Applicable	0	2,300 ppb	SS-2
Fluoranthene	ASP 95-2	5	5	50,000 ppb	Not Applicable		63,000 ppb	SS-2
Fluorene	ASP 95-2	5	. 4	50,000 ppb	Not Applicable	0	3,900 ppb	SS-2
Indeno(1,2,3-c,d)pyrene	ASP 95-2	5	5	3,200 ppb	Not Applicable	1	14,000 ppb	SS-2
Naphthalene	ASP 95-2	5	3	13,000 ppb	Not Applicable	0	2,400 ppb	SS-2
Phenanthrene	ASP 95-2	5	5	50,000 ppb	Not Applicable	0	46,000 ppb	SS-2
Pyrene	ASP 95-2	5	5	50,000 ppb	Not Applicable	0	47,000 ppb	SS-2
Acetone	ASP 95-1	5	-	200 ppb	Not Applicable	0	30 ppb	SS-3
Methylene Chloride	ASP 95-1	5	5	100 ppb	Not Applicable	1	150 ppb	SS-3

Table 5. Subsurface Soil Statistical Summary of Detected Compounds Former Vacuum Oil Company - 1999-2000 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Aluminum	TAL Metals	10	10	Background	33,000	0	22,200 ppm	TP-5; 3'
Antimony	TAL Metals	10	. 1	Background	Not Available	0	5.7 ppm	MW-1; 8-10'
Arsenic	TAL Metals	10	10	7.5 ppm or background	3 - 12	m	113 ppm	TP-8; 3'
Barium	TAL Metals	10	10	300 ppm or background	15 - 600		828 ppm	TP-2; 5'
Beryllium	TAL Metals	10	10	0.16 ppm or background	0 - 1.75	-1	2.2 ppm	TP-2; 5'
Cadmium	TAL Metals	10	8	10 ppm or background	0.1 - 1	0	2.4 ppm	TP-2; 5'
Calcium	TAL Metals	10	10	Background	130 - 35,000	2	85,100 ppm	TP-2; 5'
Chromium	TAL Metals	10	10	50 ppm or background	1.5 - 40	,	59.3 ppm	TP-8; 3'
Cobalt	TAL Metals	10	10	30 ppm or background	2.5 - 60	0	11.5 ррт	TP-4; 5'
Copper	TAL Metals	10	10	25 ppm or background	1 - 50	4	143 ppm	TP-1; 7-8'
Iron	TAL Metals	10	10	2000 ppm or background	2,000 - 550,000	0	65,500 ppm	TP-8; 3'
Lead	TAL Metals	10	10	Background	200 - 500	0	473 ppm	TP-10; 4'

Table 5. Subsurface Soil Statistical Summary of Detected Compounds (Continued) Former Vacuum Oil Company - 1999-2000 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Magnesium	TAL Metals	10	10	Background	100 - 2000	5	35,800 ppm	TP-2; 5'
Manganese	TAL Metals	10	10	Background	50 - 5,000	. 0	3,480 ppm	TP-2; 5'
Mercury	TAL Metals	10	7	0.1 ppm	0.001 - 0.2	4	4.0 ppm	TP-1; 3-5'
Nickel	TAL Metals	10	10	13 ppm or background	0.5 - 25	1	35.6 ppm	TP-2; 5'
Potassium	TAL Metals	10	10	Background	8,500 - 43,000	0	3,400 ppm	TP-5; 3'
Selenium	TAL Metals	10	6	2 ppm or background	0.1 - 3.9	0	3.5 ppm	TP-10; 4'
Silver	TAL Metals	10	, 1	Background	Not Available	0	0.24 ppm	TP-2; 5'
Sodium	TAL Metals	10	10	Background	6,000 - 8,000	0	824 ppm	TP-5; 3'
Vanadium	TAL Metals	10	10	150 ppm or background	1 - 300	0	13.9 ppm	MW-2; 6-8'
Zinc	TAL Metals	10	10	20 ppm or background	9 - 50	6	663 ppm	TP-2; 5'
Cyanide	Cyanide	8	1	Site Specific	Not Available	0	1.1 ppm	TP-3; 8-9'
Aldrin	ASP 95-3	8	1	41 ppb	Not Applicable	0	2.6 ppb	TP-1; 7-8'
Acetone	ASP 95-1	6	3	200 ppb	Not Applicable	0	100 ppb	TP-10; 4'
2-Butanone	ASP 95-1	6	2	300 ppb	Not Applicable	0	240 ppb	TP-1; 7-8'
Carbon Disulfide	ASP 95-1	6	1	2700 ppb	Not Applicable	0	2 ppb	TP-3; 8-9'
1,1-Dichloroethane	ASP 95-1	6	-1	200 ppb	Not Applicable	0	8 ppb	TP-3; 8-9'

Table 5. Subsurface Soil Statistical Summary of Detected Compounds (Continued) Former Vacuum Oil Company - 1999-2000 Site Investigation

....

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
1,2-Dichloroethene (total)	ASP 95-1	6	1	Not Available	Not Applicable	0	qdd 9	TP-3; 8-9'
Methylene Chloride	ASP 95-1	6	7	100 ppb	Not Applicable	1	750 ppb	MW-2; 10-12'
Toluene	1-56 dSA	6	1	1,500 ppb	Not Applicable	0	3 ppb	TP-3; 8-9'
Trichloroethene	ASP 95-1	6	1	700 ppb	Not Applicable	0	28 ppb	TP-3; 8-9'
(m+p) Xylene	ASP 95-1	6	1	1,200 ppb	Not Applicable	1	6,300 ppb	TP-1; 7-8'
Total Petroleum Hydrocarbon	ТРН	4	4	Not Available	Not Applicable	0	1,140 ppm	MW-1; 8-10'
Acenaphthene	ASP 95-2	6	3	50,000 ppb	Not Applicable	1	17,0000 ppb	TP-2; 5'
Acenaphthylene	ASP 95-2	6	3	41,000 ppb	Not Applicable	0	540 ppb	TP-8; 3'
Anthracene	ASP 95-2	6	4	50,000 ppb	Not Applicable	0	510,000 ppb	TP-2; 5'
Benzo(a)Anthracene	ASP 95-2	6	9	224 ppb	Not Applicable	5	760,000 ppb	TP-2; 5'
Benzo(a)Pyrene	ASP 95-2	6	9	61 ppb	Not Applicable	5	530,000 ppb	TP-2; 5'
Benzo(b)Fluoranthene	ASP 95-2	6	9	1,100 ppb	Not Applicable	3	480,000 ppb	TP-2; 5'
Benzo(k)Fluoranthene	ASP 95-2	6	9	1,100 ppb	Not Applicable	3	470,000 ppb	TP-2; 5'
Benzo(g,h,i)Perylene	ASP 95-2	6	9	50,000 ppb	Not Applicable	1	280,000 ppb	TP-2; 5'
Bis(2- Ethylhexyl)Phthalate	ASP 95-2	6	1	50,000 ppb	Not Applicable	0	440 ppb	TP-10; 4'
Carbazole	ASP 95-2	6	4	Not Available	Not Applicable	0	170,000 ppb	TP-2; 5'
Chrysene	ASP 95-2	6	7	400 ppb	Not Applicable	5	710,000 ppb	TP-2; 5'

Table 5. Subsurface Soil Statistical Summary of Detected Compounds (Continued) Former Vacuum Oil Company - 1999-2000 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TAGM 4046)	Eastern USA Background (ppm)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Dibenzo(a,h)anthracene	ASP 95-2	6	5	14 ppb	Not Applicable	5	100,000 ppb	TP-2; 5'
Dibenzofuran	ASP 95-2	6	4	6,200 ppb	Not Applicable	1	220,000 ppb	TP-2; 5'
Di-n-octylphthalate	ASP 95-2	6	1	50,000 ppb	Not Applicable	0	130 ppb	TP-5; 3'
Fluoranthene	ASP 95-2	6	9	50,000 ppb	Not Applicable	1	1,500,000 ppb	TP-2; 5'
Fluorene	ASP 95-2	6	3	50,000 ppb	Not Applicable	1	360,000 ppb	TP-2; 5'
2-Methylnaphthalene	ASP 95-2	6	. 5	36,400 ppb	Not Applicable	1	110,000 ppb	TP-2; 5'
Indeno(1,2,3-c,d)pyrene	ASP 95-2	6	9	3200 ppb	Not Applicable	3	280,000 ppb	TP-2; 5'
Napthalene	ASP 95-2	6	3	13,000 ppb	Not Applicable	1	320,000 ppb	TP-2; 5'
Phenanthrene	ASP 95-2	6	6	50,000 ppb	Not Applicable	1	1,600,000 ppb	TP-2; 5'
Pyrene	ASP 95-2	6	7	50,000 ppb	Not Applicable	1	960,000 ppb	TP-2; 5'
Barium	TCLP	2	2	10,0000 ppb*	Not Applicable	0	910 ppb	TP-1; 3-5'
Lead	TCLP	2	2	5,000 ppb*	Not Applicable	0	62 ppb	TP-1; 7-8'
Mercury	TCLP	2	1	200 ppb*	Not Applicable	0	0.18 ppb	TP-1; 7-8'
Benzene	TCLP	2	1	500 ppb*	Not Applicable	0	97 ppb	TP-1; 7-8'
2-Butanone	TCLP	2	1	200,000 ppb*	Not Applicable	0	11 ppb	TP-1; 7-8'
*SCGs for TCLP analyses are from 6 NYCRR 371.3(e)	e from 6 NY	CRR 371.3(e).						

Table 6. Groundwater Statistical Summary of Detected Compounds Former Vacuum Oil Company - 1999-2000 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TOGS 1.1.1)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Aluminum	TAL Metals	3	3	Not Applicable	0	7,380 ppb	MW-1
Arsenic	TAL Metals	3	3	25 ppb	0	17 ppb	MW-2
Barium	TAL Metals	. 3	3	1000 ppb	0	246 ppb	MW-2
Beryllium	TAL Metals	3	3	3 ppb	0	0.68 ppb	MW-1
Cadmium	TAL Metals	3	2	5 ppb	0	0.87	MW-2
Calcium	TAL Metals	3	3	Not Applicable	0	212,000 ppb	MW-1
Chromium	TAL Metals	3	3	50 ppb	0	10 ppb	MW-1
Cobalt	TAL Metals	3	3	Not Applicable	0	6.3 ppb	MW-1
Copper	TAL Metals	3	3	200 ppb	0	30 ppb	MW-3
Iron	TAL Metals	3	3	300 ppb	3	21,700 ppb	MW-1
Lead	TAL Metals	3	3	25 ppb	1	62.4 ppb	MW-3
Magnesium	TAL Metals	3	3	35,000 ppb	3	76,200 ppb	MW-1
Manganese	TAL Metals	3	3	300 ppb	2	1,730 ppb	MW-2
Mercury	TAL Metals	3	. 1	0.7 ppb	0	0.23 ppb	MW-3
Nickel	TAL Metals	3	3	100 ppb	0	19.4 ppb	MW-1
Potassium	TAL Metals	3	3	Not Applicable	0	10,700 ppb	MW-3
Sodium	TAL Metals	3	3	20,000 ppb	2	152,000 ppb	MW-3
Vanadium	TAL Metals	3	3	Not Applicable	0	12 ppb	MW-1

Table 6. Groundwater Statistical Summary of Detected Compounds (Continued) Former Vacuum Oil Company - 1999-2000 Site Investigation

Compound	Analysis	Number of Samples	Number of Valid Detections	SCG (TOGS 1.1.1)	Number of Valid Detections > SCG	Maximum	Location of Maximum
Zinc	TAL Metals	3	3	2,000 ppb	0	274 ppb	MW-3
Acetone	ASP 95-1	3	2	50 ppb	0	28 ppb	MW-1
Benzene	ASP 95-1	3	1	1 ppb	-	95 ppb	MW-1
1,1-Dichloroethane	ASP 95-1	3	2	2 ppb	2	13 ppb	MW-2
Ethyl Benzene	ASP 95-1	. 3	1	5 ppb	 -	49 ppb	MW-1
1,1,2-Trichloroethane	ASP 95-1	3	1	1 ppb	1	2 ppb	MW-1
Methylene Chloride	ASP 95-1	3	0	5 ppb	0	NA	NA
Toluene	ASP 95-1	3	1	5 ppb	0	4 ppb	MW-1
Xylene	ASP 95-1	3	1	5 ppb	1	190 ppb	MW-1
Total Petroleum Hydrocarbon	ТРН	.3	1	Not Available	0	3.7 ppm	MW-1
Acenaphthene	ASP 95-2	3	1	20 ppb	0	0.6 ppb	MW-2
Carbazole	ASP 95-2	3	1	Not Available	0	0.9 ppb	MW-2
Dibenzofuran	ASP 95-2	3	1	Not Available	0	0.6 ppb	MW-2
Di-n-octylphthalate	ASP 95-2	3	1	90 ppb	0	0.8 ppb	MW-2
Fluorene	ASP 95-2	3	. 1	50 ppb	0	0.8 ppb	MW-2
4-Methylphenol	ASP 95-2	3	11	l ppb	0	0.8 ppb	MW-2
Naphthalenee	ASP 95-2	3	·	10 ppb	0	1 ppb	MW-2
Phenol	ASP 95-2	3	1	1 ppb	-	7 ppb	MW-1

Table 7. Summary of Surface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Location Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	
SS-4	SURFACE	12/07/99	B70612	DIBENZO(A,H)ANTHRACENE	85.0			ppb
SS-4	SURFACE	12/07/99	B70612	FLUORANTHENE		ppb	50000	
SS-4	SURFACE	12/07/99	B70612	INDENO(1,2,3-C,D)PYRENE		ppb	3200	
SS-4	SURFACE	12/07/99	B70612	PHENANTHRENE		ppb	50000	
SS-4	SURFACE	12/07/99	B70612	PYRENE		ppb	50000	ppb
SS-4	SURFACE	12/07/99	B70612	TOTAL SVOC TICS	96800		NA	ppb
SS-5	SURFACE	12/07/99	B70615	2-METHYLNAPHTHALENE	140	ppb	36400	ppb
SS-5	SURFACE	12/07/99	B70615	ACENAPHTHENE	310	ppb	50000	ppb
SS-5	SURFACE	12/07/99	B70615	ANTHRACENE	740	ppb	50000	ppm
SS-5	SURFACE	12/07/99	B70615	BENZO(A)ANTHRACENE	2000	ppb	224	ppb
SS-5	SURFACE	12/07/99	B70615	BENZO(A)PYRENE	1900	ppb	61	ppb
SS-5	SURFACE	12/07/99	B70615	BENZO(B)FLUORANTHENE	1700	ppb	1100	ppb
SS-5	SURFACE	12/07/99	B70615	BENZO(G,H,I)PERYLENE	1200	ppb	50000	ppb
SS-5	SURFACE	12/07/99	B70615	BENZO(K)FLUORANTHENE	1600	ppb	1100	ppb
SS-5	SURFACE	12/07/99	B70615	CARBAZOLE	400	ppb	NA	ppb
SS-5	SURFACE	12/07/99	B70615	CHRYSENE	2300	ppb	400	ppb
SS-5	SURFACE	12/07/99	B70615	DIBENZO(A,H)ANTHRACENE	340	ppb	14	ppb
SS-5	SURFACE	12/07/99	B70615	DIBENZOFURAN		ppb	6200	ppb
SS-5	SURFACE	12/07/99	B70615	FLUORANTHENE	4800	ppb	50000	ppb
SS-5	SURFACE	12/07/99	B70615	FLUORENE	320	ppb	50000	ppb
SS-5	SURFACE	12/07/99	B70615	INDENO(1,2,3-C,D)PYRENE	1100	ppb	3200	
SS-5	SURFACE	12/07/99	B70615	NAPHTHALENE	150	ppb	13000	ppb
SS-5	SURFACE	12/07/99	B70615	PHENANTHRENE	4100		50000	ppb
SS-5	SURFACE	12/07/99	B70615	PYRENE	3700	ppb	50000	
SS-5	SURFACE	12/07/99	B70615	TOTAL SVOC TICs	22300	ppb	NA	ppb

NA- Not Applicable

Table 8. Summary of Surface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Id. Depth (ft) Date Number Compound Concentration Units	Guidance 36400 36400 50000 50000 50000 50000 41000 50000 50000 50000 224	ppb ppb ppb ppb ppb ppb ppb ppb
SS-1 SURFACE 12/07/99 B70611 2-METHYLNAPHTHALENE 98.0 ppb SS-2 SURFACE 12/07/99 B70613 ACENAPHTHENE 3700 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 310 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 180 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 190 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 190 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 190 ppb SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 12000 ppb SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 220 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70611 BENZO(A)ANTHRACENE	36400 50000 50000 50000 50000 41000 50000 50000 50000	ppb ppb ppb ppb ppb ppb ppb
SS-2 SURFACE 12/07/99 B70613 ACENAPHTHENE 780 ppb SS-1 SURFACE 12/07/99 B70614 ACENAPHTHENE 780 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 310 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 180 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 190 ppb SS-2 SURFACE 12/07/99 B70613 ANTHRACENE 190 ppb SS-2 SURFACE 12/07/99 B70614 ANTHRACENE 12000 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 920 ppb SS-5 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-2 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2800 ppb <	50000 50000 50000 50000 41000 50000 50000 50000	ppb ppb ppb ppb ppb ppm
SS-1 SURFACE 12/07/99 B70615 ACENAPHTHENE 310 ppb SS-5 SURFACE 12/07/99 B70614 ACENAPHTHENE 310 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 180 ppb SS-2 SURFACE 12/07/99 B70613 ANTHRACENE 190 ppb SS-3 SURFACE 12/07/99 B70611 ANTHRACENE 12000 ppb SS-1 SURFACE 12/07/99 B70611 ANTHRACENE 1200 ppb SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 920 ppb SS-5 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE </td <td>50000 50000 50000 41000 50000 50000 50000 50000</td> <td>ppb ppb ppb ppb ppm</td>	50000 50000 50000 41000 50000 50000 50000 50000	ppb ppb ppb ppb ppm
SS-5 SURFACE 12/07/99 B70615 ACENAPHTHENE 310 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 180 ppb SS-3 SURFACE 12/07/99 B70614 ACENAPHTHYLENE 190 ppb SS-2 SURFACE 12/07/99 B70613 ANTHRACENE 12000 ppb SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 1600 ppb SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 920 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 4400 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 4400 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 23000 ppb SS-3 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE	50000 50000 41000 50000 50000 50000 50000	ppb ppb ppb ppm
SS-3 SURFACE 12/07/99 B70614 ACENAPHTHENE 180 ppb SS-3 SURFACE 12/07/99 B70613 ANTHRACENE 190 ppb SS-1 SURFACE 12/07/99 B70613 ANTHRACENE 12000 ppb SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 1600 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 920 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(A)ANTHRACENE 3200 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 3200 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 330 ppb SS-2 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 330 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(A)PYRENE <td>50000 41000 50000 50000 50000 50000</td> <td>ppb ppb ppm</td>	50000 41000 50000 50000 50000 50000	ppb ppb ppm
SS-3 SURFACE 12/07/99 B70613 ANTHRACENE 1900 ppb SS-1 SURFACE 12/07/99 B70611 ANTHRACENE 12000 ppb SS-1 SURFACE 12/07/99 B70614 ANTHRACENE 920 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 28000 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 3200 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 3200 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE 3200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 330 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-1 SURFACE 12/07/99 B70614 BENZO(B)	41000 50000 50000 50000 50000	ppb ppm
SS-1 SURFACE 12/07/99 B70611 ANTHRACENE 1600 ppb SS-3 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-5 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(A)ANTHRACENE 3200 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 3100 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(A)PYRENE 440 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)P	50000 50000 50000	
SS-3 SURFACE 12/07/99 B70614 ANTHRACENE 920 ppb SS-5 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 28000 ppb SS-2 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 4400 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 4400 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 330 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 330 ppb SS-2 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 330 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-1 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 440 ppb SS-4 SURFACE 12/07/99 B70613	50000 50000	ppm
SS-5 SURFACE 12/07/99 B70615 ANTHRACENE 740 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 4400 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 23000 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 23000 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-2 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 4400 ppb SS-2 SURFACE 12/07/99 B70615	50000	
SS-2 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 28000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 4400 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE 330 ppb SS-2 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 3100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 440 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 1900 ppb SS-5 SURFACE 12/07/99 B70612		
SS-3 SURFACE 12/07/99 B70614 BENZO(A)ANTHRACENE 4400 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-2 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(A)PYRENE 4400 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 4400 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(B)FUORANTHENE 1900 ppb SS-4 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-5 SURFACE 12/07/99 B70615	224	
SS-1 SURFACE 12/07/99 B70611 BENZO(A)ANTHRACENE 3200 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 330 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE 330 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(B)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUGRANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(B)FLUGRANTHENE 2700 ppb SS-3 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 1700 ppb SS-4 SURFACE 12/07/99 B70612<		ppb
SS-5 SURFACE 12/07/99 B70615 BENZO(A)ANTHRACENE 2000 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)ANTHRACENE 330 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 3100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612		ppb
SS-4 SURFACE 12/07/99 B70612 BENZO(A)ANTHRACENE 330 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-2 SURFACE 12/07/99 B70611 BENZO(B)FLUORANTHENE 4100 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 1700 ppb SS-3 SURFACE 12/07/99 B7		ppb
SS-2 SURFACE 12/07/99 B70613 BENZO(A)PYRENE 23000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 4400 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 2000 ppb SS-2 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 2000 ppb SS-3 SURFACE 12/07/99 B70611 BENZO(B)FLUORANTHENE 4100 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-2 SURFACE 12/07/99 B70		ppb
SS-3 SURFACE 12/07/99 B70614 BENZO(A)PYRENE 3100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-5 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 1700 ppb SS-3 SURFACE 12/07/99		ppb
SS-1 SURFACE 12/07/99 B70611 BENZO(A)PYRENE 3100 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 470 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 470 ppb SS-3 SURFACE 12/07/99 B		ppb
SS-5 SURFACE 12/07/99 B70615 BENZO(A)PYRENE 1900 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70612 BENZO(B,H.)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(G,H.)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70614 BENZO(G,H.)PERYLENE 2600 ppb SS-3 SURFACE 12/07/99 B70615 BENZO(G,H.)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 <td></td> <td>ppb</td>		ppb
SS-4 SURFACE 12/07/99 B70612 BENZO(A)PYRENE 440 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(G,H,I)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 <td></td> <td>ppb</td>		ppb
SS-2 SURFACE 12/07/99 B70613 BENZO(B)FLUORANTHENE 20000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(G,H.I)PERYLENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(G,H.I)PERYLENE 2600 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H.I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H.I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(G,H.I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70612 BENZO(K,H.I)PERYLENE 1200 ppb SS-3 SURFACE <t< td=""><td></td><td>ppb</td></t<>		ppb
SS-3 SURFACE 12/07/99 B70614 BENZO(B)FLUORANTHENE 4100 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(G,H,I)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE		ppb
SS-1 SURFACE 12/07/99 B70611 BENZO(B)FLUORANTHENE 2700 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-4 SURFACE 12/07/99 B70613 BENZO(G,H,I)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-4 SURFACE <	1100	
SS-5 SURFACE 12/07/99 B70615 BENZO(B)FLUORANTHENE 1700 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(G,H,I)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70612 BENZO(K,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70612 BENZO(K,H,I)PERYLENE 350 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(K,H,I)PERYLENE 350 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K,FLUORANTHENE 22000 ppb SS-1 SURFACE <td< td=""><td>1100</td><td></td></td<>	1100	
SS-4 SURFACE 12/07/99 B70612 BENZO(B)FLUORANTHENE 470 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(G,H,I)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(K,I)PERYLENE 350 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K,I)PERYLENE 350 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K,I)PERYLENE 350 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(K,I)PERYLENE 4000 ppb SS-3 SURFACE 12/07/99<	1100	
SS-2 SURFACE 12/07/99 B70613 BENZO(G,H,I)PERYLENE 15000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K,I)PERYLENE 1200 ppb SS-3 SURFACE 12/07/99 B70613 BENZO(K,I)FLUORANTHENE 22000 ppb SS-1 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 1600 ppb SS-3 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-4 SURFACE <td< td=""><td>1100</td><td></td></td<>	1100	
SS-3 SURFACE 12/07/99 B70614 BENZO(G,H,I)PERYLENE 2600 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/	1100 50000	
SS-1 SURFACE 12/07/99 B70611 BENZO(G,H,I)PERYLENE 1900 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/0	50000	
SS-5 SURFACE 12/07/99 B70615 BENZO(G,H,I)PERYLENE 1200 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-3 SURFACE 12/07/	50000	
SS-4 SURFACE 12/07/99 B70612 BENZO(G,H,I)PERYLENE 350 ppb SS-2 SURFACE 12/07/99 B70613 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-1 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99	50000	
SS-2 SURFACE 12/07/99 B70613 BENZO(K)FLUORANTHENE 22000 ppb SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb	50000	
SS-3 SURFACE 12/07/99 B70614 BENZO(K)FLUORANTHENE 4000 ppb SS-1 SURFACE 12/07/99 B70611 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70615 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	1100	Innh
SS-1 SURFACE 12/07/99 B70611 BENZO(K)FLUORANTHENE 2600 ppb SS-5 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70615 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	1100	
SS-5 SURFACE 12/07/99 B70615 BENZO(K)FLUORANTHENE 1600 ppb SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/07/99 B70614 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	1100	
SS-4 SURFACE 12/07/99 B70612 BENZO(K)FLUORANTHENE 420 ppb SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/07/99 B70611 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	1100	
SS-3 SURFACE 12/07/99 B70614 BIS(2-ETHYLHEXYL)PHTHALATE 230 ppb SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/07/99 B70611 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	1100	
SS-4 SURFACE 12/07/99 B70612 BIS(2-ETHYLHEXYL)PHTHALATE 160 ppb SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/07/99 B70611 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	50000	
SS-2 SURFACE 12/07/99 B70613 CARBAZOLE 4000 ppb SS-1 SURFACE 12/07/99 B70611 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	50000	
SS-1 SURFACE 12/07/99 B70611 CARBAZOLE 850 ppb SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	NA	ppb
SS-3 SURFACE 12/07/99 B70614 CARBAZOLE 580 ppb SS-5 SURFACE 12/07/99 B70615 CARBAZOLE 400 ppb SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb		ppb
SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	NA	ppb
SS-2 SURFACE 12/07/99 B70613 CHRYSENE 30000 ppb	NA	ppb
		ppb
		ppb
SS-1 SURFACE 12/07/99 B70611 CHRYSENE 3300 ppb		ppb
SS-5 SURFACE 12/07/99 B70615 CHRYSENE 2300 ppb		ppb
SS-4 SURFACE 12/07/99 B70612 CHRYSENE 480 ppb		ppb
SS-2 SURFACE 12/07/99 B70613 DIBENZO(A,H)ANTHRACENE 5700 ppb		ppb
SS-3 SURFACE 12/07/99 B70614 DIBENZO(A,H)ANTHRACENE 750 ppb		ppb
SS-1 SURFACE 12/07/99 B70611 DIBENZO(A,H)ANTHRACENE 510 ppb		ppb
SS-5 SURFACE 12/07/99 B70615 DIBENZO(A,H)ANTHRACENE 340 ppb		ppb
SS-4 SURFACE 12/07/99 B70612 DIBENZO(A,H)ANTHRACENE 85.0 ppb		ppb
SS-2 SURFACE 12/07/99 B70613 DIBENZOFURAN 2300 ppb	6200	
SS-1 SURFACE 12/07/99 B70611 DIBENZOFURAN 420 ppb	6200 6200	
SS-5 SURFACE 12/07/99 B70615 DIBENZOFURAN 210 ppb SS-2 SURFACE 12/07/99 B70613 FLUORANTHENE 63000 ppb	50000	
	50000	
	50000	
	. 11 11 11 11	
SS-5 SURFACE 12/07/99 B70615 FLUORANTHENE 4800 ppb SS-4 SURFACE 12/07/99 B70612 FLUORANTHENE 700 ppb	50000	ppb

Table 8. Summary of Surface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location		Sample	Sample				Standard/	
ld.	Depth (ft)	Date	Number	Compound	Concentration		Guidance	
SS-2	SURFACE	12/07/99	B70613	FLUORENE	3900		50000	ppb
SS-1	SURFACE	12/07/99	B70611	FLUORENE		ppb	50000	
SS-5	SURFACE	12/07/99	B70615	FLUORENE	320	ppb	50000	ppb
SS-3	SURFACE	12/07/99	B70614	FLUORENE	240	ppb	50000	
SS-2	SURFACE	12/07/99	B70613	INDENO(1,2,3-C,D)PYRENE	14000	ppb	3200	
SS-3	SURFACE	12/07/99	B70614	INDENO(1,2,3-C,D)PYRENE	2500	ppb	3200	
SS-1	SURFACE	12/07/99	B70611	INDENO(1,2,3-C,D)PYRENE	1700	ppb	3200	
SS-5	SURFACE	12/07/99	B70615	INDENO(1,2,3-C,D)PYRENE	1100	ppb	3200	
SS-4	SURFACE	12/07/99	B70612	INDENO(1,2,3-C,D)PYRENE	310	ppb	3200	
SS-2	SURFACE	12/07/99	B70613	NAPHTHALENE	2400	ppb	13000	
SS-1	SURFACE	12/07/99	B70611	NAPHTHALENE		ppb	13000	ppb
SS-5	SURFACE	12/07/99	B70615	NAPHTHALENE		ppb	13000	ppb
SS-2	SURFACE	12/07/99	B70613	PHENANTHRENE	46000	ppb	50000	ppb
SS-1	SURFACE	12/07/99	B70611	PHENANTHRENE	7300	ppb	50000	
SS-5	SURFACE	12/07/99	B70615	PHENANTHRENE	4100	ppb	50000	
SS-3	SURFACE	12/07/99	B70614	PHENANTHRENE	3300	ppb	50000	
SS-4	SURFACE	12/07/99	B70612	PHENANTHRENE		ppb	50000	ppb
SS-2	SURFACE	12/07/99	B70613	PYRENE	47000	ppb	50000	
SS-1	SURFACE	12/07/99	B70611	PYRENE	7200	ppb	50000	
SS-3	SURFACE	12/07/99	B70614	PYRENE	7100		50000	
SS-5	SURFACE	12/07/99	B70615	PYRENE	3700	ppb	50000	
SS-4	SURFACE	12/07/99	B70612	PYRENE	570	ppb	50000	
SS-2	SURFACE	12/07/99	B70613	TOTAL SVOC TICs	114000	ppb		ppb
SS-4	SURFACE	12/07/99	B70612	TOTAL SVOC TICs	96800	ppb		ppb
SS-3	SURFACE	12/07/99	B70614	TOTAL SVOC TICs	94800			ppb
SS-5	SURFACE	12/07/99	B70615	TOTAL SVOC TICs	22300	ppb		ppb
SS-1	SURFACE	12/07/99	B70611	TOTAL SVOC TICs	15800	ppb	NA	ppb

NA- Not Applicable

Table 9. Summary of Surface Soil Sample Results Volatile Organic Compounds Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	Units	Comments
SS-3	SURFACE	12/07/99	B70614	ACETONE	30.0	ppb	200	ppb	
SS-3	SURFACE	12/07/99	B70614	METHYLENE CHLORIDE		ppb		ppb	Result biased high due to laboratory contamination.
SS-5	SURFACE	12/07/99	B70615	METHYLENE CHLORIDE	82.0	ppb	100	ppb	Result biased high due to laboratory contamination.
SS-4	SURFACE	12/07/99	B70612	METHYLENE CHLORIDE	63.0	ppb	100	ppb	Result biased high due to laboratory contamination.
SS-2	SURFACE	12/07/99	B70613	METHYLENE CHLORIDE	40.0	ppb	100	ppb	Result biased high due to laboratory contamination.
SS-1	SURFACE	12/07/99	B70611	METHYLENE CHLORIDE	24.0	ppb	100	ppb	Result biased high due to laboratory contamination.
SS-2	SURFACE	12/07/99	B70613	TOTAL VOC TICs	20.0	ppb	NA.	ppb	
SS-5	SURFACE	12/07/99	B70615	TOTAL VOC TICs	9.0	ppb	NA	ppb	
SS-1	SURFACE	12/07/99	B70611	TOTAL VOC TICS	ND	ppb		ppb	
SS-3	SURFACE	12/07/99	B70614	TOTAL VOC TICs	ND	ppb	NA	ppb	
SS-4	SURFACE	12/07/99	B70612	TOTAL VOC TICs		ppb		dad	

ND- Not Detected NA- Not Applicable

Table 10. Summary of Surface Soil Sample Results Inorganic Compounds Sorted by Location Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/Guidance	Units
SS-1	SURFACE	12/07/99	B70611	ALUMINUM	6770	ppm	Background	
SS-1	SURFACE	12/07/99	B70611	ARSENIC		ppm	7.5 or background	
SS-1	SURFACE	12/07/99	B70611	BARIUM		ppm	300 or background	
SS-1	SURFACE	12/07/99	B70611	BERYLLIUM	0.34	ppm	0.16 or background	
SS-1	SURFACE	12/07/99	B70611	CADMIUM		ppm	10 or background	
SS-1	SURFACE	12/07/99	B70611	CALCIUM	46500		Background	
SS-1	SURFACE	12/07/99	B70611	CHROMIUM		ppm	50 or background	
SS-1	SURFACE	12/07/99	B70611	COBALT	4.70	ppm	30 or background	
SS-1	SURFACE	12/07/99	B70611	COPPER		ppm	25 or background	
SS-1	SURFACE	12/07/99	B70611	IRON	14900		2000 or background	
SS-1	SURFACE	12/07/99	B70611	LEAD		ppm	Background	
SS-1	SURFACE	12/07/99	B70611	MAGNESIUM	27200	ppiii	Background	
SS-1	SURFACE	12/07/99	B70611	MANGANESE		ppm	Background	
SS-1		12/07/99	B70611	MERCURY				
	SURFACE		B70611	NICKEL		ppm	0.1 13 or background	ppm
SS-1	SURFACE	12/07/99				ppm		
SS-1	SURFACE	12/07/99	B70611	POTASSIUM	1000		Background	
SS-1	SURFACE	12/07/99	B70611	SODIUM	118	ppm	Background	
SS-1	SURFACE	12/07/99	B70611	VANADIUM	16.6	ppm	150 or background	
SS-1	SURFACE	12/07/99	B70611	ZINC		ppm	20 or background	
SS-2	SURFACE	12/07/99	B70613	ALUMINUM	7000	ppm	Background	
SS-2	SURFACE	12/07/99	B70613	ANTIMONY		ppm	Background	
SS-2	SURFACE	12/07/99	B70613	ARSENIC	60.7	ppm	7.5 or background	
SS-2	SURFACE	12/07/99	B70613	BARIUM	366	ppm	300 or background	
SS-2	SURFACE	12/07/99	B70613	BERYLLIUM	0.63	ppm	0.16 or background	
SS-2	SURFACE	12/07/99	B70613	CADMIUM	2.30	ppm	10 or background	
SS-2	SURFACE	12/07/99	B70613	CALCIUM	167000		Background	
SS-2	SURFACE	12/07/99	B70613	CHROMIUM		ppm	50 or background	
SS-2	SURFACE	12/07/99	B70613	COBALT	4.90		30 or background	
SS-2	SURFACE	12/07/99	B70613	COPPER	44.1	ppm	25 or background	
SS-2	SURFACE	12/07/99	B70613	IRON		ppm	2000 or background	
SS-2	SURFACE	12/07/99	B70613	LEAD	119	ppm	Background	
SS-2	SURFACE	12/07/99	B70613	MAGNESIUM	30600		Background	
SS-2	SURFACE	12/07/99	B70613	MANGANESE	1500		Background	
SS-2	SURFACE	12/07/99	B70613	MERCURY	0.67	ppm		ppm
SS-2	SURFACE	12/07/99	B70613	NICKEL	23.6	ppm	13 or background	
SS-2	SURFACE	12/07/99	B70613	POTASSIUM	2240	ppm	Background	
SS-2	SURFACE	12/07/99	B70613	SELENIUM	7.40	ppm	2 or background	
SS-2	SURFACE	12/07/99	B70613	SILVER	0.36	ppm	Background	
SS-2	SURFACE	12/07/99	B70613	SODIUM		ppm	Background	
SS-2	SURFACE	12/07/99	B70613	VANADIUM		ppm	150 or background	
SS-2	SURFACE	12/07/99	B70613	ZINC		ppm	20 or background	
SS-3	SURFACE	12/07/99	B70614	ALUMINUM	2970		Background	
SS-3	SURFACE	12/07/99	B70614	ARSENIC		ppm	7.5 or background	
SS-3	SURFACE	12/07/99	B70614	BARIUM		ppm	300 or background	
SS-3	SURFACE	12/07/99	B70614	CADMIUM		ppm	10 or background	
SS-3	SURFACE	12/07/99	B70614	CALCIUM	22600		Background	
SS-3	SURFACE	12/07/99	B70614	CHROMIUM		ppm	50 or background	
SS-3	SURFACE	12/07/99	B70614	COBALT		ppm	30 or background	
SS-3	SURFACE	12/07/99	B70614	COPPER		ppm	25 or background	
SS-3	SURFACE	12/07/99	B70614	IRON	21200	ppm	2000 or background	
SS-3	SURFACE	12/07/99	B70614	LEAD		ppm	Background	
SS-3	SURFACE	12/07/99	B70614	MAGNESIUM	2490	ppm	Background	ppm
SS-3	SURFACE	12/07/99	B70614	MANGANESE	189	ppm	Background	
SS-3	SURFACE	12/07/99	B70614	MERCURY	0.50	ppm	0.1	ppm
SS-3	SURFACE	12/07/99	B70614	NICKEL		ppm	13 or background	
SS-3	SURFACE	12/07/99	B70614	POTASSIUM	1300		Background	
SS-3	SURFACE	12/07/99	B70614	SELENIUM		ppm	2 or background	
SS-3	SURFACE	12/07/99	B70614	SILVER		ppm	Background	

Table 10. Summary of Surface Soil Sample Results Inorganic Compounds Sorted by Location Former Vacuum Oil Company 1999-2000 Site Investigation

Location		Sample	Sample	<u> </u>	******			
ld.	Depth (ft)	Date	Number	Compound	Concentration	Units	Standard/Guidance	Units
SS-3	SURFACE	12/07/99	B70614	SODIUM		ppm	Background	
SS-3	SURFACE	12/07/99	B70614	VANADIUM	12.9	ppm	150 or background	
SS-3	SURFACE	12/07/99	B70614	ZINC	739	ppm	20 or background	
SS-4	SURFACE	12/07/99	B70612	ALUMINUM	11900		Background	
SS-4	SURFACE	12/07/99	B70612	ARSENIC	8.70	ppm	7.5 or background	
SS-4	SURFACE	12/07/99	B70612	BARIUM	138	ppm	300 or background	
SS-4	SURFACE	12/07/99	B70612	BERYLLIUM	0.58	ppm	0.16 or background	
SS-4	SURFACE	12/07/99	B70612	CADMIUM	1.80	mag	10 or background	
SS-4	SURFACE	12/07/99	B70612	CALCIUM	11900		Background	
SS-4	SURFACE	12/07/99	B70612	CHROMIUM	24.0		50 or background	
SS-4	SURFACE	12/07/99	B70612	COBALT	8.40		30 or background	
SS-4	SURFACE	12/07/99	B70612	COPPER	75.8	mag	25 or background	
SS-4	SURFACE	12/07/99	B70612	IRON	22800	mag	2000 or background	
SS-4	SURFACE	12/07/99	B70612	LEAD		ppm	Background	
SS-4	SURFACE	12/07/99	B70612	MAGNESIUM	4510		Background	
SS-4	SURFACE	12/07/99	B70612	MANGANESE		ppm	Background	
SS-4	SURFACE	12/07/99	B70612	MERCURY	2.10			ppm
SS-4	SURFACE	12/07/99	B70612	NICKEL	24.2		13 or background	
SS-4	SURFACE	12/07/99	B70612	POTASSIUM	1790	ppm	Background	
SS-4	SURFACE	12/07/99	B70612	SELENIUM	3.10		2 or background	
SS-4	SURFACE	12/07/99	B70612	SILVER	1.20		Background	
SS-4	SURFACE	12/07/99	B70612	SODIUM		ppm	Background	
SS-4	SURFACE	12/07/99	B70612	VANADIUM	24.8		150 or background	
SS-4	SURFACE	12/07/99	B70612	ZINC		ppm	20 or background	
SS-5	SURFACE	12/07/99	B70615	ALUMINUM	4400		Background	
SS-5	SURFACE	12/07/99	B70615	ANTIMONY	3.70	ppm	Background	ppm
SS-5	SURFACE	12/07/99	B70615	ARSENIC	13.5		7.5 or background	ppm
SS-5	SURFACE	12/07/99	B70615	BARIUM	224	ppm	300 or background	ppm
SS-5	SURFACE	12/07/99	B70615	BERYLLIUM	0.39	ppm	0.16 or background	
SS-5	SURFACE	12/07/99	B70615	CADMIUM	3.40	ppm	10 or background	
SS-5	SURFACE	12/07/99	B70615	CALCIUM	19600	ppm	Background	
SS-5	SURFACE	12/07/99	B70615	CHROMIUM	13.1	ppm	50 or background	ppm
SS-5	SURFACE	12/07/99	B70615	COBALT	5.90		30 or background	
SS-5	SURFACE	12/07/99	B70615	COPPER	73.1	ppm	25 or background	
SS-5	SURFACE	12/07/99	B70615	IRON	18700		2000 or background	
SS-5	SURFACE	12/07/99	B70615	LEAD		ppm	Background	
SS-5	SURFACE	12/07/99	B70615	MAGNESIUM	4870	ppm	Background	
SS-5	SURFACE	12/07/99	B70615	MANGANESE	250	ppm	Background	ppm
SS-5	SURFACE		B70615	MERCURY	1.40			ppm
SS-5	SURFACE	12/07/99	B70615	NICKEL	17.3		13 or background	
SS-5	SURFACE	12/07/99	B70615	POTASSIUM	853		Background	
SS-5	SURFACE	12/07/99	B70615	SELENIUM	2.90		2 or background	
SS-5	SURFACE	12/07/99	B70615	SILVER	0.66		Background	
SS-5	SURFACE	12/07/99	B70615	SODIUM	180		Background	
SS-5	SURFACE	12/07/99	B70615	VANADIUM	17.8		150 or background	
SS-5	SURFACE	12/07/99	B70615	ZINC	772	ppm	20 or background	ppm

Table 11. Summary of Surface Soil Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/Guidance	Units
SS-4	SURFACE	12/07/99	B70612	ALUMINUM	11900		Background	
SS-2	SURFACE	12/07/99	B70613	ALUMINUM	7000		Background	
SS-1	SURFACE	12/07/99	B70611	ALUMINUM	6770	nnm	Background	
SS-5	SURFACE	12/07/99	B70615	ALUMINUM	4400	nnm	Background	
SS-3	SURFACE	12/07/99	B70614	ALUMINUM	2970	nnm	Background	
SS-5	SURFACE	12/07/99	B70615	ANTIMONY	3 70	ppm	Background	
SS-2	SURFACE	12/07/99	B70613	ANTIMONY		ppm	Background	
SS-2	SURFACE	12/07/99	B70613	ARSENIC		ppm	7.5 or background	
SS-5	SURFACE	12/07/99	B70615	ARSENIC	13.5	ppm	7.5 or background	
SS-4	SURFACE	12/07/99	B70612	ARSENIC	8 70	ppm	7.5 or background	
SS-1	SURFACE	12/07/99	B70611	ARSENIC		ppm	7.5 or background	
SS-3	SURFACE	12/07/99	B70614	ARSENIC		ppm	7.5 or background	
SS-2	SURFACE	12/07/99	B70613	BARIUM		ppm	300 or background	
SS-3	SURFACE	12/07/99	B70613	BARIUM	358	ppm	300 or background	
SS-5	SURFACE	12/07/99	B70615	BARIUM		ppm	300 or background	
SS-4	SURFACE	12/07/99	B70613	BARIUM		ppm	300 or background	
SS-1	SURFACE	12/07/99	B70612	BARIUM		ppm	300 or background	
SS-2	SURFACE	12/07/99	B70613	BERYLLIUM	0.63		0.16 or background	
SS-4	SURFACE	12/07/99	B70613	BERYLLIUM		ppm	0.16 or background	
SS-5	SURFACE	12/07/99	B70615	BERYLLIUM	0.39	ppm	0.16 or background	
SS-1	SURFACE	12/07/99	B70613	BERYLLIUM		ppm	0.16 or background	
SS-3	SURFACE	12/07/99	B70614	CADMIUM	3.50	ppm	10 or background	
SS-5 SS-5	SURFACE	12/07/99	B70615	CADMIUM	3.30	ppm	10 or background	
SS-2	SURFACE	12/07/99	B70613	CADMIUM	2.30	ppm	10 or background	
SS-4	SURFACE	12/07/99	B70613	CADMIUM		ppm	10 or background	
SS-4 SS-1	SURFACE	12/07/99	B70612 B70611	CADMIUM	0.34		10 or background	
SS-2	SURFACE	12/07/99	B70613	CALCIUM	167000		Background	
SS-1	SURFACE	12/07/99	B70613	CALCIUM	46500		Background	
SS-3	SURFACE	12/07/99	B70614	CALCIUM	22600	nnm	Background	
SS-5	SURFACE	12/07/99	B70615	CALCIUM	19600	nom	Background	
SS-4	SURFACE	12/07/99	B70613	CALCIUM	11900		Background	
SS-4	SURFACE	12/07/99	B70612	CHROMIUM	24.0		50 or background	
SS-2	SURFACE	12/07/99	B70613	CHROMIUM		ppm	50 or background	
SS-5	SURFACE	12/07/99	B70615	CHROMIUM	13.1	ppm	50 or background	
SS-3	SURFACE	12/07/99	B70614	CHROMIUM		ppm	50 or background	
SS-1	SURFACE	12/07/99	B70611	CHROMIUM		ppm	50 or background	
SS-4	SURFACE	12/07/99	B70612	COBALT	8.40		30 or background	
SS-5	SURFACE	12/07/99	B70615	COBALT	5.90	ppm	30 or background	
SS-2	SURFACE	12/07/99	B70613	COBALT	4.90		30 or background	
SS-1	SURFACE	12/07/99	B70611	COBALT		ppm	30 or background	
SS-3	SURFACE	12/07/99	B70614	COBALT		ppm	30 or background	
SS-4	SURFACE	12/07/99	B70612	COPPER		ppm	25 or background	
SS-5	SURFACE	12/07/99	B70615	COPPER		ppm	25 or background	
SS-3	SURFACE	12/07/99	B70614	COPPER	54.2	ppm	25 or background	
SS-2	SURFACE	12/07/99	B70613	COPPER		ppm	25 or background	
SS-1	SURFACE	12/07/99	B70611	COPPER		ppm	25 or background	
SS-4	SURFACE	12/07/99	B70612	IRON	22800		2000 or background	
SS-3	SURFACE	12/07/99	B70614	IRON	21200		2000 or background	
SS-5	SURFACE	12/07/99	B70615	IRON	18700		2000 or background	
SS-2	SURFACE	12/07/99	B70613	IRON	17400		2000 or background	
SS-1	SURFACE	12/07/99	B70611	IRON	14900		2000 or background	
SS-3	SURFACE	12/07/99	B70614	LEAD		ppm	Background	
SS-5	SURFACE	12/07/99	B70615	LEAD		ppm	Background	
SS-4	SURFACE	12/07/99	B70612	LEAD		ppm	Background	
SS-1	SURFACE	12/07/99	B70611	LEAD		ppm	Background	
JO-1	SURFACE	12/07/99	B70613	LEAD		ppm	Background	

Table 11. Summary of Surface Soil Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location		Sample	Sample					
ld.	Depth (ft)	Date	Number	Compound	Concentration	Units	Standard/Guidance	Units
SS-2	SURFACE	12/07/99	B70613	MAGNESIUM		ppm	Background	ppm
SS-1	SURFACE	12/07/99	B70611	MAGNESIUM	27200	ppm	Background	ppm
SS-5	SURFACE	12/07/99	B70615	MAGNESIUM	4870		Background	ppm
SS-4	SURFACE	12/07/99	B70612	MAGNESIUM	4510		Background	ppm
SS-3	SURFACE	12/07/99	B70614	MAGNESIUM	2490		Background	
SS-2	SURFACE	12/07/99	B70613	MANGANESE	1500	ppm	Background	
SS-1	SURFACE	12/07/99	B70611	MANGANESE	440	ppm	Background	
SS-4	SURFACE	12/07/99	B70612	MANGANESE	352	ppm	Background	
SS-5	SURFACE	12/07/99	B70615	MANGANESE	250	ppm	Background	
SS-3	SURFACE	12/07/99	B70614	MANGANESE		ppm	Background	
SS-4	SURFACE	12/07/99	B70612	MERCURY		ppm		ppm
SS-5	SURFACE	12/07/99	B70615	MERCURY	1.40	ppm	0.1	ppm
SS-2	SURFACE	12/07/99	B70613	MERCURY		ppm	0.1	ppm
SS-3	SURFACE	12/07/99	B70614	MERCURY	0.50		0.1	ppm
SS-1	SURFACE	12/07/99	B70614	MERCURY	0.12			ppm
SS-4	SURFACE	12/07/99	B70612	NICKEL	24.2	ppm	13 or background	
SS-2	SURFACE	12/07/99	B70613	NICKEL	23.6	nnm	13 or background	
SS-5	SURFACE	12/07/99	B70615	NICKEL	17.3	ppm	13 or background	
SS-3	SURFACE	12/07/99	B70614	NICKEL		ppm	13 or background	
SS-1	SURFACE	12/07/99	B70614	NICKEL		ppm	13 or background	
SS-2	SURFACE	12/07/99	B70613	POTASSIUM	2240		Background	
SS-4	SURFACE	12/07/99	B70613	POTASSIUM	1790		Background	
SS-3	SURFACE	12/07/99	B70612	POTASSIUM	1300	ppm	Background	
		12/07/99	B70614	POTASSIUM	1000	ppm	Background	
SS-1	SURFACE	12/07/99	B70615	POTASSIUM		ppm	Background	
SS-5	SURFACE	12/07/99	B70613	SELENIUM		ppm	2 or background	
SS-2	SURFACE	12/07/99	B70613	SELENIUM		ppm	2 or background	
SS-3	SURFACE		B70614 B70612	SELENIUM	2 10	ppm	2 or background	
SS-4	SURFACE	12/07/99	B70612 B70615	SELENIUM	3.10	ppm	2 or background	
SS-5	SURFACE	12/07/99		SILVER		ppm	Background	
SS-3	SURFACE	12/07/99	B70614		1.20	ppm:	Background	
SS-4	SURFACE	12/07/99	B70612 B70615	SILVER SILVER	0.66	ppm	Background	
SS-5	SURFACE	12/07/99			0.00	ppm	Background	
SS-2	SURFACE	12/07/99	B70613	SILVER			Background	
SS-2	SURFACE	12/07/99	B70613		497	ppm	Background	
SS-4	SURFACE	12/07/99	B70612	SODIUM	400	ppm		
SS-3	SURFACE	12/07/99	B70614	SODIUM	180	ppm	Background Background	
SS-5	SURFACE	12/07/99	B70615	SODIUM		ppm		
SS-1	SURFACE	12/07/99	B70611	SODIUM		ppm	Background	
SS-2	SURFACE	12/07/99	B70613	VANADIUM		ppm	150 or background	
<u>SS-4</u>	SURFACE	12/07/99	B70612	VANADIUM		ppm	150 or background	
SS-5	SURFACE	12/07/99	B70615	VANADIUM		ppm	150 or background	
SS-1	SURFACE	12/07/99	B70611	VANADIUM		ppm	150 or background	
SS-3	SURFACE	12/07/99	B70614	VANADIUM		ppm	150 or background	
SS-5	SURFACE	12/07/99	B70615	ZINC		ppm	20 or background	
SS-3	SURFACE	12/07/99	B70614	ZINC		ppm	20 or background	
SS-4	SURFACE	12/07/99	B70612	ZINC		ppm	20 or background	
SS-2	SURFACE	12/07/99	B70613	ZINC		ppm	20 or background	
SS-1	SURFACE	12/07/99	B70611	ZINC	103	ppm	20 or background	ppm

Table 12. Summary of Surface Soil Sample Results Pesticides and PCBs Former Vacuum Oil Company 1999-2000 Site Invesigation

Location ld.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/Guidance	Units
SS-5	SURFACE	12/07/99	B70615	4,4'-DDE	19.0	ppb	2100	ppb
SS-5	SURFACE	12/07/99	B70615	4,4'-DDT (P,P'-DDT)	21.0	ppb	2100	ppb
SS-1	SURFACE	12/07/99	B70611	ALPHA CHLORDANE	210	ppb	540 (Chlordane)	ppb
SS-1	SURFACE	12/07/99	B70611	DIELDRIN	74.0	ppb	44	ppb
SS-3	SURFACE	12/07/99	B70614	DIELDRIN	15.0	ppb		ppb
SS-1	SURFACE	12/07/99	B70611	GAMMA CHLORDANE	170	ppb	540	ppb
SS-1	SURFACE	12/07/99	B70611	HEPTACHLOR EPOXIDE	30.0	ppb	20	ppb
SS-2	SURFACE	12/07/99	B70613	ALL PESTICIDES/PCBs	ND	ppb		ppb
SS-4	SURFACE	12/07/99	B70612	ALL PESTICIDES/PCBs	ND	ppb	NA	ppb

ND- Not Detected NA- Not Applicable

Table 13. Summary of Subsurface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	Units
MW-2	10-12	02/08/00	B70617	PHENANTHRENE	29.0		50000	
MW-2	10-12	02/08/00		TOTAL SVOC TICs	1360			ppb
TP-1	3-5	12/06/99		2-METHYLNAPHTHALENE	1500		36400	
TP-1	3-5	12/06/99	B70601	CHRYSENE		ppb	400	
TP-1	3-5	12/06/99	B70601	FLUORANTHENE		ppb	50000	
TP-1	3-5	12/06/99	B70601	PHENANTHRENE	1300		50000	
TP-1	3-5	12/06/99	B70601	PYRENE	670		50000	
TP-1	3-5	12/06/99		TOTAL SVOC TICs	625000			ppb
TP-1	7-8	12/06/99	B70602	2-METHYLNAPHTHALENE	6400		36400	
TP-1	7-8	12/06/99	B70602	PHENANTHRENE	1500	dad	50000	
TP-1	7-8	12/06/99	B70602	TOTAL SVOC TICs	814000	ppb		ppb
TP-10	4	12/06/99	B70610	2-METHYLNAPHTHALENE	140	ppb	36400	
TP-10	4	12/06/99		ACENAPHTHYLENE	71.0	ppb	41000	ppb
TP-10	4	12/06/99	B70610	ANTHRACENE	97.0		50000	ppb
TP-10	4	12/06/99	B70610	BENZO(A)ANTHRACENE	510	ppb	224	ppb
TP-10	4	12/06/99	B70610	BENZO(A)PYRENE	520	ppb		ppb
TP-10	4	12/06/99	B70610	BENZO(B)FLUORANTHENE	690	ppb	1100	ppb
TP-10	4	12/06/99	B70610	BENZO(G,H,I)PERYLENE	460	ppb	50000	ppb
TP-10	4	12/06/99	B70610	BENZO(K)FLUORANTHENE	560	ppb	1100	ppb
TP-10	4	12/06/99	B70610	BIS(2-ETHYLHEXYL)PHTHALATE	440	ppb	50000	ppb
TP-10	4	12/06/99	B70610	CARBAZOLE	55.0	ppb		ppb
TP-10	4	12/06/99		CHRYSENE	920		400	
TP-10	4	12/06/99		DIBENZO(A,H)ANTHRACENE	130	ppb	14	ppb
TP-10	4	12/06/99		DIBENZOFURAN	86.0	ppb	6200	ppb
TP-10	4	12/06/99		FLUORANTHENE	870	ppb	50000	
TP-10	4	12/06/99		INDENO(1,2,3-C,D)PYRENE	380		3200	ppb
TP-10	4	12/06/99		NAPHTHALENE	86.0		13000	
TP-10	4	12/06/99		PHENANTHRENE	580		50000	
TP-10	4	12/06/99		PYRENE	720	ppb	50000	
TP-10	4	12/06/99	B70610	TOTAL SVOC TICs	18300			ppb
TP-2	5	12/06/99	B70603	2-METHYLNAPHTHALENE	110000		36400	
TP-2	5	12/06/99		ACENAPHTHENE	170000		50000	
TP-2	5	12/06/99		ANTHRACENE	510000		50000	
TP-2	5 -	12/06/99		BENZO(A)ANTHRACENE	760000	ppb	224	
TP-2	5	12/06/99		BENZO(A)PYRENE	530000			ppb
TP-2	5	12/06/99	B70603	BENZO(B)FLUORANTHENE	480000		1100	ppb
TP-2	5	12/06/99		BENZO(G,H,I)PERYLENE	280000		50000	
TP-2	5	12/06/99		BENZO(K)FLUORANTHENE	470000		1100	
TP-2	5	12/06/99		CARBAZOLE	170000			ppb
TP-2	5	12/06/99		CHRYSENE	710000		400	
TP-2	5	12/06/99		DIBENZO(A,H)ANTHRACENE	100000			ppb
TP-2	5	12/06/99		DIBENZOFURAN	220000		6200	
TP-2	5	12/06/99		FLUORANTHENE	1500000		50000	
TP-2	5	12/06/99		FLUORENE	360000		50000	
TP-2	5	12/06/99		INDENO(1,2,3-C,D)PYRENE	280000		3200	
TP-2	5	12/06/99		NAPHTHALENE	320000		13000	
TP-2	5	12/06/99		PHENANTHRENE	1600000		50000	
TP-2	5	12/06/99		PYRENE TOTAL SVOC TICE	960000		50000	
TP-2	5	12/06/99		TOTAL SVOC TICS	2240000			ppb
TP-3	8-9	12/06/99		2-METHYLNAPHTHALENE	670 1700	ppb	36400	
TP-3	8-9	12/06/99		ACENAPHTHENE	1700		50000	
TP-3	8-9	12/06/99		ACENAPHTHYLENE ANTHRACENE	310		41000	
TP-3	8-9	12/06/99 12/06/99		BENZO(A)ANTHRACENE	4700 10000	ppp	50000	
TP-3	8-9	12/06/99		BENZO(A)PYRENE			224	
TP-3	8-9 8-9	12/06/99		BENZO(B)FLUORANTHENE	8100 7000		1100	ppb
TP-3	8-9 8-9	12/06/99		· · · · · · · · · · · · · · · · · · ·	4200		50000	
TP-3	8-9	12/06/99		BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE	6900		1100	
TP-3	8-9 8-9	12/06/99		CARBAZOLE	2500			ppb
TP-3	8-9	12/06/99	B70604	CHRYSENE	11000		400	
TP-3	8-9	12/06/99		DIBENZO(A,H)ANTHRACENE	1400			ppb
15-3	0-9	12/00/99	D10004	DIDLINEO(A,H)AN I FIRMOENE	1400	hhn	14	PPU

Table 13. Summary of Subsurface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Landian	Donth	Commis	Campula		1	I	Standard/	
Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	linite	Standard/ Guidance	linite
TP-3	8-9	12/06/99	B70604	DIBENZOFURAN	1500		6200	
TP-3	8-9	12/06/99	B70604	FLUORANTHENE	24000		50000	
TP-3	8-9	12/06/99		FLUORENE	2400	nnh	50000	
TP-3	8-9	12/06/99	B70604	INDENO(1,2,3-C,D)PYRENE	3900		3200	
TP-3	8-9	12/06/99	B70604	NAPHTHALENE	2300		13000	
TP-3		12/06/99	B70604	PHENANTHRENE	25000		50000	
TP-3	8-9		B70604	PYRENE	20000		50000	ppb
TP-3	8-9 8-9	12/06/99 12/06/99	B70604	TOTAL SVOC TICs	63000			ppb
TP-4		12/06/99	B70604	BENZO(A)ANTHRACENE			224	
TP-4	<u>5</u> 5		B70605		65.0 54.0			ppb
		12/06/99		BENZO(A)PYRENE BENZO(B)FLUORANTHENE				
TP-4	5	12/06/99	B70605		55.0		1100	
TP-4	5	12/06/99	B70605	BENZO(G,H,I)PERYLENE	43.0		50000	
TP-4	5	12/06/99	B70605	BENZO(K)FLUORANTHENE	59.0		1100	
TP-4	5	12/06/99	B70605	CHRYSENE	72.0		400	
TP-4	5	12/06/99	B70605	FLUORANTHENE		ppb	50000	
TP-4	5	12/06/99	B70605	INDENO(1,2,3-C,D)PYRENE	35.0		3200	
TP-4	5	12/06/99		PHENANTHRENE	99.0		50000	
TP-4	5	12/06/99	B70605	PYRENE		ppb	50000	
TP-4	5	12/06/99	B70605	TOTAL SVOC TICs	1450			ppb
TP-5	3	12/06/99	B70606	BENZO(A)ANTHRACENE	630	ppb	224	
TP-5	3	12/06/99	B70606	BENZO(A)PYRENE		ppb		ppb
TP-5	3	12/06/99	B70606	BENZO(B)FLUORANTHENE		ppb	1100	
TP-5	3	12/06/99	B70606	BENZO(G,H,I)PERYLENE		ppb	50000	
TP-5	3	12/06/99	B70606	BENZO(K)FLUORANTHENE		ppb	1100	
TP-5	3	12/06/99	B70606	CHRYSENE	3100		400	
TP-5	3	12/06/99	B70606	DIBENZO(A,H)ANTHRACENE		ppb		ppb
TP-5	3	12/06/99	B70606	DI-N-OCTYLPHTHALATE		ppb	50000	
TP-5	3	12/06/99	B70606	INDENO(1,2,3-C,D)PYRENE		ppb	3200	ppb
TP-5	3	12/06/99	B70606	PHENANTHRENE	1400		50000	
TP-5	3	12/06/99	B70606	PYRENE		ppb	50000	
TP-5	3	12/06/99	B70606	TOTAL SVOC TICs	56200			ppb
TP-8	3	12/06/99	B70607	ACENAPHTHENE	2/0	ppb	50000	ppb
TP-8	3	12/06/99	B70607	ACENAPHTHYLENE		ppb	41000	
TP-8	3	12/06/99	B70607	ANTHRACENE	2000		50000	
TP-8	3	12/06/99	B70607	BENZO(A)ANTHRACENE	7900			ppb
TP-8	3	12/06/99	B70607	BENZO(A)PYRENE	7200			ppb
TP-8	3	12/06/99	B70607	BENZO(B)FLUORANTHENE	5800	ppb	1100	
TP-8	3	12/06/99	B70607	BENZO(G,H,I)PERYLENE	4500		50000	
TP-8	3	12/06/99	B70607	BENZO(K)FLUORANTHENE	5800		1100	
TP-8	3	12/06/99		CARBAZOLE		ppb		ppb
TP-8	3	12/06/99	B70607	CHRYSENE	9100	ppb		ppb
TP-8	3	12/06/99		DIBENZO(A,H)ANTHRACENE	1600	ppb		ppb
TP-8	3	12/06/99	B70607	DIBENZOFURAN	380	ppb	6200	
TP-8	3	12/06/99		FLUORANTHENE	20000		50000	
TP-8	3	12/06/99		FLUORENE		ppb	50000	
TP-8	3	12/06/99		INDENO(1,2,3-C,D)PYRENE	3900		3200	
TP-8	3	12/06/99	B70607	PHENANTHRENE	12000		50000	
TP-8	3	12/06/99		PYRENE	19000		50000	
TP-8	3	12/06/99	B70607	TOTAL SVOC TICs	153000	ppb	NA NA	ppb
NA- Not App	licable							

Table 14. Summary of Subsurface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance
TP-2	5	12/06/99	B70603	2-METHYLNAPHTHALENE	110000		36400
TP-1	7-8	12/06/99	B70602	2-METHYLNAPHTHALENE	6400	ppb	36400
TP-1	3-5	12/06/99	B70601	2-METHYLNAPHTHALENE	1500		36400
TP-3	8-9	12/06/99	B70604	2-METHYLNAPHTHALENE		ppb	36400
TP-10	4	12/06/99	B70610	2-METHYLNAPHTHALENE		ppb	36400
TP-2	5	12/06/99	B70603	ACENAPHTHENE	170000	ppb	50000
TP-3	8-9	12/06/99	B70604	ACENAPHTHENE	1700		50000
TP-8	3	12/06/99	B70607	ACENAPHTHENE		ppb	50000
TP-8	3	12/06/99	B70607	ACENAPHTHYLENE		ppb	41000
TP-3	8-9	12/06/99	B70604	ACENAPHTHYLENE		ppb	41000
TP-10	4	12/06/99	B70610	ACENAPHTHYLENE	71.0		41000
TP-2	5	12/06/99	B70603	ANTHRACENE	510000		50000
TP-3	8-9	12/06/99	B70604	ANTHRACENE	4700		50000
TP-8	3	12/06/99	B70607	ANTHRACENE	2000	ppb	50000
TP-10	4 .	12/06/99	B70610	ANTHRACENE	97.0		50000
TP-2	5	12/06/99	B70603	BENZO(A)ANTHRACENE	760000		224
TP-3	8-9	12/06/99	B70604	BENZO(A)ANTHRACENE	10000		224
TP-8	3	12/06/99	B70607	BENZO(A)ANTHRACENE	7900	ppb	224
TP-5	3	12/06/99	B70606	BENZO(A)ANTHRACENE		ppb	224
TP-10	4	12/06/99	B70610	BENZO(A)ANTHRACENE		ppb	224
TP-4	5	12/06/99	B70605	BENZO(A)ANTHRACENE	65.0		224
TP-2	5	12/06/99	B70603	BENZO(A)PYRENE	530000		61
TP-3	8-9	12/06/99	B70604	BENZO(A)PYRENE	8100		61
TP-8	3	12/06/99	B70607	BENZO(A)PYRENE	7200		61
TP-10	4	12/06/99	B70610	BENZO(A)PYRENE		ppb	61
TP-5	3	12/06/99	B70606	BENZO(A)PYRENE		ppb	61
TP-4	5	12/06/99	B70605	BENZO(A)PYRENE	54.0		61
TP-2	5	12/06/99	B70603	BENZO(B)FLUORANTHENE	480000	ppb	1100
TP-3	8-9	12/06/99	B70604	BENZO(B)FLUORANTHENE	7000		1100
TP-8	3	12/06/99	B70607	BENZO(B)FLUORANTHENE	5800		1100
TP-10	4	12/06/99	B70610	BENZO(B)FLUORANTHENE		ppb	1100
TP-5	3	12/06/99	B70606	BENZO(B)FLUORANTHENE		ppb	1100
TP-4	5	12/06/99	B70605	BENZO(B)FLUORANTHENE	55.0		1100
TP-2	5	12/06/99	B70603	BENZO(G,H,I)PERYLENE	280000		50000
TP-8	3	12/06/99	B70607	BENZO(G,H,I)PERYLENE	4500		50000
TP-3	8-9	12/06/99	B70604	BENZO(G,H,I)PERYLENE	4200		50000
TP-10	4	12/06/99	B70610	BENZO(G,H,I)PERYLENE		ppb	50000
TP-5	3	12/06/99	B70606	BENZO(G,H,I)PERYLENE		ppb	50000
TP-4	5	12/06/99	B70605	BENZO(G,H,I)PERYLENE	43.0		50000
TP-2	5	12/06/99	B70603	BENZO(K)FLUORANTHENE	470000		1100
TP-3	8-9	12/06/99	B70604	BENZO(K)FLUORANTHENE	6900		1100
TP-8	3	12/06/99	B70607	BENZO(K)FLUORANTHENE	5800		1100
TP-10	4	12/06/99	B70610	BENZO(K)FLUORANTHENE		ppb	1100
TP-5	3	12/06/99	B70606	BENZO(K)FLUORANTHENE		ppb	1100
TP-4	5	12/06/99	B70605	BENZO(K)FLUORANTHENE	59.0		1100
TP-10	4	12/06/99	B70610	BIS(2-ETHYLHEXYL)PHTHALATE		ppb	50000
TP-2	5	12/06/99	B70603	CARBAZOLE	170000		NA NA
TP-3	8-9	12/06/99	B70604	CARBAZOLE	2500		NA NA
TP-8	3	12/06/99	B70607	CARBAZOLE		ppb	NA NA
TP-10	4	12/06/99	B70610	CARBAZOLE	55.0		NA 100
TP-2	5	12/06/99	B70603	CHRYSENE	710000		400
TP-3	8-9	12/06/99	B70604	CHRYSENE	11000		400
TP-8	3	12/06/99	B70607	CHRYSENE	9100		400
TP-5	3	12/06/99	B70606	CHRYSENE	3100		400
TP-10	4	12/06/99	B70610	CHRYSENE		ppb	400
TP-4	5	12/06/99	B70605	CHRYSENE		ppb	400
TP-1	3-5	12/06/99	B70601	CHRYSENE] 390	ppb	400

Table 14. Summary of Subsurface Soil Sample Results Semi-Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance
TP-2	5	12/06/99	B70603	DIBENZO(A,H)ANTHRACENE	100000		14
TP-8	3	12/06/99	B70607	DIBENZO(A,H)ANTHRACENE	1600		14
TP-3	8-9	12/06/99	B70604	DIBENZO(A,H)ANTHRACENE	1400		14
TP-5	3	12/06/99	B70606	DIBENZO(A,H)ANTHRACENE		ppb	14
TP-10	4	12/06/99	B70610	DIBENZO(A,H)ANTHRACENE		ppb	14
TP-2	, 5	12/06/99	B70603	DIBENZOFURAN	220000		6200
TP-3	8-9	12/06/99	B70604	DIBENZOFURAN	1500	ppb	6200
TP-8	3	12/06/99	B70607	DIBENZOFURAN	380	ppb	6200
TP-10	4	12/06/99	B70610	DIBENZOFURAN	86.0	ppb	6200
TP-5	3	12/06/99	B70606	DI-N-OCTYLPHTHALATE		ppb	50000
TP-2	5	12/06/99	B70603	FLUORANTHENE	1500000		50000
TP-3	8-9	12/06/99	B70604	FLUORANTHENE	24000		50000
TP-8	3	12/06/99	B70607	FLUORANTHENE	20000		50000
TP-10	4	12/06/99	B70610	FLUORANTHENE		ppb	50000
TP-1	3-5	12/06/99	B70601	FLUORANTHENE		ppb	50000
TP-4	5	12/06/99	B70605	FLUORANTHENE		ppb	50000
TP-2	5	12/06/99	B70603	FLUORENE	360000		50000
TP-3	8-9	12/06/99	B70604	FLUORENE	2400		50000
TP-8	3	12/06/99	B70607	FLUORENE	450	ppb	50000
TP-2	5	12/06/99	B70603	INDENO(1,2,3-C,D)PYRENE	280000		3200
TP-3	8-9	12/06/99	B70604	INDENO(1,2,3-C,D)PYRENE	3900	ppb	3200
TP-8	3	12/06/99	B70607	INDENO(1,2,3-C,D)PYRENE	3900		3200
TP-10	4	12/06/99	B70610	INDENO(1,2,3-C,D)PYRENE		ppb	3200
TP-5	3	12/06/99	B70606	INDENO(1,2,3-C,D)PYRENE		ppb	3200
TP-4	5	12/06/99	B70605	INDENO(1,2,3-C,D)PYRENE	35.0		3200
TP-2	5	12/06/99	B70603	NAPHTHALENE	320000		13000
TP-3	8-9	12/06/99	B70604	NAPHTHALENE	2300		13000
TP-10	4	12/06/99	B70610	NAPHTHALENE	86.0		13000
TP-2	5	12/06/99	B70603	PHENANTHRENE	1600000		50000
TP-3	8-9	12/06/99	B70604	PHENANTHRENE	25000		50000
TP-8	3	12/06/99	B70607	PHENANTHRENE	12000		50000
TP-1	7-8	12/06/99	B70602	PHENANTHRENE	1500		50000
TP-5	3	12/06/99	B70606	PHENANTHRENE	1400		50000
TP-1	3-5	12/06/99	B70601	PHENANTHRENE	1300		50000
TP-10	4	12/06/99	B70610	PHENANTHRENE		ppb	50000
TP-4	5	12/06/99	B70605	PHENANTHRENE	99.0		50000
MW-2	10-12	02/08/00	B70617	PHENANTHRENE	29.0		50000
TP-2	5	12/06/99	B70603	PYRENE	960000		50000
TP-3	8-9	12/06/99	B70604	PYRENE	20000		50000
TP-8	3	12/06/99	B70607	PYRENE	19000		50000
TP-10	4	12/06/99	B70610	PYRENE		ppb	50000
TP-1	3-5	12/06/99	B70601	PYRENE		ppb	50000
TP-5	3	12/06/99	B70606	PYRENE		ppb	50000
TP-4	5	12/06/99	B70605	PYRENE		ppb	50000
TP-2	5	12/06/99	B70603	TOTAL SVOC TICS	2240000		NA NA
TP-1	7-8	12/06/99	B70602	TOTAL SVOC TICS	814000		NA NA
TP-1	3-5	12/06/99	B70601	TOTAL SVOC TICS	625000		NA NA
TP-8	3	12/06/99	B70607	TOTAL SVOC TICS	153000		NA NA
TP-3	8-9	12/06/99	B70604	TOTAL SVOC TICS	63000		NA NA
TP-5	3	12/06/99	B70606	TOTAL SVOCTICS	56200		NA NA
TP-10	4	12/06/99	B70610	TOTAL SVOCTICS	18300		NA NA
TP-4	5	12/06/99	B70605	TOTAL SVOCTICS	1450		NA NA
NA- Not App	10-12	02/08/00	B70617	TOTAL SVOC TICs	1360	Ibbn	INA

NA- Not Applicable

Table 15. Summary of Subsurface Soil Sample Results **Total Petroleum Hydrocarbons** Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	ı
MW-1	8-10	02/08/00	B70618	TOTAL PETROLEUM HYDROCARBONS	1140	ppm	NA	ppm
MW-1	8-10	02/08/00	B70619	TOTAL PETROLEUM HYDROCARBONS	336	ppm	NA	ppm
MW-1	16-18	02/09/00	B70620	TOTAL PETROLEUM HYDROCARBONS	166	ppm	NA	ppm
MW-2	6-8	02/08/00	B70616	TOTAL PETROLEUM HYDROCARBONS	474	ppm	NA	ppm
MW-2	10-12	02/08/00	B70617	TOTAL PETROLEUM HYDROCARBONS	22.3	ppm		ppm

NA- Not Applicable Samples B70618 and B70619 are field duplicate samples

Table 16. Summary of Subsurface Soil Sample Results Volatile Organic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance		Comments
MW-2	10-12	02/08/00	B70617	METHYLENE CHLORIDE	750	ppb		ppb	Result is biased high due to laboratory contamination.
MW-2	10-12	02/08/00	B70617	TOTAL VOC TICs	130	ppb	NΔ	ppb	
TP-1	3-5	12/06/99	B70601	ACETONE		ppb		ppb	Result is invalid due to
17-1	3-3	12/00/99	B70001	ACETONE	1	PPO	200		laboratory contamination.
TP-1	3-5	12/06/99	B70601	METHYLENE CHLORIDE	1300	ppb	100	ppb	Result is invalid due to laboratory contamination.
TP-1	3-5	12/06/99	B70601	TOTAL VOC TICs	109000	ppb	NA	ppb	
TP-1	7-8	12/06/99	B70602	2-BUTANONE	240	ppb	300	ppb	
TP-1	7-8	12/06/99	B70602	ACETONE	290	ррь	200	ppb	Result is invalid due to laboratory contamination.
TP-1	7-8	12/06/99	B70602	METHYLENE CHLORIDE	1400	ppb	100	ррь	Result is invalid due to laboratory contamination.
TP-1	7-8	12/06/99	B70602	TOTAL VOC TICs	133000	ppb	NA	ppb	
TP-1	7-8	12/06/99	B70602	XYLENE (total)	6300	ppb	1200		
TP-10	4	12/06/99		2-BUTANONE	22.0		300	ppb	
TP-10	4	12/06/99	B70610	ACETONE		ppb	200	ppb	
TP-10	4	12/06/99	B70610	METHYLENE CHLORIDE	58.0		100	ppb	Result is biased high due to laboratory contamination.
TP-10	4	12/06/99	B70610	TOTAL VOC TICs	ND	ppb	NA	ppb	
TP-2	5	12/06/99	870603	METHYLENE CHLORIDE	86.0	ppb	100	ррь	Result is biased high due to laboratory contamination.
TP-2	5	12/06/99	B70603	TOTAL VOC TICs	ND	ppb	NA	ppb	
TP-3	8-9	12/06/99	B70604	1,1-DICHLOROETHANE	8.00	ppb	200	ppb	
TP-3	8-9	12/06/99	B70604	ACETONE	98.0	ppb	200	ppb	
TP-3	8-9	12/06/99	B70604	CARBON DISULFIDE	2.00	ppb	2700	ppb	
TP-3	8-9	12/06/99	B70604	METHYLENE CHLORIDE	49.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-3	8-9	12/06/99	B70604	TOLUENE	3.00	ррь	1500	ppb	
TP-3	8-9	12/06/99	B70604	TOTAL 1,2-DICHLOROETHENE	6.00	ppb		ppb	
TP-3	8-9	12/06/99	B70604	TOTAL VOC TICs	237	ppb	NA	ppb	
TP-3	8-9	12/06/99	B70604	TRICHLOROETHENE	28.0	ppb	700	ppb	
TP-4	5	12/06/99	B70605	METHYLENE CHLORIDE	24.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-4	5	12/06/99	B70605	TOTAL VOC TICs	ND	ppb	NA	ppb	
TP-5	3	12/06/99	B70606	METHYLENE CHLORIDE	36.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-5	3	12/06/99	B70606	TOTAL VOC TICs	ND	ppb	NA	ppb	
TP-8	3	12/06/99	B70607	ACETONE	28.0	ppb	200	ppb	
TP-8	3	12/06/99		METHYLENE CHLORIDE	62.0	ррь		ppb	Result is biased high due to laboratory contamination.
TP-8	3	12/06/99	B70607	TOTAL VOC TICs	ND	ppb	NA	ppb	

ND- Not Detected NA- Not Applicable

Table 17. Summary of Subsurface Soil Sample Results Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date		Compound	Concentration		Standard/ Guidance		Comments
TP-3	8-9	12/06/99	B70604	1,1-DICHLOROETHANE	8.00	ppb	200	ppb	
TP-1	7-8	12/06/99	B70602	2-BUTANONE		ppb	300		
TP-10	4	12/06/99	B70610	2-BUTANONE		ppb	300	ppb	
TP-1	3-5	12/06/99	B70601	ACETONE	410	ppb	200	ppb	Result is invalid due to laboratory contamination.
TP-1	7-8	12/06/99	B70602	ACETONE	290	ppb	200	ppb	Result is invalid due to laboratory contamination.
TP-10	4	12/06/99	B70610	ACETONE	100	ppb	200	ppb	
TP-3	8-9	12/06/99	B70604	ACETONE	98.0	ppb	200		
TP-8	3	12/06/99	B70607	ACETONE	28.0	ppb	200		
TP-3	8-9	12/06/99	B70604	CARBON DISULFIDE	2.00		2700		
TP-1	7-8	12/06/99	B70602	METHYLENE CHLORIDE	1400		100		Result is invalid due to laboratory contamination.
TP-1	3-5	12/06/99	B70601	METHYLENE CHLORIDE	1300	ррь	100	ppb	Result is invalid due to laboratory contamination.
MW-2	10-12	02/08/00	B70617	METHYLENE CHLORIDE	750	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-2	5	12/06/99	B70603	METHYLENE CHLORIDE	86.0	ррь	100	ppb	Result is biased high due to laboratory contamination.
TP-8	3	12/06/99	B70607	METHYLENE CHLORIDE	62.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-10	4	12/06/99	B70610	METHYLENE CHLORIDE	58.0	ррь	100	ppb	Result is biased high due to laboratory contamination.
TP-3	8-9	12/06/99	B70604	METHYLENE CHLORIDE	49.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-5	3 .	12/06/99	B70606	METHYLENE CHLORIDE	36.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-4	5	12/06/99	B70605	METHYLENE CHLORIDE	24.0	ppb	100	ppb	Result is biased high due to laboratory contamination.
TP-3	8-9	12/06/99	B70604	TOLUENE	3.00		1500	ppb	
TP-3	8-9	12/06/99	B70604	TOTAL 1,2-DICHLOROETHENE	6.00	ppb	NA	ppb	
TP-3	8-9	12/06/99	B70604	TRICHLOROETHENE	28.0		700		
TP-1	7-8	12/06/99	B70602	XYLENE (total)	6300		1200	ppb	
TP-10	4	12/06/99	B70610	TOTAL VOC TICs		ppb	NA		
TP-2	5	12/06/99	B70603	TOTAL VOC TICs		ppb	NA		1
TP-4	5	12/06/99	B70605	TOTAL VOC TICs	ND	ppb	NA		
TP-5	3	12/06/99	B70606	TOTAL VOC TICs		ppb	NA		
TP-8	3	12/06/99	B70607	TOTAL VOC TICS		ppb	NA		
TP-1	7-8	12/06/99	B70602	TOTAL VOC TICs	133000		NA		
TP-1	3-5	12/06/99	B70601	TOTAL VOC TICs	109000		NA		
TP-3	8-9	12/06/99	B70604	TOTAL VOC TICs	237	ppb	NA	ppb	
MW-2	10-12	02/08/00	B70617	TOTAL VOC TICS	130		NA	ppb	

ND- Not Detected NA- Not Applicable

Table 18. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/Guidance
MW-1	8-10	02/08/00	B70618	ALUMINUM	6140	ppm	Background
MW-1	8-10	02/08/00	B70619	ALUMINUM	3400		Background
MW-1	8-10	02/08/00	B70618	ARSENIC		ppm	7.5 or background
MW-1	8-10	02/08/00	B70619	ARSENIC		ppm	7.5 or background
MW-1	8-10	02/08/00	B70618	BARIUM	43.9	ppm	300 or background
MW-1	8-10	02/08/00	B70619	BARIUM		ppm	300 or background
MW-1	8-10	02/08/00	B70619	BERYLLIUM		ppm	0.16 or background
MW-1	8-10	02/08/00	B70618	BERYLLIUM		ppm	0.16 or background
MW-1	8-10	02/08/00	B70619	CADMIUM	0.65	ppm	10 or background
MW-1	8-10	02/08/00	B70618	CALCIUM	1870		Background
MW-1	8-10	02/08/00	B70619	CALCIUM	4300		Background
MW-1	8-10	02/08/00	B70618	CHROMIUM	11.5	ppm	50 or background
MW-1	8-10	02/08/00	B70619	CHROMIUM	19.9	ppm	50 or background
MW-1	8-10	02/08/00	B70618	COBALT		ppm	30 or background
MW-1	8-10	02/08/00	B70619	COBALT		ppm	30 or background
MW-1	8-10	02/08/00	B70619	COPPER		ppm	25 or background
MW-1	8-10	02/08/00	B70618	COPPER	17.2	ppm	25 or background
MW-1	8-10	02/08/00	B70619	IRON	3400		2000 or background
MW-1	8-10	02/08/00	B70618	IRON	15900		2000 or background
MW-1	8-10	02/08/00	B70618	LEAD		ppm	Background
MW-1	8-10	02/08/00	B70619	LEAD		ppm	Background
MW-1	8-10	02/08/00	B70619	MAGNESIUM	396	ppm	Background
MW-1	8-10	02/08/00	B70618	MAGNESIUM	2130		Background
MW-1	8-10	02/08/00	B70618	MANGANESE		ppm	Background
MW-1	8-10	02/08/00	B70619	MANGANESE		ppm	Background
MW-1	8-10	02/08/00	B70618	MERCURY		ppm	0.1
MW-1	8-10	02/08/00	B70619	NICKEL	23.2		13 or background
MW-1	8-10	02/08/00	B70618	NICKEL		ppm	13 or background
MW-1	8-10	02/08/00	B70618	POTASSIUM		ppm	Background
MW-1	8-10	02/08/00	B70619	POTASSIUM	1000		Background
MW-1	8-10	02/08/00	B70619	SELENIUM		ppm	2 or background
MW-1	8-10	02/08/00	B70618	SODIUM	52.3	ppm	Background
MW-1	8-10	02/08/00	B70610	SODIUM	83.6	ppm	Background
MW-1	8-10	02/08/00	B70619	VANADIUM	32.0	ppm	150 or background
MW-1	8-10	02/08/00	B70618	VANADIUM		ppm	150 or background
MW-1	8-10	02/08/00	B70618	ZINC		ppm	20 or background
MW-1	8-10	02/08/00	B70618	ZINC		ppm	20 or background
	6-8	02/08/00	B70616	ALUMINUM	8100		Background
MW-2	6-8	02/08/00	B70616	ARSENIC		ppm	7.5 or background
MW-2	6-8	02/08/00	B70616	BARIUM		ppm	300 or background
MW-2	<u> </u>		B70616	BERYLLIUM		ppm	0.16 or background
MW-2	6-8	02/08/00	B70616	CALCIUM	1280		Background
MW-2	6-8			CHROMIUM		ppm	50 or background
MW-2	6-8	02/08/00	B70616				30 or background
MW-2	6-8	02/08/00	B70616	COBALT COPPER		ppm ppm	25 or background
MW-2	6-8	02/08/00	B70616		18100		2000 or background
MW-2	6-8	02/08/00	B70616 B70616	IRON		ppm	Background
MW-2	6-8	02/08/00			2640		Background
MW-2	6-8	02/08/00	B70616	MAGNESIUM			Background
MW-2	6-8	02/08/00	B70616	MANGANESE		ppm	
MW-2	6-8	02/08/00	B70616	NICKEL		ppm	13 or background
MW-2	6-8	02/08/00	B70616	POTASSIUM		ppm	Background
MW-2	6-8	02/08/00	B70616	SELENIUM		ppm	2 or background
MW-2	6-8	02/08/00	B70616	SODIUM		ppm	Background
MW-2	6-8	02/08/00	B70616	VANADIUM	13.9	ppm	150 or background

Table 18. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Location	Depth	Sample	Sample				
ld.	(ft)	Date	Number	Compound	Concentration		Standard/Guidance
MW-2	6-8	02/08/00	B70616	ZINC		ppm	20 or background
TP-1	3-5	12/06/99	B70601	ALUMINUM	6340		Background
TP-1	3-5	12/06/99	B70601	ARSENIC	9.00	ppm	7.5 or background
TP-1	3-5	12/06/99	B70601	BARIUM	89.5		300 or background
TP-1	3-5	12/06/99	B70601	BERYLLIUM		ppm	0.16 or background
TP-1	3-5	12/06/99	B70601	CALCIUM	3150		Background
TP-1	3-5	12/06/99	B70601	CHROMIUM	9.40		50 or background
TP-1	3-5	12/06/99	B70601	COBALT	5.80		30 or background
TP-1	3-5	12/06/99	B70601	COPPER	28.0		25 or background
TP-1	3-5	12/06/99	B70601	IRON	19300		2000 or background
TP-1	3-5	12/06/99	B70601	LEAD	29.8		Background
TP-1	3-5	12/06/99	B70601	MAGNESIUM	2250		Background
TP-1	3-5	12/06/99	B70601	MANGANESE		ppm	Background
TP-1	3-5	12/06/99	B70601	MERCURY	4.00		0.1
TP-1	3-5	12/06/99	B70601	NICKEL	14.9	ppm	13 or background
TP-1	3-5	12/06/99	B70601	POTASSIUM	930	ppm	Background
TP-1	3-5	12/06/99	B70601	SELENIUM	1.30	ppm	2 or background
TP-1	3-5	12/06/99	B70601	SODIUM	75.4	ppm	Background
TP-1 TP-1	3-5	12/06/99	B70601	VANADIUM ZINC	16.2	ppm	150 or background
TP-1	3-5 7-8	12/06/99 12/06/99	B70601 B70602	ALUMINUM	0120	ppm	20 or background
TP-1	7-8 7-8	12/06/99	B70602	ARSENIC	9120 10.4		Background 7.5 or background
TP-1	7-8	12/06/99	B70602	BARIUM	29.0		300 or background
TP-1	7-8	12/06/99	B70602	BERYLLIUM	0.52		0.16 or background
TP-1	7-8	12/06/99	B70602	CADMIUM	0.56		10 or background
TP-1	7-8	12/06/99	B70602	CALCIUM	1850		Background
TP-1	7-8	12/06/99	B70602	CHROMIUM	9.80	nnm	50 or background
TP-1	7-8	12/06/99	B70602	COBALT	5.40	nnm	30 or background
TP-1	7-8	12/06/99	B70602	COPPER		ppm	25 or background
TP-1	7-8	12/06/99	B70602	IRON	17700		2000 or background
TP-1	7-8	12/06/99	B70602	LEAD	9.10	nom	Background
TP-1	7-8	12/06/99	B70602	MAGNESIUM	2410	nom	Background
TP-1	7-8	12/06/99	B70602	MANGANESE	87.3	ppm	Background
TP-1	7-8	12/06/99	B70602	NICKEL	17.3	ppm	13 or background
TP-1	7-8	12/06/99	B70602	POTASSIUM	1040	ppm	Background
TP-1	7-8	12/06/99	B70602	SELENIUM	1.60		2 or background
TP-1	7-8	12/06/99	B70602	SODIUM	67.7		Background
TP-1	7-8	12/06/99	B70602	VANADIUM	15.7		150 or background
TP-1	7-8	12/06/99	B70602	ZINC	160	ppm	20 or background
TP-10	4	12/06/99	B70610	ALUMINUM	4400	ppm	Background
TP-10	4	12/06/99	B70610	ANTIMONY	5.70	ppm	Background
TP-10	4	12/06/99	B70610	ARSENIC	12.2	ppm	7.5 or background
TP-10	4	12/06/99	B70610	BARIUM	75.0	ppm	300 or background
TP-10	4	12/06/99	B70610	BERYLLIUM	0.46	ppm	0.16 or background
TP-10	4	12/06/99	B70610	CADMIUM	0.34		10 or background
TP-10	4	12/06/99	B70610	CALCIUM	31400		Background
TP-10	4	12/06/99	B70610	CHROMIUM	9.90	ppm	50 or background
TP-10	4	12/06/99	B70610	COBALT	5.90	ppm	30 or background
TP-10	4	12/06/99	B70610	COPPER	132	ppm	25 or background
TP-10	4	12/06/99	B70610	IRON	11400	ppm	2000 or background
TP-10	4	12/06/99	B70610	LEAD		ppm	Background
TP-10	4	12/06/99	B70610	MAGNESIUM	17900	ppm	Background
TP-10	4	12/06/99	B70610	MANGANESE		ppm	Background
TP-10	4	12/06/99	B70610	MERCURY	1.50	ppm	0.1

Table 18. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/Guidance
TP-10	4	12/06/99	B70610	NICKEL	14.7	ppm	13 or background
TP-10	4	12/06/99	B70610	POTASSIUM	491	ppm	Background
TP-10	4	12/06/99	B70610	SELENIUM	3.50	ppm	2 or background
TP-10	4	12/06/99	B70610	SODIUM		ppm	Background
TP-10	4	12/06/99	B70610	VANADIUM	20.2	ppm	150 or background
TP-10	4	12/06/99	B70610	ZINC	128	ppm	20 or background
TP-2	5	12/06/99	B70603	ALUMINUM	20100		Background
TP-2	5	12/06/99	B70603	ARSENIC	16.1	ppm	7.5 or background
TP-2	5	12/06/99	B70603	BARIUM	828	ppm	300 or background
TP-2	5	12/06/99	B70603	BERYLLIUM	2.20	ppm	0.16 or background
TP-2	5	12/06/99	B70603	CADMIUM	2.40	ppm	10 or background
TP-2	5	12/06/99	B70603	CALCIUM	85100	ppm	Background
TP-2	5	12/06/99	B70603	CHROMIUM	47.9	ppm	50 or background
TP-2	5	12/06/99	B70603	COBALT	4.10	ppm	30 or background
TP-2	5	12/06/99	B70603	COPPER	45.8	ppm	25 or background
TP-2	5	12/06/99	B70603	IRON	20200		2000 or background
TP-2	5	12/06/99	B70603	LEAD	467	ppm	Background
TP-2	5	12/06/99	B70603	MAGNESIUM	35800	ppm	Background
TP-2	5	12/06/99	B70603	MANGANESE	3480		Background
TP-2	5	12/06/99	B70603	MERCURY	1.00	ppm	0.1
TP-2	5	12/06/99	B70603	NICKEL		ppm	13 or background
TP-2	5	12/06/99	B70603	POTASSIUM	2540		Background
TP-2	5	12/06/99	B70603	SELENIUM		ppm	2 or background
TP-2	5	12/06/99	B70603	SILVER	0.24		Background
TP-2	5	12/06/99	B70603	SODIUM		ppm	Background
TP-2	5	12/06/99	B70603	VANADIUM		ppm	150 or background
TP-2	5	12/06/99	B70603	ZINC	663	ppm	20 or background
TP-3	8-9	12/06/99	B70604	ALUMINUM	7560	ppm	Background
TP-3	8-9	12/06/99	B70604	ARSENIC		ppm	7.5 or background
TP-3	8-9	12/06/99	B70604	BARIUM		ppm	300 or background
TP-3	8-9	12/06/99	B70604	BERYLLIUM		ppm	0.16 or background
TP-3	8-9	12/06/99	B70604	CADMIUM		ppm	10 or background
TP-3	8-9	12/06/99	B70604	CALCIUM	15400		Background
TP-3	8-9	12/06/99	B70604	CHROMIUM	11.1	ppm	50 or background
TP-3	8-9	12/06/99	B70604	COBALT		ppm	30 or background
TP-3	8-9	12/06/99	B70604	COPPER	21.8		25 or background
TP-3	8-9	12/06/99	B70604	CYANIDE		ppm	Site specific
TP-3	8-9	12/06/99	B70604	IRON	16700		2000 or background
TP-3	8-9	12/06/99	B70604	LEAD		ppm	Background
TP-3	8-9	12/06/99	B70604	MAGNESIUM	5900		Background
TP-3	8-9	12/06/99	B70604	MANGANESE		ppm	Background
TP-3	8-9	12/06/99	B70604	MERCURY		ppm	0.1
TP-3	8-9	12/06/99	B70604	NICKEL		ppm	13 or background
TP-3	8-9	12/06/99	B70604	POTASSIUM	1020		Background
TP-3	8-9	12/06/99	B70604	SELENIUM		ppm	2 or background
TP-3	8-9	12/06/99	B70604	SODIUM	88.5		Background
TP-3	8-9	12/06/99	B70604	VANADIUM		ppm	150 or background
TP-3	8-9	12/06/99	B70604	ZINC		ppm	20 or background
TP-4	5	12/06/99	B70605	ALUMINUM	12000		Background
TP-4	5	12/06/99	B70605	ARSENIC		ppm	7.5 or background
TP-4	5	12/06/99	B70605	BARIUM	98.8		300 or background 0.16 or background
TP-4	5	12/06/99	B70605	BERYLLIUM CADMIUM	0.69		10 or background
TP-4	5	12/06/99	B70605		0.31		Background Background
TP-4	5	12/06/99	B70605	CALCIUM	3880	ppiii	<u>Dackground</u>

Table 18. Summary of Subsurface Soil Sample Results inorganic Compounds Sorted by Depth Former Vacuum Oil Company 1999-2000 Site Invesigation

Location	Depth	Sample	Sample				
ld.	(ft)	Date	Number	Compound	Concentration	Units	Standard/Guidance
TP-4	5	12/06/99	B70605	CHROMIUM		ppm	50 or background
TP-4	5	12/06/99	B70605	COBALT	10.5	ppm	30 or background
TP-4	5	12/06/99	B70605	COPPER	13.5	ppm	25 or background
TP-4	5	12/06/99	B70605	IRON	23900		2000 or background
TP-4	5	12/06/99	B70605	LEAD		ppm	Background
TP-4	5	12/06/99	B70605	MAGNESIUM	3790	nnm	Background
TP-4	5	12/06/99	B70605	MANGANESE		ppm	Background
TP-4	5	12/06/99	B70605	MERCURY	0.03		0.1
TP-4	5	12/06/99	B70605	NICKEL	22.8		13 or background
TP-4	5	12/06/99	B70605	POTASSIUM	1170	nnm	Background
TP-4	5	12/06/99	B70605	SELENIUM	0.99		2 or background
TP-4	5	12/06/99	B70605	SODIUM		ppm	Background
TP-4	5	12/06/99	B70605	VANADIUM	20.1		150 or background
TP-4	5	12/06/99	B70605	ZINC		ppm	20 or background
TP-5	3	12/06/99	B70605	ALUMINUM	22200		Background
TP-5	3	12/06/99	B70606	ARSENIC	37.7	ppm	7.5 or background
TP-5	3		B70606	BARIUM		ppm	300 or background
		12/06/99	B70606	BERYLLIUM		ppm	0.16 or background
TP-5	3	12/06/99	B70606				10 or background
TP-5 TP-5	3	12/06/99		CADMIUM	39400	ppm	Background
	3	12/06/99	B70606			ppm	50 or background
TP-5	3	12/06/99	B70606	CHROMIUM	49.5	ppm	30 or background
TP-5	3	12/06/99	B70606	COBALT			25 or background
TP-5	3	12/06/99	B70606	COPPER		ppm	2000 or background
TP-5	3	12/06/99	B70606	IRON	14200		
TP-5	3	12/06/99	B70606	LEAD	29900	ppm	Background
TP-5	3	12/06/99	B70606	MAGNESIUM			Background Background
TP-5	3	12/06/99	B70606	MANGANESE		ppm ppm	13 or background
TP-5	3	12/06/99	B70606	NICKEL	3400		Background
TP-5 -	3	12/06/99	B70606	POTASSIUM			
TP-5	3	12/06/99	B70606	SODIUM		ppm ppm	Background 150 or background
TP-5	3	12/06/99	B70606	ZINC		ppm	20 or background
TP-5	3	12/06/99	B70606	ALUMINUM	21400		Background
TP-8	3	12/06/99	B70607	ARSENIC		ppm	7.5 or background
TP-8		12/06/99	B70607			ppm	300 or background
TP-8	3	12/06/99	B70607	BARIUM BERYLLIUM			0.16 or background
TP-8	3	12/06/99	B70607	CADMIUM		ppm ppm	10 or background
TP-8	3	12/06/99	B70607				Background
TP-8	3	12/06/99	B70607	CHROMILIM	14300	ppm	50 or background
TP-8	3	12/06/99	B70607 B70607	CHROMIUM COBALT		ppm	30 or background
TP-8	3	12/06/99 12/06/99	B70607	COPPER		ppm	25 or background
TP-8	3	12/06/99	B70607	IRON	65500		2000 or background
TP-8	3	12/06/99	B70607	LEAD		ppm	Background
		12/06/99		MAGNESIUM	21200		Background
TP-8	3	12/06/99	B70607 B70607	MANGANESE	1190		Background
TP-8	3	12/06/99	B70607	MERCURY		ppm	0.1
TP-8	3	12/06/99	B70607	NICKEL		ppm	13 or background
TP-8	3	12/06/99	B70607	POTASSIUM	2670		Background
TP-8	3	12/06/99	B70607	SELENIUM		ppm	2 or background
TP-8	3	12/06/99	B70607	SODIUM		ppm	Background
TP-8	3	12/06/99	B70607	VANADIUM		ppm	150 or background
TP-8	3			ZINC		ppm	20 or background
17-8	<u> </u>	12/06/99	B70607	ZINU	110	Thhiu	ZO OI DACKGIOUIIU

Samples B70618 and B70619 are field duplicate samples

Table 19. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/Guidance	Units
TP-5	3	12/06/99	B70606	ALUMINUM	22200		Background	
TP-8	3	12/06/99	B70607	ALUMINUM	21400		Background	
TP-2	5	12/06/99	B70603	ALUMINUM	20100		Background	
TP-4	5	12/06/99	B70605	ALUMINUM	12000	ppm	Background	
TP-1	7-8	12/06/99	B70602	ALUMINUM	9120	ppm	Background	
MW-2	6-8	02/08/00	B70616	ALUMINUM	8100	ppm	Background	
TP-3	8-9	12/06/99	B70604	ALUMINUM	7560		Background	
TP-1	3-5	12/06/99	B70601	ALUMINUM	6340		Background	
MW-1	8-10	02/08/00	B70618	ALUMINUM	6140	nnm	Background	
TP-10	4	12/06/99	B70610	ALUMINUM	4400	ppm	Background	
MW-1	8-10	02/08/00	B70619	ALUMINUM	3400	nnm	Background	nnm
TP-10	4	12/06/99	B70610	ANTIMONY	5.70	ppm	Background	
TP-8	3	12/06/99	B70617	ARSENIC	113	ppm	7.5 or background	
TP-5	3	12/06/99	B70606	ARSENIC		ppm	7.5 or background	
TP-2	5	12/06/99	B70603	ARSENIC		ppm	7.5 or background	
TP-10	4	12/06/99	B70603	ARSENIC		ppm	7.5 or background	
TP-1	7-8	12/06/99	B70602	ARSENIC	10.4	ppm	7.5 or background	
TP-1	3-5	12/06/99	B70601	ARSENIC		ppm	7.5 or background	
				ARSENIC				
MW-1	8-10	02/08/00	B70619			ppm	7.5 or background	
MW-1	8-10	02/08/00	B70618	ARSENIC		ppm	7.5 or background	
TP-4	5	12/06/99	B70605	ARSENIC	3.30	ppm	7.5 or background	
MW-2	6-8	02/08/00	B70616	ARSENIC	4.70	ppm	7.5 or background	
TP-3	8-9	12/06/99	B70604	ARSENIC	4.70	ppm	7.5 or background	
TP-2	5	12/06/99	B70603	BARIUM		ppm	300 or background	
TP-4	5	12/06/99	B70605	BARIUM		ppm	300 or background	
TP-1	3-5	12/06/99	B70601	BARIUM	89.5	ppm	300 or background	
TP-3	8-9	12/06/99	B70604	BARIUM	86.1	ppm	300 or background	
TP-10	4	12/06/99	B70610	BARIUM		ppm	300 or background	
MW-1	8-10	02/08/00	B70619	BARIUM		ppm	300 or background	
MW-2	6-8	02/08/00	B70616	BARIUM		ppm	300 or background	
MW-1	8-10	02/08/00	B70618	BARIUM		ppm	300 or background	
TP-5	3	12/06/99	B70606	BARIUM		ppm	300 or background	
TP-1	7-8	12/06/99	B70602	BARIUM	29.0	ppm	300 or background	
TP-8	3	12/06/99	B70607	BARIUM	28.5	ppm	300 or background	
TP-2	5	12/06/99	B70603	BERYLLIUM	2.20	ppm	0.16 or background	
TP-8	3	12/06/99	B70607	BERYLLIUM		ppm	0.16 or background	
TP-5	3	12/06/99	B70606	BERYLLIUM		ppm	0.16 or background	
TP-4	5	12/06/99	B70605	BERYLLIUM		ppm	0.16 or background	
TP-1	3-5	12/06/99	B70601	BERYLLIUM		ppm	0.16 or background	
TP-1	7-8	12/06/99	B70602	BERYLLIUM		ppm	0.16 or background	
MW-2	6-8	02/08/00	B70616	BERYLLIUM		ppm	0.16 or background	
TP-10	4	12/06/99	B70610	BERYLLIUM		ppm	0.16 or background	
TP-3	8-9	12/06/99	B70604	BERYLLIUM	0.42	ppm	0.16 or background	
MW-1	8-10	02/08/00	B70618	BERYLLIUM		ppm	0.16 or background	
MW-1	8-10	02/08/00	B70619	BERYLLIUM		ppm	0.16 or background	
TP-2	5	12/06/99	B70603	CADMIUM		ppm	10 or background	
TP-5	3	12/06/99	B70606	CADMIUM		ppm	10 or background	
TP-8	3	12/06/99	B70607	CADMIUM	1.10	ppm	10 or background	
MW-1	8-10	02/08/00	B70619	CADMIUM		ppm	10 or background	
TP-1	7-8	12/06/99	B70602	CADMIUM		ppm	10 or background	
TP-3	8-9	12/06/99	B70604	CADMIUM		ppm	10 or background	
TP-10	4	12/06/99	B70610	CADMIUM	.0.34	ppm	10 or background	
TP-4	5	12/06/99	B70605	CALCULM		ppm	10 or background	
TP-2	5	12/06/99	B70603	CALCIUM	85100		Background	
TP-5	3	12/06/99	B70606	CALCIUM	39400		Background	
TP-10	4	12/06/99	B70610	CALCIUM	31400		Background	
TP-3	8-9	12/06/99	B70604	CALCIUM	15400	lbbm	Background	ppm

Table 19. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location	Depth	Sample	Sample					
ld.	(ft)	Date	Number	Compound	Concentration		Standard/Guidance	Units
TP-8	3	12/06/99	B70607	CALCIUM	14300		Background	
MW-1	8-10	02/08/00	B70619	CALCIUM	4300		Background	
TP-4	5	12/06/99	B70605	CALCIUM	3880		Background	
TP-1	3-5	12/06/99	B70601	CALCIUM	3150		Background	
MW-1	8-10	02/08/00	B70618	CALCIUM	1870	ppm	Background	
TP-1	7-8	12/06/99	B70602	CALCIUM	1850	ppm	Background	
MW-2	6-8	02/08/00	B70616	CALCIUM	1280		Background	
TP-8	3	12/06/99	B70607	CHROMIUM	59.3		50 or background	
TP-5	3	12/06/99	B70606	CHROMIUM	49.5		50 or background	
TP-2	5	12/06/99	B70603	CHROMIUM		ppm	50 or background	
MW-1	8-10	02/08/00	B70619	CHROMIUM	19.9	ppm	50 or background	
TP-4	5	12/06/99	B70605	CHROMIUM		ppm	50 or background	
MW-1	8-10	02/08/00	B70618	CHROMIUM		ppm	50 or background	
MW-2	6-8	02/08/00	B70616	CHROMIUM		ppm	50 or background	
TP-3	8-9	12/06/99	B70604	CHROMIUM	11.1	ppm	50 or background	
TP-10	4	12/06/99	B70610	CHROMIUM	9.90	ppm	50 or background	
TP-1	7-8	12/06/99	B70602	CHROMIUM		ppm	50 or background	
TP-1 TP-4	3-5	12/06/99	B70601 B70605	CHROMIUM COBALT		ppm ppm	50 or background 30 or background	
	5	12/06/99	B70619	COBALT				
MW-1 TP-8	8-10	02/08/00 12/06/99	B70607	COBALT		ppm	30 or background 30 or background	
MW-2	<u>3</u> 6-8	02/08/00	B70616	COBALT		ppm ppm	30 or background	
TP-10	4	12/06/99	B70610	COBALT		ppm	30 or background	
TP-1	3-5	12/06/99	B70601	COBALT		ppm	30 or background	
TP-3	8-9	12/06/99	B70604	COBALT		ppm	30 or background	
TP-1	7-8	12/06/99	B70602	COBALT		ppm	30 or background	
MW-1	8-10	02/08/00	B70618	COBALT	4 60	ppm	30 or background	
TP-2	5	12/06/99	B70603	COBALT		ppm	30 or background	
TP-5	3	12/06/99	B70606	COBALT		ppm	30 or background	
TP-1	7-8	12/06/99	B70602	COPPER		ppm	25 or background	
TP-10	4	12/06/99	B70610	COPPER		ppm	25 or background	
TP-8	3	12/06/99	B70607	COPPER	58.5	ppm	25 or background	
MW-1	8-10	02/08/00	B70619	COPPER		ppm	25 or background	
TP-2	5	12/06/99	B70603	COPPER		ppm	25 or background	
TP-1	3-5	12/06/99	B70601	COPPER		ppm	25 or background	ppm
TP-3	8-9	12/06/99	B70604	COPPER	21.8	ppm	25 or background	
MW-1	8-10	02/08/00	B70618	COPPER	17.2	ppm	25 or background	ppm
MW-2	6-8	02/08/00	B70616	COPPER	13.7	ppm	25 or background	
TP-4	5	12/06/99	B70605	COPPER		ppm	25 or background	
TP-5	3	12/06/99	B70606	COPPER		ppm	25 or background	
TP-3	8-9	12/06/99	B70604	CYANIDE	1.10	ppm	Site specific	
TP-8	3	12/06/99	B70607	IRON	65500	ppm	2000 or background	
TP-4	5	12/06/99	B70605	IRON	23900		2000 or background	
TP-2	5	12/06/99	B70603	IRON	20200		2000 or background	
TP-1	3-5	12/06/99	B70601	IRON	19300		2000 or background	
MW-2	6-8	02/08/00	B70616	IRON	18100		2000 or background	
TP-1	7-8	12/06/99	B70602	IRON	17700	ppm	2000 or background	
TP-3	8-9	12/06/99	B70604	IRON	16700		2000 or background	
MW-1	8-10	02/08/00	B70618	IRON	15900		2000 or background	
TP-5	3	12/06/99	B70606	IRON	14200		2000 or background	
TP-10	4	12/06/99	B70610	IRON	11400		2000 or background 2000 or background	
MW-1	8-10	02/08/00	B70619	LEAD	3400	ppm	Background	
TP-10	4	12/06/99	B70610 B70603	LEAD			Background	
TP-2 TP-3	5 8-9	12/06/99 12/06/99	B70604	LEAD		ppm ppm	Background	
TP-8	3	12/06/99	B70604	LEAD		ppm	Background	
TP-1	3-5	12/06/99	B70607	LEAD		ppm	Background	
15-1	1 3-3	1 12/00/33	510001		29.0	Phill	Dackground	יייקקו

Table 19. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location	Depth	Sample	Sample	Compound	Concentration	Unito	Standard/Guidance	Unito
ld.	(ft)	Date	Number	Compound	Concentration			Units
TP-5	3	12/06/99	B70606	LEAD	25.9	ppm	Background	
MW-1 TP-4	8-10	02/08/00	B70619	LEAD LEAD	21.0	ppm	Background	
	5	12/06/99	B70605		14.0	ppm	Background	
MW-1	8-10	02/08/00	B70618	LEAD		ppm	Background	
MW-2	6-8	02/08/00	B70616	LEAD	9.60	ppm	Background	
TP-1	7-8	12/06/99	B70602 B70603	LEAD MAGNESIUM	9.10	ppm	Background	
TP-2 TP-5	5 3	12/06/99 12/06/99	B70606	MAGNESIUM	35800 29900	ppm	Background Background	
TP-8	3	12/06/99	B70607	MAGNESIUM	21200	ppm	Background	
TP-10	4	12/06/99	B70610	MAGNESIUM	17900		Background	
TP-3	8-9	12/06/99	B70604	MAGNESIUM	5900		Background	
TP-4	5	12/06/99	B70605	MAGNESIUM	3790	ppm	Background	
MW-2	6-8	02/08/00	B70603	MAGNESIUM	2640	ppm	Background	
TP-1	7-8	12/06/99	B70602	MAGNESIUM	2410	ppm	Background	
TP-1	3-5	12/06/99	B70602	MAGNESIUM	2250	ppm	Background	
MW-1	8-10	02/08/00	B70618	MAGNESIUM	2130	ppm	Background	
MW-1	8-10	02/08/00	B70619	MAGNESIUM		ppm	Background	
TP-2	5	12/06/99	B70603	MANGANESE	3480	ppm	Background	
TP-8	3	12/06/99	B70607	MANGANESE	1190	ppm	Background	
TP-4	5	12/06/99	B70605	MANGANESE	780	ppm	Background	
TP-3	8-9	12/06/99	B70604	MANGANESE	346	ppm	Background	
TP-10	4	12/06/99	B70610	MANGANESE	255	ppm	Background	
MW-2	6-8	02/08/00	B70616	MANGANESE		ppm	Background	
TP-1	3-5	12/06/99	B70601	MANGANESE		ppm	Background	
TP-5	3	12/06/99	B70606	MANGANESE	100	ppm	Background	
TP-1	7-8	12/06/99	B70602	MANGANESE	87.3	ppm	Background	
MW-1	8-10	02/08/00	B70618	MANGANESE	85.4	ppm	Background	
MW-1	8-10	02/08/00	B70619	MANGANESE		ppm	Background	nnm
TP-1	3-5	12/06/99	B70601	MERCURY		ppm		ppm
TP-10	4	12/06/99	B70610	MERCURY	1.50	ppm		ppm
TP-2	5	12/06/99	B70603	MERCURY	1 00	ppm		ppm
TP-3	8-9	12/06/99	B70604	MERCURY		ppm	0.1	ppm
MW-1	8-10	02/08/00	B70618	MERCURY		ppm	1	ppm
TP-8	3	12/06/99	B70607	MERCURY	0.05	ppm		ppm
TP-4	5	12/06/99	B70605	MERCURY	0.03	ppm		ppm
TP-2	5	12/06/99	B70603	NICKEL	35.6	ppm	13 or background	
TP-8	3	12/06/99	B70607	NICKEL		ppm	13 or background	
MW-1	8-10	02/08/00	B70619	NICKEL		ppm	13 or background	
TP-4	5	12/06/99	B70605	NICKEL		ppm	13 or background	
MW-2	6-8	02/08/00	B70616	NICKEL		ppm	13 or background	
TP-1	7-8	12/06/99	B70602	NICKEL	17.3	ppm	13 or background	
TP-5	3	12/06/99	B70606	NICKEL	16.0	ppm	13 or background	
TP-1	3-5	12/06/99	B70601	NICKEL		ppm	13 or background	
TP-10	4	12/06/99	B70610	NICKEL		ppm	13 or background	
MW-1	8-10	02/08/00	B70618	NICKEL	14.5	ppm	13 or background	
TP-3	8-9	12/06/99	B70604	NICKEL	14.0	ppm	13 or background	
TP-5	3	12/06/99	B70606	POTASSIUM	3400		Background	
TP-8	3	12/06/99	B70607	POTASSIUM	2670	ppm	Background	
TP-2	5	12/06/99	B70603	POTASSIUM	2540	ppm	Background	ppm
TP-4	5	12/06/99	B70605	POTASSIUM	1170	ppm	Background	
TP-1	7-8	12/06/99	B70602	POTASSIUM	1040	ppm	Background	ppm
TP-3	8-9	12/06/99	B70604	POTASSIUM	1020	ppm	Background	
MW-1	8-10	02/08/00	B70619	POTASSIUM		ppm	Background	
TP-1	3-5	12/06/99	B70601	POTASSIUM	930	ppm	Background	ppm
MW-2	6-8	02/08/00	B70616	POTASSIUM	865	ppm	Background	ppm
TP-10	4	12/06/99	B70610	POTASSIUM		ppm	Background	ррт
MW-1	8-10	02/08/00	B70618	POTASSIUM		ppm	Background	

Table 19. Summary of Subsurface Soil Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location	Depth	Sample	Sample					
ld.	(ft)	Date	Number	Compound	Concentration		Standard/Guidance	Units
TP-10	4	12/06/99	B70610	SELENIUM	3.50	ppm		
TP-8	3	12/06/99	B70607	SELENIUM		ppm	2 or background	
TP-2	5	12/06/99	B70603	SELENIUM		ppm	2 or background	
MW-1	8-10	02/08/00	B70619	SELENIUM	2.00		2 or background	
TP-1	7-8	12/06/99	B70602	SELENIUM		ppm	2 or background	
MW-2	6-8	02/08/00	B70616	SELENIUM	1.50	ppm	2 or background	
TP-1	3-5	12/06/99	B70601	SELENIUM	1.30	ppm	2 or background	
TP-3	8-9	12/06/99	B70604	SELENIUM		ppm	2 or background	
TP-4	5	12/06/99	B70605	SELENIUM	0.99		2 or background	
TP-2	5	12/06/99	B70603	SILVER	0.24		Background	
TP-5	3	12/06/99	B70606	SODIUM		ppm	Background	
TP-2	5	12/06/99	B70603	SODIUM	714	ppm	Background	
TP-8	3	12/06/99	B70607	SODIUM	554	ppm	Background	
TP-10	4	12/06/99	B70610	SODIUM		ppm	Background	
MW-2	6-8	02/08/00	B70616	SODIUM		ppm	Background	
TP-3	8-9	12/06/99	B70604	SODIUM	88.5	ppm	Background	
MW-1	8-10	02/08/00	B70619	SODIUM	83.6	ppm	Background	
TP-1	3-5	12/06/99	B70601	SODIUM	75.4		Background	
TP-1	7-8	12/06/99	B70602	SODIUM	67.7		Background	
TP-4	5	12/06/99	B70605	SODIUM	56.5		Background	
MW-1	8-10	02/08/00	B70618	SODIUM	52.3		Background	
MW-2	6-8	02/08/00	B70616	VANADIUM	13.9		150 or background	
TP-8	3	12/06/99	B70607	VANADIUM	60.3	ppm	150 or background	
TP-5	3	12/06/99	B70606	VANADIUM	52.6	ppm	150 or background	
MW-1	8-10	02/08/00	B70619	VANADIUM	32.0		150 or background	
TP-2	5	12/06/99	B70603	VANADIUM	23.2	ppm	150 or background	
TP-10	4	12/06/99	B70610	VANADIUM	20.2		150 or background	
TP-4	5	12/06/99	B70605	VANADIUM	20.1		150 or background	
TP-1	3-5	12/06/99	B70601	VANADIUM	16.2		150 or background	
TP-1	7-8	12/06/99	B70602	VANADIUM	15.7	ppm	150 or background	
TP-3	8-9	12/06/99	B70604	VANADIUM	15.5		150 or background	
MW-1	8-10	02/08/00	B70618	VANADIUM		ppm	150 or background	
TP-2	5	12/06/99	B70603	ZINC	100	ppm	20 or background	
TP-3	8-9	12/06/99	B70604	ZINC		ppm	20 or background	
TP-1	7-8 3-5	12/06/99	B70602 B70601	ZINC		ppm	20 or background	
TP-1		12/06/99	B70610	ZINC		ppm	20 or background	
TP-10 TP-8	3	12/06/99	B70610 B70607	ZINC		ppm ppm	20 or background 20 or background	
TP-8	5	12/06/99	B70605	ZINC	79.4	ppm	20 or background	
MW-1	8-10	02/08/00	B70618	ZINC	62.9		20 or background	
MW-1	8-10	02/08/00	B70619	ZINC		ppm	20 or background	
TP-5		12/06/99	B70606	ZINC	54.7		20 or background	
MW-2	3 6-8	02/08/00	B70616	ZINC	47.5		20 or background	
			field duplica		1 47.3	ppiii	20 of background	[bbill

Samples B70618 and B70619 are field duplicate samples

Table 20. Summary of Subsurface Soil Sample Results Pesticides and PCBs Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	ł
TP-1	3-5	12/06/99	B70601	ALL PESTICIDES/PCBs	ND	ppb	NA	ppb
TP-1	7-8	12/06/99	B70602	ALDRIN	2.60	ppb	41	ppb
TP-2	5	12/06/99	B70603	ALL PESTICIDES/PCBs	ND	ppb	NA	ppb
TP-3	8-9	12/06/99	B70604	ALL PESTICIDES/PCBs	ND	ppb	NA	ppb
TP-4	5	12/06/99	B70605	ALL PESTICIDES/PCBs	ND	ppb	NA	ppb
TP-5	3	12/06/99	B70606	ALL PESTICIDES/PCBs	ND	ppb	NA	ppb
TP-8	3	12/06/99	B70607	ALL PESTICIDES/PCBs		ppb		ppb
TP-10	4	12/06/99	B70610	ALL PESTICIDES/PCBs		ppb		ppb

ND- Not Detected NA- Not Applicable

Table 21. Summary of Subsurface Soil Sample Results Toxicity Characteristic Leachate Procedure Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Depth (ft)	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	ſ
TP-1	3-5	12/06/99	B70601	BARIUM		ppb	100000	
TP-1	3-5	12/06/99	B70601	LEAD	57.2	ppb	5000	
TP-1	3-5	12/06/99	B70601	All TCLP HERBICIDES	ND	ppb	NA	ppb
TP-1	3-5	12/06/99	B70601	All TCLP SVOCs	ND	ppb		ppb
TP-1	3-5	12/06/99	B70601	All TCLP VOCs	ND	ppb	NA	ppb
TP-1	3-5	12/06/99	B70601	ALL TCLP PESTICIDES/PCBs	ND	ppb	NA	ppb
TP-1	7-8	12/06/99	B70602	BARIUM		ppb	100000	ppb
TP-1	7-8	12/06/99	B70602	LEAD	62.0	ppb	5000	ppb
TP-1	7-8	12/06/99	B70602	MERCURY	0.18	ppb	200.0	
TP-1	7-8	12/06/99	B70602	2-BUTANONE	11.0	ppb	200000	ppb
TP-1	7-8	12/06/99	B70602	BENZENE	97.0	ppb	500	ppb
TP-1	7-8	12/06/99	B70602	All TCLP HERBICIDES	ND	ppb	NA	ppb
TP-1	7-8	12/06/99	B70602	All TCLP SVOCs	ND	ppb	NA	ppb
TP-1	7-8	12/06/99	B70602	ALL TCLP PESTICIDES/PCBs	ND	ppb	NA	ppb

ND- Not Detected NA- Not Applicable

Table 22. Summary of Groundwater Sample Results Semi-Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	l
MW-2	02/23/00	B70624	4-METHYLPHENOL	0.80	ppb	1S	ppb
MW-2	02/23/00	B70624	ACENAPHTHENE	0.60		20G	ppb
MW-2	02/23/00	B70624	CARBAZOLE	0.90	ppb		ppb
MW-2	02/23/00	B70624	DIBENZOFURAN	0.60	ppb	NA	ppb
MW-2	02/23/00	B70624	DI-N-OCTYLPHTHALATE	0.80	ppb	50S	ppb
MW-2	02/23/00	B70624	FLUORENE	0.80	ppb	50G	ppb
MW-2	02/23/00	B70624	NAPHTHALENE	1.00	ppb	10G	ppb
MW-1	02/23/00	B70623	PHENOL	7.00	ppb	1S	ppb
MW-1	02/23/00	B70623	TOTAL SVOC TICs	1250	ppb	NA	ppb
MW-2	02/23/00	B70624	TOTAL SVOC TICs	125	ppb	NA	ppb
MW-3	02/23/00	B70622	TOTAL SVOC TICs	67	ppb	NA	ppb
MW-3	02/23/00	B70622	ALL TCL SVOCs	ND	ppb	NA	ppb

ND- Not Detected NA- Not Applicable

S- 6 NYCRR Part 703 groundwater standard.

