NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

September 28, 2021

Mr. Dan Noll Labella Associates, D.P.C. 300 State Street, Suite 201 Rochester, New York 14614

Re: Post-Mitigation SSDS Installation Air Sampling Results Tool Room Expansion Eldre Corporation Site No.: C828182 Henrietta (T), Monroe (C)

Dear Mr. Noll:

The New York State Department of Environmental Conservation (Department) and New York State Department of Health (NYSDOH) (collectively known as the State) have completed a review of the Post-Mitigation SSDS Installation Air Sampling Results – Tool Room Expansion Report (Report) dated July 19, 2021, for the Eldre Corporation site (Site) located at 1500 Jefferson Road and 55 Hofstra Road, Town of Henrietta, New York. Based on the information presented in the Report, the Report is conditionally approved with the following modifications and clarifications.

1. The State acknowledges that there has been a reduction in the TCE concentrations detected within the Tool Room. The latest sampling event indicates TCE concentrations at 2.4 ug/m3 which still above the NYSDOH's Air Guidance Value of 2 ug/m3. The State is requesting that additional indoor air sampling is completed during the heating season to confirm the TCE concentrations in the indoor air continue to decrease and indoor air levels reach typical background concentrations (below 2 ug/m3). The State is requesting that the next sampling event is completed during the 2021/2022 heating season. This additional indoor air sampling can be completed during the site management phase of the project provided that the Site achieves the issuance of the Certificate of Completion (COC) on or before March 31, 2022. If the COC is issued on or before March 31, 2022 then the procedures/protocols associated with the additional 2021/2022 indoor air sampling as well as any future indoor air sampling events will be presented in the Site's Site Management Plan (SMP).

If the COC is not issued on or before March 31, 2022, then the indoor sampling event will be completed before the end of the 2021/2022 heating season. The 2021/2022 indoor sampling event will be completed consistent with approved work plans and previous indoor air sampling events.

2. The attached employee fact sheet will be posted in the employee common area(s) to inform the employees of the results from the completed indoor air and sub-slab sampling events, future indoor air sampling events, and the installation of three (3) sub-slab depressurization systems in the on-site building.

Within fifteen (15) days of the date of this letter, the Applicant must elect in writing (electronic notification is acceptable) one of the following options:

- Option A: Accept the modified report;
- Option B: Invoke dispute resolution as set forth in 6 NYCRR Part 35-1.5(b)(2); or
- Option C: Terminate the Brownfield Cleanup Agreement in accordance with 6 NYCRR Part 375-3.5.

If Option A is chosen, then a copy of the accepted Post-Mitigation SSDS Installation Air Sampling Results – Tool Room Expansion Report along with this letter attached must be placed in the document repository within 1 week of the date of this letter. Please provide notification to the Department that the approved and complete Post-Mitigation SSDS Installation Air Sampling Results – Tool Room Expansion Report has been placed in the document repository as well as the employee fact sheet has been posted (electronic notification along with photographs are acceptable).

The State seeks to resolve the outstanding differences in a mutually agreeable manner, which addresses the requirements of the Brownfield Cleanup Agreement and associated work plans. If you have any technical questions, concerns, or need further assistance with the Site, please feel free to contact me at 585-226-5354 or via e-mail at <u>charlotte.theobald@dec.ny.gov</u>. If you have any legal questions or concerns, please contact Ms. Lisa Perla Schwartz at 585-226-5363 or via e-mail at <u>lisa.schwartz@dec.ny.gov</u>.

Sincerely,

ontold

Charlotte B. Theobald Assistant Engineer

ec:

Harvey Erdle (Eldre Corporation) Sarah Lobe (Nixon Peabody LLP) Scott H. Reisch (Hogan Lovells LLP) Charles Rine (Groundwater Sciences) Alex Kralles (MERSEN USA) Ann Barber (Labella) Justin Deming (NYSDOH) Julia Kenney (NYSDOH) Mirza Begovic (MCHD) Lisa Schwartz (NYSDEC) David Pratt (NYSDEC) Todd Caffoe (NYSDEC)

FACT SHEET BROWNFIELD CLEANUP PROGRAM

SOIL VAPOR AND INDOOR AIR SAMPLING

The cleanup and activities have been performed by the former shareholders of Eldre Corporation ("Applicant") and Mersen USA Rochester-NY, Corp. ("Co-Applicant") with oversight provided by the New York State Department of Environmental Conservation and the New York State Department of Health.

Documents related to the cleanup of this site can be found at the location(s) identified below under "Where to Find Information."

Highlights of the Soil Vapor Sampling Activities

An Interim Remedial Measure (IRM) was completed at the Site. Three (3) sub-slab depressurization systems (East, West, and South) were installed within the on-site building. A sub-slab depressurization system is just like a radon system used in homes. The East System and West System were installed in 2018. After the sub-slab depressurization systems were installed, soil vapor intrusion sampling was conducted during the heating season on April 2, 2019, to confirm the effectiveness of the East and West SSDS. A heating season is defined as November 1st to about April 1st. The analytical results indicated higher concentrations of chlorinated volatile organic compounds (in particular trichloroethene) in the indoor air than that in the sub-slab locations. In April 2020 the same locations were resampled. The analytical results from the April 2020 sampling event indicated chlorinated volatile organic compounds (in particular trichloroethene) were still elevated. In March 2021, the sub-slab depressurization system was expanded to include the Tool Room (South System). After installation of the South System, additional indoor air sampling was completed to track the trichloroethene concentrations. Trichloroethene was detected at 2.4 microgram per cubic meter of air (µg/m³). The concentration of trichloroethene still remains above the New York State Department of Health's ambient air guidance value of 2 µg/m³. Additional indoor air sampling will be completed during the next heating season to ensure the South System has reduced trichloroethene concentrations in indoor air are below 2 μ g/m³ ambient air guidance value.

Background

Previous environmental investigations performed at the site detected elevated levels of a chemical called trichloroethene (TCE) in the groundwater, soil vapor, and soil underneath the 1500 Jefferson Road building. TCE is a volatile organic compound that is commonly used in industry and was used to remove grease from parts at the facility until about January 2015. Additional information on TCE can be found at:

https://www.health.ny.gov/environmental/investigations/soil_gas/svi_guidance/docs/fs_tce.pdf

The Site was entered into the BCP as Site No. C828182 in November 2012, based upon the findings of previous environmental investigations.

The Applicant has completed a Remedial Investigation (RI) at the Site to characterize the nature

and extent of contamination at the Site.

Access to the Site's project documents online through the DECinfo Locator: <u>https://www.dec.ny.gov/data/DecDocs/C828182/.</u>

Additional Site details, including environmental and health assessment summaries, are available on NYSDEC's website. Use site code C828182.

http://www.dec.ny.gov/chemical/8437.html

Brownfield Cleanup Program: New York's Brownfield Cleanup Program (BCP) encourages the voluntary cleanup of contaminated properties known as "brownfields" so that they can be reused and redeveloped. These uses include recreation, housing, business, or other uses.

A brownfield is any real property that is difficult to reuse or redevelop because of the presence or potential presence of contamination.

For more information about the BCP, visit: http://www.dec.ny.gov/chemical/8450.html

FOR MORE INFORMATION

Project documents are available at the following location(s) to help the public stay informed.

Henrietta Public Library 625 Calkins Road Henrietta, NY 14623 Phone: (585) 359-7092

Who to Contact: Comments and questions are always welcome and should be directed as follows:

Environmental Project Related Questions:

Charlotte B. Theobald Department of Environmental Conservation Division of Environmental Remediation 6274 East Avon-Lima Road Avon, New York 14414 (585) 226-5354 <u>charlotte.theobald@dec.ny.gov</u> Site-Related Health Questions:

Julia Kenney New York State Department of Health Bureau of Environmental Exposure Investigation Empire State Plaza, Corning Tower, Room 1787 Albany, New York 12237 1-518-402-7860 BEEI@health.ny.gov

July 19, 2021

Charlotte B. Theobald New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Julia Kenney, PG NYS Department of Health Bureau of Environmental Exposure Investigation Corning Tower, Room 1787 Albany, NY 12237

Re: Post-Mitigation (SSDS Installation) Air Sampling Results – Tool Room Expansion Eldre Corporation 1500 Jefferson Road & 55 Hofstra Road Henrietta, New York NYSDEC BCP Site C828182 LaBella Project No. 212721.02

Dear Ms. Theobald and Ms. Kenney,

LaBella Associates, D.P.C. (LaBella) is submitting this letter summarizing soil vapor intrusion (SVI) sampling results collected post-sub-slab depressurization system (SSDS) installation (Tool Room expansion) at the above referenced New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site (BCP ID No. C828182), located at 1500 Jefferson Road and 55 Hofstra Road in the Town of Henrietta, New York, herein after referred to as "the Site." An SSDS IRM Work Plan Addendum (dated March 16, 2021) was previously approved by the NYSDEC and served as the basis for this work. This letter report summarizes the activities associated with the IRM Work Plan Addendum and post-mitigation SVI sampling results.

Abbreviated Site History and Project Background

On-site manufacturing operations utilized trichloroethylene (TCE) for degreasing metal parts until January 2015, when the use of TCE was ended. TCE was predominantly used in a vapor degreaser located on the eastern side of Site building on the lower level (refer to Figure 1); however, based on discussions with the former owner, TCE was also utilized for degreasing in other locations within the building on a smaller scale. Subsequent to ending the on-site use of TCE, NYSDEC requested that a SSDS be installed and/or SVI testing be conducted. Based on the known TCE source area beneath the northern portion of the building, it was proposed that a partial SSDS would be installed with follow-up SVI testing. This was proposed in the Interim Remedial Measures (IRM) Work Plan (dated September 2016) and conditionally approval by NYSDEC in a letter dated June 15, 2017, along with subsequent email correspondence, and a letter (dated February 14, 2018) detailing baseline SVI testing results and building areas proposed for mitigation.

As approved in the IRM Work Plan, two (2) SSDS were installed in the northern portion of the 1500 Jefferson Road building. Subsequent to installation of the SSDS, pressure field extension (PFE) testing was completed to determine the extent of influence. In general, the system influence included the entire lower level of the building with the exception of some areas of the southern portion of the lower level (furthest from the depressurization points), including the tool room. Based on the areas of SSDS influence, areas of indoor air and SVI testing were determined. Due to a lack of SSDS influence beneath the tool room portion of the lower level of the building, the NYSDEC requested a soil vapor intrusion sample from within the tool room. Post-mitigation SVI sampling was conducted across the entire 1500 Jefferson Road building in April 2019 and April 2020. The SSDS installation and sampling was conducted in accordance with NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (dated October 2006) and subsequent updates.

Previous Tool Room SVI Sampling Results

<u> April 2019</u>

The April 2019 testing of the tool room (samples designated SVI/IAQ-09) identified TCE in sub-slab vapor of 3.5 µg/m³ and TCE in indoor air of 5.6 µg/m³. Based on a comparison of results to the 2017 NYSDOH Decision Matrices, the concentration of TCE in SVI/IAQ-09 (Tool Room) indicated "identify sources and resample or mitigate". Specifically, the NYSDOH decision matrix indicates "We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out."

In addition to the SVI sampling, a building inventory was completed which identified numerous chemicals on-site. Safety Data Sheets (SDS) were obtained and reviewed for products utilized in and adjacent to the Tool Room area. TCE was not identified on the SDSs.

<u> April 2020</u>

Based on the higher concentrations of compounds in the indoor air than in the sub-slab at SVI/IAQ-09 resulting in "identify sources and resample or mitigate", and the fact that source area treatment in Remedial Area of Concern #1 (beneath the northern portion of the 1500 Jefferson Road Building) consisting of Electrical Resistance Heating (ERH) began March 10, 2020, the Tool Room was resampled in April 2020.

The April 2020 testing of the tool room (samples designated SVI/IAQ-9) identified TCE in sub-slab vapor of 4.4 µg/m³ and TCE in indoor air of 4.6 µg/m³. Based on a comparison of results to the 2017 NYSDOH Decision Matrices, location SVI/IAQ-9 (Tool Room) resulted in "identify sources and resample or mitigate" for a second time due to concentrations of TCE. TCE in indoor air was greater than TCE in the sub-slab during both post-mitigation sampling events (April 2019 and April 2020). A chemical inventory was completed during the April 2020 sampling event. Chemicals containing TCE were not identified; however, a product containing PCE was identified (Lectra Clean[®] Heavy Duty Parts Degreaser). Note that in March 2021, Mersen reported that the Lectra Clean[®] had been

disposed of, that none of Mersen's employees were familiar with the product, and Mersen does not believe the product was ever used onsite.

The presence of TCE in indoor air at a concentration greater than the sub-slab may be a result of current or past uses of CVOCs in this room. Specifically, degreasers are and have been used in this room. The possibility that TCE has been unknowingly used exists, as TCE can be present in low concentrations within such products, without the disclosure of the manufacturer (trade secret).

SSDS Installation – Tool Room

Although the previous sampling results indicated that soil vapor intrusion was likely not the cause of the concentrations of TCE in indoor air, in an attempt to reduce indoor air concentrations of TCE in the tool room area, it was agreed that the SSDS would be expanded to include the tool room.

A third SSDS at the Site was installed beneath the Tool Room Area between March 29 and April 5, 2021. Note that the system was broadened to include six (6) suction cavities, up from the four (4) cavities proposed in the IRM Work Plan Addendum. The additional cavities were deemed necessary to ensure adequate sub-slab negative pressure (area of influence) to encompass the entire tool room. The layout is shown on Figures 1 and 2, attached. System installation details will be further documented in a Construction Completion Report (CCR).

LaBella inspected the newly installed system to confirm proper installation and operation on April 6, 2021. Elements of the inspection included:

- Confirming all piping was intact and of appropriate material and size (4" diameter PVC);
- Accessing the roof to confirm an adequate exhaust fan was installed and operating;
- Observing the negative pressure reading of the U-tube manometer installed on one of the vertical risers;
- Testing the audible alarm; and,
- Conducting a pressure field extension (PFE) test within the tool room area, which included eight (8) test points. A negative pressure differential of -0.004" water column ("wc) (or greater) was observed at all eight test points (see table below). PFE test point locations are shown on Figure 2.

PFE Test Point ID	Relative Location	Pressure Differential ("wc)
А	Tool Room – Center-East	-0.041
В	Tool Room – Eastern Perimeter	-0.500
С	Tool Room – Center-West	-0.045
D	Tool Room – Western Perimeter	-0.016
E	Tool Room - Center	-0.421
F	Tool Room (Grinding Sub-Room) - West	-0.040
G	Tool Room (Grinding Sub-Room) - Northeast	-0.070
Н	Tool Room (Grinding Sub-Room) - Southeast	-0.009

In addition, LaBella visually inspected the piping and exhaust fans associated with the other two previously installed SSDS at the Site. The systems were observed to be operating in good condition.

Post-Mitigation SVI Sampling

In accordance with the SSDS IRM Work Plan Addendum dated March 16, 2021 and conditional approval, air sampling was conducted on April 15, 2021.

Prior to starting the sampling event, LaBella personnel noted the following:

- To reduce possible sampling interferences, some of the products typically used or stored in the Tool Room had been removed by facility personnel prior to arrival;
- LaBella performed a limited review of products remaining in the area (the review occurred among visible locations and did not include looking inside every cabinet, tool chest, etc.), and obtained SDSs of two products frequently used in the Tool Room area (Darl No. 2 and GX Cool 2195, SDSs for each are included as Appendix 3). GX Cool 2195 was in active use at the time of sample setup;
- The U-Tube manometer and audible alarm system indicated that the SSDS was operating in proper fashion; and,
- Indoor heating systems were in normal use (maintaining an indoor air temperature of approximately 70°F).

At the time of sampling, outdoor weather conditions were overcast and rain, with temperatures in the mid-40s°F.

As requested by NYSDEC/NYSDOH, an indoor air sample was collected from the Tool Room (location IAQ-09, shown on Figure 2) and an outdoor air sample was collected for control / comparison purposes (location OA, shown on Figure 1). A matrix spike / matrix spike duplicate (MS/MSD) sample was collected with the indoor air sample. The outdoor air sample was split into a parent and duplicate sample by the laboratory for additional QA/QC purposes (laboratory split duplicate). A Data Usability Summary Report (DUSR) was obtained and is included as Appendix 2. The changes made to the analytical data by the DUSR are included in Table 1. The DUSR did not reject any of the collected sample data, but did qualify the results as estimations due to sample termination occurring outside the accepted canister vacuum reading range $(-5\pm1"Hg)$ and elevated spiked sample recoveries for specific compounds. The DUSR concluded that the results are usable and defensible.

Summary of Analytical Results

Samples were analyzed via USEPA Method TO-15 for VOCs. Refer to Table 1 for a complete summary of results. The complete laboratory report is included as Appendix 1. The table below depicts Tool Room air sampling results for specific compounds of concern collected to-date:

Compound	Regulatory Limit ¹	IAQ-09 (4/2/2019)	IAQ-9 (4/3/2020)	IAQ-09 (4/15/2021)
PCE	30	1.2	<1.0	<1.0
TCE	2	5.6	4.6	2.4

Concentrations reported in micrograms per cubic meter (ug/m³) ¹ – NYSDOH Ambient Air Guidance Value

TCE in indoor air collected from the Tool Room after the SSDS was installed and operating for ten (10) days was 2.4 μ g/m³; however, the concentration of TCE remains above the NYSDOH ambient air guidance value of 2 μ g/m³.

Knowing that the soil vapor concentrations of TCE beneath the Tool Room have always been less than 6 ug/m³ (and lower in the sub-slab than in the indoor air), the result of indoor air sampling again places the Tool Room area in the "identify sources and resample or mitigate" category of the 2017 NYSDOH Decision Matrices.

LaBella reviewed the SDSs for two products frequently used in the Tool Room area (Darl No. 2 and GX Cool 2195). TCE was not identified among the reported components of the SDSs. SDSs received on April 15, 2021 are included in Appendix 3.

Conclusion

Further mitigation or sampling is not considered warranted for the following reasons:

- Source area remediation (via Electrical Resistance Heating) occurred in 2020;
- Indoor air sampling results for TCE were higher than sub-slab vapor concentrations during the two rounds of sampling conducted in 2019 and 2020, suggesting a source in the indoor / ambient environment (unrelated to historical subsurface contamination);
- The SSDS expansion has not reduced indoor air concentrations to below applicable guidance values even though the SSDS is operating effectively, as evidenced by PFE testing results;
- Past use of products containing TCE in the Tool Room area (discontinued in 2015) likely resulted in a latent condition not able to be addressed without extreme measures that would be exceptionally costly;
- The results only slightly exceed the NYSDOH guidance value of 2 μg/m³;
- Airborne concentrations have decreased over time, and would be expected to further decrease over time as remedial systems continue to operate and the period of time since products of concern were used continues to pass; and,
- All actions required to be completed per the NYSDOH Guidance Document have been completed; including taking all practical/reasonable actions to identify indoor air sources, resampling, and mitigating.

Based on the above, any further actions to address TCE in indoor air would require addressing residual releases to concrete and staining of concrete due to the historical uses. Such work is not related to soil vapor intrusion and rather is related to addressing residual impacts in building products.

If you have any questions, or require additional information, please do not hesitate to contact me at (585) 295-6611.

Respectfully submitted,

LABELLA ASSOCIATES, D.P.C.

Daniel P. Noll, PE Project Manager

ATTACHMENTS:

Figure 1 – Entire SSDS Figure 2 – Tool Room SSDS Table 1 – Air Sampling Results Appendix 1: Laboratory Report Appendix 2: Data Usability Summary Report Appendix 3: Safety Data Sheets Received April 15, 2021

I:\ELDRE CORPORATION\212721.01 - BCP REMOVAL PHASE\REPORTS\SVI STUDY\SSDS EXPANSION TOOL ROOM\POST-MITIGATION\ELDRE CORP TOOL ROOM SSDS EXPANSION POST-MITIGATION SVI RESULTS.DOC

Document Path: I:/Eldre Corporation/212721.01 - BCP Removal Phase\Drawings\SSDS\Tool Room Expansion\Tool Room Expansion Finished - Figure 1.mxd

TABLE 1

Tool Room Air Sampling Results - April 2021 NYSDEC BCP Site No. C828182 1500 Jefferson Road Volatile Organic Compounds

Abbreviated Sample ID			IAQ-09	OA
Sample Type	NYSDOH Ambient Air Guidance Values ⁽¹⁾	USEPA BASE Database 90th Percentile ⁽²⁾	Indoor Air - Tool Room	Outdoor Air / Control Sample
Sample Date			4/15/2021	4/15/2021
1,1,1-Trichloroethane	NL	2.6	<0.82 UJ	<0.82 UJ
1,1,2,2-Tetrachloroethane	NL	<0.25 ⁽³⁾	<1.0 UJ	<1.0 UJ
1,1,2-Trichloroethane	NL	<1.6	<0.82 UJ	<0.82 UJ
1,1-Dichloroethane	NL	<0.6	<0.61 UJ	<0.61 UJ
1,1-Dichloroethene	NL	<1.4	<0.16 UJ	<0.16 UJ
1,2,4-Trichlorobenzene	NL	<6.4	<1.1 UJ	<1.1 UJ
1,2,4-Trimethylbenzene	NL	5.8	1.4 J	<0.74 UJ
1,2-Dibromoethane	NL	<1.6	<1.2 UJ	<1.2 UJ
1,2-Dichlorobenzene	NL	<1.2	<0.90 UJ	<0.90 UJ
1,2-Dichloroethane	NL	<0.8	<0.61 UJ	<0.61 UJ
1,2-Dichloropropane		<1.6	<0.69 0	<0.69 0
		2.1	<0.74 05	<0.74 00
1 3-Dichlorobenzene	NI	<2.2	<0.00	<0.33 05
1.4-Dichlorobenzene	NI	1.2	<0.90	<0.90
1,4-Dioxane	NL	NL	<1.1 UJ	<11 UJ
2,2,4-trimethylpentane	NL	NL	<0.70 UJ	<0.70 UJ
4-ethyltoluene	NL	3	0.69 J	<0.74 UJ
Acetone	NL	43.7	170 J	15 J
Allyl chloride	NL	NL	<0.47 UJ	<0.47 UJ
Benzene	NL	6.6	1.1 J	0.42 J
Benzyl chloride	NL	<6.4	<0.86 UJ	<0.86 UJ
Bromodichloromethane	NL	<10 ⁽⁴⁾	<1.0 UJ	<1.0 UJ
Bromoform	NL	<10 ⁽⁴⁾	<1.6 UJ	<1.6 UJ
Bromomethane	NL	<1.6	0.43 J	<0.58 UJ
Carbon disulfide	NL	3.7	0.34 J	<0.47 UJ
Carbon tetrachloride	NL	0.7	0.50 J	0.44 J
Chlorobenzene	NL	<0.8	<0.69 UJ	<0.69 UJ
Chloroethane	NL	<1.2	<0.40 UJ	<0.40 UJ
Chloroform	NL	0.6	<0.73 UJ	<0.73 UJ
Chloromethane	NL	3.7	0.99 J	0.83 UJ
cis-1,2-Dichloroethene	NL	<1.8	<0.16 UJ	<0.16 UJ
cis-1,3-Dichloropropene	NL	<2.2	<0.68 UJ	<0.68 UJ
Cyclohexane	NL	8.1(3)	<0.52 UJ	<0.52 UJ
Dibromochloromethane	NL	<10(4)	<1.3 UJ	<1.3 UJ
Ethyl acetate	NL	1.5	<0.54 UJ	0.5 J
Ethylbenzene	NL	3.5	0.61 J	<0.65 UJ
Freon 11	NL	4.3	1.3 J	1 J
Freen 113	NL	1.6	<1.1 UJ	<1.1 UJ
Freen 114	NL	<6.4	<1.0 UJ	<1.0 UJ
		8.1 A E ⁽³⁾	2.6	2.2 J
neptane	NL	4.0	0.1 J	<0.61 UJ
	INL NI	<0.4 6.4	<pre><1.0 UJ</pre>	<1.0 UJ
	NL NI	0.4 NI	1300 UJ	
m&p-Xylene	NI	12.8	2 1	<1.3
Methyl Butyl Ketone	NL	NL	<1.2	<1.2
Methyl Ethyl Ketone	NL	11.3	4.1	0.65 1
Methyl Isobutyl Ketone	NL	1.9	0.7 J	<1.2 UJ
Methyl tert-butyl ether	NL	6.2	<0.54 UJ	<0.54 UJ
Methylene chloride	60	6.1	5.2 J	0.87 J
o-Xylene	NL	4.6	0.87 J	<0.65 UJ
Propylene	NL	NL	<0.26 UJ	<0.26 UJ
Styrene	NL	1.3	<0.64 UJ	<0.64 UJ
Tetrachloroethylene (PCE)	30	6.5	0.81 J	<1.0 UJ
Tetrahydrofuran	NL	3.3 ⁽³⁾	<0.44 UJ	<0.44 UJ
Toluene	NL	33.7	2.7 J	0.6 J
trans-1,2-Dichloroethene	NL	<10 ⁽⁴⁾	<0.59 UJ	<0.59 UJ
trans-1,3-Dichloropropene	NL	<1.4	<0.68 UJ	<0.68 UJ
Trichloroethene (TCE)	2	1.3	2.4 」	<0.16 UJ
Vinyl acetate	NL	NL	<0.53 UJ	<0.53 UJ
Vinyl Bromide	NL	NL	<0.66 UJ	<0.66 UJ
Vinyl chloride	NL	<1.8	<0.10 UJ	<0.10 UJ

<u>Notes:</u>

All concentrations are reported in micrograms per cubic meter (ug/m^3)

Samples analyzed by USEPA Method TO-15

"<" - Indicates the concentration was not detected above the reporting limit

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see (2) below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

(2) USEPA 2001 Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance⁽¹⁾ this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

(3) No value was listed in USEPA BASE Database. A value from Table C.1 NYSDOH 2003: Study of volatile organic chemicals in air of fuel oil heated homes (90th Percentile) was used.

(4) No value was listed in USEPA BASE Database. A value from Table C.3 NYSDOH 1997: Control home database (90th Percentile) was used.

Bold - Reported concentration exceeds applicable NYSDOH Ambient Air Guidance Value

NL - No Limit / Guidance Value

U - Presence of compound cannot be verified per the Data Usability Summary Report

J - Indicates an estimated value

Data has been validated. Blue font indicates changes made in the DUSR

APPENDIX 1

Laboratory Report

Centek Laboratories,LLC

Centek Laboratories TO-15 Package Review CheckList

Centek Laboratorias	Client:	LaBella Rochester	Project:	1500 Jefferson Rd	SDG:	C2104038
				VEC		NA
				<u>163</u>	2 110	<u>na</u>
Analytical Results		Present and Complete		<u>*</u>	<u> </u>	
TIC's Present		Present and Complete		1		
		Holdin Times Met		ung and a second a		
Comments:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				•	
Chain of Custody	1112 1112 1112 1112 1112 1112 111 2	Present and Complete		<u>*.</u>		
Surrogate		Present and Complete				
		Recoveries within Limits		<u> </u>		
		Sample(s) reanalyzed				<u> </u>
				、		
Internal Standards		Present and Complete		<u>.</u>		
Recovery		Recoveries within Limits		<u> </u>		
		Sample(s) reanalyzed				
Comments:			******			
			-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Lab Control Sample		Present and Complete		<u>\</u>		
(LCS)		Recoveries within Limits			<u> </u>	· · · · · ·
Lab Control Sample D	upe	Present and Complete				
(LCSD)		Recoveries within Limits				
NAC /NACT		Procent and Complete		~		
1015/10150		Recoveries within Limits				
Comments:		SEE CASE	NAARA	A7102		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Sample Raw Data		Present and Complete		<		
entre trans man		Spectra present				
Comments:						
······						

Centek Laboratories,LLC

Centek Laboratories TO-15 Package Review CheckList

Centek Laboratories	lient:	LaBella Rochester	Project:	1500 Jefferson I	Rd	SDG:	C2104038
					YES	NO	NA
Standards Data		Descent and Complete					
Intial Calibration		Present and Complete			Ì	<u> </u>	
en anti-atra de literatione		Calibration meets criteria					
Continuing Calibration		Calibratian month criteria					<u></u>
		Calibration meets criteria			_ <u>}</u> ,		
Standards Raw Data		Present and Complete			<u>\</u>		
Comments:							
							
Raw Quality Control Da	ata	Decession and Commission			1		
Tune Criteria Report		Present and Complete			~		
Method Blank Data		MB Results <pql< td=""><td>1011</td><td></td><td></td><td></td><td><u> </u></td></pql<>	1011				<u> </u>
		Associated results hagged	B		~		
LCS Sample Data		Present and Complete			~~~~		
LCSD Sample Data		Present and Complete					
MS/MSD Sample Data		Present and Complete			<u> </u>		
Comments:							
Logbooks						11221 110111111111111111111111111111111	
Injection Log					\mathbf{N}		
Standards i og		•			~		
Can Cleaning Log					<u> </u>		
Calculation Sheet					1		
IDI 's					*		
Canister Order Form					`		
Sample Tracking Form						······	
Additional Comments:		JEE CASE	NARA	ATIVE			
Additional comments.			<u> </u>				
Section Supervisor:	MA	flus	Dat	e: <u>515/2</u>			
QC Supervisor:	h	allelle	Dat	e: <u>5/</u>	<u>[_</u>	2	
				··· / 44	, I	Page 2 (of 229

Analytical Report

Drew Brantner LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614 Friday, April 23, 2021 Order No.: C2104038

TEL: (585) 454-6110 FAX (585) 454-3066

RE: 1500 Jefferson Road

Dear Drew Brantner:

Centek Laboratories, LLC received 3 sample(s) on 4/16/2021 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

Centek Laboratories,LLC

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

~ JL-de

William Dobbin Lead Technical Director

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200% Next business day TAT by Noon = 150% Next business day TAT by 6:00pm = 100% Second business day TAT by 6:00pm = 75% Third business day TAT by 6:00pm = 50% Fourth business day TAT by 6:00pm = 35% Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

Centek Laboratories,LLC

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

1. Package Review Check List

2. Case Narrative a. Corrective actions

3. Sample Summary Form

4. Sample Tracking Form

5. Bottle Order

- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. 18 Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation

8. Sample Date

a. Form 1 (if requested) TIC's b. Quantitation Report with Spectra

9. Staadards Data

- a. Initial Calibration with Quant Report
- b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - e. MS/MSD

12. Log Books

- a. Injection Log Book
- b. Standards Log Book
- c. QC Canister Log Book

Date: 05-May-21

CLIENT:LaBella Associates, P.C.Project:1500 Jefferson RoadLab Order:C2104038

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (\pm 2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (\pm 1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg, \pm 1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Sample #1, using canister #1201 for MS/MSD. Client aware of mix up only test the 1.4L canister for sample/MS/MSD.

See Corrective Action: [4291] MS/MSD did not meet criteria. See Corrective Action: [4292] LCS & LCSD did not meet criteria due to in house limits

Page 1 of 1

Page 8 of 229

Centek Laboratories, LLC

Corrective Action Report

Date Initiated: Initiated By:	20-Apr-21 Russell Pellegrino		Correct	ve Action Report ID: Department:	4291 MSVOA
	Co	rrective A	ction Descriptio	n	
CAR Summary:	MS/MSD did not :	meet criteria.			
Description of Nonconformand Root/Cause(s):	Several compoun e the chromatograp	nds did not m ohic evidence	eet criteria for sampl this is most likely du	e C2104038-001 MS/M le to matrix interference	SD. Based on e.
Description of Corrective Actic w/Proposed C.A	Since MS/MSD si on other QC meets of t.: with spike results	how similar r criteria. The s . All sets of c	esults at this time no samples show many lata submitted	further corrective actio hits in the matrix which	n taken. All will interfere
Performed By:	Russell Pellegrind	Ö	Completic	n Date: 21-Apr-21	
·/ ·//////////////////////////////////				******************************	
		Chen	t Notification		
Client Notificati	on Required: No	Notifi	ed By:		
Comment:					
		O		· · ·	
		Quanty As	ssurance Review	V	
Nonconformanc	e Type: Deficiency				
Further Action required by QA:	Monitor all quality action taken. All s	control for sale ets of data s	ample matrix interfere ubmitted	ence. At this time no fu	ther corrective
		·			
		Арргоу	al and Closure	********	
Technical Direc Deputy Tech.	tor / Dir.: h.g.	100		Close Date:	23-Apr-21
QA Officer Appr	oval:	Nick Scala	M	QA Date:	23-Apr-21
Last Updated BY rt	······································	Updated:	05-May-2021 11:17 AM	Reported: 05	j-May-2021 11;17 A

Centek Laboratories, LLC

Corrective Action Report

Date Initiated: Initiated By:	22-Apr-21 Russell Pellegrino			Corrective Action Rep Depar	port ID: rtment:	4292 MSVOA
	Co	rrective A	Action Des	cription		
CAR Summary:	LCS & LCSD did	not meet cr	iteria due to il	1 house limits		
Description of Nonconformanc Root/Cause(s):	LCS & LCSD for recoveries. All of were not needed independent of th updated and all of was met	4/20/21 & 4, ther QC req for the asso the 6 Liter co compounds t	/21/21 did not uired met crite ociated sampl ntinuing calibi that failed hav	meet criteria for sever eria. The compounds the e dilutions. The LCS 6 ration canister. The in h e very tight limits. How	ral compo nat did no Liter can nouse crit rever all c	ounds % It meet criteria Ister was reria was just Ither criteria
Description of Corrective Actio w/Proposed C.A	Since the LCS 6 n canister and all o continue outside	Liter caniste ther QC req established	er was indepe uired met crit limits then re	ndent of the 6 Liter con eria, then continue with calibrate system. All se	tinuing ca analysis its of data	alibration . If results a submitted.
Performed By:	Russell Pellegrin	0	Co	mpletion Date: 23-A	\pr-21	
		• . •		· · · · · · · · · · · · · · · · · ·		
		Clier	nt Notificat	ion		
Client Notification	n Required: No	Noti	fied By:			
Comment:						
		Quality A	ssurance	Review		
Nonconformanc	e Type: Deficiency					
Further Action required by QA:	When enough dat outside establishe all quality control t	ta points are ed criteria th to meet esta	e collected up en recalibrate ablished criter	date the in house criter the system. Perform i ia. All sets of data subr	ia. If resu new stoc nitted.	ilts continue k LCS. Monitor
				and the second states of the		·
Technical Direc		Approv	val and Clo	sure		•••••
Deputy Tech.	Dir.: LAL	William Dot	pbin .	Close	e Date:	26-Apr-21
QA Officer Appro	oval;	Nick Scal	Juli	Q	A Date:	26-Apr-21
Last Updated BY ru	\$\$	Updated:	05-May-2021 1	1:20 AM Re	ported: 05	-May-2021 11:20 A

Page 10 of 229

				e	nte	K La	ab	or	ato	orie	es,		ر		5																			
Report Level	Level I		Cat "B" Like									Comments	MS/MSD / Malan		Afteriare From sher Co	"Due"-30 @ 54.7																Dropofi	4025	1000
Detection Limit	5ppbv		Ingina + 0.2 NYS		X				La Bella PC. Com			Labs Vacuum** RecV/Analysis	1.2	1-10	1	-21-2			-			1	1	4	4	1	1	-	ţ	1	Courier: CIRCLE ONE	FedEx JUPS Pickup/		Work Order # C C : <
Con Zond					Company: Check Here If Same:	Invoice to:	Address:	hely, oldte, Lip	Email: APa		Phone;	Field Vacuum Start / Stop		-301-3	n ¹ n	-30 1-9	•••	1		,	• •• •		1	•	4	1	4	4	-	1	Date/Time	4/15/21 1623 4		4/10/21
Site Name: /500 764	Project: 2/272/	PO#:	Quote # Q.SP	Canister Order #: 0 / 0 /	Sociates	tre l'∽ triv	STATE , Suite 201	141-14	Abella ecitom	1 820	6/10	Analysis Request	70-15	70-15	10-15	70-15																Ket 2	14	Norther 1
stody			ion & 14Q		a Bella A				Cantor of	71280-2	<u> </u>	Regulator	265	271	271	734															Signature		₹ 	Xalert
ain of Cus			Vapor Intrusi		company:	Report to:	ICIN State 7		Email: Jb	3	F'none: C.	Number	240	550	550	1201																		
Centek Labs - Ch	143 Midler Park Drive	Syracuse, NY 13206	315-431-9730	WWW.CentekLabs.com	Surcharge % Date:	0% 25%	50%	75%	100%	150%	200%	e nomy Lau Date Sampled	4/15/21 0843,28-	4/15/21 053 40	4/15/2	4/15/21 00 1600	•														Print Name	Danthan C	1 Action	MIN DUSTIER
	Centrals Lationationles		1	TAT	Turnaround Time: One	5 Business Days	3 Business Davs	2 Business Davs	*Next Day by 5pm	"Next Day by Noon	Salie Day	s of carregin next bay this frees	IAQ-09 (04/15/21)	of (or/15/21)	DUPE (04/15/21)	(12/21/ha) asm/sm															Chain of Custody	Sampled by:	Relinquished by:	Received at Lab by: MQ

***Chain of Custody must be completed in full. Lack of any missifier information will affect your Turn Around Times (TAT) *** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

	IES, LLC		:	Sample Re	ceipt Checklist
Client Name: LABELLA - ROCHESTER			Date and Tim	e Received	4/15/2024
Work Order Number C2104038			Bereived by:	80	4/10/2021
Checklist completed by Robing Ros	Men 4	19/21	Reviewed by	<u>Ew</u> Inilials	4/20/2021 Data
Matrix:	Carrier nam	ie: <u>UPS - Grou</u>	nd		
Shipping container/cooler in good condition?		Yes 🖌		Not Present	Ē
Custody seats intact on shippping container/cooler	?	Yes 🗔	No 🗍	Not Present	
Custody seals intact on sample bottles?		Yes 🗔	No 🗔	Not Present	
Chain of custody present?		Yes 🗹	No 🗌		
COC signed when relinquished and received?		Yos 🗹	No 🗔		
COC agrees with sample labels?		Yes 🗀	No 🗹		
COC completely filled out?		Yes 🗹	No 🗔		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔		
All samples received within holding time?		Yes 🗹	No 🗔		
Container/Temp Blank temperature in compliance?	,	Yes 🗹	No 🗀		
Water - VOA vials have zero headspace?	No VOA viais su	ubmitted 🔽	Yes 🗍	No 🗂	
Water - pH acceptable upon receipt?		Yes 🗔	No 🗹		
Ad	djusted?		Checked by		
Any No and/or NA (not applicable) response must t	ce detailed in the	e comments sec	lon bel	10 STATUS INVERTIGATION STATU	אר אווא אוויע אוויע
Client contacted: <u><i>y</i></u> es	ate contacted:	4-16-2	Perso	n contacted:	Drew
Contacted by: Drh- R	egardina: 🔿	Murda-	MITY	for	Michuran Jad
and the state of the	· · · ·	<u> </u>			may may any test
Comments:	<u>using</u>	1201	NOT 2	40	· · · · · · · · · · · · · · · · · · ·
				11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	
Corrective Action: <u>falk-al fa</u> far ms/msD	s Dre	w.on	4/14/2		il touse 120
	Q	С'd Ву:	s Adde		DATE: 3/3/2-1

Centek La	boratories, LLC				05-Map-2	21	
Lab Order: Client: Project:	C2104038 LaBella Associates, P.C. 1500 Jefferson Road	_			DATE	SREPORT	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date	Prvp Date	Analysis Date
C2104038-001A	[AQ-09 (4/15/21)	4/152021	Air	lugim3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			4/22/2021
				fagin3 wi 0.2ug/AG CT-TCE-VC-DCE- L1DCE			1707123
				lugini) w/ 0.2ug/M3 CT-TCE-VC-DCE- L,1DCE			4/21/2021
				tug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- L, DCE			4/20/2021
C2104038-002A	0A (4/15/21)			tugin3 w/ 0.2ug/M/3 CT-TCE-VC-DCE- 1.1DCE			421/2021

Centek Laboratories,LLC

4/20/2023

tugim3 w/ 0.2ug/M3 CT-TCE-VC-DCE-L,IDCE hugima w/ 0.2mg/M3 CT-TCE-VC-DCE-1,1BCE

(22104038-003A Dupe (4/15/21)

tag/m3 w/ 0.2ug/M3 CT+TCE-VC-DCE-1.1DCE

4/21/2021

4/20/2021

CANISTER ORDER

110 F 178		
CE	NTEK LABORATORIES, LLC	
States States	Air Quality Testing11's a Gas 143 Midler Park Drive * Syracuse, NY 13206	8787
	TEL: 315-431-9730 * FAX: 315-431-9731	05-May~21

8787

SHIPPED TO:

No. of Concession, Name

	,			
Company:	LaBella Associates, P.C.	Submitted By:		
Contact:	Drew Brantner	MadeBv:	tin	
Address:	300 State Street, Suite 201		1.034	
	Rochester, NY 14614	Ship Date:	3/31/2021	
Phone:	(585) 454-6110	VIA:	UPS - Ground	
Quote ID:	0	Due Date:	4/2/2021	
Project:				
PO:				
Bottle Code	Bottle Type	TEST(\$)		QTY
MC1400CC	1.4L Mini-Can	1ug/m3 w/	/ 0.2ug/M3 CT-TCE-VC-DC	1
MC1000CC	1L Mini-Can	1ug/m3 w/	/ 0.2ug/M3 CT-TCE-VC-DC	2
Can / Reg ID	Description			
240	1L Mini-Can - 1172 VI			
265	Time-Set Reg - 703 VI			
271	Time-Set Reg - 709 VI			
550	1L Mini-Can - 118 VI			
734	Time-Set Reg - 2144 IAQ			
1201	1.4L Mini-Can - 1362 VI			
Comments	= 2 1L @ 8hr + 1 1.4 @ 8hr WAC 021821D-F, (021921A-B		

l of l

Page 15 of 229

Centek Laboratories,LLC

.

.

,

GC/MS VOLATILES-WHOLE AIR

.

.

.

.

METHOD TO-15

ANALYTICAL RESULTS

.

.

,

Centek Laboratories, LLC				Date: 05-May-21				
CLIENT: Lab Order: Project:	LaBella Associates, P.0 C2104038 1500 Jefferson Road	······································		C	lient Sample ID: Tag Number: Collection Date:	IAQ-0 1201,5 4/15/2	9 (4/15/21) 734 021	
Lab 1D:	C2104038-001A				Matrix:	AIR		
Analyses		Result	ÐL	Qual	Units	DF	Date Analyzed	
FIELD PARAM	ETERS		F	LD			Analyst:	
Lab Vacuum In		-5			"Hg		4/16/2021	
Lab Vacuum Oi	Lt.	-30			"Hg		4/16/2021	
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-	1.1DCE	тс)-15			Analyst: WD	
1,1,1-Trichloroe	thane	< 0,15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,1,2,2-Tetrachi	loroethane	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,1,2-Trichloroe	thane	< 0.15	0,15		ppbV	1	4/20/2021 4:07:00 PM	
1.1-Dichloroeth	ane	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,1-Dichloroeth	ene	< 0.040	0.040		opbV	1	4/20/2021 4:07:00 PM	
1,2,4-Trichlorob	enzene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,2,4-Trimethylt	benzene	0.29	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,2-Dibromoeth	ane	< 0,15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,2-Dichlorober	zene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,2-Dichloroeth	ane	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,2-Dichloropro	pane	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,3.5-Trimethyl	benzene	< 0,15	0.15		Vdqq	1	4/20/2021 4:07:00 PM	
1,3-butadiene		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,3-Dichlorober	izene	< 0.15	0,15		Vdqq	1	4/20/2021 4:07:00 PM	
1,4-Dichlorober	izene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
1,4-Dioxane		< 0.30	0.30		ppbV	1	4/20/2021 4:07:00 PM	
2.2.4-trimethylo	entañe	< 0,15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
4-ethvitoluene		0.14	0.15	J	Vdqq	1	4/20/2021 4:07:00 PM	
Acetone		70	96	J	ppbV	320	4/21/2021 4:34:00 PM	
Allyl chloride		< 0.15	0.15		Vdqq	1	4/20/2021 4:07:00 PM	
Benzene		0.36	0.15		ppbV	1	4/20/2021 4:07:00 PM	
Benzyl chloride		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
Bromodichioron	nethane	< 0.15	0.15		Vdqq	1	4/20/2021 4:07:00 PM	
Bromoform		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
Bromomethane		0.11	0.15	J	ppbV	1	4/20/2021 4:07:00 PM	
Carbon disulfide	0	0.11	0.15	J	Vdqq	1	4/20/2021 4:07:00 PM	
Carbon tetrachi	oride	0.080	0.030		vdqq	1	4/20/2021 4:07:00 PM	
Chlorobenzene		< 0.15	0.15		Vdaq	1	4/20/2021 4:07:00 PM	
Chloroethane		< 0.15	0.15		Vdaq	1	4/20/2021 4:07:00 PM	
Chioroform		< 0.15	0.15		Vdoq	1	4/20/2021 4:07:00 PM	
Chloromethane		0.48	0.15		ppbV	1	4/20/2021 4:07:00 PM	
cis-1.2-Dichloro	ethene	< 0.040	0.040		Vdqq	1	4/20/2021 4:07:00 PM	
cis-1.3-Dichloro	propene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM	
Cyclohexane	fr fr. merim.	< 0.15	0.15		vdqq	1	4/20/2021 4:07:00 PM	
Dibromochioror	nethane	< 0.15	0.15		Vdqo	1	4/20/2021 4:07:00 PM	
Ethyl acetate		< 0.15	0,15		ppbV	1	4/20/2021 4:07:00 PM	

		a a a a a a a a a a a a a a a a a a a			
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	8	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Decision and
	s	Spike Recovery outside accepted recovery limits	DL.	Detection Limit	Page 1 of 6

Date: 05-Mov-21

Centek Laboratories, LLC

trans-1,2-Dichloroethene

Trichloroethene

Vinyl acetate

Vinyl Bromide

Vinyl chloride

trans-1,3-Dichloropropene

Surr: Bromofluorobenzene

CLIENT:	LaBella Associates, P.0			C	lient Sample ID:	IAQ-(9 (4/15/21)		
Lab Order: C2104038			Tag Number:				1201.734		
Project:	1500 Jefferson Road				Collection Date:	4/15/2	2021		
Lab ID:	C2104038-001A			Matrix:	AIR				
Analyses		Result	DL	Qual	Units	ÐF	Date Analyzed		
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-	1,1DCE	то)-15			Analyst: WD		
Ethylbenzene		0.14	0.15	J	ppbV	1	4/20/2021 4:07:00 PM		
Freon 11		0.23	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Freon 113		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Freon 114		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Freon 12		0.52	0,15		ppbV	1	4/20/2021 4:07:00 PM		
Heptane		1.5	1.5		ppb∨	10	4/21/2021 1:10:00 AM		
Hexachloro-1,3	-butadiene	< 0.15	0.15		Vdqq	1	4/20/2021 4:07:00 PM		
Hexane		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Isopropyl alcoh	ot	520	96		ppbV	640	4/22/2021 12:18:00 PM		
m&p-Xylene		0.47	0.30		ppbV	1	4/20/2021 4:07:00 PM		
Methyl Butyl Ke	etone	< 0.30	0.30		ppbV	1	4/20/2021 4:07:00 PM		
Methyl Ethyl Ke	atone	1.4	0.30		ppbV	1	4/20/2021 4:07:00 PM		
Methyl isobutyl	Ketone	0.17	0.30	J	ppbV	1	4/20/2021 4:07:00 PM		
Methyl tert-buty	yl ether	< 0,15	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Methylene chio	oride	1.5	0.15		Vdqq	1	4/20/2021 4:07:00 PM		
o-Xylene		0.20	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Propylene		< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Styrene		< 0.15	0.15		νdqq	1	4/20/2021 4:07:00 PM		
Tetrachloroethy	ylene	0.12	0.15	J	ppbV	1	4/20/2021 4:07:00 PM		
Tetrahydrofurai	- R	< 0,15	0.15		ppbV	1	4/20/2021 4:07:00 PM		
Toluene		0.71	0.15		Vdöq	1	4/20/2021 4:07:00 PM		

Q.15

0.15

0.030

0.15

0.15

0.040

47-124

ppbV

Vdqq

ppbV

Vdqq

ppbV

Vdqq

%REC

1 1

1

1

1

1

1

< 0.15

< 0.15

< 0.15

< 0.15

< 0.040

98.0

0.44

Date: 05-May-21

Qualifiers: Results reported are not blank corrected SC Sub-Contracted Е Estimated Value above quantitation range в Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded 11 . Analyte detected below quantitation limit JN. Non-routine analyte, Quantitation estimated. ND Not Detected at the Limit of Detection Page 2 of 6 Detection Limit s Spike Recovery outside accepted recovery limits DL

Page 18 of 229

4/20/2021 4:07:00 PM

Ethylbenzene

Freon 11

Centek Laboratories, LLC					Date:	05-May-21		
CLIENT: Lab Order:	LaBella Associates, P. C2104038	С.		C	lient Sample ID: Tag Number:	IAQ-0 1201,7	9 (4/15/21) 734 021	
Project:	1500 Jefferson Road				Conection Date:	4/10/2	021	
Lab ID:	C2104038-001A				Matrix:	AUS		
Analyses		Result	ÐL	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE	-1,1DCE	тс	-15			Analyst: WD	
1,1,1~Trichloro	ethane	< 0.82	0.82		ug/m3	1	4/20/2021 4:07:00 PM	
1,1,2,2-Tetrach	loroethane	< 1.0	1.0		ug/m3	1	4/20/2021 4:07:00 PM	
1,1,2-Trichioro	ethane	< 0.82	0.82		ug/m3	1	4/20/2021 4:07:00 PM	
1,1-Dichloroeth	ane	< 0.61	0.61		นฐ/m3	1	4/20/2021 4:07:00 PM	
1,1-Dichloroeth	iene	< 0,16	0.16		ug/m3	1	4/20/2021 4:07:00 PM	
1,2,4-Trichloro	benzene	< 1.1	1.1		ug/m3	1	4/20/2021 4:07:00 PM	
1,2,4-Trimethy	ibenzene	1.4	0.74		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dibromoeti	hane	< 1.2	1.2		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dichlorobe	nzene	< 0.90	0.90		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dichloroeth	nane	< 0.61	0.61		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dichloropro	opane	< 0.69	0.69		ug/m3	1	4/20/2021 4:07:00 PM	
1,3,5-Trimethy	lbenzene	< 0.74	0,74		ug/m3	1	4/20/2021 4:07:00 PM	
1.3-butadiene		< 0.33	0.33		ug/m3	1	4/20/2021 4:07:00 PM	
1.3-Dichlorobe	nzene	< 0.90	0.90		ug/m3	1	4/20/2021 4:07:00 PM	
1.4-Dichlorobe	nzene	< 0.90	0.90		ug/m3	1	4/20/2021 4:07:00 PM	
1.4-Dioxane		< 1.1	1.1		ug/m3	1	4/20/2021 4:07:00 PM	
2.2.4-trimethyl	pentane	< 0.70	0.70		ug/m3	1	4/20/2021 4:07:00 PM	
4-ethvitoiuene	(r	0.69	0,74	J	ug/m3	1	4/20/2021 4:07:00 PM	
Acetone		170	230	J	ug/m3	320	4/21/2021 4:34:00 PM	
Allví chloride		< 0.47	0,47		ug/m3	1	4/20/2021 4:07:00 PM	
Benzene		1.1	0.48		ug/m3	1	4/20/2021 4:07:00 PM	
Benzvi chloridi	e.	< 0.86	0.86		ug/m3	1	4/20/2021 4:07:00 PM	
Bromodichloro	methane	< 1.0	1.0		ug/m3	1	4/20/2021 4:07:00 PM	
Bromotorm		< 1.6	1.6		ug/m3	1	4/20/2021 4:07:00 PM	
Bromomethan	P	0.43	0.58	j	ua/m3	1	4/20/2021 4:07:00 PM	
Carbon disulfir	e te	0.34	0.47	J	ug/m3	1	4/20/2021 4:07:00 PM	
Carbon tetract	loride	0.50	0.19	-	ug/m3	1	4/20/2021 4:07:00 PM	
Chlorobenzen	s	< 0.69	0.69		ua/m3	1	4/20/2021 4:07:00 PM	
Chiproethane	л ^г	< 0.40	0.40		ua/m3	1	4/20/2021 4:07:00 PM	
Chloroform		< 0.73	0.73		ua/m3	1	4/20/2021 4:07:00 PM	
Chloromethen	ä	0 99 0	0.31		ua/m3	1	4/20/2021 4:07:00 PM	
oie, 1.2-Diobior	~ melhene	< D 16	0.16		ug/m3	1	4/20/2021 4:07:00 PM	
cioni, andriani cic.1 3-Diabion	20000000	< 11 KR	0.10		uo/m3	1	4/20/2021 4:07:00 PM	
Cuclobevano	opopono	< 0.50	0.00 0.50		ug/m3	1	4/20/2021 4:07:00 PM	
Dibromochiera	melhane	~ 12	13		ug/m3	1	4/20/2021 4:07:00 PM	
Ethul agetate	1. (Q.1)Q	- 1.J - 1.J	0.54		uo/m3	1	4/20/2021 4:07:00 PM	
Ethylbonzocc		- 0,0 1	0.04 N.65	ı	uo/m3	t.	4/20/2021 4:07:00 PM	
EUNYOUTZENE		Q.Q (0,00	v .	-9	•	······································	

սց/m3 1 4/20/2021 4:07:00 PM Freon 113 < 1.1 1.1 4/20/2021 4:07:00 PM < 1.0 1.0 ug/m3 1 Freon 114 Results reported are not blank corrected Qualifiers: Sub-Contracted \mathbf{SC} £ Estimated Value above quantitation range в Analyte detected in the associated Method Blank Analyte detected below quantitation limit J н Holding times for preparation or analysis exceeded Not Detected at the Limit of Detection JN Non-routine analyte. Quantitation estimated. ND Page 1 of 6 Detection Limit S Spike Recovery outside accepted recovery limits ÐŁ

0.84

ug/m3

1

1.3

4/20/2021 4:07:00 PM

Centek Laboratories, LLC

CLIENT;	LaBella Associates, P.C.
Lab Order:	C2104038
Project:	1500 Jefferson Road
Lab ID:	C2104038-001A

Date: 05-May-21

	Client Sample ID:	1AQ-09 (4/15/21)	
	Tag Number:	1201,734	
	Collection Date:	4/15/2021	
	Matrix:	AIR	

Analyses	Result	DL	Qual	Units	Df	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: WD	
Freon 12	2.6	0.74		ug/m3	1	4/20/2021 4:07:00 PM
Heptane	6.1	6,1		ug/m3	10	4/21/2021 1:10:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/20/2021 4:07:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/20/2021 4:07:00 PM
Isopropyl alcohol	1300	240		ug/m3	640	4/22/2021 12:18:00 PM
m&p-Xylene	2.0	1.3		ug/m3	1	4/20/2021 4:07:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/20/2021 4:07:00 PM
Methyl Ethyl Ketone	4.1	0.88		ug/m3	1	4/20/2021 4:07:00 PM
Methyl Isobutyl Ketone	0.70	1.2	J	ug/m3	1	4/20/2021 4:07:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/20/2021 4:07:00 PM
Methylene chloride	5.2	0.52		ug/m3	1	4/20/2021 4:07:00 PM
o-Xylene	0.87	0.65		ug/m3	1	4/20/2021 4:07:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/20/2021 4:07:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/20/2021 4:07:00 PM
Tetrachioroethylene	0.81	1.0	J	ug/m3	1	4/20/2021 4:07:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/20/2021 4:07:00 PM
Toluene	2.7	0,57		ug/m3	1	4/20/2021 4:07:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/20/2021 4:07:00 PM
trans-1,3-Dichloropropene	< 0.68	0,68		ug/m3	1	4/20/2021 4:07:00 PM
Trichloroethene	2.4	0.16		ug/m3	1	4/20/2021 4:07:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/20/2021 4:07:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/20/2021 4:07:00 PM
Vinyl chloride	< 0.10	0,10		սց/m3	1	4/20/2021 4:07:00 PM

Qualifiers:	SC	Sub-Contracted
	в	Analyte detected in the associated Method Blank
	н	Holding times for preparation or analysis exceeded

- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- F. Estimated Value above quantitation range
- J Analyte detected below quantitation limit.
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 2 of 6

CORRECT La	cooracorres, Line					-
CLIENT:	CLIENT: LaBella Associates, P.C.			Client Sample ID:	OA (4	/15/21)
Lab Order: C2104038				Tag Number:	550,2	71
Project	1500 Jefferson Road			Collection Date:	4/15/2	2021
rioject.	00101000 0004			Moteix	AIP	
Lan ID:	CZ104038-00ZA			19 1 29 1 7 1 7 1		
Analyses		Result	DL Qu	al Units	DF	Date Analyzed
FIELD PARAM	IETERS		FLD			Analyst:
Lab Vacuum Ir	1	0		"Hg		4/16/2021
Lab Vacuum C	Dut	-30		"Hg		4/16/2021
1UG/M3 W/ 0.2	2UG/M3 CT-TCE-VC-DCE	-1,1DCE	TO-15			Analyst: WD
1,1,1-Trichloro	ethane	< 0.15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
1,1,2,2-Tetrach	nloroethane	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
1,1,2-Trichloro	ethane	< 0.15	0.15	рръ∨	1	4/20/2021 6:36:00 PM
1,1-Dichloroeth	าอกe	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
1,1-Dichloroeth	nene	< 0.040	0.040	Vdqq	1	4/20/2021 6:36:00 PM
1,2,4-Trichloro	benzene	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
1,2,4-Trimethy	ibenzene	< 0.15	0.15	ρρb∨	1	4/20/2021 6:36:00 PM
1,2-Dibromoet	hane	< 0.15	0.15	Vdqq	1	4/20/2021 6:36:00 PM
1,2-Dichlorobe	nzene	< 0.15	0.15	opbV	1	4/20/2021 6:36:00 PM
1,2-Dichloroett	hane	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
1,2-Dichloropre	opane	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
1,3,5-Trimethy	lbenzene	< 0.15	0.15	opbV	1	4/20/2021 6:36:00 PM
1,3-butadiene		< 0.15	0.15	Vơqq	1	4/20/2021 6:36:00 PM
1,3-Dichlorobe	nzenė	< 0.15	0.15	Vdqq	1	4/20/2021 6:36:00 PM
1,4-Dichlorobe	nzene	< 0.15	0.15	Vdqq	1	4/20/2021 6:36:00 PM
1,4-Dioxane		< 0.30	0.30	ppbV	1	4/20/2021 6:36:00 PM
2,2,4-trimethyl	pentane	< 0.15	0.15	Vdqq	3	4/20/2021 6:36:00 PM
4-ethyltoluene		< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Acetone		6.5	3.0	vdqq	10	4/21/2021 1:53:00 AM
Allvi chloride		< 0.15	0.15	Vaqa	1	4/20/2021 6:36:00 PM

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.030

0.15

0.15

0.15

0.15

0.040

0.15

0.15

0.15

0.15

J

J

ppbV

ppbV

ppbV

ppbV

ppbV

ppbV

ppbV

Vdqq

ppbV

ppbV

ppbV

Vđqq

ppbV

Vdqq

ppbV

Vdqq

ppbV

DL.

Contak Laboratorias I.I.C.

Allyl chloride

Benzyl chloride

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Cyclohexane

Ethyl acetate

Qualifiers:

cis-1,2-Dichloroethene

cis-1,3-Dichtoropropene

Dibromochloromethane

SC

Chloroethane

Chloroform

Carbon tetrachloride

Bromodichloromethane

Benzene

Bromoform

Sub-Contracted

< 0.15

< 0.15

< 0.15

< 0.15

< 0.15

< 0.15

0.070

< 0.15

< 0.15

< 0.15

< 0.040

< 0.15

< 0.15

< 0.15

0.14

0.40

0.13

3 Analyte detected in the associated Method Blank H Holding times for preparation or analysis exceeded

JN Non-rotatine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

1

1

1

1

1

1

1

1

\$

1

1

1

1

1

t

1

1

Estimated Value above quantitation range E

J Analyte detected below quantitation limit.

Not Detected at the Limit of Detection ND.

Detection Limit

Page 3 of 6

.....

4/20/2021 6:36:00 PM

Date: 05-May-21
CLIENT:
 LaBella Associates, P.C.
 Client Sample 1D: OA (4/15/21)

 Lab Order:
 C2104038
 Tag Number: 550,271

 Project:
 1500 Jefferson Road
 Collection Date: 4/15/2021

 Lab ID:
 C2104038-002A
 Matrix: AIR

 Analyses
 Besult
 DL
 Qual Units
 DF
 Date Analyzed

Analyses	Result	ÐL Ç	Qual Units	DF	Date Analyzeď
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	5		Analyst: WD
Ethylbenzene	< 0.15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
Freon 11	0.18	0.15	ppbV	1	4/20/2021 6:35:00 PM
Freon 113	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Freon 114	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Freon 12	0.45	0.15	Vdqq	1	4/20/2021 6:36:00 PM
Heptane	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	Vaqa	1	4/20/2021 6:36:00 PM
Hexane	< 0.15	0.15	Vđạq	1	4/20/2021 6:36:00 PM
Isopropyl alcohol	3.6	1.5	Vdqq	10	4/21/2021 1:53:00 AM
m&p-Xylene	< 0.30	0.30	ppbV	1	4/20/2021 6:36:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	4/20/2021 6:36:00 PM
Methyl Ethyl Ketone	0.22	0.30	Vdqq L	1	4/20/2021 6:36:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	Vdqq	1	4/20/2021 6:36:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Methylene chloride	0.25	0.15	ppbV	1	4/20/2021 6:36:00 PM
o-Xylene	< 0.15	0.15	Vdqq	1	4/20/2021 6:36:00 PM
Propylene	< 0.15	0,15	ppbV	1	4/20/2021 6:36:00 PM
Styrene	< 0.15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
Tetrachioroethylene	< 0.15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Toluene	0.16	0.15	ppbV	1	4/20/2021 6:36:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Trichloroethene	< 0.030	0.030	ppb∨	1	4/20/2021 6:36:00 PM
Vinyl acetate	< 0.15	0.15	opoV	1	4/20/2021 6:36:00 PM
Vinyl Bromide	< 0.15	0.15	ppoV	1	4/20/2021 6:36:00 PM
Vinyl chloride	< 0.040	0.040	Vøqq	1	4/20/2021 6:36:00 PM
Surr: Bromofluorobenzene	90.0	47-124	%REC	1	4/20/2021 6:36:00 PM

				and a second	
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	8	Analyte detected in the associated Method Blank	12	Estimated Value above quantitation range	
	H	Holding times for preparation or analysis exceeded	£.	Analyte detected below quantitation limit	
	.IN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D
	S	Spike Recovery outside accepted recovery limits	DL.	Detection Limit	Page 4 of 6

Page 22 of 229

Anatyses		Acsuit		- Vuai	China	327	Date Analyzed	
Analunae		Rosult	ÐL.	Qual	lnite	DE	Date Analyzed	
Lab ID:	C2104038-002A				Matrix:	AIR		
Project:	1500 Jefferson Road				Collection Date:	4/15/202	1	
Lab 07001.	0.204000				Tag / univer-	10.7/202	1	
Lab Order	C2104038				Tag Number	550.271		
CLIENT:	LaBella Associates, P.C.			C	lient Sample 1D:	OA (4/15	5/21)	
·····			· · · · · · ·					

1UG/M3 W/ 0).2UG	M3 CT-TCE-VC-DC	E-1,1DCE	TO-1	5				Anal	yst: WD
1,1,1-Trichlo	roetha	ne	< 0.82	0.82		ug/i	n3	1	4/20/2021 6:3	36:00 PM
1,1,2,2-Tetra	chloro	ethane	< 1.0	1.0		ug/i	m3	1	4/20/2021 6:	36:00 PM
1,1,2-Trichlo	roetha	ne	< 0.82	0.82		ug/i	m3	1	4/20/2021 6:3	36:00 PM
1,1-Dichloroe	ethane		< 0.61	0.61		og/e	m3	1	4/20/2021 6:3	36:00 PM
1,1-Dichloroe	ethene		< 0.16	0.16		ug/i	m3	1	4/20/2021 6:	36:00 PM
1,2,4-Trichlo	robenz	:ene	< 1,1	1.1		ug/i	m3	1	4/20/2021 6:	36:00 PM
1,2,4-Trimeti	hylben:	zene	< 0.74	0.74		ug/i	m3	1	4/20/2021 6:	36:00 PM
1,2-Dibromo	ethane	1	< 1.2	1.2		ug/i	m3	1	4/20/2021 6:	36:00 PM
1,2-Dichlorof	benzer)¢	< 0,90	0.90		ug/	m3	1	4/20/2021 6:	36:00 PM
1,2-Dichloroe	ethane		< 0.61	0.61		ug/	m3	1	4/20/2021 6:	36:00 PM
1,2-Dichloro	propan	e	< 0.69	0.69		ug/	m3	1	4/20/2021 6:	36:00 PM
1,3,5-Trimet	hylben	zene	< 0.74	0.74		ug/	m3	1	4/20/2021 6:	36:00 PM
1,3-butadien	e		< 0.33	0.33		ug/	m3	1	4/20/2021 6:	36:00 PM
1,3-Dichlorol	benzer)ė	< 0.90	0.90		ug/	m3	1	4/20/2021 6:	36:00 PM
1,4-Dichlorol	benzer)e	< 0.90	0.90		ug/	m3	1	4/20/2021 6:	36:00 PM
1,4-Dioxane			< 1.1	1.1		មព្វ/	m3	1	4/20/2021 6:	36:00 PM
2,2,4-trimeth	ylpent	ane	< 0.70	0.70		ug/	m3	1	4/20/2021 6:	36:00 PM
4-ethyltoluer	ne .		< 0.74	0.74		ug/	m3	1	4/20/2021 6:	36:00 PM
Acetone			15	7.1		ug/	m3	10	4/21/2021 1:	53:00 AM
Ally) chloride	2		< 0,47	0.47		ug/	m3	1	4/20/2021 6:	36:00 PM
Benzene			0.42	0.48	J	ug/	m3	1	4/20/2021 6:	36:00 PM
Senzyl chlor	ide		< 0.86	0.86		ug/	m3	1	4/20/2021 6:	36:00 PM
Bromodichla	rometi	nane	< 1.0	1.0		ug/	m3	1	4/20/2021 6:	36:00 PM
Bromoform			< 1.6	1.6		ug/	ັກາ3	1	4/20/2021 6:	36:00 PM
Bromometha	ane		< 0.58	0.58		ug/	m3	1	4/20/2021 6:	36:00 PM
Carbon disu	lfide		< 0.47	0.47		ug/	m3	1	4/20/2021 6:	36:00 PM
Carbon tetra	ichloric	le	0.44	0.19		ug/	m3	1	4/20/2021 6:	36:00 PM
Chlorobenze	ene		< 0.69	0.69		ugi	'm3	1	4/20/2021 6:	36:00 PM
Chioroethan	e		< 0.40	0.40		ug/	'm3	1	4/20/2021 6:	36:00 PM
Chloroform			< 0.73	0.73		ц <u>д</u> /	m3	1	4/20/2021 6;	36:00 PM
Chlorometha	ane		0.83	0.31		ug/	'm3	1	4/20/2021 6:	36:00 PM
cis~1,2-Dichl	loroeth	ene	< 0.16	0.16		ug/	m3	1	4/20/2021 6:	:36:00 PM
cis-1,3-Dichl	loropro	pene	< 0.68	0.68		ug/	/กา3	1	4/20/2021 6:	36:00 PM
Cyclohexane	e		< 0.52	0.52		ug/	ίm3	1	4/20/2021 6:	:36:00 PM
Dibromachic	promet	hane	< 1.3	1.3		hðγ	/m3	1	4/20/2021 6	:36:00 PM
Ethyl acetate	e		0.50	0.54	J	ug/	/m3	1	4/20/2021 6	36:00 PM
Ethylbenzen	ø		< 0.65	0.65		θġ,	/m3	1	4/20/2021 6	:36:00 PM
Freon 11			1.0	0.84		ugi	/m3	1	4/20/2021 6	:36:00 PM
Freon 113			< 1.1	1,1		uga	/m3	1	4/20/2021 6	:36:00 PM
Freon 114			< 1.0	1.0		បង្វា	/m3	1	4/20/2021 6	(36:00 PM
							11		Incode assessments to be t	
Qualifiers:	SC	sub-Contracted					Results Dataset	reported are not b	INTERNET CONTRACTOR	
	в	Analyte detected in the i	associated Method Bla	0K	E Estimated Value above quantitation (antitution these		
	11	Hording times for prepa	ration or analysis excet	eaea		J NUN	Analyte Mart 12	s detected berow di	adduation find	
	ЯĽ	Non-routine analyte. Qu	antitation estimated.			ND	NOT De	tected at the Limit	or Detection	Page 3 of 6
	S	 Spike Recovery outside 	accepted recovery limit	us		1)(,	Detech	on i.inni		•••

1UG/M3 W/ 0.2 Freon 12	UG/M3 CT-TCE-VC-DCE-1,	1DCE 2.2	TO 0.74	-15	ug/m3	1	Analyst: WD 4/20/2021 6:36:00 PM
Analyses		Result	DL	Qual	Units	ÐF	Date Analyzed
Lab ID:	C2104038-002A				Matrix:	AIR	
Project:	1500 Jefferson Road				Collection Date:	4/15/20)21
Lab Order:	C2104038				Tag Number:	550,27	1
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	OA (4/	15/21)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · ·						

Heptane	< 0.61	0.61		ug/m3	1	4/20/2021 6:36:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/20/2021 6:36:00 PM
Hexane	< 0.53	0.53		սց/m3	1	4/20/2021 6:36:00 PM
Isopropyl alcohol	8.8	3.7		ug/m3	10	4/21/2021 1:53:00 AM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/20/2021 6:36:00 PM
Methyl Butyl Ketone	< 1.2	1,2		ug/m3	1	4/20/2021 6:36:00 PM
Methyl Ethyl Kelone	0.65	0.88	J	ug/m3	1	4/20/2021 6:36:00 PM
Methyi Isobutyi Ketone	< 1.2	1.2		ug/m3	1	4/20/2021 6:36:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/20/2021 6:36:00 PM
Methylene chloride	0.87	0.52		ug/m3	1	4/20/2021 6:36:00 PM
o-Xylene	< 0.65	0.65		սց/m3	1	4/20/2021 6:36:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/20/2021 6:36:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/20/2021 6:36:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/20/2021 6:36:00 PM
Tetrahydrofuran	< 0.44	0,44		սց/m3	1	4/20/2021 6:36:00 PM
Toluene	0.60	0.57		ug/m3	1	4/20/2021 6:36:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		սց/m3	1	4/20/2021 6:36:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/20/2021 6:36:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/20/2021 6:36:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/20/2021 6:36:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/20/2021 6:36:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/20/2021 6:36:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range	
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-rontine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	n
	8	Spike Recovery outside accepted recovery limits	\$DĽ,	Detection Limit	Page 4 of 6

1 - C

Centek La	boratories, LLC	Date: 05-May-21						
CLIENT: Lab Order: Project: Lab ID:	LaBella Associates, P.C C2104038 1500 Jefferson Road C2104038-003A			(Client Sample ID: Tag Number: Collection Date: Matrix:	Dupe 550,21 4/15/2 AIR	(4/15/21) 71 021	
Analyses		Result	DL	Qual	Units	ÐF	Date Analyzed	
FIELD PARAM	IETERS		۴	LD			Analyst:	
Lab Vacuum Ir	1	o			"Hg		4/16/2021	
Lab Vacuum C	ληt	-30			"Hg		4/16/2021	
1UG/M3 W/ 0.2	2UG/M3 CT-TCE-VC-DCE-	1,1DCE	το	D-15			Analyst: WD	
1,1,1-Trichloro	ethane	< 0.15	0.15		ppb∨	1	4/20/2021 7:20:00 PM	
1,1,2,2-Tetrach	hloroethane	< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
1,1,2-Trichloro	ethane	< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
1,1-Dichloroeth	hane	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,1-Dichloroeth	1000	< 0.040	0.040		opbV	1	4/20/2021 7:20:00 PM	
1,2,4-Trichloro	benzene	< 0.15	0,15		ppbV	1	4/20/2021 7:20:00 PM	
1,2,4-Trimethy	ibenzene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,2-Dibromoet	hane	< 0.15	0.15		ppb∨	1	4/20/2021 7:20:00 PM	
1,2-Dichlorobe	nzone	< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
1,2-Dichloroeth	nane	< 0,15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,2-Dichloropro	opane	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,3,5-Trimethy	Ibenzene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,3-butadiene		< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,3-Dichlorobe	nzene	< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
1,4-Dichlorobe	nzene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
1,4-Dioxane		< 0.30	0.30		ppbV	1	4/20/2021 7:20:00 PM	
2,2,4-trimethyl	pentane	< 0.15	0,15		ppbV	1	4/20/2021 7:20:00 PM	
4-ethyltoiuene		< 0.15	0.15		ppb∨	1	4/20/2021 7:20:00 PM	
Acetone		5.9	3.0		ppbV	10	4/21/2021 2:36:00 AM	
Allyl chloride		< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
Benzene		0.13	0.15	J	Vaqq	1	4/20/2021 7:20:00 PM	
Benzyl chloride	e	< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
Bromodichioro	methane	< 0.15	0.16		Vdqq	1	4/20/2021 7:20:00 PM	
Bromoform		< 0,15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
Bromomethan	e	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
Carbon disulfic	te	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
Carbon tetrach	aloride	0.080	0.030		ppbV	1	4/20/2021 7:20:00 PM	
Chlorobenzene	9	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
Chloroethane		< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM	
Chloroform		< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM	
Chloromethan	8	0.37	0,15		opoV	1	4/20/2021 7:20:00 PM	
cis-1.2-Dichlor	oethene	< 0.040	0.040		Vaqq	1	4/20/2021 7:20:00 PM	
cis-1.3-Dichlor	opropene	< 0.15	0,15		Vdqq	1	4/20/2021 7:20:00 PM	

Qualifiers: SC Sub-Contracted В Analyte detected in the associated Method Blank

cis-1,3-Dichloropropene

Dibromochloromethane

Cyclohexane

Ethyl acetate

Ħ Holding times for preparation or analysis exceeded

< 0.15

< 0.15

0,18

0.15

0.15

0.15

ppbV

Vdqq

ppbV

- Non-routine analyte. Quantitation estimated, JN.
- Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected .

Æ fistimated Value above quantitation range

J Analyte detected below quantitation limit

1

1

1

ND Not Detected at the Limit of Detection

DL Detection Limit

Page 5 of 6

Page 25 of 229

4/20/2021 7:20:00 PM

4/20/2021 7:20:00 PM

4/20/2021 7:20:00 PM

Date: 05-May-21

CLIENT:	LaBella Associates, P.C.	
Lab Order:	C2104038	
Project:	1500 Jefferson Road	
Lab ID:	C2104038-003A	

Client Sample ID: Dupe (4/15/21) Tag Number: 550.271 Collection Date: 4/15/2021 Matrix: AlR

Anafyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15				Analyst: WD
Ethyibenzene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Freon 11	0.18	0.15		ppbV	1	4/20/2021 7:20:00 PM
Freon 113	< 0.15	0.15		Vdqq	t	4/20/2021 7:20:00 PM
Freon 114	< 0,15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Freon 12	0.48	0.15		ppbV	Ť	4/20/2021 7:20:00 PM
Heptane	< 0.15	0.15		γdqq	1	4/20/2021 7:20:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vdqq	1	4/20/2021 7:20:00 PM
Hexane	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
isopropyl alcohol	2.8	1.5		ppbV	10	4/21/2021 2:36:00 AM
m&p-Xylene	< 0.30	0.30		ppbV	1	4/20/2021 7:20:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/20/2021 7:20:00 PM
Methyl Ethyl Ketone	0.25	0.30	J	ppbV	1	4/20/2021 7:20:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/20/2021 7:20:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Methylene chloride	0.27	0.15		∨dqq	1	4/20/2021 7:20:00 PM
o-Xylene	< 0.15	0.15		ppbV	٢	4/20/2021 7:20:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Tetrachloroethylene	< 0.15	Q.15		ppbV	1	4/20/2021 7:20:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Toluene	0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		p¢bV	1	4/20/2021 7:20:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	4/20/2021 7:20:00 PM
Vinyi acetate	< 0.15	0.15		ppbV	1	4/20/2021 7:20:00 PM
Vinyt Bromide	< 0.15	0.15		ppb∨	1	4/20/2021 7:20:00 PM
Vinyt chloride	< 0.040	0.040		ppbV	1	4/20/2021 7:20:00 PM
Surr: Bromofluorobenzene	88.0	47-124		%REC	1	4/20/2021 7:20:00 PM

Qualifiers:	SC	Sub-Contracted			Results reported are not	blank corrected	
	13	Analyte detected in the associated Metho	od Blank	49	Estimated Value above of	juantitation range	
	14	Holding times for preparation or analysis	s exceeded	3	Analyte detected below of	pantitation limit	
	JN Non-routine analyte, Quantitation estimated. ND Not Detected at the L		Not Detected at the Limi	t of Detection			
	s	Spike Recovery outside accepted recove	ry limits	ĐŁ.	Detection Limit		Page 6 of 6

Date: 05-May-21

· ··· · · <u>··</u> ········			· · · · · · · · · · · · · ·
LaBella Associates, P.C.			Client Sample 1
C2104038			Tag Numb
1500 Jefferson Road			Collection Da
C2104038-003A			Matr
and the second			
	Result	$\mathbf{D}\mathbf{L}$	Qual Units
	LaBella Associates, P.C. C2104038 1500 Jefferson Road C2104038-003A	LaBella Associates, P.C. C2104038 1500 Jefferson Road C2104038-003A Result	LaBella Associates, P.C. C2104038 1500 Jefferson Road C2104038-003A Result DL

	and the second
Client Sample ID:	Dupe (4/15/21)
Tag Number:	550,271
Collection Date:	4/15/2021
Matrix:	AIR

Analyses	Result	DL Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1.1DCE	TO-15			Analyst: WD
1,1,1-Trichloroethane	< 0.82	0,82	ug/m3	1	4/20/2021 7:20:00 PM
1.1.2.2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/20/2021 7:20:00 PM
1.1.2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/20/2021 7:20:00 PM
1 1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/20/2021 7:20:00 PM
1.1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/20/2021 7:20:00 PM
1 2 4 Trichlorobenzene	< 1,1	1.1	ug/m3	1	4/20/2021 7:20:00 PM
1 2 4-Trimethylbenzene	< 0.74	0,74	ug/m3	1	4/20/2021 7:20:00 PM
1.2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/20/2021 7:20:00 PM
1.2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/20/2021 7:20:00 PM
1 2-Dichloroethane	< 0.61	0.61	սց/m3	1	4/20/2021 7:20:00 PM
1.2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/20/2021 7:20:00 PM
1.3.5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/20/2021 7:20:00 PM
1 3-butadiene	< 0.33	0.33	ug/m3	1	4/20/2021 7:20:00 PM
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/20/2021 7:20:00 PM
1.4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/20/2021 7:20:00 PM
1.4-Dioxane	< 1.1	1.1	ug/m3	1	4/20/2021 7:20:00 PM
2.2.4-trimethylpentane	< 0,70	0.70	ug/៣3	1	4/20/2021 7:20:00 PM
4-ethyltojuene	< 0.74	Q.74	ug/m3	1	4/20/2021 7:20:00 PM
Acetone	14	7.1	ug/m3	10	4/21/2021 2:36:00 AM
Allyt chloride	< 0.47	0,47	ug/m3	1	4/20/2021 7:20:00 PM
Benzebe	0.42	0.48	J ug/m3	1	4/20/2021 7:20:00 PM
Benzvi chloride	< 0,86	0.86	ug/m3	1	4/20/2021 7:20:00 PM
Bromodichloromethane	< 1.0	1.0	មg/m3	1	4/20/2021 7:20:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/20/2021 7:20:00 PM
Bromomethane	< 0.58	0.58	ug/กา3	1	4/20/2021 7:20:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/20/2021 7:20:00 PM
Carbon tetrachlorida	0.50	0.19	ug/m3	1	4/20/2021 7:20:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/20/2021 7:20:00 PM
Chloroethana	< 0.40	0.40	ug/m3	1	4/20/2021 7:20:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/20/2021 7:20:00 PM
Chloromethane	0.76	0.31	ug/m3	1	4/20/2021 7:20:00 PM
cis-1 2-Dichloroetbene	< 0.16	0,16	ug/m3	1	4/20/2021 7:20:00 PM
cis-1.3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/20/2021 7:20:00 PM
Cyclobexane	< 0.52	0.52	ug/m3	1	4/20/2021 7:20:00 PM
Dibromochlorometbase	< 1.3	1.3	ug/m3	1	4/20/2021 7:20:00 PM
Ethyl acetate	0.65	0.54	ug/m3	1	4/20/2021 7:20:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/20/2021 7:20:00 PM
Ereon 11	1.0	0.84	ug/m3	1	4/20/2021 7:20:00 PM
Freen 113	< 1.1	1.1	ug/m3	1	4/20/2021 7:20:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/20/2021 7:20:00 PM
Qualifiers: SC Sub-Contracted			, Results o	sported are not	blank corrected
B Analyte detected	in the associated Method B	(ank	E Estimate	t Value above	quantitation range

Holding times for preparation or analysis exceeded H

Non-routine analyte. Quantitation estimated. IN

Spike Recovery outside accepted recovery limits s

Analyte detected below quantitation limit ł

ND Not Detected at the Limit of Detection DL

Detection Limit

		,
CLIENT:	LaBella Associates, P.C.	
Lab Order:	C2104038	
Project:	1500 Jefferson Road	
Lab ID:	C2104038-003A	

Date: 05-May-21

Client Sample 1D: Dupe (4/15/21) Tag Number: 550,271 Collection Date: 4/15/2021 Matrix: AIR

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	DCE-1,1DCE	тс)-15			Analyst: WD
Freon 12	2.4	0.74		ug/m3	t	4/20/2021 7:20:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/20/2021 7:20:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/20/2021 7:20:00 PM
Hexane	< 0.53	0.53		បg/៣3	1	4/20/2021 7:20:00 PM
Isopropyl alcohol	6.9	3.7		սց/m3	10	4/21/2021 2:36:00 AM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/20/2021 7:20:00 PM
Methyl Butyl Ketone	< 1.2	1,2		ug/m3	1	4/20/2021 7:20:00 PM
Methyl Ethyl Ketone	0.74	0.88	3	ug/m3	1	4/20/2021 7:20:00 PM
Methyl Isobutyl Ketone	< 1.2	1,2		ug/m3	Ť	4/20/2021 7:20:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/20/2021 7:20:00 PM
Methylene chloride	0.94	0.52		ug/m3	1	4/20/2021 7:20:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/20/2021 7:20:00 PM
Propylene	< 0.26	0.26		սց/m3	1	4/20/2021 7:20:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/20/2021 7:20:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/20/2021 7:20:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/20/2021 7:20:00 PM
Toluene	0.57	0.57		ug/m3	1	4/20/2021 7:20:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ខ្មែរកា3	1	4/20/2021 7:20:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/20/2021 7:20:00 PM
Trichloroethene	< 0.16	0,16		ug/m3	1	4/20/2021 7:20:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/20/2021 7:20:00 PM
Vinyl Bromide	< 0.66	D.66		ug/m3	1	4/20/2021 7:20:00 PM
Vinyl chloride	< 0,10	0.10		ug/m3	1	4/20/2021 7:20:00 PM

Qualifiers:

Sub-Contracted

SC.

- Analyte detected in the associated Method Blank
- В Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit J.
- Not Detected at the Limit of Detection ND
- Detection Limit DL.

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

QUALITY CONTROL SUMMARY

٠.

Date: 05-May-21

CENTEK LABORATORIES, LLC

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:	LaBella.	Associates, F	P.C.						
Work Order:	C210403	8							
Project:	1500 Jef	ferson Road							
Test No:	TO-15		Matrix	: A					
Sample ID		BR4FBZ		·····					
ALCSIUG-042021		100			,. <i></i>				
ALCSIUG-042121	· ····	109			/ · ··· · · · · · · · · · · · · · · · ·				
ALCS1UGD-0420	21	105							
ALCSIUGD-0421	21	113			••••••••••••••••••••••••••••••••••••••	· ··· ·· ··· · · · · · · · · · · · · ·			
AMB1UG-042021		85,0							
AMB1UG-042121		83.0					• • • • • • • • • •		
C2104038-001A		98.0							
C2104038-001A N	15	105			,				
C2104038-001A M	tSD	102							
C2104038-002A		90.0							
C2104038-003A	,	88.0				1	}		
	. /			· · · · · · · · · · · · · · · · · · ·	e e e e e e e e e e e e e e e e e e e	and the second		A REAL PROPERTY OF THE PROPERT	

Acronym	Surrogate		QC Limits	
BR4FBZ	≖ Bromofluorobenz	ene	47-124	
* Su	rrogate recovery outsid	le acceptance lim	nits	

Centek/waboratories_LLC Report

Tune File : C:\HPCHEM\1\DATA\AS042003.D Tune Time : 20 Apr 2021 12:26 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AS042003.D

			(BFB)		(IS1) 88615	(IS2) 332579	(IS3) 332258	
					00043	<i></i>	012266	
File	Sample	DL	Surrogate	Recovery %	Internal	Standard Re	sponses	
AS042004.D	ALCS1UG-04202	1	100		89217	335385	333942	
AS042005.D	AMB1UG-042021		85		86444	320122	323571	
AS042007.D	C2104038-001A		98		92259	348627	334135	
AS042008.D	C2104038-001A	MS	105		107899	407153	386676	
AS042009.D	C2104038-001A	MSD	102		111144	451492	430231	
AS042010.D	C2104038-002A		90		101326	375861	353897	
AS042011.D	C2104038-003A		88		95695	354558	329868	
AS042017.D	ALCS1UGD-0420	21	105		97213	368856	344102	
AS042019.D	C2104038-001A	10X	87		81361	300083	272194	
AS042020.D	C2104038-002A	10X	81		80601	288527	262272	
AS042021.D	C2104038-003A	10X	80		76420	264345	242622	
t - fa	ils 24hr time	check	* - fail	s criteria				

Created: Wed May 05 08:23:24 2021 MSD #1/

Centek/Maboratories LLC Report

Tune File : C:\HPCHEM\1\DATA\AS042104.D Tune Time : 21 Apr 2021 1:25 pm

Daily Calibration File : C:\HPCHEM\1\DATA\AS042104.D

		(E	3FB)			(IS1) 77252	(IS2 27897	:) '1 2	(IS3) 54056
File	Sample	DL SU	urrogate	Recovery	\$ I	Internal	Standard	Respons	es
AS042105.D	ALCS1UG-042123	 1]	109			79503	27366	4 2	55437
AS042106.D	AMB1UG-042121		83			77342	28488	33 2	48281
AS042108.D	C2104038-001A	320X	84		·	79111	27689	2 2	40178
AS042117.D	ALCS1UGD-0421:	21 3	113			80819	28139	57 2	67874
AS042122.D	C2104038-001A	64.0X	72			75659	26264	4 2	62673
t - fai	ils 24hr time (check	* - fai	ls criteri	ia				.,

Created: Wed May 05 08:24:48 2021 MSD #1/

						Date: 05-May-21
CENTEK LAB	ORATORIES, LL	C				
				ANALYTIC	AL QC SUM	IMARY REPORT
CLIENT: LaBella A: Work Order: C2104038	ssociates, P.C.					
Project: 1500 Jeffe	rson Road				TestCode: 0.	SV. 02
Sample ID: AMB1UG-042021	SampType: MBLK	TestCode: 0.20_NYS	Units: ppbV	Prep Date:		RunNo: 17523
Client ID: ZZZZ	Batch ID: R17523	TestNo: TO-15		Analysis Date: 4/20	0/2021	SeqNo: 198926
Analyte	Result	PQL SPK value	SPK Ref Val	6REC LowLinit HighLin	nif RPD Ref Val	%RPD RP0Limit Qual
1,1,1-Trichloroethane	< 0.15	0.15				
1,1,2,2-Tetrachlorcethane	< 0.15	0.15				
1,1.2-Trichloroethane	< 0.15	0.15				
1,1-Dichloroethane	< 0.15	0.15				
1,1-Dichloroethene	< 0.040	0.040				
1,2,4-Trichlorobenzene	< 0.15	0.15				
1,2,4-Trimethylbenzene	< 0.15	0.15				
1,2-Dibromoethane	< 0.15	0.15				
1,2-Dichlorotenzene	< 0.15	0.15				
1,2-Dichloroethane	< 0.15	0.15				
1,2-Dichloropropane	< 0.15	0.15				
1,3.5-Trimethylbenzene	< 0.15	0.15				
1,3-butadiene	< 0.15	0.15				
1,3-Dichforobenzene	< 0.15	0.15				
1,4-Dichforobenzene	< 0.15	0.15				
1,4-Dioxane	< 0.30	0.30				
2,2,4-trimethylpentane	< 0.15	0.15				
4-ethyllaluene	< 0.15	0.15				
Acelone	< 0.30	0.30				
Allyf chloride	< 0.15	0.15				
Benzene	< 0.15	0.15				
Benzyl chloride	< 0.15	0.15				
Bromodichloromethane	< 0.15	0.15				
Bromotorm	ct.U >	61.0				
Bromomethane	< 0.15	0.15				
Qualifiers: Results repo	sted are not blank corrected	E Estimat	leđ Value above quantita	dion tange	Holding times for 1	oteparation or analysis exceeded
J Analyte dete	cted below quantitation limit	ND Not De	lected at the Limit of De	tection R	RPD outside accept	ted recovery limits
5 Spike Record	ery outside accepted recovery his	aits DL Detecti	on Limit			Page I of 5

CLIENT: LaBella As	sociales, P.C.								
Work Order: C2104038	۰.								
Project: 1500 Jeffer	rson Road						TestCode:	0.20_NYS	
Sample ID: AMB1UG-042021	SampType: MBLK	TestCode:	0.20_NYS	Units: ppbV		Prep Date:		RunNo: 17523	
Client ID: ZZZZ	Batch ID: R17523	TestNo:	10-15		Ana	lysis Date	4/20/2021	SeqNo: 198926	
Analyte	Result	PQL S	SPK value	SPK Ref Vai 🦷 🖗	REC LO	wLimit h	ighLimit RPD Ref Val	%RPD RPDLimi	Qual
Carbon disulfide	< 0.15	0.15							
Carbon tetrachloride	< 0.030	0:030							
Chiorobenzene	< 0.15	0.15							
Chioroethane	< 0.15	0.15							
Chloroform	< 0.15	0.15							
Chioromethane	< 0.15	0.15							
cis-1,2-Dichioroethene	< 0.040	0.040							
cis-1,3-Dichioropropene	< 0.15	0.15							
Cycloħexane	< 0.15	0.15							
Dibromochloromethane	< 0.35	0.15							
Ethyl acelate	< 0.15	0.15							
Ethylbenzene	< 0.15	0.15							
Freon 15	< 0.15	0.15							
Freon 113	< 0.15	0.15							
Frecn 114	< 0.15	0.15							
Freon 12	< 0.15	0.15							
Heptane	< 0.15	0.15							
Hexachloro-1,3-butadene	< 0.15	0.15							
Hexane	< 0.15	0.15							
isopropyl alcohol	< 0.15	0.15							
m&p-Xylene	< 0.30	0.30							
Methyl Butyl Ketone	< 0.30	0.30							
Methyl Ethyl Kefone	< 0.30	0.30							
Methyl tsobutyl Xefone	< 0.30	0.30							
Methyl lert-butyl ether	< 0.15	0,15							
Methylene chłoride	0.1100	0.15							-
o-Xyłene	< 0.15	0.15							
Propylene	< 0.15	0.15							
Slyrene	< 0.15	0.15							
Tetrachloroethylene	< 0.15	0.15							
Tetrahydrofuran	< 0.15	0.15							
Qualifiers: Results repo	sted are not blank corrected		E Estimat	ed Value above quantilat	ວລີບອນ ແຕຍຸດ		H Holding times f	or preparation or analysis exte	zdod
J Analyte dete	cted befow quantitation limit		ND Not De	ected at the Linut of Det	ection		R RPD outside ac	cepted recovery limits	
S Spike Recov	rery outside accepted recovery [méts	DL Detecti	timit ac					Page 2 of 5

LIENT: LaBella /ork Order: C21040	1 Associates, P.C. 338								
oject: 1500 Je	sfferson Road						TestCode: 0.	20_NYS	
ample ID: AMB1UG-04202	1 SampType: MBLK	TestCode:	0.20_NYS	Units: ppbV	đ	rep Date:		RunNo: 17523	
ient ID: ZZZZ	Batch ID: R17523	TesiNo:	TO-15		Analy	sis Date: 4/20/	2021	SegNo: 198926	
lalyte	Result	bal	SPK value	SPK Ref Val	%REC Lov	vLimit HighLimi	RPD Ref Val	%RPD RPDLimit	Qual
ituene	< 0.15	0.15							
ins-1,2-Dichioroeihene	< 0.15	0.15							
ins-1,3-Dichioropropene	< 0.15	0.15							
chloroethene	< 0.030 >	0:030							
tyl acetate	< 0.15	0.15							
yl Bromide	< 0.15	0.15							
nyl chioride	< 0.040	0.040							
mple ID: AMB1UG-04212	1 SampType: MBLK	TestCode:	0.20_NYS	Units: ppbV	٩	rep Date:		RunNo: 17524	
ent ID: ZZZZ	Batch ID: R17524	TestNo:	TO-15		Analy	/sis Date: 4/21/	2021	SeqNo: 198943	
alyte	Result	PQL	sPK value	SPK Ref Val	%REC Lov	vLimit HighLimi	ह RPD Ref Val	%RPD RPDLimit	Quai
. t-Trichloroethane	< 0.15	0.15							
.2.2-Tetrachioroethane	< 0.15	0.15							
2-Trichloroethane	< 0.15	0.15							
-Dichloroethane	< 0.15	0.15							
-Dichloroethene	< 0.040	0.040							
4-Trichlorobenzene	< 0.15	0.15							
4-Trimethylbenzene	< 0.15	0.15							
-Dibromoethane	< 0.15	0.15							
-Dichlorobenzene	< 0.15	0.15							
-Dichloroethane	< 0.15	0.15							
 Dichloropropare 	< 0.15	0.15							
.,5-Trimethylbenzene	< 0.15	0.15							
-buladiene	< 0.15	0.15							
-Dichiorobenzene	< 0.15	0.15							
-Dichlorobenzene	< 0.15	0.15							
-Dioxane	< 0.30	0.30							
4-Inimethy/pentane	< 0.15	0.15							
thyltoluene	< 0.15	0.15							
alifiers: Results 1	reported are not blank currected		E Estima	ted Value above quanti-	ation range	H	Holding times for J	oceparations or analysis exce	såed
J Analyte	detected below quantitation limit		ND Not De	dected at the Limit of D	etection	R	RPD outside accep	ted recovery limits	
S Spike Ru	covery outside accepted recovery	limits	Di. Detecti	ion Limit					Page 3 of 3

CLIENT: LaBella A:	sociates, P.C.							
work Urder: U2104036 Project: 1500 Jeffe	rson Road					TestCod	: 0.20_NYS	
Sample ID: AMB1UG-042121	Sampīype: MBLK	TestCode: 0.	20_NYS	Units: ppbV		Prep Date:	RunNo: 17524	
Client IO: ZZZZ	Batch ID: R17524	TestNo: T	0-15		F uy	lysis Date: 4/21/2021	SeqNo: 198943	
Anaiyte	Result	PQL SP	K vaiue SP	¥K Ref Vat %F	C Lo	wLimit HighLimit RPD Ref	Vai %RPD RPDLi	iit Quai
Acetone	< 0.30	0.30						
Allyl chloride	< 0.15	0.15						
Benzene	< 0.15	0.15						
Benzyi chloride	< 0.15	0.15						
Bromodichloromethane	< 0.15	0.15						
Bromeform	< 0.15	0.15						
Bromomethane	< 0.15	0.15						
Carbon disulfide	< 0.15	0.15						
Carbon letrachloride	< 0.030	0.030						
Сhlorobenzene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chlareform	< 0.15	0.15						
Chioromethane	< 0.15	0.15						
cis-1,2-Dichlorcethene	< 0.040	0.040						
cis-1,3-Dichloropropene	< 0.15	0.15						
Cyclohexane	< 0.15	0.15						
Dibromochloromethane	< 0.15	0.15						
Ethyl acetate	< 0.15	0.15						
Ethylbenzene	< 0.15	0.15						
Frean 11	< 0.15	0.15						
Freon 113	< 0.15	0.15						
Freon 114	< 0.15	0.15						
Freon 12	< 0.15	0.15						
Heptare	< 0.15	0.15						
Hexachloro-1,3-butadiene	< 0.15	0.15						
Hexane	< 0.15	0.15						
isopropyi alcohol	< 0.15	0.15						
m&p-Xylene	< 0.30	0.30						
Methyl Butyl Ketone	< 0.30	0.30						
Methyl Ethyl Ketone	< 0.30	0.30						
Methyl Isobutyl Ketone	< 0.30	0.30						
Qualifiers: Results repo	rted are nut blank corrected		Estimated	Value above quantitati	001 विक्वेडिट	H Holding ten	es for preparation or analysis ex	cented
J Analyse dete	seled below quantitation limit	N	O Not Detec	ted at the Limit of Dete	clion	R RPD outsid	e accepted recovery lanais	
S Spike Recov	rery outside accepted recovery l	mits D	L Detection	Linnit				Page 4 of 5

				Qual																					ł.	2
	SYN	unNo: 17524	eqNo: 198943	%RPD RPDLimit																					seefice of numbers according	www.ex.com.us.ut.astro.ast.com.us.
	TestCode: 0.20	le. R	te: 4/21/2021 Si	HighLimit RPD Ref Val																						IF BORING BUICT TO JUST
		Prep Da	Analysis Da	%REC LowLimit																						ब्रासिलालि एबडिट
		Units: ppbV		SPK Ref Vat																						ted Value above qua
		de: 0.20_NYS	No: TO-15	SPK value																						E Estuna
		TestCo	Test	PQL	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.030	0.15	0.15	0.040								
sociates, P.C.	son Road	SampType: MBLK	Batch ID: R17524	Result	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.030	< 0.15	< 0.15	< 0.040								ried are not blank corrected
r: C2104058	1500 Jeffer	MB1UG-042121	2222.		ilyi ether	lloride				lhyene	tan		hioroethene	hioropropene	ne		QJ									Results report
CLIENT: Work Order	Project:	Sample ID: A	Client ID: Z	Analyte	Methyl tert-bu	Methylene ch	o-Xylene	Propylene	Styrene	Tetrachloroet	Tebrahydrofur	Toluene	trans-1,2-Dicl	trans-f, 3-Dicl	Trichloroethe	Vinyi acetate	Viny [‡] Bromide	Vinyi chloride								Opablifiers:

Page ž of S

Spike Recovery outside accepted recovery limits

Date: 05-Maj-21

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Project: 1500 Jeffer	son Road						TestCode:	0.20_NYS	
Sample ID: ALCS1UG-042021	SampType: LCS	TestCod	5: 0.20 NYS	Units: ppbV		Prep Date:		RunNo: 17523	
Client ID: ZZZZ	Batch ID: R17523	TestN	x TO-15			Analysis Date:	4/20/2021	SeqNo: 198927	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimi	tighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	1.120	0.15	ų.r.	0	112	91.3	\$27		
1,1,2,2-Tetrachioroethane	1.080	0.15	***	¢	108	78.7	121		
1,1,2-Trichloroethane	1.080	0.15	.	0	108	88.1	136		
1,1-Dichloroethane	1.090	0.15	-	0	109	86.1	123		
1, 1-Dichloroethene	0.9900	0.040	-	a	9.66	70	54		თ
1,2,4.Frichlorobenzene	1.250	0.15	-	0	125	76.7	112		ю
1.2.4-Trimethylbenzene	1.140	0.15	-	0	114	74.3	123		
1,2-Dibromoethane	1.060	0.15	+	0	106	80.4	125		
 2-Dicinlorobenzene 	1.030	0.15	-fu-	ð	103	79.5	143		
1.2-Dichloroethane	1.120	0.15	40.00	0	112	70.9	133		
1,2-Dichlotopropane	1.050	0.15	4	O	105	91	134		
1,3,5-Trimethytbenzene	1.100	0.15	•	¢	110	77.4	138		
1,3-butadiene	0.9900	0.15	-	0	0.66	71	144		
1,3-Dichlorobenzene	1.070	0.15	-	đ	107	84.7	128		
1,4-Dichlorobenzene	1.340	0.15	-	0	114	77.9	131		
1,4-Dioxane	1.090	0.30	+	0	109	85.1	135		
2,2,4-trimethylpentane	1.060	0.15	4ir-	ð	105	85.9	126		
4-ethylioluene	1.100	0.15	****	Ð	110	77.5	133		
Acetone	0.7600	0.30	•	¢	76.0	80.2	145		ŝ
Aliyi chloride	1.110	0.15	-	Ģ	t 1 1	86.6	117		
Benzene	1.090	0.15	-	0	109	88.9	122		
Benzyi chloride	1.290	0.15	-	0	129	73.6	120		S
Bromodichforomethane	1.130	0.15	÷	0	113	84.3	133		
Bremoterm	1.050	0.15	**	0	105	44.6	149		
Bromomethane	1.080	0.15	÷	ð	108	78.7	144		
Onalifiers: Results repor	rted are not blank corrected	/	E Estima	led Value above quan	filation can	30	H Holding times fi	yr preparation or analysis exceed	રવે
J Analyse dute	sted below quantization limit		ND Not De	sected at the Limit of	Detection		R RPD outside acc	zepted recovery fimits	
S Spike Recov	ery outside accepted recovery	limits	DI, Detecti	ion t.imit				£.,	age 1 af 5