G- TOGS 1.1.1 groundwater guidance value.

TCL- Target Compound List

Table 23. Summary of Groundwater Sample Results Total Petroleum Hydrocarbons Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	l
MW-1	02/23/00	B70623	TOTAL PETROLEUM HYDROCARBONS	3.70	ppm	NA	ppb
MW-2	02/23/00	B70624	TOTAL PETROLEUM HYDROCARBONS	ND	ppm	NA	ppb
MW-3	02/23/00	B70622	TOTAL PETROLEUM HYDROCARBONS	ND	ppm	NA	ppb

ND- Not Detected NA- Not Applicable

Table 24. Summary of Groundwater Sample Results Volatile Organic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	l .	Comments
MW-1	. 02/23/00	B70623	1,1,2-TRICHLOROETHANE	2.00	ppb	18	ppb	
MW-2	02/23/00	B70624	1,1-DICHLOROETHANE	13.0	ppb	5S	ppb	
MW-1	02/23/00	B70623	1,1-DICHLOROETHANE	7.00	ppb		ppb	
MW-1	02/23/00	B70623	ACETONE	28.0		50G	ppb	
MW-2	02/23/00	B70624	ACETONE	14.0	ppb	50G	ppb	
MW-1	02/23/00	B70623	BENZENE	95.0	ppb	15	ppb	
MW-1	02/23/00	B70623	ETHYL BENZENE	49.0	ppb	5S	ppb	
QA/QC	02/23/00	Trip Blank	METHYLENE CHLORIDE	9.00	ppb	NA	ppb	
MW-1	02/23/00	B70623	METHYLENE CHLORIDE	8.00	ppb	5S	ppb	Result is invalid due to laboratory contamination.
MW-2	02/23/00	B70624	METHYLENE CHLORIDE	8.00	ppb	5S	ppb	Result is invalid due to laboratory contamination.
MW-3	02/23/00	B70622	METHYLENE CHLORIDE	8.00	ppb	58	ppb	Result is invalid due to laboratory contamination.
MW-1	02/23/00	B70623	TOLUENE	4.00	ppb	5S	ppb	
MW-1	02/23/00	B70623	XYLENE (total)		ppb		ppb	
MW-1	02/23/00	B70623	TOTAL VOC TICs	650	ppb	NA	ppb	
MW-2	02/23/00	B70624	TOTAL VOC TICs		ppb		ppb	
MW-3	02/23/00	B70622	TOTAL VOC TICs	ND	ppb		ppb	

ND- Not Detected

NA- Not Applicable S- 6 NYCRR Part 703 groundwater standard. G- TOGS 1.1.1 groundwater guidance value.

Table 25. Summary of Groundwater Sample Results Inorganic Compounds Sorted by Location Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	Units
MW-1	02/23/00	B70623	ALUMINUM	7380			ppb
MW-1	02/23/00	B70623	ARSENIC	7.60		258	nnh
MW-1	02/23/00	B70623	BARIUM	202		1000S	
MW-1	02/23/00	B70623	BERYLLIUM	0.68			ppb
MW-1	02/23/00	B70623	CALCIUM	212000	nnh		ppb
MW-1	02/23/00	B70623	CHROMIUM	10.0		50S	
MW-1	02/23/00	B70623	COBALT	6.30			ppb
MW-1	02/23/00	B70623	COPPER	15.2		2008	ppb
MW-1	02/23/00	B70623	IRON	21700	ppb	300S	ppb
MW-1	02/23/00	B70623	LEAD	11.1		25S	ppb
MW-1	02/23/00	B70623	MAGNESIUM	76200		35000G	ppb
	02/23/00	B70623	MANGANESE	1130		3000	ppb
MW-1		B70623	NICKEL			100\$	ppb
MW-1	02/23/00		POTASSIUM	19.4	ppo	1005	ppb
MW-1	02/23/00	B70623		5090			ppb
MW-1	02/23/00	B70623	SODIUM	23600		20000S	
MW-1	02/23/00	B70623	VANADIUM	12.0		NA OCCOR	ppb
MW-1	02/23/00	B70623	ZINC		ppb	2000G	
MW-2	02/23/00	B70624	ALUMINUM	4210		NA 050	ppb
MW-2	02/23/00	B70624	ARSENIC	17.0		25S	ppb
MW-2	02/23/00	B70624	BARIUM		ppb	1000S	
MW-2	02/23/00	B70624	BERYLLIUM	0.44		3G	ppb
MW-2	02/23/00	B70624	CADMIUM	0.87		58	ppb
MW-2	02/23/00	B70624	CALCIUM	158000		NA NA	ppb
MW-2	02/23/00	B70624	CHROMIUM	7.60			ppb
MW-2	02/23/00	B70624	COBALT	4.40			ppb
MW-2	02/23/00	B70624	COPPER	18.4		200S	
MW-2	02/23/00	B70624	IRON	18700	ppb	300S	
MW-2	02/23/00	B70624	LEAD	15.9		25S	ppb
MW-2	02/23/00	B70624	MAGNESIUM	50500		35000G	
MW-2	02/23/00	B70624	MANGANESE	1730		300S	
MW-2	02/23/00	B70624	NICKEL	13.1	ppb	100S	
MW-2	02/23/00	B70624	POTASSIUM	6480			ppb
MW-2	02/23/00	B70624	SODIUM	10800		20000S	
MW-2	02/23/00	B70624	VANADIUM	8.50	ppb		ppb
MW-2	02/23/00	B70624	ZINC		ppb	2000G	
MW-3	02/23/00	B70622	ALUMINUM	4010			ppb
MW-3	02/23/00	B70622	ARSENIC	6.90			ppb
MW-3	02/23/00	B70622	BARIUM	99.3		1000S	
MW-3	02/23/00	B70622	BERYLLIUM	0.40	*************************************		ppb
MW-3	02/23/00	B70622	CADMIUM	0.46			ppb
MW-3	02/23/00	B70622	CALCIUM	137000			ppb
MW-3	02/23/00	B70622	CHROMIUM	6.20			ppb
MW-3	02/23/00	B70622	COBALT	3.50	ppb		ppb
MW-3	02/23/00	B70622	COPPER	30.4	ppb	200S	ppb
MW-3	02/23/00	B70622	IRON	9360	ppb	300S	
MW-3	02/23/00	B70622	LEAD	62.4	ppb	25S	
MW-3	02/23/00	B70622	MAGNESIUM	49600		35000G	ppb
MW-3	02/23/00	B70622	MANGANESE		ppb	300S	
MW-3	02/23/00	B70622	MERCURY	0.23		0.78	
MW-3	02/23/00	B70622	NICKEL	10.7		100S	
MW-3	02/23/00	B70622	POTASSIUM	10700			ppb
MW-3	02/23/00	B70622	SODIUM	152000		20000S	

Table 25. Summary of Groundwater Sample Results Inorganic Compounds Sorted by Location Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	
MW-3	02/23/00	B70622	VANADIUM	7.20	ppb	NA	ppb
MW-3	02/23/00	B70622	ZINC	274	ppb	2000G	ppb

NA- Not Applicable

S- 6 NYCRR Part 703 groundwater standard. G- TOGS 1.1.1 groundwater guidance value.

Table 26. Summary of Groundwater Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

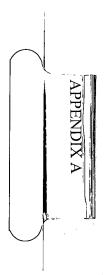

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	Units
MW-1	02/23/00	B70623	ALUMINUM	7380	ppb	NA	ppb
MW-2	02/23/00	B70624	ALUMINUM	4210	ppb	NA	ppb
MW-3	02/23/00	B70622	ALUMINUM	4010	ppb	NA	ppb
MW-2	02/23/00	B70624	ARSENIC	17.0	ppb	25S	ppb
MW-1	02/23/00	B70623	ARSENIC	7.60	ppb	25S	ppb
MW-3	02/23/00	B70622	ARSENIC	6.90	ppb	25S	ppb
MW-2	02/23/00	B70624	BARIUM	246	ppb	1000S	
MW-1	02/23/00	B70623	BARIUM	202	ppb	1000S	
MW-3	02/23/00	B70622	BARIUM	99.3		1000S	ppb
MW-1	02/23/00	B70623	BERYLLIUM	0.68	ppb	3G	ppb
MW-2	02/23/00	B70624	BERYLLIUM	0.44	ppb	3G	ppb
MW-3	02/23/00	B70622	BERYLLIUM	0.40	ppb	3G	ppb
MW-2	02/23/00	B70624	CADMIUM	0.87		5S	ppb
MW-3	02/23/00	B70622	CADMIUM	0.46	ppb	5S	ppb
MW-1	02/23/00	B70623	CALCIUM	212000	ppb	NA	ppb
MW-2	02/23/00	B70624	CALCIUM	158000	ppb	NA	ppb
MW-3	02/23/00	B70622	CALCIUM	137000	ppb	NA	ppb
MW-1	02/23/00	B70623	CHROMIUM	10.0	ppb	50S	
MW-2	02/23/00	B70624	CHROMIUM	7.60		50S	
MW-3	02/23/00	B70622	CHROMIUM	6.20		50S	
MW-1	02/23/00	B70623	COBALT	6.30			ppb
MW-2	02/23/00	B70624	COBALT	4.40		NA	ppb
MW-3	02/23/00	B70622	COBALT	3.50			ppb
MW-3	02/23/00	B70622	COPPER	30.4		200S	ppb
MW-2	02/23/00	B70624	COPPER	18.4		200S	ppb
MW-1	02/23/00	B70623	COPPER	15.2	ppb	200S	
MW-1	02/23/00	B70623	IRON	21700	ppb	300S	
MW-2	02/23/00	B70624	IRON	18700	ppb	300S	ppb
MW-3	02/23/00	B70622	IRON	9360	ppb	300S	ppb
MW-3	02/23/00	B70622	LEAD	62.4	ppb	25S	ppb
MW-2	02/23/00	B70624	LEAD	15.9	ppb	258	ppb
MW-1	02/23/00	B70623	LEAD	11.1	ppb	258	ppb
MW-1	02/23/00	B70623	MAGNESIUM	76200		35000G	
MW-2	02/23/00	B70624	MAGNESIUM	50500	ppb	35000G	ppb
MW-3	02/23/00	B70622	MAGNESIUM	49600	ppb	35000G	ppb
MW-2	02/23/00	B70624	MANGANESE	1730	ppb	300S	ppb
MW-1	02/23/00	B70623	MANGANESE	1130		300S	ppb
MW-3	02/23/00	B70622	MANGANESE		ppb	300S	
MW-3	02/23/00	B70622	MERCURY	0.23		0.7S	
MW-1	02/23/00	B70623	NICKEL	19.4		100S	
MW-2	02/23/00	B70624	NICKEL	13.1		1008	
MW-3	02/23/00	B70622	NICKEL	10.7		100S	
MW-3	02/23/00	B70622	POTASSIUM	10700			ppb
MW-2	02/23/00	B70624	POTASSIUM	6480	ppb		ppb
MW-1	02/23/00	B70623	POTASSIUM	5090		NA NA	ppb
MW-3	02/23/00	B70622	SODIUM	152000		20000S	ppb
MW-1	02/23/00	B70623	SODIUM	23600		20000S	ppb
MW-2	02/23/00	B70624	SODIUM	10800		20000S	
MW-1	02/23/00	B70623	VANADIUM	12.0	ppb		ppb
MW-2	02/23/00	B70624	VANADIUM	8.50			ppb
MW-3	02/23/00	B70622	VANADIUM	7.20			ppb
MW-3	02/23/00	B70622	ZINC	274	ppb	2000G	ppb

Table 26. Summary of Groundwater Sample Results Inorganic Compounds Sorted by Compound Former Vacuum Oil Company 1999-2000 Site Invesigation

Location Id.	Sample Date	Sample Number	Compound	Concentration	Units	Standard/ Guidance	i
MW-2	02/23/00	B70624	ZINC	263	ppb	2000G	ppb
MW-1	02/23/00	B70623	ZINC	149	ppb	2000G	ppb

NA- Not Applicable

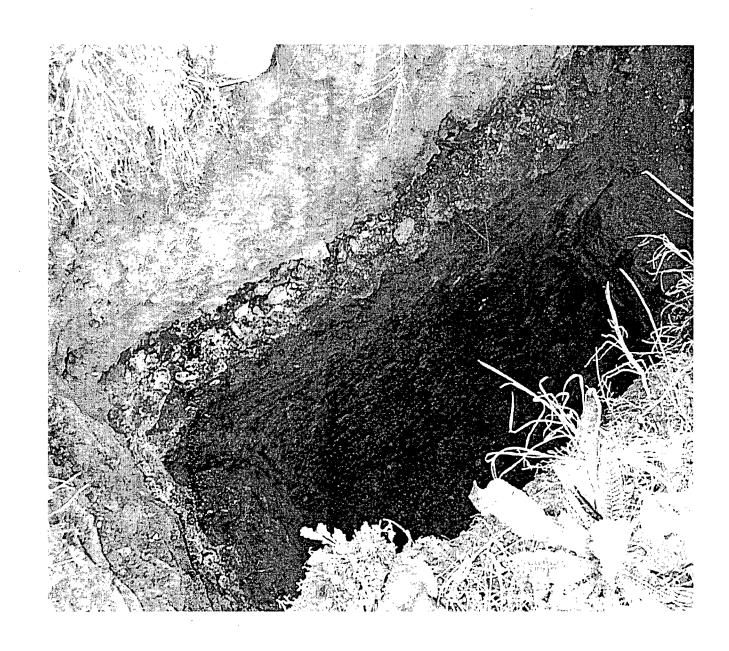
S- 6 NYCRR Part 703 groundwater standard. G- TOGS 1.1.1 groundwater guidance value.

APPENDIX A

1999-2000 SITE INVESTIGATION

TEST PIT LOGS

SOIL BORING LOGS


WELL INSTALLATION LOGS

WELL DEVELOPMENT LOGS

GROUNDWATER SAMPLING FIELD PARAMETER MEASUREMENTS

Test Pit Log

								
Site No:	828089P			Test Pit No				
Project Name	e:Former Vac	um Oil Company		Sheet 1 of	1			
Contractor:	SLC	Geologist: Je	nnifer League	By: JL	Date:12/06/99			
Operator:	Ken Kuhn	Date Started: 6-	-Dec-1999					
Equipment:	Komatsu 35F	R Date Completed: 6-	-Dec-1999					
DEPTH (FT.)	PID (PPM)	SAM	IPLE DESCRIPTION	V				
-0-	0	0'-1': 3" Topsoil;9" Brn sand, litt	tle gravel, I.clay, I.sil	t, moist (fill)				
	0	1': Brn. silty sand, moist (fill)						
-2-	0	2.5'-3.5': slag & brick fill w/sand	, moist					
·		_						
-4-	14	3.5'-4.7': Blk. silt and f/c sand, I.	gravel, I.clay, moist,	petroleum	odor (ML/fill)			
		4.7'-5': Lt. grey 3" layer	•	•	, ,			
-6-	50 (5'-7.7')	5'-8.5': Blk. silt, s.f.sand, s.clay,	5'-8.5': Blk. silt, s.f.sand, s.clay, tr.gravel, wet (ML/fill)					
	200 at 7.7'	, , , , , , , , , , , , , , , , , , ,	• • •	,				
-8-	6	8.5': Lt. grey silt and clay						
	ő	9': I.f/c sand, wet (ML) not much	n staining present; b	ottom of pit				
-10-	J		3 p					
'0								
-12-		·						
Comments:		Samples Collected:						
Excavation Dimensions		B70601 (3-5')						
9.7'Lx2'Wx9'I		B70602 (7-8')						
C. LAZ 11X0	_	- : - : - : - : - : - : - : - : - : -						
L		l	·	· · · · · · · · · · · · · · · · · · ·				

Test Pit TP-1

Test Pit Log

					I	
	828089P				Test Pit N	
Project Name	e:Former Va	cuum Oil Company			Sheet 1 c	of 1
Contractor:	SLC	Geologist:	Jennifer League		By: JL	Date:12/06/99
Operator:	Ken Kuhn	Date Started:	6-Dec-1999			
Equipment:	Komatsu 35	R Date Completed:	6-Dec-1999			
DEPTH (FT.)	PID (PPM)		SAMPLE DES	CRIPTION		
-0-	0	0'-2.8': 3" topsoil, Dk. brn san	d, brick, tr.slag, tr.	tile, moist		
-2-	0	2.8'-4.5': Roofing shingles				
-4-	0 -	4.5'-5': Brn. flc sand, s.slag, r	noist (fill)			
		At 5', encountered concrete s	lab that excavator	could not penetra	ate.	
-6-						
			•			
-8-			•			
						*
-10-						
-12-						
Comments:		Samples Collected:				
Excavation Dimensions		B70603 (5')				
8'Lx4'Wx5'D						

Test Pit TP-2

Test Pit Log

Site No:	828089P				Test Pit No	: TP-3		
Project Name:Former Vacuum Oil Company						· 1 `		
Contractor:	SLC	Geologist:	Jennifer League		By: JL	Date:12/06/99		
Operator:	Ken Kuhn	Date Started:	6-Dec-1999					
	Komatsu 35l	R Date Completed:	6-Dec-1999					
DEPTH (FT.)	PID (PPM)		SAMPLE DESCRIPT	ION				
-0-	0	Dk. drn f/m sand, l.gravel, l.sil	t, tr. roots, moist (fill)					
-2-	0	Brn. f.sand and silt, some clay	y, tr. brick, moist (fill)					
-4-	0	4'-8.5': Brn silt, some clay, l.f.	'-8.5': Brn silt, some clay, l.f. sand, tr. gravel, moist (ML)					
-6-								
-8-	0	8.5': Grey silt and clay, l.f.san	d, moist (ML); bottom of e	xcavation		·		
-10-								
-12-								
Comments:		Samples Collected:	•			1		
Excavation D 11'Lx3'Wx8.5		B70604 (8-9')						
			•					

Test Pit TP-3

Site No:	828089P		•		Test Pit No	
Project Name	e:Former Va	acuum Oil Company		Sheet 1 of	1	
Contractor:	SLC	Geologist:	Jennifer League		By: JL	Date:12/06/99
Operator:	Ken Kuhn	Date Started:	6-Dec-1999			
Equipment:	Komatsu 3	5R Date Completed:	6-Dec-1999			
DEPTH (FT.)	PID (PPM)		SAMPLE DESC	RIPTION		
-0-	0	0'-1.5': 6" topsoil & roots; Dk	. brn f/c sand, tr.grave	el, tr.silt, tr.roots,	moist (Top:	soil/SM)
-2-	0	1.5'-4.2': Brn. silt, sand, s. cl	ay, tr. gravel, moist (N	1L)		
		4.2' Bottom of excavation				
-4-						
-6-					•	
-8-						
		,				
-10-						
-12-						
Comments:	 	Samples Collected:				
Excavation D	imensions	B70605 (5')				
7.4'Lx4'Wx4.						
1.7647						•
		<u> </u>	· · · · · · · · · · · · · · · · · · ·			

Test Pit TP-4

Site No:	828089P			Test Pit No	: TP-5
Project Name	:Former Va	cuum Oil Company		Sheet 1 of	1
Contractor:	SLC	Geologist: Jennifer L	•	By: JL	Date:12/06/99
Operator:	Ken Kuhn	Date Started: 6-Dec-19	999		
Equipment:	Komatsu 3				
DEPTH (FT.)	PID (PPM)	SAMF	PLE DESCRIPTION		
-0-	0	0'-1': 3" topsoil; Dk. bm f/c sand, s.silt, I.	gravel, tr.slag, tr.brick, tr.ı	oots, moist	(fill)
-2-	0	1'-5': Blk f/m sand, tr.silt, tr.gravel, moist	(fill- material has appeara	ance of grou	nd coal)
-4-				•	
-6- 0 5'-6.2': Brn. silt and clay, l.f. sand, tr.gravel, moist (ML) 6.2': Bottom of excavation					
-8-		o.z Boxom or oxogramon			
-10-					
-12-					
Comments: Excavation Dimensions 10'Lx3'Wx6.2'D Samples Collected: B70606 (3')					

Test Pit TP-5

Site No:	828089P		· · · · · · · · · · · · · · · · · · ·	Test Pit No: TP-6
		cuum Oil Company		Sheet 1 of 1
Contractor:	SLC	Geologist:	Jennifer League	By: JL Date:12/06/99
Operator:	Ken Kuhn	Date Started:	6-Dec-1999	
Equipment:	Komatsu 3	5R Date Completed:	6-Dec-1999	
DEPTH (FT.)	PID (PPM)		SAMPLE DESCRIPTION	
-0-	0	0'-1.3': Grey/dk. grey gravel,	l.f/c sand, moist (fill)	
	0	1.3'-1.7': Dk. brn f/c sand, l.gr	ravel, moist (fill)	
-2-	0	1.7'-2.5': Brn. f/c sand and sil	t, l. clay, tr,gravel, tr.brick (fill)	
	0	2.5'-3.2': Dk. brn f/c sand and	l silt, l.gravel, tr.glass (SM/fill)	*
-4-	0	3.2'-4.2': Dk. brn to Lt. grey f/	c sand (ash-like), l.gravel, tr.silt,	tr.glass, saturated (fill)
		4.2': Bottom of excavation; gr	oundwater encountered	
-6-				
-8-				
	٠			
-10-		·		
-12-				
Comments:		Samples Collected:		
Excavation Dir	mensions	No samples collected		•
7'Lx2'Wx4.2'D				

Test Pit TP-6

0.15	2000000		TT (5) M	
Site No:	828089P		Test Pit No	
Project Name	:Former Va	cuum Oil Company	Sheet 1 of	1
Contractor:	SLC	Geologist: Jennifer League	By: JL	Date:12/06/99
Operator:	Ken Kuhn	Date Started: 6-Dec-1999		
Equipment:	Komatsu 3	5R Date Completed: 6-Dec-1999		
DEPTH (FT.)	PID (PPM)	SAMPLE DESCRIPTION		
-0-		5" Topsoil		
}	0	Dk. brn f/m sand, I.silt, I.gravel, tr.roots, moist (SM)		
-2-		· ·		
·	0	Brn. grey (mottled) clay and silt, f/c sand, tr.gravel, moist (CL)		
-4-		4.3': Bottom of Excavation		
,				
-6-				
		• '		
-8-				'
-0-				
10-				
-10-				
-12-				
Comments:	J	Samples Collected:		
Excavation Di	imensions	No samples collected		
7'Lx2'Wx4.3'E		Tro dampido donotida		
1 LAZ VVA4.3 L	•			
i		l		

Test Pit TP-7

Site No:	828089P			Test Pit No: TP-8
	e:Former Va	cuum Oil Company		Sheet 1 of 1
Contractor:		Geologist:	Jennifer League	By: JL Date:12/06/99
Operator:	Ken Kuhn	Date Started:	6-Dec-1999	
	Komatsu 3	5R Date Completed:	6-Dec-1999	•
DEPTH (FT.)	PID (PPM)		SAMPLE DESCR	IPTION
-0-		5" Topsoil		
	0	0.5'-3': Dk. brn/blk. fine to co	arse sand, l.gravel, mo	ist grading to saturated (fill)
-2-		this is a coal-like material sin	nilar to what was in TP-	·5
	0	3' Grey silt and clay, l.f/c san		
-4-		3.1': Bottom of Excavation, g	roundwater encountere	ed
1				
-6-		,		
-8-				
		·		
-10-		•		
-12-				
Comments:		Samples Collected:		•
Excavation D		B70607 (3')		
8'Lx2'Wx3.1'l	D			
·				

Site No:	828089P		Test Pit No	: TP-9	
Project Name	:Former Vac	cuum Oil Company	Sheet 1 of	1	
Contractor:	SLC	Geologist: Jennifer League	By: JL	Date:12/06/99	
3 '	Ken Kuhn	Date Started: 6-Dec-1999			
	Komatsu 35				
DEPTH (FT.)	PID (PPM)	SAMPLE DESCRIPTION	· · · · - · · · · · · · · · · · · · · ·		
-0-	-	3" Topsoil			
-2-	0	0.25'-5': Lt. brn silt and f.sand, l.clay, tr.gravel, tr.roots, moist (Ml	-)	٠	
-4-					
		5'-5.8': Brn. grey clay and silt, tr.gravel, moist (CL)			
-6-	0	5.8': Bottom of excavation; groundwater trickling into excavation			
-8-					
-10-					
-12-					
Comments:		Samples Collected:			
Excavation D	imensions	No samples collected			
6.5'Lx2'Wx5.8	3'D				
Excavation Dimensions No samples collected 6.5'Lx2'Wx5.8'D					

Test Pit TP-9

					·	
Site No:	828089P				Test Pit No:	: TP-10
Project Name	e:Former Va	cuum Oil Company			Sheet 1 of	1
Contractor:	SLC	Geologist:	Jennifer League		By: JL	Date:12/06/99
Operator:	Ken Kuhn	Date Started:	6-Dec-1999			
Equipment:	Komatsu 3	5R Date Completed:	6-Dec-1999			
DEPTH (FT.)	PID (PPM)		SAMPLE DES	CRIPTION		
-0-	0	0'-1': Dk. brn f/c sand, s.silt, I.	.gravel, moist (fill)			
	0	1'-2': Grey silt, s.f.sand, l.clay	, I.gravel, moist (fill-	ML)		
-2-	0	2'-3.7': Blk. gravel, s.f/c sand,	, I.silt, tr.brick, I.clay,	wet grades to sa	aturated with	increasing
•		depth (fill)				
-4-		3.7': Bottom of Excavation, gr	roundwater encounte	ered, slight shee	n	
-6-	ļ					
-8-						,
						,
-10-	. :					
-12-						
Comments:		Samples Collected:				
Excavation D	Dimensions	No samples collected				
8'Lx2'Wx3.7'	D					·
·						

Test Pit TP-10

Boring Log

Project Na	me:Former	Vacuum Oi	il Company	′			Well/Boring No: Sheet 1 of By: JL	MW-1 1 Date: 2/08/00
Orilling Co Oriller: Orill Rig: Sample Sp Oate Start	ooon I.D.:	CME 2" 02/0	echnologie: Brown E 850 SS 8/00	s Inc. Geologist: Drilling Met Drive Hamn Date Comp	hod: ner Wt.:	eague HSA 140 02/09/00	Borehole Compl Borehole Diame Ground Surface	
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	PID SCREEN (PPM)	RECOVERY (in)	BLOWS		SAMPLE DESC	CRIPTION
-0-	1	0-2	3	13	3 5 7 4	Brn stiff silt tr.clay, mois		vel, tr.brick, tr.cinders,
-2-	2	2-4	3	13	20 38 50/5	moist (fill)		ravel, tr.clay, tr.brick,
-4-	3	4-6	88	22	9 5 3 4	(fill) petroleu	um odor / stiff silt, s.f/m san	avel, I.silt, tr.clay, wet
-6-	4	6-8	189	21	3 3 4 3			t (ML) ack petroleum product
-8-	5	8-10	340	21	3 4 9 9	(ML/CL) str	y stiff silt and clay, ong petroleum od silt and clay, hr.f.	s.f.sand, tr.wood, wet or sand, wet (CL)
-10-	6	10-12	25 (top) 95 (bot.)	22	4 6 6 10		iff silt and clay, tr. feum odor w/black	/c sand, tr.roots, wet stains
-12-	7	12-14	470	22	20 19 10 10	Grey v.stiff	silt, s.clay, tr. f.san	d, wet (ML) Petroleum
-14-	8	14-16	. 12	18	WH 1 1 1	Grey v.soft odor w/blac	k stains	lay, wet (ML) Petroleum
-16-	9	16-16.5	350	22	1 50/1		sumed collapse;	vet (SM); Refusal at 16.5

Boring Log

Site No: 82 Project Na		r Vacuum (Dil Compan	у			Well/Boring No: Sheet 1 of By: JL	MW-2 1 Date: 2/08/00
Drilling Co Driller: Drill Rig: Sample Sp Date Starte	ooon I.D.:	Ron E CME 2"	E 850 SS	Inc. Geologist: Drilling Metl Drive Hamn Date Compl	hod: ner Wt.:	_eague HSA 140 02/08/00	Borehole Comple Borehole Diamet Ground Surface	er: 4.25"
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	PID SCREEN (PPM)	RECOVERY (in)	BLOWS		SAMPLE DESC	RIPTION
-0- -2- -4-						Augered directly to concrete slab Concrete slab encountered at 4.5' Augers were able to penetrate slab Slab was about 1' thick, began split spoon sampling at 6'		
-6-	1	6-8	98	18	6 12 9 7	petroleum		
-8-	2	8-10	200	14	2 4 4 7	Grey stiff s	•	d, wet (ML) petroleum
-10-	3	10-12	38 (top) 2 (bot.)	22	2 4 5 7	Grey stiff s	ilt and clay, l.f.san of sample	d, wet (ML) petroleum
-12-	4	12-14	5	24	2 3 3		ff silt and clay, l.f.s " into sample	and, wet (ML) grades
-14-	5	14-15.5	NA NA	6	32 34 5/5		n hard silt & clay, I nsegravel and f/c s 15.5'	
-16- Remarks								

NA - Not Available

Boring Log

Site No: 82 Project Na	28089P ime:Former	· Vacuum (Well/Boring No: Sheet 1 of	MW-3 1			
							By: JL	Date: 2/07/00
Drilling Co Driller: Drill Rig: Sample Sp Date Start	ooon I.D.:	MAXIM 7 Ron B CME 2" 3 02/0	Brown 850 SS	gies Inc. Geologist: Drilling Meth Drive Hamm Date Comple	er Wt.:	League HSA 140 02/07/00	Borehole Compl Borehole Diame Ground Surface	ter: 4.25"
DЕРТН (FT.)	SAMPLE NO.	SAMPLING INTERVAL	PID SCREEN (PPM)	RECOVERY (in)	BLOWS		SAMPLE DESC	RIPTION
-0-	1	0-2	0	6	2 5 12 8	Dk. brn v.sti tr.brick, moi	ff silt and f/c sand st (fill)	, l.gravel,
-4-	2	2-4	0	3	4 3 3	Dk. brn med wet (fill)	stiff silt and f/c sa	and, I.gravel,
-4-	3	4-6	0	0	WH WH 2 2	Refusal at 6	'. Only water reco	vered
-6- -8-	4	6-8						
-o- -10-	5	8-10						
-12-	6	10-12						
Remarks								

Total Depth 16.5 Surface Elev. T	th $\frac{8'}{10'}$ Slot Size 0.01
Riser: Dia. 2" Material PVC Leng Screen: Dia. 2" Material PVC Leng Prot. Csg: Dia. Material SCHEMATIC	ate Installed $\frac{2/09/2000}{2}$
Riser: Dia. 2" Material PVC Leng Screen: Dia. 2" Material PVC Leng Prot. Csg: Dia. Material SCHEMATIC Surface Seal Type Concrete	. ' '
Surface Seal Type Concrete	th <u>8'</u> th <u>/o'</u> Slot Size <u>0.01</u>
Surface Seal Type Concrete	
Seal Type <u>Bentonite</u>	2.3' Prot. Csg stickup 2.1' Riser stickup Ground Surface Bottom Surface Seal Portland Grout Type Coment and
0.5' Choke Sand 5	Bentonite 3.5' Top Seal 5.5' Top Sand Pack 6.5' Top Screen
Sand Pack Type/Size - No. 1 Choke Sand - OO	/6.5 Bottom Screen Bottom Sump/Wellpoint /6.5 Total Depth of Boring
Comments	
Briller Ron Brown Geologist Jennifer League	DEC Inspector Bob Long
Engineer <u>Frank Sowers</u> Technical Person	

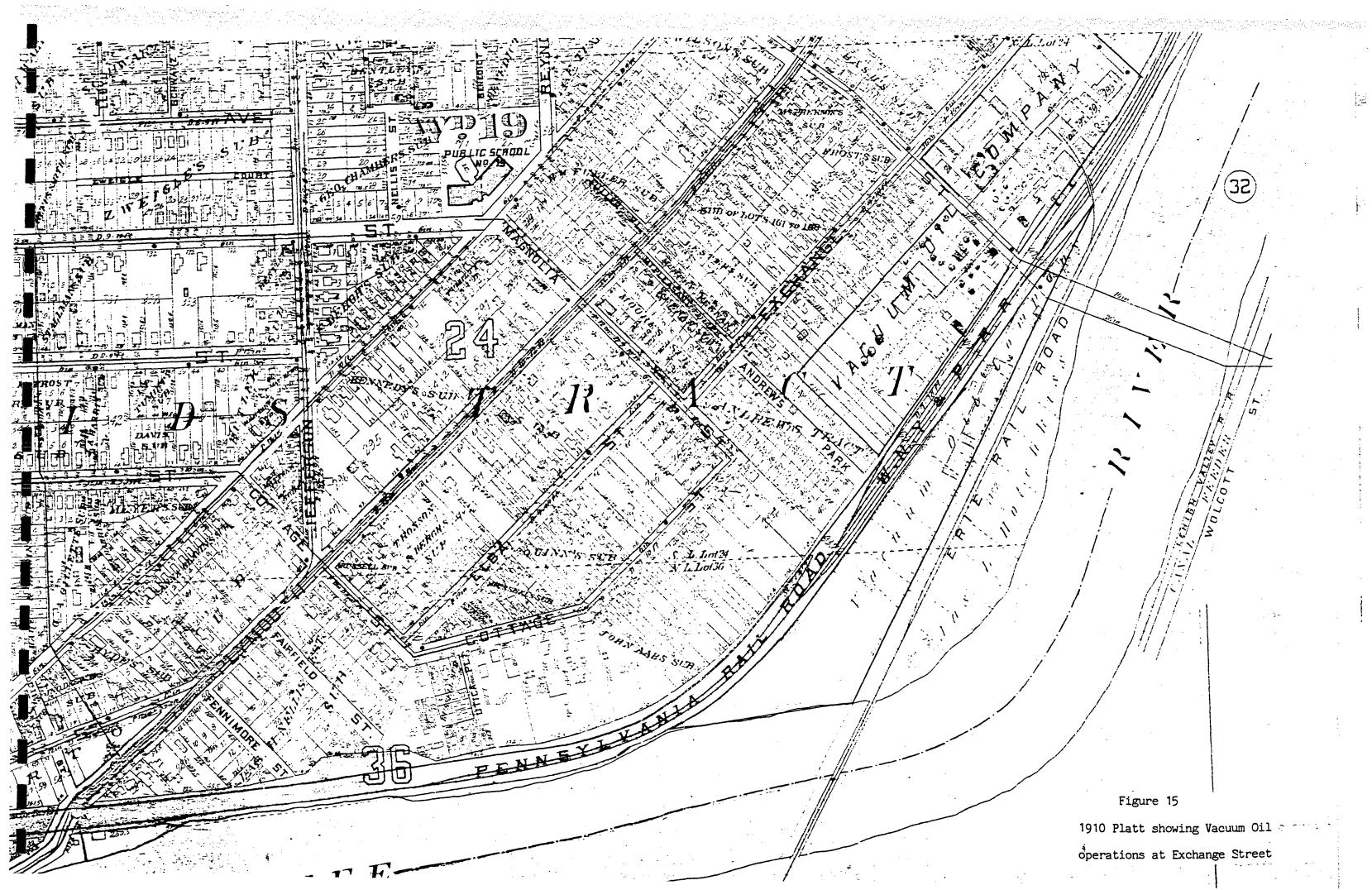
minitor WELL CONSTRUCTION REPURT		•	The second secon
-site Vacuum Oil Company	W	lett No. <u>MW-2</u>	
Total Depth 15.5' Surface B	Elev T	op Riser Elev. 514.	<u>88</u>
Water Levels (Depth, Date, Time)	D	late Installed $\frac{2/0}{2}$	3/2000
Riser: Dia. 2" Material Screen: Dia. 2" Material Prot. Csg: Dia. Material		th ~5.5' th Slot Size th	: <u>0.0</u> /
	SCHEMATIC		
Surface Seal Type <u>Concret</u> e		2.3' Prot. Csg s 2.1' Riser stick Ground Surface Bottom Surf	cup
		Grout Type Port Benta	land Cementan
Seal Type <u>Bentonite</u> 0.5'Choke Sand	4.5	3' Top Seal '4.5' Top Sand Pa 5' Top Screen	ick
Sand Pack Type/Size No.1 Choke Sand-00		15 Bottom Screen Bottom Sump 15.5 Total Depth	o/Wellpoint
Driller Ron Brown			
Geologist Jennifer League Engineer Frank Sowers Technical Person		DEC Inspector <u>Bace</u>	

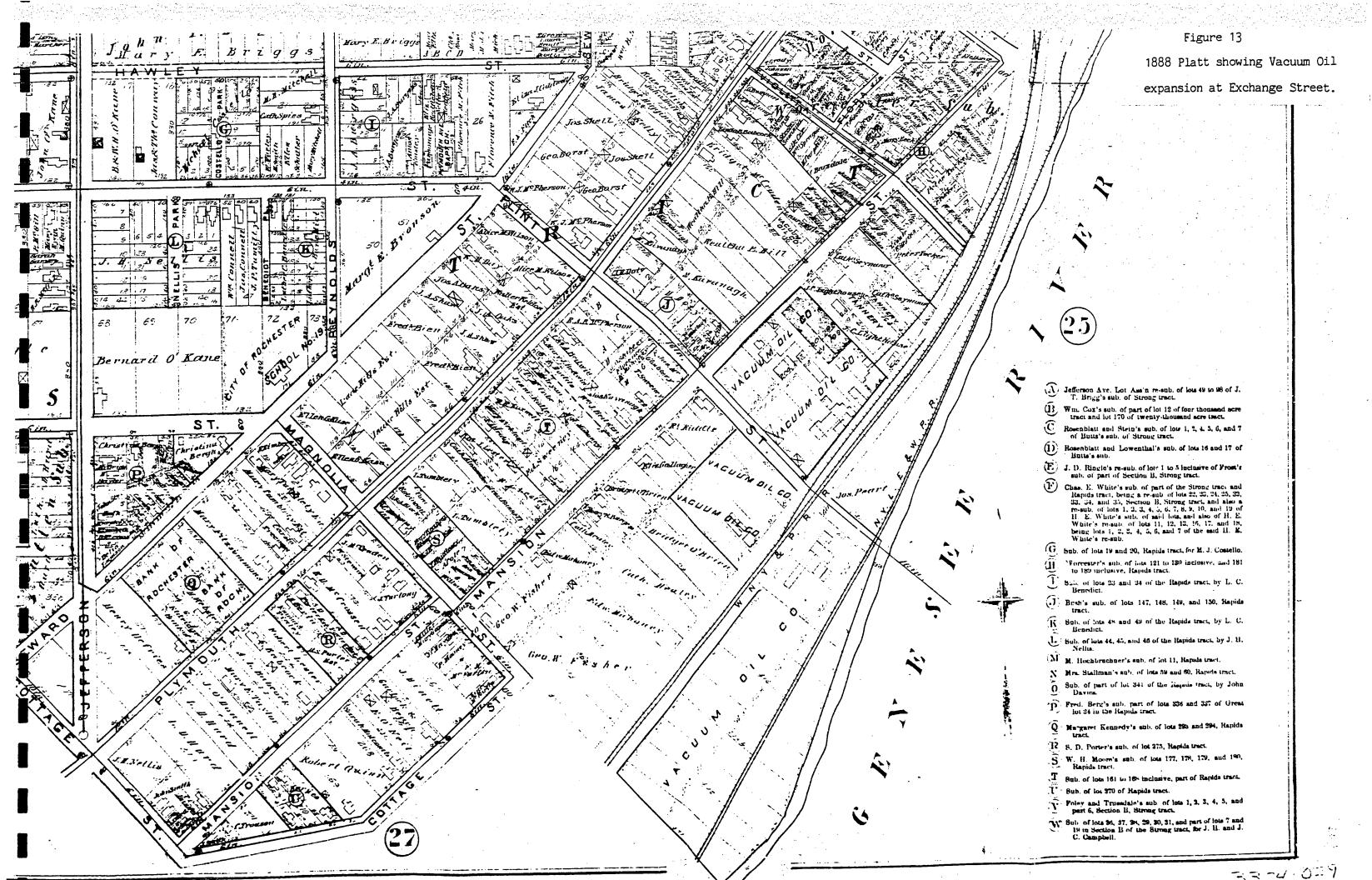
MITOR WELL CONSTRUCTION REPORT	
-site Vacuum Oil Company	Well No. MW-3
Total Depth 6' Surface Elev.	<u> </u>
/ Water Levels (Depth, Date, Time)	Date Installed 2/07/2000
Riser: Dia. 2" Material PVC Screen: Dia. 2" Material PVC Prot. Csg: Dia. Material	Length 3.8' Length 4' Slot Size 0.01 Length —
SCHEMATIC	
	2.3' Prot. Csg stickup 1.8' Riser stickup
Surface Seal Type Concrete	Bottom Surface Seal
	Grout Type Portland Cement and Bentonite
Seal Type <u>Benton; te</u>	/ Top Seal
0,5'Choke 5	-1,5' <u>1.5'</u> Top Sand Pack -2' <u>2'</u> Top Screen
Sand Pack Type/Size No!	6' Bottom Screen
	Bottom Sump/Wellpoint
	6 Total Depth of Boring
Comments	
Geologist Jennifer League	DEC Inspector <u>Bob Long</u>
Engineer Frank Sowers	Page 33 of 43

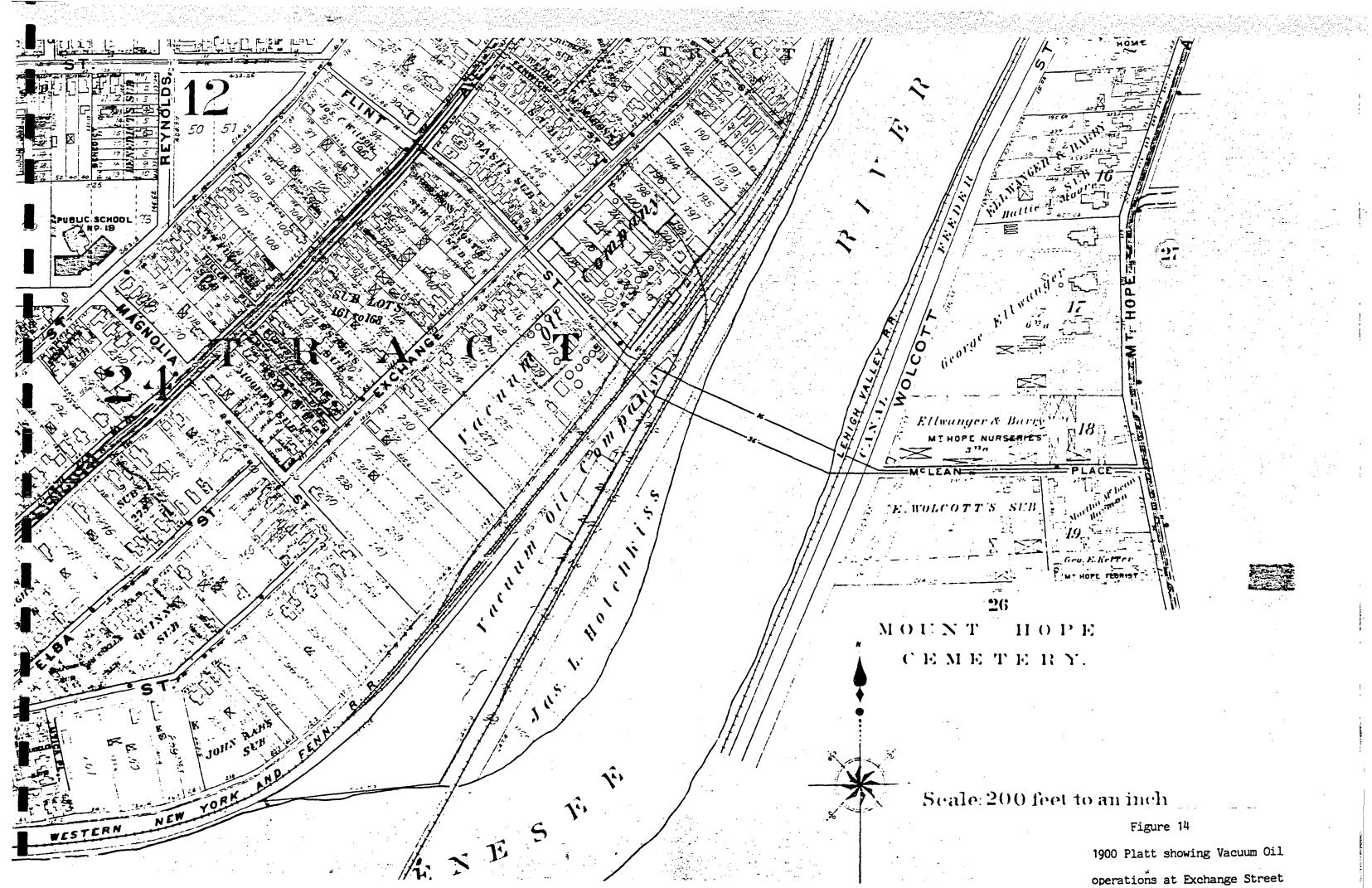
WELL DEVELOPMENT LOG

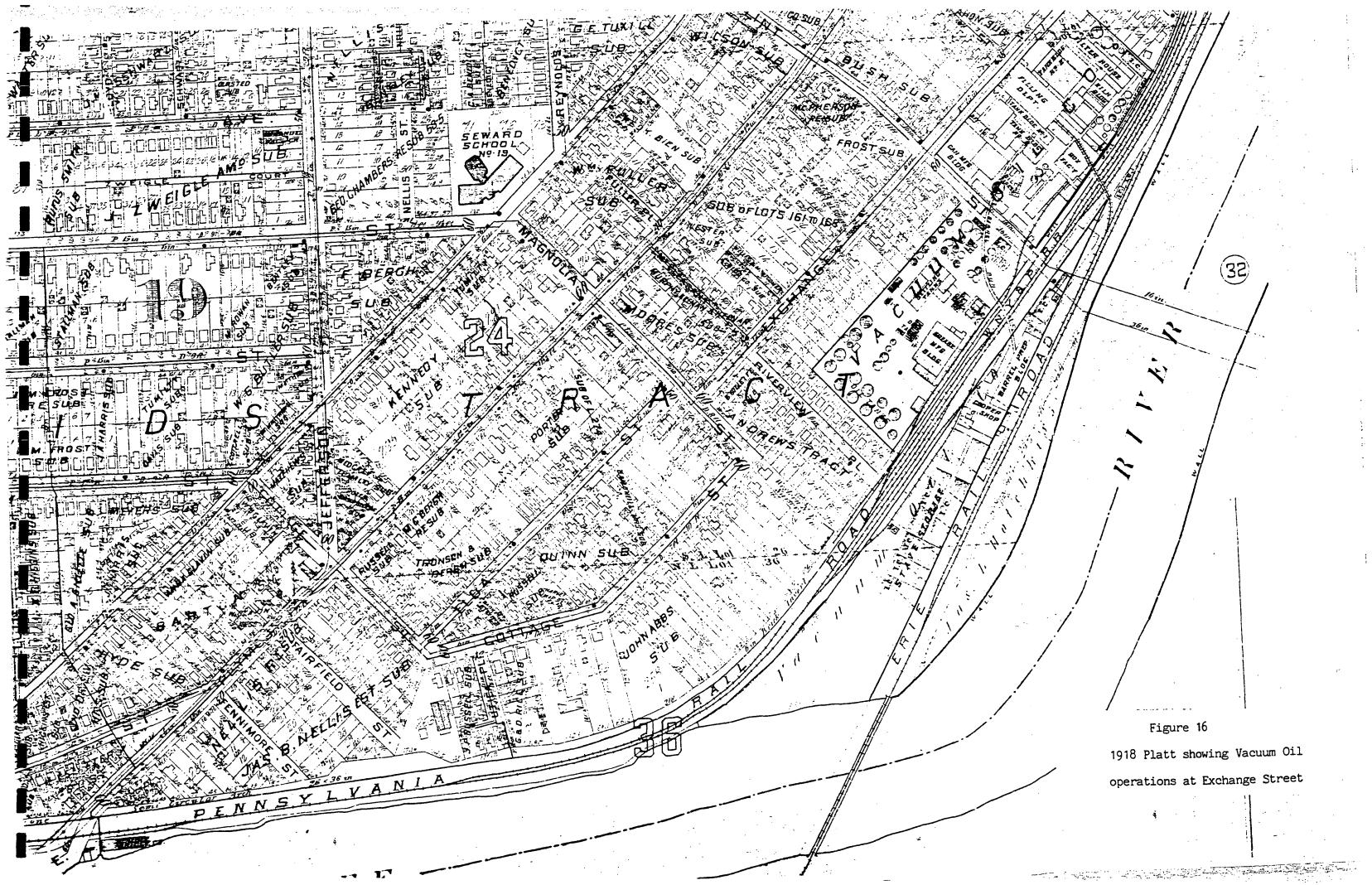
Former Vacuum Oil Company Site #828089P

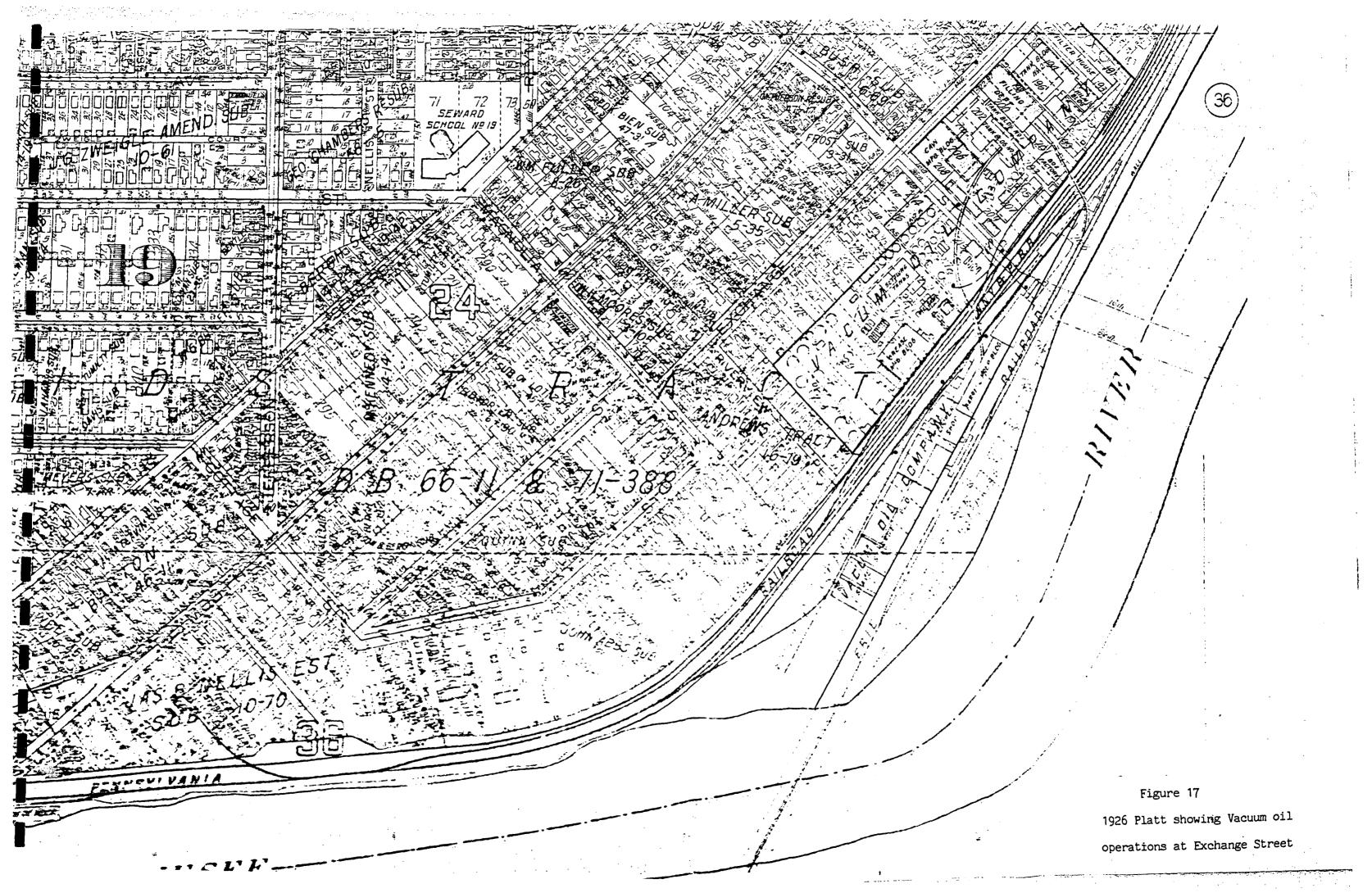
									Field Parameters				
Weil Id.	Method	Depth to Water (ft.)	Depth of Well (ft.)	Well Diameter (inches I.D.)	Gallons per Foot of Depth	1	Volume of 10 Columns of Water (gal.)	Volume of Water Actually Removed (gal.)	Cumulative Volume (gal)	Temperature (F)	Conductivity (ms/cm)	рН	Turbidity (NTU)
MW-1	Bailer	9.7	18	2	0.163	1.35	13.53	9 gal. on 2/10/00 + 5 gal. on 2/11/00 = 14 gal.	5 8 11 14	46 45.9 43 39.8	1 1.04 0.69 0.88	7,41 7,25 7,53 7,51	>100 >100 >100 >100 >100
MW-2	Bailer	4.25	15	2	0.163	1.75	17.52	15 gal. on 2/09/00 + 6 gallons on 2/10/00 + = 21 gal.	13 15 16 17 18 19 20 21	50 48.5 45.1 44.2 44.1 44.6 42.4 44.6	0.70 0.71 0.62 0.61 0.68 0.67 0.65	7.76 7.50 7.81 7.73 7.63 7.45 7.41 7.34	NA NA >100 >100 >100 >100 >100 >100
MW-3	Bailer	5	6	2	0.163	0.16	1.63	1 gal. on 2/09/00 + 0.5 gal. on 2/10/00 + 0.25 gal. on 2/11/00 = 1.75 gal.	1 1.5	52.5 NA	1.46 NA	6.7 NA	NA 22.8

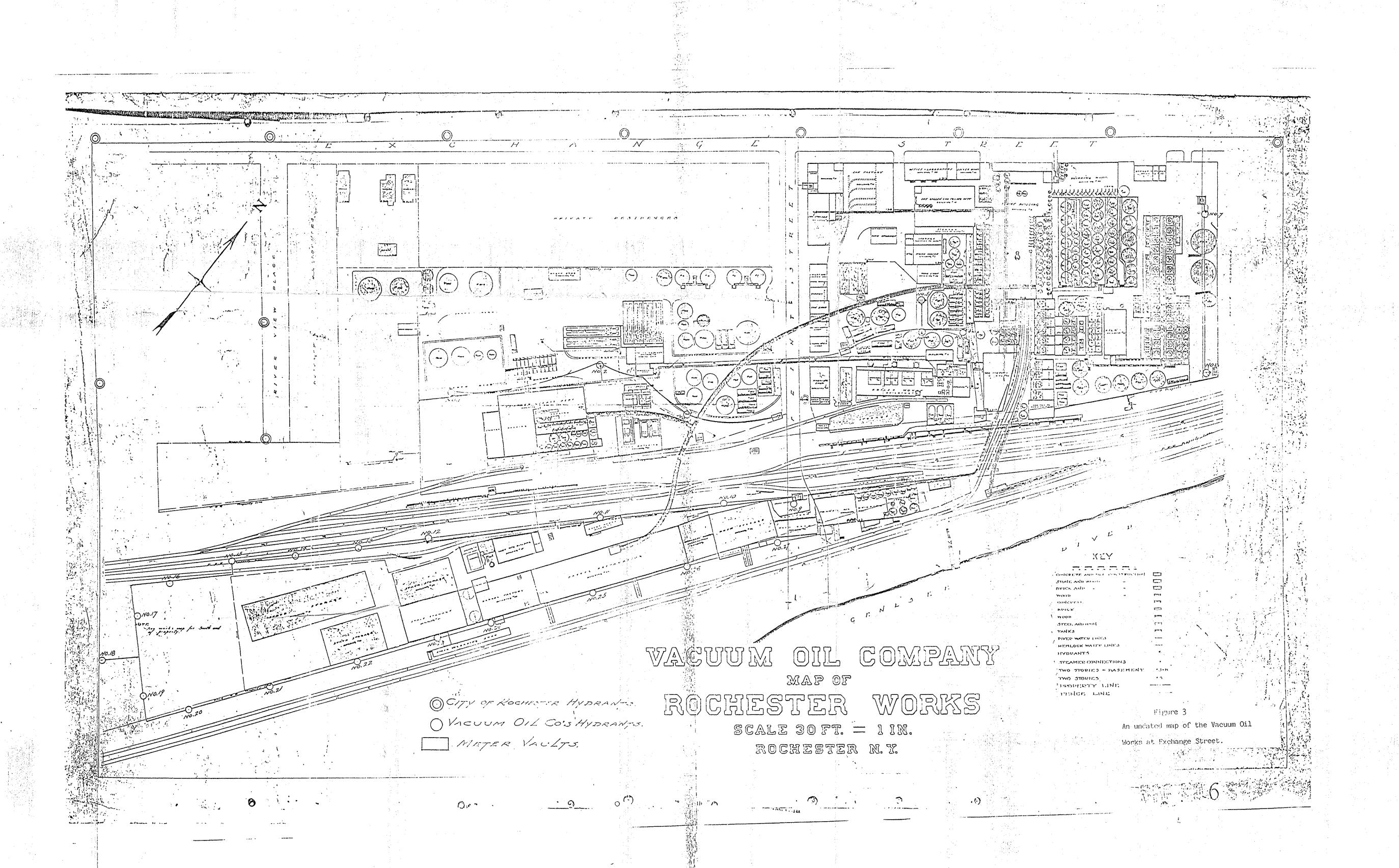

Water Sampling Field Parameters
Former Vacuum Oil Company
1999-2000 Site Investigation


Location Id.	Date	Temperature (F)	Conductivity (ms/cm)	рН	Turbidity (NTU)	Well Headspace PID Reading (ppm)
MW-1	02/23/00	53	1.56	7.07	700	400
MW-2	02/23/00	52.3	1.1	7.27	365	1.5
MW-3	02/23/00	49	0.98	7.49	Water was black. Turbidity was not measured	0.5




APPENDIX B


HISTORICAL SITE MAPS



APPENDIX C

APPENDIX C

1999-2000 SITE INVESTIGATION ANALYTICAL DATA

Chemical and Environmental Measurement Information

31 March 2000

Mr. Jack Ryan NYSDEC Room 392 50 Wolf Road Albany, NY 12233-3502

RECEIVED

APR 3 2000

Ref:

Contract C003783

Sample Data Package: RFW Batch 0002L553 NYSDEC ID: SH800-02323-B70622 to B70624 DER/HAZ WASTE REMED REGION 8

Dear Mr. Ryan:

Enclosed please find the data report for 3 water samples received 25 February 2000. These were analyzed for CLP VOAs, BNAs, metals and TPH. The EDD is enclosed to the sampler.

We had requested a week's extension.

Please do not hesitate to contact me at (610) 280-3000 with any questions you may have.

Very truly yours,

Recra LabNet Philadelphia

Judith L. Stone

Senior Project Manager

Enclosure

cc: Frank Sowers (NYSDEC)

1) Presenton Outer Package (Y) or N 2) Unbroken on Outer Package (Y) or N REC. LabNer 3) Present on Sample Y or (N COC Record Present Upon Sample Rec't Sample Y or N 4) Unbroken on Cooler 7.0 RECRA LabNet Use Only Properly Preserved 3) Received in Good Condition (Or N 2) Ambient or Stulled 5) Received Within Holding Times 4) Labels Indicate Samples were: Hand Delivered RECRA LabNet Use Only Custody Transfer Hecord/Lab Work nequest Page 100 1 CN OLTSHW COC Record? Y or (N) Discrepancies Between Samples Labels and K'B \$ 656 5 THAI 7 4268 to COC. Pest Visad 66 026 017 Time > FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS 3 3 AOV hec'd REA Llquid Liquid Date Time Collected Collected Solid 1230 Solid 2/13/10 1/50 250 1215 B58.5 Received #/Type Container ANALYSES REQUESTED ģ Preservatives Refrigerator# DATE/REVISIONS: Matrix Volume 3 3 3 500 本文 B Relinquished by Matrix QC Chosen MS MSD 7% vr 5357 00-666-100-00 20cbx Date Due 3-3-000 Time Service and the service and th 24/0/143 Client ID/Description * SEE LYSDAC GATHAS SHEETS (ATMUNED) TAT Date 34800-02525 VOA-R.B 370622 B-1-40 870623 370624 Del CtD Received by Est. Final Proj. Sampling Date ... RECRA Project Manager NYSpec RECRA LabNet Use Only Date Rec'd 2-2500 Project Contact/Phone #__ 00026553 **₽** Special Instructions: Relinquished oc Cro É eachate Project #__ Account # MATRIX CODES: 占. . .

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW #: 0002L553 ELAP #: 10752 W.O.#: 01667-600-001-9999-00 Date Received: 02-25-2000

SEMIVOLATILE

Three (3) water samples were collected on 02-23-2000.

The samples and their associated QC samples were extracted on 03-01-2000 and analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Semivolatile target compounds on 03-25,27,29-2000.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature upon receipt has been recorded on the chain-of-custody.
- 2. The samples were extracted and analyzed within required holding times.
- 3. Non-target compounds were detected in the samples.
- 4. Sample SH800-02323-B70623 required a 5-fold dilution due to high levels of non-target compounds.
- 5. All surrogate recoveries were within EPA QC limits.
- 6. Five (5) of twenty-two (22) matrix spike recoveries were outside EPA QC limits.
- 7. Two (2) of eleven (11) blank spike recoveries were outside EPA QC limits.
- 8. Internal standard area and retention time criteria were met.
- 9. Manual integrations are performed according to OP L-QA-125 to produce quality data with the utmost integrity. All manual integrations are required to be technically valid and properly documented. Appropriate technical flags are defined in Section III ("Technical Flags For Manual Integration"); hard copies of the integrations have been included with the quantitation data.
- 10. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

/ J. Michael Taylor

Date

Vice President

Philadelphia Analytical Laboratory

som/group/data/bna/nysdec-02-553.doc

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are Integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 2 5 8 pages.

GLOSSARY OF BNA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NQ = Result qualitatively confirmed but not able to quantify.
- A = Indicates that a TIC is a suspected aldol-condensation product.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- X = This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.bna

GLOSSARY OF BNA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.bna

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

SE - Sediment
SO - Solid
SL - Sludge
W - Water
O - Oil
A - Air
DS - Drum
Solids
DL - Drum MATRIX CODES: Est. Final Proj. Sampling Date _ RECRA Project Manager Project Contact/Phone # _ 00021553 Date Rec'd . Account # Special Instructions: Relinquished Liquids EP/TCLP Leachate SEE NYSDEC CO-TRAG SHEATS (ATMAHED) NUSPEC 2-2500 007 유 B706 100 CAD SH800-02525-Received 1370627 870625 10A -1570622 ş FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS BAR 00-PPPP100-001-LAPINO Client ID/Description Date Due _ 123/ora TAT_ Southers 0220 3-2000 **300ay** Time 7/6 226 S357 Relinquished by MS MSD Matrix QC Chosen <u>ダ</u> 久 25 < DATE/REVISIONS: ٤ ANALYSES REQUESTED Volume ٤ #/Type Container Refrigerator # Matrix Preservatives 3 Date Time Collected Collected DSS F Received 2/23/10 1 her'of REA > y 9.00 7779 1100 1230 1215 Llquid Liquid Solid Solid Date 26 1/16 1/A 1/ Ś ح 4 ها V/ V3 صحبر VOA 950 99 Alled to COC. BNA <u>ر</u> 3625C Time Pest/ 99 5 1/AG 2 650 Samples Labels and COC Record? Y or N MOM NOTES: Discrepancies Between IPHC K.B. RECRA LabNet Use Only ড É The S lu کئ MHSLTO Metal NORG Holding Times Hand Delivered _____ or Airbilf # Below Received Within Properly Preserved or N 3) Received in Good Condition or N 2) Ambient or Stilled 4) Labels Indicate Samples were: CN RECRA LabNet Use Only 으 z Cooler 7.0 3) Present on Sampler 1) Present on Outer Package (Y) or N Sample Y or N 2) Unbroken on Outer COC Tape was: Upon Sample Rec't or N COC Record Present Package Yor N Unbroken on Temp. \mathcal{T}

റ്

RECRA LabNet Use Only

Custody Transfer Hecora/Lap work nequest Page Lot L

RECIRA LabNet

3C WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet Contract: 1667-00-01

Case No.: NYSDEC RFW Lot No.: 0002L553-003

MATRIX Spike - Sample No.: SH800-02323-B70624

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	UG/L	UG/L	UG/L	REC #	REC.
Phenol	52.0	0 0 0 0 0 0 0 0 0 0.592	62.4 64.0 39.5 50.7 43.0 76.3 47.5	80 82 76 98 83 98 * 90	12 -110 27 -123 36 - 97 41 -116 39 - 98 23 - 97 46 -118 10 - 80
2,4-Dinitrotoluene	52.0	0 0	49.1	94	24 - 96
Pentachlorophenol	78.0		107	137 *	9 -103
Pyrene	52.0		51.3	99	26 -127

	SPIKE	MSD	MSD		
	ADDED	CONCENTRATION	8	%	QC LIMITS
COMPOUND	UG/L	UG/L	REC #	RPD #	RPD REC
Phenol			77	 3	42 12 -110
2-Chlorophenol	78.0	61.4	79	3	40 27 -123
1,4-Dichlorobenzene	52.0	j 37.1	71	6	28 36 - 97
N-Nitroso-di-n-prop.(1)	52.0	45.5	88	10	38 41 -116
1,2,4-Trichlorobenzene_	52.0	41.3	79	4	28 39 - 98
4-Chloro-3-methylphenol	78.0	72.9	93	5	42 23 - 97
Acenaphthene	52.0	46.3	88	2	31 46 -118
4-Nitrophenol	78.0	92.2	118 *	0	50 10 - 80
2,4-Dinitrotoluene	52.0	49.2	95	1	38 24 - 96
Pentachlorophenol	78.0	99.7	128 *	6	50 9 -103
Pyrene	52.0	49.2	95	4	31 26 -127
	<u> </u>				

(1) N-Nitroso-di-n-propylamine

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 11 outside limits

Spike Recovery: ____5 out of ____2 outside limits

COMMENTS:	

3C WATER SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Recra.LabNet

Contract: ONE

Case No.: NYSDEC

RFW Lot No.: 0002L553

BLANK Spike - Sample No.: SBLKMALE0204-MB1

COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	BS CONCENTRATION UG/L	BS % REC #	QC LIMITS REC.
				======	========
Phenol	75.0	j	62.1	83	12 -110
2-Chlorophenol	75.0	0	61.4	82	27 -123
1,4-Dichlorobenzene	50.0	0	32.3	65	36 - 97
N-Nitroso-di-n-prop.(1)	50.0	0	40.1	80	41 -116
1,2,4-Trichlorobenzene_	50.0	0	31.9	64	39 - 98
4-Chloro-3-methylphenol	75.0	0	67.1	89	23 - 97
Acenaphthene	50.0	0	41.5	83	46 -118
4-Nitrophenol	75.0	j	94.9	126 *	10 - 80
2,4-Dinitrotoluene	50.0	0	45.6	91	24 - 96
Pentachlorophenol	75.0	j o	82.9	111 *	9 -103
Pyrene	50.0	i o	39.1	78	26 -127

(1) N-Nitroso-di-n-propylamine

- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike Recovery: __2 out of __11 outside limits

COMMENTS:			
-----------	--	--	--

Sample Data

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SH800-02323-B70622

Lab Name: Recra.LabNet

Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-001

Sample wt/vol: $\underline{990}$ (g/mL) \underline{ML}

Lab File ID: <u>A032507</u>

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: _____ decanted: (Y/N)___

Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 03/25/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>7.0</u>

CONCENTRATION UNITS:

	CON	CENTRALION UNITS:	
CAS NO.	COMPOUND (ug	J/L or ug/Kg) <u>UG/L</u>	Q
108-95-2	Phenol		10 0
111-44-4	bis(2-Chloroethyl)eth	er	10 U
95-57-8	2-Chlorophenol		10 0
541-73-1	1,3-Dichlorobenzene		10 U
106-46-7	1,4-Dichlorobenzene		10 0
95-50-1	1,2-Dichlorobenzene		10 U
95-48-7	2-Methylphenol		10 U
	2,2'-oxybis(1-Chlorop		10 0
106-44-5	4-Methylphenol	- <u></u> i	10 U
	N-Nitroso-di-n-propyl		10 0
	Hexachloroethane		10 U
98-95-3	Nitrobenzene		10 0
78-59-1	Isophorone		10 0
88-75-5	2-Nitrophenol	i	10 0
	2,4-Dimethylphenol		10 U i
111-91-1	bis(2-Chloroethoxy)me	thane	10 U
120-83-2	2,4-Dichlorophenol	i	10 U
	1,2,4-Trichlorobenzen		10 0
91-20-3	Naphthalene		10 0
106-47-8	4-Chloroaniline	i i	10 0
	Hexachlorobutadiene		10 U j
	4-Chloro-3-methylpher		10 U
	2-Methylnaphthalene_		10 U
	Hexachlorocyclopentad		10 0
	2,4,6-Trichlorophenol		10 0
	2,4,5-Trichlorophenol		26 U
	2-Chloronaphthalene_		10 0
88-74-4	2-Nitroaniline		26 U
	Dimethylphthalate		10 0
208-96-8	Acenaphthylene		10 0
606-20-2	2,6-Dinitrotoluene		10 0
99-09-2	3-Nitroaniline		26 U
83-32-9	Acenaphthene	i	10 0
}			j
·			

SH800-02323-B70622

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER Lab Sample ID: 0002L553-001

Sample wt/vol: 990 (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{A032507}}$

Level: (low/med) LOW Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>7.0</u>

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q

51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	
100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	26 U
132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	26 U
121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Anthracene	10 0
84-66-2	10 0
7005-72-34-Chlorophenyl-phenylether	10 0
86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10 0
100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol	10 0
534-52-14,6-Dinitro-2-methylphenol	26 U
86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene	26 U
101-55-34-Bromophenyl-phenylether	10 U
118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene	10 U
87-86-5Pentachlorophenol	10 0
85-01-8Phenanthrene	26 U
120-12-7Anthracene	10 U
	10 U
86-74-8Carbazole	10 U
84-74-2Di-n-butylphthalate	10 U
206-44-0Fluoranthene	10 U
129-00-0Pyrene	10 U
85-68-7Butylbenzylphthalate	10 U
91-94-13,3'-Dichlorobenzidine	10 U
56-55-3Benzo(a) anthracene	10 U
218-01-9Chrysene	10 U
117-81-7bis(2-Ethylhexyl)phthalate	10 U
117-84-0Di-n-octyl phthalate	10 U
205-99-2Benzo(b) fluoranthene	10 U
207-08-9Benzo(k) fluoranthene	10 U
50-32-8Benzo(a)pyrene	10 U
193-39-5Indeno(1,2,3-cd)pyrene	10 U
53-70-3Dibenz(a,h)anthracene	10 U
191-24-2Benzo(g,h,i)perylene	10 U
	1

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SH800	0-0232	23-B7	0622		
	SH800	SH800-0232	SH800-02323-B7	SH800-02323-B70622	SH800-02323-B70622

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-001

CLIENT SAMPLE NO.

Sample wt/vol: 990 (g/mL) ML Lab File ID: A032507

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N)_ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: __7.0

CONCENTRATION UNITS:

Number TICs found: 2

(ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======	========	====
1.	UNKNOWN	19.77	7	J
2.	UNKNOWN	24.73	60	JB

SH800-02323-B70623

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Sample wt/vol: 970 (g/mL) ML

Lab Sample ID: 0002L553-002

Lab File ID: A032914

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: _____ decanted: (Y/N)__ Date Extracted: 03/01/00

Dilution Factor: 5.00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/29/00

Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) N pH: 7.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

108-95-2Phenol	 	IJ
111-44-4bis(2-Chloroethyl)ether	52	
95-57-82-Chlorophenol	52	!
541-73-11,3-Dichlorobenzene	52	•
106-46-71,4-Dichlorobenzene	52	
95-50-11,2-Dichlorobenzene	52	
95-48-72-Methylphenol	52	<u>'</u>
108-60-12,2'-oxybis(1-Chloropropane)	52	
106-44-54-Methylphenol	52	:
621-64-7N-Nitroso-di-n-propylamine	52	
67-72-1Hexachloroethane	52	:
98-95-3Nitrobenzene	52	!
78-59-1Isophorone	52	! -
88-75-52-Nitrophenol	52	<u>.</u>
105-67-92,4-Dimethylphenol	52	!
111-91-1bis(2-Chloroethoxy) methane	52	<u>'</u>
	52	
120-83-22,4-Dichlorophenol	52	! -
120-82-11,2,4-Trichlorobenzene	52	
91-20-3Naphthalene 106-47-84-Chloroaniline	52	:
	52	<u>:</u>
87-68-3Hexachlorobutadiene	52	!
59-50-74-Chloro-3-methylphenol	j 52 j 52	
91-57-62-Methylnaphthalene	52	1
77-47-4Hexachlorocyclopentadiene	52	:
88-06-22,4,6-Trichlorophenol	130	*
95-95-42,4,5-Trichlorophenol	l. 52	!
91-58-72-Chloronaphthalene	1	
88-74-42-Nitroaniline	130	!
131-11-3Dimethylphthalate	52	!
208-96-8Acenaphthylene	52	:
606-20-22,6-Dinitrotoluene	52	!
99-09-23-Nitroaniline	130	,
83-32-9Acenaphthene	52	ĺΩ
	l	i

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SH800-02323-B70623

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-002

Sample wt/vol: 970 (g/mL) ML Lab File ID: A032914

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/29/00

Injection Volume: 2.0(uL)

Dilution Factor: 5.00

GPC Cleanup: (Y/N) <u>N</u> pH: __7_0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) <u>UG/L</u> Q

CAS NO.	COMPOUND (137.1 OF 137.		×
51-28-5	2,4-Dinitrophenol	130	U
	4-Nitrophenol	- !	:
	Dibenzofuran	52	:
	2,4-Dinitrotoluene	- !	•
	Diethylphthalate	52	
	4-Chlorophenyl-phenylether	52	:
	Fluorene	52	:
	4-Nitroaniline	130	:
	4,6-Dinitro-2-methylphenol	- !	:
	N-Nitrosodiphenylamine (1)	- !	!
	4-Bromophenyl-phenylether	- !	
118-74-1	Hexachlorobenzene		:
37-86-5	Pentachlorophenol	-i 130	:
	Phenanthrene	- !	:
	Anthracene	52	:
	Carbazole	52	Ū
	Di-n-butylphthalate	52	Ū
	Fluoranthene	52	U
	Pyrene	52	ับ
	Butylbenzylphthalate	52	Ū
	3,3'-Dichlorobenzidine		ับ
	Benzo(a)anthracene		U
	Chrysene		Ū
	bis(2-Ethylhexyl)phthalate	52	U
	Di-n-octyl phthalate		U
	Benzo(b) fluoranthene	= ;	U
	Benzo(k) fluoranthene		U
	Benzo(a)pyrene		U
	Indeno(1,2,3-cd)pyrene	52	U
	Dibenz(a,h)anthracene		U
	Benzo(g,h,i)perylene	52	U
			.

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SH800-02323-B70623

Lab Name: Recra.LabNet

Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-002

Sample wt/vol: 970 (g/mL) ML

Lab File ID: A032914

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: _____ decanted: (Y/N)__

Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/29/00

Injection Volume: 2.0(uL)

Dilution Factor: 5.00

GPC Cleanup: (Y/N) N

pH: _ 7.0

Number TICs found: 28

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	UNKNOWN	7.34	30	ا===== ا ع
1.	C2-ALKYLBENZENE	7.55	60	- !
1 3.	C2 - ALKI LBENZENE UNKNOWN	8.07	20	-
3.	UNKNOWN	8.29	20	!
5.	DIMETHYLCYCLOHEXANOL	8.43	20 20	! -
1 6.	UNKNOWN	0.43 8.58	20	1 J 1
!	C3-ALKYLBENZENE	8.98	100	! - !
7.				
8.	UNKNOWN	9.22	70	
9.	UNKNOWN	9.37	50	
10.	UNKNOWN	9.68	20	
11.	UNKNOWN	9.90	60	_
12.	UNKNOWN	10.07	70	_
13.	UNKNOWN	10.43	50	
14.	C4-ALKYLBENZENE	10.58	30	J
15.	C4-ALKYLBENZENE	11.09	50	J
16.	UNKNOWN	11.34	20	J
17.	UNKNOWN	11.59	20	J
18.	C4-ALKYLBENZENE	11.64	30	J
19.	C4-ALKYLBENZENE	11.72	40	[J
20.	UNKNOWN	12.56	40	J
21.	TERPINEOL	12.85	40	J
22.	UNKNOWN	12.99	30	J
23.	UNKNOWN	13.46	30	J
24.	TOLYLACETIC ACID	14.88	40	J
25.	UNKNOWN	14.93	40	J
26.	DIMETHYLBENZOIC ACID	15.18	20	J
27.	AROMATIC	19.88	30	J
28.	UNKNOWN	24.74	200	JB
İ				l!

|SH800-02323-B70624

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-003

Sample wt/vol: 990 (g/mL) ML Lab File ID: A032508

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N) _ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 03/25/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: __7.0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>		Q
108-95-2	Phenol		10	ָ ט
111-44-4	bis(2-Chloroethyl)	ether	10	ט
95-57-8	2-Chlorophenol		. 10	U
541-73-1	1,3-Dichlorobenzene	e	10	ָּט
106-46-7	1,4-Dichlorobenzene	9	10	U
95-50-1	1,2-Dichlorobenzene	e	10	ן ט
95-48-7	2-Methylphenol		10	U
108-60-1	2,2'-oxybis(1-Chlo:	ropropane)	10	ַ ע
106-44-5	4-Methylphenol		0.8	J
621-64-7	N-Nitroso-di-n-pro	oylamine	10	ט
	Hexachloroethane		10	U
98-95-3	Nitrobenzene		10	ן ט
78-59-1	Isophorone		10	ן ש
	2-Nitrophenol		10	ן ט
	2,4-Dimethylphencl		10	ן ט
111-91-1	bis(2-Chloroethoxy	methane	10	ן ט
120-83-2	2,4-Dichlorophenol		10	U
120-82-1	1,2,4-Trichloroben	zene	10	U
91-20-3	Naphthalene		1	J
106-47-8	4-Chloroaniline		10	ט
87-68-3	Hexachlorobutadien	ei	10	U
59-50-7	4-Chloro-3-methylp	henol	10	Ū
91-57-6	2-Methylnaphthalen	e	10	ľΩ
	Hexachlorocyclopen		10	U
	2,4,6-Trichlorophe		10	U
	2,4,5-Trichlorophe		26	U
	2-Chloronaphthalen		10	U
	2-Nitroaniline		26	U
	Dimethylphthalate		10	U
	Acenaphthylene		10	U
	2,6-Dinitrotoluene		10	U
	3-Nitroaniline		26	U
	Acenaphthene		0.6	J

SH800-02323-B70624

Lab Name: Recra.LabNet Work Order: 01667600001

COMPOUND

Client: NYSDEC

Matrix: (soil/water) WATER Lab Sample ID: 0002L553-003

Sample wt/vol: 990 (g/mL) ML Lab File ID: A032508

Level: (low/med) LOW Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N) __ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: 7.0

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

51-28-5----2,4-Dinitrophenol 26 U 26 U 100-02-7----4-Nitrophenol 0.6 J 132-64-9-----Dibenzofuran_ 10 U 121-14-2----2,4-Dinitrotoluene 10 U 84-66-2-----Diethylphthalate 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene_ 0.8 J 100-01-6----4-Nitroaniline 26 | U 534-52-1-----4,6-Dinitro-2-methylphenol___ 26 U 86-30-6----N-Nitrosodiphenylamine (1) 10 U 10 0 101-55-3----4-Bromophenyl-phenylether ____ 118-74-1-----Hexachlorobenzene 10 U 87-86-5-----Pentachlorophenol_____ 26 U 10 U 85-01-8-----Phenanthrene 120-12-7-----Anthracene 10 U 0.9 J 86-74-8-----Carbazole 10 U 84-74-2-----Di-n-butylphthalate_____ 10 U 206-44-0-----Fluoranthene 10 U 129-00-0-----Pyrene_ 85-68-7-----Butylbenzylphthalate_ 10 U 10 U 91-94-1----3,3'-Dichlorobenzidine____ 10 U 56-55-3-----Benzo(a) anthracene 218-01-9-----Chrysene_ 10 U 10 U 117-81-7-----bis(2-Ethylhexyl)phthalate___ 0.8 J 117-84-0-----Di-n-octyl phthalate____ 10 U 205-99-2----Benzo(b) fluoranthene 10 U 207-08-9-----Benzo(k)fluoranthene 10 U 50-32-8-----Benzo(a)pyrene_ 10 U 193-39-5-----Indeno(1,2,3-cd)pyrene | 53-70-3-----Dibenz(a,h)anthracene____ 10 U 10 U 191-24-2----Benzo(g,h,i)perylene____

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2 RFW (v3.3)

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SH800-02323-B70624

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC ____

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-003

Sample wt/vol: 990 (g/mL) ML Lab File ID: A032508

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>7.0</u>

Number TICs found: 14

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	======	=======================================	====
1.	ORANIC ACID	8.76	3	J
2.	C4-ALKYLBENZENE	11.08	2	J
3.	UNKNOWN	11.27	3	J
4.	UNKNOWN	11.66	2	J
5. 65-85-0	BENZOIC ACID	12.09	6.0	ХJ
6.	C4-ALKYLBENZENE	12.29	3	J
7.	TERPINEOL	12.85	10	J
8.	CYCLOHEXANOL	14.58	5	J
9.	BENZYLMALONIC ACID	14.74	7	J
10.	PHENYLPROPENOIC ACID	16.05	3	J
11.	UNKNOWN	19.77	6	J
12.	UNKNOWN	19.86	2	J
i 13.	TRI (CHLOROETHYL) PHOSPHATE	19.94	3	J
14.	UNKNOWN	24.73	70	JB

X: Response Factor from daily standard.

Raw QC Data: Tune, Blank and Spike Data

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SBLKMA

CLIENT SAMPLE NO.

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER Lab Sample ID: 00LE0204-MB1

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ML} Lab File ID: $\underline{A032503}$

Level: (low/med) LOW Date Received: 03/01/00

% Moisture: ____ decanted: (Y/N) _ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>7.0</u>

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	Q
108-95-2			10 U
	bis(2-Chloroethy)		10 U
95-57-8	2-Chlorophenol		10 U
	1,3-Dichlorobenze		10 U
106-46-7	1,4-Dichlorobenze	ene	10 U
95-50-1	1,2-Dichlorobenze	ene	10 U
	2-Methylphenol		10 U
108-60-1	2,2'-oxybis(1-Chl	loropropane)	10 U
106-44-5	4-Methylphenol		10 U
	N-Nitroso-di-n-pr		10 U
67-72-1	Hexachloroethane_		10 U
	Nitrobenzene		10 U
78-59-1 	Isophorone		10 U
	2-Nitrophenol		10 U
105-67-9	2,4-Dimethylpheno	01	10 U
111-91-1	bis(2-Chloroetho	cy)methane	10 U
120-83-2	2,4-Dichlorophend	01	ט 01
	1,2,4-Trichlorobe		10 U
	Naphthalene		10 U
	4-Chloroaniline		10 U
87-68-3	Hexachlorobutadie	ene	10 U
	4-Chlorb-3-methy:		10 U
	2-Methylnaphthale		10 U
	Hexachlorocyclope		10 U
	2,4,6-Trichloropl		10 U
	2,4,5-Trichloropl		25 U
	2-Chloronaphthale		. 10 U
	2-Nitroaniline		25 U
	Dimethylphthalate		10 U
	Acenaphthylene		10 0
	2,6-Dinitrotolue		10 U
	3-Nitroaniline		25 บ
	Acenaphthene		10 U
33 32 3			į

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

~		
	SBLKMA	

Lab Name: Recra.LabNet Work Order: 01667600001

.....

Client: NYSDEC

Matrix: (soil/water) WATER Lab Sample ID: 00LE0204-MB1

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ML} Lab File ID: $\underline{A032503}$

Level: (low/med) LOW Date Received: 03/01/00

% Moisture: _____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: $_{7.0}$

CAS NO. COMPOUND COMP

51-28-5----2,4-Dinitrophenol____ 25 U 100-02-7----4-Nitrophenol_____ 25 U | 132-64-9------Dibenzofuran 10 U 121-14-2----2,4-Dinitrotoluene___ 10 U 84-66-2-----Diethylphthalate 10 U 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene 10 U 100-01-6----4-Nitroaniline 25 U 534-52-1-----4,6-Dinitro-2-methylphenol___ 25 U 86-30-6----N-Nitrosodiphenylamine (1) 10 U 101-55-3-----4-Bromophenyl-phenylether 10 U 118-74-1-----Hexachlorobenzene 10 U 25 U 87-86-5----Pentachlorophenol 85-01-8-----Phenanthrene 10 U 120-12-7-----Anthracene 10 U 86-74-8-----Carbazole 10 U 84-74-2-----Di-n-butylphthalate____ 10 U 10 U 206-44-0-----Fluoranthene | 129-00-0-----Pyrene_ 10 0 85-68-7-----Butylbenzylphthalate_ 10 U 91-94-1----3,3'-Dichlorobenzidine___ 10 U 10 U 56-55-3-----Benzo(a) anthracene 218-01-9-----Chrysene 10 U 10 U 117-81-7-----bis(2-Ethylhexyl)phthalate | 117-84-0-----Di-n-octyl phthalate___ 10 U 10 U 205-99-2----Benzo(b) fluoranthene 10 U 207-08-9-----Benzo(k)fluoranthene_ 10 U 50-32-8-----Benzo(a)pyrene_ 10 U 193-39-5----Indeno(1,2,3-cd)pyrene___ 53-70-3-----Dibenz(a,h)anthracene 10 U 191-24-2----Benzo(g,h,i)perylene 10 U

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2 RFW (v3.3)

_		
н.		

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		· · · · · · · · · · · · · · · · · · ·	
SBLKMA			

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC_____

Matrix: (soil/water) WATER

Lab Sample ID: 00LE0204-MB1

CLIENT SAMPLE NO.

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: <u>A032503</u>

Level: (low/med) LOW

Date Received: 03/01/00

% Moisture: ____ decanted: (Y/N) Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Dilution Factor: 1.00

Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) <u>N</u> pH: __7.0

Number TICs found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

				1
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
******	=======================================	======	========	====
1.	UNKNOWN	24.74	10	J
		l		

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SBLKMAMS

-- CLIENT SAMPLE NO.