Centek Laboratories,LLC

CLIENT: LaBella As	sociates, P.C.									
Work Order: C2104038										
Project: 1500 Jefter	rson Road						TestCode	: 0.20_NYS		
Sample ID: ALCS1UG-042021	SampType: LCS	TestCode:	0.20_NYS	Units: ppbV		Prep Dat	ä	RunNo: 17523		
Client ID: ZZZZ	Batch ID: R17523	TestNo:	TO-15		*	4.nalysis Dat	e: 4/20/2021	SeqNo: 19892	5	
Anaiyłe	Result	PQL	SPK value S	spK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD R	(PDLimit	Quai
Carbon disulfide	1.210	0.15	-	0	121	76.9	109			S
Carbon tetrachloride	1.120	0.030	-	¢	112	1.	128			
Chloroberzene	1.030	0.15	-	0	103	82.6	121			
Chloroethane	1.020	0.15	-	G	102	67.1	145			
Chloroform	1.090	0.15	Ţ	0	109	82.5	125			
Chloromethane	1.000	0.15	-	0	100	71.1	154			
cis-1,2-Dichlercethene	1.050	0.040	-	0	105	71.2	112			
cis-1, 3-Dichloropropene	1.110	0,15		٥	11†	90.3	137			
Cyciphexane	1.070	0.15	*-	0	107	87	122			
Dibromochtoromethane	1.080	0.15	÷.,	D	108	62.8	132			
Ethyl acetate	1,150	0.15	Maraa.	ð	115	86.9	134			
Ethylbenzene	1.100	0.15	F	Ο	110	76.9	123			
Freon 11	1.010	0.15	-	¢	ŧ01	54.4	150			
Freon 113	1.100	0.15	٢	¢	10 10	83.4	124			
Freon 134	1.070	0.15	۲	¢	\$07	82.4	144			
Freen 12	1.510	0.15	Ł	Q	11	36.3	135			
Heptane	1.100	0.15	Ł	٥	110	36.5	137			
Hexachloro-1,3-butadiene	1.200	0.15	*	0	120	78.7	120			
Нехале	1.090	0.15	4 710	0	109	77.3	128			
Isopropyl alcohol	0.9900	0.15	<i>4</i> .=	D	0:56	B0.2	122			
m&p-Xylene	2.210	0.30	61	Ö	110	5-11	132			
Methyl Butyl Ketone	1.080	0.30	-	0	103	69.4	131			
Methyl Ethyl Ketone	1.080	0.30	-	Q	108	71.5	1:1			
Methyl Isobutyl Ketone	1.080	0.30	-	Q	108	63.5	541			
Methyl lert-butyl ether	1.060	0.15	-	0	108	80.B	13			
Methylene chloride	1.210	0.15	4cm	0.11	110	87.8	123			
o-Xylene	1.090	0.15	4777	0	109	80.5	139			
Propylene	1.080	0.15	-	0	108	96.2	135			
Siyrene	1.070	0.15	-	¢	101	82.7	138			
Tetrachloroethylene	1.050	0.15	٢	¢	105	85.9	122			
Tetrahydrofuran	1.070	0.15	-	Ð	107	65.5	134			
Ouslifiers: Results repu	vited are not blank corrected		E Estimate	ed Value above quan	utitation rang	4	H Holding tin	es for preparation of anal	lysis exceede	q
J Analyte dete	scted below quantitation fimit		ND Not Deb	seted at the f. imit of	Detection		R RPD cutsid	e accepted secovery limits	~	
S Spike Reco	very ostiside accepted recovery.	limits	DI. Detectio	on Limit					P_{G}	ige 2 of 5

Page 39 of 229

CLIENT: LaBella As Work Onder: COLOGR	sociates, P.C.									
Project: 1500 Jeffer	son Road						Test	Code: 0.	20_NYS	
Sample ID: ALCS1UG-042021	SampType: LCS	TestCox	le: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 17523	
Client ID: ZZZZ	Batch ID: R17523	Test	to: TO-15			Analysis Date	:: 4/20/2021		SeqNo: 198927	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPI	D Ref Vai	%RPD RPDLim	it Quaf
Toluene	1.080	0.15	4	0	108	77.8	127			
trans-1,2-Dicitloroethene	1.070	0.15	•	Q	\$07	83.3	115			
trans-t_3-Dichloropropene	1.150	0.15	÷	4	115	84.8	134			
Tichtorethene	1.060	0.030	*-	¢	1 06	79.3	117			
Vinyt acetate	1.070	0.15	-	0	\$07	70.5	101			ა
Viny) Bromide	1.030	0.15	-	0	103	81.4	142			
Vinys chloride	0:9800	0.040	1	0	98.0	70.4	138			
Sample ID: ALCS1UG-042121	SampType: LCS	TestCo	Je: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 17524	
Client JD: ZZZZ	Batch ID: R17524	Test	lo: TO-15			Analysis Date	: 4/21/2021		SeqNo: 198944	
អំពនាអ្វទេ	Result	PQL	SPK value	SPK Raf Val	%REC	Lowiimit	HighLimit RPI	D Ref Vai	%RPD RPOLim	it Qual
1,1,1-Trichloroethane	1.240	0.15	-	0	124	91.3	127			
1, 1, 2, 2-Tetrachloroethane	1.220	0.15	-	D	122	78.7	121			S
1,1,2-Trichioroethane	1.180	0.15	1	0	118	88.1	136			
1,1-Dichloroethane	1.110	0.15	4	0	111	86.1	123			
1,1-Dichloroethene	0.9700	0.040	**	Ċ	97.0	02	94			S
f.2,4-Trichlorobenzene	1.500	0.15	400 7	đ	150	76.7	f 12			S
1,2,4-Trimethytbenzene	1.200	0.15	ų	0	120	74.3	123			
1,2-Dibromoethane	1.190	0.15	***	0	119	80.4	125			
1,2-Dichlorobenzene	1.350	0.15		¢	135	79.5	143			
1,2-Dichloroethane	1.120	0.15	-	Q	212	70.9	133			
1,2-Dichloropropane	1.210	0.15	-	0	121	91	134			
1,3.5-Trimethylbenzene	1.280	0.15	-	0	128	77.4	138			
1,3-butadiene	1.070	0.15	-	Q	107	71	144			
1,3-Dichlorobenzene	1.230	0.15	-	0	123	84.7	128			
1,4-Dichlorobenzene	1.290	0,15	,	0	129	77.9	131			
1,4-Dioxane	1.220	0.30	* ***	Ċ	122	85.1	135			
2,2,4-trimethylpentane	1.170	0.15	ų	Ð	117	86.9	126			
¢-ethy#oluene	1.270	0.15	***	ð	127	77.5	133			
Qualifiers: Results repor	rted are not blank corrected		E Estima	ted Value above quan	dilations can	ŝţ	Heldi	ing tanks for	preparation or analysis exe	eeded
Anaiye delex	cted befow quantitation limit		ND Not De	stected at face Linkit of	Delection		R RPD	untside accep	led reevery limits	
S Spike Recov	ery outside accepted recovery	limits	DI. Detect	ton f.imit						Page 3 of 5

CLIENT:	LaBella Associates, P.C.
Work Order:	C2104038

C2104038

NIVE 0.00 ç Ę

Project: 1500 Jeffer	son Road						l este die: 1	STN 121	
Sample ID: ALCS1UG-042121	SampType: LCS	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 17524	
Client ID: ZZZZ	Batch ID: R17524	Test	o: TO-15			Analysis Date:	4/21/2021	SegNo: 198944	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lowinit H	ighLimit RPD Ref Val	%RP0 RPDLir	mit Qual
Acetone	1.118	0.30	*-	0	111	80.2	145		
Attyl chloride	1.110	0.15	*	Ð	115	BG.6	117		
Benzene	1.130	0.15	4 mv	0	113	88.9	122		
Benzyi chloride	1.400	0.15	ų	C	140	73.6	120		S
Bromodichloromethane	1.230	0.15	ψ×.	¢	123	84.3	133		
Bromeform	1.170	0.15	v -	Ģ	117	44.6	149		
Bromomethane	1.110	0.15	•	Q	11	78.7	144		
Carbon disulfide	1.120	0.15	•	0	112	76.9	109		S
Carbon tetrachioride	1.240	0.030	-	0	124	Ľ	120		S
Chlarobenzene	1.150	0.15	-	0	115	82.5	121		
Chloroethane	1.070	0.15	-	0	107	67.1	146		
Chloroform	1.110	0.15	+	0	111	82.5	125		
Chioromethane	1.020	0.15	•	0	102	71.4	154		
cis-1,2-Dichloroethene	1.050	0.040		Ð	105	71.2	112		
cis-1,3-Dichloropropene	1.220	0.15	***	0	122	90.3	137		
Cyciohexane	140	0.15	dire.	¢	114	87	122		
Dibromochioromethane	1.230	0.15	¥.	0	123	62.8	132		
Ethyl acelate	1.130	0.15	•	Ģ	133	86.9	134		
Ethylbenzene	1.190	0.15	-	٥	119	76.9	123		
Freon 11	1.180	0.15	-	0	118	54.4	150		
Freon 113	1.130	0.15	-	0	113	83.4	124		
Freon 114	1.120	0.15	-	0	112	82.4	144		
Freon 12	1.170	0.15	~	0	117	86.3	135		
Heptane	1,200	0.15	ų.	ð	120	86.5	137		
Hexachioro-1,3-butadiene	1,500	0.15	6 1	c	150	78.7	120		ŝ
Нехале	1.080	0.15	-	0	108	77.3	128		
Isopropyl alcohoi	1.190	0.15	-	Q	119	80.2	122		
m&p-Xylene	2.550	0.30	~	0	128	5.17	132		
Methyj Butyl Ketone	1.190	0:30	-	0	119	69.4	131		
Methyl Ethyl Ketone	1.050	0.30	-	0	105	71.5	117		
Methyf Isobutyl Ketone	1.200	0.30	~~	0	120	63.5	141		
Qualifiers: Results repo	rted are not blank corrected		E Estim	ated Value above quan	et itations ran	28	H Halding times for	r preparation or analysis ex	sceeded
J Analyte dete	cted below quantitation limit		ND Not D	etected at the Limit of	Detection		R RPD outside acco	spled recovery limits	
S Spike Reenv	rery autside accepted recovery l	inte	DI, Detec	tion Lippit					Page 4 of 5

		1			I																
				Qual												Ś			led		
			4	(PDL imit															ysis exceed		
	ΥS	0: 17524	0: 19894	RPD F															on of act	very limits	
).20_N	RunM	SegNi	8															r preparati	iptical recor	
	estCode: (21	RPD Ref Val															Helding times for	RPD outside acce	
	T		4/21/20	ightimit	113	123	139	135	138	122	134	127	116	134	117	101	<u>†</u> 42	138	1	2	
		ep Date:	is Date:	ismit H	80.8	87.8	80.5	96.2	82.7	85.9	65.5	77.8	83.3	84.8	79.3	70.5	814	70.4			
		ď	Analys	C Lowl							_								23186	ų	
				%RE(103	114	130	109	128	121	105	119	108	113	117	102	108	101	ntitatioa 1	f Detectio	
		S: ppbV		Vai	0	٥	0	0	0	0	0	0	Ð	Ċ	ø	¢	\$	¢	above qua	the Linnia	
		Cait		SPK Ref															led Vatue	etected at t	
		SVN_03)-15	< value	-	-	۲	-	-	-	-	,	÷m-		٣	ą	1 /17-	•	Estima	Not De	
		code: 0.2	stNo: TO	SР															644	<u>n</u>	
		TestC	Ĩ	PQL	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.030	0.15	0.15	0.040			
			524	ţ	80	40	00	06	80	10	60	06	80	30	70	20	80	10	ccled	n linii	
<u>, C</u>		De: LCS	D: R175	Res	1.0	1.	1.31	1.0	4.2	÷.	1.0	÷.	÷0		-	10	1.0	1.0	daak cors	013631 Jasen	
ciates. F	n Road	SampTyl	Batch I																1 ILLE 3101 F	d below a	
lla Asso 4038	Jefferso	121																	is reported	te detecto	
LaBe C210	1500	1UG-04:	N		lher	6)				ě			ethene	propene					Resul	վեսն	
der:		D: ALCS	2222		t-butyl e	e chloridi		40		roethyler	ofuran		Dichloro	Dichloro	sthene	tate	nide	ride			
LIENT /ork Oi	roject:	ampie II	lient ID:	unalyte.	fethy! ter	tetinyient	-Xylene	¹ ropylent	dyrene	etrachlo	etrahyór	oluene	ans-1,2-	ans-1,3-	richleroe	finyl acet	^r inyl Broi	finyt chlo	Jualifier		

Page 5 of 5

Spike Recovery outside accepted recovery lituits

05-Map-21	
Date:	

CENTEK LABORATORIES, LLC

e**rne** Statistics

ANALYTICAL QC SUMMARY REPORT

CLIENT:	LaBella Associates, P.C.
Work Order:	C2104038
Project:	1500 Jefferson Road

Project: 1500 Jeffer	son Road						TestCod	le: 0.2	SYN_0		
Sample ID: ALCS1UGD-042021	SampType: LCSD	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date:			RunNa: 17523	~	
Client ID: ZZZZ	Batch ID: R17523	TestN	o: TO-15		-	Analysis Date:	4/20/2021		SeqNo: 19892	83	****
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimi Hi	ghLimit RPD Re	sî Vaf	%RPD F	PDL imit	Quat
1.1.1-Frichleroethane	1.060	0.15	-	0	105	91.3	127	1.12	5.50	0	
1.1.2.2-Tetrachloroethane	1.050	0.15	-	Ð	105	78.7	125	1.08	2.82	0	
1 f.2-Frichloroethane	1.020	0.15	-	0	102	88.1	136	1.08	5.71	0	
1.3-Dichioroethane	1.020	0.15	F	¢	102	86.1	123	1.09	6.64	0	
1,1-Dichloroethene	0.9800	0.040	-	¢	98.0	22	94	0.99	1.02	0	ა
1,2,4-Trichlorobenzene	1.320	0.15		Ç	132	76.7	112	1.25	5.45	0	ŝ
 2.4-Trimethyibenzene 	1.180	0.15	***	Q	138	74.3	123	1.14	3.45	0	
1.2-Dibromoethane	1.060	0.15	¥	0	106	80.4	\$25	1.06	0	0	
1.2-Dichlorobenzene	1.180	0.15	•***	0	118	79.5	§43	1.03	13.6	0	
1.2-Dichloroethane	1.050	0.15	L	0	105	5,07	133	1.12	6.45	0	
1,2-Dichloropropane	1.010	0.15	-	0	101	91	134	1.05	3.83	Ċ	
1.3.5-Trimethylbenzene	1.220	0.15	Ļ	Ð	122	5.77	138	L.	10.3	Ċ	
1.3-butadiene	0.9300	0.15	-	¢	93.0	71	144	0.99	6.25	Ð	
1,3-Dichlorobenzene	1.120	0.15	F	0	112	84.7	128	1.07	4.57	\$	
1,4-Dichlorobenzene	1.200	0.15	÷	¢	120	77.9	131	1.14	5,13	0	
t 4-Dioxane	1.100	0.30	đur.	0	1:0	85.1	135	1.09	0.913	¢	
2.2,4-trimethylpertane	1.050	0.15		0	105	<u>86.9</u>	126	1.06	0.948	Ģ	
4-eshyttoluene	1.210	0.15	Ļ	0	121	77.5	133	1.1	9.52	Q	
Acetone	1.005	0.30	ſ	0	100	80.2	145 145	0.76	27.3	0	
Alivi chloride	1.020	0.15	F	0	102	36.6		1. 5.	8.45	0	
Benzene	1.070	0.15	F	9	107	88.9	122	1,09	1.85	0	
Beazyl chioride	1.180	0.15	*	Q	118	73.6	120	1.29	8.91	Ð	
Bromodicinloromethane	1.010	0.15	đen.	Q	101	84.3	133	3, 13	11.2	ð	
Bromoform	006510	0.15	4	Q	0.69	44.6	149	1,05	5.88	Ċ	
Bromomethane	0.9600	0.15	A.	0	96.0	78.7	144	1.08	1.8 1.8	0	
Oualifiers: Results report	ted are not blank corrected		E Estin	nated Value above quan	diation mu	3	H Holding ti	inks for pl	eparation or ana	lysis ex re de	ч
J Analyte detec	cted below quantication limit		ND Not	Detected at the Limit of	Detection		R RPD cutsi	ide accept	od recovery lithit	ю	
S Shike Recove	en autside accepted recovery	antits	DL Dete	ction Litrait						Pe	00 1 OF

Centek Laboratories,LLC

95 r eye

LaBella Associates, P.C. C2104038 CLIENT:

Work Order:

SampType: LCSD	TestCod	e: 0.20 NYS	Units: ppbV		Prep Date:			RunNo: 175	523	
Batch ID: R17523	TestN	o: TO-15			Analysis Date:	4/20/20	21	SeqNo: 198	3928	
Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	ighl, imit	RPD Ref Val	Oday	RPLimit	Qual
1.000	0.15	**	0	100	76.9	109	1.21	19.0	•	
1.000	0.030	Ann	0	100	71	120	1.12	11.3	0	
1.060	0.15	ų.u	0	106	82.6	121	1.03	2.87	0	
0.9300	0.15	•	0	93.0	67.1	146	1.02	9.23	Q	
1.030	0.15	4.07	0	103	82.5	125	1.09	5,66	¢	
0.8800	0.15	ų-n	0	88.0	71.1	154	-	12.8	Ģ	
1.030	0.040	¥	0	103	71.2	112	1.05	1.92	Ģ	
5.040	0.15	-	0	104	5.06	137	1.11	6.51	0	
1.060	0.15		0	106	87	122	1.07	0.939	Ģ	
1.030	0,15	-	0	103	62.B	132	1.08	4.74	0	
1.070	0.15	F	ð	101	86.9	134	1.15	7.21	¢	
1.150	0.15	-	ð	115	76.9	123	1.1	4,44	0	
1.070	0.15	٢	Ċ	¢07	54.4	150	1.01	5.77	D	
1.050	0.15	-	0	105	83.4	124	1.1	4.65	G	
0.9600	0.15	-	Ð	96.0	82.4	144	1.07	10.8	Ģ	
1.010	0.15	-	0	<u>1</u> 01	86.3	135	1.11	9.43	0	
1.070	0.15	-	¢	107	85.5	137	* **	2.76	0	
1.320	0.15	-	0	132	78.7	120	1.2	9.52	0	ω
1.090	0.15	1	0	109	77.3	128	1.09	¢	0	
1.120	0.15	t	Q	112	80.2	122	0.09	12.3	0	
2.350	0.30	2	Q	118	9.77	132	2.21	6.14	0	
1.040	0.30	ψιν:	0	104	59.4	131	1.08	3.77	0	
1.060	0.30	ų	0	18	71.5	117	1.08	1.87	0	
1.030	0.30	•	0	103	63.5	141	1.08	4.74	0	
1,120	0.15	٢	0	112	80.8	<u>†</u> 13	1.08	3.64	D	
1.010	0.15	F	0.11	90.06	87.8	£23	£21	18.0	Ċ	
1.150	0.15	-	0	115	30.5	139	1,09	5.36	0	
1.060	0.15	-	0	‡06	96.2	135	1.08	1.87	0	
1.180	0.15	F	G	1	82.7	138	1.07	9.78	Ü	
1,120	0.15	-	Ð	112	85.9	122	1.05	6.45	Ö	
1.050	0.15	ب	G	£05	65.5	134	1.07	1.89	C	
are not blank corrected		E Estima	ned Value above quin	litation ran	뫜	H€ }	Jobling tines for	preparation of a	nalysis excerd	þ
d below quantitation hast		ND Not Do	ctected as the Limit of	Detection		2	(PD) outside acce	pied recovery hin	nits	
outside accepted recovery J	limits	Di. Detect	ioa Limit						ď	age 2 of 5
	SampType: LCSD Batch ID: R17523 Result 1.000 1.000 1.000 1.000 1.030 0.3800 1.030 1.030 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.070 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000000	SampType: LCSD TestCod Batch ID: R17523 TestIN Result POL 1.000 0.15 1.000 0.15 1.000 0.15 1.000 0.15 1.000 0.15 1.000 0.15 1.000 0.15 1.000 0.15 1.030 0.15 1.030 0.15 1.030 0.15 1.030 0.15 1.030 0.15 1.030 0.15 1.030 0.15 1.070 0.15 1.070 0.15 1.070 0.15 1.070 0.15 1.070 0.15 1.070 0.15 1.1070 0.15 1.1070 0.15 1.1070 0.15 1.1070 0.15 1.1090 0.15 1.1010 0.15 1.1120 0.15 1.1120 0.15 1.1120 0.15 1.1120 0.15 1.1120 0.15 1.1120 0.15 1.1120 0.15 1.1120 0.15 <	SampType: LCSD TestCode: 0.20_MYS Batch ID: R17523 TestNo: TO-15 Result POL SPK value 1.000 0.15 1 1.000 0.15 1 1.000 0.15 1 1.000 0.15 1 1.000 0.15 1 1.000 0.15 1 1.000 0.15 1 1.000 0.15 1 1.010 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.070 0.15 1 1.071 0.15	Banch Type: LCSD TestCode: 0.20_MYS Units: ppbV Barch ID: R17523 TestINo: TotSINo: TotSINo: TotSINo: TotSINo: TotSINo: Doit Doit <thdoit< th=""> Doit <thdoit< th=""> <th< td=""><td>Banch Type: LCSD TestCode: 0.102 Wrts: ppbV Barch ID: R17523 TestINo. To-15 Mrts: provide SPK Ref Val %REC Result POL SPK value SPK Ref Val %REC Result POL SPK value SPK Ref Val %REC 1.000 0.15 1 0 100 1.000 0.15 1 0 100 1.000 0.15 1 0 100 1.000 0.15 1 0 101 1.000 0.15 1 0 101 1.000 0.15 1 0 101 1.050 0.15 1 0 101 1.050 0.15 1 0 102 1.050 0.15 1 0 102 1.050 0.15 1 0 102 1.050 0.15 1 0 102 1.0</td><td>Barch Type: LCSD TestCode: 0.0, MS Units: pbV Prep Data Barch ID: R17523 TestNo: TO-15 Analysis Data Barch ID: R17523 TestNo: TO-15 Analysis Data Result PCL SPK value SPK Ret Val MREC Low Limit 1 Result PCL SPK value SPK Ret Val MREC Low Limit 1 1000 0.15 1 0 100 75 0.0000 0.15 1 0 100 75 0.0000 0.15 1 0 103 62 1.000 0.15 1 0 103 62 1.000 0.15 1 0 103 62 1.000 0.15 1 0 103 63 1.000 0.15 1 0 103 63 1.000 0.15 1 0 103 63</td><td>amplype: LCSD TestCoole 6.20_MYS Units ppby Prog Date: 420/020 Barch ID: R17223 TestKo: TO-15 Analysis Date: 420/020 Barch ID: R17523 TestKo: TO-15 Analysis Date: 420/020 Result POL SPK value SPK fiet Val %KEC LowLinit HighLinit 1000 0.15 1 0 100 71 120 1000 0.15 1 0 100 71 146 1000 0.15 1 0 100 71 146 1000 0.15 1 0 100 71 146 1000 0.15 1 0 101 0 101 146 1010 0.15 1 0 101 0 123 123 1020 0.15 1 0 101 0 124 124 1020<!--</td--><td>RampTyper TestCode 0.20, WTS Units pDV Prep< Date: 4/20/2021 Baserit PCI SYK Vasius SYK Ket Val Varialysis Date: 4/20/2021 Baserit PCI SYK Vasius SYK Ket Val Varialysis Date: 4/20/2021 Rasurit PCI SYK Vasius SYK Ket Val Valu S/REC Low/mit HelpLinnt RPD Ref Val 1000 0.15 1 0 100 759 103 103 1100 0.15 1 0 100 711 146 103 1100 0.15 1 0 103 22.5 103 113 1100 0.15 1 0 103 22.5 103 111 1111 1060 0.15 1 0 103 122 103 1111 1050 0.15 1 0 103 123 111 11150 0.15 <td< td=""><td>Samplyper LCSD TestCode 0.20, MYS Units Pregr Test Curring Units Pregr Test Code 0.20, MYS Units Pregr Data Curring Curring<!--</td--><td>RamPType LCSD TeacCode L23, WTS Monty-instant Runke: 1723 Batch ID: R1723 TearNo. TO-15 Analysis Date: 4200231 Sequio: 1920 1920 1920 Batch ID: R1723 TearNo. TO-15 Srk value SrK ref Val WREC LowLint High Linni R-0 3870 1920 0 1000 015 1 0 000 711 120 112 113 0 1000 015 1 0 010 711 146 113 287 0 1000 015 1 0 010 711 146 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td<></td></td></th<></thdoit<></thdoit<>	Banch Type: LCSD TestCode: 0.102 Wrts: ppbV Barch ID: R17523 TestINo. To-15 Mrts: provide SPK Ref Val %REC Result POL SPK value SPK Ref Val %REC Result POL SPK value SPK Ref Val %REC 1.000 0.15 1 0 100 1.000 0.15 1 0 100 1.000 0.15 1 0 100 1.000 0.15 1 0 101 1.000 0.15 1 0 101 1.000 0.15 1 0 101 1.050 0.15 1 0 101 1.050 0.15 1 0 102 1.050 0.15 1 0 102 1.050 0.15 1 0 102 1.050 0.15 1 0 102 1.0	Barch Type: LCSD TestCode: 0.0, MS Units: pbV Prep Data Barch ID: R17523 TestNo: TO-15 Analysis Data Barch ID: R17523 TestNo: TO-15 Analysis Data Result PCL SPK value SPK Ret Val MREC Low Limit 1 Result PCL SPK value SPK Ret Val MREC Low Limit 1 1000 0.15 1 0 100 75 0.0000 0.15 1 0 100 75 0.0000 0.15 1 0 103 62 1.000 0.15 1 0 103 62 1.000 0.15 1 0 103 62 1.000 0.15 1 0 103 63 1.000 0.15 1 0 103 63 1.000 0.15 1 0 103 63	amplype: LCSD TestCoole 6.20_MYS Units ppby Prog Date: 420/020 Barch ID: R17223 TestKo: TO-15 Analysis Date: 420/020 Barch ID: R17523 TestKo: TO-15 Analysis Date: 420/020 Result POL SPK value SPK fiet Val %KEC LowLinit HighLinit 1000 0.15 1 0 100 71 120 1000 0.15 1 0 100 71 146 1000 0.15 1 0 100 71 146 1000 0.15 1 0 100 71 146 1000 0.15 1 0 101 0 101 146 1010 0.15 1 0 101 0 123 123 1020 0.15 1 0 101 0 124 124 1020 </td <td>RampTyper TestCode 0.20, WTS Units pDV Prep< Date: 4/20/2021 Baserit PCI SYK Vasius SYK Ket Val Varialysis Date: 4/20/2021 Baserit PCI SYK Vasius SYK Ket Val Varialysis Date: 4/20/2021 Rasurit PCI SYK Vasius SYK Ket Val Valu S/REC Low/mit HelpLinnt RPD Ref Val 1000 0.15 1 0 100 759 103 103 1100 0.15 1 0 100 711 146 103 1100 0.15 1 0 103 22.5 103 113 1100 0.15 1 0 103 22.5 103 111 1111 1060 0.15 1 0 103 122 103 1111 1050 0.15 1 0 103 123 111 11150 0.15 <td< td=""><td>Samplyper LCSD TestCode 0.20, MYS Units Pregr Test Curring Units Pregr Test Code 0.20, MYS Units Pregr Data Curring Curring<!--</td--><td>RamPType LCSD TeacCode L23, WTS Monty-instant Runke: 1723 Batch ID: R1723 TearNo. TO-15 Analysis Date: 4200231 Sequio: 1920 1920 1920 Batch ID: R1723 TearNo. TO-15 Srk value SrK ref Val WREC LowLint High Linni R-0 3870 1920 0 1000 015 1 0 000 711 120 112 113 0 1000 015 1 0 010 711 146 113 287 0 1000 015 1 0 010 711 146 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td<></td>	RampTyper TestCode 0.20, WTS Units pDV Prep< Date: 4/20/2021 Baserit PCI SYK Vasius SYK Ket Val Varialysis Date: 4/20/2021 Baserit PCI SYK Vasius SYK Ket Val Varialysis Date: 4/20/2021 Rasurit PCI SYK Vasius SYK Ket Val Valu S/REC Low/mit HelpLinnt RPD Ref Val 1000 0.15 1 0 100 759 103 103 1100 0.15 1 0 100 711 146 103 1100 0.15 1 0 103 22.5 103 113 1100 0.15 1 0 103 22.5 103 111 1111 1060 0.15 1 0 103 122 103 1111 1050 0.15 1 0 103 123 111 11150 0.15 <td< td=""><td>Samplyper LCSD TestCode 0.20, MYS Units Pregr Test Curring Units Pregr Test Code 0.20, MYS Units Pregr Data Curring Curring<!--</td--><td>RamPType LCSD TeacCode L23, WTS Monty-instant Runke: 1723 Batch ID: R1723 TearNo. TO-15 Analysis Date: 4200231 Sequio: 1920 1920 1920 Batch ID: R1723 TearNo. TO-15 Srk value SrK ref Val WREC LowLint High Linni R-0 3870 1920 0 1000 015 1 0 000 711 120 112 113 0 1000 015 1 0 010 711 146 113 287 0 1000 015 1 0 010 711 146 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td></td<>	Samplyper LCSD TestCode 0.20, MYS Units Pregr Test Curring Units Pregr Test Code 0.20, MYS Units Pregr Data Curring Curring </td <td>RamPType LCSD TeacCode L23, WTS Monty-instant Runke: 1723 Batch ID: R1723 TearNo. TO-15 Analysis Date: 4200231 Sequio: 1920 1920 1920 Batch ID: R1723 TearNo. TO-15 Srk value SrK ref Val WREC LowLint High Linni R-0 3870 1920 0 1000 015 1 0 000 711 120 112 113 0 1000 015 1 0 010 711 146 113 287 0 1000 015 1 0 010 711 146 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	RamPType LCSD TeacCode L23, WTS Monty-instant Runke: 1723 Batch ID: R1723 TearNo. TO-15 Analysis Date: 4200231 Sequio: 1920 1920 1920 Batch ID: R1723 TearNo. TO-15 Srk value SrK ref Val WREC LowLint High Linni R-0 3870 1920 0 1000 015 1 0 000 711 120 112 113 0 1000 015 1 0 010 711 146 113 287 0 1000 015 1 0 010 711 146 113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	÷.		
	ξ.		
	:		
÷	i.		
÷	÷.		
	1		
÷	1		
	1		
•	÷		
1	ł.,		
	ı.		
÷	1		
	1		
÷	÷.		
÷	ί.		
Ĵ	÷		
i	1		
	ί.		
÷	÷.		
÷			
1	1		
÷	1		
÷			
÷	1		
÷	1		
÷	:		
÷	1		
1	1		
÷	1		
,	1		
•	:		
÷	1		
i	1		
	2		
	ì.		
'	1		
÷	ţ.		
'		()	
1		Ξ,	
÷		<u></u>	
÷	5		
ł	ł.	S.	
1	i.	- H	
÷	1	¢3	
	۰.	122	
		-	
	1	З	
i	1	S0C	
i		5500	
		Assoc	ł
		ASSOC	
		la Assoc	
		ella Assoc	
		3ella Assoc	
		Bella Assoc	
		aBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		LaBella Assoc	
		T: LaBella Assoc	
		VT: LaBella Assoc	
		INT: LaBella Assoc	
		ENT: LaBella Assoc	
		JENT: LaBella Assoc	
		LIENT: LaBella Assoc	
		CLIENT: LaBella Assoc	

C2104038 Work Order:

Project: 1500 Jeffers	son Road						Ţ	estCode: 0	20_NYS		
Sample ID: ALCS1UGD-042021	SampType: LCSD	TestCode	E: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 1752	3	
Client ID: ZZZZZ	Batch ID: R17523	TestN	o: TO-15		-	Analysis Date	: 4/20/202	5	SeqNo: 1989	38	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Tolsene	1.150	0.15	***	0	115	77.8	127	1.08	6.28	0	
trans-1,2-Dichloroethene	1.020	0.15	¥	0	102	83.3	116	1.07	4.78	0	
trans-1,3-Dichloropropene	1.040	0.15	4 6m	0	104	84.8	134	1.15	10.0	0	
Trichloroethene	1.050	6.030	¥***	0	105	79.3	117	1.05	0.948	0	
Vinył acełate	1.050	0.15	****	D	105	70.5	101	1.07	1.89	0	S
Vinyi Bromide	1.160	0.15	•	o	116	81.4	142	1.03	11.9	Q	
Viny) chloride	0.9100	0.040	٢	o	91.0	70.4	138	0.98	7,41	0	
Sample ID: ALCS1UGD-042121	SampType: LCSD	TestCod	S: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 1752	ŧ	
Client ID: ZZZZ	Batch ID: R17524	TestN	o: TO-15			Anańysis Date	: 4/21/202		SeqNo: 1989	45	
Analyte	Resuit	POL	SPX value	SPK Ref Val	%REC	Lowismit	HighLimit	RPD Ref Val	Oda%	RPDLimit	Quai
f.1.1-Trichloroethane	1.230	0.15		o	123	91.3	127	1.24	0.810	0	
1,1,2,2-Tetrachloroethane	1.230	0.15	-	0	123	78.7	124	1.22	0.815	Ģ	Ś
 1,2-Trichloroethane 	1.180	0.15	£	0	118	86.1	136	1.18	0	¢	
1,1-Dichloroethane	1.120	0.15	-	ç	112	86.1	123	1.1	0.897	Q	
1.1-Dichloroethene	1.010	0.040	1	Ð	1 01	02	94	0.97	4.84	0	Ś
1,2,4-Trichlorobenzene	1.330	0.15	÷	Q	133	76.7	112	1.5	12.0	0	Ś
1,2,4-Trimethylbenzene	1.200	0.15	•	٥	120	74.3	123	1.2	Q	0	
1,2-Dibromoethane	1.160	0.15	***	0	116	80.4	125	1.19	2.55	0	
1,2-Dichlorabenzene	1.280	0.15	fim.	0	128	79.5	143	1.35	5.32	0	
1,2-Dichloroethane	1.130	0.15	•	0	113	70.9	133	1.12	0.889	0	
1,2-Dichloropropane	1.190	0.15	•	0	119	91	\$34	<u>†</u> .21	1.67	0	
1,3,5-Trimethylbenzene	1,290	0.15	-	0	129	77.4	138	1.28	0.778	0	
1,3-butadiene	1.080	0.15	-	Ð	108	71	144	1.07	0.930	0	
1,3-Dichlorobenzene	1.180	0.15	-	0	118	84.7	128	1.23	4.15	0	
1,4-Dichiorobenzeae	1.250	0.15	-	¢	126	77.9	131	1.29	2.35	ð	
1,4-Dioxane	1.230	0.30	-	0	123	85.1	135	1.22	0.816	ð	
2,2,4-trimethy/pentane	1.160	0.15	-	0	116	86.9	126	1.17	0.858	c	
4-ethylloitene	1.270	0,15	÷	¢	\$27	77.5	133	1.27	Ċ	0	
Qualifiers: Results report	ed are not blank corrected		E Estim	ated Valse above quan	istation rang		H	olding tietes for	preparation or and	alysis exceed	स
3 Analyse deter	ted below guantilation limit		ND Not D	etected as the Limit of	Detection		R	PD outside acce	sted recovery limi	E.	
S Spike Recove	sy outside accepted recovery!	imits	DI. Detec	tion Limit						<u>6</u>	age 3 of 5

Centek Laboratories,LLC

CLIENT: LaBella Associates, P.C.

Work Order: C2104038

Project: 1500 Jeffers	on Road						F	estCode: 0	1.20_NVS		
Sample ID: ALCS1UGD-042121	SampType: LCSD	TestCot	le: 0.20_NYS	Units: ppbV		Prep Date	-		RunNa: 175	524	
Client ID: ZZZZ	Batch (D: R17524	Test	lo: TO-15			Analysis Dati	5: 4/21/20	21	SeqNo: 198	3945	
Analyte	Result	PQL	SPK value	SPK Ref Vai	%REC	LowLimi	HighLimit	RPD Ref Val	C d d %	RPDLimit	Qual
Acetone	1.130	0.30	-	٥	113	80.2	145	1.11	1.79	0	
Allyl chioride	1.120	0.15	-	0	112	86.6	117	1.11	0.897	0	
Benzene	1.150	0.15	-	0	115	88.9	122	1.13	1.75	0	
Benzyi chloride	1.320	0.15	÷	0	132	73.6	120	1.4	5.88	0	S
Bromodichioromethane	1.210	0.15	÷	٥	121	84.3	133	1.23	1.64	0	
Bromoform	t.110	0.15	٠	0	11	44.5	149	1.17	5.26	0	
Bromomethane	1,120	0.15	4 10.	0	112	78.7	144	1.11	0.897	0	
Carbon disulfide	1.120	0.15	****	0	112	76.9	109	1.12	¢	0	S
Carbon tetrachloride	1.200	0:030		ð	120	11	120	1.24	3.28	0	
Chiprobenzene	1.130	0.15	-	¢	113	82.6	121	1.15	1.75	0	
Chioroethane	1.060	0.15	-	0	106	67.1	1 46	1.07	0.939	0	
Chloroform	1.130	0.15	-	¢	13	82.5	125	+	1.79	0	
Chloromethane	1.060	0.15	-	0	106	71.1	154	1.02	3.85	0	
cis-1,2-Dichloroethere	1,100	0.040	-	0	110	71.2	112	1.05	4.65	0	
cis-1,3-Dichloropropene	1.180	0.15	4	0	118	90.3	137	1.22	3.33	0	
Cyclonexane	1, 140	0.15	4 11-	0	114	87	122	t. 14	0	0	
Dibromochloromethane	1,160	0.15	W rea	0	116	62.8	132	f.23	5.86	Ð	
Ethyl acetate	1,160	0.15	¥س	0	116	86.9	134	1.13	2.62	Ð	
Ethvibenzene	1.180	0.15		0	118	76.9	123	19	0.844	ð	
Freor 11	1.050	0.15	-	0	105	54.4	150	1.18	11.7	0	
Freon 113	1.160	0.15	۲	0	316	83.4	124	1.13	2.62	0	
Freon 114	1.130	0.15	-	0	113	82.4	144	1.12	0.889	¢	
Freon 12	1.200	0.15	~	0	120	86.3	135	1.17	2.53	÷	
Heptane	1.220	0.15	*	0	122	86.5	137	1.2	1.65	0	
Hexachloro-1.3-butadiene	1.440	0.15	41.12	0	144	78.7	120	1.5	4.08	0	ŝ
Hexane	1,110	0.15	•	0	111	77.3	128	1.08	2.74	0	
Isopropyi aicchol	1.260	0.15	-	0	126	80.2	122	1.19	5.71	0	S
m&p-Xviene	2.500	0:30	2	0	125	512	132	2.55	1.98	0	
Methyl Butyl Ketone	1.150	0.30	-	¢	£. ₽	69.4	131	<u>†</u> .19	3.42	0	
Methyl Ethyl Ketone	1.090	0.30	۲	Ð	¥00	71.5	117	1.05	3.74	0	
Methyl Isobutyl Ketone	1.160	0.30	F	0	116	63.5	141	12	3.39	Ð	
Chedifore: Results remit	ed are not blank corrected		E Estéma	ted Value above quan	titation ran	2	۳	lolding times for	preparation or a	inalysis execed	cđ
J Analyte detec	ted below guantitation limit		ND Not De	stepted at the Limit of	Detection		光	APD ontside acce	pred recovery lin	mits	

∂age 4 of S

DL Detection Limit

Spike Recovery outside accepted recovery limits

so.

		11
CLIENT:	LaBella Associates, P.C.	

C2104038	1500 Jeffers
Work Order:	Project:

1500 Jefferson Road

TestCode: 0.20 NYS

ו זמלוווי ויממי אווויזי											
Sample ID: ALCS1UGD-042121	SampType: LCSD	TestCoo	te: 0.20_NYS	Units: ppbV		Prep Dat	e.		RunNo: 175	24	
Client ID: 22222	Batch ID: R17524	Test	lo: TO-15			Analysis Dat	e: 4/21/202	τ.	SeqNo: 198	945	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lowimit	HighLimit	RPD Ref Val	%RPD	RPD <u>Li</u> mit	Qual
Methyl tert-butyl ether	1.080	0.15	ſ	0	108	80.8	113	1.03	4.74	0	
Methylene chloride	1.130	0.15	-	¢	ŝ	87.3	123	1.14	0.881	Ð	
o-Xylene	1.290	0.15	-	0	129	80.5	139	1.3	0.772	Ð	
Propylene	1.190	0.15	-	¢	655	96.2	135	1.09	8.77	Ċ	
Styrene	1.270	0.15	£	Ð	127	82.7	138	1.28	0.784	ð	
Tetrachioroethylene	1.180	0.15	-	¢	18	85.9	122	1.21	2.51	ð	
Tetrahydrofuran	1.120	0.15	F	¢	112	65.5	134	1.06	5.50	0	
Toluene	1.150	0.15	-	0	115	77.8	127	1,19	3.42	Ð	
Irans-1.2-Dichloroethene	1.110	0.15	-	0	111	83.3	116	1.08	2.74	0	
trans-\$,3-Dichloropropene	1.130	0.15	-	Q	113	84.8	134	£.13	0	Ð	
Trichioroethene	1.160	0:030	-	Q	116	79.3	117	1:17	0.858	Ċ	
Vinył acetate	1.080	0.15	,	٥	108	70.5	101	1.02	5.71	Ð	w
Vinyi Bromide	1.050	0.15	ţ	0	105	81.4	142	1.08	2.82	0	
Vinyl chloride	1.050	0.040	¥	0	105	70.4	138	‡_01	3.88	0	

Page 5 of 5 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits <u>ж</u> ~ Estimated Value above quantitation range Not Detected at the Lizait of Detection Detection Linut ы С М Spike Recovery outside accepted recovery limits Analyte detected below quantitation fimit Results reported are not blank corrected Qualifiers:

Centek Laboratories,LLC

05-May-21	
Date:	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT:	LaBella Associates, P.C.
Work Order:	C2104038
Project:	1500 Jefferson Road

Project: 1500 Jeffers	son Road						TestCode:	0.20_NYS	
Sample ID: C2104038-001A MS	SampType: MS	TestCor	le: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 17523	
Client ID: 1AQ-09 (4/15/21)	Batch ID: R17523	Test	lo: TO-15		~	Anatysis Date:	4/20/2021	SeqNo: 198930	
Analyte	Resuit	PQL	SPK value	SPK Ref Vat	%REC	Lowtêmst H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroethane	1.020	0.15	÷	o	102	68.1	117		
1,1,2,2-Tetrachloroethane	0.9400	0.15	**-	0	94.0	82.3	101		
1,1,2-Trichloroethane	0.9100	0.15	÷.	0	91.0	61	128		
1,1-Dichloroethane	0.9400	0.15	ψus.	¢	94.0	76.5	118		
1,1-Dichloroethene	0.9400	0.040	h im	0	94.0	45.8	128		
1,2,4-Trichlorobenzene	2.430	0.15	***	a	243	02	130		Ş
1,2,4-Trimethylbenzene	1.580	0.15	-	0	158	81.5	155		ŝ
1,2-Dibromoethane	0066-0	0.15	•	0	<u> 99.0</u>	78.7	107		
1,2-Dichtorobenzene	1.250	0.15	÷	0	125	57.2	175		
1,2-Dichioroethane	0.9800	0.15	-	0	98.0	65.1	130		
1,2-Dichtoropropane	0.9100	0.15	F	o	91.0	6-69	115		
1,3,5-Trimethylbenzene	1.410	0.15	-	0	141	67.6	139		ŝ
1,3-butadiene	1.440	0.15	٢	ð	144	70	130		ŝ
1,3-Dichiorobenzene	1.130	0.15	F	Ð	113	89.1	122		
1,4-Dichlorobenzene	1.160	. 0,15	-	ð	116	86.8	114		ŝ
1,4-Dioxane	1.170	0:30	-	0	117	75.1	114		ŝ
2,2,4-trimethyipentane	1.010	0.15	~~	0	101	84.2	113		
4-ethylioluene	0.1700	0.15	÷	0	17.0	70	130		ŝ
Acetone	12.67	0.30	* n,	0	1270	70	130		ŝ
Allyf chloride	0.9900	0.15	***	0	0.66	70	130		
Benzere	1.380	0.15	،	0	138	72.7	133		S
Benzył chloride	1.480	0.15		0	148	72.5	129		s
Bromodichloromethane	0.9800	0.15	F	٥	98.0	69.4	112		
Bromotorm	1.010	0.15	-	0	101	42.5	110 1		
Bromomethane	0.9500	0.15	-	0	95.0	68.6	121		
Qualifiers; Results report	ted are not blank corrected		E Estim	tied Value above quant	titatioa ran	je Je	H Holding times fo	ir preparation or analysis exceeder	q
J Autalyte detect	ted below quantitation limit		ND Not D	efected at the Limit of	Detection		R RPD outside acc	repted neuvery limits	
S Spike Recover	try outside accepted recovery i	issits	DL Detect	tion Littrit				Pa	ge I of 5

Centek Laboratories,LLC

Page 48 of 229

CLJENT: LaBella As Work Order: C2104038 Project: 1500 Jeffer	sociates, P.C. son Road						Ta	stCode: 0	20_NYS		
Sample 1D: C2104038-001A MS	SampType: MS	TestCode:	0.20 NYS	Units: ppbV		Prep Da	i.		RunNo: 17523		
Client ID: IAQ-09 (4/15/21)	Batch ID: R17523	TestNo:	- T0-15	I	~	⁴ nalysis Da	te: 4/20/2021		SeqNo: 198930		
Апаlyte	Result	POL	PK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	RPD RPC	OLimit C	žual
Carbon disulfide	0.980.0	0.15	-	0	98.0	70	130				
Carbon tetrachloride	1.070	0:030	-	Ð	107	61	107				
Chiorobenzene	0.9700	0.15	-	0	97.0	76.1	131				
Chiorcethane	0.8600	0.15	-	0	86.0	62.6	119				
Chioroform	1.030	0.15	-	Ð	103	6.54	173				
Chloromethane	1.180	0.15	-	ð	118	54.4	125				
cis-1,2-Dichloroethene	0.9800	0.040	-	ð	98.0	60.1	121				
cis-1,3-Dichloropropene	006610	0.15	-	Ð	99.0	60.6	122				
Cyclohexane	1.360	0.15	-	0	136	59.4	148				
Dibromochiloromethane	1.010	0.15		¢	101	71.6	102				
Ethyl aceiate	15.38	0.15	*	C	1540	49.3	146				ŝ
Ethylbenzene	1.190	0.15	40m	0	119	68.5	129				
Freon 11	0.9600	0.15	ym.	0	96.0	44.8	ţ43				
Frean 113	1.030	0.15	Aun.	0	103	80.3	125				
Freon 154	0.8800	0.15	~ "	0	88.0	65.2	132				
Freon 12	1.330	0.15	~	0	133	67.4	103				ŝ
Heptane	2.860	0.15		0	286	60.8	124				ŝ
Hexachtoro-1,3-trutadiene	1.410	0.15	-	0	141	83,9	119				Ś
Hexane	10.95	0.15	-	0	1100	73.7	147				Ś
Isopropyl atcohoł	208.6	D.15	-	D	20900	70	130				Ś
m&p-Xylene	2.610	0:30	¢3	Ċ	130	74.2	123				w
Methyl Butyl Ketone	1.070	0.30	÷	Ū	107	72.6	117				
Methyl Ethyl Ketone	18.41	0.39	+	Ð	1840	59.4	135				ம
Methył Isobutył Ketone	1,690	0:30	*-	0	109	61	120				
Methys text-busyl ether	0.9600	0.15		Q	96.0	63.6	134				
Methylene chloride	2.300	0.15	*	¢	230	53.4	125				ი
o-Xylene	1.220	0.15	-	a	122	74.3	132				
Propyiene	26.34	0.15	-	0	2630	5	\$30				ი
Styrene	1,130	0.15	-	0	113	82.4	18				
Tetrachloroethylene	1,140	0.15	-	0	114	86.2	{12				s S
Tetrahydrofuran	324.4	0.15	-	0	32400	20	130				ŝ
Qualifiers: Results report	rted are not blank corrected		E Estima	ited Vistue above quan	stitation rang	2.	H Ho	kling times for	preparation or analysi	is exceeded	
J Analyte deter	cted below quantitation limit		ND NM DO	steeted at the Limit of	Detection		R R9	D outside accep	sted recovery limits		
S Spike Recov	ery outside accepted recovery i	imits	Di. Detect	ion Linni						Pag	e 2 of 5

		·····												
CLIENT:	LaBella Ass	ociates. P.C	4											
Work Order:	C2104038													
Project:	1500 Jeffers	son Road							E.	stCode: 0	20_NYS			
Sample ID: C210	4038-001A MS	SampType:	MS	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date			RunNo: 175	123		
Cliení ID: JAQ-0	13 (4/15/21)	Batch ID:	R17523	TestN	o: T O-15		-	4nahysis Date	: 4/20/202	4	SeqNo: 198	1930		
Analyte			Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	Ref Val	%RPD	RPDLimit	Quai	
Toluene			1.770	0.15	-	0	177	01	130				S	

Sample ID: C2104038-001A MS	SampType: MS	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 17523		
Clieni ID: IAQ-09 (4/15/21)	Batch ID: R17523	TestN	o: T O-15		-	Analysis Date:	4/20/2021		SeqNo: 19893	0	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLisnit H	šighLimit R	tPD Ref Val	%RPD	PDLimit	Quai
Toluere	1.770	0.15	-	0	177	92	130				ю
trans-1,2-Dichloroethene	1.130	0.15	-	0	113	70.9	132				
trans-1,3-Dichloropropene	1.050	0.15	-	0	105	51.9	133				
Trichloroethene	1.390	0.030	-	0	139	63.1	109				S
Vinyl acetate	1.090	0.15	-	0	109	17.3	187				
Vinyi Bromide	0.9000	0.15	-	0	90.06	71.3	121				
Vinyl chloride	0.8500	0.040	1	0	85.0	63.2	114				
Sample ID: C2104038-001A MS	SampType: MSD	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 17523		
Client ID: IAQ-09 (4/15/21)	Batch ID: R17523	TestM	o: TO-15		-	Analysis Date:	4/20/2021		SegNo: 19893	Ŧ	
Analyte	Result	10d	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit R	PD Ref Val	%RPD R	(PDLimit	Qual
1.1,1-Trichloroethane	0.9700	0.15	-	Ð	97.0	68.1	117	1.02	5.03	0	
1,1,2.2-Tetrachlonethane	0.9400	0.15	-	Ċ	94.0	82.3	101	0.94	¢	¢	
 1,2-Trichlozoethane 	0.8500	0.15	÷	0	39.0	51	128	0.91	2.22	0	
1.1-Dichloroethane	0.9400	0.15	4	0	94.0	76.5	118	0.94	0	0	
 1-Dichloroethene 	0.9900	0.040	ų	¢	98.0	45.8	128	0.94	4.17	¢	
1,2,4-Trichlorobenzene	2.340	0.15	¥1~	¢	234	30.3	262	2.43	3.77	<u>ل</u>	
1,2,4-Trimethylbenzene	1.580	0.15	H ann	Q	158	81.5	155	€.58	0	0	ი
1,2-Dibromoethane	0.9700	0.15	€ 177	Q	97.0	78.7	107	0.99	2.04	¢	
1,2-Dichlorobenzene	1.240	0.15	6	Ģ	124	57.2	175	1.25	0.803	0	
1,2-Dichloroethane	1.000	0.15	•	a	100	65.1	130	0.98	2.02	0	
1,2-Dichloropropane	0.8600	0.15	1	0	86.0	669	116	0.91	5.65	¢	
1,3,5-Trimethylbenzene	1.420	0.15	-	0	142	67.6	139	1.41	0.707	¢	S
1,3-butadiene	1.100	0.15	-	0	110	70	404	1.44	26.8	Q	
1,3-Dichiorobenzene	1.170	0.15	-	ð	117	89.1	122	1.13	3.48	٥	
1,4-Dichtorobenzene	1.240	0,15	-	0	124	86.8	14	1.16	6.67	0	s
1,4-Dioxane	1.190	0.30	+-	0	119	75.1	314	1.17	1.69	0	ŝ
2,2,4-trimethylpentare	1.000	0.15	-	Ð	100	84.2	113	1.01	0.995	0	
4-ethyitoluene	0.1500	0.15	1	0	15.0	02	130	0.17	12.5	0	ŝ
Oualifiers: Results report	ted are not blank corrected		E Estém	ated Valar above quan	titation san	4	H Ho	Iding times for 1	reparation or anal	ysis exceeded	
3 Analyte defect	ted betow quantitation limit		ND Not D	etected at the Limit of	Detection		R RP	D outside accep	ted recovery family		
S Spike Recove	ry outside accepted recovery]	imits	DL Delec	lion 1. imit						P_{d}	oe 3 al 5

Page 3 of 5

CLIENT: LaBella Associates, P.C. Work Order: C2104038

Project: 1500 Jeffers	son Road						Ţ	estCode: 0	20_NYS		
Sample ID: C2104038-001A MS	SampType: MSD	TestCod	e: 0.20_NYS	Units: ppbV		Prep Date:			RunNo: 175	23	
Client ID: IAQ-09 (4/15/21)	Batch ID; R17523	TestN	o: TO-15			Analysis Date:	4/20/203	2	SeqNo: 198	931	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	EowEimit H	light.imit	RPD Ref Vai	%RPD	RPDLimit	Quai
Acetone	11.81	0.30	-	Q	1180	02	130	12.67	7.03	Ċ	s
Ally! chloride	1.030	0.15	Ţ	0	103	49.7	155	0.99	3.96	0	
Benzene	1.290	0.15	-	0	129	72.7	133	1.38	£.74	0	
Benzyl chłoride	1.510	0.15	-	0	151	72.5	129	1.48	2.01	0	Ś
Bromodichloromethane	0.9200	0.15	-	0	92.0	69.4	112	0.98	6.32	0	
Bromolorm	0.9700	0.15	÷	0	97.0	42.5	110	1.01	4.04	0	
Bromomethane	0.9400	0.15	-	¢	94.0	68.6	125	0.95	1.06	0	
Carbon disulfide	1.000	0.15	F	¢	100	20	130	0.98	2.02	Ð	
Carbon tetrachloride	1.010	0:030	+	0	‡01	61	107	1.07	5.77	0	
Chiorobenzene	0.9800	0.15	.	0	98.0	78.1	11	0.97	1.03	0	
Chioroethane	0.8300	0.15	F	Q	83.0	62.6	119	0.86	3.55	0	
Chioroform	1.050	0.15	-	¢	105	6.54	173	1.03	1.92	0	
Chloromethane	1.140	0.15	-	0	1 1 1 1	54.4	125	1.18	3.45	0	
cis-1,2-Dichloroethene	1.000	0.040	4	0	100	60.1	125	0.98	2.02	D	
cis-1,3-Dichloropropene	0.9800	0.15	1	Q	98.0	60.8	122	0.99	1.02	0	
Cyclohexane	1.280	0.15	~~	0	128	59.4	148	1.36	6.06	0	
Dibromochloromethane	0.9700	0.15	***	٥	97.0	71.6	102	£.01	4.04	0	
Ethyl acetate	14.57	0.15	÷4-	٥	1420	49.3	146	15.38	8.19	0	S
Ethylbenzene	1,220	0.15	¥	0	122	68.5	129	1.19	2.49	0	
Freon 11	0.9400	0.15	4an	0	94.0	44.8	143	0.96	2.11	0	
Freen 113	1.040	0.15	*	0	104	80.3	125	1.03	0.966	0	
Freon 114	0.8800	0.45	Ţ	0	88.0	65.2	132	0.88	0	0	
Freen 12	1.290	0.15	F	0	129	67.4	103	1.33	3.05	0	ა
Heptane	2.550	0.15	-	0	255	80.8	124	2.85	11.5	0	s
Hexachioro-1,3-buladiene	1.340	0.15	-	o	134	81.9	119	1.41	5.09	0	s
Hexane	10.24	0.15	-	¢	1020	73.7	147	10.95	6.70	0	ŝ
Isopropyl alcohoł	188.2	0.15	-	¢	18800	70	130	208.6	10.3	0	ŝ
m&p-Xylene	2,560	0.30	2	0	128	74.2	123	2.61	1.93	0	Ś
Mieihyi Butyi Ketone	1.090	0:30	÷	Q	50 5	72.6	117	1.07	1.85	0	
Methyl Ethyl Ketone	17.14	0:30	-	0	1710	59.4	135	18.41	7,14	Ċ	ŝ
Methyl Isobutyl Ketone	1.120	0:30	-	Q	112	61	120	1.09	2.71	0	
Qualifiers: Results report	ted are not blank corrected		E Estinia	led Value above quan	tétaşion ran	5	н	olding times for 1	preparation of an	alysis exceed	ed
] Analyte detect	ted below guantitation issist		ND Not De	steeted at the Limit of	Detection		5	PD outside accept	sted recovery list	its	
S Spike Recove	isv outside accepted recovery l	imits	DL Detect	kon Limit						£.,	age 4 af 3

LaBella Associates, P.C. CLIENT:

Work Order: C2104038 Designt: 1500 Laffactore B

Quat ŝ S იიი ŝ **RPDL**imit Ο 0 0 SeqNo: 198931 RunNo: 17523 %RPD 14.5 8.02 1.79 7,48 5.22 5.17 5.36 3.39 3.33 1.77 0 0 4.82 2.64 TestCode: 0.20_NYS 1.13 1.14 324.4 13 1.05 1.39 1.09 0.9 0.85 0.96 t.22 26.34 17.3 2.3 RPD Ref Val Analysis Date: 4/20/2021 LowLimit HighLimit 8 112 112 130 130 132 134 135 133 109 8 2 2 Prep Date: 51.9 53.4 74.3 2 82.4 86.2 02 P 70.9 63.1 63.2 63.6 02 02 %REC 118 111 112 30100 **1**68 87.0 81.0 2430 <u> 1</u>05 132 15 224 Units: ppbV ¢ Ö СЭ \diamond 00 00 $\circ \circ$ 0000 SPK Ref Val FestCode: 0.20 NYS SPK value , - TestNo: TO-15 ЪОГ 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.030 0.15 0.040 Batch ID: R17523 Result 1,110 2.240 180 24.31 1.110 1.120 301.0 1.680 1.130 1.050 1.320 1.150 0.8700 0.8100 SampType: MSD 1500 Jefferson Road Sample ID: C2104038-001A MS Client ID: IAQ-09 (4/15/21) trans-1,3-Dichloropropene trans-1,2-Dichloroethene Methy? text-butyl ether **Tetrachloroethylene** Methylene chloride Tetrahydrofuran Trichloroethene Vinyl Bromide Vinyl chloride Vinyl acetate Propylene Project: o-Xylene Toluene Styrene Analyte

Page 5 of 5 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits <u>т</u> ак Estimated Value above quantitation range Not Detected at the Limit of Detection Detection Limit QN Ы μı Spike Recovery outside accepted recovery limits Asselvte detected below quantitation limit Results reported are not blank corrected . $\sim \infty$ Qualifiers:

Centek Laboratories,LLC

Compound	Amt	IDL #1	IDL #2	IDL #3	# 10	IDL #5	101, #6	(DL #7	AVG	StdDev	%Rec	DL
Propylene	0.3	0.32	0.36	0.34	0.33	0.33	0.34	0.33	0.34	0,01	111.9%	0.040
Freon 12	0.3	0.35	0.35	0.36	0.37	0.36	0.38	0.33	0,36	0.02	119.0%	0.050
Chloromethane	0.3	0.35	0.36	0.37	0.37	0.38	0.37	0.32	0.36	0.02	120.0%	0.063
Freon 114	0.3	0.37	0.38	0.36	0.39	0.4	0.38	0.37	0.38	0.01	126.2%	0.042
Vinyl Chloride	0.3	0.36	0.35	0,34	0.38	0.39	0.36	0.34	0,36	0.02	120.0%	0.060
Butane	0.3	0,36	0.33	0.38	0.38	0.33	0.34	0.33	0,35	0.02	116.7%	0.073
1,3-butadiene	0.3	0.33	0.35	0.35	0.31	0.38	0.38	0.33	0.35	0.03	115.7%	0.083
Bromomethane	0.3	0.37	0.37	0.37	0.35	0.38	0.35	0.34	0.36	0,01	120.5%	0.046
Chloroethane	0.3	0.4	0.37	0.34	0.37	0.38	0.32	0.34	0.36	0.03	120.0%	0,087
Ethanol	0.3	0.39	0.38	0.39	0.35	0.37	0.32	0.34	0.36	0.03	121.0%	0.085
Acrolein	0.3	0.26	0.31	0.29	0.34	0.36	0.32	0,33	0.32	0.03	105.2%	0.104
Vinyl Bromide	0.3	0.34	0.38	0.36	0.42	0.42	0,35	0.36	0.38	0.03	125.2%	0,102
Freon 11	0.3	0.27	0.3	0.28	0.37	0.37	0.37	0.35	0.33	0.05	110.0%	0.142
Acetone	0.3	0.32	0,31	0.31	0.41	0.38	0.32	0.31	0.34	0.04	112.4%	0.128
Pentane	0.3	0.3	0.33	0.36	0.42	0.33	0.42	0.41	0.37	0.05	122.4%	0,156
isopropyl alcohol	0.3	0.36	0.39	0.39	0.43	0.39	0.43	0.37	0,39	0.03	131.4%	0.085
1,1-dichloroethene	0.3	0.3	0.31	0.3	0.3	0.3	0.31	0.29	0.30	0.01	100.5%	0.022
Freon 113	0.3	0.3	0.32	0.31	0,32	0.31	0.32	0.3	0.31	0.01	103.8%	0.028
t-Butyl alcohol	0.3	0.32	0.33	0.32	0.32	0.32	0.33	0.31	0.32	0.01	107.1%	0.022
Methylene chloride	0.3	0.31	0.34	0.32	0.32	0.31	0.34	0.32	0.32	0.01	107.6%	0.039
Allyl chloride	0.3	0,33	0,33	0.32	0.31	0.31	0.32	0.3	0.32	0.01	105.7%	0.035
Carbon disulfide	0.3	0.34	0.34	0.33	0.32	0.32	0.37	0.32	0.33	0.02	111.4%	0.057
trans-1,2-dichloroethene	0.3	0.32	0.33	0.32	0.32	.0,32	0.33	0.31	0.32	0.01	107.1%	0.022
methyl tert-butyl ether	0.3	0.31	0.31	0.31	0.3	0.3	0.3	0.29	0.30	0.01	101.0%	0.024
1,1-dichloroethane	0.3	0.32	0.33	0.31	0.33	0.32	0.32	0.31	0.32	0.01	106.7%	0.026
Vinyl acetate	0.3	0.31	0.35	0.31	0.32	0.31	0.31	0.27	0.31	0.02	103.8%	0.074
Methyl Ethyl Ketone	0.3	0.3	0.33	0.31	0.31	0.3	0.29	0.29	0.30	0.01	101.4%	0,044
cis-1,2-dichloroethene	0.3	0.31	0.33	0.32	0.32	0,3	0.32	0.31	0.32	0.01	105.2%	0.031
Hexane	0.3	0.3	0.33	0.32	0.32	0.32	0.32	0.31	0.32	0.01	105.7%	0.030
Ethyl acetate	0.3	0.32	0.33	0.33	0.33	0.33	0.33	0.3	0.32	0.01	108.1%	0.036
Chloroform	0.3	0.31	0.32	0.31	0.33	0.32	0,32	0.31	0.32	0.01	105.7%	0.024
Tetrahydrofuran	0.3	0.32	0.33	0.32	0.32	0.34	0.32	0.31	0.32	0.01	107.6%	0.030
1,2-dichloroethane	0.3	0.33	0.34	0.33	0.34	0.33	0.32	0.33	0.33	0.01	110.5%	0,022
1,1,1-trichloroethane	0.3	0.3	0.31	0.31	0.31	0.31	0.3	0.3	0.31	0.01	101.9%	0.017
Cyclohexane	0.3	0.32	0.32	0.32	0.33	0.31	0.33	0.33	0.32	0.01	107.6%	0.024
Carbon tetrachloride	0.3	0.28	0.28	0.28	0.28	0.28	0.27	0.27	0.28	0.00	92.4%	0.015
Benzene	0.3	0.31	0.32	0.33	0.32	0.32	0.32	0.32	0.32	0.01	106.7%	0.018
Methyt methacrylate	0.3	0,31	0.33	0.33	0.33	0.32	0.32	0.32	0.32	0.01	107.6%	0.024

1ug/m3 Detection Limit January 2021

Method TO-15 Units=ppb

Centek Laboratories, LLC IDL Study

Page 53 of 229

Confidential

aboratories, LLC		:		ιδη ι	/m3 Detect January 21	ion Limit 021		-			Meth	od TO-15 Inits=ppb
	Amt		DL #2	IDL #3		IDL #5	1DL #6	IDL #7	AVG	StdDev	%Rec	٦D
	0.3	0.3	0.3	0.31	0.31	0.3	0.31	0.3	0.30	0.01	101.4%	0.017
	0.3	0.31	0.32	0.32	0.33	0.32	0.32	0.33	0.32	0.01	107.1%	0.022
	0.3	0.31	0.34	0.34	0.34	0.33	0.33	0.32	033	0.01	110.0%	0.036
	0.3	0.28	0.3	0.29	0.3	0.3	0.31	0	0.30	0.01	%0.66	0.030
	0.3	0.31	0.32	0.32	0.32	0.33	0.33	0.32	0.32	0.01	107.1%	0.022
	0.3	0.29	0.3	0.3	0.3	0.29	0.3	0.29	0.30	0.01	98.6%	0.017
	0.3	0.28	0,29	0.3	0.3	0.29	0.3	0.29	0.29	0.01	97.6%	0.024
	0.3	0.29	0.29	0.28	0.29	0.29	0.28	0.29	0.29	0.00	95.7%	0.015
	0.3	0.3	0.31	0.3	0.32	0.3	0.31	0.31	0.31	0.01	102.4%	0.024
	0.3	0.3	0.3	0.3	0.3	0.3	0.31	0.3	0.30	0.00	100.5%	0.012
	0.3	0.34	0.35	0.32	0.33	0.33	0.34	0.32	0.33	0.01	111.0%	0.035
	0.3	0.26	0.26	0.25	0.26	0.26	0.26	0.25	0.26	0.00	85.7%	0.015
	0.3	0.31	0.32	0.33	0.32	0.33	0.33	0.32	0.32	0.01	107.6%	0.024
	0.3	0.3	0.3	0.3	0.31	0.31	0.31	0.31	0.31	0.01	101.9%	0.017
	0.3	0.3	0.29	0.29	0.29	0,3	0.31	0.3	0.30	0.01	%0.66	0.024
	0.3	0.3	0.3	0.3	0.29	0.3	0.31	0.3	0:30	0.01	100.0%	0.018
	0.3	0.3	0.3	0.3	0.3	0.31	0,31	0.31	: 0.30	0.01	101.4%	0.017
	0.6	0.0	0.59	0,59	0.6	0.6	0.61	0.59	0.60	0.01	99.5%	0.024
	0.3	0.31	0.33	0.3	0.32	0.32	0.32	0.32	0.32	0.01	105.7%	0.030
	0.3	0.29	0.29	0.28	0.29	0.28	0.29	0.28	0.29	0.01	95.2%	0.017
	0.3	0.21	0.21	0.21	0.2	0.21	0.21	0.19	0.21	0.01	68.6%	0.025
	0.3	0.32	0.3	0.31	0.32	0.31	0,31	0.32	0.31	0.01	104.3%	0,024
	0.3	0.29	0.29	0.28	0.29	0.29	0.3	0.29	0.29	0.01	96.7%	0.018
	0.3	0.3	0.3	0.29	0.3	0.3	0.31	0.3	0.30	0.01	100.0%	0.018
	0.3	0.28	0.28	0.27	0.27	0.28	0.28	0.28	0.28	0.00	92.4%	0.015
	0.3	0,28	0.28	0.27	0.28	0.28	0.29	0.28	0.28	0.01	93.3%	0.018
	0.3	0.28	0.28	0.27	0.28	0.28	0.3	0.28	0.28	0.01	93.8%	0.028
	0.3	0.28	0.29	0.29	0.28	0.29	0.3	0.29	0.29	0.01	96.2%	0.022
	0.3	0.27	0.28	0.28	0.28	0.27	0.29	0.28	0.28	0.01	92.9%	0.022
	0,3.	0.28	0.28	0.27	0.28	0.28	0.29	0.28	0.28	0.01	93.3%	0.018
	0.3	0.21	0.22	0.21	0.26	0.27	0.22	0.2	- 0.23	0.03	75.7%	0.085
	0.3	0.28	0.28	0.27	0.28	0.28	0.29	0.28	0.28	0.01	93.3%	0.018
	0.3	0.28	0.28	0.28	0.28	0.28	0.29	0.29	0.28	0.00	94.3%	0,015
	0.3	0.28	0.28	0.27	0,28	0.29	0.29	0.29	0.28	0.01	94.3%	0.024
	0.3	0.25	0.26	0.26	0.25	0.27	0.27	0.25	0.26	0.01	86.2%	0.028
	0.3	0.26	0.26	0.26	0.26	0.26	0.27	0,25	0.20	0.01	86.7%	0.018
	0.3	0.27	0,28	0.28	0,28	0.29	0.29	0.28	0.28	0.01	93.8%	0,022

...

Confidential

Page 54 of 229

5 0				0	~	~	~	~													
od TO- Units=p	D	0.025	0.027	0.015	0.01	0.01	0.01	0.012													
Meth	%Rec	115.7%	91.4%	97.1%	\$4.1.C)	91.4%	88.6%	61.4%													
	StdDev	0.01	10.0	0.00	0.01	0,.00	0.00	00:0													
	AVG	0.12	0.09	0,10	0.08	0.09	0.09	0.06													
	/#1 DF	0.11	0.08	60.0	70.0	C.C3	0.09	0.06	• .••			 	•••••	 • • • •	 			 		 	
	1DL #6	0.12	U.1	0.09	0.07	0.09	0.08	0.06									·				
) Limit 21	5¥ 101	0.12	C	0.1	0.00	0.09	0.09	0,06													
13 Detectior January 20	<u>ال</u>	0.12	0.03	0.1	0.00	0.03	0.09	0'0													
0.0	10L #3	0.12	0.U9	0.1	0.00	60.0A	0.09	0.06													
	IDL #2	0,12	60.0A	U.1	0.07	50.0	0.09	0.06													
	۵۲#۲	100	80'0	0.1	0.0	0.0	0.09	0.07													
	Amt	0.1	- i i i i i	- · ·		 5 c	0.1	0.1													
C	. //-																				
Centek Laboratories, IDL Study	Compound	Vinyl Chloride		cis-1, z-aichioroethene Cortoo tritoothouldo	ValuVII leti adilivi lue Triat la rocthora		I etrachioroethylene	Naphthalene		•											

Confidential

....

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

÷

<u>.</u>

$$\frac{RRF}{Ais} = \frac{Ax * Cis}{Ais} * Cx$$

where: Ax = area of the characteristic ion for the compound being measured Ais = area of the characteristic ion for the specific internal standard of the compound being measured Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

% D = <u>(RRFc - mean RRFi) * 100</u> mean RRFi

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

...

.

.

•

.

,

.

GC/MS VOLATILES-WHOLE AIR

,

.

METHOD TO-15

SAMPLE DATA

.

.

Page 57 of 229

.

• .
Date: 05-May-21

CLIENT:	LaBella Associates P.C	Client Sample ID:	14()-09 (4/15/21)
Lab Order:	C2104038	Tag Number:	1201,734
Project:	1500 Jefferson Road	Collection Date:	4/15/2021
Lab ID:	C2104038-001A	Matrix:	AIR

Analyses	Result	DL Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"Hg		4/16/2021
Lab Vacuum Out	-30		"Hg		4/16/2021
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-I	DCE-1,1DCE	TO-15			Analyst: WD
1,1,1-Trichloroethane	< 0.15	0.15	ррь∨	1	4/20/2021 4:07:00 PM
1,1,2,2-Tetrachloroethane	< 0,15	0.15	ppbV	3	4/20/2021 4:07:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppb∨	1	4/20/2021 4:07:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/20/2021 4:07:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
1,2,4-Trimethy/benzene	0.29	0.15	ppbV	1	4/20/2021 4:07:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vđqq	1	4/20/2021 4:07:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/20/2021 4:07:00 PM
1,2-Dichloroethane	< 0.15	0,15	ppbV	1	4/20/2021 4:07:00 PM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/20/2021 4:07:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
4-ethyltoluene	0.14	0.15 J	ppbV	1	4/20/2021 4:07:00 PM
Acetone	70	9 6 J	ρpbV	320	4/21/2021 4:34:00 PM
Ally! chloride	< 0.15	0.15	ррbV	1	4/20/2021 4:07:00 PM
Benzene	0.36	0.15	ppbV	1	4/20/2021 4:07:00 PM
Benzył chloride	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
Bromodichloromethane	< 0.15	0.15	ρρον	1	4/20/2021 4:07:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
Bromomethane	0.11	0.15 J	Vdqq	1	4/20/2021 4:07:00 PM
Carbon disuffide	0.11	0.15 J	ppbV	1	4/20/2021 4:07:00 PM
Carbon tetrachloride	080.0	0.030	ρρον	1	4/20/2021 4:07:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
Chloroform	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM
Chloromethane	0.48	0.15	Vaqq	1	4/20/2021 4:07:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/20/2021 4:07:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/20/2021 4:07:00 PM
Ethyl acetate	< 0.15	0.15	Vdqq	1	4/20/2021 4:07:00 PM

Qualifiers:	sc	Sub-Contracted
	13	Analyte detected in the associated Method Blank
	H	Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S — Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DE Detection Limit

Analyses

Date: 05-May-21

 \mathbf{DF}

Date Analyzed

CLIENT:	LaBella Associates, P.C.	Client Sample ID: 1AQ-09 (4/15/21)	
Lab Order:	C2104038	Tag Number: 1201,734	
Project:	1500 Jefferson Road	Collection Date: 4/15/2021	
Lab ID;	C2104038-001A	Matrix: AIR	

DL-

Qual Units

Result

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	-DCE-1.1DCE	то-	15			Analyst: WD
Ethyibenzene	0.14	0.15	t L	opbV	1	4/20/2021 4:07:00 PM
Freon 11	0.23	0.15	F	Vdqc	1	4/20/2021 4:07:00 PM
Freon 113	< 0.15	0.15	i	Vdqc	1	4/20/2021 4:07:00 PM
Freon 114	< 0.15	0.15	F	Vdqq	1	4/20/2021 4:07:00 PM
Freon 12	0.52	0.15	ş	орь∨	1	4/20/2021 4:07:00 PM
Heptane	1.5	1.5	1	ppbV	10	4/21/2021 1:10:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	ļ	vdqq	1	4/20/2021 4:07:00 PM
Hexane	< 0.15	0.15	1	Vđqq	1	4/20/2021 4:07:00 PM
Isopropyl alcohoł	520	96	1	ppbV	640	4/22/2021 12:18:00 PM
m&p-Xylene	0.47	0.30	,	Vdqq	1	4/20/2021 4:07:00 PM
Methyl Butyl Ketone	< 0.30	0.30	1	opbV	1	4/20/2021 4:07:00 PM
Methyl Ethyl Ketone	1.4	0.30	;	ppbV	1	4/20/2021 4:07:00 PM
Methyl Isobutyl Ketone	0.17	0.30	J	PpbV	1	4/20/2021 4:07:00 PM
Methyl tert-butyl ether	< 0.15	0.15		Vdqq	1	4/20/2021 4:07:00 PM
Methylene chloride	1.5	0.15	i	ppbV	1	4/20/2021 4:07:00 PM
o-Xylene	0.20	0.15	1	ppbV	1	4/20/2021 4:07:00 PM
Propylene	< 0.15	0.15		ррbV	1	4/20/2021 4:07:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM
Tetrachloroethylene	0.12	0.15	J	ppbV	1	4/20/2021 4:07:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM
Toluene	0.71	0.15		Vdqq	1	4/20/2021 4:07:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM
Trichloroethene	0.44	0.030		ppbV	1	4/20/2021 4:07:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/20/2021 4:07:00 PM
Vinyl chloride	< 0.040	0.040		ορbV	1	4/20/2021 4:07:00 PM
Surr: Bromofluorobenzene	98.0	47-124		%REC	1	4/20/2021 4:07:00 PM

Qual	lifiers:	
------	----------	--

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

Page 2 of 6

Date: 05-May-21

CLIENT:	LaBella Associates P.C.			с. С	lient Sample ID:	1AO-09.6	4/15/21)	
Lab Order:	C2104038				Tag Number:	1201.734		
Project:	1500 Jefferson Road				Collection Date:	4/15/202	1	
Lab ID:	C2104038-001A				Matrix:	AIR		
Analyses		Result	DL	Qual	Units	DF	Date Anal	yzed

1UG/M3 W/	0.200	M3 CT-TCE-VC-DC	E-1,1DCE	TO-	15			Analyst: WD	
1,1,1-Trichle	proetha	ine	< 0.82	0.82		սց/m3	1	4/20/2021 4:07:00 PM	
1,1,2,2-Tetr	achlord	bethane	< 1.0	1.0		ug/m3	1	4/20/2021 4:07:00 PM	
1,1,2-Trichle	proetha	ine	< 0.82	0.82		ug/m3	1	4/20/2021 4:07:00 PM	
1,1-Dichloro	ethane)	< 0.61	0.61		ug/m3	1	4/20/2021 4:07:00 PM	
1,1-Dichloro	ethene	9	< 0.16	0.16		ug/m3	1	4/20/2021 4:07:00 PM	
1,2,4-Trichic	noben	zene	< 1.1	1.1		ug/m3	1	4/20/2021 4:07:00 PM	
1,2,4-Trimel	thylber	zene	1.4	0.74		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dibromo	bethan	e	< 1,2	1.2		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dichloro	benze	ne	< 0.90	0.90		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dichloro	ethane	2	< 0.61	0.61		ug/m3	1	4/20/2021 4:07:00 PM	
1,2-Dichiord	propar	າຂ	< 0.69	0.69		ug/m3	1	4/20/2021 4:07:00 PM	
1,3,5-Trime	thylber	zene	< 0.74	0.74		ug/m3	1	4/20/2021 4:07:00 PM	
1,3-butadier	1¢		< 0.33	0.33		ug/m3	1	4/20/2021 4:07:00 PM	
1,3-Dichloro	benze	ne	< 0.90	0.90		ug/m3	1	4/20/2021 4:07:00 PM	
1,4-Dichlord	benze	ne	< 0.90	0.90		ug/m3	1	4/20/2021 4:07:00 PM	
1,4-Dioxane	•		< 1.1	1,1		ug/m3	1	4/20/2021 4:07:00 PM	
2,2,4-trimet	hylpen	ane	< 0.70	0.70		ug/m3	1	4/20/2021 4:07:00 PM	
4-ethyltolue	ne		0.69	0.74	J	ug/m3	1	4/20/2021 4:07:00 PM	
Acetone			170	230	J	ug/m3	320	4/21/2021 4:34:00 PM	
Allyl chloride	e		< 0.47	0.47		ug/m3	1	4/20/2021 4:07:00 PM	
Benzene			1.1	0.48		ug/m3	1	4/20/2021 4:07:00 PM	
Benzyl chio	ride		< 0.86	0.86		ug/m3	1	4/20/2021 4:07:00 PM	
Bromodichk	oromet	hane	< 1.0	1.0		ug/m3	1	4/20/2021 4:07:00 PM	
Bromoform			< 1.6	1.6		ug/m3	1	4/20/2021 4:07:00 PM	
Bromometh	ane		0.43	0.58	J	ug/m3	1	4/20/2021 4:07:00 PM	
Carbon disu	llfide		0.34	0.47	J	ug/m3	1	4/20/2021 4:07:00 PM	
Carbon tetra	achlori	de	0.50	0.19		ug/m3	1	4/20/2021 4:07:00 PM	
Chlorobenza	ene		< 0.69	0.69		ug/m3	1	4/20/2021 4:07:00 PM	
Chloroethar	1e		< 0.40	0.40		ug/m3	t	4/20/2021 4:07:00 PM	
Chloroform			< 0.73	0.73		ug/m3	1	4/20/2021 4:07:00 PM	
Chlorometh	ane		0.99	0.31		ug/m3	1	4/20/2021 4:07:00 PM	
cis-1,2-Dich	loroeth	ene	< 0.16	0.16		ug/m3	1	4/20/2021 4:07:00 PM	
cis-1 3-Dich	loropro	pené	< 0.68	0.68		ug/m3	1	4/20/2021 4:07:00 PM	
Cyclohexan	e		< 0.52	0.52		ug/m3	"1	4/20/2021 4:07:00 PM	
Dibromochle	oromet	hane	< 1.3	1.3		ug/m3	1	4/20/2021 4:07:00 PM	
Ethyl acetat	e		< 0.54	0.54		ug/m3	1	4/20/2021 4:07:00 PM	
Ethylbenzer	ъė		0.61	0.65	J	ug/m3	1	4/20/2021 4:07:00 PM	
Freon 11			1.3	0.84		ug/m3	1	4/20/2021 4:07:00 PM	
Freon 113			< 1.1	1,1		ug/m3	1	4/20/2021 4:07:00 PM	
Freon 114			< 1.0	1.0		ug/m3	1	4/20/2021 4:07:00 PM	
Qualifiers:	SC	Sub-Contracted				, Results re	ported are not b	lank corrected	
	B	Analyte detected in the a	ssociated Method Bl	ank		E Estimated Value above quantitation range			
	ы	Holding times for prepar	ation or analysis exce	seded		 Analyte d 	etected below q	uantitation limit	

JN Non-routine analyte. Quantitation estimated.

S — Spike Recovery outside accepted recovery limits

ND Not Detected at the Limit of Detection

DE. Detection Limit

Page 1 of 6

Date: 05-May-21

CLIENT:	LaBella Associates, P.C.			С	lient Sample ID:	1AQ-09 ((4/15/21)
Lab Order:	C2104038				Tag Number:	1201.734	1
Project:	1500 Jefferson Road				Collection Date:	4/15/202	: 1
Lab ID:	C2104038-001A				Matrix:	AIR	
Analyses		Result	ÐL	Qual	Units	ÐF	Date Analyzed

· · · · · · · · · · · · · · · · · ·			-			
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	τo	15			Analyst: WD
Freen 12	2.6	0.74		ug/m3	1	4/20/2021 4:07:00 PM
Heptane	6.1	6.1		ug/m3	10	4/21/2021 1:10:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		սց/m3	1	4/20/2021 4:07:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/20/2021 4:07:00 PM
Isopropyl alcohol	1300	240		ug/m3	640	4/22/2021 12:18:00 PM
m&p-Xylene	2.0	1.3		սց/m3	1	4/20/2021 4:07:00 PM
Methyl Butyl Ketonø	< 1.2	1.2		ug/m3	1	4/20/2021 4:07:00 PM
Methyl Ethyl Ketone	4.1	0.88		ug/m3	1	4/20/2021 4:07:00 PM
Methyl Isobutyl Ketone	0.70	1.2	J	ug/m3	1	4/20/2021 4:07:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/20/2021 4:07:00 PM
Methylene chloride	5.2	0.52		ug/m3	1	4/20/2021 4:07:00 PM
o-Xylene	0.87	0.65		ug/m3	1	4/20/2021 4:07:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/20/2021 4:07:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/20/2021 4:07:00 PM
Tetrachioroethylene	0.81	1.0	ŝ,	ug/m3	1	4/20/2021 4:07:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/20/2021 4:07:00 PM
Toluene	2.7	0.57		ug/m3	1	4/20/2021 4:07:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/20/2021 4:07:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/20/2021 4:07:00 PM
Trichloroethene	2.4	0.16		սց/m3	1	4/20/2021 4:07:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/20/2021 4:07:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/20/2021 4:07:00 PM
Vinyl chloride	÷ 0.10	0,10		ug/m3	1	4/20/2021 4:07:00 PM

				a second a second s	
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	в	Analyte detected in the associated Method Blank	15	Estimated Value above quantitation range	
	н	Holding times for preparation or analysis exceeded)	Analyte detected below quantitation limit	
	JN -	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Da
	s	Spike Recovery outside accepted recovery limits	DE	Detection Limit	Page 2 of 6

Centek Laboratories,LLC	Quantitat:	ion Re	port. (Q	T Review	ved)	
Data File : C:\HPCHEM\1\DATA\ Acq On : 20 Apr 2021 4:0 Sample : C2104038-001A Misc : A317_1UG MS Integration Params: RTEINT Quant Time: Apr 21 09:08:28 2	A\$042007.D 7 pm .P 021	Qu	Op In Mu ant Result	Vial: erator: st : ltiplr: s File;	13 RJP MSD # 1.00 A317_	l 1UG.RES
Ourset Mathod . C. MUSCHERALL ME						
Title : TO-15 VOA Sta Last Update : Mon Apr 12 12: Response via : Initial Calibr DataAcq Meth : lUG_ENT	ndards for 02:39 2021 ation	100, M 5 poi	nt calibra	grator, tion		
Internal Standards	R.T.	QIon	Response	Cone Ur	nits D	ev(Min)
1) Bromochloromethane	9,83	128	92259	1.00	dqq	0.02
35) 1,4-difluorobenzene	12.12	114	348627	1.00	ppb	0.01
50) Chlorobenzene-d5	16.92	117	334135	1.00	dqq	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	18.71	95	246868	0.98	ppb	0.05
Spiked Amount 1.000	Range 70	~ 130	Recove	ry =	98.0	0%
Target Compounds						Qvalue
3) Freon 12	4.21	85	179366	0.52	ppb	99
4) Chloromethane	4 41	50	39509	0.48	dqq	83
9) Bromomethane	5.05	94	10882	0.11	dqq	# 73
l4) Freon ll	5.85	101	85390	0.23	ppb	99
15) Acetone	6.00	58	814186m	014.41	dqq	
17) Isopropyl alcohol	6.11	45	30895733	212.78	ppb	# 1.6
21) Methylene chloride	7.06	84	181482	1.51	dqq	100
23) Carbon disulfide	7.23	76	38313	Ö.11	ppb	91
28) Methyl Ethyl Ketone	8.85	72	68797m ,	1.40	dqq	
-38) Carbon tetrachloride	11.46	117	25597	0.08	ppb	96
39) Benzene	11.43	78	121381	0.36	daa	90
41) 1,4-dioxane	13,02	88	12328	0.17	ppb	83
43) Heptane	12.64	43	299357	2.07	ppb	94
44) Trichloroethene	12,77	130	78791	0.44	$_{\rm ppb}$	99
51) Toluene	14.88	92	157772	0.71	dqq	97
52) Methyl Isobutyl Ketone	13.94	43	35493	0.17	dqq	87
56) Tetrachloroethylene	15.95	164	22365	0.12	ppb	98
58) Ethylbenzene	17.24	91	65290	0.14	dqq	99
59) m&p-xylene	17,44	91	188872	0.47	ppp	97
63) o-xylene	17.97	91	90866	0.20	dqq	97
69) 4-ethyltoluene	19.31	105	77890	0.14	dqq	95
71) 1,2,4-trimethylbenzene	19.97	105	126329	0.29	ppb	97

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042007.D A317_1UG.M Wed May 05 08:19:26 2021 MSD1

Page 63 of 229

ŝ Page

Wed May 05 08:19:29 2021

AS042007.D A317_1UG.M

Wed May 05 08:19:30 2021

AS042007.D A317_1UG.M Wed May 05 08:19:31 2021

MSDl

Page 6

AS042007.D A317_1UG.M

AS042007.D A317_1UG.M Wed M

Wed May 05 08:19:33 2021

Wed May 05 08:19:35 2021

MSDl

Centek Laboratories, LLC_{Quantitation Report} (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042019.D Vial: 13 Acq On : 21 Apr 2021 1:10 am Sample : C2104038-001A 10X Operator: RJP Inst : MSD #1 Misc : A317_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 21 09:23:31 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcg Meth : 1UG_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards ______ 1) Bromochloromethane9.82128813611.00ppb0.0135) 1.4-difluorobenzene12.111143000831.00ppb0.0050) Chlorobenzene-d516.921172721941.00ppb0.00 System Monitoring Compounds65) Bromofluorobenzene18.71951787980.87ppb0.05Spiked Amount1.000Range70- 130Recovery=87.00% Ovalue Target Compounds

 15) Acetone
 6.01
 58
 107867m Ø
 2.16 ppb

 17) Isopropyl alcohol
 6.11
 45
 5462044
 42.66 ppb
 #
 11

Page 76 of 229

Page 3

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042108.D Vial: 13
 Acq On
 :
 21 Apr 2021
 4:34 pm

 Sample
 :
 C2104038-001A
 320X

 Misc
 :
 A317 1UG
 Operator: WD Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 22 11:46:13 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.83128791111.00ppb0.0235) 1,4-difluorobenzene12.121142768921.00ppb0.0150) Chlorobenzene~d516.931172401781.00ppb0.01 System Monitoring Compounds 65) Bromofluorobenzene 18.72 95 153037 0.84 ppb 0.06 Spiked Amount 1.000 Range 70 - 130 Recovery = 84.00% Target Compounds Ovalue 17) Isopropyl alcohol 6.14 45 261070 2.10 ppb # 17

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042108.D A317_1UG.M Wed May 05 08:20:12 2021 MSD1

													24.00	lge 2
													3.00	Ę,
													2.00	
													1.00 2	
													0.00 2	
													9.00 2	
										2,enesnedorouitomor	8 ~	1999 - ANN - A	8.00 1	
(pa										100-0027020200	4 - 7 -		.00 1	
leview.	G.RES												2.00 1.	
(QT R	3 5D #1 .00 317_1U		Ö									*12	5.00 1(
1.1 1.4		or}	5042308.										1.00 1	I
l Repo	Vi Dperat Inst Aultip Its Fi	cegrat cation	TIC: A										300 51	MSI
tatio	Resu	TE Int calibi								(Janazaedorout)	(D- D ').		2.00	121
Quantı	Quant	s.M (F point											1.00	:13 2(
	Ū.	17_1UC				al 1 a - 1 a da 1 de Julio 11 a 12	****	•••••••					0.00 1	08:20
)42108 M	DS/A3 trds f 45 20 on								Lanadanood	եզուտք		00	ay 05
	TA\ASC 4:34 p 320X 320X INT.₽ 021	\METHC Standa 08:06: ibrati											6 00	Wed Ma
	N1/DA 21 001A 001A : RTE	WOA VOA VOA L											00 8	
	HPCHEW Apr 20 04038- 0103 7 103 Params Farams	C:\HPC TO-15 Wed Ma Initia								Clonosia I	Adoudos;	4.000 <u>(</u>	4 00	1UG.W
	C:\\ 21.12 : 21.1 : 21.	ייייייייייייייייייייייייייייייייייייי											9 00	A317
	File On Le ntegra	od e Updat nnse v											00 5	08.D
	Data Acq (Samp: Misc MS II Quant	Meth Titl: Last Respo	Abundance	4000300	3500200	3000000	2509000	200000	150000	100000	50000		Time> 4	AS0421

Page 3

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042122.D Vial: 13 Acq On : 22 Apr 2021 12:18 pm Sample : C2104038-001A 640X Misc : A317_1UG Operator: WD Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 22 12:44:00 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via . Initial Calibration DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.82128756591.00 ppb0.0035) 1.4-difluorobenzene12.111142626441.00 ppb0.0050) Chlorobenzene-d516.921172626731.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.67 95 142756 0.72 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 72.00% 0.00 Target Compounds Ovalue 17) Isopropyl alcohol 6.12 45 96265 0.81 ppb # 1

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042122.D A317_1UG.M Wed May 05 08:20:16 2021 MSD1

2

Page 3

CLIENT: LaBella Associates, P.C. Client Sample ID: OA (4/15/21) Lab Order: C2104038 Tag Number: 550,271 Collection Date: 4/15/2021 **Project:** 1500 Jefferson Road Matrix: AIR C2104038-002A Lab ID: Result **Oual Units** \mathbf{DF} Analyses DL **Date Analyzed** FIELD PARAMETERS FLD Analyst: Lab Vacuum In Ø "Hg 4/16/2021 "Hg 4/16/2021 Lab Vacuum Out -30 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1.1DCE Analyst: WD TO-15 4/20/2021 6:36:00 PM 1,1,1-Trichloroethane < 0.15 0.15 Vdqq 1 0.15 1 4/20/2021 6:36:00 PM 1,1,2,2-Tetrachloroethane < 0.15 ppbV 4/20/2021 6:36:00 PM 1.1.2 Trichloroethane < 0.15 0.15 Vdqq 1 1 4/20/2021 6:36:00 PM 1,1-Dichloroethane < 0.15 0,15 ppbV 1.1-Dichloroethene < 0.040 0.040 ppbV 1 4/20/2021 6:35:00 PM 4/20/2021 6:36:00 PM 1,2,4-Trichlorobenzene < 0.15 0.15 ppbV 1 < 0.15 0.15 1 4/20/2021 6:36:00 PM 1,2,4-Trimethylbenzene ppbV < 0.15 0.15opbV 1 4/20/2021 6:36:00 PM 1.2-Dibromoethane 4/20/2021 6:36:00 PM 1,2-Dichlorobenzene < 0.15 0.15 ppbV 1 1.2-Dichloroethane < 0.15 0.15 Vdqq 1 4/20/2021 6:36:00 PM 1 4/20/2021 6:36:00 PM < 0.15 0.15 ppbV 1,2-Dichloropropane 1 4/20/2021 6:36:00 PM 1,3,5-Trimethylbenzene < 0.15 0.15 Vdqq 0.15 1 4/20/2021 6:36:00 PM < 0.15 1.3-butadiene ppbV 4/20/2021 6:36:00 PM 1.3-Dichlorobenzene < 0.15 0.15 ppbV 1 1,4-Dichlorobenzene < 0.15 0.15 voqq 1 4/20/2021 6:36:00 PM < 0.30 0.30 ppbV 1 4/20/2021 6:36:00 PM 1 4-Dioxane 1 4/20/2021 6:36:00 PM 0.15 2,2,4-trimethylpentane < 0.15 Vdqq 4/20/2021 6:36:00 PM < 0.15 0.15opoV 1 4-ethyltoisene 10 4/21/2021 1:53:00 AM Acetone 6.5 3.0 opb∨ Allyl chloride < 0.15 0.15 ppbV 1 4/20/2021 6:36:00 PM Benzene 0.13 0.15 J. ppbV 1 4/20/2021 6:36:00 PM < 0.15 0.15 ppbV 1 4/20/2021 6:36:00 PM Benzyl chloride Bromodichloromethane < 0.15 0.15 ₽¢5V 1 4/20/2021 6:36:00 PM < 0.15 0.15 ppbV 1 4/20/2021 6:36:00 PM Bromoform Bromomethane < 0.150.15 Vdqq 1 4/20/2021 6:36:00 PM Carbon disulfide < 0.15 0.15 1 4/20/2021 6:36:00 PM ppbV 0.070 0.030 1 4/20/2021 6:36:00 PM Carbon tetrachloride Vdqq 4/20/2021 6:36:00 PM < 0.15 0.15 Vơqq 1 Chiorobenzene

< 0.15 0.15 Vdqq 0.40 0.15 ppbV 1 1 0.040 cis-1,2-Dichloroethene < 0.040 Vdqq cis-1,3-Dichloropropene < 0.15 0.15 vdqq 1 < 0.15 0.15 ppbV 1 1 Dibromochloromethane < 0.15 0.15 ppbV ppbV 1 0,14 0.15 Ļ Sub-Contracted

< 0.15

0.15

ppbV

DY.

в Analyte detected in the associated Method Blank

Chloroethane

Chloromethane

Cyclohexane

Ethyl acetate

SC

Onalifiers:

Chloroform

- ŀf Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- s Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

1

1

- E Estimated Value above quantitation range
- 4 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
 - Detection Limit

Page 3 of 6

4/20/2021 6:36:00 PM

Date: 05-May-21

			·····
CLIENT:	LaBella Associates, P.C.	Client Sample ID:	OA (4/15/21)
Lab Order:	C2104038	Tag Number:	550,271
Project:	1500 Jefferson Road	Collection Date:	4/15/2021
Lab HD:	C2104038-002A	Matrix:	AIR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15	5		Analyst: WD
Ethylbenzene	< 0.15	0.15	Vdqq	1	4/20/2021 6:36:00 PM
Freon 11	0.18	0.15	ppbV	1	4/20/2021 6:36:00 PM
Freon 113	< 0.15	0.15	opb∨	1	4/20/2021 6:36:00 PM
Freon 114	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Freon 12	0.45	0.15	ppbV	1	4/20/2021 6:36:00 PM
Heptane	< 0.15	0.15	Vđqq	1	4/20/2021 6:36:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	Vaqq	1	4/20/2021 6:36:00 PM
Hexane	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
isopropyl alcohol	3.6	1.5	Vdqq	10	4/21/2021 1:53:00 AM
m&p-Xylene	< 0.30	0.30	ppbV	1	4/20/2021 6:36:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppbV	1	4/20/2021 6:36:00 PM
Methyl Ethyl Ketone	0.22	0.30	Vaqq L	1	4/20/2021 6:36:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	4/20/2021 6:36:00 PM
Methyi tert-butyl other	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Methylene chloride	0.25	0.15	Vdqq	1	4/20/2021 6:36:00 PM
o-Xylene	< 0.15	0.15	ppbV	7	4/20/2021 6:36:00 PM
Propylene	< 0.15	0.15	Vaqq	1	4/20/2021 6:36:00 PM
Styrene	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Tetrachloroethylene	< 0.15	0,15	opb∨	1	4/20/2021 6:36:00 PM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Toluene	0.16	0.15	vdqq	1	4/20/2021 6:36:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
trans-1,3-Dichloropropene	< 0,15	0.15	ppb∨	1	4/20/2021 6:36:00 PM
Trichloroethene	< 0.030	0.030	ppbV	1	4/20/2021 6:36:00 PM
Vinyl acetate	< 0.15	0.15	Vđqq	1	4/20/2021 5:36:00 PM
Vinyt Bromide	< 0.15	0.15	ppbV	1	4/20/2021 6:36:00 PM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/20/2021 6:36:00 PM
Surr: Bromofluorobenzene	90.0	47-124	%REC	1	4/20/2021 6:36:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	ß	Estimated Value above quantitation range	
	1-1	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	
	s	Spike Recovery outside accepted recovery limits	D1.	Detection Limit	Page 4 of 6

Date: 05-May-21

DF

Date Analyzed

CLIENT:	LaBella Associates, P.C.	Client Sample ID:	OA (4/15/21)
Lab Order:	C2104038	Tag Number:	550,271
Project:	1500 Jefferson Road	Collection Date:	4/15/2021
Lab ID:	C2104038-002A	Matrix:	AIR
8.781 KF 8.1.277	C.2304020*0027	3*************************************	

Result

DL Qual Units

Analyses			Result	DL	Qual	Uni	its	DF	Date Ana	yzed
1UG/M3 W/	0.200	M3 CT-TCE-VC-DC	E-1,1DCE	тс	-15				Ana	yst: WD
1,1,1-Trichle	roetha	ine	< 0.82	0.82		ug/n	n3	1	4/20/2021 6:	36:00 PM
1.1,2,2-Tetra	achior	pethane	< 1.0	1.0		ug/r	n3	1	4/20/2021 6:	36:00 PM
1,1,2-Trichle	proetha	ne	< 0.82	0.82		ug/r	n3	1	4/20/2021 6:	36:00 PM
1,1-Dichloro	ethane	3	< 0.61	0.61		ug/r	n3	1	4/20/2021 6:	36:00 PM
1,1-Dichloro	ethene	e	< 0.16	0.16		ug/r	n3	1	4/20/2021 6:	36:00 PM
1,2,4-Trichic	roben	zene	< 1.1	1.1		ug/r	n3	-1	4/20/2021 6:	36:00 PM
1,2,4-Trimet	hylber	zene	< 0.74	0.74		ug/r	n3	1	4/20/2021 6:	36:00 PM
1,2-Dibromo	ethan	e	< 1.2	1.2		ug/r	n 3	1	4/20/2021 6:	36:00 PM
1,2-Dichloro	benze	ne	< 0.90	0.90		ug/r	n3	1	4/20/2021 6:	36:00 PM
1,2-Dichloro	ethand	3	< 0.61	0,61		ug/r	113	1	4/20/2021 6:	36:00 PM
1,2-Dichloro	propa	те	< 0.69	0.69		ug/r	n 3	1	4/20/2021 6:	36:00 PM
1,3,5-Trimet	thylber	izene	< 0.74	0.74		hðų	113	1	4/20/2021 6:	36:00 PM
1,3-butadier	۱e		< 0.33	0,33		ugh	113	1	4/20/2021 6:	36:00 PM
1,3-Dichlore	benze	ne	< 0.90	0.90		ug/r	m3	1	4/20/2021 6:	36:00 PM
1,4-Dichloro	benze	ne	< 0.90	0.90		ug/r	m3	1	4/20/2021 6:	36:00 PM
1,4-Dioxane	2		< 1.1	1.1		ug/r	m3	1	4/20/2021 6:	36:00 PM
2,2,4-trimet	hylpen	tane	< 0.70	0.70		ug/s	m3	1	4/20/2021 6:	36:00 PM
4-ethyltolue	ле		< 0.74	0.74		ug/i	m3	1	4/20/2021 6:	36:00 PM
Acetone			15	7.1		ug/i	m3	10	4/21/2021 1:	53:00 AM
Allyl chloride	9		< 0.47	0.47		ug/i	m3	1	4/20/2021 6	36:00 PM
Benzene			0.42	0.48	ſ	ug/i	m3	1	4/20/2021 6:	36:00 PM
Benzyi chio	ride		< 0.86	0.86		μg/i	m3	1	4/20/2021 6:	36:00 PM
Bromodichle	promet	bane	< 1.0	1,0		ug/i	m3	1	4/20/2021 6:	36:00 PM
Bromoform			< 1.6	1.6		ug/a	m3	1	4/20/2021 6	36:00 PM
Bromometh	ane		< 0.58	0.58		បច្ច/រ	m3	1	4/20/2021 6	36:00 PM
Carbon disu	tfide		< 0.47	0.47		ug/i	m3	1	4/20/2021 6	36:00 PM
Carbon tetra	achlori	de	0.44	0.19		ug/i	m3	1	4/20/2021 6	36:00 PM
Chlorobenz	ene		< 0.69	0.69		ug/i	m3	1	4/20/2021 6	36:00 PM
Chioroethar	ıe		< 0.40	0.40		ug/i	m3	1	4/20/2021 6	36:00 PM
Chloroform			= 0.73	0.73		ug/i	m3	1	4/20/2021 6	36:00 PM
Chlorometh	ane		0.83	0.31		ug/	m3	1	4/20/2021 6	36:00 PM
cis-1,2-Dich	loroeti	nene	< 0.16	0.16		ug/	m3	1	4/20/2021 6	36:00 PM
cis-1,3-Dich	doropre	opene	< 0.68	0.68		ug/	m3	1	4/20/2021 6	36:00 PM
Cyclohexan	e		< 0.52	0.52		ug/	m3	1	4/20/2021 6	36:00 PM
Dibromochi	orome	thane	< 1.3	1.3		ដេជ្ជ/	m3	1	4/20/2021 6	36:00 PM
Ethyl acetat	e		0.50	0.54	J	ug/	m3	1	4/20/2021 6	36:00 PM
Ethyibenzer	ne		< 0.65	0.65		ug/	m3	1	4/20/2021 6	:36:00 PM
Freon 11			1.0	0.84		ug/	m3	1	4/20/2021 6	:36:00 PM
Freon 113			< 1.1	1.1		បន្ធ/	m3	1	4/20/2021 6	:36:00 PM
Freon 114			< 1.0	1.0		ug/	m3	1	4/20/2021 6	:36:00 PM
Onalifiers:	sc	Sub-Contracted				·	Results re	ported are not b	slank corrected	
	8	Analyte detected in the r	ssociated Method BI	ank		1. Estimated Value above quantitation range				
	łI	Holding times for prepar	ation or analysis exc	ceded		J	Analyte d	etected below c	mantitation limit	
	JN	Non-routine analyte. Ou	antitation estimated.		ND Not Detected at the Limit of Detectic			t of Detection		
	S	Spike Recovery outside	accepted recovery lin	nits		DL.	Detection	Limit		Page 3 of 6

Date: 05-May-21

Analyses		Result	DŁ	Oual Units	DF	Date Analyzed	
Lab 1D:	C2104038-002A			Matrix:	AIR		
Project:	1500 Jefferson Road			Collection Date:	4/15/202	1	
Lab Order:	C2104038			Tag Number:	550,271		
CLIENT:	LaBella Associates, P.C.			Client Sample ID:	OA (4/15	/21)	
•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••		

· · · · · · · · · · · · · · · · · · ·		-			•
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: WD
Freon 12	2.2	0.74	սց/m3	1	4/20/2021 6:36:00 PM
Heptane	< 0.61	0.61	ug/m3	1	4/20/2021 6:36:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/20/2021 6:36:00 PM
Hexane	< 0.53	0.53	ug/m3	1	4/20/2021 6:36:00 PM
isopropyi alcohol	8.8	3.7	ug/m3	10	4/21/2021 1:53:00 AM
m&p-Xylene	< 1.3	1.3	ug/m3	1	4/20/2021 6:36:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/20/2021 6:36:00 PM
Methyi Ethyl Ketone	0.65	0.88	J ug/m3	1	4/20/2021 6:36:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/20/2021 6:36:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/20/2021 6:36:00 PM
Methylene chloride	0.87	0.52	ug/m3	1	4/20/2021 6:36:00 PM
o-Xylene	< 0.65	0.65	ug/m3	1	4/20/2021 6:36:00 PM
Propylene	< 0.26	0.50	ug/m3	1	4/20/2021 6:36:00 PM
Styrene	< 0.64	0.64	ug/m3	1	4/20/2021 6:36:00 PM
Tetrachloroetbylene	< 1.0	1.0	ug/m3	1	4/20/2021 6:36:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	4/20/2021 6:36:00 PM
Toluene	0.60	0.57	ug/m3	1	4/20/2021 6:36:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/20/2021 6:36:00 PM
trans-1.3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/20/2021 6:36:00 PM
Trichloroethene	< 0.16	0.16	ug/m3	1	4/20/2021 6:36:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/20/2021 6:36:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/20/2021 6:36:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/20/2021 6:36:00 PM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected
	13	Analyte detected in the associated Method Blank	E	Estimated Value above quantitation range
	11	Holding times for preparation or analysis exceeded	Ĵ	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection
	s	Spike Recovery outside accepted recovery limits	DL	Detection Limit

Page 4 of 6

Centek Laboratories,LLC Quantita	tion Report (QT Reviewed)									
Data File : C:\MPCHEM\1\DATA\AS042010. Acq On : 20 Apr 2021 6:36 pm Sample : C2104038-002A Misc : A317_1UG MS Integration Params: RTEINT.P Ouant Time: Apr 21 09:28:24 2021	D Vial: 14 Operator: RJP Inst : MSD #1 Multiplr: 1.00 Quant Results File: A317 1UG.RES									
Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Fitle : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG_ENT										
Internal Standards R.T	. QIon Response Conc Units Dev(Min)									
1) Bromochloromethane9.835) 1,4-difluorobenzene12.150) Chlorobenzene-d516.9	2 128 101326 1.00 ppb 0.00 1 114 375861 1.00 ppb 0.00 2 117 353897 1.00 ppb 0.00									
System Monitoring Compounds 65) Bromofluorobenzene 18.7 Spiked Amount 1.000 Range 7	2 95 241045 0.90 ppb 0.05 0 - 130 Recovery = 90.00%									
Target Compounds3) Freon 124.24) Chloromethane4.414) Freon 115.815) Acetone6.017) Isopropyl alcohol6.121) Methylene chloride7.028) Methyl Ethyl Ketone8.931) Ethyl acetate9.838) Carbon tetrachloride11.439) Benzene11.451) Toluene14.8	Qvalue 1 85 169513 0.45 ppb 100 1 50 36770 0.40 ppb 87 5 101 74586 0.18 ppb 96 1 58 351972 5.67 ppb # 42 2 45 486824 3.05 ppb # 1 7 84 33324 0.25 ppb 96 3 72 12121 0.22 ppb # 100 2 43 30702 0.14 ppb 75 6 117 25495 0.07 ppb 100 2 78 47074 0.13 ppb 98 92 37232 0.16 ppb 99									

,	24.00	Page 2
	2 \	
	S,ensznödorouhorilou – معروب معروب در المحمد الم	
70	Libbenoznodonoliti)	
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
7 13 00 #1 		
L: 14 r: RJ : MS : MS : MS : MS : MS : MS : MS : MS	Lanadot - T	
Via stato t t t t f t f t f f f f f f f f f f f		MSDJ
Ope Ins Sults ibrat	13. 13. 10.	
nt Re (RTE t cal	Lonosnedorout/b-+, I	2021
Quai G.M poin	T.abinoldos ile 100 (198 5	9:42
.D 17_1C 0r_5 21		08:1
35/A3 35/A3 25/20	T. otabous tydta Lisopathographicago and the second	Y 05
\AS04 36 pm 1. P 1. P anda: .06:4 .ratio	T.enoreX (vHE) tychoM	ed Ma
\DATA 6: 2A 2 2 202 2 202 2 202 5 08 5 08 5 08 5 08 5 08 5 08 5 08 5 08	Solution and the second se	Ж.
EM\1 2021 66 - 00 8 :1: 8 :1: 8 :1: 8 :1: 1 a1 4 1 a1	T. Service analysis of the service o	M.
(HPCH Apr 10403 17_1U Para V 5 V 5 C:\H Wed Init Init		100
: с:: 20 20 20 20 20 20 20 20 20 20 20 20 20		A317
File e Time d Updat nse v	S Freen 18.T Childennethana, T	[0.D
Data Acg C Sampl Misc Misc Misc Misc Methc Title Last Respc Respc Respc 7500000	5500000 5500000 5500000 5400000 4500000 35000000 35000000 30000000 25000000 1500000 10002000 5000000 5000000 5000000	AS04201

Page 3

AS042010.D A317_1UG.M Wed May 05 08:19:44 2021

Wed May 05 08:19:45 2021

MSD1

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042020.D Vial: 14 Acq On : 21 Apr 2021 1:53 am Sample : C2104038-002A 10X Misc : A317_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Apr 21 09:38:28 2021 Quant Results File: A317_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.81128806011.00 ppb0.0035) 1,4-difluorobenzene12.111142885271.00 ppb0.0050) Chlorobenzene-d516.921172622721.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.71 95 161467 0.81 ppb 0.05 Spiked Amount 1.000 Range 70 - 130 Recovery = 81.00% Target Compounds Qvalue 6.02 58 31928m **/** 0.65 ppb 6.13 45 46108 0.36 ppb # 1 15) Acetone 17) Isopropyl alcohol

Page 97 of 229

C)

24.00 Page

MSDl

S

Date: 05-May-21

CLIENT:	LaBella Associates, P.	с.		Cilent Sample ID:	Dupe	(4/15/21)
Lab Order:	C2104038			Tag Number:	550.21	71
Dan Oraci.	LEOO lo Contrato Danal			Collection Date:	A/15/0	021
rroject:	1500 Jenerson Road			Concerios Dates	- 117 E D / 2	
Lab ID:	C2104038-003A			Matrix:	АIК	
Analyses		Result	DL Q	ial Units	DF	Date Analyzed
FIELD PARAM	IETERS		FLD			Analyst:
Lab Vacuum Ir	ו	o		"Hg		4/16/2021
Lab Vacuum Ö	Put	-30		"Hg		4/16/2021
1UG/M3 W/ 0.2	2UG/M3 CT-TCE-VC-DCE-	1,1DCE	TO-15			Analyst: WD
1,1,1-Trichloro	ethane	< 0.15	0.15	ρpbV	1	4/20/2021 7:20:00 PM
1,1,2,2-Tetrach	nloroethane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,1,2-Trichloro	ethane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,1-Dichloroeth	hane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,1-Dichloroeth	hene	< 0.040	0.040	ppbV	1	4/20/2021 7:20:00 PM
1,2,4-Trichlorol	benzene	< 0.15	0,15	ppb∨	1	4/20/2021 7:20:00 PM
1,2,4 _* Trimethy	lbenzene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1.2-Dibromoeti	hane	< 0.15	0.15	Vdqq	1	4/20/2021 7:20:00 PM
1,2-Dichiorobe	nzene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,2-Dichloroeth	hane	< 0,15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,2-Dichloropro	opane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,3,5-Trimethy	lbenzene	< 0.15	0,15	ррв∨	1	4/20/2021 7:20:00 PM
1,3-butadiene		< 0,15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,3-Dichlorobe	nzene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,4-Dichlorobe	nzene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
1,4-Dioxane		< 0.30	0.30	ррбУ	1	4/20/2021 7:20:00 PM
2,2,4-trimethyl	pentane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
4-ethyltoluene		< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Acetone		5.9	3.0	ydqq	10	4/21/2021 2:36:00 AM
Allyi chioride		< 0.15	0.15	Vdqq	1	4/20/2021 7:20:00 PM
Benzene		0.13	0.15	Vdqq L	1	4/20/2021 7:20:00 PM
Senzyl chloride	9	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Bromodichloro	methane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Bromoform		< 0.15	0.15	Vdqq	1	4/20/2021 7:20:00 PM
Bromomethane	e	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Carbon disulfic	ie	< 0.15	0.15	Vdqq	1	4/20/2021 7:20:00 PM
Carbon tetrach	nloride	0.080	0.030	ррbV	1	4/20/2021 7:20:00 PM
Chlorobenzene	9	< 0,15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Chloroethane		< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Chloroform		< 0.15	0.15	Vdqq	1	4/20/2021 7:20:00 PM
Chloromethane	e	0.37	0.15	ppbV	1	4/20/2021 7:20:00 PM
cis-1,2-Dichlor	oethene	< 0.040	0.040	Vdqq	1	4/20/2021 7:20:00 PM
cis-1,3-Dichlor	opropene	< 0.15	0.15	ρρ6Υ	1	4/20/2021 7:20:00 PM
Cyclohexane		< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Dibromochloro	methane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM
Ethyl acetate		0.18	0.15	ppbV	1	4/20/2021 7:20:00 PM

 Qualifiers:
 SC
 Sub-Contracted
 Results reported are not blank corrected

 B
 Analyte detected in the associated Method Blank
 E
 Estimated Value above quantitation range

 H
 Holding times for preparation or analysis exceeded
 J
 Analyte detected below quantitation limit

 NN
 Non-routine analyte. Quantitation estimated.
 ND
 Not Detected at the Limit of Detection

Spike Recovery outside accepted recovery limits

ÐL.

Not Detected at the Limit of Detection Detection Limit

Page 5 of 6

Page 99 of 229

CT BENT-	I aBalla Associatos BC		Client Sample 1	Dr. Dune (4/15/21)	ĺ
CLICATI	Calicia Associates, F.C.		Chem Sample i	D. Cape (+/1,//21)	
Lab Order:	C2104038		Tag Numb	er: 550,27		
Project:	1500 Jefferson Road		Collection Da	te: 4/15/20	021	
Lab ID:	C2104038-003A		Matr	ix: AIR		
Analyses		Result	DL Qual Units	DF	Date Analyzed	

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-15			Analyst: WD	
Ethylbenzene	< 0.15	0.15	opb∨	1	4/20/2021 7:20:00 PM	
Freon 11	0.18	0.15	ppb∨	1	4/20/2021 7:20:00 PM	
Freon 113	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Freon 114	< 0.15	0.15	ppb∨	1	4/20/2021 7:20:00 PM	
Freon 12	0.48	0.15	Vdqq	1	4/20/2021 7:20:00 PM	
Heptane	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Hexachioro-1,3-butadiene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Hexane	< 0.15	0.15	Vdqq	1	4/20/2021 7:20:00 PM	
Isopropyl alcohol	2.8	1.5	ppbV	10	4/21/2021 2:36:00 AM	
m&p-Xylene	< 0.30	0.30	ppbV	1	4/20/2021 7:20:00 PM	
Methyl Butyl Ketone	< 0.30	0.30	Vdqq	1	4/20/2021 7:20:00 PM	
Methyl Ethyl Ketone	0.25	0.30	J ppbV	1	4/20/2021 7:20:00 PM	
Methyl Isobuly! Ketone	< 0.30	0.30	ppbV	1	4/20/2021 7:20:00 PM	
Methyl tert-butyl ether	< 0.15	0.15	opoV	1	4/20/2021 7:20:00 PM	
Methylene chloride	0.27	0.15	ppbV	1	4/20/2021 7:20:00 PM	
o-Xylene	< 0,15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Propylene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Styrene	< 0.15	0.15	Vđqq	1	4/20/2021 7:20:00 PM	
Tetrachloroethylene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Tetrahydrofuran	< 0.15	0.15	ppb∨	1	4/20/2021 7:20:00 PM	
Toluene	0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	4/20/2021 7:20:00 PM	
trans-1.3-Dichloropropene	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Trichloroethene	< 0.030	0.030	ppbV	1	4/20/2021 7:20:00 PM	
Vinvl acetate	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Vinyl Bromide	< 0.15	0.15	ppbV	1	4/20/2021 7:20:00 PM	
Vinyl chloride	< 0.040	0.040	ppbV	1	4/20/2021 7:20:00 PM	
Surr: Bromofluorobenzene	88.0	47-124	%REC	t	4/20/2021 7:20:00 PM	

Qualifiers:	SC	Sub-Contracted	
	в	Analyte detected in the associated Method Blank	1 ¹
	Ħ	Holding times for preparation or analysis exceeded	

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

CLIENT:		LaBella Associates P.C			Clier	nt Samole	ED:	Dupe (4/	15/21)		
Lab Order		C2104038	•			Tao Namt	her.	550 271			
Dab Order.					Co	Bostion D	ato	4/15/202	1		
Project:		1500 Jetterson Koad			C.0	Meetron Da		A 113	•		
Lab 1D:		C2104038-003A				iviat	rix:	AIK			
Analyses			Result	DL	Qual U	nits		ÐF	Date An	alyzed	
1UG/M3 W/ 0.	2UG	M3 CT-TCE-VC-DCE-1	,1DCE	то	-15				Ar	nalyst: WD	
1,1,1-Trichlord	etha	ne	< 0.82	0.82	ug	/m3		1 .	4/20/2021	7:20:00 PM	
1,1,2,2-Tetrac	hloro	ethane	< 1.0	1.0	ug	/m3		1	4/20/2021	7:20:00 PM	
1,1,2-Trichlord	betha	ne	< 0.82	0.82	ψg	/m3		1	4/20/2021	7:20:00 PM	
1,1-Dichloroet	hane		< 0.61	0.61	цĝ	/m3		1	4/20/2021	7:20:00 PM	
1,1-Dichloroet	hene		< 0.16	0.16	ug	/m3		1	4/20/2021	7:20:00 PM	
1,2,4-Trichlord	benz	ene	< 1.1	1.1	បន្ទ	/m3		1	4/20/2021	7:20:00 PM	
1,2,4-Trimethy	ylben:	zene	< 0.74	0.74	មុច្ច	/m3		1	4/20/2021	7:20:00 PM	
1,2-Dibromoet	thane	•	< 1.2	1,2	ug	/m3		1	4/20/2021	7:20:00 PM	
1,2-Dichlorobe	anzer	e	< 0.90	0.90	ug	/m3		1	4/20/2021	7:20:00 PM	
1,2-Dichioroet	hane:		< 0.61	0.61	មជ្	/m3		1	4/20/2021	7:20:00 PM	
1,2-Dichloropr	opan	e	< 0.69	0.69	uç	/m3		1	4/20/2021	7:20:00 PM	
1,3,5-Trimethy	ylben	zene	< 0.74	0.74	ЦČ	/m3		1	4/20/2021	7:20:00 PM	
1,3-butadiene			< 0.33	0.33	υg	/m3		1	4/20/2021	7:20:00 PM	
1,3-Dichlorobe	enzor	10	< 0.90	0.90	uç	ı/m3		1	4/20/2021	7:20:00 PM	
1,4-Dichlorobe	enzer	1e	< 0.90	0.90	นดุ	/m3		1	4/20/2021	7:20:00 PM	
1,4-Dioxane			< 1.1	1.1	uç	r/m3		1	4/20/2021	7:20:00 PM	
2,2,4-trimethy	ipent	ane	< 0.70	0.70	uş	/m3		1	4/20/2021	7:20:00 PM	
4-ethyltoluene	3		< 0.74	0.74	υç	j/m3		1	4/20/2021	7:20:00 PM	
Acetone			14	7,1	uş	J/m3		10	4/21/2021	2:36:00 AM	
Allyl chloride			< 0,47	0.47	μç	ş/m3		1	4/20/2021	7:20:00 PM	
Benzene			0.42	0.48	j në	j/m3		1	4/20/2021	7:20:00 PM	
Benzyl chlorid	lę		< 0.86	0.86	υţ	3/m3		1	4/20/2021	7:20:00 PM	
Bromodichiord	ometi	nane	< 1.0	1.0	មនុ	j/m3		1	4/20/2021	7:20:00 PM	
Bromoform			< 1.6	1.6	u	g/m3		1	4/20/2021	7:20:00 PM	
Bromomethar	ıe		< 0.58	0.58	uş	j/m3		1	4/20/2021	7:20:00 PM	
Carbon disulfi	de		< 0.47	0.47	uş	g/m3		1	4/20/2021	7:20:00 PM	
Carbon tetrac	hlorid	ie	0.50	0.19	Цġ	3/m3		1	4/20/2021	7:20:00 PM	
Chlorobenzen	e		< 0.69	Q.69	ц	j/m3		1	4/20/2021	7:20:00 PM	
Chloroethane			< 0.40	0.40	Ц	g/m3		1	4/20/2021	7:20:00 PM	
Chioroform			< 0.73	0.73	ų	g/m3		1	4/20/2021	7:20:00 PM	
Chioromethar	ıe		0.76	0.31	цę	j/m3		1	4/20/2021	7:20:00 PM	
cis-1.2-Dichio	roeth	ene	< 0.16	0.16	uş	J/m3		1	4/20/2021	7:20:00 PM	
cis-1,3-Dichlo	ropro	pene	< 0.68	0.68	U	3/m3		1	4/20/2021	7:20:00 PM	
Cyclohexane			< 0.52	0.52	ų	3/m3		1	4/20/2021	: 7:20:00 ₽M	
Dibromochlor	omet	hane	< 1.3	1.3	u,	g/m3		1	4/20/2021	7:20:00 PM	
Ethyl acetate			0.65	0.54	u	y/m3		1	4/20/2021	7:20:00 PM	
Ethylbenzene			< 0.65	0.65	u	g/m3		1	4/20/2021	7:20:00 PM	
Freon 11			1.0	0.84	U	⊉/m3		1	4/20/2021	7:20:00 PM	
Freon 113			< 1.1	1.1	U	a/m3		1	4/20/2021	7:20:00 PM	
Freon 114			< 1.0	1.0	Ų	g/m3		1	4/20/2021	1 7:20:00 PM	
Oualifiers	SC	Sub-Contracted				Results rer		are not blar	ik corrected	· · ·	
-9	В	Analyte detected in the asso	ciated Method B	lank	E	Estimated	Value	e above quantitation range			
 Molding times for measuration or medicin acc. 			eeded	J	Analyte de	tected	below quar	ntitation lin	- iit		
	JN	Non-routine analyte. Onanti	tation estimated		ND	Not Detect	ted at t	the Limit of	Detection		
	s	Spike Recovery outside acco	epted recovery li	mits	DL	Detection	t.imit			Page 5 of 6	

			15 T	- ·	5 T T.A	(5)	Distant American States and
Lab ID:	C2104038-003A				Matrix:	AIR	
Project:	1500 Jefferson Road				Collection Date:	4/15/202	1
Lab Order:	C2104038				Tag Number:	550,271	
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	Dupe (4/	15/21)
		· · · · · · · · · · · ·				•••••••••••••••••••••••••••••••••••••••	

ALLORD MULA SUCIMA OF TOE MO	TO_15			Anaivst: WD	
Ereon 12	-DCE-1,1DCC 24	0.74	ua/m3	1	4/20/2021 7:20:00 PM
Hantana	< 0.61	0.61	ug/m3	1	4/20/2021 7:20:00 PM
Heyachloro-1 3-butadiene	< 16	1.6	ug/m3	1	4/20/2021 7:20:00 PM
Hevane	< 0.53	0.53	ug/m3	1	4/20/2021 7:20:00 PM
Isoprovi ticobol	6.9	3.7	ua/m3	10	4/21/2021 2:36:00 AM
m&n-Yvlene	<13	1.3	ug/m3	1	4/20/2021 7:20:00 PM
Methyl Butyl Ketope	< 1.2	1.2	ua/m3	1	4/20/2021 7:20:00 PM
Methyl Ethyl Ketone	0.74	0.88 J	ug/m3	1	4/20/2021 7:20:00 PM
Methyl Isobutyl Ketone	< 12	1.2	ug/m3	1	4/20/2021 7:20:00 PM
Methyl tet-butyl ether	< 0.54	0.54	ug/m3	1	4/20/2021 7:20:00 PM
Methylene chloride	0.94	0.52	ug/m3	1	4/20/2021 7:20:00 PM
e-Yulana	< 0.65	0.65	ua/m3	1	4/20/2021 7:20:00 PM
Brooklene	< 0.00	0.26	ug/m3	1	4/20/2021 7:20:00 PM
Styropo	< 0.64	0.64	ug/m3	1	4/20/2021 7:20:00 PM
Styrene	< 1.0	10	uo/m3	1	4/20/2021 7:20:00 PM
Tetrachiordernyiene	- 1.0 - 0.44	0.44	uo/m3	1	4/20/2021 7:20:00 PM
Tetranydroturan	0.67	0.57	ug/m3	1	4/20/2021 7:20:00 PM
	- 0.50	0.57	uo/m3	1	4/20/2021 7:20:00 PM
trans-1,2-Dichloroethene	< 0.09 < 0.69	0.55	ug/m3	1	4/20/2021 7:20:00 PM
trans-1,3-Dichloropropene	< 0.00	0.08	ug/m3	1	4/20/2021 7:20:00 PM
Trichloroethene	< 0.10	0.10	ug/m3	1	4/20/2021 7:20:00 PM
Vinyl acetate	< 0.03	0.33 A 66	ug/m3	, 1	4/20/2021 7:20:00 PM
Vinyl Bromide	< 0.00	0,00	ug/m3	,	4/20/2021 7:20:00 PM
Vinyl chloride	~ 0.10	0.10	çymə		

Qualifiers:

- SC Sub-Contracted
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- , Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL. Detection Limit

Page 6 of 6

	Centek Laboratories,LLC $_{Qua}$	ntitati	ion Rep	port (QT	Review	ved)				
Data 1 Acq Or Sample Misc MS Int Quant	File : C:\HPCHEM\1\DATA\AS04 n : 20 Apr 2021 7:20 pm ≥ : C2104038-003A : A317_1UG Cegration Params: RTEINT.P Time: Apr 21 09:41:34 2021	2011.D	Qua	Ope Ins Mul ant Results	Vial: rator: t : tiplr: File:	14 RJP MSD #3 1.00 A317_3	LUG.RES			
Quant Title Last I Respon DataAd	Nuant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Nitle : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG_ENT									
Inte	rnal Standards	R.T.	QION	Response	Conc Ur	nits De	ev(Min)			
	Bromochloromethane	 9 87	178	05695	3 00	nnh	0 01			
26)	1 4-difluorobenzene	10 11	114	354558	1,00	5555	0,01			
50)	Chlorobenzene-d5	16.92	117	329868	1.00	dqq	0.00			
Syste	em Monitoring Compounds									
65)	Bromofluorobenzene	18.71	95	218403	0.88	ppb	0.05			
Sp :	iked Amount 1.000 Ran	ige 70	- 130	Recover	У т	88.00)&			
Targe	et Compounds					(Ovalue			
3)	Freon 12	4.22	85	170054	0.48	ppb	97			
4)	Chloromethane	4.41	50	31840	0.37	dqq	87			
14)	Freon 11	5.85	101	71463	0.18	ppb	97			
15)	Acetone	6.01	58	207904	3.55	ppb ;	\$ 32			
17)	Isopropyl alcohol	6,12	45	378599	2.51	dqq	4 1			
21)	Methylene chloride	7.07	84	33085	0.27	ppb	. 93			
28)	Methyl Ethyl Ketone	8.93	72	12694	0.25	ppb i	\$ 100			
31)	Ethyl acetate	9.53	43	38839	0.18	ppb ;	# 64			
38)	Carbon tetrachloride	11.46	117	25145	0.08	aqq	99			
39)	Benzene	11.42	78	42957	0,13	aqq	99			
51.)	Toluene	14.88	92	32408	0.15	aqq	94			

Page 104 of 229

2

Wed May 05 08:19:53 2021

AS042011.D A317_1UG.M

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042021.D Vial: 14 Acq On : 21 Apr 2021 2:36 am Operator: RJP Sample : C2104038-003A 10X Misc : A317_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Apr 21 09:55:31 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.81128764201.00ppb0.0035) 1,4-difluorobenzene12.111142643451.00ppb0.0050) Chlorobenzene-d516.921172426221.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.71 95 146757 0.80 ppb 0.05 Spiked Amount 1.000 Range 70 - 130 Recovery = 80.00% Ovalue Target Compounds 6.03 58 27769m / 0.59 ppb 6.14 45 34255 0.28 ppb # 1 15) Acetone 17) Isopropyl alcohol

			24.00 2age 2
			23.00
			22.00
			21.00
			20.00
		S, εποχηροφορμίτομηση	19:00
			20 20 20 20 20 20 20 20 20 20 20 20 20 2
R R		I.3b-ensznadorokit.0	17.00
#1 			16.00
14 RJP MSD 1.00 1.00 1.00	021.D		15.00
Vial Vial st tiplr s File frator	IC: ASD4		MSD1
Ope Ins Mul esults esults librat	, m , , , , ,		0 13.00
ant R ((RTE Int ca		l,9//95/960/00/lfib-4, (0 12.00 8 202]
			0 11.0 8 : 20 : 0
2021.E S\A317 ds fox	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	l,onachiorochiorochiorochiorochi	0 10.0
A\AS04 :36 am DX NT.P 21 21 vETHOD	8:06:4 7 8:16 7 8 7 10 10		0 9.0 6 Maj
(1) DAT 12 003A 1 003A 1 003A 1 15 003A 1 15 00A 5 00A 5 00A 5			8
PCHEM/ PT 202 4038-0 1UG arams: 5 8: (HPC5	nitial May	T. Ioriania ??(18)?????	00 7/
: C:\H : 21 A : 21 A : 210 : 3317 : 1317 : 100 P : May : T : 3	11에 22, 12 	· · · · · · · · · · · · · · · · · · ·	00 6. A317_1
File Dn Le Itegrat Xd Yd	v tr beat D U D Se d A	الم الم الحريم الم الم الم الم الم الم الم الم الم ال	21.D
Data Acq (Sampl Misc Ms Ir Quant Quant Methc	41011 Last Respi Respi 700000 1900000 1800000 1700000 1600000 1500000	1300000 1200000 1000000 906000 8000000 600000 500000 500000 500000 500000 500000 500000 300000 300000	(Time> 4 AS0420.

Page 112 of 229

1

٢

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

STANDARDS DATA

.

١.

.

ī.

,

GC/MS VOLATILES-WHOLE AIR

.

.

.

.

METHOD TO-15

INITIAL CALIBRATION

Page 115 of 229

+

Response Factor Report MSD #1

	Meth Titl Last Rest	nod : C:\HFCH: .e : TO-15 W . Update : Tue Apr popse via : Initial	EM\l\ME DA Sta 06 14: Calibr	THODS\ ndards 32:00 ation	A317_1 for 5 2021	UG.M (point	RTE In calib	tegrato ration	or)	
	1	Jonise Vile : initerat								
	Cali	bration Files	6 D	******	1 1 1 13	1 35	-260	31730	F)	
	1.0	=AS031712.D 1	.50 = .76 =	AS0317 AS0317	0a.p	0.50	≈AS0	31707.3	D	
										8. Y. C T.
		Compound	2.0	1.50	1.25	1.0	0.75	0.50	Avg	TRSD
- 94										
3)	I	Bromochloromethan	e:				3			
2)	T	Propylene	0.696	0.708	0.712	0,704	0.699	0.690	0.737	10.35
3)	T	Freon 12 Chloromethane	3.455	3.464	3.202	3.031	0 945	0.829	0.900	15.94
4)	т Т	Freen 134	2.706	2.693	2.719	2.993	3,054	2.877	2.960	9,94
6) 6	Ŧ	Vinyl Chloride	0.784	0.793	0.804	0.875	0.893	0.869	0.911	10.52
7)	т	Butane	0.886	0.895	0.909	0.960	0,990	1.009	1.007	13.36
8)	т	1,3-butadiene	0.635	0.629	0.640	0.685	0.714	0.696	0.713	14.43
2)	Т	Bromomethane	0.979	1.032	1.011	1.050	1.070	1.1%3	0 417	10.79
10)	T T	Chioroethane Ethanol	0.391	0.374	0.370	0.207	0.270	0.246	0.273	16.88
121	4. 191	Acrolein	0.384	0.358	0.357	0.376	0.378	0.371	0.390	10.73
13)	$\hat{\mathbf{r}}$	Vinyl Bromide	1,188	1.152	1.029	1.191	1,179	1.063	1.162	7.54
14)	\mathbf{T}	Freon 11	3.848	3.776	3.818	3.957	4.042	4.081	4.095	9.26
15)	\mathbf{T}	Acetone	0.572	0.548	0.552	0.552	0.614	0.578	0.613	15.22
3.6)	T	Pentane	1.008	0.943	0.965	1 550	0.990 1 671	1.035	1.574	2.68
17)	T	Isopropyi aicon	1 121	1 184	1 190	1.168	1.249	1.282	1.300	11.83
19) 19)	1. T	Preop 113	2.885	2.834	3.013	3,084	3.001	3 048	3.112	9.46
20)	Ê	t-Butyl alcohol	1.949	1,998	1.863	1.859	2.007	2.039	1,997	5.28
21)	T	Methylene chlor	1.122	1.114	1.229	1.261	1.319	1.262	1.300	14.89
22)	Ϋ́	Allyl chloride	1.135	1.103	1.174	1.162	1.256	1.103	1.194	1.44
23)	Υ	Carbon disulfid	3.356	3.271	3.617	3,647	3.705	4.017	3.007	6.58
24)	T	trans-1,2-dichi	1.677	2 702	2 708	2 622	2 565	2.618	2.753	6.19
257	- <u>1</u> -	Rechyl Cerc-Dau	2.333	2.273	2.302	2.334	2.358	2.389	2,389	8.24
27)	$\dot{\mathbf{r}}$	Vinvl acetate	2.045	2.042	1.914	1.840	1.820	1,894	1.956	6.03
28)	T	Methyl Ethyl Ke	0.541	0.541	0.523	0.509	0.494	0,533	0.534	5.38
29)	Т	cis-1,2-dichlor	1.545	1.521	1.485	1.439	1.505	1.541	1.577	9.39
30}	T	Hexane	1.687	1.671	1.586	3.577	1.500	2 362	2.203	8.51
31)	T.	Ethyi acctate	2.100	2.140	2.449	3.052	3.112	3.167	3.178	8.19
231	Ť	Terrahydrofuran	0.980	0.958	0.932	0.904	0.890	0,890	0,938	4.56
34)	Ť	1,2-dichloroeth	1.830	1.803	1.833	1.852	1.857	1.954	1,919	7.84
35)	r	1,4-difluorobenze	ane		A 705	0 794	1)** 0 793	0 837	0.822	8.33
36)	T	1,1,1-tricnioro	0.775	0.774	0.385	0.380	0.366	0.356	0.381	4,49
- 377 - 38)	ידי	Carbon tetrachl	0.851	0.837	0.848	0.885	0.881	0.891	0.919	10.97
39)	Ť	Benzene	0.947	0.930	0.939	0.941	0,910	0.921	0,961	5.96
40)	Ϋ́Γ	Methyl methacry	0.366	0.352	0.345	0.342	0.323	0.324	0.338	4.77
41)	T	1,4-dioxane	0.231	0.221	0.225	0.220	0.208	0.198	0.209	2 40
42)	T	2,2,4-trimethyl	1.329	1.293	1.3.16	1.295) 1.203 - 0 409	1.235	1.207	5.27
43)	T	Heptane Wrichloroothene	0.450	0.428	0.432	0.421	0.491	0.512	0.510	7.29
447	יב ידי	1 2-dichloropro	0.407	0.358	0.356	0.373	0.363	0.370	0.375	6.30
46)	Ť	Bromodichlorome	0.782	0.784	0.800	0.812	0.824	0.828	0.830	7,22
47)	Ť	cis-1,3-dichlor	0.540	0.530	0.540	0.529	0.531	0.525	0.529	1.66
48)	T	trans-1,3-dichl	0.440	0.447	0.430	0.424	0.435	0,414	0.435	3.77
49)	Ŧ	1,1,2-trichloro	0.450	0.445	0.452	0,460) 0.464	0.487	0.4/5	0,04
e ^ `	Ŧ	Chlarchancena_de	-				rD		~ ~ ~ ~ ~ .	
50)	یں ا ت	Toluene	0.703	0.684	0.695	0.679	9 0.631	0.628	0.666	4.79
	· -	And the way may be a first								
(#)	= 0	ut of Range ### Nu	unber o	f cali	bratic	n leve	els exc	eeded	format	扶井井
		APT/ TOR'W	ine ab	7. OO 4	.410012	نكد اب دي ويره	•			

Response Factor Report MSD #1

	Meti Titl Last Resp	nod : C:\HPC le : TO-15 : Update : Tue Ap ponse via : Initia	HEM\l\M VOA Sta r 06 14 l Calibu	ETHODS\ andards 32:00 ration	A317_1 for 5 2021	UG.M (point	RTE In calib	tegrat	or)	
	Cali 2.0 1.0	bration Files =AS031712.D =AS031709.D	1.50 0.75	=AS0317 =AS0317	11.D 08.D	1.25 0.50	=AS0 =AS0)31710.)31707.	D D	
		Compound	2.0	1.50	1.25	1.0	0.75	0.50	Avg	%RSD
555555556666666666777777 -234507990123456777777 		Methyl Isobutyl Dibromochlorome Methyl Butyl Ke 1,2-dibromoetha Tetrachloroethy Chlorobenzene Ethylbenzene m&p-xylene Nonane Styrene Bromoform o-xylene Cumene Bromofluorobenz 1,1,2,2-tetrach Propylbenzene 2-Chlorotoluene 4-ethyltoluene 1,3,5-trimethyl 1,2,4-trimethyl 1,3-dichloroben benzyl chloride 1,4-dichloroben 1,2,3-trimethyl	$\begin{array}{c} 0.640\\ 0.876\\ 0.615\\ 0.746\\ 0.527\\ 1.046\\ 1.541\\ 1.315\\ 0.778\\ 1.055\\ 0.858\\ 1.468\\ 1.887\\ 0.830\\ 1.084\\ 0.529\\ 0.544\\ 1.684\\ 1.651\\ 0.536\\ 1.150\\ 0.916\\ 1.148\\ 1.647\\ 1.647\end{array}$	0.626 0.849 0.580 0.736 0.524 1.031 1.476 1.258 0.738 1.009 0.830 1.416 1.784 0.801 1.070 0.499 0.518 1.775 1.599 1.452 1.07 0.855 1.099 1.535	0.621 0.889 0.575 0.742 0.542 1.063 1.467 1.302 0.759 1.055 0.868 1.463 1.772 0.841 1.092 0.549 1.688 1.430 1.440 0.557 1.688 1.4430 1.140 0.818 1.134 1.614	0.608 0.903 0.557 0.751 0.553 1.057 1.428 1.272 0.745 1.059 0.881 1.485 1.722 0.851 1.115 0.490 0.823 1.672 1.388 1.388	0.595 0.874 0.541 0.738 0.531 1.026 1.361 1.162 0.683 0.943 0.943 0.823 1.384 1.617 0.509 1.612 1.467 1.255 1.065 0.754 1.023 1.375	0.595 0.882 0.541 1.038 1.330 1.121 0.654 0.921 0.836 1.336 1.336 1.336 1.336 1.336 1.537 0.431 0.431 0.431 0.431 0.431 0.517 1.365 1.207 1.365 1.303	0.620 0.901 0.566 0.762 0.550 1.062 1.410 1.198 0.700 0.973 0.859 1.393 1.667 0.469 0.518 1.517 1.324 1.517 1.324 1.068 1.438	3, 42 5, 80 5, 53 4, 84 5, 27 3, 75 5, 81 8, 37 9, 12 8, 37 9, 12 3, 856 9, 83 5, 569 9, 839 6, 893 10, 27 10, 27 10, 27 10, 251 10, 36 5, 51 12, 43
76 77 78 79)	1,2-dichloroben 1,2,4-trichloro Naphthalene Hexachloro-1,3-	1.076 0.548 1.351 0.807	0,996 0.500 1.199 0.794	1.075 0.533 1.252 0.831	1.078 0.500 1.137 0.828	0,935 0,405 0,903 0,778	0.938 0.385 0.830 0.788	0.994 0.452 1.019 0.821	7.18 16.76 21.22 5.68

.

Quantitation Report (Not Reviewed) Data File : C:\HPCHEM\1\DATA2\AS031702.D Vial: 2 Acq On : 17 Mar 2021 9:39 am Operator: RJP Sample : AlUG_0.03 Misc : A317_LUG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 10:05:35 2021 Quant Results File: A316 1UG.RES Quant Method : C:\NPCHEM\1\METHODS\A316 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Mar 16 11:30:56 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031606.D DataAcg Meth : 10G ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane3.78128448921.00ppb0.0035) 1.4-difluorobenzene12.071141624591.00ppb0.0050) Chlorobenzene-d516.891171582051.00ppb0.00 System Monitoring Compounds
 Spiked Amount
 1.000
 Range
 70
 130
 Recovery
 =
 80.00%
 Ovalue Target Compounds

 6) Vinyl Chloride
 4.58
 62
 1337
 0.03
 ppb
 78

 38) Carbon tetrachloride
 11.42
 117
 4333
 0.03
 ppb
 99

 44) Trichloroethene
 12.72
 130
 2261mÅ
 0.03
 ppb

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS031702.D A317_1UG.M Tue Apr 06 14:37:03 2021 MSD1

\$

24.00 Page

23.00

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031703.D Vial: 3 Acg On : 17 Mar 2021 10:31 am Operator: RJP Sample : AlUG_0.04 Misc : A317_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:41:34 2021 Quant Results File: A317 10G.RES Quant Method ; C:\HPCHEM\1\METHODS\A317 10G.M (RTE integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File; C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 10G ENT Internal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane9.79128443311.00ppb0.0035) 1,4-difluorobenzene12.081141653361.00ppb0.0050) Chlorobenzene-d516.901171539861.00ppb0.00 System Monitoring Compounds
 65) Bromofluorobenzene
 18.64
 95
 99245
 0.76 ppb
 -0.05

 Spiked Amount
 1.000
 Range
 70 - 1.30
 Recovery = 76.00%
 Target Compounds Ovalue Carget CompoundsConduct6) Vinyl Chloride4.606217970.05ppb8718) 1,1-dichloroethene6.619623300.04ppb8829) cis-1,2-dichloroethene9.346126280.04ppb8238) Carbon tetrachloride11.4211759010.04ppb9844) Trichloroethene12.7313033190.04ppb97

(#) =qualifier out of range (m) =manual integration (+) = signals summed AS031703.D A317_1UG.M Tue Apr 06 14:41:40 2021 MSD1

24.00 Page 2

23.00

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AS031704.D Vial: 4 Acq On : 17 Mar 2021 11:27 am Operator: RJP Sample : AlUG_0.10 Misc : A317_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:41:11 2021 Quant Results File: A317_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG ENT R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.78128452331.00ppb0.0035) 1,4-difluorobenzene12.081141646361.00ppb0.0050) Chlorobenzene-d516.891171506351.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 104546 0.82 ppb Spiked Amount 1.000 Range 70 - 130 Recovery = 82.00% 0.00 Övalue Target Compounds CompoundsOvalue6) Vinyl Chloride4.59624734m0.12 ppb18) 1,1-dichloroethene6.599674520.14 ppb9229) cis-1,2-dichloroethene9.356186340.13 ppb9638) Carbon tetrachloride11.42117195020.13 ppb9844) Trichloroethene12.7213097140.12 ppb9878) Naphthalene23.12128137880.08 ppb99

(#) = qualifier out of range (m) = manual integration (+) = signals summed ASO31704.D A317_1UG.M Tue Apr 06 14:41:47 2021 MSD1

¢٩

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AS031705.DVial: 5Acq On : 17 Mar 2021 12:10 pmOperator: RJPInst : MSDInst : MSDMultiple: 1.0Multiple: 1.0 Sample : A1UG_0.15 Misc : A317_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:40:53 2021 Quant Results File: A317_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : lUG_ENT R.T. QION Response Conc Units Dev(Min) Internal Standards ______ 1) Bromochloromethane9.79128452111.00ppb0.0035) 1.4-difluorobenzene12.081141680951.00ppb0.0050) Chlorobenzene-d516.901171620241.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 117251 0.88 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 85.00%

 65)
 Bromofluorobenzene Spiked Amount
 18.69
 95
 117251
 0.85
 0.00

 Target Compounds
 Qvalue

 2)
 Propylene
 4.15
 41
 6199
 0.19
 ppb
 92

 3)
 Preon 12
 4.20
 85
 29691
 0.18
 ppb
 100

 4)
 Chioromethane
 4.39
 50
 8362
 0.19
 ppb
 92

 3)
 Freen 114
 4.39
 85
 24284
 0.18
 ppb
 92

 6)
 Vinyl Chioride
 4.59
 62
 6885
 0.17
 ppb
 97

 7)
 Butane
 4.69
 39
 6384
 0.20
 ppb
 91

 9)
 Bromomethane
 5.03
 94
 9650
 0.22
 ppb
 97

 10)
 Chioroethane
 5.88
 56
 3285
 0.17
 ppb
 98

 13)
 Vinyl Bromide
 5.10
 63450
 0.20
 ppb
 100

 14
 Freen 11
 5.82
 101
 33432
 0.19
 ppb
 88
 (#) = qualifier out of range (m) = manual integration AS031705.D A317_1UG.M Tue Apr 06 14:41:56 2021 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031705.D Vial: 5 Acg On : 17 Mar 2021 12:10 pm Operator: RJP Sample : AlUG_0.15 Misc : Al17_10G Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:40:53 2021 Quant Results File; A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG ENT

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.17	83	24425	dqu 81.0	1.00
47)	cis-1,3-dichloropropene	14.00	75	13149	0.15 ppb	99
48)	trans-1,3-dichloropropene	14.77	75	11766	0.16 ppb	93
49)	1,1,2-trichloroethane	15.10	97	13568	0.18 ppb	97
51)	Toluene	14.85	92	16622	0.15 ppb	99
52)	Methyl Isobutyl Ketone	13.92	43	15946	0.16 ppb	90
53)	Dibromochloromethane	15.83	129	24810	0.17 ppb	97
54)	Methyl Butyl Ketone	15.28	43	14486	0.16 ppb	79
55)	1,2-dibromoethane	16.10	107	20501	0.17 ppb	100
56)	Tetrachloroethylene	15.92	164	14870	0.17 ppb	99
57)	Chlorobenzene	16,95	112	27887	0.16 ppb	98
58)	Ethylbenzene	17.22	91	33475	0.14 ppb	300
59)	map-xylene	17.44	91	53065	0.26 ppb	98
60)	Nonane	17.85	43	15319	0.13 ppb	85
61)	Styrene	17.91	104	21065	0.12 ppb	92
62)	Bromoform	18.03	173	22480	0.16 ppb	99
63)	o-xylene	17.95	91.	32023	0.13 ppb	95
64)	Cumene	18.57	105	37234	0.13 ppb	# 97
66)	1,1,2,2-tetrachloroethane	18.44	83	31871	0.18 ppb	99
67)	Propylbenzene	19.18	120	10644	0.13 ppb	73
68)	2-Chlorotoluene	19.22	126	11739	0.13 ppb	# 84
69)	4-ethyltoluene	19.37	105	35881	0,12 ppb	100
70)	1,3,5-trimethylbenzene	19.44	105	33164	0.12 ppb	79
71)	1,2,4-trimethylbenzene	19.95	105	28786	0.13 ppb	9.9
72)	l,3-dichlorobenzene	. 20.28	146	26583	0.14 ppb	99
73)	benzyl chloride	20.36	91	16505	0.13 ppb	98
74)	1,4-dichlorobenzene	20.43	146	24260	0.13 ppb	1,00
75)	1,2,3-trimethylbenzene	20,48	105	29915	0.12 ppb	96
76)	1,2-dichlorobenzene	20.80	146	22908	0.13 ppb	98
77)	1,2,4-trichlorobenzene	22.91	180	9132	0.11 ppb	95
78)	Naphthalene	23.13	128	19413	ddd fr.0	99
79}	Hexachloro-1,3-butadiene	23.24	225	22528	0.17 ppb	97

_________ (#) = qualifier out of range (m) = manual integration (+) = signals summed AS031705.D A317_10G.M Tue Apr 06 14:41:56 2021 MSD1

Quantitation Report (QT Reviewed)

 Data File : C:\MPCHEM\1\DATA2\AS031706.D
 Vial: 6

 Acq On : 17 Mar 2021 12:51 pm
 Operator: RJP

 Sample : Alug 0.30
 Inst : MSD

 Sample : AlUG_0.30 Misc : A317_1UG Inst : MSD #1 Multiplr: 1.00 MISC FAST/_IOG Multiple: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:40:35 2021 Quant Results File: A317_lUG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcg Meth : 1UG ENT R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.79128467341.00ppb0.0035) 1.4-difluorobenzene12.081141727891.00ppb0.0050) Chlorobenzene-d516.901171672691.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 122386 0.86 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 86.00%
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 = 86.00%

 2)
 Propylene
 4.14
 41
 10865
 0.33 pph
 97

 3)
 Preon 12
 4.19
 85
 55560
 0.33 pph
 97

 4)
 Chloromethane
 4.39
 50
 12423
 0.30 pph
 98

 5)
 Freeon 114
 4.40
 85
 42828
 0.31 pph
 98

 6)
 Vinyl Chloride
 4.59
 62
 13055
 0.32 pph
 96

 1.1.3
 Jouromethane
 5.21
 64
 6073
 0.33 pph
 92

 9)
 Bromomethane
 5.20
 45
 4456
 0.33 pph
 97

 12)
 Acrolein
 5.89
 56
 106
 0.33 pph
 97

 13)
 Vinyl Bromide
 5.55
 106
 16432
 0.30 pph
 95

 14)
 Preon 11
 5.97
 58
 9239
 0.36 pph
 4

 15)
 Acetone
 6.78
 Target Compounds

(#) > qualifier out of range (m) = manual integration AS031706.D A317_1UG.M Tue Apr 06 14:42:14 2021 MSD1

Quantitation Report (QT Reviewed)

Vial: 6 Data File : C:\HPCHEM\1\DATA2\AS031706.D Acq On : 17 Mar 2021 12:51 pm Sample : A1UG_0.30 Misc : A317_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Mar 17 15:40:35 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO~15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG_ENT

	Compound	R.T.	Qĩon	Response	Conc Unit	Qvalue
		*				
46)	Bromodichloromethane	3.3.18	83	43740	0.31 ppp	99
47)	cis-1,3-dichloropropene	14.00	75	26640	aqq ez.u	97
48)	trans-1,3-dichloropropene	14.77	75	21920	add of o	24
49)	l,1,2-trichloroethane	15.10	97	26152	0.33 ppp	<i>71</i>
51)	Toluene	14.85	92	31492	0.28 ppp	39
52)	Methyl Isobutyl Ketone	13.91	43	30832	0.30 ppp	88 100
53)	Dibromochloromethane	15.83	129	45710	0,30 ppb	700
54)	Methyl Butyl Ketone	15.28	43	26789	0.29 ppp	84
55)	1,2-dibromoethane	16.09	107	39575	0.31 ppp	20
56)	Tetrachloroethylene	15.92	164	28493	0.31 ppb	97
57)	Chlorobenzene	16,95	112	54645	0.31 ppo	98
58)	Ethylbenzene	17.23	91	65233	0.27 ppb	100
59)	m&p-xylene	17.44	91	106639	0.50 ppb	99
60)	Nonane	17.85	43	30575	0.25 ppb	87
61)	Styrene	17.91	104	44080	0.25 ppb	93
62)	Bromoform	18.04	173	42761	0.29 ppb	99
63)	o-xylene	17,95	91	64085	0.26 ppb	98
64)	Cumene	18.57	105	74534	0.26 ppb	98
66)	1,1,2,2-tetrachloroethane	18.44	83	58614	0.31 ppb	97
67)	Propylbenzene	19.18	120	20907	0.25 ppb	64
68)	2-Chlorotoluene	19.22	126	23989	0.26 ppb	# 84
69)	4-ethyltoluene	19.37	105	72203	0.24 ppb	99
70)	1.3.5-trimethylbenzene	19.44	105	66069	0.24 ppb	78
71)	1.2.4-trimethylbenzene	19.95	105	57645	0.25 ppb	99
72)	1.3-dichlorobenzene	20.28	146	53919	0.28 ppb	100
73)	benzyl chloride	20.36	91	35470	0.26 ppb	98
74)	1.4-dichlorobenzene	20.44	146	49200	0.26 ppb	99
75)	1,2,3-trimethylbenzene	20.49	105	60729	0.23 ppb	99
76)	1,2-dichlorobenzene	20.80	146	45933	0.25 ppb	98
77}	1,2,4-trichlorobenzene	22.92	780	18407	0.22 ppb	96
78)	Naphthalene	23.12	128	39402	0.21 ppb	99
79)	Nexachloro-1,3-butadiene	23.24	225	40971	0.30 ppb	98
	· · · · · · · · · · · · · · · · · · ·					

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS031706.D A317_1UG.M Tue Apr 06 14:42:14 2021 MSD1

(QT Reviewed)

Quantitation Report
Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AS031707.DVial: 7Acq On : 17 Mar 2021 1:34 pmOperator: RJPSample : AlUG_0.50Inst : MSD #1Misc : A317_LUGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Mar 17 15:40:17 2021 Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 106 ENT Internal Standards R.T. Qion Response Conc Units Dev(Min) 1) Bromochloromethane9.79128465611.00 ppb0.0036) 1.4-difluorobenzene12.091141731531.00 ppb0.0050) Chlorobenzene-d516.901171692331.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 130461 0.91 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00%

 665)
 Bromofluorobenzene
 18.69
 95
 130461
 0.91
 ppb
 0.00

 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 91.004

 Target Compounds
 Qvalue
 2
 Propylene
 4.15
 41
 16056
 0.49
 ppb
 91

 3)
 Proon 12
 4.20
 85
 67185
 0.52
 ppb
 99

 4)
 Chioromethane
 4.39
 50
 19308
 0.47
 ppb
 98

 5)
 Freen 114
 4.60
 4.68
 62
 20230
 0.50
 ppb
 99

 7)
 Butane
 4.69
 43
 23480
 0.53
 ppb
 96

 6)
 1.5-btadicene
 5.04
 94
 26150
 0.53
 ppb
 92

 10)
 Chioroechane
 5.99
 56
 8631
 0.49
 ppb
 97

 12)
 Acrolesin
 5.82
 100
 96018
 0.52
 ppb
 92

 11)
 Exectone
 5.99
 58
 13466
 0.52
 ppb
 <t (#) = qualifier out of range (m) = manual integration AS031707.D A317_1UG.M Tue Apr 06 14:42:23 2021 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031707.D Acg On : 17 Mar 2021 1:34 pm Sample : A1UG_0.50 Vial: 7 Operator: RJP Inst : MSD #1 Misc : A317_1UG Multiplr: 1.00 MS Integration Parama: RTEINT.P Quant Time: Mar 17 15:40:17 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_10G.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D

DataAcq Meth : 1UG_ENT

	Compound	$\mathbb{R}_{+}\mathbb{T}_{+}$	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.18	83	71653	dag 12.0	99
47)	cis-1 3-dichloropropene	14 00	75	45457	d dd 0 00.0	97
48)	trans-1.3-dichloropropene	14.77	75	35868	0.49 DDD	94
49)	1.1.2-trichloroethane	15.10	97	42340	ປ.53 ້ອຍໄວ	100
51)	Tolvene	14.85	92	53170	dag 34.0	99
52)	Methyl Isobutyl Ketone	13.92	43	50377	0.49 ppb	88
53)	Dibromochloromethane	15.83	129	74629	0.49 ppb	. 99
54)	Methyl Butyl Ketone	15.28	43	44621	0.47 ppb	83
55)	1,2-dibromoethane	16.10	107	63401	0.50 ppb	99
56)	Tetrachloroethylene	15.93	164	45801	0.49 ppb	99
57)	Chlorobenzene	16.95	112	87871	0.49 ppb	700
58)	Ethylbenzene	17.22	91	112564	0.47 ppb	100
59)	map-xylene	17.44	91	189760	0.88 ppb	98
60)	Nonané	17.85	43	55323	0.44 ppb	85
61)	Styrene	17.91	104	77896	0.43 ppb	97
62)	Bromoform	18.04	173	70759	0.47 ppb	99
63)	o-xylene	17.94	91	113021	0.45 ppb	97
64)	Cumere	18.57	105	130052	0.45 ppb	99
66)	1,1,2,2-tetrachloroethane	18.44	83	96419	0.51 ppb	97
67)	Propylbenzene	19.13	120	36459	0.44 ppb	70
68)	2-Chlorotoluene	19.22	126	42228	0.45 ppb	# 78
69)	4-ethyltoluene	19.37	105	128352	0.42 ppb	99
70)	1,3,5-trimethylbenzene	19.44	105	115478	0.41 ppb	74
7ኒ)	l,2,4-trimethylbenzene	19.95	1.05	102148	0.44 ppb	28
72)	l,3-dichlorobenzene	20.28	146	89703	0.46 ppb	99
73)	benzyl chloride	20.36	91	60959	0.45 ppb	98
74)	1,4-dichlorobenzene	20.43	146	86157	0.45 ppb	99
75)	1,2,3-trimethylbenzene	20.49	105	110262	0.41 ppp	100
76)	1,2-dichlorobenzene	20.79	146	79354	0.43 ppb	38
77)	1,2,4-trichlorobenzene	22.91	180	32574	0.39 ppp	97
78)	Naphthalene	23.12	128	70193	0.36 ppb	98
79)	Hexachloro-1,3-butadiene	23.24	225	66677	0.48 ppb	97

______ (#) = qualifier out of range (m) = manual integration (+) = signals summed AS031707.D A317_1UG.M Tue Apr 06 14:42:23 2021 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AS031708.D Vial: 8 Acq On : 17 Mar 2021 2:16 pm Operator: RJP . Alug 0.75 Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:39:52 2021 Quant Results File: A317_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG_ENT R.T. Qion Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.78128468951.00ppb0.0035) 1,4-difluorobenzene12.081141763431.00ppb0.0050) Chlorobenzene-d516.891171723161.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 134635 0.92 ppb 0.00 Spiked Amount 1.000 Range 70 ~ 130 Recovery = 92.00%

 65)
 Bromofluorobenzene
 18.6.9
 95
 134635
 0..92 ppb
 0.00

 Spiked Amount
 1.000
 Range 70 - 130
 Recovery
 92.00%

 Target Compounds
 Ovalue
 0.74 ppb
 93

 3)
 Freen 12
 4.20
 85
 130167
 0.74 ppb
 93

 4)
 Choromethane
 4.40
 85
 107422
 0.77 ppb
 95

 6)
 Vinyl Chloride
 4.58
 62
 31400
 0.77 ppb
 95

 7)
 Butane
 4.70
 43
 34817
 0.77 ppb
 95

 9)
 Dichoromethane
 5.03
 94
 37645
 0.76 ppb
 97

 10)
 Chorocethane
 5.03
 94
 37645
 0.76 ppb
 97

 11
 Etanol
 5.03
 94
 37645
 0.76 ppb
 97

 12)
 Acrolein
 5.88
 56
 13226
 0.77 ppb
 99

 13)
 Vinyl Bromide
 5.59
 58
 161
 0.83 ppb
 97

 13)
 Mathere
 6.10
 42
 34809
 (#) = qualifier out of range (m) = manual integration AS031708.D A317_1UG.M Tue Apr 06 14:42:31 2021 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\A5031708.D Vial: 8 Acg On : 17 Mar 2021 2:16 pm Operator: RJP Sample : A1UG_0.75 Misc : A317_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 15:39:52 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A5031709.D DataAcq Meth : 10G ENT

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.17	83	108945	0.76 ppb	98
47)	cis-1,3-dichloropropene	13.99	75	70225	0.75 ppb	96
48)	trans-1,3-dichloropropene	14.77	25	57489	0.77 ppb	98
49)	1,1,2-trichloroethane	15.10	97	61415	0.76 ppb	100
53.)	Toluene	14.85	92	81574	0.70 ppb	97
52)	Methyl Isobutyl Ketone	13.91	43	76897	0,73 ppb	90
53)	Dibromochloromethane	15,83	129	112898	0.73 ppb	99
54)	Methyl Butyl Ketone	15.28	43	6989L	0.73 ppb	86
55)	1,2-dibromoethane	1G.Q9	107	95397	0.74 ppb	99
56)	Tetrachloroethylene	15.92	164	68660	0.72 ppb	99
57)	Chlorobenzene	16.95	112	132585	0.73 ppb	99
58)	Ethylbenzene	17.22	91	175954	0.72 ppb	98
59)	m&p-xylene	17.44	91	300381	1.37 ppb	98
60)	Nonane	17.85	43	88301	0.69 ppb	87
61)	Styrene	17.91	104	321932	0.67 ppb	95
62)	Sromoform	18.04	173	106364	0.70 ppb	99
63)	o-xylene	17.95	91	178887	0.70 ppb	98
64)	Cumene	18.57	105	208944	0,70 ppb	98
66)	1,1,2,2-tetrachloroethane	18.44	83	141596	0.74 ppb	100
67)	Propylbenzene	19,18	120	581.98	0.69 ppb	71
68)	2-Chlorotoluene	19.23	126	65832	0.68 ppb	# 81.
69)	4-ethyltoluene	19.37	105	208351	0.66 ppb	1,00
70)	1,3,5-trimethylbenzene	19.44	105	189624	0,66 ppb	75
71)	1,2,4-trimethylbenzene	19.95	105	165513	0.68 ppb	100
72)	1,3-dichlorobenzene	20.29	146	137596	0.70 ppb	98
73)	benzyl chloride	20.37	91	97445	0.70 ppb	99
74)	1,4-dichlorobenzene	20.44	146	132237	0.67 ppb	99
75)	1,2,3-trimethylbenzene	20.49	105	177716	0.65 ppb	98
76)	1,2-dichlorobenzene	20.80	146	120818	0.65 ppb	100
77)	1,2,4-trichlorobenzene	22.92	180	52352	0.61 ppb	99
78)	Naphthalene	23.12	128	116703	0.60 ppb	99
79)	Hexachloro-1,3-butadiene	23.25	225	100611	0.70 ppb	99

(#) = qualifier out of range (m) = manual integration (*) = signals summed

AS031708.D A317_1UG.M Tue Apr 06 14:42:31 2021 MSD1

ሮግ

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA2\AS031709.D
 Vial: 9

 Acq On : 17 Mar 2021. 3:00 pm
 Operator: RJP

 Inst : MSD #1
 Multiplr: 1.00

 Sample : AlUG_1.0 Misc : A317_1UG MS Integration Params: RTEINT.P Quant Time: Mar 17 15:39:20 2021 Quant Results File: A317_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG ENT Internal Standards R.T. QION Response Conc Units Dev(Min) *****
 1) Bromochloromethane
 9.79
 128
 47196
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 12.08
 114
 174946
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.90
 117
 164290
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.69 96 139791 1.00 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% (#) = qualifier out of range (m) = manual integration AS031709.D A317_1UG.M Tue Apr 06 14:42:38 2021 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031709.D Vial: 9 Acq On : 17 Mar 2021 3:00 pm Sample : A1UG_1.0 Operator: RJP Inst : MSD #1 Misc : A317 1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Results File: A317_1UG.RES Quant Time: Mar 17 15:39:20 2021 Quant Method : C:\HPCHEM\1\METHODS\A]17_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D

DataAcg Meth : 10G_ENT

Compound	R.T.	QION	Response	Cone Unit	Qvalue
	····	 0 7	141076	1 00 mmb	 QQ
Bromodich.oromethane	73 00	03 75	07407	100 ppb	96
cis-i, 3-dichioropropene	10.99	75	74747	2.00 ppb	98
Lians-1, 3 otentoropropene	16 10	22	20400	1.00 pp	100
T.I.Z-CILCILOLOGCHAME Taluana	14 96	97	111494	1 00 000	1.00
Toluene Mathul Taobutul Katona	13 63	20	00060		~~- 90
Dibyorophicy: Ketone	15.91	100	148367	1 00 000	98
Mathyl Dytyl Vetone	15 20	4 A A	91573	1 00 ppb	87
Neunyi Butyi Ketone	16 10	107	123408	1.00 000	9.9
<i>x</i> , <i>z</i> -arbromoethane Tetrachloroethylene	15 97	164	90930	daa 00.1	97
Chlorobengane	34 95	103	173730	1.00 ppb	100
Chiciobenzene Sthulbenzene	17 22	91	234620	daa 00.1	99
msu-vulene	17.44	91	417971	2.00 00.5	99
Nonana	17.85	43	122349	1.00 ppp	87
Styrana	17.91	104	173904	1.00 000	95
Browoform	18.03	173	144777	1,00 ppb	99
o-xylene	17.94	91	244032	1,00 ppb	98
Cumene	18.57	105	282864	1.00 ppb	98
1 1.2.2-tetrachloroethane	18.44	83	183189	1.00 ppb	99
Pronylbenzene	19.18	120	80530	1.00 ppb	71
2-Chlorotoluene	19.23	126	91929	1.00 ppb	# 79
4-ethyltoluene	19.37	105	299544	1.00 ppb	100
1.3.5-trimethylbenzene	19.44	105	274763	1.00 ppb	76
1.2.4-trimethylbenzene	19.95	105	227000	1.00 ppb	98
1.3-dichlorobenzene	20.28	146	187838	1.00 ppb	99
benzyl chloride	20.36	91	132134	1.00 ppb	97
1.4-dichlorobenzene	20.44	146	187209	1.00 ppb	98
1,2,3-trimethylbenzene	20.48	105	260908	1,00 ppb	98
1,2-dichlorobenzene	20.80	1.46	177099	1,00 ppb	99
1,2,4-trichlorobenzene	22.91	180	82133	1.00 ppb	100
Naphthalene	23.12	128	186728	1.00 ppb	99
Hexachloro-1,3-butadiene	23.24	225	136114	1.00 ppb	97
	Compound Bromodichloromethane cis-1,3-dichloropropene trans-1,3-dichloropropene 1,1,2-trichloroethane Toluene Methyl Isobutyl Ketone Dibromochloromethane Methyl Butyl Ketone 1,2-dibromoethane Tetrachloroethylene Chlorobenzene Ethylbenzene Map-xylene Nonane Styrene Bromoform o-xylene Cumene 1,1,2,2-tetrachloroethane Propylbenzene 2-Chlorotoluene 4-ethyltoluene 1,3,5-trimethylbenzene 1,2,4-trimethylbenzene 1,2,3-trimethylbenzene 1,2,4-trimethylbenzene 1,2,4-trichlorobenzene 1,2,4-trichlorobenzene 1,2,4-trichlorobenzene 1,2,4-trichlorobenzene Naphthalene Hexachloro-1,3-butadiene	CompoundR.T.Bromodichloromethane13.17cis-1,3-dichloropropene13.99trans-1,3-dichloropropene14.771,1,2-trichloroethane15.10Toluene14.85Methyl Isobutyl Ketone13.91Dibromochloromethane15.83Methyl Butyl Ketone15.281,2-dibromoethane16.10Tetrachloroethylene15.92Chlorobenzene16.95Ethylbenzene17.22m&p-xylene17.44Nonane17.85Styrene17.91Bromoform18.03o-xylene19.182-Chlorotoluene19.234-ethyltoluene19.234-ethyltoluene19.371,3,5-trimethylbenzene19.441,2,4-trimethylbenzene20.28benzyl chlorobenzene20.28benzyl chlorobenzene20.441,2,3-trimethylbenzene20.481,2,4-trichlorobenzene20.481,2,4-trichlorobenzene20.491,2,4-trichlorobenzene20.401,2,4-trichlorobenzene20.301,2,4-trichlorobenzene20.401,2,4-trichlorobenzene20.401,2,4-trichlorobenzene20.401,2,4-trichlorobenzene20.401,2,4-trichlorobenzene20.301,2,4-trichlorobenzene20.301,2,4-trichlorobenzene20.301,2,4-trichlorobenzene20.301,2,4-trichlorobenzene20.301,2,4-trichlorobenzene20.301,2,4-trichlorobenzene<	Compound R.T. Qion Bromodichloromethane 13.17 83 cis-1,3-dichloropropene 13.99 75 trans-1,3-dichloropropene 14.77 75 1,1,2-trichloroethane 15.10 97 Toluene 14.85 92 Methyl Isobutyl Ketone 13.91 43 Dibromochloromethane 15.83 129 Methyl Butyl Ketone 15.28 43 1,2-dibromoethane 16.10 107 Tetrachloroethylene 15.92 164 Chlorobenzene 16.95 112 Ethylbenzene 17.22 91 m&p-xylene 17.85 43 Styrene 17.91 104 Bromoform 18.03 173 o-xylene 17.94 91 Cumene 19.18 120 1, 1, 2, 2-tetrachloroethane 18.44 83 Propylbenzene 19.18 120 2-Chlorotoluene 19.23 126 4-ethyltoluene 19.37	Compound R.T. QIon Response Bromodichloromethane 13.17 83 141976 cis-1,3-dichloropropene 13.99 75 92497 trans-1,3-dichloropropene 14.77 75 74243 1,1,2-trichloroethane 15.10 97 80490 Toluene 14.85 92 111484 Methyl Isobutyl Ketone 13.91 43 99962 Dibromochloromethane 15.28 43 91573 1,2-dibromoethane 16.10 107 123408 Tetrachloroethylene 15.92 164 90930 Chlorobenzene 16.95 112 173732 Ethylbenzene 17.85 43 122349 Styrene 17.85 43 122349 Styrene 17.91 104 173904 Bromoform 18.03 173 144777 o-xylene 17.94 91 244032 Cumene 19.37 105 282864 1,1,2,2-tetrachloroethane	Compound R.T. Qion Response Conc Unit Bromodichloromethane 13.17 83 141976 1.00 ppb trans-1,3-dichloropropene 14.77 75 74243 1.00 ppb trans-1,3-dichloropropene 14.77 75 74243 1.00 ppb trans-1,3-dichloropropene 14.77 75 74243 1.00 ppb Toluene 14.85 92 11.1484 1.00 ppb Methyl Isobutyl Ketone 15.83 129 148367 1.00 ppb Dibromochloromethane 16.10 107 123408 1.00 ppb Chorobenzene 16.95 112 173732 1.00 ppb Chorobenzene 16.95 112 173732 1.00 ppb Chorobenzene 17.22 91 234620 1.00 ppb Styrene 17.85 43 122349 1.00 ppb Styrene 17.85 43 122349 1.00 ppb Styrene 17.94 91 244032 1.00 ppb Cumen

_____ (#) = qualifier out of range (m) = manual integration (+) = signals summed AS031709.D A317_10G.M Tue Apr 06 14:42:39 2021 MSD1

Quantitation Report (QT Reviewed) Data Pile : C:\HPCHEM\1\DATA2\AS031710.D Acq On : 17 Mar 2021 3:45 pm Operator: RJP Sample : A1UG_1.25 Inst : MSD #1 Misc : A317_10G Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 16:49:18 2021 Quant Results File: A317_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : lUG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min)
 1) Bromochloromethane
 9.78
 128
 48245
 1.00 ppb
 0.00

 35) 1,4-difluorobenzene
 12.08
 114
 179962
 1.00 ppb
 0.00

 50) Chlorobenzene-d5
 16.90
 117
 169468
 1.00 ppb
 0.00
 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 142542 0.99 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 99.00%

 65) Bromofluorobenzene
 18.69
 95
 142542
 0.99 ppb
 0.00

 Recovery
 =
 99.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.14
 41
 42908
 1.26 ppb
 96

 3) Frecon 12
 4.19
 85
 2149844
 1.23 ppb
 97

 4) Chioromethane
 4.39
 50
 49651
 1.17 ppb
 98

 5) Frecon 114
 4.69
 45
 62
 48511
 1.18 ppb
 96

 6) Vinyl Chloride
 4.59
 62
 48511
 1.18 ppb
 96

 8) 1, 3-butadiene
 4.69
 39
 38614
 1.16 ppb
 96

 9) Bromomethane
 5.04
 94
 60975
 1.02 ppb
 77

 10) Chloroethane
 5.20
 64
 2213
 1.19 ppb
 77

 11) Stacetone
 5.95
 56
 21523
 1.19 ppb
 77

 12) Acrolein
 5.82
 101
 30224
 1.21 ppb
 97

 13) Vinyl Bromide
 5.52
 106
 62056m
 1.22 ppb
 97

 11< Bopropyl alcohol (#) • qualifier out of range (m) = manual integration ASO31710.D A317_1UG.M Tue Apr 06 14:42:45 2021 MSD1

Quantitation Report (OT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031710.D Vial: 10 Acq On : 17 Mar 2021 3:45 pm Sample : AlUG_1.25 Misc : A317_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Mar 17 16:49:18 2023 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D

DataAcq Meth : 10G_ENT

	Compound	R.T.	QION	Response	Cone Unit	Qvalue
46)	Bromodichloromethane	13.17	83	180023	1.23 ppb	100
47)	cis-1,3-dichloropropene	14.00	75	121381	1.28 ppb	96
48)	trans-1,3-dichloropropene	14.77	75	96717	1.27 ppb	91
49)	1,1,2-trichloroethane	15.10	97	101639	1.23 ppb	100
51)	Toluene	14.85	92	347274	1,28 ppb	99
52)	Methyl Isobutyl Ketone	13.91	43	131540	1,28 ppb	92
53)	Dibromochloromethane	15.83	129	188375	1.23 ppb	100
54)	Methyl Butyl Ketone	15.28	43	121872	1.29 ppb	87
55)	1,2-dibromoethane	16.09	107	157182	1.23 ppb	99
56)	Tetrachloroethylene	15.92	164	114811	1.22 ppb	98
57)	Chlorobenzene	16.95	112	225104	1,26 ppb	98
58)	Ethylbenzene	17.22	91.	310692	1.28 ppb	99
59)	m&p-xylene	17.44	91	551498	2.56 ppb	98
60)	Nonane	17,85	43	160748	1,27 ppb	88
61)	Styrene	17.91	104	223430	1.25 ppb	95
62)	Browoform	18.03	173	183798	1.23 ppb	100
63)	o-xylene	17.94	91	309851	1.23 ppb	99
64)	Cumene	18.57	105	375303	1.29 ppb	86
66)	1,1,2,2-tetrachloroethane	18-44	83	231361	1.22 ppb	99
67)	Propylbenzene	19,18	120	106291	1.28 ppb	. 75
68)	2-Chlorotoluene	19.22	126	116298	1.23 ppb	# 84
69)	4-ethyltoluene	19.37	105	393411	1.27 ppb	99
70)	1,3,5-trimethylbenzene	19.44	105	357575	1.26 ppb	76
71)	1,2,4-trimethylbenzene	19.95	105	302887	1.29 ppb	700
72)	1,3-dichlorobenzene	20.28	146	241460	1.25 ppb	99
73)	benzyl chloride	20.36	91	173318	1.27 ppb	98
74)	l,4-dichlorobenzene	20.43	146	240115	1.24 ppb	99
75)	1,2,3-trimethylbenzene	20.48	105	341896	1.27 ppb	99
76)	1,2-dichlorobenzene	20.80	146	227681	1.25 ppb	99
77}	1,2,4-trichlorobenzene	22.91	180	112931	1.33 ppb	9,9
78}	Naphthalene	23.12	128	265127	1.38 ppb	99
79}	Hexachloro-1,3-butadiene	23.24	225	176081	1.25 ppb	99

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS031710.D A317_1UG.M Tue Apr 06 14:42:45 2021 MSD1

Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\AS031711.DVial: 11Acq On : 17 Mar 2021 4:31 pmOperator: RJPSample - Alug 1.50Inst : MSD Sample : AlUG_1.50 Misc : A317_1UG Inst : MSD #1 Multiply: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 17:01:30 2021 Quant Results File: A317_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO~15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG ENT R.T. QION Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.78128488141.00 ppb0.0035) 1.4-difluorobenzene12.081141846771.00 ppb0.0050) Chlorobenzene-d516.891171796021.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.69 95 143772 0.94 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 94.00%

 65) Broemofluorobenzene Spiked Amount
 18.69
 95
 143772
 0.94
 0.00

 Range
 70 - 130
 Recovery
 94.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.15
 41
 51865
 1.51
 ppb
 99

 3) Freon 12
 4.20
 85
 253672
 1.43
 ppb
 97

 4) Choromethane
 4.39
 50
 57525
 1.44
 ppb
 96

 6) Vinyl Chloride
 4.59
 62
 260521
 1.40
 ppb
 97

 7) Butane
 4.69
 39
 46054
 1.40
 ppb
 97

 9) Chloroethane
 5.04
 94
 75547
 1.47
 ppb
 97

 10) Chloroethane
 5.08
 56
 26226
 1.43
 ppb
 97

 11) Stanoi
 5.08
 64
 270021
 1.47
 ppb
 97

 12) Acrolein
 5.08
 56
 26226
 1.43
 ppb
 98

 14) Freon 11
 5.82
 101
 276466
 1.43
 ppb
 98

 13) Acrolein</t (#) = qualifier out of range (m) = manual integration ASO31711.D A317_1UG.M Tue Apr 06 14:42:54 2021 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031711.D Vial: 11 Acq On : 17 Mar 2021 4:31 pm Sample : AlUG_1.50 Operator: RJP Inst : MSD #1 Misc : A317 1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 17:01:30 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D

DataAcq Meth : LUG_ENT

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
	www.e		 07	517584	1 45 mmh	99
40)	aig	1.3.1.1	75	345897	1 50 500	97
47)	cis.i, 3-dichioropropene	14.00	73	10000/	1 58 ppb	100
48)	Lrans-1, 3-dientoropropene	14.77	10	123027	1 45 ppb	98
49)	I, I, Z-CELCHIOLOECHANE	12.10	97	143470	1 51 555	100
271	Totuene Mathul Tashutul Katona	17 01	26	164444	1.51 ppb 1.54 ppb	42
54)	Methyi isobhtyi ketone	12.31	170	100034	1 41 mmb	າດົ
53)	Mathing Duty Vatana	13.03	167	240024	1 56 555	200
54)	Mecnyi Bucyi Kecone	10.40	107	100217	1,00 ppp	99
55)	1, 2~dibromoethane	16.02	107	190293	1 42 ppb	97
200) 2000	Chlomobono conviene	16 95	ביט ב מינו	272462	146 000	98
∷;/) ⊭o\	DEbu3 bondono	10.90		397600	1 55 ppb	99
50/	Echylbenzene Echylbenzene	17.42 17.42	จ้า	677646	2 97 000	99
501	Mapana	17 86	42	198922	1.49 ppb	89
607	Styrane	17 01	104	273707	1.43 000	96
01) 20)	Bromoform	19.03	177	222609	1.41 ppb	99
621		10.00		381401	1.43 000	97
(CA)	Cumata	18 57	105	480642	1,55 ppb	98
641	1 1 2 2-tetrachloroethane	38.44	83	288366	1.44 000	98
60)	Dropy benzane	10.18	120	134550	1.53 000	78
6077	2-Chlorotoluene	19.22	126	139679	1.39 ppb	# 91
601	4 - erhultoluene	19 17	105	478304	1.46 ppb	99
201	1 3 Sytrimethylbenzene	19.44	105	430757	1.43 ppb	76
71)	1 2 4-trimethylbenzepe	19.95	105	391294	1.58 ppb	99
721	1.3-dichlorobenzene	20.28	146	298304	1.45 ppb	98
721	henzyl chloride	20.36	91	230230	1.59 ppb	98
74	1 4-dichlorobenzene	20.43	146	296092	1.45 ppb	99
75)	1.2.3-trimethylbenzepe	20.48	105	433479	1.44 ppb	100
76)	1.2-dichlorobenzene	20,80	146	268377	1.39 ppb	99
77)	1,2,4-trichlorobenzene	22.91	1.80	134618	1.50 ppb	99
781	Naphthalene	23,12	1.28	322934	1,58 ppb	98
79)	Hexachloro-1,3-butadiene	23.24	225	213821	1.44 ppb	98
· - /						

(#) = qualifier out of range (m) \approx manual integration (+) = signals summed AS031711.D A317_1UG.M Tue Apr 06 14:42:54 2021 MSD1

Quantitation Report (QT Reviewed)

 Data File : C:\HPCHEM\1\DATA2\AS031712.D
 Vial: 12

 Acg On : 17 Mar 2021 5:19 pm
 Operator: RJP

 Sample : A1UG_2.0
 Inst : MSD #1

 Misc : A317_1UG
 Multiplr: 1.00

 MISC : A317_10G Multiplf: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 22:08:30 2021 Quant Results File: A317_10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : LUG ENT Internal Standards R.T. QIon Response Conc Units Dev(Min) 1) Bromochloromethane9.79128487631.00ppb0.0035) 1,4-difluorobenzene12.081141836731.00ppb0.0050) Chlorobenzene-d516.891171772281.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzane 18.69 95 147147 0.98 ppb 0.00 Spiked Amount 1.000 Range 70 - 130 Recovery = 98.00%

 65)
 Bromofluorobenzene
 18.69
 95
 147147
 0.98
 0.90

 Target Compounds
 Compounds
 Qvalue

 2)
 Propylene
 4.15
 41
 67879
 1.98
 ppb
 98

 3)
 Freen 12
 4.20
 85
 336942
 1.90
 ppb
 98

 4)
 Choromethame
 4.40
 50
 79886
 1.86
 ppb
 99

 5)
 Freen 114
 4.40
 50
 276461
 1.79
 ppb
 96

 6)
 Nijj Chloride
 4.60
 62
 76461
 1.79
 ppb
 97

 10)
 Choroethame
 5.04
 94
 95502
 1.86
 ppb
 97

 11)
 Ethanol
 5.03
 64
 31383
 1.99
 ppb
 97

 12)
 Acrolein
 5.88
 56
 37410
 2.04
 ppb
 97

 12)
 Acrolein
 5.99
 58
 557940
 2.07
 ppb
 97

 13)
 Kape
 6.11
 42
 983162
 2.03
 ppb
 (#) = qualifier out of range (m) = manual integration AS031712.D A317_1UG.M Tue Apr 06 14:43:03 2021 MSD1

Quantization Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\AS031712.D Vial: 12Acq On : 17 Mar 2021 5:19 pm Sample : AlUG 2.0 Misc : A317_1UG Operator: RJP Inst : MSD #1 Multiply: 1.00 MS Integration Params: RTEINT.P Quant Time: Mar 17 22:08:30 2021 Quant Results File: A317 10G.RES Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Mar 17 15:38:58 2021 Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AS031709.D DataAcq Meth : 1UG_ENT