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER Lab Sample ID: 00LE0204-MB1 BS

Sample wt/vol: 1000 (g/mL) ML Lab File ID: A032703

Date Received: 03/01/00 Level: (low/med) LOW

% Moisture: _____ decanted: (Y/N)___ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 03/27/00

Dilution Factor: 1.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) <u>N</u> pH: __7.0

CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) <u>UG/L</u> COMPOUND

| 108-95-2----Phenol 62 Z 111-44-4-----bis(2-Chloroethyl)ether____ 10 U 61 Z 95-57-8-----2-Chlorophenol 10 U 541-73-1----1,3-Dichlorobenzene 32 Z 106-46-7----1,4-Dichlorobenzene 95-50-1----1,2-Dichlorobenzene_____ 10 U 95-48-7----2-Methylphenol 10 U 108-60-1----2,2'-oxybis(1-Chloropropane)___ 10 U 10 U 106-44-5----4-Methylphenol 621-64-7----N-Nitroso-di-n-propylamine____ 40 Z 10 U 67-72-1-----Hexachloroethane 10 0 98-95-3-----Nitrobenzene 10 U 78-59-1-----Isophorone___ 88-75-5----2-Nitrophenol 10 U 105-67-9----2,4-Dimethylphenol___ 10 U 10 U 111-91-1-----bis(2-Chloroethoxy) methane . 10 U | 120-83-2----2,4-Dichlorophenol 32 Z 120-82-1----1,2,4-Trichlorobenzene____ 10 0 91-20-3-----Naphthalene 106-47-8----4-Chloroaniline 10 0 87-68-3------Hexachlorobutadiene 10 0 59-50-7----4-Chloro-3-methylphenol____ 67 Z 10 U 91-57-6----2-Methylnaphthalene 10 U 77-47-4-----Hexachlorocyclopentadiene 10 0 88-06-2----2,4,6-Trichlorophenol___ 25 U 95-95-4-----2,4,5-Trichlorophenol 10 0 91-58-7----2-Chloronaphthalene____ 25 U 88-74-4----2-Nitroaniline 131-11-3-----Dimethylphthalate_____ 10 U 10 U 208-96-8-----Acenaphthylene 10 U 606-20-2----2,6-Dinitrotoluene_____ 25 U 99-09-2----3-Nitroaniline 83-32-9-----Acenaphthene_____ 41 Z

CLIENT	SAMPLE	MO
CDTENT	ついいとした	NU

SBLKMAMS		

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 00LE0204-MB1 BS

Sample wt/vol: $\underline{1000}$ (g/mL) \underline{ML} Lab File ID: $\underline{A032703}$

Level: (low/med) LOW

Date Received: <u>03/01/00</u>

% Moisture: ____ decanted: (Y/N) Date Extracted: 03/01/00

Injection Volume: 2.0(uL)

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 03/27/00

Dilution Factor: 1.00

CAS NO. COMPOUND

GPC Cleanup: (Y/N) N pH: 7.0

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

51-28-52,4-Dinitrophenol	
100-02-74-Nitrophenol 95 Z 132-64-9Dibenzofuran 10 U 121-14-22,4-Dinitrotoluene 46 Z 84-66-2Diethylphthalate 10 U 7005-72-34-Chlorophenyl-phenylether 10 U 86-73-7Fluorene 10 U	
132-64-9Dibenzofuran 10 U 121-14-22,4-Dinitrotoluene 46 Z 84-66-2Diethylphthalate 10 U 7005-72-34-Chlorophenyl-phenylether 10 U 86-73-7Fluorene 10 U	
121-14-22,4-Dinitrotoluene 46 Z 84-66-2Diethylphthalate 10 U 7005-72-34-Chlorophenyl-phenylether 10 U 86-73-7Fluorene 10 U	
84-66-2Diethylphthalate 10 U 7005-72-34-Chlorophenyl-phenylether 10 U 86-73-7Fluorene 10 U	
7005-72-34-Chlorophenyl-phenylether	
86-73-7	
100-01-64-Nitroaniline 25 U	
534-52-14,6-Dinitro-2-methylphenol 25 U	
86-30-6N-Nitrosodiphenylamine (1) 10 U	
101-55-34-Bromophenyl-phenylether 10 U	
118-74-1Hexachlorobenzene 10 U	
87-86-5Pentachlorophenol 83 Z	
85-01-8Phenanthrene 10 U	
120-12-7Anthracene 10 U	
86-74-8Carbazole 10 U	
84-74-2Di-n-butylphthalate 10 U	
206-44-0Fluoranthene 10 U	
129-00-0Pyrene 39 Z	
85-68-7Butylbenzylphthalate 10 U	
91-94-13,3'-Dichlorobenzidine 10 U	
56-55-3Benzo(a) anthracene 10 U	
218-01-9	
117-81-7bis(2-Ethylhexyl)phthalate 10 U	
117-84-0Di-n-octyl phthalate 10 U	
205-99-2Benzo(b) fluoranthene 10 U	
207-08-9Benzo(k) fluoranthene 10 U	
50-32-8Benzo(a) pyrene 10 U	
193-39-5Indeno(1,2,3-cd)pyrene 10 U	
53-70-3 Dibenz(a,h) anthracene 10 U	
191-24-2Benzo(g,h,i)perylene	

(1) - Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SH800-02323-B70624MS

Lab Name: Recra.LabNet

Work Order: 01667600001

Client: NYSDEC

Lab Sample ID: 0002L553-003 MS Matrix: (soil/water) WATER

Sample wt/vol: __960 (g/mL) ML Lab File ID: A032509

Level: (low/med) LOW Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{N} pH: __7.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u>

. —				
	108-95-2Phenol	62 l	7	
	111-44-4bis(2-Chloroethyl)ether	10	:	
	95-57-82-Chlorophenol	64		
1	541-73-11,3-Dichlorobenzene	10		
1	106-46-71,4-Dichlorobenzene	40	-	
	95-50-11,2-Dichlorobenzene		:	
1	95-48-72-Methylphenol	10		
1	108-60-12,2'-oxybis(1-Chloropropane)		:	
1	106-44-54-Methylphenol	3	:	
1	621-64-7N-Nitroso-di-n-propylamine	51		
1	67-72-1Hexachloroethane	10	:	
1	98-95-3Nitrobenzene	10		
1	78-59-1Isophorone	10		
j	88-75-52-Nitrophenol			
1	105-67-92,4-Dimethylphenol	10	!	
l	111-91-1bis (2-Chloroethoxy) methane	10		
1				
	120-83-22,4-Dichlorophenol	43	!	
1	120-82-11,2,4-Trichlorobenzene		!	
1	91-20-3Naphthalene	10	:	
ļ	106-47-84-Chloroaniline	10		
	87-68-3Hexachlorobutadiene		:	
	59-50-74-Chloro-3-methylphenol	0.6		
	91-57-62-Methylnaphthalene			
	77-47-4Hexachlorocyclopentadiene	10	:	
	88-06-22,4,6-Trichlorophenol	10	!	
	95-95-42,4,5-Trichlorophenol			
	91-58-72-Chloronaphthalene	10		
	88-74-42-Nitroaniline	26		
	131-11-3Dimethylphthalate	10		
	208-96-8Acenaphthylene	10		
	606-20-22,6-Dinitrotoluene		!	
ļ	99-09-23-Nitroaniline	26		
ļ	83-32-9Acenaphthene	48	Z	
			l	

SH800-02323-B70624MS

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-003 MS

Sample wt/vol: 960 (g/mL) \underline{ML}

Lab File ID: A032509

Level: (low/med) LOW

Date Received: 02/25/00

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 03/25/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: 7.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

51-28-52,4-Dinitrophenol	26	U
.00-02-74-Nitrophenol	92	Z
32-64-9Dibenzofuran	0.8	J
21-14-22,4-Dinitrotoluene	49	Z
34-66-2Diethylphthalate	10	U
7005-72-34-Chlorophenyl-phenylether	10	U
86-73-7Fluorene	1	J
.00-01-64-Nitroaniline	26	U
34-52-14,6-Dinitro-2-methylphenol	26	U
86-30-6N-Nitrosodiphenylamine (1)	10	U
.01-55-34-Bromophenyl-phenylether	10	Ū
18-74-1Hexachlorobenzene	10	U
37-86-5Pentachlorophenol	110	Z
35-01-8Phenanthrene	0.7	J
20-12-7Anthracene	10	U
36-74-8Carbazole	1	J
34-74-2Di-n-butylphthalate	10	U
206-44-0Fluoranthene	0.6	J
29-00-0Pyrene	51	Z
35-68-7Butylbenzylphthalace	10	U
91-94-13,3'-Dichlorobenzidine	10	Ü
56-55-3Benzo(a) anthracene	10	U
218-01-9Chrysene	10	U
117-81-7bis(2-Ethylhexyl)phthalate	1	J
117-84-0Di-n-octyl phthalate	10	U
205-99-2Benzo(b) fluoranthene	10	:
207-08-9Benzo(k)fluoranthene	10	1
50-32-8Benzo(a)pyrene	10	ļυ
193-39-5Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3Dibenz(a,h)anthracene	10	U
191-24-2Benzo(g,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND

FORM 1 SV-2

RFW (v3.3)

-CLIENT SAMPLE NO.

SH800-02323-B70624MSD

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER Lab Sample ID: 0002L553-003 MSD

Sample wt/vol: 960 (g/mL) ML Lab File ID: $\underline{A032510}$

Level: (low/med) LOW Date Received: 02/25/00

% Moisture: _____ decanted: (Y/N)__ Date Extracted: 03/01/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/25/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: 7.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q 60 Z | 108-95-2-----Phenol 111-44-4-----bis(2-Chloroethyl)ether_ 10 U 95-57-8----2-Chlorophenol_____ 61 Z 10 U 541-73-1----1,3-Dichlorobenzene____ 106-46-7----1,4-Dichlorobenzene____ 37 Z 10 U 95-50-1-----1,2-Dichlorobenzene___ 10 U 95-48-7----2-Methylphenol 10 U 108-60-1----2,2'-oxybis(1-Chloropropane) 1 J 106-44-5----4-Methylphenol 46 Z 621-64-7----N-Nitroso-di-n-propylamine____ 10 U 67-72-1-----Hexachloroethane____ 98-95-3-----Nitrobenzene____ 10 U 10 U 78-59-1------Isophorone 10 U 88-75-5----2-Nitrophenol_____ 105-67-9-----2,4-Dimethylphenol____ 10 U 10 U 111-91-1-----bis(2-Chloroethoxy) methane 10 U 120-83-2-----2,4-Dichlorophenol 120-82-1----1,2,4-Trichlorobenzene____ 41 Z 1 | J 91-20-3-----Naphthalene____ 106-47-8-----4-Chloroaniline 10 U 10 U 87-68-3-----Hexachlorobutadiene__ 73 Z 59-50-7-----4-Chloro-3-methylphenol 10 U | 91-57-6-----2-Methylnaphthalene_ 10 U 77-47-4-----Hexachlorocyclopentadiene 10 U 88-06-2-----2,4,6-Trichlorophenol____ 95-95-4-----2,4,5-Trichlorophenol____ 26 U 10 U 91-58-7----2-Chloronaphthalene_____ 26 U 88-74-4----2-Nitroaniline____ 10 U 131-11-3-----Dimethylphthalate_____ 10 U 208-96-8-----Acenaphthylene 10 U 606-20-2----2,6-Dinitrotoluene_____ 26 U 99-09-2-----3-Nitroaniline 46 Z 83-32-9-----Acenaphthene____

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

|SH800-02323-B70624MSD

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) WATER

Lab Sample ID: 0002L553-003 MSD

Sample wt/vol: $\underline{960}$ (g/mL) \underline{ML}

Lab File ID: A032510

Level: (low/med) LOW

Date Received: 02/25/00

Concentrated Extract Volume: 1000 (uL)

% Moisture: _____ decanted: (Y/N)___ Date Extracted: 03/01/00

Date Analyzed: <u>03/25/00</u>

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: $_{-}$ 7.0

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

51-28-5	2,4-Dinitrophenol	26	U
100-02-7	4-Nitrophenol	92	Z
	Dibenzofuran	0.7	J
121-14-2	2,4-Dinitrotoluene	49	Z
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
	Fluorene	1	J
100-01-6	4-Nitroaniline	26	U
534-52-1	4,6-Dinitro-2-methylphenol	26	U
86-30-6- 	N-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	100	z
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	1	J
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	0.5	J
129-00-0	Pyrene	49	Z
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	ט
218-01-9	Chrysene	10	ľΰ
117-81-7	bis(2-Ethylhexyl)phthalate	0.7	J
117-84-0	Di-n-octyl phthalate	10	U
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenz(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND

FORM 1 SV-2

RFW (v3.3)

Case Narrative

Chemical and Environmental Measurement Information Recra LabNet Philadelphia **Analytical Report**

Client: NYSDEC **RFW** #: 0002L553 **ELAP #:** 10752

W.O.#: 01667-600-001-9999-00 **Date Received:** 02-25-2000

GC/MS VOLATILE

Five (5) water samples were collected on 02-23,25-2000.

The samples and their associated QC samples were analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Volatile target compounds on 02-29-2000.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analyses:

- The cooler temperature upon receipt has been recorded on the chain-of-custody. 1.
- 2. The required holding time for analysis was met.
- Non-target compounds were detected in sample SH800-02323-B70623. 3.
- All surrogate recoveries were within EPA QC limits. 4.
- 5. All matrix spike recoveries were within EPA QC limits.
- All blank spike recoveries were within EPA QC limits. 6.
- The method blank contained the common laboratory contaminants Methylene Chloride and Acetone at 7. levels less than the CRQL.
- 8. All internal standard area and retention time criteria were met.
- The water analyses were performed with the method enhancement of a 40°C heated purge to 9. standardize the purge temperature and improve overall purging efficiency.
- Manual integrations are performed according to OP L-QA-125 to produce quality data with the utmost 10. integrity. All manual integrations are required to be technically valid and properly documented. Appropriate technical flags are defined in Section III ("Technical Flags For Manual Integration"); hard copies of the integrations have been included with the quantitation data.
- I certify that this data package is in compliance with the terms and conditions of the contract, both 11. technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

J. Michael Taylor

3-27-00

Date

Vice President

Philadelphia Analytical Laboratory

som\group\data\voa\nysdec-02-553.doc

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data Therefore, this report should only be reproduced in its entirety of 1/4/8 pages.

GLOSSARY OF VOA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TlCs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- **D** = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- X = This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.voa

GLOSSARY OF VOA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gioss.voa

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

SE Sediment SE Sediment SE Sedid SL Sudge W Water O Oil A Air DS Drum MATRIX CODES: DS - Drum Solids DL - Drum Cllent Date Rec'd RECRA Project Manager Est. Final Proj. Sampling Date Project Contact/Phone # Project # _ 00021553 W1 - Wipe Account # Special Instructions: Relinquished SEE NYSDEC COMME Liquids EP/TCLP Leachate SHELTS (ATMUHED) NUSOEC 2-2500 007 B \aleph 므음 B706 Del CXD SH800-02523 Received VOA-MA-1370625 870623 1370622 ş 5 22.000 TRAIL FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS 00-6665-100-001-LAPINO Custody Transfer Hecord/Lab work nequest Page Lot / スジ Client ID/Description 7/23/or Date Due TAT_ Southers **LOCAL** Time 3-20-00 36 226 S357 Relinquished Chosen MS MSD 5 纟 DATE/REVISIONS: 007 ANALYSES REQUESTED Volume ٤ Matrix Refrigerator # #/Type Container Preservatives 3 ٤ 1 Dec'ol Received 4/23/10 Date Time Collected Collected 9650 prser > হ 1 1700 370 1110 1215 1230 Llquid Llquid Solid Solid ZEA 13 Date \$ ح وي VOA صحبر BNA 3 gled to COC. IK IH <u>ر</u> <u>ر</u> 3*6*250 Time 2 Pest/ ⊮CB VUA 5 1AG Samples Labels and COC Record? Y or N Discrepancies Between 950 IPHC 9 K & Z.B. RECRA LabNet Use Only E STA 4 7 S MHSLTO Metal 5) Received Within Holding Times Hand Delivered 2) Ambient or Shilled 3) Received in Good Condition or N 1) Shipped Properly Preserved or N 4) Labels Indicate Samples were: CN RECRA LabNet Use Only . 으

2/24/00/1493

3

NOTES:

Cooler 7. 0

COC Record Present Sample Y or N

Upon Sample Rec't

z

Temp.

; ဂိ

3) Present on Sample Y or (N

Unbroken on

2) Unbroken on Outer Package Or N Package (Y) or N 1) Present/on Outer

COC Tape was:

RECRA LabNet Use Only

 \mathcal{C}

LabNet RECRA

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Lab Code: Recra Case No.:

SAS No.: _____ SDG No.:

MATRIX Spike - EPA Sample No.: SH800-02323-B

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	lug/L	ug/L	ug/L	REC #	REC.
	.========	=======================================		=======	=======================================
1,1-Dichloroethene	50.0	0	49.7	99	61 -145
Trichloroethene	50.0	0	49.1	98	71 -120
Benzene	50.0	0	50.9	102	76 -127
Toluene	50.0	0	50.6	101	76 -125
Chlorobenzene	50.0	0	49.5	99	75 -130
		İ		į	

COMPOUND	SPIKE ADDED ug/L	MSD CONCENTRATION ug/L	MSD % REC #	% RPD #	QC LIMITS RPD REC
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50.0 50.0 50.0 50.0	50.0 49.4 51.0 51.3 49.6	100 99 102 103 99	1 1 0 1 0	14 61 -145 14 71 -120 11 76 -127 13 76 -125 13 75 -130

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 0 outside limits

COMMENTS:	
-----------	--

3A WATER VOLATILE MATRIX SPIKE RECOVERY

Lab Name:	Recra.La	abNet		Contract:	1667-00-01	
Lab Code:	Recra	Case No.:		SAS No.:	SDG	No.:
MATRIX Sni	ke - EPA	Sample No ·	VBI.KPX			

COMPOUND	SPIKE ADDED ug/L	SAMPLE CONCENTRATION ug/L	MS CONCENTRATION ug/L	MS % REC #	QC LIMITS REC.
1,1-Dichloroethene	_ 50.0) 0	47.8	96	61 -145
Trichloroethene	_ 50.0	0	48.4	97	71 -120
Benzene	_ 50.0	0	49.1	98	76 -127
Toluene	_ 50.0	0	49.7	99	76 -125
Chlorobenzene	_ 50.0	0	49.2	98	75 -130
	_				

- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike	Recover	y: <u>0</u>	out	of	_5	outside	limits
COMMEN	NTS:						

Sample Data, for each Sample

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

ļ		
l	SH800-02323-B70622	

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contr	SH800-02323-B70622 act: <u>01667600001</u>
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 0002L553-001
Sample wt/vol: 5.00 (g/mL) M	L Lab File ID: <u>h022908</u>
Level: (low/med) <u>LOW</u>	Date Received: 02/25/00
% Moisture: not dec.	Date Analyzed: 02/29/00
GC Column: ID:(mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
74-87-3	10 U 10 U

10 U

10 U

100-42-5-----Styrene_

1330-20-7-----Xylene (total)

1E VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

1	
SH800-02323-B70622	
	į

EPA SAMPLE NO.

Lab Name: Recra_LabNet Contract: 01667	7600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 0002L553-001
Sample wt/vol: _5.00 (g/mL) ML	Lab File ID: <u>h022908</u>
Level: (low/med) LOW	Date Received: 02/25/00
% Moisture: not dec	Date Analyzed: 02/29/00
GC Column: ID:(mm) Dilution	Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	ENTRATION UNITS: . or ug/Kg) <u>UG/L</u>
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

-	j
SH800-02323-B70623	
	1

Lab Name: Recra.LabNet Contract: 01667600001

Matrix: (soil/water) WATER Lab Sample ID: 0002L553-002

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{h022909}}$

Level: (low/med) LOW Date Received: 02/25/00

% Moisture: not dec. ____ Date Analyzed: 02/29/00

GC Column: ID: ____(mm) Dilution Factor: 1.00____

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg) <u>UG/L</u>		Q	
74-87-3	Chloromethane			10	ן ט	
	Bromomethane			10	1	İ
75-01-4	Vinyl Chloride			10	ับ	į
75-00-3	Chloroethane			10	U	į
	Methylene Chlori				JВ	i
	Acetone			28		İ
	Carbon Disulfide			10	ָט	İ
75-35-4	1,1-Dichloroethe	ne		10	:	i
	1,1-Dichloroetha			7	J	İ
	1,2-Dichloroethe		i	10	U	İ
	Chloroform			10	ับ	İ
	1,2-Dichloroetha			10	:	į
	2-Butanone			10	U	İ
71-55-6	1,1,1-Trichloroe	thane		10	ט	į
	Carbon Tetrachlo			10	บ	Ì
	Bromodichloromet			10	ט	İ
	1,2-Dichloroprop			10	ับ	İ
	cis-1,3-Dichloro			10	U	ĺ
	Trichloroethene_			10	ָ ט	ĺ
	Dibromochloromet			10	U	Ì٠
	1,1,2-Trichloroe			. 2	J	ĺ
	Benzene_			95	1	ĺ
10061-02-6-	Trans-1,3-Dichlo	ropropene		10	U	
75-25-2	Bromoform_	_		10	ט	1
108-10-1	4-Methyl-2-penta	none		10	ט	
	2-Hexanone			10	U	1
127-18-4	Tetrachloroethen	.e		10	ן ט	
	1,1,2,2-Tetrachl			10	U	1
	Toluene			4	J	
	Chlorobenzene_			10] U	
100-41-4	Ethylbenzene			49		
100-42-5	Styrene			10	טן	
1330-20-7	Xylene (total)			190		

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.).
----------------	----

IDMINITION	10001111100	CO. 12 CO.12C	1
			SH800-02323-B70623

Lab Name: Recra.LabNet Contract: 01667600001

Matrix: (soil/water) WATER

SAS No.: ____ SDG No.: ____

Lab Sample ID: 0002L553-002

Sample wt/vol: 5.00 (g/mL) \underline{ML}

Lab File ID: <u>h022909</u>

Level: (low/med) LOW

Lab Code: Recra Case No.: ____

Date Received: 02/25/00

% Moisture: not dec. _____

Date Analyzed: 02/29/00

GC Column: ID: ____(mm) Dilution Factor: 1.00

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 11

(ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	=======================================	====
1.	ALKANE	7.196	80	J
2.	ALKANE	8.282	70	J
3.	UNKNOWN	11.017	. 70	J
4.	CYCLOALKANE	14.462	100	J
5.	CYCLOALKANE	16.368	100	J
6.	UNKNOWN	21.452	20	J
7.	C3-ALKYLBENZENE	23.101	30	J
8.	C3-ALKYLBENZENE	23.249	80	J
9.	UNKNOWN	23.683	30	J
10.	C3-ALKYLBENZENE	23.920	50	J
11.	C4-ALKYLBENZENE	26.319	20	J
	İ			İİ

EPA SAMPLE NO.

Lab	Name:	Recra.Labi	<u>Net</u>	Contract:	01667600001	SH800-02323-B70624
Lab	Code:	Recra	Case No	o.:	SAS No.:	SDG No.:

Lab Sample ID: 0002L553-003 Matrix: (soil/water) WATER

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: <u>h022910</u>

Date Received: 02/25/00 Level: (low/med) LOW

Date Analyzed: <u>02/29/00</u> % Moisture: not dec. _____

GC Column: ID: ____(mm) Dilution Factor: 1.00

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. CO	MPOUND	(ug/L or ug/Kg)	UG/L	Q	
74-87-3Ch	loromethane		10		
74-83-9Br	omomethane	·	10	:	
75-01-4Vi	nvl Chloride		10	:	
75-00-3Ch	loroethane	¦	10	•	
75-09-2Me	thylene Chloride		8		
67-64-1Ac	etone		14		
75-15-0Ca	rbon Disulfide		10		
75-35-41,	1-Dichloroethene		10	:	
75-34-31,	1-Dichloroethane		13		
540-59-01,			10		
67-66-3Ch			10		
107-06-21,	2-Dichloroethane		10		
78-93-32-			10		
71-55-61,	1,1-Trichloroeth	ane	10		
56-23-5Ca			10	ט ו	
75-27-4Br			10	ט ו	
78-87-51,			10	ט [
10061-01-5ci			10	ט	
79-01-6Tr	ichloroethene	- <u> i</u>	10	ט	
124-48-1Di	bromochlorometha	ne	10	ט	٠
79-00-51,	1,2-Trichloroeth	ane	10	ט	j
71-43-2Be	nzene		10	ן ט	
71-43-2Be 10061-02-6Tr	ans-1,3-Dichloro	propene	10	ן ט	
75-25-2Br			10	ן ט	
108-10-14-	Methyl-2-pentano	ne	10	ט	
591-78-62-	Hexanone		10	ן ט	
127-18-4Te	trachloroethene_		10	ן ט	
79-34-51,	1,2,2-Tetrachlor	pethane	10		
108-88-3To	luene		10		
108-90-7cn	lorobenzene		10	ן ט	
100-41-4Et	hylbenzene		10	ט	
100-42-5St 1330-20-7Xy	yrene		10	ן ט	
1330-20-7Xy	lene (total)		10	ָ ע 	

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

-1	
i	SH800-02323-B70624
İ	

EPA SAMPLE NO.

Lah	Name .	Pecra	.LabNet
цaD	Name:	Recra	. Danner

Lab Name: Recra.LabNet Contract: 0166	57600001	
Lab Code: Recra Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	0002L553-003
Sample wt/vol: _5.00 (g/mL) ML	Lab File ID:	h022910
Level: (low/med) <u>LOW</u>	Date Received:	02/25/00
% Moisture: not dec	Date Analyzed:	02/29/00
GC Column: ID:(mm) Dilution	n Factor: 1.00	
Soil Extract Volume:(uL)	Soil Aliquot Vo	olume:(uL)
CONC	CENTRATION UNITS:	

(ug/L or ug/Kg) <u>UG/L</u> Number TICs found: 0

		}		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======	==========	=====
1.				1
i	ĺ			11

1A

. 1				
`				
- 1	TRIP	BLANK		

EPA SAMPLE NO.

VOLATILE ORGANICS ANALISIS DATA	SREE!
Lab Name: Recra.LabNet Contract: 010	TRIP BLANK 667600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 0002L553-006
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>h022911</u>
Level: (low/med) <u>LOW</u>	Date Received: 02/25/00
% Moisture: not dec	Date Analyzed: 02/29/00
GC Column: ID:(mm) Dilution	on Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	NCENTRATION UNITS: g/L or ug/Kg) UG/L Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride	

		,
74-87-3Chloromethane	10	 ប
74-83-9Bromomethane	10	!
75-01-4Vinyl Chloride	- I	1
75-00-3Chloroethane	10	
75-09-2Methylene Chloride	- -	JВ
67-64-1Acetone	10	
75-15-0Carbon Disulfide		:
75-35-41,1-Dichloroethene		:
75-34-31,1-Dichloroethane	10	•
540-59-01,2-Dichloroethene (total)	<u>. 1</u>	
67-66-3Chloroform	10	!
	- •	:
107-06-21,2-Dichloroethane	· .	!
78-93-32-Butanone	_ 10	!
71-55-61,1,1-Trichloroethane		
56-23-5Carbon Tetrachloride		!
75-27-4Bromodichloromethane	- <u>;</u>	:
78-87-51,2-Dichloropropane	_ 10	:
10061-01-5cis-1,3-Dichloropropene		:
79-01-6Trichloroethene		<u>:</u>
124-48-1Dibromochloromethane	_ 10	U
79-00-51,1,2-Trichloroethane	_ 10	ן U
71-43-2Benzene	_ 10	U
10061-02-6Trans-1,3-Dichloropropene	_ 10	U
75-25-2Bromoform	_ 10	Įΰ
108-10-14-Methyl-2-pentanone	_ 10	U
591-78-62-Hexanone	_ 10	U
127-18-4Tetrachloroethene	10	Ū
79-34-51,1,2,2-Tetrachloroethane	10	U
108-88-3Toluene	10	ט
108-90-7Chlorobenzene	10	ָ ט
100-41-4Ethylbenzene		ָ ט
100-42-5Styrene	10	ĺυ
1330-20-7Xylene (total)	10	Ū
· · · · · · · · · · · · · · · · · · ·	-	i

1E

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

1		
TRIP	BLANK	
i		
·		

		TRIP BLANK
Lab Name: <u>Recra.LabNet</u>	Contract: <u>01667600001</u>	

SAS No.: _____ SDG No.: ____ Lab Code: Recra Case No.: ____

Matrix: (soil/water) WATER Lab Sample ID: 0002L553-006

Sample wt/vol: 5.00 (g/mL) ML Lab File ID: h022911

Level: (low/med) LOW Date Received: 02/25/00

Date Analyzed: 02/29/00 % Moisture: not dec. _____

GC Column: ID: ____(mm) Dilution Factor: 1.00

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) <u>UG/L</u>

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
-		=======================================	======		=====	
١	1.]			
ĺ		<u> </u>	<u> </u>		[]	

			•
REFRIG	BLANK		1

EPA SAMPLE NO.

Q

Lab	Name:	Recra.Labi	<u>Vet</u>		Contract:	<u>01667600001</u>	
Lab	Code:	Recra	Case	No.:		SAS No.:	SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 0002L553-007

Sample wt/vol: $\underline{5.00}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{h022912}}$

Level: (low/med) LOW Date Received: 02/25/00

% Moisture: not dec. ____ Date Analyzed: 02/29/00

GC Column: ID: ____(mm) Dilution Factor: 1.00

CAS NO. COMPOUND

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

	(43/2 01 43	. 3
74-87-3	Chloromethane	_
	Bromomethane	_i 10 jū
	Vinyl Chloride	
	Chloroethane	10 75
75-09-2	Methylene Chloride	10 B
67-64-1	Acetone	10 0
75-15-0	Carbon Disulfide	
	1,1-Dichloroethene	10 0
75-34-3	1,1-Dichloroethane	10 0
	1,2-Dichloroethene (total)	10 0
	Chloroform	10 0
107-06-2	1,2-Dichloroethane	10 0
78-93-3	2-Butanone	10 0
71-55-6	1,1,1-Trichloroethane	10 0
56-23-5	Carbon Tetrachloride	_ 10 U
	Bromodichloromethane.	_ 10 U
78-87-5	1,2-Dichloropropane	10 U
10061-01-5	cis-1,3-Dichloropropene	_ 10 U
79-01-6	Trichloroethene	_ 10 U
124-48-1	Dibromochloromethane	_ 10 U
79-00-5	1,1,2-Trichloroethane	_ 10 U
71-43-2	Benzene	_ 10 U
10061-02-6	Trans-1,3-Dichloropropene	_ 10 U
	Bromoform	_ 10 U
	4-Methyl-2-pentanone	_ 10 U
	2-Hexanone	_ 10 U
	Tetrachloroethene	_ 10 U
	1,1,2,2-Tetrachloroethane	_ 10 U
108-88-3		_ 10 U
	Chlorobenzene	
	Ethylbenzene	_ 10 U
	Styrene	10 0
1330-20-7	Xylene (total)	10 0

3/90

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.	
----------------	--

Lab Name: Recra.LabNet Contract: 01667	REFRIG BLANK				
•					
Lab Code: Recra Case No.:	SAS No.: SDG No.:				
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 0002L553-007				
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: h022912				
Level: (low/med) <u>LOW</u>	Date Received: 02/25/00				
% Moisture: not dec	Date Analyzed: 02/29/00				
GC Column: ID:(mm) Dilution	Factor: 1.00				
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)				
Number TICs found: 0 (ug/L or ug/Kg) UG/L					
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q				

Raw QC Data: Tune, Blank and Spike Data

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract: 01667600001 Lab Code: Recra Case No.: SAS No.:	SDG No.:
Lab Code: Recra Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) WATER Lab Sample ID: 0	OLVH095-MB1
Sample wt/vol: 5.00 (g/mL) ML Lab File ID: h	022905
Level: (low/med) <u>LOW</u> Date Received: 0	2/29/00
% Moisture: not dec Date Analyzed: 0	2/29/00
GC Column: ID:(mm) Dilution Factor: 1.00	
Soil Extract Volume:(uL) Soil Aliquot Volume	me:(uL)
CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L	Q
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-00-3Chloroethane 75-09-2Methylene Chloride 67-64-1Acetone 75-15-0Carbon Disulfide 75-35-41,1-Dichloroethene 75-34-31,1-Dichloroethane 540-59-01,2-Dichloroethene (total) 67-66-3Chloroform 107-06-21,2-Dichloroethane 78-93-32-Butanone 71-55-61,1,1-Trichloroethane 56-23-5	10 U

10 U

10 U

10 U

10 U

10 U

10 U

10 U

10 U

10 U

75-25-2-----Bromoform_

108-88-3-----Toluene

100-42-5----Styrene_

591-78-6----2-Hexanone_

108-90-7-----Chlorobenzene_

100-41-4-----Ethylbenzene_

1330-20-7-----Xylene (total)

| 108-10-1-----4-Methyl-2-pentanone_

127-18-4-----Tetrachloroethene

79-34-5----1,1,2,2-Tetrachloroethane_

TABL KDAWG

EPA SAMPLE NO.

Matrix: (soil/water) WATER Lab Sample ID: 00LVH095-MB1 BS Sample wt/vol: 5.00 (g/mL) ML Lab File ID: h022907 Level: (low/med) LOW Date Received: 02/29/00 % Moisture: not dec. Date Analyzed: 02/29/00 % Moisture: not dec. Date Analyzed: 02/29/00 GC Column: ID: (mm) Dilution Factor: 1.00 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/kg) US/L Q 74-87-3	Lab Name: Recra.LabNet Contract: 01667		VBLKPXMS
Sample wt/vol: 5.00 (g/mL) ML	Lab Code: Recra Case No.:	SAS No.:	SDG No.:
Date Received: 02/29/00	Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	00LVH095-MB1 BS
# Moisture: not dec	Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	h022907
Soil Extract Volume:	Level: (low/med) <u>LOW</u>	Date Received:	02/29/00
CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) Ug/L Q	% Moisture: not dec	Date Analyzed:	02/29/00
CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) Ug/L Q	GC Column: ID:(mm) Dilution	Factor: <u>1.00</u>	_
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q	Soil Extract Volume:(uL)	Soil Aliquot V	olume:(uL)
74-83-9Bromomethane			
79-34-51,1,2,2-Tetrachloroethane	74-83-9	al)	10 U 10
	79-34-51,1,2,2-Tetrachloroetha 108-88-3Toluene 108-90-7Chlorobenzene		10 U

| 1330-20-7-----Xylene (total)__

EPA SAMPLE NO.

SH800-02323-B70624MS Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: ____ SDG No.: ___ Lab Code: Recra Case No.: ____ Matrix: (soil/water) WATER Lab Sample ID: 0002L553-003 MS Lab File ID: h022913 <u>5.00</u> (g/mL) <u>ML</u> Sample wt/vol: Date Received: 02/25/00 Level: (low/med) LOW % Moisture: not dec. _____ Date Analyzed: 02/29/00 GC Column: ID: ____(mm) Dilution Factor: 1.00 Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> 74-87-3-----Chloromethane 10 U 74-83-9-----Bromomethane 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 10 U 75-09-2----Methylene Chloride 8 JB 67-64-1-----Acetone 10 0 75-15-0-----Carbon Disulfide 10 U 75-35-4----1,1-Dichloroethene____ 50 Z 75-34-3-----1,1-Dichloroethane 13 540-59-0----1,2-Dichloroethene (total) 10 U 67-66-3-----Chloroform 10 U 107-06-2----1,2-Dichloroethane____ 10 U 78-93-3----2-Butanone 10 U 71-55-6-----1,1,1-Trichloroethane____ 10 U 56-23-5-----Carbon Tetrachloride___ 10 U 10 U 75-27-4-----Bromodichloromethane | 78-87-5----1,2-Dichloropropane 10 U 10061-01-5----cis-1,3-Dichloropropene_____ 10 U 79-01-6-----Trichloroethene 49 Z 124-48-1-----Dibromochloromethane 10 U 79-00-5-----1,1,2-Trichloroethane 10 U 71-43-2-----Benzene 51 Z 10061-02-6----Trans-1,3-Dichloropropene 10 U 75-25-2-----Bromoform 10 U 108-10-1-----4-Methyl-2-pentanone___ 10 U

591-78-6----2-Hexanone

108-90-7-----Chlorobenzene

| 1330-20-7-----Xylene (total)

100-42-5-----Styrene

108-88-3-----Toluene_

127-18-4-----Tetrachloroethene

79-34-5----1,1,2,2-Tetrachloroethane

100-41-4-----Ethylbenzene____

10 U

10 U

10 U

51 Z

50 Z

10 U

10 0

EPA SAMPLE NO.

SH800-02323-B70624MSD Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: _____ SDG No.: ____ Lab Code: Recra Case No.: ____ Matrix: (soil/water) WATER Lab Sample ID: 0002L553-003 MSD Lab File ID: <u>h022914</u> Sample wt/vol: _5.00 (g/mL) ML Date Received: 02/25/00 Level: (low/med) LOW % Moisture: not dec. _____ Date Analyzed: 02/29/00 GC Column: ID: ____(mm) Dilution Factor: 1.00 Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> 74-87-3-----Chloromethane____ 10 U 74-83-9-----Bromomethane____ 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 10 U 75-09-2-----Methylene Chloride_____ 8 JB 67-64-1-----Acetone_ 10 U 75-15-0-----Carbon Disulfide 10 U 75-35-4----1,1-Dichloroethene__ 50 Z 75-34-3-----1,1-Dichloroethane_ 12 540-59-0-----1,2-Dichloroethene (total)____ 10 U 67-66-3-----Chloroform 10 U | 107-06-2----1,2-Dichloroethane 10 U 78-93-3----2-Butanone 10 U 71-55-6----1,1,1-Trichloroethane___ 10 U 56-23-5-----Carbon Tetrachloride 10 U 75-27-4-----Bromodichloromethane 10 U 78-87-5----1,2-Dichloropropane____ 10 U 10061-01-5----cis-1,3-Dichloropropene____ 10 U 79-01-6-----Trichloroethene____ 49 Z 124-48-1-----Dibromochloromethane____ 10 U 79-00-5-----1,1,2-Trichloroethane____ 10 U 71-43-2-----Benzene_ 51 Z 10061-02-6----Trans-1,3-Dichloropropene 10 U 75-25-2-----Bromoform 10 U 108-10-1----4-Methyl-2-pentanone 10 U 591-78-6----2-Hexanone_ 10 U 127-18-4-----Tetrachloroethene_ 10 U 79-34-5-----1,1,2,2-Tetrachloroethane 10 U 108-88-3-----Toluene 51 Z | 108-90-7-----Chlorobenzene 50 Z 100-41-4-----Ethylbenzene__ 10 U 100-42-5-----Styrene 10 U 1330-20-7-----Xylene (total) 10 U

Recra LabNet Philadelphia

WET CHEMISTRY

METHODS GLOSSARY FOR WATER SAMPLE ANALYSIS

Acidity	EPA /600 305.1	<u>SW846</u>	<u>OTHER</u>
AlkalinityBicarbonateCarbonate	310.1		
BOD	405.1		5210B (b)
Ion Chormatography:			
Bromide Chloride Fluoride	300.0	9056	
Nitrate Nitrite Phosphate	300.0	9056	
Sulfate Formate Acetate Oxalate	300.0	9056	
Chloride	325.2	9251	
Chorine, Residual	330.5 (mod)		
Cyanide, Amenable to Chorination	335.2	9010B	
Cyanide, Total	335.2	9010B 9014	ILMO4.0 (e)
Cyanide, Weak Acid Dissociable			412 (a) 4500CN-I (b
COD	410.4(mod)		5220C (b)
Color	110.2		
Corrosivity by Coupon		1110(mod)	
Chromium VI	· · · · · · · · · · · · · · · · · · ·	7196A	3500Cr-D (b)
Fluoride	340.2		4500-FC
Hardness, Calcium	215.2		
Hardness, Total	130.2		
Iodide			ASTM D19P202 (1)
Surfactant	425.1		
Nitrate-NitriteNitrateNitrite	353.2		
Ammonia	350.3		
Total Kjeldahl Organic Nitrogen	351.4		ı
Total Organic Inorganic Carbon	415.1	9060	
Oil & Grease	413.1	9070	•
pH pH; paper	150.1	_ 9040B _ 9041A	
Petroleum Hydrocarbons, Total Recoverable	<u>✓</u> 418.1		
Phenol	420.1 420.2	9065 906	56
OrthoTotal Phosphate	365.2		4500-P B C
Salinity			210A (a) 2520 (b)
Settleable Solids	160.5		
Sulfide	376.1 376.2		4 (acid soluble)
ReactiveCyanideSulfide		Section 7.3	
Silica	370.1		
Sulfite	377.1		
Sulfate	375.4	9038	
Specific Conductance	120.1	9050A	
Specific Gravity			D5057-90 213E (a)
Synthetic Precipitation Leach	1312		
TotalDissolvedSuspendedSolids	16012	•	
Total Organic Halides	450.1	9020B	
Turbidity	180.1		
Volatile Solids:	1.60		
TotalDissolvedSuspended	160.4		
Other:	<u> </u>	Aethod:	000

Recra LabNet Philadelphia METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- * = Indicates that the original sample result is greater than 4x the spike amount added.

ABBREVIATIONS

MB = Method or Preparation Blank.

MS = Matrix Spike.

MSD = Matrix Spike Duplicate.

REP = Sample Replicate

LC = Laboratory Control Sample.

NC = Not calculated.

A suffix of -R, -S, or -T following these codes indicate a replicate, spike or sample duplicate analysis respectively.

ANALYTICAL WET CHEMISTRY METHODS

- 1. ASTM Standard Methods.
- 2. USEPA Methods for Chemical Analysis of Water and Wastes (USEPA 600/4-79-020).
- 3. Test Methods for Evaluating Solid Waste (USEPA SW-846).
- a. Standard Methods for the Examination of Water and Waste, 16 ed, (1983).
- b. <u>Standard Methods for the Examination of Water and Waste</u>, 17 ed, (1989)/18ed (1992).
- c. <u>Method of Soil Analysis</u>, Part 1, Physical and Mineralogical Methods, 2nd ed, (1986).
- d. <u>Method of Soil Analysis</u>, Part 2, Chemical and Microbiological Properties, Am. Soc. Agron., Madison, WI (1965).
- e. USEPA Contract Laboratory Program, Statement of Work for Inorganic Analysis.
- f. Code of Federal Regulations.

L-WI-034/D-6/99

INORGANICS DATA SUMMARY REPORT 03/24/00

CLIENT: NYSDEC

RECRA LOT #: 0002L553

SAMPLE	SITE ID	ANALYTE	RESULT	UNITS	REPORTING LIMIT	DILUTION FACTOR
-001	SH800-02323-B70622	Petroleum Hydrocarbons	 1.1 u	MG/L	1.1	1.0
-002	SH800-02323-B70623	Petroleum Hydrocarbons	3.7	MG/L	1.1	1.0
-003	SH800-02323-870624	Petroleum Hydrocarbons	1.1 u	MG/L	1.1	1.0

INORGANICS METHOD BLANK DATA SUMMARY PAGE 03/24/00

CLIENT: NYSDEC

RECRA LOT #: 0002L553

					WHI OWI ING	21201101
SAMPLE	SITE ID	ANALYTE	RESULT U	UNITS	LIMIT	FACTOR
*****		医红色蛋白红红色医红红蛋白红红色医红色	*******	32220	*****	*******
BLANK10	OOLHCOO8-MB1	Petroleum Hydrocarbons	1.0 u h	MG/L	1.0	1.0

INORGANICS ACCURACY REPORT 03/24/00

CLIENT: NYSDEC

RECRA LOT #: 0002L553

			35 1100	TWITTIME	SETVED		DILUTION
Sample	SITE ID	ANALYTE	Sample	Result	AMOUNT	*RECOV	Pactor (SPK)
***		452247222722722222	*****		*****	****	*******
-003	SH800-02323-B70624	Petroleum Hydrocarbons	3.8	0.00	4.5	84.5	1.0
LCS10	00LHC008-LC1	Petroleum Hydrocarbons	3.8	1.0 u	4.2	90.2	1.0

INORGANICS PRECISION REPORT 03/24/00

CLIENT: NYSDEC

RBCRA LOT #: 0002L553

			ENTITIAL			DIFOLION	
SAMPLE	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	PACTOR (REP)	
***	***********	************	34220042	399568333	******	*****	
-003RBP	SH800-02323-B70624	Petroleum Hydrocarbons	1.1 u	1.1 u	NC	1.0	

RECRA LabNet Use Only

FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

Custody Transfer Hecord/Lab vyork nequest Page Lot LabNet RECRA LabNets Personnel: complete only shaded areas

																					T							$\overline{}$	
	by	Relinquished	-		SHE	Special Instructions				- 1	Figh	× Other			Solids	i K	77	St - Sludge	Sediment	MATRIX CODES:	Account #	e Rec'd	ac Cho	RECHA Project Manager	Project Contact/Phone #	Project #	Est. Final Proj. Sampling Date	Cilent /	00021 553
\bigvee	\bot	-			9	ク Sign				100		2		F	B	B	S		ਰ [<u>-</u>		ල- පුපුරට	<u> </u>	Mena	Phon	L	Samp	12	55
	ру	Received		1	SHEATS (ATTACHED)	al Instructions:				VOC1 - 12	N N	1/1/A_ T.	22 901 2	-	1370629	87062	1570622	I IX	Client			-	Del CAD	ger 25	o# trank	harid 9062	ling Date 2	NUSPEC	3 8
	25/16	Date			3	7						B			1	1	7	23	D/Des			Date Due	TAT		9	个可	124		
5					Ů	व													Client iD/Description					1	3	8	an		
1820	14/3	Time				MB													=			3-20-00	KOOOC) 	Swifted 1/6 UM 3 SS /	00-00-124 F-100-00	3		
		Reling		•		,	-						\$ 1 \$ 2 \$ 3		<	. <	X	. I	,	요 .					8	,6	۲ ا		
		Relinquished				3 8	DATI) (T					<	. 3	Z	300		QC Chosen					50.	$\sum_{j\in C}$)	.	
							DATE/REVISIONS:				<u>j </u>	3	1		5	1	٤ :	2	•	Matrix		ANAI		Prese	Volume		#/Тур	Refrig	
		20	os (α	<u> </u>	ယ	io -	SIONS:				L	湿		20			1	,			\dashv	ANALYSES REQUESTED		Preservatives	10		#/Type Container	Refrigerator #	
		Received by				1	0				הצענ	1	Time A	***			2		lected	Date			1	•			iner	**	
						2	۱ د	<u> </u>			250	ī	T. L.	POOR!	1613		1224	3	Collected	Time		\forall			Solid	Liguid	Solld		
		Date				2EA			191	*.	2		Use of								\dashv	VOA		<u> </u>		S		3 -	-
		5	.	ŀ		Horse	۷ .				2	2			Š		2	2	مری مر	TC SC			ORG	7		950	2		
		Time				1-8	0					y.				3 -		-		<u> </u>	4	Pest/	IGAN	1		9		<u> </u>	1
≣						77	1				7			Sales Sales							4	Hero		क्षा है। इस्टब्स्	7	90			1
	COC Re	Discrepancies Between Samples Labels and				ADA:	000		1	, ,				Salar Section		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_ 	7	IP			TO		136		950		12	
	COC Hecord? Y	Discrepancies Betwe				20			200		70	* * *	7		1	١.	_	<u>ا</u> _	4	-	3	<i>3</i> 9	K	1		Ó			1
		Between the and				B													-		ECRA	3	PARTY.			9			1
	(2	Č Č											经经验			3	۷		mH5	· TO	RECRA LabNet Use Only	Metal	5	Corth		22	17.	2	2
		5) Fl	4) La Propi	2) An 3) Re Cond	Airbill	Samp 1) Sh Hand										3	>				et Us	CN	NORG	3					7
	Holomy (2)	5) Received Within	4) Labels Indicate Properly Preserved	2) Ambient or Called 3) Received in Good Condition (*) or N	Airbill # Balow	Samples were: 1) Shipped Hand Delivered						2 t		14					-		S S	Core	<u>ا</u>	*		176			1
,	y or N	Within	dicate served	Good or 1) <u>\$</u>	3 g / si	RECRA		6							4. 1.			-		1	PC							
	z	2	•	246	, 1 <u>4</u>		LabNe					第 2							-		-	4		国	18 P		完全 不安 日本日		7
	Temp.	Upon	Samp	3) Pre	2) Uni Packa	1) Presento Package (Y	RECRA LabNet Use Only			: [7 [*]		2		1								-To-	f	ç			- 3		•
	Temp. 7.0	Upon Sample Rec't	4) Onbroken on Sample Y or N COC Record Present	3) Present on Sample	2) Unbroken on Outer Package or N	COC Tape was: 1) Presention Outer Package (Y) or N	July.							f	F						\dashv							9	
	റ്	Pec't or N	or N	or (or Out	as: Outer or N			7		¥								-		\dashv							图	4

Custody Transfer Hecora/Lab work nequest Page / FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

RECRA LabNet Use Only

00026553

2) Unbroken n Outer Package (or N 3) Present on Sampler COC Tape was:

1) Presenten Outer
Package (Y) or N Upon Sample Rec'i COC Record Present 4) Unbroken on Sample Y or N Cooler 7.0 RECRA LabNet Use Only 4) Labels indicate
Properly Preserved
(Y) or N 2) Amblent or Stulled 3) Received in Good Condition (or N 5) Received Within Holding Times Samples were: RECRA LabNet Use Only CM Discrepancies Between Samples Labels and COC Record? Y or NOTES: RB DHCI 1268 10 COC. NO B \Isaq TIMe AOV Date 1. Sec'of REA 230 997 Matrix | Date Time | Collected Received by #/Type Container ANALYSES REQUESTED Refrigerator # Preservatives DATE/REVISIONS: Volume 600 130 Matrix QC Chosen MS MSD Relinquished Date Due 3-3ctD **14**8 Client ID/Description * SEE NYSDAC CONTRACT SHEATS (ATTACHED) TAT Date 3H800-02523 72907 870623 370624 B 706 OIL Project Contact/Phone # FRAL Est. Final Proj. Sampling Date Del CAD Received by RECRA Project Manager NYSpec Date Rec'd 2-2500 ₽ ₽ Special instructions: Relinquished **EP/TCLP** Leachate Project # Account / W - Water Dra MATRIX CODES: A- A 占. ö 003

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW#: 0002L553 ELAP#: 10752 **W.O.**#: 01667-600-001-9999-00

Date Received: 02-25-00

CLP/ILM04.0 METALS

- 1. This narrative covers the analyses of 3 water samples.
- 2. The samples were prepared and analyzed in accordance with CLP/ILM04.0 protocol. Sample SH800-02323-B70622 was rerun and reported for Sodium from file PS0307B due to the high concentration on the original analysis.
- 3. ICVs, CCVs, and LCSs stock standards were purchased from Inorganic Ventures and High Purity.
- 4. All analyses were performed within the required holding times.
- 5. The cooler temperature has been recorded on the Chain of Custody.
- 6. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within control limits.
- 7. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits.
- 8. All preparation/method blanks were below reporting limits. Refer to form 3.
- 9. All ICP Interference Check Samples (ICSA and ICSAB) were within control limits. Although not required, Sodium was spiked into the ICSAB solution at 2000 μg/L in file TA0306A and 1000 μg/L in file PS0307B. The recoveries were within the control limits. Refer to form 4.
- 10. All laboratory control samples (LCS) were within the 80-120% control limits. Refer to form 7.
- The serial dilution percent differences for 2 analytes were outside CLP control limits. Refer to form 9. The serial dilution was performed on sample SH800-02323-B70622.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 349 pages.

- 12. The matrix spike (MS) recoveries for 2 analytes were outside the 75-125% control limits (exception allowed when sample concentration exceeds the spike added concentration by a factor of 4 or more). Refer to form 5A. For analytes where the MS is out of control, a post-digestion MS is performed (exception allowed for Silver). MS analyses are not required for Calcium, Magnesium, Sodium and Potassium in waters and soils. Also, not required for Aluminum and Iron in soils.
- 13. All duplicate analyses were within the method criteria. Refer to form 6.
- 14. The sample ID was changed to accommodate the EPA naming convention which allows a maximum of 6 characters on all CLP Forms. Refer to the comments section of form 1 for the original ID.
- 15. Recoveries on the Laboratory Summary Report and CLP forms will vary depending on the number of significant figures used in the recovery calculation.

J. Michael Taylor Vice President

Philadelphia Analytical Laboratory

alm/m03-553

03-13-00

Date

METALS METHOD GLOSSARY

The following method Recra Lot#:	is are used as reference (\$\frac{1}{2}\)	•	ion and analysis of	i sampies conta	linea within this
Leaching Procedure:	_1310 _1311 _131		·		
CLP Metals \(\square Digest	ion andAnalysis M	lethods:ILN	403.0 <u>ILM</u> 04.0	ı	
Metals Digestion Metal	hods:3005A30	10A3015 _	_3020A3050B	3051200	0.7 _SS17
		etals Analysis	Methods	· .	
		ctais . marysis	Memods	EPA	
	SW846	EPA	STD MTD	OSWR	USATHAMA
Aluminum	6010B	200.7			99
Antimony	6010B 7041 5	200.7 204	.2	•	— ₉₉
Arsenic	-6010B 7060A 5	200.7 206			99
Barium	-6010B	200.7			 99
Beryllium	6010B	200.7			 99
Bismuth	6010B ¹	200.7 1		1620	— ₉₉
Boron	6010B	200.7			— ₉₉
Cadmium	-6010B 7131A ⁵	200.7 213	3.2		<u> </u>
Calcium	6010B	200.7			99
Chromium	6010B 7191 ⁵	200.7 218	3.2		SS17
Cobalt	6010B	200.7	•		99
Copper	6010B 7211 ⁵	200.7 220	.2		99
lron	6010B	200.7		•	99
Lead	6010B 7421 ⁵	200.7 239	0.2 3113B		<u></u> 99
Lithium	6010B 7430 ⁴	200.7		1620	99
Magnesium	6010B	200.7	•		<u></u> 99
Manganese	6010B	200.7			99
Mercury	7470A ³ 7471A ³	245.1^{2} 245.	.5 ²		99
Molybdenum	6010B	200.7			99
Nickel	6010 B	200. 7			99
Potassium	6010B7610 ⁴	200.7258	3.1 4		99
Rare Earths	6010B ¹	200.7 1		1620	- <u>_</u> 99
Selenium	_6010B _7740 ^s	200.7270).23113B	•	99
Silicon	6010B ¹	200.7		1620	99
Silica	6010 B	200.7		1620	99
Silver	_6010B7761 ⁵	200.7272	2.2		99
Sodium	_6010B _7770 ⁴	200.7273	3.1 4		99
Strontium	6010B	200.7			⁹⁹
Thallium	_6010B _7841 ⁵	200.7279	.2200.9		⁹⁹
Tin	6010B	200.7			99
Titanium	-6010B	200.7			99
Uranium	6010B ¹	200.7 1		1620	99
Vanadium	6010B	200.7			99
Zinc	6010B	200.7			99
Zirconium	6010B ¹	200.7 1		1620	99
Other:	Metho	od:	_		64 M
L-WI-033/M-11/99				·	017

METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- B = Indicates that the parameter was between the Instrument Detection Limit (IDL) and the Contract Required Detection Limit (CRDL)

Q QUALIFIERS

- E = The reported value is estimated because of the presence of interference.
- M = Duplicate injection precision not met.
- N = Spiked sample recovery not within control limits.
- S = The reported value was determined by the Method of Standard Additions (MSA).
- W = Post Digestion spike for Furnace AA analysis is out of control limits (85 -115 %), while sample absorbance is less than 50% of spike absorbance.
- * = Duplicate analysis not within control limits.
- += Correlation coefficient for the MSA is less than 0.995.

ABBREVIATIONS

PB = Method or Preparation Blank.

S = Matrix Spike.

T = Matrix Spike Duplicate.

R or D = Sample Replicate

ANALYTICAL METAL METHODS

- 1. Not included in the method element list.
- 2. Modified Hg: Hgl and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, 0.1 grams of sample is taken to a final volume of 50 mL (including all reagents).
- Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, three 0.1 gram of sample is taken to a final volume of 50 mL (including all reagents).
- 4. Flame AA.
- Graphite Furnace A.A.
 RFW 21-21L-033/O-01/97

Inorganic Analysis Data Package

1 INORGANIC ANALYSES DATA SHEET

EPA	~	7	MINT	_	110
rPA	-	Δ	$M \sim 1$	м	NO.

			· Combine at a 10		B70622
ab Name: RECRA			Contract: 16		
ab Code: RECRA	Cas	se No.: SH	300_ SAS No.:		SDG No.: 02323
atrix (soil/wa	ter): WATE	₹		Lab Sampl	e ID: 0002L553-
evel (low/med)	: LOW_			Date Rece	eived: 02/25/00
Solids:	0.0	ס			
Cor	ncentration	Units (ug,	/L or mg/kg dry	y weight):	UG/L_
	CAS No.	Analyte	Concentration	C Q	М
	7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4	Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	0.46 137000 6.2 3.5 30.4 9360 62.4 49600	B B B B B B B B B B B B B B B B B B B	P - P - P - P - P - P - P - P - P - P -
	7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6			B E U U U U B B	P_ AV P_ P_ P_ P_ P_ P_ P_ P_
lor Poforo:			ty Before:		Texture:
olor Before:			ty After:		Texture: Artifacts:
omments:	-B70622				25 + (17 T) 17 T 18 4
		Tr.	ORM I - IN		ILM04

021

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: RECR	A_LABNET		Contract: 16	567 - 6	B70623
Lab Code: RECR	A Cas	se No.: SH	300 SAS No.	•	SDG No.: 02323_
Matrix (soil/w	-		- /		- e ID: 0002L553-002
Level (low/med): LOW	_		Date Rece	ived: 02/25/00
% Solids:	0.0	0			
Co	ncentration	Units (ug,	/L or mg/kg dry	y weight):	UG/L_
	CAS No.	Analyte	Concentration	C Q	M
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Aluminum_Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_Nickel_Potassium Selenium_Silver_Sodium Thallium_Vanadium_Zinc	0.10	U	P
Color Before:		Clari	ty Before:		Texture:
Color After:		Clari	ty After:		Artifacts:
	-B70623				

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: RECR	A_LABNET	7.000	Contract: 1	567 -	·6	B7	70624	
Lab Code: RECRA	A_ Cas	se No.: SH	300_ SAS No.	:		SDG N	io.: 0	2323_
Matrix (soil/wa	ater): WATE	R		Lab	Sampl	e ID:	0002L	553-00
_ Level (low/med)): LOW_			Dat	e Rece	ived:	02/25	/00
% Solids:	0.0	0						
Coı	ncentration	Units (ug,	/L or mg/kg dry	y we	eight):	UG/L_		
	CAS No.	Analyte	Concentration	С	Q	<u>—</u> м		
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-95-4 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	4210		N E	P		
Color Before:		Clari	ty Before:		1	Textur	e:	
Color After:		Clari	ty After:	·		Artifa	cts:	
Comments: SH800-02323	-B70624							

FORM I - IN

3 BLANKS

Lab	Name:	RECRA	LABNET	Contract:	1667-6
		_			

Lab Code: RECRA Case No.: SH800 SAS No.: ____ SDG No.: 02323_

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L_

Analyte	Initial Calib. Blank (ug/L)	С	Conti 1	inuing Blank C	Caliba (ug/L) 2	ion 3	С	Prepa- ration Blank C	М
Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_ManganeseMercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_	0.2 0.1 1.4	מממממממממממממממממממ	25.2 1.8 2.9 0.2 0.1 0.3 13.2 0.6 0.8 0.8 14.6 2.3 6.5 0.2 0.1 1.4 19.7 4.4 19.7 4.4 0.9 -5.3 3.7 0.6 0.8	B U U U B U U U U B U U U U B U U U U B U	30.2 1.8 2.9 0.2 0.3 13.2 0.6 0.8 14.6 -2.9 6.5 0.2 0.1 1.4 19.7 4.4 19.7 4.4 0.9 -5.8 3.7 0.6	31.3 1.8 2.9 0.2 0.2 0.3 13.2 0.6 0.8 0.8 14.6 2.3 6.5 0.3 0.1 1.4 -21.5 4.4 0.9 -7.6 3.7 0.6 0.8	BUUUBUUUUUUUUBUUBUUBUUU	36.420 B 1.800 U 2.900 U 0.347 B 0.144 B 0.300 U 31.870 B 0.600 U 0.800 U 0.800 U 14.600 U 2.300 U 8.390 B 0.150 B 0.150 B 0.100 U 1.400 U 19.700 U 4.400 U 0.900 U 16.203 B 3.700 U 0.600 U 2.100 B	P P P P P P P P P P P P P P P P P P P

FORM III - IN

3 BLANKS

Lab I	Name:	RECRA_LABNET_		Contract:	1667-6	-	
Lab (Code:	RECRA_	Case No.: SH800_	SAS No.:		SDG No.:	02323_
Prepa	aratio	on Blank Matrix	k (soil/water):				
Prepa	aratio	on Blank Concer	ntration Units (ug/	L or mg/kg)	:		

Analyte	(-5) -/	с U				3 65.4	C	С	M P	
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc		0	0.2	0	 8	0.3			NR NR NR NR NR NR NR NR	

ILMO4.0

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Tab Name	Nome	DECDA LABNEM		Combus abs 1667 6	B70624S		
Lab	wame:	RECRA_LABNET		Contract: 1667-6			
Lab	Code:	RECRA_	Case No.: SH80	0_ SAS No.:	SDG No.: 02323		

Matrix (soil/water): WATER_

Level (low/med): LOW__

% Solids for Sample: __0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

		,	~					
Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR)	С	Spike Added (SA)	%R	Q	M
Aluminum	75-125	7306.2700	4211.2100	_	2000.00	154.8	$ \overline{N} $	P
Antimony_	75-125	457.5750	1.8000	Ū	500.00	91.5		p ⁻
Arsenic	75-125_	<u>1</u> 878.1680	17.0030		2000.00	93.1	-	P
Barium	75-125_	2069.8910	246.1750	_	2000.00	91.2		P
Beryllium	75-125_	46.3940	l	$\overline{\mathbf{B}}$	50.00	91.9	-	P_
Cadmium	75-125_	44.9280	0.8730	В	50.00	88.1	-	P_
Calcium_				_			_	NR
Chromium_	75-125_	189.4930		B	200.00	90.9	1-1	P_
Cobalt	75-125_	454.9300		В	500.00	90.1		P_
Copper	75-125_	248.4840	l	В	250.00	92.1	-	P_
Iron	<u></u>	18565.0800	18700.3500	_	1000.00		_	P_
Lead	75-125_	466.6030	15.8970	_	500.00	90.1	$ \bot $	P_
Magnesium	Í I			_1			1_1	NR
Manganese	75-125_	2088.5200	1729.4300	_1	500.00	71.8	N	P_
Mercury	75-125_	0.8500		ਹ	1.00	85.0	_	$A\overline{V}$
Nickel	75-125_	468.2540	13.1450	В	500.00	91.0	-	P_
Potassium				_				NR
Selenium_	75-125_	1877.9460		<u></u>	2000.00	93.9		P_
Silver	75-125_	45.9610_	0.9000	ַ ט	50.00	91.9	_	P_
Sodium_				_			_	NR
Thallium_	75-125_	1797.7340		ਹ	2000.00	89.9	-1	P_
Vanadium_	75-125_	465.2600	,,	В	500.00	91.3	-	P_
Zinc	75-125_	696.0860	263.2680	_	500.00	86.6	-1	P_
				_			_	ı — l
				_	·			اا

Comments:			
SH800-02323-B70624			
	/	······································	
	· · · · · · · · · · · · · · · · · · ·		

FORM V (Part 1) - IN

5B POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

				B70624A
ab Name:	RECRA_LABNET	Contract:	1667-6	

Lab Code: RECRA_ Case No.: SH800_ SAS No.: _____ SDG No.: 02323_

Matrix (soil/water): WATER_ Level (low/med): LOW___

Concentration Units: ug/L

	,,								,
Analyte	Control Limit %R	Spiked Sample Result (SSR)	c	Sample Result (SR)	c	Added (SA)	%R	Q —	M
Aluminum_ Antimony		12005.63	-	4211.21_	_	8000.0	97.4		P NR
Arsenic Arsenic					-				NR
Barium					_			_	NR
Beryllium Cadmium			-				<u> </u>	_	NR NR
Calcium_					_			_	NR
Chromium_ Cobalt			- -		-			_	NR NR
Copper					_			-	NR
Iron			-		_			_	NR NR
Lead Magnesium			-		<u>, </u>			_	NR
Manganese		3674.62		1729.43	_	2000.0	97.3	_	P NR
Mercury Nickel			-		-			-	NR
Potassium					_			_	NR
Selenium_ Silver		·	-		-			_	NR NR
Sodium								_	NR
Thallium_ Vanadium			-		_			-	NR NR
Zinc			-		-			_	NR
			: =		_			_	
		l	. _	1	I	l	l	l	I

Comments: SH800-02323-B70624	· · ·	·

FORM V (Part 2) - IN

6 DUPLICATES

EPA SAMPLE NO.

B70624D

Lab Name: RECRA_LABNET_____

Contract: 1667-6

Lab Code: RECRA_

Case No.: SH800_ SAS No.: ____ SDG No.: 02323_

Matrix (soil/water): WATER

Level (low/med): _LOW_

% Solids for Sample: __0.0

% Solids for Duplicate: ___0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Control Limit	Sample (S) C	Duplicate (D) C RPD	Q M P P P P P P P P P P P P P P P P P P
Cobalt Copper Iron Lead Magnesium	3.0_	4.4240 B 18.3540 B 18700.3500 - 15.8970 - 50472.9100	4.0570 B 8.7 17.2240 B 6.4 18107.7900 3.2 14.8360 6.9 48829.4100 3.3	P P P P P P
Manganese Mercury_ Nickel_ Potassium Selenium_ Silver	5000.0_	1729.4300 U 0.1000 U 0.1000 U 0.9000 U	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P AV P P P P P P
Sodium	5000.0_	10754.5410 3.7000 Ū 8.5300 B 263.2680	10468.7540 3.7000 Ū 8.9100 B 253.2980	P P P P P P P P P P P P P P P P P P P

FORM VI - IN

9 ICP SERIAL DILUTION

EPA SAMPLE NO.

Lab Name: RECRA_LABNET_____ Contract: 1667-6____

Lab Code: RECRA_ Case No.: SH800_ SAS No.: _____ SDG No.: 02323_

Matrix (soil/water): WATER Level (low/med): LOW__

Concentration Units: ug/L

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S) C	% Differ- ence	Q M
Aluminum_Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_	4005.21 1.80 6.93 99.34 0.40 B 0.46 B 136813.23 6.19 B 3.50 B 30.45 9358.71 62.44 49565.98 181.41 10.69 B 10675.55 4.40 0.90 U 151628.09 3.70 T.21 B	4058.15 9.00 14.50 U 101.70 B 1.23 B 1.50 U 140324.90 6.20 B 4.00 28.86 9759.10 67.39 50612.80 187.65 7.00 9140.68 B 22.00 4.50 U 139739.12 18.50 U 8.30 B 334.22	1.3_ 100.0_ 2.4_ 207.5_ 100.0_ 2.6_ 0.2_ 100.0_ 5.2_ 4.3_ 7.9_ 2.1_ 3.4_ 100.0_ 14.4_	

FORM IX - IN

ILMO4.0

Chemical and Environmental Measurement Information

8 February 2000

Mr. Jack Ryan **NYSDEC** Room 392 50 Wolf Road Albany, NY 12233-3502 RECEIVED

DER/HAZ. WASTE REMED REGION 3

Ref: Contract C003783

Sample Data Package: RFW Batch 9912L959 NYSDEC ID: SH899-12206-B70603 to B70614

Dear Mr. Ryan:

Enclosed please find the data report for 11 soil/solid samples received 8 December 1999. These were analyzed for CLP VOAs, BNAs, pesticides/PCBs, and metals/CN. The EDD is being emailed to you and a disk will be sent to the sampler.

We had received an extension for this report.

Please do not hesitate to contact me at (610) 280-3000 with any questions you may have.

Very truly yours,

Recra Environmental, Inc.

Judith L. Stone

Senior Project Manager

Enclosure

cc: Frank Sowers (NYSDEC)

RECRA LabNet Use Only 99121959

Custody Transfer Record/Lab Work Request Page Lot A FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

RECRA Labnet

1		0.5		Refrigerator #		1 3 3		20 20 20	- !
Cilent 1/12	7	120			1 Journal	十			
Fet Final Prof. Sampling Date	Same	oling Date		#/Tvpe Container	night				
	140010	2-6606-104-0401-E	2		Solid	(A &			
Project #	27	1			Liquid		3	0	
Project Contact/Phone #	ct/Pho	# eu		Volume	Solid	15 250 T		125	
RECRA Project Manager	ct Man	7.0	Mari	Dreservatives					
00 (1/1)		Del CLO TAT 30	rung			ORGANIC		INORG	
Date Rec'd	13/	18/99 Date Due 113	3/99	ANALYSES REQUESTED	A	BUA BUA BUA	dıəH	Wets!	
Account #							↓ RECRA	RECRA LabNet Use Only	→
MATRIX CODES: S - Soil SE - Sodiment SO - Solid	Lab 10	Client ID/Description	Chosen (C)	Matrix	Date Time Collected Collected	080000 080000		OLVO) OLVO)	
SL - Sludge W - Water	1014	511999		S ratoba	past	1			3
A - Air	1	10110	gg (+			36
DS - Drum Solids	27		20		911				
DL - Drum Liquids	20		94		1,50		1		
	1		3,		071/				
Wi - Wipe X - Other	20		000		1325				
r Cel	1		XX		1430			(3x)	volume)
	8		01		1620				
	7	FOREI			8915				
	010		7	+ -	1010	ナーナーナ		<u></u>	
Special Instructions:	lons:		DATE/R	EVISIONS:	1.00	1 1 1	7:4:2	RECRA Lat	RECRA LabNet Use Only
			77	10/4/11	1	ought 1	196 Jundand To Lance	Samples were:/	COC Tape was:
				2 691	04126433	3-991	262 Md 665	1) Shipped or Hand Delivered	1) Present on Outer Package Y or N
	٠			3.				**************************************	2) Unbroken on Outer
				4		-		2) Ambient o(Chilled)	Package (Y or N
									N O Y
				6 G				4) Labels Indicate	4) Unbroken on Sample Y or N
Relinquished		Received Date Time	Refinquished	Received	Date	e Time	Discrepancies Between	Properly Preserved Y or N	~ £ &
NBS	 	12/8/94 PP/8/51		ORIGINAL	-		Samples Labels and COC Record? Y of N	5) Received Within Holding Times	Cooler Cooler
			2	REWRITTEN			1 N2103477956	(Y) or N	Temp. 3.4 °C

9912L959

Custody Transfer Record/Lab Work Request Page λ of λ FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

		· ·				F	1	2	-		F	1010		-	_
Client 12	776			Heingerator *		7		2				5 5			7
Est. Final Prof. Sampling Date	() I. Samı	pling Date		#/Two Container		Llquid	_								7
Project #				2016		Solid / A	2 a	Ţ			<u>~</u>	la-1	-		
Project Contect/Bhone #	- t/Oho	# 500			ă	Llquid						ρ			
RECRA Prolect Manager		O		Volume	Ö	Solid 195	380	Ĭ			<u> </u>	38-H		-	
20		Del 0 TAT		Preservatives	890										
							B	ORGANIC				INORG			1
Date Rec'd		Date Due		ANALYSES REQUESTED	S CEI	AOV	BNA	Pest/	Herb			CN			
MATRIX			Matrix						→	RECRA	RA Lat	LabNet Use Only	→		
CODES: S - Soll SE - Sediment	를 <u></u> 으	Client ID/Description	Chosen	Matrix	Date Tir Collected Colle	Time	25gg	250	100			210			
SO - Solid		12207	MS MSD			20	Q)	Z 0	20		7/2	<i>וס</i> י			
W - Water	110	- bb8 HS		2118	14/4/99 10430		>	^			 	/ /			1
,	1,2				1 09/40	S S	>	>				/			1
	13	- 15		-4	1020	1	>	>				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			[
	14	Wisden-Printe blan		N	13 ph 1300	2					<u> </u>				
	1/2	S1899 12707 BAROL	telvologi	۲	*				7	7	3				T -
X - X	3/1	60	40 2	4	1				}	P	32				_
						-									7
															1
							-		-		-]
Special instructions:	lons:		DATE/	E/REVISIONS:		104						REC	RECRA LabNet Use Only	Ise Only	
· .				F	A DOR LUCKINGON	COCIO	TO TO					Samples were: 1) Shipped Hand Delivered _	ر ا ا ا ا ا ا	COC Tape was: 1) Present on Outer Package Y or N 2) Unbroken on Outer	
				2 4								Airbill #		Package Y or N 3) Present on Sample	
				5.								3) Received in Good Condition Y or N		Y or N	
·····				6.								4) Labels Indicate Properly Preserved	8	Sample Y or N	
Relinquished by		Received Date Time by	Relinquished by	B.	Received by	Date	Ē	Time	Discrepan Samples I	Discrepancies Between Samples Labels and	0	Y Or 5) Receiped () Minin		COC Record Present Upon Sample Rec't Y or N	
20m		Janson 12/8/49 0930							COC Record? Y NOTES:	ord? Y or	z	Holding Times	z	Cooler Temp.	

GG12L959

Custody Transfer Record/Lab Work Request Page Zot Zot Eleld Personnel: COMPLETE ONLY SHADED AREAS

4							INORG	CN	let Use Only	SIW	-W		(/	×	*	y	.		K	*		RECRA LabNet Use Only	Samples were: COC Tape was: 1) Shipped — or 1) Present on Outer	Hand Delivered Package Y or N	2) Ambient or Chilled	3) Received in Good Y or N Condition Y or N	cate	Y or N COC Record Present S) Received Within Y or N Holding Times Cooler Y or N Temp. 5	
								Hetal	RECRA LabNet Use Only	5/47.		ナー・メ	メー・メ	X	X	γ		*	X	<u>۲</u>	*		0	707				Discrepancies Between Samples Labels and COC Record? Y or N N NOTES:	
							ORGANIC	NOA				メメメ	メメメ	メメメ	XXX	* * *	とメメ	x X	と と と	х У Х	х × ×		350	126	•			emi-	
	Refrigerator #	#Type Container	Solid	Liquid	Solid	Preservatives		ANALYSES REQUESTED		Matrix Date Time Collected Collected		S 12/6/19 10 00	100/ 1, S	5 1110	will 11 5	21 11 /2	2 1 124	5 " 1430	5 11 1430	رد انطى اد انطى	2 11 1620	E/REVISIONS:	1. 6	3.	4	5.	9	Received	
	ایت		. I	- 3	•	٦,		7 F	ļ			1	ii	•		V	۱ ۲	~ Y	الم	* 1	~ 1	-	1				i	2	┥
				76226-					Matrix	Chosen (§)	MS MSD	//	20	03) d	2	6		X \%	29/ X	101	DATE/RE	VOAs			7	91	Relinquished	5
	45 DEC			FRANK SOWERS 716 226-		TAT		Date Due	Matrix			10	70	03	04	70	90	(01)	X (20) K	X /60 \		DATE/RE	TCLP- Phase do TCLP analysis for VOAs	only if there is chough	•) Please Fax regults for 01402	Lithin 5 dows, Fax# 716,226,8696	Relinquished	5

RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page 2_of 2_ FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

	_					A CONTRACT OF THE STATE			->			Y								et Use Only	COC Tape was: 1) Present on Outer Package Y or N	2) Unbroken on Outer Package Y or N	3) Present on Sample Y or N	Sample Y or N	COC Record Present Upon Sample Rec't Y or N	Cooler Temp
	-				With the second of the Second Second second		INORG		RECRA LabNet Use Only	76		×	×	×	, X	X				RECRA LabNet Use Only	Samples were: 1) Shipped or Hand Delivered	Airbill #	3) Received in Good Condition Y or N	4) Labels Indicate Properly Preserved	Y or N 5) Received Within Holding Times	Yorn
 								фен	↓ RECRA Lab	70	4											2			Discrepancies Between Samples Labels and COC Record? YounN	,
-			To the second se				OBGANIC	\		2-9 2-9	ь	у Х У	メメメ	メイメ	×	XXX									Date Time S.	Ž
	Refrigerator #	Liquid	#/ I ype Container Solid	Liquid	Volume	Descriptions		ANALYSES REQUESTED		Matrix Collected Collected		S 12/1/18 0911	5 12/1/69 1010	5 Rh199 093.	5 12h BO 540	2 124/89 1020				REVISIONS:	+ ci	3.	5.	6.	Received by	,
	Ref			5357	lov — Vol	200		AN	Matrix	C QC Chosen	MS MSD			13 11 6	5 4	15 13	4 10 N			DATE/REVI					Relinquished by	
		:	R 706	Lynn 7/6 22/2	The same		TAT	Date Due		Cllent ID/Description																1741 86/1
	145DEC	Est Final Drol Samuling Data	Taring Dang	Trank.	Project Contact/Prione # / Inter	RECRA Project Manager	Del	B -		Lab 10						ate				tructions:					shed Received by	2
	Cilent	Eat Final	Droloot #	* 129/01-12	Project C	RECRA PI	ဗ	Date Rec'd	MATERIA	S - Soll	SO - Solid	W - Water	A				X - Other		 	 Special Instructions:					Relinquished by	19

METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

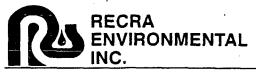
- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- B = Indicates that the parameter was between the Instrument Detection Limit (IDL) and the Contract Required Detection Limit (CRDL)

Q QUALIFIERS

- E = The reported value is estimated because of the presence of interference.
- M = Duplicate injection precision not met.
- N = Spiked sample recovery not within control limits.
- S = The reported value was determined by the Method of Standard Additions (MSA).
- W = Post Digestion spike for Furnace AA analysis is out of control limits (85 -115 %), while sample absorbance is less than 50% of spike absorbance.
- * = Duplicate analysis not within control limits.
- += Correlation coefficient for the MSA is less than 0.995.

ABBREVIATIONS

PB = Method or Preparation Blank.


S = Matrix Spike.

T = Matrix Spike Duplicate.

R or D = Sample Replicate

ANALYTICAL METAL METHODS

- 1. Not included in the method element list.
- 2. Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, 0.1 grams of sample is taken to a final volume of 50 mL (including all reagents).
- 3. Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, three 0.1 gram of sample is taken to a final volume of 50 mL (including all reagents).
- 4. Flame AA.
- Graphite Furnace AA.
 RFW 21-21L-033/O-01/97

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC

W.O.#: 01664-600-001-9999-00

RFW#: 9912L959

Date Received: 12-08-99

ELAP#: 10752

CLP/ILM04.0 METALS

1. This narrative covers the analyses of 11 soil samples.

- 2. The samples were prepared and analyzed in accordance with CLP/ILM04.0 protocol.
- 3. ICVs, CCVs, and LCSs stock standards were purchased from Inorganic Ventures and High Purity.
- 4. All analyses were performed within the required holding times.
- 5. The cooler temperature has been recorded on the Chain of Custody.
- 6. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within control limits.
- 7. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits.
- 8. All preparation/method blanks were below reporting limits. Refer to form 3.
- 9. All ICP Interference Check Samples (ICSA and ICSAB) were within control limits. Refer to form 4.
- 10. All laboratory control samples (LCS) were within the 80-120% control limits. Refer to form 7.
- 11. All serial dilution percent differences were within CLP control limits. Refer to form 9.
- 12. The matrix spike (MS) recoveries for 2 analytes were outside the 75-125% control limits (exception allowed when sample concentration exceeds the spike added concentration by a factor of 4 or more). Refer to form 5A. For analytes where the MS is out of control, a post-digestion MS is performed (exception allowed for Silver). MS analyses are not required for Calcium, Magnesium, Sodium and Potassium in waters and soils. Also, not required for Aluminum and Iron in soils.
- 13. All duplicate analyses were within the method criteria. Refer to form 6.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 3^{49} pages.

- 14. All sample IDs were changed to accommodate the EPA naming convention which allows a maximum of 6 characters on all CLP Forms. Refer to the comments section of form 1 for the original ID.
 - 15. Recoveries on the Laboratory Summary Report and CLP forms will vary depending on the number of significant figures used in the recovery calculation.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

gmb/m12-959

1-24-00

Date

METALS METHOD GLOSSARY

	ds are used as referen 2L959	ce for the digestion a	and analysis of	samples con	tained within this
•	_1310 _1311 _13	12 _Other:			
CLP MetalsDiges	tion and Analysis M	lethods: _ILM03.0	□		
Metals Digestion Met	thods:3005A30 Other:	10A30153020	OA3050B	305120	00.7SS17
	M	etals Analysis Met	hods	·	
				EPA	
	SW846	EPA	STD MTD	OSWR	USATHAMA
Aluminum	6010B	200.7			99
Antimony	6010B 7041 ⁵	200.7 204.2			99
Arsenic	6010B 7060A ⁵	200.7 206.2	3113B		99
Barium	6010B	200.7			99
Beryllium	6010B	200. 7			99
Bismuth	6010B ¹	200.7 ¹		1620	<u>_</u> 99
Boron	6010B	200.7			99
Cadmium	_6010B _7131A ⁵	200.7213.2			99
Calcium	6010B	200.7			99
Chromium	_6010B _7191 ⁵	200.7218.2	• •		_SS17
Cobalt	6010B	200.7			99
Copper	_6010B _7211 ⁵	200.7220.2			_99
Iron	6010B	200.7			99
Lead	_6010B _7421 ⁵	200.7239.2	3113B		99
Lithium	_6010B _7430 ⁴	200.7		1620	99
Magnesium	6010B	200.7			99
Manganese	6010B	200.7			_99
Mercury	_7470A ³ _7471A ³	_245.1 2_245.5 2	•		99
Molybdenum	6010B	200.7			99
Nickel	6010B	200.7			99
Potassium	_6010B _7610 ⁴	200.7258.1 4			99
Rare Earths	_6010B ¹	200.7 1		1620	99
Selenium	_6010B _7740 ⁵	200.7270.2	3113B		99
Silicon	6010B ¹	200.7		1620	99
Silica	_6010B	200.7		1620	99
Silver	_6010B _7761 5	200.7272.2			99
Sodium	_6010B _7770 ⁴	200.7273.1 4	•		_ 9 9
Strontium	_6010B	200.7			99
Thallium	_6010B _7841 ⁵	200.7279.22	200.9		99
Tin	_6010B	200.7			_99
Titanium	6010B	200.7	•		99
Uranium	_6010B 1	200.7 1		1620	99
Vanadium	6010B	200.7			99
Zinc	6010B	200.7			99
Zirconium	6010B ¹	200.7 1		1620	99
Other:	Meth	od:			034
I W/ 02204 1100					せみま

WET CHEMISTRY METHODS GLOSSARY FOR ANALYSIS OF SOIL/SOLID SAMPLES

	ALC: IVI	34440	OTHER
%Ash	D2216-80		· · · ·
% oisture	 D2216-80		ILMO4.0 (e)
%Solids			ILMO4.0 (e)
%Yolatile Solids	D2216-80		
AS M Extraction in Water	D3987-81/85		
BTU	D240-87	•	•
CF	. —	9081	c
Corrosivity by coupon by pH		1110 (mod) 9045	-
Cylide, Total		9010	ILMO4.0 (e)
Cyanide, Reactive	·	Sec 7.3	
Demaity			Ь
Harlies, Extractable Organic			EPA 600/4/84-008 (mod)
Halides, Total		•	EPA 600/4/84-008 (mod)
EF Coxicity		1310A	
Flash Point		1010	
Ignability		1010	
Carbon, Total Organic (by LOI)			c
Oil and Grease		9071A	_
Caroon, Total Organic		9060	Lloyd Kahn (mod)
Oxugen Bomb Prep for Anions	D240-87 (mod)	5050	_
Perpleum Hydrocarbons, Total R	Recoverable	9071	EPA 418.1 (mod)
pH, Soil		9045B	•
Su de, Reactive		_ Sec 7.3	
Specific Gravity	_ D1429-76C		
Sugar, Total		9056	
TCEP		_ 1311	
TCLV		_ 1311	
Sympetic Precipitation Leach	•	_ 1312	
Chlorine, Total	•	9056	
Palet Filter	•	9095	
Other:	Method: _		· -
.			-

036

RECRA

METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- = Indicates that the original sample result is greater than 4x the spike amount adder

ABBREVIATIONS

MB = Method or Preparation Blank.

MS = Matrix Spike.

MSD = Matrix Spike Duplicate.

REP = Sample Replicate

LC = Laboratory Control Sample.

NC = Not calculated.

A suffix of -R. -S, or -T following these codes indicate a replicate, spike or sample duplicate analysis respectively.

ANALYTICAL WET CHEMISTRY METHODS

- 1. ASTM Standard Methods.
- USEPA Methods for Chemical Analysis of Water and Wastes (USEPA 600/4-79 020).
- 3. Test Methods for Evaluating Solid Waste (USEPA SW-846).
- a. Standard Methods for the Examination of Water and Waste, 16 ed., (1989).
- b. Standard Methods for the Examination of Water and Waste, 17 ed., (1983)
- c. Method of Soil Analysis, Part 1, Physical and Mineralogical Methods, 2nd. Ed. (1986)
- d. Method of Soil Analysis. Part 2. Chemical and Microbiological Properties, Am. Soc. Agron.. Madison. WI (1965)
- e. USEPA Contract Laboratory Program. Statement of Work for Inorganic Analysis
- f. Code of Federal Regulations.

RFW 21-21L-034/D-06/96

Inorganic Analysis Data Package

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.
-----	--------	-----

b Name: R	ECRA_LABNET		Contract: 0	166	57	_	
b Code: R	ECRA_ C	ase No.: SH	B99_ SAS No.	: _		SDG	No.: 12206
trix (soi	l/water): SOI	L_	• · • · · · · · · · · · · · · · · · · ·	Lā	ıb Samı	ple ID	: 9912L959-
vel (low/	med): LOW			Da	te Red	ceived	: 12/08/99
Solids:	_65	.9					
	Concentratio	n Units (ug	/L or mg/kg dry	y v	veight)): MG/	KG
	CAS No.	Analyte	Concentration	С	Q	M	
	7420 00 5	- -	20100	_		-	
	7429-90-5 7440-36-0		20100	Ū	N	P P	
	7440-38-2		16.1			- -	
	7440-38-2	. —	828	-		P P	
	7440-41-7	:	2.2	-		P	
	7440-43-9		2.4	-		- P -	
	7440-70-2		85100	-		P	
	7440-47-3	Chromium	47.9	-	N	P_ P_	
	7440-48-4		4.1	B		P_	
	7440-50-8	Copper	45.8	$ _{-} $		P_	
	7439-89-6		20200			P_	
	7439-92-1		467			P_	
	7439-95-4		35800	_		P_	
	7439-96-5		3480	1-1		P_	
	7439-97-6		1.0	_		ĀŪ	
	7440-02-0		35.6	-		P_	
	7440-09-7		2540	-		-15-1	
	7782-49-2 7440-22-4		2.6	ᇹ		P_ P_	
	7440-22-4		714			- P-	
	7440-23-0	· · · · · · · · · · · · · · · · · · ·	1.1			- -	
	7440-62-2		23.2	١١		P_ P	
	7440-66-6	1	663	-		- p -	
	5955-70-0	Cvanide	0.76	ਹ		P C	
				_			-
lor Befor	e:	Clari	ty Before:		-	Text	ure:
lor After	•	Clari	ty After:		-	Arti	facts:
mments: SH899-12	206-B70603						

INORGANIC ANALYSES DATA SHEET

ab Name: RECR	A LABNET		Contract: 03	1667	B70604	
	- -		399_ SAS No.			06_
trix (soil/w					le ID: 9912L95	
vel (low/med): LOW_	_		Date Rece	eived: 12/08/9	9
Solids:	_66.9	9				
Co	ncentration	Units (ug	/L or mg/kg dry	y weight):	: MG/KG	
	CAS No.	Analyte	Concentration	C Q	M	
	7429-90-5	Aluminum	7560	-	P	
		Antimony_			P	
		Arsenic	4.7		P	
	7440-39-3	Barium -	86.1		P_	
	7440-41-7	Beryllium	0.42		P_	
	7440-43-9	Cadmium	0.47		P_	
	1	Calcium_	15400		P_	
	7440-47-3	Chromium_	11.1	N	P_	
	7440-48-4	Cobalt	5.5	B	P_	
	7440-50-8	Copper	21.8	_	P_ P	
	7439-89-6	Iron	16700		<u>-</u> -	
	7439-92-1	Lead	47.2		P_ P_	
•	7439-95-4	Magnesium			P-	
	7439-96-5	Manganese	346		AV	
	7439-97-6	Mercury	14.0		D	
	7440-02-0	Nickel_ Potassium	I ————	 	P P	
	7440-09-7 7782-49-2	Selenium	1.3		P_	
	7440-22-4	Silver	0.22		P	
	7440-23-5	Sodium	88.5		P	
	7440-28-0	Thallium	1.2		P	
•	7440-62-2	Vanadium	15.5		P_ P_	
	7440-66-6	l —	196		P_	
	5955-70-0	Cyanide_	1.1		c_	
		.			<u> </u>	
lor Before:		Clari	ty Before:		Texture:	
lor After:		Clari	ty After:		Artifacts:	
mments:						
SH899-12206	5-B70604					—
						_
						—
		F	ORM I - IN		ILM	104.

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Matrix (soil/water): SOILevel (low/med): LOW		Lab Sample ID: 9912L959-00
Level (low/med): Low Residues Solids:88 Concentration		-
CAS No. 7429-90-9 7440-36-9 7440-39-9 7440-41-9 7440-43-9 7440-47-9 7440-48-9 7439-89-9 7439-92-	_ _	
CAS No. 7429-90-9 7440-36-9 7440-38-9 7440-41-9 7440-43-9 7440-47-9 7440-48-9 7440-50-9 7439-89-9		Date Received: 12/08/99
CAS No. 7429-90-1 7440-36-1 7440-38-1 7440-39-1 7440-41-1 7440-43-1 7440-47-1 7440-48-1 7440-50-1 7439-89-1	8.9	
7429-90-1 7440-36-1 7440-38-1 7440-39-1 7440-41-1 7440-43-1 7440-70-1 7440-47-1 7440-48-1 7440-50-1 7439-89-1	on Units (ug/L or mg/kg dry	weight): MG/KG
7429-90-1 7440-36-1 7440-38-1 7440-39-1 7440-41-1 7440-43-1 7440-70-1 7440-47-1 7440-48-1 7440-50-1 7439-89-1		 _
7440-36-6 7440-38-7 7440-39-7 7440-41-7 7440-43-9 7440-70-7 7440-48-6 7440-50-7 7439-89-7	Analyte Concentration	C Q M
7440-36-6 7440-38-7 7440-39-7 7440-41-7 7440-43-9 7440-70-7 7440-48-6 7440-50-7 7439-89-7	5 Aluminum 12000	- P
7440-38- 7440-39- 7440-41- 7440-43- 7440-70- 7440-47- 7440-48- 7440-50- 7439-89- 7439-92-	_	J N P
7440-41- 7440-43- 7440-70- 7440-47- 7440-48- 7440-50- 7439-89- 7439-92-	2 Arsenic 5.3	— p
7440-43- 7440-70- 7440-47- 7440-48- 7440-50- 7439-89- 7439-92-		-(P
7440-70- 7440-47- 7440-48- 7440-50- 7439-89- 7439-92-	1 - 1 - 1 - 1	B P
7440-47- 7440-48- 7440-50- 7439-89- 7439-92-		B P
7440-48-4 7440-50-4 7439-89-4 7439-92-4		P P
7440-50- 7439-89- 7439-92-	_	N P
7439-89- 7439-92-		P_
7439-92-		P P
•		_ P
7439-95-		P P
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	_ <u>P</u> _
7439-96-		P
7439-97-		$\overline{\mathbf{A}}$
7440-02-		P
7440-09-		P
7782-49-		
7440-22-		
7440-23-		
7440-28-		/ <mark>F</mark> -
7440-62-		P P
7440-66-		
5955-70-	U Cyanide0.56	<u> </u>
Color Before:	Clarity Before:	Texture:
Color After:	Clarity After:	Artifacts:
Comments:		

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	_		Contract: 0		ļ	70606	
eer on the second of the second of			899_ SAS No.:			-	
Matrix (soil/w	rater): SOIL			Lab Samp	le ID:	9912L959	-00
Level (low/med	l): LOW_			Date Rec	eived:	12/08/99	
% Solids:	_71.	9					
Co	ncentration	Units (ug	/L or mg/kg dry	y weight)	: MG/K	3	
· }	CAS No.	Analyte	Concentration	c Q	M		
	7429-90-5	Aluminum	22200	-	P		
	7440-36-0		0.58	$ \overline{U} $	p -		
	7440-38-2	Arsenic	37.7		P P		
	7440-39-3	Barium	41.6		P_		
	7440-41-7		0.81	В	P		
	7440-43-9		1.1		P_		
	7440-70-2	Calcium_	39400		P_		
	7440-47-3		49.5		P		
	7440-48-4		2.7	B	P_ P_		
	7440-50-8	Copper	8.1		P_		
	7439-89-6	Iron	14200		P_		
	7439-92-1		25.9		P		
	7439-95-4	Magnesium		-	P P		
	7439-96-5	Manganese		 			
•	7439-97-6	Mercury	0.03		A∇		
Section 1		Nickel	16.0		P		
t .	7440-09-7 7782-49-2	Potassium	3400	TT	P P		
	(3)	Selenium_ Silver	0.22	ชี	P_		
	7440-22-4 7440-23-5	Sodium Sodium	824	В	5-		
	7440-23-3	Thallium	1.2		P		
	7440-62-2	Vanadium	52.6		D-		
	7440-66-6	Zinc	54.7	-	P P		
	5955-70-0	Cyanide	0.70	ਗ਼	c_	•	
·							
Color Before:		Clari	ty Before:		Textu	re:	
Color After:	· ·	Clari	ty After:	· · · · · · · · · · · · · · · · · · ·	Artifa	acts:	
Comments: SH899-12206	5-B70606						
***************************************				·			

FORM I - IN

I INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

ab Name: RECR			Contract: 0	В	B70607		
			899_ SAS No.:			SDG 1	No.: 12206_
atrix (soil/w	ater): SOIL	<u>.</u>	· . —	Lā	ab Samp	le ID:	9912L959-00
evel (low/med): LOW_	_		Da	ate Rec	eived:	12/08/99
Solids:	.66.	9					
			/L or mg/kg dry	y v	veight)	: MG/K	3
	CAS No.	Analyte	Concentration	С	Q	M	
	7429-90-5	Aluminum	21400	-		$ \overline{P} $	
	7440-36-0	Antimony	0.58	Ū	N	P	
	7440-38-2	Arsenic	113			P_	
	7440-39-3	Barium	28.5			P P P P P P P P P P	
		Beryllium				P_	
		Cadmium	1.1	В		P_	
	7440-70-2	Calcium_	14300	_		<u>P</u> _	
	7440-47-3	Chromium_	59.3	=	N	P_	
	7440-48-4	Cobalt	10.0			P_ P_	
*	7440-50-8	Copper	58.5	_		15-1	
	7439-89-6	Iron	65500	-		P_ P_	
	7439-92-1	Lead	44.0	_		P-	
	7439-95-4 7439-96-5	Magnesium Manganese				P_	
	7439-96-5	Mercury	0.05	ㅠ		ĀŪ	*
	7440-02-0	Nickel	23.7				
	7440-09-7	Potassium				P_ P	
	7782-49-2	Selenium	2.7			P_	
	7440-22-4	Silver	0.22			P	
	7440-23-5	Sodium	554			P-	
	7440-28-0	Thallium	1.2			P	
•	7440-62-2	Vanadium	60.3			P	
	7440-66-6	Zinc	115			P P P P P P P P P P P P P P P P P P P	
	5955-70-0	Cyanide	0.75	ਹ		C_	•
olor Before:		Clari	ty Before:	١	l	Textu:	re:
color After:		Clari	ty After:			Artif	acts:
Comments:					_		· · · · · · · · · · · · · · · · · · ·
SH899-12206	5-B70607					· · · · · · · · · · · · · · · · · · ·	
		·					
			······································				

FORM I - IN

	INORGANIC	1 ANALYSES DATA S	SHEET	EPA SAMPLE NO.
Lab Name: RECRA_LABNET	<u> </u>	Contract: 0	1667	B70610
ab Code: RECRA_	Case No.: SH	899 SAS No.	•	SDG No.: 12206
Matrix (soil/water): S	• •	· · · · · · · · · · · · · · · · · · ·		e ID: 9912L959-00
evel (low/med): I	LOW		Date Rece	eived: 12/08/99
% Solids:	_67.1			
Concentrat	tion Units (ug	/L or mg/kg dry	y weight):	MG/KG
CAS No.	. Analyte	Concentration	C Q	M
7429-90 7440-36	Aluminum_ Antimony	4400	$\left \frac{-}{B} \right \frac{-}{N}$	P_ P_
7440-38	3-2 Arsenic	12.2		p
7440-39		75.0		P_
7440-41			B	P
7440-43		0.34	^B ———	P_
7440-70		31400	-	P_
7440-47		9.9	BN	P_ P_
7440-48		5.9	B	<u>F</u> _
7440-50	·	132	-	P_
7439-89		11400	-	P_
7439-92		473 17900	-	P_ P_
7439-95	, ,	1 ————	-	P-
7439 - 96		1.5	-	AV
7439-97		14.7	-	P
7440-02			<u> </u>	P_
7782-49		3.5		P
	2-4 Silver	0.22	₩	P_
	3-5 Sodium	331	B	P-
7440-28	3-0 Thallium	1.2		P_
	2-2 Vanadium			p-
7440-66		128	-	P-
5955-70		0.75	<u></u>	P_ C_
, 1			_	
Color Before:	Clari	ty Before:	·	Texture:
Color After:	Clari	ty After:		Artifacts:
Comments: SH899-12206-B70607_			· · · · · · · · · · · · · · · · · · ·	

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA	~	3 3/17	77	NTO
P.PA	-	$\Delta M P$	1 . H:	N()

Lab Name: RECR	A_LABNET		Contract: 0	166	67		B70611
Lab Code: RECR	'A_ Ca	se No.: SH	399_ SAS No.	: _		SDG	No.: 12206_
Matrix (soil/w	ater): SOIL	- · · · · · · · · · · · · · · · · · · ·		La	ab Samp	le ID	: 9912L959-00
Level (low/med): LOW_			Da	ate Rec	eived	: 12/08/99
•	86.	-					
	_						
Co	ncentration	Units (ug,	/L or mg/kg dry	y v	veight)	: MG/	KG
			<u> </u>			T 1	
	CAS No.	Analyte	Concentration	C	Q	M	
				_		. .	
	7429-90-5	Aluminum_	6770	Ū		P_P	
		Antimony_ Arsenic	0.46	U	N	P_	
	•	Barium	4.6 51.0	-		P-	
	7440-33-3	Beryllium	0.34	\overline{B}		P_	
		Cadmium	0.34	В		P-	
	7440-70-2	Calcium	46500	ا ا		P-	
	7440-47-3	Chromium	10.1	-	N	P_	
	1	Cobalt	4.7	\overline{B}		P	
	7440-50-8	Copper	17.9	-		P	,
		Iron	14900	-		P_ P	
	7439-92-1	Lead	152	-		P	
	7439-95-4	Magnesium	27200			P	• .
	7439-96-5	Manganese	440			P	
	7439-97-6	Mercury_	0.12			ΑV	
	7440-02-0	Nickel	10.1			P_	
	7440-09-7	Potassium	1000	B		P_	
•	7782-49-2	Selenium_	0.90	U		P_	
		Silver	0.18	Ŭ		P_ P	
	7440-23-5	Sodium	118	В		P_	
	7440-28-0	Thallium_	0.94	ַ		P_ P	
	7440-62-2	Vanadium_	16.6	_		P_	
		Zinc	103			P_ C_	
	5955-70-0	Cyanide	0.58	U		C-	•
	1			I I		· · · ·	
Color Before:		Clari	ty Before:		_	Text	ure:
Color After:		Clari	ty After:		_	Arti	facts:
Comments: SH899-12207	/-B70611						

FORM I - IN

INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	MO
L FA		INU -

Lab Name: REC	RA_LABNET		Contract: 0	1667	B70612			
ab Code: REC	·	÷ , '	899_ SAS No.					
	•	-			le ID: 9912			
evel (low/me	d): LOW_			Date Rec	eived: 12/0	8/99		
% Solids:	_25.	4						
C	concentration	Units (ug,	/L or mg/kg dry	: MG/KG				
1	CAS No.	Analyte	Concentration	c Q	M			
	<u> </u>	l		-				
•	7429-90-5 7440-36-0	Aluminum_ Antimony	11900	$\left \frac{1}{U} \right = N$	P p			
	7440-38-2	Arsenic	8.7		P-			
	7440-39-3	Barium	138	B	P			
	7440-41-7	Beryllium	0.58		P_ P_			
	7440-43-9	Cadmium	1.8		P_			
	7440-70-2	Calcium_	11900		P_			
	7440-47-3	Chromium_	24.0	_ N	P_			
	7440-48-4	Cobalt	8.4	B	P_			
	7440-50-8	Copper	75.8		P_			
	7439-89-6	Iron	22800		P_			
	7439-92-1	Lead	164		P_			
	7439-95-4	Magnesium	4510		P_			
	7439-96-5	Manganese	352		P AV	•		
	7439-97-6	Mercury	$\frac{2.1}{24.2}$	B				
	7440-02-0	Nickel_ Potassium	1790		P P			
	7440-09-7 7782-49-2	Selenium	3.1		P_			
	7440-22-4	Silver	1.2		5 -			
	7440-23-5	Sodium	458		P_ P_			
	7440-28-0	Thallium	3.1		5-			
	7440-62-2	Vanadium	24.8		P_ P_			
	7440-66-6	Zinc	309		P			
	5955-70-0	Cyanide	2.0	<u> </u>	P_ C_			
Color Before:	\	Clarit	ty Before:		Texture:			
Color After:		Clari	ty After:		Artifacts:			
Comments: SH899-1220	7-B70612		· · · · · · · · · · · · · · · · · · ·					
				· · · · · · · · · · · · · · · · · · ·				

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.

			MADIOLO DAIA	B70613		
Lab Name: RECRA	A_LABNET		Contract: 03	166	7	
Lab Code: RECRA	A_ Cas	se No.: SH	399_ SAS No.:	:		SDG No.: 12206_
Matrix (soil/wa	ater): SOIL	-		Lai	b Samp	le ID: 9912L959-011
Level (low/med)): LOW_	-		Dat	te Rec	eived: 12/08/99
% Solids:	_71.8	3	•			
Cor	ncentration	Units (ug/	/L or mg/kg dry	y we	eight)	: MG/KG
	CAS No.	Analyte	Concentration	С	Q	м
			7000	_ -		3-
	7429-90-5 7440-36-0	Aluminum_ Antimony	7000	ㅠ -	N	P P
	7440-38-2	Arsenic	60.7	5 -		P
	7440-39-3	Barium	366			P
	7440-41-7	Beryllium				P
	7440-43-9	Cadmium	2.3	-	······································	P
	7440-70-2	Calcium	167000			P
	7440-47-3	Chromium_	14.1	_ -	N_	P
	7440-48-4	Cobalt	4.9	$ \overline{\mathtt{B}} $		P_
	7440-50-8	Copper	44.1	_ -		P_
	7439-89-6	Iron	17400	_ -		P_
	7439-92-1	Lead	119	_ -		P_
	7439-95-4	Magnesium		- -		P_
	7439-96-5	Manganese		- -		P
	7439-97-6		0.67	- -		$A\overline{V}$
	7440-02-0	Nickel	23.6	-		P P
	7440-09-7	Potassium		- -		P
	7782-49-2 7440-22-4	Selenium_ Silver	7.4	ᇹ -		P-
	7440-23-5	Sodium	497			P
	7440-23-3	Thallium	0.96			P_
	7440-62-2		28.6			P_
	7440-62-2	Zinc	183			P-
	5955-70-0	Cyanide_	0.70	ַ ד		[c_
Color Before:		Clari	ty Before:	_		Texture:
Color After:		Clari	ty After:			Artifacts:
Comments: SH899-12207	-B70613					

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Code: RECR	zA Ca	se No.: SH	899 SAS No.	:	SDG No.: 12206
	rater): SOIL				ple ID: 9912L959-0
•	·	-			
rel (low/med	l): LOW_	_		Date Re	ceived: 12/08/99
olids:	_21.	7			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight): MG/KG
	CAS No.	Analyte	Concentration	C Q	м
	7429-90-5	Aliminim	3070	 - 	-
	7440-36-0	Antimony_	2970		P P
	7440-38-2	Arsenic	4.3		- P
	7440-38-2	Barium	358	"	- P-
	7440-41-7	Beryllium		171	- P-
	7440-43-9	Cadmium	3.5		- p-
	7440-70-2	Calcium	22600		- P-
	7440-47-3	Chromium	10.4		- P-
	7440-48-4	Cobalt	3.1	R ''	- P-
	7440-50-8	Copper	54.2		- P_
	7439-89-6	Iron	21200		- p -
	7439-92-1	Lead	972	-	P P P
	7439-95-4	Magnesium		B	- P -
	7439-96-5	Manganese		-	- P-
	7439-97-6	Mercury	0.50	-	$- \bar{\mathbf{A}}\overline{\mathbf{V}} $
	7440-02-0	Nickel	11.4		
	7440-09-7	Potassium	1300		P P
	7782-49-2	Selenium	4.1		- p-
	7440-22-4	Silver	1.2		- P-
	7440-23-5	Sodium	186		_ P_
	7440-28-0	Thallium	3.8		- 5 -
	7440-62-2	Vanadium	12.9		P P P
	7440-66-6	Zinc	739		- D -
		Cyanide	2.3		_
	1 3333 70 0				- -
or Before:		Clari	ty Before:		Texture:
or After:		Clari	ty After:		Artifacts:
ments:					
	7-B70614				•
20033-1770/	-p/U014				

FORM I - IN

ILMO4.0

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

ab Name:	RECRA_LABNET		Contract: 01	L66	57	I	37061	5
ab Code:	RECRA_ Ca	se No.: SH	399_ SAS No.:	: _		SDG	No.:	12206_
atrix (so	il/water): SOIL	 -	- · · -	Lá	ab Samp	le ID:	991	
evel (low	/med): LOW			Da	ate Rec	eived:	12/0	08/99
Solids:	63.	1						
•	_	•	/L or mg/kg dry	, r	veight)	: MG/I	KG	
	1	T				T1		
	CAS No.	Analyte	Concentration	С	Q	M		
	7429-90-5	Aluminum	4400	-		P		
	7440-36-0	Antimony_	3.7	B	N	P P P		
	7440-38-2	Arsenic	13.5	_		P_		
	7440-39-3	Barium	224	_		P_		
	7440-41-7	Beryllium	0.39	B		P_ P_		
	7440-43-9	Cadmium_	3.4	_		P_		
	7440-70-2	Calcium	19600			P_		
	7440-47-3	Chromium_	13.1	=	N	P_ P_		
•	7440-48-4	Cobalt	5.9	B		P-		
	7440-50-8	Copper	73.1	 _		P-		4
	7439-89-6	Iron	18700	-		5-		
	7439-92-1	Lead	261 4870	_		P_ P		
	7439-95-4 7439-96-5	Magnesium				P-		
	1	Manganese Mercury	1.4	-		AV		
	7439-97-6 7440-02-0	Nickel	17.3	-		P		
	7440-02-0	Potassium		B		p-		
	7782-49-2	Selenium	2.9	٦		P		
	7440-22-4	Silver	0.66	Ħ		p-		
	7440-23-5	Sodium	180			P-		
	7440-28-0	Thallium	1.2			P_		
	7440-62-2	Vanadium	17.8			P		
	7440-66-6		772	-		P-		
	5955-70-0	Cyanide	0.79	τī		P P C		
				_			•	
olor Befo	ore:	Clari	ty Before:		_	Text	ıre:	
olor Afte	er:	Clari	ty After:		_	Arti	facts	•
omments: SH899-1	12207-B70615				·			
								
								

3 BLANKS

ab	Name:	ne: RECRA_LABNET		Contract:	01667						
ab	Code:	RECRA_	Case No.: SH899_	SAS No.:		SDG	No.:	12206_	_		
rep	paratio	n Blank	Matrix (soil/water): SOI	IL_							
rep	aratio	n Blank	Concentration Units (ug/	L or mg/kg): MG/KG						

													_
Analyte	Initial Calib. Blank (ug/L)	c	Cont:		uing Calib lank (ug/L) 2		tion 3	С		Prepa- ration Blank	С	м	
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	10.1 2.1 2.7 0.2 0.1 0.4 8.6 0.7 0.7 0.5 13.6 2.1 6.3 0.2 0.1 1.0 17.8 -4.6 0.8 4.8 4.3 0.6 0.5 10.0	ממממממממממממממממממממ	10.1 2.1 -2.9 0.2 0.1 0.4 8.6 0.7 0.5 13.6 2.1 6.3 0.2 0.1 1.0 -20.5 4.1 0.8 4.8 4.8 4.3 0.6 0.5 10.0	and and and and and and and and	-11.0 -2.1 -3.1 0.2 0.1 0.4 8.6 0.7 0.5 13.6 2.1 6.3 0.2 0.1 1.0 17.8 4.1 0.8 4.8 4.3 0.6 0.5 10.0	ממטמטמטטטמטטטטטטטטטטטטטט	-34.7 -2.1 2.7 0.2 0.1 0.4 8.6 0.7 0.7 0.5 13.6 2.1 6.3 0.3 0.1 1.0 17.8 -4.8 0.8 4.8 4.3 0.6 0.5 10.0	ממממממממממממממ		2.020 0.420 0.540 -0.047 0.020 0.080 8.674 0.140 0.140 0.140 0.120 0.200 3.560 0.820 0.160 2.408 0.860 0.120 0.104 0.500		P P P P P P P P P P P P P P P P P P P	
l		 		_	l	<u> </u>		1_1	l			1	

FORM III - IN

3 BLANKS

Lab Name:	RECRA_LABNET_		Contract: 01667	
Lab Code:		Case No.: SH899_		SDG No.: 12206_
Preparation	on Blank Matri	x (soil/water):	<u> </u>	
Preparation	on Blank Conce	ntration Units (ug/	'L or mg/kg):	

Analyte	Initial Calib. Blank (ug/L)	С	Cont 1	in B C	uing Calibra lank (ug/L) 2 C	ion 3	С	Prepa- ration Blank C	м
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide			-52.7 2.1 2.7 0.2 -0.2 0.4 8.6 0.7 0.5 13.6 2.1 6.3 0.3 0.1 1.0 17.8 4.1 0.8 4.1 0.8 4.8 4.3 0.6 0.5 10.0	BUUUBUUUUUUUUBUUUUUUUUUUUUU					P

FORM III - IN

3 BLANKS

Lab Name:	RECRA_LABNET_		Contract:	****	
Lab Code:	RECRA_	Case No.: SH899_	SAS No.: _		 12206_
Preparation	on Blank Matri	x (soil/water): _	· · · · · · · · · · · · · · · · · · ·		
Preparatio	on Blank Conce	entration Units (u	g/L or mg/kg)		

<u> </u>									
Analyte	Initial Calib. Blank (ug/L) C		inuing C Blank (C 2	ug/L)	Lon 3	С	Prepa- ration Blank	С	M
Aluminum_Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_Nickel_Potassium Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Cyanide_		22.5		8.3 B		B			NR
	_	_	. _	_ _		_11_			1

FORM III - IN

3 BLANKS

Lab Name: RECRA_LABN	ET	Contract: 01667	
Lab Code: RECRA_	Case No.: SH899_	SAS No.:	SDG No.: 12206_
Preparation Blank Ma	trix (soil/water):		
Preparation Blank Co	ncentration Units (ug/	L or mg/kg):	

Aluminum	Analyte	Initial Calib. Blank (ug/L)	C	Conti	uing Calibr lank (ug/L) 2	cion 3	С	Prepa- ration Blank	С	м
Thallium Vanadium Zinc NR NR NR NR	Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_ManganeseMercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc			-26.1	 	 				NR NR NR NR NR NR NR NR

FORM III - IN

3 BLANKS

ab	Name:	RECRA_L	ABNET	Contra	act:	01667	_			
Lab	Code:	RECRA_	Case No.: SH899_	SAS No	o.: _		SDG	No.:	12206_	•
re	paratio	n Blank	<pre>Matrix (soil/water):</pre>							
Pre	paratio	n Blank	Concentration Units (ug/	L or mo	g/kg)	:				

											— .
Analyte	Initial Calib. Blank (ug/L)	С	Cont:		uing Calib lank (ug/L) 2		cion	3	С	Prepa- ration Blank C M	
Aluminum_Antimony_Arsenic_Barium_Beryllium Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium Manganese Mercury_Nickel_Potassium Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Cyanide										NR NR NR NR NR NR NR NR	
		_		_		_					

FORM III - IN

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

					B70607S
Lab	Name:	RECRA_LABNET	Contract:	01667	

Lab Code: RECRA_ Case No.: SH899_ SAS No.: ____ SDG No.: 12206_

Matrix (soil/water): SOIL__ Level (low/med): LOW__

% Solids for Sample: _66.9

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR)	Spike Added (SA)	%R	Q	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium	75-125_ 75-125_ 75-125_ 75-125_ 75-125_	29.8526 364.4110 314.9864 7.9730 7.5852	0.5760 U 112.5149 28.5358 E 1.1986 E 1.0749 E	293.09 293.09 37.33	40.7 85.9 97.7 92.4 88.8		NR PPPP PPP
CalciumChromium_ CobaltCopperIron	75-125_ 75-125_ 75-125_	78.5914	59.2570 10.0240 58.4690	29.31 73.27 36.64	66.0 95.5 82.1	N - -	NR P_ P_ NR
Lead Magnesium Manganese Mercury	75-125_ 75-125_	110.8725 1061.3764 0.3976	43.9958 1193.4861 0.0538 E		91.3 -180.3 -114.6		P NR P AV
Nickel Potassium Selenium Silver Sodium	75-125_ 75-125_ 75-125_	88.3004	23.7336 2.7079 0.2194	73.27 293.09 7.33	88.1 92.7 98.0	_ _ _ _	P_NRP_P_NR
Thallium_ Vanadium_ Zinc_ Cyanide_	75-125_ 75-125_ 75-125_ 75-125_	258.1661 123.7522 170.2699 7.1374	1.1794 60.3118 114.6934 0.7474	73.27	88.1 86.6 75.9 95.5		P P P C

Comments: SH899-12206-B70607_		

FORM V (Part 1) - IN

5B POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

		NET					B70607A		
		Case No.: S	н899	_ SAS No.:		Level (lo			
		Concentr	atio	n Units: u	g/1	L			
Analyte	Control Limit %R	Spiked Sample Result (SSR)	C R	Sample esult (SR)	С	Added (SA)	%R	Q	
Aluminum_ Antimony_ Arsenic Barium Beryllium Cadmium		105.47			<u></u> -	100.0	105.5		N P N N N
Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead		320.06		216.05_		100.0	104.0		N P N N
Magnesium Manganese Mercury Mickel Potassium Selenium									N N N N
Silver Sodium Thallium_ Vanadium_ Zinc									N N N N
omments: SH899-1	2206-B706	507A						<u></u>	

FORM V (Part 2) - IN

6 DUPLICATES

EPA SAMPLE NO.