	Compound	R.T.	QION	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.17	83	287108	1.93 ppb	100
47)	cis-1,3-dichloropropene	13.99	75	198389	2.04 ppb	97
48)	trans-1,3-dichloropropene	14.77	75	161477	2,07 ppb	93
49)	1,1,2-trichloroethane	15.10	97	165246	1.96 ppb	99
51)	Toluene	14.85	92	249281	2,07 ppb	3.00
52)	Methyl Isobutyl Ketone	13.91	43	226953	2.10 ppb	92
53)	Dibromochloromethane	15.83	155	310547	1.94 ppb	99
54)	Methyl Butyl Ketone	15.28	4.3	218091	2.21 ppb	88
55)	1,2-dibromoethane	16.09	107	264561	1.99 ppb	99
56)	Tetrachloroethylene	15,92	164	186728	1,90 ppb	98
57)	Chlorobenzene	16.95	112	370845	1.98 ppb	99
58)	Ethylbenzene	17.22	91	546236	2.16 ppb	100
59)	m&p-xylene	17,44	91	932290	4.14 ppb	99
60)	Nonane	17.85	43	275698	2.09 ppb	88
61)	Styrene	17.91	104	373871	1.99 ppb	96
62)	Bromoform	18.04	173	304296	1.95 ppb	100
63)	o-xylene	17,94	91	520465	1.97 ppb	98
64)	Cumene	18.57	105	668889	2.19 ppb	99
66)	1,1,2,2-tetrachloroethane	18.44	83	384079	1.94 ppb	99
67)	Propylbenzene	19.18	320	187393	2.16 ppb	81.
68)	2-Chlorotoluene	19.22	126	192663	1.94 ppb	# 91
69)	4-ethyltoluene	19.37	105	671437	dqq 80.S	100
70)	1,3,5-trimethylbenzene	39.44	1.05	588679	1,99 ppb	76
71)	1,2,4-trimethylbenzene	19.95	105	544531	2.22 ppb	99
72)	1,3-dichlorobenzene	20.28	146	407451	2.01 ppb	99
73)	benzyl chloride	20.36	91	324774	2.28 ppb	98
74)	1,4-dichlorobenzene	20.44	146	406958	2.02 ppb	99
75)	1,2,3-trimethylbenzene	20.49	105	583930	2.07 ppb	99
76)	1,2-dichlorobenzene	20.80	246	381227	2.00 ppb	99
77)	1,2,4-trichlorobenzene	22.91	180	194213	2.19 ppb	100
78)	Naphthalene	23.12	128	478942	2.38 ppb	98
79)	Hexachloro-1,3-butadiene	23.24	225	285964	1,95 ppb	99

~~~~ (#) = qualifier out of range (m) = manual integration (+) = signals summed AS031712.D A317\_1UG.M Tue Apr 06 14:43:03 2021 MSD1



Centek Laboratories,LLC

### GC/MS VOLATILES-WHOLE AIR

### METHOD TO-15

# CALIBRATION VERIFICATION

,

|                                                             |                                         | Centek Laboratories LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Continuir                                                                                                                                                                                                                                                                                                      | ng Calibrat                                                                                                                                                                                           | ion Repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | Data<br>Acq C<br>SampJ<br>Misc<br>MS Ir | File : C:\HPCHEM\1\DATA\AS04<br>On : 20 Apr 2021 12:26 pm<br>.e : A1UG_1.0<br>: A317_1UG<br>Ategration Params: RTEINT.P                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                | Via<br>Operato<br>Inst<br>Multipl                                                                                                                                                                     | l: 1<br>r: RJP<br>: MSD #1<br>r: 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             | Metho<br>Title<br>Last<br>Respo         | od : C:\HPCHEM\1\METHOD<br>: TO-15 VOA Standar<br>Update : Wed May 05 08:06:4<br>onse via : Multiple Level Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S\A317_10<br>ds for 5<br>5 2021<br>ibration                                                                                                                                                                                                                                                                    | JG.M (RTE I<br>point cali                                                                                                                                                                             | Integrato<br>bration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | Min.<br>Max.                            | RRF : 0.000 Min. Rel.<br>RRF Dev : 30% Max. Rel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Area :<br>Area : 1                                                                                                                                                                                                                                                                                             | 50% Max.<br>150%                                                                                                                                                                                      | R.T. Dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.33min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                             |                                         | Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AvgRF                                                                                                                                                                                                                                                                                                          | CCRF                                                                                                                                                                                                  | *Dev A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rea% Dev(min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 123456789012345678901234567890123<br>1111111111222222223333 |                                         | Bromochloromethane<br>Propylene<br>Freon 12<br>Chloromethane<br>Freon 114<br>Vinyl Chloride<br>Butane<br>1,3-butadiene<br>Bromomethane<br>Chloroethane<br>Ethanol<br>Acrolein<br>Vinyl Bromide<br>Freon 11<br>Acetone<br>Pentane<br>Isopropyl alcohol<br>1,1-dichloroethene<br>Freon 113<br>t-Butyl alcohol<br>Methylene chloride<br>Allyl chloride<br>Carbon disulfide<br>trans-1,2-dichloroethene<br>methyl tert-butyl ether<br>1,1-dichloroethane<br>Vinyl acetate<br>Methyl Ethyl Ketone<br>cis-1,2-dichloroethene<br>Hexane<br>Ethyl acetate<br>Chloroform<br>Tetrahydrofuran | $\begin{array}{c} 1.000\\ 0.737\\ 3.738\\ 0.900\\ 2.960\\ 0.911\\ 1.007\\ 0.713\\ 1.117\\ 0.417\\ 0.273\\ 0.390\\ 1.162\\ 4.095\\ 0.613\\ 1.043\\ 1.574\\ 1.300\\ 3.112\\ 1.997\\ 1.300\\ 1.194\\ 3.857\\ 1.755\\ 2.753\\ 2.389\\ 1.956\\ 0.534\\ 1.577\\ 1.576\\ 2.203\\ 3.178\\ 0.938\\ 0.938\\ \end{array}$ | 1.000 0.781 4.194 0.890 3.159 0.902 0.979 0.733 1.203 0.420 0.275 0.287 1.216 4.180 0.474 1.254 1.930 1.296 3.489 2.229 1.519 1.337 4.407 1.903 3.007 2.601 2.083 0.561 1.681 1.748 2.567 3.494 1.037 | $\begin{array}{c} 0.0\\ -6.0\\ -12.2\\ 1.1\\ -6.7\\ 1.0\\ 2.8\\ -2.8\\ -7.7\\ -0.7\\ 26.4\\ -4.6\\ 22.7\\ -20.2\\ -22.6\\ 0.3\\ -12.1\\ -11.6\\ -16.8\\ -12.0\\ -14.3\\ -8.4\\ -9.2\\ -8.9\\ -5.1\\ -6.6\\ -10.9\\ -16.5\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -9.9\\ -9.9\\ -9.9\\ -10.6\\ -9.9\\ -9.9\\ -0.6\\ -9.9\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -0.6\\ -$ | $\begin{array}{c} 188 \# & 0.00\\ 208 \# & 0.00\\ 217 \# & 0.00\\ 190 \# & 0.00\\ 198 \# & 0.00\\ 194 \# & 0.00\\ 194 \# & 0.00\\ 201 \# & 0.00\\ 201 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 206 \# & 0.00\\ 194 \# & 0.00\\ 206 \# & 0.00\\ 198 \# & 0.00\\ 198 \# & 0.00\\ 198 \# & 0.00\\ 241 \# & 0.00\\ 234 \# & 0.00\\ 234 \# & 0.00\\ 234 \# & 0.00\\ 212 \# & 0.00\\ 225 \# & 0.00\\ 225 \# & 0.00\\ 226 \# & 0.00\\ 226 \# & 0.00\\ 226 \# & 0.00\\ 216 \# & 0.00\\ 227 \# & 0.00\\ 216 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 213 \# & 0.00\\ 213 \# & 0.00\\ 213 \# & 0.00\\ 213 \# & 0.00\\ 213 \# & 0.00\\ 213 \# & 0.00\\ 213 \# & 0.00\\ 215 \# & 0.00\\ 233 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0.00\\ 215 \# & 0$ |
| 34<br>35673890<br>44234456789<br>44234456789                | T ITTTTTTTTTTTTTTTTTT                   | 1,2-dichloroethane<br>1,4-difluorobenzene<br>1,1,1-trichloroethane<br>Cyclohexane<br>Carbon tetrachloride<br>Benzene<br>Methyl methacrylate<br>1,4-dioxane<br>2,2,4-trimethylpentane<br>Heptane<br>Trichloroethene<br>1,2-dichloropropane<br>Bromodichloromethane<br>cis-1,3-dichloropropene<br>trans-1,3-dichloropropene<br>1,1,2-trichloroethane                                                                                                                                                                                                                                 | 1.919<br>1.000<br>0.822<br>0.381<br>0.919<br>0.961<br>0.338<br>0.209<br>1.287<br>0.415<br>0.510<br>0.375<br>0.830<br>0.529<br>0.435<br>0.475                                                                                                                                                                   | 2.169<br>1.000<br>0.944<br>0.415<br>1.047<br>1.064<br>0.392<br>0.233<br>1.378<br>0.463<br>0.532<br>0.397<br>0.955<br>0.587<br>0.502<br>0.509                                                          | -13.0<br>0.0<br>-14.8<br>-8.9<br>-13.9<br>-10.7<br>-16.0<br>-11.5<br>-7.1<br>-11.6<br>-4.3<br>-5.9<br>-15.1<br>-11.0<br>-15.4<br>-7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220#       0.00         190#       0.00         226#       0.00         208#       0.00         215#       0.00         215#       0.00         201#       0.00         201#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         202#       0.00         211#       0.00         210#       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                             |                                         | <u>``</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

(#) = Out of Range AS042003.D A317\_1UG.M Wed May 05 08:22:20 2021

MSD1

|                            |                                                                                                         | Centek Laboratories, LLC                                                                                                     | Continui                                           | ng Calibrat                                        | tion Repo                              | brt                                                  |                                              |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------------|--|--|
|                            | Data<br>Acq (<br>Sampi<br>Misc<br>MS In                                                                 | File : C:\HPCHEM\l\DATA\AS04<br>Dn : 20 Apr 2021 12:26 pm<br>le : AlUG_1.0<br>: A317_lUG<br>htegration Params: RTEINT.P      | 2003.D                                             |                                                    | Via<br>Operato<br>Inst<br>Multipl      | al: 1<br>pr: RJ<br>: MS<br>Lr: 1.                    | 7P<br>3D #1<br>00                            |  |  |
|                            | Metho<br>Títle<br>Last<br>Respo                                                                         | od : C:\HPCHEM\1\METHOD<br>: TO-15 VOA Standar<br>Update : Wed May 05 08:06:4<br>onse via : Multiple Level Cal               | 3\A317_1<br>ds for 5<br>5 2021<br>ibration         | UG.M (RTE )<br>point cal:                          | Integrato<br>ibration                  | or)                                                  |                                              |  |  |
|                            | Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min<br>Max. RRF Dev : 30% Max. Rel. Area : 150% |                                                                                                                              |                                                    |                                                    |                                        |                                                      |                                              |  |  |
|                            |                                                                                                         | Compound                                                                                                                     | AvgRF                                              | CCRF                                               | %Dev A                                 | Area*                                                | Dev(min)                                     |  |  |
| 51<br>52<br>53<br>54<br>55 | T<br>T<br>T<br>T<br>T                                                                                   | Toluene<br>Methyl Isobutyl Ketone<br>Dibromochloromethane<br>Methyl Butyl Ketone<br>1,2-dibromoethane<br>Tetrachloroethylene | 0.666<br>0.620<br>0.901<br>0.566<br>0.762<br>0.550 | 0.728<br>0.678<br>0.986<br>0.609<br>0.821<br>0.589 | -9.3<br>-9.4<br>-9.4<br>-7.6<br>-7.7   | 217#<br>225#<br>221#<br>221#<br>221#<br>221#<br>215# | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |  |  |
| 57<br>58<br>59<br>60       | Ť<br>T<br>T<br>T                                                                                        | Chlorobenzene<br>Ethylbenzene<br>m&p-xylene<br>Nonane<br>Styrene                                                             | 1,062<br>1,410<br>1,198<br>0,700<br>0,973          | 1.093<br>1.569<br>1.299<br>0.721<br>1.001          | -2.9<br>-11.3<br>-8.4<br>-3.0<br>-2.9  | 209#<br>222#<br>207#<br>196#<br>191#                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         |  |  |
| 62<br>63<br>64<br>65       | T<br>T<br>T<br>S<br>T                                                                                   | Bromoform<br>o-xylene<br>Cumene<br>Bromofluorobenzene<br>1 1 2 2-tetrachloroethane                                           | 0.859<br>1.393<br>1.667<br>0.756<br>1.134          | 0.898<br>1.479<br>1.608<br>0.707<br>1.114          | -4.5<br>~6.2<br>3.5<br>6.5<br>1.8      | 206#<br>201#<br>189#<br>168#<br>202#                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         |  |  |
| 67<br>68<br>69<br>70       | T<br>T<br>T<br>T                                                                                        | Propylbenzene<br>2-Chlorotoluene<br>4-ethyltoluene<br>1,3,5-trimethylbenzene                                                 | 0.469<br>0.518<br>1.674<br>1.517                   | 0.452<br>0.533<br>1.735<br>1.633                   | 3.6<br>-2.9<br>-3.6<br>-7.6            | 186#<br>193#<br>192#<br>197#                         | 0.00<br>0.00<br>0.00<br>0.00                 |  |  |
| 71<br>72<br>73<br>74<br>75 | T<br>T<br>T<br>T<br>T                                                                                   | 1,2,4-trimetnyibenzene<br>1,3-dichlorobenzene<br>benzyl chloride<br>1,4-dichlorobenzene<br>1,2,3-trimethylbenzene            | 1.324<br>1.104<br>0.782<br>1.068<br>1.438          | 1.143<br>0.974<br>1.146<br>1.600                   | -3.5<br>-3.5<br>-24.6<br>-7.3<br>-11.3 | 202#<br>245#<br>203#<br>204#                         | 0.00<br>0.00<br>0.00<br>0.00                 |  |  |
| 76<br>77<br>78<br>79       | T<br>T<br>T<br>T                                                                                        | 1,2-dichlorobenzene<br>1,2,4-trichlorobenzene<br>Naphthalene<br>Hexachloro-1,3-butadiene                                     | $0.994 \\ 0.452 \\ 1.019 \\ 0.821$                 | 1.142<br>0.582<br>1.256<br>1.037                   | ~14.9<br>-28.8<br>-23.3<br>-26.3       | 214#<br>235#<br>223#<br>253#                         | 0.00<br>0.00<br>0.00<br>0.00                 |  |  |

| Centek Labora                                                                                                    | atories,LLC                                               | Quantit                               | ati             | on Rep          | oort        | ( (              | or Re                       | viev                    | ved)                       |      |           |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|-----------------|-----------------|-------------|------------------|-----------------------------|-------------------------|----------------------------|------|-----------|
| Data File : C:\HPCHEM<br>Acq On : 20 Apr 20<br>Sample : A1UG_1.0<br>Misc : A317_1UG                              | NILDATALAS<br>21 12:26                                    | 3042003<br>pm                         | . D             |                 | -           | Og<br>Ir<br>Mu   | Vi<br>perat<br>nst<br>ultip | al:<br>or:<br>:<br>olr: | 1<br>RJP<br>MSD<br>1.00    | #1.  |           |
| Quant Time: Apr 21 08                                                                                            | 1:17:31 202                                               | 21                                    |                 | Qua             | ant         | Result           | is Fi                       | le:                     | A317                       | _100 | RES       |
| Quant Method : C:\HPC<br>Title : TO-15<br>Last Update : Mon Ap<br>Response via : Initia<br>DataAcq Meth : 1UG_EN | HEM\1\METH<br>VOA Stand<br>or 12 12:02<br>1 Calibrat<br>T | HODS\A3<br>dards f<br>2;39 20<br>tion | 17_<br>or<br>21 | 10G.M<br>5 poi: | (RT<br>nt C | E Inte<br>alibra | egrat<br>ation              | or)                     |                            |      |           |
| Internal Standards                                                                                               |                                                           | R.                                    | т.              | QIon            | Res         | ponse            | Cor                         | ic Ui                   | nits                       | Dev  | (Min)     |
| 1) Bromochlorometh                                                                                               | ane                                                       | 9.                                    | 82              | 128             | 8           | 8615             | ]                           |                         | dqq                        | ,    | 0.00      |
| 35) 1,4-difluorober                                                                                              | izene                                                     | 12.                                   | 11              | 114             | 33          | 2579             | 1                           | .00                     | ppb                        |      | 0.00      |
| 50) Chlorobenzene-d                                                                                              | 15                                                        | 16.                                   | 92              | 117             | 33          | 2258             | ]                           | 1.00                    | dqq                        |      | 0.00      |
| System Monitoring Co                                                                                             | mpounds                                                   |                                       |                 |                 |             |                  |                             |                         |                            |      |           |
| 65) Bromofluorobenz                                                                                              | zene                                                      | 18.                                   | 67              | 95              | 23          | 4910             | (                           | ).94                    | ppb                        |      | 0.00      |
| Spiked Amount                                                                                                    | 1.000 1                                                   | Range                                 | 70              | - 130           |             | Recov            | ery                         | <u>~~</u>               | 94.                        | .00% |           |
| Target Compounds                                                                                                 |                                                           |                                       |                 |                 |             |                  |                             |                         |                            | QVa  | alue      |
| 2) Propylene                                                                                                     |                                                           | 4 .                                   | 17              | 41              | 6           | 9202             | -                           | 1.06                    | ppb                        |      | 86        |
| 3) Freon 12                                                                                                      |                                                           | 4.                                    | 22              | 85              | 37          | 1673             | -                           | 1.12                    | ppp                        |      | 98        |
| 4) Chloromethane                                                                                                 |                                                           | 4.                                    | 41              | 50              | ,<br>       | 8825             | -                           | 1.99                    | aqq                        |      | 98        |
| 5) Freon 114<br>6) Vinyl Chloride                                                                                |                                                           | 4.<br>A                               | .42             | 85<br>62        | 21          | 9903             | -                           | 0.99                    | ppo                        |      | 99        |
| 7 Butane                                                                                                         |                                                           | 4                                     | 72              | 43              | ,<br>8      | 6710             | Ì                           | 5.97                    | dag                        |      | 99        |
| 8) 1.3-butadiene                                                                                                 |                                                           | 4                                     | .71             | 39              | é           | 4958             | :                           | 1.03                    | ppb                        |      | 90        |
| 9) Bromomethane                                                                                                  |                                                           | 5                                     | . 06            | 94              | 10          | 6611             | :                           | 1.08                    | dqq                        |      | 99        |
| 10) Chloroethane                                                                                                 |                                                           | 5.                                    | .23             | 64              |             | 37257            |                             | 1.01                    | ppb                        |      | 99        |
| 11) Ethanol                                                                                                      |                                                           | 5                                     | .32             | 45              | 2           | 24377            |                             | 1.01                    | ppb                        | #    | 73        |
| 12) Acrolein                                                                                                     |                                                           | 5                                     | .90             | 56              |             | 25421            | 1                           | 0.74                    | ppp                        | łŧ   | 07        |
| 13) Vinyl Bromide                                                                                                |                                                           | 5                                     | . 57            | 106             | 10          | 7797             |                             | 1.05                    | - ppb<br>- ppb             |      | 97<br>99  |
| 14) Freon 11                                                                                                     |                                                           | ⇒<br>∠                                | .85             | 101             | .,          | 11483            |                             | 1.02<br>0.77            | - dad                      | #    | 56        |
| 15) ACCLONE                                                                                                      |                                                           | 6                                     | .12             | 42              | 1           | 11142            |                             | 1.20                    | daa                        |      | 95        |
| 17) Isopropyl alcol                                                                                              | nol                                                       | 6                                     | .12             | 45              | 3.1         | 1034             |                             | 1.23                    | dqq                        |      | 95        |
| 18) 1,1-dichloroeth                                                                                              | hene                                                      | 6                                     | .61             | 96              | 1           | L4855            |                             | 1.00                    | ppb                        | #    | 87        |
| 19) Freon 113                                                                                                    |                                                           | 6                                     | .81             | 101             | 30          | 9186             |                             | 1,12                    | ppb                        |      | 97        |
| 20) t-Butyl alcoho.                                                                                              | 1.                                                        | 6                                     | .84             | 59              | 3, 3        | 97497            |                             | 1.12                    | ppb                        | #    | 84        |
| 21) Methylene chlos                                                                                              | ride                                                      | 7                                     | .07             | 84              | 11          | 34564            |                             | 1.17                    | dqq<br>dqq                 |      | 99<br>99  |
| 22) Allyl chloride                                                                                               | J.a.                                                      | 7                                     | . 05            | 41<br>76        | بر.<br>م    | 18499<br>30558   |                             | 1.14<br>7.74            | nppp<br>nph                |      | 97        |
| 23) Carbon disuille                                                                                              | ae<br>Ioroethene                                          | /<br>9                                | دي.<br>٥٥       | 70<br>61        | :د<br>۴ ۴   | 58632            |                             | 1.08                    | שעע<br>מסט                 |      | 94        |
| 24) Clans-1,2~dlon<br>25) methyl text-but                                                                        | tvl ether                                                 | 8                                     | .03             | 7/3             | 20          | 56451            |                             | 1.09                    | dqq                        |      | 80        |
| 26) 1.1-dichloroet                                                                                               | hane                                                      | 8                                     | .44             | 63              | 2           | 30454            |                             | 1.09                    | dqq i                      |      | 99        |
| 27) Vinyl acetate                                                                                                |                                                           | 8                                     | .42             | 43              | 18          | 34607            |                             | 1.07                    | ' ppb                      |      | 96        |
| 28) Methyl Ethyl Ke                                                                                              | etone                                                     | 8                                     | . 92            | 72              |             | 49733            |                             | 1.05                    | dqq b                      | #    | 100       |
| 29) cis-1,2-dichlo:                                                                                              | roethene                                                  | 9                                     | .37             | 61              | 1.          | 18984            |                             | 1.07                    | ppb                        |      | 95        |
| 30) Hexane                                                                                                       |                                                           | 8                                     | -98<br>60       | 57              |             | 54889<br>17460   |                             | 1.14<br>1.16            | , ppp<br>; ppb             |      | 95        |
| 31) Ethyi acetate                                                                                                |                                                           | 9                                     | . 5%            | 43              | 2.          | 27460            |                             | 1.10<br>1 10            | למת ו                      |      | 100       |
| 32) Chiorotota<br>32) Tetrabydrofurai                                                                            | n                                                         | 10                                    | .15             | 42              |             | 91925            |                             | 1.11                    | daa .                      |      | 88        |
| 34) 1.2-dichloroet                                                                                               | hane                                                      | 11                                    | .10             | 62              | 1           | 92231            |                             | 1.13                    | ppb                        |      | 99        |
| 36) 1.1,1-trichlor                                                                                               | oethane                                                   | 10                                    | . 81            | 97              | З.          | 14058            |                             | 1.19                    | dqq i                      |      | 99        |
| 37) Cyclohexane                                                                                                  |                                                           | 11                                    | ,52             | 56              | 1.1         | 37927            |                             | 1.09                    | dqq (                      |      | 85        |
| 38) Carbon tetrach                                                                                               | loride                                                    | 11                                    | .46             | 117             | 3           | 48166            |                             | 1,14                    | ppp                        |      | 99        |
| 39) Benzene                                                                                                      | - <b>N</b> - F                                            | 11                                    | .42             | 78              | 3           | 53975            |                             | 1.11                    | ppb                        |      | 28        |
| 40) Methyl methacr                                                                                               | yiate                                                     | 12                                    | . 99            | 41              | T           | 22200            |                             | 1 10                    | a gga<br>ann               |      | <i>63</i> |
| $41)  1,4 - \alpha 10 \times a ne$                                                                               | Inontano                                                  | 1.3<br>7 0                            | . UU<br>20      | 50<br>£7        | л           | 58417<br>58417   |                             | 1 07                    | - <u>די</u> בים<br>רודרד 7 |      | 22        |
| 42 $2, 2, 2, 4$ - trimethy.                                                                                      | Theircand                                                 | 2 C<br>2 C                            | . 49            | 57<br>47        | <br>ז       | 53878            |                             | 1.17                    | daa j                      | ,    | 93        |
| 44) Trichloroetber                                                                                               | e                                                         | 12                                    | .76             | 130             | ī           | 77011            |                             | 1,04                    | dag 4                      | ,    | 98        |
| 45) 1.2-dichloropr                                                                                               | -<br>opane                                                | 12                                    | .86             | 63              | l           | 31889            |                             | 1.06                    | 5 ppb                      | )    | 99        |
|                                                                                                                  |                                                           |                                       |                 |                 |             |                  |                             |                         |                            |      |           |

Centek Laboratories,LLC<br/>Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA\AS042003.DVial: 1<br/>Acq On : 20 Apr 2021 12:26 pmAcq On : 20 Apr 2021 12:26 pmOperator: RJP<br/>Inst : MSD #1<br/>Misc : A317\_1UGSample : AlUG\_1.0Inst : MSD #1<br/>Multiplr: 1.00Misc : A317\_1UGMultiplr: 1.00MS Integration Params: RTEINT.P<br/>Quant Time: Apr 21 08:17:31 2021Quant Results File: A317\_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator)<br/>Title : TO-15 VOA Standards for 5 point calibration\* Title : Mon Apr 12 12:02:39 2021<br/>Response via : Initial Calibration

DataAcq Meth : 1UG\_ENT

|      | Compound                  | R.T.  | QION | Response  | Conc Unit | Qvalue |
|------|---------------------------|-------|------|-----------|-----------|--------|
| 46)  | Bromodichloromethane      | 13.20 | 83   | 317482    | 1.15 ppb  | 98     |
| 47)  | cis-1,3-dichloropropene   | 14.03 | 75   | 195171    | 1.11 ppb  | 97     |
| 48)  | trans-1.3-dichloropropene | 14.80 | 75   | 167089m 🕥 | 1.16 ppb  |        |
| 49)  | 1,1,2-trichloroethane     | 15.13 | 97   | 169406    | 1.07 ppb  | 98     |
| 51)  | Toluene                   | 14.87 | 92   | 241778    | 1.09 ppb  | 99     |
| 52)  | Methyl Isobutyl Ketone    | 13.93 | 43   | 225329    | 1.09 ppb  | 88     |
| 53)  | Dibromochloromethane      | 15.86 | 129  | 327673    | 1.10 ppb  | 100    |
| 54)  | Methyl Butyl Ketone       | 15.31 | 43   | 202366    | 1.08 ppb  | 85     |
| 55)  | 1,2-dibromoethane         | 16.12 | 107  | 272750    | 1.08 ppb  | 97     |
| 56)  | Tetrachloroethylene       | 15.95 | 164  | 195695    | 1.07 ppb  | 96     |
| 157) | Chlorobenzene             | 16.97 | 112  | 362993    | 1.03 ppb  | 99     |
| 58)  | Ethylbenzene              | 17.25 | 9 L  | 521470    | 1.11 ppb  | 98     |
| 59Ì  | m&p-xylene                | 17.46 | 91   | 863353    | 2.17 ppb  | 97     |
| 60)  | Nonane                    | 17.86 | 43   | 239528    | 1.03 ppb  | 86     |
| 61)  | Styrene                   | 17.92 | 104  | 332693    | 1.03 ppb  | 92     |
| 62)  | Bromoform                 | 18.04 | 173  | 298286    | 1.04 ppb  | 99     |
| 63)  | o-xylene                  | 17.95 | 91   | 491460    | 1.06 ppb  | 96     |
| 64)  | Cumene                    | 18.55 | 105  | 534317    | 0.96 ppb  | 97     |
| 66)  | 1,1,2,2-tetrachloroethane | 18.43 | 83   | 370223    | dqq 88.0  | 100    |
| 67)  | Propylbenzene             | 19.14 | 120  | 3,50162   | 0.96 ppb  | 60.    |
| 68)  | 2-Chlorotoluene           | 19.18 | 126  | 177166    | 1.03 ppb  | # 81   |
| 69)  | 4-ethyltoluene            | 19.32 | 105  | 576345    | 1.04 ppb  | 99     |
| 70)  | 1,3,5-trimethylbenzene    | 19.38 | 105  | 542579    | dqq 80.1  | 79     |
| 71)  | 1,2,4-trimethylbenzene    | 19.88 | 105  | 456108    | 1.04 ppb  | 98     |
| 72)  | 1,3-dichlorobenzene       | 20.20 | 146  | 379744    | 1.04 ppb  | 99     |
| 73)  | benzyl chloride           | 20.28 | 91   | 323714    | 1.25 ppb  | 97     |
| 74)  | 1,4-dichlorobenzene       | 20.35 | 146  | 380634    | 1.07 ppb  | 98     |
| 75)  | 1,2,3-trimethylbenzene    | 20.39 | 105  | 531559    | l.ll ppb  | 97     |
| 76)  | 1,2-dichlorobenzene       | 20.71 | 146  | 379384    | 1.15 ppb  | 98     |
| 77)  | 1,2,4-trichlorobenzene    | 22.87 | 180  | 193237m 🖌 | 1.29 ppb  |        |
| 78)  | Naphthalene               | 23.09 | 128  | 417317    | 1.23 ppb  | 99     |
| 79)  | Hexachloro-1,3-butadiene  | 23.21 | 225  | 344409    | 1.26 ppb  | 99     |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042003.D A317\_1UG.M Wed May 05 08:22:27 2021 MSD1

## Page 153 of 229

|       |                                                                    |                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.00   | age 3      |
|-------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|
|       |                                                                    |                                                   | ັງ,ອກອໄລຝັນປະຍົ,ໂະຍາຍທີ່ອອກອກໃນ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00    | н          |
|       |                                                                    |                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.00 2 |            |
|       |                                                                    |                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00      |            |
|       |                                                                    |                                                   |                                      | 1,9л92/подоробурарны - 2,5 - 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.     |            |
|       |                                                                    |                                                   |                                      | T, anosnedivitismitta, S, t<br>T, anosnedivitish, t, <u>T, abilotib, t, t, T, abilotib, ty, nad</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.00   |            |
|       |                                                                    |                                                   |                                      | T.ອກອງເຜິກໃນເບທີ່ດີ.s.<br>T.ອກອງເອຍໃຫ້ສືອກເຮັດເຊັ່ນ ແລະ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8       |            |
|       |                                                                    |                                                   |                                      | T. anattaquoldasya-2.2.1.1<br>Anattaga<br>S. Sitas Redoroution and an anattaga and an anattaga and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |            |
|       |                                                                    |                                                   |                                      | T. 2190500 v. 01.2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.9     |            |
| G     |                                                                    |                                                   |                                      | T.orosinselitytia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8       |            |
| lewe  | RES                                                                |                                                   |                                      | TL3D.400000001000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -       |            |
| Rev   | 1                                                                  |                                                   |                                      | T, analytitaoitaillaguationalitaoitaoitaoitaoitaoitaoitaoitaoitaoitao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.00   |            |
| (QT   | 1, 00#                                                             |                                                   |                                      | T.Shiriyi Yukiyi Y                                                                                                                                                                                                                                             | 00      |            |
|       | . 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1<br>. 1 | )<br>2003.C                                       |                                      | T <sub>7</sub> 999493649701431b.£.L.414611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |            |
| port  | Vial<br>rator<br>:<br>:iplr<br>File                                | rator<br>ion<br>C: ASO40                          |                                      | Tr#H8J83514314351142, P145-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.00   | NSD1       |
| on Re | Open<br>Inst<br>Mult<br>Mults                                      | brati<br>Drati                                    |                                      | T, anaritan Kirolitan<br>Kirolitan<br>T, anaritan Kirolitan<br>T, anaritan kirolitan Kirolitan<br>T, anaritan kirolitan kirolitan kirolitan<br>T, anaritan kirolitan kirolitan kirolitan<br>T, anaritan kirolitan kirolitan kirolitan kirolitan kirolitan kirolitan<br>T, anaritan kirolitan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.00   |            |
| tati  | Res                                                                | Cali<br>cali                                      |                                      | t ensinedneuße.e.t<br>T.ensinediyrlerriti-A.S.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.00    | 021        |
| anti  | uant                                                               | int (                                             |                                      | Т, еbлойловиел и <del>дажер,5Аβ2,6Лојз⊽О</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 8          |
| õn    | õ                                                                  | po po                                             |                                      | T,⊜n¢rijoosidobiji-t,[. <i>t.</i><br>T,gn¢rijoosidiobije-S,t —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 22:2       |
|       | ė,                                                                 | 21<br>21                                          |                                      | ــــــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000     | ι8:        |
|       | 2003                                                               | 12 20<br>2 20<br>2 20<br>2 20<br>2 20             |                                      | T.ətrərhədrərin S. 1-ata<br>T.ətrərhədrər (Filty)<br>T.ətrərhədrər (Filty)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 50         |
|       | 140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140 | HOD:<br>6:410<br>tio1                             |                                      | ₹.₽₽₽₽₽₹₩₩₩₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0.6   | May        |
|       | A\A<br>::26<br>NT.                                                 | MET<br>Htan<br>bra                                |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Ved        |
|       | VDAT<br>12<br>RTEI<br>120                                          | √ 1 / 1 / 5 05 05 05 05 05 05 05 05 05 05 05 05 0 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8       |            |
|       | M\1 <sup>\</sup><br>2021<br>3<br>15: 1<br>8:2:                     | CHEN<br>5 VOU<br>6ay (<br>ial (                   |                                      | T.0bingtoteteenergenergenergenergenergenergenerge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.2     | ×          |
|       | PCHP<br>PCHP<br>1.0<br>21<br>21<br>21<br>21                        | :/HI<br>0-15<br>ed Me<br>niti                     |                                      | T. (orbolisTysteetae6) T. (orbolistystee6) T. (orbolistysteetae6) T. (orbolistystee6) T. (orbolistytee6) T. (orbolistytee6) T. (orbolistytee6) T. (orbolistytee6) T. (orbolistytee6) T. (orboli | i s     | .0G.1      |
|       | P P P                                                              | 063A<br>                                          |                                      | T. BDImoral IvinV T. BDImoral IvinV T. T. Doginal VinV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.0     | 17_1       |
|       | ысы, как как как как как как как как как ка                        | via<br>via                                        |                                      | T, and the manual to an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00    | A3.        |
|       | Time'                                                              | l<br>pda<br>Ise                                   |                                      | Sector State Sta                                                                                                                                                                                                                                             | - a     | <u>с</u> . |
|       | Ta Ta<br>Ta Ta<br>Ta Con<br>Sc Ta<br>Tat                           | thod<br>tle<br>st U<br>spon<br>00                 |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×       | 2003       |
|       | Da<br>AC<br>Min<br>Que                                             | Mer<br>Lat<br>Re<br>Re<br>1900                    | 1800<br>1700<br>1600<br>1500<br>1400 | 1300<br>1200<br>1000<br>1000<br>800<br>800<br>800<br>800<br>800<br>800<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time:   | AS04       |

Centek Laboratories LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AS042104.D Vial: 1 Operator: WD Inst : MSD #1 Acq On : 21 Apr 2021 1:25 pm Sample : AlUG\_1.0 Misc : A317\_1UG Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed May 05 08:06:45 2021 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% 
 Compound
 AvgRF
 CCRF
 % Dev Area% Dev(min)

 1
 I
 Bromochloromethane
 1.000
 1.000
 0.0
 164#
 0.00

 2
 T
 Propylene
 0.737
 0.787
 -6.8
 183#
 0.00

 3
 T
 Freen 12
 3.738
 4.364
 -16.7
 197#
 0.01

 4
 T
 Chloromethane
 0.900
 0.939
 -4.3
 175#
 0.00

 5
 T
 Freen 114
 2.960
 3.64
 -13.6
 184#
 0.00

 6
 T
 Vinyl Chloride
 0.911
 0.915
 -0.4
 171#
 0.01

 7
 Butane
 1.070
 0.985
 2.2
 168#
 0.02

 9
 T
 Bromomethane
 1.117
 1.197
 -7.2
 186#
 0.02

 11
 T
 Ethanol
 0.273
 0.226
 17.2
 147
 0.22

 12
 T
 Acrolein
 0.390
 0.354
 9.2
 154# AvgRF CCRF %Dev Area% Dev(min) Compound 

 35 I
 1,4-difluorobenzene
 1.000
 1.000
 0.0
 159#
 0.00

 36 T
 1,1,1-trichloroethane
 0.822
 0.995
 -21.0
 200#
 0.00

 37 T
 Cyclohexane
 0.381
 0.428
 -12.3
 180#
 0.00

 38 T
 Carbon tetrachloride
 0.919
 1.096
 -19.3
 197#
 0.00

 39 T
 Benzene
 0.961
 1.086
 ~13.0
 184#
 0.02

 40 T
 Methyl methacrylate
 0.338
 0.403
 -19.2
 188#
 0.00

 41 T
 1,4-dioxane
 0.209
 0.252
 ~20.6
 183#
 0.02

 42 T
 2,2,4-trimethylpentane
 1.287
 1.454
 -13.0
 179#
 0.00

 43 T
 Heptane
 0.415
 0.493
 -18.8
 187#
 0.02

 44 T
 Trichloroethene
 0.510
 0.569
 -11.6
 181#
 0.02

 45 T
 1,2-dichloropropane
 0.375
 0.442
 ~17.9
 189#
 0.00

 46 T
 Bromodichloromethane
 0.830
 1.010
 ~21.7 (#) = Out of Range

AS042104.D A317\_1UG.M Wed May 05 08:24:12 2021

Page l

MSD1

Centek Laboratories LLC Evaluate Continuing Calibration Report Data File : C:\HPCHEM\1\DATA\AS042104.D Vial: 1 Acg On : 21 Apr 2021 1:25 pm Operator: WD Sample : AlUG\_1.0 Misc : A317\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed May 05 08:06:45 2021 Response via : Multiple Level Calibration Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150% CompoundAvgRFCCRF%Dev Area% Dev(mi51 TToluene0.6660.810-21.6185#0.0052 TMethyl Isobutyl Ketone0.6200.773-24.7196#0.0153 TDibromochloromethane0.9011.070-18.8183#0.0054 TMethyl Butyl Ketone0.5660.669-18.2185#0.0055 T1,2-dibromoethane0.7620.916-20.2189#0.0056 TTetrachloroethylene0.5500.660-20.0184#0.0157 TChlorobenzene1.0621.221-15.0178#0.0058 TEthylbenzene1.4101.631-15.7177#0.0060 TNonane0.77000.835-19.3173#0.0061 TStyrene0.8591.000-16.4175#0.0163 T0-xylene1.6671.933-16.0174#0.0064 TCumene1.667.933-16.0174#0.0065 SBromofluorobenzene0.7560.817-8.11480.0066 T1,1,2,2-tetrachloroethane1.1341.381-21.8192#0.0067 TPropylbenzene0.5180.612-18.1169#0.0069 T4-ethyltoluene1.6742.042-22.0173#0.0070 T1,3,5-trimethylbenzene1.5171.890-24.6175#0.0071 T1,2,4-tri Compound AvgRF CCRF %Dev Area% Dev(min)

| Centek Laboratories,LLC                                                                                                                               | Quantitat:                                  | ion Re <mark>r</mark> | oort (QT                    | Review                  | (ed)                      |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|-----------------------------|-------------------------|---------------------------|-------------|
| Data File : C:\HPCHEM\1\DATA\A;<br>Acq On : 21 Apr 2021 1:25<br>Sample : A1UG_1.0<br>Misc : A317_1UG<br>MS Integration Params: RTEINT.                | 5042104.D<br>pm                             |                       | Oper<br>Inst<br>Mult        | Vial:<br>ator:<br>iplr: | 1<br>WD<br>MSD #1<br>1.00 |             |
| Quant Time: Apr 21 14:03:10 20                                                                                                                        | 21,                                         | Qua                   | ant Results                 | File:                   | A317_1                    | UG.RES      |
| Quant Method : C:\HPCHEM\1\MET<br>Title : TO-15 VOA Stan<br>Last Update : Mon Apr 12 12:0<br>Response via : Initial Calibra<br>DataAcq Meth : 1UG_ENT | HODS\A317<br>dards for<br>2:39 2021<br>tion | _1UG.M<br>5 poi:      | (RTE Integr<br>nt calibrati | ator)<br>on             |                           |             |
| Internal Standards                                                                                                                                    | R.T.                                        | QIon                  | Response C                  | one Un                  | nits De                   | v(Min)      |
| 1) Bromochloromethane                                                                                                                                 | 9.83                                        | 128                   | 77252                       | 1.00                    | dqq                       | 0.01        |
| 35) 1,4-difluorobenzene                                                                                                                               | 12.12                                       | 114                   | 278971                      | 1.00                    | ppb                       | 0.02        |
| 50) Chlorobenzene-d5                                                                                                                                  | 16.93                                       | 117                   | 254056                      | 1.00                    | agg                       | 0.00        |
| System Monitoring Compounds                                                                                                                           |                                             |                       |                             |                         |                           |             |
| 65) Bromofluorobenzene                                                                                                                                | 18.67                                       | 95                    | 207507                      | 1.08                    | ppb                       | 0.00        |
| Spiked Amount 1.000                                                                                                                                   | Range 70                                    | - 130                 | Recovery                    | - 207                   | 108.00                    | 5           |
| Target Compounds                                                                                                                                      |                                             |                       |                             |                         | ç                         | value       |
| 2) Propylene                                                                                                                                          | 4.17                                        | 41                    | 60793                       | 1.07                    | dqq                       | 95          |
| 3) Freon 12                                                                                                                                           | 4.23                                        | 85                    | 337161                      | 1,17                    | ppb                       | 98          |
| 4) Chloromethane                                                                                                                                      | 4.42                                        | 50                    | 72506                       | 1.04                    | dqq                       | 95          |
| 5) Freon 114                                                                                                                                          | 4.43                                        | 85                    | 259897                      | 1.14                    | aqq                       | 99          |
| 6) Vinyl Chloride                                                                                                                                     | 4.62                                        | 62                    | 70715                       | 1.01                    | dqg                       | 90<br>97    |
| 7) Butane                                                                                                                                             | 4.73                                        | 4.3                   | 76056                       | 1 10                    | ppp                       | 88          |
| 8) 1,3-putadiene                                                                                                                                      | 4.73                                        | 94<br>94              | 92441                       | 1 07                    | ppb                       | 98          |
| 9) Bromomethane                                                                                                                                       | 5.00<br>K 25                                | 64                    | 32512                       | 1.01                    | daa                       | 94          |
| 1) Ethanol                                                                                                                                            | 5.34                                        | 45                    | 17453m <b>A</b>             | 0,83                    | dàq                       |             |
| 12) Acrolein                                                                                                                                          | 5.92                                        | 56                    | 27379                       | 0.91                    | ppb t                     | ŧ 77        |
| 13) Vinyl Bromide                                                                                                                                     | 5.58                                        | 106                   | 95497                       | 1.06                    | dqq                       | 99          |
| 14) Freon 11                                                                                                                                          | 5.86                                        | 101                   | 352785                      | 1,12                    | dqq                       | 98          |
| 15) Acetone                                                                                                                                           | 6.02                                        | 58                    | 44233m 🌈                    | 0.93                    | ppb                       |             |
| 16) Pentane                                                                                                                                           | 6.14                                        | 42                    | 103990                      | 1.29                    | ppb                       | 93          |
| 17) Isopropyl alcohol                                                                                                                                 | 6.14                                        | 45                    | 145138                      | 1.19                    | ppb                       | 4 95        |
| 18) 1,1-dichloroethene                                                                                                                                | 6.62                                        | 96                    | 99423                       | 1 14                    | Ppo 1                     | 1 0/<br>08  |
| 19) Freen 113                                                                                                                                         | 6.82                                        | TAT                   | 2/2112                      | 1,14                    | ppb 4                     | 1 75        |
| 20) t-Butyl alconol                                                                                                                                   | 0.00<br>7 A9                                | 94                    | 102044                      | 1 12                    | ະ<br>ບາງໄງ                | 95          |
| 21) Methyrene chioride                                                                                                                                | 7.05                                        | 41                    | 98333                       | 1.07                    | ppb                       | 99          |
| 23) Carbon disulfide                                                                                                                                  | 7.24                                        | 76                    | 338932                      | 1.14                    | ppb                       | 97          |
| 24) trans-1.2~dichloroethene                                                                                                                          | 8.02                                        | 61                    | 148627                      | 1.10                    | dqq                       | 92          |
| 25) methyl tert-butyl ether                                                                                                                           | 8.04                                        | 73                    | 225617                      | 1.06                    | dqq                       | 77          |
| 26) 1,1-dichloroethane                                                                                                                                | 8.45                                        | 63                    | 206801                      | 1,12                    | dqq                       | 97          |
| 27) Vinyl acetate                                                                                                                                     | 8.44                                        | 43                    | 154645                      | 1.02                    | ppb                       | 96          |
| 28) Methyl Ethyl Ketone                                                                                                                               | 8.94                                        | 72                    | 45742                       | 1.11                    | t aqq                     | 4 100<br>05 |
| 29) cis-1,2-dichloroethene                                                                                                                            | 9.38                                        | 61                    | 128918                      | 1.06                    | ppp<br>bbb                | 4 87<br>4   |
| 30) Mexañe                                                                                                                                            | 8.95                                        | 57                    | 195945                      | 1 15                    | - 220<br>720              | + 02<br>96  |
| 31) Ethyl acetate                                                                                                                                     | 9.33                                        | - 10<br>- 10<br>- 10  | 278743                      | 1,14                    | dqq                       | 99          |
| 33) Tetrahydrofuran                                                                                                                                   | 10.16                                       | 42                    | 78678                       | 1.09                    | ppb                       | 88          |
| 34) 1.2-dichloroethane                                                                                                                                | 11.11                                       | 62                    | 169532                      | 1.14                    | ppb                       | 99          |
| 36) 1.1.1-trichloroethane                                                                                                                             | 10.82                                       | 97                    | 277446                      | 1.21                    | dqq                       | 99          |
| 37) Cyclohexane                                                                                                                                       | 11.53                                       | 56                    | 119435                      | 1.12                    | ppb                       | 85          |
| 38) Carbon tetrachloride                                                                                                                              | 11.47                                       | ינב י                 | 305721                      | 1.19                    | ppb                       | 1.00        |
| 39) Benzene                                                                                                                                           | 11.43                                       | 78                    | 302829m 🖊                   | 1.13                    | ppb                       |             |
| 40) Methyl methacrylate                                                                                                                               | 13.00                                       | 41                    | 112322                      | 1.19                    | aqq                       | 90          |
| 41) 1,4-dioxane                                                                                                                                       | 13.02                                       | 88                    | 70372                       | 1.21                    | ppp                       | 50          |
| 42) 2,2,4-trimethylpentane                                                                                                                            | 12.30                                       | / ⊃7<br>: ∧s          | 403077<br>137551            | 1 10<br>CI.F            | DDD<br>DDD                | 0/          |
| 43) Meptane<br>44) Trichloroethers                                                                                                                    | 10 75                                       | י אי<br>חיבר א        | 15,201                      | ייים<br>קר, ב           | ppb                       | 98          |
| 45) 1.2-dichloropropage                                                                                                                               | 12.87                                       | 63                    | 123319                      | 1.18                    | ppb                       | 97          |
| is the around we have                                                                                                                                 |                                             |                       |                             |                         |                           |             |

Centek Laboratories,LLC<br/>Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA\AS042104.DVial: 1<br/>Acq On : 21 Apr 2021 1:25 pmAcq On : 21 Apr 2021 1:25 pmOperator: WD<br/>Inst : MSD #1<br/>Multiplr: 1.00Sample : AlUG\_1.0Inst : MSD #1<br/>Multiplr: 1.00Misc : A317\_lUGMultiplr: 1.00MS Integration Params: RTEINT.P<br/>Quant Time: Apr 21 14:03:10 2021Quant Results File: A317\_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator)<br/>Title : TO-15 VOA Standards for 5 point calibration<br/>Last Update : Mon Apr 12 12:02:39 2021<br/>Response via : Initial Calibration<br/>Databace Moth + 100 DNT

DataAcq Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QIon    | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|---------|----------|-----------|--------|
| 46) | Bromodichloromethane      | 13.21 | 83      | 281708   | 1.22 ppb  | 99     |
| 47) | cis-1,3-dichloropropene   | 14.04 | 75      | 173934   | 1.18 ppb  | 96     |
| 48) | trans-1.3-dichloropropene | 14.80 | 75      | 140442m  | 1.16 ppb  |        |
| 49) | 1.1.2-trichloroethane     | 15.13 | 97      | 153513   | 1.16 ppb  | 99     |
| 51) | Toluene                   | 14.88 | 92      | 205815   | 1.22 ppb  | 99     |
| 52) | Methyl Isobutyl Ketone    | 13.95 | 43      | 196370   | 1.25 ppb  | 89     |
| 53) | Dibromochloromethane      | 15.86 | 129     | 271825   | 1.19 ppb  | 00.E   |
| 54) | Methyl Butyl Ketone       | 15.31 | 43      | 169847   | 1.18 ppb  | 82     |
| 55) | 1,2-dibromoethane         | 16.13 | 107     | 232695   | 1.20 ppb  | 99     |
| 56) | Tetrachloroethylene       | 15,96 | 164     | 167760   | 1.20 ppb  | 95     |
| 57) | Chlorobenzene             | 16.98 | 112     | 310089   | 1.15 ppb  | 99     |
| 58) | Ethylbenzene              | 17.26 | 91      | 414307   | 1.16 ppb  | 98     |
| 59) | m&p-xylene                | 17.47 | 91<br>1 | 753511   | 2.48 ppb  | 97     |
| 60) | Nonané                    | 17.87 | 43      | 212168   | 1.19 ppb  | 86     |
| 61) | Styrene                   | 17.93 | 104     | 309359   | 1.25 ppb  | 93     |
| 62) | Bromoform                 | 18.05 | 173     | 253966   | 1.16 ppb  | 99     |
| 63) | o-xylene                  | 17.96 | 91      | 448866   | 1.27 ppb  | 97     |
| 64) | Cuméne                    | 18.56 | 1.05    | 491004   | 1.16 ppb  | 97     |
| 66) | 1,1,2,2-tetrachloroethane | 18.44 | 83      | 350824   | 1.22 ppb  | 98     |
| 67) | Propylbenzene             | 19.14 | 120     | 137401   | 1.15 ppb  | 64     |
| 68) | 2-Chlorotoluene           | 19,18 | 126     | 155584   | 1.18 ppb  | # 87   |
| 69) | 4-ethyltoluen@            | 19.33 | 105     | 518821   | 1.22 ppb  | 99     |
| 70) | 1,3,5-trimethylbenzene    | 19.39 | 105     | 480213   | 1.25 ppb  | 77     |
| 71) | 1,2,4-trimethylbenzene    | 19.89 | 105     | 396741   | 1.18 ppb  | 98     |
| 72) | 1,3-dichlorobenzene       | 20.21 | 146     | 344953   | 1.23 ppb  | 99     |
| 73) | benzyl chloride           | 20.29 | 91      | 283654   | 1.43 ppb  | 96     |
| 74) | 1,4-dichlorobenzene       | 20.36 | 146     | 346583   | 1.28 ppb  | 98     |
| 75) | 1,2,3-trimethylbenzene    | 20.40 | 105     | 468674   | 1,28 ppb  | 97     |
| 76) | 1,2-dichlorobenzene       | 20.71 | 146     | 340516   | 1.35 ppb  | 99     |
| 77) | 1,2,4-trichlorobenzene    | 22.88 | 180     | 176207   | 1.54 ppb  | 99     |
| 78) | Naphthalene               | 23.09 | 128     | 372414   | 1.44 ppb  | 99     |
| 79) | Hexachloro-1,3-butadiene  | 23.22 | 225     | 313363   | dqq 02.1  | 98     |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042104.D A317\_1UG.M Wed May 05 08:24:17 2021 MSD1

#### Page 158 of 229



Centek Laboratories,LLC

Page 3

MSD1

2021

08:24:18

05

May

ved

IUG.M

A317

Ą

AS042104.

Centek Laboratories,LLC

,

• •

1

,

.

,

•

.

### GC/MS VOLATILES-WHOLE AIR

•

.

METHOD TO-15

# RAW DATA

.

÷

Page 159 of 229

,



A5031701.D A317\_1UG.M Tue Apr 06 14:36:22 2021 MSD1



BFB



6696

5344

90733

PASS

PASS

PASS

AS042001.D A317\_1UG.M Wed May 05 08:22:06 2021 MSD1

4

5

95

9

9

101

7.2

5.9

97.3

174

174

176

175

176

177





 $m/z \rightarrow 30$  40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 Spectrum Information: Average of 18.672 to 18.678 min.

| Target | Rel. to | Lower  | Upper  | Rel.  | Raw   | Result    |  |
|--------|---------|--------|--------|-------|-------|-----------|--|
| Mass   | Mass    | Limit% | Limits | Abn%  | Abn   | Pass/Fail |  |
| 50     | 95      | 8      | 40     | 17.1  | 11203 | PASS      |  |
| 75     | 95      | 30     | 66     | 46.7  | 30581 | PASS      |  |
| 95     | 95      | 100    | 100    | 100.0 | 65533 | PASS      |  |
| 96     | 95      | 5      | 9      | 6.9   | 4524  | PASS      |  |
| 173    | 174     | 0.00   | 2      | 0.0   | 0     | PASS      |  |
| 174    | 95      | 50     | 120    | 93.8  | 61461 | PASS      |  |
| 175    | 174     | 4      | 9      | 7.4   | 4542  | PASS      |  |
| 176    | 174     | 95     | 101    | 98.3  | 60397 | PASS      |  |
| 177    | 176     | 5      | 9      | 6.4   | 3872  | PASS      |  |

AS042103.D A317\_1UG.M Wed May 05 08:24:06 2021 MSD1

Centek Laboratories,LLC

## GC/MS VOLATILES-WHOLE AIR

ı.

METHOD TO-15 RAW QC DATA

.

.

\* \* \* \* \*

| CENTEK LAB                                                         | ORATORIES, LI                     | Ŋ       |             |                           | ANAL            | <b>YTICAL QC SUN</b>  | AMARY REPORT                     |
|--------------------------------------------------------------------|-----------------------------------|---------|-------------|---------------------------|-----------------|-----------------------|----------------------------------|
| CLIENT: LaBella A:<br>Work Order: C2104038<br>Project: 1500 Jeffer | ssociates, P.C.<br>rson Road      |         |             |                           |                 | TestCode: 0           | 120_NYS                          |
|                                                                    |                                   |         |             |                           |                 |                       |                                  |
| Sample ID: AMB1UG-042021                                           | SampType: MBLK                    | TestCod | e: 0.20_NYS | Units: ppbV               | Prep D.         | ate:                  | RunWo: 17523                     |
| Client ID: ZZZZ                                                    | Batch ID: R17523                  | TestN   | o: TO-15    |                           | Analysis D      | ate: 4/20/2021        | SeqNo: 198926                    |
| Analyte                                                            | Result                            | PQL     | SPK value   | SPK Ref Val               | %REC LowLimit   | HighLimit RPD Ref Val | %RPD RPDLimit Quai               |
| 1,1,1-Trichloroethane                                              | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,1,2,2-Tetrachioroethane                                          | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,1,2-Trichloroethane                                              | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,1-Dichloroethane                                                 | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,1-Dichforoethene                                                 | < 0.040                           | 0.040   |             |                           |                 |                       |                                  |
| 1,2,4-Frichtorobenzene                                             | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,2,4-Trimethylbenzene                                             | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,2-Dibromoethane                                                  | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,2-Dichlorobenzene                                                | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,2-Dichloroethane                                                 | < 0,15                            | 0.15    |             |                           |                 |                       |                                  |
| 1.2-Dichloropropane                                                | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,3.5+Trimethylbenzene                                             | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,3-butadiene                                                      | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,3-Dichlorobenzene                                                | < 0, 15                           | 0.15    |             |                           |                 |                       |                                  |
| \$ 4-Dichlorobenzene                                               | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| 1,4-Dioxane                                                        | < 0.30                            | 0.30    |             |                           |                 |                       |                                  |
| 2,2,4-kimethy:pentane                                              | < 0,15                            | 0.15    |             |                           |                 |                       |                                  |
| 4-ethyltoluene                                                     | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Acetone                                                            | < 0.30                            | 0.30    |             |                           |                 |                       |                                  |
| Allyl chloride                                                     | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Велгене                                                            | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Benzyl chloride                                                    | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Bromodichloromethane                                               | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Bromolorm                                                          | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Bromomethane                                                       | < 0.15                            | 0.15    |             |                           |                 |                       |                                  |
| Qualifiers: Results repo                                           | orted are not blank corrected     |         | E Estian    | tted Value above quant    | ៅរងសែង នោះខ្លួន | FI Holding times for  | preparation or analysis exceeded |
| J Analyte des                                                      | ected below quuntitation limit    |         | ND Not De   | esected at the Limit of I | Detection       | R RPD cutside acce    | pted recovery litrats            |
| S Spike Reon                                                       | very outside accepted recovery fi | mits    | DI. Detect  | ion Limit                 |                 |                       | Page 1 of .                      |

Date: 05-May-21

| CLIENT: LaBella As       | sociates, P.C.                   |               |              |                               | -              |                       |                                |             |
|--------------------------|----------------------------------|---------------|--------------|-------------------------------|----------------|-----------------------|--------------------------------|-------------|
| Work Order: C2104038     |                                  |               |              |                               |                |                       |                                |             |
| Project: 1500 Jeffer     | rson Road                        |               |              |                               |                | TestCode: 0           | SVN_02                         |             |
| Sample ID: AMB1UG-042021 | SampType: MBLK                   | TestCode: 0.1 | SAN_02       | Units: ppbV                   | Prep Date:     |                       | RunNo: 17523                   |             |
| Client ID: ZZZZ          | Batch ID: R17523                 | TestNo: TC    | 0-15         |                               | Analysis Date: | 4/20/2021             | SeqNo: 198926                  |             |
| Analyte                  | Result                           | PQL SP        | ( value SP)  | K Ref Val %RE                 | c LowLimit H   | ightimit RPD Ref Val  | %RPD RPDLimit                  | Qual        |
| Carbon disulfide         | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Carbon teirachloride     | < 0.030                          | 0.030         |              |                               |                |                       |                                |             |
| Chiorobenzene            | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Chloroethare             | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Chloroform               | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Chloromethane            | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| cis-1,2-Dichloroethene   | < 0.040                          | 0.040         |              |                               |                |                       |                                |             |
| cis-1,3-Dichloropropene  | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Cyclohexane              | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Dibromochloromethane     | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Elhyi acetate            | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Ethylbenzene             | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Freon 11                 | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Freon 113                | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Freon 114                | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Freon 12                 | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Heptane                  | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Hexachloro-1,3-butadiene | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Hexane                   | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Isopropyl alcohol        | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| m&p-Xylene               | < 0.30                           | 0.30          |              |                               |                |                       |                                |             |
| Methyl Butyl Ketone      | < 0.30                           | 0.30          |              |                               |                |                       |                                |             |
| Methyl Ethyl Ketone      | < 0.30                           | 0.30          |              |                               |                |                       |                                |             |
| Methyl Isobutyl Ketone   | < 0.30                           | 0.30          |              |                               |                |                       |                                |             |
| Methyl tert-butyl ether  | < 0.15                           | 0.15          |              |                               |                |                       |                                | -           |
| Methylene chioride       | 0.1100                           | 0.15          |              |                               |                |                       |                                | 7           |
| o-Xylene                 | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Propylene                | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Siyrene                  | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Tetrachloroethylene      | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Tetrahyörofuran          | < 0.15                           | 0.15          |              |                               |                |                       |                                |             |
| Oualifiers: Results repo | nted are not blank corrected     | 12.2          | Estimated    | Value above quantitation      | วธิยย          | FI Holding tittes for | r preparation or analysis exce | ded         |
| J Analyte det            | ccted below quantation limit     | IN            | ) Not Detect | ted at the Limit of Detection | 03             | R RPD outside acco    | spted recovery limits          |             |
| 5 Spike Recor            | very oatside accepted recovery l | imis DI       | Detection    | Limit                         |                |                       |                                | Page 2 of 5 |
| CLIENT: LaBella /<br>Weath Orden: CO10403  | Associates, P.C.<br>e            |         |              |                       |                |                              |                                        |        |
|--------------------------------------------|----------------------------------|---------|--------------|-----------------------|----------------|------------------------------|----------------------------------------|--------|
|                                            | -<br>-<br>-                      |         |              |                       |                | Torto                        | SAN OCO                                |        |
| Project: 1500 Jcf                          | erson Koad                       |         |              |                       |                | IESTCORE                     | 07.0 NTS                               |        |
| Sample ID: AMB1UG-042021                   | Sampīype: MBLK                   | TestCor | le: 0.20_NYS | Units: ppbV           |                | Prep Date:                   | RunNo: 17523                           |        |
| Client ID: ZZZZ                            | Batch ID: R17523                 | Test    | 4o: TO-15    |                       | Αn             | ialysis Date: 4/20/2021      | SeqNo: 198926                          |        |
| Analyte                                    | Result                           | POL     | SPK value S  | SPK Ref Val           | %REC L         | -owLimit HighLimit RPD Ref / | al %RPD RPDLimit Qua                   | -      |
| Toluene                                    | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| trans-1,2-Dichloroethene                   | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| trans-1,3-Dichloropropene                  | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| Trichlorgethene                            | < 0.030                          | 0:030   |              |                       |                |                              |                                        |        |
| Vinyl acelate                              | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| Vinyl Bromide                              | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| Virryl chloride                            | < 0.040                          | 0.040   |              |                       |                |                              |                                        | I      |
| Sample ID: AMB1UG-042121                   | SampType: MBLK                   | TestCo  | de: 0.20_NYS | Units: ppbV           |                | Prep Date:                   | RunNo: 17524                           |        |
| Client ID: ZZZZ                            | Batch ID: R17524                 | Test    | Vo: TO-15    |                       | ΥJ             | nalysis Date: 4/21/2021      | SeqNo: 198943                          |        |
| Analyte                                    | Result                           | PQL     | SPK value    | SPK Ref Val           | %REC           | LowLimit HighLimit RPD Ref 1 | ai %RPD RPDLimit Qua                   | ť.     |
| 1,1,2-Trichloroethane                      | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,1,2.2-Tetrachioroethane                  | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,1,2-Trichloroethane                      | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1, f-Dichiorcethane                        | < 0.15                           | 0.55    |              |                       |                |                              |                                        |        |
| 1,1-Dichloroethene                         | < 0.040                          | 0.040   |              |                       |                |                              |                                        |        |
| 1,2,4-Trichlorobenzene                     | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,2,4-Trimethylbenzene                     | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,2-Dibromoethane                          | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1.2-Dichlorobenzene                        | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,2-Dichlaroethane                         | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1.2-Dichloropropane                        | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| <ol> <li>3.3.5-Trimethylbenzene</li> </ol> | < 0.15                           | 0,15    |              |                       |                |                              |                                        |        |
| 1,3-butadiene                              | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,3-Dichiorobenzene                        | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,4-Dichiorobenzene                        | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 1,4-Dioxane                                | < 0.30                           | 0.30    |              |                       |                |                              |                                        |        |
| 2,2,4-trimethy/pentane                     | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| 4-eftryttoluene                            | < 0.15                           | 0.15    |              |                       |                |                              |                                        |        |
| Onslifiere Results re-                     | ported are not blank corrected   |         | E Estimat    | ed Value above quan   | fitation range | H Holding tíme               | tion preparation or autilysis exceeded |        |
| J Analyte di                               | elected helow quantitation limit |         | ND Not Det   | ected at the Limit of | Detection      | R RPD meside                 | accepted recovery limits               |        |
| S Spike Rec                                | overy outside accepted recovery  | limits  | DL Detectió  | on Limit              |                |                              | Page 3                                 | 3 of 5 |

ł

| CLIENT: LaBella As       | sociates, P.C.                  |         |             |                        |               |                |                     |                                   |            |
|--------------------------|---------------------------------|---------|-------------|------------------------|---------------|----------------|---------------------|-----------------------------------|------------|
| Work Order: C2104038     |                                 |         |             |                        |               |                |                     |                                   |            |
| Project: 1500 Jeffa      | son Road                        |         |             |                        |               |                | TestCode:           | 0.20_NYS                          |            |
| Sample ID: AMB1UG-042121 | SampType: MBLK                  | TestCod | e: 0,20_NYS | Units: ppbV            |               | Prep Date:     |                     | RunNo: 17524                      |            |
| Client ID: ZZZZ          | Batch ID: R17524                | TestN   | o: TO-15    |                        |               | 4nalysis Date: | 4/21/2021           | SeqNo: 198943                     |            |
| Analyte                  | Result                          | POL     | SPK value   | SPK Ref Val            | %REC          | LewLimit Hi    | ghLimit RPD Ref Val | %RPD RPDLimit                     | Qual       |
| Acetone                  | < 0.30                          | 0:30    |             |                        |               |                |                     |                                   |            |
| Aliyi chloride           | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Benzene                  | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Benzyt chloride          | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Bromodichloromethane     | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Bromoform                | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Bromomethane             | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Carbon disulfide         | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Carbon tetrachloride     | < 0.030                         | 0:030   |             |                        |               |                |                     |                                   |            |
| Chlorobenzene            | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Chloroethane             | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Chleroform               | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Chloromethane            | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| cis-1,2-Dichioroethene   | 0.040.0 >                       | 0.040   |             |                        |               |                |                     |                                   |            |
| cis-1,3-Dichtoropropene  | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Cyciohexane              | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Dibromochloromethane     | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Ethyl acelate            | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Ethylbenzene             | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Freon 11                 | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Freon 113                | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Fjeon 114                | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Frean 12                 | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Heptane                  | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Hexachloro-1,3-butadiene | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| Hexane                   | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| isopropyl alcohol        | < 0.15                          | 0.15    |             |                        |               |                |                     |                                   |            |
| m&p-Xylene               | < 0.30                          | 0.30    |             |                        |               |                |                     |                                   |            |
| Methy! Butyl Ketone      | < 0.30                          | 0:30    |             |                        |               |                |                     |                                   |            |
| Melhył Ethyl Kelone      | < 0.30                          | 0.30    |             |                        |               |                |                     |                                   |            |
| Methył tsobutyl Ketone   | < 0.30                          | 0.30    |             |                        | :             |                |                     |                                   |            |
| Oualifiers: Results repo | rted are not blank corrected    |         | E Estina    | sed Valse above quant  | idations rang | 皆              | H Holding times for | or preparation or analysis excert | jed        |
| Analyte dete             | cted below quantitation limit   |         | ND Not De   | sected at the Limit of | Detection     |                | R RPD outside act   | cepted recovery limits            |            |
| 5 Spike Recm             | ory outside accepted recovery l | imis    | D1. Detect  | ion Limis              |               |                |                     |                                   | s jo † ošo |

|                                              |                       |   |                          |                          | ця<br>П                            |                         |                    |          |           |         |                     |                 |         |                          |                           |                 |               |               |               |  |                                                                               | د مر د                         |
|----------------------------------------------|-----------------------|---|--------------------------|--------------------------|------------------------------------|-------------------------|--------------------|----------|-----------|---------|---------------------|-----------------|---------|--------------------------|---------------------------|-----------------|---------------|---------------|---------------|--|-------------------------------------------------------------------------------|--------------------------------|
|                                              | 20_NYS                | D | Purison. 1/ 324          | SeqNo: 198943            | %RPD RPDLimit Qu                   |                         |                    |          |           |         |                     |                 |         |                          |                           |                 |               |               |               |  | <ul> <li>preparation of analysis exceeded<br/>pied recovery bimits</li> </ul> | Paor                           |
|                                              | TestCode: 0           |   | riep uale:               | Analysis Date: 4/21/2021 | REC LowLimit HighLimit RPD Ref Val |                         |                    |          |           |         |                     |                 |         |                          |                           |                 |               |               |               |  | ion range El i fulding lames tot<br>cerioa R PD cotsúle acte                  |                                |
|                                              |                       |   | Units: ppbV              |                          | SPK Ref Val %I                     |                         |                    |          |           |         |                     |                 |         |                          |                           |                 |               |               |               |  | ted Value above quantitat<br>tected at the Limit of Det                       | en Limit                       |
|                                              |                       |   | Code: 0.20_NYS           | siNo: TO-15              | . SPK value S                      |                         | 6                  | 10       |           | 10      | 10                  | 10              | 10      | 10                       | 5                         |                 | 5             | ú             | 0             |  | E Estimat<br>ND Not Det                                                       | DL Detection                   |
|                                              |                       |   | TestC                    | Te                       | PQL                                | 0.15                    | 0.15               | 0.15     | 0.15      | 0.15    | 0.15                | 0.15            | 0.15    | 0.15                     | 0.15                      | 0.030           | 0.15          | 0,15          | 0.040         |  |                                                                               | fimits                         |
| sociates, P.C.                               | son Road              |   | SampType: MBLK           | Batch ID: R17524         | Result                             | < 0.15                  | < 0.15             | < 0.15   | < 0.15    | < 0.15  | < 0.15              | < 0.15          | < 0.15  | < 0.15                   | < 0.15                    | < 0.030         | < 0.15        | < 0,15        | < 0.040       |  | effect are not blank corrected                                                | rent autside uccented recovery |
| CLIENT: LaBella As:<br>West: Orden: C2104038 | Project: 1500 Jeffers |   | Sample ID: AMB1UG-042121 | Client ID: ZZZZ          | Analyte                            | Methyl tert-butyl ether | Methylene chíoride | o-Xviene | Propylene | Slyrene | Tetrachloroethylene | Tetrahydrofuran | Totuene | trans-1,2-Dichloroethene | trans-1,3-Dichloropropene | Trichioroethene | Vinyi acetate | Vinyl Broméde | Mayi chiaride |  | Qualificrs: Results report                                                    | S Soike Report                 |

Page 5 of 5

Spike Recovery outside accepted recovery limits

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042005.D Vial: 1 Acq On : 20 Apr 2021 2:38 pm Operator: RJP Sample : AMB1UG-042021 Misc : A317\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 21 08:25:30 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.82128864441.00ppb0.0035) 1,4-difluorobenzene12.111143201221.00ppb0.0050) Chlorobenzene-d516.921173235711.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.71 95 208645 0.85 ppb 0.05 Spiked Amount 1.000 Range 70 - 130 Recovery = 85.00% Target Compounds Ovalue 21) Methylene chloride 7.06 84 12205 0.11 ppb 93



|                                                                                                                                                                                                                                                                                                                                                                        | 2,9nstradoroufformot       | •                                                    |                                          |                          |                    | and have been all and the second second and and | 0 18.00 19.00 20.00 21.00 22.00 23.00 24.00 | Page 2                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------|------------------------------------------|--------------------------|--------------------|-------------------------------------------------|---------------------------------------------|--------------------------------------|
| Vial: 1<br>Operator: RJP<br>Inst : %SD #1<br>Multiplr: 1.00<br>Quant Results File: A317_IUG.RES<br>1UG.M (RTE Integrator)<br>5 point calibration<br>TIC:AS042005.D                                                                                                                                                                                                     | l,∂b-snesredoroidÜ         | አ.ቋብረአጠሪ(አղሪቲ/ክክ/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h |                                          |                          |                    |                                                 | 11.00 12.00 13.00 14.00 15.00 16.00 17.0    | 21:06 2021 MSD1                      |
| Data File : C:\HPCHEM\1\DATA\AS042005.D<br>Acg On : 20 Apr 2021 2:38 pm<br>Sample : AMB1UG-042021 2:38 pm<br>Misc : A317_1UG<br>MS Integration Params: RTEINT.P<br>Quant Time: Apr 21 8:25 2021<br>Method : C:\HPCHEM\1\METHODS\A317_1<br>Title : TO-15 VOA Standards for 5<br>Last Update : Wed May 05 08:06:45 2021<br>Response via : Initial Calibration<br>Undance | 620000<br>550000<br>500000 | 450000<br>400000<br>350000                           | 25.000<br>000000<br>Bromochioromothaue,I | 1500000<br>560000<br>7.4 | Methylane chloride | 50000                                           | me-> 4.00 5.00 6.00 7.00 8.00 9.00 10.00    | S042005.D A317_1UG.M Wed May 05 08:1 |

Page 170 of 229

Centek Laboratories, LLC<sub>Quantitation Report</sub> (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042106.D Vial: 1 Operator: WD Acq On : 21 Apr 2021 3:08 pm Sample : AMBIUG-042121 Misc : A317\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 22 12:30:18 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.83128773421.00ppb0.0235) 1,4-difluorobenzene12.121142848831.00ppb0.0150) Chlorobenzene-d516.931172482811.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.72 95 156526 0.83 ppb 0.06 Spiked Amount 1,000 Range 70 - 130 Recovery = 83.00% Ovalue Target Compounds



Page 172 of 229

24.00 Page 2 Date: 05-Mm/-21

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

| CLIENT:     | LaBella Associates, P.C |
|-------------|-------------------------|
| Work Order: | C2104038                |
| Ducingto    | 1500 loffercon Dond     |

| Project: 1500 Jeffer                  | son Road                        |         |                  |                        |                |                | TestCode:           | 0.20_NYS                          |            |
|---------------------------------------|---------------------------------|---------|------------------|------------------------|----------------|----------------|---------------------|-----------------------------------|------------|
| Sample ID: ALCS1UG-042021             | SampType: LCS                   | TestCoc | e: 0.20_NYS      | Units: ppbV            |                | Prep Date:     |                     | RunNo: 17523                      |            |
| Client ID: ZZZZ                       | Batch ID: R17523                | Test    | o: T <b>O-15</b> |                        | -              | Analysis Date: | 4/20/2021           | SeqNo: 198927                     |            |
| Analyte                               | Result                          | Pal     | SPK value        | SPK Ref Vat            | %REC           | LowLimit 3     | lighLimit RPD Ref V | ai %RPD RPDLimit                  | Qual       |
| 1,1,1-Frichioroethane                 | 1.120                           | 0.15    | -                | 0                      | \$12           | 91.3           | 127                 |                                   |            |
| 1, f,2,2-Tetrachloroethane            | 1.080                           | 0.15    | £                | ٥                      | §08            | 78.7           | 121                 |                                   |            |
| 1, <sup>‡</sup> ,2-¥richioroethane    | 1.080                           | 0.15    | ÷                | 0                      | 108            | 88.†           | 135                 |                                   |            |
| 1,3-Dichloroethane                    | 1.090                           | 0.15    | £                | 0                      | 109            | 86.1           | 123                 |                                   |            |
| 1, 1-Dichloroethene                   | 0.9900                          | 0.040   | ÷                | 0                      | 0.99.0         | 70             | 25                  |                                   | ŝ          |
| 1.2.4-Trichlorobenzene                | 1.250                           | 0.15    | ÷                | 0                      | 125            | 76.7           | 112                 |                                   | S          |
| 1,2,4-T timethy!benzene               | 1,140                           | 0.15    | <del>~~</del>    | 0                      | 114            | 74.3           | 123                 |                                   |            |
| f.2-Dibromoethane                     | 1.060                           | 0.15    | 40-11            | ð                      | 1 <del>5</del> | 80.4           | 125                 |                                   |            |
| 1.2-Dichlorobenzene                   | 1.030                           | 0.15    | 4 m              | ¢                      | 103            | 79.5           | 143                 |                                   |            |
| 1,2-Dichloroethane                    | 1.120                           | 0.15    | ų                | 0                      | 112            | 70.9           | 133                 |                                   |            |
| <ol> <li>2-Dichloropropane</li> </ol> | 1.050                           | 0.15    | 4017             | ¢                      | 105            | 91             | 134                 |                                   |            |
| 1,3,5-Trimethylbenzene                | 1.100                           | 0.15    | •                | ¢                      | 110            | 77.4           | 138                 |                                   |            |
| 1,3-butadiene                         | 0.9900                          | 0.15    | -                | 0                      | 0.66           | 71             | 144                 |                                   |            |
| 1,3-Dichlorobenzene                   | 1.070                           | 0.15    | -                | Q                      | 107            | 84.7           | 128                 |                                   |            |
| 1,4-Dichlorobenzene                   | 1.140                           | 0.15    | -                | Q                      | 114            | 5.77           | 131                 |                                   |            |
| 1,4-Dioxane                           | 1,090                           | 0.30    | -                | 0                      | 109            | 85.1           | 135                 |                                   |            |
| 2,2,4-trimethyipentane                | 1,060                           | 0.15    | -                | 0                      | 106            | 86.9           | 126                 |                                   |            |
| 4-ethyltoluene                        | 1.100                           | Ð. 15   | -                | 0                      | 10             | 77.5           | 133                 |                                   |            |
| Acetone                               | 0.7600                          | 0.30    | +**              | D                      | 76.0           | 80.2           | 145                 |                                   | S          |
| Allyl chłoride                        | 1.110                           | 0.15    |                  | 0                      | 111            | 86.B           | 117                 |                                   |            |
| Benzene                               | 1.090                           | 0.15    | 4m               | Ò                      | 109            | 88.9           | 122                 |                                   |            |
| Benzyl chloride                       | 1.290                           | 0.15    | 40 <del>0</del>  | ð                      | 129            | 73.6           | 120                 |                                   | Ω          |
| Bromodichloromethane                  | 1.130                           | 0.15    | Ļ                | ¢                      | 113            | 84.3           | 133                 |                                   |            |
| Bromoform                             | 1.050                           | 0.15    |                  | ¢>                     | 105            | 44.6           | 149                 |                                   |            |
| Bromomethane                          | 1.080                           | 0.15    | -                | Q                      | 108            | 78.7           | 144                 |                                   |            |
| Qualifiers: Results report            | tted are not blank corrected    |         | E Estimat        | ied Value above quan   | dilation rang  | 4              | H Hotding tisses    | for preparation or analysis excee | tied       |
| J Analyte detec                       | cted below quantitation litsit  |         | ND Not De        | tected at the Limit of | Detections     |                | R RPD outside a     | ecepted recevery limits           |            |
| S Spike Recove                        | ery outside accepted recovery l | inits   | DL. Detecti      | on Limit               |                |                |                     | 1                                 | ç fo I aga |

| CLIENT: LaBella As                           | sociates, P.C.                |          |              |                         |               |              |                     |                                      |            |
|----------------------------------------------|-------------------------------|----------|--------------|-------------------------|---------------|--------------|---------------------|--------------------------------------|------------|
| Work Order: C2104038<br>Project: 1500 Jeffer | son Road                      |          |              |                         |               |              | TestCode            | 0.20_NYS                             |            |
| Sample ID: ALCS1UG-042021                    | SampType: LCS                 | TestCode | 5: 0.20_NYS  | Units: ppbV             |               | Prep Dat     | ä                   | RunNo: 17523                         |            |
| Client ID: ZZZZ                              | Batch ID: R17523              | TestNo   | 0: TO-15     |                         |               | Analysis Dat | e: 4/20/2021        | SeqNo: 198927                        |            |
| Analyte                                      | Resut                         | bQL      | SPK value    | SPK Ref Val             | %REC          | LowLimit     | HighLimit RPD Ref / | al %RPD RPDLimit                     | Qual       |
| Carbon disulfide                             | 1.210                         | 0.15     | 4            | ¢                       | 121           | 75.9         | 109                 |                                      | S          |
| Carbon tetrachioride                         | 1.120                         | 0:030    | <b>.</b>     | 0                       | 112           | 71           | 120                 |                                      |            |
| Chlorobenzene                                | 1.030                         | 0.15     | 4 <b>0</b> 0 | 0                       | 103           | 82.6         | 121                 |                                      |            |
| Chloroethane                                 | 1.020                         | 0.15     |              | 0                       | 102           | 67.1         | 146                 |                                      |            |
| Chloroform                                   | 1.090                         | 0.15     | *            | ¢                       | £0‡           | 82.5         | 125                 |                                      |            |
| Chloromethane                                | 1.000                         | 0.15     | <del></del>  | 0                       | ‡00           | 71.1         | 154                 |                                      |            |
| cis-1,2-Dichloroethene                       | 1.050                         | 0.040    | •            | 0                       | \$0£          | 71.2         | 112                 |                                      |            |
| cis-1.3-Dichloropropene                      | 1.110                         | 0.15     | -            | 0                       | 11            | 90.3         | 137                 |                                      |            |
| Cyclohexane                                  | 1.070                         | 0.15     | -            | 0                       | 107           | 87           | 122                 |                                      |            |
| Dibromochloromethane                         | 1.080                         | 0.55     | -            | 0                       | 108           | 62.8         | 132                 |                                      |            |
| Ethyt acetate                                | 1.150                         | 0.15     | -            | 0                       | 115           | 86.9         | 134                 |                                      |            |
| Ethyšbenzene                                 | 1.100                         | 0.15     | -            | 0                       | 110           | 76.9         | 123                 |                                      |            |
| Freor 11                                     | 1.010                         | 0.15     | +            | 0                       | 101           | 54.4         | 150                 |                                      |            |
| Freon 113                                    | 1.100                         | 0.15     | ٣            | ¢                       | 110           | 83.4         | 124                 |                                      |            |
| Freon 114                                    | 1.670                         | 0.15     | nga m        | ¢                       | 107           | 82.4         | 144                 |                                      |            |
| Freon 12                                     | 1.110                         | 0.15     | ***          | 0                       | 1 1 5         | 85.3         | 135                 |                                      |            |
| Heplane                                      | 1.100                         | 0.15     | <b>4</b> 77- | 0                       | 110           | 86.5         | 137                 |                                      |            |
| Hexachloro-1,3-butadiene                     | 1.200                         | 0.15     | -            | 0                       | 120           | 78.7         | 120                 |                                      |            |
| Hexane                                       | 1.090                         | 0.15     | -            | 0                       | <b>€</b> 0∮   | 77.3         | 128                 |                                      |            |
| Isopropyi atcohol                            | 0.9900                        | 0.15     | -            | 0                       | 0.66          | 80.2         | 122                 |                                      |            |
| m&p-Xyiene                                   | 2.210                         | 0.30     | 2            | 0                       | 110           | 77.9         | 132                 |                                      |            |
| Methyl Butyl Ketone                          | 1.080                         | 0:30     |              | 0                       | 108           | 69.4         | 131                 |                                      |            |
| Methyl Ethyl Ketone                          | 1.080                         | 0.30     | ψur          | ¢                       | 108           | 71.5         | 117                 |                                      |            |
| Methył Isobutył Ketone                       | 1.080                         | 0.30     | 4m           | 0                       | 108           | 63.5         | 141                 |                                      |            |
| Methył tert-bułył ether                      | 1.080                         | 0.15     | <b>T</b>     | 0                       | 108           | 80.8         | 113                 |                                      |            |
| Methylene chloride                           | 1.210                         | 0.15     | -            | 0.11                    | 1‡0           | 87.8         | 123                 |                                      |            |
| o-Xylene                                     | 1.090                         | 0.15     | -            | 0                       | ±09           | 80.5         | 139                 |                                      |            |
| Propyŧene                                    | £.080                         | 0.15     | -            | 0                       | 108           | 96.2         | 135                 |                                      |            |
| Styrene                                      | 1,070                         | 0.15     | -            | D                       | 107           | 82.7         | 138                 |                                      |            |
| Tetrachioroethylene                          | 1.050                         | 0.15     | -            | 0                       | 105           | 85.9         | 122                 |                                      |            |
| <b>Fetrahyd</b> tofuran                      | 1.070                         | 0.15     | <del></del>  | 0                       | 107           | 65.5         | 134                 |                                      |            |
| Qualifiers: . Results repor                  | rted are not blank corrected  |          | E Estima     | led Value above quan    | Eitation rang | 2            | H Holding time      | s for preparation or assivsis exceed | cđ         |
| j Analyse dete                               | xted beiew quantitation limit |          | ND Not De    | sected as the Linsit of | Detection     |              | R RPD outside       | accepted recovery limits             |            |
| S Spike Recov                                | ery outside accepted recovery | limits   | DL Detecti   | oa Limit                |               |              |                     | đ.                                   | age 2 of 5 |

| CLIENT: LaBella As         | sociates, P.C.                  |         |                  |                         |              |              |                       |                                  |            |
|----------------------------|---------------------------------|---------|------------------|-------------------------|--------------|--------------|-----------------------|----------------------------------|------------|
| WITH UTUEL: C2104036       |                                 |         |                  |                         |              |              | Ę                     |                                  |            |
| Project: 1500 Jeffer       | son Road                        |         |                  |                         |              |              | lestcode:             | CYN_UL                           |            |
| Sample ID: ALCS1UG-042021  | SampType: LCS                   | TestCod | e: 0.20_NYS      | Units: ppbV             |              | Prep Dat     |                       | RunNo: 17523                     |            |
| Client ID: ZZZZ            | Batch ID: R17523                | TestN   | 0: T <b>O-15</b> |                         |              | Analysis Dai | e: 4/20/2021          | SeqNo: 198927                    |            |
| Analyte                    | Result                          | PQL     | SPK value        | SPK Ref Val             | %REC         | LowLimit     | HighLimit RPD Ref Val | %RPD RPD1.imit                   | Qual       |
| Toluene                    | 1.080                           | 0.15    | -                | 0                       | 108          | 77.8         | 127                   |                                  |            |
| trans-1,2-Dichloroethene   | 1,070                           | 0.15    | -                | Ð                       | 107          | 83.3         | 116                   |                                  |            |
| trans-1,3-Dichloropropene  | 1.150                           | 0.15    | -                | ð                       | 115          | 84.8         | 134                   |                                  |            |
| Trichloroethene            | 1.060                           | 0:030   | -                | 0                       | 106          | 79.3         | 251                   |                                  |            |
| Vinyl acetate              | 1.070                           | 0.15    | ÷-               | Ö                       | 107          | 70.5         | 101                   |                                  | ŝ          |
| Vinyl Bromide              | 1.030                           | 0.15    | -                | 0                       | 103          | 81.4         | 142                   |                                  |            |
| Vinyl chioride             | 0.9860                          | 0.040   | 4                | 0                       | 98.0         | 70.4         | 138                   |                                  |            |
| Sample ID: ALCS1UG-042121  | SampType: LCS                   | TestCod | e: 0.20_NYS      | Units: ppbV             |              | Prep Dat     | ä                     | RunNo: 17524                     |            |
| Client ID: ZZZZ            | Batch ID: R17524                | TesiN   | c: TO-15         |                         |              | Analysis Dat | e: 4/21/2021          | SecNo: 198944                    |            |
| Anaiyle                    | Result                          | POL     | SPK value        | SPK Ref Vai             | %REC         | LowLimit     | HighLimit RPD Ref Val | %RPD RPDLimit                    | ପିଶସ       |
| 1.1.1-Trichloroethane      | 1.240                           | 0.15    | -                | 0                       | 124          | 91.3         | 127                   |                                  |            |
| 1.1.2.2-Tetrachloroethane  | 1.220                           | 0.15    | -                | 0                       | 122          | 78.7         | 121                   |                                  | ŝ          |
| 1, 5,2-Frickloroethane     | 1. \$80                         | 0.15    | -                | 0                       | 118          | 68.1         | 136                   |                                  |            |
| 1, 1-Dichiorcethane        | 1.110                           | 0.15    | -                | D                       | 111          | 86.1         | 123                   |                                  |            |
| 1,1-Dichloroethene         | 0.9700                          | 0.040   | -                | Ō                       | 97.0         | 70           | 94                    |                                  | S          |
| 1,2,4-Trichiorobenzene     | 1.500                           | 0.15    | -                | 0                       | 150          | 76.7         | 112                   |                                  | S          |
| 1.2.4-Trimethylbenzene     | 1.200                           | 0,15    | <b>*</b>         | Ð                       | 120          | 74.3         | 123                   |                                  |            |
| 1.2-Dibromoethane          | 1.190                           | 0.15    | Ψm               | Q                       | 119          | 80.4         | 125                   |                                  |            |
| 1,2-Dichlorobenzene        | 1.350                           | 0.15    | •                | Q                       | 135          | 79.5         | 143                   |                                  |            |
| 1,2-Dichloroethane         | 1.120                           | 0.15    | •                | O                       | 112          | 70.9         | 133                   |                                  |            |
| 1,2-Dichloropropare        | 1.210                           | 0.15    | F                | 0                       | \$21         | 6            | 134                   |                                  |            |
| 1,3,5-Trimethylbenzene     | 1.280                           | 0.15    | -                | 0                       | <b>†</b> 28  | 4.77         | 138                   |                                  |            |
| 1,3-butadiene              | 1.070                           | 0.15    | -                | 0                       | 107          | 11           | \$44                  |                                  |            |
| 1,3-Dichlorobenzene        | 1.230                           | 0.15    | <del>~~</del>    | Ċ                       | 123          | 84.7         | 128                   |                                  |            |
| 1,4-Dichlorobenzene        | 1,290                           | 0.15    | ÷                | 0                       | 129          | 5.77         | 131                   |                                  |            |
| 1.4-Dioxane                | 1.220                           | 0:30    | yua              | 0                       | 122          | 85.1         | 135                   |                                  |            |
| 2,2.4-trimethytpentane     | 1.170                           | 0.15    | ęли              | 0                       | 117          | 86.5         | 126                   |                                  |            |
| 4-ethyltotuene             | 1.270                           | 0.15    | 4~ <b>~</b>      | φ                       | 127          | 77.5         | 133                   |                                  |            |
| Ouslifers: Revelts retrait | tted are not blank cosrected    |         | E Estine         | sted Value above quar   | ditation ran | 년<br>년<br>년  | Holding times for     | r preparation or analysis excred | P          |
| J Analyte dete             | cted below quantitation fisnit  |         | ND Not DA        | ciected al the Limit of | Detection    |              | R RPD cutside acc     | rpted recovery limits            |            |
| S Spike Recov              | ery outside accepted recovery l | limits  | DL Detect        | tion Limit              |              |              |                       | đ                                | age 3 of 5 |

LaBella Associates, P.C. CLIENT:

C2104038 Work Order:

| Project: 1500 Jeffer      | rson Road                       |         |              |                           |               |                | TestCode: (          | 0.20_NYS             |               |            |
|---------------------------|---------------------------------|---------|--------------|---------------------------|---------------|----------------|----------------------|----------------------|---------------|------------|
| Sample ID: ALCS1UG-042121 | SampType: LCS                   | TestCod | a: 0.20_NYS  | Units: ppbV               |               | Prep Date:     |                      | RunNo: 1752          | 4             |            |
| Client ID: ZZZZ           | Batch ID: R17524                | TestN   | o: TO-15     |                           |               | Analysis Date: | 4/21/2021            | SeqNo: 1989          | 44            |            |
| Analyte                   | Result                          | POL     | SPK value    | SPK Ref Val               | %REC          | LowLimit 🖡     | kghtimit RPD Ref Val | %ጸዎD                 | RPDLimit      | Qual       |
| Acetone                   | 1,110                           | 0.30    | -            | 0                         | 111           | 80.2           | 145                  |                      |               |            |
| Allyl chloride            | £_110                           | 0.15    | ÷            | 0                         | 111           | 86.6           | 117                  |                      |               |            |
| Benzene                   | 1.130                           | 0.15    | ſ            | 0                         | 113           | 88.9           | 122                  |                      |               |            |
| Benzyl chloride           | 1.400                           | 0.15    | ſ            | 0                         | 140           | 73.6           | 120                  |                      |               | ŝ          |
| Bromodicínloromethane     | 1.230                           | 0.15    | -            | 0                         | 123           | 84.3           | 133                  |                      |               |            |
| Bromoform                 | 1.170                           | 0.15    | *-           | Ð                         | 117           | 44.6           | 149                  |                      |               |            |
| Bromomethane              | 1.110                           | 0.15    | *            | ð                         | 111           | 7.8.7          | 144                  |                      |               |            |
| Carbon disuitide          | 1.120                           | 0.15    | *            | ¢                         | 112           | 76.9           | 109                  |                      |               | ŝ          |
| Carbon letrachtoride      | 1.240                           | 0:030   | di.eu        | Ð                         | 124           | 71             | 120                  |                      |               | Ś          |
| Chiorobenzeae             | 1.150                           | 0.15    | •            | 0                         | 115           | 82.6           | <u>†</u> 21          |                      |               |            |
| Chloroethane              | 1.070                           | 0.15    | F            | 0                         | 101           | 67.1           | ‡46                  |                      |               |            |
| Chlaroform                | 1.110                           | 0.15    | -            | 0                         | 4<br>4<br>4   | 82.5           | 125                  |                      |               |            |
| Chloromethane             | 1.020                           | 0.15    | -            | 0                         | 102           | 71.1           | 154                  |                      |               |            |
| cis-1,2-Dichloroethene    | 1.050                           | 0.040   | -            | 0                         | 105           | 74,2           | 112                  |                      |               |            |
| cis-1,3-Dichloropropene   | 1.220                           | 0.15    | <del>.</del> | 0                         | 122           | 90.3           | 137                  |                      |               |            |
| Cyclohexane               | 1.140                           | 0.15    | 1            | Ð                         | 114           | 87             | 122                  |                      |               |            |
| Dibromochioromethane      | 1.230                           | 0.15    | ψn.          | 0                         | 123           | 62.8           | 132                  |                      |               |            |
| Ethyi acetate             | 1.130                           | 0.15    | <b>.</b>     | Ð                         | 113           | 36.9           | 134                  |                      |               |            |
| Ethylbenzeae              | 1.190                           | 0.15    | ¥71          | ¢                         | 119           | 76.9           | 123                  |                      |               |            |
| Freon 11                  | 1.160                           | 0.15    | ~            | 0                         | 118           | 54.4           | 150                  |                      |               |            |
| Freon 113                 | 1.130                           | 0.15    | -            | 0                         | 13            | 83.4           | 124                  |                      |               |            |
| Freon 114                 | f.120                           | 0.15    | -            | 0                         | 112           | 82.4           | ţ44                  |                      |               |            |
| Freon 12                  | 1,170                           | 0.15    | -            | 0                         | 117           | 86.3           | \$35                 |                      |               |            |
| Heptane                   | 1.200                           | 0.15    | <b>~</b>     | 0                         | 120           | 86.5           | 137                  |                      |               |            |
| Hexachloro-1,3-butadiene  | 1.500                           | 0.15    | *~           | Ð                         | 150           | 78.7           | 120                  |                      |               | ŝ          |
| Hexane                    | 1.080                           | 0.15    | 4 ver        | Ċ                         | 108           | 77.3           | 128                  |                      |               |            |
| Isopropyl alcohol         | 1.190                           | 0.15    | •            | o                         | 119           | 80.2           | 122                  |                      |               |            |
| m&p-Xylene                | 2.550                           | 0:30    | 5            | 0                         | 128           | 6.77           | 132                  |                      |               |            |
| Methyl Butyl Ketone       | 1.190                           | 0.30    | -            | 0                         | 19            | 69.4           | 131                  |                      |               |            |
| Methyl Ethyl Ketone       | 1.050                           | 0.30    | -            | 0                         | 105           | 71.5           | 157                  |                      |               |            |
| Methył isobutył Ketone    | 1.200                           | 0.30    | -            | 0                         | 120           | 63.5           | 4                    |                      |               |            |
| Oualifiers: Results repo  | orted are not blank corrected   |         | E Estém      | ated Value above quar     | stitation nac | ວຍັ            | H Holding times for  | r preparation or and | alysis exceed | ţ          |
| J Analyte dete            | scled below quantitation limit  |         | ND Not D     | betected at the Linkit of | Detection     |                | R RPD outside acc    | epted recovery limi  | its           |            |
| S Spike Recov             | rery outside accepted recovery. | limits  | DL Delec     | tion Limit                |               |                |                      |                      | ď             | age 4 of 5 |

| CLIENT:             | LaBella As   | sociates, P.C.                  |          |              |                           |               |              |               |                |                  |                 |              |
|---------------------|--------------|---------------------------------|----------|--------------|---------------------------|---------------|--------------|---------------|----------------|------------------|-----------------|--------------|
| Work Order:         | C2104038     |                                 |          |              |                           |               |              |               |                |                  |                 |              |
| Project:            | 1500 Jeffer  | son Road                        |          |              |                           |               |              | TestC         | ode: 0.        | 20_NYS           |                 |              |
| Sample ID: ALCS     | 106-042121   | SampType: LCS                   | TestCo   | le: 0.20_NYS | Units: ppbV               |               | Prep Dat     | ë             |                | RunNo: 17        | 524             |              |
| Client ID: ZZZ      | Z            | Batch ID: R17524                | Test     | lo: TO-15    |                           |               | knalysis Dai | ie: 4/21/2021 |                | SeqNo: 191       | 8944            |              |
| Analyte             |              | Result                          | PQL      | SPK value    | SPK Ref Val               | %REC          | LowLimit     | HighLimit RPD | Ref Val        | %RPD             | RPDLimit        | Qual         |
| Methyl tert-butyl e | ther         | 1.030                           | 0.15     | -            | 0                         | 103           | 80.8         | 113           |                |                  |                 |              |
| Methylene chlorid   | ď            | 1.140                           | 0.15     | F            | 0                         | 114           | 87.8         | 123           |                |                  |                 |              |
| o-Xylene            |              | 1.300                           | 0.15     | -            | 0                         | 130           | 80.5         | 139           |                |                  |                 |              |
| Propyiene           |              | 1.090                           | 0.15     | -            | Ð                         | 109           | 96.2         | 135           |                |                  |                 |              |
| Styrene             |              | 1.280                           | 0.15     | <del></del>  | ٣                         | 128           | 82.7         | 138           |                |                  |                 |              |
| Tetrachioroethyle   | le<br>Te     | 1.210                           | 0.15     | <b>*</b> *** | G                         | 121           | 85.9         | 122           |                |                  |                 |              |
| Tetrahydrofuran     |              | 1.060                           | 0.15     | ¥            | ¢                         | 106           | 65.5         | 134           |                |                  |                 |              |
| Toluene             |              | 1.190                           | 0.15     | 444          | a                         | 119           | 77.8         | 127           |                |                  |                 |              |
| trans-1,2-Dichloro  | ethene       | 1.080                           | 0.15     | ****         | Q                         | ‡08           | 83.3         | 116           |                |                  |                 |              |
| trans-1.3-Dichloro  | ອນອດດາຮ      | 1.130                           | 0.15     | <b>~</b>     | 0                         | 53            | B4.8         | 134           |                |                  |                 |              |
| Trichloroethene     |              | 1.170                           | 0.030    | •            | 0                         | 117           | 79.3         | 117           |                |                  |                 |              |
| Vinyl acetate       |              | 1.020                           | 0.15     | ۲            | 0                         | 102           | 70.5         | 101           |                |                  |                 | w            |
| Vinyl Bromide       |              | 1.080                           | 0.15     | -            | 0                         | 108           | 81.4         | 142           |                |                  |                 |              |
| Winyl chloride      |              | 1.010                           | 0.040    | ÷            | ð                         | 101           | 70.4         | 138           |                |                  |                 |              |
|                     |              |                                 |          |              |                           |               |              |               |                |                  |                 |              |
|                     |              |                                 |          |              |                           |               |              |               |                |                  |                 |              |
| Oushifters:         | Results repo | rred are not blank corrected    |          | E Estin      | nated Value above quar    | stitation ran | e.           | H Holdin      | er times for p | oreparation or a | analysis excert | ed.          |
| -                   | Analyte dete | scted befow quantitation timit  |          | ND Not I     | Detected at the Linsit of | Detection     |              | R RPDo        | utside accep   | ted recovery li  | mits            |              |
| ũ                   | Saske Recov  | erv onfeide accepted recovery h | istral5. | DI. Detec    | clima Limit               |               |              |               |                |                  | 1               | 100 C 10 C 5 |

Spike Recovery outside accepted recovery linsits

Page 5 of 5

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042004.D Vial: 1 Data File : C1 (AFCHEM(1) (DATA (AS0720011))Operator: RJPAcq On : 20 Apr 2021 1:59 pmOperator: RJPSample : ALCS1UG-042021Inst : MSD #1Misc : A317\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Apr 21 06:58:20 2021Quant Time: Apr 21 06:58:20 2021Quant Results File: A317\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcg Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards \_\_\_\_\_ 1) Bromochloromethane9.81128892171.00 ppb0.0035) 1,4-difluorobenzene12.111143353851.00 ppb0.0050) Chlorobenzene-d516.921173339421.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.71 95 251925 1.00 ppb 0.05 Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 100.00%

 Target Compounds
 Qvalue

 2) Propylen
 4.17
 41
 71296
 1.08
 ppb
 87

 3) Freon 12
 4.22
 85
 368847
 1.11
 ppb
 99

 4) Chloromethane
 4.41
 50
 80105
 1.00
 ppb
 99

 6) Vinyl Chloride
 4.61
 62
 79678
 0.98
 ppb
 95

 7) Butane
 4.72
 39
 62702
 0.99
 ppb
 90

 10) Chloroethane
 5.23
 64
 38136
 1.02
 ppb
 100

 11) Ethanol
 5.32
 45
 21708
 0.89
 ppb
 77

 12) Accolein
 5.91
 56
 24518
 0.76
 ppb
 97

 13) Koetone
 6.01
 58
 41478m
 0.76
 ppb
 97

 13) Accolein
 6.13
 42
 87402
 0.99
 pp # 85

 Target Compounds Ovalue 

(#) = qualifier out of range (m) = manual integration AS042004.D A317\_1UG.M Wed May 05 08:21:01 2021 MSD1

Centek Laboratories,LLC<br/>Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA\AS042004.DVial: 1<br/>Operator: RJP<br/>Inst : RJP<br/>Inst : MSD #1Acq On : 20 Apr 2021 1:59 pmOperator: RJP<br/>Inst : MSD #1Sample : ALCS1UG-042021Inst : MSD #1<br/>Multiplr: 1.00Misc : A317\_lUGMultiplr: 1.00MS Integration Params: RTEINT.P<br/>Quant Time: Apr 21 06:58:20 2021Quant Results File: A317\_lUG.RESQuant Method : C:\HPCHEM\1\METHODS\A317\_lUG.M (RTE Integrator)<br/>Title : TO-15 VOA Standards for 5 point calibration<br/>Last Update : Mon Apr 12 12:02:39 2021<br/>Response via : Initial Calibration

DataAcq Meth : 1UG\_ENT

|      | Compound                  | R.T.  | QION | Response  | Conc Uni      | t Qvalue |
|------|---------------------------|-------|------|-----------|---------------|----------|
| 46>  | Bromodichloromethane      | 13.20 | 83   | 314374    | 1.13 p        | 99 dq    |
| 47)  | cis-1,3-dichloropropene   | 14.02 | 75   | 196450    | 1.11 <u>r</u> | pb 97    |
| 48)  | trans-1,3-dichloropropene | 14.79 | 75   | 167222m 🛔 | 🕨 1.15 r      | opb      |
| 49)  | 1,1,2-trichloroethane     | 15.13 | 97   | 171992 -  | 1.08 g        | opb 100  |
| 51)  | Toluene                   | 14.87 | 92   | 240973    | 1.08 p        | opb 99   |
| 52)  | Methyl Isobutyl Ketone    | 13.93 | 43   | 224142    | 1.08 p        | 0e dq    |
| 53)  | Dibromochloromethane      | 15.85 | 129  | 326018    | 1.08 g        | 99 dq    |
| 54)  | Methyl Butyl Ketone       | 15.30 | 43   | 203507    | 1.08 r        | pb 86    |
| 55)  | 1,2-dibromoethane         | 16.12 | 107  | 270679    | 1.06 <u>r</u> | opb 99   |
| 56)  | Tetrachloroethylene       | 15.95 | 164  | 193429    | 1.05 g        | opb 99   |
| 57)  | Chlorobenzene             | 16.97 | 112  | 366796    | 1.03 p        | opb 99   |
| 58)  | Ethylbenzene              | 17.25 | 91   | 520329    | 1.10 p        | 8e dq    |
| 59)  | m&p-xylene                | 17.46 | 91   | 883834    | 2.21 p        | 98 dqc   |
| 60)  | Nonane                    | 17.87 | 43   | 260811    | 1.12 %        | opb 87   |
| 61)  | Styrene                   | 17.93 | 1.04 | 348891    | 1.07 1        | pb 93    |
| 62)  | Bromoform                 | 18.06 | 173  | 300928    | 1.05 g        | 98 dqa   |
| 63)  | o-xylene                  | 17.97 | 91   | 507194    | 1.09 p        | opb 97   |
| 64)  | Cumene                    | 18,59 | 105  | 619715    | 1.11 <u>r</u> | opb 98   |
| 66)  | 1,1,2,2-tetrachloroethane | 18.46 | 83   | 408675    | 1.08 ¥        | ee dqa   |
| 67)  | Propylbenzene             | 19.20 | 120  | 170490    | 1.09 p        | ppb 75   |
| 68)  | 2-Chlorotoluene           | 19.25 | 126  | 178807    | 1.03 g        | opb 97   |
| 69)  | 4-ethyltoluene            | 19.39 | 105  | 615701 👩  | 1,10 1        | opb 98   |
| 70)  | 1,3,5-trimethylbenzene    | 19.46 | 1.05 | 558432m 🗸 | 1.10 g        | dqq      |
| 71.) | 1,2,4-trimethylbenzene    | 19.97 | 105  | 504056    | 1.14 J        | opb 100  |
| 72)  | 1,3-dichlorobenzene       | 20.31 | 146  | 393740    | 1.07 p        | ee dqc   |
| 73)  | benzyl chloride           | 20.39 | 91   | 335799    | 1,29 p        | 96 dga   |
| 74)  | 1,4-dichlorobenzene       | 20.31 | 146  | 407239    | 1,14 p        | pb 100   |
| 75)  | 1,2,3-trimethylbenzene    | 20.51 | 105  | 504285    | 1.05 A        | 89 dqc   |
| 76)  | 1,2-dichlorobenzene       | 20.82 | 146  | 340421    | 1.03 p        | 99 dqc   |
| 77)  | 1,2,4-trichlorobenzene    | 22.93 | 180  | 189021    | 1.25 j        | 8e dqo   |
| 78)  | Naphthalene               | 23,14 | 128  | 400681    | 1.18 p        | 99 dqç   |
| 79)  | Hexachloro-1,3-butadiene  | 23.26 | 225  | 328465    | 1.20 👔        | opb 97   |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042004.D A317\_1UG.M Wed May 05 08:21:01 2021 MSD1

## Page 180 of 229

|        |                                      |                                    |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                          |                |                  | 24.00             | Page 3   |
|--------|--------------------------------------|------------------------------------|------|---------------|-----------|-------------------|----------------|------|---------------|--------------------------|-------------------------------------|------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------|-------------------|----------|
|        |                                      |                                    | Т.,  | xisibelud∙5,1 | -0.101434 | 99 <b>(4</b> 9).4 | 1920-278-278-2 |      |               |                          |                                     | l,anaxr                      | hadotoki<br>T                           | loint-4.8.<br>,eneteril                  | (ideN<br>I                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                          |                |                  | 33.00             | -        |
|        |                                      |                                    |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                          |                |                  | 22.00             |          |
|        |                                      |                                    |      |               |           |                   |                |      | T, er         | anexned<br>Paxned<br>T,e | toroldali<br>Yibenvia<br>Mesznod    | 6-6,1<br>1-6,2,1<br>(010110) | b-S.1                                   | T ebuc                                   | ацо у Ки                                           | 090                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1994/1995-999                                                                                                        |                          |                |                  | 0 21.00           |          |
|        |                                      |                                    |      |               |           |                   |                |      | T,9(          | iəzvəqi                  | Katenain                            | 1.4,5,8                      |                                         |                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               | **********                                                                                                           |                          |                |                  | 20.0              |          |
|        |                                      |                                    |      |               |           |                   |                | Г    | 7,6<br>Fright | <b>WANA</b><br>Nazudó    | Margid-1<br>Annalys<br>Annalys      | oroin <del>":</del><br>t     |                                         | 2010-0020-0020-002<br>2010-0020-0020-002 | ning ang sanaka<br>Kababagangan<br>Kababagangan    | Andrea Marena da Mar<br>No de Carlo d                                                                                                                                                                                                            |                                                                                                                      |                          |                | ······           | 00.5              |          |
|        |                                      |                                    |      |               |           |                   |                |      | 1.            | ənrıdı:                  | ចុះតុបូពនា<br>ពីដែនយោក<br>រលាលប្រុង | norobei<br>Biol-2.5          | 1)010075<br>7111                        | )                                        |                                                    | ana ang ang ang ang ang ang ang ang ang                                                                                                                                                                                                                                                                                                                                                                                                       | 1. (* 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                         | ······                   |                | ÷,               | 1                 |          |
|        |                                      |                                    |      |               |           |                   |                |      |               | 1,6                      | eu <del>l</del> úðiki               | φ <b>έχ-ο</b> γγ             | 9191918<br>191919<br>191919             | เงาหม                                    |                                                    | jeje je je produktiva<br>Liste i se produktiva se produktiva<br>Na se produktiva se produktiv | alla an                                                                          | 94000000 <del>0000</del> |                |                  | 18.00             |          |
|        |                                      |                                    |      |               |           |                   |                |      |               |                          | ,                                   | euejáx⊸<br>J1eueze           | dទួយ<br>មេខលកំណុះ                       |                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                          |                |                  |                   |          |
| ved    |                                      | <b>-</b>                           |      |               |           |                   |                |      |               |                          |                                     | T{                           | <i>ዊው</i> ቆሁን                           | abrster                                  | но -                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                              | ervy <u>ervalá</u>       | <u></u>        |                  | 분문                |          |
| Review | 101<br>102                           |                                    |      |               |           |                   |                |      |               | T,÷                      | uajAquo                             | Ju98998                      | ang | ពលេះត្រូវប្រ<br>ចែលចេះ រូ                | पाल्लास<br>पार                                     | ordib-S,                                                                                                                                                                                                                                                                                                                                                                                                                                      | L ····································                                                                               |                          |                |                  | \$6.00            |          |
| ĸ      |                                      | +<br>_}                            |      |               |           |                   |                |      |               |                          |                                     |                              |                                         | L'S                                      | auojay                                             | u Brave                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ujoja)                                                                                                              |                          |                | na dia 1950 aria | ) <br>            |          |
| ×      | L<br>MSD<br>L.O.                     | 004.0                              |      |               |           |                   |                |      |               |                          |                                     |                              | T,enerb                                 | າດທີ່ດີ.<br>ເປັນຄະບອ                     | n-s, r, j<br>1999en<br>1                           | olrioit <u>a, E</u>                                                                                                                                                                                                                                                                                                                                                                                                                           | (*s0#))                                                                                                              | ,                        |                |                  | 5<br>- 12<br>- 12 |          |
| port   | Vial:<br>ator:<br>iplr:              | ator)<br>on<br>AS042               |      |               |           |                   |                |      |               |                          |                                     |                              |                                         | <b>T</b> .9986                           | na'iyek                                            | 14699 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 计设计                                                                                                                  |                          |                |                  | 101               | TCS      |
| on Re  | Oper<br>Inst<br>Mult                 | ntegr<br>brati<br>TIC              |      |               |           |                   |                |      |               |                          |                                     |                              | 1,en                                    | ិ,ទកទស្ស<br>ខ្មែរ<br>សៅខពាល              | ာက္ကေရာက္က<br>ကျငင်္သား<br>ကျငင္လာက္<br>ကျငင္လာက္ရ | sigoH<br>Biolitai<br>Biolitai                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 <u>8</u> 44                                                                                                       |                          |                |                  | 13.0              | -        |
| tatı   | α<br>Ω<br>Γ                          | RTE I<br>Cali                      |      |               |           |                   |                |      |               |                          |                                     | ł.                           | anstro.                                 | ៨ស្រុតជា<br>៨ស្រុកទាំង                   | 20600)<br>21600                                    | z<br>ionµip∙⊭                                                                                                                                                                                                                                                                                                                                                                                                                                 | 'ł                                                                                                                   |                          |                |                  | 1 0               | 021      |
| nti    | ant                                  | nt (1                              |      |               |           |                   |                |      |               |                          |                                     |                              | j, appo                                 | kiberia)                                 | ucoud o                                            | auga-u                                                                                                                                                                                                                                                                                                                                                                                                                                        | olovo                                                                                                                |                          | ·/             |                  | 4                 | <br>     |
| Qua    | Ē                                    | vo<br>i poi                        |      |               |           |                   |                |      |               |                          |                                     |                              |                                         | Т,эсік                                   | പ്രാവവ                                             | irt⇒int-t.†<br>T,ene                                                                                                                                                                                                                                                                                                                                                                                                                          | t,t<br>ideoroi                                                                                                       |                          | •              |                  |                   | 21:02    |
|        | 04.D                                 | 4317_J<br>for<br>2021              |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          | tene                                               | aliamos<br>T,mos                                                                                                                                                                                                                                                                                                                                                                                                                              | ofrigom<br>arolir(2)<br>T, nerut                                                                                     | inne<br>Bron             |                |                  |                   | 5 08:    |
|        | _ 50(                                | လ်က် ကို ကို                       |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          | ), ອາ                                              | นอนุเอดา                                                                                                                                                                                                                                                                                                                                                                                                                                      | ol((58).)<br>(.016)                                                                                                  | 5, † -eio<br>1908 (vit   | 13             | ·····            |                   | ,        |
|        | FOS A                                | HOL<br>dar<br>6:4<br>tic           |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          |                                                    | Link                                                                                                                                                                                                                                                                                                                                                                                                                                          | 制的外户                                                                                                                 | եկդ≞լինգ                 | 7 <b>≎W</b>    |                  |                   | NG N     |
|        | TA\A<br>1:59<br>1:59<br>1:59<br>1:59 | vzı<br>VÆT<br>Stan<br>O8:0<br>ibra |      |               |           |                   |                |      |               |                          |                                     |                              | 4, 48                                   | )estimpto                                | indetikada<br>T,ori                                | l.Nettexe<br>u≓il)⊴docµ                                                                                                                                                                                                                                                                                                                                                                                                                       | nan in state in state<br>I | ы.<br>                   |                |                  | ) s               | Wed      |
|        | VDA<br>021<br>RTE                    | Call * 4                           |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      |                          |                |                  |                   | ,        |
|        | EM\1<br>2021<br>-042(<br>G<br>B-2    | May 1<br>Lal                       |      |               |           |                   |                |      |               |                          |                                     |                              | ï,ɛı                                    | 1. hardestöft<br>7. (                    | 1<br>s tytuð-<br>sbirðfrig                         | ethene, T<br>Macedie<br>Bride, T                                                                                                                                                                                                                                                                                                                                                                                                              | orotroit<br>waa<br>waa                                                                                               | ×1,1<br>                 |                |                  | 100 X             | W.       |
|        | PCH<br>100<br>100<br>100<br>100      | t<br>Po-1<br>Po-1                  |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          | T,1c                                               | អូលទាំង អ                                                                                                                                                                                                                                                                                                                                                                                                                                     | ackinidos                                                                                                            | 81                       |                |                  | <u>ع</u> ال       | , D      |
|        | A C S L                              | 0.4 \$ ¥<br>5                      |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          | Ŧ                                                  | ់រះ ដល់ខ                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,9000<br>19                                                                                                         | AL PLOU                  | vo<br>Vi¢iQio⊱ | ,                | . 4               | 7        |
|        | LONE ROL                             | द्धें गुल                          |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,9118165<br>T 2666                                                                                                   | 1,9060                   | LISSURIES.     | <u>a</u> }       | t g               | 13 F.    |
|        | a v a<br>a a<br>a a                  | ate vi                             |      |               |           |                   |                |      |               |                          |                                     |                              |                                         |                                          |                                                    | Т,е<br>Т                                                                                                                                                                                                                                                                                                                                                                                                                                      | onsi <b>历</b> 组                                                                                                      | 朝寨西                      | μίουν          | (<br>            |                   |          |
|        | t entrin<br>de trin                  | d d t                              |      |               |           |                   |                |      |               |                          |                                     |                              | T.and                                   | 1994 BOLO                                | EQUE<br>.k                                         | St 109                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                   | i onoiv                  | apa S          | و<br>ا           | -<br>_}¦⊊         | 년<br>2 말 |
|        | L C L C L                            | Spoile<br>Spoile                   | 000  | ê ê           | 000       | 80                | 000            | 000  | 00            | 00                       | 000                                 | ÔÔ                           | 80                                      | 8                                        | 000                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000                                                                                                                  | 000                      | 000            | 000              | °,                | 200      |
|        | A Dal<br>Sar<br>Maiser<br>Sar        | Viel<br>Viel<br>Lat<br>Re:<br>Re:  | 1900 | 1800<br>1700  | 1600      | 1500              | 1400           | 1300 | \$200         | 100                      | 1000                                | 006                          | 800                                     | 700                                      | 600                                                | 500                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400                                                                                                                  | 300                      | 200            | 190              | Time              | P.S.04   |

(QT Reviewed)

| Data File : C:\HPCHEM\1\DATA\A8043105.D       Vial: 1         Acg on : 21 Apr 2021 2:15 pm       Operator: WD         Sample : ALCSNG-042121       Inte :: WD #1         Misc : All? 100       Multiplr: 1.00         Wisc : All? 100       Ouant Results File: All?_100.RES         Quant Time: Apr 22 12:23:10 2021       Ouant Results File: All?_100.RES         Quant Method : C:\HFCHM\1\METHODS\All? 103.M (RTE Integrator)       Tile         Tile       Tile       Misc : Intil: Calibration         BataAcq Meth : 100_SNT       Distriction         Internal Standards       R.T. QION Response Conc Units Dev(Min)         1) Bromochloromethane       9.83 128 79503 1.00 ppb 0.002         35) 1.4-difluorobenzene       12.12 114 273664 1.00 ppb 0.01         System Monitoring Compounds       Covalue         2) Propylene       4.17 41 63667 1.09 ppb 0.00         3) Freon 12       4.22 85 344761 1.07 pp 97         4) Chloromethane       4.22 50 72304 1.02 ppb 93         5) Frono114       4.42 50 72304 1.02 ppb 93         6) Unyl Chloride       4.61 62 72357 1.01 ppb 97         1) Othoromethane       5.22 64680 1.12 ppb 93         1) J-butadiene       4.22 45 7339 0.60 ppb 4.07         3) Freon 14       4.42 50 72304 1.07 ppb 97         4.10 Chloromethane       5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Centek Laboratories,LLC                                                                                                                               | Quantitati                                  | on Rep          | port (QT                    | Review                  | wed)                   |              |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------|-----------------------------|-------------------------|------------------------|--------------|----------|
| Main Energy 21:28:10         Quant Xmess         Quant Xmess         Pile: A317_1UG.RES           Quant Method : C:\HFCHEM\L\METHODE\A317_1UG.M (RTE Integrator)         Title : To'15 VOA Standards for 5 point calibration           Title : To'15 VOA Standards for 5 point calibration         Task Component (1)         Total (2)           Beaponse via : Initial Calibration         Task Component (1)         Total (2)         Total (2)           Textrand Standards         R.T. Qion Response Conc Units Dev(Min)         Total (2)         Total (2)           1) Bromochioromethane         9.03         128         79503         1.00 ppb         0.01           50) Chlorobenzene         12.12         114         27564         1.00 ppb         0.01           System Monitoring Compounds         66) Bromofluorobenzene         18.67         95         210351         1.09 ppb         0.00           System Monitoring Compounds         610 Bromofluorobenzene         18.67         95         210351         1.09 ppb         97           1) Chloromethane         4.22         85         348763         1.17 pph         97           2) Propylene         4.17         41         63687         1.03 ppb         97           1) Chloromethane         5.23         64         344763         1.07 ppb <td< td=""><td>Data File : C:\HPCHEM\1\DATA\A<br/>Acq On : 21 Apr 2021 2:15<br/>Sample : ALCS1UG-042121<br/>Misc : A317_1UG</td><td>S042105.D<br/>pm</td><td></td><td>Oper<br/>Inst<br/>Mult</td><td>Vial:<br/>ator:<br/>iplr:</td><td>1<br/>WD<br/>MSD<br/>1.00</td><td>#1</td><td></td></td<>                                                                                                                                                                                                                                                                                                    | Data File : C:\HPCHEM\1\DATA\A<br>Acq On : 21 Apr 2021 2:15<br>Sample : ALCS1UG-042121<br>Misc : A317_1UG                                             | S042105.D<br>pm                             |                 | Oper<br>Inst<br>Mult        | Vial:<br>ator:<br>iplr: | 1<br>WD<br>MSD<br>1.00 | #1           |          |
| Quant Method : C:\HFCHEM\1\METHODE\All7_LUG.M (RTE Integrator)           Title : TO-15 VOA Standards for 5 point calibration           Task Update : Mon Apr 12 13:20:239 2021           Response via : Initial Calibration           DataAcq Meth. : LUG_ENT           Internal Standards : R.T. QIon Response Conc Units Dev(Min)           Internal Standards : Conce to the standards in the standards : Conce to the standar | Quant Time: Apr 22 12:28:10 20                                                                                                                        | 23                                          | Qua             | ant Results                 | File:                   | A317                   | _100         | G.RES    |
| Internal Standards         R.T. QION         Response Conc Units Dev(Min)           1) Bromochloromethane         9.83         128         79503         1.00 ppb         0.02           35) 1,4-difluorobenzene         12.12         114         273664         1.00 ppb         0.01           System Monitoring Compounds         65         Bromofluorobenzene         18.67         95         210351         1.09 ppb         0.00           System Monitoring Compounds         18.67         95         210351         1.09 ppb         0.00           System Monitoring Compounds         18.67         95         210351         1.09 ppb         0.00           Target Compounds         4.17         41         63687         1.09 ppb         90           7) Fropylene         4.17         41         63687         1.09 ppb         90           8) Freon 12         4.22         85         348763         1.01 ppb         97           9) Bromomethane         4.72         39         6520         1.07 ppb         99           10) Chlorochane         5.32         64         35441         1.07 ppb         99           10) Chlorochane         5.32         65         1447         1.22 ppb         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quant Method : C:\HPCHEM\l\MET<br>Title : TO-15 VOA Stan<br>Last Update : Mon Apr 12 12:0<br>Response via : Initial Calibra<br>DataAcq Meth : 1UG_ENT | HODS\A317<br>dards for<br>2:39 2021<br>tion | 1UG.M<br>5 poi: | (RTE Integr<br>nt calibrati | ator)<br>.on            |                        |              |          |
| 1)         Bromochloromethane         9.83         128         79503         1.00         ppb         0.02           35)         1.4 difluorobenzene         12.12         114         273664         1.00         ppb         0.01           System Monitoring Compounds         653         Bromofluorobenzene         18.67         95         210351         1.09         ppb         0.00           Spiked Amount         1.000         Range 70         130         Recovery         =         109.00%           Target Compounds         2         Propylene         4.17         41         63667         1.09         ppb         0.00           3)         Freon 12         4.22         65         348763         1.17         pph         93           61         Vinyl Chloride         4.61         62         72854         1.02         ppb         97           91         Bitame         4.72         43         82376         1.03         ppb         97           91         Bitame         5.07         94         8660         1.11         ppb         97           91         Bitame         5.33         64         3543         1.02         ppb         97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Internal Standards                                                                                                                                    | R.T.                                        | QIon            | Response (                  | one U                   | nits                   | Dev          | (Min)    |
| 35)       1.4-difluorobenzene       12.12       114       273664       1.00       ppb       0.01         50)       Chlorobenzene-ds       16.93       117       256437       1.00       ppb       0.01         System Monitoring Compounds       65       Browfluorobenzene       18.67       95       210351       1.09       ppb       0.00         Target Compounds       0       Recovery       =       109.00%       93         2)       Propylene       4.17       41       63687       0.09       ppb       93         3)       Freon 12       4.422       85       348763       1.17       ppb       97         4)       Chloromethane       4.42       85       264689       1.12       ppb       99         6)       Vinyl Chloride       4.61       63       7297       100       ppb       97         7)       Butane       5.07       94       98660       1.11       ppb       99         10)       Chloroothane       5.23       64       35441       1.07       ppb       98         11)       5.86       106       99435       1.08       ppb       90         12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1) Browochloromethane                                                                                                                                 | 9.83                                        | 128             | 79503                       | 1.00                    | daa                    |              | 0.02     |
| 50)       Chlorobenzene-d5       16.93       117       255437       1.00       00       0.01         System Monitoring Compounds       65)       Bromofluorobenzene       18.67       95       210351       1.09       ppb       0.00         Spiked Amount       1.000       Range 70       130       Recovery       =       109       ppb       0.00         Target Compounds       Qvalue       1.00       Range 70       130       Fron 12       4.22       85       348763       1.17       ppb       97         4)       Chloromethane       4.42       50       72804       1.02       ppb       99         6)       Vinyl Chloride       4.61       62       72957       1.01       ppb       97         7)       Butane       4.72       39       66520       1.07       ppb       92         9)       Bromomethane       5.23       64       15434       1.07       ppb       97         11)       Ethanol       5.33       45       17339       0.80       pb       61         12)       Arcolein       5.92       56       10487       1.20       pb       61         13)       Yarolein </td <td>35) 1.4-difluorobenzene</td> <td>12.12</td> <td>114</td> <td>273664</td> <td>1.00</td> <td>ppb</td> <td></td> <td>0.01</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35) 1.4-difluorobenzene                                                                                                                               | 12.12                                       | 114             | 273664                      | 1.00                    | ppb                    |              | 0.01     |
| System Monitoring Compounds       18.67       95       210351       1.09       ppb       0.00         Target Compounds       2       0.00       Recovery       -       109.00%         2       Propylene       4.17       41       63687       1.09       ppb       93         3       Freon 12       4.22       65       346763       1.17       ppb       93         4       Chioromethane       4.42       85       264689       1.12       ppb       97         5       Freon 114       4.42       85       264689       1.12       ppb       97         7       Butane       4.72       43       82376       1.03       ppb       97         9       Bromomethane       5.07       94       96660       1.11       ppb       97         11       Ethanol       5.33       45       17339       0.80       ppb       100         12       Acrolein       5.92       56       11487       1.02       ppb       98         13       Vinyl Bromide       5.68       100       382698       1.11       ppb       96         13       Vinyl Bromide       6.62       96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50) Chlorobenzene-d5                                                                                                                                  | 16.93                                       | 117             | 255437                      | 1.00                    | dqq                    |              | 0.01     |
| 65) Bromofluorobenzene       18.67       95       21051       1.09 ppb       0.00         Spiked Amount       1.000       Range       70 - 130       Recovery       =       109.00%         Target Compounds       Qvalue         2) Propylene       4.17       41       63667       1.09 ppb       93         3) Freon 12       4.22       85       348763       1.17 ppb       97         4) Chloromethane       4.42       85       264689       1.12 ppb       99         5) Freon 114       4.42       85       264689       1.12 ppb       97         7) Butane       4.72       43       82376       1.03 ppb       100         8) 1, 3-butadiene       5.07       94       98660       1.11 ppb       99         10) Chloroethane       5.23       64       1487       1.02 ppb       98         11) Viyl Bromide       5.86       101       382698       1.38 ppb       100         14) Freon 11       5.86       101       382698       1.31 ppb       96         13) Viyl Bromide       6.81       1013       9.75       1.11 ppb       97         13) Freon 11       5.86       1025867       1.39 ppb       96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | System Monitoring Compounds                                                                                                                           |                                             |                 |                             |                         |                        |              |          |
| Spiked Amount       1.000       Range       70 - 130       Recovery       = 109.00%         Target Compounds       Qvalue         2) Propylene       4.17       41       63687       1.09 ppb       93         3) Freon 12       4.22       85       348763       1.17 ppb       97         4) Chloromethane       4.42       85       264689       1.12 pb       99         6) Vinyl Chloride       4.61       62       72804       1.03 ppb       90         8) 1,3-butadiene       4.72       39       98660       1.01 ppb       99         9) Bromomethane       5.07       94       98660       1.01 ppb       99         9) Othoroethane       5.33       45       17339       0.80 ppb       #         12) Accolein       5.92       56       101       382688       1.08 ppb       98         13) Vinyl Bromide       5.85       106       9435       1.08 ppb       98       1.00         14) Freon 11       5.86       101       382688       1.18 ppb       98         15) Acctone       6.62       96       1.0119       97       91       1.13 ppb       98         10) Freon 113       6.63       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65) Bromofluorobenzene                                                                                                                                | 18.67                                       | 95              | 210351                      | 1.09                    | ppb                    |              | 0.00     |
| Target Compounds       Qvalue         2) Propylene       4.17       41       63687       1.09 ppb       93         3) Freon 12       4.22       85       346763       1.17 ppb       97         4) Chloromethane       4.42       85       264689       1.02 ppb       99         5) Freon 114       4.42       85       264689       1.12 ppb       99         6) Vinyl Chloride       4.61       62       72877       1.01 ppb       97         7) Butane       4.72       39       60520       1.07 ppb       92         9) Bromomethane       5.07       94       98660       1.11 ppb       99         10) Chloroethane       5.23       64       35434       1.07 ppb       97         11) Ethanol       5.33       45       17339       0.80 ppb       67         12) Acrolein       5.92       56       31487       1.02 ppb       81         13) Vinyl Bromide       5.68       100       382698       1.18 ppb       96         14) Freon 11       5.66       101 382698       1.18 ppb       97         13) Vinyl Bromide       6.62       96       1001       97       91       1.1 dichlorosthene       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spiked Amount 1.000                                                                                                                                   | Range 70                                    | - 130           | Recovery                    | / =                     | 109.                   | 00%          |          |
| 2) Propylene       4.17       41       63667       1.09       ppb       93         3) Freon 12       4.22       86       346763       1.07       ppb       97         4) Chloromethane       4.42       85       264689       1.12       ppb       99         5) Freon 114       4.42       85       264689       1.12       ppb       99         6) Vinyl Chloride       4.61       62       7257       1.01       pbb       97         Butane       4.72       43       82376       1.03       pbb       92         9) Bromomethane       5.07       94       98660       1.11       pbb       97         10 Chloroethane       5.33       45       13339       0.80       pbb       97         11 Ethanol       5.32       66       101       382698       1.16       pbb       97         12 Acrolein       5.92       56       31487       1.02       pbb       91         11 Preon 11       5.86       101       382698       1.18       pbb       96         13 Vinyl Bromide       6.14       42       102754       1.24       pbb       96         17 Tsopropyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Target Compounds                                                                                                                                      |                                             |                 |                             |                         |                        | Qva          | alue     |
| 3)       Frein 12       4.22       65       346763       1.17       Ppb       97         4)       Chloromethane       4.42       50       72804       1.02       Ppb       99         6)       Vinyl Chloride       4.61       62       72857       1.01       Ppb       97         7)       Butane       4.72       43       82376       1.03       Ppb       99         9)       Bromomethane       5.07       94       98660       1.11       Ppb       99         9)       Bromomethane       5.23       64       35434       1.07       Ppb       97         12)       Acrolein       5.23       64       35434       1.07       Ppb       99         10)       Orloroethane       5.23       64       35434       1.07       Ppb       98         13)       Vinyl Bromide       5.58       106       99435       1.08       Ppb       98         14)       Frecon 11       5.86       101       382698       1.18       Ppb       98         15)       Acetone       6.02       58       3976m       1.11       Ppb       97         16)       Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2) Propylene                                                                                                                                          | 4.17                                        | 41              | 63687                       | 1,09                    | dqq                    |              | 93       |
| 4)       Chloromethane       4.42       50       72804       1.02       ppb       99         5)       Freon 114       4.42       85       264689       1.12       ppb       99         6)       Vinyl Chloride       4.61       62       72957       1.01       ppb       97         Butane       4.72       43       82376       1.03       ppb       90         8)       1.3-butadiene       4.72       43       82376       1.01       ppb       97         9)       Bromomethane       5.07       94       98660       1.11       ppb       99         9)       Chloroethane       5.23       64       35434       1.07       ppb       97         11       Freon       11       5.86       101       382698       1.18       ppb       98         13)       Vinyl Bromide       5.58       106       99435       1.08       ppb       97         16)       Pentane       6.14       42       102754       1.11       ppb       98         10)       Freon 113       6.83       101       306587       1.13       ppb       98         20)       t-Butyl alcoho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3) Freon 12                                                                                                                                           | 4.22                                        | 85              | 348763                      | 1.17                    | $d\bar{q}\bar{q}$      |              | 97       |
| 5)       Freon 114       4.42       85       2246899       1.12       ppb       99         6)       Vinyl Chloride       4.61       62       72957       1.01       ppb       97         7)       Butane       4.72       43       82376       1.03       ppb       100         8)       1,3-butadiene       4.72       43       82376       1.01       ppb       97         9)       Bromomethane       5.07       94       98660       1.11       ppb       99         10)       Chloroethane       5.23       64       35434       1.07       ppb       97         11)       Ethanol       5.33       45       17339       0.80       ppb       467         12)       Acrolein       5.92       56       11487       1.02       ppb       61         13)       Vinyl Bromide       5.86       106       99435       1.01       ppb       98         15)       Acetone       6.02       58       53976m       1.11       ppb       97         16)       Pentane       6.14       42       102754       1.24       ppb       97         16)       Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4) Chloromethane                                                                                                                                      | 4,42                                        | 50              | 72804                       | 1.02                    | dqq                    |              | 99       |
| 6)       Vinyl Chloride       4.61       62       72957       1.01       ppb       97         7)       Butane       4.72       43       62376       1.03       ppb       100         81       1.3-butadiene       4.72       39       60520       1.07       ppb       92         9)       Bromomethane       5.07       94       98660       1.11       ppb       97         11       Ethanol       5.33       45       17339       0.80       ppb       467         12)       Acrolein       5.92       56       31487       1.02       ppb       81         13       Vinyl Bromide       5.58       106       99435       1.08       ppb       98         13       Vinyl Bromide       6.62       58       53976m       1.11       ppb       98         16)       Pentane       6.62       59       160119       0.97       ppb       97         11       1.dichorothene       6.62       59       168051       1.12       ppb       96         17)       Isopropyl alcohol       6.83       101       280587       1.13       ppb       97         18       1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5) Freon 114                                                                                                                                          | 4.42                                        | 85              | 264689                      | 1.12                    | ppb                    |              | 99       |
| 7) Butane       4.72       43       62376       1.03       ppb       100         8) 1,3-butadiene       4.72       39       60520       1.07       ppb       92         9) Bromomethane       5.07       94       98660       1.11       ppb       99         10) Chloroethane       5.23       64       35434       1.07       ppb       97         11) Ethanol       5.33       45       17339       0.80       ppb       #61         12) Acrolein       5.92       56       11487       1.02       ppb       81         13) Vinyl Bromide       5.85       106       9435       1.08       ppb       98         14) Freen 11       5.86       101       326598       1.11       ppb       98         15) Acetone       6.14       42       102754       1.24       ppb       96         17) Isopropyl alcohol       6.14       42       102767       1.11       ppb       99         16) Pentane       6.14       42       102754       1.24       ppb       96         17) Isopropyl alcohol       6.83       101       280587       1.13       ppb       98         20       t-Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6) Vinyl Chloride                                                                                                                                     | 4.61                                        | 62              | 72957                       | 1.01                    | dqq                    |              | 97       |
| 8) 1,3-butadiene       4.72       39       66520       1.07       ppb       92         9) Bromomethane       5.07       94       98660       1.11       ppb       97         11) Ethanol       5.33       45       17339       0.80       ppb       #       67         12) Acrolein       5.92       56       31487       1.02       ppb       81         13) Vinyl Bromide       5.58       106       94435       1.08       ppb       98         15) Accetone       6.02       58       53976m       1.11       ppb       97         16) Pentane       6.14       42       102754       1.24       ppb       96         17) Isopropyl alcohol       6.14       45       148843       1.19       ppb       97         18) 1, 1-dichloroethane       6.62       96       100119       0.97       ppb       #       87         19) Freon 113       6.83       101       280587       1.13       ppb       95         21) Mathylene chloride       7.07       41       105153       1.11       ppb       95         22) Allyl chloride       7.07       41       105123       1.11       ppb       95 <td>7) Butane</td> <td>4.72</td> <td>43</td> <td>82376</td> <td>1.03</td> <td>ppo</td> <td></td> <td>100</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7) Butane                                                                                                                                             | 4.72                                        | 43              | 82376                       | 1.03                    | ppo                    |              | 100      |
| 9) Bromomethane       5.07       94       98600       1.11       ppb       997         10) Chloroethane       5.33       45       17339       0.80       ppb       #       67         11) Ethanol       5.33       45       17339       0.80       ppb       #       67         12) Acrolein       5.92       56       31487       1.02       ppb       81         13) Vinyl Bromide       5.86       101       382698       1.18       ppb       98         13) Kinyl Bromide       6.02       58       53976m       1.11       ppb       98         16) Pentane       6.14       42       102754       1.24       ppb       96         17) Isopropyl alcohol       6.14       45       148843       1.19       ppb       97         18) 1.1-dichloroethene       6.62       96       100119       0.97       ppb       #       87         20) t-Butyl alcohol       6.85       59       168051       1.06       ppb       #       79         21) Methylene chloride       7.07       41       105153       1.11       ppb       99         23) Carbon disulfide       7.24       76       342702 <t< td=""><td>8) 1,3-butadiene</td><td>4.72</td><td>39</td><td>60520</td><td>1.07</td><td>ppb</td><td></td><td>92</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8) 1,3-butadiene                                                                                                                                      | 4.72                                        | 39              | 60520                       | 1.07                    | ppb                    |              | 92       |
| 10) Chloroethane       5.23       64       35434       1.07       Ppb       97         11) Ethanol       5.33       45       17339       0.80       Ppb       #         12) Acrolein       5.92       56       31487       1.02       Ppb       81         13) Vinyl Bromide       5.58       106       94435       1.08       Ppb       98         13) Acetone       6.02       58       53976m       1.11       Ppb       98         16) Pentane       6.14       42       102754       1.24       Ppb       96         17) Isopropyl alcohol       6.14       45       148843       1.9       Ppb       97         18) .1.4cdthoroethene       6.62       96       100119       0.97       Ppb       #       87         19) Freon 113       6.83       101       280587       1.13       ppb       95         21) Methylene chloride       7.07       41       105153       1.11       ppb       95         22) Allyl chloride       7.07       41       105153       1.11       ppb       95         23) carbon disulfide       7.24       76       342702       1.12       ppb       97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9) Bromomethane                                                                                                                                       | 5.07                                        | 94              | 98660                       | 1.11                    | ppp                    |              | 22       |
| 11)       Ethanol       5.33       43       1733       0.80       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10) Chloroethane                                                                                                                                      | 5.23                                        | 64              | 35434                       | 1.07                    | ppp                    | 12           | 97       |
| 12)       Acrolein       5.32       36       3187       1.02       ppb       100         13)       Vinyl Bromide       5.58       106       99435       1.08       ppb       98         14)       Freon 11       5.86       101       382698       1.11       ppb       98         15)       Acetone       6.02       58       53976m       1.11       ppb       98         16)       Pentane       6.14       42       102754       1.24       ppb       97         16)       Pentane       6.62       96       100119       0.97       ppb       #87         19)       Freeon 113       6.83       101       280587       1.13       ppb       98         20)       t-Butyl alcohol       6.85       59       168051       1.06       ppb       #79         21)       Methylene chloride       7.08       84       17724       1.14       ppb       95         22)       Allyl chloroethane       8.45       63       209860       1.11       ppb       98         23)       Carbon disulfide       7.24       76       342702       1.12       ppb       98         24 <td>11) Ethanol</td> <td>5.33</td> <td>45</td> <td>17339</td> <td>1 02</td> <td>ppo</td> <td>+;</td> <td>97<br/>91</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11) Ethanol                                                                                                                                           | 5.33                                        | 45              | 17339                       | 1 02                    | ppo                    | +;           | 97<br>91 |
| 13)       VINYL BFOMICE       5.38       105       39433       1.18       ppb       995         14)       Freon 11       5.86       101       382698       1.18       ppb       996         15)       Acetone       6.02       58       53976m       1.11       ppb       996         16)       Pentane       6.14       42       102754       1.24       ppb       96         17)       Isopropyl alcohol       6.14       45       148843       1.19       ppb       97         18)       1.1-dichloroethene       6.62       96       100119       0.97       ppb       #         19)       Freon 113       6.83       101       20587       1.13       ppb       98         20)       t-Butyl alcohol       6.85       59       168051       1.06       ppb       95         21)       Methylene chloride       7.08       84       11724       1.14       ppb       95         22)       Allyl chloride       7.07       41       105153       1.11       ppb       97         24       trans-1.2-dichloroethene       8.04       73       225968       1.03       ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12) Acrolein                                                                                                                                          | 5.94                                        | 206             | 90475<br>91407              | 1.04                    | nnh                    |              | 100      |
| 14)       Flebh 11       5.00       1.10       PPD       1.11       PPD         15)       Accetone       6.02       55       53976m 1       1.11       PPD       10         16)       Pentane       6.14       42       102754       1.24       PpD       96         17)       Isopropyl alcohol       6.14       45       148043       1.19       PpD       97         18)       1.14       chloroethene       6.62       96       100119       0.97       PpD       #87         19)       Freon 113       6.83       101       280587       1.13       Ppb       98         20)       t-Butyl alcohol       6.85       59       168051       1.06       Ppb       #79         21)       Methylene chloride       7.08       84       117724       1.14       ppb       99         22)       Allyl chloride       7.07       41       105153       1.11       ppb       99         23)       Carbon disulfide       7.24       76       342702       1.22       ppb       97         24       tfstrahydrofut       8.04       73       225968       1.03       ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13) Vinyi Bromide                                                                                                                                     | 9.50<br>5.96                                | 101             | 782698                      | 1 19                    | PDD<br>DDD             |              | 98       |
| 16) Pentane       6.14       42       102754       1.24       ppb       96         17) Isopropyl alcohol       6.14       45       148843       1.19       ppb       97         18) 1,1-dichloroethene       6.62       96       100119       0.97       ppb       #87         19) Freon 113       6.83       10       200587       1.13       ppb       98         20) t-Butyl alcohol       6.85       59       168051       1.06       ppb       #79         21) Methylene chloride       7.08       84       117724       1.14       ppb       95         22) Allyl chloride       7.07       41       105153       1.11       ppb       99         23) Carbon disulfide       7.24       76       342702       1.12       ppb       97         24) trans-1,2-dichloroethene       8.02       61       151121       1.08       ppb       92         25) methyl tert-butyl ether       8.04       73       225968       1.03       ppb       98         27) Vinyl acetate       8.43       43       157842       1.02       ppb       96         20) cis-1,2-dichloroethene       9.38       61       131855       1.05       p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14) Freen 11.                                                                                                                                         | 5.00                                        | 204<br>58       | 53976m <b>A</b>             | 1,11                    | ppb                    |              | 20       |
| 17)       Isopropyl alcohol       6.14       45       148443       1.19       ppb       97         18)       1,1-dichloroethene       6.62       96       100119       0.97       ppb       #       87         19)       Preon       113       0.63       101       20587       1.13       ppb       98         20)       t-Butyl alcohol       6.85       59       168051       1.06       ppb       #       79         21)       Methylene chloride       7.08       84       117724       1.14       ppb       95         22)       Allyl chloride       7.07       41       105153       1.11       ppb       99         23)       Carbon disulfide       7.24       76       342702       1.12       ppb       97         24)       trans-1,2-dichloroethene       8.02       61       15121       1.08       ppb       92         25)       methyl tert-butyl ether       8.04       73       225968       1.03       ppb       98         27)       Vinyl acetate       8.43       43       157842       1.02       ppb       96         28)       Methyl Ethyl Ketone       8.93       72 <t< td=""><td>16) Reptane</td><td>6.14</td><td>42</td><td>102754</td><td>1.24</td><td>bob</td><td></td><td>96</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16) Reptane                                                                                                                                           | 6.14                                        | 42              | 102754                      | 1.24                    | bob                    |              | 96       |
| 18       1,1-dichloroethene       6.62       96       100119       0.97       Ppb       #       87         19)       Freon 113       6.83       101       280587       1.13       ppb       98         20)       t-Butyl alcohol       6.85       59       168051       1.06       ppb       #       79         21)       Methylene chloride       7.08       84       117724       1.14       ppb       95         22)       Allyl chloride       7.07       41       105153       1.11       ppb       99         23)       Carbon disulfide       7.24       76       342702       1.12       ppb       97         24       trans-1,2-dichloroethene       8.02       61       151121       1.08       ppb       92         25       methyl text-butyl ether       8.04       73       225968       1.03       ppb       98         27       Vinyl acetate       8.45       63       209860       1.11       ppb       98         28       Methyl Ethyl Ketone       8.93       72       44556       1.05       ppb       96         30       Hexane       8.99       57       135410       1.08 <td>17) Teopropyl alcohol</td> <td>6.14</td> <td>45</td> <td>148843</td> <td>1,19</td> <td>daa</td> <td></td> <td>97</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17) Teopropyl alcohol                                                                                                                                 | 6.14                                        | 45              | 148843                      | 1,19                    | daa                    |              | 97       |
| 19)Freen 1136.831012805871.13ppb9820)t-Butyl alcohol6.85591680511.06ppb#7921)Methylene chloride7.02841177241.14ppb9522)Allyl chloride7.07411051531.11ppb9923)Carbon disulfide7.24763427021.12ppb9724)trans-1,2-dichloroethene8.02611511211.08ppb9225)methyl text-butyl ether8.04732259681.03ppb7526)1.1-dichloroethane8.45632098601.11ppb9827)Vinyl acetate8.43431578421.02ppb9528)Methyl Ethyl Ketone8.9372445561.05ppb410029)cis-1,2-dichloroethene9.38611318551.06ppb9630)Hexane8.99571354101.08ppb8231)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99832807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11.51621.24ppb10036)1,1.1-trichloroethane10.82972784441.24ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18) 1.1-dichloroethene                                                                                                                                | 6.62                                        | 96              | 100119                      | 0,97                    | dqq                    | #            | 87       |
| 20)t-Butyl alcohol6.85591680511.06 ppb#7921)Methylene chloride7.08841177241.14 ppb9522)Allyl chloride7.07411051531.11 ppb9923)Carbon disulfide7.24763427021.12 ppb9724)trans-1,2-dichloroethene8.02611511211.08 ppb9225)methyl tert-butyl ether8.04732259681.03 ppb7526)1,1-dichloroethane8.45632098601.11 ppb9827)Vinyl acetate8.431578421.02 ppb9528)Methyl Ethyl Ketone8.9372445561.05 ppb#29)cis-1,2-dichloroethene9.38611318551.05 ppb9630)Hexane8.99571354101.08 ppb8231)Ethyl acetate9.52431971791.13 ppb9932)Chloroform9.99832807651.11 ppb9933)Tetrahydrofuran10.1742791451.06 ppb9034)1,2-dichloroethane11.11621711461.12 ppb10036)1,1,1-trichloroethane10.82972784441.24 ppb9837)Cyclohexane11.4378297182m1.13 ppb38)Carbon tetrachloride11.471173119261.24 ppb100 <t< td=""><td>19) Freen 113</td><td>6.83</td><td>101</td><td>280587</td><td>1.13</td><td>dqq</td><td></td><td>98</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19) Freen 113                                                                                                                                         | 6.83                                        | 101             | 280587                      | 1.13                    | dqq                    |              | 98       |
| 21)Methylene chloride7.08841177241.14ppb9522)Allyl chloride7.07411051531.11ppb9923)Carbon disulfide7.24763427021.12ppb9724)trans-1,2-dichloroethene8.02611511211.08ppb9225)methyl tert-butyl ether8.04732259681.03ppb7526)1,1-dichloroethane8.45632098601.11ppb9827)Vinyl acetate8.43431578421.02ppb9528)Methyl Ethyl Ketone8.9372445561.05ppb9630)Hexane8.99571354101.08ppb8231)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99832807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11621711461.12ppb10036)1,1,1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.4378297182m1.14ppb8538)Carbon tetrachloride11.471173119261.24ppb10039)Benzene11.4378297182m1.13ppb </td <td>20) t-Butyl alcohol</td> <td>6.85</td> <td>59</td> <td>168051</td> <td>1.06</td> <td>aqq</td> <td>#</td> <td>79</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20) t-Butyl alcohol                                                                                                                                   | 6.85                                        | 59              | 168051                      | 1.06                    | aqq                    | #            | 79       |
| 22)Ally1chloride7.07411051531.11ppb9923)Carbon disulfide7.24763427021.12ppb9724)trans-1,2-dichloroethene8.02611511211.08ppb9225)methyl tert-butyl ether8.04732259681.03ppb9526)1,1-dichloroethane8.45632098601.11ppb9827)Vinyl acetate8.43431578421.02ppb9528)Methyl Ethyl Ketone8.9372445561.05ppb9630)Hexane8.99571354101.08ppb8231)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99632807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11.11621711461.12ppb10036)1,1.1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.53561192291.14ppb8538)Carbon tetrachloride11.471173119261.24ppb10039)Benzene11.4378297182m1.13ppb40)Methyl methacrylate13.00411106551.19ppb<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21) Methylene chloride                                                                                                                                | 7.08                                        | 84              | 117724                      | 1.14                    | dqq                    |              | 95       |
| 23)Carbon disulfide7.24763427021.12ppb9724)trans-1,2-dichloroethene8.02611511211.08ppb9225)methyl tert-butyl ether8.04732259681.03ppb7526)1,1-dichloroethane8.45632098601.11ppb9827)Vinyl acetate8.43431578421.02ppb9528)Methyl Ethyl Ketone8.9372445561.05ppb10029)cis-1,2-dichloroethene9.38611318551.05ppb9630)Hexane8.99571354101.08ppb8231)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99632807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11.11621711461.12ppb10036)1,1,1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.53561192291.14ppb8538)Carbon tetrachloride11.471173119261.24ppb10039)Benzene11.4378297182m1.13ppb40)Methyl methacrylate13.00411106551.19ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22) Allyl chloride                                                                                                                                    | 7.07                                        | 41              | 105153                      | 1.11                    | dqq                    |              | 99       |
| 24)       trans-1,2-dichloroethene       8.02       61       151121       1.08       ppb       92         25)       methyl tert-butyl ether       8.04       73       225968       1.03       ppb       75         26)       1.1-dichloroethane       8.45       63       209860       1.11       ppb       98         27)       Vinyl acetate       8.43       43       157842       1.02       ppb       95         28)       Methyl Ethyl Ketone       8.93       72       44556       1.05       ppb       96         29)       cis-1,2-dichloroethene       9.38       61       131855       1.05       ppb       96         30)       Hexane       8.99       57       135410       1.08       ppb       92         31)       Ethyl acetate       9.52       43       197179       1.13       ppb       98         32)       Chloroform       9.99       83       280765       1.11       ppb       99         33)       Tetrahydrofuran       10.17       42       17146       1.12       ppb       90         34)       1,2-dichloroethane       11.11       62       171446       1.12       ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23) Carbon disulfide                                                                                                                                  | 7.24                                        | 76              | 342702                      | 1.12                    | dqq                    |              | 97       |
| 25)methyl tert-butyl ether8.04732259681.03ppb7526)1.1-dichloroethane8.45632098601.11ppb9827)Vinyl acetate8.43431578421.02ppb9528)Methyl Ethyl Ketone8.9372445561.05ppb9629)cis-1,2-dichloroethene9.38611318551.05ppb9630)Hexane8.99571354101.08ppb8231)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99832807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11.11621711461.12ppb10036)1,1.1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.4378297182m1.13ppb38)Carbon tetrachloride11.471173119261.24ppb10039)Benzene11.4378297182m1.13ppb40)Methyl methacrylate13.00411106551.19ppb9241)1,4-dioxane13.0188697581.22ppb9442)2,2,4-trimethylpentane12.64431359701.20ppb94<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24) trans-1,2-dichloroethene                                                                                                                          | 8.02                                        | 61              | 151121                      | 1.08                    | ppp                    |              | 92       |
| 26)       1,1-dichloroethane       8,45       63       209860       1.11       ppb       98         27)       Vinyl acetate       8,43       43       157842       1.02       ppb       95         28)       Methyl Ethyl Ketone       8.93       72       44556       1.05       ppb       95         29)       cis-1,2-dichloroethene       9.38       61       131855       1.05       ppb       96         30)       Hexane       8.99       57       135410       1.08       ppb       92         31)       Ethyl acetate       9.52       43       197179       1.13       ppb       98         32)       Chloroform       9.99       83       280765       1.11       ppb       99         33)       Tetrahydrofuran       10.17       42       79145       1.06       ppb       90         34)       1,2-dichloroethane       11.11       62       171146       1.12       ppb       100         36)       1,1,1-trichloroethane       10.82       97       278444       1.24       ppb       98         37)       Cyclohexane       11.47       117       311926       1.24       ppb       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25) methyl text-butyl ether                                                                                                                           | 8.04                                        | 73              | 225968                      | 1.03                    | ppp                    |              | 75       |
| 27)Vinyl acetate8.43431578421.02ppb9528)Methyl Ethyl Ketone8.9372445561.05ppb#10029)cis-1,2-dichloroethene9.38611318551.05ppb9630)Hexane8.99571354101.08ppb9231)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99832807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11.11621711461.12ppb10036)1,1,1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.53561192291.14ppb8538)Carbon tetrachloride11.471173119261.24ppb10039)Benzene13.00411106551.19ppb9240)Methyl methacrylate13.00411106551.19ppb9241)1,4-dioxane13.0188697581.22ppb9442)2,2,4-trimethylpentane12.29574107291.17ppb9443)Heptane12.64431359701.20ppb9444)Trichloroethene12.771301625641.17ppb </td <td>26) 1,1-dichloroethane</td> <td>8.45</td> <td>63</td> <td>209860</td> <td>1.11</td> <td>ppo</td> <td></td> <td>90<br/>05</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26) 1,1-dichloroethane                                                                                                                                | 8.45                                        | 63              | 209860                      | 1.11                    | ppo                    |              | 90<br>05 |
| 28) Metnyl Etnyl Retone       8.93       72       44556       1.05       ppb       4         29) cis-1,2-dichloroethene       9.38       61       131855       1.05       ppb       96         30) Hexane       8.99       57       135410       1.08       ppb       82         31) Ethyl acetate       9.52       43       197179       1.13       ppb       98         32) Chloroform       9.99       63       280765       1.11       ppb       99         33) Tetrahydrofuran       10.17       42       79145       1.06       ppb       90         34) 1,2-dichloroethane       11.11       62       171146       1.12       ppb       100         36) 1,1,1-trichloroethane       10.82       97       278444       1.24       ppb       98         37) Cyclohexane       11.53       56       119229       1.14       ppb       85         38) Carbon tetrachloride       11.47       117       311926       1.24       ppb       100         39) Benzene       11.43       78       297182m       1.13       ppb       92         40) Methyl methacrylate       13.00       41       110655       1.19       ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27) Vinyl acetate                                                                                                                                     | 8.43                                        | 4.3             | 10/042                      | 1.04                    | ppo                    | <b>i</b> +   | 100      |
| 29)       C18*1,2*ditentorbethene       9.36       01       13503       1.08       ppb       32         30)       Hexane       9.52       43       197179       1.13       ppb       98         31)       Ethyl acetate       9.52       43       197179       1.13       ppb       98         32)       Chloroform       9.99       83       280765       1.11       ppb       99         33)       Tetrahydrofuran       10.17       42       79145       1.06       ppb       90         34)       1,2-dichloroethane       11.11       62       171146       1.12       ppb       100         36)       1,1.1-trichloroethane       10.82       97       278444       1.24       ppb       98         37)       Cyclohexane       11.53       56       119229       1.14       ppb       85         38)       Carbon tetrachloride       11.47       117       311926       1.24       ppb       100         39)       Benzene       11.43       78       297182m       1.13       ppb       92         40)       Methyl methacrylate       13.01       88       69758       1.22       ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28) Methyi Ethyi Ketone                                                                                                                               | 0.93<br>0.93                                | / A<br>6 1      | 44000                       | 1 05                    | 200                    | 11           | 96       |
| 30)Etaile31)Ethyl acetate9.52431971791.13ppb9832)Chloroform9.99832807651.11ppb9933)Tetrahydrofuran10.1742791451.06ppb9034)1,2-dichloroethane11.11621711461.12ppb10036)1,1,1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.53561192291.14ppb8538)Carbon tetrachloride11.471173119261.24ppb10039)Benzene11.4378297182m1.13ppb40)Methyl methacrylate13.00411106551.19ppb9241)1,4-dioxane13.0188697581.22ppb9442)2,2,4-trimethylpentane12.29574107291.17ppb8743)Heptane12.64431359701.20ppb9444)Trichloroethene12.771301625641.17ppb9945)1,2-dichloropropane12.87631236561.21ppb98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29) 818-1,2-dichiozoechene<br>20) Nevene                                                                                                              | 20. C<br>R 90                               | <u>در</u> ۳۷    | 135410                      | 3.08                    | daa                    |              | 82       |
| 32)       Chloroform       9.99       83       280765       1.11       ppb       99         33)       Tetrahydrofuran       10.17       42       79145       1.06       ppb       90         34)       1,2-dichloroethane       11.11       62       171146       1.12       ppb       100         36)       1,1,1-trichloroethane       10.82       97       278444       1.24       ppb       98         37)       Cyclohexane       11.53       56       119229       1.14       ppb       85         38)       Carbon tetrachloride       11.47       117       311926       1.24       ppb       100         39)       Benzene       11.43       78       297182m       1.13       ppb       92         40)       Methyl methacrylate       13.00       41       110655       1.19       ppb       92         41)       1,4-dioxane       13.01       88       69758       1.22       ppb       94         42)       2,2,4-trimethylpentane       12.29       57       410729       1.17       ppb       87         43)       Heptane       12.64       43       135970       1.20       ppb <t< td=""><td>31) Ethy) acetate</td><td>9.52</td><td>43</td><td>197179</td><td>1.13</td><td>daa</td><td></td><td>98</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31) Ethy) acetate                                                                                                                                     | 9.52                                        | 43              | 197179                      | 1.13                    | daa                    |              | 98       |
| 33)       Tetrahydrofuran       10.17       42       79145       1.06       ppb       90         34)       1,2-dichloroethane       11.11       62       171146       1.12       ppb       100         36)       1,1,1-trichloroethane       10.82       97       278444       1.24       ppb       98         37)       Cyclohexane       11.53       56       119229       1.14       ppb       85         38)       Carbon tetrachloride       11.47       117       311926       1.24       ppb       100         39)       Benzene       11.43       78       297182m       1.13       ppb       100         40)       Methyl methacrylate       13.00       41       110655       1.19       ppb       92         41)       1,4-dioxane       13.01       88       69758       1.22       ppb       94         42)       2,2,4-trimethylpentane       12.29       57       410729       1.17       ppb       87         43)       Heptane       12.64       43       135970       1.20       ppb       94         44)       Trichloroethene       12.77       130       162564       1.17       ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32) Chloroform                                                                                                                                        | 9.99                                        | 83              | 280765                      | 1.11                    | ppb                    |              | 99       |
| 34)       1,2-dichloroethane       11.11       62       171146       1.12       ppb       100         36)       1,1,1-trichloroethane       10.82       97       278444       1.24       ppb       98         37)       Cyclohexane       11.53       56       119229       1.14       ppb       85         38)       Carbon tetrachloride       11.47       117       311926       1.24       ppb       100         39)       Benzene       11.43       78       297182m       1.13       ppb       40         40)       Methyl methacrylate       13.00       41       110655       1.19       ppb       92         41)       1,4-dioxane       13.01       88       69758       1.22       ppb       94         42)       2,2,4-trimethylpentane       12.29       57       410729       1.17       ppb       87         43)       Heptane       12.64       43       135970       1.20       ppb       94         44)       Trichloroethene       12.77       130       162564       1.17       ppb       99         45)       1,2-dichloropropane       12.87       63       123656       1.21       ppb </td <td>33) Tetrahydrofuran</td> <td>10.17</td> <td>42</td> <td>79145</td> <td>1,06</td> <td>ppb</td> <td></td> <td>90</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33) Tetrahydrofuran                                                                                                                                   | 10.17                                       | 42              | 79145                       | 1,06                    | ppb                    |              | 90       |
| 36)1,1,1-trichloroethane10.82972784441.24ppb9837)Cyclohexane11.53561192291.14ppb8538)Carbon tetrachloride11.471173119261.24ppb10039)Benzene11.4378297182m1.13ppb40)Methyl methacrylate13.00411106551.19ppb9241)1,4-dioxane13.0188697581.22ppb9442)2,2,4-trimethylpentane12.29574107291.17ppb8743)Heptane12.64431359701.20ppb9444)Trichloroethene12.771301625641.17ppb9945)1,2-dichloropropane12.87631236561.21ppb98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34) 1.2-dichloroethane                                                                                                                                | 11.11                                       | 62              | 271146                      | 1.12                    | ppb                    |              | 100      |
| 37) Cyclohexane11.53561192291.14ppb8538) Carbon tetrachloride11.471173119261.24ppb10039) Benzene11.4378297182m1.13ppb40) Methyl methacrylate13.00411106551.19ppb9241) 1,4-dioxane13.0188697581.22ppb9442) 2,2,4-trimethylpentane12.29574107291.17ppb8743) Heptane12.64431359701.20ppb9444) Trichloroethene12.771301625641.17ppb9945) 1,2-dichloropropane12.87631236561.21ppb98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36) 1,1,1-trichloroethane                                                                                                                             | 10.82                                       | 97              | 278444                      | 1.24                    | ppb                    |              | 98       |
| 38) Carbon tetrachloride       11.47       117       311926       1.24 ppb       100         39) Benzene       11.43       78       297182m       1.13 ppb         40) Methyl methacrylate       13.00       41       110655       1.19 ppb       92         41) 1,4-dioxane       13.01       88       69758       1.22 ppb       94         42) 2,2,4-trimethylpentane       12.29       57       410729       1.17 ppb       87         43) Heptane       12.64       43       135970       1.20 ppb       94         44) Trichloroethene       12.77       130       162564       1.17 ppb       99         45) 1,2-dichloropropane       12.87       63       123656       1.21 ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37) Cyclohexane                                                                                                                                       | 11.53                                       | 56              | 119229                      | 1.14                    | dqq                    |              | 85       |
| 39) Benzene       11.43       78       297182m       1.13 ppb         40) Methyl methacrylate       13.00       41       110655       1.19 ppb       92         41) 1,4-dioxane       13.01       88       69758       1.22 ppb       94         42) 2,2,4-trimethylpentane       12.29       57       410729       1.17 ppb       87         43) Heptane       12.64       43       135970       1.20 ppb       94         44) Trichloroethene       12.77       130       162564       1.17 ppb       99         45) 1,2-dichloropropane       12.87       63       123656       1.21 ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38) Carbon tetrachloride                                                                                                                              | 11.47                                       | 117             | 311926 🗖                    | 1.24                    | ppb                    |              | 100      |
| 40) Methyl methacrylate       13.00       41       110655       1.19       ppb       92         41) 1,4-dioxane       13.01       88       69758       1.22       ppb       94         42) 2,2,4-trimethylpentane       12.29       57       410729       1.17       ppb       87         43) Heptane       12.64       43       135970       1.20       ppb       94         44) Trichloroethene       12.77       130       162564       1.17       ppb       99         45) 1,2-dichloropropane       12.87       63       123656       1.21       ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39) Benzene                                                                                                                                           | 11.43                                       | 78              | 297182m 🖊                   | 1.13                    | ppp                    |              |          |
| 41)       1,4-dioxane       13.01       88       69758       1.22 ppb       94         42)       2,2,4-trimethylpentane       12.29       57       410729       1.17 ppb       87         43)       Heptane       12.64       43       135970       1.20 ppb       94         44)       Trichloroethene       12.77       130       162564       1.17 ppb       99         45)       1,2-dichloropropane       12.87       63       123656       1.21 ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40) Methyl methacrylate                                                                                                                               | 13.00                                       | 41              | 110655                      | 1.19                    | qqq                    |              | 92       |
| 42)       2,2,4-trimethylpentane       12.29       57       410729       1.17       ppb       87         43)       Heptane       12.64       43       135970       1.20       ppb       94         44)       Trichloroethene       12.77       130       162564       1.17       ppb       99         45)       1,2-dichloropropane       12.87       63       123656       1.21       ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41) 1,4-dioxane                                                                                                                                       | 13.01                                       | 88              | 69758                       | 1.22                    | dqq                    |              | 94       |
| 43) Heptane       12.64       43       135970       1.20       ppb       94         44) Trichloroethene       12.77       130       162564       1.17       ppb       99         45) 1,2-dichloropropane       12.87       63       123656       1.21       ppb       98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42) 2,2,4-trimethylpentane                                                                                                                            | 12.29                                       | 57              | 410729                      | 1.17                    | ppb                    |              | 87       |
| 44)         Trichloroethene         12.77         130         162564         1.17         ppb         99           45)         1,2-dichloropropane         12.87         63         123656         1.21         ppb         98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43) Heptane                                                                                                                                           | 12.64                                       | 43              | 135970                      | 1.20                    | ppp                    |              | 94       |
| 45) 1,2-alchioropropane 42.87 63 123656 1.24 ppb 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44) Trichloroethene                                                                                                                                   | 12.77                                       | 130             | 162364                      | 1.17                    | ppp                    |              | 00<br>23 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45) 1,2-dichioropropane                                                                                                                               | / ۵. ۵. ا                                   | 50<br>          |                             | بلانکه و الد<br>        | · · · · · · · ·        | A. AN No. 4- | 0 د<br>» |

MSDl

Centek Laboratories, LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042105.D Vial: 1 Acq On : 21 Apr 2021 2:15 pm Operator: WD Sample : ALCSIUG-042121 Misc : A317\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 22 12:28:10 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QION | Response | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|----------|-----------|--------|
| 46) | Bromodichloromethane      | 13.21 | 83   | 279820   | 1.23 ppb  | 99     |
| 47) | cis-1,3-dichloropropene   | 34.03 | 75   | 176589   | 1.22 ppb  | 96     |
| 48) | trans-1,3-dichloropropene | 14.81 | 75   | 134527m  | 1.13 ppb  |        |
| 49) | 1,1,2-trichloroethane     | 15.13 | 97   | 153700   | 1.18 ppb  | 100    |
| 51) | Toluene                   | 14.88 | 92   | 202384   | 1.19 ppb  | 97     |
| 52) | Methyl Isobutyl Ketone    | 13,95 | 43   | 189955   | 1.20 ppb  | 85     |
| 53) | Dibromochloromethane      | 15.86 | 129  | 281870   | 1.23 ppb  | 99     |
| 54) | Methyl Butyl Ketone       | 15.31 | 43   | 172472   | 1.19 ppb  | 83     |
| 55) | 1,2-dibromoethane         | 16.13 | 107  | 232526   | 1.19 ppb  | 98     |
| 56) | Tetrachloroethylene       | 15.96 | 164  | 169800   | 1.21 ppb  | 98     |
| 57) | Chlorobenzene             | 16.98 | 112  | 312255   | 1.15 ppb  | 100    |
| 58) | Sthylbenzene              | 17.25 | 91   | 427321   | 1.19 ppb  | 99     |
| 59) | m&p-xylene                | 17.47 | 91   | 780509   | 2.55 ppb  | 98     |
| 60) | Nonane                    | 17.87 | 43   | 216226   | 1.21 ppb  | 86     |
| 61) | Styrene                   | 17.93 | 104  | 318761   | 1.28 ppb  | 94     |
| 62) | Bromoform                 | 18.05 | 173  | 256096   | 1.17 ppb  | 100    |
| 63) | o-xylene                  | 17.96 | 91   | 462519   | 1.30 ppb  | 96     |
| 64) | Cumene                    | 18.56 | 105  | 499870   | 1.17 ppb  | 97     |
| 66) | 1,1,2,2-tetrachloroethane | 18.43 | 83   | 353994   | 1.22 ppb  | 97     |
| 67) | Propylbenzene             | 19.14 | 120  | 138609   | 1.16 ppb  | # 59   |
| 68) | 2-Chlorotoluene           | 19.18 | 126  | 163945   | 1.24 ppb  | # 83   |
| 69) | 4-ethyltoluene            | 19.33 | 105  | 542879   | 1.27 ppb  | 99     |
| 70) | 1,3,5-trimethylbenzene    | 19.39 | 105  | 495452m  | 1.28 ppb  |        |
| 71) | 1,2,4-trimethylbenzene    | 19.88 | 105  | 405536   | 1.20 ppb  | 98     |
| 72) | 1,3-dichlorobenzene       | 20.21 | 146  | 347502   | 1.23 ppb  | 99     |
| 73) | benzyl chloride           | 20.28 | 91   | 279616   | 1.40 ppb  | 98     |
| 74) | 1,4-dichlorobenzene       | 20.36 | 146  | 351185   | 1.29 ppb  | 99     |
| 75) | 1,2,3-trimethylbenzene    | 20.40 | 105  | 487799   | 1.33 ppb  | 98     |
| 76) | 1,2-dichlorobenzene       | 20.71 | 146  | 342839   | 1.35 ppb  | 99     |
| 77) | 1,2,4-trichlorobenzene    | 22.88 | 180  | 173350   | 1,50 ppb  | 98     |
| 78) | Naphthalene               | 23.09 | 128  | 367529   | 1.41 ppb  | 99     |
| 79) | Hexachloro-1,3-butadiene  | 23.22 | 225  | 314245   | 1.50 ppb  | 98     |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042105.D A317\_1UG.M Wed May 05 08:21:19 2021 MSD1

Ć

Page

MSD1

2021

08:21:20

භ 0

Maγ

Wed

lUG.M

A317

AS042105.D



Reviewed)

(QT

Quantitation Report

| 05-May-21 |  |
|-----------|--|
| Date:     |  |

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

ij.

| LaBella Associates, P. | C2104038    |
|------------------------|-------------|
| CLIENT:                | Work Order: |

ł

O'NIN OC O ÷ t t Ę

|                            |                               |         |                     |                                                     |                             |                |            |                                     | 1                                    |                       |        |        |
|----------------------------|-------------------------------|---------|---------------------|-----------------------------------------------------|-----------------------------|----------------|------------|-------------------------------------|--------------------------------------|-----------------------|--------|--------|
| Sample ID: ALCS1UGD-042021 | SampType: LCSD                | TestCov | te: 0,20_NYS        | Units: ppbV                                         |                             | Prep Date:     |            |                                     | RunNo: 17                            | 523                   |        |        |
| Client ID: ZZZZ            | Batch ID: R17523              | Test    | lo: TO-15           |                                                     |                             | Inalysis Date: | 4/20/202   | ***                                 | SeqNo: 191                           | 8928                  |        |        |
| Analyte                    | Result                        | Ŋ       | SPK value           | SPK Ref Val                                         | %REC                        | Lowtimit H     | ghLimit 1  | Ref Val                             | 048%                                 | RPDLimit              | Quai   |        |
| 1,1,1-Trichloroethane      | 1.060                         | 0.15    | +                   | 0                                                   | 106                         | 91.3           | 127        | 1.12                                | 5.50                                 | 0                     |        |        |
| 1.1.2.2-Tetrachloroethane  | 1.050                         | 0.15    | -                   | 0                                                   | 105                         | 78.7           | 121        | 1.08                                | 2.82                                 | 0                     |        |        |
| 1,1,2-Trichloroethane      | 1.020                         | 0.15    | F                   | ð                                                   | 102                         | 88.1           | 136        | 1.08                                | 5.71                                 | 0                     |        |        |
| 1,1-Dichloroethane         | 1.020                         | 0.15    | -                   | ¢                                                   | 102                         | 86.1           | 123        | 1.09                                | 6.64                                 | 0                     |        |        |
| 1,1-Dichloroethene         | 0.9800                        | 0.040   | -                   | 0                                                   | 98.0                        | 70             | 5          | 0.99                                | 1.02                                 | 0                     | ŝ      |        |
| 1,2,4-Trichlorobenzene     | 1.320                         | 0.15    | F                   | Û                                                   | 132                         | 76.7           | 112        | 1.25                                | 5.45                                 | 0                     | Ś      |        |
| 1.2.4-Trimethylbenzene     | 1.180                         | 0.15    | <del>~~</del>       | ¢                                                   | 118                         | 74.3           | 123        | 1.24                                | 3.45                                 | 0                     |        |        |
| 1,2-Dibromoethane          | 1.060                         | 0.15    | 4                   | 0                                                   | 106                         | 80.4           | 125        | 1.06                                | 0                                    | 0                     |        |        |
| 1.2-Dichlorobenzene        | 1.180                         | 0.15    | ***                 | D                                                   | 118                         | 79.5           | 143        | 1.03                                | 13.6                                 | 0                     |        |        |
| 1.2-Dichioroethane         | 1.050                         | 0.15    | £.                  | D                                                   | 105                         | 70.9           | 133        | 1.12                                | 6.45                                 | ð                     |        |        |
| 1.2-Dicitioropropane       | 1.010                         | 0.15    | -                   | 0                                                   | 101                         | 91             | \$34       | 1.05                                | 3.88                                 | 0                     |        |        |
| 1,3,5-Trimethylbenzerse    | 1.220                         | 0.15    | -                   | 0                                                   | 122                         | 77.4           | 138        | Ľ                                   | 10.3                                 | 0                     |        |        |
| 1,3-butadiere              | 0.9300                        | 0.15    | ٢                   | Ċ                                                   | 93.0                        | 11             | 344        | 66.0                                | 6.25                                 | c                     |        |        |
| 1.3-Dichlorobenzene        | 1.120                         | 0.15    | -                   | 0                                                   | 112                         | 84.7           | 128        | 1.07                                | 4.57                                 | ¢                     |        |        |
| 1.4-Dichlorobenzene        | 1.200                         | 0.15    | -                   | 0                                                   | 120                         | 6.77           | 131        | 1.14                                | 5.13                                 | 0                     |        |        |
| 1.4-Dioxane                | 1.100                         | 0.30    | -                   | 0                                                   | 110                         | 85.1           | 135        | 1.09                                | 0.913                                | ¢                     |        |        |
| 2.2.4-trimethylpentane     | 1.050                         | 0.15    | 4-r                 | 0                                                   | 105                         | 86.9           | 125        | 1.06                                | 0.948                                | 0                     |        |        |
| 4-ethyltoiuene             | 1.210                         | 0.15    | <b>V</b> 20         | 0                                                   | 121                         | 77.5           | 133        | 1.‡                                 | 9.52                                 | 0                     |        |        |
| Acetone                    | 1.000                         | 0.30    | ***                 | 0                                                   | 100                         | 30.2           | 145        | 0.76                                | 27.3                                 | 0                     |        |        |
| Ailyl chioride             | 1.020                         | 0.15    | -                   | 0                                                   | 102                         | 86.6           | 117        | ÷                                   | 8.45                                 | 0                     |        |        |
| Benzene                    | 1.070                         | 0.15    | -                   | 0                                                   | 107                         | 33.9           | 122        | 1.09                                | 1.85                                 | 0                     |        |        |
| Benzyl chloride            | 1.180                         | 0.15    | -                   | 0                                                   | 118                         | 73.6           | 120        | 1.29                                | 8.91                                 | 0                     |        |        |
| Bromodiciiloromethane      | 1.010                         | 0.15    | ÷                   | 0                                                   | 101                         | 84.3           | 133        | 1.13                                | 11.2                                 | D                     |        |        |
| Bromoform                  | 0.9900                        | 0.15    | -                   | Ģ                                                   | 66.0                        | 44.5           | 149        | 1.05                                | 5.83                                 | Ċ                     |        |        |
| Bromomethane               | 0.9600                        | 0.15    | <del></del>         | ¢                                                   | 96.0                        | 78.7           | 144        | 1.08                                | 11.8                                 | Ð                     |        |        |
| Qualifiers: Results repor  | ted are not blank corrected   |         | E Estim<br>ND Net I | inled Value ubove quut<br>benefod at the 3 fimit of | ititation ran.<br>Detection | e.             | H H<br>H H | olding times for<br>PD outside acce | preparation or a<br>pied recovery bi | malysis excee<br>mits | đeđ    |        |
| S Spike Recure             | ery cutside accepted recovery | kimits  | DI. Delec           | tion Limit                                          |                             |                |            |                                     |                                      |                       | Page I | ' of S |
|                            |                               |         |                     |                                                     |                             |                |            |                                     |                                      |                       |        |        |

# Centek Laboratories,LLC

Page 184 of 229

CLIENT: LaBella Associates, P.C.

C2104038 Work Order:

| Project: 1500 Jetter       | son Koad                      |         |              |                          |                  |                | -          | esicode: v        | CIN 17            |                |            |
|----------------------------|-------------------------------|---------|--------------|--------------------------|------------------|----------------|------------|-------------------|-------------------|----------------|------------|
| Sample ID: ALCS1UGD-042021 | SampType: LCSD                | TestCod | e: 0.20_NYS  | Units: ppbV              |                  | Prep Date:     |            |                   | RunNo: 175        | 23             |            |
| Cilent ID: ZZZZ            | Batch ID: R17523              | TestM   | o: TO-15     |                          |                  | Anatysis Date: | 4/20/20    | 21                | SeqNo: 198        | 928            |            |
| Anaiyie                    | Result                        | POL     | SPK value    | SPK Ref Val              | %REC             | LowLimit H     | light.imit | RPD Ref Val       | %RPD              | RPOLimit       | Qual       |
| Carbon disulfide           | 1.000                         | 0.15    | -            | Ð                        | 100              | 76.9           | 109        | 1.21              | 19.0              | 0              |            |
| Carbon tetrachioride       | 1.000                         | 0:030   | -            | G                        | <b>1</b> 00      | 71             | 120        | 1.12              | 11.3              | Ö              |            |
| Chlorabenzene              | .1.060                        | 0.15    | -            | 0                        | 106              | 82.6           | 121        | 1,03              | 2.87              | 0              |            |
| Chloroethane               | 0.9300                        | 0.15    | -            | 0                        | 93.0             | 67.1           | 146        | 1.02              | 9.23              | 0              |            |
| Chloroform                 | 1.030                         | 0.15    | -            | 0                        | 103              | 82.5           | \$25       | 1.09              | 5.66              | Ð              |            |
| Chloromethane              | 0.8800                        | 0.15    | ***          | Q                        | 88.0             | 71.1           | 154        | F                 | 12.8              | 0              |            |
| cis-1,2-Dichloroethene     | 1,030                         | 0.040   | ***          | ٥                        | 103              | 71.2           | 112        | 1.05              | 1.92              | 0              |            |
| cís-1,3-Dichloropropene    | 1.040                         | 0.15    | 4°           | 0                        | 104              | 90.3           | 137        | 111               | 5,51              | C              |            |
| Cyclohexane                | 1.060                         | 0.15    | ef.an        | 0                        | 1 <del>0</del> 8 | 87             | 122        | 1.07              | 0.939             | o              |            |
| Dibromochloromethane       | 1.030                         | 0.15    | <del>،</del> | 0                        | 103              | 62.8           | 132        | 1.08              | 4.74              | 0              |            |
| Ethyl acetate              | 1.070                         | 0,15    | -            | Ð                        | 107              | 86.9           | 134        | 1.15              | 7.21              | 0              |            |
| Ethylbenzene               | 1.150                         | 0.15    | ۲            | Ð                        | 115              | 75.9           | 123        | 1.1               | 4,44              | C              |            |
| Freon 11                   | 1.070                         | 0.15    | ۲            | 0                        | 107              | 54.4           | 150        | 1.01              | 5.77              | ¢              |            |
| ₹reon 113                  | 1.050                         | 0.15    | <del>ب</del> | ¢                        | <u>1</u> 05      | 83.4           | 124        | ÷                 | 4,65              | ¢              |            |
| Freon 114                  | 0.9600                        | 0.15    | ۲            | Ģ                        | 96.0             | 82.4           | 144        | 1.07              | 10.8              | 0              |            |
| Freon 12                   | £.010                         | 0.15    | *            | Q                        | 101              | 86.3           | 135        | 1.44              | 9.43              | ¢              |            |
| Heptane                    | 1.070                         | 0.15    | <b>қ</b> а   | Q                        | 107              | 86.5           | 137        | ţ.1               | 2.76              | 0              |            |
| Hexachloro-1,3-butadiene   | 1.320                         | 0.15    | ¥            | 0                        | 132              | 78.7           | 120        | 1.2               | 9.52              | 0              | S          |
| Hexane                     | 1.090                         | 0.15    | <b>.</b>     | 0                        | 109              | 77.3           | 128        | 1.09              | ¢                 | 0              |            |
| Isopropyl atcohoř          | 1.120                         | 0.15    | -            | Ð                        | 112              | 80.2           | \$22       | 0.99              | 12.3              | 0              |            |
| m&p-Xylene                 | 2.350                         | 06.0    | 2            | Ċ                        | 116              | 6.77           | 132        | 2.21              | 6.14              | 0              |            |
| Methyl Butyl Ketone        | 1.040                         | 0:30    | -            | 0                        | 104              | 69.4           | 131        | 1.08              | 3.77              | D              |            |
| Methyl Ethyl Ketone        | 1.060                         | 0.30    | ~            | ¢                        | £06              | 71.5           | 117        | 1.08              | 1.87              | 0              |            |
| Methyl Isobutyl Ketone     | 1.030                         | 0.30    | ÷            | 0                        | ţ03              | 63.5           | 141        | 1.08              | 4.74              | 0              |            |
| Methyl ten-butyl ether     | 1.120                         | 0,15    | ψn.          | Q                        | 112              | 80.8           | 113        | 1.08              | 3.64              | Ð              |            |
| Methylene chloride         | 1.010                         | 0.15    | - <b>1</b>   | 0.11                     | 90.09            | 87.8           | 123        | 1.24              | 15.0              | 0              |            |
| o-Xylene                   | 1.150                         | 0.15    | •            | 0                        | 115              | 80.5           | 139        | 1.09              | 5.36              | ¢              |            |
| Propylene                  | 1.050                         | 0.15    | -            | ò                        | 106              | 96.2           | 135        | 1.08              | 1.87              | 0              |            |
| Siyrene                    | 1.180                         | 0.15    | -            | Ċ                        | 118              | 82.7           | 138        | 1.07              | 9.78              | 0              |            |
| Tetrachloroethyiene        | 1.120                         | 0.15    | -            | 0                        | 112              | 85.9           | \$22       | 1.05              | 6.45              | ٥              |            |
| Tetrahydrofuran            | 1.050                         | 0.15    | -            | ¢                        | 105              | 65.5           | 134        | 1.07              | 1.89              | 0              |            |
| Qualifiers: Results report | ted are not blank corrected   |         | E Estim      | ated Value above quar    | ntitation rar    | ទីច            | 7          | Holding times for | preparation or at | naivsis exceed | ed         |
| J Analyte deter            | cted befow quantitation limit |         | ND Not D     | letected at the Limit of | <b>Detection</b> |                | ~          | RPD outside acce  | pled recovery lin | nits           |            |
| S Spike Recove             | ary outside accepted recovery | limits  | DL Detec     | tion Limit               |                  |                |            |                   |                   | £3.,           | age 2 of 5 |

|   |          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | :        | in the second se |
| • |          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| : | ·        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | :        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          | × .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |          | an -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • |          | <b>v</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          | - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| : | <u>.</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |          | <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ٠ | :        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |          | ÷,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ٠ |          | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |          | an inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |          | <b>G</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| : | ÷.,      | ςų.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ; |          | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          | Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |          | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |          | . La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |          | :<br>La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |          | r: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |          | IT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |          | NT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |          | NT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |          | ENT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |          | IENT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |          | JENT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |          | LIENT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |          | LLENT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |          | CLIENT: La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

C2104038 Work Order

| Project: 1500 Jeffen       | son Road                      |         |                |                            |               |               | T          | estCode: 0        | 20_NYS              |                |            |
|----------------------------|-------------------------------|---------|----------------|----------------------------|---------------|---------------|------------|-------------------|---------------------|----------------|------------|
|                            |                               |         |                |                            |               |               |            |                   |                     |                |            |
| Sample ID: ALCS1UGD-042021 | SampType: LCSD                | TestCod | e: 0.20_NYS    | Units: ppbV                |               | Prep Date     | ini.       |                   | KUNNO: 175          | 53             |            |
| Client ID: ZZZZ            | Batch ID: R17523              | TestN   | o: TO-15       |                            | -             | Analysis Dati | e: 4/20/20 | 21                | SeqNo: 198          | 928            |            |
| Analyte                    | Result                        | Par     | SPK value      | SPK Ref Vat                | %REC          | LowLimit      | HighLimit  | RPD Ref Vaf       | %RPD                | RPDLimit       | Qual       |
| Toluene                    | 1.150                         | 0.15    | Ļ              | 0                          | 115           | 77.8          | \$27       | 1.06              | 6.28                | 0              |            |
| trans-1,2-Dichloroethene   | 1.020                         | 0.15    | -              | Q                          | 102           | 83.3          | 116        | 1.07              | 4.78                | 0              |            |
| trans-1,3-Dichloropropene  | 1.040                         | 0.15    | -              | 0                          | 12            | 84.8          | 134        | 1.15              | 10.0                | 0              |            |
| Trichloroethene            | 1.050                         | 0.030   | <del>،</del>   | Q                          | 105           | 79.3          | 117        | 1.05              | 0.948               | 0              |            |
| Vinyl acetate              | 1.050                         | 0.15    | +-             | 0                          | 105           | 70.5          | 101        | 1.07              | 1,89                | Ģ              | S          |
| Vinyl Bromide              | 1,160                         | 0.15    | <del>б</del> т | 0                          | 116           | 81.4          | 142        | 1.03              | 11.9                | 0,             |            |
| Vinyl chioride             | 0.9100                        | 0.040   | ψm             | 0                          | 91.0          | 70.4          | 138        | 0.98              | 7 41                |                |            |
| Sample ID: ALCS1UGD-042121 | SampType: LCSD                | TestCod | le: 0.20_NYS   | Units: ppbV                |               | Prep Date     | a)         |                   | RunNo: 175          | 24             |            |
| Client ID: ZZZZ            | Batch ID: R17524              | TestN   | o: TO-15       |                            |               | Analysis Dat  | e: 4/21/20 | 24                | SeqNo: 198          | 945            |            |
| Anaiyte                    | Result                        | Par     | SPK value      | SPK Ref Val                | %REC          | LowLimit      | HighLimit  | RPD Ref Val       | %RPD                | RPDLimit       | Qual       |
| 1 1 1-Trichloroethane      | 1.230                         | 0.15    | -              | 0                          | 123           | 91.3          | 127        | 1.24              | 0.810               | G              |            |
| 1 1 2 2-Tetrachloroethane  | 1.230                         | 0.15    | ***            | Q                          | 123           | 78.7          | 121        | 1.22              | 0.815               | 0              | S          |
| 1.1.1.2-Trichloroethane    | t_180                         | 0.15    | <b>4</b> 22    | 0                          | 118           | 88.1          | 136        | 1.18              | ٥                   | 0              |            |
| 1, 1-Dichtoroethane        | 1,120                         | 0.15    | ų              | 0                          | 112           | 86.1          | 123        | â.11              | 0.897               | 0              |            |
| 1,1-Dichloroethene         | 1,010                         | 0.040   | ¥              | 0                          | 101           | 70            | 94         | 79.0              | 4.04                | 0              | ა          |
| 1,2,4-Trichtorobenzene     | 1.330                         | 0.15    | -              | D                          | 133           | 7.97          | 112        | 1.5               | 12.0                | Ċ              | ŝ          |
| 1,2,4-Trimethylbenzene     | 1.200                         | 0.15    | F              | ð                          | \$20          | 74.3          | 123        | 1.2               | 0                   | ¢              |            |
| 1,2-Dibromoethane          | 1.160                         | 0.15    | -              | o                          | 16            | 80.4          | 125        | 1.19              | 2.55                | 0              |            |
| 1.2-Dichlorobenzene        | 1.280                         | 0.15    | -              | 0                          | 128           | 79.5          | 143        | 1.35              | 5.32                | 0              |            |
| 1,2-Dichloroethane         | 1.130                         | 0.15    | <b>*</b>       | 0                          | 113           | 70.9          | 133        | 1.12              | 0.889               | ¢              |            |
| 1.2-Dichloropropane        | 1.190                         | 0.15    | Ψ.             | φ                          | 119           | 91            | 134        | 1.23              | 1,67                | 0              |            |
| 1,3,5-Trimethylbenzene     | 1.290                         | 0.15    | <b>4</b> 172   | 0                          | 129           | 77.4          | 138        | 1.28              | 0.778               | ¢              |            |
| 1,3-butadiene              | 1.080                         | 0.15    | <b>*</b>       | 0                          | 108           | 71            | 144        | 1.07              | 0.930               | 0              |            |
| 1,3-Dichiorobenzene        | 1.190                         | 0.15    | -              | Ð                          | 118           | 84.7          | 128        | 1.23              | 4.15                | 0              |            |
| 1.4-Dichlorobenzene        | 1.260                         | 0.15    | £              | c                          | 126           | 77.9          | \$31       | 1,29              | 2.35                | 0              |            |
| 1.4-Dioxane                | 1.230                         | 0.30    | -              | 0                          | \$23          | 85.1          | 135        | 1.22              | 0.816               | 0              |            |
| 2,2,4-inmethylpentane      | 1.160                         | 0.15    | £              | Đ                          | 116           | 86.9          | 126        | 1.17              | 0.858               | ō              |            |
| 4-ethyltoluene             | 1.270                         | 0.15    | -              | ¢                          | 127           | 77.5          | 133        | 1.27              | 0                   | ð              |            |
| Onallfierst Results rerkie | ted are not blank corrected   |         | E Estim        | aled Value above quan      | tilations can | ge            | Ξ          | Holding times for | e preparation or a  | nalysis exceed | led        |
| ] Analytic deter           | cted below guantitation limit |         | ND Not D       | beceted at the f. innit of | Detection     |               | ದ          | RPD outside acco  | spitel recovery lan | céls           |            |
| S Spike Recove             | ery outside accepted recovery | limits  | DL Detec       | tion Limis                 |               |               |            |                   |                     | 54             | age 3 of 5 |

CLIENT: LaBella Associates, P.C. CLIENT:

| 038    | ξ |
|--------|---|
| C2104  |   |
| Order: |   |
| ork    |   |
| 2      | ĥ |

NIV O ς ¢ Ċ È

| roject: Duu Jener          | 50B KORO                      |          |                 |                          |                   |               |           | cercente. u       |                   |                |            |
|----------------------------|-------------------------------|----------|-----------------|--------------------------|-------------------|---------------|-----------|-------------------|-------------------|----------------|------------|
| Sample ID: ALCS1UGD-042121 | SampType: LCSD                | TestCode | 5: 0.20_NYS     | Units: ppbV              |                   | Prep Date     |           |                   | RunNo: 175        | 24             |            |
| Client ID: ZZZZ            | Batch ID: R17524              | TestNo   | 0: <b>TO-15</b> |                          |                   | Analysis Date | 4/21/20   | 21                | SeqNo: 198        | 945            |            |
| Anaiyte                    | Result                        | PQL      | SPK value       | SPK Ref Val              | %REC              | LowLimit      | High⊾imit | RPD Ref Val       | %RPD              | RPDLimit       | Qual       |
| Acetone                    | 1.130                         | 0:30     | -               | D                        | 113               | 80.2          | 145       | 1.11              | 1.79              | 0              |            |
| Allyl chloride             | 1.120                         | 0.15     | F               | 0                        | 112               | 86.6          | 117       | 1.11              | 0.897             | Ö              |            |
| Benzene                    | 1.150                         | 0.15     | -               | Ð                        | <u>1</u> 15       | 88.9          | 122       | 1.13              | 1.75              | 0              |            |
| Benzyl chloride            | 1.320                         | 0.15     | -               | D                        | 132               | 73.6          | 120       | 2                 | 5.88              | ð              | ŝ          |
| Bromodichloromethane       | 1.210                         | 0.15     | Ļ               | Ö                        | 121               | 84.3          | 133       | 1.23              | 1.54              | 0              |            |
| Bromoform                  | 1.120                         | 0.15     | £               | Ð                        | 111               | 44.6          | 149       | 1.17              | 5.26              | C              |            |
| Bromomelhare               | 1.120                         | 0.15     | -               | 0                        | 112               | 78.7          | 144       | <b>11</b>         | 0.897             | 0              |            |
| Carbon disulfide           | 1.120                         | 0.15     | ÷               | ¢                        | 112               | 76.9          | £03       | 1.12              | 0                 | 0              | s          |
| Carbon tetrachioride       | 1.200                         | 0.030    | ÷-              | Ģ                        | 120               | 71            | 120       | 1.24              | 3.28              | 0              |            |
| Chlorobenzene              | 1.130                         | 0.15     | +               | ¢                        | 113               | 82.5          | 121       | <u>1</u> .15      | 1.75              | 0              |            |
| Chloroethane               | 1.060                         | 0.15     | +               | 0                        | 106               | 67.1          | 146       | 1.07              | 0.939             | 0              |            |
| Chloreform                 | 1130                          | 0.15     | 4m              | Q                        | 113               | 82.5          | 125       | 3.11              | 1.79              | 0              |            |
| Chioromethane              | 1.060                         | 0,15     | φr-             | 0                        | 106               | 71.1          | 154       | 1.02              | 3.85              | 0              |            |
| cis-1,2-Dichloroethene     | 1.100                         | 0-040    | ¥               | 0                        | 110               | 71.2          | 112       | 1.05              | 4.65              | ¢              |            |
| cis-1_3-Dichtoropropene    | 1.180                         | 0.15     | -               | 0                        | 113               | 90.3          | 137       | 1.22              | 3.33              | ¢              |            |
| Cyclohexane                | 1.140                         | 0.15     | -               | ð                        | 514               | 87            | 122       | 1.14              | 0                 | 0              |            |
| Dibromochioromethane       | 1.160                         | 0.15     | -               | Ð                        | 116               | 62.8          | 132       | 1.23              | 5.86              | ¢              |            |
| Ethyl acetate              | 1.160                         | 0.15     | <del></del>     | Ð                        | 116               | 86.9          | 134       | 1.13              | 2.62              | Φ              |            |
| Ethyltenzene               | 1.180                         | 0.15     | -               | 0                        | 118               | 76.9          | 123       | 1.19              | 0.844             | ¢              |            |
| Freon 11                   | 1.050                         | 0.15     | Ţ               | 0                        | 105               | 54.4          | 150       | 1.18              | 11.7              | Q              |            |
| Freon 113                  | 1.160                         | 0.15     | ÷               | Ģ                        | 116               | 83.4          | 124       | 1.13              | 2.62              | 0              |            |
| Freon 114                  | 1.130                         | 0.15     |                 | 0                        | 113               | 82.4          | 144       | 1.12              | 0.889             | 0              |            |
| Freon 12                   | 1.200                         | 0.15     | 444             | 0                        | 120               | 86.3          | 135       | 1.17              | 2.53              | 0              |            |
| Heptane                    | 1.220                         | 0.15     | <del>ر</del> –  | 0                        | 122               | 86.5          | 137       | 1.2               | 1.65              | 0              |            |
| Hexachloro-1,3-butadiene   | 1.440                         | 0.15     | F               | 0                        | †44               | 7.8.7         | 120       | 1.5               | 4.08              | 0              | Ś          |
| Hexane                     | 1.110                         | 0.15     | -               | o                        | भूत्या<br>भूत्रिय | 77.3          | 128       | 3°08              | 2.74              | 0              |            |
| Isopropyl alcoho!          | 1.260                         | 0.15     | -               | Ð                        | 126               | 80.2          | 122       | 1.19              | 5.71              | Ð              | Ś          |
| m&p-Xylene                 | 2.500                         | 0.30     | 5               | 0                        | 125               | 5.77          | 132       | 2.55              | 1.98              | ð              |            |
| Methyl Butyl Ketone        | 1.150                         | 0.30     | Ł               | 0                        | 115               | 69.4          | 131       | 1.19              | 3.42              | 0              |            |
| Methyl Ethyl Ketone        | 1.090                         | 0.30     | -               | 0                        | 109               | 71.5          | 117       | 1.05              | 3.74              | ¢              |            |
| Methył tsobułył Ketone     | 1.160                         | 0.30     | **              | ٥                        | 116               | 63.5          | 141       | 1.2               | 3.39              | 0              |            |
| Ogalifiers: Results report | ted are not blank corrected   |          | E Está          | taled Value above quan   | stitations can    | ŝ             | F.        | Jolding times for | preparation or a  | nalysis exceed | ed         |
| J Analyte detec            | sted below quantitation limit |          | ND Not          | Desected at the Limit of | Detection         |               | œ         | tPD outside accep | pted recovery lim | its            |            |
| S Spike Record             | ny outside accepted recovery  | limits   | Dt. Detec       | ction Limit              |                   |               |           |                   |                   | ď              | age 4 of 5 |

LaBella Associates, P.C. CLIENT:

C2104038 Work Order:

| Project: 1500 Jeffers      | on Road          |         |                |             |      |              | -           | estCode: 0  | 20_NYS       |          |      |
|----------------------------|------------------|---------|----------------|-------------|------|--------------|-------------|-------------|--------------|----------|------|
| Sample ID: ALCS10GD-042121 | SampType: LCSD   | TestCod | le: 0.20_NYS   | Units: ppbV |      | Prep Dat     | e:          |             | RunNo: 175   | 524      |      |
| Client ID: ZZZZ            | Batch ID: R17524 | TestN   | lo: TO-15      |             | -    | Anaiysis Dat | le: 4/21/2( | 121         | SeqNo: 198   | 3945     |      |
| Anaiyie                    | Result           | PQI     | SPK value      | SPK Ref Val | %REC | LowLimit     | HighLimit   | RPD Ref Val | %RPD         | RPDLimit | Quai |
| Methyl tert-butyl ether    | 1.080            | 0.15    | **-            | 0           | 108  | 80.8         | 113         | 1.03        | <b>4</b> .74 | 0        |      |
| Methylene chloride         | 1.130            | 0.15    | <b>4</b> 10.00 | 0           | 113  | 87.8         | 123         | 1.14        | 0.881        | 0        |      |
| o-Xylere                   | 1.290            | 0.15    | <b>4</b>       | 0           | 129  | 80.5         | 139         | 1.3         | 0.772        | 0        |      |
| Propylene                  | 1.190            | 0.15    | ÷              | 0           | 119  | 96.2         | 135         | 1.09        | 8.77         | 0        |      |
| Styrene                    | 1.270            | 0.15    | -              | 0           | 127  | 82.7         | 138         | 1.28        | 0.784        | D        |      |
| Tetrachioroethylene        | 1.180            | 0.15    | -              | 0           | 118  | 85.9         | 122         | 1.21        | 2.51         | 0        |      |
| Jetrahydrofuran            | 1.120            | 0.15    | -              | o           | \$12 | 65.5         | 134         | 1.06        | 5.50         | 0        |      |
| Toluene                    | 1.150            | 0.15    | -              | 0           | 15   | 77.8         | 127         | 1.19        | 3.42         | 0        |      |
| Irans-1,2-Dichloroethene   | 1.110            | 0.15    | -              | O           | 111  | 83.3         | 116         | 1.08        | 2.74         | 0        |      |
| trans-1,3-Dichloropropene  | 1.130            | 0.15    | -              | 0           | 113  | 84.8         | 134         | 1.13        | 0            | 0        |      |
| Trichloroethene            | 1,160            | 0.030   | 1              | 0           | 116  | 79.3         | 1.1         | 1,17        | 0.858        | Ð        |      |
| Vinyl acetate              | 1.080            | 0.15    | ÷.             | 0           | 108  | 70.5         | ţ01         | 1.02        | 5.71         | 0        | ы    |
| Vinyl Bromide              | 1.050            | 0.15    | <b>1</b> ,171  | 0           | 105  | 81.4         | 142         | 1.08        | 2.82         | Ċ        |      |
| Vinyl chloride             | 1.050            | 0.040   | *-             | 0           | 105  | 70.4         | 138         | 101         | 3.88         | 0        |      |
|                            |                  |         |                |             |      |              |             |             |              |          |      |

Page 5 of 5 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H 2 Estimated Value above quantitation range Not Detected at the Limit of Detection Detection Listit an ND B Spike Recovery outside accepted recovery limits Analyte detected below quantitation litisit Results reported are not blank corrected  $\sim \infty$ , Qualifiers:

| Data File : C:\BPCHEM\1\DATA\AS042017.D         Vial: 1           Acg On : 20 Apr 2021 11:44 pm         Operator: AJP           Sample : ALCS1U0E-042021         Inst : MSD #1           Misc : A317_10G         Multiplr: 1.00           MS Integration Params: RTEINT.P         Quant Time: Apr 21 08:14:47 2021         Quant Results File: A317_10G.F           Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator)         Title : To-15 VOA Standards for 5 point calibration           Last Update : Mon Apr 12 12:02:39 201         Response Via : Initial Calibration           DataAcq Meth : IUG_ENT         DataAcq Meth : 10G_ENT           Internal Standards         R.T. QIon Response Conc Units Dev(Mi           Thermochloromethane         9.82 128 97213 1.00 ppb 0           50) Chlorobenzene         18.71 95 274136 1.05 ppb 0           51) Bromofluorobenzene         18.71 95 274136 1.05 ppb 0           55) Freen 112         4.22 85 366680 1.01 ppb 1           31) Freon 12         4.22 85 275352 0.96 ppb 1           55) Freen 114         4.42 56 77367 0.88 ppb 1           61) Unromethane         4.42 50 77357 0.93 ppb 1           71 Butane         4.71 43 91665 0.93 ppb 1           71 Butane         4.71 43 91665 1.07 ppb 1           72 Dropylene         5.7 106 130869 1.16 ppb 1           73 Butane         4.71 39 64342 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Centek Laboratories,LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quantitati                                                                                                                                                                                                                                                                                | on Rer                                                                                  | ort (QT                                                                                                                                                                                                                                                                                                                                                                                           | Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed)                                                         |                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Description         Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Data File : C:\HPCHEM\1\DATA\A<br>Acq On : 20 Apr 2021 11:44<br>Sample : ALCS1UGD-042021<br>Misc : A317_1UG<br>MS Totogration Barams, PTEINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S042017.D<br>pm                                                                                                                                                                                                                                                                           |                                                                                         | Oper<br>Inst<br>Mult                                                                                                                                                                                                                                                                                                                                                                              | Vial:<br>ator:<br>;<br>iplr:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>RJP<br>MSD #1<br>1.00                                  |                                                                                                   |
| Quant Method : C:\HPCHEM\1\METHODS\A317_1UG.M (RTE Integrator)<br>Title :: TO-15 VOA Standards for 5 point calibration<br>Last Ugdate : Mon Apr 12 12:02:39 2021<br>Response via : Initial Calibration<br>DataAcq Meth : 1UG_ENT<br>Internal Standards R.T. QION Response Conc Units Dev(M:<br>1) Bromochloromethane 9.82 128 97213 1.00 ppb 0<br>50) Chlorobenzene 12.11 114 368856 1.00 ppb 0<br>System Monitoring Compounds<br>65) Bromofluorobenzene 18.71 95 274136 1.05 ppb 0<br>System Monitoring Compounds<br>61) Bromofluorobenzene 18.71 95 274136 1.05 ppb 0<br>System Monitoring Compounds<br>62) Bromofluorobenzene 4.17 41 75680 1.06 ppb<br>3) Freon 12 4.22 85 366680 1.01 ppb<br>4) Chloromethane 4.42 50 77367 0.88 ppb 1<br>5) Freon 114 4.42 85 275352 0.96 ppb 1<br>6) Vinyl Chloride 4.61 62 80434 0.91 ppb<br>4) Chloromethane 4.71 43 91065 0.33 ppb<br>9) Bromomethane 5.06 94 104087 0.96 ppb 1<br>7) Butane 4.71 43 91065 0.33 ppb<br>9) Bromomethane 5.24 64 37657 0.53 ppb<br>10) Chloroethane 5.24 54 18892 0.71 ppb<br>11) Ethanol 5.32 45 18892 0.71 ppb<br>12) Acrolein 5.91 56 36837 0.77 ppb #<br>13) Vinyl Bromide 5.91 130689 1.16 ppb<br>14) Freon 11 5.85 101 425786 1.00 ppb<br>15) Acetone 6.02 58 595580 1.00 ppb<br>16) Pentane 6.13 42 100456 1.17 ppb<br>17) Isopropyl alcohol 6.12 45 170698 1.12 ppb<br>18) 1dichloroethene 6.2 96 124389 0.98 ppb<br>19) Freon 113 6.62 101 318472 1.05 ppb<br>10) Hethyl enchloride 7.05 41 177851 1.00 ppb<br>20) t-Butyl alcohol 6.2 45 12489 0.98 ppb<br>21) Methylene chloride 7.07 84 127355 1.01 ppb<br>22) Allyl chloride 7.05 41 12785 1.02 ppb<br>23) Garbon disulfide 7.05 41 12785 1.02 ppb<br>24) trans-1.2-dichloroethene 8.02 73 300595 1.12 ppb<br>25) methyl tert-butyl ether 8.02 73 300595 1.12 ppb<br>26) 1.1-dichloroethene 8.92 72 54007 1.06 ppb #<br>27) Vinyl acetate 8.92 72 54007 1.05 ppb<br>29) Hexane 8.98 57 167483 1.09 ppb<br>30) Hexane 8.98 57 167483 1.09 ppb<br>31) Ethyl acetate 9.52 43 329461 1.03 ppb<br>31) Ethyl acetate 9.52 43 329461 1.05 | Quant Time: Apr 21 08:14:47 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                                                                                        | Qua                                                                                     | ant Results                                                                                                                                                                                                                                                                                                                                                                                       | File:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A317_10                                                     | G.RES                                                                                             |
| Internal Standards         R.T. Qion         Response         Conc Units Dev(M:<br>1)           1)         Bromochloromethane         9.82         128         97213         1.00         ppb         0           35)         1,4-difluorobenzene         12.11         114         368856         1.00         ppb         0           50)         Bromofluorobenzene         18.71         95         274136         1.05         ppb         0           System Monitoring Compounds         65)         Bromofluorobenzene         18.71         95         274136         1.05         ppb         0           System Monitoring Compounds         60         1.00         Recovery         =         105.00%           Target Compounds         20         Propylene         4.17         41         75680         1.06         ppb           3)         Freen 12         4.22         85         366640         1.01         ppb         1           6)         Winyl Chloride         4.61         62         8034         0.91         ppb           7)         Butane         4.71         43         91065         0.93         ppb           10)         Chloroethane         5.32         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quant Method : C:\HPCHEM\1\MET<br>Title : TO-15 VOA Stan<br>Last Update : Mon Apr 12 12:0<br>Response via : Initial Calibra<br>DataAcq Meth : 1UG_ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HODS\A317<br>dards for<br>2:39 2021<br>tion                                                                                                                                                                                                                                               | lUG.M<br>5 poim                                                                         | (RTE Integr<br>nt calibrati                                                                                                                                                                                                                                                                                                                                                                       | ator)<br>on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                                                                   |
| 1) Bromochloromethane       9.82       128       97213       1.00       ppb       0         35) 1,4-difluorobenzene       12.11       114       368856       1.00       ppb       0         System Monitoring Compounds       65) Bromofluorobenzene       18.71       95       274136       1.05       ppb       0         Spiked Amount       1.000       Range       70 - 130       Recovery       =       105.00%         Target Compounds       0       2.24136       1.05       ppb       0         3) Freon 12       4.22       85       366680       1.01       ppb         4) Chloromethane       4.42       50       77367       0.88       ppb         5) Freon 114       4.42       50       77367       0.88       ppb         6) Vinyl Chloride       4.61       62       80434       0.91       ppb         7) Butane       4.71       43       91065       0.93       ppb         9) Bromomethane       5.24       64       37657       0.93       ppb         10) Chloroethane       5.32       45       18892       0.71       ppb         13) Vinyl Bromide       5.57       16       130869       1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Internal Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R.T.                                                                                                                                                                                                                                                                                      | QION                                                                                    | Response C                                                                                                                                                                                                                                                                                                                                                                                        | onc Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | its Dev                                                     | (Min)                                                                                             |
| System Monitoring Compounds       18.71       95       274136       1.05       ppb       0         Spiked Amount       1.000       Range       70 - 130       Recovery       =       105.00%         Target Compounds       Qvaln         2) Propylene       4.17       41       75680       1.06 ppb         3) Freon 12       4.22       85       366680       1.01 ppb         4) Chloromethane       4.42       85       275352       0.96 ppb       1.05         6) Vinyl Chloride       4.61       62       80434       0.91 ppb       1.05         7) Butane       4.71       43       91065       0.93 ppb       1.05       92         8) J. J-butadiene       5.06       94       104087       0.96 ppb       1.10       1.00 ppb       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10       1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1) Bromochloromethane<br>35) 1,4-difluorobenzene<br>50) Chlorobenzene-d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.82<br>12.11<br>16.92                                                                                                                                                                                                                                                                    | 128<br>114<br>117                                                                       | 97213<br>368856<br>344102                                                                                                                                                                                                                                                                                                                                                                         | 1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dqq<br>dqq<br>dqq                                           | 0.01<br>0.00<br>0.00                                                                              |
| Target Compounds       Qvalt         2) Propylene       4.17       41       75680       1.06 ppb         3) Freon 12       4.22       85       36680       1.01 ppb         4) Chloromethane       4.42       85       275352       0.96 ppb       1.01         5) Freon 114       4.42       85       275352       0.96 ppb       1.01         6) Vinyl Chloride       4.61       62       80434       0.91 ppb       1.3         7) Butane       4.71       39       64342       0.93 ppb       1.1         9) Bromomethane       5.06       94       104087       0.96 ppb       1.1         10) Chloroethane       5.32       45       18892       0.71 ppb         11) Ethanol       5.32       45       18892       0.71 ppb         12) Acrolein       5.91       56       36837       0.97 ppb         13) Vinyl Bromide       5.57       106       130869       1.16 ppb         14) Freon 11       5.85       101       425786       1.07 ppb         17) Isopropyl alcohol       6.12       45       170698       1.12 ppb         18) 1.1-dichloroethene       6.62       96       124389       0.98 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | System Monitoring Compounds<br>65) Bromofluorobenzene<br>Spiked Amount 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.71<br>Range 70                                                                                                                                                                                                                                                                         | 95<br>- 130                                                                             | 274136<br>Recovery                                                                                                                                                                                                                                                                                                                                                                                | 1.05<br>• =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ppb<br>105.00%                                              | 0.05                                                                                              |
| 36)1,1,1-trichloroethane10.81973213391.06 ppb37)Cyclohexane11.52561486901.06 ppb38)Carbon tetrachloride11.461173378821.00 ppb39)Benzene11.42783802801.07 ppb40)Methyl methacrylate12.99411336681.07 ppb41)1,4-dioxane13.0188848981.10 ppb42)2,2,4-trimethylpentane12.29574962071.05 ppb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>Target Compounds 2) Propylene 3) Freon 12 4) Chloromethane 5) Freon 114 6) Vinyl Chloride 7) Butane 8) 1,3-butadiene 9) Bromomethane 10) Chloroethane 11) Ethanol 12) Acrolein 13) Vinyl Bromide 14) Freon 11 15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethene 27) Vinyl acetate 28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene 30) Hexane 31) Ethyl acetate 32) Chloroform 33) Tetrahydrofuran 34) 1,2-dichloroethane 36) 1,1,1-trichloroethane 37) Cyclohexane 38) Carbon tetrachloride 39) Benzene 40) Methyl methacrylate 41) 1,4-dioxane 42) 2,2,4-trimethylpentane</pre> | $\begin{array}{c} 4.17\\ 4.22\\ 4.42\\ 4.42\\ 4.61\\ 4.71\\ 4.71\\ 5.06\\ 5.24\\ 5.32\\ 5.55\\ 6.013\\ 5.58\\ 5.82\\ 6.122\\ 6.824\\ 7.05\\ 6.824\\ 7.05\\ 8.02\\ 6.824\\ 7.05\\ 8.02\\ 8.442\\ 9.37\\ 8.92\\ 9.98\\ 10.14\\ 11.09\\ 10.81\\ 11.42\\ 12.99\\ 13.01\\ 12.29\\ \end{array}$ | 4858643944566182561941613332217332227678187<br>1154490584767343217332227678187<br>17485 | 75680<br>366680<br>77367<br>275352<br>80434<br>91065<br>64342<br>104087<br>37657<br>18892<br>36837<br>130869<br>425786<br>59558m<br>308456<br>170698<br>124389<br>318472<br>210246<br>127355<br>117883<br>376218<br>173759<br>300595<br>237466<br>198902<br>54807<br>157890<br>167483<br>229413<br>317527<br>95902<br>195239<br>321339<br>148690<br>337882<br>380280<br>133668<br>84898<br>496207 | $\begin{array}{c} 1.06\\ 1.01\\ 0.88\\ 0.96\\ 0.91\\ 0.93\\ 0.93\\ 0.93\\ 0.93\\ 0.93\\ 0.91\\ 1.07\\ 1.07\\ 1.07\\ 1.07\\ 1.08\\ 1.002\\ 1.02\\ 1.02\\ 1.02\\ 1.02\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05\\ 1.05$ | аба<br>абаа<br>араа<br>араа<br>араа<br>араа<br>араа<br>араа | ralue<br>92<br>98<br>1000<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99<br>99 |

(#) = qualifier out of range (m) = manual integration AS042017.D A317\_1UG.M Wed May 05 08:21:15 2021

Centek Laboratories,LLC<br/>Quantitation Report (QT Reviewed)Data File : C:\HPCHEM\1\DATA\AS042017.DVial: 1<br/>Operator: RJP<br/>Inst : MSD #1Acq On : 20 Apr 2021 11:44 pmOperator: RJP<br/>Inst : MSD #1Sample : ALCS1UGD-042021Inst : MSD #1<br/>Multiplr: 1.00Misc : A317\_1UGMultiplr: 1.00MS Integration Params: RTEINT.P<br/>Quant Time: Apr 21 08:14:47 2021Quant Results File: A317\_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator)<br/>Title : TO-15 VOA Standards for 5 point calibration<br/>Last Update : Mon Apr 12 12:02:39 2021<br/>Response via : Initial Calibration

DataAcq Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QION | Response  | Conc Unit  | Qvalue |
|-----|---------------------------|-------|------|-----------|------------|--------|
| 46) | Bromodichloromethane      | 13.20 | 83   | 310007    | 1.01 ppb   | 100    |
| 47) | cis-1,3-dichloropropene   | 14.03 | 75   | 203330    | 1.04 ppb   | 98     |
| 48) | trans-1,3-dichloropropene | 14.80 | 75   | 167558m 🖡 | 1.04 ppb   |        |
| 49) | 1,1,2-trichloroethane     | 15.13 | 97   | 179224    | 1.02 ppb   | 99     |
| 51) | Toluene                   | 14.88 | 92   | 264103    | 1.15 ppb   | 100    |
| 52) | Methyl Isobutyl Ketone    | 13.93 | 43   | 219230    | 1.03 ppb   | 91.    |
| 53) | Dibromochloromethane      | 15.85 | 129  | 320378    | 1.03 ppb   | 99     |
| 54) | Methyl Butyl Ketone       | 15.30 | 4.3  | 201772    | 1.04  ppb  | 88     |
| 55) | 1,2-dibromoethane         | 16.12 | 107  | 277393    | 1.06 ppb   | 98     |
| 56) | Tetrachloroethylene       | 15.95 | 1.64 | 212674    | 1.12 ppb   | 97     |
| 57) | Chlorobenzene             | 16.97 | 112  | 387158    | 1.06 ppb   | 100    |
| 58) | Ethylbenzene              | 17.25 | 91   | 555657    | 1.15 ppb   | 100    |
| 59) | m&p-xylene                | 17.46 | 91   | 966808    | 2.35 ppb   | 99     |
| 60) | Nonane                    | 17.88 | 43   | 258558    | 1.07 ppb   | 91     |
| 61) | Styrene                   | 17.94 | 104  | 394230    | 1.18 ppb   | 95     |
| 62) | Bromoform                 | 18.06 | 173  | 292137    | dqq ee.o   | 99     |
| 63) | o-xylene                  | 17.97 | 91   | 553553    | 1.15 ppb   | 98     |
| 64) | Cumene                    | 18.59 | 105  | 665567    | 1.16 ppb   | 98     |
| 66) | 1,1,2,2-tetrachloroethane | 18.46 | 83   | 408438    | 1.05 ppb   | 99     |
| 67) | Propylbenzene             | 19.21 | 120  | 187001    | 1.16 ppb   | 78     |
| 68) | 2-Chlorotoluene           | 19.25 | 126  | 205191    | 1.15 ppb   | # 86   |
| 69) | 4-ethyltoluene            | 19.39 | 105  | 699920    | a 1.21 ppb | 98     |
| 70) | 1,3,5-trimethylbenzene    | 19.46 | 105  | 637083m 🕽 | 1.22 ppb   | *      |
| 71) | 1,2,4-trimethylbenzene    | 19.97 | 105  | 537584    | 1.18 ppb   | 99     |
| 72) | 1,3-dichlorobenzene       | 20.30 | 146  | 427156    | 1.12 ppb   | 100    |
| 73) | benzyl chloride           | 20.39 | 91   | 316553    | 1.18 ppo   | 97     |
| 74) | 1,4-dichlorobenzene       | 20.30 | 146  | 441044    | 1.20 ppb   | 99     |
| 75) | 1,2,3-trimethylbenzene    | 20.51 | 105  | 591061    | 1,19 ppb   | 98     |
| 76) | 1,2-dichlorobenzene       | 20.82 | 146  | 403330    | 1.18 ppb   | 99     |
| 77) | 1,2,4-trichlorobenzene    | 22.93 | 180  | 204612m/  | • 1.32 ppb |        |
| 78) | Naphthalene               | 23.14 | 128  | 445578    | 1.27 ppb   | 98     |
| 79) | Hexachloro-1,3-butadiene  | 23.26 | 225  | 373978    | 1,32 ppb   | 1.00   |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042017.D A317\_1UG.M Wed May 05 08:21:16 2021 MSD1

|       |                                                       |                                              |                              |          |                                               |                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | -                                      | 24,00                                                    | Page 3 |
|-------|-------------------------------------------------------|----------------------------------------------|------------------------------|----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------------|--------|
|       |                                                       |                                              | T, ensibetud-5, t-orehtsexsH | <b>.</b> | a' Min II N Immin a taine a' faoille aiteach. | T,anayago                                                                                                   | nolrioia)-4,5,1<br>T.analsrifiriqi                   | 3N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                        | 23.00                                                    |        |
|       |                                                       |                                              |                              |          |                                               |                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                        | 22.00                                                    |        |
|       |                                                       |                                              |                              |          | T,anazna                                      | dorościaja – S. f                                                                                           |                                                      | An and a state to be a state of the state of |                                                    |                                        | 21,00                                                    |        |
|       |                                                       |                                              |                              |          | T,edesnediyi<br>T,anasnada<br>Doasnediyiftami | 99900117-14,5,7<br>93061340-16,1<br>11-6,5,1                                                                | T90                                                  | ρευχλη σημοι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                        | 00.00                                                    |        |
|       |                                                       |                                              |                              | Т, ек    | ិទេកទទួល<br>ក្នុងសម្ពារ<br>ក្នុងសមាន          | 16-b                                                                                                        |                                                      | nandrik kasterna statisti<br>Sparpa <u>kaster</u> (m. 1911)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | ······································ | 6.00                                                     |        |
|       |                                                       |                                              |                              |          | T,apr<br>S                                    | ອ ແລະອຸດອຸດອຸດອຸດອຸດ<br>- ໄດ້ຄະດະມູດເອດ<br>- ໄດ້ຄະດະມູດເອດ<br>- ແລະອຸດອຸດອຸດອຸດອຸດອຸດອຸດອຸດອຸດອຸດອຸດອຸດອຸດອ | юют, <sup>1</sup> , тойс<br>                         | 10.16<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                        | 1.00                                                     |        |
| ά)    |                                                       |                                              |                              |          |                                               | T.enstreet<br>T.enstyz-qån<br>T.eostero                                                                     | u                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                        | 8                                                        |        |
| Vlewe | RES                                                   |                                              |                              |          |                                               | T. J.                                                                                                       | 1,90600<br>ਸੋਲੋਤਾਂਖੁਰ-ਮਿਲੇਲੈਹਰ                       | 190moraio-s.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | ······                                 | 00 17                                                    |        |
| QT Re | ຍາເີ້<br>ອີດເີ້<br>ສຸ#                                |                                              |                              |          | T,onet                                        | ក្រោះក្រសាទ<br>ក្រោះក្រសាទ<br>ក្រោះក្រសាទ                                                                   | e,T<br><u>mochlu</u> rometi <del>y</del><br>Tiometiy | noidh Keilon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                        | 0 16.0                                                   |        |
|       | : 1<br>: RJP<br>: MSD<br>: 1.0<br>: A31               | )<br>2017.D                                  |                              |          |                                               | T.                                                                                                          | 두,영/영영<br>SCISCUPOCICION                             | giqotolotopi <u>b.5</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-ะกษา                                             |                                        | 15.0                                                     |        |
| eport | vial<br>rator<br>t<br>tiplr<br>file                   | irator<br>ion<br>C.AS04                      |                              |          |                                               |                                                                                                             | ને અપ્રદર્શ                                          | nalionano da la construcción de la<br>La construcción de la construcción d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 158 —                                              |                                        | )<br>                                                    | MSDI   |
| ion R | Ope<br>Ins<br>Mul<br>sults                            | Integ<br>ibrat<br>1                          |                              |          |                                               |                                                                                                             | T,enerheore<br>T,enerheore<br>T,enerhenner           | T grandeh<br>Sirisi<br>Rondonoinsis<br>Rondonoinsis<br>Rondonoinsi<br>Arneinseneni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | @Wi                                                |                                        | 13.00                                                    |        |
| tıtat | nt Re                                                 | (RTS<br>It cal                               |                              |          |                                               | Τ.;                                                                                                         |                                                      | ""T,908x900<br>1980-000080-4,<br>1-8,5,5,5, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۱<br>دیکوا                                         |                                        | 12.00                                                    | 2021   |
| Quan  | õna                                                   | UG.M<br>poin                                 |                              |          |                                               |                                                                                                             | T,ansrt<br>T styloidaever                            | iecroliticiti-f.f<br>T.eracili<br>T.eracili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .}<br>Sengitzib-S.F                                |                                        | 1:00                                                     | 1.4.1  |
|       | a<br>E                                                | 1317_1<br>For_5<br>2021                      |                              |          |                                               |                                                                                                             |                                                      | t,enertjernorg<br>T.rmorg<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | incomotel<br>olino<br>antivority<br>antivority     | 101.<br>                               | 10.00                                                    | 5 08:: |
|       | 50≰201<br>₽m                                          | JODS/J<br>Jards<br>5:45 2<br>fion            |                              |          |                                               |                                                                                                             |                                                      | T,quy<br>T,onerbeoroù                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | γργγγμ∃ Iγrti<br>T.plo-S, I-eto<br>T.plois⊃e Ivrti | 2                                      |                                                          | May O  |
|       | ATA\AS<br>11:44<br>21<br>21<br>51<br>51<br>21<br>2021 | L\METH<br>Stand<br>08:00<br>Librat           |                              |          |                                               | L                                                                                                           | ្តែវិជីវនាទៅថែនកង់ចុរបែបដ                            | nst ivenum<br>T,ensillenene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |                                        | 1<br>8<br>8<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>8 | Wed    |
|       | M/1/DA<br>021 :<br>-0420:<br>s: RTI<br>8:16 :         | CHEM\<br>VOA<br>ay 05<br>al Ca               |                              |          |                                               |                                                                                                             | ά.<br>Αι αιφέλασκα κ.υ.α                             | uga≁<br>ebiro <i>ĭristeinitt</i><br>fide.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nsib nocheO                                        |                                        | 7.00                                                     |        |
|       | HPCHE<br>Apr 2<br>SlUGD<br>7_1UG<br>Param<br>21       | C:\HP<br>TO-15<br>Wed M<br>Initi             |                              |          |                                               |                                                                                                             |                                                      | reon 1,1<br>anayisitene, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t<br>transfi<br>nolffolo⊷t,t                       | Weisy                                  | 2:00                                                     | 106.N  |
|       | : C:\<br>: 20<br>: ALC<br>: A31<br>: A31<br>: Apr     | ຍຸ<br>ເປ                                     |                              |          |                                               |                                                                                                             |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anadiomomo<br>T,eneruț<br>T,ebimoră (vo            | м –                                    | 003                                                      | A317   |
|       | File<br>n<br>e<br>tegra                               | d<br>Updat<br>mse v                          |                              |          |                                               |                                                                                                             | T,onstitueraas                                       | T,Sfric<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vene, Free<br>Mane, Free                           | фоз9                                   | 00 5                                                     | 17.D   |
|       | Data<br>Acq C<br>Sampl<br>Misc<br>MS In<br>Quant      | Methc<br>Títle<br>Last<br>Respc<br>Abundance | 2000000                      | 1200000  | 120000                                        | 100000                                                                                                      | 80000                                                | 60,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40000                                              | 200040                                 | D<br>Time-> 4.                                           | AS0420 |

|                                                       | Centek Laboratories,LLC                                                                                                                       | Quantitati                                   | on Rep           | port (QT)                            | Review                           | ved)                           |               |          |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|--------------------------------------|----------------------------------|--------------------------------|---------------|----------|
| Data F<br>Acq On<br>Sample<br>Misc<br>MS Int<br>Ouant | Tile : C:\HPCHEM\1\DATA\A<br>: 21 Apr 2021 11:09<br>: ALCS1UGD-042121<br>: A317_1UG<br>: egration Params: RTEINT.<br>Time: Apr 22 11:57:07 20 | S042117.D<br>pm<br>P<br>21                   | Ouz              | Oper:<br>Inst<br>Mult<br>ant Results | Vial:<br>ator:<br>iplr:<br>File: | 1<br>WD<br>MSD<br>1.00<br>A317 | #1<br>1UG     | , RES    |
| <u>y</u> <b>L</b>                                     |                                                                                                                                               | т <i>а</i> г ти                              | 9 <b>6</b> - 14  |                                      |                                  |                                |               |          |
| Quant<br>Title<br>Last U<br>Respon<br>DataAc          | Method : C:\HPCHEM\1\MET<br>: TO-15 VOA Stan<br>Jpdate : Mon Apr 12 12:0<br>ise via : Initial Calibra<br>:q Meth : 1UG_ENT                    | HODS\A317_<br>dards for<br>2:39 2021<br>tion | _1UG.M<br>5 poin | (RTE Integr<br>nt calibrati          | ator)<br>on                      |                                |               |          |
| Inter                                                 | mal Standards                                                                                                                                 | R.T.                                         | QION             | Response C                           | onc Ui                           | nits                           | Dev           | (Min)    |
| 1)                                                    | Bromochloromethane                                                                                                                            | 9.82                                         | 128              | 80819                                | 1.00                             | dqq                            |               | 0.00     |
| 35)                                                   | 1,4-difluorobenzene                                                                                                                           | 12.11                                        | 114              | 281357                               | 1.00                             | dđđ                            |               | 0.00     |
| 50)                                                   | Chlorobenzene-d5                                                                                                                              | 16.92                                        | 117              | 267874                               | 1.00                             | aqq                            |               | 0.00     |
| Svete                                                 | Monitoring Compounds                                                                                                                          |                                              |                  |                                      |                                  |                                |               |          |