Lab Name: RECRA_LABNET_____ Contract: 01667_____

Lab Code: RECRA Case No.: SH899 SAS No.: SDG No.: 12206

Matrix (soil/water): SOIL_ Level (low/med): _LOW__

% Solids for Sample: _66.9
% Solids for Duplicate: __66.9

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	0.0598 10.9708 1371.347 1.3713	21436.8481 0.5760 112.5149 28.5358 1.1986 1.0749 14345.4012 59.2570 10.0240 58.4690 65476.5020 43.9958 21220.0655 1193.4861 0.0538 23.7336 2671.0262 2.7079 0.2194 554.2102		95.4826 43.6408 1.2545 1.0429 13516.7387 51.9242 11.4256 55.2296 61896.6715 50.4428 18622.2614 989.2163 0.0604 23.5007 2325.1716 3.6051 0.2135 495.1527	C U BBB - B UBU -	RPD	0	M
---	---	--	--	---	-------------------	-----	---	---

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW#: 9912L959

ELAP #: 10752

W.O.#: 01667-600-001-9999-00

Date Received: 12-08-99

GC/MS VOLATILE

One (1) water and eleven (11) soil samples were collected on 12-06,07-99.

The samples and their associated QC samples were analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Volatile target compounds on 12-10,12.13-99.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature upon receipt has been recorded on the chain-of-custody.
- 2. The required holding time for analysis was met.
- 3. Non-target compounds were detected in the samples.
- 4. Two (2) of sixty (60) surrogate recoveries were outside EPA QC limits. Sample SH899-12207-B70614 was reanalyzed on 12-13-99 and reported. Sample SH899-12206-B70610 was reanalyzed due to internal standard, surrogate recoveries being out of range and the contamination of Methylene Chloride. The initial analysis also had surrogate, internal standard out of criteria and higher concentration of Methylene Chloride contamination. Further analysis was not performed due to exceeded holding time. The data of the initial analysis will be available upon request. A copy of the Sample Discrepancy Report (SDR) has been enclosed.
- 5. All matrix spike recoveries were within EPA QC limits.
- 6. One (1) of five (5) blank spike recoveries was outside EPA QC limits.
- 7. The method blanks contained the common laboratory contaminants Methylene Chloride and/or Acetone at levels less than 3x the CRQL. The method blank 99LVN487-MB1 also contained the target compound 2-Butanone at a level less than the CRQL.
- 8. Internal standard area criteria were not met for most of the samples. Samples were reanalyzed due to the contamination of Methylene Chloride and internal standard, surrogate recoveries being out of range. The initial analysis also had higher concentration of Methylene Chloride, and surrogate recoveries and internal standard area out of criteria. Further analysis was not performed due to the exceeded holding time. The data of the initial analysis will be available upon request. A copy of the Sample Discrepancy Report (SDR) has been enclosed.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 301 pages.

- 9. The samples were analyzed with a standard, which had expired for the gas compounds: however. upon comparison with a newly prepared standard (prepared on 12-14-99) indicated that the gas recoveries were within criteria; consequently, there were no significant impact on the data. A copy of the Corrective Action Documentation has been enclosed.
- Manual integrations are performed according to OP L-QA-125 to produce quality data with the 10. utmost integrity. All manual integrations are required to be technically valid and properly documented. Appropriate technical flags are defined in Section III ("Technical Flags For Manual Integration"); hard copies of the integrations have been included with the quantitation data.
- I certify that this data package is in compliance with the terms and conditions of the contract, both 11. technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

J. Michael Taylor Vice President

Philadelphia Analytical Laboratory

som/group/data/voa/nysdec-12-959.doc

02-04-00 Date

GLOSSARY OF VOA DATA

DATA QUALIFIERS

- Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.voa

GLOSSARY OF VOA DATA

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.
- BSD = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- DL = Suffix added to sample number to indicate that results are from a diluted analysis.
- NA = Not Applicable.
- DF = Dilution Factor.
- NR = Not Required.
- SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.voa

13.

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- **CB** Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- PI Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

Recra LabNet Philadel	phia Sample Dis	crepancy F	Report (SDR) _{SD}	R#. <u>← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←</u>
Date: 12/100	Samples: 🏤	46MCAWW(CLP)	Parame , 13 Matrix: Prep Ba	Soc
1. Reason for SDR a. COC Discrepancy Term Transport b. General Discrepancy Missing Sample/Extract Hold Time Exceeded Improper Bottle Type Note: Verified by [Log-In] or [Prep Gr c. QC Problem (Include all reconstruction) The left attempt Communication (reagangle) Communication (reagangle) Communication (reagangle) Communication (reagangle) Communication (reagangle)	ch Profile Error Container Broker Not Amenable to roup! (circle)signature/date: elevant specific results from 51-87 pps.)	Client Request Wrong Test Cod cle Analysis c; attach data if	Sampler Error Other Wrong Sample Pulled Preservation Wrong necessary)	Label ID's Illegible Received Past Hold
2. Known or Probable Cause	es(s)	حفہ.		فالمحدر إبر
3. Discussion and Proposed Re-log Entire Batch Following Samples: Re-leach Re-extract Re-digest Revise EDD Change Test Code to Place On/Take Off Hold	Ci Ve	mate the	15155 that are	cut of range.
4. Project Manager Instruction Concur with Proposed Amount Disagree with Proposed Include in Case Narrative Client Contacted: Date/Person Add Cancel	ction Action; See Instruction	Ind first conta	1/24/00 Ficute IS/SS run, mo	s out also on ay have TPH n field?
5. Final Actionsignature/date/ Verified re-[log][leach][ex/ Included in Case Narrativ/ Hard Copy COC Revised/ Electronic COC Revised/ EDD Corrections Completed When Final Action has been	tract][digest][analysis] re sted	(circle)	er Explanation:	
Route Distribution of Comple X Initiator X Lab Manager: M X Project Mgr. Stone X Section Mgr. Wess X QA (file): Racioppi Data Management	eted SDR Taylor /Carey/Schrenkel/Johr son/Daniels	Route —	·	eted SDR

Recta Labilite Philadelphia Sample Discrepancy Report (SDR) SDR#
Initiator: Suchak RFW Batch: 412(959 Parameter: 004
Date: DISPY Samples: 75, 07 Matrix: 50.0
Client: NeOC Method: Sw846/NCAWW/CLP/ Prep Batch:
Workers Trop Balari.
1. Reason for SDR
a. COC Discrepancy Tech Profile Error Client Request Sampler Error on C-O-C
Transcription Error Wrong Test Code Other
b. General Discrepancy Missing Sample/Extract Container Broken Wrong Sample Pulled Label ID's Illegible
Missing Sample/ExtractContainer BrokenWrong Sample PulledLabel ID's Illegible Hold Time ExceededInsufficient SamplePreservation WrongReceived Past Hold
Improper Bottle Type Not Amenable to Analysis
Note: Verified by [Log-In] or [Prep Group] (circle)signature/date:
c. QC Problem (Include all relevant specific results; attach data if necessary) (4) Bank Sibe.
metron in a acceptable the succession to Apulla Hurber
1 1 3 cme of south the web that an interior of the
Effects simple would wie to narrate lastes lacated.
2. Known or Probable Causes(s)
3. Discussion and Proposed Action Other Description:
Re-log
Entire Batch
Following Samples: Re-leach
Re-extract
Re-digest
Revise EDD Change Test Code to
Place On/Take Off Hold (circle)
4. Project Manager Instructionssignature/date: 12/13/99
Concur with Proposed Action
Disagree with Proposed Action; See Instruction // Include in Case Narrative
Client Contacted:
Date/Person
Add Cancel
5. Final Actionsignature/date
included in Case Narrative
Hard Copy COC Revised
Electronic COC Revised EDD Corrections Completed
When Final Action has been recorded, forward original to QA Specialist for distribution and filing.
Route Distribution of <u>Completed</u> SDR Route Distribution of <u>Completed</u> SDR Metals: Doughty
X Lab Manager: M. Taylor Inorganic: Perrone
T Project Mg/t Stone/Qarey/Schrenkel/Johnson GC/LC: Schnell X Section Mgr: Wesson/Daniels MS: Taylor
X Section Mgr: Wesson/Daniels MS: Taylor Log-in: Janson
Data Management: Feldman Admin: Soos
Sample Pren: Doughty/Kauffman Other:

Recra LabNet Philadelphia

CORRECTIVE ACTION DOCUMENTATION

AUDIT REPORT #

AR49-035

 Originator forward form to PERSON RESPONSIBLE FOR RESPONSE and DESCRIPTI Originator forward form to PERSON RESPONSIBLE FOR RESPONSE. Develop/plan a SEQUENCE OF CORRECTIVE ACTION and obtain INITIAL CA APPROVAL sign-off for Forward original form to QA for sign-off and FOLLOW-UP ACTION. This allows all pertinent action completion of the corrective action, the form is signed off by QA, distributed, and the original archived with the corrective action. 	om supervisor. to be documented on the original form. On					
DATE/ORIGINATOR MARKE SCHWELDER 12-114-195	PAGEOF					
PERSON RESPONSIBLE FOR RESPONSE (corrective action plan and implementation of corrective action plan): NAME SCHOOL TOUR	DISTRIBUTION: LABORATORY MANAGER INORGANIC MANAGER GC/MS MANAGER GC/EXTR MANAGER QA MANAGER QA REPORT FILE					
DESCRIPTION OF PROBLEM and when identified:	+ fram 12/10 -> 12/13/99					
son on calibrations which would an entire	sta (conso o)					
The 5td (8109-006-02) expired on 12/9/99.	The course only).					
CAUSE OF PROBLEM if known or suspected: Descended sta						
	incorrectey)					
SEQUENCE OF CORRECTIVE ACTION (CA) planned (signature/date):						
The replacement Sta (BIOG-012-01) 1120						
	(see pup).					
must criteria. The	ا من ا ۱۱۲۱عام - به طنط					
must criticis sta (gases oning) were chicani coc	the state of the same					
The expected Sta (gases only) were checine against the how Sta, and MITACHES - FORM 7; 100,000 noting extressed between						
INITIAL CA APPROVAL: Supervisor signature/date: . Sto West 13-1	1-49					
QA signature/date:						
DESCRIPTION OF QA FOLLOW-UP ACTION (include signature/date):	mulera 12/12/199					
\cdot						
FINAL CA APPROVED (QA signature/date):						

3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: 1667-00-01

Lab Code: Recra Case No.:

SAS No.:

____ SDG No.:

MATRIX Spike - EPA Sample No.: SH899-12206-B

Level (low/med) LOW

COMPOUND	SPIKE ADDED ug/Kg	SAMPLE CONCENTRATION ug/Kg	MS CONCENTRATION ug/Kg	MS % REC #	QC LIMITS REC.
1,1-Dichloroethene	83.0	0	78.2	94	59 -172
Trichloroethene	83.0	0	70.5	85	62 -137
Benzene	83.0	0	81.9	99	66 -142
Toluene	83.0	0	97.4	117	59 -139
Chlorobenzene	83.0	0	83.0	100	60 -133

COMPOUND	SPIKE ADDED ug/Kg	MSD CONCENTRATION ug/Kg	MSD % REC #	% % RPD #	QC LIMITS RPD REC	
1,1-Dichloroethene	73.3	72.3	99	 5	22 59 -172	=
Trichloroethene	73.3	57.2	78	8	24 62 -137	į
Benzene	73.3	67.8	93	6	21 66 -142	.
Toluene	73.3	89.4	122	4	21 59 -139	}
Chlorobenzene	_ 73.3	67.1	92	8	21 60 -133	
	_	_		ll_	<u></u> <u></u>	_

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

9.

RPD: 0 out of 5 outside limits

Spike Recovery: 0 out of 10 outside limits

100 01.00

FORM III VOA-2

3/90

3B SOIL VOLATILE MATRIX SPIKE RECOVERY

Lab Name	: Recra.LabNet	Contract:	1667-00-01
----------	----------------	-----------	------------

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

MATRIX Spike - EPA Sample No.: VBLKIE Level (low/med) LOW

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
COMPOUND	ug/Kg	ug/Kg	ug/Kg	REC #	REC.
1,1-Dichloroethene	50.0	0	21.8	44 *	59 -172
Trichloroethene	50.0	0	39.8	80	62 -137
Benzene	50.0	0	41.6	83	66 -142
Toluene	50.0	0	43.5	87	59 -139
Chlorobenzene	50.0	1 0	44.7	89	60 -133

- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike Recovery: 1 out of 5 outside limits

COMMENTS:	
-----------	--

92020100

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET |SH899-12206-B70603 Lab Name: Recra.LabNet Contract: 01667600001 Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: ___ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-003 Sample wt/vol: 4.80 (g/mL) G Lab File ID: <u>h121216</u> Level: (low/med) LOW Date Received: 12/08/99 % Moisture: not dec. 34 Date Analyzed: <u>12/12/99</u> GC Column: ID: ___(mm) Dilution Factor: 1.04 Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

74-87-3Chloromethane	16	Ü
74-83-9Bromomethane	16	σ
75-01-4Vinyl Chloride	16	
75-00-3Chloroethane	16	ט
75-09-2Methylene Chloride	86	В
67-64-1Acetone	16	U
75-15-0Carbon Disulfide	16	U
75-35-41,1-Dichloroethene	16	υ
75-34-31,1-Dichloroethane	16	σ
540-59-01,2-Dichloroethene (total)	16	U
67-66-3Chloroform	16	ט
107-06-21,2-Dichloroethane	16	U
78-93-32-Butanone	16	ט
71-55-61,1,1-Trichloroethane	16	ט
56-23-5Carbon Tetrachloride	16	ט
75-27-4Bromodichloromethane	16	U
78-87-51,2-Dichloropropane	16	ט
10061-01-5cis-1,3-Dichloropropene	16	שׁ
79-01-6Trichloroethene	16	U.
124-48-1Dibromochloromethane	16	U
79-00-51,1,2-Trichloroethane	16	U
71-43-2Benzene	16	U
10061-02-6Trans-1,3-Dichloropropene	16	U
75-25-2Bromoform	16	ប
108-10-14-Methyl-2-pentanone	16	U
591-78-62-Hexanone	16	U
127-18-4Tetrachloroethene	16	ט
79-34-51,1,2,2-Tetrachloroethane	16	U
108-88-3Toluene	16	שׁ
108-90-7Chlorobenzene	16	ן ט
100-41-4Ethylbenzene	16	U
100-42-5Styrene	. 16	ן ט
1330-20-7Xylene (total)	16	U
·		

7 77

VOLATILE ORGANICS ANALYSIS DATA SHEET

ENTATIVELY	IDENTIFIED	COMPCUNDS	·
			SH899-12206-B70603
			1

EFA SAMPLE NO.

Lab	Name:	Recra.Labi	Net	Contract:	0100/0000	<u>)1</u>	l		· · · · · · · · · · · · · · · · · · ·	
Lab	Code:	Recra	Case No.:		SAS	No.:	_	SDG No.:		
Mat	cix: (:	soil/water)) SOIL		Lab	Sample ID:	<u>. 99</u>	121959-00	13	

Sample wt/vol: 4.80 (g/mL) G Lab File ID: h121216

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: not dec. 34 Date Analyzed: 12/12/99

GC Column: ID: ___(mm) Dilution Factor: 1.04

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	=====	==========	=====
1.				
		l		

|SH899-12206-B70604

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: ___ Lab Sample ID: 9912L959-004 Matrix: (soil/water) SOIL Sample wt/vol: 4.50 (g/mL) G Lab File ID: <u>n121018</u> Date Received: 12/08/99 Level: (low/med) LOW % Moisture: not dec. 33 Date Analyzed: 12/10/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.11

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG 0

CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/K	<u>3</u>	Q
74'-87-3	Chloromethane		17	ן זז
	Bromomethane		17	
	Vinyl Chloride	·	17	
75-01-4 75-00-3			17	<u>'</u>
· · · · · · · · · · · · · · · · · · ·			49	
	Methylene Chlorid	×	98	:
67-64-1				:
	Carbon Disulfide_			J
	1,1-Dichloroethen		17	
	1,1-Dichloroethan		8	J
- · · · · · · · · · · · · · · · · · · ·	1,2-Dichloroethen	a (total)	-	, -
67-66-3			17	,
	1,2-Dichloroethan	³	17	*
78-93-3			17	
	1,1,1-Trichloroet		17	
	Carbon Tetrachlor		17	!
	Bromodichlorometh		17	;
	1,2-Dichloropropa		17	
	cis-1,3-Dichlorop		17	!
	Trichloroethene	·	28	:
	Dibromochlorometh		17	
	1,1,2-Trichloroet	hane	17	!
71-43-2			17	:
	Trans-1,3-Dichlor	opropene	17	
75-25-2			17	!
	4-Methyl-2-pentan		17	
	2-Hexanone		17	U
_ · · · · · ·	Tetrachloroethene	,	17	U
	1,1,2,2-Tetrachlo	roethane	17	ū
108-88-3			3	J
	Chlorobenzene		17	U
	Ethylbenzene		17	U
100-42-5	Styrene		17	
1330-20-7	<pre>Xylene (total)</pre>		17	U

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	SH899-12206-B70604
- 1	

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: _____ SAS No.: ____ SDG No.:

Lab Sample ID: 9912L959-004 Matrix: (soil/water) SOIL

Sample wt/vol: 4.50 (g/mL) \underline{G} Lab File ID: n121018

Date Received: <u>12/08/99</u> Level: (low/med) LOW

% Moisture: not dec. 33 Date Analyzed: 12/10/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.11

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: _9 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	========	=====
1. 79209	ACETIC ACID, METHYL ESTER	8.654	8	NJ
2. 91576	NAPHTHALENE, 2-METHYL-	21.386	90	NJ
3. 91576	NAPHTHALENE, 2-METHYL-	22.511	50	NJ
4. 1120214	UNDECANE	24.384	9	ŊJ
5. 92524	BIPHENYL	24.572	10	ИJ
6. 581420	NAPHTHALENE, 2,6-DIMETHYL-	25.489	20	NJ
7. 575417	NAPHTHALENE, 1,3-DIMETHYL-	25.972	20	NJ
8. 571619	NAPHTHALENE, 1,5-DIMETHYL-	26.091	10	NJ
9. 91203	NAPHTHALENE	26.485	20	NJ
		-	-	

COMPOUND

CAS NO.

SH899-12206-B70605

Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: Lab Code: Recra Case No.: ____ SDG No.: _ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-005 Sample wt/vol: 4.50 (g/mL) G Lab File ID: h121207 Level: (low/med) LOW Date Received: 12/08/99 % Moisture: not dec. ___11 Date Analyzed: 12/12/99 GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.11 Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

74-87-3-----Chloromethane 13 | U 74-83-9-----Bromomethane 13 U 75-01-4-----Vinyl Chloride 13 U 75-00-3-----Chloroethane___ 13 | U 75-09-2-----Methylene Chloride____ 24 B 67-64-1-----Acetone 13 U 75-15-0-----Carbon Disulfide 13 U 75-35-4-----1,1-Dichloroethene 13 U 75-34-3-----1,1-Dichloroethane 13 U 540-59-0----1,2-Dichloroethene (total)____ 13 U 67-66-3-----Chloroform 13 0 107-06-2----1,2-Dichloroethane 13 U 78-93-3----2-Butanone 13 | U 71-55-6-----1,1,1-Trichloroethane 13 U 56-23-5-----Carbon Tetrachloride 13 | U 75-27-4-----Bromodichloromethane 13 0 13 U 78-87-5-----1,2-Dichloropropane 10061-01-5----cis-1,3-Dichloropropene 13 U 79-01-6-----Trichloroethene_ 13 | U 124-48-1-----Dibromochloromethane 13 U 79-00-5-----1,1,2-Trichloroethane 13 0 71-43-2----Benzene 13 U 10061-02-6----Trans-1,3-Dichloropropene 13 U 75-25-2----Bromoform 13 U 108-10-1----4-Methyl-2-pentanone 13 U 13 U 591-78-6----2-Hexanone 127-18-4-----Tetrachloroethene 13 U 79-34-5-----1,1,2,2-Tetrachloroethane____ 13 U 13 U 108-88-3-----Toluene 108-90-7----Chlorobenzene 13 U 100-41-4----Ethylbenzene 13 | U 100-42-5-----Styrene 13 U 1330-20-7------Xylene (total)__ 13 0 m, 21,00

3/90

1E

EPA SAMPLE NO.

VOLATILE	ORGAN	IICS	ANALYS:	IS	EATA	SHEET	
TENTATI	VELY	IDE	NTIFIED	C	MPOUN	DS.	

					SH899-12206-B70605
Lab	Name:	Recra.LabNet	Contract:	01667600001	

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-005

Sample wt/vol: 4.50 (g/mL) \underline{G} Lab File ID: h121207

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: not dec. 11 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.11

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======	=========	=====
1.	<u>'</u>			

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET SH899-12206-B70606 Lab Name: Recra.LabNet Contract: 01667600001 Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: _ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-006 4.90 (g/mL) G Sample wt/vol: Lab File ID: h121208 Date Received: 12/08/99 Level: (low/med) LOW % Moisture: not dec. ___28 Date Analyzed: 12/12/99 GC Column: RTX624 __ ID: 0.32 (mm) Dilution Factor: 1.02 Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 74-87-3-----Chloromethane 14 U 74-83-9-----Bromomethane 14 U 75-01-4-----Vinyl Chloride 14 U 75-00-3-----Chloroethane 14 U 75-09-2-----Methylene Chloride 36 B 67-64-1-----Acetone 14 U 75-15-0-----Carbon Disulfide 14 U 14 U 75-35-4-----1,1-Dichloroethene 14 U 75-34-3----1,1-Dichloroethane 540-59-0-----1,2-Dichloroethene (total) 14 U 14 U 67-66-3-----Chloroform 107-06-2----1,2-Dichloroethane 14 U 14 U 78-93-3----2-Butanone 71-55-6-----1,1,1-Trichloroethane 14 U 56-23-5-----Carbon Tetrachloride 14 U 75-27-4-----Bromodichloromethane____ 14 | U 14 U 78-87-5-----1,2-Dichloropropane_ 10061-01-5----cis-1,3-Dichloropropene 14 U 79-01-6-----Trichloroethene_ 14 U 14 U 124-48-1-----Dibromochloromethane_

3/90 00/20

14 U

14 | U

14 U

14 U

14 | U

14 | U

14 U

14 U

FORM 1 VOA

79-00-5----1,1,2-Trichloroethane____

10061-02-6----Trans-1,3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane____

108-10-1-----4-Methyl-2-pentanone

127-18-4-----Tetrachloroethene

108-90-7-----Chlorobenzene__

1330-20-7-----Xylene (total)__

100-41-4-----Ethylbenzene___

71-43-2-----Benzene

75-25-2-----Bromoform_

108-88-3-----Toluene

100-42-5-----Styrene__

591-78-6----2-Hexanone_

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	EPA	SAMPLE	NO.
!			

Lab Name: Recra.LabNet Contract:	SH899-12206-B70606 01667600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 9912L959-006
Sample wt/vol: $\underline{4.90}$ (g/mL) \underline{G}	Lab File ID: <u>h121208</u>
Level: (low/med) LOW	Date Received: <u>12/08/99</u>
% Moisture: not dec28	Date Analyzed: <u>12/12/99</u>
GC Column: RTX624 ID: 0.32(mm)	Dilution Factor: 1.02
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
============	=======================================	======	=========	=====
1.				

COMPOUND

79-00-5----1,1,2-Trichloroethane

108-10-1----4-Methyl-2-pentanone___

127-18-4-----Tetrachloroethene

10061-02-6----Trans-1,3-Dichloropropene

79-34-5-----1,1,2,2-Tetrachloroethane

71-43-2----Benzene

75-25-2-----Bromoform

108-88-3-----Toluene

100-42-5-----Styrene_

591-78-6----2-Hexanone

108-90-7-----Chlorobenzene_

100-41-4-----Ethylbenzene___

1330-20-7-----Xylene (total)

CAS NO.

EPA SAMPLE NO.

, Q

% Moisture: not dec. 33 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32(mm) Dilution Factor: 1.04

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

74-87-3-----Chloromethane 16 U 16 U 74-83-9-----Bromomethane 75-01-4-----Vinyl Chloride 16 U 75-00-3-----Chloroethane 16 U 62 B 75-09-2-----Methylene Chloride 67-64-1-----Acetone 28 B 75-15-0-----Carbon Disulfide 16 U 75-35-4-----1,1-Dichloroethene 16 U 75-34-3-----1,1-Dichloroethane 16 U 540-59-0----1,2-Dichloroethene (total) 16 U 67-66-3-----Chloroform 16 U 16 U 107-06-2----1,2-Dichloroethane 16 U 78-93-3----2-Butanone 16 U 71-55-6-----1,1,1-Trichloroethane 56-23-5-----Carbon Tetrachloride 16 U 16 U 75-27-4-----Bromodichloromethane 16 U 78-87-5-----1,2-Dichloropropane 16 U 10061-01-5----cis-1,3-Dichloropropene 16 U 79-01-6-----Trichloroethene 124-48-1-----Dibromochloromethane 16 | U

> 16 U 16 U 16 U 16 U 16 U 16 U 16 U

16 U

16 U

16 U

16 U

16 U

16 U

Sample wt/vol: $\underline{4.80}$ (g/mL) \underline{G}

% Moisture: not dec. 33

GC Column: RTX624 ID: 0.32 (mm)

Lab Name:

VCLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TENTATIVELY	IDENTIFIED COMPOUNDS	
		SH899-12206-B70607
Recra.LabNet	Contract: 01667600001	

Lab File ID: <u>h121209</u>

Dilution Factor: 1.04

SAS No.: ____ SDG No.: ___ Lab Code: Recra Case No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-007

Level: (low/med) LOW Date Received: 12/08/99

Date Analyzed: 12/12/99

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: Number TICs found: _0 (ug/L or ug/Kg) UG/KG

CAS NUMBER COMPOUND NAME RT EST. CONC.

EPA SAMPLE NO.

|SH899-12206-B70610 Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: ____ SDG No.: ____ Lab Code: Recra Case No.: ____ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-008 Sample wt/vol: 4.90 (g/mL) \underline{G} Lab File ID: $\underline{h121210}$ Level: (low/med) LOW Date Received: <u>12/08/99</u> Date Analyzed: 12/12/99 % Moisture: not dec. 33

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.02

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q

AS NO. COMPOUND	(ug/L or			·	Q
4-87-3Chloromethane				15	U
4-83-9Bromomethane				15	Ū
5-01-4Vinyl Chloride				15	Ū
5-00-3Chloroethane		i		15	U
5-09-2Methylene Chloride		i		58	В
7-64-1Acetone		<u> </u>		100	В
5-15-0Carbon Disulfide		— i		15	
5-35-41,1-Dichloroethene	•			15	•
5-34-31,1-Dichloroethane		 i		15	:
10-59-01,2-Dichloroethene		 ;		15	U
7-66-3Chloroform				15	U
07-06-21,2-Dichloroethane	•			15	σ
3-93-32-Butanone				22	-
L-55-61,1,1-Trichloroeth	nane	 -		15	•
5-23-5Carbon Tetrachlori				15	;
-27-4Bromodichlorometha		i		15	שׁ
-87-51,2-Dichloropropar				15	:
061-01-5cis-1,3-Dichlorop				15	
-01-6Trichloroethene	_	\		15	
24-48-1Dibromochlorometha		i		15	:
-00-51,1,2-Trichloroeth		j		15	
-43-2Benzene		i		15	ับ
0061-02-6Trans-1,3-Dichloro	propene	i		15	ับ
5-25-2Bromoform		i		15	שׁ
08-10-14-Methyl-2-pentance	one	i		15	ט
1-78-62-Hexanone		i		15	ט
27-18-4Tetrachloroethene		i		15	U
9-34-51,1,2,2-Tetrachlo				15	U
08-88-3Toluene				15	U
08-90-7Chlorobenzene				15	U
00-41-4Ethylbenzene				15	U
00-42-5Styrene				15	U
330-20-7Xylene (total)				15	U
FORM	1 VOA	I	- tr _{waki}		3/90

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

J			
PENTATIVELY	IDENTIFIED	COMPOUNDS	

i	SH899-12206-B70610

Lab Name: Recra.LabNet Contract: 01667600001

SAS	No.:	 SDG	No.:	

Matrix: (soil/water) SOIL

Lab Code: Recra Case No.: ____

Lab Sample ID: 9912L959-008

Sample wt/vol: 4.90 (g/mL) \underline{G}

Lab File ID: <u>h121210</u>

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: not dec. ___33

Date Analyzed: <u>12/12/99</u>

GC Column: RTX624 ID: 0.32 (mm)

Dilution Factor: 1.02

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	======	=========	=====
1.	<u>'</u>			

EPA SAMPLE NO.

	. ,
Lab Name: Recra.LabNet Contract: 01667	SH899-12207-B70611
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 9912L959-009
Sample wt/vol: $\underline{5.50}$ (g/mL) \underline{G}	Lab File ID: <u>h121211</u>
Level: (low/med) <u>LOW</u>	Date Received: 12/08/99
% Moisture: not dec13	Date Analyzed: 12/12/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 0.909
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CONCE	NTRATION UNITS:
CAS NO. COMPOUND (ug/L	or ug/Kg) <u>UG/KG</u> Q
74-87-3Chloromethane	10 0
74-83-9Bromomethane	
75-01-4Vinyl Chloride	10 0
75-00-3Chloroethane	10 0
75-09-2Methylene Chloride	
67-64-1Acetone	10 0
75-15-0Carbon Disulfide	
75-35-41,1-Dichloroethene	
75-34-31,1-Dichloroethane	10 0
540-59-01,2-Dichloroethene (tot	al) 10 U
67-66-3Chloroform	10 U
107-06-21,2-Dichloroethane	10 0
78-93-32-Butanone	10 U
71-55-61,1,1-Trichloroethane	
56-23-5Carbon Tetrachloride	
75-27-4Bromodichloromethane	
78-87-51,2-Dichloropropane	10 0
10061-01-5cis-1,3-Dichloropropene	· · · · · · · · · · · · · · · · · · ·
79-01-6Trichloroethene	10 0
124-48-1Dibromochloromethane	10 0
79-00-51,1,2-Trichloroethane	10 0
71-43-2Benzene	10 0
10061-02-6Trans-1,3-Dichloroprope	
75-25-2Bromoform	10 U
108-10-14-Methyl-2-pentanone	10 U 10 U
591-78-6	10 0
79-34-51,1,2,2-Tetrachloroetha	
/3-34-31,1,2,2-1etfaciiiOffetiid	

10 | U

10 ប

10 | U

10 0

10 0

108-88-3-----Toluene_

100-42-5----Styrene_

108-90-7-----Chlorobenzene

100-41-4-----Ethylbenzene_

1330-20-7-----Xylene (total)

le

% Moisture: not dec. ___13

Number TICs found: _0

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

- [
	SH899-12207-B70611	
- 1		

Lab Name: Recra.LabNet Contract: 01667	SH899-12207-B70611 600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 9912L959-009
Sample wt/vol: 5.50 (g/mL) G	Lab File ID: <u>h121211</u>
Level: (low/med) LOW	Date Received: <u>12/08/99</u>

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 0.909

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Date Analyzed: 12/12/99

COMPOUND NAME CAS NUMBER RT EST. CONC.

SH899-12207-B70612

Lab Name: Recra.LabNet Contract: 01667600001

Lab	Code:	Recra	∠ Case	e No.:	SAS	No.:		SDG	No.:	
-----	-------	-------	--------	--------	-----	------	--	-----	------	--

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-010

Sample wt/vol: 4.80 (g/mL) \underline{G} Lab File ID: h121212

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: not dec. _____75 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.04

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

AS NO. COMPOUND	(ug/L or ug/Kg) UG/KG	Q
4-87-3Chloromethane	4	1 U
4-83-9Bromomethane		1 0
5-01-4Vinyl Chloride		ו ע
5-00-3Chloroethane		1 U
5-09-2Methylene Chlor		3 B
7-64-1Acetone		1 U
5-15-0Carbon Disulfic		וֹט
5-35-41,1-Dichloroeth		1 ប
5-34-31,1-Dichloroeth		1 0
40-59-01,2-Dichloroeth	· · · · · · · · · · · · · · · · · · ·	ו ס
7-66-3Chloroform	 :	ו ד
.07-06-21,2-Dichloroeth		ש ל
8-93-32-Butanone		וֹט
1-55-61,1,1-Trichlore		1 U
6-23-5Carbon Tetrach		1 0
5-27-4Bromodichlorome	•	1 ט
8-87-51,2-Dichloropro		1 0
.0061-01-5cis-1,3-Dichlor		1 ប
9-01-6Trichloroethene	 -	1 0
.24-48-1Dibromochlorom		ז ט
9-00-51,1,2-Trichlore	· · · · · · · · · · · · · · · · · · ·	וט
1-43-2Benzene		1 0
0061-02-6Trans-1,3-Dich	loropropene 4	וט
5-25-2Bromoform	· · · · · · · · · · · · · · · · · ·	1 0
08-10-14-Methy1-2-pen		1 U
591-78-62-Hexanone		1 0
27-18-4Tetrachloroeth	ene 4	1 0
79-34-51,1,2,2-Tetrac		1 σ
L08-88-3Toluene	 ;	1 U
L08-90-7Chlorobenzene	4	1 U
L00-41-4Ethylbenzene	·	1 U
L00-42-5Styrene		1 U
1330-20-7Xylene (total)		נו
FO	RM 1 VOA	3/90

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

ļ	*	-
	GTTOOO 10000	
	SH899-12207-B70612	
- :		
- 1		
- 1		

Lab Name:	Recra.	<u> LabNet</u>
-----------	--------	----------------

Contract: 01667600001

Lab Code: Recra Case No.: ____

SAS No.: ____ SDG No.: ____

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-010

Sample wt/vol: 4.80 (g/mL) \underline{G}

Lab File ID: h121212

Date Received: <u>12/08/99</u>

% Moisture: not dec. ____75

Level: (low/med) LOW

Date Analyzed: <u>12/12/99</u>

GC Column: RTX624 ID: 0.32 (mm)

Dilution Factor: 1.04

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
_======================================		======		=====
1.				
.				

SH899-12207-B70613

Lab Name: Recra.LabNet Contract: 0166	67600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 9912L959-011
Sample wt/vol: 5.20 (g/mL) G	Lab File ID: <u>h121213</u>
Level: (low/med) LOW	Date Received: <u>12/08/99</u>
% Moisture: not dec28	Date Analyzed: 12/12/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 0.962
Soil Entropy Volume: (NI)	Soil Alignot Volume: (uI)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

AS NO.	COMPOUND (Ug/1 OF	ug/kg/ <u>ug/kg</u>	
/4-87-3	Chloromethane		 U
4-83-9	Bromomethane	13	U
75-01-4	Vinyl Chloride	13	ט
⁷ 5-00-3			U
75-09-2	Methylene Chloride	40	В
57-64-1	Acetone	13	U
75-15-0	Carbon Disulfide	13	U
75-35-4	-1,1-Dichloroethene	13	U
75-34-3	-1,1-Dichloroethane		U
540-59-0	-1,2-Dichloroethene (total)	13	ט
57-66-3		 :	U
L07-06-2	-1,2-Dichloroethane		ט
78-93-3	-2-Butanone	13	U
71-55-6	-1,1,1-Trichloroethane		σ
56-23-5	-Carbon Tetrachloride	13	ט
	-Bromodichloromethane		ט
78-87-5	-1,2-Dichloropropane	13	י ט
L0061-01-5	-cis-1,3-Dichloropropene	13	ט
79-01-6	-Trichloroethene	13	ט
124-48-1	-Dibromochloromethane	13	0
79-00-5	-1,1,2-Trichloroethane	13	U
1-43-2	-Benzene	13	Ü
10061-02-6	-Trans-1,3-Dichloropropene	13	Ū
75-25-2	-Bromoform	13	U
108-10-1	-4-Methyl-2-pentanone	13	ן ט
591-78-6	-2-Hexanone		ע
127-18-4	-Tetrachloroethene	13	U -
79-34-5	-1,1,2,2-Tetrachloroethane	13	U
108-88-3	-Toluene	13	U
108-90-7	-Chlorobenzene		ן ט
	-Ethylbenzene	13	U
100-42-5			0
	-Xylene (total)	1 13	י די

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NG.

SH899-12207-B70613	

Lab Name: Recra.LabNet Contract: 01667600001

Lab	Code:	Recra	Case No.:	SA	S No.:	SDG No.:
-----	-------	-------	-----------	----	--------	----------

Lab Sample ID: 9912L959-011 Matrix: (soil/water) SOIL

Sample wt/vol: $\underline{5.20}$ (g/mL) \underline{G} Lab File ID: <u>h121213</u>

Date Received: 12/08/99 Level: (low/med) LOW

% Moisture: not dec. ___28 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 0.962

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 1 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		======		=====
1. 556672	CYCLOTETRASILOXANE, OCTAMETH	22.043	20	NJ

COMPOUND

EPA SAMPLE NO.

|SH899-12207-B70614

Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: ____ SDG No.: _ Lab Code: Recra Case No.: ____ Lab Sample ID: 9912L959-012 Matrix: (soil/water) SOIL 4.50 (g/mL) G Lab File ID: h121214 Sample wt/vol: Date Received: 12/08/99 Level: (low/med) <u>LOW</u> Date Analyzed: 12/12/99 % Moisture: not dec. _____78 GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.11

Soil Extract Volume: ____(uL)

CAS NO.

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

74-87-3-----Chloromethane_ 51 U 74-83-9-----Bromomethane 51 U 75-01-4-----Vinyl Chloride___ 51 U 75-00-3-----Chloroethane 51 U 250 B 75-09-2-----Methylene Chloride 30 BJ 67-64-1-----Acetone 75-15-0-----Carbon Disulfide 51 U 75-35-4----1,1-Dichloroethene 51 U 51 U 75-34-3----1,1-Dichloroethane 540-59-0----1,2-Dichloroethene (total) 51 | U 67-66-3-----Chloroform 51 U 107-06-2----1, 2-Dichloroethane 51 U 78-93-3----2-Butanone_ 51 U 71-55-6----1,1,1-Trichloroethane 51 | U 51 U 56-23-5-----Carbon Tetrachloride___ 51 U 75-27-4-----Bromodichloromethane_ 78-87-5----1,2-Dichloropropane___ 51 U 51 U 10061-01-5----cis-1,3-Dichloropropene 51 U 79-01-6-----Trichloroethene_ 51 U 124-48-1-----Dibromochloromethane_ 51 U 79-00-5-----1,1,2-Trichloroethane__ 51 U 71-43-2----Benzene_ 10061-02-6----Trans-1,3-Dichloropropene 51 U 51 U 75-25-2-----Bromoform 51 U 108-10-1----4-Methyl-2-pentanone 51 U 591-78-6----2-Hexanone 51 U 127-18-4----Tetrachloroethene 79-34-5----1,1,2,2-Tetrachloroethane__ 51 U 51 U 108-88-3-----Toluene 51 U 108-90-7-----Chlorobenzene 100-41-4----Ethylbenzene 51 U 100-42-5-----Styrene 51 U 1330-20-7-----Xylene (total) 51 T

3/90 100 00/18

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

				SH899-12207-B70614
Lab Name:	Recra.LabNet	Contract:	01667600001	

Lab Code: Recra Case No.: SDG No.: SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-012

Sample wt/vol: 4.50 (g/mL) \underline{G} Lab File ID: $\underline{h121214}$

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: not dec. 78 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32(mm) Dilution Factor: 1.11

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) 0

				!
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
***********	****************	======	=======================================	====
1.				
				l!

COMPOUND

CAS NO.

EPA SAMPLE NO.

Q

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.00

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

46 U 74-87-3-----Chloromethane 46 U 74-83-9-----Bromomethane_ 46 U 75-01-4-----Vinyl Chloride 46 U 75-00-3-----Chloroethane 150 B 75-09-2-----Methylene Chloride 46 U 67-64-1-----Acetone 75-15-0-----Carbon Disulfide___ 46 U 46 U 75-35-4-----1,1-Dichloroethene 46 U 75-34-3-----1,1-Dichloroethane___ 46 U 540-59-0-----1,2-Dichloroethene (total) 46 U 67-66-3-----Chloroform 46 U 107-06-2----1,2-Dichloroethane 46 U 78-93-3----2-Butanone 71-55-6----1,1,1-Trichloroethane 46 U 46 U 56-23-5-----Carbon Tetrachloride___ 46 U 75-27-4-----Bromodichloromethane 46 U 78-87-5-----1,2-Dichloropropane___ 46 U 10061-01-5----cis-1,3-Dichloropropene 46 U 79-01-6-----Trichloroethene 124-48-1-----Dibromochloromethane 46 U 46 U 79-00-5----1,1,2-Trichloroethane___ 71-43-2-----Benzene 46 U 10061-02-6----Trans-1,3-Dichloropropene___ 46 U 46 U 75-25-2-----Bromoform_ 46 U 108-10-1-----4-Methyl-2-pentanone___ 591-78-6----2-Hexanone 46 U 46 U 127-18-4----Tetrachloroethene_ 46 U 79-34-5-----1,1,2,2-Tetrachloroethane_ 108-88-3-----Toluene_ 46 U 46 U 108-90-7-----Chlorobenzene_ 100-41-4----Ethylbenzene 46 U 46 U 100-42-5-----Styrene_____ 1330-20-7-----Xylene (total)__ 46 U

3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.	

Lab Name: Recra.LabNet Contract: 0166	SH899-12207-B70614RE 7600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 9912L959-012
Sample wt/vol: 5.00 (g/mL) G	Lab File ID: h121309
Level: (low/med) LOW	Date Received: 12/08/99
% Moisture: not dec	Date Analyzed: 12/13/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	ENTRATION UNITS: L or ug/Kg) <u>UG/KG</u>
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q

		******	770675
Lab Name: Recra.LabNet Contract: 0	•	H899-12207	-B70615
Lab Code: Recra Case No.:	SAS No.:	SDG No	.:
Matrix: (soil/water) SOIL	Lab Sample ID:	9912L959-	013
Sample wt/vol: 4.60 (g/mL) G	Lab File ID:	h121215	
Level: (low/med) LOW	Date Received:	12/08/99	
% Moisture: not dec37	Date Analyzed:	12/12/99	
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor	: 1.09	,
Soil Extract Volume:(uL)	Soil Aliquot Vo	lume:	(uL)
	ONCENTRATION UNITS: ug/L or ug/Kg) <u>UG/KG</u>	Q	
74-87-3Chloromethane		17 U	
74-83-9Bromomethane		17 ט	
75-01-4Vinyl Chloride		17 U	}
75-00-3Chloroethane		17 U	1
75-09-2Methylene Chloride		82 B	İ
67-64-1Acetone	[17 บ	
75-15-0Carbon Disulfide		17 บ	-
75-35-41,1-Dichloroethene_		17 U	1
75-34-31,1-Dichloroethane_		17 ប	
1 540 50 0 1 0 54-51	/ L _ L _ T \	7 57 1 57	1

, , , , , , , , , , , , , , , , , , , ,	_	
75-01-4Vinyl Chloride	17	υ
75-00-3Chloroethane	17	σ
75-09-2Methylene Chloride	82	В
67-64-1Acetone	17	υ
75-15-0Carbon Disulfide	17	ਹ
75-35-41,1-Dichloroethene	17	U
75-34-31,1-Dichloroethane	17	ט
540-59-01,2-Dichloroethene (total)	17	υ
67-66-3Chloroform	17	ប
107-06-21,2-Dichloroethane	17	U
78-93-32-Butanone	17	U
71-55-61,1,1-Trichloroethane	17	U
56-23-5Carbon Tetrachloride	17	ט
75-27-4Bromodichloromethane	17	Ū
78-87-51,2-Dichloropropane	17	U
10061-01-5cis-1,3-Dichloropropene	17	U
79-01-6Trichloroethene	17	Ū
124-48-1Dibromochloromethane	17	Ū
79-00-51,1,2-Trichloroethane	17	Ū
71-43-2Benzene	17	Ū
10061-02-6Trans-1,3-Dichloropropene	17	U
75-25-2Bromoform	17	U
108-10-14-Methyl-2-pentanone	17	שׁ
591-78-62-Hexanone	17	ָ ט
127-18-4Tetrachloroethene	17	ט
79-34-51,1,2,2-Tetrachloroethane	17	U
108-88-3Toluene	17	U
108-90-7Chlorobenzene	17	ט
100-41-4Ethylbenzene	17	U
100-42-5Styrene	17	U
1330-20-7Xylene (total)	17	U

15

Sample wt/vol: $\underline{4.60}$ (g/mL) \underline{G}

Lab Name:

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TENTATIVELY	IDENTIFIED COMPOUNDS	
		SH899-12207-B70615
Recra.LabNet	Contract: 01667600001	

Lab File ID: h121215

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-013

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: not dec. 37 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 1.09

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 1 (ug/L or ug/Kg) 0 UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================		======================================	=====
1. 556672	CYCLOTETRASILOXANE, OCTAMETH	22.031	9	NJ
				ii

Lab Name: Recra.LabNet Contract: 01667	600001	NYSDEC-FRID	GE BLANK
Lab Code: Recra Case No.:	SAS No.:	SDG No	.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	9912L959-	014
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	h121220	
Level: (low/med) LOW	Date Received:	12/08/99	
% Moisture: not dec	Date Analyzed:	12/12/99	
GC Column: RTX624 ID: 0.32 (mm)	Dilution Facto	or: 1.00	
Soil Extract Volume:(uL)	Soil Aliquot V	Volume:	(uL)
CONCE	NTRATION UNITS:	:	
CAS NO. COMPOUND (ug/L	or ug/Kg) UG/I	<u> </u>	
	<u> </u>		1
74-87-3Chloromethane	i	10 0	1
74-83-9Bromomethane		10 U	į
75-01-4Vinyl Chloride		10 U	ì
75-00-3Chloroethane		10 U	i
75-09-2Methylene Chloride		23 B	1
67-64-1Acetone		13 B	1
75-15-0Carbon Disulfide_		10 U	
75-35-41,1-Dichloroethene		10 U	
75-34-31,1-Dichloroethane		10 ប	}
540-59-01,2-Dichloroethene (total	a1)	10 U	
67-66-3Chloroform		10 U	
107-06-21,2-Dichloroethane		10 U	j .
78-93-32-Butanone		10 0	j
71-55-61,1,1-Trichloroethane_		10 0	
56-23-5Carbon Tetrachloride		10 U	İ
75-27-4Bromodichloromethane	·	ט ט	j
78-87-51,2-Dichloropropane		10 U	İ
10061-01-5cis-1,3-Dichloropropene		10 0	
79-01-6Trichloroethene	 }	10 U	1
124-48-1Dibromochloromethane		10 U	j-
79-00-51,1,2-Trichloroethane		10 U	İ
71-43-2Benzene	 -	10 U	
10061-02-6Trans-1,3-Dichloroproper	ne	10 U	
75-25-2Bromoform		10 U	•
108-10-14-Methyl-2-pentanone	 i	10 U	
591-78-62-Hexanone		10∫0	1
127-18-4Tetrachloroethene		10 0	
79-34-51,1,2,2-Tetrachloroetha	ne	10 U	
108-88-3Toluene		10 U	1
108-90-7Chlorobenzene		10 0	
100-41-4Ethylbenzene		10 U	1
100-42-5Styrene		10 0	
1330-20-7Xylene (total)		10 U	1

3/90 /

FORM 1 VOA

14

Raw QC Data: Tune, Blank and Spike Data

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 99LVH638-MB1

Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{G} Lab File ID: $\underline{h121205}$

Level: (low/med) LOW Date Received: 12/12/99

% Moisture: not dec. ____ Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32(mm) Dilution Factor: 1.00

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/K	g) <u>UG/KG</u>	Q
74-87-3	Chloromethane	10	ט
	Bromomethane	10	ם
	Vinyl Chloride	10	ט
	Chloroethane	10	:
	Methylene Chloride	11	
67-64-1			J
	Carbon Disulfide	10	
	1,1-Dichloroethene	10	U
	1,1-Dichloroethane	10	ט
	1,2-Dichloroethene (total)	10	:
	Chloroform	10	:
	1,2-Dichloroethane	10	ט
	2-Butanone	10	:
	1,1,1-Trichloroethane	10	ט
	Carbon Tetrachloride	10	ט
	Bromodichloromethane	10	ט
	1,2-Dichloropropane	10	ט
	cis-1,3-Dichloropropene	10	U
	Trichloroethene	10	u
	Dibromochloromethane	10	υ .
	1,1,2-Trichloroethane	10	υ
	Benzene	. 10	U
	Trans-1,3-Dichloropropene	10	U
	Bromoform	10	ט
-	4-Methyl-2-pentanone	10	U
	2-Hexanone	10	ט
	Tetrachloroethene	10	U
	1,1,2,2-Tetrachloroethane	10	U
108-88-3		10	υ
	Chlorobenzene	10	ן ש
	Ethylbenzene	10	U
	Styrene	10	ן ס
	Xylene (total)	10	U

Lab Nar	me: <u>Recra.Lab</u>	Net Contract:	016676	500001	V	BLKIE	MS		
Lab Cod	de: <u>Recra</u>	Case No.:		SAS No.:		S	DG No.	.:	
Matrix	: (soil/water) <u>SOIL</u>		Lab Sampl	e ID:	99LV	H638-N	MB1 BS	
Sample	wt/vol:	<u>5.00</u> (g/mL) G		Lab File	ID:	h121	217		
Level:	(low/med)	LOW		Date Rece	ived:	12/1	2/99		
% Moist	ture: not dec	•		Date Anal	yzed:	12/1	2/99		
GC Colu	umn: RTX624	ID: <u>0.32</u> (mm)		Dilution	Factor	: 1.00)		
Soil Ex	xtract Volume	:(uL)		Soil Aliq	ruot Vo	lume:		(uL)	
				TRATION U					
	CAS NO.	COMPOUND	(ug/L	or ug/Kg)	UG/KG		Q		
	74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 540-59-0 67-66-3 107-06-2 78-93-3 71-55-6 56-23-5	ChloromethaneBromomethaneVinyl ChlorideChloroethaneMethylene ChloridAcetoneCarbon Disulfide1,1-Dichloroethan1,2-DichloroethanChloroform1,2-Dichloroethan2-Butanone1,1,1-Trichloroet	deee (tota	1)		10 10 10 23 6 10 22 10 10 10 10	U U U U U U U U U U U U U U U U U U U		
	78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5 71-43-2 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 79-34-5 108-88-3 108-90-7	Trans-1,3-DichlorBromoform4-Methyl-2-pentar2-HexanoneTetrachloroethene1,1,2,2-Tetrachlor	nnenanenone	ie l	•	10 10 10 40 10 10 10 10 10 10 44 45 10	U	· ·	
1	100-42-5					10 10	ט		

CAS NO.

	EPA	SAMPLE	NO.		
					-
,				•	
- 1	VBLK1	F			

Lab Name: Recra.LabNet Contract: 01667	500001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 99LVH639-MB1
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>h121206</u>
Level: (low/med) LOW	Date Received: <u>12/12/99</u>
% Moisture: not dec	Date Analyzed: 12/12/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q

74-87-3	Chloromethane	10	 ប
	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
	Chloroethane	10	U
75-09-2	Methylene Chloride	12	
67-64-1	Acetone	3	J
75-15-0	Carbon Disulfide	10	U
75-35-4	1,1-Dichloroethene	10	σ
75-34-3	1,1-Dichloroethane	10	ש
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	U
107-06-2	1,2-Dichloroethane	_ 10	U
78-93-3	2-Butanone	10	U
71-55-6	1,1,1-Trichloroethane	10	U
56-23-5	Carbon Tetrachloride	_ 10	ט
75-27-4	Bromodichloromethane	_ 10	U
78-87-5	1,2-Dichloropropane	_ 10	Ū
10061-01-5	cis-1,3-Dichloropropene	_ 10	U
79-01-6	Trichloroethene	_ 10	ט
124-48-1	Dibromochloromethane	_ 10	Ū
79-00-5	1,1,2-Trichloroethane	_ 10	ט
71-43-2		_ 10	ט
10061-02-6	Trans-1,3-Dichloropropene	_ 10	ט
75-25-2	Bromoform	_ 10	ט
108-10-1	4-Methyl-2-pentanone	_} 10	U
-	2-Hexanone	_ 10	U
	Tetrachloroethene	_ 10	U
79-34-5	1,1,2,2-Tetrachloroethane	_ 10	שׁ
	Toluene	_ 10	1 -
	Chlorobenzene	_ 10	!
	Ethylbenzene	_ 10	:
	Styrene	_ 10	!
1330-20-7	Xylene (total)	_ 10	U

3/90 /07-6,0

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA S	HEET
Lab Name: Recra.LabNet Contract: 016	VBLKIH 67600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 99LVN487-MB1
Sample wt/vol: 5.00 (g/mL) G	Lab File ID: n121005
Level: (low/med) LOW	Date Received: <u>12/10/99</u>
% Moisture: not dec	Date Analyzed: 12/10/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	CENTRATION UNITS: /L or ug/Kg) UG/KG Q
74-87-3Chloromethane	10 0
74-83-9Bromomethane	
75-01-4Vinyl Chloride	
75-00-3Chloroethane	
75-09-2Methylene Chloride	· · · · · · · · · · · · · · · · · · ·
67-64-1Acetone	8 J
75-15-0Carbon Disulfide	10 U
75-35-41,1-Dichloroethene	
75-34-31,1-Dichloroethane	
540-59-01,2-Dichloroethene (t	
67-66-3Chloroform	10 σ

75-01-4Vinyl Chloride	10	:	
75-00-3Chloroethane	10		
75-09-2Methylene Chloride	9		
67-64-1Acetone	8		
75-15-0Carbon Disulfide	10	:	•
75-35-41,1-Dichloroethene	10		
75-34-31,1-Dichloroethane	10		
540-59-01,2-Dichloroethene (total)	10		
67-66-3Chloroform	10		
107-06-21,2-Dichloroethane	10	! !	
78-93-32-Butanone	2		
71-55-61,1,1-Trichloroethane	10		
56-23-5Carbon Tetrachloride	10	:	
75-27-4Bromodichloromethane	10		
78-87-51,2-Dichloropropane	10	•	
10061-01-5cis-1,3-Dichloropropene	10	ט	
79-01-6Trichloroethene	10		•
124-48-1Dibromochloromethane	. 10	:	
79-00-51,1,2-Trichloroethane	10	: :	
71-43-2Benzene	10	:	
10061-02-6Trans-1,3-Dichloropropene	10	:	
75-25-2Bromoform	10		
108-10-14-Methyl-2-pentanone	10	: :	
591-78-62-Hexanone	10		
127-18-4Tetrachloroethene	10		
79-34-51,1,2,2-Tetrachloroethane	_ 10	: :	
108-88-3Toluene	- '	υ .	
108-90-7Chlorobenzene	_ 10	: :	
100-41-4Ethylbenzene	_ 10	: :	
100-42-5Styrene	_ 10	: :	
1330-20-7Xylene (total)	_ 10	i i	
	.	I	ادون الم
FORM 1 VOA		3/90	· :2*

EPA SAMPLE NO.

Tab Name Danie Tabyah	VBLKIG
Lab Name: Recra.LabNet Contract: 01667	600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 99LVH641-MB1
Sample wt/vol: $\underline{5.00}$ (g/mL) \underline{G}	Lab File ID: <u>h121305</u>
Level: (low/med) LOW	Date Received: <u>12/13/99</u>
% Moisture: not dec	Date Analyzed: 12/13/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	INTRATION UNITS: or ug/Kg) <u>UG/KG</u> Q
74-87-3	10 U
124-48-1Dibromochloromethane 79-00-51,1,2-Trichloroethane	10 U

FORM 1 VOA

10061-02-6----Trans-1,3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane

108-10-1-----4-Methyl-2-pentanone

127-18-4----Tetrachloroethene

75-25-2-----Bromoform

108-88-3-----Toluene

100-42-5-----Styrene

591-78-6----2-Hexanone

.108-90-7-----Chlorobenzene

100-41-4----Ethylbenzene_

1330-20-7-----Xylene (total)

3/90 Jah D. 01.00

10 U

10 | U

10 U

10 U

10 U

10 | U

10 U

10 U

10 U

10 0

SH899-12	2206-B70607M	ns .

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: _____ SDG No.: ____ Lab Code: Recra Case No.: ____

Lab Sample ID: 9912L959-007 MS Matrix: (soil/water) SOIL

Sample wt/vol: 4.50 (g/mL) G Lab File ID: h121218

Date Received: <u>12/08/99</u> Level: (low/med) LOW

% Moisture: not dec. 33 Date Analyzed: 12/12/99

GC Column: <u>RTX624</u> ID: <u>0.32</u> (mm) Dilution Factor: 1.11

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

AS NO. COMPOUND	(ug/L or ug/Kg) UG/KG		Q
4-87-3Chloromethane		17	U
4-83-9Bromomethane		17	υ
5-01-4Vinyl Chloride		17	U
5-00-3Chloroethane		17	σ
5-09-2Methylene Chloride		77	в.
7-64-1Acetone		25	в
5-15-0Carbon Disulfide		17	1
5-35-41,1-Dichloroethene		78	:
5-34-31,1-Dichloroethane		17	σ
40-59-01,2-Dichloroethene	·	17	•
7-66-3Chloroform		17	
.07-06-21,2-Dichloroethane		17	1 -
8-93-32-Butanone		17	:
1-55-61,1,1-Trichloroeth	ane	17	
6-23-5Carbon Tetrachlori		17	;
5-27-4Bromodichlorometha		17	:
8-87-51,2-Dichloropropar		17	
.0061-01-5cis-1,3-Dichloropr		17	
9-01-6Trichloroethene		70	!
24-48-1Dibromochlorometha	ine	17	:
9-00-51,1,2-Trichloroeth	 ;	17	1
71-43-2Benzene		82	:
.0061-02-6Trans-1,3-Dichlore	propene	17	
75-25-2Bromoform		17	
.08-10-14-Methyl-2-pentance	one	17	U
91-78-62-Hexanone		17	:
27-18-4Tetrachloroethene		17	σ
79-34-51,1,2,2-Tetrachlor		17	U
L08-88-3Toluene	 i	97	Z
L08-90-7Chlorobenzene		83	Z
L00-41-4Ethylbenzene	;	17	ט
L00-42-5Styrene	i	17	ט
1330-20-7Xylene (total)		17	U
SPIKE COMPOUND FORM	1 VOA		3/90

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| SH899-12206-B70607MSD | Lab Name: Recra.LabNet | Contract: 01667600001 | SAS No.: | SDG No.: | SD

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-007 MSD

Sample wt/vol: $\underline{5.10}$ (g/mL) \underline{G} Lab File ID: $\underline{h121219}$

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: not dec. 33 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 0.980

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	(g) <u>UG/KG</u>		Q.	
74-87-3	Chloromethane			15	U	
74-83-9	Bromomethane			15	U	
75-01-4	Vinyl Chloride	·		15	υ	
75-00-3	Chloroethane		•	15	U	
75-09-2	Methylene Chloride	3		78	В	
67-64-1	Acetone			31	В	,
75-15-0	Carbon Disulfide			15	U	
75-35-4	1,1-Dichloroethen	9		72	Z ,	
75-34-3	1,1-Dichloroethan	2		15	σ	
540-59-0	1,2-Dichloroethen	e (total)		15	U	1
	Chloroform_			15	σ	1
	1,2-Dichloroethan	2	•	15	U	
78-93-3	2-Butanone			15	U	
71-55-6	1,1,1-Trichloroet	hane		15	U	
56-23-5	Carbon Tetrachlor	ide		15	σ	
75-27-4	Bromodichlorometh	ane		15	σ	
78-87-5	1,2-Dichloropropa	ne		15	υ	1
10061-01-5	cis-1,3-Dichlorop	ropene		15	ប	
79-01-6	Trichloroethene			57	Z	
	Dibromochlorometh			15	U	-
79-00-5	1,1,2-Trichloroet	hane		15	Ü	 .
71-43-2	Benzene			68	Z	
10061-02-6	Trans-1,3-Dichlor	opropene	·	15	υ	
	Bromoform		·	15	Ū	1
	4-Methyl-2-pentan	one		15	Ū	1
	2-Hexanone			15	U	
127-18-4	Tetrachloroethene			15	σ	
79-34-5	1,1,2,2-Tetrachlo	roethane		15	σ	
	Toluene			89	Z	
	Chlorobenzene			67	Z	
	Ethylbenzene			15	U	
	Styrene			15	U	
	Xylene (total)			15	TT	1

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW #: 9912L959

W.O.#: 01667-600-001-9999-00

Date Received: 12-08-99

ELAP #: 10752

SEMIVOLATILE

Eleven (11) soil samples were collected on 12-06,07-99.

The samples and their associated QC samples were extracted on 12-18-99 and analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Semivolatile target compounds on 01-10,11,12-2000.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature upon receipt has been recorded on the chain-of-custody.
- 2. The samples were extracted and analyzed within required holding times.
- 3. Non-target compounds were detected in the samples.
- 4. All samples with the exception of SH899-12206-B70605 and SH899-12206-B70612 required 2 to 1000-fold dilutions due to high levels of both target and non-target compounds.
- 5. Two (2) of one hundred four (104) obtainable surrogate recoveries were outside EPA QC limits. However, EPA CLP surrogate recovery criteria were met (i.e., no more than one outlier per fraction {acid and base neutral} and no recoveries less than 10%).
- 6. Five (5) of eleven (11) blank spike recoveries were outside EPA QC limits.
- 7. Two (2) of twenty-two (22) matrix spike recoveries were outside EPA QC limits. The spike concentration of Pyrene proved to be too low for the sample matrix (Pyrene was present in the sample).
- 8. The method blank contained the common laboratory contaminants Di-n-butylphthalate and Bis(2-Ethylhexyl)phthalate at levels less than the CRQL.
- 9. Internal standard area and retention time criteria were met.
- 10. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael Taylor

<u>0.3 - 08 - ძა</u> Date

Vice President

Vice i lesident

Philadelphia Analytical Laboratory

somegroup data/bnamys12959.doc. The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 8 0 8 pages.

GLOSSARY OF BNA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NQ = Result qualitatively confirmed but not able to quantify.
- A = Indicates that a TIC is a suspected aldol-condensation product.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- X = This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.bna

GLOSSARY OF BNA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.bna

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

DS - Drum
Soilds
DL - Drum
Liquids
L - EP/ICLP
Leachate
W1 - Wipe
X - Other
F - Fish S- Soll
SE- Sediment
SO- Solld
SL- Sludge
W- Water MATRIX CODES: QC_ Project # 01667-600-001-9999-00 Est. Final Proj. Sampling Date Client Mysiles Account # Date Rec'd RECRA Project Manager Project Contact/Phone # 99121959 Special instructions: he CRA Eabivet Use Only Relinquished 019 12/8/99 19 프 ķη α 6 Del CLA 111811 X 51431 B - 6361 - 698115 argun Received by table 1 4007 Client ID/Description Custody Transfer Record/Lab Work Request Page Date Due 12/8/99 Date TAT FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS 828 Time 30 Clay 23 B 95 B 03 0 $\overline{\omega}$ Relinquished ΜS Matrix QC Chosen MSD DATE/REVISIONS: REWRITTEN ORIGINAL ANALYSES REQUESTED Matrix Refrigerator # Preservatives Volume #/Type Container Received Date Time Collected Collected ratoba tood ca12(4730 147 1603 21/20 1010 1325 1620 1430 1110 150 1110 Llquld V Llquid Solid Solid relogged to butch Date 8 冬 VOA 1000 ORGANIC BNA Tlme ad by 505 Pest/ PCB CZUBC N2163477956 Samples Labels and COC Record? Y or N Discrepancies Between Herb) ALL RECRA LabNet Use Only 83 Metal 3) Received in Good Condition Y or N
4) Labels Indicate INORG Holding Times 5) Received Within Properly Preserved

Y
or N 2) Ambient o Chilled Airbill # Samples were:/
1) Shipped _V_ or Hand Delivered CN Ç **RECRA LabNet Use Only** vocunta) 3) Present on Sample Temp. Cooler COC Record Present 4) Unbroken on Sample Y or N 2) Unbroken on Outer Package Y or N 1) Present on Outer Package Y or N Upon Sample Rec't COC Tape was: _abNet

9912L459

Custody Transfer Record/Lab Work Request Page A of & FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

	2011	Relinquished by						Special instructions:						X Other	•	L- EP/TCLP	Solids DL - Drum	DS - Drum	W - Water	SC - Solid SL - Studge	CODES: S - Soll SE - Sediment	MATRIX	Account #	Date Rec'd	ac	RECRA Project Manager	Project Contact/Phone #	Project #	Est. Final Proj. Sampling Date	Cillent \mathcal{H}
								one:						14	5	14	13	1/2	110		E Cab					it Man	cVPho		. Samı	podec
	Mosen	Received by												-	S11897 12	Nysolec-fridge	+		511899-1230013	12	CIIe			56	Del ()	nger	76 #		pling Date	EC.
	12/8/41	Date													1270× B	L			B-B	2207	Client ID/Description				TAT		(
	cepso	Time											-		B70601	blank	15	14	70013		otion									
		Relinquished by							DA:					11	telly of con					MS MSD	Chosen	Matrix								
		•							DATE/REVISIONS:					4	4	٤	1		S	8	Metrix	·	REC	AN	Pre		Volume		•	Refi
		Received by	6.	icu 	ا ب حب 	ı.	, i	4	SIONS:			·		-	*) lalam	+	_	12/4/99				REQUESTED	ALYSES	Preservatives			#/Type Container	7	Refrigerator #
		8						1000		-				 	H		10	Se.	19 0430	_	Date Time Collected Collected			,	L	<u> </u>	 		\Box	
		Date						A see labolation								1300	1020	04/40	3			_	\	' —	_	Solid	Liquid	Solid	Llquid	
		(9)						2000	•					\coprod	\coprod	1		<u></u>	\ \ \	< <>>	240		VO	_	-	125 22	1	a 1		
		Time											-	#	$\frac{1}{1}$		~	< <	/	<i>∠</i> ∑	²³ 50		Pesi PCE	تول	-	1000	0	a + 1	\vdash	3
	<u>ح ۵</u>	S D]	-									-	H	\parallel	<u> </u>				<u> </u>		-	PCE Heri	┨	-					\dashv
	COC Record? Y NOTES:	Discrepancies Between Samples Labels and									-		-	t				-		CZ	24,-					\vdash				\dashv
		cies Bet .abels a								-	 			1				<u> </u>				æ			T					\exists
	o Z											-		2	12							RECRA LabNet Use			Ī					
	¥	5)	<u>ا</u> و و	<u>ဂ</u> ဗ	22 2	: 3	S	Т	7						1		<	<	/	4,	5.5.5c	abNet	Meta	ı Z		-38	O	la-		W
_	olding	Receip	Labels operly (Receiv andition	2) Ambier	mano Delivereo	Samples were: 1) Shipped ——										<	<	<	ic,	070	Use	CN	INORG		1				3
-	.≺ es	5) Receiped Within	4) Labels Indicate Properly Preserved	3) Received in Good Condition Y or N	2) Ambient or Chilled	rvereo .	were:		REC													Only								
	Z	5 ×	ڰؙ	_ 8 ≥ ≥>	illed		q		RA Lat																					
	Cooler	ę c	San		(3) (3)	2) [2	₽ ⇒ 8		Ne. Co													←								
	Cooler	on Sam	Sample Y or	<u> </u>	ckage Present	Jnbroke	COC Tape was: 1) Present on O Package Y or		RECRA LabNet Use Only	-		_																		
		Upon Sample Rec't Y or N	or z	or or	Package Y or N 3) Present on Sample	2) Unbroken on Oute	COC Tape was: 1) Present on Outer Package Y or N			L																				
	റ <u>്</u>	z		Z	nple Z	uter 14	z 9																							

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Lab Code: Recra Case No.: SAS No.: SDG No.:

MATRIX Spike - EPA Sample No.: SH899-12206-B Level (low/med) LOW

COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	MS CONCENTRATION UG/KG	MS % REC #	QC LIMITS REC.
Phenol	3640	0	3290	90	26 - 90
2-Chlorophenol	3640	0	3280	90	25 -102
1,4-Dichlorobenzene	2430	0	2060	85	28 -104
N-Nitroso-di-n-prop.(1)	2430	0	2160	89	41 -126
1,2,4-Trichlorobenzene_	2430	0	2120	87	38 -107
4-Chloro-3-methylphenol	3640	0	3430	94	26 -103
Acenaphthene	2430	275	2620	96	31 -137
4-Nitrophenol	3640	0	2170	60	11 -114
2,4-Dinitrotoluene	2430	0	1950	80	28 - 89
Pentachlorophenol	3640	0.	2620	72	17 -109
Pyrene	2430	19300	14200	0 *	35 -142

	SPIKE	MSD	MSD		00.73	
	ADDED	CONCENTRATION	ક	ક	QC L	
COMPOUND	UG/KG	UG/KG	REC #	RPD #	RPD	REC
=======================================			======	. = = = = = :		
Phenol	3740	3200	86	4	35	26 - 90
2-Chlorophenol	3740	3380	91	1	50	25 -102
1,4-Dichlorobenzene	2490	2110	85	0	27	28 -104
N-Nitroso-di-n-prop.(1)	2490	1970	79	11	38	41 -126
1,2,4-Trichlorobenzene_	2490	2310	93	6	23	38 -107
4-Chloro-3-methylphenol	3740	3140	84	11	33	26 -103
Acenaphthene	2490	2760	100	4	19	31 -137
4-Nitrophenol	3740	2480	66	9	50	11 -114
2,4-Dinitrotoluene	2490	2070	83	3	47	28 - 89
Pentachlorophenol	3740	2480	66	8	47	17 -109
Pyrene	2490	38700	780 *	200 *	36	35 -142
		l				

111	NI Ni + ~c	200-di-1	a-propy/	lamine

24	Column	to he	11524	+0	flac	recovery	and RI	SV GG	lues	with	an:	asterisk	
ш.	COLUMN	- FO DE	- USEC	1 ()	1170	LECUVELY	and the	FD Va	1455	W T L-II	CIII	GO LETTOV	

	<pre>11 outside limits 2 out of 22 outside limits</pre>
COMMENTS:	

^{*} Values outside of QC limits

3D SOIL SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name:	Recra.LabNet	Contract:	1667-00-01
Lab Code:	Recra Case No.:	SAS No.:	SDG No.:
BLANK Spik	e - EPA Sample No.:	SBLKJD Leve	el (low/med) <u>LOW</u>

	SPIKE	SAMPLE	BS	BS	QC
	ADDED	CONCENTRATION		. %	LIMITS
COMPOUND	UG/KG	UG/KG	UG/KG	REC #	REC.
Phenol	 2500	0		ا* 112	26 - 90
2-Chlorophenol	2500	0	2600	104 *	25 -102
1,4-Dichlorobenzene	1670	0	1600	96	28 -104
N-Nitroso-di-n-prop.(1)	1670	0	1610	96	41 -126
1,2,4-Trichlorobenzene_	1670	0	1720	103	38 -107
4-Chloro-3-methylphenol	2500	0	2640	. 105 *	26 -103
Acenaphthene	1670	0	1750	105	31 -137
4-Nitrophenol	2500	0	2720	108	11 -114
2,4-Dinitrotoluene	1670	0	1690	101 *	28 - 89
Pentachlorophenol	2500	0	3560	142 *	17 -109
Pyrene	1670	0	2210	132	35 -142

- (1) N-Nitroso-di-n-propylamine
- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike Recovery	5 out of11 outside limits
COMMENTS:	

Sample Data

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12206-B70603	
1	

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-003

Sample wt/vol: $30.0 \text{ (g/mL) } \underline{G}$ Lab File ID: $\underline{D011117}$

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 34 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/11/00

Injection Volume: 2.0 (uL) Dilution Factor: 200

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.1}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND (dg/L) Of dg	g/kg/ <u>00/ku</u>	
108-95-2	Phenol	100000	ט
111-44-4	bis(2-Chloroethyl)ether	100000	Ū
	2-Chlorophenol		
	1,3-Dichlorobenzene		U
	1,4-Dichlorobenzene		Ū
95-50-1	1,2-Dichlorobenzene	100000	U
95-48-7	2-Methylphenol	100000	
108-60-1	2,2'-oxybis(1-Chloropropane)	100000	Ū
106-44-5	4-Methylphenol	100000	U
621-64-7	N-Nitroso-di-n-propylamine	100000	
67-72-1	Hexachloroethane	100000	U
98-95-3	Nitrobenzene	100000	
78-59-1	Isophorone	100000	
88-75-5	2-Nitrophencl	100000	
105-67-9	2,4-Dimethylphenol	100000	
	bis(2-Chloroethoxy)methane		
120-83-2	2,4-Dichlorophenol	100000	U
120-82-1	1,2,4-Trichlorobenzene	100000	Ü
	Naphthalene		
106-47-8	4-Chloroaniline	100000	Ū .
87-68-3	Hexachlorobutadiene	100000	U
59-50-7	4-Chloro-3-methylphenol	100000	U
91-57-6	2-Methylnaphthalene	110000	
77-47-4	Hexachlorocyclopentadiene	100000	U
	2,4,6-Trichlorophenol		U
95-95-4 -	2,4,5-Trichlorophencl	250000	U
91-58-7	2-Chloronaphthalene	100000	U
88-74-4	2-Nitroaniline	250000	U
131-11-3	Dimethylphthalate	100000	U
208-96-8	Acenaphthylene	100000	Ū
606-20-2	2,6-Dinitrotoluene	100000	U
99-09-2	3-Nitroaniline	250000	Ŭ
83-32-9	Acenaphthene	170000	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Recra.LabNet	Contract: 0	· · · · · · · · · · · · · · · · · · ·	SH899-12206-B70603
Lab Code: Recra Case No.:	· •	SAS No.:	SDG No.:
Matrix: (soil/water) SOIL		Lab Sample ID:	9912L959-003

Sample wt/vol: $30.0 \text{ (g/mL)} \text{ } \underline{G}$ Lab File ID: <u>D011117</u>

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: 34 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/11/00

Injection Volume: 2.0(uL) Dilution Factor: 200

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{3.1}$ CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

51-28-52,4-Dinitrophenol	250000	l U
100-02-74-Nitrophenol	250000	Ū
132-64-9Dibenzofuran	220000	İ
121-14-22,4-Dinitrotoluene	100000	Ū
84-66-2Diethylphthalate	100000	Ū
7005-72-34-Chlorophenyl-phenylether	100000	U
86-73-7Fluorene	360000	ĺ
100-01-64-Nitroaniline	250000	U
534-52-14,6-Dinitro-2-methylphenol	25000.0	U
36-30-6N-Nitrosodiphenylamine (1)	100000	ט
101-55-34-Bromophenyl-phenylether	100000	U
118-74-1Hexachlorobenzene	100000	Ū
37-86-5Pentachlorophenol	250000	U
35-01-8Phenanthrene	3100000	E
20-12-7Anthracene	510000	<u>.</u>
36-74-8Carbazole	170000	
34-74-2Di-n-butylphthalate	100000	Ū
206-44-0Fluoranthene	2800000	E
129-00-0Pyrene	1700000	Ε
35-68-7Butylbenzylphthalate	100000	Ū
91-94-13,3'-Dichlorobenzidine	100000	U
66-55-3Benzo(a)anthracene	760000	
218-01-9Chrysene	710000	
17-81-7bis(2-Ethylhexyl)phthalate	100000	U
.17-84-0Di-n-octyl phthalate		
205-99-2Benzo(b)fluoranthene	480000	
207-08-9Benzo(k)fluoranthene	470000	
50-32-8Benzo(a)pyrene	530000	
193-39-5Indeno(1,2,3-cd)pyrene		
33-70-3Dibenz(a,h)anthracene	100000	
191-24-2Benzo(g,h,i)perylene	280000	

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2 RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70603

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: _____ SDG No.: ____

Lab Sample ID: 9912L959-003 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) GLab File ID: <u>D011117</u>

Date Received: <u>12/08/99</u> Level: (low/med) LOW

% Moisture: 34 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/11/00

Dilution Factor: 200 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) Y pH: 8.1

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Number TICs found: 22

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 90-12-0	1-METHYLNAPHTHALENE	13.67	100000	JN
2.	PAH	17.92	70000	J
3. 132-65-0	DIBENZOTHIOPHENE	19.29	100000	JN
4.	UNKNOWN	19.71	50000	J
5.	PAH	20.40	100000	J
6.	PAH	20.46	200000	J
7.	PAH	20.52	80000	J
8.	PAH	20.63	300000	J
9.	PAH	20.89	100000	J
10. 84-65-1	ANTHRACENEDIONE	20.98	60000	JN
11. 243-42-5	BENZONAPHTHOFURAN	21.90	30000	JN
12.	PAH	22.42	50000	J
13.	PAH	22.51	40000	J
14. 239-35-0	BENZONAPHTHOTHIOPHENE	23.46	30000	JN
15.	PAH	23.58	20000	J
16. 239-01-0	BENZOCARBAZOLE	24.34	30000	JN
17.	PAH	24.84	20000	J
18.	PAH	27.13	100000	J
19.	PAH	27.76	400000	J
20.	PAH	28.25	200000	J
21.	PAH	28.92	80000	J
22.	PAH	33.84	80000	J

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12206-B70603DL

Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: _____ SDG No.: _ Lab Code: Recra Case No.: ____ Lab Sample ID: 9912L959-003 DL Matrix: (soil/water) SOIL Sample wt/vol: 30.0 (g/mL) GLab File ID: <u>D011210</u> Level: (low/med) LOW Date Received: 12/08/99 % Moisture: 34 decanted: (Y/N) Date Extracted: 12/18/99Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00 Dilution Factor: 1000 Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.1}$

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

		1
51-28-52,4-Dinitrophenol	1300000	 U
100-02-74-Nitrophenol	1300000	Ū
132-64-9Dibenzofuran	170000	
121-14-22,4-Dinitrotoluene	510000	Ū
84-66-2Diethylphthalate	510000	U
	510000	U
86-73-7Fluorene	270000	
100-01-64-Nitroaniline	1300000	Ū
534-52-14,6-Dinitro-2-methylphenol	1300000	U
86-30-6N-Nitrosodiphenylamine (1)	510000	U
101-55-34-Bromophenyl-phenylether	510000	
118-74-1Hexachlorobenzene	510000	U
87-86-5Pentachlorophenol	1300000	Ū
85-01-8Phenanthrene	1600000	D
120-12-7Anthracene	380000	JD
86-74-8Carbazole	130000	JD
84-74-2Di-n-butylphthalate	510000	U
206-44-0Fluoranthene	1500000	D
129-00-0Pyrene	960000	D
85-68-7Butylbenzylphthalate	510000	U
91-94-13,3'-Dichlorobenzidine	510000	U
56-55-3Benzo(a) anthracene	510000	D
218-01-9Chrysene	500000	JD
117-81-7bis(2-Ethylhexyl)phthalate	510000	U
117-84-0Di-n-octyl phthalate	510000	U
205-99-2Benzo(b) fluoranthene	380000	JD
207-08-9Benzo(k)fluoranthene	350000	JD
50-32-8Benzo(a)pyrene	410000	JD
193-39-5Indeno(1,2,3-cd)pyrene	220000	JD
53-70-3Dibenz(a,h)anthracene	81000	JD
191-24-2Benzo(g,h,i)perylene	200000	JD
- Dinhandani	:	

(1) - Cannot be separated from Diphenylamine FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

· ·	_	 	 	
				- 1
CH099 1220C D70C02Dt			 	- ;

Lab Name: Recra.LabNet Contract: 01667600001

EPA SAMPLE NO.

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D011210}$

Lab Sample ID: 9912L959-003 DL

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: 34 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 1000

GPC Cleanup: (Y/N) Y pH: 8.1

CONCENTRATION UNITS:

Number TICs found: _7

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	PAH	20.17	100000	J
2.	PAH	22.20	200000	J
3.	PAH	20.40	300000	J
4.	PAH	22.22	200000	J
5.	PAH	22.29	100000	J
6.	PAH	27.16	300000	J
7.	PAH	27.63	100000	J

|SH899-12206-B70604

Lab Name: Recra.LabNet Contract: 01667600001

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-004

Sample wt/vol: 30.1 (g/mL) \underline{G} Lab File ID: $\underline{D011208}$

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 10.0

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.3}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		·	
108-95-2	Phenol	5000	177
	bis(2-Chloroethyl)ether	5000	
	2-Chlorophenol	5000	
	1,3-Dichlorobenzene	5000	,
	1,4-Dichlorobenzene	5000	!
95-50-1	1,2-Dichlorobenzene	5000	
95-48-7	2-Methylphenol	5000	•
	2,2'-oxybis(1-Chloropropane)	5000	
	4-Methylphenol	5000	1
	N-Nitroso-di-n-propylamine	5000	ט
	Hexachloroethane	5000	U
	Nitrobenzene	5000	U
78-59-1	Isophorone	5000	U
88-75-5	2-Nitrophenol	5000	U
105-67-9	2,4-Dimethylphenol	5000	U
111-91-1	bis(2-Chloroethoxy)methane	5000	Ū
120-83-2	2,4-Dichlorophenol	5000	U
120-82-1	1,2,4-Trichlorobenzene	5000	U
	Naphthalene	2300	J
	4-Chloroaniline	5000	ָ ע
87-68-3	Hexachlorobutadiene	5000	ับ
59-50-7	4-Chloro-3-methylphenol	5000	Ū
	2-Methylnaphthalene	670	J
	Hexachlorocyclopentadiene	5000	
	2,4,6-Trichlorophenol	5000	-
	2,4,5-Trichlorophenol	12000	
	2-Chloronaphthalene	5000	•
	2-Nitroaniline	12000	<u>'</u>
	Dimethylphthalate	5000	! -
	Acenaphthylene	310	
	2,6-Dinitrotoluene	5000	:
	3-Nitroaniline	12000	
	Acenaphthene	1700	
05-52-7-9	11001140110110	i 1700	, .
		l 	ــــــــــــــــــــــــــــــــــــــ

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

i	-
SH899-12206-B70604	
1	

Lab Name: Recra.LabNet Contract: 01667600001

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-004

Sample wt/vol: 30.1 (g/mL) G Lab File ID: D011208

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 10.0

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.3}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

31-28-5	2,4-Dinitrophenol_	12000	U
	4-Nitrophenol	12000	U
	Dibenzofuran_	1500	J
	2,4-Dinitrotoluene	5000	U
	Diethylphthalate_	5000	U
	4-Chlorophenyl-phenylether	5000	U
	Fluorene	2400	J
.00-01-6	4-Nitroaniline	12000	Ū
34-52-1	4,6-Dinitro-2-methylphenol_	12000	Ū
86-30-6	N-Nitrosodiphenylamine (1)	5000	Ū
.01-55-3	4-Bromophenyl-phenylether	5000	U
.18-74-1	Hexachlorobenzene_	5000	U
	Pentachlorophenol		U
	Phenanthrene	25000	
.20-12-7	Anthracene	4700	J
	Carbazole	_ 2500	J
84-74-2	Di-n-butylphthalate	5000	Ū
206-44-0	Fluoranthene	24000	
	Pyrene	20000	
35-68-7	Butylbenzylphthalate	5000	Ü
91-94-1	3,3'-Dichlorobenzidine	5000	Ū
6-55-3	Benzo(a)anthracene	10000	
18-01-9	Chrysene	11000	
17-81-7	bis(2-Ethylhexyl)phthalate	_ 5000	U
.17-84-0	Di-n-octyl phthalate	5000	U
205-99-2	Benzo(b)fluoranthene	7000	
207-08-9	Benzo(k) fluoranthene	6900	
	Benzo(a)pyrene	8100	
	Indeno(1,2,3-cd)pyrene		J
3 - 70 - 3 -	Dibenz(a,h)anthracene	1400	J
	Benzo(g,h,i)perylene	4200	J

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70604

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____

SAS No.: _____ SDG No.: _

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-004

Sample wt/vol: 30.1 (g/mL) G

Lab File ID: D011208

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 10.0

GPC Cleanup: (Y/N) Y

pH: <u>8.3</u>

CONCENTRATION UNITS:

Number TICs found: 30

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	UNKNOMN	6.49	3000	J
2. 486-25-9	FLUORENONE	18.85	1000	JN
3. 132-65-0	DIBENZOTHIOPHENE	19.02	1000	JN
4.	PAH	20.17	3000	J
5.	PAH	20.22	4000	J
6.	PAH	20.29	1000	J
7.	PAH	20.40	7000	J
8.	PAH	20.67	2000	J
9. 84-65-1	ANTHRACENEDIONE	20.75	2000	JN
10.	PAH	21.11	2000	J
11. 239-30-5	BENZONAPHTHOFURAN	21.68	2000	JN
12. 243-42-5	BENZONAPHTHOFURAN	21.79	1000	JN
13.	PAH	22.04	2000	J
14.	PAH	22.20	4000	J
15.	PAH	22.30	3000	J
16.	PAH	22.36	2000	J
17.	PAH	22.51	1000	·J
18.	PAH	22.55	1000	J
19.	UNKNOWN	23.01	1000	J
20. 239-35-0	BENZONAPHTHOTHIOPHENE	23.19	2000	JN
21. 239-35-0	BENZONAPHTHOTHIOPHENE	23.24	1,000	JN
22.	PAH	23.30	1000	J
23.	PAH	23.36	2000	J
24.	UNKNOWN	24.01	1000	J
25.	UNKNOWN	24.13	1000	J
26.	UNKNOWN	24.47	2000	J
27.	PAH	25.84	1000	J
28.	PAH	26.60	1000	J
29.	PAH	27.17	6000	J
30.	PAH	27.63	2000	J

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	•	
SH899-12206-B70605		

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-005

Sample wt/vol: $30.0 \text{ (g/mL)} \text{ } \underline{G}$ Lab File ID: <u>D011017</u>

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: ____11 decanted: (Y/N)___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.4}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

108-95-2Phenol	380	
111-44-4bis(2-Chloroethyl)ether	380	! !
95-57-82-Chlorophenol	380	
541-73-11,3-Dichlorobenzene		
106-46-71,4-Dichlorobenzene	380	
95-50-11,2-Dichlorobenzene	380	
95-48-72-Methylphenol	380	!
108-60-12,2'-oxybis(1-Chloropropane)		
106-44-54-Methylphenol	380	
621-64-7N-Nitroso-di-n-propylamine	• !	
67-72-1Hexachloroethane	380	
98-95-3Nitrobenzene	380	
78-59-1Isophorone	380	
88-75-52-Nitrophenol	380	
105-67-92,4-Dimethylphenol	380	
111-91-1bis(2-Chloroethoxy) methane	380	
120-83-22,4-Dichlorophenol	380	
120-83-21,2,4-Trichlorobenzene	380	,
91-20-3Naphthalene	380 380	
106-47-84-Chloroaniline	. 380 380	- 1
87-68-3Hexachlorobutadiene	380	
59~50-74-Chloro-3-methylphenol		•
91-57-62-Methylnaphthalene	380	
77-47-4Hexachlorocyclopentadiene		
88-06-22,4,6-Trichlorophenol	380	
95-95-42,4,5-Trichlorophenol	940	:
91-58-72-Chloronaphthalene	380	,
88-74-42-Nitroaniline	940	
131-11-3Dimethylphthalate	380	
208-96-8Acenaphthylene	380	
606-20-22,6-Dinitrotoluene	1	•
99-09-23-Nitroaniline	380	
83-32-9Acenaphthene	940	
03-32-9Acenaphenene	380	٠
	I	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|SH899-12206-B70605 Contract: <u>01667600001</u> Lab Name: Recra.LabNet SAS No.: _____ SDG No.: ___ Lab Code: Recra Case No.: ____ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-005 Sample wt/vol: 30.0 (g/mL) GLab File ID: D011017 Level: (low/med) LOW Date Received: <u>12/08/99</u> % Moisture: ___11 decanted: (Y/N)___ Date Extracted: <u>12/18/99</u> Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00 Dilution Factor: 1.00 Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) Y pH: <u>8.4</u> CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> CAS NO. | 51-28-5----2,4-Dinitrophenol 940 U 100-02-7-----4-Nitrophenol_____ 940 U | 132-64-9-----Dibenzofuran 380 U 121-14-2-----2,4-Dinitrotoluene__ 380 U 84-66-2-----Diethylphthalate 380 U 7005-72-3----4-Chlorophenyl-phenylether 380 U 86-73-7-----Fluorene 380 U 100-01-6-----4-Nitroaniline 940 U | 534-52-1-----4,6-Dinitro-2-methylphenol____ 940 U 86-30-6----N-Nitrosodiphenylamine (1) 380 U 101-55-3----4-Bromophenyl-phenylether 380 U 380 U 118-74-1-----Hexachlorobenzene__ 87-86-5-----Pentachlorophencl 940 U 99|J 85-01-8-----Phenanthrene 120-12-7-----Anthracene 380 U 380 U 86-74-8-----Carbazole 84-74-2-----Di-n-butylphthalace 380 U 206-44-0-----Fluoranthene____ 130 J 129-00-0-----Pyrene_ 110 J 85-68-7-----Butylbenzylphthalate_ 380 U 91-94-1----3,3'-Dichlorobenzidine_ 380 U 56-55-3-----Benzo(a) anthracene_____ 65 J 218-01-9-----Chrysene 72 J 117-81-7-----bis(2-Ethylhexyl)phthalate 380 U 117-84-0-----Di-n-octyl phthalate___ 380 U 205-99-2----Benzo(b) fluoranthene___ 55 J | 207-08-9-----Benzo(k)fluoranthene__ 59 J 50-32-8-----Benzo(a)pyrene_ 54 | J 193-39-5-----Indeno(1,2,3-cd)pyrene____ 35 J 53-70-3-----Dibenz(a,h)anthracene___ 380 U 191-24-2----Benzo(g,h,i)perylene 43 J

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SH899-12206-B70605

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: _____ SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-005

Sample wt/vol: $30.0 \text{ (g/mL)} \subseteq$ Lab File ID: <u>D011017</u>

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: 11 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Dilution Factor: 1.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) Y pH: <u>8.4</u>

CONCENTRATION UNITS:

Number TICs found: 10 (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	6.78	200	J
2.	ALDOL CONDENSATE	7.06	200	JA
3.	ALDOL CONDENSATE	7.40	90	JA
4.	ALDOL CONDENSATE	8.17	100	JA
5.	ALDOL CONDENSATE	9.29	80	JA
6.	UNKNOWN	19.16	80	J
7.	UNKNOWN	20.34	300	JB
8.	UNKNOWN	23.27	100	J
9.	ALKANE	26.28	200	J
10.	ALKANE	28.80	100	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SAS No.: ____ SDG No.: _

Lab File ID: D011203

|SH899-12206-B70606

Lab Name: Recra.LabNet Contract: 01667600001

Manufac (anil (unton) COTI

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-006

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 28 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 5.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.9}$

Lab Code: Recra Case No.: ____

Sample wt/vol: 30.1 (g/mL) G

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2----Phenol 2300 U | 111-44-4-----bis(2-Chloroethyl)ether 2300 U 2300 U 95-57-8-----2-Chlorophenol 541-73-1-----1,3-Dichlorobenzene 2300 U 106-46-7-----1,4-Dichlorobenzene 2300 U 95-50-1-----1,2-Dichlorobenzene_____ 2300 | U 2300 U 95-48-7----2-Methylphenol 108-60-1----2,2'-oxybis(1-Chloropropane) 2300 U 2300 U 106-44-5----4-Methylphenol 621-64-7----N-Nitroso-di-n-propylamine 2300 | U 2300 U 67-72-1-----Hexachloroethane 98-95-3-----Nitrobenzene_____ 2300 U 2300 U 78-59-1------Isophorone 88-75-5----2-Nitrophenol 2300 U 105-67-9-----2,4-Dimethylphenol 2300 U 111-91-1-----bis(2-Chloroethoxy)methane_ 2300 U 120-83-2----2,4-Dichlorophenol 2300 U 2300 U 120-82-1----1,2,4-Trichlorobenzene 2300 U 91-20-3-----Naphthalene 106-47-8----4-Chloroaniline 2300 U 87-68-3-----Hexachlorobutadiene 2300 U 59-50-7-----4-Chloro-3-methylphenol____ 2300 U 2300 U 91-57-6-----2-Methylnaphthalene____ 77-47-4-----Hexachlorocyclopentadiene 2300 | U 88-06-2-----2,4,6-Trichlorophenol 2300 U 95-95-4----2,4,5-Trichlorophenol 5800 U 91-58-7----2-Chloronaphthalene 2300 0 88-74-4-----2-Nitroaniline 5800 U 2300 U 131-11-3-----Dimethylphthalate 208-96-8-----Acenaphthylene____ 2300 U 2300 U 606-20-2----2,6-Dinitrotoluene____ 99-09-2----3-Nitroaniline____ 5800 U 83-32-9-----Acenaphthene 2300 U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab	Name:	Recra.LabN	<u>let</u>	Contract: (SH899-12206-B70606
ab	Code:	Recra	Case No.:		SAS No.:	SDG No.:
Mat:	rix: (soil/water)	SOIL		Lab Sample ID	: <u>9912L959-006</u>

Sample wt/vol: 30.1 (g/mL) G Lab File ID: D011203

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 28 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 5.00

GPC Cleanup: (Y/N) Y pH: 7.9

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or			Q
51-28-5	2,4-Dinitrophe	nol	<u> </u>	5800	U U
100-02-7	4-Nitrophenol_			5800	U
132-64-9	Dibenzofuran			2300	Ū
121-14-2	2,4-Dinitrotol	iene	1	2300	Ü
84-66-2	Diethylphthala	te		2300	U
7005-72-3	4-Chlorophenyl	-phenylether		2300	U
86-73-7	Fluorene			2300	Ū
100-01-6	4-Nitroaniline			5800	U
534-52-1	4,6-Dinitro-2-	methylphenol_		5800	Ū
86-30-6	N-Nitrosodipher	nylamine (1)		2300	Ū
101-55-3	4-Bromophenyl-	phenylether_		2300	U
118-74-1	Hexachlorobenze	ene		2300	U
87-86-5	Pentachloropher	nol	{	5800	U
85-01-8	Phenanthrene			1400	J
120-12-/	Anthracene		1	. 2300	Ü
86-74-8	Carbazole		1	2300	Ū
84-74-2	Di-n-butylphtha	alace	1	2300	U
206-44-0	Fluoranthene		1	2300	U
129-00-0	Pyrene			120	J
85-68-7	Butylbenzylphtl	nalate	1	2300	
91-94-1	3,3'-Dichlorobe	enzidine		2300	U
56-55-3	Benzo(a)anthra	cene	1	630	J
218-01-9	Chrysene			3100	l i
117-81-7	bis(2-Ethylhexy	<pre>/l)phthalate_</pre>	{	2300	U
117-84-0	Di-n-octyl pht	nalate		130	J
205-99-2	Benzo(b) fluora	nthene	{	460	J
207-08-9	Benzo(k) fluora	nthene		220	J
50-32-8	Benzo(a)pyrene			260	J
193-39-5	Indeno(1,2,3-c	i) pyrene		190	J
53-70-3	Dibenz(a,h)anti	nracene		310	J
191-24-2	Benzo(g,h,i)pe:	cylene		300	J

(1) - Cannot be separated from Diphenylamine FORM 1 SV-2

RFW (y3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70606

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: ____ SDG No.: _ Lab Code: Recra Case No.:

Lab Sample ID: 9912L959-006 Matrix: (soil/water) SOIL

Sample wt/vol: 30.1 (g/mL) G Lab File ID: 0011203

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: 28 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 5.00

pH: __7.9 GPC Cleanup: (Y/N) \underline{Y}

CONCENTRATION UNITS: Number TICs found: 37 (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
:========= 1.	UNRESOLVED HYDROCARBONS	======		====
2.	18 TO 33 MINUTES			
3.	UNKNOWN	13.32	2000	J
4.	ALKANE	16.63	1000	J
5.	ALKANE	17.79	2000	J
6.	ALKANE	18.82	4000	J
7.	ALKANE	19.65	6000	J
8.	PAH	20.17	800	J
9.	PAH	20.22	2000	J
.0.	ALKANE	20.36	7000	J
.1.	ALKANE	20.61	1000	J
.2 .	PAH	20.66	900	J
.3.	UNKNOWN	20.75	1000	J
.4 .	UNKNOWN	20.82	800	J
.5.	ALKANE	20.97	5000	J
.6 .	UNKNOWN	21.20	1000	J
.7.	ALKANE	21.53	2000	·J
.8.	UNKNOWN	21.79	600	J
.9.	ALKANE	21.85	800	J
20.	ALKANE	22.03	1000	J
?1.	UNKNOWN	22.08	700	J
22.	ALKANE	22.20	1000	J
23.	UNKNOWN	22.31	600	J
24.	UNKNOWN	22.50	600	J
25.	ALKANE	22.67	1000	J
26.	UNKNOWN	23.00	800	J
27.	UNKNOWN	23.19.	1000	J
28.	UNKNOWN	23.97	1000	J
29.	UNKNOWN	24.21	700	J
30.	PAH	24.47	2000	J

1 F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA S	AMPI	JE :	NO.
-------	------	------	-----

Lab Name: Recra_LabNet Contract: 01667600001

39.

|SH899-12206-B70606

Lab Code: Recra Case No.: _____ SAS No.: ____ SDG No.:

Lab Sample ID: 9912L959-006 Matrix: (soil/water) SOIL

Sample wt/vol: 30.1 (g/mL) \underline{G} Lab File ID: $\underline{D011203}$

Level: (low/med) LOW Date Received: <u>12/08/99</u>

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 5.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.9}$ CONCENTRATION UNITS: Number TICs found: 37

| PAH

CAS NUMBER COMPOUND NAME RT | EST. CONC. | Q PAH 24.58 31. 1000| J 32. UNKNOWN 24.89 600| J UNKNOWN 33. 24.96 700| J 34. UNKNOWN 25.39 600 J 25.62 1000| J 35. PAH 36. PAH 25.81 1000| J 37. UNKNOWN 25.92 1000| J 38. UNKNOWN 25.99 1000 J

(ug/L or ug/Kg) UG/KG

27.17

FORM 1 SV-TIC

RFW (v3.3)

1000 J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|SH899-12206-B70607

Lab Name: Recra_LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: _____ SDG No.: ___

Lab Sample ID: 9912L959-007 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D011207}$

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/12/00

Dilution Factor: <u>10.0</u> Injection Volume: 2.0(uL)

GPC Cleanup: $(Y/N) \underline{Y}$ pH: $\underline{8.3}$

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q CAS NO. COMPOUND

108-95-2		(25, 22.25,		
111-44-4bis(2-Chloroethyl)ether	108-95-2	Phenol	5000	 [7
95-57-82-Chlorophenol 5000 U 541-73-11,3-Dichloropenzene 5000 U 106-46-71,4-Dichlorobenzene 5000 U 95-50-11,2-Dichlorobenzene 5000 U 95-48-72-Methylphenol 5000 U 108-60-12,2'-oxybis(1-Chloropropane) 5000 U 108-60-12,2'-oxybis(1-Chloropropane) 5000 U 106-44-54-Methylphenol 5000 U 106-44-5Hexachloroethane 5000 U 106-7-72-1Hexachloroethane 5000 U 106-95-3Nitrobenzene 5000 U 108-67-92,4-Dimethylphenol 5000 U 105-67-92,4-Dimethylphenol 5000 U 105-67-92,4-Dimethylphenol 5000 U 111-91-1bis(2-Chloroethoxy)methane 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 106-47-84-Chloroaniline 5000 U 106-47-84-Chloroaniline 5000 U 107-57-62-Methylnaphthalene 5000 U 11-57-62-Methylnaphthalene 5000 U 1091-57-62-Methylnaphthalene 5000 U 1091-58-72-Methylnaphthalene 5000 U 1091-58-72-Methylnaphthalene 5000 U 1091-58-72-Methylnaphthalene 5000 U 1091-58-72-Chloronaphthalene 5000 U 1091-58-72-Chloronaphthalene 5000 U 1091-58-72-Chloronaphthalene 5000 U 1091-58-72-Chloronaphthalene 5000 U 1091-58-7				_
541-73-11,3-Dichlorobenzene 5000 U 106-46-71,4-Dichlorobenzene 5000 U 95-50-11,2-Dichlorobenzene 5000 U 95-48-72-Methylphenol 5000 U 108-60-12,2'-oxybis(1-Chloropropane) 5000 U 106-44-54-Methylphenol 5000 U 621-64-7N-Nitroso-di-n-propylamine 5000 U 67-72-1				
106-46-7	53-37-6	1 3-Dichloropenzane	5000	
95-50-11, 2-Dichlorobenzene 5000 U 95-48-72-Methylphenol 5000 U 108-60-12, 2' - oxybis (1-Chloropropane) 5000 U 106-44-54-Methylphenol 5000 U 621-64-7N-Nitroso-di-n-propylamine 5000 U 67-72-1				
95-48-72-Methylphenol 5000 U 108-60-12,2'-oxybis(1-Chloropropane) 5000 U 106-44-54-Methylphenol 5000 U 621-64-7N-Nitroso-di-n-propylamine 5000 U 67-72-1Hexachloroethane 5000 U 98-95-3Nitrobenzene 5000 U 78-59-1			:	
108-60-12,2'-oxybis(1-Chloropropane) 5000 U 106-44-54-Methylphenol 5000 U 621-64-7N-Nitroso-di-n-propylamine 5000 U 67-72-1Hexachloroethane 5000 U 98-95-3Nitrobenzene 5000 U 88-75-5			•	•
106-44-54-Methylphenol 5000 U 621-64-7N-Nitroso-di-n-propylamine 5000 U 67-72-1Hexachloroethane 5000 U 98-95-3Nitrobenzene 5000 U 78-59-1Isophorone 5000 U 88-75-52-Nitrophenol 5000 U 105-67-92, 4-Dimethylphenol 5000 U 111-91-1	95-48-/	2-Methylphenol		:
621-64-7N-Nitroso-di-n-propylamine 5000 U 67-72-1				:
67-72-1	106-44-5	4-Metnyipnenoi		:
98-95-3Nitrobenzene 5000 U 78-59-1				
78-59-1			1	!
88-75-52-Nitrophenol 5000 U 105-67-92,4-Dimethylphenol 5000 U 111-91-1bis(2-Chloroethoxy)methane 5000 U 120-83-22,4-Dichlorophenol 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 91-20-3Naphthalene 5000 U 87-68-3	98-95-3	Nitrobenzene		
105-67-92,4-Dimethylphenol 5000 U 111-91-1bis(2-Chloroethoxy)methane 5000 U 120-83-22,4-Dichlorophenol 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 91-20-3Naphthalene 5000 U 106-47-84-Chloroaniline 5000 U 87-68-34-Chloro-3-methylphenol 5000 U 91-57-62-Methylnaphthalene 5000 U 77-47-4	78-59-1	Isophorone	•	
111-91-1bis (2-Chloroethoxy) methane 5000 U 120-83-22, 4-Dichlcrophenol 5000 U 120-82-11, 2, 4-Trichlorobenzene 5000 U 91-20-3Naphthalene 5000 U 106-47-84-Chloroaniline 5000 U 87-68-3				! -
120-83-22,4-Dichlorophenol 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 91-20-3Naphthalene 5000 U 106-47-84-Chloroaniline 5000 U 87-68-3Hexachlorobutadiene 5000 U 59-50-74-Chloro-3-methylphenol 5000 U 91-57-62-Methylnaphthalene 5000 U 77-47-4Hexachlorocyclopentadiene 5000 U 88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 U 99-09-23-Nitroaniline 12000 U			i	, -
120-82-11, 2, 4-Trichlorobenzene 5000 U 91-20-3Naphthalene 5000 U 106-47-84-Chloroaniline 5000 U 87-68-34-Chloro-3-methylphenol 5000 U 59-50-74-Chloro-3-methylphenol 5000 U 91-57-62-Methylnaphthalene 5000 U 88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-23-Nitroaniline 12000 U			1	
91-20-3Naphthalene 5000 U 106-47-84-Chloroaniline 5000 U 87-68-3Hexachlorobutadiene 5000 U 59-50-74-Chloro-3-methylphenol 5000 U 91-57-62-Methylnaphthalene 5000 U 77-47-4Hexachlorocyclopentadiene 5000 U 88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-2			•	!
106-47-84-Chloroaniline 5000 U 87-68-3Hexachlorobutadiene 5000 U 59-50-74-Chloro-3-methylphenol 5000 U 91-57-62-Methylnaphthalene 5000 U 77-47-4Hexachlorocyclopentadiene 5000 U 88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-23-Nitroaniline 12000 U				:
87-68-3	91-20-3	Naphthalene	5000	U
59-50-74-Chloro-3-methylphenol 5000 U 91-57-62-Methylnaphthalene 5000 U 77-47-4Hexachlorocyclopentadiene 5000 U 88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U	106-47-8	4-Chloroaniline		U
91-57-62-Methylnaphthalene 5000 U 77-47-4Hexachlorocyclopentadiene 5000 U 88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-23-Nitroaniline 12000 U	87-68-3	Hexachlorobutadiene	5000	U
77-47-4	59-50-7	4-Chloro-3-methylphenol	5000	U
88-06-22,4,6-Trichlorophenol 5000 U 95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U	91-57-6	2-Methylnaphthalene	5000	U
95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U	77-47-4	Hexachlorocyclopentadiene	5000	U
95-95-42,4,5-Trichlorophenol 12000 U 91-58-72-Chloronaphthalene 5000 U 88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U	88-06-2	2,4,6-Trichlorophenol	5000	U
88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U			12000	U
88-74-42-Nitroaniline 12000 U 131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U			5000	U
131-11-3Dimethylphthalate 5000 U 208-96-8Acenaphthylene 540 J 606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U			12000	U
208-96-8			5000	U
606-20-22,6-Dinitrotoluene 5000 U 99-09-23-Nitroaniline 12000 U			540	J
99-09-23-Nitroaniline 12000 U				U
				U

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12206-B70607

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>9912L959-007</u>

Sample wt/vol: $30.0 \text{ (g/mL)} \subseteq$ Lab File ID: 0011207

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 10.0

Injection volume: <u>F.o. (ab)</u>

GPC Cleanup: (Y/N) Y pH: 8.3 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

- Annual Control of the Control of t	1	1 .
51-28-52,4-Dinitrophenol	12000	ן טן
100-02-74-Nitrophenol	12000	: !
132-64-9Dibenzofuran		, ,
121-14-22,4-Dinitrotoluene		
84-66-2Diethylphthalate	5000	
7005-72-34-Chlorophenyl-phenylether	5000	:
86-73-7Fluorene	450	
100-01-64-Nitroaniline	12000	ו טו
534-52-14,6-Dinitro-2-methylphenol	12000	ו ט
86-30-6N-Nitrosodiphenylamine (1)		
101-55-34-Bromophenyl-phenylether		. ,
118-74-1Hexachlorobenzene	5000	
87-86-5Pentachlorophenol		:
85-01-8Phenanthrene		i i
120-12-7Anthracene	2000	J
86-74-8Carbazole	650	J
84-74-2Di-n-butylphthalate	5000	ָּוֹ ט
206-44-0Fluoranthene	20000	
129-00-0Pyrene	19000	İ
85-68-7Butylbenzylphthalate	5000	ט ו
91-94-13,3'-Dichlorobenzidine	5000	ט
56-55-3Benzo(a) anthracene	7900	
218-01-9Chrysene	9100	
117-81-7bis(2-Ethylhexyl)phthalate	5000	ע
117-84-0Di-n-octyl phthalate	5000	ן ט
205-99-2Benzo(b) fluoranthene	5800	İ
207-08-9Benzo(k) fluoranthene	5800	
50-32-8Benzo(a) pyrene	7200	
193-39-5Indeno(1,2,3-cd)pyrene	3900	J
53-70-3Dibenz(a,h)anthracene	1600	J
191-24-2Benzo(g,h,i)perylene	4500	J
1) Connor be gonerated from Diphanylamine	.	