| 65)                                                   | Bromofluorobenzene                                                                                                                            | 18.72                                        | 95               | 228714                               | 1,13                             | dqq                            |               | 0.06     |
| Spi                                                   | ked Amount 1.000                                                                                                                              | Range 70                                     | - 130            | Recovery                             | =                                | 113.                           | 00%           |          |
| TP-5 article (                                        | * Compounde                                                                                                                                   |                                              |                  |                                      |                                  |                                | Ova           | alue     |
| 2)                                                    | Propylene                                                                                                                                     | 4.17                                         | 41               | 71122                                | 1.19                             | dqq                            | ~             | 95       |
| 3)                                                    | Freon 12                                                                                                                                      | 4.22                                         | 85               | 363615                               | 1.20                             | dqq                            |               | 98       |
| 4)                                                    | Chloromethane                                                                                                                                 | 4.42                                         | 50               | 77243                                | 1,06                             | dqq                            |               | 99       |
| 5)                                                    | Freon 114                                                                                                                                     | 4.42                                         | 85               | 271096                               | 1.13                             | ppb                            |               | 99       |
| 6)                                                    | Vinyl Chloride                                                                                                                                | 4.61                                         | 62               | 77183                                | 1.05                             | ddd                            |               | 96       |
| 7)                                                    | Butane                                                                                                                                        | 4.72                                         | 43               | 84978                                | 1.04                             | ppp                            |               | 99       |
| 8)                                                    | 1,3-butadiene                                                                                                                                 | 4,71                                         | 39               | 62470                                | 1 12                             | dad                            |               | 100      |
| 9)                                                    | Bromometnane<br>Chloroothane                                                                                                                  | 5.07                                         | 274<br>64        | 1012/2<br>TO12/2                     | 1.06                             | $p_{D}$                        |               | 97       |
| 10)                                                   | Ethanol                                                                                                                                       | 5.34                                         | 45               | 18101                                | 0.82                             | bob                            |               | 77       |
| 12)                                                   | Acrolein                                                                                                                                      | 5,91                                         | 56               | 23885                                | 0.76                             | daa                            | #             | 74       |
| 13)                                                   | Vínyl Bromide                                                                                                                                 | 5.58                                         | 106              | 98951                                | 1.05                             | qq                             |               | 97       |
| 3.4)                                                  | Freon 11                                                                                                                                      | 5.85                                         | 101              | 347457                               | 1.05                             | ppb                            |               | 99       |
| 15)                                                   | Acetone                                                                                                                                       | 6.01                                         | 58               | 55930m 🖊                             | 1.13                             | dqq                            |               |          |
| 16)                                                   | Pentane                                                                                                                                       | 6.13                                         | 42               | 107926                               | 1.28                             | ppb                            |               | 97       |
| 17)                                                   | Isopropyl alcohol                                                                                                                             | 6.12                                         | 45               | 160886                               | 1.26                             | aqq                            | ++            | 98       |
| 18)                                                   | 1,1-dichloroethene                                                                                                                            | 6.62                                         | טע<br>בסנ        | 202046                               | 1.04                             | ppp                            | #             | 96       |
| 20)                                                   | Freen 113                                                                                                                                     | 6 84                                         | 59               | 180308                               | 1.12                             | ששע<br>מטס                     | #             | 79       |
| 21)                                                   | Methylene chloride                                                                                                                            | 7.08                                         | 84               | 118950                               | 1.13                             | ppb                            |               | 94       |
| 22)                                                   | Allv1 chloride                                                                                                                                | 7.06                                         | 41               | 107979                               | 1.12                             | dqq                            |               | 98       |
| 23)                                                   | Carbon disulfide                                                                                                                              | 7.24                                         | 76               | 348982                               | 1.12                             | dqq                            |               | 97       |
| 24)                                                   | trans-1,2-dichloroethene                                                                                                                      | 8.01                                         | 61               | 157217                               | 1.11                             | ppb                            |               | 94       |
| 25)                                                   | methyl tert-butyl ether                                                                                                                       | 8.03                                         | 73               | 239885                               | 1.08                             | ppb                            |               | 76       |
| 26)                                                   | 1,1-dichloroethane                                                                                                                            | 8,44                                         | دن<br>۱۵         | 210170                               | 1.14                             | dad                            |               | 99       |
| 27)                                                   | Vinyl acetate<br>Motbul Etbul Ketope                                                                                                          | 0.42                                         | -1.0<br>77       | 47355                                | 1.09                             | ppb                            | łł            | 100      |
| 20)<br>29)                                            | cis-1 2-dichloroethene                                                                                                                        | 9.38                                         | 61               | 139680                               | 1.10                             | dad                            | .,            | 95       |
| 30)                                                   | Hexane                                                                                                                                        | 8.98                                         | 57               | 141424                               | 1.11                             | dqq                            | <b>‡</b> 4    | 81       |
| 31)                                                   | Ethyl acetate                                                                                                                                 | 9.52                                         | 43               | 206346                               | 1.16                             | ppb                            |               | 97       |
| 32)                                                   | Chloroform                                                                                                                                    | 9.99                                         | 83               | 289503                               | 1.13                             | dqq                            |               | 100      |
| 33)                                                   | Tetrahydrofuran                                                                                                                               | 10.15                                        | 42               | 84989                                | 1.12                             | dqq                            |               | 87       |
| 34)                                                   | 1,2-dichloroethane                                                                                                                            | 11.10                                        | 62               | 175150                               | 1.13                             | aqq                            |               | 00 L O O |
| 36)                                                   | 1,1,1-trichloroethane                                                                                                                         | 10.81                                        | 97               | 1005AQ                               | 1.23                             | - 1990<br>1970                 |               | 90<br>84 |
| 37)                                                   | Cyclonexane<br>Carbon fotrachloride                                                                                                           | 11.94<br>11 46                               | 117              | 310727                               | 1.20                             | - ppp<br>dag                   |               | 97       |
| 20)<br>20)                                            | Benzene                                                                                                                                       | 13.42                                        | 78               | 311236                               | 1.15                             | ppb                            |               | وُوَ     |
| 40)                                                   | Methyl methacrylate                                                                                                                           | 13.00                                        | 41               | 115692                               | 1.21                             | dqq                            |               | 91       |
| 41)                                                   | 1,4-dioxane                                                                                                                                   | 13.01                                        | 88               | 72434                                | 1,23                             | ppb                            |               | 95       |
| 42)                                                   | 2,2,4-trimethylpentane                                                                                                                        | 12.29                                        | 57               | 421409                               | 1.16                             | dqq                            |               | 86       |
| 43)                                                   | Heptane                                                                                                                                       | 12.64                                        | 43               | 142626                               | 1.22                             | dqq                            |               | 93       |
| 44)                                                   | Trichloroethene                                                                                                                               | 12.76                                        | 130              | 166638                               | 1.16                             | agq                            |               | 98       |
| 45)                                                   | 1,2-dichloropropane                                                                                                                           | 12.87                                        | 63               | 125062                               | <br>エ・エラ                         | aqq_                           | 146 MA 187 AV | <br>78   |
| <br>(#) *                                             | - qualifier out of range                                                                                                                      | (m) = man                                    | ual in           | tegration                            |                                  |                                |               |          |

Centek Laboratories,LLC<br/>Quantitation Report(QT Reviewed)Data File : C:\HPCHEM\1\DATA\AS042117.DVial: 1<br/>Acq On : 21 Apr 2021 11:09 pm<br/>Operator: WD<br/>Sample : ALCS1UGD-042121Operator: WD<br/>Inst : MSD #1<br/>Multiplr: 1.00Misc : A317\_1UGInst : MSD #1<br/>Multiplr: 1.00Ms Integration Params: RTEINT.P<br/>Quant Time: Apr 22 11:57:07 2021Quant Results File: A317\_1UG.RESQuant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator)<br/>Title : TO-15 VOA Standards for 5 point calibration<br/>Last Update : Mon Apr 12 12:02:39 2021<br/>Response via : Initial Calibration<br/>DataAcq Meth : 1UG\_ENT

|     | Compound                  | R.T.  | QION | Response  | Conc Unit | Qvalue |
|-----|---------------------------|-------|------|-----------|-----------|--------|
| 45) | Browedicbloromethane      | 13.20 | 83   | 282662    | daa 12.1  | 100    |
| 47) | cis-1.3-dichloropropene   | 14.02 | 75   | 175981 .  | 1.18 ppb  | 98     |
| 48) | trans-1.3-dichloropropene | 14.80 | 75   | 138276m 🗘 | daa 1.13  |        |
| 49) | 1.1.2-trichloroethane     | 15.13 | 97   | 157528    | 1.18 ppb  | 98     |
| sī) | Toluene                   | 14.88 | 92   | 205954    | 1.15 ppb  | 98     |
| 52) | Methyl Isobutyl Ketone    | 13.94 | 43   | 192913    | 1.16 ppb  | 88     |
| 53) | Dibromochloromethane      | 15.86 | 129  | 278631    | 1.16 ppb  | 99     |
| 54) | Methyl Butyl Ketone       | 15.31 | 43   | 174988    | 1.15 ppb  | 83     |
| 55) | 1,2-dibromoethane         | 16.13 | 107  | 235916    | 1.16 ppb  | 99     |
| 56) | Tetrachloroethylene       | 15.95 | 164  | 174070    | 1.18 ppb  | 96     |
| 57) | Chlorobenzene             | 16.97 | 112  | 321706    | 1.13 ppb  | 98     |
| 58) | Ethylbenzene              | 17.25 | 91   | 445632    | 1.18 ppb  | 97     |
| 59) | m&p-xylene                | 17.47 | 91   | 802561    | 2.50 ppb  | 98     |
| 60) | Nonane                    | 17.88 | 43   | 240406    | 1.28 ppb  | 85     |
| 61) | Styrene                   | 17.94 | 104  | 331443    | 1.27 ppb  | 93     |
| 62) | Bromoform                 | 18.06 | 173  | 256202    | l.ll ppb  | 100    |
| 63) | o-xylene                  | 17.98 | 91   | 480477    | 1.29 ppb  | 98     |
| 64) | Cumene                    | 18.60 | 105  | 530347    | 1.19 ppb  | 97     |
| 66) | 1,1,2,2-tetrachloroethane | 18.47 | 83   | 375237    | 1.23 ppb  | 98     |
| 67) | Propylbenzene             | 19.21 | 120  | 148969    | 1.18 ppb  | 68     |
| 68) | 2-Chlorotoluene           | 19.25 | 126  | 173000    | 1.25 ppb  | # 85   |
| 69) | 4-ethyltoluene            | 19.40 | 105  | 569089 ,  | 1.27 ppb  | 99     |
| 70) | 1,3,5-trimethylbenzene    | 19.47 | 105  | 525311m 🔨 | 1.29 ppb  |        |
| 71) | 1,2,4-trimethylbenzene    | 19.98 | 105  | 426908    | 1.20 ppb  | 98     |
| 72) | 1,3-dichlorobenzene       | 20.31 | 146  | 347872    | 1.18 ppb  | 99     |
| 73) | benzyl chloride           | 20.39 | 91   | 275748    | 1.32 ppb  | 97     |
| 74) | l,4-dichlorobenzene       | 20.31 | 146  | 361714    | 1.26 ppb  | 100    |
| 75) | 1,2,3-trimethylbenzene    | 20.51 | 105  | 485890    | 1.26 ppb  | 98     |
| 76) | 1,2-dichlorobenzene       | 20.82 | 146  | 340774    | 1.28 ppb  | 99     |
| 77) | 1,2,4-trichlorobenzene    | 22.93 | 180  | 161447    | 1.33 ppb  | 99     |
| 78) | Naphthalene               | 23.14 | 128  | 346961    | 1.27 ppb  | 100    |
| 79) | Hexachloro-1,3-butadiene  | 23.26 | 225  | 316793    | 1.44 ppb  | 100    |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042117.D A317\_1UG.M Wed May 05 08:21:25 2021 MSD1



(QT Reviewed)

| )3-May-21 |  |
|-----------|--|
| Date:     |  |

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

O'NO NUC à Ç. £

| Project: 1500 Jetters                | on Road                       |         |              |                         |                  |               | ar i          | stcode: U        | CIN 17              |              |             |
|--------------------------------------|-------------------------------|---------|--------------|-------------------------|------------------|---------------|---------------|------------------|---------------------|--------------|-------------|
| Sample ID: C2104038-001A MS          | SampType: MS                  | TestCor | ie: 0.20_NYS | Units: ppbV             |                  | Prep Date     |               |                  | RunNo: 17523        |              |             |
| Client ID: IAQ-09 (4/15/21)          | Batch ID: R17523              | Testh   | lo: TO-15    |                         | -                | Analysis Date | 4/20/202      | Ŧ                | SeqNo: 19893        | 0            |             |
| Analyte                              | Result                        | PQI     | SPK value    | SPK Ref Val             | %REC             | LowLimit      | -light.imit F | RPD Ref Val      | %RPD R              | PDLimit      | Quai        |
| 1, 1,1-7richioroethane               | 1.020                         | 0.15    | -            | 0                       | 102              | 68. <u>†</u>  | 117           |                  |                     |              |             |
| 1,1,2,2-Tetrachloroethane            | 0.9400                        | 0.15    | -            | D                       | 94.0             | 82.3          | 101           |                  |                     |              |             |
| 1.1,2-Trichloroethane                | 0.9100                        | 0.15    | -            | Ö                       | 91.0             | 51            | t28           |                  |                     |              |             |
| 1,1-Dichloroethane                   | 0.9400                        | 0.15    | -            | Ö                       | 94.0             | 76.5          | 130           |                  |                     |              |             |
| <ol> <li>1-Dichloroethene</li> </ol> | 0.9400                        | 0.040   | 4            | Ð                       | 94.0             | 45.8          | 128           |                  |                     |              |             |
| 1.2,4-Trichlorobenzene               | 2.430                         | 0.15    | +            | 0                       | 243              | 70            | 130           |                  |                     |              | Ś           |
| 1,2,4-Trimethylbenzene               | 1.580                         | 0.15    | <b>4</b>     | 0                       | 158              | 81.5          | 155           |                  |                     |              | S           |
| 1,2-Dibromoethane                    | 0.9900                        | 0.15    | ųva.         | ¢                       | <del>99</del> .0 | 78.7          | 107           |                  |                     |              |             |
| 1,2-Dichlorobenzene                  | 1.250                         | 0.15    | <b>*</b> *   | 0                       | 125              | 57.2          | 175           |                  |                     |              |             |
| 1,2-Dichloroethane                   | 0.9800                        | 0.15    | ſ            | ٥                       | 98.0             | 65.1          | 130           |                  |                     |              |             |
| 1,2-Dichloropropane                  | 0.9100                        | 0 D     | -            | 0                       | 91.0             | 69.9          | 116           |                  |                     |              |             |
| 1.3,5-Trimethylbenzene               | 1,410                         | 0.15    | -            | 0                       | 141              | 67.6          | 139           |                  |                     |              | ŝ           |
| 1,3-butadiene                        | 1.440                         | 0.15    | -            | 0                       | \$44             | 70            | 130           |                  |                     |              | ŝ           |
| 1,3-Dichłorobenzene                  | 1.130                         | 0.15    | ۲            | 0                       | 113              | 89.1          | 122           |                  |                     |              |             |
| 1,4-Dichlorobenzene                  | 1.160                         | 0.15    | -            | 0                       | 116              | 36.8          | 114           |                  |                     |              | ŝ           |
| 1,4-Dioxane                          | 1.170                         | 0:30    | 1            | Ċ                       | 117              | 75.5          | 114           |                  |                     |              | s           |
| 2,2,4-trimethylpentane               | 1.010                         | 0.15    | **           | 0                       | 101              | 84.2          | 153           |                  |                     |              |             |
| 4-ethylioluene                       | 0.1700                        | 0.15    | <b>4</b> 71  | 0                       | 17.0             | 70            | 130           |                  |                     |              | S           |
| Acetone                              | 12.67                         | 0:30    | <b>1</b> 00  | 0                       | 1270             | 02            | 130           |                  |                     |              | Ś           |
| Allyt chloride                       | 0.9900                        | 0.15    | ~            | 0                       | <u>99.0</u>      | 70            | 130           |                  |                     |              |             |
| Genzene                              | 1.380                         | 0.15    | -            | 0                       | 138              | 72.7          | 133           |                  |                     |              | ა           |
| Benzyi chloride                      | 1,480                         | 0.15    | -            | 0                       | <b>148</b>       | 72.5          | 129           |                  |                     |              | S           |
| Bromodichloromethane                 | 0.9800                        | 0.15    | ~            | 0                       | 98.0             | 69.4          | 112           |                  |                     |              |             |
| Bromotorm                            | 1.010                         | 0.15    | -            | 0                       | 101              | 42.5          | 110           |                  |                     |              |             |
| Bromometinane                        | 0.9500                        | 0.15    | -            | ð                       | 95.0             | 68.5          | 121           |                  |                     |              |             |
| Qualifiers: Results report           | ted are not blank corrected   |         | E Estima     | aled Vultie above quas  | titation ran     | 8             | н             | olding times for | preparation or anal | ysis exceede | g           |
| J Analyse detect                     | ted below quantitations limit |         | ND Not D     | etected at the Limit of | Detection        |               | ×             | PD outside accep | ted recivery limits |              |             |
| S Spike Recover                      | ry outside accepted recovery  | limits  | DL Detect    | tion Limit              |                  |               |               |                  |                     | PC           | s jo 1 of 3 |

| CLIENT:     | LaBella Associates, P.C. |
|-------------|--------------------------|
| Work Order: | C2104038                 |

|           | ÷            |
|-----------|--------------|
| C2104038  | 1 2 2 2 1 20 |
| rk Order: |              |
| <b>m</b>  |              |

| Project: 1500 Jeffers       | son Road                      |          |              |                          |                |                | TestCode: 0           | 20_NYS                         |            |
|-----------------------------|-------------------------------|----------|--------------|--------------------------|----------------|----------------|-----------------------|--------------------------------|------------|
| Sample ID: C2104038-001A MS | SampType: MS                  | TestCode | 0.20 NYS     | Units: ppbV              |                | Prep Dat       | ä                     | RunNo: 17523                   |            |
| Client ID: IAQ-09 (4/15/21) | Batch ID: R17523              | TestNo   | TO-15        |                          |                | 4.nalysis Date | : 4/20/2021           | SeqNo: 198930                  |            |
| Analyte                     | Result                        | PQL      | SPK value    | SPK Ref Val              | %REC           | LowLimit       | HighLimit RPD Ref Val | %RPD RPDLimit                  | Qual       |
| Carbon disuifide            | 0.9800                        | 0.15     | *            | o                        | 0.86           | 02             | 130                   |                                |            |
| Carbon tetrachloride        | 1.070                         | 0:030    | <b>4</b> -m  | ¢                        | 107            | 61             | 107                   |                                |            |
| Chlorobenzene               | 0.9700                        | 0.15     | 4a           | ¢                        | 97.0           | 76.1           | 111                   |                                |            |
| Chloroethane                | 0.8500                        | 0.15     | den.         | ¢                        | 86.0           | 62.6           | 119                   |                                |            |
| Chloroform                  | 1.030                         | 0.15     | <b>W</b> ILL | 0                        | 103            | 6.54           | 173                   |                                |            |
| Chloromethane               | 1.180                         | 0.15     | •            | Q                        | 118            | 54.4           | 125                   |                                |            |
| cis-1 2-Dichloroethene      | 0.9800                        | 0:040    | -            | 0                        | 98.0           | 60.1           | 121                   |                                |            |
| cis-1,3-Dichloropropene     | 0.9900                        | 0.15     | ٢            | 0                        | 0.66           | 50.8           | 122                   |                                |            |
| Cyclohexane                 | 1.360                         | 0.15     | -            | 0                        | 136            | 59.4           | 148                   |                                |            |
| Dibromechloromethane        | 1.010                         | 0.15     | -            | 0                        | 101            | 71.5           | 102                   |                                |            |
| Ethyl acetate               | \$5.38                        | D. 15    | -            | 0                        | \$540          | 49.3           | 146                   |                                | S          |
| Ethyibenzene                | 1,190                         | 0.15     | -            | 0                        | 115            | 68.5           | 129                   |                                |            |
| Freon 11                    | 0.9600                        | 0.15     | ***          | 0                        | 96.0           | 44.8           | 143                   |                                |            |
| <del>й</del> геол 113       | 1.030                         | 0.15     | *            | O                        | 103            | 80.3           | 125                   |                                |            |
| Freon 114                   | 0.8800                        | 0.15     | 4.w          | 0                        | 88.0           | 65.2           | 132                   |                                |            |
| Freon 12                    | 1.330                         | 0.15     | 4            | ¢                        | 133            | 67.4           | 103                   |                                | S          |
| Heptane                     | 2.860                         | 0.15     | <b>.</b>     | 0                        | 286            | 80.8           | 124                   |                                | ŝ          |
| Hexachloro-1,3-butadiene    | 1.410                         | 0.15     | -            | 0                        | 141            | 81.9           | 119                   |                                | ŝ          |
| Hexane                      | 10.95                         | 0.15     | -            | 0                        | 1100           | 73.7           | 147                   |                                | ഗ          |
| Isopropyi ałcohol           | 208.6                         | 0.15     | <u>-</u>     | 0                        | 20900          | 70             | 130                   |                                | Ś          |
| m&p-Xykene                  | 2.610                         | 0.30     | 5            | D                        | 130            | 74.2           | 123                   |                                | S          |
| Methyl Butyl Ketone         | 1.070                         | 0.30     | ÷            | Ð                        | 107            | 72.6           | 117                   |                                |            |
| Methyl Ethyl Ketone         | 18.41                         | 0.30     | ų            | 0                        | 1840           | 59.4           | 135                   |                                | ŝ          |
| Methyi Isobulyi Ketone      | 1.090                         | 0:30     | ¥1-          | 0                        | 109            | 61             | 120                   |                                |            |
| Methyi text-buiyl ether     | 0.9600                        | 0.15     | •            | ¢                        | 96.0           | 63.6           | 134                   |                                |            |
| Methylene chloride          | 2.300                         | 0.15     | ſ            | Q                        | 230            | 53.4           | 125                   |                                | S          |
| о-ХуІепе                    | 1.220                         | 0.15     | -            | 0                        | 122            | 74.3           | 132                   |                                | 1          |
| Propylene                   | 26.34                         | 0.15     | -            | 0                        | 2630           | 0/             | 130                   |                                | S          |
| Styrene                     | 1.130                         | 0.15     | -            | 0                        | 5              | 82.4           | 118                   |                                |            |
| Tetrachtoroethylene         | 1.140                         | 0.15     | -            | D                        | 14             | 86.2           | 112                   |                                | ŝ          |
| Tefraitydrofuran            | 324.4                         | 0.15     | -            | Ð                        | 32400          | 01             | 130                   |                                | ŝ          |
| Ouslifiers: Results report  | ted are not blank corrected   |          | E Estim      | ated Value above quan    | stilatiost ras | <u>ل</u> م     | H Holding times for   | preparation or analysis exceed | fed        |
| f Analyse deter             | cted below quantitation bruit |          | ND Not D     | letected at the Linat of | Detection      |                | RPD outside acce      | pted recovery limits           |            |
| S Spike Recove              | ery outside accepted recovery | limits   | DI, Detec    | lion Linsit              |                |                |                       | ****                           | age 2 of 5 |
|                             |                               |          |              |                          |                |                |                       |                                |            |

| LaBella Associates, P.C. | C7104038   |
|--------------------------|------------|
| CLIENT:                  | Work Ordon |

| Project: 1500 Jeffers                   | on Road                      |          |               |                         |               |                | Ē          | sstCode: 0.         | 20_NYS           |                |            |
|-----------------------------------------|------------------------------|----------|---------------|-------------------------|---------------|----------------|------------|---------------------|------------------|----------------|------------|
| Sample ID: C2104038-001A MS             | SampType: MS                 | TestCode | 5: 0.20 NYS   | Units: ppbV             |               | Prep Date:     |            |                     | RunNo: 175       | 23             |            |
| Client ID: IAQ-09 (4/15/21)             | Batch ID: R17523             | TestN    | o: TO-15      |                         |               | Analysis Date: | 4/20/202   |                     | SeqNo: 198       | 930            |            |
| អំពនាំវ្រះខ                             | Result                       | PQL      | SPK value     | SPK Ref Val             | %REC          | Lowijmit H     | light imit | RPD Ref Vai         | %RPD             | RPOLimit       | Qual       |
| Toluene                                 | 1.770                        | 0.15     | ¥             | o                       | 177           | 70             | 130        |                     |                  |                | S          |
| trans-1,2-Dichloroethene                | 1.130                        | 0.15     | •             | 0                       | 5<br>13       | 70.9           | 132        |                     |                  |                |            |
| trans-1,3-Dichloropropene               | 1.050                        | 0.15     | -             | Ð                       | 105           | 51.9           | 133        |                     |                  |                |            |
| Trichloroethene                         | 1.390                        | 0:030    | -             | Q                       | 139           | 63.1           | 109        |                     |                  |                | S          |
| Vinyi acetale                           | 1.090                        | 0.15     | F             | 0                       | 109           | 17.3           | 187        |                     |                  |                |            |
| Vinyl Bromide                           | 0.9000                       | 0.15     | -             | 0                       | 90.08         | 71.3           | 121        |                     |                  |                |            |
| Vinyi chloride                          | 0.8500                       | 0.040    | -             | 0                       | 85.0          | 63.2           | 134        |                     |                  |                |            |
| Sample ID: C2104038-001A MS             | SampType: MSD                | TestCod  | e: 0,20 NYS   | Unifs: ppbV             |               | Prep Date:     |            |                     | RunNo: 175       | 53             |            |
| Client ID: IAQ-09 (4/15/21)             | Batch ID: R17523             | TestN    | o: TO-15      |                         |               | Analysis Date: | 4/20/203   | T                   | SeqNo: 198       | 931            |            |
| Analyte                                 | Result                       | ЪQL      | SPK value     | SPK Ref Val             | %REC          | LowLimit H     | lighLimit  | RPD Ref Val         | Q47%             | RPDLimit       | Quai       |
| 1 1.1-Trichloroethane                   | 0.9700                       | 0.15     | -             | ð                       | 97.0          | 68.1           | 117        | 1,02                | 5.03             | D              |            |
| 1.1.2.2-Tetrachloroethane               | 0.9400                       | 0.15     | -             | ¢                       | <u>94.</u> 0  | 82.3           | 101        | 0.94                | 0                | 0              |            |
| 1.1.2.2.Trichloroethane                 | 0.8900                       | 0.15     | -             | 0                       | 69.0          | 61             | 128        | 0.91                | 2.22             | 0              |            |
| 1.1-Dichloroethane                      | 0.9400                       | 0.15     | -             | ٥                       | 94.0          | 76.5           | 118        | 0.54                | 0                | 0              |            |
| 1.1-Dichloroethene                      | 0.9800                       | 0.040    | -             | 0                       | 98.0          | 45.8           | 128        | 0.94                | 4.17             | Ð              |            |
| <ol> <li>4. Trichlorobenzene</li> </ol> | 2.340                        | 0.15     | -             | D                       | 23∉           | 30.3           | 262        | 2.43                | 3.77             | 0              |            |
| 1,2,4-Trimethylbenzene                  | 1.580                        | 0.15     |               | 0                       | 158           | 81.5           | 155        | 1.58                | 0                | 0              | S          |
| 1.2-Dibromoethane                       | 0.9700                       | 0.15     | Ψn.           | Ō                       | 97.0          | 78.7           | 107        | 0.99                | 2.04             | ¢              |            |
| 1,2-Dichlorobenzene                     | 1.240                        | 0.15     | 4 <b>1</b> -7 | Ċ                       | 124           | 57.2           | 175        | 1.25                | 0.803            | 0              |            |
| 1,2-Dichloroethane                      | 1.000                        | 0.15     | •             | ÷                       | 100           | 65.†           | 130        | 0.98                | 2.02             | 0              |            |
| 1.2-Dichloropropane                     | 0.8600                       | 0.15     | -             | 0                       | 86.0          | 6.99           | 116        | 0.91                | 5.65             | ¢              |            |
| 1,3.5-Trimethylbenzene                  | 1.420                        | 0.15     | -             | Ð                       | <u></u> ‡42   | 67.6           | 139        | 1,41                | 0.707            | Ģ              | ŝ          |
| 1,3-butadiene                           | 1.100                        | 0.15     | -             | 0                       | 110           | 70             | 404        | 1.44                | 26.8             | 0              |            |
| 1.3-Dichlorobenzene                     | 1.170                        | 0.15     | 1             | 0                       | 117           | 89.1           | 122        | 1.13                | 3.48             | D              |            |
| 1.4-Dichiorobenzene                     | 1.240                        | 0.15     | <del></del>   | 0                       | 124           | 86.8           | 114        | 1.16                | 6.67             | 0              | S          |
| 1,4-Dioxane                             | 1,190                        | 0.30     | é             | 0                       | 119           | 75.1           | 114        | 1.17                | 1.69             | ð              | ŝ          |
| 2,2,4-4rimethytpentane                  | 1.000                        | 0.15     | ¥             | Ċ                       | 100           | 84.2           | 113        | 1.05                | 0.995            | Ċ              |            |
| 4-ethyltojuene                          | 0.1500                       | 0.15     | 40m1          | Ċ                       | 15.0          | 70             | 130        | 0.17                | 12.5             | Ð              | S          |
| Quadifiere: Results teron               | ted are not blank corrected  |          | E Estin       | ated Value above quan   | dietacion cun | e.             |            | folding times for 1 | rcpartion of a   | nalysis exceed | ed         |
| J Analyte detec                         | sed below quantitation limit |          | ND Not D      | etected at the Limit of | Detection     |                | ж<br>Ж     | PD outside accept   | ted recovery fan | aits           |            |
| S Spike Recove                          | ry outside accepted recovery | limits   | DL Detec      | tion Limit              |               |                |            |                     |                  | <b>G</b> .     | age 3 of 5 |

CLIENT: LaBella Associates, P.C. Work Order: C2104038

| Project: 1500 Jeffers       | on Road                      |         |               |                         |               |                 | T        | estCode: 0        | SYN_02.           |                |            |
|-----------------------------|------------------------------|---------|---------------|-------------------------|---------------|-----------------|----------|-------------------|-------------------|----------------|------------|
| Sample ID: C2104038-001A NS | SampType: MSD                | TestCod | e: 0.20_NYS   | Units: ppbV             |               | Prep Date:      |          |                   | RunNo: 175        | 23             |            |
| Client ID: IAQ-09 (4/15/21) | Batch ID: R17523             | TestN   | o: TO-15      |                         | -             | 4.nalysis Date: | 4/20/202 | E.                | SegNo: 198        | 931            |            |
| Analyte                     | Result                       | P01     | SPX value     | SPK Ref Val             | %REC          | LowLimit F      | ightimit | RPD Ref Val       | %RPD              | RPDLimit       | Qual       |
| Åcetone                     | 11.81                        | 0:30    | +             | 0                       | 1180          | 02              | 130      | 12.67             | 7.03              | Ċ              | S          |
| Allyi chloride              | 1.030                        | 0.15    | <b>4</b> -0.  | 0                       | 103           | 49.7            | 155      | 0.99              | 3.96              | Ċ              |            |
| Benzene                     | 1.290                        | 0.15    | <b>4</b> **   | D                       | 129           | 72.7            | 133      | 1.38              | 6.74              | Ö              |            |
| Benzył chloride             | 1.510                        | 0.15    | 1,000         | Ð                       | 151           | 72.5            | 129      | 1.48              | 2.01              | 0              | S          |
| Bromodichloromethane        | 0.9200                       | 0.15    | <b>4</b> 1177 | ¢                       | 92.0          | 69.4            | 112      | 0.98              | 6.32              | Ċ              |            |
| Bromotorm                   | 0.9700                       | 0.15    | -             | ¢                       | 97.0          | 42.5            | 110      | 1.01              | 4.04              | 0              |            |
| Bromomethane                | 0.9400                       | 0.15    | -             | 0                       | 94.0          | 68.6            | 121      | 0.95              | 1,06              | 0              |            |
| Carbon disulfide            | 1.000                        | 0.15    | -             | Q                       | 100           | 70              | 130      | 96.0              | 2.02              | 0              |            |
| Carbon tetrachtoride        | 1.010                        | 0.030   | -             | 0                       | 101           | 61              | 107      | 1.07              | 5.77              | 0              |            |
| Chlorobenzene               | 0.9800                       | 0.15    | •             | D                       | 98.0          | 76.1            | 11*      | 0.97              | 1.03              | ¢              |            |
| Chloroethane                | 0.8300                       | 0.15    | Ł             | 0                       | 83.0          | 62.6            | 119      | 0.86              | 3.55              | ¢              |            |
| Chloroform                  | 1.050                        | 0.15    | ***           | 0                       | 105           | 6.54            | 173      | 1.03              | 1.92              | 0              |            |
| Chioremethane               | 1.140                        | 0.15    | ***           | 0                       | 114           | 54,4            | 125      | 1.18              | 3,45              | Q              |            |
| cis-1,2-Dichloroethene      | 1.000                        | 0.040   | Ψm            | Ċ                       | 100           | 60.1            | 121      | 0.98              | 2.02              | ¢              |            |
| cis-1.3-Dichtoropropene     | 0.9800                       | 0.15    | Ľ             | 0                       | 98.0          | 60.8            | 122      | 0.99              | 1.02              | 0              |            |
| Cvclohexane                 | 1.280                        | 0.15    | -             | ¢                       | 128           | 59.4            | 148      | 1.36              | 6.06              | ¢              |            |
| Dibromochloromethane        | 0.9700                       | 0.15    | -             | 0                       | 97.0          | 71.6            | 102      | 1.01              | 4.04              | 0              |            |
| Ethyl acetate               | 14.17                        | 0.15    | -             | 0                       | 1420          | 49.3            | 146      | 15.38             | 8.19              | 0              | Ś          |
| Ethylbenzene                | 1.220                        | 0.15    | <del></del>   | 0                       | 122           | 68.5            | 129      | 1.19              | 2.49              | 0              |            |
| Freon 11                    | 0.9400                       | 0.15    | <b>~</b> ~    | 0                       | 94.0          | 44.8            | 143      | 0.96              | 2.65              | 0              |            |
| Freon 113                   | 1.040                        | 0.15    | ¥.π           | 0                       | 104           | 80.3            | 125      | 1.03              | 0.966             | Ð              |            |
| Freon 114                   | 0.3800                       | 0.15    | ***           | ¢                       | 38.0          | 65.2            | 132      | 0.88              | 0                 | ð              |            |
| Freon 12                    | 1.290                        | 0.15    | •             | 0                       | 129           | 67.4            | 103      | 1.33              | 3.05              | Ċ              | ა          |
| Heplane                     | 2.550                        | 0.15    | -             | 0                       | 255           | 80.8            | 124      | 2.86              | 15<br>5           | 0              | ა          |
| Hexachloro-1,3-outadiene    | 1.340                        | 0, 55   | -             | 0                       | 134           | 81.9            | 19       | <b>t</b> .41      | 5.09              | Ģ              | S          |
| Hexane                      | 10.24                        | 0.15    | -             | ٥                       | ‡020          | 73.7            | 147      | 10.95             | 6.70              | 0              | Ś          |
| Isepropy; alcohol           | 168.2                        | 0.15    | **            | 0                       | 18800         | 20              | 130      | 208.6             | 10.3              | ¢              | S          |
| m&p-Xviene                  | 2.560                        | 0.30    | 2             | Ð                       | 128           | 74.2            | 123      | 2.61              | 1.93              | 0              | S          |
| Methyl Butyl Ketone         | 1.090                        | 0.30    | ***           | Ð                       | 109           | 72.6            | 117      | 1.07              | 1.85              | 0              |            |
| Methyl Ethyl Ketone         | \$7.14                       | 0:30    | •             | ¢                       | 1710          | 59.4            | 135      | 18.41             | 7.14              | ð              | ŝ          |
| Methyl Isobutyl Ketone      | 1.120                        | 0:30    |               | 0                       | 112           | 61              | 120      | 1.09              | 2.71              | 0              |            |
| Qualifiers: Results report  | led are not blank corrected  |         | E Estime      | ated Value above quan   | ntitation san | ţĊ.             | H        | folding times for | peopacations or a | nalysis exceed | cd         |
| J Analyte detec             | sed below quantitation limit |         | ND Not D      | etected at the Limit of | Detection     |                 | Ŗ        | tPD outside acce  | pted recovery lân | uits           |            |
| S Spike Recove              | ty outside accepted recovery | imits   | DL Detect     | ion Limit               |               |                 |          |                   |                   | ليتم           | age 4 of 5 |

LaBella Associates, P.C. CLIENT:

C2104038 Work Order: Pro

| Project: 1500 Jeffers       | son Road         |         |              |             |       |              | L           | estCode: 0. | 20_NYS     |          |      |
|-----------------------------|------------------|---------|--------------|-------------|-------|--------------|-------------|-------------|------------|----------|------|
| Sample ID: C2104038-001A MS | SampType: MSD    | TestCor | te: 0.20_NYS | Units: ppbV |       | Prep Dal     | ë           |             | RunNo: 175 | 23       |      |
| Client ID: IAQ-09 (4/15/21) | Balch ID: R17523 | Test    | lo: TO-15    |             | ~     | Analysis Dai | le: 4/20/20 | 21          | SeqNo: 198 | 831      |      |
| Analyte                     | Result           | PQL     | SPK value    | SPK Ref Val | %REC  | LowLimit     | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Methyl tert-butyl ether     | 1.110            | 0.15    | *            | 0           | 111   | 63.6         | 134         | 0.96        | 14.5       | 0        |      |
| Methylene chloride          | 2.240            | 0.15    | •            | 0           | 224   | 53.4         | 125         | 2.3         | 2.64       | 0        | S    |
| o-Xylene                    | 1,180            | 0.15    | ψn.          | Ċ           | 118   | 74.3         | 132         | 1.22        | 3.33       | 0        |      |
| Propylene                   | 24.31            | 0.15    | ų.           | ¢           | 2430  | 22           | 130         | 26.34       | 8.02       | 0        | ŝ    |
| Styrene                     | 1.110            | 0.15    | d.ar         | ¢           | 112   | 82.4         | 118         | 1,13        | 1.79       | Ū        |      |
| Tetrachlorcethylene         | 1.120            | 0.15    | <b>1</b>     | Ð           | 112   | 95.2         | 112         | 14          | 1.77       | Ċ        | ŝ    |
| Tetrańydrofuran             | 301.0            | 0.15    |              | Û           | 30100 | 70           | 130         | 324.4       | 7.48       | 0        | Ś    |
| foitene                     | 1.680            | 0.15    | -            | Q           | 168   | 20           | 130         | 1.77        | 5.22       | Ð        | S    |
| frans-1_2-Dichloroethene    | 1.130            | 0.15    | -            | ٥           | 113   | 70.9         | 132         | 1.13        | 0          | 0        |      |
| Irans-1,3-Dichloropropene   | 1.050            | 0.15    | ~            | 0           | \$0\$ | 51.9         | 133         | 1.05        | 0          | 0        |      |
| Trichloroethene             | 1.320            | 0.030   | -            | 0           | 132   | 53.1         | 109         | 1.39        | 5.17       | 0        | s    |
| Vinył acetałe               | 1.150            | 0.15    | -            | 0           | 115   | 70           | 130         | 1.09        | 5.36       | 0        |      |
| Vinyl Bromide               | 0.8700           | 0.15    | ~            | D           | 87.0  | 02           | 130         | 0.9         | 3.39       | 0        |      |
| Vinyi chloride              | 0.8100           | 0.040   | -            | 0           | 81.0  | 63.2         | 114         | 0.85        | 4.82       | 0        |      |

| 1.1 Heading times for preparation or analysis exceeded | R PD outside accepted recovery limits     | Page 5 of 5                                     |
|--------------------------------------------------------|-------------------------------------------|-------------------------------------------------|
| Estimated Value above quantitation sange               | Not Detected at the Limit of Detection    | Detection Limit                                 |
| ы                                                      | ΩN                                        | Ы                                               |
| Results reported are not blank corrected               | Analyte detected below quantitation limit | Spike Recovery outside accepted recovery limits |
|                                                        | -                                         | Ś                                               |
| Qualifiers:                                            |                                           |                                                 |

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data file : C:\HPCHEM\1\DATA\AS042008.D Data File : C:\HPCHEM\1\DATA\ABO42000.2 Acq On : 20 Apr 2021 4:57 pm Sample : C2104038-001A MS Misc : A317\_1UG Vial: 13 Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 21 12:59:05 2021 Quant Results File: A317\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : lUG\_ENT R.T. QIon Response Cone Units Dev(Min) Internal Standards 1) Bromochloromethane9.841281078991.00ppb0.0235) 1,4-difluorobenzene12.121144071531.00ppb0.0150) Chlorobenzene-d516.921173866761.00ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.72 95 305622 1.05 ppb 0.05 Spiked Amount 1.000 Range 70 - 130 Recovery = 105.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 105.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.17
 41
 2094875
 26.34
 ppb
 #
 62

 3) Freon 12
 4.22
 85
 536844
 1.33
 ppb
 98

 4) Chloromethane
 4.41
 50
 114883
 1.18
 ppb
 99

 5) Freon 114
 4.42
 85
 281791
 0.68
 ppb
 100

 6) Vinyl Chloride
 4.61
 62
 83265
 0.85
 ppb
 96

 1.3.3-butadiene
 5.06
 94
 114373
 0.95
 ppb
 98

 10) Chlorothane
 5.24
 64
 38345
 0.86
 ppb
 98

 11) Ethanol
 5.32
 45
 952438
 322.75
 ppb
 464

 12) Accolein
 5.101
 425258
 0.96
 ppb
 98

 13) Vinyl Bromide
 6.11
 42
 287667m
 12.67
 ppb
 Ovalue Target Compounds (#) = qualifier out of range (m) = manual integration Wed May 05 08:21:08 2021 MSD1 

A5042008.D A317\_1UG.M Wed May 05 08:21:08 2021

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042008.D Vial: 13 Acg On : 20 Apr 2021 4:57 pm Operator: RJP Sample : C2104038-001A MS Misc : A317\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Apr 21 12:59:05 2021 Quant Results File: A317 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT P T Olan Response Conc Unit Ovalue Compound

|     | compound                  | PC . 1. | QLON | kesponse  | cone unre  | Qvatue |
|-----|---------------------------|---------|------|-----------|------------|--------|
| 46) | Bromodichloromethane      | 13.21   | 83   | 329783    | dqq 80.0   |        |
| 47) | cis-1,3-dichloropropene   | 14.03   | 75   | 212532    | 0.99 ppb   | 97     |
| 48) | trans-1,3-dichloropropene | 14.80   | 75   | 18554Sm 👂 | 1.05 ppb   |        |
| 49) | 1,1,2-trichloroethane     | 15.13   | 97   | 176346    | 0.91 ppb   | 100    |
| 51) | Toluene                   | 14.88   | 92   | 455420    | 1.77 ppb   | 100    |
| 52) | Methyl Isobutyl Ketone    | 13.94   | 43   | 261323    | 1.09 ppb   | 91     |
| 53) | Dibromochloromethane      | 15.86   | 1.29 | 352136    | 1.01 ppb   | 99     |
| 54) | Methyl Butyl Ketone       | 15.31   | 43   | 234781    | 1.07 ppb   | 87     |
| 55) | 1,2-dibromoethane         | 16.12   | 107  | 292652    | 0.99 ppb   | 99     |
| 56) | Tetrachloroethylene       | 15.95   | 164  | 241895    | 1.14 ppb   | 98     |
| 57) | Chlorobenzene             | 16.97   | 112  | 396781    | 0.97 ppb   | 100    |
| 58) | Ethylbenzene              | 17.25   | 91   | 646678    | 1.19 ppb   | 99     |
| 59) | m&p-xylene                | 17.43   | 91   | 1209917   | 2.61 ppb   | 98     |
| 60) | Nonane                    | 17.87   | 4.3  | 314473    | 1.16 ppb   | 90     |
| 61) | Styrene                   | 17.94   | 104  | 426113    | 1.13 ppb   | 94     |
| 62) | Bromoform                 | 18.06   | 173  | 334331    | 1.01 ppb   | 99     |
| 63) | o-xylene                  | 17.97   | 91   | 659504    | 1.22 ppb   | 97     |
| 64) | Cumene                    | 18.59   | 105  | 690815    | 1.07 ppb   | 98     |
| 66) | 1,1,2,2-tetrachloroethane | 18.46   | 83   | 411940    | 0.94 ppb   | 100    |
| 67) | Propylbenzene             | 19.21   | 120  | 230385    | 1.27 ppb   | 93     |
| 68) | 2-Chlorotoluene           | 19,25   | 126  | 210672    | 1.05 ppb   | 料 93   |
| 69) | 4-ethyltoluene            | 19.31   | 105  | 108176 🔿  | 0.17 ppb   | 97     |
| 70) | 1,3,5-trimethylbenzene    | 19.39   | 105  | 829396m 🕯 | ' 1.41 ppb |        |
| 71) | 1,2,4-trimethylbenzene    | 19,97   | 105  | 810187    | 1.58 ppb   | 98     |
| 72) | 1,3-dichlorobenzene       | 20.31   | 146  | 481327 🔥  | 1.13 ppb   | 100    |
| 73) | benzyl chloride           | 20.39   | 91   | 448573m 🕇 | 1.48 ppb   |        |
| 74) | 1,4-dichlorobenzene       | 20.46   | 146  | 476936m 💪 | 1.16 ppb   |        |
| 75) | 1,2,3-trimethylbenzene    | 20.51   | 105  | 712830 🎽  | 1.28 ppb   |        |
| 76) | l,2-dichlorobenzene       | 20.82   | 146  | 478842    | 1.25 ppb   | # 50   |
| 77) | 1,2,4-trichlorobenzene    | 22.93   | 180  | 424055    | 2.43 ppb   | 98     |
| 78) | Naphthalene               | 23.14   | 128  | 991251    | 2.52 ppb   | 98     |
| 79) | Hexachloro~1,3~butadiene  | 23.26   | 225  | 448649    | 1.41 ppb   | 99     |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042008.D A317\_1UG.M Wed May 05 08:21:09 2021 MSD1
Page 202 of 229

ŝ

24.00 Page

T.onoibilibid-C.T-otofforxol4

23.00 T, anasnadoroinoht K, S.L. 22.00 25.00 T,anaznadprohpib-S,F T, and set and 20.00 T,onesnediv/diamint-M,S,T ្លាំងនេះខ្លាំស្រួមប្រសារ នេះដែរ ស្រួមស្រួមស្រួមប្រសារ នេះដែរ 19.00 j T.anerfiacrointreget.S., t. f C.anstroint C.anstrointreget.S. C.anstrointreget.S. 18.00 T. HRISHING 1 T.enesned(yth3 T.ane(yx-q&m 17.00 GHIPtenensene-421 A317\_1UG.RES 16.00 MSD #1 T, ensitreciolidaid-S, L, F T, enota X IVIUS IyritoM 1.00 15.00 РJр TIC: AS042008.D Ę T.ensgorgorokhsilp គឺកើនសិល្រឹងវ Vial: Multiplr: Quant Results File: Operator: Integrator) 14.00 至新码8条例的图形文件的 NSD1 5 point calibration Inst 13.00 1, sond to more than the more the more than the more the more than the m T. Spear Street and St , 4-difuoroboonilib.4, t T, onetnoopyipoteiu-4.S, S, S C:\HPCHEW\1\METHODS\A317\_10G.M (RTE TO~15 VOA Standards for 5 point cal 12,00 202I T. abnourgeneering 08:21:10 11.00 T, smartportoirtain-S, t T,edenteorointoni-1,1,1 10.00 C:\HPCHEN\1\DATA\AS042008.D 2021 Τ, εισιμίο τριγάστες Τ 1.อกธศวอกวางได้วงกางาชี 1.ตารปจางได้ว 50 T. eterless Rynagmendelies, 1-ere. 08:06:45 Calibration 9.00 May 4:57 pm T,enoteX ivn≌AveterA Δ. T, one at one and one with the second s Wed MS Integration Params: RTEINT Quant Time: Apr 21 13:04 2021 8.00 NG SE T. OF INSTRUMENT IN CONTRACT IN STREET Wed May 05 C2104038-001A T, sbindtelokelingriketik T, sbillusib nochs.() 20 Apr 2021 7.00 Initial Liondat Manal 100.3 A317 1UG T, snerllsorothath-T, T .00 9 Lingsmentdost T, trinitighy A317 .. ... T, ebiment3 lyniV 1. Promorosomoros 1. Promorosomorosomo 1. Promorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomo 1. Promorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomor 1. Promorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomorosomoros Response via 5.00 .. Last Update Т.ообтеретерия Т.ооб Data File e, 4.90 AS042008. ő Sample Method Title 9e+07 8e+07 70+97 2e+07 Abundance 1e+08 5e+07 5e+07 3e+07 1e+07 4e+07 Misc 1.1e+08 Acq Time-->

Reviewed)

(QT

Quantitation Report

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA\AS042009.D Vial: 13 Data File : C:\APCHEM\1\DATA\AS042009.DVial: 13Acq On : 20 Apr 2021 5:52 pmOperator: RJPSample : C2104038-001A MSDInst : MSD #1Misc : A317\_1UGMultiplr: 1.00MS Integration Params: RTEINT.PQuant Time: Apr 21 13:59:16 2021Quant Time: Apr 21 13:59:16 2021Quant Results File: A317\_1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A317\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 12 12:02:39 2021 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.831281111441.00 ppb0.0235) 1.4-difluorobenzene12.121144514921.00 ppb0.0050) Chlorobenzene-d516.921174302311.00 ppb0.00 System Monitoring Compounds 65) Bromofluorobenzene 18.71 95 330860 1.02 ppb 0.05 Spiked Amount 1.000 Range 70 - 130 Recovery = 102.00% 
 Spiked Amount
 1.000
 Range
 70 - 130
 Recovery
 =
 102.00%

 Target Compounds
 Qvalue

 2) Propylene
 4.17
 41
 1991461
 24.31
 ppb
 #
 62

 3) Freon 12
 4.22
 85
 536831
 1.29
 ppb
 96

 4) Chloromethane
 4.41
 50
 114391
 1.14
 ppb
 96

 5) Freon 114
 4.42
 85
 288075
 0.88
 ppb
 99

 6) Vinyl Chloride
 4.61
 62
 81790
 0.61
 ppb
 97

 81.3-butadiene
 4.72
 39
 87106
 1.10
 ppb
 98

 910 Chloroethane
 5.23
 64
 38296
 0.83
 ppb
 99

 12) Accolein
 5.91
 56
 306274
 0.87
 ppb
 100

 14) Freon 11
 5.65
 101
 127005
 0.94
 ppb
 98

 13) Letane
 6.01
 58
 803901m
 118
 10 Ovalue Target Compounds 

(#) = qualifier out of range (m) = manual integration Wed May 05 08:21:12 2021 MSD1 AS042009,D A317\_1UG.M Wed May 05 08:21:12 2021

| Centek Laboratories,LLC <sub>Qua</sub>                                                                                                                            | intitati                          | ion Re          | port (Q1                  | r Reviewed)                                        |                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------|---------------------------|----------------------------------------------------|---------------------------------------|
| Data File : C:\HPCHEM\1\DATA\AS04<br>Acq On : 20 Apr 2021 5:52 pm<br>Sample : C2104038-001A MSD<br>Misc : A317_1UG<br>MS Integration Params: RTEINT.P             | 2009.D                            |                 | Ope<br>Ins<br>Mul         | Vial: 13<br>erator: RJP<br>st : MSD<br>Ltiplr: 1.0 | #1<br>0                               |
| Quant Time: Apr 21 13:59:16 2021                                                                                                                                  |                                   | Qu              | ant Results               | s File: A31                                        | 7_10G.RES                             |
| Quant Method : C:\HPCHEM\1\METHOD<br>Title : TO-15 VOA Standar<br>Last Update : Mon Apr 12 12:02:3<br>Response via : Initial Calibratic<br>DataAcq Meth : 1UG_ENT | 25\A317<br>ds for<br>9 2021<br>20 | _1UG.M<br>5 poi | (RTE Integ<br>nt calibrat | grator)<br>Lion                                    |                                       |
| Compound                                                                                                                                                          | R.T.                              | QIon            | Response                  | Conc Unit                                          | Qvalue                                |
|                                                                                                                                                                   |                                   |                 |                           |                                                    |                                       |
| 46) Bromodichloromethane                                                                                                                                          | 13.21                             | 83              | 343484                    | 0.92 ppb                                           | 99                                    |
| 47) cis-1,3-dichioropropene                                                                                                                                       | 14.03                             | 75              | 234065                    | , 0.98 ppo                                         | 98                                    |
| 48) trans-1,3-dichloropropene                                                                                                                                     | 14.80                             | 75              | 205623m ·                 | aqq 20.1                                           | 0.0                                   |
| 49) 1,1,2-trichloroethane                                                                                                                                         | 15.13                             | 97              | 190617                    | dqq es.o                                           | <i>e</i> e                            |
| 51) Toiuene                                                                                                                                                       | 14.88                             | 92              | 480851                    | 1.68 ppo                                           | 100                                   |
| 52) Methyl isobutyl ketone                                                                                                                                        | 73.23                             | 43              | 298225m (                 | add Zr'r (                                         | 100                                   |
| 53) Dibromochloromethane                                                                                                                                          | 15.86                             | 129             | 376886                    | aqq ve.u                                           | 100                                   |
| 54) Methyi Butyl Ketone                                                                                                                                           | 15.31                             | 43              | 265915                    | 7.0a bbp                                           | 88                                    |
| 55) 1,2-dibromoethane                                                                                                                                             | 16.12                             | 107             | 319510                    | agg 79.0                                           | 99                                    |
| 56) Tetrachloroethylene                                                                                                                                           | 15.95                             | 164             | 264638                    | 1.12 ppb                                           | 96                                    |
| 57) Chlorobenzene                                                                                                                                                 | 16.97                             | 115             | 446958                    | aqq 80.0                                           | 98                                    |
| 58) Ethylbenzene                                                                                                                                                  | 17.25                             | 91              | 738591                    | aqq ss.r                                           | 100                                   |
| 59) m&p-xylene                                                                                                                                                    | 17.43                             | 91              | 1320224                   | 2.56 ppp                                           | 99                                    |
| 60) Nonane                                                                                                                                                        | 17.88                             | 43              | 337794                    | add zi'r bb                                        | 94                                    |
| 61) Styrene                                                                                                                                                       | 17.93                             | 104             | 465494                    | I.I. ppp                                           | 94                                    |
| 62) Bromoform                                                                                                                                                     | 18.06                             | 173             | 359894                    | add vero                                           | 100                                   |
| 63) o-xylene                                                                                                                                                      | 17.97                             | 91              | 708723                    | 1.18 bbb                                           |                                       |
| 64) Cumerie                                                                                                                                                       | 18.59                             | 105             | 817926                    | 1.14 ppo                                           | 98                                    |
| 66) 1,1,2,2-tetrachioroethane                                                                                                                                     | 18.46                             | 83              | 459462                    | 0.94 ppb                                           | 98                                    |
| 67) Propylbenzene                                                                                                                                                 | 19.20                             | 120             | 260344                    | 1.29 ppp                                           | 96                                    |
| 68) 2-Chlorotoluene                                                                                                                                               | 19.25                             | 126             | 239205                    | aqq vo.i                                           | 90<br>04                              |
| 69) 4-ethyltoluene                                                                                                                                                | 19.32                             | 105             | 111536                    |                                                    | 90                                    |
| 70) 1,3,5-trimethylbenzene                                                                                                                                        | 19.39                             | 105             | 927254m /                 | 1.42 ppc                                           | 00                                    |
| 71) 1,2,4-trimethylbenzene                                                                                                                                        | 19.97                             | 105             | 898968                    | 1.58 ppc                                           |                                       |
| 72) 1,3-dichlorobenzene                                                                                                                                           | 20.30                             | 146             | 554225                    | · 1.17 ppc                                         | 99                                    |
| 73) benzyl chloride                                                                                                                                               | 20.39                             | 91              | 508578m                   | / 1.51 ppc                                         | 100                                   |
| 74) 1,4-dichlorobenzene                                                                                                                                           | 20.30                             | 146             | 569812                    | 1.24 ppc                                           | 001                                   |
| 75) 1,2,3-trimethylbenzene                                                                                                                                        | 20.51                             | 105             | 791767                    | 1.28 ppc                                           | · · · · · · · · · · · · · · · · · · · |
| 75) 1,2-dichlorobenzene                                                                                                                                           | 20.82                             | 146             | 530813                    | TIZA DDD                                           | 9 H / 4                               |
| 77) 1,2,4-trichlorobenzene                                                                                                                                        | 22.93                             | 180             | 454768                    | 2,34 PPD                                           | 0 70<br>. 300                         |
| 78) Naphthalene                                                                                                                                                   | 23.14                             | 158             | 1024020                   | z.ar ppo                                           | 100                                   |
| 79) Hexachloro-1,3-butadlen@                                                                                                                                      | 23.26                             | 225             | 471885                    | 1.34 ppc                                           | 100                                   |

(#) = qualifier out of range (m) = manual integration (+) = signals summed AS042009.D A317\_1UG.M Wed May 05 08:21:12 2021 MSD1

Page 205 of 229

ന

(OT Reviewed) Quantitation Report

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          |                                                                                                                 |                                           |                                                    | * 8                                                                                              |        |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|------|------|-------------|----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------|--------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          |                                                                                                                 |                                           |                                                    | ۶, y                                                                                             | Pag€   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | T.oneibaidd-                                                                                                    | aisanngev<br>5,1-010mbexs                 | н                                                  | 8                                                                                                | н      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | 1,9nexned <u>610</u>                                                                                            |                                           |                                                    | 2                                                                                                |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                           |                                                    | 8                                                                                                |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | ער איז                                                                      | 107 <u></u>                               |                                                    | 22                                                                                               |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      | <del></del> |          |                                                                                                                 |                                           |                                                    | . 00                                                                                             |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | Т. ос                                                                                                           | รอรเทองี่ดางให้อ(<br>                     | D-S.1                                              | 1.2                                                                                              |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | Ţ. et.                                                                                                          | T, enexandroad                            | <b>泉南部</b> 4月                                      | 5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | T.4                                                                                                             | งนอะบอตุภัญอเ                             | nm-⊾,⊆,f                                           | 1.                                                                                               |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | <b>T</b> .,                                                                                                     | ផ្លេសពួងបទឧបទ<br>ស្រុមស្រុក<br>ស្រុមស្រុក |                                                    | * 8                                                                                              |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          |                                                                                                                 | 2,eneznedoro                              | Aretholic                                          | 19.                                                                                              |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | T.ar                                                                                                            | ru, i<br>Itæchloroethar                   | 1, 1, 2, 2, (a)                                    | 18                                                                                               |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          |                                                                                                                 | т . <u>Т</u>                              | PHINCH                                             | 19<br>19                                                                                         |        |
| 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          |                                                                                                                 | Т,епе<br>Т.еп                             | Snedivn)::]<br>Svedivn)::]                         | 1 g                                                                                              |        |
| )<br>[     | ហ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                   |      |      |             |          |                                                                                                                 | 1.09-49763                                | ush han hiti is                                    | ÷ F                                                                                              |        |
| 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          |                                                                                                                 | T,enertioo                                | mordib (S, f                                       | 0                                                                                                |        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                   |      |      |             |          | Τ,                                                                                                              |                                           | Beneval                                            |                                                                                                  |        |
| Ż          | л, о <del>т</del><br>1, о <del>т</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                           |                   |      |      |             |          |                                                                                                                 | T.enedbero<br>T.enoteXIV                  | kton-S.r.r<br>Iu® lyrtføM                          | 8                                                                                                |        |
|            | 133<br>1. NS<br>1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.60(                                                                                       |                   |      |      |             |          | Ţ,94                                                                                                            | naqorqoraldai                             | t 6 fa a loan                                      | ÇĮ.                                                                                              |        |
| ر<br>۲     | al:<br>Dr:<br>lr:<br>le:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or)                                                                                         |                   |      |      |             |          | الا                                                                                                             | ายเอสอะส่วงๆห                             | 89.5452                                            | 3                                                                                                | Ē      |
| ý<br>A     | vi<br>tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion<br>C. AS                                                                                |                   |      |      |             |          | به,<br>ا                                                                                                        |                                           |                                                    | 12                                                                                               | MSI    |
| č.         | ins(<br>fulf<br>fts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |                   |      |      |             |          | r                                                                                                               | oromethana, t<br>ស្ថិងខ្មែរប្រសាស         | euxégién<br>loiborrove                             | 18                                                                                               |        |
| 5          | or a lus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Int<br>ibu                                                                                  |                   |      |      |             |          |                                                                                                                 | T AVENNESS                                | តែបានសេត្ <u>ក។</u><br>សេខាសត្វ។                   | + +                                                                                              |        |
| r<br>t     | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cal                                                                                         |                   |      |      |             |          |                                                                                                                 | Lanaznedu<br>Lanaznedu                    | 2000016-4,1<br>ami0-4,2,5                          | 5.00                                                                                             | 021    |
| 105        | aរាt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt (R                                                                                       |                   |      |      |             |          |                                                                                                                 | T, ebnorige)                              | er en al an    | t -                                                                                              | 2      |
| 10177      | ŋð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N. M.                                                                                       |                   |      |      |             |          |                                                                                                                 | T, ensitied                               | 10(do)b-2.1                                        | 00                                                                                               | :13    |
| , <b>-</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μ.<br>M. M.                                                                                 |                   |      |      |             |          |                                                                                                                 | Tanadaore                                 | dd⊐in1,t t                                         | ŀ                                                                                                | :21    |
|            | сi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц                                                        | T.nanutorbydevasT |      |      |             |          |                                                                                                                 | i,eneuenu<br>L,                           | ແຫຼວງຄາດໃນປີ                                       |                                                                                                  | 99     |
|            | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200<br>200                                                                                  |                   |      |      |             |          | 7,966                                                                                                           | iorocitiens<br>Celtivi acei               | 10(P-Z'1-S()                                       |                                                                                                  | 05     |
|            | 042<br>042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000<br>145<br>101                                                                           |                   |      |      |             |          | [,อน                                                                                                            | otosi ikui⊒pi <b>ku</b>                   |                                                    | -<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ay     |
|            | (AS)<br>52 ]<br>0 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E D D D D D D D D D D D D D D D D D D D                                                     |                   |      |      |             |          |                                                                                                                 | T and Rise                                | ntonoite(niV                                       |                                                                                                  | Q<br>Q |
|            | S:UNN MSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S C M                                                                                       |                   |      |      |             |          | 1'                                                                                                              | ណ៍ទេសាស្តរល៍ល៍                            | levil i yetusri                                    | - (- 00<br>- (                                                                                   | Ne.    |
|            | VDP<br>IA<br>RTE<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |                   |      |      |             |          |                                                                                                                 | 1 (BRAN                                   |                                                    | ł                                                                                                |        |
|            | M/1<br>- 0031<br>- 0021<br>- 0000<br>- 0021<br>- 000 | aly CHE                                                                                     |                   |      |      |             |          |                                                                                                                 | t,lo∛i<br>T,ebi∩o≣¢he<br>T,ebinu          | den a namero i<br>namentar denda<br>namentar denda | 200                                                                                              |        |
|            | CHE<br>038<br>1038<br>1038<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H |                   |      |      |             |          |                                                                                                                 | 1. อกจกไอง                                | 1-diction                                          | }-                                                                                               | 5      |
|            | Pan<br>Pan<br>Pan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | មន៍ទីដ                                                                                      |                   |      |      |             | T, Jorie | ooge a fantamakses (                                                                                            | <br>                                      | Tri higgenà<br>Lanbiasiyà                          | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                  | 10     |
|            | P02 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                   |      |      |             |          |                                                                                                                 | T}tifk<br>T.eb                            | imora Nin⊻<br>#@950002                             |                                                                                                  | 317    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | viá                                                                                         |                   |      |      |             |          |                                                                                                                 | າ,ອາດ<br>ມີ,ອຸກຄ                          | Biomanago                                          | 100                                                                                              | A,     |
|            | rile<br>Tria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p da<br>s e                                                                                 |                   |      |      |             |          |                                                                                                                 | T,end<br>T,22                             | 1000 1000<br>Dececional<br>Van Unal -              | <u>}</u>                                                                                         | 9      |
|            | tr<br>Th<br>Chen<br>Th<br>Chen<br>Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R C C C C C C C C C C C C C C C C C C C                                                     | 2 2               | 5    | 2    | 6           | 6        | 5                                                                                                               | <br>                                      |                                                    |                                                                                                  | 600    |
|            | ໄລຍ<br>ທີ່ເຮັດ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tit<br>Last<br>Res<br>Res<br>let                                                            | 9e+(<br>8e+(      | 7e+( | 6e∳l | 5e+(        | 4e+(     | 3e+(                                                                                                            | 2e+                                       | Ţe+                                                |                                                                                                  | 042    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Abu: 1                                                                                      |                   |      |      |             |          |                                                                                                                 |                                           |                                                    | Tim                                                                                              | ASI    |

-

•

.

۰ ۱

.

# GC/MS VOLATILES-WHOLE AIR

.

.

.

METHOD TO-15 INJECTION LOG

.

#### Injection Log ł C:\HPCHEM\1\DATA2 Directory: Internal Standard Stock # AH357 A#358 Standard Stock # LCS Stock # A4359 Method Ref: EPA TO-15 / Jan. 1999 Line Vial FileName Multiplier SampleName 10 As041214.d 111 1. C2104024-003A A317\_1UG 12 Apr 2021 20:52 A317\_1UG A317\_1UG 112 11 As041215.d C2104024-003A 40X 1. 12 Apr 2021 21:33 1. 113 12 As041216.d C2104024-004A 12 Apr 2021 22:17 114 13 As041217.d 1. C2104024-004A 40X A317\_1UG 12 Apr 2021 22:59 115 14 As041218.d 1. C2104024-005A A317\_1UG 12 Apr 2021 23:43 116 15 As041219.d 1. C2104024-005A 40X A317 1UG 13 Apr 2021 00:25 117 16 As041220.d 1. ALCS1UGD-041221 A317\_1UG 13 Apr 2021 01:09 118 No MS or GC data present As041221.d 1. 119 1 As041301.d 1. BFB1UG A317\_1UG 13 Apr 2021 08:24 2 120 As041302.d 1. A1UG\_1.0 A317\_1UG 13 Apr 2021 09:35 121 3 As041303.d 1. ALCS1UG-041321 A317\_1UG 13 Apr 2021 10:22 122 4 As041304.d 1. AMB1UG-041321 A317\_1UG 13 Apr 2021 11:01 123 5 As041305.d 1. C2104024-001A 270X A317 1UG 13 Apr 2021 11:51 124 6 As041306.d 1. C2104024-002A 270X A317\_1UG 13 Apr 2021 12:33 A317\_1UG A317\_1UG A317\_1UG 125 7 As041307.d 1. C2104024-003A 270X 13 Apr 2021 13:16 126 8 As041308.d 1. C2104024-004A 270X 13 Apr 2021 13:58 127 9 As041309.d 1. C2104024-005A 270X 13 Apr 2021 14:41 128 10 As041310.d 1. ALCS1UGD-041321 A317\_1UG 13 Apr 2021 15:25 129 1 As042001.d 1. BFB A317\_1UG 20 Apr 2021 10:30 130 1 As042002.d 1. A1UG\_1.0 A317\_1UG 20 Apr 2021 11:31 131 1 As042003.d 1. A1UG 1.0 A317\_1UG 20 Apr 2021 12:26 132 1 As042004.d 1. ALCS1UG-042021 A317\_1UG 20 Apr 2021 13:59 A317\_1UG A317\_1UG 133 1 As042005.d 1. AMB1UG-042021 20 Apr 2021 14:38 134 11 As042006.d 1. C2104033-001A 20 Apr 2021 15:23 135 13 As042007.d 1. C2104038-001A A317\_1UG 20 Apr 2021 16:07 136 13 As042008.d 1. C2104038-001A MS A317\_1UG 20 Apr 2021 16:57 137 13 As042009.d 1. C2104038-001A MSD A317\_1UG 20 Apr 2021 17:52 138 14 As042010.d 1. C2104038-002A A317 1UG 20 Apr 2021 18:36 139 14 As042011.d 1. C2104038-003A A317\_1UG 20 Apr 2021 19:20 140 15 As042012.d 1. C2104045-003A A317\_1UG 20 Apr 2021 20:04 17 A317\_1UG A317\_1UG 141 As042013.d 1. C2104045-004A 20 Apr 2021 20:48 142 18 As042014.d 1. C2104045-005A 20 Apr 2021 21:32 143 19 As042015.d 1. C2104045-001A A317\_1UG 20 Apr 2021 22:16 44 20 As042016.d 1. C2104045-002A A317\_1UG 20 Apr 2021 23:01 145 1 As042017.d 1. ALCS1UGD-042021 A317\_1UG 20 Apr 2021 23:44 146 11 As042018.d 1. C2104033-001A 10X A317\_1UG 21 Apr 2021 00:27 A317\_10G A317\_10G A317\_10G A317\_10G 147 13 As042019.d 1. C2104038-001A 10X 21 Apr 2021 01:10 148 14 As042020.d 1. C2104038-002A 10X 21 Apr 2021 01:53 49 14 As042021.d 1. C2104038-003A 10X 21 Apr 2021 02:36 150 15 As042022.d 1. C2104045-003A 10X A317\_1UG 21 Apr 2021 03:19 17 151 As042023.d 1. C2104045-004A 10X A317\_1UG 21 Apr 2021 04:01 152 18 As042024.d 1, C2104045-005A 10X A317\_1UG 21 Apr 2021 04:44 153 19 As042025.d 1. A317<sup>-1</sup>UG C2104045-001A 10X 21 Apr 2021 05:27 54 20 As042026.d 1. C2104045-002A 10X A317\_1UG 21 Apr 2021 06:10 A317\_1UG A317\_1UG A317\_1UG i 55 11 As042027.d 1. C2104033-001A 20X 21 Apr 2021 09:24 56 1 As042101.d 1. BFB 21 Apr 2021 11:09 57 1 As042102.d 1. A1UG 1.0 21 Apr 2021 11:54 58 1 As042103.d 1. BFB A317\_\_1UG 21 Apr 2021 12:33 59 1 As042104.d 1. A1UG\_1.0 A317\_1UG 21 Apr 2021 13:25 60 1 As042105.d 1. ALCS1UG-042121 A317\_1UG 21 Apr 2021 14:15

A317\_1UG A317\_1UG-001A 16X A317\_1UG 61 1 As042106.d 1. AMB1UG-042121 21 Apr 2021 15:08 62 13 As042107.d C2104038 1. 21 Apr 2021 15:52 63 13 As042108.d 1. C2104038-001A 320X 21 Apr 2021 16:34 64 19 As042109.d 1. C2104045 A317\_1UG-001A 16X 21 Apr 2021 17:18 65 19 As042110.d 1. C2104045-001A 80X A317\_1UG 21 Apr 2021 18:00

|            | C        | Directory: C | C:\HPCHEM  | 1\DATA2               | Injection Log | Instrument #<br>Internal Standard Stock #A43<br>Standard Stock #A43 | 57                |
|------------|----------|--------------|------------|-----------------------|---------------|---------------------------------------------------------------------|-------------------|
|            |          |              |            |                       |               | LCS Stock # A 134                                                   | <u>, a</u>        |
| Line       | Vial     | FileName     | Multiplier | SampleName            |               | Methors Ref: EPA TO-15/                                             | Janinggggd        |
| 166        | 20       | As042111.d   | 1.         | C2104045-002A 64X     |               | A317_1UG                                                            | 21 Apr 2021 18:44 |
| 167        | 20       | As042112.d   | 1.         | C2104045-002A 640X    |               | A317_1UG                                                            | 21 Apr 2021 19:27 |
| 168        | 11       | As042113.d   | 1.         | C2104046-001A         |               | A317_1UG                                                            | 21 Apr 2021 20:11 |
| 169        | 14       | As042114.d   | 1.         | C2104046-002A         |               | A317_1UG                                                            | 21 Apr 2021 20:56 |
| 170        | 15       | AS042113,0   | 1.         | C2104046-003A         |               | A317_10G                                                            | 21 Apr 2021 21:40 |
| 172        | 1        | As042110.0   | 1.         | 62104040-004A         |               |                                                                     | 21 Apr 2021 22:25 |
| 173        | 11       | As042118.d   | 1.         | C2104046-001A 10X     |               | A317_1UG                                                            | 21 Apr 2021 23:09 |
| 174        | 14       | As042119.d   | 1.         | C2104046-002A 10X     |               | A317 1UG                                                            | 22 Apr 2021 23.52 |
| 175        | 15       | As042120.d   | 1.         | C2104046-003A 10X     |               | A317_1UG                                                            | 22 Apr 2021 01:18 |
| 176<br>177 | 17<br>13 | As042121.d   | 1.         | C2104046-004A 10X     |               | A317_1UG                                                            | 22 Apr 2021 02:01 |
| 178        | .0       | As042123.d   | 1.         | No MS or GC data pres | ent           | A317_10G                                                            | 22 Apr 2021 12:18 |
| 179        | 1        | As042601.d   | 1.         | BFB1UG                |               | A317 10G                                                            | 26 Apr 2024 08:54 |
| 180        | 2        | As042602.d   | 1.         | A1UG                  |               | A317 1UG                                                            | 26 Apr 2021 10:03 |
| 181        | 3        | As042603.d   | 1.         | A1UG_1.0              |               | A317 1UG                                                            | 26 Apr 2021 10:54 |
| 182        | 4        | As042604.d   | 1.         | ALCS1UG-042621        |               | A317_1UG                                                            | 26 Apr 2021 12:09 |
| 183        | 5        | As042605.d   | 1.         | AMB1UG-042621         |               | A317_1UG                                                            | 26 Apr 2021 12:48 |
| 184        | 6        | As042606.d   | 1.         | C2104046-002A 90X     |               | A317_1UG                                                            | 26 Apr 2021 13:52 |
| 185        | 7        | As042607.d   | 1.         | C2104046-003A 810X    |               | A317_1UG                                                            | 26 Apr 2021 14:35 |
| 186        | 1        | As042608.d   | 1.         | C2104054-001A         |               | A317_1UG                                                            | 26 Apr 2021 15:36 |
| 107        | 2        | As042009.0   | 1.         | C2104054-002A         |               |                                                                     | 26 Apr 2021 16:21 |
| 189        | 4        | As042611.d   | 1          | C2104054-003A         |               | A317_1UG                                                            | 20 Apr 2021 17:00 |
| 190        | 5        | As042612.d   | 1.         | C2104046-003A 81x     |               | A317_1UG                                                            | 27 Apr 2021 11:49 |
| 191        | -        | As042613.d   | 1.         | No MS or GC data pres | ent           | 1011_100                                                            |                   |
| 192        | 2        | As042901.d   | 1.         | BFB                   |               | A317, 1UG                                                           | 29 Apr 2021 13:15 |
| 193        | 3        | As042902.d   | 1.         | AFORM                 |               | LEED_223                                                            | 29 Apr 2021 13:56 |
| 194        | 4        | As042903.d   | 1.         | AMBFORM-042921        |               | LEED_223                                                            | 29 Apr 2021 14:28 |
| 195        | 5        | As042904.d   | 1.         | C2104059-001A         |               | LEED_223                                                            | 29 Apr 2021 15:08 |
| 196        | 6        | As042905.d   | 1.         |                       |               | LEED_223                                                            | 29 Apr 2021 20:30 |
| 197        | 1        | AS042900.0   | 1.<br>-f   | DCD                   |               |                                                                     | 29 Apr 2021 21:43 |
| 190        | 2        | As043001.0   | 1.<br>1    |                       |               |                                                                     | 30 Apr 2021 05:27 |
| 200        | 3        | As043003.d   | 1          | ALEED 75              |               | LEED 430                                                            | 30 Apr 2021 00:32 |
| 201        | 4        | As043004.d   | 1.         | ALEED 50              |               | LEED 430                                                            | 30 Apr 2021 07:52 |
| 202        | 5        | As043005.d   | 1.         | ALEED 25              |               | LEED 430                                                            | 30 Apr 2021 08:31 |
| 203        | 6        | As043006.d   | 1.         | ALEED_10              |               | LEED_430                                                            | 30 Apr 2021 09:12 |
| 204        | 7        | As043007.d   | 1,         | ALEED_5               |               | LEED_430                                                            | 30 Apr 2021 10:06 |
| 205        | 8        | As043008.d   | 1.         | ALEED_0.5             |               | LEED_430                                                            | 30 Apr 2021 10:48 |
| 206        | 9        | As043009.d   | 1,         | ALEEDLCS-043021       |               | LEED_430                                                            | 30 Apr 2021 11:30 |
| 107<br>108 | 10       | AS043010.0   | ו.<br>ז    | ALEEDMB-043021        |               | LEED_430                                                            | 30 Apr 2021 12:08 |
| :00<br>100 | י<br>י   | AS043011.0   | ۱.<br>-1   | C2104001-001A         |               |                                                                     | 30 Apr 2021 13:10 |
| 10         | 3        | As043012.0   | 1.<br>1    | C2104001-002A         |               | LEED_430                                                            | 30 Apr 2021 13:50 |
| 211        | 4        | As043014.d   | 1.         | C2104061-004A         |               | LEED 430                                                            | 30 Apr 2021 14.30 |
| 12         | 5        | As043015.d   | 1,         | C2104061-005A         |               | LEED 430                                                            | 30 Apr 2021 15:51 |
| 13         | 6        | As043016.d   | 1.         | C2104061-006A         |               | LEED_430                                                            | 30 Apr 2021 16:32 |
| :14        | 7        | As043017.d   | 1.         | C2104061-007A         |               | LEED_430                                                            | 30 Apr 2021 17:13 |
| 15         | 8        | As043018.d   | 1.         | C2104061-008A         |               | LEED_430                                                            | 30 Apr 2021 17:53 |
| 16         | 9        | As043019.d   | 1.         | C2104061-009A         |               | LEED_430                                                            | 30 Apr 2021 18:33 |
| 17         | 10       | As043020.d   | 1.         | C2104061-010A         |               | LEED_430                                                            | 30 Apr 2021 19:14 |
| 10         | 11       | ASU43021.0   | 1.<br>4    | C2104061-011A         |               |                                                                     | 30 Apr 2021 19:54 |
| .10<br>100 | 13       | As043022.0   | i.<br>1    | C2104055-0014         |               | LEED_430                                                            | 30 Apr 2021 20:34 |
| 1.00       |          |              |            |                       |               |                                                                     |                   |

٩

•

.

# GC/MS VOLATILES-WHOLE AIR

.

.

.

# METHOD TO-15

# STANDARDS LOG

.

.

•

Page 209 of 229

| ntek Labora                | tories, LL( | ()             |              |                | GC/MS C    | alibration Sta    | indards Logb      | yoc           |           | C     |
|----------------------------|-------------|----------------|--------------|----------------|------------|-------------------|-------------------|---------------|-----------|-------|
| # Date Pn                  | ep Date Exp | Descr          | ription      | Stock #        | Stock Conc | Initial Vol (neid | Einisl Mal (nata) |               |           | Cente |
| CLAIL XY.                  | 1/1/2       | LOIK           | CA24         | 1225           |            | Spoil to a mourt  |                   |               | rrep by ( |       |
|                            |             | 2.             |              |                | 1012101    | 17.0              | 44                | 00            | ×         | La    |
| 22                         |             |                | SILOX        | 22, 17 and     |            | 3.34/3.0          | 30                | _             |           | boi   |
| 60                         |             |                | SULF         | 43676          | ( Den      | 1.5               |                   |               |           | rato  |
| 61                         |             |                | 4.5          |                |            |                   |                   | 7             |           | orie  |
| 61                         |             | ļ.,            | 1-52         | 4014           | W You      |                   |                   | 88            |           | s,⊫l  |
| C7                         |             |                | av ra        | JALLA          | add mr     | <u> </u>          | <b>,</b>          | 25            |           | _C    |
| <b>3</b>                   |             | <u>11 6101</u> | 5 13         | A 4253         | 5000       | 5.0               | 45                |               |           |       |
| 14                         |             |                | <b>DIN</b>   | A4254          | •          | -                 |                   | *             |           |       |
| 165 J                      | -9          | <b>→</b>       | FCS          | A4155          | <b></b> ,  |                   | -,                |               |           |       |
| 66 02 25                   | 2102/25/22  | 1015           | 15           | 1-1-1          | 1174       | TNNT              |                   |               | א<br>א    |       |
| 6731012                    | 13/0/2/1    | TOLF           | E<br>G       |                | 12X Q.     |                   |                   | nation - Sign | 19        |       |
| 2012                       | 12 12 12    |                |              |                | 222        |                   |                   | - Li Cepar    | 17        |       |
| 0<br>0<br>0<br>0<br>0<br>0 |             |                |              | 17oru          |            | 120C-1            | ON ST             | A FCS         | 44        |       |
|                            | 121712      | 90<br>-        | 2            | 174266         | 1 ppm      | 1,5               | 30                | S             | (-3       |       |
|                            | ,           | -              | AF5          | A4267          |            | ,                 |                   |               |           |       |
|                            |             |                | 5            | A4268          |            |                   |                   |               |           |       |
| <u>ر</u> م                 |             |                | HPCH         | ASMA           | 1.02Snnm   | 1,4 7             | 72                | > (;          |           |       |
| 5                          |             |                | HPark        | AUD TO         |            | 1 2 2             |                   | )             |           | Ī     |
| 4                          |             |                | FORM         | Corre          |            |                   |                   |               |           |       |
| S                          |             |                | Suck         | 12574<br>12574 |            | 3.34              |                   |               |           |       |
| 9                          |             |                | SUIF<br>SUIF | A3626          | 200 m      |                   |                   |               |           |       |
|                            |             |                |              | CLACK A        |            |                   | 200               |               |           |       |
| > 8                        |             |                | H2 S Y       | the cont       |            |                   |                   | 0000          |           |       |
|                            |             | >              | 10/2/        |                |            |                   | - 0<br>0          | 60            | >         |       |

2

e na prime e e enclanded in territoria del trestatione estilitationi della della contrate de la contenta a con

Contract Meeting and a

FORM 153

Page # []]

| $\circ$        |
|----------------|
| Ţ,             |
| اتسر           |
|                |
| 2              |
| - 1            |
| E              |
| 5              |
| rd             |
| <u> </u>       |
| S              |
| البيكسو<br>است |
| ုပ္            |
| h              |
| 4              |
| 9              |
| H              |
| 1              |
| ~~             |

GC/MS Calibration Standards Logbook

| H: 0: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hi 0:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.00 t<br>3.3%<br>3.3%<br>3.3%<br>3.3%<br>3.3%<br>3.3%<br>3.3%<br>5.4<br>5.4<br>5.4<br>5.4<br>5.0%<br>5.0%<br>5.4<br>5.4<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0%<br>5.0% |
| 0:22 42<br>3.3% 30<br>1.5 50<br>1.5                                                                                                                                                                              |
| 3.3%<br>3.3%<br>3.3%<br>4.1<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>7<br>1<br>2<br>0<br>7<br>1<br>7<br>1<br>2<br>0<br>7<br>1<br>7<br>1<br>2<br>0<br>7<br>1<br>7<br>1<br>2<br>0<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7<br>1<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| + 5<br>+ 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F-1C 5-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Page # 131

FORM 153

i,

ŕ

•

.

# GC/MS VOLATILES-WHOLE AIR

.

# METHOD TO-15

# CANISTER CLEANING LOG

Page 212 of 229

| s, LLC<br>0   | Contraction Contraction Contraction Contraction Limits (Ceak Test 24/hr (psigidate) | 2 20 Can Number # ut cycles under sedima + 20 1 / (21) | 200 20 20 2116121 WACVANTAI A 1277454 30+ 1+ | 30+ ++ | 30+ + + | 30+ + | 2.37 | 30+ + |     |     |  | 30+ + | + + + + + + + + + + + + + + + + + + + + |  | + + + + + + + + + + + + + + + + + + + + |  |
|---------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|--------|---------|-------|------|-------|-----|-----|--|-------|-----------------------------------------|--|-----------------------------------------|--|
| ss, LLC<br>00 |                                                                                     | ber OC Can Number 14 ul OCOS - D                       | 300 30 20                                    |        |         | >     | 531  |       | > · | 170 |  |       | L CEE                                   |  |                                         |  |

Page 213 of 229

1176 458

86 1733

Ţ

+ <u>+</u> + <u>t</u>.

30<del>+</del>

£

Ş

 $\rightarrow$ 

Á

30+ 30+

> Station State Page #

> > threes.

Form C151

ਕਿ

Ţ

| Ξ, |
|----|
|    |
| -  |
| -  |
| 4  |
|    |
|    |
| ñ  |
|    |
| υ  |
| -  |
|    |
| 7  |
| J  |
|    |
|    |
|    |
| -  |
| *  |
|    |
| )  |
| ٢  |
| 2  |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |

| ogbook         |
|----------------|
| <i>I</i>       |
| Ď              |
|                |
| 2              |
| ä              |
| $\overline{O}$ |
| 1              |
| ഇ              |
| <u>v</u>       |
| 2              |
| Ω.             |
| 0              |
| C)             |
| Ø              |

100

|   |                 | (appn)field | 12/26/20      |     |            |          |        |          |     |    |      |      |     |      |     |      |        |     |     |          |     |        | -   |          |     |            |     |
|---|-----------------|-------------|---------------|-----|------------|----------|--------|----------|-----|----|------|------|-----|------|-----|------|--------|-----|-----|----------|-----|--------|-----|----------|-----|------------|-----|
|   | ok Taci Jan     |             | + 30          | +   | +          | <u>+</u> | +      | +        | +   | +  | +    | +    | +   | +    | +   | +    | .+     | +   | +   | +        | +   | م<br>+ | +   | <u>+</u> | -   | +          | +   |
|   |                 |             | +<br>8<br>1   | ģ   | 30+<br>30+ | ÷0       | ģ      | 3ġ       | ġ   | g4 | ģ    | ġ    | ģ   | ġ    | ġ   | ģ    | t<br>g | ģ   | ģ   | đe<br>đe | ģ   | đ      | 30+ | 30+      | 30+ | 30+<br>30+ | 30+ |
|   | Detection limit |             | 1 2 2 - 0. 10 |     |            |          | -+     | -+       |     |    |      |      |     |      |     |      |        |     |     |          | -+  | ÷      |     |          |     |            |     |
|   | Batch Number    | 7.161.0     | VALAN N       |     |            |          |        | e        |     |    |      |      | Ŧ   |      |     |      |        | カ   |     |          |     |        |     |          |     |            |     |
|   | 00              | AUA.        |               | _   | _          |          |        |          |     |    |      |      |     |      |     |      |        |     |     |          | ;   | •      |     |          |     |            |     |
|   | ate Cleaned     | U16/21      | )<br>)<br>    | -   |            |          |        | 12121    | -   |    |      |      |     |      |     | +-   |        |     |     |          |     | 4      |     |          |     |            |     |
|   | cles            | ~           |               |     | +          |          |        | <b>د</b> |     | _  |      |      | _   |      |     | _    |        |     |     | -        |     |        |     |          |     | _          |     |
|   | # 050           | 20          |               |     |            |          |        |          |     |    |      |      |     |      |     |      | -      | +   |     |          |     | 커      |     |          |     |            |     |
| 5 | OC Can Number   | 1168        |               |     |            |          | 119(2) | 2        |     |    |      | 1179 |     |      |     |      | 736    | 2 - |     |          |     | ,      |     |          |     |            |     |
|   | Canister Size   |             |               |     |            |          |        |          |     |    |      |      |     |      |     |      |        |     |     |          |     |        |     |          |     |            |     |
|   | Canister Number | ا وم        | १२८           | 158 | See .      | 1188     | 1186   | AGH      | 159 | 96 | 1190 | 20]  | ara | 1183 | 419 | 5611 | 362    | 290 | hSq | 27S      | 236 |        |     |          |     |            |     |

Centek Laboratories,LLC

Page 214 of 229

Form C151

Page # 227

| SIL           |  |
|---------------|--|
| Laboratories, |  |
| Centek        |  |

Instrument: Entech 3100

| anister Lieanny Luyuuu | tion Limits   Leak Test 24hr (psig/date) |
|------------------------|------------------------------------------|
| o c c                  | (aled                                    |
|                        |                                          |

|                 | Constraint Class |      |      | 0.880 0.895 0.850 | Constraints and you want that an any set of an and the set of the | A DESCRIPTION OF A DESC |           | 1.1      |
|-----------------|------------------|------|------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| enister Nunther | uğlakrı əlas e   |      | 0    | 2/18/21           | A 12 21 21 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x + 0, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30+  + 30 | 21260    |
| 4,85            | I'HL             | 1941 | 00   | 1 10 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 1205            |                  | -+-  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 1198            |                  |      | ~    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ +     |          |
| 906             |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 1321            |                  |      | - 11 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 487             |                  | 316  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 1323            |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 1204            |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 1001            |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ +     |          |
| Sic             |                  | 7 (  |      | _                 | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| 5061            |                  | 489  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| UN<br>BIN       |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ + .   |          |
| 1200            |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
| AIR             |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ ]+    |          |
| Jan.            |                  | Ž    |      |                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ +     |          |
| 484             |                  | 1202 |      |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30+ +     |          |
| 1961            |                  | -    |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ +     |          |
| 1208            |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ +     |          |
| 1319            |                  |      |      | 1                 | <br> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    | <i>+</i> |
| Coll            | 7                | 7    | t    | <b>K</b>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
|                 |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ +     |          |
|                 |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ ]+    |          |
|                 |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+ ]+    |          |
|                 |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30+  +    |          |
|                 |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Scc # aned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |          |
|                 |                  |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ļ        |

Page 215 of 229

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021807.D Vial: 7 Acq On : 18 Feb 2021 1:39 pm Sample : WAC021821C Misc : A123\_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 19 07:54:48 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A123\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcg Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.78128317341.00 ppb-0.0235) 1,4-difluorobenzene12.071141334881.00 ppb-0.0250) Chlorobenzene-d516.891171260101.00 ppb-0.02 System Monitoring Compounds 18.64 95 84086 0.90 ppb -0.06 65) Bromofluorobenzene Spiked Amount 1.000 Range 70 - 130 Recovery = 90.00% Target Compounds Ovalue



|                                                                                                                                                  |                                                                                                                               |        | 2,eneznadoro    | νβοταστ <del>ά</del> |           | NALIN J. J. W. Y. M. | 42-21-21-21-21-21-21-21-21-21-21-21-21-21 |                        | nevenae gryt/rjúžižka |       |       |       | 0 18.00 19.00 20.00 21.00 22.00 23.00 24.                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|----------------------|-----------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|-----------------------|-------|-------|-------|----------------------------------------------------------|--|
| DATA2/2021FEB/AS021807.D Vial: 7<br>1:39 pm Operator: RJP<br>Inst : MSD #1<br>Multiplr: 1.00<br>TEINT.P Ouant Results File: A123 1UG.RES         | <pre>\1\METHODS\A317_1UG.M (RTE Integrator) Standards for 5 point calibration 5 08:06:45 2021 alibration TfC:AS021807.D</pre> |        | (,25-onasnadoro | чо                   | 1.ອາລະແອດ | οτουβίθ-Ϸ, <b>†</b>                                                                                            | I,9nsd)<br>                               | amorality<br>announces | - Βια                 |       |       |       | 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.1 |  |
| Data File : C:\HPCHEM\1<br>Acg On : 18 Feb 2021<br>Sample : WAC021821C<br>Misc : A123_1UG<br>MS Integration Params: R<br>Quant Time: Feb 24 9:09 | Method : C:\HPCHEM<br>Title : TO-15 VOA<br>Last Update : Wed May 0<br>Response via : Initial C<br>Abundance                   | 240000 | 220000          | 200000               | 160000    | 140000                                                                                                         | 120000                                    | 100000                 | 80000                 | 60000 | 40005 | 20000 | 0 7.00 5.00 6.00 7.00                                    |  |

Page 217 of 229

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021808.D Vial: 1 Acq On : 18 Feb 2021 2:23 pm Operator: RJP Sample : WAC021821D Misc : A123\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT,P Quant Time: Feb 19 07:54:49 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A123\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcq Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.78128316971.00ppb-0.0235) 1,4-difluorobenzene12.071141311911.00ppb-0.0250) Chlorobenzene-d516.881171260411.00ppb-0.02 System Monitoring Compounds (5) Bromofluorobenzene 18.68 95 87124 0.93 ppb -0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 93.00% 65) Bromofluorobenzene Target Compounds Qvalue



|                                           |         |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       | 5                                                                                                                  | 24.00     | age 2   |
|-------------------------------------------|---------|----------------------------------------|-----------|-------|------------|-------------|------------|------------|---------------|--------------------------------|-------------------------------------------------------------|--------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------|-----------|---------|
|                                           |         |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 23.00     | μų      |
|                                           |         |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 22.00     |         |
|                                           |         |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                | -101  |                                                                                                                    | 21.00     |         |
|                                           |         |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       | للسلاسا                                                                                                            | 20.00     |         |
|                                           |         |                                        |           |       | S,enesned  | lorovitorio | 1 <b>9</b> |            |               | NATION AND AND AND AND A       | www.confecture.com                                          |        |                                          |                                                                                                                |       |                                                                                                                    | 19.00     |         |
|                                           |         |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 18.00     |         |
|                                           | (ES     |                                        |           | ,     | l,ðb-onosm | edonolati)  |            |            |               | den ( Seree de V Frage Als des | en an amanan ta' ara enaren                                 | ****** | na an a | ant third and the second s |       | ][<br>]                                                                                                            | 17.00     |         |
|                                           | TOG.F   |                                        |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 16.00     |         |
| : 1<br>: RJP<br>: MSD<br>: 1.00           | : A123  | _                                      | 808.D     |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 15.00     |         |
| Vial<br>rator<br>t<br>tiplr               | File    | ion                                    | IC: AS021 |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       | المراجع المراجع<br>المراجع المراجع | 14,00     | MSD1    |
| Ope<br>Ins<br>Mul                         | esults  | Integ<br>librat                        | Ŧ         |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 13.00     |         |
| 8.D                                       | lant Re | l (RTE<br>.nt ca.                      |           |       |            |             |            | f,enesredo | ເດກເຫຼາວ-ນ' 1 |                                | na an taona a statu a sa s |        |                                          |                                                                                                                |       |                                                                                                                    | 12.00     | 2021    |
| s02180                                    | 8       | _1UG.M                                 |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 11.00     | :44:57  |
| LFEB\A                                    |         | 5\A317<br>1s for<br>5 2021             |           |       |            |             |            |            |               | i,snarlis                      | motolitaoring                                               | - Bu   |                                          |                                                                                                                | ***** |                                                                                                                    | 10.00     | 05 10   |
| 2\2023<br>23 pm<br>T.P                    | ч       | ETHODS<br>andard<br>:06:45<br>ration   |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 00.6      | d May   |
| 1\DATA<br>1 2:<br>RTEIN                   | 09 202  | EW/1/M<br>OA St<br>05 08<br>Calib      |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 8.00      | Ме      |
| CHEM\<br>Eb 202<br>11821D<br>1UG<br>Tams: |         | \\HPCHI<br>)-15 V(<br>bd May<br>hitial |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       | 7                                                                                                                  | 200       | M.D     |
| C:\HE<br>18 Fe<br>WAC02<br>Al23<br>ion Pa | Feb 2   | н ж 1.с.<br>                           |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       | Ì                                                                                                                  | 6.0(      | 317_10  |
| File :<br>n :<br>e :<br>:egrat            | Time:   | đ<br>Jpdate<br>1se vi                  |           |       |            |             |            |            |               |                                |                                                             |        |                                          |                                                                                                                |       |                                                                                                                    | 0 5.0     | 8.D A   |
| Data<br>Acq O<br>Samplu<br>Misc<br>MS Int | Quant   | Metho<br>Title<br>Last 1<br>Respon     | Abundance | 00000 | 220000     | 200000      | 180000     | 160000     | 140000        | 120000                         | 10000                                                       | 80000  | 00009                                    | 40000                                                                                                          | 20000 |                                                                                                                    | Time> 4.0 | AS02180 |

Page 219 of 229

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021809.D Vial: 2 Acq On : 18 Feb 2021 3:05 pm Operator: RJP Sample : WAC021821E Misc : A123\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT, P Quant Time: Feb 19 07:54:51 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A123\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcg Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.77128319391.00ppb~0.0335) 1,4-difluorobenzene12.071141302751.00ppb-0.0250) Chlorobenzene-d516.891171189571.00ppb~0.02 System Monitoring Compounds 18.68 95 79263 0.89 ppb -0.02 65) Bromofluorobenzene 18.68 95 79263 0.89 ppb -Spiked Amount 1.000 Range 70 - 130 Recovery = 89.00% Qvalue Target Compounds



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        | <u> </u>     | 24.00                                                                                            | Page 2      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|---------------|-------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 23.00                                                                                            | ľ           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 22.00                                                                                            | :           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 21.00                                                                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 20.00                                                                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              | S,enoxre      | арловвогноч | Ø~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | STREET, | REPORT PROPERTY AND A                                 | nw                   |                                                                                                                |                                          |                                                        |              | 19.00                                                                                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 18.00                                                                                            | <br> <br>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | су<br>СЛ     |                                              | l,ខិb∞មក≙¥ក១៥ | Сирка       |                                        |                                                                                                                 | 177 Yulion and an | oor maar ay oo Waada |                                                                                                                |                                          |                                                        |              | 8                                                                                                | <br>•<br>•  |
| -+<br>-+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TUG.RI       |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        | 1770-1714 VI | 16.00                                                                                            | ,<br>,      |
| 2<br>RJP<br>MSD #<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A123_        | 0.50                                         |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 15.00                                                                                            |             |
| Vial:<br>ator:<br>iplr:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | File:        | ator)<br>on<br>: AS0216                      |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 14 00                                                                                            | 1CSD        |
| Oper<br>Inst<br>Mult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sults        | Integr<br>ibrati<br>TIC                      |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 13.00                                                                                            | ,<br>,<br>, |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tnt Re       | (RTE<br>it cal                               |               |             | <b>′ອນອ</b> ≵ບສຸດ                      | ίστον Πίφ- Α, Γ                                                                                                 |                                                       |                      | - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 | 1999 (1.2 Jacob) (1.7 Jacob) (1.7 Jacob) | un maarta viitariin eis                                |              | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2021        |
| 021805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quê          | 10G.M<br>5 poir                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | 11 00                                                                                            | 45:00       |
| 7EB\AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | A317<br>5 for<br>2021                        |               |             |                                        |                                                                                                                 | l, erær                                               | Bernonolrison        | нона                                                                                                           | A COMPANY AND PROVIDED                   | n manufas takas da |              |                                                                                                  | 05 10:      |
| \2021J<br>5 pm<br>.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | THODS)<br>ndards<br>06:45<br>ation           |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              | L L L                                                                                            | May         |
| DATA2<br>3:0<br>XTEINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 2021       | √\l\ME<br>\ Sta<br>)5 08:<br>Calibr          |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              |                                                                                                  | Wed         |
| HEM\1<br>2021<br>821E<br>UG<br>ams: H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | б<br>С       | HPCHEN<br>15 VO2<br>May (<br>tial (          |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              |                                                                                                  |             |
| C:\HPC<br>18 Feb<br>AAC021<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A123_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1<br>A13_1 | reb 24       |                                              |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              |                                                                                                  | 17_1UG      |
| Je : 1<br>: 1<br>: 1<br>: 1<br>: 1<br>: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 'ime:        | date<br>e via                                |               |             |                                        |                                                                                                                 |                                                       |                      |                                                                                                                |                                          |                                                        |              |                                                                                                  | D A3        |
| ata Fi<br>cq On<br>ample<br>lisc<br>S Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | juant 1      | lethod<br>ltle<br>ast Up<br>lespons<br>dance | 00000         | 80000       | 60000                                  | 40000                                                                                                           | 20000                                                 | 00000                | 80000                                                                                                          | 60000                                    | 40000                                                  | 20600        |                                                                                                  | 21809.      |
| ገዛጣዳይነ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>,</u> ,,, | A L L 2 A A A                                | v (V          | <b>4</b>    | •                                      | -                                                                                                               | -                                                     | F                    |                                                                                                                |                                          |                                                        |              | Ţime                                                                                             | AS(         |

Page 221 of 229

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021810.D Vial: 3 Acq On : 18 Feb 2021 3:47 pm Operator: RJP Sample : WAC021821F Misc : A123\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 19 07:54:52 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A123\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcq Meth : 1UG\_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.77128323241.00 ppb-0.0335) 1.4-difluorobenzene12.071141312281.00 ppb-0.0250) Chlorobenzene-d516.881171233821.00 ppb-0.02 System Monitoring Compounds 5) Bromofluorobenzene 18.68 95 84919 0.92 ppb ~0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 92.00% 65) Bromofluorobenzene Qvalue Target Compounds



Page 223 of 229

Centek Laboratories, LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021811.D Vial: 4 Acq On : 18 Feb 2021 4:29 pm Operator: RJP Sample : WAC021821G Misc : A123\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 19 07:54:53 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\Al23\_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcq Meth : lUG\_ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards 1) Bromochloromethane9.77128319651.00ppb-0.0335) 1,4-difluorobenzene12.061141296171.00ppb-0.0350) Chlorobenzene~d516.881171193061.00ppb-0.02 System Monitoring Compounds 65) Bromofluorobenzene 18.68 95 80607 0.91 ppb -0.02 Spiked Amount 1.000 Range 70 - 130 Recovery = 91.00% Target Compounds Ovalue





Page 225 of 229

<u>(</u>)

Centek Laboratories,LLC Quantitation Report (OT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021906.D Vial: 6 Acq On : 19 Feb 2021 12:06 pm Operator: RJP Sample : WAC021921A Misc : A123\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 24 07:55:40 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A123 lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcq Meth : 10G\_ENT Internal Standards R.T. QION Response Conc Units Dev(Min) 1) Bromochloromethane9.78128319321.00 ppb-0.0235) 1,4-difluorobenzene12.081141295231.00 ppb-0.0250) Chlorobenzene-d516.881171246961.00 ppb-0.02 System Monitoring Compounds 5) Bromofluorobenzene 18.68 95 83539 0.90 ppb -0.01 Spiked Amount 1.000 Range 70 - 130 Recovery = 90.00% 65) Bromofluorobenzene Target Compounds Ovalue





Page 227 of 229

 $\mathbf{e}_{\mathbf{N}}$ 

24.00 Page

Centek Laboratories,LLC Quantitation Report (QT Reviewed) Data File : C:\HPCHEM\1\DATA2\2021FEB\AS021907.D Vial: 7 Acq On : 19 Feb 2021 12:48 pm Operator: RJP Sample : WAC021921B Misc : Al23\_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P Quant Time: Feb 24 07:55:41 2021 Quant Results File: A123 1UG.RES Quant Method : C:\HPCHEM\1\METHODS\A123\_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Sat Jan 23 21:26:14 2021 Response via : Initial Calibration DataAcg Meth : 1UG ENT R.T. QIon Response Conc Units Dev(Min) Internal Standards ------1) Bromochloromethane9.78128310471.00ppb-0.0235) 1,4-difiuorobenzene12.071141301601.00ppb-0.0250) Chlorobenzene-d516.891171250601.00ppb-0.02 System Monitoring Compounds 5) Bromofluorobenzene 18.64 95 81488 0.87 ppb -0.06 Spiked Amount 1.000 Range 70 - 130 Recovery = 87.00% 65) Bromofluorobenzene Qvalue Target Compounds





Page 229 of 229

Page 2



# **APPENDIX 2**

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

1500 JEFFERSON ROAD Project 212721.02 SDG C2104038 Sampled 04/15/2021

# TO-15 AIR SAMPLES

| IAQ-09(04/15/21) | (C2104038-01) |
|------------------|---------------|
| OA(04/15/21)     | (C2104038-02) |

#### DATA ASSESSMENT

A TO-15 data package containing analytical results for two air samples was received from LaBella Associates, P.C. on 05May21. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 1500 Jefferson Road Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The results from this group of samples have been qualified as estimations because sampling was not terminated at the required canister vacuum reading.

The 1,2,4-trimethylbenzene, acetone, heptane, isopropyl alcohol, methyl ethyl ketone, methylene chloride, toluene and trichloroconcentrations found in IAQ-09(04/15/21) ethene have been qualified as estimations due to high spiked sample recoveries.

The presence of isopropanol in this delivery group could not be confirmed based on the mass spectra references included in the raw data. Isopropanol should be interpreted as undetected in each program sample.

### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and Reported concentrations completely usable in its present form. that are felt to provide a usable estimation of the conditions being measured have been flagged "J", "U" or "UJ". Data felt to be unreliable has been identified with a single red line and flagged "R". Rejected data should not be included in data tables. Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 13 May 21

DATAVAL, Inc.

#### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation, or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

It is noted that the information used to compile this portion of the report was obtained from the original Field Chain of Custody (COC), and an amended version that was submitted by the laboratory and approved by the LaBella engineer.

This group of four air samples was collected from the 1500 Jefferson Road Site 15Apr21. The samples were shipped to the laboratory, via FedEx, on the day of collection and were received the next day. Although the canisters were received in good condition, custody seals were not found on the packaging.

With the exception of IAQ-09, each sample was collected in a 1liter SUMMA canister and set in the laboratory to collect an 8hour sample. IAQ-09 was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples.

Although each SUMMA canister was set in the laboratory to collect an 8-hour sample, sample collection was terminated after approximately seven hours based on each canisters' vacuum gauge reading. The post sampling vacuum readings from both samples failed to satisfied the ASP requirement of  $-5\pm1$ "Hg. The results from both program samples have been qualified as estimations based on this observation.

The differences observed between the post sampling vacuum readings and readings recorded at the time of laboratory receipt and the time of analysis are assumed to reflect the quality of the canister vacuum gauges.

| SAMPLE       | PRIOR TO | PRIOR TO | POST     | LAB     | LAB      |
|--------------|----------|----------|----------|---------|----------|
|              | SHIPMENT | SAMPLING | SAMPLING | RECEIPT | ANALYSIS |
|              | (``Hg)   | (``Hg)   | (``Hg)   | (``Hg)  | (``Hg)   |
| IAQ-09       | -30      | -30      | -9       | -5      | -5       |
| (04/15/21)   |          |          |          |         |          |
| OA(04/15/21) | -30      | -30      | -3       | -0      | -1       |

The analysis of this group of samples was completed on 22Apr21. The ASP holding time limitation was satisfied.

### CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change  $\leq 0.5$  psig over this period.

The canisters for this project were cleaned in two batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination exceeding the laboratory's reporting limit.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination exceeding the laboratory's reporting limit.

#### MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards that were analyzed prior to the initial instrument calibration and preceding the analysis of program samples on 20Apr21 and 21Apr21. Each of these checks satisfied the ASP acceptance criteria.

#### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 17Mar21. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration checks were performed on 20Apr21 and 21Apr21, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, unacceptable shifts were observed in the instrument response of benzyl chloride (43%), 1,2-dichlorobenzene (35%), 1,2,4-trichlorobezene (54%), naphthalene (44%) and hexachloro-1,3-butadiene (50%) on 21Apr21. This performance, however, warrants no concern because these analytes were not reported from the affected sample dilutions.

#### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environ-

mental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, an acceptable recovery was reported for each surrogate addition to this group of samples.

It is noted that a low recovery (72%) was reported for a diluted sample of IAQ-9. This performance is assumed to be the result of the high dilution (640X) and data qualifications are not required.

#### INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than ±10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standards. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, an acceptable response was reported for each internal standard addition to this group of samples.

Although internal standard retention times were not addressed by the laboratory, the ASP retention time acceptance criteria was calculated by this reviewer. The retention time associated with each internal standard addition to this group of samples satisfied the program acceptance criteria.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

IAQ-09(4/15/21) was selected for matrix spiking, the entire list of targeted analytes was added to two aliquots of this sample. The recoveries reported for these spikes included high results for 1,2,4-trichlorobenzene (243%,234%), 1,2,4-trimethylbenzene (158%,158%), 1,3,5-trimethylbenzene (141%,142%), acetone (1180%), 1,3-butadiene (144%), benzene (138%), benzyl chloride (146%, 151%), cyclohexane (136%), ethyl acetate (1540%,1420%), heptane (255), hexane (1020%), isopropyl alcohol (20900%,18800%), methyl ethyl ketone (1840%,1710%), methylene chloride (230%,224%), propylene (2630%,2430%), tetrahydrofuran (32400%, 30100%), toluene (177%,168%) and trichloroethene (139%). Based on these indications of positive bias, the 1,2,4-trimethylbenzene, acetone, heptane, isopropyl alcohol, methyl ethyl ketone, methylene chloride, toluene and trichloroethene results from IAQ-09(4/15/21) have been qualified as estimations. The remaining affected analytes produced negative results that remain unqualified.

Two pairs of spiked blanks (LCS/LCSD) were also analyzed with this group of samples. These LCS samples produced high recoveries of 1,2,4-trichlorobenzene (150%), benzyl chloride (140%) and hexachloro-1,3-butadiene (150%,144%). These indications of positive bias, however, warrant no concern because these analytes produced negative results in the affected samples.

#### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. The results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Duplicate analyses of OA(4/15/21) were included in this group of samples. This pair of samples was analyzed from the same sample canister, and as such must be considered laboratory split duplicates and not field split duplicate samples. Sample to sample differences originating from sample collection could not be evaluated.

The results reported from this pair of samples differed by less than 25% when both individual results exceeded the laboratory's reporting limit. An acceptable level of laboratory precision was demonstrated.

#### REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

The presence of isopropanol in this delivery group could not be confirmed based on the mass spectra references included in the raw data. Isopropanol (IPA) should be interpreted as undetected in each program sample. Detection limits equaling the reported concentrations should be assumed.

| 1500 JEFFERSON RC                | JAD                            |                      |                |                   | SAMPLED April 15, 2021 |
|----------------------------------|--------------------------------|----------------------|----------------|-------------------|------------------------|
|                                  |                                | SAMPLING<br>VOC      | SPIKES<br>MS1* | SPECTRA ID<br>IPA |                        |
| IAQ-09(04/15/21)<br>OA(04/15/21) | (C2011028-01)<br>(C2011028-02) | ALL J/UJ<br>ALL J/UJ | ALL J          | 1300UJ<br>8.8UJ   |                        |
|                                  |                                |                      |                |                   |                        |

SUMMARY OF QUALIFIED DATA

MS1 = 1,2,4-trimethylbenzene, acetone, heptane, isopropyl alcohol, methyl ethyl ketone, methylene chloride, toluene, trichloroethene

Q
# Centek Laboratories, LLC

```
Date: 05-May-21
```

| CLIENT:           | LaBella Associates, P.C |            |      | C    | lient Sample ID: | 140-0  | 9 (4/15/21)          |
|-------------------|-------------------------|------------|------|------|------------------|--------|----------------------|
| Lab Order:        | C2104038                |            |      |      | Tag Number:      | 1201.  | 734                  |
| Project           | 1500 Jefferson Road     |            |      |      | Collection Date: | 4/15/2 | 021                  |
| lab Da            | C2104029.001A           |            |      |      | Matuiv.          | A 1D   | 021                  |
|                   | C2104036-001A           |            |      |      | WEILTA:          |        |                      |
| Analyses          |                         | Result     | ÐL   | Qual | Units            | DF     | Date Analyzed        |
| 1UG/M3 W/ 0.20    | JG/M3 CT-TCE-VC-DCE-1   | ,1DCE      | τc   | 0-15 |                  |        | Analyst: WD          |
| 1,1,1-Trichloroet | hane                    | < 0.82     | 0.82 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,1,2,2-Tetrachio | proethane               | < 1.0      | 1.0  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,1,2-Trichloroet | hane                    | < 0.82     | 0.82 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,1-Dichloroetha  | ne                      | < 0.61 J   | 0.61 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,1-Dichloroethe  | ne                      | < 0,16     | 0.16 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,2,4-Trichlorobe | enzene                  | < 1.V      | 1,1  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,2,4-Trimethyib  | enzene                  | 1.4 J      | 0.74 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,2-Dibromoetha   | ine                     | < 1.2      | 1.2  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,2-Dichloroben;  | zene                    | < 0.90     | 0.90 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,2-Dichloroetha  | ne                      | < 0.61     | 0.61 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,2-Dichloroprop  | ane                     | < 0.69     | 0.69 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,3,5-Trimethylb  | enzene                  | < 0.74     | 0,74 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,3-butadiene     |                         | < 0.33     | 0.33 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,3-Dichlorobenz  | zene                    | < 0.90     | 0.90 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,4-Dichloroben:  | zene                    | < 0.90     | 0.90 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 1,4-Dioxane       |                         | < 1.1      | 1.1  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 2,2,4-trimethylpe | ntane                   | < 0.70     | 0.70 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| 4-ethyltoluene    |                         | 0.69 🕽     | 0.74 | J    | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Acetone           |                         | 170 J      | 230  | J    | ug/m3            | 320    | 4/21/2021 4:34:00 PM |
| Alivi chioride    |                         | < 0.47     | 0.47 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Benzene           |                         | 1.1 7      | 0.48 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Benzyl chloride   |                         | < 0.86     | 0.86 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Bromodichlorom    | ethane                  | < 1.0 \UJ  | 1.0  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Bromoform         |                         | < 1.6      | 1.6  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Bromomethane      |                         | 0.43 🕽     | 0.58 | J    | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Carbon disulfide  |                         | 0.34       | 0.47 | J    | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Carbon tetrachic  | ride                    | 0.50 7     | 0.19 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Chlorobenzene     |                         | < 0.69     | 0.69 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Chloroethane      |                         | < 0.40 303 | 0.40 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Chloroform        |                         | < 0.73     | 0.73 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Chloromethane     |                         | 0.99       | 0.31 |      | ua/m3            | 1      | 4/20/2021 4:07:00 PM |
| cis-1.2-Dichloroe | athene                  | < 0.16     | 0.16 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| cis-1 3-Dichloror |                         | < 0.68     | 0.68 |      | ua/m3            | 1      | 4/20/2021 4:07:00 PM |
| Cyclohexane       |                         | < 0.52 11  | 0.52 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Dibromochlarom    | elhane                  | < 1.3      | 1.3  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Ethyl acetate     |                         | < 0.54     | 0.54 |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Ethylbenzene      |                         | 0.61       | 0.65 | J    | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Frein 11          |                         | 1.37       | 0.84 | *    | ua/m3            | 1      | 4/20/2021 4:07:00 PM |
| Freen 113         |                         | <110D      | 1.1  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |
| Freon 114         |                         | < 1.017    | 1.0  |      | ug/m3            | 1      | 4/20/2021 4:07:00 PM |

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

 $\mathbf{S}_{i} = \mathbf{S}_{i}$  pike Recovery nutside accepted recovery limits

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DL Detection Limit

M

Page 1 of 6

# Centek Laboratories 11 C

### Date: 05-Mm-21

| Contex La             | boratories, LLC                     |               |      |      | szate.                          | 00-m   |                       |
|-----------------------|-------------------------------------|---------------|------|------|---------------------------------|--------|-----------------------|
| CLIENT:<br>Lab Order: | LaBella Associates, P.C<br>C2104038 | 2.            |      | ¢    | lient Sample ID:<br>Tag Number: | IAQ-(  | )9 (4/15/21)<br>734   |
| Project:              | 1500 Jefferson Road                 |               |      |      | Collection Date:                | 4/15/2 | 2021                  |
| Lab ID:               | C2104038-001A                       |               |      |      | Matrix:                         | AIR    | · · · · ·             |
| Analyses              |                                     | Result        | DL   | Qual | Units                           | DF     | Date Analyzed         |
| 1UG/M3 W/ 0.2         | UG/M3 CT-TCE-VC-DCE-1               | I,1DCE        | ΤĊ   | )-15 |                                 |        | Analyst: WD           |
| Freon 12              |                                     | 2.6           | 0.74 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Heptane               |                                     | 6.1 <b>J</b>  | 6.1  |      | ug/m3                           | 10     | 4/21/2021 1:10:00 AM  |
| Hexachloro-1,3        | -butadiene                          | < 1.6 VM      | 1.6  |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Hexane                |                                     | < 0.53        | 0.53 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Isopropyl alcoh       | oi                                  | 1300 UJ       | 240  |      | ug/m3                           | 640    | 4/22/2021 12:18:00 PM |
| m&p-Xylene            |                                     | 2.0 <b>J</b>  | 1.3  |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Methyl Butyl Ke       | tone                                | < 1.2UJ       | 1.2  |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Methyl Ethyl Ke       | tone                                | 4.7 🕽         | 0.88 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Methyl Isobutyl       | Ketone                              | 0.70 <b>J</b> | 1.2  | J    | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Methyl tert-buty      | lether                              | < 0.54 U      | 0.54 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Methylene chlor       | ride                                | 5.2 <b>J</b>  | 0.52 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| o-Xyleлe              |                                     | 0.87 <b>J</b> | 0.65 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Propylene             |                                     | < 0.26\u      | 0.26 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Styrene               |                                     | < 0.64        | 0.64 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Tetrachioroethy       | lene                                | 0.81          | 1.0  | J    | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Tetrahydrofurar       | 1                                   | < 0.4407      | 0.44 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| Toluene               |                                     | 2.7           | 0.57 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |
| trans-1,2-Dichic      | voethene                            | < 0.59        | 0.59 |      | ug/m3                           | 1      | 4/20/2021 4:07:00 PM  |

< 0.68 0,68 4/20/2021 4:07:00 PM ug/m3 1 ug/m3 2.4 0.16 1 4/20/2021 4:07:00 PM 0.53 ug/m3 1 4/20/2021 4:07:00 PM < 0.530.66 ug/m3 1 4/20/2021 4:07:00 PM < 0.660.10 1 4/20/2021 4:07:00 PM < 0.10 ug/m3

Qualifiers:

trans-1,3-Dichloropropene

Trichloroethene Vinyl acetate

Vinyl Bromide

Vinyl chloride

- SC Sub-Contracted
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

.

f

J.

Results reported are not blank corrected Estimated Value above quantitation range Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection ÐL.

Detection Limit

Page 2 of 6

.....

# Centek Laboratories, LLC

| CLIENT:           | LaBella Associates, P.C. |                         |              | C    | lient Sample 1D;        | OA (4  | /15/21)               |
|-------------------|--------------------------|-------------------------|--------------|------|-------------------------|--------|-----------------------|
| Lab Order:        | C2104038                 |                         |              |      | Tag Number:             | 550.22 | 71                    |
| Project:          | 1500 Jefferson Road      |                         |              |      | <b>Collection Date:</b> | 4/15/2 | 021                   |
| Lab ID:           | C2104038-002A            |                         |              |      | Matrix:                 | AIR    |                       |
| Analyses          | ····· ·· ··· ··· ···     | Result                  | DL           | Qual | Units                   | ÐF     | Date Analyzed         |
| UG/M3 W/ 0.2      | UG/M3 CT-TCE-VC-DCE-1,   | DCE                     | TC           | -15  |                         |        | Analyst: WE           |
| 1,1.1-Trichloroe  | thane                    | < 0.82                  | 0.82         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1,1,2,2-Tetrachi  | oroethane                | < 1.0                   | 1.0          |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1,1,2-Trichloroe  | thane                    | < 0.82 (                | 0.82         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.1-Dichloroetha  | ine                      | < 0.61                  | 0.61         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1,1-Dichloroethe  | ene                      | < 0.16                  | 0.16         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1,2,4-Trichlorob  | ênzen <del>e</del>       | < 1.1                   | 1.1          |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1,2,4-Trimethylk  | enzene                   | < 0.74                  | 0.74         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.2-Dibromoeth    | ane                      | < 1.2                   | 1.2          |      | ua/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.2-Dichloroben   | 2606                     | < 0.90                  | 0.90         |      | ua/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.2-Dichloroetha  | ane                      | < 0.61 VJ               | 0.61         |      | uo/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.2-Dichleroproc  | Sane                     | < 0.69                  | 0.69         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.3.5-Trimethylin | 0072000                  | < 0.74                  | 0.74         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.3-butadiene     |                          | < 0.33                  | 0.33         |      | ua/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| 1.3-Dicbloroben   | 7848                     | < 0.90                  | 0.00         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| 1.4.Dichloroben   | 7000                     | < 0.50                  | 0.00         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
|                   | rene                     | ~ 0.50                  | 1 1          |      | ug/m3                   |        | 4/20/2021 6:36:00 PM  |
| 1,4-DIOXBRE       |                          | < 0.70                  | 0.10<br>0.70 |      | ug/m3                   | 4      | 4/20/2021 0:00:00 CM  |
| 2,2,4-timethyp    | entane                   | < 0.70                  | 0.70         |      | ugano                   | 1      | 4/20/2021 6:36:00 PM  |
| 4-envioluene      |                          | < 0.74<br>15 <b>-1</b>  | 0.74         |      | ug/ma<br>ug/ma          | 10     | 4/21/2021 1:53:00 AM  |
| Acetone           |                          | 10 11                   | 1.1          |      | ugintə<br>Listina?      | 10     | 4/20/2021 C.33.00 Mil |
| Allyl chloride    |                          | < 0,4/0 J               | 0.47         |      | ug/ma<br>ug/ma          | 1      | 4/20/2021 0.30.00 PW  |
| Benzene           |                          | 0.42                    | 0.40         | J    | ug/m3                   | i<br>• | 4/20/2021 0.30.00 PM  |
| Benzyl chloride   |                          | < 0.86                  | 0.65         |      | ug/ma                   | ;<br>, | 4/20/2021 0.30,00 FW  |
| Bromodichlorom    | hethane                  | \$1.0 UD                | 1,0          |      | ug/m3                   | 1      | 4/20/2021 0.30.00 PN  |
| Bromoform         |                          | < 1.6                   | 1.6          |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Bromomethane      |                          | < 0.58                  | 0.58         |      | ug/ma                   | 1      | 4/20/2021 0:30:00 PN  |
| Carbon disulfide  | <b>}</b>                 | < 0.47                  | 0.47         |      | ug/m3                   | 1      | 4/20/2021 6.36.00 PN  |
| Carbon tetrachle  | oride                    | 0.44 J                  | 0.19         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Chlorobenzene     |                          | < 0.69                  | 0.69         |      | ug/m3                   | 3      | 4/20/2021 6:36:00 PN  |
| Chioroethane      |                          | < 0.40 JVJ              | 0,40         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Chloroform        |                          | < 0.73                  | 0.73         |      | ug/m3                   | 1      | 4/20/2021 8:35:00 PN  |
| Chloromethane     |                          | 0.83 🗍                  | 0.31         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| cis-1,2-Dichloro  | ethene                   | < 0.16                  | 0.16         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| cis-1,3-Dichloro  | propene                  | <sup>&lt; 0.68</sup> いつ | 0.68         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| Cyclohexane       |                          | < 0.52                  | 0.52         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Dibromochloron    | nethane                  | < 1.3                   | 1.3          |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Ethyl acetate     |                          | 0.50 J                  | 0.54         | J    | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Ethylbenzene      |                          | < 0.65 <b>0 J</b>       | 0.65         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| Freon 11          |                          | 1.0 <b>J</b>            | 0.84         |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PN  |
| Freon 113         |                          | <1.1>111                | 1,1          |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |
| Freon 114         |                          | < 1.0                   | 1.0          |      | ug/m3                   | 1      | 4/20/2021 6:36:00 PM  |

 $\parallel$ 

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits S

3 Analyte detected below quantitation limit ND - Not Detected at the Limit of Detection

DL. Detection Limit

Page 3 of 6

# Centek Laboratories, LLC

| Lab ID: C2104038-002A      |         | Matrix           | : AIR          |  |
|----------------------------|---------|------------------|----------------|--|
|                            |         |                  |                |  |
| Project: 1500 Jefferson Ro | ad      | Collection Date  | : 4/15/2021    |  |
| Lab Order: C2104038        |         | Tag Number       | : 550,271      |  |
| CLIENT: LaBella Associate  | s, P.C. | Client Sample ID | : OA (4/15/21) |  |

| 1DCE               | TO-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst: WD                                                      |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2.2 J              | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.61             | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 1.6 <b>〉</b> (プ) | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.53             | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36.00 PM                                             |
| 8.8 <b>UJ</b>      | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/21/2021 1:63:00 AM                                             |
| < 1.3 V m          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 1.2              | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| 0.65               | 0.88 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 1.2 \ 1.7 T      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.54             | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| 0.87 <b>J</b>      | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.65             | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | սց/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.26             | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.64 <b>}U</b> J | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 1.0              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.44             | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| 0.60 <b>J</b>      | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.59             | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.68             | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.16 <b>入</b> り  | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.53             | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.66             | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:36:00 PM                                             |
| < 0.10             | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4/20/2021 6:35:00 FM                                             |
|                    | 1DCE<br>2.2 J<br>(0.61<br>(1.6)<br>(0.63)<br>(1.2)<br>(0.65 J<br>(1.2)<br>(0.65 J<br>(0.65 J<br>(0.65)<br>(0.65)<br>(0.65)<br>(0.65)<br>(0.65)<br>(0.66)<br>(0.64)<br>(0.69)<br>(0.69)<br>(0.68)<br>(0.69)<br>(0.68)<br>(0.69)<br>(0.68)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.69)<br>(0.66)<br>(0.69)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0.66)<br>(0 | IDCE       TO-15         2.2 $0.74$ $0.61$ $0.61$ $< 1.6$ $0.53$ $< 0.53$ $0.53$ $8.80J$ $3.7$ $< 1.3$ $1.3$ $< 1.2$ $1.2$ $0.54$ $0.54$ $0.87J$ $0.52$ $< 0.65$ $0.65$ $< 0.65$ $0.65$ $< 0.66$ $0.64$ $< 1.0$ $1.0$ $< 0.64$ $0.64$ $< 1.0$ $0.64$ $< 0.60$ $0.57$ $< 0.68$ $0.59$ $< 0.68$ $0.68$ $< 0.16$ $0.53$ $< 0.66$ $0.66$ | IDCE       TO-15 $2.2$ $0.74$ $ug/m3$ $< 0.61$ $0.61$ $ug/m3$ $< 1.6$ $0.61$ $ug/m3$ $< 1.6$ $0.53$ $ug/m3$ $< 0.63$ $0.53$ $ug/m3$ $< 0.63$ $0.53$ $ug/m3$ $< 0.63$ $0.53$ $ug/m3$ $< 1.3$ $1.3$ $ug/m3$ $< 1.2$ $1.2$ $ug/m3$ $< 0.65$ $0.88$ $ug/m3$ $< 0.54$ $0.54$ $ug/m3$ $< 0.54$ $0.54$ $ug/m3$ $< 0.65$ $0.64$ $ug/m3$ $< 0.64$ $0.64$ $ug/m3$ $< 0.64$ $0.64$ $ug/m3$ $< 0.61$ $0.57$ $ug/m3$ $< 0.60$ $0.57$ $ug/m3$ $< 0.60$ $0.57$ $ug/m3$ $< 0.64$ $0.68$ $ug/m3$ $< 0.59$ $0.59$ $ug/m3$ $< 0.60$ $0.57$ $ug/m3$ $< 0.53$ $0.53$ $ug/m3$ $< 0.53$ $0.$ | IDCE       TO-15         2.2 $0.74$ ug/m3       1         < 0.61 |



| Qualifiers: | SC | Sub-Contracted                                     |     | Results reported are not blank corrected  |                                          |
|-------------|----|----------------------------------------------------|-----|-------------------------------------------|------------------------------------------|
|             | 13 | Analyte detected in the associated Method Blank    | E   | Estimated Value above quantitation range  |                                          |
|             | H  | Holding times for preparation or analysis exceeded | J   | Analyte detected below quantitation limit |                                          |
|             | JN | Non-routine analyte. Quantitation estimated.       | ND  | Not Detected at the Limit of Detection    | r) , , , , , , , , , , , , , , , , , , , |
|             | 8  | Spike Recovery outside accepted recovery limits    | ÐĽ. | Detection Limit                           | Page 4 of 6                              |



# Date: 05-May-21

# QC SUMMARY REPORT SURROGATE RECOVERIES

| CLIENT:<br>Work Order:<br>Project:<br>Test No: | LaBella A<br>C2104038<br>1500 Jeffe<br>TO-15 | issociates, P.<br>3<br>erson Road | .C.<br>Matrix: A                             |                 |                                       |                   |                                       |  |
|------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------------------------|-----------------|---------------------------------------|-------------------|---------------------------------------|--|
| Sample ID                                      |                                              | BR4FBZ                            | · · · · · · · · · · · · · · · · · · ·        |                 | <u>,, ,,., </u>                       | <u></u>           |                                       |  |
| ALCS1UG-042021                                 | I in                                         | 100                               | V V V AN |                 |                                       |                   |                                       |  |
| ALCSTUG-042121                                 |                                              | 109                               | · · · · · · · · · · · · · · · · · · ·        |                 |                                       |                   |                                       |  |
| ALCSIUGD-0420                                  | 21                                           | 105                               | ·····                                        |                 |                                       |                   | *** *********                         |  |
| ALCSIUGD-0421                                  | 21                                           | 113                               | · · · · · · · · · · · · · · · · · · ·        |                 | · · · · · · · · · · · · · · · · · · · |                   |                                       |  |
| AMB1UG-042021                                  |                                              | 85.0                              |                                              |                 | .h                                    |                   |                                       |  |
| AMB1UG-042121                                  |                                              | 83.0                              |                                              |                 |                                       |                   | · · · · · · · · · · · · · · · · · · · |  |
| C2104038-001A                                  |                                              | 98.0                              | · · · · · · · · · · · · · · · · · · ·        |                 |                                       |                   |                                       |  |
| C2104038-001A N                                | 15                                           | 105                               |                                              | ••••}•••••••••• |                                       | -                 |                                       |  |
| C2104038-001A N                                | (SD                                          | 102                               |                                              | •               |                                       |                   |                                       |  |
| C2104038-002A                                  |                                              | 90.0                              |                                              | · · · · · ·     |                                       |                   |                                       |  |
| C2104038-003A                                  |                                              |                                   | 125                                          |                 | · · · · · · · · · · · · · · · · · · · |                   |                                       |  |
| · · · · ·                                      | 1                                            | · · ·                             | י עי                                         | • • • •         | •                                     | • • • • • • • • • |                                       |  |

| Acronym | Surrogate                        | QC Limits   |
|---------|----------------------------------|-------------|
| BR4FBZ  |                                  | 47-124      |
|         |                                  |             |
|         |                                  |             |
|         |                                  |             |
|         |                                  |             |
|         |                                  |             |
| * Su    | rrogate recovery outside accepta | ance limits |

Centek/haberatories.LLC Report

Tune File : C:\HPCHEM\1\DATA\AS042003.D Tune Time : 20 Apr 2021 12:26 pm

| Daily Ca             | libration File :<br>ASO42063  | С:\нр       | CHEM\l\DA<br>BFB)          | ATA\AS04:                               | 2003.D | 124061<br>(IS1) | 465611<br>(152) | (153)     |       |
|----------------------|-------------------------------|-------------|----------------------------|-----------------------------------------|--------|-----------------|-----------------|-----------|-------|
| (CV                  | 4/20/21 12:26                 |             | 9,82                       | 12.11                                   | 16.92  | 88615           | 332579          | 332258    |       |
| File                 | Sample                        | DL          | Surrogate                  | e Recove:                               | ry %   | Internal        | Standard Resp   | ponses    | /     |
| AS042004             | .D ALCS1UG-04202              | 1           | 100                        | * = = = = = = = = = = = = = = = = = = = |        | 89217           | 335385          | 333942    | ¥     |
| AS042005             | .D AMB1UG-042021              |             | 85                         |                                         |        | 86444           | 320122          | 323571    |       |
| AS042007             | .D C2104038-001A              |             | <sup>98</sup> 9,83         | 12.12                                   | 16,92  | 92259           | 348627          | 334135    |       |
| AS042008             | .D C2104038-001A              | MS          | 105                        |                                         |        | 107899          | 407153          | 386676    |       |
| AS042009             | .D C2104038-001A              | MSD :       | 102                        |                                         |        | 111144          | 451492          | 430231    |       |
| AS042010             | .D C2104038-002A              |             | 90 9,82                    | 12.11                                   | 16,92  | 101326          | 375861          | 353897    |       |
| AS042011             | .Ð C21040 <del>38-003</del> A |             | - <sup>88</sup> -9.82      | 12.11                                   | 16,92  | - 95695-        |                 |           | - 7// |
| AS042017             | D ALCSIUGD-0420               | 21 :        | 105                        |                                         |        | 97213           | 368856          | 344102    |       |
| AS042019             | D C2104038-001A               | 10X         | 87 <b>9,82</b>             | 12.11                                   | 16.97  | 81361           | 300083          | 272194    |       |
| AS042020             | D C2104038-002A               | 10X         | <sup>81</sup> <b>9,8</b> 1 | 12.11                                   | 16,92  | 80601           | 288527          | 262272    | ./    |
| A <del>6042021</del> | D C2104038-003A               | <u> 10X</u> | <del>80 <b>7</b>.81</del>  | 12.11                                   | 6.92   | 76420           |                 | -242622 - | ΛľΫ.  |
| t - :                | fails 24hr time               | check       | * - fai                    | ls crite                                | eria   |                 |                 | , <b></b> |       |

Created: Wed May 05 08:23:24 2021 MSD #1/

Centek Laboratories LLC Report

| Tune File : C:\HPCHEM\1\DATA\<br>Tune Time : 21 Apr 2021 1:2                       | AS042104.D<br>5 pm                              |                                           |                                                 |                                                     |                                              |
|------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| Daily Calibration File : C:\H)<br>ASG42104<br>CCV 4/21/21 / 3:25<br>File Sample DL | PCHEM\1\DAT<br>(BFB)<br><b>963</b><br>Surrogate | A\AS042104.D<br>12.12 16.93<br>Recovery % | 108153<br>(151)<br>77252<br>46351<br>Internal S | 370559<br>(IS2)<br>278971<br>/67383<br>Landard Resp | 355678<br>(IS3)<br>254056<br>/52434<br>onses |
| AS042105.D ALCS1UG-042121                                                          | 109                                             | <b>₩₩₩₽</b> ₩₩₩₩₩₩₩₩₩                     | 79503                                           | 273664                                              | 255437                                       |
| AS042106.D AMB1UG-042121                                                           | 83                                              |                                           | 77342                                           | 284883                                              | 248281                                       |
| AS042108.D C2104038-001A 320X                                                      | <sup>84</sup> 9,83                              | 12,12 16:                                 | 73 79111                                        | 276892                                              | 240178                                       |
| AS042117.D ALCS1UGD-042121                                                         | 113                                             |                                           | 80819                                           | 281357                                              | 267874                                       |
| AS042122.D C2104038-001A 640X                                                      | (72) 9,82                                       | 12.11 16.9                                | 2 75659                                         | 262644                                              | 262673                                       |
| t - fails 24hr time check                                                          | * - fail                                        | s criteria                                |                                                 |                                                     |                                              |

Created: Wed May 05 08:24:48 2021 MSD #1/

|    | υ               |   |
|----|-----------------|---|
|    | Ę               |   |
|    | يسر             |   |
|    | $\mathcal{O}$   |   |
|    | Ē               |   |
|    | Ř               |   |
|    | ž               |   |
|    | $\triangleleft$ |   |
|    | Ř               |   |
|    | ä               |   |
|    | R.              |   |
|    | 1               |   |
|    | X               |   |
|    |                 |   |
|    | Z               |   |
| Į. | Ę,              |   |
| 2  | $\mathbf{U}$    | Ż |

LaBella Associates, P.C. 

Work Order: CLIENT: 

ANALYTICAL QC SUMMARY REPORT

Date: 05-May-21

| ~    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| 1    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠        |
| _    | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        |
|      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | ń.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٠        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        |
| -    | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| ٦.   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |
|      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        |
| -    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۰.       |
| -    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Υ.       |
| - L. | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠        |
| 2    | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5        |
| -    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |
|      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷.,      |
|      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>.</u> |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷.       |
|      | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |
|      | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        |
|      | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        |
|      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        |
|      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |
|      | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۰.       |
|      | С.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷.,      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷        |
|      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | į        |
|      | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł        |
|      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | Contraction of the second seco |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | Contraction of the second seco |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | Contraction of the second seco |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

|                                           | 1.1          |  |
|-------------------------------------------|--------------|--|
|                                           | - 11         |  |
|                                           |              |  |
|                                           | 1.1          |  |
|                                           |              |  |
|                                           |              |  |
| Ĺ                                         | 1            |  |
|                                           | 1            |  |
| ~                                         | 1.5          |  |
| ji ka |              |  |
| -                                         |              |  |
| <u> </u>                                  |              |  |
| × 1                                       |              |  |
| <u>a</u> .                                |              |  |
| 5                                         |              |  |
| [ <u>_</u> ]                              | + 1 -        |  |
|                                           | ÷ 1          |  |
| N.                                        | 1.5          |  |
| - Annual Contraction                      |              |  |
|                                           |              |  |
|                                           |              |  |
| 1 m                                       | 2.2          |  |
| $\sim$                                    |              |  |
|                                           | •            |  |
| - <b>- -</b>                              | 11           |  |
|                                           | 11           |  |
| تىس                                       | - + <u>-</u> |  |
| ~                                         | C            |  |
| _                                         | 5 i          |  |
| in the second                             | 2.5          |  |
| 12                                        |              |  |
| <b>_</b>                                  | 1.1          |  |
| )                                         |              |  |
|                                           | 11           |  |
| 20                                        |              |  |
| - L D                                     | 11           |  |
|                                           | · · ·        |  |
| ()                                        | 1.           |  |
| <u> </u>                                  | 1.0          |  |
| $\sim$                                    | 11           |  |
| $\smile$                                  | - i :        |  |
|                                           | 11           |  |
| . 1                                       | 17           |  |
|                                           |              |  |

| Work Order: C2104<br>Project: 1500 Ja | 038<br>efferson Road                |        |             |                              |                  | TestCode: 0           | SV. 02                          |            |
|---------------------------------------|-------------------------------------|--------|-------------|------------------------------|------------------|-----------------------|---------------------------------|------------|
| Sample (D: AMB1UG-04202               | 21 SampType: MBLK                   | Tes    | (Code: 0.20 | NYS Units: ppbV              | Prep Date:       |                       | RunNo: 17523                    |            |
| Client ID: ZZZZ                       | Batch ID: R17523                    | Г      | estNo: TO-1 | 10                           | Analysis Date:   | 4/20/2021             | SeqNo: 198926                   |            |
| Analyte                               | Result                              | Z<br>Z | IL SPK v    | alue SPK Ref Val             | %REC LowLimit Hi | ighLimit RPD Ref Val  | %RPD RPDLimit                   | Qual       |
| 1,1,1-Trichloroethane                 | < 0.15 V                            | Ö      | 15          |                              |                  |                       |                                 |            |
| 1,1,2,2-Tetrachlorcethane             | < 0.15                              | ö      | 5           |                              |                  |                       |                                 |            |
| 1,1,2-Trichtoroethane                 | < 0.15                              | õ      | 5           |                              |                  |                       |                                 |            |
| 1,1-Dichloroethane                    | < 0.15                              | ċ      | 5           |                              |                  |                       |                                 |            |
| 1,1-Dichloroethene                    | < 0.040                             | 0.0    | 9           |                              |                  |                       |                                 |            |
| 1,2,4-Trichlorobenzene                | < 0.15                              | Ģ      | 5           |                              |                  |                       |                                 |            |
| 1,2,4-Trimethylbenzene                | < 0.15                              | Ġ      | 15          |                              |                  |                       |                                 |            |
| 1,2-Dibromoethane                     | < 0.15                              | Ó      | 15          |                              |                  |                       |                                 |            |
| 1.2-Dichlorobenzene                   | < 0.15                              | Ö      | 15          |                              |                  |                       |                                 |            |
| 1,2-Dichloroethane                    | < 0.15                              | ö      | 15          |                              |                  |                       |                                 |            |
| 1,2-Dichleropropane                   | < 0.15                              | ö      | 15          |                              |                  |                       |                                 |            |
| 1,3,5-Trimethyfbenzene                | < 0.15                              | ď      | 15          |                              |                  |                       |                                 |            |
| 1,3-butadiene                         | < 0.15                              | ö      | 15          |                              |                  |                       |                                 |            |
| 1,3-Dichlorobenzene                   | < 0.15                              | ö      | 15          |                              |                  |                       |                                 |            |
| 1.4-Dichlorobenzene                   | < 0.15                              | Ö      | 15          |                              |                  |                       |                                 |            |
| 1,4-Dioxane                           | < 0.30                              | 0      | 2           |                              |                  |                       |                                 |            |
| 2,2,4-trimethytpentane                | < 0.15                              | ö      | 15          |                              |                  |                       |                                 |            |
| 4-ethylkoluene                        | < 0.15                              | ö      | 15          |                              |                  |                       |                                 |            |
| Acelone                               | < 6.30                              | ō      | õ           |                              |                  |                       |                                 |            |
| Ally! chloride                        | < 0.15                              | ö      | 5           |                              |                  |                       |                                 |            |
| genzene                               | < 0.15                              | 0      | 15          |                              |                  |                       |                                 |            |
| Benzyl chloride                       | < 0.15                              | Ö      | 15          |                              |                  |                       |                                 |            |
| Bromodichloromethane                  | < 0.15                              | 0<br>Û | 15          |                              |                  |                       |                                 |            |
| Bromotorm                             | < 0.15                              | Ó      | 15          |                              |                  |                       |                                 |            |
| Bromomethane                          | < 0.15                              | Ö      | 15          |                              |                  |                       |                                 |            |
| Qualifiers: Results                   | reported are not blank corrected    |        | u           | Estimated Value above quan-  | titution tunge   | H Holding times for 1 | preparation or analysis exceede | 4          |
| J Analyte                             | : detected helow guartitation limit |        | 92          | Not Detected at the Limit of | Detection        | R RPD outside accep   | sted recovery limits            |            |
| S Spike R                             | tecovery outside accepted recovery  | limits | ñ           | Detection Limit              |                  |                       | Pa                              | ige I of 5 |
|                                       |                                     |        |             |                              |                  |                       |                                 |            |

| CLJENT: LaBella As:<br>Work Order: C2104038 | sociates, P.C.                    |           |           |                          |              |              | F               |               |                |                 |           |
|---------------------------------------------|-----------------------------------|-----------|-----------|--------------------------|--------------|--------------|-----------------|---------------|----------------|-----------------|-----------|
|                                             | SOIL MUSIU                        |           |           |                          |              |              |                 | 7°0 :ano      | STU-           |                 |           |
| Sample ID: AMB1UG-042021                    | SampType: MBLK                    | TestCode: | 0.20_NYS  | Units: ppbV              |              | Prep Date    |                 |               | RunNo: 17      | 523             |           |
| Client ID: ZZZZZ                            | Batch ID: R17523                  | TestNo:   | TO-15     |                          | 4            | malysis Date | 4/20/2021       |               | SeqNo: 191     | 8926            |           |
| Апајује                                     | Result                            | POL       | PK value  | SPK Ref Vai              | %REC         | LowLimit     | +ighLimit RPD ( | Ref Val       | %RPD           | RPDLimit        | Qual      |
| Carbon disutfide                            | < 0.15 V                          | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Carbon tetrachloride                        | < 0.030                           | 0:030     |           |                          |              |              |                 |               |                |                 |           |
| Chiorobenzene                               | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Chioroethane                                | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Chloroform                                  | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Chloromethane                               | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| cis-1.2-Dichtoroethene                      | < 0.040                           | 0.040     |           |                          |              |              |                 |               |                |                 |           |
| cis-1,3-Dichloropropene                     | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Cyclohexane                                 | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Dibromochtoromethane                        | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Ethyl acelate                               | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Ethylbenzene                                | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Freon 15                                    | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Freon 113                                   | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Frean 114                                   | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Freon 12                                    | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Heptare                                     | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Hexachloro-1,3-butadiene                    | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Нехале                                      | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Isopropyl alcohol                           | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| ពា&p-Xylene                                 | < 0.30                            | 0.30      |           |                          |              |              |                 |               |                |                 |           |
| Methyl Sutyl Ketone                         | < 0.30                            | 0.30      |           |                          |              |              |                 |               |                |                 |           |
| Methyl Ethyl Kelone                         | < 0.30                            | 0.30      |           |                          |              |              |                 |               |                |                 |           |
| Methyl Isobutyl Ketone                      | < 0.30                            | 0.30      |           |                          |              |              |                 |               |                |                 |           |
| Methyl tert-butyl ether                     | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Methylene chloride                          | 0.1169                            | 0.15      |           |                          |              |              |                 |               |                |                 | 7         |
| o-Xyfene                                    | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Propylene                                   | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Siyrene                                     | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Tetrachloroethylene                         | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Tetrahydrofuran                             | < 0.15                            | 0.15      |           |                          |              |              |                 |               |                |                 |           |
| Qualifiers: Results repor                   | ted are not blank corrected       |           | E Estima  | sed Value above quantil  | นเล่งบ รอกฏเ |              | H Holding       | times for pre | paration of a  | aalysis exceedo | 73        |
| J Analyte deter                             | cted below quantitation Jimis     |           |           | sected at the Limit of D | etection     |              | R RPD out       | Iside accepto | ł recovery lin | aits            |           |
| S Spike Kocow                               | cry outside accepted recovery lif | nuts      | JL Detern | 00 Lund                  |              |              |                 |               |                | Pa              | ge 2 of 5 |

| CLIENT: LaBella As<br>Work Order: C2104038<br>Project: 1500 leffer | sociates, P.C.<br>son Road                                   |                 |                           |                                                   |                         |                              | estCode: 0.                              | 20_NYS                                           |            |
|--------------------------------------------------------------------|--------------------------------------------------------------|-----------------|---------------------------|---------------------------------------------------|-------------------------|------------------------------|------------------------------------------|--------------------------------------------------|------------|
| Sample ID: AMB1UG-042021<br>Client ID: ZZZZZ                       | SampType: MBLK<br>Batch ID: R17523                           | TestCo<br>Testi | de: 0.20_NYS<br>Vo: TO-15 | Units: ppbV                                       | Pn<br>Analys            | ep Date:<br>is Date: 4/20/20 | 21                                       | RunNo: <b>17523</b><br>SeqNo: 198926             |            |
| Analyte                                                            | Result                                                       | bqL             | SPK value                 | SPK Rei Vai                                       | %REC Lowl               | -imit HighLimit              | RPD Ref Val                              | %RPD RPDLimit                                    | Qual       |
| Toluene                                                            | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  | ]          |
| trans-1,2-Dichloroethene                                           | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| trans-1,3-Dichforopropene                                          | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| Trichloroethene<br>Virud acetate                                   | <ul> <li>0.030</li> <li>0.15</li> </ul>                      | 0.030           |                           |                                                   |                         |                              |                                          |                                                  |            |
| Vinyl Bromide                                                      | <ul><li>0.15</li></ul>                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| Vinyl chloride                                                     | < 0.040                                                      | 0.040           |                           |                                                   |                         |                              |                                          |                                                  |            |
| Sample ID: AMB1UG-042121                                           | SampType: MBLK                                               | TestCo          | de: 0.20 NYS              | Units: ppbV                                       | Pa                      | sp Date:                     |                                          | RunNo: 17524                                     |            |
| Client ID: ZZZZZ                                                   | Batch ID: R17524                                             | Test            | Vo: TO-15                 |                                                   | Analys                  | is Date: 4/21/20             | 21                                       | SeqNo: 198943                                    |            |
| Analyte                                                            | Resut                                                        | PQL             | SPK value                 | SPK Ref Val                                       | "REC LOWI               | -imit HighLimit              | RPD Ref Val                              | %RPD RPDLimit                                    | Quai       |
| 1,1, 1-Trichloroethane                                             | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,1,2,2-Tetrachioroethane                                          | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,1,2-Trichloroethane                                              | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,1-Dichloroethane                                                 | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1.1-Dichloroethene                                                 | < 0.040                                                      | 0.040           |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,2,4-Trichlorobenzene                                             | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1.2,4-Trimethylbenzene                                             | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,2-Dibromoethane                                                  | < 0.15                                                       | 0.15<br>15      |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,∠-∪icnioropenzene<br>1.2-Dichioroethane                          | <ul><li>&lt; 0.15</li></ul>                                  | 0.15<br>0.15    |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,2-Dichloropropane                                                | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,3.5-Trimethylbenzene                                             | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,3-butadiene                                                      | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1, 3-Dichiorobenzene                                               | < 0.15                                                       | 0,15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,4-Dichlorobenzene                                                | < 0, 15                                                      | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 1,4-Dioxane                                                        | < 0.30                                                       | 0.30            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 2,2,4-(rimethylpentane                                             | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| 4-ethylkoluene                                                     | < 0.15                                                       | 0.15            |                           |                                                   |                         |                              |                                          |                                                  |            |
| Qualifiers: Results report<br>J Analyte detect                     | ted are not blank currexted<br>sted helow cuantitation limit |                 | E Estima<br>ND Not De     | tet Value above guanti<br>fected at the Limk of D | ation range<br>etection | шĸ                           | lalding tinus for p<br>PD outside accept | eparations or analysis exceeded recovery hundred | ted        |
| S Spike Recow                                                      | ery outside accepted recovery lim                            | its             | Di. Detecti               | ທ່າ ມະຄານ                                         |                         |                              |                                          | -                                                | age 3 of 5 |

| CLIENT: LaBelfa As<br>Work Order: C2104038<br>Project: 1500 Jeffer | sociates, P.C.<br>son Road       |         |            |             |                            |             | TestCode:           | 0.20_NYS                             |
|--------------------------------------------------------------------|----------------------------------|---------|------------|-------------|----------------------------|-------------|---------------------|--------------------------------------|
| Sample ID: AMB1UG-042121                                           | SampType: MBLK                   | Tesk    | Code: 0.2( | 0_NYS       | Units: ppbV                | Prep D      | ate:                | RunNo: 17524                         |
| Client IO: ZZZZ                                                    | Batch ID: R17524                 | Te      | stNo: TO.  | -12<br>-    |                            | Analysis D  | ate: 4/21/2021      | SeqNo: 198943                        |
| Analyte                                                            | Result                           | POL     | SPK        | value SPI   | K Ref Vat %R               | EC LowLimit | HighLimit RPD Ref V | # %RPD RPDLimit Quat                 |
| Acetone                                                            | < 0.30 V                         | 0.30    | _          |             |                            |             |                     |                                      |
| Allyi chloride                                                     | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Benzene                                                            | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Benzyl chloride                                                    | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Bromodichloromethane                                               | < 0.15                           | 0.1     |            |             |                            |             |                     |                                      |
| Bromoform                                                          | < 0.15                           | Q<br>45 |            |             |                            |             |                     |                                      |
| Bromomethane                                                       | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Carbon disulfide                                                   | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Carbon letrachloride                                               | < 0.030                          | 0.03(   |            |             |                            |             |                     |                                      |
| Chlorobenzene                                                      | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Chloroethane                                                       | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Chloroform                                                         | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Chloromethane                                                      | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| cis-1, 2-Dichlorcethene                                            | < 0.040                          | 0.040   | _          |             |                            |             |                     |                                      |
| cis-1,3-Dichforopropene                                            | < 0.15                           | 0.15    |            |             |                            |             |                     |                                      |
| Cyclohexane                                                        | < 0.15                           | 0.3     | 10         |             |                            |             |                     |                                      |
| Dibromochloromethane                                               | < 0.15                           | 4       |            |             |                            |             |                     |                                      |
| Ethyl acetate                                                      | < 0.15                           | 0.1     | 10         |             |                            |             |                     |                                      |
| Ethylbenzene                                                       | < 0.15                           | 0.1     |            |             |                            |             |                     |                                      |
| Freon 11                                                           | < 0.15                           | 0,11    |            |             |                            |             |                     |                                      |
| Freon 113                                                          | < 0.15                           | 0.1     | 6          |             |                            |             |                     |                                      |
| Freon 114                                                          | < 0.15                           | 0.1     |            |             |                            |             |                     |                                      |
| Freon 12                                                           | < 0.15                           | 0.1     | 10         |             |                            |             |                     |                                      |
| Heptare                                                            | < 0.15                           | 0.1     | 5          |             |                            |             |                     |                                      |
| Hexachtoro-1,3-buladiene                                           | < 0.15                           | 0.1     | 10         |             |                            |             |                     |                                      |
| Hexane                                                             | < 0.15                           | 0.1     | 10         |             |                            |             |                     |                                      |
| Isopropyl alcohol                                                  | < 0.15                           | 0.1     | In the     |             |                            |             |                     |                                      |
| ពេ&p-Xylene                                                        | < 0.30                           | 0.3     | ~          |             |                            |             |                     |                                      |
| Methyl Butyl Ketone                                                | < 0.30                           | Ð, Đ    | <u>~</u>   |             |                            |             |                     |                                      |
| Methyl Ethyl Ketone                                                | < 0.30                           | С<br>О́ | ~          |             |                            |             |                     |                                      |
| Methyl isobutyi Ketone                                             | < 0.30                           | Ē.      | 0          |             |                            |             |                     |                                      |
| Qualificers: Results repo                                          | rted are nut blank corrected     |         | دىز        | Estimated   | Vakie abswe quantitatio    | JAN STREET  | H Holding times     | for preparation or analysis exceeded |
| f Anslyte dete                                                     | eted befow quantitation limit    |         | 9 I        | Not Detecta | ed at the Linnit of Defect | ion         | R RPD outside a     | cepted recovery limits               |
| S Spike Recov                                                      | ery outside accepted recovery in | 1115    | сr<br>С    | Detection t | Jitter                     |             |                     | Page 4 of 5                          |

| CLIENT: LaBell<br>Work Order: C2104<br>Project: 1500 J | a Associates, P.C.<br>038<br>efferson Road |              |                      |                              |             |                            | Tes             | tCode: 0.        | 20_NYS                        |                                  |
|--------------------------------------------------------|--------------------------------------------|--------------|----------------------|------------------------------|-------------|----------------------------|-----------------|------------------|-------------------------------|----------------------------------|
| Sample ID: AMB1UG-0421:<br>Client ID: ZZZZZ            | 21 SampType: MBLK<br>Batch ID: R17524      | TestCo       | de: 0.20<br>No: TO-1 | NYS Units: ppbV<br>5         |             | Prep Date<br>Analysis Date | a:<br>4/2//2021 |                  | RunNo: 17524<br>SeqNo: 198943 |                                  |
| Analyte                                                | Result                                     | POL          | SPK v                | alue SPK Ref Val             | %REC        | LowLimit                   | Hight.imit RI   | PD Ref Val       | %RPD RPDI                     | umit Qual                        |
| Methyl tert-bulyl ether                                | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| Methylene chlonce<br>o-Xylene                          | < 0.15<br>< 0.15                           | 0.15<br>0.15 |                      |                              |             |                            |                 |                  |                               |                                  |
| Propylene                                              | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| Styrene                                                | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| l elfachloroelhyæne<br>Tetrahwitrofirran               | < U.15<br>< 0.15                           | 0.15<br>0.15 |                      |                              |             |                            |                 |                  |                               |                                  |
| Folgene                                                | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| trans-1,2-Dichloroethene                               | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| trans-1,3-Dichioropropene                              | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| Trichloroethene                                        | < 0.030                                    | 0:030        |                      |                              |             |                            |                 |                  |                               |                                  |
| Vinył acetate                                          | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| Vinyi Bromide                                          | < 0.15                                     | 0.15         |                      |                              |             |                            |                 |                  |                               |                                  |
| Vinyl chloride                                         | < 0.040                                    | 0.040        |                      |                              |             |                            |                 |                  |                               |                                  |
|                                                        |                                            |              |                      |                              |             |                            |                 |                  |                               |                                  |
|                                                        |                                            |              |                      |                              |             |                            |                 |                  |                               |                                  |
| Qanlifiers: Results                                    | reported are not blank corrected           |              | ш                    | Estimated Value above quar   | นปลาดา าวส  | 93                         | Hoh Ho          | ding times for J | separation of antivais (      | exceeded                         |
| J Analys                                               | e detected helow quantitation limit        |              | ÛZ I                 | Not Delocted at the Limit of | l'Detection |                            | R RPI           | ) outside accep  | ted recovery fimits           |                                  |
| S Smith                                                | lecovery outside accented recovery lit     | mis          | ä                    | Detection Limit              |             |                            |                 |                  |                               | $D_{reco} \in \mathcal{A}_{rec}$ |

Page ž of S



ANALYTICAL QC SUMMARY REPORT

| CLIENT:        | LaBella As   | sociates, P.C.   |                    |             |                |
|----------------|--------------|------------------|--------------------|-------------|----------------|
| Work Order:    | C2104038     |                  |                    |             |                |
| Project:       | 1500 Jeffer  | son Road         |                    |             |                |
| Sample ID: AL  | CS1UG-042021 | SampType: LCS    | TestCode: 0.20_NYS | Units: ppbV | Prep Date:     |
| Ctient ID: 27. | ~~~          | Batch ID: R17523 | TestNo: TO-15      |             | Analysis Date: |

| Sample ID: ALCS1UG-042021  | SampType: LCS                   | TestCode | 0.20_NYS    | Units: ppbV              |                  | Prep Date     | 1                     | RunNo: 17523                         |        |
|----------------------------|---------------------------------|----------|-------------|--------------------------|------------------|---------------|-----------------------|--------------------------------------|--------|
| Ctient ID: ZZZZ            | Batch ID: R17523                | TestNo   | TO-15       |                          | ~                | Inalysis Date | s: 4/20/2021          | SeqNo: 198927                        |        |
| Analyte                    | Result                          | PQL      | SPK value   | SPK Ref Val              | %REC             | JewLimit      | HighLimit RPD Ref Val | %RPD RPDLimit Q                      | La l   |
| 1,1,1-Trichloroethane      | 1.120                           | 0.15     | ¥#          | 0                        | 112              | 91.3          | 127                   |                                      |        |
| 1,1,2,2-Tetrachioroethane  | 1.080                           | 0.15     | **          | ¢                        | 108              | 78.7          | 121                   |                                      |        |
| 1,1,2-Trichloroethane      | 1.080                           | 0.15     | •           | 0                        | 108              | 88.1          | 136                   |                                      |        |
| 1,1-Dichloroethane         | 1.090                           | 0.15     | -           | 0                        | 109              | 86.1          | 123                   |                                      |        |
| 1, f-Dichloroethene        | 0066-0                          | 0.040    | ÷           | Q                        | <del>0</del> .66 | 70            | 64                    |                                      | s      |
| 1,2,4-Trichkprobenzene     | 1.250                           | 0.15     | -           | 0                        | 125              | 76.7          | 112                   |                                      | S      |
| 1.2.4-Trimethylbenzene     | 1.140                           | 0.15     | -           | 0                        | 114              | 74.3          | 123                   |                                      |        |
| 1,2-Dibromoethane          | 1.060                           | 0.15     |             | 0                        | 106              | 80.4          | 125                   |                                      |        |
| 1,2-Dichlorobenzene        | 1.030                           | 0.15     | ***         | Ð                        | 103              | 79.5          | 143                   |                                      |        |
| 1.2-Dichloroethane         | 1.120                           | 0.15     |             | ð                        | 112              | 70.9          | 133                   |                                      |        |
| 1,2-Dichloropropane        | 1.050                           | 0.15     |             | Û                        | 105              | 91            | 134                   |                                      |        |
| 1,3,5-Trimethytbenzene     | 1.100                           | 0.15     | -           | Q                        | 110              | 77.4          | 138                   |                                      |        |
| 1,3-butadiene              | 0.9900                          | 0.15     | -           | 0                        | 0.99.0           | 7             | \$44                  |                                      |        |
| 1, 3-Dichlorobenzene       | 1.070                           | 0.15     | -           | 0                        | 107              | 84.7          | 128                   |                                      |        |
| 1,4-Dichtorobenzene        | 1.140                           | 0.15     | -           | 0                        | 114              | 77.9          | 131                   |                                      |        |
| 1,4-Dioxane                | 1.090                           | 0:30     | ┯           | 0                        | 109              | 85.1          | 135                   |                                      |        |
| 2,2,4-trimethylpentane     | 1.060                           | 0.15     | -           | ð                        | 106              | 86.98         | 126                   |                                      |        |
| 4-ethylioluene             | 1,100                           | 0.15     | <b>4*</b> * | Ċ                        | 110              | 277.5         | 133                   |                                      |        |
| Acetone                    | 0.7600                          | 0.30     | ***         | ¢                        | 76.0             | 80.2          | 145                   |                                      | ŝ      |
| Allyi chloride             | 1.110                           | 0.15     | <b>v</b> -  | Ģ                        | 111              | 86.6          | 117                   |                                      |        |
| Benzene                    | 1.090                           | 0.15     | •           | 0                        | 109              | 88.9          | 122                   |                                      |        |
| Benzyl chloride            | 1.290                           | 0.15     | •           | O                        | 129              | 73.6          | 120                   |                                      | s<br>v |
| Bromodichioromethane       | 1.130                           | 0.15     | *-          | Ð                        | 113              | 84.3          | 133                   |                                      |        |
| Bromotorm                  | 1.050                           | 0,15     | <b>7</b> 4  | D                        | 105              | <b>44</b> .6  | 149                   |                                      |        |
| Bromenhane                 | 1.080                           | 0.15     | ÷           | Ċ                        | 108              | 78.7          | 144                   |                                      |        |
| Onalifiers: Results report | ried are not blank corrected    | :        | E Estim     | ated Value above quant   | thution cang     | u             | H Holding tunes h     | er preparations or analysis exceeded |        |
| J Anolyte dete             | cted betow quantitation limit   |          | ND Not D    | betected at the Limit of | Detection        |               | R RPD outside act     | cepted recovery limits               |        |
| S Spike Recov              | ery outside accepted recovery ] | stitus   | DI, Detee   | tion Limit               |                  |               |                       | Page                                 | 1 01 5 |

TestCode: 0.20\_NYS

Date: 05-M⊕=21

| CLIENT: LaBella As<br>Work Order: C2104038<br>Project: 1500 Jefter | sociates, P.C.<br>son Road      |          | · · · · · · · · · · · · · · · · · · · |                            |                |              | TestCod          | e: 0.20_NYS                         |             |
|--------------------------------------------------------------------|---------------------------------|----------|---------------------------------------|----------------------------|----------------|--------------|------------------|-------------------------------------|-------------|
| Sample ID: ALCS1UG-042021                                          | SampType: LCS                   | TestCade | 0.20 NYS                              | Units: ppbV                |                | Prep Date    |                  | RunNo: 17523                        |             |
| Client ID: ZZZZ                                                    | Batch ID: R17523                | TestNo:  | <b>TO-15</b>                          |                            | ¢              | nalysis Date | s: 4/20/2021     | SeqNo: 198927                       |             |
| Anaiyie                                                            | Result                          | PQL      | SPK value                             | SPK Ref Val                | %REC           | Kowlimit     | HighLimit RPD Re | Val %RPD RPDLim                     | it Quai     |
| Catton disulfide                                                   | 1.210                           | 0.15     | -                                     | Ċ                          | 121            | 76.9         | 109              |                                     | S           |
| Carton letrachloride                                               | 1.120                           | 0:030    | -                                     | 0                          | 112            | 12           | 120              |                                     |             |
| Chlorobenzene                                                      | 1.030                           | 0.15     | -                                     | 0                          | 103            | 82.6         | 121              |                                     |             |
| Chloroethane                                                       | 1.020                           | 0.15     | £                                     | 0                          | 102            | 67.1         | 146              |                                     |             |
| Chloraform                                                         | 1.090                           | 0.15     | -                                     | 0                          | 109            | 82.5         | 125              |                                     |             |
| Chloromethane                                                      | 1.000                           | 0.15     | -                                     | Ð                          | 100            | 71.1         | 154              |                                     |             |
| cis-1,2-Dichlorcethene                                             | 1.050                           | 0.040    | -                                     | ٥                          | 105            | 71.2         | 112              |                                     |             |
| cis-1,3-Dichloropropene                                            | 1,110                           | 0,15     | -                                     | 0                          | 111            | 90.3         | 137              |                                     |             |
| Cyclohexane                                                        | 1,070                           | 0.15     | *                                     | 0                          | 107            | 87           | 122              |                                     |             |
| Dibromochtoromethane                                               | 1.080                           | 0.15     | <b>4</b> 41                           | o                          | 108            | 62.8         | 132              |                                     |             |
| Ethyl acetate                                                      | 1,150                           | 0.15     |                                       | o                          | 115            | 86.9         | 134              |                                     |             |
| Ethylbenzene                                                       | 1.100                           | 0.15     |                                       | o                          | 110            | 76.9         | 123              |                                     |             |
| Freon 11                                                           | 1.010                           | 0.15     | -                                     | Ð                          | 101            | 54.4         | 150              |                                     |             |
| Freon 113                                                          | 1.100                           | 0.15     | -                                     | Q                          | 110            | 83.4         | 124              |                                     |             |
| Freon 114                                                          | 1.070                           | 0.15     | -                                     | 0                          | 107            | 82.4         | 144              |                                     |             |
| Fread 12                                                           | 1.510                           | 0.15     | -                                     | Ģ                          | 111            | 36.3         | 135              |                                     |             |
| Heotane                                                            | 1.100                           | 0.15     |                                       | ٥                          | 110            | 86.5         | 137              |                                     |             |
| Hexachloro-1.3-butadiene                                           | 1.200                           | 0.15     | -                                     | 0                          | 120            | 78.7         | 120              |                                     |             |
| Hexane                                                             | 1.090                           | 0.15     | 4                                     | 0                          | 109            | 77.3         | 128              |                                     |             |
| isopropyl elcohol                                                  | 0.9900                          | 0.15     | £                                     | 0                          | 0.66           | 80.2         | 122              |                                     |             |
| m&p-Xylene                                                         | 2.210                           | 0.30     | N                                     | Ð                          | 110            | 77.9         | 132              |                                     |             |
| Methyl Butyl Ketone                                                | 1.080                           | 0.30     | ~                                     | ¢                          | 108            | 69.4         | 131              |                                     |             |
| Methyl Ethyl Kefone                                                | 1.080                           | 0.30     | <del></del>                           | ¢                          | £08            | 71.5         | 117              |                                     |             |
| Methyl Isobutyl Ketone                                             | 1.080                           | 0.30     | -                                     | C                          | 108            | 63.5         | 141              |                                     |             |
| Methyl lert-butyl ether                                            | 1.080                           | 0.15     | -                                     | 0                          | 108            | 80.B         | 113              |                                     |             |
| Methylene chloride                                                 | 1.210                           | 0.15     | ***                                   | 0.11                       | 110            | 87.8         | 123              |                                     |             |
| o-Xviene                                                           | 1.090                           | 0.15     | <b>,</b>                              | D                          | 109            | 80.5         | 139              |                                     |             |
| Propylene                                                          | 1.080                           | 0.15     | -                                     | Ð                          | 108            | 96.2         | 135              |                                     |             |
| Styrene                                                            | 1.070                           | 0.15     | -                                     | ¢                          | 107            | 82.7         | 138              |                                     |             |
| Tetrachioroethylene                                                | 1.050                           | 0.15     | F                                     | Ċ                          | 105            | 85.9         | 122              |                                     |             |
| Tetrahydrofuran                                                    | 1.070                           | 0.15     | ÷                                     | C                          | 107            | 65.5         | 134              |                                     |             |
| Ondliftere Readly real                                             | nded are not blank corrected    |          | E Estin                               | iated Value above qual     | tistation rang | 4            | H Holding ti     | ses for preparation of analysis exe | ceded       |
| J Analyte det                                                      | ceted below quantitation limit  |          | ND NOI                                | betecked at the f jimit of | f Detection    |              | R RPD cutsú      | le accepted recovery limits         |             |
| S Spike Reco                                                       | wery outside accepted recuvery. | linnis   | DI. Detec                             | sion Limit                 |                |              |                  |                                     | Page 2 of 5 |

| CLIENT: LaBella As<br>Work Onlor: C2104038 | sociates, P.C.                 |         |                |                          |              |               |                      |                |                |                 |            |
|--------------------------------------------|--------------------------------|---------|----------------|--------------------------|--------------|---------------|----------------------|----------------|----------------|-----------------|------------|
| Project: 1500 Jeffer                       | son Road                       |         |                |                          |              |               | TestCo               | le: 0.20       | SYN            |                 |            |
| Sample (D: ALCS1UG-042021                  | SampType: LCS                  | TestCox | te: 0.20 NYS   | Units: ppbV              |              | Prep Date     |                      | L.             | InNo: 1752     |                 |            |
| Client ID: ZZZZ                            | Batch ID: R17523               | Testh   | to: TO-15      |                          | -            | Analysis Date | 4/20/2021            | ทั             | eano: 19893    | 27              |            |
| Analyte                                    | Result                         | POŁ     | SPK vatue      | SPK Ref Val              | %REC         | Jowtimit      | HighLímit RPD R      | el Val         | %RPD F         | <b>RPDLimit</b> | Quat       |
| Toluene                                    | 1.080                          | 0.15    |                | o                        | 801          | 77.8          | 127                  |                |                |                 |            |
| trans-1,2-Dictiloroethene                  | 1,670                          | 0.15    | F              | ¢                        | \$07         | 83.3          | 116                  |                |                |                 |            |
| Irans-1, 3-Dichloropropene                 | 1.150                          | 0.15    | F              | ¢                        | 115          | 84.8          | 134                  |                |                |                 |            |
| Trichioroethene                            | 1.060                          | 0.030   | <del></del>    | Q                        | 106          | 79.3          | 117                  |                |                |                 |            |
| Vinyt acetate                              | 1.070                          | 0.15    | £              | ٥                        | 107          | 70.5          | 101                  |                |                |                 | ა          |
| Vinyi Bromide                              | 1.030                          | 0.15    | F              | D                        | 103          | 81.4          | 142                  |                |                |                 |            |
| Vinyi chloride                             | 0.9800                         | 0.040   | ۲              | 0                        | 98.0         | 70.4          | 138                  |                |                |                 |            |
| Sample ID: ALCS1UG-042121                  | SampType: LCS                  | TestCo  | de: 0.20_NYS   | Units: ppbV              |              | Prep Date     |                      | R              | inNo: 17524    | -               |            |
| Client ID: ZZZZ                            | Batch ID: R17524               | Test    | 4o: TO-15      |                          |              | Anatysis Date | <pre>4/21/2021</pre> | Š              | gNo: 19894     | <b>4</b> 4      |            |
| Analyte                                    | Result                         | POL     | SPK value      | SPK Raf Val              | %REC         | LowLimit      | HighLimit RPD R      | ef Vai         | %RPD F         | <b>RPDLimit</b> | Qual       |
| 1 1 1-Trichloroethane                      | 1.240                          | 0.15    | -              | 0                        | 124          | 91.3          | 127                  |                |                |                 |            |
| 1.5.2-Tetrachloroethane                    | 1 220                          | 0.15    | <del>, -</del> | D                        | 122          | 78.7          | 121                  |                |                |                 | S          |
| 1.1.2-Trichloroethane                      | 1.180                          | 0.15    | <del>.</del>   | 0                        | 118          | 88.1          | 136                  |                |                |                 |            |
| 1.1-Dichloroethane                         | 1.110                          | 0.15    | ۴÷             | 0                        | 11‡          | 86.1          | 123                  |                |                |                 |            |
| 1.1-Dichloroethene                         | 0.9700                         | 0.040   | **             | Ċ                        | 97.0         | 02            | 94                   |                |                |                 | S          |
| 1,2,4-Trichiorobenzene                     | 1.500                          | 0.15    | <b>*</b> -     | Û                        | (120)        | 1676          | S 114-135            |                |                |                 | ა          |
| 1,2,4-Trimethylbenzene                     | 1.200                          | 0.15    | <b>*</b> **    | 0                        | 120          | 74.3          | 123                  |                |                |                 |            |
| 1,2-Dibromoethane                          | 1.190                          | 0.15    | ***            | Ð                        | 119          | 80.4          | 125                  |                |                |                 |            |
| 1.2-Dichlorobenzene                        | 1.350                          | 0.15    | ÷              | Q                        | 135          | 79.5          | 143                  |                |                |                 |            |
| 1,2-Dichloroethane                         | 1.120                          | 0.15    | <del>.</del>   | 0                        | 112          | 70.9          | 133                  |                |                |                 |            |
| 1,2-Dichloropropane                        | 1.210                          | 0.15    | -              | ٥                        | 121          | 9             | 134                  |                |                |                 |            |
| 1,3.5-Trimethylbenzene                     | 1.280                          | 0.15    | ┳              | 0                        | 128          | 4.77          | 138                  |                |                |                 |            |
| 1,3-butadiene                              | 1.070                          | 0.15    | -              | a                        | 107          | 7             | 144                  |                |                |                 |            |
| 1,3-Dichlorobenzene                        | 1.230                          | 0.15    | -              | 0                        | 123          | 84.7          | 128                  |                |                |                 |            |
| 1,4-Dichlorobenzene                        | 1.290                          | 0.15    | *              | 0                        | 129          | 9,17,9        | 131                  |                |                |                 |            |
| 1,4-Dioxane                                | 1.220                          | 0.30    | ***            | ð                        | 122          | 85.1          | 135                  |                |                |                 |            |
| 2,2.4-trimethytpentane                     | 1,170                          | 0.15    |                | 0                        | 117          | 86.9          | 126                  |                |                |                 |            |
| 4-ethy#oluena                              | 1.270                          | 0.15    | -              | 0                        | 127          | 77.5          | 133                  |                |                |                 |            |
| Orabification Results repo                 | ered are not black corrected   |         | E Estima       | ted Vakic above quan     | ditation ran | ວຄີ           | Holding t            | intes for prep | tration or ana | lysis exreedo   | 7          |
| J Analyte dele                             | seted befow quantitation limit |         | ND Not De      | tterted at fact limit of | Detection    |               | R RPD outs           | ide accepted r | ecovery limit  | 25              |            |
| S Spike Recov                              | very outside accepted recovery | basits  | DI. Detecti    | on Linit                 |              |               |                      |                |                | $P_{c}$         | وكو كالمرح |

| CLIENT:     | LaBella Associates, P.C.          |
|-------------|-----------------------------------|
| Work Order: | C2104038                          |
| Prniect.    | 1500 Jefferson Boad TestCode: 0.2 |

TestCode: 0.20 NYS

|                           | suil inuau                       |           |               |                       |               |               |                     |                                    | 1         |
|---------------------------|----------------------------------|-----------|---------------|-----------------------|---------------|---------------|---------------------|------------------------------------|-----------|
| Sample ID: ALCS1UG-042121 | SampType: LCS                    | TestCode: | 0.20_NYS      | Units: ppbV           |               | Prep Dale:    |                     | RunNo: 17524                       | [ · · · · |
| Client ID: ZZZZ           | Batch ID: R17524                 | TestNo    | TD-15         |                       | æ             | nalysis Date: | 4/21/2021           | SegNo: 198944                      | <u></u>   |
| Analyte                   | Result                           | POL       | PK value      | sPK Ref Val           | %REC          | Lové.imit Hig | hLimit RPD Ref Val  | %RPO RPDLimit Qual                 |           |
| Acetone                   | 1.110                            | 0.30      | 4             | 0                     | 111           | 80.2          | 145                 |                                    |           |
| Altyl chlonde             | 1.110                            | 0.15      | ***           | Ð                     | 111           | 85.6          | 117                 |                                    |           |
| Benzene                   | 1.130                            | 0.15      | 4ar.          | 0                     | £(            | 88.9          | 122                 |                                    |           |
| Benzyl chloride           | 1.400                            | 0.15      | <b>ب</b> ه    | ¢                     |               | 13.0 C        | 28/ art             | S                                  |           |
| Bromodichloromethane      | 1.230                            | 0.15      | <b></b> .     | ¢                     | 123           | 84.3          | 133                 |                                    |           |
| Bromoform                 | 1.170                            | 0.15      | <b>*</b>      | ¢                     | 117           | 44.6          | 149                 |                                    |           |
| Bromomethane              | 1,110                            | 0.15      | -             | Q                     | 111           | 78.7          | 144                 |                                    |           |
| Carbon disulfide          | 1.120                            | 0.15      | -             | ٥                     | 112           | 76.9          | 109                 | S                                  |           |
| Carbon tetrachioride      | 1.240                            | 0:030     | -             | ٥                     | 124           | 12            | 120                 | S                                  |           |
| Chiorobenzene             | 1.150                            | 0.15      |               | 0                     | 115           | 82.5          | 121                 |                                    |           |
| Chloroethane              | 1.070                            | 0.15      | -             | 0                     | 107           | 67.1          | 146<br>1            |                                    |           |
| Chloroform                | 1.110                            | 0.15      | -             | 0                     | 111           | 82.5          | 125                 |                                    |           |
| Сћіоготећале              | 1.020                            | 0.15      | ***           | o                     | 102           | 71.1          | 154                 |                                    |           |
| cis-1,2-Dichloroethene    | 1.050                            | 0.040     | <del>~-</del> | ð                     | 105           | 71.2          | 112                 |                                    |           |
| cis-1,3-Dichloropropene   | 1.220                            | 0.15      | чч<br>Т       | 0                     | 122           | 90.3          | 137                 |                                    |           |
| Cyclohexane               | 1_140                            | 0.15      | +             | ¢                     | 114           | 87            | 122                 |                                    |           |
| Dibromochioromethane      | 1.230                            | 0.15      | *             | ¢                     | 123           | 62.8          | 132                 |                                    |           |
| Ethyl acelate             | 1.130                            | 0.15      | •             | ç                     | 113           | 86.9          | 134                 |                                    |           |
| Ethylbenzene              | 1.150                            | 0.15      | -             | 0                     | 119           | 76.9          | 123                 |                                    |           |
| Freon 11                  | 1.180                            | 0.15      | -             | 0                     | 118           | 54.4          | 150                 |                                    |           |
| Freon 113                 | 1.130                            | 0.15      | -             | o                     | 113           | 83.4          | 124                 |                                    |           |
| Freon 114                 | 1.120                            | 0.15      | -             | 0                     | 112           | 82.4          | 144                 |                                    |           |
| Freen 12                  | 1.170                            | 0.15      | <del></del>   | O                     | 117           | 86.3          | 135                 |                                    |           |
| Heptane                   | 1.200                            | 0.15      | <b></b>       | ¢                     | <u>₽</u> (    | 86.5          | 137                 |                                    |           |
| Hexachioro-1,3-butadiene  | 1.500                            | 0 15      | •             | Ó                     | 3             | 59.4.8T       | 750/32              | ŝ                                  |           |
| Hexane                    | 1.080                            | 0.15      | -             | Q                     | 108           | 77.3          | 128                 |                                    |           |
| Isopropyt atcohoi         | 1.190                            | 0.15      | -             | Ģ                     | 119           | 80.2          | 122                 |                                    |           |
| m&p-Xylene                | 2.550                            | 0.30      | 7             | 0                     | 128           | 77,9          | 132                 |                                    |           |
| Methy) Butyl Ketone       | 1.190                            | 0:30      | +-            | 0                     | 119           | 69.4          | 131                 |                                    |           |
| Methyl Ethyf Ketone       | 1.050                            | 0.30      | -             | 0                     | 105           | 71.5          | 117                 |                                    |           |
| Methyl Isobutyl Ketone    | 1.200                            | 0.30      | <del></del>   | 0                     | 120           | 63.5          | 141                 |                                    |           |
| Oualifiers: Results repo  | orted are not blank corrected    |           | E Estimat     | ed Value above quan   | titation rang | 2             | H Holding times for | r preparation or analysis exceeded |           |
| J Analyte dete            | seted helow quantization limit   |           | ND Not Det    | ected at the Limit of | Detection     |               | R RPD outside acce  | spled recovery limits              |           |
| S Spike Recov             | very autside accepted recovery l | imits     | DI, Election  | an Linnia             |               |               |                     | Page 4                             | of 5      |

|                         |              |                 | •                | Qual                |                     |                   |          |           |         |                   |                 |                |                    |                    |                 | S             |               |                | đ                              |                       |                                     |
|-------------------------|--------------|-----------------|------------------|---------------------|---------------------|-------------------|----------|-----------|---------|-------------------|-----------------|----------------|--------------------|--------------------|-----------------|---------------|---------------|----------------|--------------------------------|-----------------------|-------------------------------------|
|                         | 20_NYS       | RunNo: 17524    | SegNo: 198944    | %RPD RPDLimit       |                     |                   |          |           |         |                   |                 |                |                    |                    | -               |               |               |                | reparation of analysis exceede | ted recovery limits   |                                     |
|                         | TestCode: 0. |                 | 4/21/2021        | ghLimit RPD Ref Val | 113                 | 123               | 139      | 135       | 138     | 122               | 134             | 127            | 116                | 134                | 117             | 101           | 142           | 138            | Helding times for p            | 12 BPD autoide accept |                                     |
|                         |              | Prep Date:      | Analysis Date:   | LowLimit Hi         | 80.8                | 87.8              | 80.5     | 96.2      | 82.7    | 85.9              | 65.5            | 77.8           | 83.3               | 84.8               | 79.3            | 70.5          | 81.4          | 70.4           | 20                             |                       |                                     |
|                         |              |                 | ~                | %REC                | 103 /               | 114               | 130      | 109       | 128     | 121               | <u>1</u> 8      | 119            | 108                | 113                | 117             | 102           | 108           | 101            | ว่าสาเอล กลุฎ                  |                       | Detection                           |
|                         |              | Units: ppbV     |                  | SPK Ref Val         | 0                   | 0                 | 0        | 0         | 0       | 0                 | 0               | 0              | 0                  | Ð                  | ¢               | ¢             | 0             | ¢              | ed Value above quant           | •                     | iected at the Liquit of             |
|                         |              | 20_NYS          | D-15             | X value             | -                   | -                 | -        | -         | ÷       | -                 | F               | <del>~</del> " | <del>ب</del>       | 4==                | ÷               | ¥~-           | -             | -              | Estimat                        |                       | D Not De                            |
|                         |              | TestCode: 0.    | TestNo: T        | PQL SP              | 0.15                | 0.15              | 0.15     | 0.15      | 0.15    | 0.15              | 0.15            | 0.15           | 0.15               | 0.15               | 0.030           | 0.15          | 0.15          | 0.040          |                                |                       | Z                                   |
| ociates. P.C.           | an Road      | SampType: LCS   | Batch ID: R17524 | Result              | 1.030               | 1.140             | 1.300    | 1.090     | 1.280   | 1.210             | 1.060           | 1, 190         | 1.080              | 1.130              | 1,170           | 1.020         | 1.080         | 1.010          | ted are not blank corrected    |                       | and below custifiesion limit        |
| LaBella Ass<br>C7104038 | 1500 Jeffers | 31UG-042121     | И                |                     | ther                | a                 |          |           |         | ne                |                 |                | sethene            | ອນອດ່ວນດີເ         |                 |               |               |                | . Results report               | •                     | <ol> <li>Analytic detect</li> </ol> |
| CLIENT:<br>Work Order   | Project:     | Sample ID: ALCS | Client ID: ZZZ   | Analyte             | Methyl tert-butyl e | Methylene chlorid | o-Xylene | Propylene | Styrene | Tetrachloroethyle | Tetrahyórofuran | Toluene        | trans-1,2-Dichlorc | trans-1,3-Dichlord | Trichloroethene | Vinyl acetate | Vinyl Bromide | Vinyt chloride | Ogalifiers:                    |                       |                                     |

Centek Laboratories,LLC

Page 5 of 5

Date: 05-May-21

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

| Project:         ISO jefferon Roat         Stant/pact. CSD         Tested: 0.20_MYS         Units: ppb/<br>(mission in the product stant/pact. CSD         Tested: 0.20_MYS         Units: 1723         Tested: 0.20_MYS           Clian (D. 22222         Badoi (D. R17723         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS           Clian (D. 22222         Badoi (D. R17723         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS           Clian (D. 22222         Badoi (D. R17723         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS           (L17) (Trichtorethene         Badoi (D. R17723         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS         Tested: 0.21_MYS           (L17) (Trichtorethene         1.020         0.15         1.1         0         1.02         0.11         0         0.21         2.1         1.01         0.12         2.1         1.01         0.12         2.1         2.2         0.01         1.2         2.0         0         2.2         2.0         0.01         2.2         0.01         1.01         0.01         2.2         0.01         2.2         0.01         2.2         2.2         0         0         2.2         2.2                                                                                                                                                                                                                                    | Project:         Jool Jefferon Kod         TartCode:         0.20         Net         Pare form         Pare for                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLIENT: LaBella As<br>Work Order: C2104038 | sociates, P.C.                 |          |               |                         |              |               |            |                  |                      |              |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|----------|---------------|-------------------------|--------------|---------------|------------|------------------|----------------------|--------------|--------|
| Sample ID: ALCSFUED-odd2011         Tampinge ICSD         TestCort. G2D, WFS         Units         PDD         Edun.         T7223         TestCort. G2D, WFS         SEPD         PGD_EInit         Cort. G2D, WFS         SEPD         PGD_EInit         Cort. G2D, WFS         Gart. G2D, Gart. G2D, Gart. G2D, Gart. G2D, WFS         Gart. G2D, Gart. G2D, Gart. G2D, WFS         Gart. G2D, Gart |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project: 1500 Jeffer                       | son Road                       |          |               |                         |              | :             | Te         | stCode: (        | SYN_02.              |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ident D.         ZZZZ         Bach D.         K1752         Teshter TO-15         Analysis Date:         Academic Holorer         Reader         Feature         Col         Serpo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample ID: ALCS1UGD-042021                 | SampType: LCSD                 | TestCode | 0.20 NYS      | Units: ppbV             |              | Prep Date     |            |                  | RunNa: 17523         |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{  c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Client ID. ZZZZ                            | Batch ID: R17523               | Tesho    | : TO-15       |                         |              | Analysis Date | : 4/20/202 | -                | SeqNo: 198928        | ~            |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anaiyie                                    | Result                         | Pat      | SPK value     | SPK Ref Val             | %REC         | JowLimit      | HighLimit  | Ref Vat          | %RPD R               | 201_imit     | Guat   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3.2-Terachenembare         1.00         0.15         1         0         102         63.1         123         108         5.32         0           1.3.2-Terachenembare         1.000         0.15         1         0         102         63.1         123         109         65.4         0           1.3.2-Terbenembare         1.3.2.7         0.15         1         0         123         123         129         65.4         0         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1.1-Trichloroethane                      | 1.060                          | 0.15     |               | D                       | 1901         | 91.3          | 127        | 1.12             | 5.50 V               | 0            |        |
| 1,12.7 if the fore than a to 100 0 to 1         1         0         102 0 to 1         1         0         5.71 0 to 0         0         0         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1.2.2-Tetrachloroethane                  | 1.050                          | 0.15     | -             | ð                       | 105          | 78.7          | 121        | 1.08             | 2.82                 | 0            |        |
| 1;1:Dichlocentane         1,0:Dichlocentane         1,1:Dichlocentane         1,1:Dichlocentane                                      | (1-C)chronentane         1000         013         1         0         102         61         123         109         654         0         5           (1-C)chronentane         1200         013         1         0         920         77         91         925         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913         913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1.2-Trichlorcethane                      | 1.02D                          | 0.15     | -             | o                       | 102          | 88.1          | 136        | 1.08             | 5.71                 | Ð            |        |
| 1,1-Dichloroethere         0.3800         0.040         1         0         980         70         98         0.95         102         0         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Unchloredhene         0.980         0.040         1         0         122         0.040         1         0         122         122         0.04         122         123         0.04         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123         123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1-Dichioroethane                         | 1.020                          | 0.15     | -             | o                       | 102          | 86.1          | 123        | 1.09             | 6.64                 | 0            |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, 1-Dichloroethene                        | 0.9800                         | 0.040    | -             | G                       | 98.0         | 02            | 94         | 0.99             | 1.02                 | 0            | s      |
| 12.4.Trimethyldenzene       1180       015       1       0       118       743       123       114       345       0         12.0Dichlosehenzene       1060       0.15       1       0       106       6.04       125       14       345       0       0         12.0Dichlosehenzene       1.060       0.15       1       0       101       91       123       112       6.45       0       0       0         12.0Dichlosehenzene       1.016       0.15       1       0       101       91       124       105       545       0       0       0         13.5.Trimethyltenzene       1.2.00       0.15       1       0       122       124       128       107       545       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.4.Timethybenzene       1180       015       1       0       118       713       114       345       0         12.5.Dehomehrane       1.660       0.15       1       0       166       6.0.4       0       0       0         12.5.Dehomehrane       1.600       0.15       1       0       166       6.0.5       17.3       1.2       1.2       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2.4-Trichlorobenzene                     | 1.320                          | 0.15     | <del>~~</del> | G                       | 132          | 76.7          | 112        | 1.25             | 5.45                 | 0            | s      |
| (12)Dichronochane         (10)         (12)         (12)Dichronochane         (12)Dichronochane<                                     | (12)bit/onceritant         (12)bit/onceritant         (12)bit/onceritant         (12)bit/onceritant         (16)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (13)         (11)         (11)         (11)         (11)         (11)         (11)         (11)         (11)         (11) <td>1,2,4-Trimethylbenzene</td> <td>1.180</td> <td>0.15</td> <td>**</td> <td>Q</td> <td>118</td> <td>74.3</td> <td>123</td> <td>1.14</td> <td>3.45</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                               | 1,2,4-Trimethylbenzene                     | 1.180                          | 0.15     | **            | Q                       | 118          | 74.3          | 123        | 1.14             | 3.45                 | 0            |        |
| 12-Dicklorobencene         1.80         0.15         1         0         125         143         1.03         1.35         0           1.2-Dicklorobencene         1.050         0.15         1         0         107         31         1.12         6.45         0           1.2-Dicklorobencene         1.050         0.15         1         0         122         77.4         138         1.12         6.45         0           1.2-Dicklorobencene         1.22         0.15         1         0         122         7.7         144         0.96         6.25         0           1.3-Dicklorobencene         1.120         0.15         1         0         122         7.7         138         1.12         0           1.3-Dicklorobencene         1.120         0.15         1         0         122         1.14         0.96         6.25         0           1.3-Dicklorobencene         1.100         0.05         1         0         1.12         1.12         0         1.14         0.35         0         0           1.3-Dicklorobencene         1.120         0.15         1         0         1.12         1.14         0.95         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                | 12-Dichlorobenzene         1.80         0.15         1         0         105         735         143         103         135         0           12-Dichlorobenzene         1010         0.15         1         0         101         11         0         135         103         112         645         0           12-Dichlorobenzene         1.20         0.15         1         0         101         112         0         135         112         645         0         0           12-Dichlorobenzene         1.20         0.15         1         0         122         774         136         111         103         645         0           1.3-Dichlorobenzene         1.200         0.15         1         0         122         774         136         117         103         645         0         0           1.3-Dichlorobenzene         1.200         0.15         1         0         123         124         103         645         0         0           1.3-Dichlorobenzene         1.200         0.15         1         0         112         126         0         114         103         114         114         103         11         114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dibromoethane                          | 1.060                          | 0.15     | <b>~</b> ~~   | 0                       | 106          | 80.4          | 125        | 1.06             | 0                    | 0            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dichlorobenzene                        | 1.180                          | 0.15     | <b>f</b>      | 0                       | 118          | 79.5          | 143        | 1.03             | 13.6                 | 0            |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2.Dichloroethane                         | 1.050                          | 0.15     | -             | 0                       | 105          | 70,9          | 133        | 1.12             | 6.45                 | ò            |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3.5.Trimetrythenzene       1.23.5.Trimetrythenzene       1.23.5.Trimetrythenzene       1.23.5.Trimetrythenzene       1.23.5.Trimetrythenzene       1.13.5.Trimetrythenzene       1.13.5.Tritrimetrythenzene       1.13.5.Trimetrythenzene                                                                                                                                                                                                          | 1.2-Dichloropropane                        | 1.010                          | 0.15     | -             | 0                       | 101          | 9             | 134        | 1.05             | 3.83                 | Ċ            |        |
| 1,3-butadiene       0.3900       0.15       1       0       9.3.0       7.1       1.44       0.36       6.2.5       0         1,3-butadiene       1.120       0.15       1       0       1.2       8.4.7       1.28       1.07       4.5.13       0         1,4-brichotobenzene       1.120       0.30       1       0       1.20       1.12       8.4.7       1.28       1.07       4.5.13       0         1,4-brichotobenzene       1.100       0.30       1       0       1.20       1.12       8.4.7       1.28       1.07       4.5.13       0         1,4-brichotobenzene       1.200       0.15       1       0       1.20       1.25       1.35       1.09       0         1,4-brickene       1.200       0.15       1       0       1.21       7.5       1.35       1.1       9.52       0         2.2-dimethylperitane       1.050       0.15       1       0       1.21       7.5       1.33       1.1       9.52       0         Actions       1.100       0.15       1       0       1.01       1.01       1.1       9.52       0       7.5       1.4       1.66       0.76       27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,3-buildene       0.3300       0.15       1       0       33.0       71       144       0.96       5.25       0         1,3-Dichlorobenzene       1,120       015       1       0       120       123       107       457       0         1,4-Dichlorobenzene       1,120       015       1       0       120       135       107       457       0         1,4-Dicentochenzene       1,100       0.30       1       0       120       135       106       0.313       0         1,4-Disente       1,500       0.15       1       0       120       135       106       0.313       0         1,4-Disente       1,210       0.15       1       0       121       126       169       5.13       0         1,4-Disente       1,210       0.15       1       0       121       175       133       1.1       9.52       0         Action       1,100       0.15       1       0       107       889       126       0.76       27.3       0         Action       1,100       0.15       1       0       107       889       122       1,16       0.76       27.3       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,3.5-Trimethylbenzene                     | 1.220                          | 0.15     | -             | Ð                       | 122          | 517           | 138        | 1.1              | 10.3                 | Ö            |        |
| 1.3 Dischlorobenzene         1.120         0.15         1         0         112         8.4.7         128         1.07         4.57         0           1.4 Dischlorobenzene         1.200         0.15         1         0         120         77.9         131         1.1.4         5.13         0           1.4 Dischlorobenzene         1.100         0.30         1         0         120         77.9         131         1.1.4         5.13         0           2.2 4.4timethylpentane         1.100         0.30         1         0         121         77.5         133         1.1         9.52         0           2.2 4.4timethylpentane         1.200         0.30         1         0         121         77.5         133         1.1         9.52         0           4 ethyltoluene         1.000         0.30         1         0         100         80.2         145         0.7         17.1         9.52         0           Adeltor         1.001         0.15         1         0         100         80.2         145         0.1         0         0           Benzyl chloride         1.100         0.15         1         0         100         82.2                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3-Dischlorobenzene       1.120       0.15       1       0       112       8.47       128       1.07       4.57       0         1.4-Dischlorobenzene       1.100       0.15       1       0       120       77.9       131       1.14       5.13       0         1.4-Dischlorobenzene       1.100       0.30       1       0       105       65       120       0313       0         1.4-Dischlorobenzene       1.100       0.30       1       0       105       851       135       1.14       9.33       0         1.4-Dischlorobenzene       1.100       0.30       1       0       105       865       126       0.343       0         4-sthyftoluene       1.200       0.15       1       0       107       865       117       1.11       8.45       0         Actione       1.300       0.15       1       0       107       889       122       1.05       1.85       0       1.85       0       1.85       0       1.85       0       1.85       0       1.85       0       1.85       0       1.85       0       1.85       0       1.85       1.12       1.12       1.12       1.13 </td <td>1.3-butadiene</td> <td>0.9300</td> <td>0.15</td> <td></td> <td>¢</td> <td>93.0</td> <td>71</td> <td>144</td> <td>66-0</td> <td>6.25</td> <td>¢</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3-butadiene                              | 0.9300                         | 0.15     |               | ¢                       | 93.0         | 71            | 144        | 66-0             | 6.25                 | ¢            |        |
| 1.4-Dischlarobenzene       1.200       0.15       1       0       120       77.9       13       1.14       5.13       0 $1.4$ -Discane       1.100       0.30       7       0       100       85.1       135       1.06       0.313       0 $2.2.44$ -timethypentane       1.100       0.30       1       0       105       85.1       135       1.06       0.313       0 $2.2.44$ -timethypentane       1.050       0.15       1       0       102       85.6       1.17       9.16       0.343       0 $4 pit choride       1.200       0.15       1       0       102       86.6       117       1.11       8.45       0         4 h j choride       1.320       0.15       1       0       102       86.6       117       1.11       8.45       0         Benzon       1.000       0.15       1       0       107       86.5       1.12       1.12       1.11       8.45       0         Benzon       0.0500       0.15       1       0       102       86.5       1.12       1.12       1.12       0         Benzon       0.0500       0.15       1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4-Dicchlorobenzene       1.200       0.15       1       0       120       131       1.14       5.13       0 $1.4$ -Dioxane       1.100       0.30       1       0       100       85.1       135       1.14       5.13       0 $2.2.44$ -timethypentane       1.100       0.30       1       0       105       86.9       126       0.948       0 $2.2.44$ -timethypentane       1.210       0.15       1       0       107       86.9       126       1.69       0.948       0       0 $2.2.44$ -timethypentane       1.210       0.15       1       0       101       86.9       126       1.49       5.73       0       0         Allochide       1.320       0.15       1       0       100       80.2       145       0.76       18.45       0       0       0       0       0       0       10       0       10       0       11       0       11       0       11       11       11       11       0       0       0       0       0       0       0       0       11       11       11       11       11       0       0       0 <td< td=""><td>1.3-Dichlorobenzene</td><td>1.120</td><td>0.15</td><td></td><td>0</td><td>112</td><td>84.7</td><td>128</td><td>1.07</td><td>4.57</td><td>0</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3-Dichlorobenzene                        | 1.120                          | 0.15     |               | 0                       | 112          | 84.7          | 128        | 1.07             | 4.57                 | 0            |        |
| 14-Dioxane       1100       0.30       1       0       110       8.1       135       1.06       0.913       0         2.2.4-timethylpentane       1.050       0.15       1       0       105       86.9       126       1.06       0.948       0         4-ethytholuene       1.050       0.15       1       0       121       77.5       133       1.1       9.52       0         Acetone       1.006       0.30       1       0       121       77.5       133       1.1       9.52       0       0         Acetone       1.006       0.30       1       0       100       80.2       1.4       0.76       27.3       0         Alyi chloride       1.070       0.15       1       0       107       88.9       122       1.11       8.45       0       0         Benzyl chloride       1.160       0.15       1       0       107       88.9       122       1.06       0.76       27.3       0         Benzene       1.160       0.15       1       0       102       88.9       122       1.09       1.85       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4-Dichlorobenzene                        | 1.200                          | 0.15     | +             | đ                       | 120          | 77.9          | 131        | 1.14             | 5,13                 | 0            |        |
| 2,2,4-trimethylpertane       1,050       0,15       1       0       105       66.9       126       1,06       0.948       0         4ethylbuene       1,210       0,15       1       0       121       77.5       133       1,1       9.52       0         Acetone       1,000       0,15       1       0       100       80.2       145       0,76       27.3       0         Acetone       1,000       0,15       1       0       100       80.2       145       0,76       27.3       0         Acetone       1,070       0,15       1       0       107       86.9       122       1,07       8.45       0         Benzyl chloride       1,180       0,15       1       0       118       73.6       122       1,05       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td><math display="block"> \begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>1.4-Dioxane</td> <td>1.100</td> <td>0.30</td> <td>***</td> <td>٥</td> <td>110</td> <td>85.†</td> <td>135</td> <td>1.09</td> <td>0.913</td> <td>¢</td> <td></td>                                                                                                                                                                                                                                                                                  | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4-Dioxane                                | 1.100                          | 0.30     | ***           | ٥                       | 110          | 85.†          | 135        | 1.09             | 0.913                | ¢            |        |
| 4-thytholene       1       210       015       1       0       121       77.5       133       1.1       9.52       0         Acetone       1.006       0.30       1       0       100       80.2       145       0.76       27.3       0         Allyi Choride       1.020       0.15       1       0       107       86.6       117       1.11       8.45       0         Benzyl Choride       1.070       0.15       1       0       107       88.9       122       1.05       1       0         Benzyl Choride       1.180       0.15       1       0       107       88.9       1.22       1.85       0       0         Benzyl Choride       1.010       0.15       1       0       118       73.6       120       1.85       0       0         Benzyl Choride       1.010       0.15       1       0       90.0       44.6       149       1.16       0       0       0         Benoficitiormethane       0.9600       0.15       1       0       90.0       73.7       144       108       11.2       0       0         Benoroficitiormethane       0.9600       0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4-thytholuene       1       1       0       121       77.5       133       1.1       9.52       0         Acetone       1.006       0.30       1       0       100       80.2       145       0.76       27.3       0         Acetone       1.006       0.30       1       0       100       80.2       145       0.76       27.3       0         Ally choride       1.070       0.15       1       0       107       84.9       1.17       1.11       8.45       0         Busice       1.070       0.15       1       0       107       84.9       1.20       1.85       0         Busice       1.160       0.15       1       0       118       7.36       1.20       1.85       0       0         Busice       0.0600       0.15       1       0       118       7.36       1.20       1.22       1.45       0       0         Busice       0.0600       0.15       1       0       9.07       4.6       1.09       1.12       1.12       1.12       1.12       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.2.4-frimethyloestane                     | 1.050                          | 0.15     | -             | 0                       | 105          | 86.9          | 126        | 1.06             | 0.948                | 0            |        |
| Actenie       1006       0.0       100       80.2       145       0.76       27.3       0         Allyl choride       1.920       0.15       1       0       100       80.2       145       0.76       27.3       0         Benzele       1.920       0.15       1       0       107       86.6       117       1.11       8.45       0         Benzele       1.970       0.15       1       0       107       88.9       122       1.06       1.85       0         Benzyl choride       1.160       0.15       1       0       118       73.6       120       1.85       0         Benzyl choride       0.9600       0.15       1       0       94.3       133       11.2       0         Bromodichloromethane       0.9600       0.15       1       0       99.0       44.6       149       105       11.2       0         Bromodichloromethane       0.9600       0.15       1       0       99.0       78.7       144       108       11.2       0         Makive detected below quantization ningt       1       1       1       1       1       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Actione       1006       0.0       10       80.2       145       0.76       27.3       0         Allyl chloride       1.020       0.15       1       0       102       86.6       117       1.11       8.45       0         Benzene       1.070       0.15       1       0       107       88.9       122       1.85       0         Benzyl chloride       1.180       0.15       1       0       107       88.9       122       1.85       0         Benzyl chloride       1.180       0.15       1       0       118       73.6       120       1.85       0         Benzyl chloride       0.9900       0.15       1       0       107       84.3       133       11.2       0       0         Bromodifiloromethane       0.9900       0.15       1       0       90.0       44.6       149       106       11.2       0         Bromodifiloromethane       0.9600       0.15       1       0       90.0       73.5       133       11.2       0       0         Bromodifiloromethane       0.9600       0.15       1       0       90.0       74.7       144       108       11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-ethyttoluene                             | 1.210                          | 0.15     |               | 0                       | 121          | 77.5          | 133        | 1.1              | 9.52                 | 0            |        |
| Allyli chloride       1.020       0.15       1       0       102       86.6       117       1.11       8.45       0         Benzene       1.070       0.15       1       0       107       88.9       122       1.09       1.85       0         Benzene       1.070       0.15       1       0       107       88.9       122       1.09       1.85       0         Benzene       1.180       0.15       1       0       118       73.6       122       1.09       1.85       0         Benondichloromethane       1.010       0.15       1       0       101       84.5       1       0         Bromodichloromethane       1.010       0.15       1       0       99.0       44.6       149       1.05       0         Bromonethane       0.9600       0.15       1       0       96.0       78.7       14       1.06       11.8       0         Jable detected below quantization time       NoI Detected at the Limit of Detection       78.7       14       1.08       11.8       0         Jable detected below quantization limit       NoI Detected at the Limit of Detection       78.7       14       1.08       11.8       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Allyl chloride       1.020       0.15       1       0       102       86.6       117       1.11       8.45       0         Benzene       1.070       0.15       1       0       107       88.9       122       1.09       1.85       0         Benzene       1.160       0.15       1       0       107       88.9       122       1.09       1.85       0         Benzene       1.010       0.15       1       0       101       84.3       133       1.12       0       0         Bromodichloromethane       1.010       0.15       1       0       101       84.3       133       1.12       0       0         Bromodichloromethane       0.9600       0.15       1       0       95.0       44.6       149       1.16       0       0         Bromonethane       0.9600       0.15       1       0       95.0       73.6       1.49       1.06       11.6       0         Bromonethane       0.9600       0.15       1       0       96.0       73.6       1.49       1.06       11.6       0         Jails reported are tot blank corrected       0       95.0       78.7       1.49<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acetone                                    | 1.006                          | 0.30     | -             | 0                       | 100          | 80.2          | 145        | 0.76             | 27.3                 | 0            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene       1.070       0.15       1       0       107       88.9       122       1.05       185       0         Benzyl chloride       1.180       0.15       1       0       101       84.3       122       1.05       1.85       0         Bromodichloromethane       1.010       0.15       1       0       101       84.3       1.33       1.12       0       0         Bromodichloromethane       0.0900       0.15       1       0       90.1       84.5       133       1.12       1       0       0         Bromodichloromethane       0.9900       0.15       1       0       96.0       78.7       14       1.06       11.8       0         Bromomethane       0.9900       0.15       1       0       96.0       78.7       14       1.06       11.8       0         Mail fices:       Results reported are not blank corrected       E       E stimated value above quantitation range       78.7       14       1.06       11.8       0         Mail fices:       Results reported are not blank corrected       ND       Not Detected at the Limit of Detection       78.7       14       1.06       11.8       0         Mail fices: <td>Alivi chloride</td> <td>1.020</td> <td>0.15</td> <td><del>.</del></td> <td>0</td> <td>102</td> <td>86.6</td> <td>117</td> <td>1.11</td> <td>8,45</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alivi chloride                             | 1.020                          | 0.15     | <del>.</del>  | 0                       | 102          | 86.6          | 117        | 1.11             | 8,45                 | 0            |        |
| $ \begin{array}{c ccccc} Benzyl chloride & 1.160 & 0.15 & 1 & 0 & 118 & 73.6 & 120 & 1.29 & 8.91 & 0 \\ Bromodichloromethane & 1.010 & 0.15 & 1 & 0 & 101 & 84.3 & 133 & 1.13 & 11.2 & 0 \\ Bromoform & 0.9600 & 0.15 & 1 & 0 & 99.0 & 44.6 & 149 & 1.05 & 5.88 & 0 \\ Bromomethane & 0.9600 & 0.15 & 1 & 0 & 96.0 & 78.7 & 144 & 1.08 & 11.8 & 0 \\ \hline \mbox{alifiers:} & Results reported are not blank corrected & E & Estimated Value above quantition range & H & Holding times for preparation or analysis exceeded \\ \mbox{J Analyte detected below quantition limit & ND & Not Detected at the Limit of Detection \\ \mbox{J S } Spike Reevvery anside accepted recovery limits D1. Detection Limit \\ \end{array} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzene                                    | 1.070                          | 0.15     | -             | 0                       | 107          | 88.9          | 122        | 1.09             | 1.85                 | 0            |        |
| Bromodic Informethane1.0100.151010184.31333.1311.20Bromodic Informethane0.99000.151099.044.61491.055.880Bromone thane0.96000.151099.044.61491.0611.80Bromone thane0.96000.151096.078.71441.0811.80JAnalyte detected below quantitation ImageE stimated Value above quantitation ImageHHolding times for preparation or analysis exceededJAnalyte detected below quantitation limitNDNot Detection Limit of DetectionRP.P.P.SSpike Reevery anside accepted recovery limitsD.Detection LimitD.Detection LimitP.P.P.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzvi chloride                            | 1.180                          | 0.15     | *             | φ                       | 118          | 73.6          | 120        | 1.29             | 8.91                 | 0            |        |
| Bromoform0.99000.151099.0 $44.6$ 1491.055.850Bromomelhane0.96000.151099.0 $44.6$ 1491.0611.80Bromomelhane0.96000.151096.078.71441.0811.80Qualifiers:Results reported are not blank correctedEEstimated Value above quantitation rangeHHolding times for preparation or analysis exceededQualifiers:Results accored below quantitation limitNDNot Detected at the Limit of DetectionRRPID outside accepted recovery limitsSSpike Recovery antside accepted recovery limitsD1.Detection LimitD1.Detection LimitPage I $g/5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromoform0.96000.151099.0 $44.6$ 1491.055.850Bromomelhane0.96000.151096.078.71441.0811.80Datificers:Results reported are not blank correctedEEstimated Value above quantitation rangeHHolding times for preparation or analysis exceededJAnalyte detected below quantitation limitNDNot Detected at the Limit of DetectionRRPlo outside accepted recovery limitsSSpike Recovery anside accepted recovery finitisD1.Detection LimitN.RPlo outside accepted recovery limitsPage I of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromodichloromethane                       | 1.010                          | 0.15     | **            | o                       | 101          | 84.3          | 133        | 3,13             | 11.2                 | o            |        |
| Bromomethane     0.9600     0.15     1     0     95.0     78.7     144     1.06     11.6     0       Qualifiers:     .     Results reported are not blank corrected     E     E estimated Value above quantitation range     H     Holding times for preparation or analysis exceeded       J     Analyte detected below quantitation limit     ND     Not Detected at the Limit of Detection     R     RPD outside accepted recovery limits       S     Spike Recovery analytic accepted recovery limits     D1.     Detection Limit     Parention     Page I of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bromomethane     0.9600     0.15     1     0     96.0     78.7     144     1.08     11.8     0       Qualifiers:     .     .     Results reported are tot blank corrected     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     .     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bromoform                                  | 0.9900                         | 0.15     | yes:          | Ģ                       | 66.0         | 44.6          | 149        | 1.05             | 5.88                 | 0            |        |
| Qualifiers:     Results reported are not blank corrected     E     E estimated Value above quantitation range     H     Holding times for preparation or analysis exceeded       J     Analysic detected below quantitation limit     ND     Not Detected at the Limit of Detection     R     R     PD outside accepted recovery limits       S     Spike Recovery outside accepted recovery limits     DL     Detection Limit     Page 1 of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qualifiers:       Results reported are not blank corrected       E       Estimated Value above quantitation range       H       Holding times for preparation or analysis exceeded         J       Analyte detected below quantitation limit       ND       NOI Detected at the Limit of Detection       R       RPD outside accepted recovery limits         S       Spike Recovery outside accepted recovery finits       D1.       Detection Limit       Page 1 of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bromomethane                               | 0.9600                         | 0.15     | Y.W.          | O                       | 96.0         | 78.7          | 144        | 1.08             | 11.8                 | 0            |        |
| <ul> <li>J Analytic detected below quantitation limit</li> <li>ND Not Detected at the Limit of Detection</li> <li>R PPD outside accepted recovery limits</li> <li>D. Detection Limit</li> <li>R PPD outside accepted recovery limits</li> <li>Page 1 of 5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>Analyte detected below quantization limit</li> <li>ND Not Detected at the Limit of Detection</li> <li>R PPD outside accepted recovery limits</li> <li>D Detection Limit</li> <li>D Detection</li> <li>R PPD outside accepted recovery limits</li> <li>D Detection Limit</li> <li>D Detection</li> <li>R PPD outside accepted recovery limits</li> <li>D Detection</li> <li>D Detection</li> <li>D Detection</li> <li>D Detection</li> <li>D Detection</li> <li>R PPD outside accepted recovery limits</li> <li>D Detection</li> <li>D D</li></ol> | Onalifiers: Results repo                   | orted are not blank corrected  |          | E Estim       | ated Value above quar   | atitation mn | 2             | Ĩ          | olding tiaks for | preparation or analy | sis exceeded | Ŧ      |
| S Spike Recovery outside accepted recovery funits Di. Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S Spike Reevery outside accepted recovery finitis Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J Analytic dete                            | cored below quantization limit |          | NOI DI        | viccied at the Limit of | f Detection  |               | а<br>а     | PD outside acce  | pted recovery limits |              |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S Spike Recor                              | very outside accepted recovery | tentits  | DI. Detec     | tion Litrait            |              |               |            |                  |                      | Pa           | 201015 |

LaBella Associates, P.C. C2104038 1500 Jefferson Road

CLJENT: Work Order:

Project:

| Z,       |  |
|----------|--|
| ຊ່       |  |
| 0        |  |
| ••       |  |
| de       |  |
| Ω̈́.     |  |
| cst      |  |
| <u> </u> |  |

| NXS      |
|----------|
| 0.20     |
| estCode: |

| Centek Laboratories,LLC |  |
|-------------------------|--|
|                         |  |

| Sample ID: ALCS1UGD-042021 | SampType: LCSD                  | TestCode: | 0.20_NVS     | Units: ppbV               |              | Prep Date     |            |                     | RunNo: 1752        | 23             |        |
|----------------------------|---------------------------------|-----------|--------------|---------------------------|--------------|---------------|------------|---------------------|--------------------|----------------|--------|
| Client ID: ZZZZ            | Batch ID: R17523                | TestNo:   | TO-15        |                           | ~            | Analysis Date | 4/20/20    | 21                  | SeqNo: 1989        | 326            |        |
| Analyte                    | Result                          | PQL S     | PK value     | SPK Ref Val               | %REC         | CowLimit 1    | -lighLimit | RPD Ref Val         | ∩d¥%               | RPDLimit       | Qual   |
| Carbon disulfide           | 1.000                           | 0.15      | <b>+</b> +   | O                         | 1001         | 76.9          | 109        | 1,21                | 19.0               | D              |        |
| Carbon tetrachloride       | 1.000                           | 0:030     | <b>W</b> 144 | 0                         | 100          | 71            | 120        | 1.12                | 11.3               | 0              |        |
| Chlorofienzene             | 1.060                           | 0.15      | ***          | 0                         | 106          | 82.6          | 121        | 1.03                | 2.87               | D              |        |
| Chloroethane               | 0.9300                          | 0.15      | **           | 0                         | 93.0         | 67.1          | 146        | 1.02                | 9.23               | Ģ              |        |
| Chloraform                 | 1.030                           | 0.15      | •**          | 0                         | 103          | 82.5          | 125        | 1.09                | 5.66               | ¢              |        |
| Chloromethane              | 0.8800                          | 0.15      | ***          | 0                         | 88.0         | 71.1          | 154<br>1   |                     | 12.8               | Ð              |        |
| cis-1,2-Dichloroethene     | 1,030                           | 0.040     | **           | 0                         | 103          | 71.2          | 112        | 1.05                | 1.92               | 0              |        |
| cis-1,3-Dichloropropere    | 1.040                           | 0.15      | •            | O                         | 104          | 90.3          | 137        | 1.11                | 6.51               | 0              |        |
| Cyclohexane                | 1.060                           | 0.15      |              | 0                         | 106          | 87            | 122        | 1.07                | 0.939              | 0              |        |
| Dibromochloromethane       | 1.030                           | 0.15      | -            | 0                         | 103          | 62.8          | 132        | 1.08                | 4.74               | 0              |        |
| Ethyl acetate              | 1.070                           | 0.15      | -            | Ċ                         | 107          | 86.9          | 5          | 1.15                | 7.21               | φ              |        |
| Ethythenzene               | 1.150                           | 0.15      |              | ð                         | 115          | 76.9          | 123        | 1.1                 | 4.64               | 0              |        |
| Freen 11                   | 1.070                           | 0.15      | -            | ΰ                         | 107          | 54,4          | 150        | 1.01                | 5.77               | D              |        |
| Freen 113                  | 1.050                           | 0,15      | -            | Ċ                         | 105          | 83.4          | 124        | 1.1                 | 4.65               | 0              |        |
| Frean 114                  | 0.9600                          | 0.15      |              | ð                         | 96.0         | 82.4          | 144        | 1.07                | 10.8               | O              |        |
| Freon 12                   | 1.010                           | 0.15      | -            | 0                         | 101          | 86.3          | 135        | 1.11                | 9.43               | 0              |        |
| Heptane                    | 1.070                           | 0.15      | •            | õ                         | 107          | 86.5          | 137        | 1.1                 | 2.76               | ٥              |        |
| Hexachloro-1,3-butadiene   | 1.320                           | 0.15      | -            | o                         | 132          | 78.7          | 120        | 1.2                 | 9.52               | 0              | ω      |
| Hexane                     | 1.090                           | 0.15      | ⊷            | 0                         | 109          | 77.3          | 128        | 1.09                | ¢                  | ٥              |        |
| isopropyl alcohol          | 1.120                           | 0.15      | ÷-           | 0                         | 112          | 80.2          | 122        | 0.99                | 12.3               | 0              |        |
| m&p-Xylene                 | 2.350                           | 0.30      | 2            | Ģ                         | 118          | 77.9          | 132        | 2.21                | 6.14               | 0              |        |
| Methyl Butyl Ketone        | 1.040                           | 0:30      | ***          | a                         | 10 <u>4</u>  | 69.4          | 131        | 1.08                | 3.77               | 0              |        |