(1) - Cannot be separated from Diphenylamine FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70607

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: ____

Lab Sample ID: 9912L959-007 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) GLab File ID: <u>D011207</u>

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/12/00

Dilution Factor: 10.0 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) Y pH: 8.3

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Number TICs found: 34

CAS	NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
====					=====
1.		19 TO 30 MINUTES			
2.		UNRESOLVED HYDROCARBONS			
3.		ALKANE	16.64	4000	<u>'</u>
4.		ALKANE	17.80	5000	
5.		ALKANE	18.82	10000	•
6.		ALKANE	19.66	10000	J
7.		PAH	20.18	2000	J
8.	. !	PAH	20.22	2000	
9.		ALKANE	20.36	20000	J
10.		ALKANE	20.62	3000	J
11.		PAH	20.67	2000	J
12. 8	34-65-1	ANTHRACENEDIONE	20.75	4000	JN
13.		UNKNOWN	20.82	2000	J
14.		ALKANE	20.98	10000	J
15.		ALKANE	21.20	. 2000	J
16.		ALKANE	21.53	6000	J
17. 2	243-42-5	BENZONAPHTHOFURAN	21.68	1000	. TM
18.		ALKANE	21.85	1000	J
19.		UNKNOWN	21.98	2000	J
20.		UNKNOWN	22.04	5000	J
21.		UNKNOWN	22.21	6000	J
22.		PAH	22.36	2000	J
23.		UNKNOWN	22.50	4000	J
24.		UNKNOWN	22.54	3000	J
25.		ALKANE	22.68	4000	J
26.		UNKNOWN	23.00	3000	•
27.		UNKNOWN	23.19	6000	:
	82-05-3	BENZOANTHRACENEONE	23.98	2000	
29.		PAH	24.48	4000	
30.		UNKNOWN	24.97	2000	!

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70607

Lab Name: Recra.LabNet Contract: 01667600001

Lab Sample ID: 9912L959-007 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D011207}$

Date Received: <u>12/08/99</u> Level: (low/med) LOW

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 10.0 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) Y pH: 8.3 CONCENTRATION UNITS:

Number TICs found: 34 (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
31.	====================================	25.81	3000	==== J
32.	UNKNOWN	25.01	6000	!
33.	UNKNOWN	26.01	3000	
34.	UNKNOWN	27.12	5000	J
35.	PAH	27.18	6000	J
36.	UNKNOWN	28.94	3000	J
				<u> </u>

FORM 1 SV-TIC

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12206-B70610 Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: _____ SDG No.: ____ Lab Code: Recra Case No.: Lab Sample ID: 9912L959-008 Matrix: (soil/water) SOIL Sample wt/vol: 30.1 (g/mL) GLab File ID: <u>D011214</u> Level: (low/med) LOW Date Received: <u>12/08/99</u> % Moisture: ___33 decanted: (Y/N) __ Date Extracted: 12/18/99 Concentrated Extract Volume: 500(uL) Date Analyzed: <u>01/12/00</u> Injection Volume: 2.0(uL) Dilution Factor: 2.00 GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.0}$ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

108-95-2----Phenol 990 U 111-44-4-----bis (2-Chloroethyl) ether 990 | U 990 U 95-57-8-----2-Chlorophenol 541-73-1----1,3-Dichlorobenzene 990 U 106-46-7----1,4-Dichlorobenzene 990|U 990 U 95-50-1----1,2-Dichlorobenzene 95-48-7----2-Methylphenol 990 | U 108-60-1----2,2'-oxybis(1-Chloropropane) 990 | ប 106-44-5----4-Methylphenol 990 U 621-64-7----N-Nitroso-di-n-propylamine 990|U 67-72-1-----Hexachloroethane 990 | U 98-95-3-----Nitrobenzene_____ 990 U 78-59-1-----Isophorone 990 U 88-75-5----2-Nitrophenol____ 990 U 105-67-9----2,4-Dimethylphenol 990 U 111-91-1-----bis(2-Chloroethoxy) methane 990 | U 120-83-2----2,4-Dichlorophenol___ 990 U 120-82-1----1,2,4-Trichlorobenzene____ 990|U 91-20-3-----Naphthalene 86 J. 106-47-8-----4-Chloroaniline 990 | U 87-68-3-----Hexachlorobutadiene 990|U | 59-50-7-----4-Chloro-3-methylphenol____| 990 U 91-57-6----2-Methylnaphthalene 140 J 77-47-4-----Hexachlorocyclopentadiene 990 U | 88-06-2----2,4,6-Trichlorophenol 990 U | 95-95-4----2,4,5-Trichlorophenol_____ 2500 U 91-58-7----2-Chloronaphthalene 990 U 88-74-4-----2-Nitroaniline 2500 U 131-11-3-----Dimethylphthalate____ 990 U 208-96-8-----Acenaphthylene 71 | J 606-20-2-----2,6-Dinitrotoluene 990 0 2500 U 99-09-2-----3-Nitroaniline 83-32-9-----Acenaphthene 990 0

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12206-B70610

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-008

Sample wt/vol: 30.1 (g/mL) G Lab File ID: 0011214

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 2.00

GPC Cleanup: • (Y/N) Y pH: 3.0 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

· · · · · · · · · · · · · · · · · · ·	1	
51-28-52,4-Dinitrophenol	2500	U
100-02-74-Nitrophencl	2500	įυ,
132-64-9Dibenzofuran	86	J
121-14-22,4-Dinitrotoluene		ไบ
84-66-2Diethylphthalate	990	U
7005-72-34-Chlorophenyl-phenylether	990	ĺυ
86-73-7Fluorene		•
100-01-64-Nitroaniline	2500	ĺΰ
534-52-14,6-Dinitro-2-methylphenol	2500	Ū
86-30-6N-Nitroscdiphenylamine (1)		U
101-55-34-Bromophenyl-phenylether	990	Ū
118-74-1Hexachlorobenzene	990	Ū
87-86-5Pentachlorophenol	2500	Ū
85-01-8Phenanthrene	580	J
120-12-7Anthracene	97	J
86-74-8Carbazole	55	J
84-74-2Di-n-butylphthalate	990	Ü
206-44-0Fluoranthene	870	J
129-00-0Pyrene	720	J
85-68-7Butylbenzylphthalate	990	Ū
91-94-13,3'-Dichlorobenzidine	990	U
56-55-3Benzo(a) anthracene	510	J
218-01-9Chrysene	920	J
117-81-7bis(2-Ethylhexyl)phthalate	440	JB
117-84-0Di-n-octyl phthalate		U
205-99-2Benzo(b) fluoranthene	690	J
207-08-9Benzo(k) fluoranthene	560	J
50-32-8Benzo(a)pyrene	520	J
193-39-5Indeno(1,2,3-cd;pyrene		J
53-70-3Dibenz(a,h)anthracene	130	J
191-24-2Benzo(g,h,i)perylene	460	i T

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2 RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70610

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____

SAS No.: _____ SDG No.: _

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-008

Sample wt/vol: 30.1 (g/mL) G

Lab File ID: D011214

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: ___33 decanted: (Y/N)___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 2.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.0}$

CONCENTRATION UNITS:

Number TICs found: 32 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======	==========	====
1.	19 TO 29 MINUTES		(
2.	UNRESOLVED HYDROCARBONS		,	
3.	UNKNOWN	6.07	1000	J
4.	UNKNOWN	6.33	500	J
5.	UNKNOWN	7.15	700	J
6.	UNKNOWN	7.26	500	J
7.	C3-ALKYLBENZENE	7.42	1000	J
8.	C3-ALKYLBENZENE	7.55	900	J
9.	C3-ALKYLBENZENE	8.03	2000	J
10.	C3-ALKYLBENZENE	8.59	600	J
11.	UNKNOWN	11.26	500	J
12.	UNKNOWN	14.91	500	J
13.	ALKANE	16.62	400	J
14.	UNKNOWN	17.78	400	J
15.	ALKANE	17.85	600	J
16.	ALKANE	18.82	500	J
17.	ALKANE	19.66	500	·J
18.	UNKNOWN	20.12	300	J
19.	PAH	20.23	300	J
20.	UNKNOWN	20.36	700	J
21.	UNKNOWN	20.98	500	J
22.	ALKANE	21.53	300	J
23.	ALKANE	22.03	400	J
24.	PAH	22.20	300	J
25.	UNKNOWN	22.50	400	J
26,	UNKNOWN	23.01	800	J
27.	UNKNOWN	23.20	300	J
28.	ALKANE	23.56	. 200	J
29.	ALKANE	24.21	200	J
30.	PAH	24.47	300	J

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B70610

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: _____ SDG No.: ____

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-008

Sample wt/vol: 30.1 (g/mL) G Lab File ID: 0011214

Level: (low/med) LOW

Lab Code: Recra Case No.:

Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 2.00

GPC Cleanup: (Y/N) Y

pH: <u>8.0</u>

Number TICs found: 32

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
31.	UNKNOWN	24.96	400	J
32.	ALKANE	25.84	600	J
33.	PAH	27.18	700	J
34.	UNKNOWN	29.44	1000	J
				j

FORM 1 SV-TIC RFW (v3.3)

|SH899-12207-B70611

Lab Name: Recra.LabNet Contract: 01667600001

GPC Cleanup: (Y/N) \underline{Y} $pH: \underline{8.1}$

Lab Code: Recra Case No.: SDG No.: SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-009

Sample wt/vol: 30.7 (g/mL) G Lab File ID: 0011209

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: ____13 decanted: (Y/N) ___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 5.00

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

	CAS NO.	COWLOOND	(ug/L or ug/Kg)	<u>UG/KG</u>	Q
				,	
	108-95-2			1900	1
	111-44-4	bis(2-Chloroethyl)	ether	1900	1
	95-57-8	2-Chlorophenol		1900	U
	541-73-1	1,3-Dichlorobenzer	ne	1900	U
	106-46-7	1,4-Dichlorobenzer	ne	1900	U
	95-50-1	1,2-Dichlorobenzer	ne	1900	U
	95-48-7	2-Methylphenol		1900	U
1		2,2'-oxybis(1-Chlo		1900	U
	106-44-5	4-Methylphenol	·	1900	U
1	621-64-7	N-Nitroso-di-n-pro	opylamine	1900	JU .
	67-72-1	Hexachloroethane_		1900	U
1	98-95-3	Nitrobenzene		1900	U
-	78-59-1	Isophorone		1900	U
1	88-75-5	2-Nitrophenol		1900	U
1	105-67-9	2,4-Dimethylphenol	1	1900	U
Ì		bis(2-Chloroethoxy		1900	U
İ	120-83-2	2,4-Dichloropheno	1	1900	U
Ì	120-82-1	1,2,4-Trichlorober	nzene	1900	U
İ	91-20-3	Naphthalene		260	J
İ	106-47-8	4-Chloroaniline_		1900	Ü
1	87-68-3	Hexachlorobutadie	ne	1900	U
İ	59-50-7	4-Chloro-3-methylp	phenol	1900	U
1	91-57-6	2-Methylnaphthaler	ne	98	J
1	77-47-4	Hexachlorocycloper	ntadiene	1900	U
Ì		2,4,6-Trichlorophe		1900	U
ĺ	95-95-4	2,4,5-Trichlorophe	enol	4700	Ü
	91-58-7	2-Chloronaphthale	ne	1900	U
j	88-74-4	2-Nitroaniline		4700	י ט
i	131-11-3	Dimethylphthalate		1900	U
İ	208-96-8	Acenaphthylene		1900	U
į	606-20-2	2,6-Dinitrotoluene	e	1900	U
	99-09-2	3-Nitroaniline		4700	U
į	83-32-9	Acenaphthene		780	J
į					

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12207-B70611 Lab Name: Recra.LabNet Contract: 01667600001 Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: __

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-009

Sample wt/vol: 30.7 (g/mL) G Lab File ID: 0011209

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: ___13 decanted: (Y/N)___ Date Extracted: 12/18/99

Date Analyzed: 01/12/00 Concentrated Extract Volume: 500 (uL)

Injection Volume: 2.0(uL) Dilution Factor: <u>5.00</u>

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.1}$ CONCENTRATION UNITS:

> CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

51-28-52,4-Dinitrophenol	4700	
100-02-74-Nitrophenol	4700	
132-64-9Dibenzofuran	420	
121-14-22,4-Dinitrotoluene	1900	
84-66-2Diethylphthalate	1900	
7005-72-34-Chlorophenyl-phenylether	1900	
86-73-7Fluorene	730	•
100-01-64-Nitroaniline	4700	_
534-52-14,6-Dinitro-2-methylphenol	4700	
86-30-6N-Nitrosodiphenylamine (1)	1900	
101-55-34-Bromophenyl-phenylether	1900	
118-74-1Hexachlorobenzene	1900	_
87-86-5Pentachlorophenol		
	4700	
85-01-8Phenanthrene	7300	
120-12-7Anthracene	1600	
86-74-8Carbazole	850	
84-74-2Di-n-butylphthalate	1900	
206-44-0Fluoranthene	9700	1
129-00-0Pyrene	7200	1
85-68-7Butylbenzylphthalate	1900	
91-94-13,3'-Dichlorobenzidine	1900	
56-55-3Benzo(a) anthracene	3200	:
218-01-9Chrysene	3300	
117-81-7bis(2-Ethylhexyl)phthalate	1900	
117-84-0Di-n-octyl phthalate	1900	
205-99-2Benzo(b) fluoranthene	2700	
207-08-9Benzo(k) fluoranthene	2600	
50-32-8Benzo(a)pyrene	3100	
193-39-5Indeno(1,2,3-cd)pyrene	1700	
53-70-3Dibenz(a,h)anthracene	510	:
191-24-2Benzo(g,h,i)perylene	1900	.

(1) - Cannot be separated from Diphenylamine FORM 1 SV-2

RFW (v3.3)

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SH899-12207-B70611

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____

SAS No.: _____ SDG No.: ____

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-009

Sample wt/vol: 30.7 (g/mL) G Lab File ID: D011209

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: ___13 decanted: (Y/N)___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL)

Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 5.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.1}$

CONCENTRATION UNITS:

Number TICs found: 22

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
CAS NUMBER	COMPOUND NAME	*****	LSI. CONC.	\ \
1.	UNKNOWN	6.48	2000	J
2.	PAH	20.17	500	J
3.	PAH	20.22	600	J
4.	РАН	20.40	1000	J
5.	PAH	20.67	600	J
6. 84-65-1	ANTHRACENEDIONE	20.75	600	JN
7.	PAH	22.03	500	J
8.	PAH	22.20	800	J
9.	PAH	22.29	700	J
10.	PAH	22.36	500	J
11.	PAH	23.00	400	J
12. 243-46-9	BENZONAPHTHOTHIOPHENE	23.19	500	JN
13.	PAH	23.30	. 600	J
14.	UNKNOWN	23.36	400	J _.
15.	PAH	23.89	600	J
16.	UNKNOWN	24.01	500	J
17.	UNKNOWN	24.13	500	·J
18.	UNKNOWN	25.85	500	J
19.	PAH	26.60	600	J
20. 207-93-2	DINAPHTHOFURAN	26.85	500	JN
21.	PAH	27.17	2000	J
22.	PAH	27.63	900	J

|SH899-12207-B70612

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-010

Sample wt/vol: 32.8 (g/mL; G Lab File ID: D011211

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 75 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 8.7 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

100-95-2	Phenol	1200	İ
	bis(2-Chloroethyl)ether	1200	•
	2-Chlorophenol	1200	•
50-07-0	1,3-Dichlorobenzene	1200	1
	1,4-Dichlorobenzene	• •	
	1,2-Dichlorobenzene	1200	
	2-Methylphenol	· :	
100 60 1	2,2'-oxybis(1-Chloropropane)	1200	:
			:
106-44-5	4-Methylphenol	1200	•
	Hexachloroethane	1200	
	Nitrobenzene		
70 50 1	Isophorone	1200	
78-59-1	2-Nitrophenol	1200	
	2,4-Dimethylphenol	1200	:
	bis(2-Chloroethoxy)methane		!
	2,4-Dichlorophenol		
	1,2,4-Trichlorobenzene	1200	
	Naphthalene	. •	,
	4-Chloroaniline		1 '
	Hexachlorobutadiens	1200	•
59-50-7	4-Chloro-3-methylphenol	1200	
91 57 6	2-Methylnaphthalene	1200	
	Hexachlorocyclopentadiene		
	2,4,6-Trichlorophenol		
	2,4,5-Trichlorophenol	3000	
	2-Chloronaphthalene	1200	
	2-Nitroaniline	3000	•
131-11-3	Dimethylphthalate	1200	
	Acenaphthylene	1200	1 -
	2,6-Dinitrotoluene	1200	
	3-Nitroaniline	3000	
83-32-9	Acenaphthene	1200	111

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|SH899-12207-B70612 Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: ____ SDG No.: Lab Code: Recra Case No.: ____ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-010 32.8 (g/mL) G Lab File ID: D011211 Sample wt/vol: Date Received: <u>12/08/99</u> Level: (low/med) LOW Date Extracted: 12/18/99 % Moisture: ____75 decanted: (Y/N)___ Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00 Dilution Factor: 1.00 Injection Volume: 2.0(uL) GPC Cleanup: $(Y/N) \underline{Y}$ pH: $\underline{8.7}$ CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> COMPOUND CAS NO. | 51-28-5----2,4-Dinitrophenol 3000 U 100-02-7-----4-Nitrophenol_____ 3000 U 132-64-9-----Dibenzofuran 1200 U 1200 U 121-14-2-----2,4-Dinitrotoluene__ 84-66-2-----Diethylphthalate 1200 U 1200 U 7005-72-3----4-Chlorophenyl-phenylether 86-73-7-----Fluorene 1200 U 3000 U 100-01-6-----4-Nitroaniline 534-52-1-----4,6-Dinitro-2-methylphenol 3000 U 86-30-6-----N-Nitrosodiphenylamine (1)____ 1200 U 1200 U 101-55-3-----4-Bromophenyl-phenylether____ 118-74-1-----Hexachlorobenzene 1200 U 87-86-5----Pentachlorophenol____ 3000 U 270 J 85-01-8-----Phenanthrene_____ 1200 U 120-12-7-----Anthracene 86-74-8------Carbazole 1200 U 1200 U 84-74-2-----Di-n-butylphthalate 206-44-0-----Fluoranthene_____ 700 J 129-00-0-----Pyrene 570 J 85-68-7-----Butylbenzylphthalate_ 1200 U 1200 U 91-94-1-----3,3'-Dichlorobenzidine_____ 330 J 56-55-3-----Benzo(a)anthracene_____ 480 J 218-01-9-----Chrysene 117-81-7-----bis(2-Ethylhexyl)phthalate 160 JB 1200 U | 117-84-0-----Di-n-octyl phthalate 205-99-2----Benzo(b) fluoranthene 470 J 207-08-9-----Benzo(k)fluoranthene____ 420 J 440 J 50-32-8-----Benzo(a)pyrene_ 193-39-5-----Indeno(1,2,3-cd)pyrene____ 310|J 85 J 53-70-3-----Dibenz(a,h)anthracene 350 J 191-24-2----Benzo(g,h,i)perylene_____

(1) - Cannot be separated from Diphenylamine FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SH899-12207-B70612

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-010

Sample wt/vol: 32.8 (g/mL) G Lab File ID: D011211

Level: (low/med) LOW

Date Received: 12/08/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y}

pH: <u>8.7</u>

Number TICs found: 34

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======		=====
1.	ALDOL CONDENSATE	7.11	800	JA
2.	UNKNOWN	13.33	2000	J
3.	UNKNOWN	19.07	700	J
4.	UNKNOWN	20.03	1000	J
5.	UNKNOWN	20.08	800	J
6.	ORGANIC ACID	20.14	4000	J
7.	UNKNOWN	20.86	1000	J
8.	UNKNOWN	21.28	1000	J
9.	ALKANE	23.00	1000	J
10.	UNKNOWN	23.03	1000	J
11.	UNKNOWN	23.87	500	J
12.	ALKANE	24.21	4000	J
13.	UNKNOWN	24.27	1000	J
14.	ALKANE	24.95	500	J
15.	UNKNOWN	25.41	2000	J
16.	ALKANE	25.85	6000	J
17.	UNKNOWN	25.98	2000	· J
18.	ALKANE	28.18	4000	J
19.	UNKNOWN	29.33	500	J
20.	UNKNOWN	29.46	1000	J
21.	UNKNOWN	29.68	700	J
22.	UNKNOWN	30.11	10000	J
23.	UNKNOWN	30.93	900	J
24.	UNKNOWN	32.10	2000	J
25.	UNKNOWN	32.76	4000	J
26.	UNKNOWN	34.13	20000	J
27.	UNKNOWN	34.42	700	J
28.	UNKNOWN	34.55	700	J
29.	UNKNOWN	34.82	1000	J
30.	UNKNOWN	34.93	1000	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12207-B70612

Lab Name: Recra.LabNet

Contract: <u>01667600001</u>

Lab Code: Recra Case No.:

SAS No.: ____ SDG No.: ___

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-010

Sample wt/vol: 32.8 (g/mL) G

Lab File ID: D011211

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: ___75 decanted: (Y/N) ___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 8.7

CONCENTRATION UNITS:

Number TICs found: 34

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======	=======================================	=====
31.	UNKNOWN	35.23	4000	J
32.	UNKNOWN	35.62	7000	J
33.	UNKNOWN	36.02	8000	J
34.	UNKNOWN	36.29	2000	J
				ll

FORM 1 SV-TIC

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

<u>30.6</u> (g/mL) <u>G</u>

EPA SAMPLE NO.

D011115

		•		SH899-12207-B70613
Lab Name:	Recra.LabNet	Contract:	01667600001	

Lab File ID:

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-011

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 28 decanted: (Y/N) ___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/11/00

Injection Volume: 2.0(uL) Dilution Factor: 50.0

GPC Cleanup: (Y/N) Y pH: 8.0

Sample wt/vol:

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

23000 U 108-95-2-----Phenol 111-44-4----bis(2-Chloroethvl)ether 23000 U 95-57-8-----2-Chlorophenol___ 23000 U 541-73-1----1,3-Dichlorobenzene 23000 U | 106-46-7-----1,4-Dichlorobenzene___ 23000 U 95-50-1-----1,2-Dichlorobenzene 23000 U - 23000 U 95-48-7----2-Methylphenol 108-60-1----2,2'-oxybis(1-Chloropropane) 23000 U 106-44-5-----4-Methylphenol 23000 U 621-64-7----N-Nitroso-di-n-propylamine 23000 U 67-72-1-----Hexachloroethane____ 23000 U 98-95-3-----Nitrobenzene _ 23000 U 23000|U 78-59-1-----Isophorone 88-75-5----2-Nitrophenol 23000 | U 105-67-9-----2,4-Dimethylphenol 23000 0 111-91-1-----bis(2-Chloroethoxy)methane___ 23000 0 23000 0 | 120-83-2----2,4-Dichlorophenol___ 120-82-1----1,2,4-Trichlorobenzene 23000 0 2400 J 91-20-3-----Naphthalene 106-47-8-----4-Chloroaniline 23000 U 23000 | U 87-68-3-----Hexachlorobutadiene 59-50-7----4-Chloro-3-methylphenol 23000 | U 91-57-6----2-Methylnaphthalene___ 23000 U

77-47-4-----Hexachlorocyclopentadiene

88-06-2-----2,4,6-Trichlorophenol______ 95-95-4----2,4,5-Trichlorophenol

88-74-4----2-Nitroaniline_

208-96-8-----Acenaphthylene

83-32-9-----Acenaphthene____

99-09-2----3-Nitroaniline

91-58-7----2-Chloronaphthalene____

131-11-3-----Dimethylphthalate____

606-20-2----2,6-Dinitrotoluene_____

23000 U 23000 U

57000 U

23000 U

23000 | U

23000 U

23000 U

3700 J

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

| SH899-12207-B70613 | Sh899-12207-B70613 | Lab Name: Recra_LabNet | Contract: 01667600001 | Lab Code: Recra | Case No.: | SDG No.: | SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-011

Sample wt/vol: 30.6 (g/mL) G Lab File ID: D011115

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: ____28 decanted: (Y/N)___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/11/00

Injection Volume: 2.0(uL) Dilution Factor: 50.0

GPC Cleanup: (Y/N) Y pH: 8.0 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		,
51-28-52,4-Dinitrophenol	57000	U.
100-02-74-Nitrophenol	57000	U
132-64-9Dibenzofuran	2300	J
121-14-22,4-Dinitrotoluene	23000	Ū
34-66-2Diethylphthalate	23000	U
7005-72-34-Chlorophenyl-phenylether	23000	
36-73-7Fluorene	3900	J
100-01-64-Nitroaniline	57000	
534-52-14,6-Dinitro-2-methylphenol	57000	U
36-30-6N-Nitrosodiphenylamine (1)		U
101-55-34-Bromophenyl-phenylether	23000	U
118-74-1Hexachlorobenzene	23000	U
37-86-5Pentachlorophenol	57000	U
35-01-8Phenanthrene	46000	
120-12-7Anthracene	12000	J
36-74-8Carbazole	4000	J
84-74-2Di-n-butylphthalate	23000	U
206-44-0Fluoranthene	63000	
129-00-0Pyrene	47000	
35-68-7Butylbenzylphthalate	23000	U
91-94-13,3'-Dichlorobenzidine	23000	
56-55-3Benzo(a)anthracene	28000	
218-01-9Chrysene	30000	
117-81-7bis(2-Ethylhexyl)phthalate	23000	U
117-84-0Di-n-octyl phthalate	23000	U
205-99-2Benzo(b) fluoranthene	20000	J
207-08-9Benzo(k) fluoranthene	22000	J
50-32-8Benzo(a)pyrene	23000	
193-39-5Indeno(1,2,3-cd)pyrene	14000	J
53-70-3Dibenz(a,h)anthracene	5700	J
191-24-2Benzo(g,h,i)perylene	15000	J
	ĺ	'

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

- !			
1	a	 	

TENTATIVELY IDENTIFIED COMPOUNDS

SH899-12207-B70613

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: _____ SDG No.: ____

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-011

Sample wt/vol: $30.6 \text{ (g/mL) } \underline{G}$

Lab File ID: <u>D011115</u>

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: 28 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 01/11/00

Injection Volume: 2.0(uL)

Dilution Factor: 50.0

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.0}$

CONCENTRATION UNITS:

Number TICs found: 14

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	 Q
=======================================		======		 =====
1.	PAH	20.41	7000	J
2.	PAH	20.46	9000	J
3.	UNKNOWN	20.62	20000	J
4.	PAH	21.32	6000	J
5. 239-30-5	BENZONAPHTHOFURAN	21.90	6000	JN
6.	UNKNOWN	22.09	5000	J
7.	PAH	22.42	8000	J
8.	PAH	22.58	60.00	J
9. 239-35-0	BENZONAPHTHOTHIOPHENE	23.47	6000	JN
10.	UNKNOWN	23.64	5000	J
11.	PAH	24.84	5000	J
12.	PAH	27.12	6000	J
13. 207-93-2	DINAPHTHOFURAN	27.41	5000	JN
14.	PAH	27.75	20000	J

|SH899-12207-B70614

Lab Name: Recra.LabNet Contract: 01667600001

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-012

Sample wt/vol: 30.4 (g/mL) GLab File ID: <u>D011215</u>

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: $_{}$ decanted: $(Y/N)_{}$ Date Extracted: $\underline{12/18/99}$

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 2.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.0}$

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG O

108-95-2Phenol	3000	!
111-44-4bis(2-Chloroethyl)ether	3000	
95-57-82-Chlorophenol	3000	U
541-73-11,3-Dichlorobenzene	3000	U
106-46-71,4-Dichlorobenzene	3000	U
95-50-11,2-Dichlorobenzene	3000	U
95-48-72-Methylphenol	3000	U
108-60-12,2'-oxybis(1-Chloropropane)	9000	U
106-44-54-Methylphenol	3000	U
621-64-7N-Nitroso-di-n-propylamine	3000	Ū
67-72-1Hexachloroethane	3000	U
98-95-3Nitrobenzene	3000	U
78-59-1Isophorone	3000	U
88-75-52-Nitrophenol	3000	U
105-67-92,4-Dimethylphenol	3000	U
111-91-1bis(2-Chloroethoxy)methane	3000	U
120-83-22,4-Dichlorophenol	3000	U
120-82-11,2,4-Trichlorobenzene	3000	U
91-20-3Naphthalene	3000	U
106-47-84-Chloroaniline	3000	U
87-68-3Hexachlorobutadiene	3000	ับ
59-50-74-Chloro-3-methylphenol	3000	U
91-57-62-Methylnaphthalene	3000	U
77-47-4Hexachlorocyclopentadiene	3000	U
88-06-22,4,6-Trichlorophenol	3000	U
95-95-42,4,5-Trichlorophenol	7600	U
91-58-72-Chloronaphthalene	3000	ָּט
88-74-42-Nitroaniline	7600	U
131-11-3Dimethylphthalate	3000	U
208-96-8Acenaphthylene	190	J
606-20-22,6-Dinitrotoluene	3000	Ū
99-09-23-Nitroaniline	7600	
83-32-9Acenaphthene	180	J
	j	

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|SH899-12207-B70614 Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: _____ SDG No.: __ Lab Code: Recra Case No.: ____ Lab Sample ID: 9912L959-012 Matrix: (soil/water) SOIL Sample wt/vol: 30.4 (g/mL) G Lab File ID: D011215Level: (low/med) LOW Date Received: <u>12/08/99</u> Date Extracted: 12/18/99 Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/12/00 Injection Volume: 2.0(uL) Dilution Factor: 2.00 GPC Cleanup: (Y/N) Y pH: 8.0CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> 51-28-5----2,4-Dinitrophenol____ 7600 U 100-02-7----4-Nitrophenol_____ 7600 U 3000 U 3000 U 3000 0 7005-72-3----4-Chlorophenyl-phenylether 3000 U 86-73-7-----Fluorene 240 J 100-01-6-----4-Nitroaniline 7600 U 534-52-1----4,6-Dinitro-2-methylphenol____ 7600 U 86-30-6-----Nitrosodiphenylamine (1) 3000 U 101-55-3----4-Bromophenyl-phenylether 3000 U 118-74-1-----Hexachlorobenzene___ 3000 0 87-86-5----Pentachlorophenol____ 7600 U 85-01-8-----Phenanthrene_____ 33001 120-12-7-----Anthracene_____ 920 J 86-74-8-----Carbazole 580 J 84-74-2----Di-n-butylphthalate____ 3000 U 206-44-0-----Fluoranthene_____ 8100 129-00-0-----Pyrene 7100 85-68-7-----Butylbenzylphthalate 3000 0 91-94-1----3,3'-Dichlorobenzidine____ 3000 U 56-55-3-----Benzo(a) anthracene____ 4400 218-01-9-----Chrysene 4900 117-81-7-----bis(2-Ethylhexyl)phthalate____ 230 JB 117-84-0-----Di-n-octyl phthalate____ 3000 U 205-99-2----Benzo(b) fluoranthene____ 4100 207-08-9-----Benzo(k)fluoranthene____ 40001 50-32-8-----Benzo(a)pyrene 4400 193-39-5----Indeno(1,2,3-cd)pyrene____ 25.00 LJ 53-70-3-----Dibenz(a,h)anthracene____ 750 J 191-24-2----Benzo(g,h,i)perylene 2600 J (1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12207-B70614

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: _____ SDG No.: ____ Lab Code: Recra Case No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-012

Sample wt/vol: 30.4 (g/mL) G Lab File ID: D011215

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: _____78 decanted: (Y/N)____ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 2.00 Injection Volume: 2.0(uL)

pH: 8.0 GPC Cleanup: (Y/N) \underline{Y}

CONCENTRATION UNITS: Number TICs found: 32 (ug/L or ug/Kg) <u>UG/KG</u>

			· ·	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
 1.	UNKNOWN	6.48	4000	===== J
2.	UNKNOWN	20.13	2000	
3.	PAH	20.40	1000	J
4	UNKNOWN	22.03	900	J
5.	PAH	22.20	1000	J
6.	PAH	22.29	8.00	
7.	UNKNOWN	23.02	3000	J
8. 243-46-9	BENZONAPHTHOTHIOPHENE	23.19	900	
9.	UNKNOWN	23.24	800	J
10.	UNKNOWN	23.30	900	J
11.	UNKNOWN	23.36	1000	J
12.	PAH	23.89	900	J
13.	UNKNOWN	24.13	800	J
14.	ALKANE	24.20	2000	J
15.	UNKNOWN	24.27	1000	J
16.	PAH	24.48	800	J
17.	UNKNOWN	25.42	2000	J
18.	ALKANE	25.84	10000	J
19.	UNKNOWN	25.97	2000	J
20.	UNKNOWN	26.85	1000	J
21.	PAH	27.17	3000	J
22.	PAH	27.63	1000	J
23.	ALKANE	28.17	10000	J
24.	UNKNOWN	29.44	2000	J
25.	UNKNOWN	30.08	5000	J
26.	UNKNOWN	32.75	2000	J
27.	UNKNOWN	34.07	20000	J
28.	UNKNOWN	34.81	1000	J
29.	UNKNOWN	35.21	5000	J
30.	UNKNOWN	35.59	4000	J
		l		

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

	SH899-12207-B70614	
001	İ	

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ____ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-012

Sample wt/vol: 30.4 (g/mL) G Lab File ID: <u>D011215</u>

Level: (low/med) LOW Date Received: <u>12/08/99</u>

% Moisture: $\underline{}$ decanted: (Y/N) Date Extracted: $\underline{12/18/99}$

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 2.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) Y pH: 8.0

CONCENTRATION UNITS:

Number TICs found: 32 (ug/L or ug/Kg) <u>UG/KG</u>

C	AS NUMBER	COMPOUND NAME	RT	EST. CONC.	 Q
===:			======	=========	=====
31		UNKNOWN	36.00	1000	J
32		UNKNOWN	36.26	4000	J
İ					İ

FORM 1 SV-TIC

RFW (v3.3)

|SH899-12207-B70615

Lab Name: Recra.LabNet Contract: 01667600001

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-013

Sample wt/vol: 30.4 (g/mL) G Lab File ID: 0011206

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 37 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Injection Volume: 2.0(uL) Dilution Factor: 5.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{9.0}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2----Phenol 2600 l U | 111-44-4-----bis(2-Chloroethyl)ether 2600 U 95-57-8-----2-Chlorophenol 2600 U 541-73-1----1,3-Dichlorobenzene 2600 U 106-46-7----1,4-Dichlorobenzene 2600 U 2600 U 95-50-1----1,2-Dichlorobenzene____ 95-48-7-----2-Methylphenol 2600 U 108-60-1----2,2'-oxybis(1-Chlcropropane)___ 2600 U 106-44-5----4-Methylphenol 2600 U 621-64-7----N-Nitroso-di-n-propylamine 2600 U 2600 U 67-72-1-----Hexachloroethane 98-95-3-----Nitrobenzene 2600 U 78-59-1-----Isophorone 2600 U 88-75-5----2-Nitrophenol_____ 2600 U 105-67-9-----2,4-Dimethylphenol 2600 U 2600 U | 111-91-1-----bis(2-Chloroethoxy)methane 2600 U | 120-83-2-----2,4-Dichlorophenol 120-82-1----1,2,4-Trichlorobenzene 2600 U 91-20-3-----Naphthalene____ 150 J 106-47-8----4-Chloroaniline 2600 U 87-68-3-----Hexachlorobutadiene___ 2600 U 59-50-7-----4-Chloro-3-methylphenol____ 2600 U 91-57-6----2-Methylnaphthalene_ 140|J 77-47-4-----Hexachlorocyclopentadiene 2600 U 88-06-2----2,4,6-Trichlorophenol____ 2600 U | 95-95-4-----2,4,5-Trichlorophenol____ 6500 | U 91-58-7----2-Chloronaphthalene____ 2600 U | 88-74-4----2-Nitroaniline 6500 U 131-11-3-----Dimethylphthalate 2600 U 2600 U 208-96-8-----Acenaphthylene 606-20-2----2,6-Dinitrotoluene 2600 U 6500 U 99-09-2----3-Nitroaniline 83-32-9-----Acenaphthene 310 J

		SH899-12207-B70615
Lab Name: <u>Recra.LabNet</u>	Contract: <u>01667600001</u>	

Lab Code: Recra Case No.: ____ SAS No.: _____ SDG No.: ____

Lab Sample ID: 9912L959-013 Matrix: (soil/water) SOIL

Sample wt/vol: 30.4 (g/mL) G Lab File ID: D011206

Date Received: 12/08/99 Level: (low/med) LOW

% Moisture: 37 decanted: (Y/N)_ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 5.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{9.0}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

51-28-52,4-Dinitrophenol	6500	ָ ט
100-02-74-Nitrophenol	6500	υİ
132-64-9Dibenzofuran	210	
121-14-22,4-Dinitrotoluene	2600	ט
84-66-2Diethylphthalate	2600	
7005-72-34-Chlorophenyl-phenylether	2600	,
86-73-7Fluorene	320	•
100-01-64-Nitroaniline	6500	י די
534-52-14,6-Dinitro-2-methylphenol	,	
86-30-6Nitroscdiphenylamine (1)	2600	
101-55-34-Bromophenyl-phenylether	2600	
118-74-1Hexachlorobenzene	2600	
87-86-5Pentachlorophenol	6500	
85-01-8Phenanthrene	4100	i
120-12-7Anthracene	740	J
86-74-8Carbazole	400	J
84-74-2Di-n-butylphthalate	2600	י די ו
206-44-0Fluoranthene	4800	i
129-00-0Pyrene	3700	į
85-68-7Butylbenzylphthalate	2600	י ט
91-94-13,3'-Dichlorobenzidine	2600	ט ו
56-55-3Benzo(a)anthracene	2000	J
218-01-9Chrysene	2300	J
117-81-7bis(2-Ethylhexyl)phthalate	2600	U
117-84-0Di-n-octyl phthalate	2600	U
205-99-2Benzo(b) fluoranthene	1700	J
207-08-9Benzo(k) fluoranthene	1600	J
50-32-8Benzo(a)pyrene	1900	J
193-39-5Indeno(1,2,3-cd)pyrene	1100	J
53-70-3Dibenz (a, h) anthracene	340	J
191-24-2Benzo(g,h,i)perylene	1200	J
]

(1) - Cannot be separated from Diphenylamine

RFW (v3.3) FORM 1 SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12207-B70615

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-013

Sample wt/vol: 30.4 (g/mL) GLab File ID: <u>D011206</u>

Date Received: <u>12/08/99</u> Level: (low/med) LOW

% Moisture: 37 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 5.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{9.0}$

CONCENTRATION UNITS:

Number TICs found: 18 (ug/L or ug/Kg) <u>UG/KG</u>

CAC NUMBER	CCMPOUND NAME	 RT	EST. CONC.	O
CAS NUMBER	COMPOUND NAME	KI	ESI. CONC.	Q
		======	000	====
1.	UNKNOWN	13.33	900	J
2.	PAH	20.17	500	J
3.	PAH	20.22	800	J
4.	PAH	20.39	1000	J
5.	PAH	21.11	800	J
6.	PAH	22.04	600	J
7.	PAH	22.21	1000	J
8.	UNKNOWN	23.01	500	J
9. 243-46-9	BENZONAPHTHOTHIOPHENE	23.19	600	JN
10.	ALKANE	24.20	800	J
11.	ALKANE	25.84	3000	J
12.	ALKANE	25.98	900	J
13.	PAH	27.16	1000	J
14.	ALKANE	28.18	1000	J
15.	UNKNOWN	32.78	900	J
16.	UNKNOWN	34.08	6000	J
17.	UNKNOWN	35.22	1000	J
18.	UNKNOWN	35.64	1000	J
				lİ

Recra LabNet Philadelphia METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- * = Indicates that the original sample result is greater than 4x the spike amount added.

ABBREVIATIONS

MB = Method or Preparation Blank.

MS = Matrix Spike.

MSD = Matrix Spike Duplicate.

REP = Sample Replicate

LC = Laboratory Control Sample.

NC = Not calculated.

A suffix of -R, -S, or -T following these codes indicate a replicate, spike or sample duplicate analysis respectively.

ANALYTICAL WET CHEMISTRY METHODS

- 1. ASTM Standard Methods.
- 2. USEPA Methods for Chemical Analysis of Water and Wastes (USEPA 600/4-79-020).
- 3. Test Methods for Evaluating Solid Waste (USEPA SW-846).
- a. Standard Methods for the Examination of Water and Waste, 16 ed, (1983).
- b. <u>Standard Methods for the Examination of Water and Waste</u>, 17 ed, (1989)/18ed (1992).
- c. <u>Method of Soil Analysis</u>, Part 1, Physical and Mineralogical Methods, 2nd ed, (1986).
- d. <u>Method of Soil Analysis</u>, Part 2, Chemical and Microbiological Properties, Am. Soc. Agron., Madison, WI (1965).
- e. USEPA Contract Laboratory Program, Statement of Work for Inorganic Analysis.
- f. Code of Federal Regulations.

L-WI-034/D-6/99

Recra LabNet Philadelphia Inorganics Data Summary Report Physical Testing Observations

Client: NYSDEC RFW#: 0002L425

Analyte:

Ignitability

W.O. #: 01667-600-001-9999-00

Date Received: 02-11-00

Observation:

Sample SH800-02208-B70621 did not ignite and the test flame extinguished at 155°F.

The sample was heated to 220°F.

p-Xylene was used to determine the accuracy of the flash point apparatus. The p-Xylene will flash at 81°F +/-1°F. For this test, the Xylene flashed at 81°F.

njp\pt425.p2

INORGANICS DATA SUMMARY REPORT 03/09/00

CLIENT: NYSDEC

RECRA LOT #: 0002L425

					reporting	DILUTION
SAMPLE	SITE ID	ANALYTE	result	UNITS	LIMIT	FACTOR
****		医电池分类医学型分类医学 医多种生物的 医甲基氏性	*****			****
-001	SH800-02208-B70616	% Solids	81.4	*	0.01	1,0
		Petroleum Hydrocarbons	474	MG/KG	20.4	5.0
-002	SH800-02208-B70617	% Solids	83.2	•	0.01	1.0
		Petroleum Hydrocarbons	22.3	mg/kg	4.0	1.0
-003	SH800-02208-B70618	% Solids	83.9		0.01	1.0
		Petroleum Hydrocarbons	1140	MG/KG	39.7	10.0
-004	SH800-02208-B70619	% Solids	66.5	*	0.01	1.0
	•	Petroleum Hydrocarbons	336	MG/KG	5.0	1.0
-005	SH800-02208-B70620	* Solids	75.3	*	0.01	1.0
		Petroleum Hydrocarbons	166	MG/KG	4.4	1.0
-006	SH800-02208-B70621	% Solids	77.7	*	0.01	1.0
		Cyanide, Reactive	0.50 u	MG/KG	0.50	1.0
•		Corrosivity by pH	7.6	PH UNIT	0.01	1.0
		Sulfide, Reactive	24.0 u	MG/KG	24.0	1.0

INORGANICS METHOD BLANK DATA SUMMARY PAGE 03/09/00

CLIENT: NYSDEC

RECRA LOT #: 0002L425

					KELOKITMG	DITUITOR
SAMPLE	SITE ID	ANALYTE	RBSULT	UNITS	LIMIT	PACTOR
*****			*****	37 7 224		******
BLANK10	00LHC005-MB1	Petroleum Hydrocarbons	22.0	MG/KG	3.3	1.0
BLANK10	00LRC004-MB1	Cyanide, Reactive	0.50 u	MG/KG	0.50	1.0
BLANK10	00LRS008-MB1	Sulfide, Reactive	24.0 u	MG/KG	24.0	1.0

INORGANICS ACCURACY REPORT 03/09/00

CLIENT: NYSDEC

RECRA LOT #: 0002L425

			SPIKED	INITIAL	SPIKED		DILUTION
SAMPLE	S SITE ID	ANALYTE	SAMPLE	RESULT	AMOUNT	*RECOV	Factor (SPK)
20225	***************		*******	*******	*****	****	2627447220
-003	SH800-02208-B70618	Petroleum Hydrocarbons	670	1140	83.2	-570. *	10.0
LCS10	00LHC005-LC1	Petroleum Hydrocarbons	125	3.3 u	140	89.6	1.0
BLANK	LO OOLRCOO4-MB1	Cyanide, Reactive	1.1	0.50u	10	10.7	1.0
		Cyanide, Reactive MSD	2.5	0.50u	10	25.2	1.0
BLANKI	lo OOLFPOO4-MB1	Flash Point	81.0	0.0	81.0	100	1.0
BLANK	lo 00LRS008-MB1	Sulfide, Reactive	132	24.0 u	400	33.1	1.0
		Sulfide, Reactive MSD	100	24.0 u	400	25.0	1.0

INORGANICS DUPLICATE SPIKE REPORT 03/09/00

CLIENT: NYSDEC

RECRA LOT #: 0002L425

					_
			SPIKE#1	. SPIKB#2	2
SAMPLE	SITE ID	ANALYTE	*RECOV	*RECOV	*DIFF
		************		202022	
BLANK10	OOLRCOO4-MB1	Cyanide, Reactive	10.7	25.2	80.5
BLANK10	00LRS008-MB1	Sulfide, Reactive	33.1	25.0	27.6

INORGANICS PRECISION REPORT 03/09/00

CLIENT: NYSDEC

7

RECRA LOT #: 0002L425

			INITIAL			DILUTION
Sample	SITE ID	ANALYTE	RESULT	REPLICATE	RPD	FACTOR (RBP)
			****		*******	*******
-003REP	SH800-02208-B70618	% Solids	83.9	83.4	0.56	1.0
		Petroleum Hydrocarbons	1140	1460	24.8	10.0

(2) 8 11. Non 2 3.11.00 (1945)		Relinquished Received Date Time by by					1.	- 	special instructions:		30 yell +clu of	370(ot 12)	07 N30	Other add 11	Lenchate 205	Liquids DOK //	Sollds CO 3	202	water OU B706 /6	34800 - 02208 -	S - Soil ID Client 1D/Description (V)		Account #		00	C COMPANY TO SERVICE OF THE SERVICE	TRANK SOURCES 7/6	Ď۱	20	client NUSDEC	JOUR HAS
	REWRITTEN / 圆	ORIGINAL Date	6.	5.	4.	3		** , See lab (Metal = 1 HSL	SNO:		** ,	2.11.00	11 20/00/1000	1280 00/87 11	11/8/00 1605		1/8/m	50/L 2/8/00 /233	~	Matrix Collected Collected		REQUESTED		Preservatives		Liquid	#/ Type Container Solid	Liquid	Refrigerator #	FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS
	i	Discrepancies Between Samples Labels and COC Record? Y or (N)						ab Chro			 \ \ \	\ \ \	2	\				<u> </u>		13/ CUAGO CO CUAGO	BT 25T 24T	‡ RECRA LabNet Use	Pest/PCB	ORGANIC			9	196 - 1			(B) comp (2)
	3 Temp 600 °C		4) Labels Indicate Sample Y or N Properly Praserved COC Record Present	zŝ			Hand Delivered Package Cor N		Samples were: COC Tape was:	RECRA LabNet Use Only		<		ントアフ	<u> </u>	\frac{\z}{2}	V3 . V3	<	<u> </u>	THE COM	CTAL PH CLP PROS. 6 NIT. 97CC	Only ‡	Metal CN IPHO ITCL ICOR IIG	Fiff 3 で で 10 BHO	1 7	250 250500 J		IRS MG 2AG			Constant LabNet

:

Case Narrative

Chemical and Environmental Measurement Information Recra LabNet Philadelphia **Analytical Report**

Client: NYSDEC **RFW** #: 0002L425 **ELAP #: 10752**

W.O.#: 01667-600-001-9999-00 **Date Received:** 02-11-2000

GC/MS VOLATILE

One (1) water and one (1) solid samples were collected on 02-08,11-2000.

The samples and their associated QC samples were analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Volatile target compounds on 02-16-2000.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature upon receipt has been recorded on the chain-of-custody.
- 2. The required holding time for analysis was met.
- 3. Non-target compounds were detected in sample SH800-02208-B70617.
- Sample SH800-02208-B70617 required a medium level analysis due to high levels of target 4. compounds.
- 5. All surrogate recoveries were within EPA QC limits.
- The method blanks contained the common laboratory contaminants Methylene Chloride and Acetone 6. at levels less than the CRQL.
- 7. All internal standard area and retention time criteria were met.
- 8. The water analyses were performed with the method enhancement of a 40°C heated purge to standardize the purge temperature and improve overall purging efficiency.
- 9. Manual integrations are performed according to OP L-QA-125 to produce quality data with the utmost integrity. All manual integrations are required to be technically valid and properly documented. Appropriate technical flags are defined in Section III ("Technical Flags For Manual Integration"); hard copies of the integrations have been included with the quantitation data.
- I certify that this data package is in compliance with the terms and conditions of the contract, both 10. technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

3-13-0

Date

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

somigroup)dataivon'nysdee-02-425.doc
The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 1 2 4 pages.

GLOSSARY OF VOA DATA

DATA QUALIFIERS

U	=	Compound was analyzed for but not detected. The associated numerical value is the estimated
		sample quantitation limit which is included and corrected for dilution and percent moisture.

- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.voa

n

GLOSSARY OF VOA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.voa

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

SL Sludge
W - Water
O - Oil
A - Air
DS - Drum
Solids
DL - Drum
Liquids
L - EP/TCLP
Leachate
W1 - Wipe
X - Other Se - Soll Se - Sediment SO - Solid MATRIX CODES: 364 15000 Date Rec'd RECRA Project Manager ... Project Contact/Phone # _ Project # () Lala 1 -Est. Final Proj. Sampling Date Client NUSDEC Special Instructions: Account # ac CHOSpec DI CIP Mara Relinquished 003 006 2006 200 유 3-11-00 BIOLE DASTIC Berna BTOURTH TEXPOR COLD Received by <u> 3HBCO - 026VB</u> 3706 16 S 00-PPPP-100-00 FRANK SOWKES 7/6 2265357 Client ID/Description 20 8 ۉ Date Due 11/00 Date 30 mJ TAT FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS Maple 1972 hapas Time 3.13.0° 8 Relinquished ORIGINAL š Chosen (5) MSD Metal DATE/REVISIONS: * KEWRII IEN ANALYSES REQUESTED 7/05 Volume Ξ Matrix #/Type Container Refrigerator # Preservatives = 21100 76/00 148/00 2/8/00 ** 18/10 Collected 1SF 118/W See Jab Char 900 Date Time 350 1221 ·]_ 605 8 3 723 Liquid Liquid Solid ջ Date 253 NA NA S Kon VOA BNA Time Pest J092 870 674 PCB (B) 32/20 3/2000 Samples Labels and COC Record? Y or N Discrepancies Between Herb യ₂57 lead α 24TRECRA LabNet Use Only ITCLV 530 3 < METAL PEC P Metal 3) Received in Good Condition or N 2) Ambient or Chille rolled mak monin Holding Times 5) Received Within Properly Preserved or N Hand Delivered -1) Shipped ___ or Labels Indicate Samples were: CN 850 کی < < < IAIC RECRA LabNet Use Only TPH 286 500 TICLP (2) TCLP 5 DRROS ICORP 3) Present on Sample Y or (N) COC Tape was:

1) Present on Outer
Package or N Cooler COC Record Present Sample Y or N 4) Unbroken on Package (or N 2) Unbroken on Outer Upon Sample Rec't or N 7 MENT. 602

£401.

tea

RECRA LabNet

of

RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page -

Sample Data, for each Sample

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		. (
		SH800-02208-B70617
Lab Name: Recra.LabNet	Contract: 01667600001	
		I

Lab Code: Recra Case No.: SAS No.: SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 0002L425-002

Sample wt/vol: $\underline{4.00}$ (g/mL) \underline{G} Lab File ID: $\underline{h021618}$

Level: (low/med) MED Date Received: 02/11/00

% Moisture: not dec. <u>17</u> Date Analyzed: <u>02/16/00</u>

GC Column: ID: ____(mm) Dilution Factor: 1.00

CAS NO. COMPOUND

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u> Q

		 	
	74-87-3Chloromethane	1500	[]
	74-83-9Bromomerhane	1500	! '
	75-01-4Vinyl Chloride	1500	•
	75-00-3Chloroethane	1500	!
	75-09-2Methylene Chloride	750	
	67-64-1Acetone	1500	
	75-15-0Carbon Disulfide	1500	•
	75-35-41,1-Dichloroethene	1500	1 -
	75-34-31,1-Dichloroethane	1500	
	540-59-01,2-Dichloroethene (total)	1500	: :
	67-66-3Chloroform	1500	
	107-06-21,2-Dichloroethane	1500	: :
	78-93-32-Butanone	1500	
ĺ	71-55-61,1,1-Trichloroethane	1500	: !
	56-23-5Carbon Tetrachloride	1500	:
	75-27-4Bromodichloromethane	1500	
	78-87-51,2-Dichloropropane	1500	•
	10061-01-5cis-1,3-Dichloropropene	1500	1 " 1
	79-01-6Trichloroethene	1500	
1	124-48-1Dibromochloromethane	1500	
	79-00-51,1,2-Trichloroethane	1500	,
1	71-43-2Benzene	1500	•
	10061-02-6Trans-1,3-Dichloropropene	1500	
	75-25-2Bromoform	1500	
	108-10-14-Methyl-2-pentanone	1500	•
	591-78-62-Hexanone	1500	:
	127-18-4Tetrachloroethene	1500	
	79-34-51,1,2,2-Tetrachloroethane	1500	
	108-88-3Toluene	1500	:
	108-90-7Chlorobenzene	1500	
	100-41-4Ethylbenzene	1500	
1	100-42-5Styrene	1500	
	200 12 3	! -300!	_ !

1330-20-7-----Xylene (total) _____

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH800-02208-B70617

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: _____ SDG No.: ____

Matrix: (soil/water) SOIL

Lab Sample ID: 0002L425-002

Sample wt/vol: $\underline{4.00}$ (g/mL) \underline{G} Lab File ID: $\underline{h021618}$

Level: (low/med) MED

Lab Code: Recra Case No.: ____

Date Received: 02/11/00

% Moisture: not dec. 17

Date Analyzed: 02/16/00

GC Column: ID: ____(mm) Dilution Factor: 1.00

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS:

Number TICs found: 12

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=======================================	======	==========	=====
1.	CYCLOALKANE	17.956	10	J
2.	CYCLOALKANE	19.956	8	J
3.	CYCLOALKANE	20.841	20	J
4.	CYCLOALKANE	21.398	9	J
5.	UNKNOWN	21.450	10	J
6.	ALKANE	21.693	10	J
7.	CYCLOALKANE	21.929	20	J
8.	UNKNOWN	22.230	10	J
9.	CYCLOALKANE	23.109	10	J
10.	CYCLOALKANE	24.243	10	J
11.	UNKNOWN	25.115	7	J
12.	UNKNOWN	26.859	6	J
			l	ll

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.	
----------------	--

Lab Name: Recra.LabNet Contract: 0166760000	REFRIG BLANK
Lab Code: Recra Case No.: SAS	No.: SDG No.:
Matrix: (soil/water) WATER Lab	Sample ID: 0002L425-007
Sample wt/vol: 5.00 (g/mL) ML Lab	File ID: <u>h021619</u>
Level: (low/med) LOW Date	e Received: <u>02/11/00</u>
% Moisture: not dec Date	e Analyzed: <u>02/16/00</u>
GC Column: ID:(mm) Dilution Facto	pr: 1,00
Soil Extract Volume:(uL) Soil	. Aliquot Volume:(uL)
CONCENTRAT	CION UNITS:
CAS NO. COMPOUND (ug/L or u	
74-87-3Chloromethane	
74-83-9Bromomethane	
75-01-4Vinyl Chloride	
75-00-3Chloroethane	
75-09-2Methylene Chloride	
67-64-1Acetone	
75-15-0Carbon Disulfide	
75-35-41,1-Dichloroethene	
75-34-31,1-Dichloroethane	10 U
540-59-01,2-Dichloroethene (total)	
67-66-3Chloroform	
107-06-21,2-Dichloroethane	
78-93-32-Butanone	
71-55-61,1,1-Trichloroethane	
56-23-5Carbon Tetrachloride	
75-27-4Bromodichloromethane	
78-87-51,2-Dichloropropane	10 U
10061-01-5cis-1,3-Dichloropropene	10 U
79-01-6Trichloroethene	10 U
124-48-1Dibromochloromethane	10 U - 10 U
71-43-2Benzene	10 U
10061-02-6Trans-1,3-Dichloropropene	10 0
75-25-2Bromoform	10 U
108-10-14-Methyl-2-pentanone	10 U
591-78-62-Hexanone	10 U
127-18-4Tetrachloroethene	10 0
79-34-51,1,2,2-Tetrachloroethane	10 0
108-88-3Toluene	10 0
108-90-7Chlorobenzene	10 0
100-41-4Ethylbenzene	10 0
100-42-5Styrene	10 0
1330 30.7	10 17

3/90

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

عظ	A 32	THETE	NO.		
. —				 	
REF	RIG	BLANK	7		_

TENTALIVEDI IDENTIFIED COMPOUNDS	.]	REFRIG BLANK
Lab Name: Recra.LabNet Contract: 01667	600001	
Lab Code: Recra Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID:	0002L425-007
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	h021619
Level: (low/med) <u>LOW</u>	Date Received:	02/11/00
% Moisture: not dec	Date Analyzed:	02/16/00
GC Column: ID:(mm) Dilution	Factor: <u>1.00</u>	_
Soil Extract Volume:(uL)	Soil Aliquot V	Tolume:(uL)
	ntration units: or ug/Kg) <u>UG/I</u>	
CAS NUMBER COMPOUND NAME	: :	ST. CONC. Q

- 1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.	

Lab Name: Recra.LabNet Contract: 0166	VBLKPI 7600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) SOIL	Lab Sample ID: 00LVH052-MB1
Sample wt/vol: 4.00 (g/mL) \underline{G}	Lab File ID: h021617
Level: (low/med) MED	Date Received: 02/16/00
% Moisture: not dec	Date Analyzed: 02/16/00
GC Column: ID:(mm) Dilution	Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	ENTRATION UNITS: L or ug/Kg) <u>UG/KG</u> Q
74-87-3Chloromethane	1200 U

CAS NO.	COMPOUND (ag/1 of ag/1	.g/ <u>0G/RG</u>	
74-87-3	Chloromethane	1200	 U
74-83-9	Bromomethane	1200	•
75-01-4	Vinyl Chloride	1200	:
75-00-3	Chloroethane	1200	:
75-09-2	Methylene Chloride	530	J
67 61 1	Agotone	200	J
75-15-0	Carbon Disulfide	1200	U
75-35-4	1,1-Dichloroethene	1200	Ū
75-34-3	1,1-Dichloroethane	1200	ט
540-59-0	1,1-Dichloroethane 1,2-Dichloroethene (total)	1200	U
	Chloroform		Ū
107-06-2	1,2-Dichloroethane	1200	Ū
78-93-3	2-Butanone	1200	ט
71-55-6	1,1,1-Trichloroethane	1200	U
	Carbon Tetrachloride		Ū
	Bromodichloromethane		U
78-87-5	1,2-Dichloropropane	1200	U
10061-01-5-	cis-1,3-Dichloropropene	1200	U
79-01-6	TrichloroetheneDibromochloromethane1,1,2-Trichloroethane	1200	U
124-48-1	Dibromochloromethane	1200	U
79-00-5	1,1,2-Trichloroethane	1200	Ü
71-43-2	Benzene	1200	U
10061-02-6-	Trans-1,3-Dichloropropene	1200	U
75-25-2	Bromoform	1200	U
108-10-1	4-Methyl-2-pentanone	1200	Ŭ
591-78-6	2-Hexanone	1200	•
127-18-4	Tetrachloroethene	1200	
	1,1,2,2-Tetrachloroethane	1200	Ü
108-88-3	Toluene	1200	•
108-90-7	Chlorobenzene	1200	•
100-41-4	Ethylbenzene	1200	:
100-42-5	Styrene	1200	•
1330-20-7	Xylene (total)	1200	Ū

Ε

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	EPA	SAMPLE	NO.		•
1	VBLKI	PI			=
					=

TENTATIVELY IDENTIFIED COMPOUNDS	VBLKPI					
Lab Name: Recra.LabNet Contract: 01667						
Lab Code: Recra Case No.:	SAS No.:	SDG No.:				
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	: 00LVH052-MB1				
Sample wt/vol: 4.00 (g/mL) \underline{G}	Lab File ID:	h021617				
Level: (low/med) MED	Date Received	: 02/16/00				
% Moisture: not dec.	Date Analyzed:	: 02/16/00				
GC Column: ID:(mm) Dilution	Factor: <u>1.00</u>					
Soil Extract Volume:(uL)	Soil Aliquot V	Volume:(uL)				
	NTRATION UNITS:					
CAS NUMBER COMPOUND NAME	RT E	EST. CONC. Q				

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>Recra.LabNet</u> Contract:	01667600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 00LVH051-MB1
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: h021608
Level: (low/med) LOW	Date Received: <u>02/16/00</u>
% Moisture: not dec	Date Analyzed: 02/16/00
GC Column: ID:(mm) Dil	ution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
74-87-3	10 U U
10061-01-5cis-1,3-Dichlorop 79-01-6Trichloroethene 124-48-1Dibromochlorometh 79-00-51,1,2-Trichloroet 71-43-2Benzene 10061-02-6Trans-1,3-Dichlor 75-25-2Bromoform 108-10-14-Methyl-2-pentan 591-78-62-Hexanone 127-18-4Tetrachloroethene 79-34-51,1,2,2-Tetrachlo 108-88-3Toluene 108-90-7Chlorobenzene	ropene

10 U

100-42-5-----Styrene 1330-20-7------Xylene (total)

VOLATILE ORGANICS ANALYSIS DATA SHEET

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Recra.LabNet Contract: 01667	VBLKLM
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 00LVH051-MB1
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>h021608</u>
Level: (low/med) LOW	Date Received: 02/16/00
% Moisture: not dec.	Date Analyzed: 02/16/00
GC Column: ID:(mm) Dilution	Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	NTRATION UNITS: or ug/Kg) <u>UG/L</u>
CAS NUMBER COMPOUND NAME	: : : : : : : : : : : : : : : : : : : :

EPA SAMPLE NO.

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW #: 0002L425 ELAP #: 10752 W.O.#: 01667-600-001-9999-00 Date Received: 02-11-2000

SEMIVOLATILE

One (1) soil sample was collected on 02-08-2000.

The sample and its associated QC samples were extracted on 02-21-2000 and analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Semivolatile target compounds on 03-01,07-2000.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature upon receipt has been recorded on the chain-of-custody.
- 2. The samples were extracted and analyzed within required holding times.
- 3. Non-target compounds were detected in the sample.
- 4. Due to a suspected GPC malfunction, a reserve pre-GPC aliquot was analyzed and reported. A copy of the Sample Discrepancy Report (SDR) has been enclosed.
- 5. All surrogate recoveries were within EPA QC limits.
- 6. All matrix spike recoveries were within EPA QC limits.
- 7. Two (2) of eleven (11) blank spike recoveries were outside EPA QC limits.
- 8. The method blank contained the common laboratory contaminant Bis(2-Ethylhexyl)phthalate at a level less than the CRQL.
- 9. Internal standard area and retention time criteria were met.
- 10. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

J. Michael Taylor

03-10-00 Date

Vice President

Philadelphia Analytical Laboratory

som group\data\bna\nysdec-02-425.doc

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are Integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 16.5 pages.

GLOSSARY OF BNA DATA

DATA QUALIFIERS

U	Compound was analyzed for but not detected. The associated numerical value is the estimated
	sample quantitation limit which is included and corrected for dilution and percent moisture.

- Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- **D** = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NQ = Result qualitatively confirmed but not able to quantify.
- A = Indicates that a TIC is a suspected aldol-condensation product.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.bna

GLOSSARY OF BNA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.bna

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- PI Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

Initiator: MPetry RFW Batch: 00071435 Parameter: BNA Date: 3-7-00 Samples: 002mS Matrix: 501 Client: NYSDEC Method: SW846/MCAWW/CLP/ Prep Batch: 00169
1. Reason for SDR a. COC Discrepancy Tech Profile Error Client Request Sampler Error on C-O-C Transcription Error Wrong Test Code Other Discrepancy Missing Sample/Extract Container Broken Wrong Sample Pulled Label ID's Illegible Hold Time Exceeded Insufficient Sample Preservation Wrong Received Past Hold Improper Bottle Type Not Amenable to Analysis Note: Verified by [Log-In] or [Prep Group] (circle)signature/date:
2. Known or Probable Causes(s) loss of extract prior to analysis
3. Discussion and Proposed Action Re-log Entire Batch Following Samples: Re-leach Re-extract Re-digest Revise EDD Change Test Code to Place On/Take Off Hold (circle) 4. Project Manager Instructionssignature/date: Concur with Proposed Action Disagree with Proposed Action; See Instruction Linclude in Case Narrative Client Contacted: Date/Person Add Cancel
5. Final Actionsignature/date:
X Lab Manager: M. Taylor Project Mgr: Stope/Carey/Schrenkel/Johnson X Section Mgr: Wesson/Daniels X QA (file): Racioppi Data Management: Feldman Sample Prep: Schnell/Doughty/Kauffman Inorganic: Perrone GC/LC: Schnell MS: LeMin/Taylor Log-in: Toder Admin: Soos Other: BNA-Sne

Recra LabNet Philadelphia Sample Discrepancy Report (SDR) SDR #:

<u>00ms035</u>

RECRA	
LabNet Use Only	

Custody Transfer Record/Lab Work Request Page Lot LABNET RECHA

(1) SHEN av-11.8 SAN	\$	Relinquished Received Date Time by			-				Special instructions:		and games temps and	कार्य केर्याची महास्कृति है	07 NE		Leachate US	1 1	Solids	202 :	7/6	Solid SHPCO	MATRIX CODES: Lab Client ID/Description		Account #	0.5.7	OC CHOSOC DO CHO TAI TOCAY	بر	ontact/Phone #	ò	Client NYD DEC 2/17/00	
l_2	REWRITTEN	ORIGINAL	-	·			! د	, See \	MALE HEVISIONS:			**	2.11.00	11 2/10/100 1000	250 00/6/L 11	11 1/8/00 1605	V V 11 2/8/00 1600	11 2/8/m 1250	50/L/2/8/00/123	9		Motrix	REQUESTED	O ANALYSES	Preservatives		357 Volume	#/Type Container	_	Refrigerator #
	J	Date	- ! -			·		ab chan				< < < < < < < < < < < < < < < < < < <		_	2		ਟ 	7 7	33	Vo Br Cross	€ A S 3 T	4	VOA BNA Pest PCE	OHGANIC	上上	Solld JSS I	Liquid	Solid 1/46	Liquid	
	870	Samples Labels and	Discongnoise Between								\ \ \	\		\ 			\ \			CHGE CGO CGO TTCI	5T 1T	RECRA LabNet Use	le	a	cr		0	l:Bci		
	Tolong lines	5) Received Within	Properly Fraserved O or N	4) Labels Indicate	3) Received in Good Condition or N	2) Ambient or Chilled	Airbill Last 159lbo	1) Shipped or Hand Delivered	HECHA LBO	, property						\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	V3 V3	. <	\ <u>\</u> \	ME TR	14 LP	Only	CN IPH	C P	7	250 250 500 -		196 2A6 -		
	Temp. 602 °C		COC Record Present	Sample Y or N	Y or N	3) Present on Sample	2) Unbroken on Outer	1) Present on Outer Package or N	COC Tape was:		-		<	7	_					CDE!	NIT.	~	TCO TICO TSF	RE RE	#		-			

3D SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Case No.: NYSDEC

RFW Lot No.: 0002L425-002

MATRIX Spike - Sample No.: SH800-02208-B70617 Level (low/med): LOW

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	MS %	QC LIMITS
COMPOUND	UG/KG	UG/KG	UG/KG	REC #	REC.
Phenol	3000	0	1970	66	26 - 90
2-Chlorophenol	3000	0	1920	64	25 -102
1,4-Dichlorobenzene	2000	0	1110	56	28 -104
N-Nitroso-di-n-prop.(1)	2000	0	1390	70	41 -126
1,2,4-Trichlorobenzene_	2000	0	1210	61	38 -107
4-Chloro-3-methylphenol	3000	0	2300	77	26 -103
Acenaphthene	2000	0	1300	65	31 -137
4-Nitrophenol	3000	0	2590	86	11 -114
2,4-Dinitrotoluene	2000	0	1410	70	28 - 89
Pentachlorophenol	3000	0	2360	79	17 -109
Pyrene	2000	0	1410	70	35 -142
	1				

	SPIKE ADDED	MSD CONCENTRATION	MSD %	જ	QC L1	MITS
COMPOUND	UG/KG	UG/KG	REC #	RPD #	RPD	REC
Phenol	3000	1500	50	27	35	26 - 90
2-Chlorophenol	3000	1470	49	26	50	25 -102
1,4-Dichlorobenzene	2000	921	46	19	27	28 -104
N-Nitroso-di-n-prop.(1)	2000	1160	58	18	38	41 -126
1,2,4-Trichlorobenzene_	2000	1000	50	20	23	38 -107
4-Chloro-3-methylphenol	3000	1650	55	33	33	26 -103
Acenaphthene	2000	1040	52	22 *	19	31 -137
4-Nitrophenol	3000	1710	57	40	50.	11 -114
2,4-Dinitrotoluene	2000	1070	54	25	47	28 - 89
Pentachlorophenol	3000	1740	58	30	47	17 -109
Pyrene	2000	1200	60	15	36	35 -142
	·					

(1)	N-Nitroso-di-n-propy	rlamine
-----	----------------------	---------

# Column to be used	to flag	recovery	and RPD	values	with	an	asterisk
---------------------	---------	----------	---------	--------	------	----	----------

RPD:	1 out of	<u>11</u>	outside	limits	
Chika	Pacovery.	Λ	out of	22 outside	limit

COMMENTS:	
-----------	--

^{*} Values outside of QC limits

3D SOIL SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Recra.LabNet

Contract: ONE

Case No.: NYSDEC

RFW Lot No.: 0002L425

BLANK Spike - Sample No.: SBLKLSLE0164-MB1 Level (low/med): LOW

COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	BS CONCENTRATION UG/KG	BS % REC #	QC LIMITS REC.
Phenol	1670 1670		893 908 580 608 608 871 594 739 530	36 36 35 36 * 36 * 35 36 30 32	26 - 90 25 -102 28 -104 41 -126 38 -107 26 -103 31 -137 11 -114 28 - 89 17 -109
Pyrene	1670 	o 	667	40	35 -142

(1) N-Nitroso-di-n-propylamine

- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike Recovery: 2 out of 11 outside limits

COMMENTS:	
-----------	--

Sample Data, for each Sample

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: Recra.LabNet Work Order: 01667600001

CLIENT SAMPLE NO.

SH800-02208-B70617

.

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 0002L425-002

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D030707}$

Level: (low/med) LOW Date Received: 02/11/00

% Moisture: ____17 decanted: (Y/N)__ Date Extracted: 02/21/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/07/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>9.2</u>

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

108-95-2Phenol		(3, 2 3 3,	3/ <u>==1.11=</u>	-
111-44-4	 	A STATE OF THE STA	!	<u> </u>
95-57-82-Chlorophenol	108-95-2	Phenol	400	Ū
541-73-11,3-Dichlorobenzene 400 U 106-46-71,4-Dichlorobenzene 400 U 95-50-11,2-Dichlorobenzene 400 U 95-48-72-Methylphenol 400 U 108-60-12,2'-oxybis(1-Chloropropane) 400 U 106-44-54-Methylphenol 400 U 621-64-7N-Nitroso-di-n-propylamine 400 U 67-72-1	111-44-4	bis(2-Chloroethyl)ether	400	Ū
541-73-11,3-Dichlorobenzene 400 U 106-46-71,4-Dichlorobenzene 400 U 95-50-11,2-Dichlorobenzene 400 U 95-48-72-Methylphenol 400 U 108-60-12,2'-oxybis(1-Chloropropane) 400 U 106-44-54-Methylphenol 400 U 621-64-7N-Nitroso-di-n-propylamine 400 U 67-72-1	95-57-8	2-Chlorophenol	400	Ū
95-50-1			400	U
95-50-1	106-46-7	1,4-Dichlorobenzene	400	U
95-48-72-Methylphenol 400 U 108-60-12,2'-oxybis(1-Chloropropane) 400 U 106-44-54-Methylphenol 400 U 106-44-54-Methylphenol 400 U 106-64-7N-Nitroso-di-n-propylamine 400 U 106-7-72-1Hexachloroethane 400 U 106-7-72-1			400	U
108-60-12,2'-oxybis(1-Chloropropane)			400	U
106-44-54-Methylphenol	108-60-1	2,2'-oxybis(1-Chloropropane)	400	ับ
621-64-7N-Nitroso-di-n-propylamine 400 U 67-72-1				Ū
67-72-1			400	Ū
98-95-3Nitrobenzene 400 U 78-59-1Isophorone 400 U 88-75-52-Nitrophenol 400 U 105-67-92,4-Dimethylphenol 400 U 111-91-1bis(2-Chloroethoxy)methane 400 U 120-83-22,4-Dichlorophenol 400 U 120-82-11,2,4-Trichlorobenzene 400 U 91-20-3Naphthalene 400 U 106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 91-57-62-Methylnaphthalene 400 U 97-47-4			400	U
78-59-1			400	U
88-75-52-Nitrophenol 400 U 105-67-92,4-Dimethylphenol 400 U 111-91-1bis (2-Chloroethoxy) methane 400 U 120-83-22,4-Dichlorophenol 400 U 120-82-11,2,4-Trichlorobenzene 400 U 91-20-3Naphthalene 400 U 106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 400 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-23-Nitroaniline 1000 U			400	Ū
105-67-92,4-Dimethylphenol 400 U 111-91-1bis (2-Chloroethoxy) methane 400 U 120-83-22,4-Dichlorophenol 400 U 120-82-11,2,4-Trichlorobenzene 400 U 91-20-3Naphthalene 400 U 106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8	•	*	400	U
111-91-1			400	U
120-83-22,4-Dichlorophenol 400 U 120-82-11,2,4-Trichlorobenzene 400 U 91-20-3Naphthalene 400 U 106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 77-47-4Hexachlorocyclopentadiene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-23-Nitroaniline 1000 U			400	Ū
120-82-11, 2, 4-Trichlorobenzene 400 U 91-20-3Naphthalene 400 U 106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 77-47-4Hexachlorocyclopentadiene 400 U 88-06-22, 4, 6-Trichlorophenol 400 U 95-95-42, 4, 5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-23-Nitroaniline 1000 U			400	U
91-20-3Naphthalene 400 U 106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 77-47-4Hexachlorocyclopentadiene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-23-Nitroaniline 1000 U			400	Ū
106-47-84-Chloroaniline 400 U 87-68-3Hexachlorobutadiene 400 U 59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 77-47-4Hexachlorocyclopentadiene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U			400	U
87-68-3			400	Ū
59-50-74-Chloro-3-methylphenol 400 U 91-57-62-Methylnaphthalene 400 U 77-47-4Hexachlorocyclopentadiene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U	-		400	U
91-57-62-Methylnaphthalene 400 U 77-47-4Hexachlorocyclopentadiene 400 U 88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-23-Nitroaniline 1000 U			400	U
77-47-4			400	U
88-06-22,4,6-Trichlorophenol 400 U 95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U		- -	400	U
95-95-42,4,5-Trichlorophenol 1000 U 91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U			400	U
91-58-72-Chloronaphthalene 400 U 88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U			1000	U
88-74-42-Nitroaniline 1000 U 131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U			400	U
131-11-3Dimethylphthalate 400 U 208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U			1000	U
208-96-8Acenaphthylene 400 U 606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U			400	U
606-20-22,6-Dinitrotoluene 400 U 99-09-23-Nitroaniline 1000 U				U
99-09-2 3-Nitroaniline 1000 U			400	Ū
				:
			400	Ū

SH800-02208-B70617

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Lab Sample ID: 0002L425-002 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D030707}$

Level: (low/med) LOW

Date Received: 02/11/00

% Moisture: 17 decanted: (Y/N) Date Extracted: 02/21/00

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 03/07/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: 9.2

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or u	g/Kg) <u>UG/K</u>	3	Q
51-28-5	2,4-Dinitrophe	enol		1000	 U
	4-Nitrophenol		i	1000	Ū
	Dibenzofuran		— i	400	:
121-14-2	2,4-Dinitroto	uene	i	400	Ū
	Diethylphthala			400	U
	4-Chloropheny		<u> </u>	400	U
	Fluorene			400	U
100-01-6	4-Nitroaniline			1000	U
534-52-1	4,6-Dinitro-2-	methylphenol		1000	U
86-30-6	N-Nitrosodiphe	enylamine (1)	1	400	U
101-55-3	4-Bromophenyl	phenylether		400	U
118-74-1	Hexachlorobenz	ene		400	Ū
87-86-5	Pentachlorophe	enol	!	1000	Ū
85-01-8	Phenanthrene_			29	J
120-12-7	Anthracene			400	U
	Carbazole			400	U
84-74-2	Di-n-butylpht	nalate		400	Ū
206-44-0	Fluoranthene_			400	U
129-00-0	Pyrene			400	U
85-68-7	Butylbenzylph	:halate		400	U
91-94-1	3,3'-Dichloro	enzidine		400	U
56-55-3	Benzo(a)anthra	acene		400	U
218-01-9	Chrysene			400	U
117-81-7	bis(2-Ethylhe	cyl)phthalate		400	U
117-84-0	Di-n-octyl ph	halate		400	U
205-99-2	Benzo(b)fluora	anthene		400	U
207-08-9	Benzo(k)fluora	anthene		400	U
50-32-8	Benzo(a)pyren	e		400	U
193-39-5	Indeno(1,2,3-	od) pyrene		400	U
53-70-3	Dibenz(a,h)an	hracene	[400	U
191-24-2	Benzo(g,h,i)p	erviene	1	400	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

Lab Name: Recra.LabNet Work Order: 01667600001

SH800-02208-B70617

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 0002L425-002

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D030707}$

Level: (low/med) LOW

Date Received: 02/11/00

% Moisture: 17 decanted: (Y/N) Date Extracted: 02/21/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/07/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

pH: <u>9.2</u>

CONCENTRATION UNITS:

Number TICs found: 10

(ug/L or ug/Kg) <u>UG/KG</u>

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======================================	======		=====
- 1	1.	UNKNOWN	8.50	80	J
1	2.	ALDOL CONDENSATE	8.67	200	JAB
-	3.	ALDOL CONDENSATE	9.46	100	JAB
- 1	4.	ALKANE	16.61	100	J
	5.	TRIMETHYLNAPHTHALENE	18.31	. 80	J
-	6.	ALKANE	18.85	100	J
1	7.	UNKNOWN	19.56	100	JB
-	8.	ALKANE	20.28	100	J
İ	9.	ORGANIC ACID	21.34	300	J
ĺ	10.	UNKNOWN	24.65	200	J
İ			l		

Raw QC Data: Tune, Blank and Spike Data

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

-		
SBLKLS		
,000.000		

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 00LE0164-MB1

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D030104}$

Level: (low/med) LOW Date Received: 02/21/00

% Moisture: _____ decanted: (Y/N)___ Date Extracted: 02/21/00

Concentrated Extract Volume: 500(uL) Date Analyzed: 03/01/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-52,4-Dinitrophenol	 840 U
100-02-74-Nitrophenol	
132-64-9Dibenzofuran	
121-14-22,4-Dinitrotoluene	
84-66-2Diethylphthalate	330 U
7005-72-34-Chlorophenyl-phenyle	
86-73-7Fluorene	330 U
100-01-64-Nitroaniline	840 U
534-52-14,6-Dinitro-2-methylph	
86-30-6N-Nitrosodiphenylamine	
101-55-34-Bromophenyl-phenylet	
118-74-1Hexachlorobenzene	
118-74-1	840 U
87-86-5Pentachlorophenol	
85-01-8Phenanthrene	330 U
120-12-7Anthracene	
86-74-8Carbazole	330 U
84-74-2Di-n-butylphthalate	
206-44-0Fluoranthene	
129-00-0Pyrene	330 U
85-68-7Butylbenzylphthalate_	
91-94-13,3'-Dichlorobenzidine	
56-55-3Benzo(a)anthracene	
218-01-9Chrysene	
117-81-7bis(2-Ethylhexyl)phtha	
117-84-0Di-n-octyl phthalate_	
205-99-2Benzo(b) fluoranthene_	
207-08-9Benzo(k)fluoranthene_	
50-32-8Benzo(a)pyrene	
193-39-5Indeno(1,2,3-cd)pyrene	
53-70-3Dibenz(a,h)anthracene	330 U
25 , 6 5 2 222012 (4,11,410112 400110]	

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

3/90

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SBLKLS

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 00LE0164-MB1

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D030104}$

Level: (low/med) LOW

Date Received: 02/21/00

% Moisture: _____ decanted: (Y/N) ___ Date Extracted: 02/21/00

Date Analyzed: 03/01/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 7.0

Concentrated Extract Volume: 500(uL)

Number TICs found: 6

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======		=====
1.	UNKNOWN	8.10	100	J
2.	ALDOL CONDENSATE	8.24	80	JA
3.	UNKNOWN	8.36	300	J
4.	ALDOL CONDENSATE	8.90	200	JA
5.	UNKNOWN	17.66	400	J
6.	UNKNOWN	19.78	2000	J

SBLKLSMS

Lab Name: Recra.LabNet

Work Order: <u>01667600001</u>

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 00LE0164-MB1 BS

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: <u>D030105</u>

Level: (low/med) LOW

Date Received: 02/21/00

% Moisture: ____ decanted: (Y/N) __ Date Extracted: 02/21/00

Concentrated Extract Volume: 500(uL) Date Analyzed: 03/01/00

Injection Volume: 2.0(uL)

CAS NO. COMPOUND

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

108-95-2	Phenol	890	z
	bis(2-Chloroethyl)ether	330	U
95-57 - 8	2-Chlorophenol	910	Z
541-73-1	1,3-Dichlorobenzene	330	U
106-46-7	1,4-Dichlorobenzene	580	Z
95-50-1 -	1,2-Dichlorobenzene	330	U
95-48-7 	2-Methylphenol	330	U
	2,2'-oxybis(1-Chloropropane)	330	U
106-44-5 	4-Methylphenol	330	U
621-64-7 -	N-Nitroso-di-n-propylamine	. 610	z
67-72-1	Hexachloroethane	330	U U
98-95-3- -	Nitrobenzene	330	U
78-59-1	Isophorone	330	U
88-75-5	2-Nitrophenol	330	U
105-67-9	2,4-Dimethylphenol	330	[ט
	bis(2-Chloroethoxy)methane	330	ן ט
120-83-2	2,4-Dichlorophenol	- 330	Įυ
	1,2,4-Trichlorobenzene	610	z
91-20-3	Naphthalene	330	U
106-47-8	4-Chloroaniline	330	U
87-68-3	Hexachlorobutadiene	330	Įΰ
59-50 - 7- -	4-Chloro-3-methylphenol	870	Z
91-57-6	2-Methylnaphthalene	330	U
77 - 47 - 4	Hexachlorocyclopentadiene	330	U
	2,4,6-Trichlorophenol	330	U
95-95-4 	2,4,5-Trichlorophenol	840	U
91-58-7	2-Chloronaphthalene	330	U
	2-Nitroaniline	840	U
131-11-3	Dimethylphthalate	330	U
208-96 -8	Acenaphthylene	330	U
606-20-2 	2,6-Dinitrotoluene	330	U
	3-Nitroaniline	840	U
83-32-9	Acenaphthene	590	Z

CLIENT SAMPLE NO.

SBLKLSMS

Lab Name: Recra.LabNet

Work Order: <u>01667600001</u>

Client: NYSDEC_

Matrix: (soil/water) SOIL

Lab Sample ID: 00LE0164-MB1 BS

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D030105}$

Level: (low/med) LOW

Date Received: 02/21/00

% Moisture: ____ decanted: (Y/N) __ Date Extracted: 02/21/00

Concentrated Extract Volume: 500(uL) Date Analyzed: 03/01/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u> Q

Single State Sta				
100-02-74-Nitrophenol 740 Z 132-64-9Dibenzofuran 330 U 121-14-22,4-Dinitrotoluene 530 Z 84-66-2Diethylphthalate 330 U 7005-72-34-Chlorophenyl-phenylether 330 U 86-73-7Fluorene 330 U 100-01-64-Nitroaniline 840 U 86-30-6	51-28-52,4-Dinitrop	henol	840	U
132-64-9			740	z
121-14-22,4-Dinitrotoluene 530 Z 84-66-2Diethylphthalate 330 U 7005-72-34-Chlorophenyl-phenylether 330 U 86-73-7Fluorene 330 U 100-01-64-Nitroaniline 840 U 86-30-64,6-Dinitro-2-methylphenol 840 U 86-30-6Nitrosodiphenylamine 330 U 101-55-34-Bromophenyl-phenylether 330 U 118-74-1Hexachlorobenzene 330 U 87-86-5Pentachlorophenol 790 Z 85-01-8Phenanthrene 330 U 120-12-7Anthracene 330 U 84-74-2Di-n-butylphthalate 330 U 206-44-0Fluoranthene 330 U 129-00-0			330	U
84-66-2	•		530	z
7005-72-34-Chlorophenyl-phenylether 330 U 86-73-7Fluorene 330 U 100-01-64-Nitroaniline 840 U 534-52-14,6-Dinitro-2-methylphenol 840 U 86-30-6N-Nitrosodiphenylamine (1) 330 U 101-55-34-Bromophenyl-phenylether 330 U 118-74-1Hexachlorophenol 790 Z 85-01-8			330	U
86-73-7			330	Ū
534-52-14,6-Dinitro-2-methylphenol 840 U 86-30-6N-Nitrosodiphenylamine (1) 330 U 101-55-34-Bromophenyl-phenylether 330 U 118-74-1Hexachlorobenzene 330 U 87-86-5Pentachlorophenol 790 Z 85-01-8Phenanthrene 330 U 120-12-7			330	Ū
86-30-6N-Nitrosodiphenylamine (1) 330 U 101-55-34-Bromophenyl-phenylether 330 U 118-74-1Hexachlorobenzene 330 U 87-86-5Pentachlorophenol 790 Z 85-01-8Phenanthrene 330 U 120-12-7Anthracene 330 U 86-74-8Carbazole 330 U 84-74-2Di-n-butylphthalate 330 U 206-44-0	100-01-64-Nitroanili	ne	840	Ū
101-55-34-Bromophenyl-phenylether 330 U 118-74-1Hexachlorobenzene 330 U 87-86-5Pentachlorophenol 790 Z 85-01-8Phenanthrene 330 U 120-12-7Anthracene 330 U 86-74-8Carbazole 330 U 84-74-2Di-n-butylphthalate 330 U 206-44-0Fluoranthene 330 U 129-00-0Pyrene 670 Z 85-63-7Butylbenzylphthalate 330 U 91-94-13,3'-Dichlorobenzidine 330 U 56-55-3Benzo(a) anthracene 330 U 218-01-9Chrysene 330 U 117-81-7bis(2-Ethylhexyl)phthalate 98 JB 117-84-0	534-52-14,6-Dinitro-	2-methylphenol	840	U
118-74-1	86-30-6N-Nitrosodip	henylamine (1)	330	Ū
87-86-5	101-55-34-Bromopheny	l-phenylether	330	บ
87-86-5	118-74-1Hexachlorobe	nzene	330	Ū
120-12-7Anthracene 330 U 86-74-8Carbazole 330 U 84-74-2Di-n-butylphthalate 330 U 206-44-0Fluoranthene 330 U 129-00-0				Z
120-12-7Anthracene 330 U 86-74-8Carbazole 330 U 84-74-2Di-n-butylphthalate 330 U 206-44-0Fluoranthene 330 U 129-00-0	85-01-8Phenanthrene		330	U
84-74-2			330	U
206-44-0	86-74-8Carbazole		330	U
129-00-0	84-74-2Di-n-butylph	thalate	330	U
85-68-7	206-44-0Fluoranthene		330	U
91-94-13,3'-Dichlorobenzidine 330 U 56-55-3Benzo(a) anthracene 330 U 218-01-9Chrysene 330 U 117-81-7bis(2-Ethylhexyl)phthalate 98 JB 117-84-0Di-n-octyl phthalate 330 U 205-99-2Benzo(b) fluoranthene 330 U 207-08-9Benzo(k) fluoranthene 330 U 50-32-8Benzo(a) pyrene 330 U 193-39-5Indeno(1,2,3-cd) pyrene 330 U 53-70-3Dibenz(a,h) anthracene 330 U	129-00-0Pyrene		670	Z
56-55-3Benzo(a) anthracene 330 U 218-01-9Chrysene 330 U 117-81-7bis(2-Ethylhexyl)phthalate 98 JB 117-84-0Di-n-octyl phthalate 330 U 205-99-2Benzo(b) fluoranthene 330 U 207-08-9Benzo(k) fluoranthene 330 U 50-32-8Benzo(a) pyrene 330 U 193-39-5Indeno(1,2,3-cd) pyrene 330 U 53-70-3Dibenz(a,h) anthracene 330 U	85-68-7Butylbenzylp	hthalate	330	U
218-01-9Chrysene 330 U 117-81-7bis (2-Ethylhexyl)phthalate 98 JB 117-84-0Di-n-octyl phthalate 330 U 205-99-2Benzo (b) fluoranthene 330 U 207-08-9Benzo (k) fluoranthene 330 U 50-32-8Benzo (a) pyrene 330 U 193-39-5Indeno (1,2,3-cd) pyrene 330 U 53-70-3Dibenz (a,h) anthracene 330 U	91-94-13,3'-Dichlor	obenzidine	330	U
117-81-7bis (2-Ethylhexyl) phthalate 98 JB 117-84-0Di-n-octyl phthalate 330 U 205-99-2Benzo (b) fluoranthene 330 U 207-08-9Benzo (k) fluoranthene 330 U 50-32-8Benzo (a) pyrene 330 U 193-39-5Indeno (1,2,3-cd) pyrene 330 U 53-70-3Dibenz (a,h) anthracene 330 U	56-55-3Benzo(a) anth	racene	330	U
117-84-0Di-n-octyl phthalate 330 U 205-99-2Benzo(b) fluoranthene 330 U 207-08-9Benzo(k) fluoranthene 330 U 50-32-8Benzo(a) pyrene 330 U 193-39-5Indeno(1,2,3-cd) pyrene 330 U 53-70-3Dibenz(a,h) anthracene 330 U	218-01-9Chrysene		330	U
205-99-2Benzo (b) fluoranthene 330 U 207-08-9Benzo (k) fluoranthene 330 U 50-32-8Benzo (a) pyrene 330 U 193-39-5Indeno (1,2,3-cd) pyrene 330 U 53-70-3Dibenz (a,h) anthracene 330 U	117-81-7bis(2-Ethylh	exyl)phthalate	98	JB
207-08-9Benzo(k) fluoranthene 330 U 50-32-8Benzo(a) pyrene 330 U 193-39-5Indeno(1,2,3-cd) pyrene 330 U 53-70-3Dibenz(a,h) anthracene 330 U	117-84-0Di-n-octyl p	hthalate	330	U
50-32-8Benzo(a) pyrene 330 U 193-39-5Indeno(1,2,3-cd) pyrene 330 U 53-70-3Dibenz(a,h) anthracene 330 U	205-99-2Benzo(b) fluo	ranthene	330	U
193-39-5Indeno(1,2,3-cd)pyrene 330 U 53-70-3Dibenz(a,h)anthracene 330 U	207-08-9Benzo(k) fluo	ranthene	330	U
53-70-3Dibenz (a, h) anthracene 330 U	50-32-8Benzo(a)pyre	ne	330	U
	193-39-5Indeno(1,2,3	-cd) pyrene	330	U
191-24-2Benzo(g,h,i)perylene 330 U			330	U
	191-24-2Benzo(g,h,i)	perylene	330	U

(1) - Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND

FORM 1 SV-2

3/90

CLIENT SAMPLE NO.

|SH800-02208-B70617MS

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 0002L425-002 MS

Sample wt/vol: 30.1 (g/mL) \underline{G} Lab File ID: $\underline{D030708}$

Level: (low/med) LOW Date Received: 02/11/00

% Moisture: ___17 decanted: (Y/N)___ Date Extracted: 02/21/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/07/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>9.2</u>

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

108-95-2Phenol	2000	
111-44-4bis(2-Chloroethyl)ether_	400	
	:	<u>'</u>
95-57-82-Chlorophenol	1900	!
541-73-11,3-Dichlorobenzene	400	!
106-46-71,4-Dichlorobenzene	1100	•
95-50-11,2-Dichlorobenzene	400	<u>:</u>
95-48-72-Methylphenol	400	!
108-60-12,2'-oxybis(1-Chloropropane)		
106-44-54-Methylphenol		:
621-64-7N-Nitroso-di-n-propylamine	1400	Z
67-72-1Hexachloroethane	400	
98-95-3Nitrobenzene	400	U
78-59-1Isophorone	400	U
88-75-52-Nitrophenol	400	U
105-67-92,4-Dimethylphenol	400	U
111-91-1bis(2-Chloroethoxy)methane	400	U
120-83-22,4-Dichlorophenol	400	U
120-82-11,2,4-Trichlorobenzene	1200	z
91-20-3Naphthalene	400	ับ
106-47-84-Chloroaniline	400	ָ ד
87-68-3Hexachlorobutadiene	400	U
59-50-74-Chloro-3-methylphenol	2300	z
91-57-62-Methylnaphthalene	400	U
77-47-4Hexachlorocyclopentadiene	1	
88-06-22,4,6-Trichlorophenol	400	:
95-95-42,4,5-Trichlorophenol	1000	:
91-58-72-Chloronaphthalene	400	:
88-74-42-Nitroaniline	1000	:
131-11-3Dimethylphthalate	400	:
208-96-8Acenaphthylene	400	:
606-20-22,6-Dinitrotoluene	400	!
	1000	
99-09-23-Nitroaniline	1300	
83-32-9Acenaphthene	1 1300	<u>4</u> .
	I	l

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SH800-02208-B70617MS

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 0002L425-002 MS

Sample wt/vol: 30.1 (g/mL) G

Lab File ID: <u>D030708</u>

Level: (low/med) LOW

Date Received: 02/11/00

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 03/07/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N

pH: <u>9.2</u>

CONCENTRATION UNITS:

			g) <u>UG/KG</u>	Q
51-28-5	2,4-Dinitrophenol		1000	 []
	4-Nitrophenol		2600	!
	Dibenzofuran		400	:
	2,4-Dinitrotoluen		1400	:
	Diethylphthalate_		400	:
	4-Chlorophenyl-ph		400	σ
	Fluorene		400	•
	4-Nitroaniline		1000	•
	4,6-Dinitro-2-met	nylphenol	1000	•
	Nitrosodiphenyl		400	
	4-Bromophenyl-phe		400	U
	Hexachlorobenzene		400	U
87-86-5	Pentachlorophenol		2400	
	Phenanthrene		29	•
120-12-7	Anthracene	<u> </u>	400	
86-74-8	Carbazole		400	Ū
	Di-n-butylphthala		- 400	U
	Fluoranthene		400	U
129-00-0			1400	z
85-68-7	Butylbenzylphthal	ate	400	U
91-94-1	3,3'-Dichlorobenz	idine	400	U
56-55-3	Benzo(a)anthracen	e	400	Ū
218-01-9	Chrysene		400	U
	bis(2-Ethylhexyl)		35	JB
	Di-n-octyl phthal		400	U
	Benzo(b)fluoranth		400	U
207-08-9	Benzo(k)fluoranth	ene	400	U
	Benzo(a)pyrene		400	Ū
	Indeno(1,2,3-cd)p		400	U
	Dibenz(a,h)anthra		400	U
	Benzo(g,h,i)peryl		400	III

^{(1) -} Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND

SH800-02208-B70617MSD

Lab Name: Recra.LabNet

Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 0002L425-002 MSD

Sample wt/vol: 30.0 (g/mL) \underline{G}

Lab File ID: D030709

Level: (low/med) LOW

Date Received: 02/11/00

% Moisture: 17 decanted: (Y/N) __ Date Extracted: 02/21/00

Concentrated Extract Volume: 1000(uL) Date Analyzed: 03/07/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) N pH: 9.2

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

108-95-2Phenol	1500	z
111-44-4bis(2-Chloroethyl)ether	400	!
95-57-82-Chlorophenol	1500	!
541-73-11,3-Dichlorobenzene	400	
106-46-71,4-Dichlorobenzene	. 920	
95-50-11,2-Dichlorobenzene	400	
95-48-72-Methylphenol	400	
108-60-12,2'-oxybis(1-Chloropropane)	400	Ū
106-44-54-Methylphenol	400	U
621-64-7N-Nitroso-di-n-propylamine	1200	z
67-72-1Hexachloroethane	400	U
98-95-3Nitrobenzene	400	U
78-59-1Isophorone	400	U
88-75-52-Nitrophenol	400	Ū
105-67-92,4-Dimethylphenol	400	Ū
111-91-1bis(2-Chloroethoxy)methane	400	Ū
120-83-22,4-Dichlorophenol	400	U
120-82-11,2,4-Trichlorobenzene	1000	Z
91-20-3Naphthalene	400	Ū
106-47-84-Chloroaniline	400	U
87-68-3Hexachlorobutadiene	400	U
59-50-74-Chloro-3-methylphenol	1600	Z
91-57-62-Methylnaphthalene	400	Ū
77-47-4Hexachlorocyclopentadiene	400	Ū
88-06-22,4,6-Trichlorophenol	400	U
95-95-42,4,5-Trichlorophenol	1000	
91-58-72-Chloronaphthalene	400	U
88-74-42-Nitroaniline	1000	U
131-11-3Dimethylphthalate	400	U
208-96-8Acenaphthylene	400	
606-20-22,6-Dinitrotoluene	400	
99-09-23-Nitroaniline	1000	n.
83-32-9Acenaphthene	1000	Z
· .		<u> </u>

SH800-02208-B70617MSD

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 0002L425-002 MSD

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: D030709

Level: (low/med) LOW

Date Received: 02/11/00

% Moisture: 17 decanted: (Y/N) Date Extracted: 02/21/00

Concentrated Extract Volume: 1000(uL)

Date Analyzed: <u>03/07/00</u>

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) <u>N</u> pH: <u>9.2</u>

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	COMPOUND (dg/L dl dg/		
E1 20 E	2,4-Dinitrophenol	1000	
	4-Nitrophenol		
	Dibenzofuran		!
	2,4-Dinitrotoluene		:
	Diethylphthalate	400	1
	4-Chlorophenyl-phenylether	_ 400	•
		400	!
	Fluorene	1000	•
			1
	4,6-Dinitro-2-methylphenol		1
	N-Nitrosodiphenylamine (1)	'	:
	4-Bromophenyl-phenylether		!
	Hexachlorobenzene		•
	Pentachlorophenol	_ 1700	:
	Phenanthrene	_ 400	•
	Anthracene	_ 400	:
	Carbazole	400	U
84-74-2	Di-n-butylphthalate	_ 400	U
206-44-0	Fluoranthene	_ 400	ū
129-00-0	Pyrene	_ 1200	Z
85-68-7	Butylbenzylphthalate	_ 400	U
91-94-1	3,3'-Dichlorobenzidine	_ 400	U
56-55-3	Benzo(a) anthracene	_ 400	U
218-01-9	Chrysene	400	U
	bis(2-Ethylhexyl)phthalate	_ 23	JB
	Di-n-octyl phthalate		U
	Benzo(b) fluoranthene		U
	Benzo(k)fluoranthene		U
	Benzo(a)pyrene		U
-	Indeno(1,2,3-cd)pyrene		U
	Dibenz(a,h)anthracene		Ū
	Benzo(g,h,i)perylene	400	:
171 21 2			İ
	1 C	_ · 	

^{(1) -} Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND

Chain of Custody

RECRA LabNet 3) Present on Sample 2) Unbroken on Outer Package (*) or N Upon Sample Rec't z COC Record Present 1) Present on Outer Package O or N Sample Y or N ICORE ISPRÉ COC Tape was: 4) Unbroken on 6:3 **RECRA LabNet Use Only** ムウエエ Cooler Temp. 7 Delest. 46 2AG 250 520 سادرك 1701 7 Ø Airbii Just Balle 3) Received in Good Condition to or N z ŏ 2) Ambient or Chille Properly Preserved 5) Received Within 4) Labels Indicate 3 > 7 1) Shipped ——Hand Delivered HUL > IJHC RECRA LabNet Use Only Samples were: Holding Times Custody Transfer Record/Lab Work Request Page Lot L CN 3000 250 leca. DKLIW $\sqrt{3}$ > > Metal I Discrepancies Between Samples Labels and COC Record? Your **TTCLV** (8) (4) (8) 021 トで含く $TG5\omega c$ J092 LQFIHC фен PCB Pest **T80xX** 1.65 A 1.56.4 1.25.4 Time 2 See Job Chian AN8 FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS 25 AOV S Date Solid Solld Date Time Collected Collected Liquid Liquid 1233 17.20 250 00/6/ <u>ક</u> J 4 /00 1030 160 12/8/v 18/w 18/0 18/03 S-11-00 #/Type Container Melki: 145 Relinquished PIG INAIX REWRITTEN 张州 ANALYSES REQUESTED Refrigerator # Preservatives DATE/REVISIONS: 1705 Volume Matrix Ξ _ = ** MS MSD Matrix QC Chosen Project Contact/Phone # 124rk Saure as 7/6 2265357 2.12.00 Project # College - 1000-001-9999-00 300by Proteste telans con 4cm of code NYSDEC Acting Plank Time 4/10/00/14/20 Citent ID/Description SHACO - 02208 Date Due TAT Date 7 2 6 OC CHESTRE DOI CIP 906 B70621 RECRA Project Manager 35 Est. Final Proj. Sampling Date _ Received B-11-00 ğ Client NYSDEC doode 425 202 206 [2] 300 209 유 Special Instructions: Relinquished S - Soil SE - Sediment SO - Solid SL - Sludge W - Water O - Oil Liquids EP/TCLP Leachate Date Rec'd Solids DL - Drum Account # A - Air DS - Drum MATRIX CODES: 00

25× 643

RECRA LabNet Use Only

1			
SBLKJD	1		
1			

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: SAS No.: SDG No.:

Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>99LE1535-MB1</u>

Sample wt/vol: 30.0 (g/mL) G Lab File ID: 0011013

Level: (low/med) LOW Date Received: 12/18/99

% Moisture: _____ decanted: (Y/N)___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

.

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$ CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND (dg/L or dg/	/kg) <u>UG/kG</u>	Q
108-95-2	Phenol	330	
111-44-4	Phenol	330	
	2-Chlorophenol		
543-73-1	1,3-Dichlorobenzene	330	
	1,4-Dichlorobenzene		
95-50-1	1,2-Dichlorobenzene	330	: :
95-48-7	2-Methylphenol	330	: :
108-60-1	2-Methylphenol	330	
106-44-5	4-Methylphenol	330	:
621-64-7	N-Nitroso-di-n-propylamine	330	
	Hexachloroethane		
98-95-3	Nitrobenzene	330	
78-59-1	Isophorone	330	
88-75-5	2-Nitrophenol	330	
105-67-9	2,4-Dimethylphenol	330	
	bis(2-Chloroethoxy)methane		: :
	2,4-Dichlorophenol		
120-82-1	1,2,4-Trichlorobenzene	330	
91-20-3	Naphthalene	330	,
106-47-8	4-Chloroaniline	330	υ
87-68-3	Hexachlorobutadiene	330	ו טו
59-50-7	4-Chloro-3-methylphenol	330	י ט
	2-Methylnaphthalene		ָּט .
	Hexachlorocyclopentadiene		ט
	2,4,6-Trichlorophenol		ט
	2,4,5-Trichlorophenol		ט
91-58-7	2-Chloronaphthalene	330	U
88-74-4	2-Nitroaniline	840	ט
131-11-3	Dimethylphthalate	_ 330	U
208-96-8	Acenaphthylene	330	U
606-20-2	2,6-Dinitrotoluene	330	U
99-09-2	3-Nitroaniline	840	U
83-32-9	Acenaphthene	330	U
		_	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.		F
				=
SBLKJ	JD OT			=

Lab Name: Recra.LabNet Contract: 0	 SBLKJD 1667600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 99LE1535-MB1
Sample wt/vol: $30.0 \text{ (g/mL) } \underline{G}$	Lab File ID: <u>D011013</u>
Level: (low/med) <u>LOW</u>	Date Received: <u>12/18/99</u>
% Moisture: decanted: (Y/N)	Date Extracted: 12/18/99
Concentrated Extract Volume: 500(uL)	Date Analyzed: 01/10/00
Injection Volume: 2.0(uL)	Dilution Factor: 1.00
GPC Cleanup: (Y/N) Y pH: $\frac{7.0}{}$	CONCENTRATION UNITS:
·	ug/L or ug/Kg) <u>UG/KG</u> Q
51-28-52,4-Dinitrophenol	840 U 330 U
 	rene 330 U

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ĺ	SBLKJD		1

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: ____ SDG No.: ____ Lab Code: Recra Case No.:

Lab Sample ID: 99LE1535-MB1 Matrix: (soil/water) SOIL

Sample wt/vol: $30.0 \text{ (g/mL)} \subseteq$ Lab File ID: <u>D011013</u>

Date Received: 12/18/99 Level: (low/med) LOW

% Moisture: _____ decanted: (Y/N) ___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Dilution Factor: 1.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Number TICs found: <u>5</u>

COMPOUND NAME RT | EST. CONC. | CAS NUMBER 100| J UNKNOWN 20.29 200| J 2. UNKNOWN 20.34 80| J UNKNOWN 21.69 3. 80| J UNKNOWN 22.86 4. 23.27 100 J UNKNOWN

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Recra_LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 99LE1535-MB1 BS

Sample wt/vol: $30.0 \text{ (g/mL)} \subseteq$ Lab File ID: 0011014

Level: (low/med) LOW Date Received: 12/18/99

% Moisture: _____ decanted: (Y/N) ___ Date Extracted: <u>12/18/99</u>

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

CAS NO.	COMPOSED (dg, 1 of dg,		
108-95-2	Phencl	2800	 Z
	bis(2-Chloroethyl)ether		•
	2-Chlorophenol		,
	1,3-Dichlorobenzene		
	1,4-Dichlorobenzene	1600	z
	1,2-Dichlorobenzene	• 1	!
	2-Methylphenol		:
108-60-1	2,2'-oxybis(1-Chloropropane)_	330	:
	4-Methylphenol		Ū
	N-Nitroso-di-n-propylamine	1600	•
	Hexachloroethane	- '	•
	Nitrobenzene	330	•
	Isophorone		:
88-75-5	2-Nitrophenol	330	ָט
	2,4-Dimethylphenol	330	!
	bis(2-Chloroethoxy) methane	330	Ū
	2,4-Dichlorophencl	330	
	1,2,4-Trichlorobenzene_	- '	
	Naphthalene		Ū
	4-Chloroaniline	330	•
	Hexachlorobutadiene	330	
59-50-7	4-Chloro-3-metnylphenol	2600	z
	2-Methylnaphthalene	330	ับ
	Hexachlorocyclopentadiene	330	Ū
	2,4,6-Trichlorophenol		Ū
	2,4,5-Trichlorophenol		
	2-Chloronaphthalene		
	2-Nitroaniline		•
	Dimethylphthalate		:
	Acenaphthylene		Ū
	2,6-Dinitrotoluene		
	3-Nitroaniline		Ū
	Acenaphthene	1700	

SEMIVOLATILE ORGANICS ANALYSIS DATA	A SHEET	LFA SAMPLI	NO.
	 s	BLKJDMS	
Lab Name: Recra.LabNet Contract: 01667	7600001		
Lab Code: Recra Case No.:	SAS No.:	. SDG No	···
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	99LE1535-	MB1 BS
Sample wt/vol: $30.0 \text{ (g/mL)} \subseteq$	Lab File ID:	D011014	
Level: (low/med) LOW	Date Received:	12/18/99	
% Moisture: decanted: (Y/N)	Date Extracted:	12/18/99	
Concentrated Extract Volume: 500(uL)	Date Analyzed:	01/10/00	
Injection Volume: 2.0(uL)	Dilution Factor	: 1.00	
GPC Cleanup: (Y/N) Y pH:		• •	
	ENTRATION UNITS:		•
CAS NO. COMPOUND (ug/I	or ug/Kg) <u>UG/KG</u>	. Q	
i			-
51-28-52,4-Dinitrophenol		840 U	
100-02-74-Nitrophenol		2700 Z	İ
132-64-9Dibenzofuran		330 U	
121-14-22,4-Dinitrotoluene		1700 Z	İ
84-66-2Diethylphthalate		330 U	Ì
7005-72-34-Chlorophenyl-phenylet		330 U	İ
86-73-7Fluorene		330 0	İ
100-01-64-Nitroaniline		840 U	
534-52-14,6-Dinitro-2-methylphe	enol	840 U	
86-30-6N-Nitrosodiphenylamine		330 U	
101-55-34-Bromophenyl-phenyleth		330 U	j
118-74-1Hexachlorobenzene		330 U	
87-86-5Pentachlorophenol		3600 Z	İ
85-01-8Phenanthrene		330 U	
120-12-7Anthracene		330 U	İ
86-74-8	·	330 U	İ
84-74-2Di-n-butylphthalate		18 JB	i
206-44-0Fluoranthene		330 0	•
129-00-0Pyrene		2200 Z	ŀ
85-68-7Butylbenzylphthalate		330 U	i
91-94-13,3'-Dichlorobenzidine		330 U	
56-55-3Benzo(a)anthracene		330 U	j

(1) - Cannot be separated from Diphenylamine

117-81-7-----bis(2-Ethylhexyl)phthalate_

117-84-0-----Di-n-octyl phthalate

205-99-2----Benzo(b) fluoranthene

207-08-9-----Benzo(k) fluoranthene

| 193-39-5-----Indeno(1,2,3-cd)pyrene | 53-70-3-----Dibenz(a,h)anthracene_

191-24-2----Benzo(g,h,i)perylene_

50-32-8-----Benzo(a)pyrene_

Z: SPIKE COMPOUND

218-01-9-----Chrysene___

FORM 1 SV-2

RFW (v3.3)

330 U

110|JB 330|U

330 U

330 U

330 U

330 U

330 U

330 U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|SH899-12206-B70607MS

Lab Name: Recra.LabNet Contract: 01667600001

GPC Cleanup: (Y/N) Y pH: 8.3

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-007 MS

Sample wt/vol: 30.7 (g/mL) G Lab File ID: D011212

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/12/00

Injection Volume: 2.0 (uL) Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG (

CAS NO.	COMPOUND (ug/L or ug/	kg) <u>UG/KG</u>	Q
108-95-2	Phenol	3300	12
111-44-4	bis(2-Chloroethyl)ether	4900	1
95-57-8	2-Chlorophencl	3300	•
541-73-1	1,3-Dichloropenzene	4900	
106-46-7	1,4-Dichlorobenzene	2100	
95-50-1	1,2-Dichlorobenzene	4900	
95-48-7	2-Methylphenol	4900	•
108-60-1	2,2'-oxybis(1-Chloropropane)	4900	
106-44-5	4-Methylphenol	4900	•
621-64-7	4-Methylphenol	2200	
67-72-1	Hexachloroethane	4900	•
98-95-3	Nitrobenzene	4900	•
78-59-1	Isophorone	4900	•
88-75-5	2-Nitrophenol		
	2,4-Dimethylphenol		
	bis(2-Chloroethoxy)methane		
120-83-2	2,4-Dichlorophenol	4900	
120-82-1	1,2,4-Trichlorobenzene	2100	
	Naphthalene		
106-47-8	4-Chloroaniline	4900	Ū
87-68-3	Hexachlorobutadiene	4900	ָּט
59-50-7	4-Chloro-3-methylphenol	3400	z
91-57-6	2-Methylnaphthalene	310	J
	Hexachlorocyclopentadiene		ט ו
	2,4,6-Trichlorophenol		ប
	2,4,5-Trichlorophenol		U
91-58-7	2-Chloronaphthalene	4900	ប
88-74-4	2-Nitroaniline	12000	ט
131-11-3	Dimethylphthalate	4900	U
208-96-8	Acenaphthylene	370	J
606-20-2	2,6-Dinitrotoluene	4900	U
99-09-2	3-Nitroaniline	12000	ן ט
83-32-9	Acenaphthene	2600	z

4100 J 4700 J

2700 J

910|J

3200 J

SH899-12206-B70607MS

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: ____ SDG No.: ___ Lab Code: Recra Case No.: ____

Lab Sample ID: 9912L959-007 MS Matrix: (soil/water) SOIL

Lab File ID: Sample wt/vol: 30.7 (g/mL) GD011212

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 33 decanted: (Y/N)_ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00

Dilution Factor: 10.0 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.3}$

CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) <u>UG/KG</u>

51-28-5----2,4-Dinitrophenol____ 12000 U 100-02-7----4-Nitrophenol_____ 2200 Z | 132-64-9-----Dibenzofuran_____ 320|J 121-14-2----2,4-Dinitrotoluene____ 1900 Z 84-66-2-----Diethylphthalate____ 4900 U 7005-72-3----4-Chlorophenyl-phenylether 4900 U 86-73-7-----Fluorene 4900 U 100-01-6----4-Nitroaniline_ 12000 U 534-52-1----4,6-Dinitro-2-methylphenol____ 12000 U | 86-30-6-----N-Nitrosodiphenylamine (1)____ 4900 U 101-55-3----4-Bromophenyl-phenylether____ 4900 U 118-74-1-----Hexachlorobenzene 4900 U 87-86-5-----Pentachlorophenol____ 2600 Z 85-01-8-----Phenanthrene_____ 6800 | 120-12-7-----Anthracene____ 820 J 470 J 86-74-8------Carbazole__ 84-74-2-----Di-n-butylphthalate_____ 4900 U 206-44-0-----Fluoranthene_____ 12000 | 129-00-0-----Pyrene___ 14000 Z 85-68-7-----Butylbenzylphthalate___ 4900 U 91-94-1-----3,3'-Dichlorobenzidine____ 4900 U | 56-55-3-----Benzo(a)anthracene_____ 4700 J 218-01-9-----Chrysene 6500 4900 U | 117-81-7-----bis(2-Ethylhexyl)phthalate____| 117-84-0-----Di-n-octyl phthalate____ 4900 U 205-99-2----Benzo(b) fluoranthene_____ 4500 J

(1) - Cannot be separated from Diphenylamine

207-08-9----Benzo(k) fluoranthene

193-39-5-----Indeno(1,2,3-cd)pyrene_____ 53-70-3-----Dibenz(a,h)anthracene_____

191-24-2----Benzo(g,h,i)perylene

50-32-8-----Benzo(a)pyrene____

RFW (v3.3) Z: SPIKE COMPOUND FORM 1 SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

|SH899-12206-B70607MSD Lab Name: Recra.LabNet Contract: 01667600001 SAS No.: _____ SDG No.: _ Lab Code: Recra Case No.: ____ Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-007 MSD Sample wt/vol: 30.0 (g/mL) G Lab File ID: D011213Level: (low/med) LOW Date Received: <u>12/08/99</u> % Moisture: 33 decanted: (Y/N)_ Date Extracted: 12/18/99 Concentrated Extract Volume: 500(uL) Date Analyzed: 01/12/00 Dilution Factor: 10.0 Injection Volume: 2.0(uL) GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.3}$ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

ı			}	
Ì	108-95-2Phenol	3200	z	
1	111-44-4bis(2-Chloroethy1)ether	5000	U	ĺ
1	95-57-82-Chlorophenol	3400	Z	
	541-73-11,3-Dichlorobenzene	5000	Ū	ĺ
1	106-46-71,4-Dichlorobenzene	2100	Z	
1	95-50-11,2-Dichlorobenzene	5000	U	1
	95-48-72-Methylphenol	5000	Ū	
	108-60-12,2'-oxybis(1-Chloropropane)	5000	Ū	
	106-44-54-Methylphenol	5000	U i	ĺ.
ı	621-64-7N-Nitroso-di-n-propylamine	2000	Z	
1	67-72-1Hexachloroethane	5000	U	1
1	98-95-3Nitrobenzene	5000	U	1
-	78-59-1Isophorone	5000	Ū	ĺ
	88-75-52-Nitrophenol	5000	U I	
	105-67-92,4-Dimethylphenol	5000	U	
-	111-91-1bis(2-Chloroethoxy)methane	5000	U	
	120-83-22,4-Dichlorophenol	5000	U	1
	120-82-11,2,4-Trichlorobenzene	2300	Z	
1	91-20-3Naphthalene	460	J	١.
	106-47-84-Chloroaniline	5000	U	1
1	87-68-3Hexachlorobutadiene	5000	U	
	59-50-74-Chloro-3-methylphenol	3100	Z	
ļ	91-57-62-Methylnaphthalene	480	J	
	77-47-4Hexachlorocyclopentadiene	5000	U .	
	88-06-22,4,6-Trichlorophenol	5000	U	
	95-95-42,4,5-Trichlorophenol	12000	U	
	91-58-72-Chloronaphthalene	5000	U	
	88-74-42-Nitroaniline	12000	U	
	131-11-3Dimethylphthalate	5000	Ŭ	
	208-96-8Acenaphthylene	970	J	
	606-20-22,6-Dinitrotoluene	5000		
	99-09-23-Nitroaniline	12000	U	,
	83-32-9Acenaphthene	2800	Z	į
		l l		

Lab Name: Recra.LabNet Contract: 0166760000	 SH899-12206-B70607MSD
Lab Code: Recra Case No.: SAS	No.: SDG No.:
Matrix: (soil/water) <u>SOIL</u> Lab	Sample ID: 9912L959-007 MSD
Sample wt/vol: 30.0 (g/mL) G Lab	File ID: <u>D011213</u>
Level: (low/med) LOW Date	e Received: <u>12/08/99</u>
% Moisture:33 decanted: (Y/N) Date	Extracted: <u>12/18/99</u>
Concentrated Extract Volume: 500(uL) Date	e Analyzed: 01/12/00
Injection Volume: 2.0(uL)	ation Factor: 10.0
GPC Cleanup: (Y/N) Y pH: 8.3	TION UNITS:
	ng/Kg) <u>UG/KG</u> Q
51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8	2500 Z 770 J 2100 Z 770 J 2100 Z 7000 U 70
84-74-2Di-n-butylphthalate	

(1) - Cannot be separated from Diphenylamine

85-68-7-----Butylbenzylphthalate_

56-55-3-----Benzo(a)anthracene_

218-01-9-----Chrysene

91-94-1----3,3'-Dichlorobenzidine

117-84-0------Benzo(b) fluoranthene

207-08-9-----Benzo(k) fluoranthene

193-39-5-----Indeno(1,2,3-cd)pyrene_

53-70-3-----Dibenz(a,h)anthracene

191-24-2----Benzo(g,h,i)perylene__

50-32-8-----Benzo(a)pyrene_

| 117-81-7-----bis(2-Ethylhexyl)phthalate_

Z: SPIKE COMPOUND

FORM 1 SV-2

RFW (v3.3)

5000 U

5000 U

5000 U

12000

16000

100001

10000

12000

6400

2300 J

CASE NARRATIVE

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

W.O.#: 01667-600-001-9999-00

Client: NYSDEC RFW#: 9912L959

RFW#: 9912L959 **Date Received:** 12-08-99 **ELAP#:** 10752

PESTICIDE/PCB

The set of samples consisted of eleven (11) soil samples collected on 12-06-99.

The samples and their associated QC samples were extracted on 12-18-99 and analyzed on 01-15,19,20-00 according to criteria set forth in NYSDEC 1995 ASP for Pesticide and PCB target compounds.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. Linearity and breakdown criteria were met for each of the analytical columns.
- 2. Retention time criteria were met for all compounds on both analytical columns.
- 3. Resolution of all pesticides in the Resolution Check Standard were within EPA QC limits.
- 4. The RPDs of the pesticides in the Individual Mixes analyzed for calibration verification were within 25% for both analytical columns.
- 5. The RPDs of the pesticides in the Performance Evaluation Mixes analyzed for calibration verification were within 25% for both analytical columns.
- 6. All obtainable surrogate recoveries were within the advisory EPA QC limits.
- 7. All blank spike recoveries were within EPA QC limits.
- 8. Matrix spike recoveries were unobtainable due to the dilution required for analysis.
- 9. Recoveries of pesticides for the Florisil Cartridge Check were within EPA QC limits.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 429 pages.

10. Recoveries of pesticides for the GPC Calibration Check were within EPA QC limits.

I Michael Taylor

Vice President

Philadelphia Analytical Laboratory

pet\r:\group\data\pest\12L-959.pes

07-07-00

Date

Recra LabNet Philadelphia

GLOSSARY OF PESTICIDE/PCB DATA

DATA QUALIFIERS

- U = Indicates that the compound was analyzed for but not detected. The minimum detection limit for the sample (not the method detection limit) is reported with the U (e.g., 10U).
- J = Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level. If the limit of quantification is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- I = Interference.

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.
- **BSD** = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- **DL** = Indicates that recoveries were not obtained because the extract had to be diluted for analysis.
- NA = Not Applicable.
- **DF** = Dilution Factor.
- NR = Not Required.
- SP = Indicates Spiked Compound.

Recra LabNet Philadelphia

GLOSSARY OF PESTICIDE/PCB DATA

- P = This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns (see Form X). The lower of the two values is reported on Form I and flagged with a "P".
- **D** = This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C = This flag applies to a compound that has been confirmed by GC/MS.

RFW #21-21-035/A-03/97

03/2/050 RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page Lot A

A RECRA LabNet

	5071	Refrequished by			-			Special instructions:	16	1,		. 9	X. Other		Chining of the control of the contro		<u>≩</u>	Whitet			JATRIX.	Account #	Date Rec'd	DC (201)	RECRA Project Manager -	Project Contact/Phone #	Project # C/	3 <u>8</u>	ω	3	Tilac
(Some	Received by						38:	010 12	19	8	7	e	5	4	وند	2	- ECEUT- DOOTIS 1"40		Lab CIII			12/8/99	Del CLA	Manager XX	Phone #	EW / WVV	17 - PODD - 12 - ON - OTO - OT	WALE .	ALDNO.	701
	12/8/99	Date							#20+	tobel							1 1.	.1 1	12206	Cilent ID/Description			Date Due	TAT			1000	200-142			
	octo	Time							اه	<u></u>	10	150	OTO	20	04	03	020	BYSHE	6)	3			1/3/99	Some ac	20 100			20-00			
7	0	Relinquished by						12/				×						1-	MS MSD	Chosen	Matrix OC										
スログスニートN	ORIGINAL	Received by	6.	5.	•	Ω		12/10/691 142	1						/	/	<u> </u>	6 Islaha 1		Matrix Collected Collected			ANALYSES REQUESTED		Preservatives	Volume		#/Type Container	,	Refrigerator #	
		Date					ca12693000	reloce	1010	0915	1620	1430	1325	1220	1150	1110	1603	1000 1	02	224	0		VOA			18	Liquid	Solid Ox	Llquid		
Ė		Time		-			oga pr	to	1	1								*	OZ	125	2	L	BNA Pest/ PCB	ORGANIC		Tee	9	18-1		3 3	
N2113477956	COC Record? Y or N NOTES:	Discrepancies Between Samples Labels and					1 PM 292	batch													-		Herb					•			
15%			4) Labels Indicate Properly Preserved	Condition Y or N	2) Amblent o Chilled	Airbill #	1) Shipped _V_ or Hand Delivered	Comples were.	2502121	\ \ \ \		(3)× &					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\swarrow	HSZ PNT TCL	るしレ	BECRA I shaet Use Only	Metai CN	INORG		126	0	11a ++		3 3 3	
	Cooler 5.4 °C	Upon Sample Rec't	Sample Y or N	° N	3) Present on Sample		1) Present on Outer Package Y or N	HECHA Labrust Ose City				nocurre)					3	1	No.			←									3

99121959 RECHA Labnet Use Only

Custody Transfer Hecord/Lab Work Hequest Page A of E

RECRA LabNet

								<u> </u>		1	-		+						
	enep.		_				į	<u>ا۔</u> ز			-		\dagger				XMAN	1	1412
ే 	Cooler	≺ ૠું લ ઽ	Holding Tib	Hold	z	d? Y or	COC Record? Y								002	13/0/02	\ a adam		21
Upon Sample Rec't Y or N	Upon	5) Received within	eceiped	5) FI	•	Discrepancies Between Samples Labels and	screpanci mples Le	& D	Time	•	Date	Received by		Relinguished by	Time	Date	Received by	рег	Reiinquished by
Sample Y or N COC Record Present	\bigcirc		4) Labels Indicate Properly Preserved	A) La				1				6.							
4) Unbroken on		Condition Y or N	Condition Y or	Conc								5 1							
3) Present on Sample	(3) Pres	2) Amblent or Chilled	mblent	2) 2 <u>2</u>															
2) Unbroken on Outer .	2) Unt		=	Airbill #								<u>ي</u>							
1) Present on Outer Package Y or N	1) Present or Package Y	ered or	1) Shipped Hand Delivered	1) St								2.							
Only	Net Use C	RECRA LabNet Use Only		ì					(hron	see labethor	#	DATE/REVISIONS:	DATE				uctions:	Special instructions:
					F			\vdash	-	_									
			1	-	+			\vdash	-				·						
			-	_	_														
	_		-	-	-			-	-	_									
	+		1	-	7			H	igg	\prod		8	4	4	Dâ .		-	977	x - Other
	<u> </u>	-	+	+	2/5	F.	\ 	+	$\frac{1}{1}$	\prod	<u> </u>	*	1	tetho floor	370001 tel	क्षि रक्ष	51189	16	Wi - Wipe
			-	-	+		+	\vdash	+		1300	3	٤		blanK	1	Nysdec-fridge	, 14	1. EP/TCLP
	-			<u>\</u>	1			\vdash	< <		1020	+	9		15		3	13	
	-			_					\ \	/	Be140		_		14		`	11/2	•
			^		<				//	/	0930	146/99 1	B		B70013		F-668HS	110	O- OH
	-			10	4,		02		cz	C7.				MS MSD		2207	17		SO - Solld
			0/0	5070			24,		25C	24C		Date Time Collected Collected	Matrix	Chosen	on	Client ID/Description			CODES:
	-	עלי	se On	RECRA LabNet Use Only	A Lat	RECF		- 			1			Matrix					MATRIX
			CN	Metal				PCB Herb	BNA Pest/	VOA	▼	SES STED	ANALYSES REQUESTED			Date Due	<i>X</i>		Date Rec'd
				INORG			4	$ ^{\circ} $	ORGANIC							12	000		
								\dashv	_			vatives	Preservatives			TAT	Del 0	,	00
				35-H	15				1 03%	28 32	Solid		Volume				pager nO	bect Ma	IJECHA Project Manager
				0					q	9	Liquid							tact/Pho	Project Contact/Phone #
			-	7							-	#/Type Container	#/Type				Library Branch	oj. oan	Project #
	-		4	\dashv	1			+	-+	1	Liquid		d				nolina Deta		Client L
1	_		٧.	اند ر	4]		7	2 2			rator #	Refrigerator #				John	725	7
0																•		7	1118

Relinquished by	within 5 day		Sample	- Cal-	TCLP-PK	Special Instructions:					X Other	Leachate	Liquida	DI Solide	A. Air		SO Solld	Soll		Date Rec'd		06	PECHA Project Manager	Project Contact/Phone #	Project # Vacuum O	Fst. Final Proj. Sampling Date	Cilent	99121959	RECITA LabNet Use Only
1 Received Date Time by 12/1/92 14/1/	doys, Fax#716,226,8696	placer Fax regults for 01402	C	only if there is chough	TCLP- Phase do TCLP analysis for VOAs	8.	(S	\O9	タ // の8	7.07	06				0.2			Lab Client ID/Description		Date Due		Del TAT	Manager	Phone # FRANK SOWERS	um 0;1 B706	Sampling Date	US DEC	959 FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS	Cust
		۶ 			OA3												MS MSD	Chosen					5357	16226-				NNEL: COMPL	ınsfer R
N216 347 7	6.	Çīn .	A	မ	;2 <u>-</u>	DATE/REVISIONS:	S = u	Silve	5 101	5 11 11	5. 1		501877	る個性が	3 11	5 likh		Matrix Collected		ANALYSES REQUESTED		Preservatives	Contra	Volume	my y pa Container	Two Cantalant	Refrigerator #	ETE ONLY SH	ecord/L
			,	2/1	2		1620 X	1430 X	1430 X	143° (5)	nu	ira Y	150% X	1110	1887 3	/0 m />	95-	Time Collected		VOA			Solid	Liquid 199	Solid	Liquid		IADED ARI	.ab ₩
	1	SIL	. •	126	280		スニス	の人が	メス	イメラ	こべて	X	インス	N X	ハイス	XXX	95- 95-	2			ORGANIC				為一次有用的			EAS	ork R
Samples Labels and COC Record? Y of NOTES:		1					》			2000年						く	層	LP		Herb		17	1116年 1918	中 一	光线	物门体是			k Request
COC Record? Y or N				Ş						184 M	Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								RECRA L			· 作用的第	19 Miles			告任			t Page
5) Received Within Holding Times Y or N	4) Labels Indicate Properly Preserved Y or N	3) Received in Good Condition Y or N	2) Ambient or Chilled	Althill te	Samples were: 1) Shipped —— or Hand Delivered	RECRA	イーグラー	イング	A KILLIN	ストークー語	Y Y W		大型大型を	記は過じることを	+	メメ	TAC	tals	RECRA LabNet Use Only	Metal CN	INORG	测点图30 36 36		STATE AND ADDRESS OF THE PARTY OF					L of 2
Cooler S.H. °C	z		Package Y or N 3) Present on Sample	2) Unbroken on Outer	COC Tape was: 1) Present on Outer Package Y or N	RECRA LabNet Use Only													- -									C	RECRA
10 E	8 - 9	2	9 0	욧 '	৺ង្ក	15	11.	1. A.	. Luis.	A COLL		-					L							1,2	-		_	LabNet	

RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page 2 of 2 FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

RECRA LabNet

					•						2
CHENT NYSDEC		Refrigerator #					\vdash		П		1
Cat Einal Broi Campling Pata			Liquid								
Project # 1/aculum 0/ 5 706	· ·	#/Type Container	Solld								
ずるが	5357	W_1,	Liquid				 				
		Volume	Solid								-
QC DelTAT		Preservatives						igg			
				ORGANIC			=	NORG	٠		
Date Rec'd Date Due		REQUESTED	VOA	BNA Pest/ PCB	Herb		Metal	CN			
	Matrix				-	RECH	RECRA LabNet Use Only	et Use	의		←
MATRIX CODIES: Lab Client ID/Description	Chosen See	Matrix Date Time		-2						· .	
SE Sediment SC String	MS MSD			95 95 95			TA				
•	A	Sinh	11.60	-			×				
Air	10	5 relakes	1010 7	メメ			×				
Solids		5 Rh/89	× -260	ナベ			×				
Liquids EP/TCI P	10/1	5 14h	x 0250	۶ ×			×				
Leschate	7 13	5 12h/gg	1020 ×	XX			×	-			
Other	A LO	٤.									
	15						-				
		·					-	-			
							-	+			
			_	-			-				
Special instructions:	DATE/I	DATE/REVISIONS:							38	RA LabN	RECRA LabNet Use Only
		2 -						Samples were: 1) Shipped ———————————————————————————————————	were:	Q	COC Tape was: 1) Present on Outer Package Y or N
		3.			-			Airbill #			2) Unbroken on Outer Package Y or N
		4.		> >	3	1		 Ambient or Chilled Received in Good 	ent or C	hilled Bood	3) Present on Sample Y or N
		5.					<u> </u> 	Condition Y or N	. ¬ . ≺	z	4) Unbroken on
		6.	3	-	` 			4) Labels Indicate Properly Preserved	s Indica Preser	è ë	Sample Y or N COC Record Present
Relinguished Received Date Time	Relinquished by	Received by	Date	Time	Discrepancies Between Samples Labels and	~	•	5) Received Within	ved Wit	d Within	
(1)41 (hbs 141)					NOTES:		2	guiolori	γ γ 891111	or Z	Cooler Temp°C
			 \								

1 5.8.1.

- ;

3F SOIL ORGANICS MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Client : NYSDEC

RFW Lot No.: 9912L959-007

MATRIX Spike - Sample No.: SH899-12206-B70607

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	UG/KG	UG/KG	UG/KG	REC #	REC.
					======
gamma-BHC (Lindane)	_ 24.9	0	14	D	46-127
Heptachlor	_ 24.9	0	19	D	35-130
Aldrin	24.9	0	18	D	34-132
Dieldrin	49.8	0	37	D	31-134
Endrin	49.8	0	34	D	42-139
4,4'-DDT	49.8	0	36	D	23-134
	İ				

COMPOUND	SPIKE ADDED UG/KG	MSD CONCENTRATION UG/KG	MSD % REC #	% RPD #	_	IMITS REC
gamma-BHC (Lindane) Heptachlor	24.0	12 17	D	0	50 31	46-127 35-130
Aldrin	24.0	16	D	0	43	34-132
Dieldrin	48.0 48.0	34 25	D D	0	38 45	31-134 42-139
4,4'-DDT	48.0	32	D	0	50	23-134

Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	of OC	limits
---	--------	---------	-------	--------

RPD: <u>0</u> out of <u>6</u> outside limits

Spike Recovery: 0 out of 12 outside limits

COMMENTS:

ويدور و الماح

3F SOIL ORGANICS BLANK SPIKE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Client : NYSDEC

RFW Lot No.: 99LE1534-MB1

BLANK Spike - Sample No.: PBLKCV

BS TION CONCENTRATION G UG/KG	BS % REC #	QC LIMITS REC.
10	62	46-127
11	64	35-130
11	66	34-132
22	65	31-134
24	72	42-139
24	72	23-134
		24 72

- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike Recovery: 0 out of 6 outside limits

COMMENTS:			

صرور لو

Lab Name: Recra.LabNet

Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-003

Sample wt/vol: 30.7 (g/mL) G

Lab File ID: 01140011.50

% Moisture: 34 decanted: (Y/N) N

Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: ____2000(uL) Date Analyzed: ___01/19/00

Injection Volume: 0.5(uL)

Dilution Factor: 20.0

GPC Cleanup: $(Y/N) \underline{Y}$ pH: $\underline{8.1}$

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: UG/K	G Q
210 94 6	Alpha-BHC	1 49	 U
	Beta-BHC		ן טן
	Delta-BHC	49	ן טן
	gamma-BHC (Lindane)		ן מן
76 44.0	Heptachlor	49	ן טן
309-00-2	Aldrin	49	ו טו
	Heptachlor epoxide		ן טו
	Endosulfan I		ָ ע <u> </u>
60 57 1	Dieldrin	—— 49 99	ן טן
70 55 0	4,4'-DDE	99	: :
	Endrin	X	U
	Endrin	99	Ü
			U
	4,4'-DDD		ען דד
	Endosulfan sulfate	 ;	U
	4,4'-DDT	99	U
	Methoxychlor		U
	Endrin ketone		U
7421-93-4	Endrin aldehyde	99	ן ט
	alpha-Chlordane		Ū
	gamma-Chlordane		la l
8001-35-2	Toxaphene	4900	ן טן
	Aroclor-1016	990	U
	Aroclor-1221	2000	ן טן
11141-16-5	Aroclor-1232	990	U
	Aroclor-1242	990	u
	Aroclor-1248	990	ן ט
11097-69-1	Aroclor-1254	990	ן טן
	Aroclor-1260	990	ן ט

FORM 1 ORG

V4.3 الماري (3.4V

SH899-12206-B70604

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-004

Sample wt/vol: 30.1 (g/mL) G

Lab File ID: 01140011.51

% Moisture: 33 decanted: (Y/N) N

Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: ___2000(uL)

Date Analyzed: 01/19/00

Injection Volume: 0.5(uL)

Dilution Factor: 2.00

GPC Cleanup: (Y/N) Y pH: 8.3

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: <u>UG/K</u>	<u>G</u> Q
319-84-6	Alpha-BHC	5.0	ļα
319-85-7	Beta-BHC		la l
	Delta-BHC	5.0	la l
58-89-9	gamma-BHC (Lindane)	5.0	ן ט
76-44-8	Heptachlor	5.0	la l
309-00-2	Aldrin	5.0	ן ט
1024-57-3	Heptachlor epoxide	5.0	u
959-98-8	Endosulfan I	5.0	U
60-57-1	Dieldrin	9.9	ן ט
72-55-9	4,4'-DDE	9.9	ן ט
72-20-8	Endrin	9.9	ן טן
33213-65-9	Endosulfan II	9.9	U
72-54-8	4,4'-DDD	9.9	U
1031-07-8	Endosulfan sulfate	9.9	U
	4,4'-DDT	9.9	ט
72-43-5	Methoxychlor	50	ן ט
53494-70-5-	Endrin ketone	9.9	ו ט
7421-93-4	Endrin aldehyde	9.9	iυi
5103-71-9	alpha-Chlordane	5.0	i vi
5103-74-2	gamma-Chlordane	5.0	י
8001-35-2	Toxaphene	500	iu i
12674-11-2	Aroclor-1016	99	io i
11104-28-2	Aroclor-1221	200	U
11141-16-5-	Aroclor-1232	99	וֹ טוֹ
53469-21-9	Aroclor-1242	99	ו טו
12672-29-6	Aroclor-1248	99	ט ו
11097-69-1	Aroclor-1254	99	Ū
11096-82-5	Aroclor-1260	99	Ū

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC_

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-005

Sample wt/vol: 30.1 (g/mL) G

Lab File ID: 01140011.63

% Moisture: 11 decanted: (Y/N) N

Date Received: <u>12/08/99</u>

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: 2000(uL)

CAS NO. COMPOUND

Date Analyzed: 01/20/00

Injection Volume: 0.5(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.4}$

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: UG/KG O

CAS NO.	COMPOUND	ONT15. <u>0071</u>	<u> </u>
	Alpha-BHC		Ū
	Beta-BHC	1.9	Ü
	Delta-BHC	1.9	Ū
	gamma-BHC (Lindane)		ļΰ
	Heptachlor		Ū
309-00-2		1.9	U
1024-57-3	Heptachlor epoxide	1.9	Ū
959-98-8	Endosulfan I	1.9,	Įΰ
60-57-1	Dieldrin	3.7	ן ט
72-55-9	4,4'-DDE	3.7	Ū
72-20-8	Endrin	3.7	ū
33213-65-9-	Endosulfan II	3.7	ľΰ
72-54-8	4,4'-DDD	3.7	[U
1031-07-8	Endosulfan sulfate	3.7	ľŪ
50-29-3	4,4'-DDT	3.7	טן
72-43-5	Methoxychlor	19	U
53494-70-5-	Endrin ketone	3.7	ט
7421-93-4	Endrin aldehyde	3.7	ט
5103-71-9	alpha-Chlordane	1.9	U
5103-74-2	gamma-Chlordane	1.9	Ū
8001-35-2	Toxaphene	190	įυ
12674-11-2-	Aroclor-1016	37	Ū
11104-28-2-	Aroclor-1221	75	ĺυ
11141-16-5-	Aroclor-1232	37	ប
53469-21-9-	Aroclor-1242	 37	Ū
	Aroclor-1248		ĺΰ
11097-69-1-	Aroclor-1254	37	ָ ט
11096-82-5-	Aroclor-1260	37	Ū

FORM 1 ORG

V4.3 7 207-02

SH899-12206-B70606

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-006

Sample wt/vol:

<u>30.1</u> (g/mL) <u>G</u>

Lab File ID:

01140011.52

% Moisture: 28 decanted: (Y/N) N

Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: 2000(uL)

Date Analyzed: 01/19/00

Injection Volume: 0.5(uL)

Dilution Factor: 5.00

GPC Cleanup: (Y/N) Y pH: $_{\underline{7.9}}$

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: UG/KG	Q
	31.1. 200		
	Alpha-BHC		ט
	Beta-BHC	12	U
	Delta-BHC	12	U
	gamma-BHC (Lindane)		ן ט
76-44-8	Heptachlor		ן ט
309-00-2			ļυ į
1024-57-3	Heptachlor epoxide		ן טן
959-98-8	Endosulfan I		ן ט
60-57-1	Dieldrin		U
72-55-9	4,4'~DDE	23	U
72-20-8	Endrin		U
33213-65-9	Endosulfan II	23	n ,
72-54-8	4,4'-DDD	23	ט
1031-07-8	Endosulfan sulfate	23	U
	4,4'-DDT		ן טן
72-43-5	Methoxychlor	120	ן ט
53494-70-5	Endrin ketone	23	ו טו
7421-93-4	Endrin aldehyde	23	iu i
5103-71-9	alpha-Chlordane	12	ו טו
5103-74-2	gamma-Chlordane	12	וֹ טוֹ
8001-35-2	Toxaphene	1200	ו טו
12674-11-2	Aroclor-1016	230	ט ו
11104-28-2	Aroclor-1221	460	ט ו
11141-16-5	Aroclor-1232	230	ו ט
53469-21-9	Aroclor-1242	230	ט
12672-29-6	Aroclor-1248	230	ן טו
11097-69-1	Aroclor-1254	230	ן טו
11096-82-5	Aroclor-1260	230	ט ו

FORM 1 ORG

SH899-12206-B70607

Lab Name: Recra.LabNet

Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-007

Sample wt/vol:

<u>30.0</u> (g/mL) <u>G</u>

Lab File ID: 01140011.53

% Moisture: 33

decanted: (Y/N) N

Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: ____2000(uL)

Date Analyzed: 01/19/00

Injection Volume: 0.5(uL)

Dilution Factor: 5.00

GPC Cleanup: (Y/N) Y pH: 8.3

Sulfur Cleanup: (Y/N) N

CONCENTRATION

Q
ן ט
ו טו
ו טו
ו טו
ו טו
i u i
io i
i u i
ָ ט <u>י</u>
וֹ טוֹ
ן ט
iu i
ו ט
י דו
ו טו
וֹ טוֹ
י ו
ט l
Ū
Ü
וֹט וֹ
ן ט
ט ו
ט ו
ָּט <u>ו</u>
וֹט וֹ
U
וֹט וֹ
i i
3

SH899-12206-B70610

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-008

Sample wt/vol: 31.0 (g/mL) G Lab File ID: 01140011.56

% Moisture: 33 decanted: (Y/N) N Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/18/99

Concentrated Extract Volume: ____2000(uL)

Date Analyzed: 01/19/00

Injection Volume: 0.5(uL)

Dilution Factor: 2.00

GPC Cleanup: (Y/N) Y pH: 8.0 Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO COMPOUND UNITS: UG/KG O

CAS NO.	COMPOUND	UNITS: <u>UG/</u>	<u>KG</u> Q
	Alpha-BHC	4.8	U
	Beta-BHC	4.8	U I
	Delta-BHC	4.8	U
	gamma-BHC (Lindane)		U
76-44-8	Heptachlor	4.8	U
309-00-2		4.8	ן טן
	Heptachlor epoxide		[]
959-98-8	Endosulfan I	4.8	U
60-57-1	Dieldrin	9.6	ן טן
72-55-9	4,4'-DDE	9.6	ן טן
72-20-8		9.6	U
33213-65-9	Endosulfan II	9.6	ן ט
72-54-8	4,4'-DDD	9.6	ן ט ן
1031-07-8	Endosulfan sulfate	9.6	ן טן
50-29-3	4,4'-DDT	9.6	ט
72-43-5	Methoxychlor	48	ן טן
53494-70-5	Endrin ketone	9.6	ן ט
	Endrin aldehyde		ט
5103-71-9	alpha-Chlordane	4.8	ן טן
5103-74-2	gamma-Chlordane	4.8	ן טן
8001-35-2	Toxaphene	480	ן ט
12674-11-2	Aroclor-1016	96	ן טן
11104-28-2	Aroclor-1221	190	ן ט
11141-16-5	Aroclor-1232	96	ן ט
53469-21-9	Aroclor-1242	96	U
12672-29-6	Aroclor-1248	96	io i
11097-69-1	Aroclor-1254	96	ן טן
	Aroclor-1260	96	U
	FORM 1 ORG	V4	1.3

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC_

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-009

Sample wt/vol: $30.0 \text{ (g/mL)} \text{ } \underline{G}$

Lab File ID: 01140011.61

% Moisture: 13 decanted: (Y/N) N

Date Received: <u>12/08/99</u>

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: ____2000(uL) Date Analyzed: 01/20/00

Injection Volume: 0.5(uL)

Dilution Factor: 10.0

GPC Cleanup: (Y/N) Y pH: 8.1

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: UG/KG O

CAS NO.	COMPOUND	UNITS: UG/KG	Q
	21 - 1 DVG		
	Alpha-BHC		U
	Beta-BHC	19	ן טן
-	Delta-BHC		ן ט
58-89-9	gamma-BHC (Lindane)	19	ט
76-44-8	Heptachlor		U
	Aldrin		ן ט
	Heptachlor epoxide		!!!
959-98-8	Endosulfan I		ū
	Dieldrin		
72-55-9	4,4'-DDE	38	U
72-20-8	Endrin	38	U
33213-65-9-	Endosulfan II	38	U
72-54-8	4,4'-DDD	38	10
1031-07-8	Endosulfan sulface	38	ן שן
	4,4'-DDT	38	U
72-43-5	Methoxychlor	190	ן טן
53494-70-5-	Endrin ketone	38	U
7421-93-4	Endrin aldehyde	38	U
5103-71-9	alpha-Chlordane	210	i i
5103-74-2	gamma-Chlordane	170	i i
8001-35-2	Toxaphene	1900	וֹ טוֹ
12674-11-2	Aroclor-1016	380	ו טו
	Aroclor-1221		וֹ טוֹ
	Aroclor-1232		וֹ טוֹ
	Aroclor-1242		וֹט וֹ
12672-29-6	Aroclor-1248	380	U
11097-69-1-	Aroclor-1254	380	ט
11096-82-5-	Aroclor-1260	380	ט ו

Lab Name: Recra.LabNet

Work Order: 01667-600-001-9999-00

Client: NYSDEC_

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-010

Sample wt/vol:

<u>31.4</u> (g/mL) <u>G</u>

Lab File ID: 01140011.64

% Moisture: 75 decanted: (Y/N) N

Date Received: <u>12/08/99</u>

Date Extracted: 12/18/99

Extraction: (SepF/Cont/Sonc) SONC

Concentrated Extract Volume: 2000(uL) Date Analyzed: 01/20/00

Injection Volume: 0.5(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 8.7

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: <u>UG/</u>	<u>(G</u> Q
			!
	Alpha-BHC		ט
	Beta-BHC		וַט
	Delta-BHC	6.3	Ū
	gamma-BHC (Lindane)		ū
	Heptachlor		Ū
	Aldrin	6.3	U
1024-57-3	Heptachlor epoxide	6.3	ū
959-98-8	Endosulfan I	6.3	U
60-57-1	Dieldrin		U
72-55-9	4,4'-DDE	13	U
	Endrin		ן ט
33213-65-9	Endosulfan II	13	ן ט
72-54-8	4,4'-DDD	13	[บ
1031-07-8	Endosulfan sulfate	13	טן
50-29-3	4,4'-DDT	13	U
72-43-5	Methoxychlor	63	ן ט
	Endrin ketone		U
7421-93-4	Endrin aldehyde		Ū
5103-71-9	alpha-Chlordane	6.3	U
5103-74-2	gamma-Chlordane	1 6.3	U
8001-35-2	Toxaphene	630	Ū
12674-11-2	Aroclor-1016	130	įυ
	Aroclor-1221		įυ
	Aroclor-1232		įυ
	Aroclor-1242		įυ
	Aroclor-1248	1 120	ĺυ
11097-69-1	Aroclor-1254		Ū
	Aroclor-1260	130	ָטוֹ

FORM 1 ORG

هوروليم

Lab Name: Recra.LabNet

Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-011

Sample wt/vol: 30.5 (g/mL) G Lab File ID: 01140011.62

% Moisture: 28 decanted: (Y/N) N

Date Received: <u>12/08/99</u>

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: 2000 (uL) Date Analyzed: 01/20/00

Injection Volume: 0.5(uL)

Dilution Factor: 10.0

GPC Cleanup: (Y/N) Y pH: 8.0

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: UG/K	g Q
· _ · · · · · · · · · · · · · · · · · ·			
	Alpha-BHC	23	ט
	Beta-BHC	23	U
	Delta-BHC	23	U
58-89-9	gamma-BHC (Lindane)	23	U
76-44-8	Heptachlor	23	U
	Aldrin	23	U
1024-57-3	Heptachlor epoxide	23	U
959-98-8	Endosulfan I	23	U
60-57-1	Dieldrin	46	U
72-55-9	4,4'-DDE	46	U
72-20-8	Endrin	46	Ū
33213-65-9-	Endosulfan II	46	U
72-54-8	4,4'-DDD	46	U
1031-07-8	Endosulfan sulfate	46	Ū
50-29-3	4,4'-DDT	46	Ū
72-43-5	Methoxychlor	230	Ū
53494-70-5-	Endrin ketone	46	ָ <u>ט</u>
7421-93-4	Endrin aldehyde	46	U
5103-71-9	alpha-Chlordane	23	U
5103-74-2	gamma-Chlordane	23	U
8001-35-2	Toxaphene	2300	Ū
12674-11-2-	Aroclor-1016	460	U
11104-28-2-	Aroclor-1221	910	jυ
11141-16-5-	Aroclor-1232	460	[ט
	Aroclor-1242	460	ָט
12672-29-6-	Aroclor-1248	460	ָט
	Aroclor-1254	460	ָ ט
11096-82-5-	Aroclor-1260	460	ប

FORM 1 ORG

V4.3

Norma

SH899-12207-B70614

Lab Name: Recra, LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 9912L959-012

Sample wt/vol: 30.5 (g/mL) G Lab File ID: 01140011.65

% Moisture: 78 decanted: (Y/N) N Date Received: 12/08/99

Date Extracted: 12/18/99 Extraction: (SepF/Cont/Sonc) SONC

Concentrated Extract Volume: 2000(uL) Date Analyzed: 01/20/00

Injection Volume: 0.5(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 8.0Sulfur Cleanup: (Y/N) N

> CONCENTRATION UNITS: UG/KG O

CAS NO.	COMPOUND	UNITS: UG/KG	Q
219-84-6	Alpha-BHC	7.6	l IU
319-04-0	Beta-BHC	7.6	ום וס
	Delta-BHC	7.6	ן ט וט
_	gamma-BHC (Lindane)		
			U
70-44-0	Heptachlor_	7.6	U
309-00-2 1004 E7 3	Aldrin	7.6	U
1024-5/-5	Endogulfon T	7.6	U
333-30-0 CA E7 1	Endosulfan I	7.6	U
70 == 0	Dieldrin_	15	IP
72-33-9 72-30-9	4,4'-DDE	15	U
72-20-8	Endrin	15	U
	Endosulfan II	•	U
	4,4'-DDD	15	U
1031-07-8	Endosulfan sulfate		U
50-29-3	4,4'-DDT	15	U
72-43-5	Methoxychlor		ָוֹ ַ
53494-70-5	Endrin ketone	15	ָ ט
7421-93-4	Endrin aldehyde		U
5103-71-9	alpha-Chlordane	7.6	U
	gamma-Chlordane		U
	Toxaphene		U
	Aroclor-1016		ן ט
	Aroclor-1221		ן ט
	Aroclor-1232		U
	Aroclor-1242		ט
	Aroclor-1248		U
	Aroclor-1254	150	U
11096-82-5	Aroclor-1260	150	U
	FORM 1 ORG	V4.3	'' j

Lab Name: Recra.LabNet

Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-013

Sample wt/vol: 30.1 (g/mL) G Lab File ID: 01140011.66

% Moisture: 37 decanted: (Y/N) N Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: 2000(uL)

Date Analyzed: 01/20/00

Injection Volume: 0.5(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 9.0

CAS NO.

COMPOUND

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: UG/KG Q

			<u> </u>
]
	Alpha-BHC	2.6	U
319-85-7	Beta-BHC	2.6	U
	Delta-BHC	2.6	[ט
	gamma-BHC (Lindane)		[U
	Heptachlor	2.6	U
309-00-2		2.6	U
	Heptachlor epoxide		Įΰ
959-98-8	Endosulfan I	2.6	U
60-57-1	Dieldrin	5.3	U
72-55-9	4,4'-DDE	19	1
	Endrin	5.3	U
33213-65-9	Endosulfan II	5.3	U
72-54-8	4,4'-DDD	5.3	U
1031-07-8	Endosulfan sulfate	5.3	ľΰ
50-29-3	4,4'-DDT	21	İ
72-43-5	Methoxychlor	26	ט
53494-70-5	Endrin ketone	5.3	[ט
7421-93-4	Endrin aldehyde	5.3	Ü
5103-71-9	alpha-Chlordane	2.6	ן ט
5103-74-2	gamma-Chlordane	2.6	i u i
8001-35-2	Toxaphene	260	ju j
12674-11-2	Aroclor-1016	53	וֹ טוֹ
11104-28-2	Aroclor-1221	110	ו ט
11141-16-5	Aroclor-1232	53	ĺυ i
53469-21-9	Aroclor-1242	53	Ū
12672-29-6	Aroclor-1248	53	U i
11097-69-1	Aroclor-1254	53	i u
	Aroclor-1260	53	iu i

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

SH899-12206-B70607MS

Lab Name: Roy F. Weston, Inc.

Contract: 01667-600-001-9999-00

Lab Code: SAS No.: SDG No.: Case No.: NYSDEC

Lab Sample ID: 9912L959-007 MS Date(s) Analyzed: 01/19/00 01/19/00

Instrument ID (1): 11

Instrument ID (2): 12

GC Column(1): DB608 ID: 0.53 (mm) GC Column(2): 1701 ID: 0.53 (mm)

	1		RT WINDOW			
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D
	===	=====	=====	=====	=========	=====
GAMMA-BHC (LINDANE)	 1	15.19	15.11	15.21	14	
I . 	2	16.24	16.15	16.25	19	36.0
HEPTACHLOR	1	16.52	16.43	16.53	19	
 	 .2 	17.10	17.01	17.11	19	0.0
ALDRIN	1	17.85	17.76	17.86	18	
	2	18.15	18.05	18.15	18	0.0
DIELDRIN	1 1	22.56	22.45	22.59	51	
	2	22.97	22.86	23.00	37	38.0
ENDRIN	1	23.95	23.84	23.98	34	
	2	23.76	23.65	23.79	43	26.0
4,4'-DDT	1	25.36	25.26	25.40	36	
	2	25.67	25.57	25.71	46	28.0

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

 EPA SAMPLE NO. -----|SH899-12206-B70607MSD |

Lab Name: Roy F. Weston, Inc. Contract: 01667-600-001-9999-00

Lab Code: SAS No.: SDG No.: Case No.: NYSDEC

Lab Sample ID: 9912L959-007 MSD Date(s) Analyzed: 01/19/00 01/19/00

Instrument ID (1): 11

Instrument ID (2): 12

GC Column(1): DB608 ID: 0.53 (mm) GC Column(2): 1701 ID: 0.53 (mm)

			RT W	INDOW		
1	COL	! !	FROM		CONCENTRATION	%D
_======================================	===		=====	=====	========	│≡ਝ≖≕≕ │
GAMMA-BHC (LINDANE)	1	1 15.19	15.11	15.21	12	
	2	16.24	16.15	16.25	16	33.0
HEPTACHLOR	1	16.52	16.43	16.53	18	;
	2	17.10	17.01	17.11	17 .	5.9
ALDRIN	1	17.85	17.76	17.86	17	
	2	18.15	18.05	18.15	16 .	6.2
DIELDRIN	1	22.55	22.45	22.59	57	
	2	22.97	22.86	23.00	34	68.0
ENDRIN	1	23.95	23.84	23.98	25	
	2	23.76	23.65	23.79	41	64.0
4,4'-DDT	1	25.36	25.26	25.40	32	
İ	2	25.67	25.57	25.71	42	31.0

N. 3-03-W

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

|SH899-12207-B70611

Lab Name: Roy F. Weston, Inc. Contract: 01667-600-001-9999-00

Lab Code: SAS No.: SDG No.: Case No.: NYSDEC.

Lab Sample ID: 9912L959-009

Date(s) Analyzed: 01/20/00 01/20/00

Instrument ID (1): 11

Instrument ID (2): 12

GC Column(1): DB608 ID: 0.53 (mm) GC Column(2): 1701 ID: 0.53 (mm)

1			RT WINDOW			
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D
	===	=====		=====	=======	=====
HEPTACHLOR EPOXIDE	1	20.00	19.91	20.05	30	
	2	20.64	20.55	20.69	30	0.0
GAMMA CHLORDANE	1 1	20.63	20.53	20.67	180	
	2	21.82	21.73	21.87	170	5.9
ALPHA CHLORDANE	1 1	21.21	21.15	21.29	210	.
	2	22.06	21.96	22.10	220	4.8
DIELDRIN	1	22.54	22.45	22.59	74	
	2	22.95	22.86	23.00	82	11.0

2/02-00

IOA PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

SH899-12207-B70614

Lab Name: Roy F. Weston, Inc. Contract: 01667-600-001-9999-00

Lab Code: SAS No.: SDG No.: Case No.: NYSDEC

Lab Sample ID: 9912L959-012

Date(s) Analyzed: 01/20/00 01/20/00

Instrument ID (1): 11

Instrument ID (2): 12

GC Column(1): DB608 ID: 0.53 (mm) GC Column(2): 1701 ID: 0.53 (mm)

| RT WINDOW | |COL| RT | FROM | TO | CONCENTRATION | %D | _ | 1 | 22.63 | 22.45 | 22.59 | 88 2 | 22.96 | 22.86 | 23.00 | 15 | 490.0 |

دن-ولد ورام

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO. |SH899-12207-B70615

Lab Name: Roy F. Weston, Inc. Contract: 01667-600-001-9999-00

Lab Code: SAS No.: SDG No.: Case No.: NYSDEC

Date(s) Analyzed: 01/20/00 01/20/00

Lab Sample ID: 9912L959-013

Instrument ID (1): 11

Page 1 of 1

Instrument ID (2): 12

GC Column(1): DB608 ID: 0.53 (mm) GC Column(2): 1701 ID: 0.53 (mm)

RT WINDOW |COL| RT | FROM | TO |CONCENTRATION | %D | __ | 1 | 22.14 | 22.05 | 22.19 | 23 4,4'-DDE 2 | 22.29 | 22.20 | 22.34 | 19 | 21.0 | _ | 1 | 25.34 | 25.26 | 25.40 | 26 2 | 25.65 | 25.57 | 25.71 | 21 | 24.0 |

ور در در الما

160

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO. PBLKCVBS

Lab Name: Roy F. Weston, Inc. Contract: 01667-600-001-9999-00

Lab Code: SAS No.: SDG No.: Case No.: NYSDEC

Lab Sample ID: 99LE1534-MB1 BS Date(s) Analyzed: 01/15/00 01/15/00

Instrument ID (1): 11

Instrument ID (2): 12

GC Column(1): DB608 ID: 0.53 (mm) GC Column(2): 1701 ID: 0.53 (mm)

RT WINDOW |COL | RT | FROM | TO | CONCENTRATION | %D. 2 | 16.20 | 16.15 | 16.25 | 10 | 0.0 ___ | 1 | 16.48 | 16.43 | 16.53 | 12 HEPTACHLOR 2 | 17.05 | 17.01 | 17.11 | 11 9.1 ____ | 1 | 17.81| 17.76| 17.86| 11 ALDRIN 2 | 18.10 | 18.05 | 18.15 | 12 | 9.1 _ | 1 | 22.51 | 22.45 | 22.59 | 23 DIELDRIN 4.5 2 | 22.93 | 22.86 | 23.00 | 22 ___ | 1 | 23.91 | 23.84 | 23.98 | 24 ENDRIN 2 | 23.71 | 23.65 | 23.79 | 24 | 0.0 1 | 25.32 | 25.26 | 25.40 | 25 4,4'-DDT 2 | 25.63 | 25.57 | 25.71 | 24 4.2

المار والمار المام

EPA	SAMPLE	NO.

PIBLK $08R$	
-------------	--

Lab Nam Client:	ne: Recra.LabN	let.Philadelphia	Contract:	,
Matrix: (soil/water)	WATER	Lab Sample ID:	99LPST08 MBR
Sample \	wt/vol:	1000.0 (g/mL) mL	Lab File ID:	
Level:	(low/med)	low	Date Received:	
% Moistu	ıre:	decanted: (Y/N)	: Date Extracted:	
Concent	rated Extract Vo	lume: 10000 (uL)	Date Analyzed:	F 1/41 00
Injection	Volume:	0.5 (uL)	Dilution Factor:	1.0
GPC Cle	anup: (Y/N)	N pH	:7 Sulfur Cle	eanup: (Y/N)
			Concentration Units:	
	CAS No.	Compound	(ug/L or ug/Kg)ug/L	Q
	319-84-6	alpha-BHC	0.025	U
	319-85-7	beta-BHC	0.025	U
	319-86-8	delta-BHC	0.025	U
	58-89-9	gamma-BHC (Lindane)	0.025	U
	76-44-8	Heptachlor	0.025	U
	309-00-2	Aldrin	0.025	U
	1024-57-3	Heptachlor epoxide	0.025	U
	959-98-8	Endosulfan I	0.025	U
	60-57-1	Dieldrin	0.05	U
	72-55-9	4,4'-DDE	0.05	U
	72-20-8	Endrin	0.05	U
	33213-65-9	Endosulfan II	0.05	U
	72-54-8	4,4'-DDD	0.05	U
	1031-07-8	Endosulfan sulfate	0.05	U
	50-29-3	4,4'-DDT	0.05	U
	72-43-5	Methoxychlor	0.05	U
	53494-70-5	Endrin ketone	0.05	U
	7421-36-3	Endrin aldehyde	0.05	U
	5103-71-9	alpha-Chlordane	0.025	U
	5103-74-2	gamma-Chlordane	0.025	U
	8001-35-2	Toxaphene	0.25	U
	12674-11-2	Aroclor-1016	0.5	U
	11104-28-2	Aroclor-1221	1	U
	11141-16-5	Aroclor-1232	0.5	U
	53469-21-9	Aroclor-1242	0.5	U
	12672-29-6	Aroclor-1248	0.5	U
	11097-69-1	Aroclor-1254	0.5	U
	11096-82-5	Aroclor-1260	0.5	U

Marano

EPA SAMPLE	NO,
_	
PIBLK 08 <i>5</i>	

Lab Nar Client:	me: Recra.La	bNet.Philade			Contract:		PIBLK 08 <i>5</i>	
Matrix:	(soil/water)	WATER				Lab Sample ID:	99LPST08	MBS
Sample	wt/vol:	1000.0	(g/mL) mL			Lab File ID:		
•	(low/med)	low				Date Received:		
% Moist	,		 decanted: (Y/N)·		Date Extracted:		
	trated Extract V	 /olume:	10000 (uL)			Date Analyzed:		00
			 ` '		٠			
Injection	Nolume:	0.5	_ (uL)			Dilution Factor:	1.0	····
GPC CI	eanup: (Y/N)	N	_	pH:	7	Sulfur Cle	eanup: (Y/N)	
				(Concentration	Units:		
	CAS No.	Compound	d	(1	ug/L or ug/Kg) ug/L	Q	
	319-84-6	alpha-BH0				0.025	U	
		- beta-BHC	·····			.0.025	U	
	319-86-8	delta-BHC				0.025	U	
	58-89-9	gamma-Bi	HC (Lindane)			0.025	U	
	76-44-8	Heptachlo				0.025	U	
	309-00-2	Aldrin				0.025	U	
	1024-57-3	Heptachlo	r epoxide			0.025	U	
	959-98-8	Endosulfa	n i			0.025	U	
	60-57-1	Dieldrin				0.05	U	
	72-55-9	4,4'-DDE				0.05	U	
	72-20-8	Endrin				0.05	U	
	33213-65-9	Endosulfa	n II			0.05	U	•
	72-54-8	4,4'-DDD				0.05	U	
	1031-07-8	Endosulfa	n suifate			0.05	U	•
	50-29-3	4,4'-DDT				0.05	U	
	72-43-5	Methoxycl				0.05	U	
	53494-70-5	Endrin ket	one			0.05	U	
	7421-36-3	Endrin ald				0.05	υ	
	5103-71-9	alpha-Chl	ordane			0.025	U	
	5103-74-2	gamma-C			i	0.025	U	•
	8001-35-2	Toxaphen				0.25	.U	
	12674-11-2	Aroclor-10				0.5	U	
	11104-28-2	Aroclor-12				1	U	
	11141-16-5	Aroclor-12				0.5	U	
	53469-21-9	Aroclor-12				0.5	U	
•	12672-29-6	Aroclor-12				0.5	U	
	11097-69-1	Aroclor-12				0.5	U	
	11096-82-5	Aroclor-12	260			0.5	U	

EPA	SAMPL	E NO.
-----	-------	-------

PIBLK 087	
-----------	--

Lab Name:	Recra.Lab	Net.Philadelphia) 		Contract:		I IDER OUT	
Client:								
Matrix: (soil/	water)	WATER				Lab Sample ID:	99LPST08	MB
Sample wt/vo	ol:	1000.0(g/	mL) <u>mL</u>			Lab File ID:	·	
Level: (low	v/med)	low				Date Received:		
% Moisture:			decanted: (Y/N):		Date Extracted:		
Concentrated	d Extract Vo	olume: 10	000 (uL)			Date Analyzed:	11151	00
Injection Vol	ume:	0.5(uL	.)			Dilution Factor:	1.0	
GPC Cleanu	p: (Y/N)	N		pH:	7	Sulfur Cle	anup: (Y/N)	
				C	concentration	Units:	-	
CA	S No.	Compound				ug/L	Q	
319	-84-6	alpha-BHC				0.025	U	
319	9-85-7	beta-BHC				0.025		
319	9-86-8	delta-BHC				0.025	U	
58-	89-9	gamma-BHC (Lindane)			0.025	U	
76-	44-8	Heptachlor				0.025	C	
309	9-00-2	Aldrin				0.025	U	
102	24-57-3	Heptachlor epo	oxide			0.025	U	
959	9-98-8	Endosulfan I				0.025	U	
60-	57-1	Dieldrin				0.05	U	
72-	55-9	4,4'-DDE				0.05	U	
	20-8	Endrin				0.05	C	
332	213-65-9	Endosulfan II				0.05	U	
72-	54-8	4,4'-DDD				0.05	C	
103	31-07-8	Endosulfan su	lfate			0.05	U	
50-	29-3	4,4'-DDT				0.05	U	
72-	43-5	Methoxychior.				0.05	U	
534	194-70-5	Endrin ketone				0.05	U	
	21-36-3	Endrin aldehyd	le		***	0.05	U	
510)3-71 - 9	alpha-Chlorda	ne		17:	0.025	U ·	
510	03-74-2	gamma-Chloro	lane			0.025	U	
	01-35-2	Toxaphene				0.25	Ų	
	574-11-2	Aroclor-1016				0.5	U	
111	104-28-2	Aroclor-1221				1	U	
117	141-16-5	Aroclor-1232				0.5	U	
	169-21-9	Aroclor-1242				0.5	U	
	372-29-6	Aroclor-1248		.		0.5	U	
	097-69-1	Aroclor-1254				0.5	U	
110	096-82-5	Aroclor-1260				0.5	U	

الله ده دواللم

_	EPA SAMPLE NO	_
F	PIBLK 08 V	

Lab Nam Client:	ne: <u>Recra.Lab</u>	Net.Philadelphia	<u> </u>	Contract:		PIBLK 08 V	
	(soil/water)	WATER			Lab Sample ID:	OOLDSTOR	MD) /
•	•						
Sample v	wt/vol:	1000.0 (g/mL) <u>mL</u>			Lab File ID:	***************************************	
Level:	(low/med)	low			Date Received:		
% Moistu	ure:	_ decanted:	(Y/N):	•	Date Extracted:		
Concent	rated Extract Vo	olume: 10000 (uL)			Date Analyzed:	1 191	00
Injection	Volume:	0.5(uL)			Dilution Factor:	1.0	
GPC Cle	eanup: (Y/N)	<u>N</u>	pH:	7	Sulfur Cle	eanup: (Y/N)	
			c	Concentration U	nits:		
	CAS No.	Compound	(L	ıg/L or ug/Kg)	ug/L	Q	
	319-84-6	alpha-BHC		0	.025	U	
	319-85-7	beta-BHC		0	.025	U	
	319-86-8	delta-BHC		0	.025	U	
	58-89-9	gamma-BHC (Lindane)		0	.025	U	
	76-44-8	Heptachlor		0	.025	U	
	309-00-2	Aldrin		0	.025	U	
	1024-57-3	Heptachlor epoxide			.025	U	
	959-98-8	Endosulfan I		0.	.025	U	
-	60-57-1	Dieldrin		· · · · · · · · · · · · · · · · · · ·	0.05	U	
	72-55-9	4,4'-DDE			0.05	U	
	72-20-8	Endrin			0.05	U	
	33213-65-9	Endosulfan II	-	(0.05	U	
	72-54-8	4,4'-DDD		(0.05	U	
	1031-07-8	Endosulfan sulfate			0.05	U	
	50-29-3	4,4'-DDT		(0.05	U	
	72-43-5	Methoxychior		(0.05	U	
	53494-70-5	Endrin ketone		(0.05	U	
	7421-36-3	Endrin aldehyde			0.05	U	·
	5103-71-9	alpha-Chlordane		0.	:025	U	
	5103-74-2	gamma-Chlordane		0.	.025	U	
ě	8001-35-2	Toxaphene			0.25	·U	
	12674-11-2	Aroclor-1016			0.5	U	
	11104-28-2	Aroclor-1221		·	1	U	
	11141-16-5	Aroclor-1232			0.5	U	
	53469-21-9	Aroclor-1242			0.5	U	
	12672-29-6	Aroclor-1248			0.5	U	
	11097-69-1	Aroclor-1254			0.5	U	
	11096-82-5	Aroclor-1260			0.5	U	

عدود دن المر

EPA SAMPLE N

ah Name - Recrail a	bNet.Philadelphia	Contract:	PIBLK 08 ₩
Client:	bree. Timadelpriid		
Matrix: (soil/water)	WATER	Lab Sample ID:	99LPST08 MB
Sample wt/vol:	1000.0 (g/mL) <u>mL</u>	Lab File ID:	
Level: (low/med)	low	Date Received:	
% Moisture:	decanted: (\	//N): Date Extracted:	
Concentrated Extract \	/olume: <u>10000</u> (uL)	Date Analyzed:	1 120 00
Injection Volume:	0.5(uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	N	pH: 7 Sulfur Cle	eanup: (Y/N)
		Concentration Units:	-
CAS No.	Compound	(ug/L or ug/Kg) ug/L	Q
319-84-6	alpha-BHC	0.025	U
319-85-7	beta-BHC	0.025	U
319-86-8	delta-BHC	0.025	U
58-89-9	gamma-BHC (Lindane)	0.025	U
76-44-8	Heptachlor	0.025	U
309-00-2	Aldrin	0.025	U
1024-57-3	Heptachlor epoxide	0.025	U
959-98-8	Endosulfan I	0.025	U
60-57-1	Dieldrin	0.05	U
72-55-9	4,4'-DDE	0.05	U
72-20-8	Endrin	0.05	U
33213-65-9	Endosulfan II	0.05	U
72-54-8	4,4'-DDD	0.05	Ü .
1031-07-8	Endosulfan sulfate	0.05	U
50-29-3	4,4'-DDT	0.05	U
72-43-5	Methoxychlor	0.05	U
53494-70-5	Endrin ketone	0.05	U
7421-36-3	Endrin aldehyde	0.05	U
5103-71-9	alpha-Chlordane	0.025	U
5103-74-2	gamma-Chlordane	0.025	U
8001-35-2	Toxaphene	0.25	.U
12674-11-2	Aroclor-1016	0.5	Ú
11104-28-2	Aroclor-1221	1	U
11141-16-5	Arocior-1232	0.5	U

M W W

Ū

U

U

0.5

0.5

0.5

0.5

53469-21-9

12672-29-6

11097-69-1

11096-82-5

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

	 7 37	. · VI.	 ΨÜ.	
- 1				
1-	 			

Lab Name: Recra.LabNet.Philadelphia					Contract:		PIBLK08X		
	soil/water)					Lab Sample ID:	99LPST08	-МВХ	
Sample wt/vol:		1000.0	(g/mL) mL			Lab File ID:			
	(low/med)	low	·			Date Received:			
% Moistu	ıre:		decante	d: (Y/ N) :		Date Extracted:			
Concenti	rated Extract Vo	lume:	10000 (uL)			Date Analyzed:	1 1201	00	
•		0.5				Dilution Factor:			
-			. ' '	~ Ш·	7				
3PC Cle	anup: (Y/N)	N		-			eanup: (Y/N)		
					Concentration (_		
	CAS No.	Compound		. (ug/L or ug/Kg)	ug/L_	Q	_	
	319-84-6	alpha-BHC				0.025	U		
	319-85-7	beta-BHC			(0.025	U		
	319-86-8	delta-BHC			• (0.025	U		
-	58-89-9	gamma-Bl-	IC (Lindane)			0.025	U		
	76-44-8	Heptachlor			(0.025	U		
	309-00-2	Aldrin			().025	U		
	1024-57-3	Heptachlor	epoxide		(0.025	U		
	959-98-8	Endosulfar	<u> </u>		(0.025	U		
	60-57-1	Dieldrin				0.05	U		
	72-55-9	4,4'-DDE		•		0.05	U		
	72-20-8	Endrin				0.05	U		
	33213-65-9	Endosulfar	11			0.05	U	٠,	
	72-54-8	4,4'-DDD				0.05	U		
	1031-07-8	Endosulfar	sulfate			0.05	U	•	
	50-29-3	4,4'-DDT				0.05	U		
	72-43-5	Methoxych	ior			0.05	U		
	53494-70-5	Endrin keto	one			0.05	U		
	7421-36-3	Endrin alde	hyde			0.05	U		
	5103-71-9	alpha-Chlo	rdane		. (0.025	U		
	5103-74-2	gamma-Ch	lordane		(0.025	U		
	8001-35-2	Toxaphene	;			0.25	U		
	12674-11-2	Aroclor-10	16			0.5	U		
	11104-28-2	Aroclor-12	21			1	U		
	11141-16-5	Aroclor-12	32			0.5	U		
	53469-21-9	Aroclor-12	42			0.5	U		
	12672-29-6	Aroclor-12	48			0.5	U		
	11097-69-1	Aroclor-12	54			0.5	U		
	11096-82-5	Aroclor-12	50			0.5	U		

gilgrarai

RAW QC DATA

PBLKCV	•	

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

COMPOUND

Client: NYSDEC

CAS NO.

Matrix: (soil/water) SOIL Lab Sample ID: 99LE1534-MB1

Sample wt/vol: 30.0 (g/mL) G Lab File ID: 01140011.25

% Moisture: $\underline{0}$ decanted: (Y/N) \underline{N} Date Received: $\underline{12/18/99}$

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/18/99

Concentrated Extract Volume: 2000 (uL) Date Analyzed: 01/15/00

Injection Volume: <u>0.5(uL)</u> Dilution Factor: <u>1.00</u>

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$ Sulfur Cleanup: (Y/N) \underline{N}

CONCENTRATION UNITS: <u>UG/KG</u> Q

319-84-6Alpha-BHC		ļΰ
319-85-7Beta-BHC_		Ü
319-86-8Delta-BHC	1.7	ĺΩ
58-89-9gamma-BHC (Lindane)		Ū
76-44-8Heptachlor		Įΰ
309-00-2Aldrin	1.7	U
1024-57-3Heptachlor epoxide		U
959-98-8Endosulfan I	1.7	טן
60-57-1Dieldrin		U
72-55-94,4'-DDE	3.3	U
72-20-8Endrin	3.3	U
33213-65-9Endosulfan II	3.3	U
72-54-84,4'-DDD	3.3	U
1031-07-8Endosulfan sulface	3.3	ן ט
50-29-34,4'-DDT	3.3	ן ט
72-43-5Methoxychlor	17	ľΰ
53494-70-5Endrin ketone		ļΰ
7421-93-4Endrin aldehyde	3.3	U
5103-71-9alpha-Chlordane	1.7	U
5103-74-2gamma-Chlordane		U
8001-35-2Toxaphene		Ū
12674-11-2Aroclor-1016		Ū
11104-28-2Aroclor-1221		Ū
11141-16-5Aroclor-1232		ĺσ
53469-21-9Aroclor-1242		jσ
12672-29-6Aroclor-1248		Ū
11097-69-1Aroclor-1254		U
11096-82-5Aroclor-1260	33	U

FORM 1 ORG

تندون وي V4.3 منافع المنافع المنافع المنافع المنافع المنافع المنافع المنافع المنافع المنافع المنافع المنافع ال

PBLKCVBS

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 99LE1534-MB1 BS

Sample wt/vol: 30.0 (g/mL) G Lab File ID: 01140011.26

% Moisture: $\underline{0}$ decanted: (Y/N) \underline{N} Date Received: $\underline{12/18/99}$

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/18/99

Concentrated Extract Volume: 2000(uL) Date Analyzed: 01/15/00

Injection Volume: 0.5(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$ Sulfur Cleanup: (Y/N) \underline{N}

CAS NO. COMPOUND CAS NO. COMPOUND COMPO

CAS NO.	COMPOUND	UNITS: <u>UG/KG</u>	Q
210 04 6	Alpha-BHC	1.7	
	Beta-BHC	1.7	ן טן
	Delta-BHC	1.7	ן טן
	gamma-BHC (Lindane)		0
	Heptachlor		
309-00-2		 :	
	Heptachlor epoxide	11	
			U
	Endosulfan I		Ü
		22	
	4,4'-DDE		la l
	Endrin	24	
	Endosulfan II		ן טן
	4,4'-DDD	3.3	[α
	Endosulfan sulfate		ן ט
	4,4'-DDT		1 '
	Methoxychlor	17	ן ט
	Endrin ketone	3.3	U ·
	Endrin aldehyde		ן ש
	alpha-Chlordane		ן טן
	gamma-Chlordane		U
8001-35-2	Toxaphene	170	ן טן
12674-11-2	Aroclor-1016	33	ן ט
11104-28-2	Aroclor-1221	67	io i
11141-16-5	Aroclor-1232	33	ן ט
53469-21-9	Aroclor-1242	33	ט ו
12672-29-6	Aroclor-1248	33	ן ט
11097-69-1	Aroclor-1254	33	บ
	Aroclor-1260	33	ָּטוֹ <u>.</u>

FORM 1 ORG

SH899-12206-B70607MS

Lab Name: Recra.LabNet

Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L959-007 MS

Sample wt/vol:

<u>30.0</u> (g/mL) <u>G</u>

Lab File ID: 01140011.54

% Moisture: 33 decanted: (Y/N) N

Date Received: <u>12/08/99</u>

Extraction: (SepF/Cont/Sonc) SONC

Concentrated Extract Volume: ___2000(uL)

Date Extracted: 12/18/99

Date Analyzed: 01/19/00

Injection Volume: 0.5(uL)

Dilution Factor: 5.00

GPC Cleanup: (Y/N) Y pH: 8.3

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: <u>UG/KG</u>	Q
219-94-6	Alpha-BHC	12	ן ט
	Beta-BHC	12	ָ ט
	Delta-BHC	12 12	ט
-	gamma-BHC (Lindane)	14	DP I
	Heptachlor	19	D
	Aldrin	18	
	Heptachlor epoxide	·	ט ו
	Endosulfan I	12	ט ו
	Dieldrin		DP
	4,4'-DDE	25	ים ו ו
72-20-8		34	DP
	Endosulfan II	25	io i
	4,4'-DDD		וֹ טוֹ
	Endosulfan sulfate	25	iu i
50-29-3	4,4'-DDT	 ; 36	DP
72-43-5	Methoxychlor	120	וֹ טוֹ
53494-70-5	Endrin ketone	25	ן ט
	Endrin aldehyde	25	ן ט
5103-71-9	alpha-Chlordane	12	U
5103-74-2	gamma-Chlordane	12	ט ו
8001-35-2	Toxaphene	1200	ן טן
12674-11-2	Aroclor-1016	250	U
11104-28-2	Aroclor-1221	500	U
11141-16-5	Aroclor-1232	250	U
	Aroclor-1242	250	U
12672-29-6	Aroclor-1248	250	U
	Aroclor-1254	250	U
11096-82-5	Aroclor-1260	250	U

SH899-12206-B70607MSD

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC_

Matrix: (soil/water) <u>SOIL</u>

Lab Sample ID: 9912L959-007 MSD

Sample wt/vol:

<u>31.1</u> (g/mL) <u>G</u>

Lab File ID: 01140011.55

% Moisture: 33 decanted: (Y/N) N Date Received: 12/08/99

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/18/99

Concentrated Extract Volume: 2000(uL)

Date Analyzed: 01/19/00

Dilution Factor: 5.00

Injection Volume: 0.5(uL)

GPC Cleanup: (Y/N) Y pH: 8.3

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO. COMPOUND UNITS: UG/KG

	1	
319-84-6Alpha-BHC	12	ט
319-85-7Beta-BHC	12	U
319-86-8Delta-BHC	12	Ū
58-89-9gamma-BHC (Lindane)	12	DP
76-44-8Heptachlor	17	D
309-00-2Aldrin	16	D
1024-57-3Heptachlor epoxide		Ū
959-98-8Endosulfan I	12	ט
60-57-1Dieldrin		DP
72-55-94,4'-DDE	24	U
72-20-8Endrin	25	DP
33213-65-9Endosulfan II		ַט
72-54-84,4'-DDD		U
1031-07-8Endosulfan sulfate	24	U
50-29-34,4'-DDT	32	DP
72-43-5Methoxychlor	120	ן ט
53494-70-5Endrin ketone	24	Ū
7421-93-4Endrin aldehyde	24	Ū
5103-71-9alpha-Chlordane	12	U
5103-74-2gamma-Chlordane		Ū
8001-35-2Toxaphene		טן
12674-11-2Aroclor-1016		ָוֹ <mark></mark> ד
11104-28-2Aroclor-1221	480	Ū
11141-16-5Aroclor-1232	240	Ū
53469-21-9Aroclor-1242		ט
12672-29-6Aroclor-1248		U
11097-69-1Aroclor-1254	240	U
11096-82-5Aroclor-1260	240	U
		ĺ

FORM 1 ORG

V4.3

Chemical and Environmental Measurement Information

20 March 2000

M:2 8 1 1 1

DER/HAZ, WASTE REMED

NEGION 8 -

Mr. Jack Ryan NYSDEC Room 392 50 Wolf Road Albany, NY 12233-3502

Contract C003783

Sample Data Package: RFW Batch 0002L425 NYSDEC ID: SH800-02208-B70616 to B70621

Dear Mr. Ryan:

Ref:

Enclosed please find the data report for 6 soil samples received 11 February 2000. These were analyzed for CLP metals and TPH as well as full TCLP and RCRA characteristics. The EDD is being emailed to you and a disk sent to the sampler.

We had requested a week's extension because the TCLP herbicides needed to be reextracted.

Please do not hesitate to contact me at (610) 280-3000 with any questions you may have.

Very truly yours,

Recra LabNet Philadelphia

Judith L. Stone

Senior Project Manager

Enclosure

cc: Frank Sowers (NYSDEC)

3) Present on Sample Y or (N) 2) Unbroken on Outer Package (*) or N Upon Sample Rec't COC Record Present 1) Present on Outer Package Or N Sample Y or N 4) Unbroken on COC Tape was: RECRA LabNet Use Only Cooler Temp. 5 16 2AG 25 50 7 Ø TICLE 4) Labels Indicate
Properly Preserved
or 'N 3) Received in Good Condition or N 2) Ambient or Chille 5) Received Within Holding Times 23 <u>_</u> HJL > IJHC S O RECRA LabNet Use CN aronal c 9 **V3** 184 THETW > Metal I Custody Transfer Record/Lab Work Request Page__ Discrepancies Between Samples Labels and COC Record? Your ヘコフェエ JO92 870 67 (8) (8) (8) (8) ts cet T μ 50 ∞ 76500LOPHC Pest/ T80cx Time \$ 450.00 \$ 1350.00 \$ 5 See Jab Chia **BNA** FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS 250 AOV رل Date Solld Date Time Collected Collected Solid Liquid Llquld 125 955 **6**00 7 8 150 200 0/8/7 S /5/1 30/20 2/8/00 SISIO P-11-50 18/163 MAKI = 1 1151 Relinquished DRIG INAL REWRITTEN #/Type Container ANALYSES REQUESTED ** Refrigerator # Preservatives DATE/REVISIONS: 50/L Volume Matrix Ξ ` = ** Matrix QC Chosen MS MSD Sources 716 2265357 3.12.0° Project # Clear - Lago -001 - 9999 -00 Brocetie telan our 20ch town of odd NYSDEC Befrig Blank 1945 Time 4/10/00/14BO Cilent ID/Description SHRC6-02308 11-07 Date Due TAT Date 3 Š 9 ac Chespec Dol Cip FRANK N 3706 15001A Est. Final Proj. Sampling Date Received 2-11-00 ⋧ Project Contact/Phone # RECRA LabNet Use Only RECRA Project Manager __ Client NYSDEC SCH ITOOD 800 202 83 000 2 8 ag ⊡ Special Instructions: Rose Relinquished S - Soil
SE - Sediment
SO - Solid
SL - Sludge
W - Water
O - Oil Liquids EP/TCLP Leachate A - An DS - Drum Sollds Date Rec'd Account # þ MATRIX CODES: <u>×</u> × . ٦ . .

p.g

RECRA LabNet

<u>zaasi</u>

ムわエエ

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW#: 0002L425 ELAP#: 10752 W.O.#: 01667-600-001-9999-00 Date Received: 02-11-00

CLP/ILM04.0 METALS

- 1. This narrative covers the analyses of 3 soil samples and 1 TCLP leachate sample.
- 2. The samples were prepared and analyzed in accordance with CLP/ILM04.0 protocol. The total samples and the TCLP leachate sample have been reported on separate sets of forms.
- 3. ICVs, CCVs, and LCSs stock standards were purchased from Inorganic Ventures and High Purity.
- 4. All analyses were performed within the required holding times.
- 5. The cooler temperature has been recorded on the Chain of Custody.
- 6. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within control limits.
- 7. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits.
- 8. All preparation/method blanks were below reporting limits. Refer to form 3.
- 9. All ICP Interference Check Samples (ICSA and ICSAB) were within control limits. Although not required, Sodium was spiked into the ICSAB solution at 2000µg/L. The recovery was within the control limits. Refer to form 4.
- 10. All laboratory control samples (LCS) were within the 80-120% control limits. Refer to form 7.
- 11. All serial dilution percent differences were within CLP control limits. Refer to form 9.
- 12. The matrix spike (MS) recovery for 1 analyte was outside the 75-125% control limits (exception allowed when sample concentration exceeds the spike added concentration by a factor of 4 or more). Refer to form 5A. For analytes where the MS is out of control, a post-digestion MS is performed (exception allowed for Silver). MS analyses are not required for Calcium, Magnesium, Sodium and Potassium in waters and soils. Also, not required for Aluminum and Iron in soils.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 300 pages.

- 13. The duplicate analysis for 1 analyte was outside the method criteria. Refer to form 6.
- 14. The TCLP extract from sample SH800-02208-B70621 was selected for the matrix spike for this analytical batch. The matrix spike recoveries for all analytes in the TCLP extract were above 50% as per method criteria.
- 15. All sample IDs were changed to accommodate the EPA naming convention which allows a maximum of 6 characters on all CLP Forms. Refer to the comments section of form 1 for the original ID.
- 16. Recoveries on the Laboratory Summary Report and CLP forms will vary depending on the number of significant figures used in the recovery calculation.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

gmbmld/m02-425

<u>3-8.00</u>

METALS METHOD GLOSSARY

Pagra Latte	ods are used as referen	ce for the digestion a	and analysis of	f samples con	tained within this								
-	e: _1310 <u>/</u> 1311 _13		/										
CLP Metals _ Dig	estion andAnalysis M	lethods: _ILM03.0	0 <u></u> ILM04.0	CTotal .	Sangles)								
	lethods:3005A30 Other:												
	M	etals Analysis Met	thods	EPA									
	SW846	EPA	STD MTD	OSWR	USATHAMA								
Aluminum	6010B	200.7	SIDMID	OSWIK	99								
Antimony	6010B 7041 5	200.7 204.2			99								
Arsenic	6010B 7060A 5	<u></u>	3113B										
Barium	6010B/000A	<u></u>	3115B										
Beryllium	6010B	200.7			<u></u>								
Bismuth	6010B ¹	200.7 1		1620	99								
Boron	6010B	200.7		1020	99								
Cadmium	-6010B 7131A ⁵	200.7 213.2	•		99								
Calcium	6010B	200.7			99								
Chromium	6010B 7191 5	200.7 218.2											
Cobalt	6010B	200.7			99								
Copper	6010B7211 ⁵	200.7 220.2			99								
Iron	6010B	200.7			99								
Lead	6010B 7421.5	200.7 239.2	3113B		99								
Lithium	6010B 7430 ⁴	200.7		1620	99								
Magnesium		200.7			99								
Manganese	6Ø10B	200.7			99								
Mercury	$\sqrt{7470A^3}$ 7471A ³				99								
Molybdenum	6010B	200.7			99								
Nickel	6010B	200.7			99								
Potassium	6010B7610 ⁴	200.7 258.1 4	r		99								
Rare Earths	6010B 1	200.71		1620	99								
Selenium	Z 6010B7740 ⁵	200.7 270.2	3113B		99								
Silicon	6010B ¹	200.7		1620	— 99								
Silica	-6010B	200.7		1620	— 99								
Silver	Z6010B 7761 ⁵	200.7 272.2			<u> </u>								
Sodium	6010B 7770 ⁴	200.7 273.1 4			 99								
Strontium	6010B	200.7			<u> </u>								
Thallium	6010B 7841 ⁵	200.7 279.2 2	200.9		— ₉₉								
Tin	6010B	200.7			— ₉₉								
Titanium	6010B	200.7											
Uranium	6010B ¹	200.7 1		_1620	<u> </u>								
Vanadium	6010B	200.7			99								
Zinc	6010B	200.7			99								
Zirconium	6010B ¹	200.7 1		1620	99								
Other:	<u>Met</u> h	od:											
L-WI-033/M-11/99	•				017								

METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- B = Indicates that the parameter was between the Instrument Detection Limit (IDL) and the Contract Required Detection Limit (CRDL)

Q QUALIFIERS

- E = The reported value is estimated because of the presence of interference.
- M = Duplicate injection precision not met.
- N = Spiked sample recovery not within control limits.
- S = The reported value was determined by the Method of Standard Additions (MSA).
- W = Post Digestion spike for Furnace AA analysis is out of control limits (85 -115 %), while sample absorbance is less than 50% of spike absorbance.
- * = Duplicate analysis not within control limits.
- += Correlation coefficient for the MSA is less than 0.995.

ABBREVIATIONS

- PB = Method or Preparation Blank.
- S = Matrix Spike.
- T = Matrix Spike Duplicate.
- R or D = Sample Replicate

ANALYTICAL METAL METHODS

- 1. Not included in the method element list.
- 2. Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, 0.1 grams of sample is taken to a final volume of 50 mL (including all reagents).
- 3. Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, three 0.1 gram of sample is taken to a final volume of 50 mL (including all reagents).
- 4. Flame AA.
- Graphite Furnace AA.
 RFW 21-21L-033/O-01/97

Inorganic Analysis Data Package

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: RECR	A_LABNET		Contract: 0	1667	B/0616	
Lab Code: RECR					SDG No.:	02208_
Matrix (soil/w	ater): SOIL	_		Lab Samp	le ID: 0002	L425-001
Level (low/med): LOW_			Date Rece	eived: 02/1	1/00
% Solids:	_81.	4				
Co	ncentration	Units (ug,	/L or mg/kg dry	y weight):	: MG/KG	
	1	T			 - 	
	CAS No.	Analyte	Concentration	C Q	M	
	7429-90-5	Aluminum	8100		P	
•	7440-36-0	Antimony	0.43	UN	P	
	7440-38-2	Arsenic	4.7		p	
	7440-39-3	Barium	47.0	B	P	
	7440-41-7	Beryllium	0.46	В	P	
	7440-43-9		0.07		P	
	7440-70-2		1280		P ⁻	
	7440-47-3		11.5		P	
	7440-48-4	·	7.6	B	P	
	7440-50-8	Copper	13.7		P	
	7439-89-6	Iron	18100		P	
	7439-92-1	Lead	9.6	*	P_ P_	
	7439-95-4			-	P	
	7439-96-5			-	P	
•	7439-97-6	Mercury	0.02	<u></u> 	Įą⊽į	
	7440-02-0		20.0		P	
	7440-09-7			B	P-	
	7782-49-2	Selenium	1.5		P-	
•	7440-22-4	Silver	0.21	<u></u> 	P_ P_	•
	7440-23-5	Sodium	97.7		P	
	7440-28-0	Thallium	0.88		l P i	
	7440-62-2	Vanadium	13.9		P-	
	7440-66-6	Zinc	47.5	- -	P_	
	7440 00 0			-		
					<u> </u>	
Color Before:	· 	Clarit	ty Before:	·	Texture:	
Color After:		Clarit	ty After:		Artifacts:	
Comments:						
		F(ORM I - IN	<u> </u>		ILMO4.0
		I V	~**** T14			

1 INORGANIC ANALYSES DATA SHEET

	LPA	SAMPLE	NO.
!		370618	

Lab Name: RECR	A TARNET		Contract: 0	1667	B70618
Lab Name. RECK	A_DADNET		Contract. U.		
Lab Code: RECR	A_ Cas	se No.: SH	BOO_ SAS No.	:	SDG No.: 02208_
Matrix (soil/w	ater): SOIL			Lab Sampl	le ID: 0002L425-003
Level (low/med): LOW_			Date Rece	eived: 02/11/00
% Solids:	_83.9	9			
Co	ncentration	Units (ug,	L or mg/kg dry	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q	м
	7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium	6140 0.42 7.2 43.9 0.28 0.07 1870 11.5 4.6 17.2 15900 12.1 2130 85.4 0.09 14.5 473 1.0 0.21 52.3 0.87 14.3 62.9	B	P
Color Before:		Clarit	y Before:		Texture:
Color After:		Clarit	y After:		Artifacts:
Comments:					

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.
-----	--------	-----

		INORGANIC A	ANALISES DATA	2111	CCT		
ab Name: RECRA_I	ABNET		Contract: 0	166	5 7	В	70619
ab Code: RECRA_						SDG	No.: 02208
- atrix (soil/wate							- 0002L425-00
evel (low/med):	LOW			Da	ate Rec	eived:	02/11/00
Solids:	_66.	5					
Conce	entration	Units (ug,	/L or mg/kg dry	7 V	weight)	: MG/K	G
CZ	AS No.	Analyte	Concentration	С	Q	M	
I	29-90-5		3400	_		P_	
	40-36-0	Antimony_	0.52	ਹ	N	P_	
	140-38-2	Arsenic	8.8	_		P_	
	140-39-3	Barium	59.7	=		P_	
	140-41-7			В	·	P_ P_	
	140-43-9		0.65	В		P-	
•	140-70-2	Calcium_	19.9	-		P	
3	140-47-3	Chromium_ Cobalt		B		P_	
li i	140-48-4 140-50-8	Copper	113			- -	
•	139-89-6	Iron	3400	-		P_ P	
I	139-89-0 139-92-1	Lead	21.8	-	*	P-	
· · · · · · · · · · · · · · · · · · ·	139-95-4	Magnesium		ㅠ		P-	
	39-96-5	Manganese				P-	
	39-97-6	Mercury	0.03	Ū		ĀŪ	, .
	40-02-0	Nickel	23.2	٦		P	
·	40-09-7	Potassium		B		P	
	782-49-2	Selenium	2.0			P_	
	140-22-4	Silver	0.26	ប៊		P	
	40-23-5	Sodium	83.6	В		P	
74	40-28-0	Thallium	1.1	U		P_ P_	•
74	140-62-2	Vanadium	32.0			P	
74	140-66-6	Zinc	62.4		-	P_	
· _			,				
l <u> </u>		l					•
olor Before: _	·	Clari	ty Before:		_	Textu	re:
olor After:		Clari	ty After:		_	Artifa	acts:
omments:							

FORM I - IN

3 BLANKS

Lab	Name:	RECRA_LABNET_		Contract:	01667
Lab	Code:	RECRA	Case No.: SH800	SAS No.:	SDG No.: 02208

Preparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	T			 					
Analyte	Initial Calib. Blank (ug/L)	С	Cont:	uing Calib lank (ug/L 2		tion 3	С	Prepa- ration Blank C	М
Aluminum_ Antimony_ Arsenic_ Barium Beryllium Cadmium Calcium Chromium Cobalt_ Copper_ Iron_ Lead Magnesium Manganese Mercury_ Nickel Potassium Selenium Silver_ Sodium Thallium_ Vanadium_ Zinc_	1.8 2.9 0.2 0.1		17.1 1.8 2.9 0.2 0.1 0.3 13.2 0.6 0.8 0.8 14.6 2.3 6.5 0.2 0.1 1.4 19.7 4.4 0.9 2.4 3.7 0.6 0.8	17.1 1.8 2.9 0.2 0.1 0.3 13.2 0.6 0.8 0.8 14.6 2.3 6.5 0.1 0.1 1.4 19.7 4.4 0.9 2.4 3.7 0.6 0.8	- ממממממממממממממממם	17.1	מממממממממממממממממממממ	3.420 U 0.360 U 0.580 U 0.061 B 0.020 U 0.060 U 2.998 B 0.120 U 0.160 U 2.920 U 0.160 U 1.300 U 0.020 U 0.050 U 0.280 U 0.280 U 0.880 U 0.180 U 1.089 B 0.740 U 0.120 U 0.293 B	P

FORM III - IN

3 BLANKS

Lab	Name:	RECRA_LA	ABNET	Contract:	01667					
Lab	Code:	RECRA_	Case No.: SH800_	SAS No.:	****	SDG No.:	02208_			
Prep	Preparation Blank Matrix (soil/water):									
Prep	paratio	on Blank	Concentration Units (ug/	L or mg/kg):					

Analyte	Initial Calib. Blank (ug/L)		inui Bla C	ng Calib nk (ug/L) 2	rat) C	3	С	Prepa- ration Blank	С	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc		-32.3 1.8 2.9 0.2 -0.1 0.3 13.2 0.6 0.8 -1.0 14.6 2.3 6.5 0.2 0.1 1.4 19.7 4.4 0.9 -4.4 3.7 0.6 0.8	BBUUBUUUBUUUBUUUBUUU	0.1_						P P P P P P P P P P P P P P P P P P P

FORM III - IN

5A SPIKE SAMPLE RECOVERY

EPA	SAMPLE	NO.
-----	--------	-----

_	_					B70618S
Lab	Name:	RECRA_	LABNET	Contract:	01667	

Lab Code: RECRA_ Case No.: SH800_ SAS No.: ____ SDG No.: 02208_

Matrix (soil/water): SOIL__ Level (low/med): LOW__

% Solids for Sample: _83.9

Concentration Units (ug/L or mg/kg dry weight): MG/KG

1	T		T				1	·
Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium	75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125	78.8287 441.7315 477.0516 11.1381 10.6775	0.4248 7.1939 43.8846 0.2766 0.0708	B	116.85 467.41 467.41 11.69	67.5 93.0 92.7 92.9 91.3		NR P P P P P P P P P P P P P P P P P P P
Calcium_ Chromium_ Cobalt_ Copper Iron_	75-125_ 75-125_ 75-125_	57.2591 114.7155 73.3427	11.4521 4.6371 17.1937	- В -	46.74 116.85 58.43	98.0 94.2 96.1		NR P P P NR
Lead Magnesium Manganese Mercury Nickel Potassium	75-125_ 75-125_ 75-125_ 75-125_	204.7021 0.2885 0.3135 125.0193	12.1307 85.3869 0.0906 14.4630	11111	116.85 116.85 0,24 0.26 116.85	94.0 102.1 2.4 85.7 94.6		P NR P AV P NR
Selenium_ Silver Sodium_ Thallium_ Vanadium_	75-125_ 75-125_ 75-125_ 75-125_	416.5120 10.8056 427.4711 126.8878	1.0385 0.2124 0.8733 14.2697	ប	467.41 11.69 467.41 116.85	89.1 92.4 91.5 96.4		P P R P P P
Zinc	75-125_	165.5708	62.9075	_ _	116.85	87.9 	 	P_

Comments:	Corrections to Hercury MD 3/8/00	
		_

FORM V (Part 1) - IN

POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

RECRA_LAB	NET	_	Contract: 016	67	7	B70618A		
						No.: 0	22	08
11/water)	: 2011		•		reset (10%	// med).		۳.
	Concent	rat	ion Units: ug	J /I	L L			
Control	Spiked Sample		Sample					
%R	Result (SSR)	C	Result (SR)	С	Added (SA)	%R	Q	
-		T		_			=	· ·
.	99.62	- -	1.80_	U	100.0	99.6	-	
		-		-			-	
							_	
		. _		_			_	
		. _		_			_	
. <u></u>		. _		_			_	
.		- -		_			-	
.		·[-]		_			-	
.		. -		-			-	1
.		- -		-			-	1
		-		-			-	
		· -		_			_	1
-		-		_			-	1
		- -		_				
		-		_				
		-						
		-						
				_			_	
				_			_	
		. _		_	<u> </u>		_	.
		. _		_			_	.
.1		.1_		_			I _	.
				_				_
	Control Limit %R	Concent Control Limit %R Result (SSR) 99.62	Concentrate Control Limit Spiked Sample Result (SSR) C 99.62	Control Limit Result (SSR) C Result (SR) 99.62 1.80 99.62 1.80	Control Limit %R Result (SSR) C Result (SR)	Control Limit Spiked Sample Result (SSR) C Result (SR) C Added (SA) 99.62	Control Limit	Control Spiked Sample Result (SR) C Added (SA) %R Q

FORM V (Part 2) - IN

6 DUPLICATES

EPA SAMPLE NO.

Lab Name: RECRA_LABNET______ Contract: 01667_____

Lab Code: RECRA_ Case No.: SH800_ SAS No.: ____ SDG No.: 02208_

Matrix (soil/water): SOIL_ Level (low/med): _LOW__

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron	Control Limit	Sample (S)	C B B U - B -	Duplicate (D) 0	RPD 1.5 1.0 4.7 0.8 3.6 0.7 1.8 4.5 1.6	Q	M
Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc		2128.1913 85.3869 0.0906 14.4630 472.8600 1.0385 0.2124 52.3433 0.8733 14.2697 62.9075		2080.8879 84.3966 0.0917 13.9224 608.6642 1.0819 0.1882 0.7737 14.8527 61.3213	2.2 1.2 1.2 3.8 25.1 200.0 0.1 4.0 2.6		P

ICP SERIAL DILUTION

EPA SAMPLE NO.

Lab Name: RECRA_LABNET_____ Contract: 01667____

Lab Code: RECRA Case No.: SH800 SAS No.: ____ SDG No.: 02208_

Matrix (soil/water): SOIL_

Level (low/med): LOW

Concentration Units: ug/L

					1-1	1 1	l
	Initial Sample		Dilution		Differ-		
Analyte	Result (I)	C	Result (S)	C	ence	Q	M
Aluminum	26020.24	-	26477.60		1.8_	-	P
Antimony	1.80	$\overline{\mathbf{U}}$	9.00	ט		-	P_
Arsenic	30.48	- 1	43.18	В	41.7	1-	P_
Barium	185.94	B	188.90	B	1.6	1-1	P_
Beryllium	1.17	В	1.22	B	4.3	-	P_
Cadmium	0.30	U	1.50	U		-	P
Calcium	7920.39		7937.10	B	0.2	-	P_
Chromium	48.52	-	49.34	В	1.7	-	P_
Cobalt -	19.65	B	22.16	B	12.8		P_
Copper	72.85		70.33	B	3.5		P_
Iron	67395.54		68033.25	_	0.9		P
Lead	51.40		54.34		5.7		P_
Magnesium	9017.04		9184.10	B	1.9		P_
Manganese	361.78		367.85	_	1.7	1_1	P_
Mercury						-	ΝR
Nickel	61.28_		59.76	B	2.5	1_1	P_
Potassium	2003.48	B	1940.24	В	3.2	1_1	P_
Selenium_	4.40	U	22.00	U		1_1	P_
Silver _	0.90	U	4.50_	U		_	P_
Sodium	221.78	В	227.04	B	2.4		P_
Thallium	3.70	U	18.50	U			P_
Vanadium	60.46		62.25	B	3.0_	1_1	P_
Zinc	266.54		289.59	1_1	8.6		P_

Chemical and Environmental Measurement Information

19 January 2000

Mr. Jack Ryan NYSDEC Room 392 50 Wolf Road Albany, NY 12233-3502

Ref: Contract C003783

Sample Data Package: RFW Batch 9912L973 NYSDEC ID: SH899-12206-870601, 870602

Dear Mr. Ryan:

Enclosed please find the data report for 2 soil/solid samples received 8 December 1999. These were analyzed for CLP VOA, BNA, pesticides/PCBs, metals/CN and full TCLP. The EDD is being emailed to you and a disk will be sent to the sampler.

We had received an extension for this report.

Please do not hesitate to contact me at (610) 280-3000 with any questions you may have.

Very truly yours,

Recra Environmental, Inc.

Judith L. Stone

Senior Project Manager

Enclosure

cc: Frank Sowers (NYSDEC)

RECRA LabNet Use Only 99/22973

Custody Transfer Record/Lab Work Request Page Lot L FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

RECRA Labnet

									ŀ	ł	ł			ļ]			
Cilent 1/4	red	7					Refrigerator #	rator #			3 0					3	~	3			
Est. Final Prol.	Samo	Sampling Date				٠	#.T.	, outstand	Liquid												
Project # 0/6	190	1667-600-001-9999-		00			#/ Aha	#/ Type Coltraditer	Solid	51 Ja	1	/			,	1/6		1-1			
Project Contact/Phone #	:VPhor	# 91					Noting.		Liquid	•											
RECRA Project Manager	t Mans	1. S.		D	cm^2				Solid	E 371	70SE	7			<u>''</u>	- 52,	7	Ţ	i,		
0c (Lo		Del Ch	TAT	7 334		. Are l	Preservatives	/atives													
1	;	0.00		7 70 7	8	Tale Tale			1		ORGANIC	ည				INORG					_
Date Rec'd	N N	ا	Date Due	12/	15/	199	ANALYSES REQUESTED	SES STED	A	AOV	ANB	Pest/	theth		!	Metal	CN				
MATRIX						Matrix								REC	RA Lat	Net Us	RECRA LabNet Use Only		→		ر ر
CODES: S - Soll SE - Sediment	Lab 10	CIĐ	Client ID/Description	lption		Chosen Sen	Matrix	Date Time Collected Collected		7%7	257	0809	72			2175/	241	הכת פדת		180 180 198 198	107.65
						MS MSD					20	20	20		Ų			11		19 19	/ (2)
Water	001	54899-12206	1	-BTUL- 01			5	12649 1	1000	,	. '					/	^	<i>/</i> / /			
Air Drum	007	7	7	1 02	7		N	7	tan	1	, /						^ ^	/ /			
Solids .	003			10	40	make	سا المح	*	١			·	/								
Liquids EP/TCLP	cost			2.0			7		_				>			<u>.</u>					
Leachate Wine	CECE			10	tel	Dallow	1										<u> </u>			>	
Other	CXX	-	{	02		Ы	T 7		9											>	_
	COOJ	Nysclec-	Pridge	blank			3	1210 कि	1619	7		_									
		-	,																		
									î.				·	-		• .	:				
Special Instructions:	Suc:					DATE	DATE/REVISIONS:	ist C	2	6	20	101	מיבם	{	, +	-	RE	RECRA LabNet Use Only	Net Use	Only	
								1. 100 1 CC 31 00 1 00 1 00 1 00 1 00 1 00	12 A	7 (7	771	100	2	2	2	Samples were:		000	COC Tape was:	as:
						ļ		2 पपा	27 20	7							bedd	7 0	1 P	1) Present on Outer	Outer
							1603	3> 11900		acle	9	7 1	made on 12/10/99-but	9-b	ut		Hand Delivered	1	rag S G	rackage Y 2) Unbroken	Package Y of N 2) Unbroken on Outer
								(ACAMOLIA	_	4	218	99	as 17,18,199 to 0000 medat	Wido	what	Alifolii #	2) Ambient or Chilled	hilled	Pack	Package Y	z .
								5011	1		4		3			3) Rec	3) Received in Good	Good		eent on	X or N
					•			1 1								4) Lab	Condition Y or 4) Labels Indicate	o sate	Sam	A) Unbroken on Sample) Yor N	z
Relinquished by		Received by	Date	Time	Reline	Relinquished by		Received by	Date		Time		Discrepancies Between Samples Labels and	s Betwe	a	rroper 5)			COC	COC Record Present Upon Sample Rec't	Present Rec't
Keloch		anson	iz/lo/49	•			S.	ORIGINAL				O Z	COC Record? Y	7 Y or	z	Jan (c Holding	Holding Times		Cooler	≻	Z Ö
0		,					REW	REWRITTEN	-30	-	,	: —	į				-	z	Тетр.		ွ ၂

CASE NARRATIVE

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW#: 9912L973 ELAP#: 10752 W.O.#: 01667-600-001-9999-00

Date Received: 12-08-99

PESTICIDE/PCB

The set of samples consisted of two (2) soil samples collected on 12-06-99.

The samples and their associated QC samples were extracted on 12-17-99 and analyzed on 01-06-00 according to criteria set forth in NYSDEC 1995 ASP for Pesticide and PCB target compounds.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. Linearity and breakdown criteria were met for each of the analytical columns.
- 2. Retention time criteria were met for all compounds on both analytical columns.
- 3. Resolution of all pesticides in the Resolution Check Standard were within EPA QC limits.
- 4. The RPDs of the pesticides in the Individual Mixes analyzed for calibration verification were within 25% for both analytical columns.
- 5. The RPDs of the pesticides in the Performance Evaluation Mixes analyzed for calibration verification were within 25% for both analytical columns.
- 6. All surrogate recoveries were within the advisory EPA QC limits.
- 7. All blank spike recoveries were within EPA QC limits.
- 8. Recoveries of pesticides for the Florisil Cartridge Check were within EPA QC limits.
- 9. Recoveries of pesticides for the GPC Calibration Check were within EPA QC limits.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

D WMA

pefir:\group\data\pest\12L-973..pes

Date

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 263 pages.

Recra LabNet Philadelphia

GLOSSARY OF PESTICIDE/PCB DATA

DATA QUALIFIERS

- U = Indicates that the compound was analyzed for but not detected. The minimum detection limit for the sample (not the method detection limit) is reported with the U (e.g., 10U).
- J = Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level. If the limit of quantification is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- I = Interference.

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.
- **BSD** = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- **DL** = Indicates that recoveries were not obtained because the extract had to be diluted for analysis.
- NA = Not Applicable.
- **DF** = Dilution Factor.
- NR = Not Required.
- SP = Indicates Spiked Compound.

Recra LabNet Philadelphia

GLOSSARY OF PESTICIDE/PCB DATA

- P = This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns (see Form X). The lower of the two values is reported on Form I and flagged with a "P".
- **D** = This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C = This flag applies to a compound that has been confirmed by GC/MS.

RFW #21-21-035/A-03/97

99121972 **RECRA LabNet Use Only**

Custody Transfer Record/Lab Work Request Page of Lab FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

RECRA LabNet

0	Reloca	Relinquished by					•	Special instructions:							Leachate			- - - - -	W - Water	SO - Solid	MATRIX CODES: 8 - Soil	Account #	Account #		oc Clo	RECRA Project Manager	Project Contact/Phone #	Project # 0/0	Cot Final Droi	J	11122113
		_						ons:					5007	COC	CRS	Cost	003	cost	001		5 6			2		t Mana	:VPhon	667-	Samo	Justice	
l .	anson	Received by										•	Nysdec-Pridge	-				7	30521-68HS		Clien			99	Del Co	サイン	· · · · · · · · · · · · · · · · · · ·	Project # 0/667-600-001-9999-	ling Data		
	12/10/99	Date										(1	م			_	l. 1	1		Client ID/Description			Date Due	TAT			999-00			
	,	Time											blank	02	01	02	01	02	-B701 - 01		tion		/2	444	1 80 PM	da		0			
		Relinquished by							DATE					۲	telpalar		+ dundfor	2		MS MSD	Chosen	Matrix	115/99	4 Dieter	740	mx.					
REV	98					25-E COL			DATE/REVISIONS:				٤	21		2	7	8	5		Matrix		REQUE	ANALYSES	Preservatives		Volume	#/Type		Refrigerator #	
REWRITTEN	ORIGINAL	Received by	1	5 Ums	· Localet	3 was	2 gapk	, Kelec	ı			:	12/10/99	1			*		12/6/49		Date Time Collected Collected		STED	SES	/atives		•	#/Type Container.		rator#	
					rect	.	2 14 2	1 to					1619	6		-	١	1007	000		Time Collected		١	▼		Solid	Llquid	Solid	Llquid		
		Date			as	macle	292	MON.					<						-		24c		vo			25	1	10		//	
		Time			12/8			1 00				_		-	-	-		1			250		BN	—15		350		191	•	3 3	
	Z C	<u> </u>]]		8/99	me li		124)	-		-	+	+-	-	-	-				608 C	4-	Pes PC He		-	-	-	1			
	NOTES:	Discrepancies Between Samples Labels and			to a	12/10/99- put		121457			-	\vdash	+	-	-	<	-		-	00	24T					\dagger	\dagger				ŀ
		icies Bet Labels a			ecer	99.		00.	}	<u> </u>	-		\dagger	\dagger			Γ	}				RE	-								
	2	•			nava	but		-001406	- - -													RECRA LabNet Use Only									
	HO	5) F	Proj	င္ပရ	2) A (C	Airbill #				_		<u> </u>	_	-	_	-	-	<u> </u>	<u> <</u>	Ι	45670	bNet L	Ме			25	1	16/	_	u	
	Holding Time	5) Receive	4) Labels Indicate Properly Preserve	dition \	imblent o	*	1) Shipped —— Hand Delivered	Samples were:		_		-	_	+		+-	-	<	<u> </u>	}_	NTO	se On	C	N c	1	\prod	-	H		3	
	Y ja or N	or N	Indicate Sreserved	Condition Y or N	1) ACCEPTICE 2) Amblent or Chilled		redor	ТӨ :	RECRA La	_	-	-	+	-		-	-	<	\\\ \\	_	CLP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-			1	+	甘	_	3	
	Cooler Temp°C	Upon Sample Rec't	Sample Y or N	a) linhoken on	3) Present on Sample	 Unbroken on Outer Package Y or N 	 Present on Outer Package Y or N 	COC Tape was:	RECRA LabNet Use Only					<	}_						025T 14:098T 1BE1T RATO						:			01	5

3F SOIL ORGANICS BLANK SPIKE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Client : NYSDEC

NYSDEC

RFW Lot No.: 99LE1531-MB1

BLANK Spike - Sample No.: PBLKCU_

COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	BS CONCENTRATION UG/KG	BS % REC #	QC LIMITS REC.
gamma-BHC (Lindane)	16.7	0	15	90	46-127
Heptachlor	16.7	0	15	90	35-130
Aldrin	16.7	0	16	98	34-132
Dieldrin	_ 33.3	0	30	91	31-134
Endrin	33.3	0	33	99	42-139
4,4'-DDT	33.3	0	31	94	23-134

Column to be used to flag recovery value with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 6 outside limits

COMMENTS:				
COMMENTS:		 	 	

00-11-10 في

SH899-12206-B706-01

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>9912L973-001</u>

Sample wt/vol: 30.0 (g/mL) G Lab File ID: 01050012.21

% Moisture: $\underline{13}$ decanted: (Y/N) N Date Received: $\underline{12/08/99}$

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/17/99

Concentrated Extract Volume: ____2000(uL) Date Analyzed: 01/06/00

Injection Volume: 0.5(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 8.4 Sulfur Cleanup: (Y/N) N

CONCENTRATION AS NO. COMPOUND UNITS: $\underline{UG/KG}$

CAS NO.	COMPOUND	UNITS: <u>UG/KG</u>	Q
310 04 6	alaha nyo		
319-84-6	Alpha-BHC	1.9	Ü
319-85-7	Beta-BHC		U
	Delta-BHC	1.9	U
58-89-9	gamma-BHC (Lindane)	1.9	Ū
76-44-8	Heptachlor		ַט
	Aldrin	1.9	U
1024-57-3 -	Heptachlor epoxide	1.9	טן
959-98-8	Endosulfan I	1.9	Ū
50-57-1	Dieldrin	3.8	Įΰ
72-55 - 9- -	4,4'-DDE	3.8	U
72-20-8	Endrin	3.8	U
33213-65-9	Endosulfan II	3.8	U
72-54-8 -	4,4'-DDD	3.8	ט
1031-07-8	Endosulfan sulfate	3.8	U
50-29-3	4,4'-DDT		U
72-43-5	Methoxychlor	19	U
53494-70-5	Endrin ketone	3.8	Ū
7421-93-4	Endrin aldehyde	3.8	U
5103-71-9	alpha-Chlordane	1.9	U
5103-74-2	gamma-Chlordane	1.9	ับ
	Toxaphene		ָ ע
12674-11-2	Aroclor-1016	38	U
	Aroclor-1221		Ū
	Aroclor-1232		ับ
	Aroclor-1242		U
	Aroclor-1248		U
	Aroclor-1254		ט ו
	Aroclor-1260	 ;	ָ ט ו
			i i
	FORM 1 ORG	V4.3	, —— , j

SH899-12206-B706-02

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L973-002

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

01050012.22

% Moisture: 22

decanted: (Y/N) N

Date Received: <u>12/08/99</u>

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/17/99

Concentrated Extract Volume: 2000(uL) Date Analyzed: 01/06/00

Injection Volume: 0.5(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 8.3

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: <u>UG/KG</u>	Q
	Alpha-BHC		ט
	Beta-BHC		Ω
	Delta-BHC	2.1	U
58-89-9	gamma-BHC (Lindane)		U
76-44-8	Heptachlor	2.1	ן ט
309-00-2	Aldrin	2.6	P
1024-57-3	Heptachlor epoxide	2.1	U
959-98-8	Endosulfan I	2.1	ן ט
60-57-1	Dieldrin	4.3	ן ט
72-55-9	4,4'-DDE	4.3	U
72-20-8	Endrin	4.3	U
33213-65-9-	Endosulfan II	4.3	U
72-54-8	4,4'-DDD	4.3	U
1031-07-8	Endosulfan sulfate	4.3	U
	4,4'-DDT		ט
72-43-5	Methoxychlor		U
53494-70-5-	Endrin ketone	4.3	U
7421-93-4	Endrin aldehyde	4.3	ט
5103-71-9	alpha-Chlordane	2.1	U
5103-74-2	gamma-Chlordane	2.1	U
	Toxaphene	1 010	Įυ į
12674-11-2-	Aroclor-1016		U
11104-28-2-	Aroclor-1221	86	U
11141-16-5-	Aroclor-1232	43	U
	Aroclor-1242		U
12672-29-6-	Aroclor-1248	43	U
11097-69-1-	Aroclor-1254	43	U
	Aroclor-1260	43	וֹט וֹ

FORM 1 ORG

V4.3

PBLKCU

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 99LE1531-MB1

Sample wt/vol:

<u>30.0</u> (g/mL) <u>G</u>

Lab File ID: 01050011.18

% Moisture: 0 decanted: (Y/N) N

Date Received: <u>12/17/99</u>

Extraction: (SepF/Cont/Sonc) SONC

Date Extracted: 12/17/99

Injection Volume: 0.5(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 7.0

Sulfur Cleanup: (Y/N) N

CONCENTRATION

CAS NO.	COMPOUND	UNITS: <u>UG/K</u>	<u>G</u> Q
		1	
319-84-6	Alpha-BHC	1.7	ן ט
319-85-7	Beta-BHC		Ū
	Delta-BHC	1.7	ן ט
58-89-9	gamma-BHC (Lindane)	1.7	ט
76-44-8	Heptachlor	1.7	ן טן
	Aldrin	1.7	U
1024-57-3	Heptachlor epoxide	1.7	ן ט
959-98-8	Endosulfan I	1.7	ן ט
60-57-1	Dieldrin	3.3	ן טן
72-55-9	4,4'-DDE	3.3	ן טן
72-20-8	Endrin	1 3 3	ן ט
33213-65-9	Endosulfan II	3.3	ן ט
72-54-8	4,4'-DDD	3.3	ן טן
1031-07-8	Endosulfan sulfate	3.3	ן ט
50-29-3	4,4'-DDT	f 3.3	ן טן
72-43-5	Methoxychlor	17	ju j
53494-70-5	Endrin ketone	3.3	ָן טן
7421-93-4	Endrin aldehyde	3.3	io i
5103-71-9	alpha-Chlordane	1.7	lu i
5103-74-2	gamma-Chlordane	1.7	ו ט
8001-35-2	Toxaphene	170	ו טו
12674-11-2	Aroclor-1016	33	U
11104-28-2	Aroclor-1221	67	י די די די די די די די די די די די די די
11141-16-5	Aroclor-1232	33	ו טו
53469-21-9	Aroclor-1242	33	וֹטוֹ
12672-29-6	Aroclor-1248	1 33	ן מן
11097-69-1	Aroclor-1254		ו טו
	Aroclor-1260		ו טו

FORM 1 ORG

V4.3 90 17-60

PBLKCUBS

Lab Name: Recra.LabNet Work Order: 01667-600-001-9999-00

Client: NYSDEC

Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>99LE1531-MB1 BS</u>

Sample wt/vol: 30.0 (g/mL) G Lab File ID: 01050011.19

% Moisture: $\underline{0}$ decanted: (Y/N) \underline{N} Date Received: $\underline{12/17/99}$

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 12/17/99

Concentrated Extract Volume: 2000 (uL) Date Analyzed: 01/06/00

Injection Volume: 0.5(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: $\underline{7.0}$ Sulfur Cleanup: (Y/N) N

CONCENTRATION
UNITS: UG/KG O

319-84-6	1.7 1.7 15 15 16 1.7 1.7 30 3.3	0 U U U U U U U U U
319-85-7Beta-BHC 319-86-8Delta-BHC 58-89-9	1.7 1.7 15 15 16 1.7 1.7 30 3.3	U U U U U U U U U U
319-86-8Delta-BHC 58-89-9gamma-BHC (Lindane)_ 76-44-8Heptachlor 309-00-2Heptachlor epoxide_ 959-98-8	1.7 15 15 16 1.7 1.7 30 3.3	U U U U U U U U U U
58-89-9gamma-BHC (Lindane)_ 76-44-8Heptachlor_ 309-00-2	15 15 16 1.7 1.7 30 3.3 33	 U U
76-44-8	15 16 1.7 1.7 30 3.3 33	U
309-00-2Aldrin 1024-57-3Heptachlor epoxide 959-98-8Endosulfan I 60-57-1	16 1.7 1.7 30 3.3 33	U
1024-57-3Heptachlor epoxide	1.7 1.7 30 3.3 33	U
959-98-8Endosulfan I 60-57-1Dieldrin 72-55-94,4'-DDE	1.7 30 3.3 33	U
60-57-1Dieldrin	30 3.3 33	
72-55-94,4'-DDE	3.3 33	ט !
	33	10 1
//+/U=XEDDOT10		1 1 .
33213-65-9Endosulfan II	3.3	ט ו
72-54-84,4'-DDD	3.3	ָט טו
1031-07-8Endosulfan sulfate	3.3	ן ט
50-29-34,4'-DDT		
72-43-5Methoxychlor		ט ו
53494-70-5Endrin ketone		. ל של
7421-93-4Endrin aldehyde		ט ו
5103-71-9alpha-Chlordane	1.7	ן טן
5103-74-2gamma-Chlordane	1.7	וֹט וֹ
8001-35-2Toxaphene	170	ן מן
12674-11-2Aroclor-1016	33	וט ו
11104-28-2Aroclor-1221		ן טן
11141-16-5Aroclor-1232	33	ן ען
53469-21-9Aroclor-1242	33	וטו
12672-29-6Aroclor-1248	33	ן טו
11097-69-1Aroclor-1254	33	ָ ט
11096-82-5Aroclor-1260		lu l

FORM 1 ORG

V4.3 / 01-17-00

Case Narrative

Chemical and Environmental Measurement Information Philadelphia **Analytical Report**

Client: NYSDEC

W.O.#: 01667-600-001-9999-00

ELAP #: 10752

RFW#: 9912L973 (Relogged) Date Received: 12-08-99

GC/MS VOLATILE

One (1) water and two (2) soil samples were collected on 12-06,08-99.

The samples and their associated QC samples were analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCL Volatile target compounds on 12-12,13-99.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analyses:

- 1. These samples were relogged from RFW lot 9912L959.
- 2. The required holding time for analysis was met.
- 3. Non-target compounds were detected in the samples.
- 4. Samples SH899-12206-B706-01 and SH899-12206-B706-02 required medium level analyses due. to high levels of both target and non-target compounds.
- 5. Four (4) of eighteen (18) surrogate recoveries were outside EPA QC limits. The analysis of the method blank fulfills the reanalysis requirement of sample 99LVN492-MB1 BS. The surrogate recovery criteria were not met for samples SH899-12206-B706-01 and SH899-12206-B706-02 due to the TIC interferences; however, samples were not reanalyzed because no significant target compounds were detected in the samples. A copy of the Sample Discrepancy Report (SDR) has been enclosed.
- 6. Matrix spike analyses are associated with RFW lot 9912L959.
- 7. All blank spike recoveries were within EPA QC limits.
- 8. The method blanks contained the common laboratory contaminants Methylene Chloride and Acetone at levels less than 2x the CRQL. The method blank 99LVN490-MB1 also contained the target compound 2-Butanone at a level less than the CRQL.
- 9. All internal standard area and retention time criteria were met.
- 10. The water analyses were performed with the method enhancement of a 40°C heated purge to standardize the purge temperature and improve overall purging efficiency.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 161 pages.

04

- The samples were analyzed with a standard, which had expired for the gas compounds; however, upon comparison with a newly prepared standard (prepared on 12-14-99) indicated that the gas recoveries were within criteria; consequently, there were no significant impact on the data. A copy of the Corrective Action Documentation has been enclosed.
- 12. Manual integrations are performed according to OP L-QA-125 to produce quality data with the utmost integrity. All manual integrations are required to be technically valid and properly documented. Appropriate technical flags are defined in Section III ("Technical Flags For Manual Integration"); hard copies of the integrations have been included with the quantitation data.
- 13. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

 $som \group \data \voa \nys 12973. doc$

17-177

Date

GLOSSARY OF VOA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gioss.voa

GLOSSARY OF VOA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.voa

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- **CB** Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

Recta Labilet Philadelphia Sattiple Discrepancy Report (SDR) SDR # 9977244
Initiator: NSchusch RFW Batch: 99,24973 Parameter: Caral
Date: National Samples: Col Matrix: Sout
Client: NUSTEC Method: SW846/MCAWW/PCF! Prep Batch:
1. Reason for SDR
a. COC Discrepancy Tech Profile Error Client Request Sampler Error on C-O-C
Transcription Error Wrong Test Code Other
b. General Discrepancy Missing Sample/Extract Container Broken Wrong Sample Pulled Label ID's Illegible
Missing Sample/ExtractContainer BrokenWrong Sample PulledLabel ID's IllegibleHold Time ExceededInsufficient SamplePreservation WrongReceived Past Hold
Improper Bottle Type Not Amenable to Analysis
Note: Verified by [Log-In] or [Prep Group] (circle)signature/date:
c. QC Problem (Include all relevant specific results; attach data if necessary)
All 15 were ton, mars of All 15 cox.
557444 15553/052
S52 (Holima) (SS3 (B53) were out of limits (see Billia). Sample is loaded
with replant large TCS. SSZ 84-138 828
SSE 55-113 141 %
2. Known or Probable Causes(s)
Mating interference -
Mindion ambiging on one on isto proceeds with out
A yed in analysis in a cone on 12/12 our corete, it is still out the same cold mayor Ties in any surpression to the continue of this point
2 Biographics and Brancood Action Other Description:
3. Discussion and Proposed Action Other Description: Re-log
Entire Batch
Re-leach Re-leach
Re-extract Sites by at modern land
Re-digest Revise FDD
— Nevise CDD
Change Test Code to
4. Project Manager Instructionssignature/date: 12/13/99
Concur with Proposed Action
Disagree with Proposed Action; See Instruction
Include in Case Narrative Client Contacted:
Date/Person
Add
Cancel
5. Final Actionsignature/date: 61 (C) (C) Other Explanation: Verified re-[log][leach][extract][digest][analysis] (circle)
Verified re-[log][leach][extract][digest][analysis] (circle)
├── Hard Copy COC Revised
Electronic COC Revised EDD Corrections Completed
EDD Corrections Completed
When Final Action has been recorded, forward original to QA Specialist for distribution and filing.
Route Distribution of Completed SDR Route Distribution of Completed SDR Metals: Doughty
2 X Initiator M. Schneider Metals: Doughty
A Y Tab Manager: W Taylor Inordanic, Bertone
X Lab Manager: M Taylor Inorganic: Perrone Inorganic: Perrone GC/LC: Schnell
X Project Mgr: Stone/Sarey/Schrenkel/Johnson GC/LC: Schnell X Section Mgr: Wesson/Daniels MS: Taylor
X Project Mgr: Stone/Carey/Schrenkel/Johnson GC/LC: Schnell X Section Mgr: Wesson/Daniels MS: Taylor Log-in: Janson
X Project Mgr: Stone/Sarey/Schrenkel/Johnson GC/LC: Schnell X Section Mgr: Wesson/Daniels MS: Taylor

Recra LabNet Philadelphia CORRECTIVE ACTION DOCUMENTATION

AUDIT REPORT #

AR49-035

2) Originator forward form to PERSON RESPONSIBLE FOR RESPONSE. 3) Develop/plan a SEQUENCE OF CORRECTIVE ACTION and obtain INITIAL CA APPROVAL sign-off from supervisor. Forward original form to QA for sign-off and FOLLOW-UP ACTION. This allows all pertinent action to be documented on the original form. On completion of the corrective action, the form is signed off by QA, distributed, and the original archived with the QA records. PAGE __OF _ DATE/ORIGINATOR MARKE Scincework 12/14/55 PERSON RESPONSIBLE FOR RESPONSE (corrective action plan and DISTRIBUTION: LABORATORY MANAGER implementation of corrective action plan): _ INORGANIC MANAGER MARIE SCHNEIDER GC/MS MANAGER GC/EXTR MANAGER active Cating and Sam **QA MANAGER** QA REPORT FILE DESCRIPTION OF PROBLEM and when identified: Serges concerns to from 12/10 > 12/13/99 Non on calibrations which used on expired stal (genes only). The Std (8109-001-02) respired on 12/9/199. CAUSE OF PROBLEM if known or suspected: was me good (8109-012-01) (prepped incorrectly) SEQUENCE OF CORRECTIVE ACTION (CA) planned (signature/date): The replacement std (EICG-012-01) was prepared in 12/9/99; prior to "old" Std o expirercin whitists was cheener, it did not near criteria (but pup). A zue replacement sta === (8104-013-01) was purpose on 12/13/99 - is did The expected Std (gases only) were cheesed against the mes Std, and must crimina, confirming the various of the "experies" Std. ATTACHES - FORM 7; logpap nama efficient being QA signature/date: DESCRIPTION OF QA FOLLOW-UP ACTION (include signature/date): 12128199 FINAL CA APPROVED (QA signature/date):

INSTRUCTIONS: 1) ORIGINATOR complete PERSON RESPONSIBLE FOR RESPONSE and DESCRIPTION OF PROBLEM blocks.

RECRA LabNet Use Only

99121973

Custody Transfer Record/Lab Work Request Page FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

0 0	123731 X32511 X33331	- 1	shed Received Date Time						Special Instructions:					Nuscler-fridge blai		Leschale (7)	2.0	Solids (A) 3	t two	•	- Sediment - Solid	MATRIX CODES: Lab Client ID/Description	ACCOUNT #		12-8-99 Dale Due 1-4-99	Cho TAT 7 BOOM	7.5.	Project Contact/Phone #	Project # 0/667-600-00/-9999-00	Citation	
			Relinquished by				Lo			DATE/RE					10 2	e palace	2	oudkod!			MS MSD		Motrix	199	W Stellion !	T		Vo	**		
INC SALVIN 1321A	TIGME	ORIGINAL	Received by	.co	5 (1/m/S	1. Loca	5075 W	2 99	1 Kaler	DATE/REVISIONS:			2h' /dz	W 1216 94	1 1			*	6 2	5 12/6H9		Matrix Collected Collected		EQUESTED	ANALYSES	Preservatives		Volume	#/Type Container		
			Date		ر کر	Lockaret c	was in	dably 20		5			Jun	1619	P		-	١	taol	1000	00	Time		,	▼		Solid		Solid '9	Liquid	
-						as 12	macile.	715	z		_			<			-		1	1	↓	24c 25°c		BN	IA S		0,00	1	1/91.		
			Time			18/99	on 1		17/12/										`		1	080		Pe	\dashv	AANIO —	1	-	1		
		COC Record? Y NOTES:	Discrepancies Between Samples Labels and			12/8/99 to apresmerite	12/10/99 - put		1001.66	0.75		-	-			-	<	\	+		C3.	 24T		He	,,,,		-				
		ord? Y or	Discrepancies Belwe Samples Labels and			20511	99.PE	-	00) }			1	<u> </u>	-								RECH				1				
		z				Crown	ux			} 	\vdash	-	+	+			$\frac{1}{1}$		<	1	BA	45670	RECRA LabNet Use Only	Me	etal	z z	12		191	_	
		Holding Time) Y	5) Received Willbin	4) Labels Indicate Properly Preserved	Condition	2) Ambier	Airbill #	Hand Delivered	Samples were:								1	1	<	<	10,	UTO	t Use O	C	N.	NORG			1		
		چ کې	e Villbin	Indicate Freserved	Condition Y or N	2) Ambient or Chilled 3) Beceived in Good		, ,	were:	RECRA		+	-		-				<	+	17	CL	l	_	·····	+	-		1		_
		z -10	7		フマ			1		RECRA LabNet Use Only	\parallel	+	-		-	-	-			+		CG3	-	-		+			+		-
		Cooler Temp	Upon Sample Rec'l	Sample) Y or N	4) Unbroken on	RPresent on Sample	 Unbroken on Outer Package Y or N 	Package Y or N	COC Tape was:	Use Only											02 07 00 00	25T 25T 1867 18470		-							-

11.11

'3A WATER VOLATILE MATRIX SPIKE RECOVERY

Lab Name: Recra.LabNet Contract

Contract: ONE

Lab Code: Recra Case No.: SAS No.: SDG No.:

MATRIX Spike - EPA Sample No.: VBLKEH

GOVDOVEND	SPIKE ADDED		MS CONCENTRATION	-	QC LIMITS
COMPOUND	ug/L	ug/L	ug/L	REC #	REC.
	=======				
1,1-Dichloroethene	_ 50.0	0	43.4	87	61 -145
Trichloroethene	50.0	0	47.9	96	71 -120
Benzene	_ 50.0	0	48.9	98	76 -127
Toluene	_ 50.0	0	49.1	98	76 -125
Chlorobenzene	_ 50.0	0	49.5	99	75 -130
	1				l

- # Column to be used to flag recovery value with an asterisk
- * Values outside of QC limits

Spike Recovery: 0 out of 5 outside limits

COMMENTS:	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SH899-12206-B706-01

Lab Name: Recra.LabNet Contract: 01667600001

CAS NO. COMPOUND

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ____

Matrix: (soil/water) SOIL Lab Sample ID: 9912L973-001

Sample wt/vol: $\underline{4.10}$ (g/mL) \underline{G} Lab File ID: $\underline{N121209}$

Level: (low/med) MED Date Received: 12/08/99

% Moisture: not dec. 13 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32(mm) Dilution Factor: 0.976

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u> Q

	COMPOSITE (4g) I OF 4g) II		
	Chloromethane	1400	Ū
	Bromomethane	1400	U
75-01-4	Vinyl Chloride	1400	U
75-00-3	Chloroethane	1400	U
	Methylene Chloride	1300	JB
67-64-1	Acetone	410	JB
75-15-0	Carbon Disulfide	1400	Ū
75-35-4	1,1-Dichloroethene	1400	U
	1,1-Dichloroethane	1400	U.
540-59-0	1,2-Dichloroethene (total)	1400	U
67-66-3	Chloroform	1400	U
107-06-2	1,2-Dichloroethane	1400	Ū
78-93-3	2-Butanone	1400	Ū
71-55-6	1,1,1-Trichloroethane	1400	U
56-23-5	Carbon Tetrachloride	1400	U
	Bromodichloromethane	1400	Ū
	1,2-Dichloropropane	1400	U
10061-01-5	cis-1,3-Dichloropropene	1400	U
	Trichloroethene	1400	Ū
	Dibromochloromethane	1400	Ū
	1,1,2-Trichloroethane	1400	Ū
	Benzene	1400	U
10061-02-6	Trans-1,3-Dichloropropene	1400	U
	Bromoform	1400	U
108-10-1	4-Methyl-2-pentanone	1400	Ū
	2-Hexanone	1400	Ū
	Tetrachloroethene	1400	Ū
79-34-5	1,1,2,2-Tetrachloroethane	1400	Ū
	Toluene	1400	U
	Chlorobenzene	1400	
	Ethylbenzene	1400	U
	Styrene	1400	
	Xylene (total)	1400	

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|SH899-12206-B706-01

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: SAS No.: SDG No.:

Matrix: (soil/water) SOIL Lab Sample ID: 9912L973-001

Sample wt/vol: 4.10 (g/mL) G Lab File ID: N121209

Level: (low/med) MED Date Received: 12/08/99

% Moisture: not dec. <u>13</u> Date Analyzed: <u>12/12/99</u>

GC Column: RTX624 ID: 0.32(mm) Dilution Factor: 0.976

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS:

Number TICs found: 12 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
				====
1	CYCLOALKANE	19.642	10000	J
2.	CYCLOALKANE	20.194	7000	J
3.	CYCLOALKANE	21.427	8000	J
4.	C3-ALKYLBENZENE	21.565	10000	J
5.	CYCLOAY ANE	22.601	9000	J
6.	C4-ALK BENZENE	23.518	10000	J
7 -	UNKNO [†]	23.558	9000	J
8.	UNKNC	24.258	8000	J
9.	CYCL(KANE	24.485	10000	J
10.	C4-A (LBENZENE	24.751	9000	J
11.	C4-AYLBENZENE	25.372	10000	J
12.	AROMATIC	26.102	9000	J
				1

SH899-12206-B706-02

Lab Name: Recra.LabNet Contract: 01667600001

Lab Code: Recra Case No.: ____ SAS No.: ___ SDG No.: ___

Matrix: (soil/water) SOIL Lab Sample ID: 9912L973-002

Sample wt/vol: 4.30 (g/mL) 3 Lab File ID: 121210

Level: (low/med) MED Date Received: 12/08/99

% Moisture: not dec. 22 Date Analyzed: 12/12/99

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 0.930

Soil Extract Volume: 10000 (uL) Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
					1
74-87-3	Chloromethane			1500	ΙŪ
74-83-9	Bromomethane			1500	טן
75-01-4	Vinyl Chloride			1500	Ū
	Chlorcethane			1500	U
75-09-2	Methylene Chloric	ie		1400	JB
67-64-1	Acetone			290	JB
75-15-0	Carbon Disulfide			1500	U
75-35-4	1,1-Dichlorcether	18		1500	U
	1,1-Dichloroethar			1500	U
	1,2-Dichlorcether			1500	U
67-66-3	Chloroform	_		1500	U
107-06-2	1,2-Dichloroethan	18		1500	U
78-93-3	2-Butanone			240	JΒ
71-55-6	1,1,1-Trichlorce	hane	i	1500	Ū
	Carbon Tetrachlo			1500	
	Bromodichloromet			1500	Ū
	1,2-Dichloropropa			1500	U
	cis-1,3-Dichloro			1500	U
	Trichloroethene			1500	
	Dibromochloromet			1500	
	1,1,2-Trichlorce			1500	
	Benzene		i	1500	•
10061-02-6	Trans-1,3-Dichlo	coropene		1500	:
	Bromoform_			1500	
	4-Methyl-2-pentar			1500	ប
	2-Hexanone			1500	:
127-18-4	Tetrachloroethen			1500	ט
	1,1,2,2-Tetrachle			1500	:
	Toluene		i	1500	:
	Chlorobenzene		i	1500	
	Ethylbenzene			1500	Ū
				1500	:
	Xylene (total)		i	6300	•

EPA SAMPLE NC.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SH899-12206-B706-02

Lab Name: Recra.LabNet Contract: 01667600001

SAS No.: ____ SDG No.: ____ Lab Code: Recra Case No.: ____

Lab Sample ID: 9912L973-002 Matrix: (soil/water) SOIL

Sample wt/vol: 4.30 (g/mL) \underline{G} Lab File ID: $\underline{N121210}$

Date Received: <u>12/08/99</u> Level: (low/med) MED

% Moisture: not dec. ___22 Date Analyzed: <u>12/12/99</u>

GC Column: RTX624 ID: 0.32 (mm) Dilution Factor: 0.930

Soil Extract Volume: 10000 (uL: Soil Aliquot Volume: 100 (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Number TICs found: 12

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	======	=========	=====
1.	CYCLOALKANE	19.071	7000	J
2.	CYCLOALKANE	19.633	10000	J
3.	C3-ALKYLBENZENE	21.418	10000	J
4.	C3-ALKYLBENZENE	21.566	20000	J
5.	UNKNOWN	21.941	7000	J
6.	C3-ALKYLBENZENE	22.276	30000	J
7.	CYCLOALKANE	22.602	7000	J
8.	C3-ALKYLBENZENE	23.085	8000	J
9.	C4-ALKYLBENZENE	23.410	8000	J
10.	C4-ALKYLBENZENE	23.519	10000	J
111.	C4-ALKYLBENZENE	24.752	8000	J
12.	C4-ALKYLBENZENE	25.373	8000	J
İ				

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

NYSDEC-FRIDGE BLANK Lab Name: Recra, LabNet Contract: 01667600001 Lab Code: Recra Case No.: ____ SAS No.: _____ SDG No.: ___ Matrix: (soil/water) WATER Lab Sample ID: 9912L973-007 Sample wt/vol: 5.00 (g/mL) ML Lab File ID: <u>n121318</u> Level: (low/med) LOW Date Received: <u>12/08/99</u> Date Analyzed: <u>12/13/99</u> % Moisture: not dec. ____

GC Column: RTX624 ID: 0.32(mm) Dilution Factor: 1.00

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

COMPOUND	(ug/L or ug	/Kg) <u>UG/L</u>	Q
			 ,
Chloromethane		. 10	
Bromomethane			ן מ
Vinvl Chloride			ו טוֹי
Chloroethane		10	ט ו
Methylene Chlori	.de		В
		- !	BJ
		- <u>'</u>	ן ט ו
		- '	
		- ;	ָּט <u>ּ</u>
		- !	,
		- '	
1.2-Dichloroetha	ine		: :
1.1.1-Trichloros	thane	10	1 1
Carbon Tetrachlo	ride	10	: :
Bromodichloromet	hane	10	1 1
1.2-Dichloropror	oane	10	
cis-1,3-Dichloro	propene	10	ט !
Trichloroethene		10	
Dibromochloromet	:hane	10	: :
			וֹ טוֹ
			Ü
		<u></u> '	U
		- :	ו טו
		'	ו ט
			ט
			ו טו
		-i 10	ו טו
		- :	U
Chlorobenzene		10	ט ו
Ethylbenzene		10	U
.		1	U
		-	U
			ii
	ChloromethaneBromomethaneVinyl ChlorideChloroethaneMethylene ChloriAcetoneCarbon Disulfide1,1-Dichloroethe1,2-Dichloroethe1,2-Dichloroethe1,1-Trichloroethe1,1-TrichloroetheCarbon TetrachloroetheCarbon Tetrachloroethe	ChloromethaneBromomethaneVinyl ChlorideChloroethaneMethylene ChlorideAcetoneCarbon Disulfide1,1-Dichloroethane1,2-Dichloroethane (total)Chloroform1,2-Dichloroethane2-Butanone1,1,1-Trichloroethane2-Butanone1,2-Dichloromethane1,2-Dichloromethane1,2-Dichloromethane1,2-Dichloromethane1,2-Dichloromethane1,2-Dichloromethane1,2-Dichloromethane1,2-Dichloromethane1,3-Dichloromethane1,1,2-TrichloroethaneBenzeneTrans-1,3-DichloromethaneBenzeneTrans-1,3-DichloromethaneBromoform4-Methyl-2-pentanone2-Hexanone1,1,2,2-TetrachloroethaneTolueneTolueneChlorobenzeneEthylbenzene	Chloromethane 10Bromomethane 10Bromomethane 10Vinyl Chloride 10Chloroethane 10Methylene Chloride 15Acetone 2Carbon Disulfide 101,1-Dichloroethane 101,1-Dichloroethane 101,2-Dichloroethane 10Chloroform 101,2-Dichloroethane 102-Butanone 101,1-Trichloroethane 10Carbon Tetrachloride 10Bromodichloromethane 101,2-Dichloropropane 10Trichloroethane 10Trichloroethane 10Trichloroethane 10Trichloroethane 10Trichloroethane 10Trichloroethane 10Trichloroethane 10Trichloroethane 10Trans-1,3-Dichloropropene 10Bromoform 10Benzene 10Tetrachloroethane 10Tetrachloroethane 10Tetrachloroethane 10Tetrachloroethane 10Tetrachloroethane 10Toluene 10Toluene 10Chlorobenzene 10Ethylbenzene 10

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE	NO
------------	----

Lab Na	me: <u>Recra.Lab</u>	Net Contract: 0166		NYSDEC-FRIDGE	BLANK
Lab Co	ode: <u>Recra</u>	Case No.:	SAS No.:	_ SDG No.:	
Matrix	:: (soil/water) <u>WATER</u>	Lab Sample ID:	9912L973-00	<u>7</u>
Sample	wt/vol:	5.00 (g/mL) ML	Lab File ID:	n121318	
Level:	(low/med)	LOW	Date Received:	12/08/99	
% Mois	sture: not dec	·	Date Analyzed:	12/13/99	
GC Col	umn: <u>RTX624</u>	ID: <u>0.32</u> (mm)	Dilution Facto:	r: 1.00	
Soil E	Extract Volume	:(uL)	Soil Aliquot Vo	olume:	(uL)
Number	TICs found:		ENTRATION UNITS: L or ug/Kg) <u>UG/L</u>		
 	CAS NUMBER	COMPOUND NAME	; ;	:	- :

Raw QC Data: Tune, Blank and Spike Data

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract: 3166	7600001 VBLKEG
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 99LVN490-MB1
Sample wt/vol: 4.00 (g/mL) G	Lab File ID: N121207
Level: (low/med) MED	Date Received: 12/12/99
% Moisture: not dec	Date Analyzed: 12/12/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CONC	ENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

. 			- ,
Chloromorhano	1200		
74-87-3Chloromethane	1200	•	1
74-83-9Bromomethane	1200		1
75-01-4Vinyl Chloride	1200	!	1
75-00-3Chloroethane	1200	-	1
75-09-2Methylene Chloride	2000	١.	ļ
67-64-1Acetone	420	•	-
75-15-0Carbon Disulfide	1200	•	-
75-35-41,1-Dichloroethene	1200	U	
75-34-31,1-Dichloroethane	1200	U	1
540-59-01,2-Dichloroethene (total)	1200	U	1
67-66-3Chloroform	1200	U	1
107-06-21,2-Dichloroethane	1200	U	
78-93-32-Butanone	130	J	1
71-55-61,1,1-Trichloroethane		U	-
56-23-5Carbon Tetrachloride	1200	U	1
75-27-4Bromodichloromethane	1200	U	
78-87-51,2-Dichloropropane	1200	Ü	1
10061-01-5cis-1,3-Dichloropropene	1200	U	
79-01-6Trichloroethene	1200	U	1
124-48-1Dibromochloromethane	1200	Ū	
79-00-51,1,2-Trichloroethane	1200	Ū	1
71-43-2Benzene	1200	U	1
10061-02-6Trans-1,3-Dichloropropene	1200	U	İ
75-25-2Bromoform	1200	Ū	1
108-10-14-Methyl-2-pentanone	1200	U	Ì
591-78-62-Hexanone	1200	U	İ
127-18-4Tetrachloroethene	1200	U	Ì
79-34-51,1,2,2-Tetrachloroethane	1200	U	Ì
108-88-3Toluene	1200	U	İ
108-90-7Chlorobenzene	1200	Ū	İ
100-41-4Ethylbenzene	1200	U	İ
100-42-5Styrene	1200	U	İ
1330-20-7Xylene (total)	1200	Ū	ĺ
•	,		İ
·	·		•

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
-----	--------	----

Lab Na	me: <u>Recra.LabN</u>	<u>et</u> Contract	:: 016676000	01	VBLKEG 		
Lab Co	ode: <u>Recra</u>	Case No.:	SAS	No.:	SDG No	.:	
Matrix	c: (soil/water)	SOIL	Lab	Sample ID	: 99LVN490-1	MB1	
Sample	e wt/vol:	<u>4.00</u> (g/mL) <u>G</u>	Lab	File ID:	N121207		
Level:	(low/med)	MED	Dat	e Received	: 12/12/99		
% Mois	sture: not dec.		Dat	e Analyzed	: 12/12/99		
GC Col	umn: <u>RTX624</u>	_ID: <u>0.32</u> (mm)	Dil	ution Fact	or: <u>1.00</u>		
Soil E	Extract Volume:	(uL)	Soi	l Aliquot	Volume:	(uL)	
CONCENTRATION UNITS: Number TICs found: _0 (ug/L or ug/Kg) <u>UG/KG</u>							
 -	CAS NUMBER	COMPOUND	IAME	i i	EST. CONC.	- :	

VOLATILE ORGANICS ANALYSIS DATA SHEET

	m F A	SHUEDE	NO.	
- 1				

Lab Name: <u>Recra.LabNet</u> Contract: <u>01667</u>		BLKEH
Lab Code: Recra Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	99LVN492-MB1
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	n121304
Level: (low/med) <u>LOW</u>	Date Received:	12/13/99
% Moisture: not dec.	Date Analyzed:	12/13/99
GC Column: <u>RTX624</u> ID: <u>0.32</u> (mm)	Dilution Factor	: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Vo	olume:(uL)
CONCE	מידותוו וארדים.	

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	Q

	COMPOSND (dg/H OI dg		
74-87-3	Chloromethane	1 10	ט ט ו
74-83-9	Bromomethane	10	ט
75-01-4	Vinyl Chloride	10	וֹט
75-00-3	Chloroethane	10	Ū
75-09-2	Methylene Chloride	16	
67-64-1	Acetone		J
75-15-0	Carbon Disulfide		Ū
	1,1-Dichloroethene		U
	1,1-Dichloroethane		ĺυ
	1,2-Dichloroethene (total)		ָּט
	Chloroform	- :	ĺŪ
107-06-2	1,2-Dichloroethane		ΙŪ
	2-Butanone	- ;	เบ
	1,1,1-Trichloroethane	10	Ü
	Carbon Tetrachloride		ับ
	Bromodichloromethane		įυ
	1,2-Dichloropropane		Ū
	cis-1,3-Dichloropropene		U .
	Trichloroethene		Ū
124-48-1	Dibromochloromethane	10	jυ
	1,1,2-Trichloroethane		ĺυ
	Benzene		ĺΰ
10061-02-6	Trans-1,3-Dichloropropene	_ . 10	Ū
75-25-2	Bromoform_	_ 10	U
108-10-1	4-Merhyl-2-pentanone	10	jυ
591-78-6	2-Hexanone		Ū
127-18-4	Tetrachloroethene	_ 10	U
79-34-5	1,1,2,2-Tetrachloroethane	_ 10	Ū
108-88-3	Toluene		U
	Chlorobenzene	_ 10	Ū
	Ethylbenzene		Ū
	Styrene	1	Ū
	Xylene (total)	- ·	•

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

. ——		
1		
ı		
1 7777 7 727	777	
VBLK	ın.	
i		
1		

EPA SAMPLE NO.

Lab Name: Recra.LabNet Contract:	VBLKEH 01667600001
Lab Code: Recra Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) WATER	Lab Sample ID: 99LVN492-MB1
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: <u>n121304</u>
Level: (low/med) LOW	Date Received: <u>12/13/99</u>
% Moisture: not dec	Date Analyzed: 12/13/99
GC Column: RTX624 ID: 0.32(mm)	Dilution Factor: 1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	****************	======	~=======	=====
1.				j į
1				İİ

Lab Name: Recra.LabNet Contract: 016676	5 <u>00001</u>	VBLKEHMS
Lab Code: Recra Case No.:	SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	99LVN492-MB1 BS
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	<u>n121306</u>
Level: (low/med) <u>LOW</u>	Date Received:	12/13/99
% Moisture: not dec	Date Analyzed:	12/13/99
GC Column: RTX624 ID: 0.32 (mm)	Dilution Facto	pr: 1.00
Soil Extract Volume:(uL)	Soil Aliquot V	Tolume:(uL)
	NTRATION UNITS: or ug/Kg) <u>UG/L</u>	
74-87-3		10 U
100-42-5Styrene 1330-20-7Xylene (total)		10 U 10 U

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC

SDEC

RFW #: 9912L973 (Relogged)

ELAP #: 10752

W.O.#: 01667-600-001-9999-00

Date Received: 12-08-99

SEMIVOLATILE

Two (2) soil samples were collected on 12-06-99.

The samples and their associated QC samples were extracted on 12-18-99 and analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for Priority Pollutant Semivolatile target compounds on 01-10,11-2000.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. This set of samples has been relogged from RFW lot 9912L959.
- 2. The samples were extracted and analyzed within required holding times.
- 3. Non-target compounds were detected in the samples.
- 4. Both samples required a 20-fold dilution due to high levels of non-target compounds.
- 5. Three (3) of thirty-two (32) surrogate recoveries were outside EPA QC limits. However, EPA CLP surrogate recovery criteria were met (i.e., no more than one outlier per fraction {acid and base neutral} and no recoveries less than 10%).
- 6. Five (5) of eleven (11) blank spike recoveries were outside EPA QC limits. The out of limit recoveries were slightly high; however, there was no impact on the data.
- 7. The method blank contained the common laboratory contaminants Di-n-butylphthalate and Bis(2-Ethylhexyl)phthalate at levels less than the CRQL.
- 8. Internal standard area and retention time criteria were met.
- 9. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

VI CAKE

01-19-00 Data

somigroup/data/bnanys/12973.doc. The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of thiseport are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety o254 pages.

GLOSSARY OF BNA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- A = Indicates that a TIC is a suspected aldol-condensation product.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- X = This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.bna

GLOSSARY OF BNA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gloss.bna

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

79121973	RECHA LabNet Use Uniy
	` Ţ

Custody Transfer Record/Lab Work Request Page - of FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

0	Reloes	Relinquished by				Special Instructions:	•			F - Figh	- Wipe	1_		Solids	₹9	¥- Water	CODES: S. Soil SE Soil SO Soil	70000	Date Rec'd	40	ZX	Project Contactritorie #	Project Contact	Est. Final Proj.	Client	اد	
_					į	3			tog	DO	225	COL	CO J	انر	200	00/	₽₽		25	ľ	Mana			Samp	mort		
	anson 1	Received by		·					Nysdec-	-				-	7	2H897-12206	Client		12-8:99 DI	411	2	77.5		Est. Final Proj. Sampling Date			
	izholaa	Date							fridge	i p.	_	1	_	_			Client ID/Description		Date Due _	3	TAT						
	`	Time							blanh	20	0_	. 0	200	2	20	-B701 - 01	otion		12/		400 t	90		8			
		Relinquished by				DATE				+	La glady	_	- Washington	1 10 10			QC Chosen (V)	Matrix	115/99	XIL OU	3	ji,					
7		1		130	,	DATE/REVISIONS:			٤	2-		ı	-	7	6	5	Matrix		ANAL		Prese	Actinio		#/Type		Refrig	
KEWKII IEW	ORIGINAL	Received by	5. UMS	الد م	, <mark> </mark>	ONS: On PACE			12110199				- ;	*	٩	12/6/49	Date Collected		ANALYSES REQUESTED		Preservatives	ĕ		#/Type Container.		Refrigerator #	
		_	(V, o	ocapecí	159	3			1012		8	\dashv	-	١	400	OCO	Time Collected		\			Solld	Liquid	Solid	Liquid		
		Date		CA 12	292	£ 32	\vdash			+	\dashv	1	-		-	_	0624c		VOA			125		Ş		ᅱ	
-	-	+-	1	cie.	2			-	+	1	1				-	-	06250		BNA	ORC		250	0	101		w	
		Time		18/9	E	<u> </u>				\top					\		0608C		Pest/ PCB	IGANIC		I		I		3	
F	NO.	San		Airbill # ACCENTICE 2) Ambient or Chilled	attai	99 171 959 -001+00												-	Herb								
	NOTES:	Discrepancies Between Samples Labels and COC Record? Your No.		1017		2							<	<			0024										
	:	es Betv bels an		CON	2	8												REC									
		and or N		narle		1+0										_	<i>i</i>	RECRA LabNet Use Only		Г			_	_			
		Ho 5) F	PA) L	2) A		क				_					<u> </u>	\	MASCTO	bNet U	Metal	INORG	L	125 -		19/		3 3	
	c	5) Received Within	Condition Y or Ni Condition Y or Ni A) Labels Indicate Properly Preserved Y or Ni	Airbill # 2) Ambient	Samples were: 1) Shipped —— Hand Delivered					_	_				<	<u> </u>	ICNTO	se On	CN	G	-	\parallel	-	\prod		3 3	
	∀ or z		Y or additional of the control of th	or Chill	ered	RECH	-	_		\dashv				_			TELV	₹			 	H				3	
	z	~~		ă 2	-	RECRA LabNet Use Only	-	-	-	_	_			_	<	1	Tecp				-		-	-		<u> </u>	
	Temp.	Opon S	Sample COC Re	Packu	1) Pra Packa	et Use	-	-	-		_	<	-	-	-	-	C025T				\vdash	-		-			
		Upon Sample Rec't Y or N	(A) Unbroken on Sample) Y or COC Record Pr	Package Y or N 3) Present on Sampl	(COC Tape was: 1) Present on Outer Package Y or N 2) Unbroken on Oute	Only		-	$\left\{ \cdot \right\}$		\			-	-	-	COZST CLOST CHBCT RORATO				-	-	\vdash	-			
	ဂိ	or N	(A) Unbroken on Sample) Y or N	Package Y or N Sample Or N Or N	COC Tape was: 1) Present on Outer Package Y or N 2) Unbroken on Outer			+	-							-	KO <i>KATO</i>	4	-			-		-	-		1

3D SOIL SEMIVOLATILE BLANK SPIKE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Case No.: NYSDEC

RFW Lot No.: 9912L973

BLANK Spike - Sample No.: SBLKJDLE1535-MB1 Level: (low/med) LOW

COMPOUND	SPIKE ADDED UG/KG	SAMPLE CONCENTRATION UG/KG	BS CONCENTRATION UG/KG	BS % REC #	QC LIMITS REC
Phenol	2500	0	======================================	112 *	======================================
2-Chlorophenol	2500	0	2600	104 *	!
1,4-Dichlorobenzene	1670	j o	1600	96	28 -104
N-Nitroso-di-n-propylamine	1670	0	1610	96	41 -126
1,2,4-Trichlorobenzene	1670	0	1720	103	38 -107
4-Chloro-3-methylphenol	2500	0	2640	105 *	26 -103
Acenaphthene	1670	. 0	1750	105	31 -137
4-Nitrophenol	2500	0	2720	108	11 -114
2,4-Dinitrotoluene	1670	0	1690	101 *	28 - 89
Pentachlorophenol	2500	0	3560	142 *	17 -109
Pyrene	1670	0	2210	132	35 -142

[#] Column to be used to flag recovery value with an asterisk

Spike Recovery: <u>5</u> out of <u>11</u> outside limits

COMMENTS:

5/88 Rev.

^{*} Values outside of QC limits

|SH899-12206-B706-01

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.4}$

Matrix: (soil/water) SOIL Lab Sample ID: 9912L973-001

Sample wt/vol: 30.2 (g/mL) \underline{G} Lab File ID: $\underline{D011104}$

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 13 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/11/00

Injection Volume: 2.0(uL) Dilution Factor: 20.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

CAS NO.	COMPOUND (ug/L or ug/	(kg) <u>UG/KG</u>	Q
108-95-2	Phenol	7600	
111-44-4	bis(2-Chloroethyl)ether		
95-57-8	2-Chlorophenol	7600	
541-73-1	1,3-Dichlorobenzene	7600	
106-46-7	1,4-Dichlorobenzene	7600	,
95-50-1	1,2-Dichlorobenzene	7600	•
95-48-7	2-Methylphenol	7600	1
108-60-1	2,2'-oxybis(1-Chloropropane)		
	4-Methylphenol		•
621-64-7	N-Nitroso-di-n-propylamine	7600	•
67-72-1	Hexachloroethane	7600	
98-95-3	Nitrobenzene	7600	:
78-59-1	Isophorone	7600	•
88-75-5	2-Nitrophenol		•
	2,4-Dimethylphenol	7600	•
	bis(2-Chloroethoxy)methane	- '	•
	2,4-Dichlorophenol		ับ
	1,2,4-Trichlorobenzene		ប
	Naphthalene		•
106-47-8	4-Chloroaniline	7600	U
87-68-3	Hexachlorobutadiene	7600	ĺυ
59-50-7	4-Chloro-3-methylphenol	7600	Įυ
91-57-6	2-Methylnaphthalene	1500	J
77-47-4	Hexachlorocyclopentadiene_	7600	U
88-06-2	2,4,6-Trichlorophenol	7600	Ū
	2,4,5-Trichlorophenol		U
91-58-7	2-Chloronaphthalene	7600	U
88-74-4	2-Nitroaniline	19000	U
131-11-3	Dimethylphthalate	7600	U
208-96-8	Acenaphthylene	7600	U
606-20-2	2,6-Dinitrotoluene	7600	•
99-09-2	3-Nitroaniline	19000	U
83-32-9	Acenaphthene	7600	U
		1	}

|SH899-12206-B706-01

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC_____

Matrix: (soil/water) SOIL Lab Sample ID: 9912L973-001

Sample wt/vol: 30.2 (g/mL) \underline{G} Lab File ID: $\underline{D011104}$

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: ___13 decanted: (Y/N) ___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/11/00

Injection Volume: 2.0(uL) Dilution Factor: 20.0

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.4}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

		
51-28-52,4-Dinitrophenol	19000	ָּט
100-02-74-Nitrophenol	19000	U
132-64-9Dibenzofuran	7600	U .
121-14-22,4-Dinitrotoluene	7600	U
84-66-2Diethylphthalate	7600	ט
7005-72-34-Chlorophenyl-phenylether	7600	U
86-73-7Fluorene	7600	ָּט
100-01-64-Nitroaniline	19000	ָּט
534-52-14,6-Dinitro-2-methylphenol	19000	ט
86-30-6N-Nitrosodiphenylamine (1)	7600	ָ <u>י</u>
101-55-34-Bromophenyl-phenylether	7600	
118-74-1Hexachlorobenzene	7600	ט ו
87-86-5Pentachlorophenol	19000	ט ו
85-01-8Phenanthrene	1300	J
120-12-7Anthracene	7600	ט ו
86-74-8Carbazole	7600	υ
84-74-2Di-n-butylphthalate	7600	י ד
206-44-0Fluoranthene	500	J
129-00-0Pyrene	670	J
85-68-7Butylbenzylphthalate	7600	ָט וֹ
91-94-13,3'-Dichlorobenzidine	7600	ט ו
56-55-3Benzo(a)anthracene	7600	ט
218-01-9Chrysene	390	J
117-81-7bis(2-Ethylhexyl)phthalate	7600	ָ ט
117-84-0Di-n-octyl phthalate		ט
205-99-2Benzo(b) fluoranthene	7600	ָ ט
207-08-9Benzo(k) fluoranthene	7600	υİ
50-32-8Benzo(a)pyrene	7600	Ū
193-39-5Indeno(1,2,3-cd)pyrene	7600	ט
53-70-3Dibenz(a,h)anthracene		י ט
191-24-2Benzo(g,h,i)perylene	7600	ט

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

CLIENT SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SH899-12206-B706-01

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L973-001

Sample wt/vol: 30.2 (g/mL) G

Lab File ID: D011104

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

Concentrated Extract Volume: 500 (uL)

% Moisture: 13 decanted: (Y/N) Date Extracted: 12/18/99

Date Analyzed: 01/11/00

Injection Volume: 2.0(uL)

Dilution Factor: 20.0

GPC Cleanup: $(Y/N) \underline{Y}$ pH: $\underline{8.4}$

Number TICs found: 41

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
*======================================	=======================================	======	========	=====
1.	12 TO 24 MINUTES			
2.	UNRESOLVED HYDROCARBONS			
3.	CYCLOALKANE	8.96	20000	J
4.	ALKANE	9.94	20000	J
5.	CYCLOALKANE	10.69	8000	J
6.	UNKNOWN	10.75	7000	J
7.	ALKANE	10.98	8000	J
8.	CYCLOALKANE	11.48	8000	J
9.	UNKNOWN	11.57	20000	J
10.	ALKANE	11.75	20000	J
11.	CYCLOALKANE	12.31	20000	J
12.	ALKANE	12.61	30000	J
13.	UNKNOWN	13.01	20000	J
14.	ALKANE	13.17	10000	J
15.	ALKANE	13.27	20000	J
16.	UNKNOWN	13.52	7000	J
17.	UNKNOWN	13.67	10000	·J
18.	ALKANE	13.72	10000	J
19.	CYCLOALKANE	13.80	20000	J
20.	ALKANE	13.83	8000	J
21.	ALKANE	14.01	9000	J
22.	ALKANE	14.09	20000	J
23.	ALKANE	14.39	10000	J
24.	CYCLOALKANE	14.45	10000	J
25.	ALKANE	14.53	7000	J
26.	UNKNOWN	15.17	10000	J
27.	ALKANE	15.21	40000	J
28.	ALKANE	15.70	20000	J
29.	CYCLOALKANE	16.52	10000	J
30.	UNKNOWN	16.81	8000	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

|SH899-12206-B706-01

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L973-001

Sample wt/vol: 30.2 (g/mL) G Lab File ID: D011104

Level: (low/med) LOW

Date Received: 12/08/99

% Moisture: 13 decanted: (Y/N)

Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL)

Date Analyzed: 01/11/00

Injection Volume: 2.0(uL)

Dilution Factor: 20.0

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.4}$

CONCENTRATION UNITS:

Number TICs found: 41

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	=== =================================	= ======	=======================================	====
31.	ALKANE	16.91	10000	J
32.	ALKANE	17.49	30000	J
33.	ALKANE	18.15	60000.	J
34.	ALKANE	18.54	10000	J
35.	ALKANE	19.07	10000	J
36.	ALKANE	19.16	30000	J
37.	ALKANE	19.82	10000	J
38.	ALKANE	19.87	10000	J
39.	ALKANE	20.57	10000	J
40.	ALKANE	20.70	9000	J
41.	ALKANE	21.17	8000	J
42.	ALKANE	21.71	9000	J
43.	UNKNOWN	22.39	9000	J
				!

FORM 1 SV-TIC

RFW (v3.3)

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SH899-12206-B706-02

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 9912L973-002

Sample wt/vol: 30.2 (g/mL) G Lab File ID: D011105

Level: (low/med) LOW Date Received: 12/08/99

% Moisture: 22 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500 (uL) Date Analyzed: 01/11/00

Injection Volume: 2.0(uL) Dilution Factor: 20.0

GPC Cleanup: $(Y/N) \underline{Y}$ pH: 8.3

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> 108-95-2----Phenol 8500 U 111-44-4-----bis(2-Chloroethyl)ether 8500 U 95-57-8-----2-Chlorophenol____ 8500 U 541-73-1----1,3-Dichlorobenzene 8500 U 106-46-7----1,4-Dichlorobenzene__ 8500 U 95-50-1----1,2-Dichlorobenzene 8500 U | 95-48-7----2-Methylphenol_ 8500 U 108-60-1----2,2'-oxybis(1-Chloropropane) 8500 U 8500 U 106-44-5-----4-Methylphenol 621-64-7----N-Nitroso-di-n-propylamine___ 8500 U 67-72-1-----Hexachloroethane 8500 U 98-95-3-----Nitrobenzene 8500 U 78-59-1-----Isophorone 8500 U 88-75-5-----2-Nitrophenol_ 8500 U 105-67-9-----2,4-Dimethylphenol 8500 U 111-91-1-----bis(2-Chloroethoxy)methane__ 8500 U 120-83-2----2,4-Dichlorophenol 8500 U 120-82-1----1,2,4-Trichlorobenzene 8500 U 91-20-3-----Naphthalene 8500 U 106-47-8-----4-Chloroaniline 8500 U 87-68-3-----Hexachlorobutadiene 8500 U 59-50-7----4-Chloro-3-methylphenol 8500 U 91-57-6-----2-Methylnaphthalene 6400 J 77-47-4-----Hexachlorocyclopentadiene 8500 U 88-06-2----2,4,6-Trichlorophenol__ 8500 U 95-95-4-----2,4,5-Trichlorophenol_ 21000 U 91-58-7----2-Chloronaphthalene 8500 U 88-74-4-----2-Nitroaniline 21000 U 131-11-3-----Dimethylphthalate 8500 U 208-96-8-----Acenaphthylene___ 8500 U 606-20-2----2,6-Dinitrotoluene 8500 U 99-09-2-----3-Nitroaniline 21000 U 83-32-9-----Acenaphthene___ 8500 U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SH899-12206-B706-02

ab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC____

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L973-002

ample wt/vol: 30.2 (g/mL) G Lab File ID: D011105

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

Moisture: ___22 decanted: (Y/N)___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/11/00

injection Volume: 2.0(uL)

Dilution Factor: 20.0

SPC Cleanup: (Y/N) Y pH: 8.3

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) <u>UG/KG</u> O

51-28-5	2,4-Dinitrophenol	21000	U
100-02-7	4-Nitrophenol	21000	•
132-64-9	Dibenzofuran	8500	•
	2,4-Dinitrotoluene		,
84-66-2	Diethylphthalate	8500	
7005-72-3	4-Chlorophenyl-phenylether		
86-73-7	Fluorene	8500	
100-01-6	4-Nitroaniline	21000	•
	4,6-Dinitro-2-methylphenol		
	N-Nitrosodiphenylamine (1)		
101-55-3	4-Bromophenyl-phenylether	8500	
118-74-1	Hexachlorobenzene	8500	U
87-86-5	Pentachlorophencl	21000	
85-01-8	Phenanthrene	1500	J
120-12-7	Anthracene	8500	U
86-74-8	Carbazole	8500	U
84-74-2	Di-n-butylphthalate	8500	U
206-44-0	Fluorantnene	8500	U
129-00-0	Pyrene	8500	U
85-68-7	Butylbenzylphthalate	8500	U
91-94-1	3,3'-Dichlorobenzidine	8500	U
56-55-3	Benzo(a) anthracene	8500	U
218-01-9	Chrysene	8500	U
	bis(2-Ethylhexyl)phthalate		U
117-84-0	Di-n-octyl phthalate	8500	U
205-99-2	Benzo(b)fluoranthene	8500	U
207-08-9	Benzo(k)fluoranthene	8500	Ū
50-32-8	Benzo(a)pyrene	8500	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	8500	U
53-70-3	Dibenz(a,h)anthracene	8500	Ū
191-24-2	Benzo(g,h,i)perylene	8500	U

(1) - Cannot be separated from Diphenylamine

FORM 1 SV-2

RFW (v3.3)

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SH899-12206-B706-02

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L973-002

Sample wt/vol: 30.2 (g/mL) \underline{G}

Lab File ID: <u>D011105</u>

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: 22 decanted: (Y/N) Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL)

Date Analyzed: 01/11/00

Injection Volume: 2.0(uL)

Dilution Factor: 20.0

GPC Cleanup: $(Y/N) \underline{Y}$ pH: $\underline{8.3}$

CONCENTRATION UNITS:

Number TICs found: 38

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST: CONC.	Q
=======================================		======		=====
1.	8 TO 24 MINUTES			
2.	UNRESOLVED HYDROCARBONS			
3.	C3-ALKYLBENZENE	7.72	30000	J
4.	C3-ALKYLBENZENE	7.84	30000	J
5.	C3-ALKYLBENZENE	8.32	60000	J
6.	UNKNOWN	8.64	20000	J
7.	C3-ALKYLBENZENE	8.88	30000	J
j 8.	CYCLOALKANE	8.96	20000	J
9.	UNKNOWN	9.30	30000	J
10.	ALKANE	9.36	20000	J
11.	C4-ALKYLBENZENE	9.43	3,0000	J
12.	ALKANE	9.48	20000	J
13.	CYCLOALKANE	9.83	30000	J
14.	C4-ALKYLBENZENE	9.92	30000	J
15.	C4-ALKYLBENZENE	10.46	9000	J
16.	C4-ALKYLBENZENE	10.55	9000	J
17.	CYCLOALKANE	10.69	10000	J
18.	UNKNOWN	10.86	20000	J
19.	ALKANE	10.99	10000	J
20.	UNKNOWN	11.10	10000	J
21.	CYCLOALKANE	11.49	10000	J
22.	UNKNOWN	11.58	20000	J
23.	ALKANE	11.76	20000	J
24.	CYCLOALKANE	12.31	30000	J
25.	ALKANE	12.49	9000	J
26.	ALKANE	12.62	30000	J
27.	ALKANE	13.28	10000	
28.	UNKNOWN	13.67	10000	J
29.	CYCLOALKANE	13.80	20000	J
30.	ALKANE	14.01	10000	J
1				

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

Lab Name: Recra.LabNet Work Order: 01667600001

SH899-12206-B706-02

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 9912L973-002

Sample wt/vol: 30.2 (g/mL) G

Lab File ID: <u>D011105</u>

Level: (low/med) LOW

Date Received: <u>12/08/99</u>

% Moisture: ____22 decanted: (Y/N)___ Date Extracted: <u>12/18/99</u>

Injection Volume: 2.0(uL)

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/11/00

Dilution Factor: 20.0

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{8.3}$

CONCENTRATION UNITS:

Number TICs found: 38

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
=======================================		======	=========	=====
31.	ALKANE	14.09	20000	J
32.	CYCLOALKANE	14.45	7000	J
33.	ALKANE	15.05	10000	J
34.	UNKNOWN	15.17	20000	J
35.	UNKNOWN	15.21	40000	J
36.	UNKNOWN	16.52	20000	J
37.	UNKNOWN	16.82	10000	J
38.	ALKANE	17.49	30000	J
39.	ALKANE	18.15	40000	J
40.	ALKANE	19.16	30000	J
				<u> </u>

FORM 1 SV-TIC

RFW (v3.3)

Raw QC Data: Tune, Blank and Spike Data

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

i	•		
SBLKJD		•	

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 99LE1535-MB1

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: D011013

Level: (low/med) LOW

Date Received: 12/18/99

% Moisture: ____ decanted: (Y/N) __ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL)

Date Analyzed: 01/10/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS:

CAS NO.	COMPOUND		or ug/Kg)		Q
108-95-2	Phenol			330	
	bis(2-Chloroeth	vliether	 ¦	330	' !
95-57-8	2-Chlorophenol			330	
541-73-1	1,3-Dichlorober	zene	i	330	
106-46-7	1,4-Dichlorober	ızene	 ¦	330	
95-50-1	1,2-Dichlorober	zene		330	
95-48-7	2-Methylphenol			330	
108-60-1	2,2'-oxybis(1-0	Chloropropa	ne)	330	: :
	4-Methylphenol			330	1 1
621-64-7	N-Nitroso-di-n-	propylamin	ne i	330	
67-72-1	Hexachloroethar	1 8		330	: :
98-95-3	Nitrobenzene			330	: :
78-59-1	Isophorone		——- i	330	
88-75-5	2~Nitrophenol_			330	: :
105-67-9	2,4-Dimethylphe	enol		330	'
	bis(2-Chloroeth			330	•
120-83-2	2,4-Dichlorophe	enol		- 330	
120-82-1	1,2,4-Trichlord	benzene		330	:
91-20-3	Naphthalene			330	, ,
106-47-8	4-Chloroaniline	<u> </u>		330	
87-68-3	Hexachlorobutad	iiene	i	330	
59-50-7	4-Chloro-3-meth	ylphenol		330	'
91-57-6	2-Methylnaphtha	lene		330	,
77-47-4	Hexachlorocyclo	pentadiene		330	
88-06-2	2,4,6-Trichloro	phenol		330	
95-95-4	2,4,5-Trichloro	prienol		840	
91-58-7	2-Chloronaphtha	lene		330	
88-74-4	2-Nitroaniline_			840	
131-11-3	Dimethylphthala	ice	i	330	: :
208-96-8	Acenaphthylene_			. 330	
606-20-2	2,6-Dinitrotolu	iene		330	
99-09-2	3-Nitroaniline_		i	840	
83-32-9	Acenaphthene		j	330	
					ii

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SBLKJD	•

Lab Name: Recra.LabNet Work Order: 01567600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 99LE1535-MB1

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D011013}$

Level: (low/med) <u>LOW</u> Date Received: <u>12/18/99</u>

% Moisture: _____ decanted: (Y/N) ___ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Dilution Factor: 1.00 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

		 ,
51-28-52,4-Dinitrophenol	840	 U
100-02-74-Nitrophenol	840	iu i
132-64-9Dibenzofuran	330	!!
121-14-22,4-Dinitrotoluene	330	
84-66-2Diethylphthalate	330	! !
7005-72-34-Chlorophenyl-phenylether	330	!
86-73-7Fluorene	330	
100-01-64-Nitroaniline	840	!
534-52-14,6-Dinitro-2-methylphenol		!
86-30-6N-Nitrosodiphenylamine (1)		
101-55-34-Bromophenyl-phenylether		
118-74-1Hexachlorobenzene		י ו
87-86-5Pentachlorophenol	840	י ט
85-01-8Phenanthrene	330	ט ו
120-12-7Anthracene	330	י ט
86-74-8Carbazole	330	יט ו
84-74-2Di-n-butylphthalate	69	
206-44-0Fluoranthene	330	י ו
129-00-0Pyrene	330	ָּט וֹ.
85-68-7Butylbenzylphthalate	330	ו ט
91-94-13,3'-Dichlorobenzidine	330	U
56-55-3Benzo(a) anthracene	330	י ו
218-01-9Chrysene	330	י ט
117-81-7bis(2-Ethylhexyl)phthalate	28	J
117-84-0Di-n-octyl phthalate		
205-99-2Benzo(b) fluoranthene	330	U i
207-08-9Benzo(k) fluoranthene	330	ט ו
50-32-8Benzo(a)pyrene	330	י ד
193-39-5Indeno(1,2,3-cd)pyrene	330	י ט
53-70-3Dibenz(a,h)anthracene	330	U
191-24-2Benzo(g,h,i)perylene	330	ט

(1) - Cannot be separated from Diphenylamine FORM 1 SV-2

RFW (v3.3)

CLIENT SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SBLKJD	•	

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 99LE1535-MB1

Sample wt/vol: 30.0 (g/mL) G Lab File ID: D011013

Level: (low/med) LOW

Date Received: <u>12/18/99</u>

% Moisture: ____ decanted: (Y/N)__

Concentrated Extract Volume: 500(uL)

Date Extracted: 12/18/99

Date Analyzed: 01/10/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS:

Number TICs found: 5

(ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	20.29	100	J
2.	UNKNOWN	20.34	200	J
3.	UNKNOWN	21.69	80	J
4.	UNKNOWN	22.86	80	J
5.	UNKNOWN	23.27	100	J
				l

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SBLKJDMS

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL

Lab Sample ID: 99LE1535-MB1_BS

Sample wt/vol: 30.0 (g/mL) \underline{G}

Lab File ID: D011014

Level: (low/med) LOW

Date Received: <u>12/18/99</u>

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Injection Volume: 2.0(uL)

Dilution Factor: 1.00

GPC Cleanup: (Y/N) \underline{Y} pH: $\underline{7.0}$

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q 108-95-2----Phenol 2800 Z 111-44-4-----bis(2-Chlorcethyl)ether____ 330 U 95-57-8----2-Chlorophenol____ 2600 Z 541-73-1----1,3-Dichlorobenzene____ 330 U 106-46-7----1,4-Dichlorobenzene 1600 Z 95-50-1-----1,2-Dichlorobenzene 330 U 95-48-7----2-Methylphenol____ 330|U 108-60-1----2,2'-oxybis(1-Chloropropane)___ 330 ប្រ 106-44-5----4-Methylphenol___ 330 U 621-64-7----N-Nitroso-di-n-propylamine____ 1600 Z 67-72-1-----Hexachloroethane 330 U 98-95-3-----Nitrobenzene 330 U 78-59-1-----Isophorone 330 U 88-75-5----2-Nitrophenol 330 0 105-67-9-----2,4-Dimethylphenol____ 330 U 111-91-1-----bis(2-Chloroethoxy) methane 330|U | 120-83-2----2,4-Dichlorophenol 330 | U | 120-82-1----1,2,4-Trichlorobenzene____ 1700 Z 91-20-3-----Naphthalene 330 0 106-47-8-----4-Chloroaniline 330|U 87-68-3-----Hexachlorobutadiene 330 U 59-50-7----4-Chloro-3-methylphenol____ 2600 Z 91-57-6----2-Methylnaphthalene 330 U 77-47-4-----Hexachlorocyclopentadiene 330 U 88-06-2----2,4,6-Trichlorophenol____ 330|U 95-95-4----2,4,5-Trichlorophenol_____ 840 U

91-58-7----2-Chloronaphthalene_____

606-20-2----2,6-Dinitrotoluene____

| 131-11-3-----Dimethylphthalate____

99-09-2----3-Nitroaniline_____

88-74-4----2-Nitroaniline____

83-32-9-----Acenaphthene

208-96-8-----Acenaphthylene_

330 U

840 U

330 U

330 U

330 U

840 U

1700 Z

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

	SBLKJDMS		
J			

Lab Name: Recra.LabNet Work Order: 01667600001

Client: NYSDEC

Matrix: (soil/water) SOIL Lab Sample ID: 99LE1535-MB1 BS

Sample wt/vol: 30.0 (g/mL) \underline{G} Lab File ID: $\underline{D011014}$

Level: (low/med) LOW Date Received: 12/18/99

% Moisture: ____ decanted: (Y/N)__ Date Extracted: 12/18/99

Concentrated Extract Volume: 500(uL) Date Analyzed: 01/10/00

Injection Volume: 2.0(uL) Dilution Factor: 1.00

GPC Cleanup: (Y/N) Y pH: 7.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		· · · · · · · · · · · · · · · · · · ·	
51-28-5	2,4-Dinitrophenol	840	
	4-Nitrophenol	2700	
	Dibenzofuran	330	:
	2,4-Dinitrotoluene		<u>'</u>
121-14-2	Diethylphthalate	330	
	4-Chlorophenyl-phenylether	330	•
	Fluorene	330	:
100 01 6	4-Nitroaniline	840	:
	4,6-Dinitro-2-methylphenol	I control of the cont	:
			:
	N-Nitrosodiphenylamine (1)	330	:
	4-Bromophenyl-phenylether	!	:
	Hexachlorobenzene	330	:
	Pentachlorophenol	3600	:
85-01-8	Phenanthrene	330	:
120-12-7	Anthracene	330	•
86-74-8	Carbazole	330	
	Di-n-butylphthalate	18	•
	Fluoranthene	330	:
	Pyrene	2200	:
	Butylbenzylphthalate	330	<u>.</u>
	3,3'-Dichlorobenzidine	.330	Ū
	Benzo(a)anthracene	330	U
	Chrysene	330	U
	bis(2-Ethylhexyl)phthalate		JB
117-84-0	Di-n-octyl phthalate	330	U
205-99-2	Benzo(b) fluoranthene	330	U
207-08-9	Benzo(k)fluoranthene	330	Ū
50-32-8	Benzo(a)pyrene	330	U
	Indeno(1,2,3-cd)pyrene	330	U
53-70-3	Dibenz(a,h)anthracene	330	U
	Benzo(g,h,i)perylene	330	U

(1) - Cannot be separated from Diphenylamine

Z: SPIKE COMPOUND FORM 1 SV-2 RFW (v3.3)

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC

W.O.#: 01667-600-001-9999-00

RFW#: 9912L973 (Relogged)

Date Received: 12-08-99

ELAP #: 10752

GC/MS VOLATILE-TCLP

Two (2) leachate samples were generated on 12-15-99 from soil samples collected on 12-06-99.

The samples and their associated QC samples were analyzed according to criteria set forth in NYSDEC ASP (Rev. 10-95) for TCLP Volatile target compounds on 12-15-99.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analyses:

- 1. These samples were relogged from RFW lot 9912L959.
- 2. The required holding time for analysis was met.
- 3. The samples were analyzed at five-fold dilution due to the leachate matrix.
- 4. All surrogate recoveries were within EPA QC limits.
- 5. Matrix spike analyses are associated with RFW lot 9912L959.
- 6. Internal standard area and retention time criteria were met.
- 7. The analyses were performed with the method enhancement of a 40°C heated purge to standardize the purge temperature and improve overall purging efficiency.
- 8. I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

J. Michael Taylor

Date

Vice President

Philadelphia Analytical Laboratory

som\group\data\voa\nys-t973.doc

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 92 pages.

GLOSSARY OF VOA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- **D** = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gioss.voa

GLOSSARY OF VOA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gioss.voa

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

99121973 RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page_

FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

RECRA LabNet

8	Relect	Relinquished by			· · · · ·					Special manuchons.		•			t.000	F. Figh	٠.		Light Spirit		A. Air	2	Sludge Water	- Sediment	MATRIX CODES: Lab	Account #	ĺ	B B B S 'A	200	RECRA Project Manager	Project Contact/Phone #	Project # Www.	Est. Final Prof. Sampling Date	AK	7	1 1 2 1 1 3
1 1	XI MECAL	Received by												•	Nusclec -						1	211 11 110	1		Client			99	Del CAO	3/1	:(Sampling Date	0		
	12/10/94 -	Date Time													fridge blants	- 1	L		0.5	1 01	1 02	0/4-	.		Client ID/Description		12/	Date Due 1749	TAT 7 OV TY	The state of the s	Y11/2		79-00			
		by	Delinquished				-6				DATE/R							4, 2000 av	2	toughous		+		MS MSD	Chosen	Matrix	5/99		7	_ 1						
REWRITEN	OKIGINAL	D by	Received		5. CH	4. Loc	3. 12	_	2 go	1 (4	DATE/REVISIONS:				W KINDING	-	1			۲ *	7 0	\perp	5 12/6/49		Date Matrix Collected		HECOESIES	ANALYSES		Preservatives	Volume		#/Type Container		Refrigerator #	
					ims	lockaret	vaca,		agp M	7,33	On less				1017	_	٩			1	1001		1000		Time			\bigvee			Solld	Liquid	Solid	Llquid		
		Date				as		macilo	747	1011	,				•						-		_	<u> </u>	240		VC	—	1		223	-	19/19		1 3	
		1	1			12/8	. (ı	90		-	+	-	1			 	-	1		1	06	25°C		Pe PC		ORGANIC	-	H ase		'gt _1	•	C	
		င္က တ				1/8/99 10 accesmous	-	me 12/10/99 -		160	17/	\vdash	-	+	1	-			+	+	+				- 2 C	-		erb								
	NOTES:	Samples Labels and COC Record? Y or	Discrepancies Belween			v ac		hok		-	171 959 -001+02			+	\dagger				1	,	1			03	24T			L								
		abels an rd? Y	ies Betw			11:20		79 - F			ao-										\downarrow			<u> </u>		RECF			_			_			-	
		z	een			Clua	1 m	but			+ C7	_	-	-				_	\bot	-	+	<	_	13,	45, -	A Labi		etal			/25	 	1,0		u	-
		5) Receive		4) Lab	Condit		Airbiii #	AL-hill	1) Shipped Hand Deliver	Sample	4		\perp	+	\dashv				-		+	<u> </u>	<	10	45270 NTO	RECRA LabNet Use Only	-	ON.	NORG						Ü	-
		26	<u></u>	 Labels Indicate Properly Preserves 	Condition Y	 Although of Comments Heceived in Good 	2	=	1) Shipped ———————————————————————————————————	Samples were:	RE		+	\dagger	1			+	-	+	1	<u> </u>	<	17	CLV	1					比				W	
	g z	E Stillbis	9	veg and ✓	or N	Good	žillo1		_ g	2	CRA Lat											<u> </u>	<	17	CLA							L	1	_	3	-
	Temp 'C	Cooler Y or N	Upon Sample Rec't	Sample) Y or N	A) Unbxpken on	3xPresent on Sample	Package Y or N	2) Unbroken on Outer	Package Y or N	COC Tape was:	RECRA LabNet Use Unity						V							67. 67. 80.	625T 1208T 1807T RATO											

. 1951

**

Volatile Sample QC / Data Summary

Volatiles by GC/MS, TCLP Leachate

Work Order: 01667600001 Page:

Client: NYSDEC RFW Batch Number: 9912L973

=======[] 99LTV060-LB1 5.00 MG/L0.050 0.025 0.025 WATER 0.025 0.025 0.025 0.025 0.025 0.050 0.025 104 103 94 LCHBLK 99LVN496-MB1 1.00 MG/I0.010 0.005 0.010 0.005 0.005 0.005 0.005 0.005 0.005 101 102 87 VBLKEI SH899-12206-B706-02 004 5.00 WATER 0.025 0.011 0.050 0.025 0.025 0.025 0.025 0.025 0.097 0.025 104 66 90 [] ===== Cust ID: SH899-12206-5.00 B706-01 003 MG/L0.050 0.025 0.025 0.025 WATER 0.025 0.025 0.050 0.025 0.025 0.025 98 98 87 RFW#: Matrix: Toluene-d8 Bromofluorobenzene D.F.: Units: 1,2-Dichloroethane-d4 *= Outside of EPA CLP QC limits. Carbon Tetrachloride 1,1-Dichloroethene 1,2-Dichloroethane Benzene Tetrachloroethene Trichloroethene Vinyl Chloride Chlorobenzene Information Chloroform 2-Butanone Surrogate Recovery Sample

RECRÁ LabNet Use Only

Custody Transfer Record/Lab Work Request Page 1 of 1
FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

99121973	2		置	FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS	NEL: COM	PLETE O	NLY SHA	NDED A	REAS			-						3	Lab	LabNet
Cilent	und	9				Refrigerator#	ator #		,	3 3	3	-		3	3	3	3			
Est. Final Pro	Sam	pilng Date				#/Tvne	#Tivne Contelner	Liquid												
Project # 0/	1667	Project # 0/667-600-00/-9999-		8				Solid	à	2				19	/	+	I			
Project Contact/Phone #	rct/Pho	# 90					!	Liquid												
RECRA Project Manager	ct Man	Base J. S.		dows		AOIDIOA		PiloS	e se	-05°E				125	1		I		_	
0c C.		297 E	TAT	7 BOTTON	1.10	Preservatives	tives													
	1	12 0.00		, 600	Stephan.					ORGANIC	2				INORG	-		-	_	
Date Rec'd	8		Date Due		15/49	REQUESTED	TED	A	AOV	BNA	Herb PCB Pest			Metal	СИ					
MATRIX					Matrix						-		RECRA		LabNet Use Only	Ouly		-	′ ′	
S Soil SE Socied	La D	5	Client ID/Description	iptlon	Chosen S	Matrix	Date Collected C	Time Collected	24520	2577	08090	7250		STAZHA	247	1701	700	1522	TS24 T805 T98H	101 H2 0
	ō	54899-12	. 3027	189-12206-BML-01	W CW	N	12649	200	+-			2	-	1		+-	卜	2	2	M
A - Air	cas	7	7	7 02		2	i 	400	<u> </u>	,		_	-	>	>	>	>			
Solids DL - Drum	ω^3			1 1	+00000CC	Ĵ	*	1				>			-					
	Cost			2.0	<u> </u>	2	-	_				>								
	500			01 te	chalan										.			>		
X Other	9CX.)	T	7	02	,	77	7	7								_		>	>	
	1007	Nysdec-	Pridge	blank		3	12 विविध	1619	>											
			,						\dashv	\dashv		_		\dashv						
				-																
										-	\dashv		-		_					
Special instructions:	tlons:				DATE	DATE/REVISIONS:	s: Rolea	3	MO	da	121	159	100	- (A)		REC	RA Lab	RECRA LabNet Use Only	Ž	
							1	202	12				1292		Samples were: 1) Shipped —	were:	ō	COC Ta	COC Tape was: 1) Present on Outer	3
						12073	3> 10aa		made	1	11/2	11019	or 12/10/99-but		Hand Delivered	livered		Package Y	Package Y or N	N Outer
							(Wester)		147	2.19	1 29	00 (17.18/99 th 0000mxlex	-2	Airbill #	la fo	lled	Package Y	. Y o	N TO
0(, c	198 (1,775)	y S							3) Received in Good	ved in G	poo		Acreent on Sample	ample N
9						9	, ,				.				4) Labels			(A) Unbroker Sample) Y	9 9	z
Relinquished by		Received	Date	Time	Relinquished by		Received	Date		Time	S S	Discrepancies Betwe	Discrepancies Between		riopeny	o de la companya de l		COC Re Upon Si	COC Record Present Upon Sample Rec't	sent ac't
Keloci		3	izlio/49	\		ORI	ORIGINAL				889	COC Record? Y NOTES:	y Y or	z	Holding Time	- N	z	Cooler	≻. o	
0	_	,				REW	REWRITTEN									; ,	:	lemp.		—— ပု
]									7

Case Narrative

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW#: 9912L973

ELAP#: 10752

W.O.#: 01667-600001-9999-00

Date Received: 12-08-99

CLP/ILM04.0 METALS

1. This narrative covers the analyses of 2 soil samples and 2 TCLP leachate samples.

- 2. The total samples were prepared and analyzed in accordance with CLP/ILM04.0 protocol. The TCLP samples were prepared and analyzed in accordance with <u>SW-846</u> protocol and reported with CLP deliverable. The total sample and the TCLP leachate sample have been reported on separate sets of forms.
- 3. ICVs, CCVs, and LCSs stock standards were purchased from Inorganic Ventures and High Purity.
- 4. All analyses were performed within the required holding times.
- 5. All cooler temperatures have been recorded on the original Chain of Custody.
- 6. All Initial and Continuing Calibration Verifications (ICV/CCVs) were within control limits.
- 7. All Initial and Continuing Calibration Blanks (ICB/CCBs) were within control limits.
- 8. All preparation/method blanks were below reporting limits. Refer to form 3.
- 9. All ICP Interference Check Samples (ICSA and ICSAB) were within control limits with the exception of the ending ICSAB for Selenium at 126.6% in TA1215A. All of the samples were surrounded by CCVs which were within the control limits. The concentration of the interferring analytes was lower in the samples as compared to the ISCAB solution. Therefore, it is unlikely that the samples are significantly impacted.
- 10. All laboratory control samples (LCS) were within the 80-120% control limits. Refer to form 7.
- 11. All serial dilution percent differences were within method control limits. Refer to form 9.
- 12. All sample IDs were changed to accommodate the EPA naming convention which allows a maximum of 6 characters on all CLP Forms. Refer to the comments section of form 1 for the original ID.

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 3% pages.

- 13. The TCLP extract from sample SH899-12206-B706-01 was selected for the matrix spike for this analytical batch. All TCLP matrix spike recoveries were greater than 50% as per method criteria.
- 14. All matrix spike, duplicate and serial dilution analyses for the soil sample were performed on NYSDEC, Recra batch# 9910L393. Refer to this package for the appropriate set of QC forms.
- 15. Recoveries on the Laboratory Summary Report and CLP forms will vary depending on the number of significant figures used in the recovery calculation.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

mld/m12-973

12-30-99

Date

METALS METHOD GLOSSARY

The following methods are used as reference for the digestion and analysis of samples contained the Recra Lot#: 99176973	nined within this
Leaching Procedure:131013111312Other:	
CLP Metals Digestion and Analysis Methods:ILM03.0 _ILM04.0 (Total S	amples)
Metals Digestion Methods:3005A3010A30153020A3050B3051200Other:	.7 _SS17
Metals Analysis Methods	,
EPA	
SW846 EPA STD MTD OSWR	USATHAMA
Aluminum 6010B 200.7	99
Antimony 6910B 7041 5 200.7 204.2	— 99
Arsenic 6010B 7060A 5 200.7 206.2 3113B	99
Barium 6010B 200.7	99
Beryllium	- 99
Bismuth 6010B 1 200.7 1 1620	<u></u>
Boron 6010B 200.7	99
Cadmium \(\frac{1}{6010B} \) \(7131A^5 \) \(200.7 \) \(213.2 \)	₉₉
Calcium 6010B 200.7	₉₉
Chromium \(\sqrt{6010B} \) 7191 \(\sqrt{5} \) \(\sqrt{200.7} \) \(\sqrt{218.2} \)	SS17
Cobalt 6010B 200.7	99
Copper 6010B 7211 5 200.7 220.2	99
Iron 6010B 200.7	99
Lead \(\sqrt{6010B} \) 7421 \(\sqrt{7} \) 200.7 239.2 3113B	99 ,
Lithium 6010B 7430 4 200.7 1620	99
Magnesium 6010B 200.7	99
Manganese 6010B 200.7	99
Mercury $\sqrt{7470}$ A ³ 7471 A ³ 245.1^2 245.5^2	99
Molybdenum 6010B 200.7	99
Nickel 6010B 200.7	99
Potassium 6010B 7610 200.7 258.1 4	<u></u> 99
Rare Earths	<u> </u>
Selenium \(\sqrt{6010B} \) \(7740^5 \) \(200.7 \) \(270.2 \) \(3113B \)	99
Silicon 6010B 1 200.7 1620	99
Silica 6010B 200.7 1620	99
Silver \(\sqrt{6010B} \) \(\sqrt{7761}^{5} \) \(\sqrt{200.7} \) \(\sqrt{272.2} \)	99
Sodium 6010B 7770 4 200.7 273.1 4	99
Strontium 6010B 200.7	99
Thallium 6010B 7841 5 200.7 279.2 200.9	99
Tin 6010B200.7	99
Titanium6010B200.7	<u></u> 99
Uranium	<u>_</u> 99
Vanadium6010B200.7	<u>_</u> 99
Zinc6010B200.7	<u></u> 99
Zirconium6010B 1200.7 11620	99
Other: Method:	
L-WI-033/M-11/99	014

METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- B = Indicates that the parameter was between the Instrument Detection Limit (IDL) and the Contract Required Detection Limit (CRDL)

Q QUALIFIERS

- E = The reported value is estimated because of the presence of interference.
- M = Duplicate injection precision not met.
- N = Spiked sample recovery not within control limits.
- S = The reported value was determined by the Method of Standard Additions (MSA).
- W = Post Digestion spike for Furnace AA analysis is out of control limits (85 -115 %), while sample absorbance is less than 50% of spike absorbance.
- * = Duplicate analysis not within control limits.
- += Correlation coefficient for the MSA is less than 0.995.

ABBREVIATIONS

PB = Method or Preparation Blank.

S = Matrix Spike.

T = Matrix Spike Duplicate.

R or D = Sample Replicate

ANALYTICAL METAL METHODS

- 1. Not included in the method element list.
- 2. Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, 0.1 grams of sample is taken to a final volume of 50 mL (including all reagents).
- 3. Modified Hg: Hg1 and Hg2 require less total volume of digestate due to the autosampler analysis. Sample volumes and reagents for mercury determinations in water and soil have been proportionately scaled down to adapt to this semi-automated technique. The sample volume used for water analysis is 33 mL. For soils, three 0.1 gram of sample is taken to a final volume of 50 mL (including all reagents).
- 4. Flame AA.
- Graphite Furnace AA.
 RFW 21-21L-033/O-01/97

WET CHEMISTRY METHODS GLOSSARY FOR ANALYSIS OF SOIL/SOLID SAMPLES

	<u>ASTM</u>	<u>SW846</u>	OTHER
%Ash	D2216-80		
%Moisture	D2216-80		ILMO4.0 (e)
%Solids			ILMO4.0 (e)
%Volatile Solids	D2216-80		
ASTM Extraction in Water	D3987-81/85		
BTU	D240-87		
CEC		9081	_ c
Corrosivity by coupon by pH		1110 (mod)9045	
Cyanide, Total		9010	_ ILMO4.0 (e)
Cyanide, Reactive		_ Sec 7.3	
Density			_ b
Halides, Extractable Organic			_ EPA 600/4/84-008 (mod)
Halides, Total			_ EPA 600/4/84-008 (mod)
EP-Toxicity		1310A	
Flash Point		1010	
Ignitability		1010	
Carbon, Total Organic (by LOI)			c
Oil and Grease		9071A	
Carbon, Total Organic		9060	_ Lloyd Kahn (mod)
Oxygen Bomb Prep for Anions	D240-87 (mod)	5050	
Petroleum Hydrocarbons, Total Rec	coverable	9071	EPA 418.1 (mod)
pH, Soil		9045B	
Sulfide, Reactive		Sec 7.3	
Specific Gravity	D1429-76C		
Sulfur, Total		9056	
TCLP		1311	
TCLV		1311	
Synthetic Precipitation Leach		1312	
Chlorine, Total		9056	
Paint Filter		_ ⁹⁰⁹⁵	
Other:	Method: _		_

RECRA

METHOD REFERENCES AND DATA QUALIFIERS

DATA QUALIFIERS

- U = Indicates that the parameter was not detected at or above the reported limit. The associated numerical value is the sample detection limit.
- = Indicates that the original sample result is greater than 4x the spike amount adder

ABBREVIATIONS

MB = Method or Preparation Blank.

MS = Matrix Spike.

MSD = Marrix Spike Duplicate.

REP = Sample Replicate

LC = Laboratory Control Sample.

NC = Not calculated.

A suffix of -R, -S, or -T following these codes indicate a replicate, spike or sample duplicate analysis respectively.

ANALYTICAL WET CHEMISTRY METHODS

- 1. ASTM Standard Methods.
- USEPA Methods for Chemical Analysis of Water and Wastes (USEPA 600/4-79 020).
- 3. Test Methods for Evaluating Solid Waste (USEPA SW-846).
- Standard Methods for the Examination of Water and Waste, 16 ed. (1989).
- b. Standard Methods for the Examination of Water and Waste, 17 ed., (1983)
- c. <u>Method of Soil Analysis.</u> Part 1, Physical and Mineralogical Methods, 2nd. Ed. (1986)
- d. Method of Soil Analysis, Part 2, Chemical and Microbiological Properties, Am. Soc. Agron., Madison, WI (1965)
- e. USEPA Contract Laboratory Program. Statement of Work for Inorganic Analysis
- f. Code of Federal Regulations.

		INORGANIC A	ANALYSES DATA	SHE	ET	EPA	SAMPLE NO.
			0 mm bross = b = 0:		-	В	70601
Lap Name: RECR	A_LABNET		Contract: 0.	166	/	_	
Lab Name: RECR	A_ Ca	se No.: SH	399_ SAS No.:	:		SDG	No.: 12206
Matrix (soil/w	ater): SOIL	_		La	b Sam	ple ID:	9912L973-0
Level (low/med	LOW_	_		Da	te Red	ceived:	12/08/99
% Solids:	_87.	0					
Co	ncentration	Units (ug,	/L or mg/kg dry	y w	eight): MG/K	G
	CAS No.	Analyte	Concentration	С	Q	M	
	7429-90-5	Aluminum	6340	- -		$-\left \overline{\mathbf{p}} - \right $	
	7440-36-0	Antimony_	0.41	ט		~ p~	
	7440-38-2	Arsenic_	9.0			P P	
		Barium	89.5 0.54	굨.	·	- P P	
	7440-41-7 7440-43-9	Beryllium Cadmium	0.08			- 5-	
	7440-43-9	Calcium	3150			P P P P	
	7440-47-3	Chromium	9.4	- -		- p-	
		Cobalt	5.8	$\overline{\mathbf{B}}$		- P-	
	7440-50-8	Copper	28.0	- -		P	
	7439-89-6	Iron	19300	- -		P	
	7439-92-1	Lead	29.8	- -		P	
	7439-95-4	Magnesium	2250			P_	
	7439-96-5	Manganese	108	_ .		P_	
	7439-97-6	Mercury	4.0	_ -		A∇	
	7440-02-0	Nickel	14.9	<u>-</u> -		P_ P_	
	7440-09-7	Potassium		В.		- 5-	
	7782-49-2	Selenium_ Silver	1.3	77 -		P	
	7440-23-5	Sodium	75.4			- 5-	
•	7440-28-0	Thallium	0.83			P P P	
		Vanadium	16.2			- P-	
	7440-66-6	Zinc	139	- -	r	P	
	5955-70-0	Cyanide_	0.57	<u></u>		_ c_	
Color Before:	l	Clari	y Before:			Textu	re:
Color After:			ty After:		•	Artif	
							
Comments: SH899-12206	-B706-01						····
				-			

FORM I - IN

U.S. EPA - CLP

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: RECR	A LABNET		Contract: 03	166.	7	B70602
			399_ SAS No.:	: _		SDG No.: 12206_
Matrix (soil/w	ater): SOIL	<u>_</u> ·	·	Lal	b Sampl	e ID: 9912L973-0
Level (low/med): LOW_	_		Dat	te Rece	eived: 12/08/99
Solids:	_77.	6				
Co	ncentration	Units (ug,	/L or mg/kg dry	y we	eight):	MG/KG
	CAS No.	Analyte	Concentration	C	Q	M
					~	
	7429-90-5	Aluminum_	9120			P_
	7440-36-0	Antimony_	0.53	0		P_
	7440-38-2	Arsenic	10.4	_ -		P_
·	7440-39-3	Barium	29.0			P_ P_
	7440-41-7	Beryllium	0.52	B _		P_
	7440-43-9	Cadmium	0.56			P_ P_
	7440-70-2	Calcium_	1850	_ -		<u>P</u> _
	7440-47-3	Chromium_	9.8	_ -		P
	7440-48-4	Cobalt	5.4	B -		P- P-
	7440-50-8	Copper	143	-		<u> </u>
	7439-89-6	Iron	17700	_ -		P_ P_
	7439-92-1	Lead	9.1	[_[-		5-1
	7439-95-4	Magnesium	2410			P- P-
	7439-96-5	Manganese	87.3			2.7
•	7439-97-6	Mercury	0.03	- ا تا ا		A∇
	7440-02-0	Nickel	17.3	등 -		P_P
	7440-09-7	Potassium				<u>F</u> -
	7782-49-2	Selenium_	1.6	 -		P P
	7440-22-4	Silver	0.20			5-1
	7440-23-5	Sodium	67.7]	P- P-
	7440-28-0	Thallium_	1.1			P_ P_
	7440-62-2	Vanadium_	15.7	- -		5-1
	7440-66-6	Zinc	160			P_
	5955-70-0	Cyanide	0.64			<u>c_</u>
Color Before:		Clari	ty Before:			Texture:
Color After:		Clari	ty After:			Artifacts:
Comments: SH899-12206	-B706-02					
					···	

FORM I - IN

Lab Name: RECRA_LABNET_____ Contract: 01667____

Lab Code: RECRA_ Case No.: SH899_ SAS No.: ____ SDG No.: 12206_

Preparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Initial Calib. Blank (ug/L)	С	Conti 1		ing Cal ank (uc	3/L)		ion 3	С	Prepa- ration Blank C	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	10.1 2.1 2.7 0.2 0.1 0.4 8.6 -1.6 0.7 0.5 13.6 2.1 6.3 0.2 0.1 1.0 17.8 4.1 0.8 4.8 4.3 0.6	ומטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	10.1 2.1 2.7 0.2 0.1 0.4 8.6 -1.9 0.7 0.5 13.6 2.1 6.3 0.2 0.1 1.0 24.1 4.1 0.8 4.8 4.3 0.7 0.5	T B C C C C C C C C C C C C C C C C C C	-11 -2 -2 -0 -0 -0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1	BUUUUUUBBBUUUUUBUUUBUBUBU	11.6 2.1 2.7 0.2 0.1 0.4 8.6 -3.2 0.7 0.5 13.6 2.4 6.3 0.2 0.1 1.0 29.6 4.1 0.8 4.8 4.3 1.0 0.5	BUUUBUUBUUUBUUUBUUUBUUUBU	2.020 U 0.420 U 0.540 U 0.540 U 0.162 B 0.020 U 0.080 U 7.806 B 0.140 U 0.140 U 0.140 U 0.140 U 0.2.720 U 0.420 U 1.880 B 0.040 U 0.050 U -0.271 B 4.747 B 0.820 U 0.160 U 6.112 B 0.860 U 0.120 U	P P P P P P P P P P P P P P P P P P P
Zinc Cyanide		ָ ק	10.0_	U —	10		ט	10.0_	Ū	0.500	c

Lab	Name:	RECRA_LABNET_		Contract:	01667		
Lab	Code:	RECRA_	Case No.: SH899_	SAS No.:		SDG No.:	12206_
Prep	paratio	on Blank Matrix	(soil/water):				
rep	paratio	on Blank Concer	ntration Units (ug/	L or mg/kg)	:		•

Analyte	Initial Calib. Blank (ug/L)	С	Conti	ini Bi C	ing Calib Lank (ug/L 2	rat) C	ion 3	С	Prepa- ration Blank C	м
Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_Manganese_Mercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Cyanide							10.0			NR- NR- NR- NR- NR- NR- NR- NR- NR- NR-

FORM III - IN

Lab Name:	RECRA_LABNET_		Contract: 01667	<u> </u>					
Lab Code:	RECRA_	Case No.: SH899_	SAS No.:	SDG No.: 12206_					
Preparation Blank Matrix (soil/water):									
Preparation	on Blank Concer	ntration Units (ug/	L or mg/kg):						

Analyte	Initial Calib. Blank (ug/L)	c	Conti	uing Cali lank (ug/ 2	ti	on 3	С	М
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	0.1	Ū	0.1	 0.1		0.1		

FORM III - IN

			ABNET			01667			
зb	Code:	RECRA_	Case No.: S	SH899_	SAS No.:		SDG	No.:	12206_
Prep	paratio	on Blank	Matrix (soil/wate	er):	_				
rep	paratio	on Blank	Concentration Uni	ts (ug/L	or mg/kg):			

Analyte	Initial Calib. Blank (ug/L)	С	Cont:	ini Bi C	uing Calib lank (ug/L) 2	rai	tion 3	С	Prepa- ration Blank C M	
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide					0.1				NR NR NR NR NR NR NR NR NR NR NR NR NR N	

U.S. EPA

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: RECRA_	LABNET	Contract: 01667	
Lab Code: RECRA_	Case No.: SH899	SAS No.:	SDG No.:12206_
SOW No.: ILM04			
_	PA Sample No. B70601 B70601S B70602	Lab Sample ID _9912L973-005 _9912L973-006	
			•
Wore TCP interel	ement corrections appl	ied ?	Yes/No YES
	und corrections applie		Yes/No YES
If yes - we	re raw data generated of background correct	before	Yes/No NO
Commonts			105) NO NO_
TC-U	P Samples		
conditions of the other than the condition in this hardcopy on floppy disket	his data package is in e contract, both technonditions detailed about data package and in the has been authorized ee, as verified by the expression of the e	nically and for comple ove. Release of the d the computer-readable I by the Laboratory Ma	eteness, for lata contained data submitted anager or the

COVER PAGE - IN

1 INORGANIC ANALYSES DATA SHEET

7777	@334D	
EPA	SAMPLE	NO.

ab Name: RECR ab Code: RECR atrix (soil/w evel (low/med Solids: Co	A Ca ater): WATE): LOW0.	ō	Contract: 0: 899 SAS No. /L or mg/kg dry	Lā Da	ab Samp ate Rec	le ID: eived:	No.: 1: : 9912L9 : 12/08/	973-0
	CAS No.	Analyte	Concentration	С	Q	M		
				_				
	7440-38-2		34.3	ן ע		P P		
	7440-39-3	Barium	910	l _1		P		
	7440-43-9	Cadmium	3.9	ו 😈 ו		P		
	7440-47-3	Chromium	3.6			p		
	7439-92-1	Lead	57.2			P_ P_		
	7439-97-6		0.10	📻		ĀŪ		
	7782-49-2		66.9			D'		
		Silver				P_ P_		
	7440-22-4	Silver	4.0	ע				
				_				
			l ————	_		11		
-				_		l <u>—</u>		
		l		_		 _		
			l			11		
				-	·	1-1		
				-				
			[-				
				-				
				-		I—I		,
						[
				_				
				_				
				_				
]		_		11		
		·		_		l		
				-				
				-				
				_		-		
				-		-		
				-		 -		
		·		-			***	
	\	·		-		 -	•	٠,
•	ļ	·		_				
•		. I <u></u> -					•	
olor Before:		Clari Clari	ty Before:		-	Textu Artif		
					-	·	_	
omments: SH899-12206	-B706-01							

061

1 INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.
-----	--------	-----

Contact: 01667 STO No.: 122 STO No.: 122 STO No.: 123 STO No.: 123 STO No.: 123 STO No.: 124 STO No.: 124 STO No.: 125 ST			INORGANIC	ANALYSES DATA :	SHE	ET		
Code: RECRA				G		-	B70602	
rix (soil/water): WATER el (low/med): LOW_	Name: RECR	A_LABNET	TO NO A CVI			7	CDC No.	1220
Cas No.	Code: RECK	ACa	se no.: Sn	899 SAS NO.		b Comp		
Concentration Units (ug/L or mg/kg dry weight): UG/L_ CAS No.	rlx (soll/w	ater): WATE	K	•	Dэ	to Book	10: 3312	10 /00
Cas No. Analyte Concentration C Q M P P P P P P P P	el (low\med		$\overline{}$	•	Da	LE NEC	erved. 12/0	0/33
CAS No.	JIIus.		U					
7440-38-2 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7439-97-6 Mercury 7440-22-4 Silver	Co	ncentration	Units (ug	/L or mg/kg dry	y w	eight)	: UG/L_	
7440-39-3 Barium 3.9 U P P 7440-47-9 Cadmium 3.9 U P P P 7440-47-3 Chromium 3.6 U P P P 7439-92-1 7439-97-6 Mercury 0.18 7782-49-2 Selenium 66.9 U P P P 7440-22-4 Silver 4.0 U P P P P P P P P P		CAS No.	Analyte	Concentration	С	Q	M	
7440-39-3 Barium 3.9 U P P			.]					
7439-92-1 Lead 62.0							P_	
7439-92-1 Lead 62.0	•			381	==		<u>P_</u>	
7439-92-1 Lead 62.0							<u>P_</u>	
7439-97-6 Mercury							<u>P</u> _	
7782-49-2 Selenium		7439-92-1	Lead				٢==	
7440-22-4 Silver 4.0 U P			Mercury	0.18	=			
or Before: Clarity Before: Texture:							P_	
or Before: Clarity Before: Texture: Artifacts:		7440-22-4	Silver	4.0			P_	
or Before: Clarity Before: Texture: Artifacts:					1-1		11	
or Before: Clarity Before: Texture: Artifacts:					1-1		<u></u> -	
or Before: Clarity Before: Texture: Artifacts:					_			
or Before: Clarity Before: Texture: Artifacts:					1-1		ll	
or Before: Clarity Before: Texture: Artifacts:				1	_			
or Before: Clarity Before: Texture: Artifacts:					-			
or Before: Clarity Before: Texture: Artifacts:					1_1			
or Before: Clarity Before: Texture: Artifacts:					_			
or Before: Clarity Before: Texture: Artifacts:					1_1		l <u></u> l	
or Before: Clarity Before: Clarity After: Texture: Artifacts:					_		11	
or Before: Clarity Before: Clarity After: Texture: Artifacts:					_			
or Before: Clarity Before: Clarity After: Artifacts:					1-1			
or Before: Clarity Before: Clarity After: Texture: Artifacts:			<u> </u>		1_1			
or Before: Clarity Before: Clarity After: Artifacts:					_			
or Before: Clarity Before: Clarity After: Artifacts:				·	1-1			
or Before: Clarity Before: Clarity After: Artifacts:					_		·	
or Before: Clarity Before: Texture: Artifacts:		<u> </u>	_		-		[
or Before: Clarity Before: Texture: Artifacts:		ļ	. 		1-1			
or Before: Clarity Before: Texture: Artifacts:			-		-			
or Before: Clarity Before: Texture: Artifacts:			-		-			
or Before: Clarity Before: Texture: Artifacts:					-			
or Before: Clarity Before: Texture: Artifacts:			-		1-1			
or Before: Clarity Before: Texture: Artifacts:					-			
or Before: Clarity Before: Texture: Artifacts:			-		-			
or Before: Clarity Before: Texture: Artifacts:		\	.	l	1-1		l <u> </u>	
of After: Clarity After: Artifacts			Clari	ty Before:		-		
	or wiret.		CIGII	of Breeze		•	IL CLIUCIS.	
ments: SH899-12206-B706-02		-B706-02						

FORM I - IN

062

Lab	Name:	RECRA_LABNET_		Contract:	01667		
Lab	Code:	RECRA_	Case No.: SH899	SAS No.:	_	SDG No.:	12206_
Prep	paration	on Blank Matrix	x (soil/water): WAT	ER			

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L_

,							······································			
Analyte	Initial Calib. Blank (ug/L)	Prepa- ration Blank C	M							
Arsenic_Barium_Cadmium_Chromium_Lead_Mercury_Selenium_Silver_	34.3 5.6 3.9 3.6 29.5 0.1 66.9 4.0		1 34.3 5.6 3.9 3.6 29.5 0.1 66.9 4.0	חוווווווווווווווווווווו	2 34.3 5.6 3.9 3.6 29.5 -0.1 66.9 4.0	ם ממממם ב	3 -34.3 -5.6 -3.9 -3.6 -29.5 -0.1 -66.9 -4.0	כ מם מממם	34.300 U P 5.600 U P 3.900 U P 3.600 U P 29.500 U P	
		 - - -		_ _ _ _		- - -		 - - - -		
		_		_ 		-				_

FORM III - IN

Lab	Name:	RECRA_LABNET_		Contract:	01667
Lab	Code:	RECRA_	Case No.: SH899	SAS No.:	SDG No.: 12206_

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L_

Analyte	Initial Calib. Blank (ug/L)	С	Cont:	inu Bl C	Prepa- ration Blank C					
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver					-0.1		34.30 5.60 3.90 3.60 40.06 0.10 66.90 4.00	0 UUU	P P P P P P P P P P P P P P P P P P P	
		- - - - - -		- - -						

FORM III - IN

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO.

Lab Name: 1	RECRA			Contrac 9 SAS No.)601S : 1220	_				
Matrix:\ % Solids fo	_							: _LOW_		-
	Concentr	ation Unit	s (ug/I	or mg/kg d	ry wei	ight): T	IG/L_			
Analyte	Control Limit %R	Spiked Sa Result		Sample Result (S		Spik Added	e (SA)	%R	Q	М
Arsenic_ Barium_		97635		910.1	000 U 550 _	10000		97.3 96.7	- - -	P_ P_
Cadmium_ Chromium_ Lead		4515	1610 6540 0580		000 Ū 000 U 950	500	0.00	90.8 90.3 96.5	 - 	P P P
Mercury_ Selenium_ Silver		1015	3440_	66.9	_	100	0.00			NR P P
										_
										_
										_
				-	-					_
									_	<u> </u>
									_	
									_	_
					-					<u>-</u>
									_	
Comments: SH899-1 TCLP OF	2206-B706	5-01							<u>-</u>	
				V (Part 1)	- TN				- - -	

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC

W.O.#: 01667-600-001-9999-00

RFW #: 9912L973 (Relogged)

Date Received: 12-08-99

ELAP #: 10752

SEMIVOLATILE-TCLP

Two (2) leachate samples were generated on 12-15-99 from soil samples collected on 12-06-99.

The samples and their associated QC samples were extracted on 12-21-99 and analyzed according to criteria set forth in Recra OPs based on NYSDEC ASP (Rev. 10-95) for TCLP Semivolatile target compounds on 01-03,04-2000.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. This set of samples has been relogged from RFW lot 9912L959.
- 2. The samples were extracted at five-fold dilution due to the leachate matrix.
- 3. All required holding times for extraction and analysis were met.
- 4. All surrogate recoveries were within EPA QC limits.
- 5. All blank spike recoveries were within EPA QC limits.
- 6. Internal standard area criteria were not met for the method blank spike 99LE1549-MB1 BS. The analysis of associated blank spike duplicate 99LE1549-MB1 BSD fulfills the reanalysis requirement.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

Date

som\group\data\bna\nys12t973.doc

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 135 pages.

GLOSSARY OF BNA DATA

DATA QUALIFIERS

- U = Compound was analyzed for but not detected. The associated numerical value is the estimated sample quantitation limit which is included and corrected for dilution and percent moisture.
- J = Indicates an estimated value. This flag is used under the following circumstances: 1) when estimating a concentration for tentatively identified compounds (TICs) where a 1:1 response is assumed; or 2) when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. For example, if the limit of detection is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination. This flag is also used for a TIC as well as for a positively identified TCL compound.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- D = Identifies all compounds identified in an analysis at a secondary dilution factor.
- I = Interference.
- NO = Result qualitatively confirmed but not able to quantify.
- A = Indicates that a TIC is a suspected aldol-condensation product.
- N = Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- X = This flag is used for a TIC compound which is quantified relative to a response factor generated from a daily calibration standard (rather than quantified relative to the closest internal standard).
- Y = Additional qualifiers used as required are explained in the case narrative.

mmz\10-94\gloss.bna

GLOSSARY OF BNA DATA

ABBREVIATIONS

BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spike solutions and carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

DL = Suffix added to sample number to indicate that results are from a diluted analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Required.

SP, Z = Indicates Spiked Compound.

mmz\10-94\gioss.bna

 $\mathbf{0}^{\dagger}$

TECHNICAL FLAGS FOR MANUAL INTEGRATION

Manual quan modifications or integrations are performed routinely to improve the data quality for a variety of technical reasons. Documentation of these modifications should be clear and concise. The following "flags" are used to indicate the technical reasons for quan modifications:

- MP Missed Peak: manually added peak not found by automatic quan program.
- PA Peak Assignment: quan report was changed to reflect correct peak assignment.
- RI Routine Integration: routine integrations are performed for some analytes that are consistently integrated improperly by the automatic integration programs. Examples are the dichlorobenzene isomers on the VOA packed column and benzo(b)fluoranthene/benzo(k)fluoranthene which are poorly resolved on the BNA column.
- SP Split Peak: the automatic integration improperly split the peak; a manual integration was performed to get the correct area.
- CB Coelution/Background: peak was manually integrated to eliminate contribution from coeluting compounds, background signal, or other interference.
- Proper Integration: a peak with poor or inconsistent integration (e.g., excessive tail) was properly integrated manually.

RECHA LabNet Use Only 99122973

Custody Transfer Record/Lab Work Request Page of FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

	recex	Wales.	Relinquished								Special instructions:						- -	_	L- EP/TCLP C	_	Solids	? ≩ ⊊	Water	SO Solld	CODES:	MATON	Account #		ac Cla	RECRA Project Manager	Project Contact/Phone #	Project # 0/6	Est. Final Proj.	Client //	112113
-	$\frac{1}{\sqrt{2}}$	\rightarrow									78:					600	OCC.	222	Cost		ا انر	22	00/		<u> </u>			2	l 	Mene	<i>V</i> Phon	67	Samp	ishu	
		s mary	Received												•	Nusclec - fridge	1				_	8 P	SH899-12		Cile		}	79	DE C	さんな	***	Project # 0/667-600-001-9999-	ling Date	0	
	10101	n halaa	Date												,	Priclas	ا						2206		Client ID/Description		200	Date Dire	TAT			-666			
	f	-	Time													1	1				-	-	-B701		cription				4			8			l
L	1]									· ;	٠.		blank	02	0	02	0	2		10-1				12	6620	888	da					
			Relin											-	_	-		古			_	,		=		_	15	200	*	E	,				į
			Relinquished by					ļ				DAT				\vdash	+	A Part	+	The state of	1			MS MSD	Chosen Seen	Matrix	199	नाजा	+						: !
100		0						100	<u>}</u>			DATE/REVISIONS:		-		٤	2+	R	2	F		1	8		Matrix	-	REQ	_	1	T	- Volume			Refri	
NE VVIII IE	5	ORIGINAL	Received by	6.	ı.	л —	4. 1	<u> </u>	V	 >> 	- 1		_	·					\perp	_	*	p _	1121				REQUESTED	LYSES	Preservatives		3		#/Type Container	Refrigerator <i>i</i>	ļ.
	7	MA	y				ocycles	, www	K/0/4	99 PK	Kale	2			-	12/10/99/1	<u> </u>		1	_			12/6/19/1		Date Collected C					L			<u> </u>		
	=					Ο,	1	\								1619	9		+	-	1	1007	1000		Time Collected		1	7		Solid	Liquid	Solid	Liquid		
			Date				as		maclo	292	rom					<						1	1		246		VO.	-		123	1_	de se	<u> </u>	`	
			Time				12/8	- (R	171		_	ļ		-	\perp	_	_	4		_			250		BN. Pes	—ાંદ	_	350	_	10	-	3 3	<u> </u>
L							199		720	THE S				-	-		+	-	\dotplus	-	_	_	\	00	608 C		PCI	_	-	1	+		\vdash	3	
		COC Re	Discreps Samples				10 0	-	2/10		1, Ch 171		-	\vdash	╀	-	+	+	+,		٧,		_	(17)	7	-	Her	^D	-	╀	╀	+	\vdash		
		COC Record? Y	Discrepancies Between Samples Labels and				ece		me 12/10/99.	#) 	H	-	+	-	-	+	+	7			_	00	24T]			\vdash	+	╁	+	+		
		9 Z	etween and		!		mee		but		-00170	y - +	-	+	+	+	1	+	+	1			-			ECRA				\dagger	\dagger	\dagger	\vdash		
				L		ا) 	3	_	-		<u> </u>	r	+	Ť	+	1	\dagger	\dagger			<	<	13,	45670	LabNe	Met	ai z		125		18		u	
		Holding Time	5) Received	Properly Preserve	4) Labels Indicate	Condition Y or N	18 199 10 acceptance of 2) Ambient of Crimed	Airbill #		 Shipped —— Hand Delivered 	Samples were:			1	+		1	+	+			<	<	1 .	NTO	RECRA LabNet Use Only	CN	al NOH		\prod		1		3	
		¥ م		breserve	; Indicat	1 4 0	and in G			ed	were:	REC		T		1	1					<	<	17	CLV	Only				I	$\cdot \mathbb{L}$	I		3	
		z	¥ (ē 	3	iond of			Q		'AA Lab										<	<	17	TCG						\blacksquare	F		3	
	9	Cooler	Upa	000	San	2	3	Pac	2) _	1) P Paci	000	RECRA LabNet Use Only						_					_			-			1	1	1	_	\downarrow	-	
	- -	p ě	on Samp	C Recor	5 5		resent	kage Y	Inbroker	³resent≀ kage Y	COC Tape was:	Only		-	1	\perp		7	1			-	-	0	25T 208T 1BGT RATC	.	_		1	1	1	+	+	-	
		റ്	Upon Sample Rec't Y or N	COC Record Present	Y or Z		Present on Sample	Package Y or N	2) Unbroken on Outer	 Present on Outer Package Y or N 	was:			\downarrow	_	-	╣.	7	7			-	-	80	RATO	4	-		+	+	+	+	+	-	
			z ~	<u> </u>			∠ ĕ	_	er e														1_	<u></u>			<u> </u>		1_	\perp	\perp		\perp	<u></u>]

11.18

•

Data Summary/Semivolatile Sample QC

Recra LabNet - Lionviile Laboratory

Semivolatiles by GC/MS, TCLP Leachate

Client: NYSDEC Leachate Report Date: 01/14/00 11:39

RFW Batch Number: 9912L973

	Cust ID: S	SH899-12206-	SH899-12206-	SBLKIV	SBLKIV BS	SBLKIV BSD	LCHBLK
		B706-01	B706-02				
Sample	RFW#:	005	006	99LE1549-MB1	99LE1549-MB1	99LE1549-MB1	99LT0132-LB1
Information	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	D.F.:	1.00	1.00	1.00	1.00	1.00	1.00
	Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
	Nitrobenzene-d5	71 %	688	76 %	69 %	73 %	75 %
Surrogate	2-Fluorobiphenyl	62 %	62 %	56 %	52 %	61 %	67 %
Recovery	p-Terphenyl-d14	57 %	72 %	84 %	84*	78 %	87 %
	Phenol-d5	68	57 %	49 %	65 %	65 %	65 %
	2-Fluorophenol	75 %	64 %	72 %	63 %	74 %	71 %
2,4	2,4,6-Tribromophenol	71 %	65 %	80 %	. 89	84 %	56 %
			e se e e e e e e e e e e e e e e e e e]=======f]		======================================	=======================================
Pyridine		0.050 U	0.050 U	0.050 U	28	36 %	0.050 U
1,4-Dichlorobenzene	ene	0.050 U	0.050 U	0.050 U	41 %	36 %	0.050 U
2-Methylphenol		0.050 U	0.050 U	0.050 U	48 %	54 %	0.050 U
3- and/or 4-Methylphenol	ylphenol	0.050 U	0.050 U	0.050 U	68	76 %	0.050 U
Hexachloroethane		0.050 U	0.050 U	0.050 U	44 %	31 %	0.050 U
Nitrobenzene		0.050 U	0.050 U	0.050 U	68	72 %	0.050 U
Hexachlorobutadiene	ene	0.050 U	0.050 U	0.050 U	54	32 %	0.050 U
2,4,6-Trichlorophenol	henol	0.050 U	0.050 U	0.050 U	50 %	50 %	0.050 U
2,4,5-Trichlorophenol	henol	0.12 U	0.12 U	0.12 U	51 %	47 %	0.12 U
2,4-Dinitrotoluene	ne	0.050 U	0.050 U	0.050 U	61 . %	57 %	0.050 U
Hexachlorobenzene	e	0.050 U	. 0.050 U	0.050 U	69	64 %	0.050 U
Pentachlorophenol		0.12 U	0.12 U	0.12 U	25 %	25 %	0.12 U
*= Outside of EP	Outside of EPA CLP QC limits.						

WATER SEMIVOLATILE BLANK SPIKE/BLANK SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Case No.: NYSDEC

YSDEC _____

RFW Lot No.: 9912L973

BLANK Spike - Sample No.: SBLKIVLE1549-MB1

Level: (low/med) LOW

COMPOUND	SPIKE ADDED (MG/L)	SAMPLE CONCENTRATION (MG/L)	BS CONCENTRATION (MG/L)	BS % REC #	QC LIMITS REC
Pyridine	0.250	0	0.0699	28	9 -141
1,4-Dichlorobenzene	0.125	0	0.0512	41	36 - 97
2-Methylphenol	0.250	0	0.119	48	9 -141
<pre>3- and/or 4-Methylphenol</pre>	0.250	0	0.170	68	9 -141
Hexachloroethane	0.125	0	0.0550	44	9 -141
Nitrobenzene	0.125	0	0.0849	68	9 -141
Hexachlorobutadiene	0.125	0	0.0671	54	9 -141
2,4,6-Trichlorophenol	0.250	0	0.125	50	9 -141
2,4,5-Trichlorophenol	0.250	0	0.127	51	9 -141
2,4-Dinitrotoluene	0.125	0	0.0759	61	24 - 96
Hexachlorobenzene	0.125	. 0	0.0867	69	9 -141
Pentachlorophenol	0.250	0	0.0614	25	9 -103
	i	_;	[

COMPOUND	SPIKE ADDED (MG/L)	BSD CONCENTRATION (MG/L)	BSD % REC #	용 / RPD #	~ -	LIMITS REC
Pyridine	0.250	0.0897	36	25	50	9 -141
1,4-Dichlorobenzene	0.125	0.0450	36	13	28	36 - 97
2-Methylphenol	0.250	0.134	54	11	50	9 -141
3- and/or 4-Methylphenol	0.250	0.190	76	11	50	9 -141
Hexachloroethane	0.125	0.0392	31	35	50	9 -141
Nitrobenzene	0.125	0.0899	72	5	50	9 -141
Hexachlorobutadiene	0.125	0.0399	- 32	51 *	50	9 -141
2,4,6-Trichlorophenol	0.250	0.125	50	0	50	9 -141
2,4,5-Trichlorophenol	0.250	0.118	47	8	.50	9 -141
2,4-Dinitrotoluene	0.125	0.0713	57	6	38	24 - 96
Hexachlorobenzene	0.125	0.0802	64	7	50	9 -141
Pentachlorophenol	0.250	0.0619	25 .	0	50	9 -103

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 1 out of 12 outside limits

Spike Recovery: 0 out of 24 outside limits

COMMENTS:

^{*} Values outside of QC limits

CASE NARRATIVE

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC

W.O.#: 01667-600-001-9999-00

RFW#: 9912L973 **ELAP#:** 10752

Date Received: 12-08-99

PESTICIDE-TCLP

The set of samples consisted of two (2) leachate samples generated on 12-15-99 from soil samples collected on 12-06-99.

The samples and their associated QC samples were extracted on 12-17-99 and analyzed according to Recra OPs based on SW846, 3rd Edition procedures on 12-22-99. The extraction procedure was based on method 3520 and the extracts were analyzed based on method 8081 for TCLP pesticides.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. The cooler temperature has been recorded on the chain-of-custodies.
- 2. All required holding times for extraction and analysis have been met.
- 3. All method blanks were below the reporting limits for all target compounds.
- 4. All surrogate recoveries were within acceptance criteria.
- 5. All blank spike recoveries were within acceptance criteria.
- 6. All initial calibrations associated with this data set were within acceptance criteria.
- 7. All continuing calibration standards analyzed prior to sample extracts were within acceptance criteria.

J. Michael Taylor Vice President 01-23-00

Date

Philadelphia Analytical Laboratory

Weth

pet\r:\group\data\pest\11L-832t.pes

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 245 pages.

Recra LabNet Philadelphia

GLOSSARY OF PESTICIDE/PCB DATA

DATA QUALIFIERS

- U = Indicates that the compound was analyzed for but not detected. The minimum detection limit for the sample (not the method detection limit) is reported with the U (e.g., 10U).
- J = Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level. If the limit of quantification is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.
- B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination.
- E = Indicates that the compound was detected beyond the calibration range and was subsequently analyzed at a dilution.
- I = Interference.

ABBREVIATIONS

- BS = Indicates blank spike in which reagent grade water is spiked with the CLP matrix spiking solutions and carried through all the steps in the method. Spike recoveries are reported.
- **BSD** = Indicates blank spike duplicate.
- MS = Indicates matrix spike.
- MSD = Indicates matrix spike duplicate.
- **DL** = Indicates that recoveries were not obtained because the extract had to be diluted for analysis.
- NA = Not Applicable.
- **DF** = Dilution Factor.
- NR = Not Required.
- **SP** = Indicates Spiked Compound.

Recra LabNet Philadelphia

GLOSSARY OF PESTICIDE/PCB DATA

- P = This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns (see Form X). The lower of the two values is reported on Form I and flagged with a "P".
- **D** = This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- C = This flag applies to a compound that has been confirmed by GC/MS.

RFW #21-21-035/A-03/97

RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page 1 of 1 FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

(1. Crox	10 m	Relinquished						Special Instructions:		•			Other		L- EP/TCLP CI	Solids Drum	- Air		SL · Sludge	MATRIX: CODES: S- Soil SE- Sediment	Account #	Ī	ac Cha	RECRA Project Manager	Project Contact/Phone #	Project # 0100	Est. Final Proj. Si	Client Type	94121973
-	**************************************	5	Re											CXX.	125	(202)	C 3	ONIL.	5/4		5		12-8.99	Del	lanager	hone #	01601.000	. Sampling Date	shu	
	20101010	12.62	Received										Nysclec -	1		-	-	1	899-12		CHe			40	7	シバ		te		<u> </u>
	101101	is halaa	Date					•					Pricige) -	-	+	-	7	206 -		Client ID/Description		Date Due	TAT				999- 20		
		١	Time										blank	02	0	20	01	02	B706-01		itlon		12/2	Illo	4	Da		5		
			Relinquished by			٠				-			-		d	-	+	2		MS	S S	4	≥ 1	胀	8	The same				
			uished y				Con		CALE/REVISIONS.	PATE/DE				2	1 pagage	2	1 120gring	, ,	, 5	MSD	Seen			t total	Pra	Vol			Ref	
	REWRITTEN	ORIGINAL	Received by	 60 	5. (L	5 -		No.	-		W 12101991	.			· / *	+	12/6/49		Matrix Collec	_	ANALYSES REQUESTED		Preservatives	Volume		#/Type Container	Refrigerator #	
	MEN	AL	ved		1175	ocalect	was	99PM	Rober	-		-	91019		+		- 1	1001	+	+	Date Time Collected Collected		V	-	-	Solid	Llquid	· -	i in line	
			Date			as	macile.	292	さらえ	-	-	+		+				-	. -	- 1	0624c	-	VOA			23		Ž.	-	
			-			_	ile			-		+		1				-	. -	1	06250		BNA	ORG/		350	4	10	3	4
		_	Time			1/8/99 to accormended	on		99 12								-		1	1	0608C		Pest/ PCB	GANIC		4	_	1	0	\ -
		NOTES:	Discre			to	on 12/10/99-but	-	121959-001+02			1		_	_	_	_	1	-	_		-	Herb	Ц					+	-
		NOTES:	Discrepancles Betwe Samples Labels and			ace	0/99		2-12		_	1		$\frac{1}{1}$	-	-	1	4	-	-	C324T	_		-					+	-
		9	- m			Sime	id.		-1 ac	-	+	-	_	1	+	\dashv	\dashv	+	$\frac{1}{1}$	-		RECRA		-		$\left \cdot \right $		$\mid \cdot \mid$	+	1
		Z	-						12/1		+	\dashv		+	+	-	-	+	1.		MHSLTO	RECRA LabNet Use Only	Metal	z		125	,	1,61	١	1
		Holomy	5) Received	4) Labe Propert	Condition Y	2) Ambi	Airbill #	1) Shipped Hand Delivered		` 	1		_					-	╡.		ICNTO	t Use	CN	INORG		TÌ		1	1	2
			ive .	4) Labels Indicate Properly Preserved Y or V		2) Ambient or Chilled		1) Shipped Hand Delivered	word.			1	+	\top				1			TELV	Only				Ţ			-	١
		of Z	All bis	are Ved	or N	Shilled		or		XRA Lat									₹.	\ \	Tep								\ 	2
		Cooler Temp.) <u>ē</u>	Sar	33) 2 2 2	2) (Pac	1) F Pac	g	RECRA LabNet Use Only				_				_				-			_	-	_	$\left \cdot \right $	4	_
		Cooler Temp.	on Samı	Sample) Y COC Recor	A) Unboken on	resent (Jnbroker kage Y	1) Present on Outer Package Y or N	COC Tape was:	Only				-	\triangleleft		`	\dashv	\dashv		CT: 25T CT: 08T CHBC: T ROKATO:				-	\vdash	-		_	
		:	Upon Sample Rect Y or N	Sample) Y or N COC Record Present	7 On	Present on Sample	2) Unbroken on Outer Package Y or N	1) Present on Outer Package Y or N	was:					-				1			ROPATO:	1			-	+	 	-	00	13
		Ċ	z ~	≠		~ ₹	er														<u> </u>		<u> </u>		_		L			

.

.

RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page 1 of 1 FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

Client Hushuc Est. Final Proj. Sampling Date Project # 0/667-600-9999-00 Project Contact/Phone #	Tysku nal Proj. Sampling Date nal Proj. Sampling Date the Olle 17 - Coll - c
Tyshu Refrigerator # 1 3 3 3 3 3 3 1 1 1 1 1 2 3 3 3 3 3 1 1 1 1	#Type Container Solid 9 19 19 19 19 19 19 19 19 19 19 19 19 1
Refrigerator # 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Sampling Date
Refrigerator # 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Sampling Date
Hetrigerator # 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Refrigerator # 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Hyshu Refrigerator # 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 3 3 3 3 3 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7,11,11 Refrigerator # 1 3 3 3 3 3 3	Refrigerator # 1 3 3 3 3 3

DATA SUMMARY/SAMPLE QC

Recra LabNet - Lionville Laboratory

Pesticide by GC, TCLP Leachate

RFW Batch Number: 9912L973

Client: NYSDEC Work Order: 01667600001 Report Date: 12/29/99 09:29 Page:

	Cust ID:	SH899-12206-	SH899-12206-	PBLKCB	PBLKCB BS	PBLKCB BSD	тснвтк 11
Sample	RFW#:	005	006	99LE1533-MB1	99LE1533-MB1	99LE1533-MB1	99LT0132-LB1
Information	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	D.F.:	1.00	1.00	1.00	1.00	1.00	1.00
	Units:	UG/L	UG/L	ug/L	T/DO	UG/L	ng/r
Surrogate:	Decachlorobiphenyl	85 %	94 %	90 %	87 %	83 %	85 %
Te	Tetrachloro-m-xylene	62 %	60 %	75 %	70 %	70 %	65 %
Heptachlor	Heptachlor .	0.50 U	.========fl 0.50 U	0.50 U	95 %	========f1 95	
alpha-Chlordane		_ 0.50 U	0.50 U	0.50 U	95 %	95 %	0.50 U
gamma-Chlordane		0.50 U	0.50 U	0.50 U	90 %	90 %	
gamma-BHC (Lindane)	ane)	0.50 U	0.50 U	0.50 U	90 %	90 %	
Endrin_		1.0 U	1.0 U	1.0 U	125 %	120 %	1.0 U
Methoxychlor		5.0 U	5.0 U	5.0 U	106 %	106 %	5.0 U
Toxaphene		_ 50 U	50 U	50 U	50 U	50 U	50 U
Heptachlor Epoxide	ide	_ 0.50 U	0.50 U	0.50 U	85	85	0.50 U

U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. %= Percent recovery. D= Diluted out. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Case No.: NYSDEC

RFW Lot No.: 9912L973

MATRIX Spike - Sample No.: PBLKCBLE1533-MB1

Level: (low/med) LOW

COMPOUND	SPIKE ADDED UG/L	SAMPLE CONCENTRATION UG/L	MS CONCENTRATION UG/L	MS % REC #	QC LIMITS REC
Heptachlor	2.00	1 0	1.90	95	34 -111
alpha-Chlordane	2.00	0	1.90	95	45 -119
gamma-Chlordane	2.00	0	1.80	90	45 -119
gamma-BHC (Lindane)	1.00	0	0.900	90	19 -140
Endrin	2.00	0	2.50	125	30 -147
Methoxychlor	20.0	0	21.2	106	30 -147
Heptachlor Epoxide	2.00	0	1.70	85	37 -142

COMPOUND	SPIKE ADDED UG/L	MSD CONCENTRATION UG/L	MSD % REC #	% RPD #	RPD	LIMITS REC
Heptachlor	1 2.00	1.90	95	 0	NA	34 -111
alpha-Chlordane	2.00	1.90	95	0	NA	45 -119
gamma-Chlordane	2.00	1.80	90	0	NA	45 -119
gamma-BHC (Lindane)	1.00	0.900	90	0	NA	19 -140
Endrin	2.00	2.40	120	4	NA	30 -147
Methoxychlor	20.0	21.3	107	0	AK	30 -147
Heptachlor Epoxide	2.00	1.70	85	0	NA	37 -142
		_				ł i

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 7 outside limits

Spike Recovery: 0 out of 14 outside limits

COMMENTS:

FORM III PEST-1

5/88 Rev.

^{*} Values outside of QC limits

CASE NARRATIVE

Chemical and Environmental Measurement Information

Recra LabNet Philadelphia Analytical Report

Client: NYSDEC RFW#: 9912L973 ELAP#: 10752 **W.O.**#: 01667-600-001-9999-00

Date Received: 12-08-99

•

HERBICIDE-TCLP

Two (2) leachate samples were generated on 12-15-99 from soil samples collected on 12-06-99.

The samples and their associated QC samples were extracted on 12-21-99 and analyzed on 12-30-99 according to criteria set forth in NYSDEC September 1989 ASP (Revision 10/95) for Herbicide target compounds.

The following is a summary of the QC results accompanying the sample results and a description of any problems encountered during their analyses:

- 1. All required holding times for extraction and analysis have been met.
- 2. All method blanks were below the reporting limits for all target compounds.
- 3. One (1) of six (6) surrogate recoveries were outside acceptance criteria. A copy of the Sample Discrepancy Report (SDR) has been enclosed.
- 4. All blank spike recoveries were within acceptance criteria. The blank spikes appear to have been double spiked. The results have been adjusted accordingly. A copy of the Sample Discrepancy Report (SDR) has been enclosed.
- 5. All initial calibrations associated with this data set were within acceptance criteria.
- 6. All continuing calibration standards analyzed prior to sample extracts were within acceptance criteria.

J. Michael Taylor

Vice President

Philadelphia Analytical Laboratory

pet\r::group\data\herb\12L-973.her

Date

The results presented in this report relate only to the analytical testing and conditions of the samples at receipt and during storage. All pages of this report are integral parts of the analytical data. Therefore, this report should only be reproduced in its entirety of 109 pages.

GLOSSARY OF HERBICIDE DATA

DATA QUALIFIERS

U = Indicates that the compound was analyzed for but not detected. The minimum detection limit for the sample (not the method detection limit) is reported with the U (e.g., 10U).

J = Indicates an estimated value. This flag is used in cases where a target analyte is detected at a level less than the lower quantification level. If the limit of quantification is 10 ug/L and a concentration of 3 ug/L is calculated, it is reported as 3J.

B = This flag is used when the analyte is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination.

E = Indicates that the compound was detected beyond the calibration range.

I = Interference.

SUFFIXES

BS = Indicates blank spike in which reagent grade water is spiked with the matrix spiking solutions and-carried through all the steps in the method. Spike recoveries are reported.

BSD = Indicates blank spike duplicate.

MS = Indicates matrix spike.

MSD = Indicates matrix spike duplicate.

ABBREVIATIONS

D = Indicates that recoveries were not obtained because the extract had to be diluted for analysis.

NA = Not Applicable.

DF = Dilution Factor.

NR = Not Reported.

SP = Indicates spiked compound.

Trecta Cabivet Prinadelphia Sample Discrepancy Treport (ODIT) SDR #: 0005
Initiator: Laura Kissinger RFW Batch: 9913 945 Parameter: 0HB57
Date: 1/4/00 Samples: 19LE 1543-MBIS, 19LTOBL- Matrix: W
Client: NYSIEC Method: SW846/MCAWW/CLP/ LB/ Prep Batch: 976-1543
1. Reason for SDR
a. COC Discrepancy Tech Profile Error Client Request Sampler Error on C-O-C
Transcription ErrorWrong Test CodeOther
b. General Discrepancy Missing Sample/Extract Container Broken Wrong Sample Pulled Label ID's Illegible
Hold Time Exceeded Insufficient Sample Preservation Wrong Received Past Hold Improper Bottle Type Not Amenable to Analysis
Note: Verified by [Log-In] or [Prep Group] (circle)signature/date:
c. QC Problem (Include all relevant specific results; attach data if necessary)
y · · · · · · · · · · · · · · · · · · ·
-99LE1543-MBIS - Dleut spike double-specked.
- agi + 122 - Di - Leachetz Blank low surrogate Acovery
-99LT0132-LBI - Leachete Plant low surrogate Acovery
2. Known or Probable Causes(s)
-99(E1542-MRIS - Dawie Trans
- 19LTO132-LB1 - low Surr recovery
- 776 10132- 181 - 180
3. Discussion and Proposed Action Other Description:
Re-log
Entire Batch
3. Discussion and Proposed Action Re-log Entire Batch Following Samples: Re-leach Re-extract Re-digest Revise EDD Change Test Code to Other Description: All advolutions for the SS All advolution
Re-leach Re-extract And Into Occount that
Re-digest
Revise EDD Change Test Code to
Place On/Take Off Hold (circle)
4. Project Manager Instructionssignature/date:
Concur with Proposed Action
Disagree with Proposed Action; See Instruction
Variable in Case Naπative Variable in Case Naπative Client Contacted:
Date/Person
Add
Cancel
5. Final Actionsignature/date: 100 10
Verified re-[log][leach][extract][digest][analysis] (circle)Included in Case Narrative
Hard Copy COC Revised
Electronic COC Revised
EDD Corrections Completed
When Final Action has been recorded, forward original to QA Specialist for distribution and filing.
Route Distribution of <u>Completed</u> SDR Route Distribution of <u>Completed</u> SDR Metals: Doughty
X_InitiatorMetals: DoughtyInorganic: Perrone
X Project Mgr Stone Carey/Schrenkel/Johnson GC/LC: Schnell
X Section Mgr: Wesson/Daniels MS: Taylor has in: language
X QA (file): Racioppi Log-in: Janson Data Management: Feldman Admin: Soos

RECRA LabNet Use Only

Custody Transfer Record/Lab Work Request Page___of____ FIELD PERSONNEL: COMPLETE ONLY SHADED AREAS

inal Project Contact Contact Contact Contact Contact A Project Contact	Sampling Date Sampling Date ### 17-600-00/-9999 Whone ### 17-5. In Del Cont ID/De Du Lab ID Lab ID COST NUSCLEC-Frick COST NUSCLEC-Frick One: One: One:	The state of the s	Hellingui Breingui by	Wolume Preserve ANALYS REQUES REQUES OF THE PRESERVE ANALYS ANALYS	Date Collected C	Date 1 1 1 1 1 1 1 1 1	=		Discrete Samuel Cook	Metal Pest/ PCB PCB	RECR RECR	RECRA LabNet Use Only Metal C Metal C Metal C Metal C Metal C Metal C Metal C A Samples were I) Shipped Hand Delivere 2-177222222 Airbill # 2-17722222 Aproperty Between S Between S Heceived i Condition Y A) Labels Ind Property Free Property Free The condition of the condi	Net Use INORG CN G CN G CN G CN G CN G CN G CN G CN	et Use Only CC CC RECRA RECRA Airbill # Airbill # Airbill # Condition Y or A) Labels Indicate Properly Prepared Y or 5) Received Williph Holding Times	26 3 3 1 8 8 M M	Co Upo San Page Use	Use Only CCC Tape was: 1) Present on Outer Package Y or N 2) Unbroken on Outer Package Y or N 2) Unbroken on Sample Y or N CCC Record Present On Sample Package Y or N CCOOler Ccooler	en on Outer vor Z or Z vor
Client Hushu	8			Refrigerator #		-	3	Ö	ļ	╀-	+	C	ī	1	7	+	+	+
	W					+			+	4	+	+	\dagger	+		_	-	-
	717						<u> </u>		<u></u>	_	_	_	-	F		\mid	-	+
Est. Final Proj. Samj	pling Date			#/Type Contail	_	-			_	_	-		1	\forall	1			
Proloct # 0/667	-600-001-44				auuc .	╄-	3	1	ļ	\vdash	+	Į.	F	\dagger	+	+	+	+
					Liqui	 ,	_								_			_
Project Contact/Pho	ne #			Volume	T				\downarrow	\downarrow	+	+	4	\dagger	_	4	1	\dashv
	٠(AMA		- Soll		1086	_ T		_		7	1	1	1			_
RECRA Prolect Man	İ		CHANK		 - -	1.	5	ŀ	\downarrow	$\frac{1}{1}$	$\frac{1}{1}$	+	+	\dagger	+	\downarrow	+	+
<i>// /_</i> _		4	,											-		_	-	-
Cip	D81 (752)		\mathbb{X}	7	-	+	ORG,	NC.	4	_	-		NORG	\dashv				
		Ţ	8		7	A	4		₽				\dashv	_				
			7	REQUESTED		VO,	BN	Pes	Her			Mo						
Account #			_[<u> </u>	4	+	Į	-	-		RECR	A Labi	Vet Us	e Only		←		\
			Matrix		<u></u>	Γ			*	-		-		- [ŀ	•	-	4
WATRIX			ac .		!	2	7			T			で 		0		<u> </u>	<u>/ ()</u>
	Client	ID/Description	Chosen		te Time	<u>e</u> ∠,⁄	257			4		·<.			20 20,	7	45 08 80	_/_
_	***	,				۲.	ر ک			2 ت —		14			To	<u> </u>	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>U/</u>
SO - Solid			ш.			0	0		 -	0	-	17		┞	1		10	K
_		- 1		,	-	,	/	\					<u> </u>	<u> </u>	_			
<u> </u>		Ł	-01	L	╌	 -	1	I	1	1	+	1	7	7	\exists		**	_
Ar			02				_	•			-	_			-			-
Drum	- (.	- 1	-						<u> </u>							•	_
Drum			١,	7	+	$\frac{1}{1}$			1	1	+	+	+	+				4
Liquids				2		_				<			-				+	1
יסי בו			- 9	1			1						_				<u> </u>	
Leachate		-	telepa						_	-	-	-	+	+		-	1	1
Other				<u> </u>	۴	_										_	< .<	<u> </u>
Fish	1		00	7		+	1			-	_							
	Nusclec -		27.7		_	╁	\dagger			\downarrow	-	+	+	+	1	_	+	4
			-		·- =	-				ļ		L	-	-		-	-	\perp
																:		
-						+				4	-	-	-	-				
	-					-	\vdash	[_	L	-	$\ \cdot\ $	$\ \cdot\ $				1
			DAT		7	0				<i>à</i> ,	}	<u>+</u>	7	_	ECRA Lab	Net Use	Only	
special instructions.				-	Sure	750			7	-	0		Samo	les wer	.e .	60	Tape was	S.
							1						1) Sh	pped	i	1) P	resent on t	ē
*				2.	12/11/20		\		_				Hand	Deliver	ed	Pac	kage Y	q
				ジャントン	74.01	שת	6	gr	12/	0/0	7 - b	ut	<u> </u>	•		2) (Inbroken o	'n
٠				10 13	was			-				۱ د	7	1		Pac	kage Y	잌
			•		ACMP/	a	_	18/90	ħ	ape	16.70	371/2	2) An	bient o	r Chilled	第	resent on	Sa
				1	6.00 g		L						3) Re	ceived	in Good		~ ∴	Q
					200								Cond	ition ≺	o N) 2 2 2 3	The second	3
													4) La	bels Inc	ficate //	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		• :
				6.									Prop	arty Pre	erved >	3 9	Document E	0
			<u>ل</u>		eived		-	3	Discr	epancie	s Betwe	e		_		Upa Co	n Sample	He S
Helinquisned	NG COLOR			-	у	Daie		ā	Sami	oles Lab	els and		5) Re	ceive	A dillay		≺ '	g
.71	- 1			ORIGINAL	IN				000	COC Record? Y or N	? Y or	z	Holdi	ng Time V	2	Cooler	oler	
/Celler	X1767CIL	12/10/24		7			\dagger	1		ç					•	r emp.	Ŧ.	•
		_	_	スコシス	AL VALUE IN THE													1
0	<u></u>																	

DATA SUMMARY/SAMPLE QC

Recra LabNet - Lionville Laboratory

HERBICIDES BY GC, TCLP LEACHATE
Client: NYSDEC Work O

RFW Batch Number: 9912L973

Report Date: 01/04/00 08:31 Work Order: 01667600001 Page: 1

	Cust ID: 9	Cust ID: SH899-12206-	SH899-12206-	PBLKCS	PBLKCS BS	PBLKCS BSD	LCHBLK
		B706-01	B706-02				
Sample	RFW#:	005	006	99LE1543-MB1	99LE1543-MB1	99LE1543-MB1	99LT0132-LB1
Information	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	D.F.:	1.00	1.00	1.00	i.00	1.00	1.00
	Units:	UG/L	T/ĐN	UG/L	T/Dn	UG/L	UG/L
Surrogate:	DCAA	105 %	101 %	75 %	102 %	92 %	39 * %
		=======£]==	- - -		f]=======f]	=====fl=======fl==	
2,4-D		10 U	10 U	10 U	114 %	108 %	10 U
2,4,5-TP (Silvex)		5.0 U	5.0 U	5.0 U	108 %	9.7 %	5.0 U
					r		

Jul 07.00

%= Percent recovery. D= Diluted out. U= Analyzed, not detected. J= Present below detection limit. B= Present in blank. NR= Not reported. NS= Not spiked. I= Interference. NA= Not Applicable. *= Outside of EPA CLP QC

WATER PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: Recra.LabNet

Contract: <u>1667-00-01</u>

Case No.: NYSDEC

RFW Lot No.: 9912L973

MATRIX Spike - Sample No.: PBLKCSLE1543-MB1

Level:(low/med) LOW

2.4-D 100 0 1		
	!-	28 -154 30 -150

	SPIKE	MSD	MSD		
	ADDED	CONCENTRATION	%	8	QC LIMITS
COMPOUND	UG/L	UG/L	REC #	RPD #	RPD REC
					=======================================
2,4-D	50.0	54.2	108	5	NA 28 -154
2,4,5-TP (Silvex)	25.0	24.2	9,7	10	NA 30 -150
1	1	1	i	1 1	1 1

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 2 outside limits

Spike Recovery: <u>0</u> out of <u>4</u> outside limits

حسريداي لو

COMMENTS:

FORM III PEST-1

5/88 Rev.

APPENDIX D

APPENDIX D

SUMMARY OF CITY OF 1989 ROCHESTER SITE INVESTIGATION

OIL & HAZARDOUS MATERIAL SITE EVALUATION FLINT-EXCHANGE SITE ROCHESTER, NEW YORK

by

H&A of New York Rochester, New York

for

Rochester City School District Rochester, New York

ペラン

EXECUTIVE SUMMARY

This investigation is a preliminary evaluation of the potential for oil and hazardous material to exist on the subject property, and potential site construction considerations (foundation types and disposal of site materials) so as to assist RCSD in evaluating the potential liability associated with ownership, financing and development of a school on the property. consists of an area generally bounded by the Genesee River, Violetta St., Exchange St., Fenwick St., Plymouth Ave., and Flint St. in Rochester, New York. The investigation consisted of a review of readily available information in public files; interviews with individuals familiar with the site use and history; limited subsurface exploration on the site consisting of 28 soil vapor sampling locations and 3 test borings; limited analyses of site soils; and visual observation of readily apparent surface and environmental conditions. review of this information, H&A has the following conclusions and recommendations:

- The Vacuum Oil Company was located on most of the site from 1866 to 1936. Vacuum Oil performed distillation of unrefined oil to produce petroleum products and derivatives. Available site historical information indicates the site was also used for the storage (in above ground tanks) and disposal of these products. Since 1936 the site has been used for warehouse, manufacturing and tool and die operations. Several underground storage tanks are reported to exist on the site; the locations and/or condition of the tanks could not be determined from available records.
- Twenty-eight soil vapor samples were analyzed and three test boring explorations completed on the site. Each of the borings was located within the former Genesee Valley Canal. The borings were terminated at the apparent top of bedrock, approximately 11-13 feet below the ground surface. Fill materials encountered in the borings generally consisted of sand, cinders, brick and concrete.
- o Laboratory analyses for volatiles, semi-volatiles, priority pollutant metals, petroleum hydrocarbons and hazardous waste characteristics were conducted on site soils. A fill sample which had a petroleum odor was analyzed for volatile organics and petroleum hydrocarbons. No petroleum hydrocarbon compounds or volatile organic compounds were detected above the laboratory detection limits (0.0003

parts per million or less). A composite soil sample from site borings was analyzed for semi-volatile organic compounds. Ten compounds were possibly present at the detection limit (0.00033 ppm) but could not be quantified. The compounds detected are common by-products of fossil fuel combustión and, where criteria have been established, sample concentrations fall below published USEPA Health Based Criteria for residues in soil. A composite of surficial soils was submitted for analysis for priority pollutant metals because of the higher likelihood of human contact with shallow soils. Each metal concentration detected in the sample fell below the reported average for metal compounds naturally present in soils. Analysis for hazardous waste characteristics (EP Toxicity, Reactivity, Corrosivity, Ignitability) was also performed on a shallow The sample was not hazardous based on these soil sample. characteristics.

- Loose fill was encountered in all three site borings up to a depth of 11± ft. below ground surface and approximately 1 to 2± ft. above the apparent top of bedrock. Depending on the building configuration considered for the site, recommended foundation types appropriate for this site may include drilled-in piers with slab-on-grade floors or spread footings. These may require partial or total removal of site fill. Relatively high groundwater conditions were also encountered which should be considered if a basement is contemplated.
- Removal of site fill may require one or more types of special handling. Cinder fill from the Genesee Valley Canal area is classified as a solid waste and would likely require disposal at a sanitary landfill. If site soils are found to contain petroleum products or derivatives (from Vacuum Oil operations) they may require disposal as a hazardous waste (if reactive, ignitable, corrosive, EP toxic, or containing a listed organic substance), or a special waste (if found to contain a petroleum product but not exhibit hazardous characteristics). Hazardous waste would have to be disposed at a NYSDEC permitted hazardous waste treatment storage and disposal facility; petroleum stained soils could be landfilled at a NYSDEC permitted sanitary landfill.
- o The walkover and subsurface investigations were limited to the city owned, vacant portion of the site from the end of Flint and Violetta Streets to the Genesee River. The remainder of the site is privately owned warehouse,

industrial and manufacturing properties where many of the Vacuum Oil Company tanks and buildings formerly were located. Neither a walkover nor subsurface investigations were performed on the portion of the site where the highest potential for oil or hazardous materials appears to be present. Vacuum Oil operations and subsequent permitted underground storage tanks are or were on the portions of the site H&A personnel were unable to view. A thorough walkover and additional subsurface investigations (test borings and soil vapor sample locations) should be conducted on the remainder of the site with particular emphasis on the portion of the site considered for the school building location.

In summary, based on the scope of work performed, and our conclusions and recommendations described above, the property evaluated appears to be capable of undergoing re-development provided that prior to development evaluation of and accommodations for the fill material and soils potentially containing petroleum derivatives are made. Of the compounds detected on site (volatile organics, semi-volatile organics and metals), none appear to be present in concentrations above USEPA Health Based Criteria or levels naturally expected to occur in soil at the limited locations sampled. However, the potential for hazardous materials to be present in areas not explored during this investigation appears to be high based on past and present site land use.

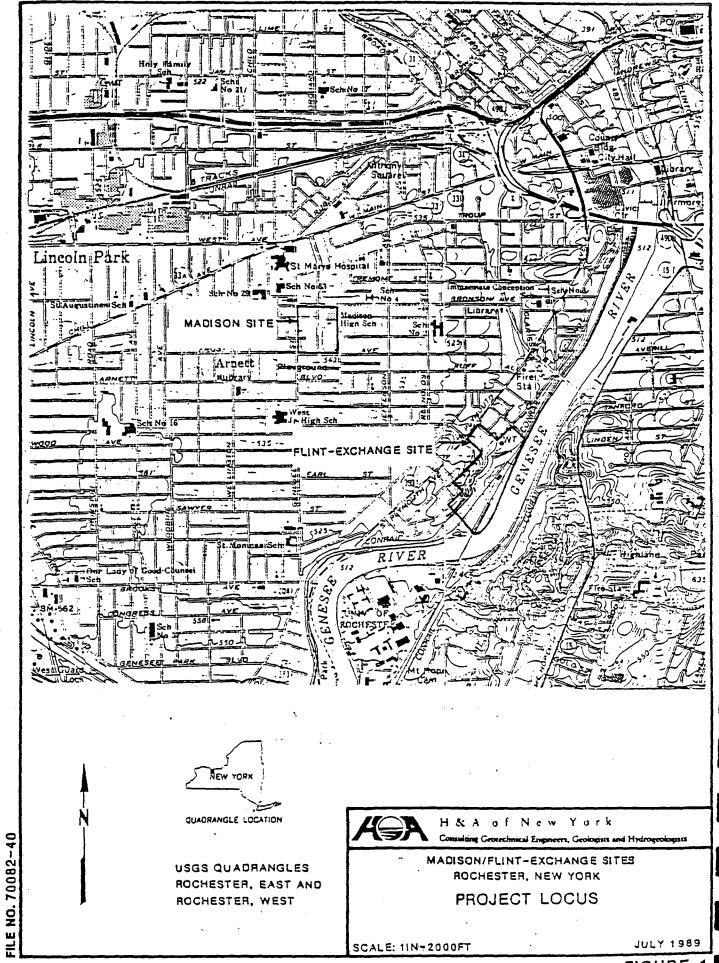
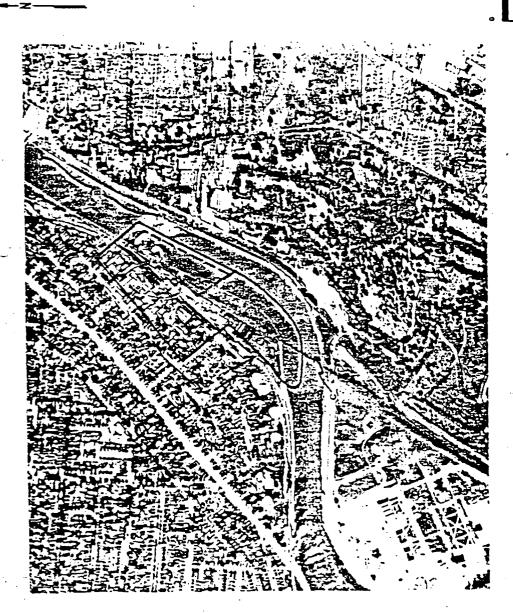



FIGURE 1

Legend:

GENESEE RIVER

BALLBOAN BRIDGE

- APPROXIMATE SITE BOURDARY

ALL SITE BOUNDABLES AND SITE FEATURE LACATIONS APPROXIMATE.

FLIMI-EXCHANGE SITE ROCHESTER, NEW YORK

1930 SITE AERIAL PHOTOGRAPH

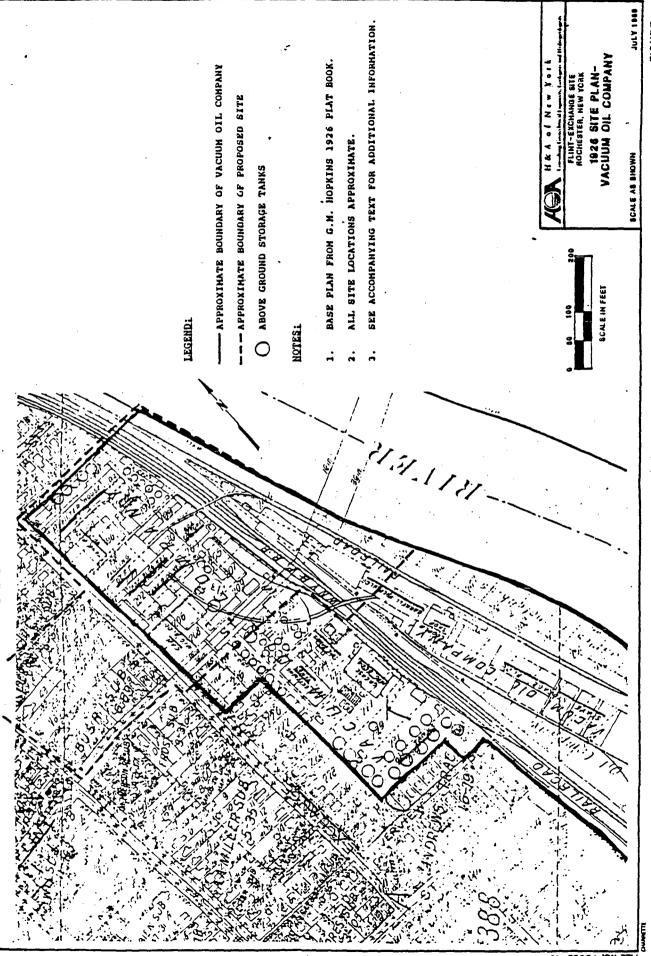
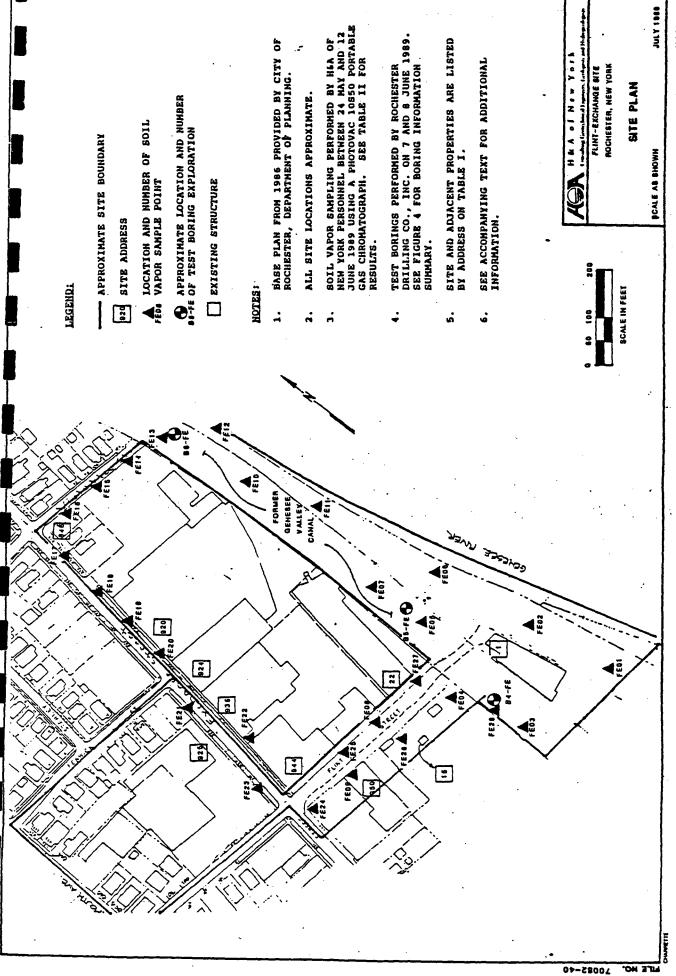



FIGURE 3

FIGURE

ADDRES	s 	YEAR	NAME	USAGE (POSSIBLE/DOCUMENTED O&HM USAGE)
932-94 EXCH	a Ange	1945-19477	GENESEE BREWING	INDUSTRIAL ALCOHOL (BULK STORAGE OF 10,000 GAL.
				ALCOHOL FOR DISTILLING USE, FIRE MARSHAL)
	10	1950	RGEE WAREHOUSE	
			BACUM CORP.	WAREHOUSE
			CHAMBERLAIN CO.	WEATHER STRIPPING
			GENESEE TILE	WAREHOUSE
			STROMBERG/CARLSON	
			ROCHESTER CONVEYOR	
			MACHINE MFG.	MANUFACTURING
			ROCHESTER	PETROLEUM DISTILLING (POSSIBLE PETROLEUM PRODUCT STORAGE)
			DISTILLING	
19	16	1960	WEATHER MASTER	WEATHER STRIPPING
	•		ONTARIO LIQUOR	DISTRIBUTOR
			ALLISON CORP.	FURNITURE WHOLESALE
	•			
: #		1969-1983	KOLKO PAPER	(2000 GAL. GAS. FIRE MARSHAL)
		1707 1705		, , , , , , , , , , , , , , , , , , ,
	ю,	1970	KOLKO PAPER	
	,		ROCH. MUNICIPAL	WAREHOUSE
			ALLISON CORP.	FURNITURE WHOLESALE
		1978	KOLKO PAPER	1000 GAL. GAS REMOVED, (FIRE MARSHAL) FURNITURE WAREHOUSE
~	••	1970		1000 UAL. URS REPOYED, TITLE PARSHALL TORRETORE WAREHOUSE
			ALLISON CORP.	
_		4007		
•	FF	1983	KOLKO PAPER	•
			VACANT	
H	19	1985	KOLKO PAPER	(2000 GAL. GAS REMOVED, FIRE MARSHAL)
-			Manual Lucia	tone are the improper terms in the intermed
		1989	H.P. NEUN	
	•	1707	KOLKO PAPER	
		•	ALLISON CORP.	FURNITURE WAREHOUSE
		<u></u>	ALLIGOR CONF.	TORRETORE MINELINGS.
950 E	XCHANGE	1950	LUCAS SCREW	SCREW PRODUCTS (POSSIBLE GILS AND METAL CLEANING SOLVENTS)
н	10	1960-1970	ONTARIO MACH.	TOOL & DIE (POSSIBLE DILS AND METAL CLEANING SOLVENTS)
		1978-1989	XL TOOL & DIE	(POSSIBLE OILS AND METAL CLEANING SOLVENTS)

ADDRESS YEAR		. HAME	USAGE (POSSIBLE/DOCUMENTED O&HM USAGE)					
925 EXCHANGE	1960	TALLMAN TOOL-	MANUFACTURER (POSSIBLE SOLVENTS AND OILS)					
и и	1970	WOODHILL PRODUCTS	•					
10 10	1978	PRECISION PRODUCTS						
18 . W	1983	NATIONWIDE PRECISION PRODUCTS	!					
n 14	1989	CANFIELD & TACK						
926 EXCHANGE	1936	VACUUM OIL ROCHESTER DISTILLING	PETROLEUM DISTILLATE PRODUCTS					
	1950	GENERAL SOLVENTS	(POSSIBLE SOLVENT STORAGE)					

ADDRESS YEAR		KAŅE	USAGE (POSSIBLE/DOCUMENTED O&HM USAGE)					
846 EX	CHANGE	1960-1989	ROCHESTER SANITARY PRODUCTS	DISINFECTANT SALES/DISTRIBUTION				
920 EX	CHANGE	1960-1970	SEARS	SERVICE CENTER				
tt.	19	1971	BEVACO FOOD	FREEZER/WAREHOUSE (1000 GAL., 2000 GAL AND 3000 GAL. GAS TANKS, FIRE MARSHAL)				
19	M	1978	EGAN FOOD	FREEZER/WAREHOUSE				
*	'n	1979	NORTH ATLANTIC FISHERIES	(2000 GAL. GAS TANK REMOVED, FIRE MARSHAL)				
10	- •	1983	BEVACO FOOD	FREEZER/WAREHOUSE				
	*	1986	EGAN FOOD NORTH ATLANTIC FISHERIES	(3000 GAL. GAS TANK, FIRE MARSHAL) (2 FUEL OIL TANKS FILLED WITH CONCRETE, FIRE MARSHAL)				
	ts	1989	NORTH ATLANTIC FISHERIES BUDGET BALANCER FOOD CLUB	FREEZER/WAREHOUSE (GAS PUMP OBSERVED)				
924 EX	CHANGE	1950-1970	SEARS	WHOLESALE, REPAIRS (POSSIBLE OILS AND SOLVENTS)				
10	•	1971	EGAN FOCO	(3000 GAL. GAS TANK, FIRE MARSHAL)				
Ħ	tt	1978	SPECIALIZED	WAREHOUSE				
10	н	1983	VACANT					

ADDRESS	YEAR	HAME	USAGE (POSSIBLE/DOCUMENTED O&HM USAGE)						
		,							
22 FLINT STREET	1950	SCHWARTZ	ELECTRICAL EQUIPMENT (POSSIBLE METAL CLEANING SOLVENTS OR PCBS)						
H 10	1960	MILLS TALBOT	ELECTRICAL EQUIPMENT (POSSIBLE METAL CLEANING SOLVENTS OR PCBS)						
10 10	1960-1967	7	(1000 GAL. GAS TANK, FIRE MARSHAL)						
19 10	1970	EAT CORP.	WAREHOUSE						
	1974	?	(MAINTAIN 1000 GAL. GAS TANK, FIRE MARSHAL)						
10	1978	SPECIALIZED	WAREHOUSE						
10 to 10	1983	NIBLACK	FOCO WAREHOUSE						
н. н	1983	NIBLACK TADCO	BULK FOODS						
		CORN HILL EX. PRINTER'S WRHSE UPSTATE TRADING	WAREHOUSE (POSSIBLE INKS, SOLVENTS)						

ADDRESS YEAR NAME			USAGE (POSSIBLE/DOCUMENTED O&HM USAGE)					
AREA BOUND BY GENESEE RIVER, VIOLETTA EXCHANGE AND FLINT STREETS	1866-1936	VACUUM OIL CO.	PETROLEUM DISTILLING PLANT (PRODUCTS INCLUDED NAPTHA, KEROSEHE AND GILS; NEWS ACCOUNTS REFER TO DISPOSAL OF PROCESS WASTES BY DUMPING INTO THE GENESEE VALLEY CANAL, GENESEE RIVER, AND BY LAND BURIAL					
1 FLINT STREET	1950	VACLUM OIL CO.	VACANT BARREL BUILDING					
es n	1960	DANNEMILLER	COFFEE WAREHOUSE					
10 10	1970	FASCO	WAREHOUSE					
# W	1978	VACANT	VACANT WAREHOUSE					
. 18	1983	KNEPPAR METAL	METAL BUYERS					
pp 19	1989	KNEPPAR	LICENSED HAZARDOUS WASTE TRANSPORTER					
15 FLINT STREET	1950	ROCHESTER SCRAP BAILING CO.	METAL DEALERS					
18 19	1960	EE , 66 SS						
10 10	1946-19617		METAL DEALERS (1000 GAL. GAS TANK, FIRE MARSHAL)					
н н	1970	VACANT	VACANT					
10 14	1978-1989	FLINT AUTO WRECKERS	AUTO JUNKYARD (POSSIBLE PETROLEUM PRODUCT STORAGE)					

	Depth	_							Total
Sample Date	<u>(ft.)</u>	HEX	8MZ	TOL	<u> 283</u>	H-XYL	O-XYL	Unknowns**	Detected
			_						
Probe Blank 6-7-	89	••	• ••		••	••			••
FE01	3.25		••	••	••	••	••	0.077	0.077
FE02	3.25	••	•• •		••		•• .	0.159*	0.159
FEO2D	3.25	••	••		••	••		0.145*	0.145
FE03	3.25		••	• ••		••	-049	0.625	0.674
FE03D	3.25	••	••	••	••	••	.062	0.861	0.923
FE04	3.25	••	• ••	••	••	••	••	TR	0.012
FE05	3.25	••	••	••	••		••	TR	0.019
FEO6	3.25	••	••	•-	••			0.040	0.040
FE07	3.25	**	••		••		•• •	0.033	0.033
FEOS	3.25	**	••		••		•• .	TR	0.027
FE09	3.25	••				••		0.030	0.030
Probe Blank 6-8-	89		••		••	••	••	0.040	0.040
Probe Blank	••	••	••				••	TR	0.015
FE10	3.25		••	••	••	••	••	0.060*	0.060
FE11 .	3.25	••		TR	••	•		0.179*	0.193
FE110	3.25	••		TR			••	0.190*	0.204
FE12	3.25				••	••	••	0.057*	0.057
Carrier Gas 6-12	2-89	••	••	••	••	••	• ••	•• ,	
Probe Blank				••		•• .	••	• ••	•• .
FE13	3.25	••	•	••	••	••	••	0.143*	0.143
FE14	3.25		•••	. ••	••	, ••	••	TR	0.014-
FE15	3.25		••		••		••	0.036	0.036
FE16.	3.25							0.034	0.034
FE17	3.25	••	••		••	••	••	TR	0.018
FE 170	3.25	••	••	••	••	••	••	, TR.	0.019
FE18	3.25		•	••	••	••	••	TR	0.020
FE19	3.25	••	••	••	. ••		••	0.042	0.042
	3.25	••	••	••	•• .		••	0.054	0.054
Probe Blank 6-1.			••	••			••	TR	0.012
FE21	3.25	••	••	••	••	••	••	TR	0.012
FE2Z	3.25	••	•		••	••	• • •	••	
FE23	3.25		••	••	••			••	••
FEZ4	3.25	••			••	••	••	••	
FE25	3.25		••	••	••	••	••	0.034	0.034
FE26	3.25	••	••	••	••	••		0.051	0.051
	-				••	••		TR	0.015
FE27	3.25		••	••	••	••	••	TR	0.022
FE28	3.25							• • • • • • • • • • • • • • • • • • • •	J. VLL

- Notes: 1. All concentrations listed in parts per million (ppm).
 - 2. Compound Abbreviations:

HEX = hexane TOL = toluene

M-XYL = m-xylene

BNZ = benzene EBZ = ethyl benzene

0-XYL = a-xylene

- ** Unknown volatile compounds quantified as sum of unidentified peak areas compared to the signal response of toluene.
- * Possible presence of methane.
- 5. IR Trace (concentration between 0.01 and 0.03 ppm).
 - -- Not detected (concentrations less than 0.01 ppm).
- 6. O Duplicate Sample.
- 7. See Figure 2, Site and Subsurface Exploration Plan, for sample locations.
- 8. Sail vapor sampling performed by M&A of New York personnel between 7 and 13 June 1989 using a Photovac 10550 Portable Gas Chromatograph.
- 9. See accompanying text for additional information.

- 1

ACK NOW YOUR ROCHESTER, NEW YORK FLINT-EXCHANGE SITE

SUMMARY OF SUBSURFACE CONDITIONS AND LABORATORY ANALYTICAL RESULTS

TABLE III

JULY 1988

SEE ACCOMPANYING REPORT FOR ADDITIONAL INFORMATION AND TEST

BORING REPORTS.

APPENDIX A

Test Boring Reports

1									
Co	nsulting	YORK, ROCHES Geotechnica ts and Hydro	il Engineer:	3,		TEST BORING REPORT	80	RING NO.	B4-FE
PROJECT: CLIENT: CONTRACT		ROCHE	-EXCHANGE STER CITY STER DRILL	SCHOOL DIS			SH	LE NO. EET NO. CATION:	70082-40 1 OF 1 See Plan
; 1	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCE		EVATION:	•
TYPE INSIDE D IAMMER W IAMMER F		(IN) (LB)	AUGER 4-1/4	SS 1-3/8 140 30		RIG TYPE: CME 75, Truck-I BIT TYPE: DRILL MUD: OTHER: Advanced augers to	ST FI 11.1 ft. DR	TUM: CART: CNISH: CILLER: LA REP:	8 June 1989 8 June 1989 T. Smith W. Lanik
EPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSI	FICATION AND R	REMARKS	
· -		7 5 3	\$1 4"/24"	2.0		Loose light brown coarse to asphalt fragments.	fine SAND, Li	ttle fine	gravel with
						••			
· –		2 2 3 5	s2 8"/24"	7.0		Loose dark brown to black of fine gravel, with brick fra odor.	oarse to mediu gments, wet.	m SAND, t Slight pe	race troleum
 - 10		· .			10.0		وون والمستعدد والمستعد والمستعد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعد والمستعد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستد		
		2 3 100/0.1 100/0.1	\$3 13"/13" \$4 1"/1"	10.0 11.1 11.1 11.2	11.1	Top of r Very dense dark gray DOLOMI	-FLUVIAL- ock at 11.1 ft TE FRAGMENTS,	t. little si	
 			,			-SEVERELY Notes: 1. Completed borehole back	WEATHERED BEDI		ittings.
- -									
 - 20 -				,	`				
· -									•
 - 25 —	1		·						
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED	,	H (FT) TO:	1	0 Open End Rod	OVERBURDEN (11.2 ft.
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	T Thin Wall Tube U Undisturbed Sample S Split Spoon	ROCK CORED (LIN FT):	45
6/8/89	1600	0.5	11.0	11.2	4.6		BORING NO.		84-FE
				<u> L:</u>	1	<u> </u>	<u> </u>		

	Co	nsulting	YORK, ROCHES Geotechnica	l Engineer	3,		TEST BORING REPORT		SORING NO.	85-FE
	PROJECT: CLIENT: CONTRACT		ROCHE	-EXCHANGE STER CITY STER DRILL	SCHOOL DIS) :	FILE NO. SHEET NO. LOCATION:	70082-40 1 OF 1 See Plan
	1	TEN		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC		ELEVATION:	
	TYPE INSIDE D HAMMER W HAMMER F.	EIGHT	(IN) (LB) (IN)	AUGER 4-1/4	ss 1-3/8 140 30	•••	RIG TYPE: CME 75, Truck-M BIT TYPE: DRILL MUD: OTHER: Advanced augers to	11.4 ft.	DATUM: START: FINISH: DRILLER: H&A REP:	9 June 1989 9 June 1989 T. Smith W. Lanik
	DEPTH (FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSI	FIÇATION AND	REMARKS	
			7 16	S1	0.0		Dense light brown gravelly	coarse to fir	ne SAND, tr	ace roots.
			23 10	7"/24"	2.0		•	-FILL-		
			6 42	52 15#/24#	2.0 4.0		Dense black CINDER PARTICLE	S and red BRI	ICK FRAGMEN	ts.
,	-		30 12	s3	4.0		Medium dense dark brown to	black CINDER	PARTICLES.	
	5		14. 11	13"/24"	6.0			-FILL-		
.		·	10 10	S4	6.0		Medium dense dark brown coa	rse sandy coa	arse to fin	e GRAVEL,
I	_		10	6"/24"	8.0		wet.			
.			4 2	S5	8.0		Loose dark brown coarse to	fine GRAVEL,	trace coar	se sand.
	10		1 2	6"/24"	10.0			-FILL-	• .	•
			4 2	S6 12"/17"	10.0	11.0	Same.		·•.	
	<u>. </u>		100/0.4			11.4	Dark gray fine sandy SI	LT. -FLUVIAL-		
				_	·		Top of R	ock at 11.4	ft.	·
				``	!		Note:	•	•	
	15				!	•	1. Completed borehole back	filled with I	borehole cu	ttings.
						$\cdot f$	· .			
ł		,				i i				
						;			-	
						N	· .			
	<u> </u>							•		
ĺ										
Ì	_									
	25									
ļ			WATER LEVEL	DATA	<u> </u>	<u> </u>	SAMPLE IDENTIFICATION		SUMMARY	
ł			<u>.</u>	DEPT	H (FT) TO:			OVERBURDEN	(LIN FT):	11.4 ft.
	DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	0 Open End Rod T Thin Wall Tube U Undisturbed Sample	ROCK CORED	(LIN FT):	6S
	6/9/89	0900	0.5	8.0	11.4	7.7	S Split Spoon	SAMPLES: BORING NO.	·	85-FE
ı		<u></u>			L	<u>L</u>		BURING NO.		٠٠٠ دو

Cor	nsulting	YORK, ROCHES Geotechnica its and Hydro	il Engineers	3,	·	TEST BORING REPORT	BORING NO. B6-FE
PROJECT: CLIENT: CONTRACTO	OR:	ROCHE	-EXCHANGE S STER CITY S STER DRILLI	SCHOOL DIST			FILE NO. 70082-40 SHEET NO. 1 OF 1 LOCATION: See Plan
11	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCEDUR	ELEVATION:
TYPE INSIDE DI HAMMER WE HAMMER FA	EIGHT	(IN) (LB) (IN)	AUGER 4-1/4	\$\$ 1-3/8 140 30		RIG TYPE: CME 75, Truck-Hount BIT TYPE: DRILL MUD: OTHER: Advanced augers to 13.0	START: 9 June 1989 FINISH: 9 June 1989
DEPTH (FT)	CASING BLOWS PER FT		SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIF]CI	ATION AND REMARKS
		23 27 10	\$1 8#/24#	0.ò		Dense gray to black coarse to s SAND, with concrete fragments.	fine gravelly coarse to medium
• 🚽		6	5"/24			- F	ILL-
. 4							*
_5 _		2 3 _	\$2	5.0		Loose brown fine sandy SILT, t	race gravel, trace coarse sand.
		3 4	10"/24"	7.0		-F	ILL-
						-	
-10 -	· .]	3 5	\$3	10.0	10.0	Medium dense gray fine sandy S	LLT, trace clay, wet.
		5 6 6	14"/24"	12.0		-FL	UVIAL-
		100/0.2	\$4 2"/2"	13.0	13.0	Top of Roc Very dense dark gray silty DOC	k at 13.0 ft. ONITE FRAGMENTS.
— 15 _. —						Notes:	
			1			1. Completed borehole backfil	led with borehole cuttings.
			1				
20							
			1				. :
 -25 -							
		WATER LEVEL	DATA			* SAMPLE IDENTIFICATION	SUMMARY
DATE	TIME	ELAPSED TIME (HR)	DEPT BOTTOM	TH (FT) TO:	: WATER	0 Open End Rod	/ERBURDEN (LIN FT): 13.2 OCK CORED (LIN FT):
.	<u></u>		OF CASING	OF HOLE		U Undisturbed Sample	AMPLES: 4S
6/9/89	1100	1.0	12.5	13.2	9.2	1 h-	DRING NO. B6-FE

- 100 mm - 1

APPENDIX E

1999 SOIL GAS SURVEY REPORT

EMFLUX® Report No. EM1138

EMFLUX® Passive, Non-Invasive Soil-Gas Survey

NOV 2 9 1999

CENHAL COLUMN SERVICES

FORMER VACUUM OIL FACILITY ROCHESTER, NY

Prepared for

International Technology Corporation 2200 Cottontail Lane Somerset, NJ 08873-1248

by

BEACON Environmental Services, Inc. 2000 Grafton Shop Road Forest Hill, MD 21050

Applying Results from Soil-Gas Surveys

The utility of soil-gas surveys is directly proportional to their accuracy in reflecting and representing changes in the subsurface concentrations of source compounds. An EMFLUX® soil-gas survey measures the mass collected from the vapor-phase of the source. The vapor-phase is merely a fractional trace of the source, so, as a matter of convenience, the units used in reporting detection values from EMFLUX® surveys are smaller than those employed for source-compound concentrations.

The critical fact is that, whatever the relative concentrations of source and associated soil gas, best results are realized when the ratio of soil-gas measurements to actual subsurface concentrations remains as close to constant as the real world permits. It is the reliability and consistency of this ratio, not the particular units of mass (e.g., nanograms) that determine usefulness. Thus, BEACON emphasizes the necessity of conducting — at minimum—follow-on intrusive sampling at one or two points which show relatively high EMFLUX® values to obtain corresponding concentrations of soil and ground-water contaminants. These correspondent values furnish the basis for approximating the required ratio. Once that ratio is established, it can be used in conjunction with EMFLUX® measurements (regardless of the units adopted) to estimate subsurface contaminant concentrations across the survey field. It is important to keep in mind, however, that specific conditions at individual sample points, including soil porosity and permeability, depth to contamination, and perched ground water, can have significant impact on soil-gas measurements at those locations.

When EMFLUX® Surveys are handled in this way, the data provide information which can yield substantial savings in drilling costs and in time. They furnish, among other things, a checklist of compounds expected at each survey location and help to determine how and where drilling budgets can most effectively be spent.

EMFLUX® Survey Number: EM1138

Former Vacuum Oil Facility Rochester, NY

This EMFLUX® Soil-Gas Survey Report has been prepared for International Technology Corporation (IT) by Beacon Environmental Services, Inc. (BEACON) in accordance with the terms of Purchase Order No.127282, dated October 14, 1999. IT performed this project under contract to New York State Department of Environmental Conservation (NYSDEC). BEACON's principal contact at IT for this project has been Mr. Prabal Amin.

1. Objectives

Soil-gas samples were collected to determine the presence, identity, and relative strength of targeted contaminants in soil and/or ground water at the Former Vacuum Oil Facility. Survey results will be used to determine the distribution of contaminants and to guide further site investigation.

2. Target Compounds

This survey targeted the 25 compounds listed in Attachment 1, which supplies the resulting laboratory data in nanograms (ng) of specific compound per cartridge.

3. Survey Description

•	No. of Field Sample Points:	53
•	No. of Trip Blanks:	_2
•	Total No. of EMFLUX® Cartridges:	55

4. Field Work

NYSDEC was provided an EMFLUX® Field Kit with the equipment needed to conduct a 53-point EMFLUX® Soil-Gas Survey. Collectors were deployed on October 20, 1999 and retrieved November 4, 1999. Attachment 2 describes the field procedures used. Individual deployment and retrieval times will be found in the Field Deployment Report (Attachment 3).

5. Analysis and Reporting Dates

- BEACON's laboratory received 55 sample cartridges for analysis on November 5, 1999.
- BEACON's laboratory analyzed the samples for the specified compounds, using thermal desorption and a capillary-column gas chromatograph (GC) with a photoionization detector

(PID), a flame ionization detector (FID), and a dry electrolytic conductivity detector (DELCD) in accordance with EPA Method 8015B/8021 (Modified), as described in Attachment 4.

 Analysis was completed on November 11, 1999, and following a laboratory review, results were provided to IT that same day.

6. Report Notes and Quality Assurance/Quality Control Factors

- Attachment 1 provides survey results in nanograms per cartridge by sample-point number
 and compound name. The quantitation levels represent values above which quantitative
 laboratory results can be achieved within specified limits of precision and with a high degree
 of confidence. The quantitation level of each compound, therefore, provides a reliable basis
 for comparison of the relative strength of individual detections of that compound.
- Data Compatibility. It is important to note that when sample locations are covered with or near the edge of an artificial surface (e.g., asphalt or concrete), sample measurements are often distorted (increased) significantly. Such distortion can be attributed to the fact that gas rising from sources beneath impermeable caps tends to reach equilibrium in relatively short periods of time and that, once equilibrium is reached, the soil-gas concentration measured at any point in a vertical line between source and cap is theoretically the same. Thus, a reading taken immediately below or near an impermeable surface is much higher than it would be in the absence of such a cap.
- The Chain-of-Custody form, which was shipped with the samples for this survey, is supplied as Attachment 5.
- Laboratory QA/QC procedures consist of control blanks and verifications, as well as
 system calibration, as specified for EPA Method 8015B/8021. Laboratory personnel
 conducted internal control blanks and internal control verification analyses daily to ensure
 that the system was contaminant free and properly calibrated. The system was calibrated
 using external-standard procedures to at least three different concentrations for each
 compound targeted.
- QA/QC Contaminant Corrections. Following EPA guidelines, EMFLUX® laboratory data is not corrected for method blank and trip blank contamination values; all contamination detected on QA/QC samples is reported in Attachment 1. Subsequent handling of QA/QC sample contamination depends upon the circumstances and origin of the sample; any corrective conventions noted below have proved highly useful in deriving accurate and reproducible interpretations of survey data in prior EMFLUX® Surveys. No other methods thus far tested have produced comparable levels of quality.

Laboratory method blanks are run each day with project samples to identify contamination present in the laboratory. If contamination is detected on a method blank, detections of identical compounds on samples analyzed the same day are considered to be suspect and are flagged in the laboratory report. The laboratory method blanks analyzed in connection with the present samples revealed no contamination.

Trip blanks are EMFLUX® cartridges prepared, transported, and analyzed with other samples but intentionally not exposed. The trip blanks (labeled Trip-1 and Trip-2 in Attachment 1) recorded none of the targeted compounds, indicating that the survey site itself is the source of detected contamination.

- As additional QA/QC, NYSDEC deployed a duplicate field sample for sample C2 designated C2D. Because duplicates cannot be identically located with their base field samples and because it is possible for even small geophysical differences between sample locations to affect soil-gas-emission quantities, comparisons between duplicates and base samples should be made on a qualitative basis, as quantitative results may be subject to random distortions. In general, a duplicate correspondence should be defined as a difference of 50% or less between contaminant data for base and duplicate samples. Also, for the purpose of calculating correspondences, all non-detections should be assigned as a baseline value the quantitation level for the specific contaminant. Based on these assumptions, a 100% correlation was found between the duplicate sample and its base sample.
- Survey findings are relative exclusively to this project and should not routinely be compared with results of other EMFLUX® Surveys. To establish a relationship between reported soil-gas measurements and actual subsurface contaminant concentrations, which will indicate those detections representing significant subsurface contamination, BEACON recommends the guidelines on the inside front cover of this report.
- The following Attachments are included:
 - -1- Laboratory Report
 - -2- EMFLUX® Field Procedures
 - -3- Field Deployment Report
 - -4- Laboratory Procedures
 - -5- Chain-of-Custody Form

Laboratory Report

Laboratory Report Results in Nanograms (ng) Analysis Completed: November 11, 1999

EMFLUX Project No. EM1138

In this analysis 55 EMFLUX samples were analyzed under the requirements of EPA Method 8021/8015B using an SRI 8610 Gas Chromatograph equipped with a thermal desorber, a photoionization detector, a flame ionization detector and a dry electrolytic conductivity detector.

SAMPLE NO.	A1	A2	A3	B2	В3	B4	C1	C2	
COMPOUNDS				 	-	<u> </u>			
1,1-Dichloroethene	U	U	U	U	U	U	·U	U	
Methylene Chloride	Ŭ	U	U	U	U	U	U	U	
trans-1,2-Dichloroethene	Ū	U	Ų	U	U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	U	
cis-1,2-Dichloroethene	U	U	U	U	U	U	U	U	
Chloroform	U	U	U	U	U	U	U	U	
1,2-Dichloroethane	U	Ŭ	U	U	U	U	U	U	
1,1,1-Trichloroethane	U	U	U	U	U	U	87	. U	
Carbon Tetrachloride	U	\mathbf{U}	U	U	U	U	U	U	
Trichloroethene	U	U	U	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	
Tetrachloroethene	U	U	U	U	U	U	U	U	
Chlorobenzene	U	U	U	U	U	U	U	U	
Ethylene Dibromide	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	U	
1,1,2,2-Tetrachloroethane	U	Ū	Ū	U	U	U	U	U	
MTBE	U	U	U	U	U	U	U	U	
Benzene	U	U	U.	U	U	\mathbf{U}	· U	\mathbf{U}	
Toluene	U	U	U	U	34	U	U	U	
Ethylbenzene	Ū.	U	U	26	240	U	U	U	
Xylenes (total)	U	40	1,100	74	250	U	U	U	
1,3,5-Trimethylbenzene	U	U	170	U	180	180	U	U	
1,2,4-Trimethylbenzene	U	U	120	60	93	U	U	U	
Naphthalene	U	U	U	40	25	U	U	U	
TPH Volatiles	. U	U	3,600	1,400	14,000	2,500	U	280	

Reported Quantitation Level = 25 nanograms for individual compounds
Reported Quantitation Level = 250 nanograms for TPH Volatiles

U = Below Reported Quantitation Level

Laboratory Report

Results in Nanograms (ng)
Analysis Completed: November 11, 1999

SAMPLE NO.	C2D	C 3	C4	D2	D 3	D4	D 5	D6	
COMPOUNDS				· · · · · · · · · · · · · · · · · · ·					
1,1-Dichloroethene	U	27	U	U	U	U	U	U	
Methylene Chloride	U	U	U	U	U	· U	U	U	
trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	U	62	U	U	U	U	U	U	
cis-1,2-Dichloroethene	Ū	U	U	U	U	U	U	U	
Chloroform	Ū	· U	U	U	U	U	U	U	
1,2-Dichloroethane	U	\cdot Π	U	U	U	U	U	U	
1,1,1-Trichloroethane	U	980	U	U	140	Ü	U	29	
Carbon Tetrachloride	U	U	U	U	U	U	U	Ü	
Trichloroethene	U	27	U	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	
Tetrachloroethene	U	U	U	U	54	U	U	U	
Chlorobenzene	U	U	U	U	U	U	U	U	
Ethylene Dibromide	Ū	U	U	U	U	U	U	U	
Bromoform	U	Ü	U	U	U	U	U	U	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	Ū	U	
MTBE	· U	U	U	U	U	U	U	U	
Benzene	U	U	U	U	U	U	U	U	
Toluene	U	35	U	U	U	U	U	U	
Ethylbenzene	U	U	U	U	U	U	U	U	
Xylenes (total)	U	49	140	U	· U	U	U	U	
1,3,5-Trimethylbenzene	, U	28	U	U	U	Ū	U	U	
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	U	
Naphthalene	U	26	Ų	· U	U	U	U	U	
TPH Volatiles	U	1,100	580	U	U	U	U	U	

Laboratory Report Results in Nanograms (ng)

Analysis Completed: November 11, 1999

SAMPLE NO.	D 7	E 1	E2	E3	E 4	E 5	E 6	F2	
COMPOUNDS							· · · · · · · · · · · · · · · · · · ·		
1,1-Dichloroethene	U	U	U	U	· U	U	U	U	
Methylene Chloride	U	Ū	U	U	U	U	U	U	
trans-1,2-Dichloroethene	U	U	U	₹ U	Ū	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	U _.	
cis-1,2-Dichloroethene	U	U	U	U	U	U	U	U	
Chloroform	U	·U	U	U	U	U	U	U	
1,2-Dichloroethane	U	$^{-}\mathbf{U}$	U	U	U	U	U	U	
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	
Carbon Tetrachloride	U	·U	U	U	U	U	Ŭ	U	
Trichloroethene	U	U	U	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	
Tetrachloroethene	U	U	Ū	U	U .	U	U	U	
Chlorobenzene	U	. U	Ū	U	. U	U	Ù	U	
Ethylene Dibromide	U	U	Ù	U	Ū	U	U	U	
Bromoform	U	U	U	U	Ū	U	U	U -	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	
MTBE	U	U	U	U	U	U	U	U	
Benzene	U	U	Ū	U	U	· U	U	U	
Toluene	U	U	U	U	U	U	U,	U	
Ethylbenzene	U	Ū	U	U	Ū	U	U	U	
Xylenes (total)	U	U	U	U	51	U	U	U	
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	U	
1,2,4-Trimethylbenzene	U	U	U	U .	Ü	U	U	U	
Naphthalene	U	U	U	U	U	U	U	U	
TPH Volatiles	U	260	260	U	390	U	U	Ŭ	

Laboratory Report Results in Nanograms (ng)

Analysis Completed: November 11, 1999

SAMPLE NO.	F 3	F4	F5	F6	G2	G3	G 4	G5	
COMPOUNDS									
1,1-Dichloroethene	U	U	U	U	U	U ,	U	U	
Methylene Chloride	U	U	U	U	U	U	U	U	
trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	′ U	U	U	U	U	U	U	U	
cis-1,2-Dichloroethene	U	. U	U	U	U	U	U	U	
Chloroform	U	U	U	U	U	U	U	U	
1,2-Dichloroethane	U	U	U	U	U	U	U	U	
1,1,1-Trichloroethane	U	U	42	U	U	U	U	U	
Carbon Tetrachloride	U	U	U	U	U	U	U	U	
Trichloroethene	U	U	U	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	
Tetrachloroethene	U	Ū	U	U	U	U	U	U	
Chlorobenzene	U	U	U	U	U	U	U	U	
Ethylene Dibromide	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	U	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	
MTBE	U	U	U	U	U	U	U	U	
Benzene	U	U	U	U	U	U	U	U	
Toluene	U	·U	46	Ū	U	U	U	U	
Ethylbenzene	U	U	U	U	U	U	U	U	
Xylenes (total)	39	U	3,100	U	U	U	U	U	
1,3,5-Trimethylbenzene	U	U	860	U	U	U	U	U	
1,2,4-Trimethylbenzene	U	U	2,100	U	38	79	U	U	
Naphthalene	27	U	U	U	U	U	U	U	
TPH Volatiles	U	U	53,000	1,100	U	2,500	330	430	

Laboratory Report

Results in Nanograms (ng)

Analysis Completed: November 11, 1999

SAMPLE NO.	G6	H2	Н3	H4	H 5	Н6	H 7	Н8	
COMPOUNDS				<u> </u>		······································		·	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	
Methylene Chloride	Ŭ	U	U	U	U	U	U	U	
trans-1,2-Dichloroethene	Ŭ	U	U	U	U	U	U	U	
1,1-Dichloroethane	\mathbf{U}_{-}	U	U	U	U	U	U	U	
cis-1,2-Dichloroethene	U	U	U	U	U	U	U	U	
Chloroform	U	U	U	U	U	U	U	U	
1,2-Dichloroethane	U	U	U	U	U	U	U	U	
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	
Carbon Tetrachloride	U	U	U	U	U	U	U	U	
Trichloroethene	U	U	U	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	
Tetrachloroethene	U	U	U	U	U	U	U	U	
Chlorobenzene	U	U	U	U	U	U	U	U	
Ethylene Dibromide	U	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	, U	U	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	
MTBE	U	U	U	U	U	U	U	U	
Benzene	U	U	U	U	U	U	U	U	
Toluene	U	U	U	U	U	U	U	U	
Ethylbenzene	U	Ū	U	U	U	U	U	U	
Xylenes (total)	U	U	U	U	U	U	U	U	
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	U	
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	U	
Naphthalene	8 6	U	U	42	U	U -	U	U	
TPH Volatiles	1,000	Ū	· · U	490	U	U	U	U	

Laboratory Report

Results in Nanograms (ng)

Analysis Completed: November 11, 1999

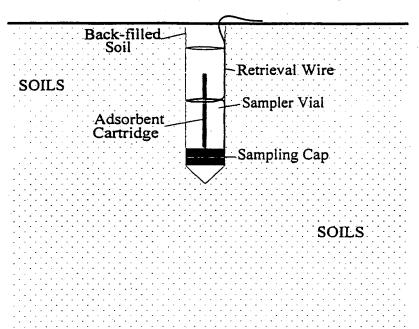
SAMPLE NO.	14	I5	I6	I7	J5	J6	J7	J8	
COMPOUNDS									
1,1-Dichloroethene	U	U	U	U	U	U	U ·	U	
Methylene Chloride	U	U	U	U	U	U	U	U	
trans-1,2-Dichloroethene	U	Ū	U	U	U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	U	
cis-1,2-Dichloroethene	U	U	U	U	· U	U	U	U	
Chloroform	U	U	, U	U	U	U	U	U	
1,2-Dichloroethane	U	U	U	Ū	U	U	U	U	
1,1,1-Trichloroethane	U	U	U.	U	U	U	U	U	
Carbon Tetrachloride	U	U	U	U	U	U	U	U	
Trichloroethene	Ų	U	U	U	U	U	U	U	
1,1,2-Trichloroethane	Ū	U	U	U	U	U	U	U	
Tetrachloroethene	U	U	U	U	U	U	U	U	
Chlorobenzene	U	U	U	U	U ·	U	U	U	
Ethylene Dibromide	U -	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	Ū	U	U	U	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	•
MTBE	U	·U	U	U	U	U	U	U	
Benzene	U	U	U	U	U	U	U	U	
Toluene	U	U	U	U	U	Ū	U	U	
Ethylbenzene	U	U	U	U	Ū	U	U	U	
Xylenes (total)	U	U	U	U	U	U	U	U	
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	Ū	
1,2,4-Trimethylbenzene	U	U	U	U	U	U	v U	U	
Naphthalene	U	. U	Ü	U	Ū	U	U	U	
TPH Volatiles	U	U,	U	U	U	U	U	900	

Laboratory Report

Results in Nanograms (ng)

Analysis Completed: November 11, 1999

SAMPLE NO.	K 6	K 7	K8	L6	L7	Trip-1	Trip-2	
COMPOUNDS						· · · · <u>-</u> · · · ·		
1,1-Dichloroethene	U	U	U	U	U	U	Ü	
Methylene Chloride	U	U	U	U	U	U	U	
trans-1,2-Dichloroethene	U	U	U	U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	
cis-1,2-Dichloroethene	U	U	U	U	U	U	U	
Chloroform	U	U	U	U	U	U	U	
1,2-Dichloroethane	U	U	U	U	U	U	U	
1,1,1-Trichloroethane	U	U	U	U	U	U	U	
Carbon Tetrachloride	U	U	U	U	U	· U	U	
Trichloroethene	U	Ù	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	
Tetrachloroethene	U	U	U	U	U	U	U	
Chlorobenzene	U	U	U	U	U	U	U	
Ethylene Dibromide	U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	
1,1,2,2-Tetrachloroethane	U	U	Ū	U.	U	U	U	
МТВЕ	U	U	U	U	U	U	U	
Benzene	U	U	U	U	U	U	U	
Toluene	U	66	U	U	U	Ü	U	
Ethylbenzene	U	U	U	U	U	U	U	·
Xylenes (total)	U	U	U -	36	U	U	Ū	
1,3,5-Trimethylbenzene	U	U	U	U	U	U	U	
1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	
Naphthalene	U	U	U	U	U	U	U	
TPH Volatiles	U	U	U	400	U	U	U	


FIELD PROCEDURES FOR EMFLUX® SOIL-GAS SURVEYS

The following field procedures are routinely used during EMFLUX® Soil-Gas Surveys. Modifications can be and are incorporated from time to time in response to individual project requirements. In all instances, BEACON adheres to EPA-approved Quality Assurance and Quality Control practices.

- A. Field personnel carry EMFLUX® system components and support equipment to the site and deploy the EMFLUX® Collectors in a prearranged survey pattern. Although EMFLUX® Collectors require only one person for emplacement and retrieval, the specific number of field personnel required depends upon the scope and schedule of the project. Each Collector emplacement generally takes less than two minutes.
- B. At each survey point, a field technician clears vegetation as needed and, using a slide hammer with a ½" diameter rod, creates a hole three-feet deep. The technician then uses a hammer and a ¾" diameter pointed metal stake to widen the top four inches of the hole. [Note: For locations covered with asphalt, concrete, or gravel surfacing, the field technician drills a 1"- to 1½"-diameter hole through the surfacing to the soils beneath. If necessary, the Collector can be sleeved with a ¾" i.d. metal sleeve.] The solid cap on a Sampler Vial, which contains an adsorbent cartridge, is removed and replaced with a Sampling Cap (a one-hole cap with a screen meshing insert). The stake is removed from the hole in the ground and the Sampler is inserted, with the Sampling Cap end facing down, in the top four inches of the hole. The date and time of emplacement and other relevant information are recorded on the Field Deployment Form.
- C. One or more trip blanks are included as part of the quality-control procedures.
- D. Once all EMFLUX® Collectors have been deployed, field personnel schedule Collector recovery (typically 72 hours after emplacement) and depart, taking all no-longer-needed equipment and materials with them).
- E. Field personnel retrieve the Collectors at the end of the exposure period. At each location, a field technician withdraws the Collector from its hole and wipes the outside of the vial clean using gauze cloth; following removal of the Sampling Cap, the threads of the vial are also cleaned. A solid plastic cap is screwed onto the vial and the sample location number is written on the label. The technician then records sample-point location, date, time, etc. on the Field Deployment Form.
- F. Sampling holes are refilled with soil, sand, or other suitable material. If Collectors have been installed through asphalt or concrete, the hole is filled to grade and patched with similar material.
- G. Following retrieval, field personnel ship the EMFLUX® Field Kits to BEACON's laboratory or an analytical laboratory under contract to BEACON.

EMFLUX® COLLECTOR

DEPLOYMENT THROUGH SOILS

DEPLOYMENT THROUGH AN ASPHALT/CONCRETE CAP

Field Deployment Report

		BE.	BEACON ENVIRONMENTAL SERVICES, INC. FIELD DEPLOYMENT REPORT
ROJECT #:		CLIENT:	SITE:
11 58		1 (orp.	Vacuum Cil
			INDIVIDUAL SAMPLE INFORMATION
EMPLACEM	EMPLACEMENT DATE:	10/20/49	RETRIEVAL DATE: $11/4/9$?
SAMPLE		TIME	FIELD NOTES
NUMBER	Emplaced	Retrieved	(e.g., asphalt/concrete covering, description of sample location, cartridge/vial condition)
AZ	5460	0945	on scope wast or walleway (within 10')
43	0360	ዕዓዛገ	
82	1005	0953	MAXT IN WALKWAY
B 3	1010	0855	
84	5101	0957	50 Man junky Aves (8)
C3	1020	1005	
C y	5201	1006	
70	1035	1610	has a warmen is
03	04.01	1012	
. 40	1045	1014	0- 5-9 Re 520
05	1050	1017	TANK
90	0011	1019	74~16
£2	151	1801	
ES	1120	1030	RURALE MASA
EY	1125	1028	1. C. Blev
ES	1135	1026	SUN

* 30 mm

Page 2 or 4

SAMPLE TIME (e NUMBER Emplaced Retrieved T				
Emplaced Retrieved	SAMPLE	L	ІМЕ	g., asphalt/concrete covering, des
IF5 1145 IF6 1149 IF6 1149 IF7 1145 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1150 IF7 1100 IF1 1100 IF6 1100 IF6 1100 IF6 1100		Emplaced	Retrieved	
£6 1440 1143 £7 1445 1140 £6 1450 1150 £7 1455 1150 £7 1500 1153 £8 1520 120 £8 1535 120 £6 1535 120 £7 1540 105 £1 1600 1340 £1 1600 1340 £1 1605 1001 £2 1605 1001 £2 1610 1000 £2 1615 1001	7.5	1550	1145	
IT 7 1445 1140 IT 6 1450 1150 IT 7 1500 1153 IT 8 1505 1153 K 6 1520 1204 K 6 1520 1204 K 6 1525 1202 K 7 1535 1202 L 7 1540 105 A 1 1550 0940 C 1 1555 1000 C 1 1555 1000 C 2 1605 1600 134 C 2 1605 1610 1000 F 6 1615 1168 1168	91	04 41	1143	
76 1450 1150 77 1500 1153 78 1505 1153 78 1505 1153 K6 1520 120 K6 1525 120 K7 1535 120 L6 1535 120 C1 1555 100 C1 1555 100 C1 1555 100 C2 1605 100 C2 1605 100 F6 1615 100 F6 1615 1168	I 7	1445	11/2	
7 1455 1152 7 1500 1153 X 1505 1153 X 1505 1100 X 1520 1100 X 1520 1100 X 1520 1200 X 1530 1200 X 1535 100 C 1550 0940 C 1550 0940 C 1600 100 C 1600 100 C 1610 100 F 1615 1168 F 1615 1168	50	05h1 .	1150	
T7 1500 1153 K 6 1505 1153 K 6 1520 1204 K 7 1525 1204 K 8 1530 1204 L 9 1535 1004 L 1 1550 09440 C 1 1555 1004 C 1 1600 1334 C 2 1600 1334 E 1 1600 1000 F 6 1615 1168 F 6 1615 1168		`	1/22	
T8 1505 1155 K6 1520 1204 K7 1525 1202 K8 1530 1202 L6 1530 1202 L7 1540 1202 C1 1555 1004 C1 1555 1004 C2 1605 1004 E1 1605 1004 E6 1615 1168	77	1500	1153	
K 6 1520 1204 K 7 1525 1202 K 8 1530 1202 L 6 1535 1202 L 7 1540 1205 C 1 1550 0940 C 1 1555 1001 C 1 1600 1336 C 2 1605 1001 F 6 1616 1002 F 6 1615 1168	78	1505	1155	
K7 1525 1202 K8 1530 1202 L6 1535 1205 L7 1540 1205 C1 1550 0940 C1 1555 1001 C2 1605 1001 F6 1615 1168	K6	1520	1204	
L8 1530 1200 L6 1535 1200 L7 1540 1205 C1 1550 0940 C1 1555 1000 C2 1600 1336 C2 1605 1001 F6 1615 1108	47	1525	2021	
16 1535 1005 17 1540 1005 11 1550 0940 11 1555 1000 12 1600 134 16 1600 134 16 1600 1000 16 16 1000 16 16 16 16 16 16	لا 8	1530	1200	
L7 1540 126 A1 1550 0940 C1 1555 1000 C2 1605 1001 F6 1615 1168	97	1535		
A1 1550 0940 C1 1555 1000 E1 1600 1436 C2 1605 1001 F6 1615 1168 F6 1615 1168	17	1540	1205	
C1 1555 1000 11 11 11 11 11 11 11 11 11 11 11 1	A/	1550	0440	LAWY AREA MEXT & RIVER (WITHIN 10")
1600 1836 LAW MARA "" " " " " " " " " " " " " " " " " "	73	1555	1000) () (.
C2 1605 1001 C20 1610 1002 F6 1615 1168	E	1600	1634	
C20 1610 1002 F6 1615 1168	22	1605	1001	
F6 1615 1168		1610	7001	
		1615	8911	Swol
	交			

Page 1 of 4

FIELD NOTES (e.g., asphalt/concrete covering, description of sample location, cartridge/vial condition)													A net show !	of the same of the	
TIME	Retrieved		·				•							1	
F	Emplaced			•									1	\	
SAMPLE NUMBER	•							·					Trip-1	Trip-2	• •
				Аз		Z.			 	!		 J			

LABORATORY PROCEDURES FOR EMFLUX® ADSORBENT CARTRIDGES

Following are laboratory procedures used with the EMFLUX® Soil-Gas System, a screening technology for expedited site investigation. After exposure, EMFLUX® cartridges are analyzed using U.S. EPA Method 8015B/8021 as described in the Solid Waste Manual (SW-846) for screening purposes. This method, which is modified to accommodate thermal desorption screening of the adsorbent cartridges, uses a capillary column gas chromatograph (GC) with a photo ionization detector (PID) in series with a flame ionization detector (FID) and a dry electrolytic conductivity detector (DELCD). This procedure is summarized below:

- A. EMFLUX® cartridges are placed in the thermal desorbtion chamber, where they are purged with carrier gas then desorbed into the capillary column. The capillary column separates the sample into single component analytes. Analytes in the carrier gas are detected by a PID, then by an FID and finally by a DELCD.
- B. The laboratory uses a 105-m, 0.53-mm-i.d., 3 μm-film-thickness Rtx-502.2 capillary column for separation during analysis.
- C. The PID, FID and DELCD are set to high gain.
- D. Lab personnel conduct internal control blank and internal control verification analyses every 24 hours to ensure that the system is contaminant free and properly calibrated. The system is calibrated using the external standard calibration procedure to at least three different concentration levels for each compound targeted, with the lowest concentration level at or near the method detection limit.
- E. The instrumentation used for these analyses is an SRI 8610 Gas Chromatograph, equipped with a thermal desorber and connected to a PID in series with an FID and a DELCD.

Chain-of-Custody Form

BEACON ENVIRONMENTAL SERVICES, INC. CHAIN-OF-CUSTODY FORM

PROJECT NUMBER:

1138

PROJECT NAME:

Vacuum Oil

LOCATION: Rochester,

CLIENT:

IT Corp.

TARGET COMPOUNDS: 8021/8015B

SAMPLE	LAB ID No.	REMARKS			
NUMBER	(for lab use only)	Condition of sample or vial	Date	Time	Init.
A2			10/2014	0945	
A 2 B2 B2			*/	0950	
BZ			~	1005	
B3			11	15/0	
13 L			!	10/5	
C3			11	1020	
c 4			11	1024	٠
D2			Į1	1035	
D 3			FI	1040	
pu			11	1045	
1725			1.	1050	
D6			(:	1130	
EZ			125	1115	
€ 3			17	1120	
Fu			11	1125	
£S			11	1/35	
E'			1/	1140	
EV D7			11	1150	
FZ			11	1300	
F3			H.	1305	
14			u	1310	
FS			1/	1315	
61			ŧ,	1325	
63			. 11	1340	
64			. 1.	1345	
65			1,	1370	
66			h	1355	
H 2			,,	1405	
43			1.1	1410	
44			11	1545	
45			11	1420	
Hφ	<u> </u>		11	1425	

RELINQ	UISHED BY	D.4.777	TD CE	RECEIVED BY					
Signature	Printed Name	DATE	TIME	Signature	Printed Name				
Sco	Steve Thornley	10.14.99	1700	Yedex -	`				
Leder	T>	10.15.99	1200	Button	Frank Sowers				
Linklow	Frank Sowers	11.4.99	1500	UPS					
UPS	→	11-5-99	1100	Horavil	H.ON:11				
	·								

BEACON ENVIRONMENTAL SERVICES, INC. CHAIN-OF-CUSTODY FORM

PROJECT NUMBER: 1138 PROJECT NAME: Vacuum 0.1

LOCATION: Rochester, NY CLIENT: IT Corp.

TARGET COMPOUNDS: 8021/8015B

SAMPLE	LAB ID No.	REMARKS			
NUMBER	(for lab use only)	Condition of sample or vial	Date	Time	Init.
7-7		10	20195	1455	
148			11	14-30	
I4			"	143	
75			(:	1550	
76			,/	1440	
27			11	1445	
The			. (1450	•
J5			•(1455	
17			11	1500	
74			13	1505	
K6			ef	1520	
K7 K8			11	1525	
K8			111	1530	
۷'6			1	1535	
L7			ℓ_i	1540	
A1	·		p.F	1550	
CI			Y	1555	
EI			4	1600	
CZD			74	1605	
CZD			1	1610	
F6			4	1615	
			11		
					•
L					

RELING	QUISHED BY	DATE	777) (15	RECEIVED BY					
Signature	Printed Name	DATE	TIME	Signature	Printed Name				
50)	Steve Thornben	10.14.99	1700	Fedex-	> _				
Jedes	<u>_</u>	10.15.99	1200	Marian	Frank Sowers				
In allow	Frank Sowers	11.4.99	1500	UPS -	>>				
UPS		11/5/29	poo	they ON IN	#ONENI				
		<u> </u>							