| Methyl Ethyl Ketone        | 1.060                           | 0.30      | ÷            | Ð                         | 166          | 71.5          | 117        | 1.08                | 1.87               | 0              |        |
| Methyl Isobutyl Ketone     | 1.030                           | 0.30      | •            | 0                         | 103          | 63.5          | 141        | 1.08                | 4.74               | 0              |        |
| Methyl tert-butyt ether    | 1.120                           | 0.15      | -            | D                         | 112          | 80.8          | 113        | 1.08                | 3.64               | D              |        |
| Methylene chloride         | 1.010                           | 0.15      | -            | 0.11                      | 90.0         | 87.8          | 123        | 1.21                | 18.0               | Ċ              |        |
| o-Xyfene                   | 1.150                           | 0.15      | -            | 0                         | 115          | 80.5          | 139        | 1,09                | 5.36               | 0              |        |
| Propylene                  | 1.060                           | 0.15      | -            | Û                         | 106          | 96.2          | 135        | 1.08                | 1.87               | Ċ              |        |
| Slyrene                    | 1.180                           | 0.15      | -            | Ą                         | 118          | 82.7          | 138        | 1.07                | 9.78               | Ö              |        |
| Tetrachloroethytene        | 1.120                           | 0.15      | -            | Ċ                         | 112          | 85.9          | 122        | 1.05                | 6.45               | Ö              |        |
| Tetrahydrofuran            | 1.050                           | 0.15      | -            | G                         | 105          | 65.5          | 134        | 1.07                | 1.89               | 0              |        |
| Qualifiers: Results report | ted are not blank corrected     |           | E Estima     | ned Value above quant     | itation rang | 41            | H ¥I       | lolding tincs for g | preparation of and | alysis exceede | ų      |
| 3 Analyse detex            | cled below quantitation limit   | ~         | VD Not Di    | ctected as the Limit of I | Detection    |               | Я          | PD outside accep    | ted recovery fimi  | ls.            |        |
| S Spike Recove             | ery outside accepted recovery J | imits     | Di. Detect   | ion Limit                 |              |               |            |                     |                    | D,             | 106 00 |

ruge 2 of 5

| tes, P.C.        |
|------------------|
| LaBella Associat |
| <br>CLIENT:      |

| Work Order: C2104038<br>Project: 1500 Jeffers | son Road                       |               |                 |                          |               |               | T          | estCode: {        | SYN_02.0            |                |            |
|-----------------------------------------------|--------------------------------|---------------|-----------------|--------------------------|---------------|---------------|------------|-------------------|---------------------|----------------|------------|
| Sample ID: ALCS1UGD-042021                    | SampType: LCSD                 | TestCoc       | le: 0.20_NYS    | Units: ppbV              |               | Prep Date     |            |                   | RunNo: 1752         | 33             |            |
| Client ID: ZZZZ                               | Batch ID: R17523               | Testh         | lo: TO-15       |                          |               | ∿nałysis Date | : 4/20/20  | 21                | SeqNo: 1989         | 826            |            |
| Analyte                                       | Result                         | PQL           | SPK value       | SPK Ref Val              | %REC          | LowLimit      | HighLimit  | RPD Ref Val       | %RPD                | RPDLimit       | Qual       |
| Toluene                                       | 1.150                          | 0.15          | ~               | 0                        | 115           | 77.8          | 127        | 1.08              | 6.28                | 0              |            |
| trans-1,2-Dichloroethene                      | 1.020                          | 0.15          | 1               | C                        | 102           | 83.3          | 116        | 1.07              | 4.78                | 0              |            |
| trans-1,3-Dichloropropene                     | 1.040                          | 0.15          | ۴               | D                        | 104<br>104    | 84.8          | 134        | 1.15              | 10.0                | 0              |            |
| Trichloroethene                               | 1.050                          | 0:030         | •               | 0                        | 105           | 79.3          | 117        | 1.06              | 0.948               | 0              |            |
| Viny! acetate                                 | 1.050                          | 0.15          | <b>f</b>        | Ð                        | 105           | 70.5          | 101        | 1.07              | 1.89                | 0              | ŝ          |
| Vinyt Bromide<br>Vinut chlaide                | 1.160<br>0 0100                | 0.15<br>0.040 | <del>د.</del> د | 00                       | 116<br>91.0   | 81.4<br>70.4  | 142<br>138 | 1.03<br>0.98      | 11.9<br>7.41        | 00             |            |
| vays caused                                   | 2010-20                        |               |                 |                          |               |               |            |                   |                     | ,              |            |
| Sample ID: ALCS1UGD-042121                    | SampType: LCSD                 | TestCox       | je: 0.20_NYS    | Units: ppbV              |               | Prep Date     |            |                   | RunNo: 1752         | 4              |            |
| Client ID: ZZZZ                               | Batch ID. R17524               | Test          | ło: TO-15       |                          |               | Anatysis Date | : 4/2//20  | 21                | SeqNo: 1989         | 45             |            |
| Analyte                                       | Result                         | POL           | SPK value       | SPK Ref Val              | %REC          | LowLimit      | HighLimit  | RPD Ref Val       | %RPD                | Repartment     | Qual       |
| 1.1.1-Trichloroethane                         | 1.230                          | 0.15          | -               | o                        | 123 /         | 91.3          | 127        | 1.24              | 0.810 /             | 0              |            |
| 1,1,2,2-Tetrachloroethane                     | 1.230                          | 0,15          | -               | 0                        | 123           | 78.7          | 121        | 1.22              | 0.815               | 0              | S          |
| 1.2-Trichloroethane                           | 1.180                          | 0.15          | -               | 0                        | 118           | 88.1          | 136        | 1.18              | 0                   | 0              |            |
| 1, 1-Dichloroethane                           | 1.120                          | 0.15          | -               | 0                        | 112           | 86.1          | 123        | 1.11              | 798.0               | 0              |            |
| 1,1-Dichloroethene                            | 1.010                          | 0.040         | 1               | ŋ                        | t01           | 02            | 94         | 0.97              | 4.04                | 0              | S          |
| 1,2,4-Trichlorobenzene                        | 1.330                          | 0.15          | *-              | Q                        | 133           | 76.7          | 112        | 1.5               | 12.0                | 0              | сл         |
| 1,2,4-Trimethytbenzene                        | 1.200                          | 0.15          | ~               | ٥                        | 120           | 74.3          | 123        | 1.2               | Q                   | 0              |            |
| 1,2-Dibromoethane                             | 1.160                          | 0.15          | **              | ٩                        | 116           | 80.4          | 125        | 1.19              | 2.55                | 0              |            |
| 1,2-Dichlorabenzene                           | 1.280                          | 0.15          | -               | 0                        | 128           | 79.5          | 143        | 1.35              | 5.32                | Ð              |            |
| 1.2-Dichloroethane                            | 1.130                          | 0.15          | ~               | ٥                        | 113           | 70.9          | 133        | 1.12              | 0.889               | 0              |            |
| 1,2-Dichteropropane                           | 1.190                          | 0.15          |                 | 0                        | 119           | 91            | 134        | 1.21              | 1.67                | ٥              |            |
| 1,3,5-Trimethylbenzene                        | 1.290                          | 0.15          | ~               | D                        | 129           | 77.4          | 138        | 1.28              | 0.778               | 0              |            |
| 1,3-butadiene                                 | 1.080                          | 0.15          | -               | Ð                        | 108           | 71            | 144        | 1.07              | 0.930               | O              |            |
| 1.3-Dichlorobenzene                           | 1.180                          | 0.15          | -               | Ó                        | 1:8           | 84.7          | 128        | 1.23              | 4.15                | 0              |            |
| 1.4-Dichlorobenzene                           | 1.260                          | 0.15          | ÷               | 0                        | 126           | 9.77          | 131        | 1.29              | 2.35                | 0              |            |
| 1,4-Dioxane                                   | 1.230                          | 0.30          | -               | 0                        | †23           | 85.1          | 135        | 1.22              | 0.816               | o              |            |
| 2,2,4-trimethytpenlane                        | 1.160                          | 0.15          |                 | Ģ                        | 116           | 86.9          | 126        | 1.17              | 0.858               | 0              |            |
| 4-ethyltoluene                                | 1.270                          | 0.15          | £-              | 0                        | \$27          | 77.5          | 133        | 1.27              | Ċ                   | 0              |            |
| Caralificantes Results remov                  | ried are not blonk corrected   |               | E Estim         | ated Value above quar    | Ititation run | 2             | . #        | folding bases for | preparation or and  | alysis exceede | ,          |
| I Analyte deter                               | cted below quantitation fimit  |               | ND Net          | betected as the Limit of | l Detection   |               | ж<br>4     | (PD outside acco  | pred recovery limit | N.             |            |
| S Spike Recove                                | ery outside accepted recovery. | lintês        | DI. Detec       | tion Lippit              |               |               |            |                   |                     | $P_{c}$        | č fo E agi |

LaBella Associates, P.C. CLIENT: 

C2104038 Work Order:

| Ζ.      |  |
|---------|--|
| 1,20    |  |
| le: -   |  |
| ğ       |  |
| Code: 0 |  |

| Project: 1500 Jetten       | son Koad                                                                        |          |              |                          |              |               |            | באורמתני ח         | C 1 N - N7        |               |            |
|----------------------------|---------------------------------------------------------------------------------|----------|--------------|--------------------------|--------------|---------------|------------|--------------------|-------------------|---------------|------------|
| Sample ID: ALCS1UGD-042121 | SampType: LCSD                                                                  | TestCod  | E: 0.20 NYS  | Units: ppbV              |              | Prep Date     |            |                    | RunNo: 176        | 24            |            |
| Client ID: ZZZZ            | Batch ID: R17524                                                                | TestN    | o: TO-15     |                          |              | Analysis Date | : 4/21/20  | 21                 | SeqNo: 198        | 945           |            |
| Analyte                    | Result                                                                          | PQL      | SPK value    | SPK Ref Val              | %REC         | LowLimit      | -¥ighLimit | RPD Ref Val        | %RPD              | Reblimit      | Qual       |
| Acetane                    | 1.130                                                                           | 0.30     | -            | Q                        | 113          | 80.2          | 145        | 1.11               | * 621             | 0             |            |
| Ally! chtoride             | 1.120                                                                           | 0.15     | ÷            | 0                        | 112          | 86.6          | 117        | 1.11               | 0.897             | 0             |            |
| Benzene                    | 1.150                                                                           | 0.15     | -            | 0                        | 115          | 88.9          | 122        | 1.13               | 1.75              | 0             |            |
| Benzyi chloride            | 1.320                                                                           | 0.15     | ÷-           | G                        | 132          | 73.6          | 120        | 1.4                | 5.88              | Ģ             | S          |
| Bromodichioromethane       | 1.210                                                                           | 0.15     | **           | a                        | 121          | 84.3          | 133        | 1.23               | 1.64              | 0             |            |
| Bromoform                  | 1.110                                                                           | 0.15     | *-           | 0                        | 114          | 44.6          | 149        | 1.17               | 5.26              | 0             |            |
| Bromomethane               | 1,120                                                                           | 0.15     | ***          | 0                        | 112          | 78.7          | 144        | 1.11               | 0.897             | 0             |            |
| Carbon disulfide           | 1.120                                                                           | 0.15     | •            | 0                        | 112          | 76.9          | 109        | 1.12               | ¢                 | 0             | S          |
| Carbon letrachloride       | 1.200                                                                           | 0:030    | -            | Ċ                        | 120          | 11            | 120        | 1.24               | 3.28              | 0             |            |
| Chiorobenzene              | 1.130                                                                           | 0.15     | -            | Ð                        | 113          | 82.6          | 121        | 1.15               | 1.75              | Ð             |            |
| Chioroethane               | 1.060                                                                           | 0.15     | -            | 0                        | 106          | 67.1          | 146        | 1.07               | 0.939             | 0             |            |
| Chloroform                 | 1.130                                                                           | 0.15     | -            | Ð                        | 113          | 82.5          | 125        | -                  | 1.79              | O             |            |
| Chlorometkane              | 1.060                                                                           | 0.15     | -            | ۵                        | 106          | 71.1          | 154        | 1.02               | 3.85              | 0             |            |
| cis-1,2-Dichloroethere     | 1,100                                                                           | 0.040    | -            | ٥                        | 110          | 71.2          | 112        | 1.05               | 4.85              | 0             |            |
| cis-1,3-Dichloropropene    | 1,180                                                                           | 0.15     | <b>~</b>     | 0                        | 118          | 90.3          | 137        | 1.22               | 3.33              | 0             |            |
| Cyclohexane                | 1,140                                                                           | 0.15     | <del>،</del> | a                        | 114          | 87            | 122        | 1.34               | 0                 | 0             |            |
| Dibromoch loromethane      | 1.160                                                                           | 0,15     | ***          | 0                        | 116          | 62.8          | 132        | 1.23               | 5.86              | 0             |            |
| Ethyl acetate              | 1.160                                                                           | 0.15     | *~           | 0                        | 116          | 86.9          | 134        | 1.13               | 2.62              | Ċ             |            |
| Ethylbenzene               | 1.180                                                                           | 0.15     | •            | D                        | 118          | 76.9          | 123        | 1_19               | 0.844             | Ð             |            |
| Freon 11                   | 1.050                                                                           | 0.15     | -            | o                        | 105          | 54.4          | 150        | 1.18               | 11.7              | Ö             |            |
| Freen 113                  | 1.160                                                                           | 0.15     | -            | 0                        | 316          | 83.4          | 124        | 1.13               | 2.62              | Ċ             |            |
| Freen 114                  | 1.130                                                                           | 0.15     | -            | Q                        | 113          | 82.4          | 144        | 1.12               | 0.889             | ¢             |            |
| Freon 12                   | 1.200                                                                           | 0.15     |              | o                        | 120          | 86.3          | 135        | 1.17               | 2.53              | 0             |            |
| Heptane                    | 1.220                                                                           | 0.15     | 4            | ٥                        | <u>a</u>     | 86.5          | 137        | 1.2                | 1.65              | 0             |            |
| Hexachloro-1,3-butadiene   | 1.440                                                                           | 0.15     | •            | 0                        | (144         | 78.7          | 120        | 1.5                | 4.08              | 0             | S          |
| Hexane                     | 1.110                                                                           | 0.15     | •            | o                        | )E           | 77.3          | 128        | 1.08               | 2.74              | a             |            |
| Isopropyi atcohol          | 1.260                                                                           | 0.15     | -            | Ð                        | 126          | 80.2          | 122        | 1.19               | 5.71              | 0             | S          |
| m&p-Xylene                 | 2.500                                                                           | 0.30     | 2            | Û                        | 125          | 577.9         | 132        | 2.55               | 1.98              | 0             |            |
| Methyl Butyl Ketone        | 1.150                                                                           | 0.30     | -            | 0                        | 115          | 69.4          | 131        | á.19               | 3.42              | 0             |            |
| Methyl Ethyl Ketone        | 1.090                                                                           | 0:30     |              | 0                        | £03          | 71.5          | 117        | 1.05               | 3.74              | 0             |            |
| Methyl Isobułyl Ketone     | 1.160                                                                           | 0.30     | -            | 0                        | 116          | 63.5          | 141        | 12                 | 3.39              | 0             |            |
| Ouzlifiers: Results report | ned are not blank corrected                                                     |          | E Estim      | ated Value above quar    | titation tan | 2             | H          | lolding tintes for | preparation or an | alysis execed | g          |
| J Analyte deter            | cted helow quantitation limit                                                   |          | ND Not D     | beteesed at the Limit of | Detection    |               | ×          | RPD uniside arter  | ated recovery lim | its           |            |
| S Spike Recove             | $\bar{\boldsymbol{v}}$ reactions according to the second $\bar{\boldsymbol{v}}$ | lêrnáls, | DI, Detec    | tŵn Limit                |              |               |            |                    |                   | ٩.            | ⊊ fu † aZu |

LaBella Associates, P.C. A restance of the second of the second s CUIENT:

C2104038 Work Order:

TestCode: 0.20 NYS

| Project: 1500 Jeffers      | son Road         |         |                |             |            |                  |            | estCode: 0  | -20_NYS     |          |      |
|----------------------------|------------------|---------|----------------|-------------|------------|------------------|------------|-------------|-------------|----------|------|
| Sample ID: ALCS1UGD-042121 | Sampfype: LCSD   | TestCoo | ie: 0.20_NYS   | Units: ppbV |            | Prep Dat         |            |             | RunNo: 1752 | 4        |      |
| Client ID: ZZZZZ           | Batch ID: R17524 | Test    | lo: TO-15      |             | 4          | Inalysis Dat     | e: 4/21/20 | 21          | SeqNo: 1989 | 145      | ,    |
| Analyte                    | Result           | PQL     | SPK value      | SPK Ref Val | %REC       | yówimit          | HighLimit  | RPD Ref Val | %RPD        | RPDLimit | Qual |
| Methyl tert-butyl ether    | 1.080            | 0.15    | 1              | Ð           | 108 V      | 80.8             | 113        | 1.03        | 4.74 V      | 0        |      |
| Methylene chloride         | 1.130            | 0.15    | -              | 0           | 113        | 87.8             | 123        | 1.14        | 0.881       | Ð        |      |
| o-Xylene                   | 1.290            | 0.15    | -              | Ð           | 129        | 80.5             | 139        | 1.3         | 0.772       | 0        |      |
| Propylene                  | 1.190            | 0.15    | £              | G           | 119        | <del>9</del> 6.2 | 135        | 1.09        | 8.77        | Ð        |      |
| Styrene                    | 1.270            | 0.15    | -              | ð           | 127        | 82.7             | 138        | 1.28        | 0.784       | 0        |      |
| Tetrachioroethylene        | 1.180            | 0.15    | •              | 0           | 118        | 85.9             | 122        | 1.21        | 2.51        | ð        |      |
| Tetrahydrofuran            | 1.120            | 0.15    | F              | ٥           | 112        | <b>65.5</b>      | 134        | 1.06        | 5.50        | Ð        |      |
| Toluene                    | 1.150            | 0.15    | ۴              | 0           | 115        | 77.8             | 127        | 1,19        | 3.42        | O        |      |
| trans-1,2-Dichloroethene   | 1.110            | 0.15    | -              | 0           | 111        | 83.3             | 116        | 1.08        | 2.74        | Ċ        |      |
| trans-1,3-Dichloropropene  | 1.130            | 0.15    | -              | Q           | 5 <u>5</u> | 84.8             | 134        | 1,13        | 0           | ð        |      |
| Trichioroethene            | 1.160            | 0.030   | -              | 0           | 116        | 79.3             | 117        | 1-17        | 0.858       | Ċ        |      |
| Vinył acelate              | 1.080            | 0.15    | <del>~~,</del> | ٥           | 108        | 70.5             | 101        | 1.02        | 5.71        | Ċ        | w    |
| Vinyl Bromide              | 1.050            | 0.15    | +              | 0           | 105        | 814              | 142        | 1.08        | 2.62        | 0        |      |
| Vinyl chloride             | 1.050            | 0.040   | ψu             | 0           | 105        | 70.4             | 138        | 1,01        | 3.88        | 0        |      |
|                            |                  |         |                |             |            |                  |            |             |             |          |      |

Date: 05-May-21



# ANALYTICAL QC SUMMARY REPORT

|             | ала |
|-------------|-----------------------------------------|
| CLIENT:     | LaBelia Associates, P.C.                |
| Work Order: | C2104038                                |

Project: 1500 Jefferson Road

TestCode: 0.20\_NYS

| Sample ID: C2104038-001A MS | SampType: MS                   | TestCode | 0.20_NYS       | Units: ppbV              |               | Prep Date     |                       | RunNo: 17523              |             |
|-----------------------------|--------------------------------|----------|----------------|--------------------------|---------------|---------------|-----------------------|---------------------------|-------------|
| Client ID: IAQ-09 (4/15/21) | Batch ID: R17523               | TestNo   | CT0-15         |                          | ~             | Analysis Date | x 4/20/2021           | SeqNo: 198930             |             |
| Analyte                     | Result                         | PQL      | SPK value      | SPK Ref Val              | %REC          | LowLimit      | HighLimit RPD Ref Val | KRPD RPDL                 | imit Qual   |
| 1,1,1-Trichloroethane       | 1.620                          | 0.15     | *              | o                        | ‡02           | 68.1          | 117                   |                           |             |
| 1,1,2,2-Tetrachioroethane   | 007610                         | 0.15     | *              | Q                        | 94.0          | 82.3          | 101                   |                           |             |
| 1,1,2-Trichloroethane       | 0.9100                         | 0.15     | ***            | 0                        | 91.0          | 61            | 128                   |                           |             |
| 1,1-Dichloroethane          | 0.9400                         | 0.15     | <del>، ،</del> | Ģ                        | 94.0          | 76.5          | 118                   |                           |             |
| 1,1-Dichloroethene          | 0.9400                         | 0.040    | <b>*</b>       | Q                        | 976           | 45.8          | 128                   |                           |             |
| 1,2,4-Trichlorobenzene      | 2.430                          | 0.15     | ۳.             | a                        | E F Z         | 70            | 130                   |                           | S           |
| 1,2,4-Trimethytbenzene      | 1.580                          | 0.15     | ~              | 0                        | (158)         | 81.5          | 155                   |                           | S           |
| 1,2-Dibromoethane           | 0.9900                         | 0.15     | -              | 0                        | )<br>96<br>0  | 78.7          | 107                   |                           |             |
| 1,2-Dichlorobenzene         | 1.250                          | 0.15     |                | 0                        | 125           | 57.2          | 175                   |                           |             |
| 1,2-Dichioroethane          | 0.9800                         | 0.15     | -              | 0                        | 98.0          | 65.1          | 130                   |                           |             |
| 1,2-Dichloropropane         | 0.9100                         | 0.15     | -              | D                        | 91 <u>6</u>   | 6.93          | 115                   |                           |             |
| 1,3.5-Trimethylbenzene      | 1.410                          | 0.15     | -              | 0                        | E             | 67.6          | 139                   |                           | Ś           |
| 1,3-butadiene               | 1.440                          | 0.15     | -              | Ċ                        |               | 70            | 130                   |                           | თ           |
| 1,3-Dichlorobenzene         | 1.130                          | 0.15     | -              | 0                        | 113           | 89.1          | 122                   |                           |             |
| 1,4-Dichlorobenzene         | 1.160                          | 0.15     | -              | Ċ                        | 116           | 86.8          | 114                   |                           | S           |
| 1.4-Dioxane                 | 5.170                          | 0:30     | *-             | Ò                        | 117           | 75.1          | 114                   |                           | w           |
| 2,2,4-trämethytpentarie     | 1.010                          | 0.15     | <b>, -</b>     | ð                        | 101           | 84.2          | 113                   |                           |             |
| 4-ethyltoluene              | 0.1700                         | 0.15     | <b>*</b>       | 0                        | 17.0          | 70            | 130                   |                           | ŝ           |
| Acelone                     | 12.67                          | 0:30     | <b>4</b>       | 0                        | 1270          | Q2            | 130                   |                           | Ś           |
| Allyt chloride              | 006610                         | 0.15     | •              | Ģ                        | 966           | 02            | 130                   |                           |             |
| Benzene                     | 1.380                          | 0.15     | •              | Ģ                        | (138)         | 72.7          | 133                   |                           | w           |
| Benzyt chloride             | 1.480                          | 0.15     |                | 0                        | (148)         | 72.5          | 129                   |                           | s           |
| Bromodichloromethane        | 0.9800                         | 0.15     | •              | 0                        | )0.8<br>0.8   | 69.4          | 112                   |                           |             |
| Bromolorm                   | 1.010                          | 0.15     | ~              | 0                        | 101           | 42.5          | 110                   |                           |             |
| Bromomethane                | 0:9500                         | 0.15     | -              | D                        | 95.0          | 68.6          | 121                   |                           |             |
| Ouallfiers: Results repur   | ted are not blank corrected    |          | E Estim        | ated Vatue above quan    | titation rang | 9             | Holding times for     | preparation or analysis e | papaoas     |
| J Auralyte detec            | sted below quantitution limit  |          | ND NM E        | betecled at the Limit of | Detection     |               | R RPD outside acce    | pted recovery limits      |             |
| S Spike Recove              | ry outside accepted recovery i | isaits   | DL Detec       | tion Littuit             |               |               |                       |                           | Page 1 of 5 |

| CLIENT:     | LaBella Associates, P.C. |
|-------------|--------------------------|
| Work Order: | C2104038                 |

C2104038

TestCode: 0.20 NYS 1500 Jefferson Road

and a second second

| nple (D: C2104038-0014 MS Sa<br>ant ID: IAQ-09 (4/15/21) B<br>bon disutfide<br>bon disutfide<br>bon tetrachloride<br>oroethane<br>oroform<br>oromethane<br>oroform<br>oromethane<br>1.2-Dichloropene<br>1.2-Dichloropene<br>abhexane<br>1.3-Dichloropene<br>yl acetale<br>yl acetale<br>on 11<br>on 113<br>on 114<br>on 12<br>dane | npType: MS<br>atch ID: R17523<br>Result<br>7.070<br>0.9600<br>1.030<br>1.8600<br>1.030<br>1.8600<br>1.8600<br>1.8600<br>1.810<br>1.810<br>1.538<br>1.530<br>0.9600<br>1.530 | TestCode:<br>TestNo:<br>FestNo:<br>P.CL 5<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.1 | 0.20_NYS<br>TO-15<br>SPK value<br>1      | Units: ppbV                                                      |                        | Prep Date      | .,                    | RunMo: 175<br>SeeNor 101  | 523                                                            |                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------|------------------------|----------------|-----------------------|---------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|
| arri ID: IAQ-09 (4/15/21) B<br>layte bon disuffide bon letrachloride<br>bon letrachloride orobenzene<br>orobenzene<br>oromethane<br>oromethane<br>1,3-Dichtoropene<br>20hexane<br>1,3-Dichtoropene<br>20hexane<br>or 11<br>on 113<br>on 113<br>on 114<br>on 12<br>atane                                                            | atch ID: R17523<br>Result<br>7.070<br>1.070<br>1.070<br>1.030<br>1.180<br>0.9800<br>0.9800<br>1.180<br>1.010<br>1.010<br>1.010<br>1.010<br>1.030<br>0.9600<br>1.030         | TestNo:<br>POL 5<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.1                          | TO-15<br>SPK value                       |                                                                  |                        |                |                       | Section 101               |                                                                |                                                                                        |
| lyte<br>bon disuffide<br>bon tetrachloride<br>orobenzene<br>oroform<br>oromethane<br>1.2-Dichloroptopene<br>1.3-Dichloroptopene<br>1.3-Dichloroptopene<br>1.3-Dichloroptopene<br>ylacetale<br>ylacetale<br>on 113<br>on 113<br>on 12<br>atane                                                                                      | Result<br>0.98000<br>1.070<br>1.070<br>1.070<br>1.070<br>1.070<br>1.030<br>1.030<br>1.010<br>1.010<br>1.010<br>1.030<br>0.9600<br>1.030<br>1.030<br>0.9600<br>1.030         | P.Q.L 5<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.1                                   | SPK value                                |                                                                  | -                      | Anatysis Date. | : 4/20/2021           |                           | 8930                                                           |                                                                                        |
| bon disuffide<br>bon letrachloride<br>orobenzene<br>oroform<br>oromethane<br>1.3-Dichloroethene<br>1.3-Dichloropropene<br>dohexane<br>in 2-Dichloropropene<br>dohexane<br>orom 11<br>on 11<br>on 11<br>on 12<br>on 12<br>on 12<br>dane                                                                                             | 0.9800<br>1.070<br>0.9800<br>1.030<br>1.180<br>0.9800<br>0.9800<br>0.9800<br>0.9800<br>1.030<br>1.030<br>0.9600<br>1.030<br>0.9600<br>1.030                                 | 0.15<br>0.030<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.1                             | *- *-                                    | SPK Ref Val                                                      | %REC                   | LowLimit 1     | HighLimit RPD Re      | sí Val %RPD               | RPDLimit                                                       | Qual                                                                                   |
| bon tetrachloride<br>orobenzene<br>orobenzene<br>oromethane<br>oromethane<br>1.3-Dichtoropene<br>abrexane<br>comochloromethane<br>ylacetate<br>ylacetate<br>on 11<br>on 113<br>on 134<br>on 12<br>atane                                                                                                                            | 1,070<br>0,9700<br>0,8600<br>1,030<br>1,180<br>0,9800<br>1,010<br>1,010<br>1,010<br>1,010<br>1,010<br>1,010<br>0,9600<br>1,030                                              | 0.030<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.1                                     | <del>, -</del>                           | 0                                                                | 98.0                   | 6              | 130                   |                           |                                                                |                                                                                        |
| orobenzene<br>oroethane<br>oroform<br>oromethane<br>1.2-Dichtoroethene<br>1.3-Dichtoropropene<br>dohexane<br>viacetate<br>ylacetate<br>on 11<br>on 113<br>on 134<br>on 12<br>atane                                                                                                                                                 | 0.9700<br>0.8600<br>1.030<br>1.186<br>0.9900<br>1.860<br>1.538<br>1.538<br>0.9600<br>1.538<br>0.9600                                                                        | 0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                             |                                          | ð                                                                | 107                    | 61             | 107                   |                           |                                                                |                                                                                        |
| oroethane<br>oroform<br>oromethane<br>1.2-Dichloroethene<br>1.3-Dichloropropene<br>20hexane<br>viberzene<br>yl acetale<br>on 11<br>on 113<br>on 134<br>on 12<br>atane                                                                                                                                                              | 0.8600<br>1.030<br>1.186<br>1.186<br>0.9800<br>1.360<br>1.010<br>1.010<br>1.010<br>1.030<br>0.9600<br>1.030                                                                 | 0.15<br>0.15<br>0.040<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                            | F                                        | D                                                                | 97.0                   | 76.1           | 1 * 1                 |                           |                                                                |                                                                                        |
| oroform<br>oromethane<br>1.2-Dichloroethene<br>1.3-Dichloropropene<br>dohexane<br>romochloromethane<br>yl acetale<br>yl acetale<br>on 11<br>on 113<br>on 154<br>on 12<br>atane                                                                                                                                                     | 1,030<br>1,186<br>0,9800<br>0,9800<br>1,360<br>1,010<br>1,010<br>1,010<br>0,9600<br>1,030                                                                                   | 0.15<br>0.15<br>0.040<br>0.15<br>0.15<br>0.15<br>0.15                                                    | -                                        | D                                                                | 86.0                   | 62.6           | 119                   |                           |                                                                |                                                                                        |
| oromethane<br>1.2-Dichloroethene<br>1.3-Dichloropropene<br>Johexane<br>romochloromethane<br>ylacate<br>on 11<br>on 113<br>on 154<br>on 12<br>atane                                                                                                                                                                                 | 1 180<br>0.9800<br>0.9900<br>1.360<br>1.360<br>1.510<br>0.9600<br>0.9600                                                                                                    | 0.15<br>0.040<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                    | +                                        | Ð                                                                | 103                    | 6.54           | 173                   |                           |                                                                |                                                                                        |
| 1.2-Dichloroethene<br>1.3-Dichloropropene<br>Johexane<br>romochloromethane<br>yl acetate<br>on 11<br>on 113<br>on 154<br>on 12<br>atane                                                                                                                                                                                            | 0.9800<br>0.9900<br>1.360<br>1.010<br>15.38<br>1.190<br>0.9600<br>1.030                                                                                                     | 0.040<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                            | -                                        | Ð                                                                | 118                    | 54.4           | 125                   |                           |                                                                |                                                                                        |
| 1.3-Dichtoropropene<br>Johexane<br>romochloromethane<br>ylbenzene<br>on 11<br>on 154<br>on 12<br>atane                                                                                                                                                                                                                             | 0.9900<br>1.360<br>1.010<br>15.38<br>1.538<br>0.9600<br>1.030                                                                                                               | 0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                                     | ÷                                        | Ċ                                                                | 98.0                   | 60.1           | 121                   |                           |                                                                |                                                                                        |
| dohexane<br>romochloromethane<br>yl acetate<br>ylbenzene<br>on 11<br>on 113<br>on 12<br>stane                                                                                                                                                                                                                                      | 1.360<br>1.010<br>15.38<br>15.38<br>0.9600<br>1.030                                                                                                                         | 0.15<br>0.15<br>0.15<br>0.15                                                                             |                                          | Ð                                                                | 996                    | 60.6           | 122                   |                           |                                                                |                                                                                        |
| romochloromethane<br>y lacetate<br>ylbenzene<br>on 11<br>on 113<br>on 12<br>stane                                                                                                                                                                                                                                                  | 1,010<br>15.38<br>1.190<br>0.9600<br>1.030                                                                                                                                  | 0.15<br>0.15<br>0.15                                                                                     | -                                        | Ċ                                                                | 3                      | 59.4           | 148                   |                           |                                                                |                                                                                        |
| yl acetate<br>ylbenzene<br>on 11<br>on 113<br>on 134<br>on 12<br>stane                                                                                                                                                                                                                                                             | 15.38<br>1.190<br>0.9600<br>1.030                                                                                                                                           | 0.15<br>0.15                                                                                             | -                                        | Ð                                                                | ē(                     | 71.6           | 102                   |                           |                                                                |                                                                                        |
| ylbenzene<br>on 11<br>on 113<br>on 154<br>on 12<br>stane                                                                                                                                                                                                                                                                           | 0.9600<br>0.9600<br>1.030                                                                                                                                                   | 0.15                                                                                                     | *-                                       | Ð                                                                | 1540                   | 49.3           | 146                   |                           |                                                                | S                                                                                      |
| on 11<br>on 113<br>on 154<br>on 12<br>Xane                                                                                                                                                                                                                                                                                         | 0.9600<br>1.030                                                                                                                                                             |                                                                                                          | ¥ <b></b> -                              | 0                                                                | 119                    | 68.5           | 129                   |                           |                                                                |                                                                                        |
| on 113<br>on 154<br>on 12<br>Xiane                                                                                                                                                                                                                                                                                                 | 1.030                                                                                                                                                                       | Ū.15                                                                                                     | <b>4</b> 200                             | G                                                                | 0,96                   | 44.8           | 143                   |                           |                                                                |                                                                                        |
| on 154<br>on 12<br>Xtane                                                                                                                                                                                                                                                                                                           | 00000                                                                                                                                                                       | 0.15                                                                                                     | •                                        | Ф                                                                | 103                    | 80.3           | 125                   |                           |                                                                |                                                                                        |
| on 12<br>Stane                                                                                                                                                                                                                                                                                                                     | 0.8800                                                                                                                                                                      | 0.15                                                                                                     | ~                                        | 0                                                                | 88.0                   | 65.2           | 132                   |                           |                                                                |                                                                                        |
| stane                                                                                                                                                                                                                                                                                                                              | 1.330                                                                                                                                                                       | 0.15                                                                                                     | ۴                                        | 0                                                                | 133                    | 67.4           | 103                   |                           |                                                                | ŝ                                                                                      |
|                                                                                                                                                                                                                                                                                                                                    | 2.860                                                                                                                                                                       | 0.15                                                                                                     | -                                        | 0                                                                | 286                    | 80.8           | 124                   |                           |                                                                | S                                                                                      |
| cachtoro-1, 3-butadiene                                                                                                                                                                                                                                                                                                            | 1.410                                                                                                                                                                       | 0.15                                                                                                     | -                                        | 0                                                                | 141                    | 81.9           | 119                   |                           |                                                                | ა                                                                                      |
| ເສກອ                                                                                                                                                                                                                                                                                                                               | 10.95                                                                                                                                                                       | D. 15                                                                                                    |                                          | D                                                                | 1100                   | 73.7           | 147                   |                           |                                                                | Ś                                                                                      |
| propyl alcohol                                                                                                                                                                                                                                                                                                                     | 208.6                                                                                                                                                                       | D, 15                                                                                                    | •                                        | D                                                                | 20800                  | 52             | 130                   |                           |                                                                | S                                                                                      |
| p-Xyiene                                                                                                                                                                                                                                                                                                                           | 2.610                                                                                                                                                                       | 0.30                                                                                                     | <b>€</b> 3                               | Ð                                                                | 130                    | 74.2           | 123                   |                           |                                                                | ŝ                                                                                      |
| thyt Butyt Ketone                                                                                                                                                                                                                                                                                                                  | 1.070                                                                                                                                                                       | 0.30                                                                                                     | -                                        | Ċ                                                                | ē(                     | 72.6           | 117                   |                           |                                                                |                                                                                        |
| thyt Etnyl Ketone                                                                                                                                                                                                                                                                                                                  | 18.41                                                                                                                                                                       | 0.35                                                                                                     |                                          | Ð                                                                | (1840)                 | 59.4           | 135                   |                           |                                                                | ц                                                                                      |
| thy! isobuty! Ketone                                                                                                                                                                                                                                                                                                               | 1.690                                                                                                                                                                       | 0.30                                                                                                     | ***                                      | O                                                                | ) <u>5</u>             | 61             | 120                   |                           |                                                                |                                                                                        |
| thyi tert-butyi ether                                                                                                                                                                                                                                                                                                              | 0.9600                                                                                                                                                                      | a.15                                                                                                     | <b>T</b> ~*                              | 0                                                                | <b>\$</b>              | 63.6           | 134                   |                           |                                                                |                                                                                        |
| thytene chloride                                                                                                                                                                                                                                                                                                                   | 2.300                                                                                                                                                                       | 0.15                                                                                                     | ~                                        | 0                                                                | 230                    | 53.4           | 125                   |                           |                                                                | თ                                                                                      |
| ylene                                                                                                                                                                                                                                                                                                                              | 1.220                                                                                                                                                                       | 0.15                                                                                                     |                                          | a                                                                |                        | 74.3           | 132                   |                           |                                                                |                                                                                        |
| bytene                                                                                                                                                                                                                                                                                                                             | 26.34                                                                                                                                                                       | 0.15                                                                                                     |                                          | 0                                                                | 053                    | 70             | 130                   |                           |                                                                | თ                                                                                      |
| rene                                                                                                                                                                                                                                                                                                                               | 1.130                                                                                                                                                                       | 0.15                                                                                                     | -                                        | 0                                                                | 113                    | 82.4           | 118                   |                           |                                                                |                                                                                        |
| tachleroethylene                                                                                                                                                                                                                                                                                                                   | 1.140                                                                                                                                                                       | 0.15                                                                                                     | -                                        | 0                                                                | ₹<br>₹                 | 86.2           | 112                   |                           |                                                                | ഹ                                                                                      |
| trahydrofuran                                                                                                                                                                                                                                                                                                                      | 324.4                                                                                                                                                                       | 0.15                                                                                                     | -                                        | 0                                                                | 32400                  | 02             | 130                   |                           |                                                                | S                                                                                      |
| alifiers; Results reported an                                                                                                                                                                                                                                                                                                      | e not black corrected                                                                                                                                                       |                                                                                                          | E Estima                                 | ted Vatue above quan                                             | titation rang          | <u>स्</u>      | H Holding từ          | mes for preparation or as | mahisis exceedu                                                | ż                                                                                      |
| J Analyte detected b                                                                                                                                                                                                                                                                                                               | clow quantitation limit                                                                                                                                                     |                                                                                                          | ND NOI DA                                | secred at the Limit of                                           | Detection              |                | R RPD oatsi           | de accepted recovery lin  | mits                                                           |                                                                                        |
| S Spike Recovery on                                                                                                                                                                                                                                                                                                                | stride accepted recovery 1                                                                                                                                                  | imits                                                                                                    | Dl. Detect                               | ion Linni                                                        |                        |                |                       |                           | đ                                                              | c fo z adu                                                                             |
| rahydrofuran<br>aliffers; Resufts aported ar<br>J Analyre detected b<br>S Spike Recovery or                                                                                                                                                                                                                                        | 324.4<br>e not black corrected<br>elow quantitation limit<br>uside accepted recovery i                                                                                      | 0. 15<br>Junits                                                                                          | 1<br>E Estima<br>ND Net Dr<br>Dt. Detect | 0<br>led Vatue above quan<br>secred at the Limit of<br>ion Limit | 32400<br>triation rang | 30<br>20       | 130<br>H Hok<br>R RPD | ing til<br>outsi          | ing times for preparation or a<br>outside accepted recovery li | ing times for preparation or analysis exceed<br>outside accepted recovery limits<br>P. |

| C1 IONT     | i a Datta Accontatas P f |
|-------------|--------------------------|
| Work Order: | C2104038                 |

C2104038

| Project: 1500 Jeffen                     | son Road                      |         |              |                         |               |              | H          | estCode: 0             | 20_NYS                |            |           |
|------------------------------------------|-------------------------------|---------|--------------|-------------------------|---------------|--------------|------------|------------------------|-----------------------|------------|-----------|
| Sample ID: C2104038-001A MS              | SampType: MS                  | TestCod | e: 0.20_NYS  | Units: ppbV             |               | Prep Dati    | à          |                        | RunNo: 17523          |            |           |
| Client ID: 1AQ-09 (4/15/21)              | Batch ID: R17523              | TestN   | lo: TO-15    |                         | ~             | Analysis Dat | a: 4/20/20 | 21                     | SeqNo: 198930         |            |           |
| Analyte                                  | Result                        | POL     | SPK value    | SPK Ref Val             | %REC          | LowLimit     | HighLimit  | RPD Ref Val            | %RPO RPD              | SLimit     | Quat      |
| Toluene                                  | 1.770                         | 0.15    | -            | G                       | (121)         | 02           | 130        |                        |                       |            | S         |
| trans-1,2-Dichloroethene                 | 1.130                         | 0.15    | -            | o                       | ) <u>;</u> ;  | 70.9         | 132        |                        |                       |            |           |
| trans-1,3-Dichloropropene                | 1.050                         | 0.15    | -            | 0                       | Ę(            | 51.9         | 133        |                        |                       |            |           |
| Trichloroethene                          | 1.390                         | 0.030   | -            | ٥                       | (er)          | 63.1         | 109        |                        |                       |            | S         |
| Vinyl acetate                            | 1.090                         | 0.15    | -            | 0                       | ) <u>ê</u>    | 17.3         | 187        |                        |                       |            |           |
| Vinyl Bromiste                           | 0.9000                        | 0.15    | <b>*</b>     | 0                       | 90.06         | 71.3         | 121        |                        |                       |            |           |
| Vinyi chloride                           | 0.8500                        | 0.040   | -            | 0                       | 85.0          | 63.2         | 114        |                        |                       |            |           |
| Sample ID: C2104038-001A MS              | SampType: MSD                 | TestCoc | le: 0.20 NYS | Units: ppbV             |               | Prep Dat     | i as       |                        | RunNo: 17523          |            |           |
| Client ID: IAQ-09 (4/15/21)              | Batch ID: R17523              | Testh   | lo: TO-15    |                         | ``            | Anatysis Dat | a: 4/20/20 | 21                     | SeqNo: 198931         |            |           |
| Analyte                                  | Result                        | PQL     | SPK value    | SPK Ref Val             | %REC          | LowLimit     | HighLimit  | RPD Ref Val            | ана анаж              | itimit 4   | Qual      |
| t 1.1-Trichloroethane                    | 0.9700                        | 0.15    | -            | Ð                       | 97.0          | 68.1         | 117        | 1.02                   | 5.03 V                | 0          |           |
| 1,1,2,2-Tetrachloroethane                | 0.9400                        | 0.15    | -            | ٥                       | 94.0          | 82.3         | 101        | 0.94                   | ٥                     | 0          |           |
| <ol> <li>1, 2-Trichloroethane</li> </ol> | 0.8500                        | 0.15    | £            | D                       | 89.0          | 61           | 128        | 0.91                   | 2.22                  | 0          |           |
| 1,1-Dichloroethane                       | 0.9400                        | 0.15    | *            | 0                       | 94.0          | 76.5         | 118        | 0.94                   | Ċ                     | ¢          |           |
| 1,1-Dichloroethene                       | 0.9800                        | 0.040   | *-           | G                       | 85(           | 45.8         | 128        | 0.94                   | 4.17                  | 0          |           |
| 1,2,4-Trichlorobenzene                   | 2.340                         | 0.15    | 44-          | Û                       |               | 30.3         | 262        | 2.43                   | 3.77                  | Û          |           |
| 1,2,4-Trimethylbenzene                   | 1,580                         | 0.15    | <b>*</b> **  | 0                       |               | 81.5         | 155        | 1.58                   | ۵                     | a          | თ         |
| 1,2-Dibromoethane                        | 0.9700                        | 0.15    | 412          | 0                       | 0.76          | 78.7         | 107        | 0.99                   | 2:04                  | Ģ          |           |
| 1,2-Dichlorobenzere                      | 1.240                         | 0.15    | <b>*</b> ~   | ٥                       | 124           | 57.2         | 175        | 1.25                   | 0.803                 | Ð          |           |
| 1,2-Dichloroethane                       | 1.000                         | 0.15    | <del>.</del> | o                       | 100           | 65.1         | 130        | 0.98                   | 2.02                  | 0          |           |
| 1,2-Dichtoropropane                      | 0.8600                        | 0.15    | -            | 0                       | 86.0<br>(     | 66.9         | 116        | 0.91                   | 5.65                  | 0          |           |
| 1,3,5-Trimethylbenzene                   | 1.420                         | 0.15    | <b>~</b>     | 0                       | 142           | 67.6         | 139        | 1,41                   | 0.707                 | 0          | s         |
| 1,3-butadiene                            | 1.100                         | 0.15    | -            | 0                       | ; <u></u>     | 5            | 404        | 1.44                   | 26.8                  | 0          |           |
| 1,3-Dichlorobenzene                      | 1.170                         | 0.15    | -            | Ð                       | 117           | 89.1         | 122        | 1.13                   | 3.48                  | 0          |           |
| 1,4-Dichtorobenzene                      | 1.240                         | 0.15    | ÷            | Ð                       | 124           | 86.B         | 114        | 1,16                   | <b>6.</b> 67          | 0          | s         |
| 1,4-Dioxane                              | 1.190                         | 0.30    | ***          | 0                       | 119           | 75.1         | 14         | 1.17                   | 1.69                  | 0          | S         |
| 2,2,4-trimethy!pentare                   | 1.000                         | 0.15    | -            | 0                       | 100           | 84.2         | 113        | 1.01                   | 0.995                 | 0          |           |
| 4-ethyltoluene                           | 0.1500                        | 0,15    | <del></del>  | 0                       | 15.0          | Q2           | 130        | 0.17                   | 12.5                  | a          | Ś         |
| Oralifers: Results repor                 | ried are not blank corrected  | •       | E Eskim      | uted Value above quan   | titation rang | 2            | H H        | Jolding times for      | repartion or analysis | s exceeded |           |
| J Analyte dete                           | cted below quantitation limit |         | ND Not D     | etected at the Limit of | Detection     |              | R          | <b>UD entside acce</b> | ted recovery limits   |            |           |
| S Spike Recov                            | ery outside accepted recovery | linnits | DI. Delact   | iwa Limit               |               |              |            |                        |                       | $Pa_{2}$   | se 3 of 5 |

. .

LaBella Associates, P.C. CLIENT:

Work Order: C2104038

| Project: 1500 Jeffers       | son Road                    |        |              |                      |               |               | Г         | estCode: 0        | .20_NYS           |               |      |
|-----------------------------|-----------------------------|--------|--------------|----------------------|---------------|---------------|-----------|-------------------|-------------------|---------------|------|
| Sample ID: C2104038-001A MS | SampType: MSD               | TestCo | de: 0.20_NYS | Units: ppbV          |               | Prep Date     |           |                   | RunNo: 175        | 23            |      |
| Client ID: 1AQ-09 (4/15/21) | Batch IO: R17523            | Test   | No: TO-15    |                      |               | \nalysis Date | 4/20/20   | 21                | SeqNo: 198        | 931           |      |
| Analyte                     | Result                      | PQL    | SPK value    | SPK Ref Vał          | %REC          | LowLimit      | HighLimit | RPD Ref Val       | %RPD              | RPDLimit      | Quai |
| Acetone                     | 11.81                       | 0.30   | -            | 0                    | (180          | 70            | 130       | 12.67             | 7.03 V            | 0             | S    |
| Ally! chloride              | 1.030                       | 0.15   | -            | G                    | 1 <u>3</u>    | 49.7          | 155       | 0.99              | 3.96              | 0             |      |
| Benzene                     | 1.290                       | 0.15   | F            | 0                    | 129           | 72.7          | 133       | 1.38              | 6.74              | 0             |      |
| Benzyl chloride             | 1.510                       | 0.15   | -            | 0                    | (151)         | 72.5          | 129       | 1.48              | 2.01              | 0             | S    |
| Bromodichloromethane        | 0.9200                      | 0.15   | -            | Ö                    | <u>95.0</u>   | 69.4          | 112       | 0.98              | 6.32              | D             |      |
| ទីលោលសំពោ                   | 0.9700                      | 0.15   | -            | o                    | 0'26          | 42.5          | 110       | 1.01              | 4.04              | 0             |      |
| Bromomethane                | 0.9400                      | 0.15   | -            | ç                    | 94.0          | 68.6          | 121       | 0.95              | 1.06              | 0             |      |
| Carbon disulfide            | 1.000                       | 0.15   | -            | Ð                    | 100           | 2             | 130       | 0.98              | 2.02              | 0             |      |
| Carbon tetrachloride        | 1.010                       | 0:030  | -            | ¢                    | 101           | 61            | 107       | 1.07              | 5.77              | 0             |      |
| Chlorobenzene               | 0.9800                      | 0.15   | F            | Ð                    | 98.0          | 78.1          | 115       | 0.97              | 1.03              | ٥             |      |
| Chioroethane                | 0.8300                      | 0.15   | -            | Q                    | 83.0          | 62.6          | 119       | 0.86              | 3.55              | D             |      |
| Chtoroform                  | 1.050                       | 0.15   | -            | ¢                    | 105           | 6.54          | 173       | 1.03              | 1.92              | 0             |      |
| Chloromethane               | 1,140                       | 0.15   | -            | 0                    | 114           | 54.4          | 125       | 1.18              | 3.45              | D             |      |
| cis-1,2-Dichtoroethene      | 1.000                       | 0.040  | ۲            | 0                    | 100           | 60.1          | 125       | 0.98              | 2.02              | •             |      |
| cis-1,3-Dichloropropene     | 0.980.0                     | 0.15   | t            | 0                    | 98.0          | 60.8          | 122       | 0.99              | 1.02              | ۵             |      |
| Cyclohexane                 | 1.280                       | 0.15   | ٠-           | 0                    | 128           | 59.4          | 146       | 1.36              | 6.06              | 0             |      |
| Dibromochloromethane        | 0.9700                      | 0.15   | ٣            | 0                    | 025           | 71.6          | 102       | 1.01              | 4,04              | 0             |      |
| Ethyl acetate               | 14.37                       | 0.15   | **           | a                    | (1420)        | 49.3          | 146       | 15.33             | 8.19              | 0             | ა    |
| Ethylbenzene                | 1.220                       | 0.15   | **           | 0                    | )≅            | 68.5          | 129       | 1.19              | 2.49              | 0             |      |
| Freon 11                    | 0.9400                      | 0.15   | ·            | 0                    | 94.0          | 44.8          | 143       | 0.96              | 2.11              | 0             |      |
| Freen 113                   | 1.040                       | 0.15   | *            | D                    | <u>8</u>      | 80.3          | 125       | 1.03              | 0.966             | 0             |      |
| Frean 114                   | 0.8800                      | 0.15   | ŗ            | D                    | 69.69         | 65.2          | 132       | 0.88              | 0                 | 0             |      |
| Freen 12                    | 1.290                       | 0.15   | -            | 0                    | 128           | 67.4          | 103       | 1.33              | 3 05              | 0             | S    |
| Нерtале                     | 2.550                       | 0.15   | -            | Ð                    | (255)         | 80.8          | 124       | 2.86              | 11.5              | o             | S    |
| Hexachloro-1, 3-buladiene   | 1.340                       | 0.15   | ~            | o                    | Ř             | 81.9          | 119       | 1.41              | 5.09              | 0             | S    |
| Hexane                      | 10.24                       | 0.15   | -            | ð                    | 10201         | 73.7          | 147       | 10.95             | 6.70              | o             | ŝ    |
| Isopropyl alcohoł           | 188.2                       | 0.15   | ÷            | Ð                    | 18800         | 07            | 130       | 208.6             | 10.3              | 0             | S    |
| m&p-Xylene                  | 2,560                       | 0.30   | 7            | G                    | 128           | 74.2          | 123       | 2.61              | 1.93              | C             | S    |
| Meihvi Butvi Ketone         | 1.090                       | 0.30   | •            | 0                    | ġ,            | 72.6          | 117       | 1.07              | 1.85              | 0             |      |
| Methyl Ethyl Ketone         | 17.14                       | 0:30   | *            | ¢                    | (1710)        | 59.4          | 135       | 18.41             | 7,14              | Ċ             | თ    |
| Methył Isobułyl Ketone      | 1.120                       | 0.30   | -            | Q                    | 112           | 61            | 120       | 1.09              | 2.71              | 0             |      |
| Qualifiers: Results repor   | ted are not blank corrected |        | E Estina     | led Value above quan | titation rang | 2             | H         | Jolding times for | preparation or an | alysis exceed | ¥    |

Page 4 of 5

RPD outside accepted recovery limits

~

ND Not Detected at the Limit of Detection DL Detection Limit

Analyte detected below guantitation limit Spike Recovery outside accepted recivery limits

- s

LaBella Associates, P.C. CLIENT: 

C2104038 Work Order:

. £ Ş . . . .

TeetCode: 0.20 NVS

non dependent and a second of the second of the second second second second second second second second second

| Project: 1500 Jeffers       | on Road          |        |              |             |                  |              |            | estCode: 0  | 120_NYS    |          |      |
|-----------------------------|------------------|--------|--------------|-------------|------------------|--------------|------------|-------------|------------|----------|------|
| Sample ID: C2104038-001A MS | SampType: MSD    | TestCo | de: 0.20 NYS | Units: ppbV |                  | Prep Dat     |            |             | RunNo: 175 | 23       |      |
| Client ID: IAQ-09 (4/15/21) | Batch ID: R17523 | Test   | Vo: TO-15    |             |                  | Analysis Dat | e: 4/20/20 | 121         | SeqNo: 198 | 931      |      |
| Analyte                     | Result           | ЪОГ    | SPK value    | SPK Ref Val | %REC             | LowLimit     | HighLimit  | RPD Ref Val | %RPD       | RPDLimit | Quat |
| Methyl tert-butyl ether     | 1.110            | 0.15   |              | 0           | Ę                | 63.6         | 134        | 0.96        | 14.5       | 0        |      |
| Methylene chloride          | 2.240            | 0.15   | ***          | 0           | (224)            | 53.4         | 125        | 2.3         | 2.64       | D        | s    |
| a-Xylene                    | 1.180            | 0.15   | -            | 0           | ) <del>≌</del> ( | 74.3         | 132        | 1.22        | 3.33       | 0        |      |
| Propylene                   | 24.31            | 0.15   | F            | ¢           | (2430)           | 02           | 130        | 26.34       | 8.02       | 0        | S    |
| Styrene                     | 1.110            | 0.15   | -            | 0           | )≘               | 82.4         | 118        | 1.13        | 1.79       | 0        |      |
| Tetrachloroethylene         | 1.120            | 0.15   | -            | o           | ert<br>L         | 86.2         | 112        | 1.14        | 1.77       | 0        | S    |
| Tetrahyórofuran             | 301.0            | 0.15   | -            | ¢           | ( 301 DO         | 02           | 130        | 324.4       | 7.48       | 0        | S    |
| Toluene                     | 1.680            | 0.15   | -            | Q           |                  | ۶            | 130        | 1.77        | 5.22       | Ð        | Ś    |
| Irans-1,2-Dichloroethene    | 1.130            | 0.15   | -            | Û           | F                | 70.9         | 132        | 1,13        | D          | a        |      |
| trans-1,3-Dichtoropropene   | 1.050            | 0.15   | ~            | 0           | <u>1</u> 05      | 51.9         | 133        | 1.05        | 0          | 0        |      |
| Trichloroethene             | 1.320            | 0.030  | -            | 0           | 132              | 63.1         | 109        | 1,39        | 5.17       | D        | s    |
| Vinyl acetate               | 1.150            | 0.15   | -            | G           | 115              | 2            | 130        | 1,09        | 5.36       | D        |      |
| Vinyl Bromide               | 0.8700           | 0.15   |              | Ģ           | 87.0             | 2            | 130        | 0.9         | 3.39       | 0        |      |
| Vinyl chloride              | 0.8100           | 0.040  | -            | 0           | 81.0             | 63.2         | 114        | D.85        | 4.82       | 0        |      |



# **APPENDIX 3**

Safety Data Sheets Received April 15, 2021



# **SAFETY DATA SHEET**

Darl No. 2

# Section 1. Identification

| GHS product identifier                                     | : Darl No. 2                                                                                          |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Other means of<br>identification                           | : Not available.                                                                                      |  |
| Product type                                               | : Liquid.                                                                                             |  |
| Relevant identified uses of t                              | <u>ne substance or mixture and uses advised against</u>                                               |  |
| Product use                                                | : Petroleum lubricating oil                                                                           |  |
| Area of application                                        | : Industrial applications.                                                                            |  |
| Supplier/Manufacturer                                      | : LUBRIPLATE® Lubricants Co.<br>129 Lockwood St.<br>Newark, NJ 07105<br>Telephone no.: 1-973-589-9150 |  |
| e-mail address of person<br>responsible for this SDS       | : SDS@lubriplate.com                                                                                  |  |
| Emergency telephone<br>number (with hours of<br>operation) | : CHEM-TEL 1-800-255-3924 (24 hour)                                                                   |  |

# Section 2. Hazards identification

| OSHA/HCS status                               | : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Classification of the<br>substance or mixture | : Not classified.                                                                                     |
|                                               | Percentage of the mixture consisting of ingredient(s) of unknown toxicity: 1.8%                       |
| GHS label elements                            |                                                                                                       |
| Signal word                                   | : No signal word.                                                                                     |
| Hazard statements                             | : No known significant effects or critical hazards.                                                   |
| Precautionary statements                      |                                                                                                       |
| Prevention                                    | : Not applicable.                                                                                     |
| Response                                      | : Not applicable.                                                                                     |
| Storage                                       | : Not applicable.                                                                                     |
| Disposal                                      | : Not applicable.                                                                                     |
| Supplemental label<br>elements                | : Avoid contact with skin and clothing. Wash thoroughly after handling.                               |
| Hazards not otherwise<br>classified           | : Prolonged or repeated contact may dry skin and cause irritation.                                    |
|                                               |                                                                                                       |

| Date of is: | sue/Date of | revision |
|-------------|-------------|----------|
|-------------|-------------|----------|

1/11

# Section 3. Composition/information on ingredients

| Substance/mixture                | : Mixture        |
|----------------------------------|------------------|
| Other means of<br>identification | : Not available. |

**CAS number/other identifiers** 

| CAS number: Not applicableProduct code: Not available. | 9.                                                           |        |            |
|--------------------------------------------------------|--------------------------------------------------------------|--------|------------|
| Ingredient name                                        | Other names                                                  | %      | CAS number |
| Distillates (petroleum), hydrotreated heavy naphthenic | Distillates (petroleum),<br>hydrotreated heavy<br>naphthenic | 60-100 | 64742-52-5 |
| Distillates (petroleum), hydrotreated light naphthenic | Distillates (petroleum),<br>hydrotreated light<br>naphthenic | 30-60  | 64742-53-6 |

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health and hence require reporting in this section.

# Section 4. First aid measures

# Description of necessary first aid measures

| Eye contact  | : Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Get medical attention.                                                                                                                                                                              |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inhalation   | : Remove victim to fresh air and keep at rest in a position comfortable for breathing. Get medical attention if symptoms occur.                                                                                                                                                                                                               |
| Skin contact | : Wash skin thoroughly with soap and water or use recognized skin cleanser. Remove<br>contaminated clothing and shoes. Get medical attention if symptoms occur.                                                                                                                                                                               |
| Ingestion    | : Wash out mouth with water. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Do not induce vomiting unless directed to do so by medical personnel. Get medical attention if symptoms occur. |

### Most important symptoms/effects, acute and delayed

| Potential acute health eff     | ects                                                                               |
|--------------------------------|------------------------------------------------------------------------------------|
| Eye contact                    | : No known significant effects or critical hazards.                                |
| Inhalation                     | : No known significant effects or critical hazards.                                |
| Skin contact                   | : Defatting to the skin. May cause skin dryness and irritation.                    |
| Ingestion                      | : No known significant effects or critical hazards.                                |
| <u>Over-exposure signs/sym</u> | ptoms                                                                              |
| Eye contact                    | : No specific data.                                                                |
| Inhalation                     | : No specific data.                                                                |
| Skin contact                   | : Adverse symptoms may include the following:<br>irritation<br>dryness<br>cracking |
| Ingestion                      | : No specific data.                                                                |
| Date of issue/Date of revision | : 05/05/2015 Date of previous issue : No previous validation Version : 1 2/11      |

### **United States**

# Section 4. First aid measures

| Indication of immediate med | ica | l attention and special treatment needed, if necessary                                                                    |
|-----------------------------|-----|---------------------------------------------------------------------------------------------------------------------------|
| Notes to physician          | :   | Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled. |
| Specific treatments         | :   | No specific treatment.                                                                                                    |
| Protection of first-aiders  | :   | No action shall be taken involving any personal risk or without suitable training.                                        |

# See toxicological information (Section 11)

# Section 5. Fire-fighting measures

| Extinguishing media                               |                                                                                                                                                                                               |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suitable extinguishing<br>media                   | : Use an extinguishing agent suitable for the surrounding fire.                                                                                                                               |
|                                                   | In case of fire, use water spray (fog), foam, dry chemical or $CO_2$ .                                                                                                                        |
| Unsuitable extinguishing<br>media                 | : None known.                                                                                                                                                                                 |
| Specific hazards arising<br>from the chemical     | : In a fire or if heated, a pressure increase will occur and the container may burst.                                                                                                         |
| Hazardous thermal<br>decomposition products       | : Decomposition products may include the following materials:<br>carbon dioxide<br>carbon monoxide<br>sulfur oxides                                                                           |
| Special protective actions for fire-fighters      | : Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. |
| Special protective<br>equipment for fire-fighters | : Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.                         |

# Section 6. Accidental release measures

# Personal precautions, protective equipment and emergency procedures

| For non-emergency<br>personnel | : | No action shall be taken involving any personal risk or without suitable training.<br>Evacuate surrounding areas. Keep unnecessary and unprotected personnel from<br>entering. Do not touch or walk through spilled material. Put on appropriate personal<br>protective equipment. |
|--------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For emergency responders       | : | If specialised clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".                                                                          |
| Environmental precautions      | : | Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).                                                            |

# Methods and materials for containment and cleaning up

| Date | of | issue | /Date | of | rev | isio | n |
|------|----|-------|-------|----|-----|------|---|
|      |    |       |       |    |     |      |   |

# Section 6. Accidental release measures

| Small spill | : Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.                                                                                                                                                                                                                                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large spill | : Stop leak if without risk. Move containers from spill area. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see Section 13). Dispose of via a licensed waste disposal contractor. Note: see Section 1 for emergency contact information and Section 13 for waste disposal. |

# Section 7. Handling and storage

| Precautions for safe handling                                      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Protective measures                                                | : | Put on appropriate personal protective equipment (see Section 8).                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Advice on general occupational hygiene                             | : | Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.                                                                                                                                              |
| Conditions for safe storage,<br>including any<br>incompatibilities | : | Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination. |

# Section 8. Exposure controls/personal protection

### **Control parameters**

### **Occupational exposure limits**

| Ingredient name                                        | Exposure limits                                                                                                                                                                     |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distillates (petroleum), hydrotreated heavy naphthenic | ACGIH TLV (United States, 4/2014).<br>TWA: 5 mg/m <sup>3</sup> 8 hours. Form: Inhalable<br>fraction<br>NIOSH REL (United States, 10/2013).                                          |
|                                                        | TWA: 5 mg/m <sup>3</sup> 10 hours. Form: Mist<br>STEL: 10 mg/m <sup>3</sup> 15 minutes. Form: Mist<br><b>OSHA PEL (United States, 2/2013).</b><br>TWA: 5 mg/m <sup>3</sup> 8 hours. |
| Distillates (petroleum), hydrotreated light naphthenic | ACGIH TLV (United States, 4/2014).<br>TWA: 5 mg/m <sup>3</sup> 8 hours. Form: Inhalable<br>fraction<br>NIOSH REL (United States, 10/2013)                                           |
|                                                        | TWA: 5 mg/m <sup>3</sup> 10 hours. Form: Mist<br>STEL: 10 mg/m <sup>3</sup> 15 minutes. Form: Mist<br><b>OSHA PEL (United States, 2/2013).</b>                                      |

# Section 8. Exposure controls/personal protection

| Appropriate engineering<br>controls | :  | Good general ventilation should be sufficient to control worker exposure to airborne contaminants.                                                                                                                                                                                                                                                                                              |
|-------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental exposure controls     | :  | Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.                                                                            |
| Individual protection measure       | es |                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hygiene measures                    | :  | Wash hands, forearms and face thoroughly after handling chemical products, before<br>eating, smoking and using the lavatory and at the end of the working period.<br>Appropriate techniques should be used to remove potentially contaminated clothing.<br>Wash contaminated clothing before reusing. Ensure that eyewash stations and safety<br>showers are close to the workstation location. |
| Eye/face protection                 | :  | Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: safety glasses with side-shields.                                             |
| Skin protection                     |    |                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hand protection                     | :  | Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary.                                                                                                                                                                                                         |
| Body protection                     | :  | Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.                                                                                                                                                                                                     |
| Other skin protection               | :  | Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.                                                                                                                                                                               |
| Respiratory protection              | :  | Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.                                                                                 |

# Section 9. Physical and chemical properties

| Appearance                                   |                                                                               |
|----------------------------------------------|-------------------------------------------------------------------------------|
| Physical state                               | : Liquid. [Transparent / Oily liquid.]                                        |
| Color                                        | : Brown. [Dark]                                                               |
| Odor                                         | : Sulfurous.                                                                  |
| Odor threshold                               | : Not available.                                                              |
| рН                                           | : Not available.                                                              |
| Melting point                                | : Not available.                                                              |
| Boiling point                                | : >288°C (>550.4°F)                                                           |
| Flash point                                  | : Open cup: 180°C (356°F) [Cleveland.]                                        |
| Evaporation rate                             | : Not available.                                                              |
| Flammability (solid, gas)                    | : Not applicable.                                                             |
| Lower and upper explosive (flammable) limits | : Lower: 0.9%<br>Upper: 7%                                                    |
| Vapor pressure                               | : <0.0013 kPa (<0.01 mm Hg) [room temperature]                                |
| Vapor density                                | : >5 [Air = 1]                                                                |
| Date of issue/Date of revision               | : 05/05/2015 Date of previous issue : No previous validation Version : 1 5/11 |

# Section 9. Physical and chemical properties

| Relative density                           | : | 0.92 [Water = 1]                                                                                                  |
|--------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------|
| Solubility                                 | : | Very slightly soluble in the following materials: hot water.<br>Insoluble in the following materials: cold water. |
| Solubility in water                        | : | Not available.                                                                                                    |
| Partition coefficient: n-<br>octanol/water | : | Not available.                                                                                                    |
| Auto-ignition temperature                  | : | 193°C (379.4°F)                                                                                                   |
| Decomposition temperature                  | : | Not available.                                                                                                    |
| SADT                                       | : | Not available.                                                                                                    |
| Viscosity                                  | : | Kinematic (40°C (104°F)): 0.46 cm²/s (46 cSt)                                                                     |

# Section 10. Stability and reactivity

| Hazardous decomposition products | : | Under normal conditions of storage and use, hazardous decomposition products should not be produced.            |
|----------------------------------|---|-----------------------------------------------------------------------------------------------------------------|
| Incompatible materials           | : | Reactive or incompatible with the following materials: oxidizing materials.<br>Incompatible materials: Chlorine |
| Conditions to avoid              | : | Keep away from heat, sparks and flame. Keep away from all sources of ignition.                                  |
|                                  |   | Under normal conditions of storage and use, hazardous polymerization will not occur.                            |
| Possibility of hazardous         | : | Under normal conditions of storage and use, hazardous reactions will not occur.                                 |
| Chemical stability               | : | The product is stable.                                                                                          |
| Reactivity                       | : | No specific test data related to reactivity available for this product or its ingredients.                      |

# Section 11. Toxicological information

# Information on toxicological effects

### Acute toxicity

| Product/ingredient name                                      | Result    | Species | Dose        | Exposure |
|--------------------------------------------------------------|-----------|---------|-------------|----------|
| Distillates (petroleum),<br>hydrotreated heavy<br>naphthenic | LD50 Oral | Rat     | >5000 mg/kg | -        |
| Distillates (petroleum),<br>hydrotreated light naphthenic    | LD50 Oral | Rat     | >5000 mg/kg | -        |

### Irritation/Corrosion

| Product/ingredient name                                      | Result                 | Species | Score | Exposure          | Observation |
|--------------------------------------------------------------|------------------------|---------|-------|-------------------|-------------|
| Distillates (petroleum),<br>hydrotreated heavy<br>naphthenic | Skin - Severe irritant | Rabbit  | -     | 500<br>milligrams | -           |

# Sensitization

Not available.

| Date of issue/Date of revision | : 05/05/2015 | Date of previous issue | : No previous validation | Version | :1 | 6/11 |
|--------------------------------|--------------|------------------------|--------------------------|---------|----|------|
|                                |              |                        |                          |         |    |      |

# Section 11. Toxicological information

### **Mutagenicity**

Not available.

### **Carcinogenicity**

Not available.

### **Conclusion/Summary**

: The mineral oils in the product contain < 3% DMSO extract (IP 346).

### **Reproductive toxicity**

Not available.

### **Teratogenicity**

Not available.

# Specific target organ toxicity (single exposure)

Not available.

### Specific target organ toxicity (repeated exposure)

Not available.

### **Aspiration hazard**

| Name                                                   | Result                         |
|--------------------------------------------------------|--------------------------------|
| Distillates (petroleum), hydrotreated heavy naphthenic | ASPIRATION HAZARD - Category 1 |
| Distillates (petroleum), hydrotreated light naphthenic | ASPIRATION HAZARD - Category 1 |

Information on the likely : Routes of entry anticipated: Oral, Dermal, Inhalation. routes of exposure

### Potential acute health effects

| Eye contact  | : | No known significant effects or critical hazards.             |
|--------------|---|---------------------------------------------------------------|
| Inhalation   | : | No known significant effects or critical hazards.             |
| Skin contact | : | Defatting to the skin. May cause skin dryness and irritation. |
| Ingestion    | : | No known significant effects or critical hazards.             |

# Symptoms related to the physical, chemical and toxicological characteristics

| Eye contact  | : No specific data.                                                                |
|--------------|------------------------------------------------------------------------------------|
| Inhalation   | : No specific data.                                                                |
| Skin contact | : Adverse symptoms may include the following:<br>irritation<br>dryness<br>cracking |
| Ingestion    | : No specific data.                                                                |

# Delayed and immediate effects and also chronic effects from short and long term exposure

| <u>Short term exposure</u>  |   |                |
|-----------------------------|---|----------------|
| Potential immediate effects | : | Not available. |
| Potential delayed effects   | : | Not available. |
| Long term exposure          |   |                |

Date of issue/Date of revision

: 05/05/2015 Date of previous issue

# Section 11. Toxicological information

| Potential immediate<br>effects | : Not available.                                                                                       |
|--------------------------------|--------------------------------------------------------------------------------------------------------|
| Potential delayed effects      | : Not available.                                                                                       |
| Potential chronic health effe  | ects                                                                                                   |
| Not available.                 |                                                                                                        |
| General                        | : Prolonged or repeated contact can defat the skin and lead to irritation, cracking and/or dermatitis. |
| Carcinogenicity                | : No known significant effects or critical hazards.                                                    |
| Mutagenicity                   | : No known significant effects or critical hazards.                                                    |
| Teratogenicity                 | : No known significant effects or critical hazards.                                                    |
| <b>Developmental effects</b>   | : No known significant effects or critical hazards.                                                    |
| Fertility effects              | : No known significant effects or critical hazards.                                                    |

### Numerical measures of toxicity

Acute toxicity estimates

Not available.

# Section 12. Ecological information

### **Toxicity**

Not available.

### Persistence and degradability

Not available.

# **Bioaccumulative potential**

Not available.

### Mobility in soil

Soil/water partition coefficient (Koc)

: Not available.

### Other adverse effects

: No known significant effects or critical hazards.

# Section 13. Disposal considerations

| Disposal methods               | : The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Avoid |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of issue/Date of revision | : 05/05/2015 Date of previous issue : No previous validation Version : 1 8/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
### Section 13. Disposal considerations

dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

## Section 14. Transport information

|                               | DOT Classification | IMDG           | ΙΑΤΑ           |
|-------------------------------|--------------------|----------------|----------------|
| UN number                     | Not regulated.     | Not regulated. | Not regulated. |
| UN proper<br>shipping name    | -                  | -              | -              |
| Transport<br>hazard class(es) | -                  | -              | -              |
| Packing group                 | -                  | -              | -              |
| Environmental<br>hazards      | No.                | No.            | No.            |
| Additional information        | -                  | -              | -              |

**Special precautions for user** : **Transport within user's premises:** always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

Transport in bulk according : Not available. to Annex II of MARPOL 73/78 and the IBC Code

### Section 15. Regulatory information

| U.S. Federal regulations                                            | : United States inventory (TSCA 8b): All components are listed or exempted.   |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Clean Air Act Section 112<br>(b) Hazardous Air<br>Pollutants (HAPs) | : Not listed                                                                  |
| Clean Air Act Section 602<br>Class I Substances                     | : Not listed                                                                  |
| Clean Air Act Section 602<br>Class II Substances                    | : Not listed                                                                  |
| DEA List I Chemicals<br>(Precursor Chemicals)                       | : Not listed                                                                  |
| DEA List II Chemicals<br>(Essential Chemicals)                      | : Not listed                                                                  |
| <u>SARA 302/304</u>                                                 |                                                                               |
| Composition/information of                                          | on ingredients                                                                |
| No products were found.                                             |                                                                               |
| SARA 304 RQ                                                         | : Not applicable.                                                             |
| Date of issue/Date of revision                                      | : 05/05/2015 Date of previous issue : No previous validation Version : 1 9/11 |

## Section 15. Regulatory information

#### SARA 311/312

Classification

: Immediate (acute) health hazard

#### **Composition/information on ingredients**

| Name                                                                                                                   | %               | Fire<br>hazard | Sudden<br>release of<br>pressure | Reactive   | Immediate<br>(acute)<br>health<br>hazard | Delayed<br>(chronic)<br>health<br>hazard |
|------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------------------------|------------|------------------------------------------|------------------------------------------|
| Distillates (petroleum), hydrotreated<br>heavy naphthenic<br>Distillates (petroleum), hydrotreated<br>light naphthenic | 60-100<br>30-60 | No.<br>No.     | No.<br>No.                       | No.<br>No. | Yes.<br>Yes.                             | No.<br>No.                               |

#### <u>SARA 313</u>

Not applicable.

#### State regulations

Massachusetts: The following components are listed: MINERAL OIL, PETROLEUM DISTILLATES,<br/>HYDROTREATED LIGHT NAPHTHENICNew York: None of the components are listed.New Jersey: The following components are listed: MINERAL OIL (HIGHLY REFINED); OIL MIST,<br/>MINERAL; MINERAL OIL (HIGHLY REFINED); OIL MIST, MINERALPennsylvania: None of the components are listed.California Prop. 65: None of the components are listed.

None of the components are listed.

### Section 16. Other information

#### Hazardous Material Information System (U.S.A.)



Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks Although HMIS® ratings are not required on SDSs under 29 CFR 1910. 1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered mark of the National Paint & Coatings Association (NPCA). HMIS® materials may be purchased exclusively from J. J. Keller (800) 327-6868.

The customer is responsible for determining the PPE code for this material.

#### National Fire Protection Association (U.S.A.)



Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

| Date of issue/Date of revision | : 05/05/2015 | Date of previous issue | : No previous validation | Version | :1 | 10/11 |
|--------------------------------|--------------|------------------------|--------------------------|---------|----|-------|
|--------------------------------|--------------|------------------------|--------------------------|---------|----|-------|

Listow

## Section 16. Other information

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

| HISTOLY                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date of issue/Date of revision | : 05/05/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Date of previous issue         | : No previous validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Version                        | : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Prepared by                    | : IHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Key to abbreviations           | <ul> <li>ATE = Acute Toxicity Estimate<br/>BCF = Bioconcentration Factor<br/>GHS = Globally Harmonized System of Classification and Labelling of Chemicals<br/>IATA = International Air Transport Association<br/>IBC = International Air Transport Association<br/>IBC = International Maritime Dangerous Goods<br/>LogPow = logarithm of the octanol/water partition coefficient<br/>MARPOL 73/78 = International Convention for the Prevention of Pollution From Ships,<br/>1973 as modified by the Protocol of 1978. ("Marpol" = marine pollution)<br/>UN = United Nations</li> </ul> |
| References                     | : HCS (U.S.A.)- Hazard Communication Standard<br>International transport regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

 $m{
abla}$  Indicates information that has changed from previously issued version.

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

11/11

# SAFETY DATA SHEET

**GX COOL 2195** 



## Section 1. Identification

| GHS product identifier           | : GX COOL 2195                                                                                     |                                                                                                                                       |
|----------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Product code                     | : 16253.0002, 16253.0009, 16253.0014                                                               |                                                                                                                                       |
| SDS #                            | : GAL00713                                                                                         |                                                                                                                                       |
| Other means of<br>identification | : Not available.                                                                                   |                                                                                                                                       |
| Product type                     | : Liquid.                                                                                          |                                                                                                                                       |
| Relevant identified uses of t    | <u>he substance or mixture and uses advise</u>                                                     | ed against                                                                                                                            |
| Identified uses                  | : Metalworking Fluid                                                                               |                                                                                                                                       |
| Supplier/Manufacturer            | : DuBois Chemicals, Inc.<br>3630 E. Kemper Road<br>Cincinnati, Ohio 45241<br>Phone: 1-800-438-2647 | DuBois Chemicals Canada, Inc.<br>1155 North Service Road West<br>Unit 6<br>Oakville, Ontario, L6M 3E3 Canada<br>Phone: 1-866-861-3603 |
| Emergency telephone<br>number    | : 1-866-923-4919 (US and Canada)<br>01-651-523-0314 (Int'l and Mexico)                             |                                                                                                                                       |
| • • • • • •                      |                                                                                                    |                                                                                                                                       |

### Section 2. Hazards identification

| OSHA/HCS status                     | <ul> <li>This material is considered hazardous by the OSHA Hazard Communication Standard<br/>(29 CFR 1910.1200).</li> </ul>                                                                                                                                                                                                                                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification of the               | : SKIN CORROSION/IRRITATION - Category 2                                                                                                                                                                                                                                                                                                                                     |
| substance or mixture                | SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2A                                                                                                                                                                                                                                                                                                                             |
| GHS label elements                  |                                                                                                                                                                                                                                                                                                                                                                              |
| Hazard pictograms                   |                                                                                                                                                                                                                                                                                                                                                                              |
| Signal word                         | : Warning                                                                                                                                                                                                                                                                                                                                                                    |
| Hazard statements                   | : Causes serious eye irritation.<br>Causes skin irritation.                                                                                                                                                                                                                                                                                                                  |
| Precautionary statemer              | <u>its</u>                                                                                                                                                                                                                                                                                                                                                                   |
| Prevention                          | : Wear eye/face protection. Wear protective gloves. Wash hands thoroughly after handling.                                                                                                                                                                                                                                                                                    |
| Response                            | : IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing.<br>Wash contaminated clothing before reuse. If skin irritation occurs: Get medical<br>attention. IF IN EYES: Rinse cautiously with water for several minutes. Remove<br>contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get<br>medical attention. |
| Storage                             | : Not applicable.                                                                                                                                                                                                                                                                                                                                                            |
| Disposal                            | : Not applicable.                                                                                                                                                                                                                                                                                                                                                            |
| Hazards not otherwise<br>classified | : None known.                                                                                                                                                                                                                                                                                                                                                                |

### Section 3. Composition/information on ingredients

| Ingredient name                                                                  | %                 | CAS number             |
|----------------------------------------------------------------------------------|-------------------|------------------------|
| Distillates (petroleum), hydrotreated light naphthenic 2,2',2"-nitrilotriethanol | 10 - 20<br>5 - 10 | 64742-53-6<br>102-71-6 |

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

### Section 4. First aid measures

#### Description of necessary first aid measures

| Date of issue/Date of revision | : 5/21/2015. Date of previous issue : 3/25/2015. Version : 2 2/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ingestion                      | : No specific data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Skin contact                   | : Adverse symptoms may include the following:<br>irritation<br>redness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Inhalation                     | : No specific data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Eye contact                    | : Adverse symptoms may include the following:<br>pain or irritation<br>watering<br>redness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Over-exposure signs/sy         | nptoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ingestion                      | : Irritating to mouth, throat and stomach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Skin contact                   | : Causes skin irritation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Inhalation                     | : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Eye contact                    | : Causes serious eye irritation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Potential acute health ef      | fects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Most important symptom         | s/effects, acute and delayed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ingestion                      | : Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention if adverse health effects persist or are severe. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. |
| Skin contact                   | : Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Continue to rinse for at least 10 minutes. Get medical attention. Wash clothing before reuse. Clean shoes thoroughly before reuse.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Inhalation                     | : Remove victim to fresh air and keep at rest in a position comfortable for breathing. If<br>not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial<br>respiration or oxygen by trained personnel. It may be dangerous to the person providing<br>aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects<br>persist or are severe. If unconscious, place in recovery position and get medical<br>attention immediately. Maintain an open airway. Loosen tight clothing such as a collar,<br>tie, belt or waistband. In case of inhalation of decomposition products in a fire,<br>symptoms may be delayed. The exposed person may need to be kept under medical<br>surveillance for 48 hours.                            |
| Eye contact                    | : Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Get medical attention.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Notes to physician

### Section 4. First aid measures

#### Indication of immediate medical attention and special treatment needed, if necessary

: In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours.

Specific treatments : No specific treatment.

See toxicological information (Section 11)

#### Section 5. Fire-fighting measures

| <u>Extinguishing media</u>                     |                                                                                                                                                                       |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suitable extinguishing<br>media                | : Use an extinguishing agent suitable for the surrounding fire.                                                                                                       |
| Unsuitable extinguishing<br>media              | : None known.                                                                                                                                                         |
| Specific hazards arising<br>from the chemical  | : In a fire or if heated, a pressure increase will occur and the container may burst.                                                                                 |
| Hazardous thermal decomposition products       | : Decomposition products may include the following materials:<br>carbon dioxide<br>carbon monoxide<br>nitrogen oxides                                                 |
| Special protective equipment for fire-fighters | : Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode. |

### Section 6. Accidental release measures

| Personal precautions           | : No action shall be taken involving any personal risk or without suitable training.<br>Evacuate surrounding areas. Keep unnecessary and unprotected personnel from<br>entering. Do not touch or walk through spilled material. Avoid breathing vapor or mist.<br>Provide adequate ventilation. Wear appropriate respirator when ventilation is<br>inadequate. Put on appropriate personal protective equipment.                                                                                                                                                                                                                                                                        |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental precautions      | <ul> <li>Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains<br/>and sewers. Inform the relevant authorities if the product has caused environmental<br/>pollution (sewers, waterways, soil or air).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>Methods for cleaning up</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Small spill                    | : Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.                                                                                                                                                                                                                                                                                                                                                                                         |
| Large spill                    | : Stop leak if without risk. Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see Section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see Section 1 for emergency contact information and Section 13 for waste disposal. |

### Section 7. Handling and storage

Handling

: Put on appropriate personal protective equipment (see Section 8). Do not ingest. Avoid contact with eyes, skin and clothing. Avoid breathing vapor or mist. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container.

### Section 7. Handling and storage

Storage

: Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

### Section 8. Exposure controls/personal protection

#### **Control parameters**

#### **Occupational exposure limits**

| Ingredient name                                              | CAS #                                                    | ACGIH                                                                                                                                                 | OSHA                                                                                                                                  | Mexico                                                                                                          |
|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Distillates (petroleum),<br>hydrotreated light<br>naphthenic | 64742-53-6                                               | TWA: 5 mg/m <sup>3</sup> 8 hours.<br>Form: Inhalable fraction                                                                                         | TWA: 5 mg/m³ 8 hours.                                                                                                                 | LMPE-PPT: 5 mg/m <sup>3</sup> 8<br>hours. Form: mist<br>LMPE-CT: 10 mg/m <sup>3</sup><br>15 minutes. Form: mist |
| 2,2',2"-nitrilotriethanol                                    | 102-71-6                                                 | TWA: 5 mg/m <sup>3</sup> 8 hours.                                                                                                                     |                                                                                                                                       |                                                                                                                 |
| Engineering measures                                         | : Good ge<br>contamir                                    | neral ventilation should be nants.                                                                                                                    | sufficient to control worker                                                                                                          | exposure to airborne                                                                                            |
| Hygiene measures                                             | : Wash ha<br>eating, s<br>Appropri<br>Wash co<br>showers | ands, forearms and face the<br>moking and using the lavat<br>ate techniques should be u<br>entaminated clothing before<br>are close to the workstatio | proughly after handling che<br>ory and at the end of the w<br>sed to remove potentially c<br>reusing. Ensure that eyev<br>n location. | mical products, before<br>orking period.<br>ontaminated clothing.<br>vash stations and safety                   |
| Personal protection                                          |                                                          |                                                                                                                                                       |                                                                                                                                       |                                                                                                                 |
| Respiratory                                                  | : If a risk a<br>airfed res<br>based or<br>working l     | assessment indicates this is<br>spirator complying with an a<br>n known or anticipated expo<br>limits of the selected respira                         | s necessary, use a properly<br>approved standard. Respir<br>osure levels, the hazards of<br>ator.                                     | <sup>,</sup> fitted, air-purifying or<br>ator selection must be<br><sup>;</sup> the product and the safe        |
| Hands                                                        | : Chemica<br>worn at a<br>necessa                        | Il-resistant, impervious glov<br>all times when handling che<br>ry.                                                                                   | res complying with an appro<br>mical products if a risk ass                                                                           | oved standard should be essment indicates this is                                                               |
| Eyes                                                         | : Safety ey<br>assessm<br>gases or                       | vewear complying with an a<br>lent indicates this is necess<br>dusts. Recommended: sp                                                                 | pproved standard should b<br>ary to avoid exposure to lic<br>lash goggles                                                             | e used when a risk<br>luid splashes, mists,                                                                     |
| Skin                                                         | : Personal<br>performe<br>handling                       | protective equipment for the<br>ad and the risks involved an<br>this product.                                                                         | ne body should be selected<br>ad should be approved by a                                                                              | based on the task being specialist before                                                                       |
| Environmental exposure<br>controls                           | e : Emission<br>they com<br>cases, fu<br>will be ne      | ns from ventilation or work p<br>ply with the requirements of<br>time scrubbers, filters or en-<br>ecessary to reduce emissio                         | process equipment should<br>of environmental protection<br>gineering modifications to t<br>ns to acceptable levels.                   | be checked to ensure<br>legislation. In some<br>he process equipment                                            |
| Personal protective<br>equipment (Pictograms)                |                                                          |                                                                                                                                                       |                                                                                                                                       |                                                                                                                 |

## Section 9. Physical and chemical properties

#### **Appearance**

| Physical state                               | : | Liquid.                                                              |
|----------------------------------------------|---|----------------------------------------------------------------------|
| Color                                        | : | Clear to Slight Hazy Yellow. [Light]                                 |
| Odor                                         | : | Amine-like. [Slight]                                                 |
| Odor threshold                               | : | Not available.                                                       |
| рН                                           | : | 9.4 [Conc. (% w/w): 10%]                                             |
| Melting point                                | : | Not available.                                                       |
| Boiling point                                | : | >100°C (>212°F)                                                      |
| Flash point                                  | : | Closed cup: >93.3°C (>199.9°F) [Pensky-Martens (ASTM D93)]           |
| Burning time                                 | : | Not applicable.                                                      |
| Burning rate                                 | : | Not applicable.                                                      |
| Evaporation rate                             | : | <1 (butyl acetate = 1)                                               |
| Flammability (solid, gas)                    | : | Not available.                                                       |
| Lower and upper explosive (flammable) limits | : | Not available.                                                       |
| Vapor pressure                               | : | Not available.                                                       |
| Vapor density                                | : | Not available.                                                       |
| Relative density                             | : | 0.996                                                                |
| Solubility                                   | : | Easily soluble in the following materials: cold water and hot water. |
| Solubility in water                          | : | Not available.                                                       |
| Partition coefficient: n-<br>octanol/water   | : | Not available.                                                       |
| Auto-ignition temperature                    | : | Not available.                                                       |
| Decomposition temperature                    | : | Not available.                                                       |
| Viscosity                                    | : | Not available.                                                       |
| Elemental Phosphorus                         | : | Not available.                                                       |
| VOC content                                  | : | Not available.                                                       |

## Section 10. Stability and reactivity

| Reactivity                            | : No specific test data related to reactivity available for this product or its ingredients.                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                    | : The product is stable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Possibility of hazardous<br>reactions | : Under normal conditions of storage and use, hazardous reactions will not occur.                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conditions to avoid                   | : No specific data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Incompatible materials                | : Extremely reactive or incompatible with the following materials: oxidizing materials and acids.                                                                                                                                                                                                                                                                                                                                                                                              |
| Hazardous decomposition products      | : Under normal conditions of storage and use, hazardous decomposition products should not be produced.                                                                                                                                                                                                                                                                                                                                                                                         |
| Storage                               | : Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination. |

## Section 11. Toxicological information

#### Information on toxicological effects

#### **Carcinogenicity**

#### **Classification**

|           | Product/ingredient name                                                                | ACGIH                                                                | IARC                             | EPA                    | NIOSH           | NTP           | OSHA        |  |
|-----------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|------------------------|-----------------|---------------|-------------|--|
|           | Distillates (petroleum),<br>hydrotreated light naphthenic<br>2,2',2"-nitrilotriethanol | A4<br>-                                                              | -<br>3                           | -                      | -               | -             | -           |  |
| Inf<br>ro | ormation on the likely<br>utes of exposure                                             | :<br>Dermal contact.                                                 | Eve contact. I                   | nhalation.             |                 |               |             |  |
| Po        | tential acute health effects                                                           |                                                                      |                                  |                        |                 |               |             |  |
| E         | ye contact                                                                             | : Causes serious e                                                   | eye irritation.                  |                        |                 |               |             |  |
| Ir        | halation                                                                               | Exposure to decord<br>be delayed follow                              | omposition pro<br>ving exposure. | oducts may cau         | ise a health ha | zard. Serious | effects may |  |
| S         | kin contact : Causes skin irritation.                                                  |                                                                      |                                  |                        |                 |               |             |  |
| lr        | gestion                                                                                | Irritating to mouth                                                  | n, throat and s                  | tomach.                |                 |               |             |  |
| <u>Sy</u> | <u>mptoms related to the physi</u>                                                     | cal, chemical and                                                    | toxicologica                     | <u>l characteristi</u> | <u>cs</u>       |               |             |  |
| E         | ye contact                                                                             | : Adverse symptor<br>pain or irritation<br>watering<br>redness       | ns may includ                    | e the following:       |                 |               |             |  |
| In        | halation                                                                               | No specific data.                                                    |                                  |                        |                 |               |             |  |
| S         | kin contact :                                                                          | Adverse symptoms may include the following:<br>irritation<br>redness |                                  |                        |                 |               |             |  |
| In        | gestion                                                                                | No specific data.                                                    |                                  |                        |                 |               |             |  |
| De        | layed and immediate effects                                                            | and also chronic                                                     | effects from                     | short and lon          | g term exposi   | ure           |             |  |
| S         | <u>hort term exposure</u>                                                              |                                                                      |                                  |                        |                 |               |             |  |
|           | Potential immediate    :<br>effects                                                    | Not available.                                                       | Not available.                   |                        |                 |               |             |  |
| - 1       | Potential delayed effects :                                                            | Not available.                                                       |                                  |                        |                 |               |             |  |
| Le        | ong term exposure<br>Potential immediate :<br>effects                                  | Not available.                                                       |                                  |                        |                 |               |             |  |
| I         | Potential delayed effects :                                                            | Not available.                                                       |                                  |                        |                 |               |             |  |
| Po<br>N   | otential chronic health effec<br>lot available.                                        | ts                                                                   |                                  |                        |                 |               |             |  |
| (         | General :                                                                              | No known signific                                                    | cant effects or                  | critical hazards       | 6.              |               |             |  |
| (         | Carcinogenicity :                                                                      | No known signific                                                    | cant effects or                  | critical hazards       | ð.              |               |             |  |
| I         | Mutagenicity :                                                                         | : No known significant effects or critical hazards.                  |                                  |                        |                 |               |             |  |
|           | Feratogenicity :                                                                       | : No known significant effects or critical hazards.                  |                                  |                        |                 |               |             |  |
| I         | Developmental effects :                                                                | : No known significant effects or critical hazards.                  |                                  |                        |                 |               |             |  |
| I         | Fertility effects :                                                                    | effects : No known significant effects or critical hazards.          |                                  |                        |                 |               |             |  |
| Nu        | Numerical measures of toxicity                                                         |                                                                      |                                  |                        |                 |               |             |  |
| <u>A</u>  | cute toxicity estimates                                                                |                                                                      |                                  |                        |                 |               |             |  |
| R         | oute                                                                                   |                                                                      |                                  | ATE                    | value           |               |             |  |

#### Inhalation (dusts and mists)

Date of issue/Date of revision

: 3/25/2015.

10.9 mg/l

### Section 12. Ecological information

Ecotoxicity

: Not available.

Aquatic ecotoxicity

Not available.

### Section 13. Disposal considerations

Waste disposal
 The generation of waste should be avoided or minimized wherever possible. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe way. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

#### Section 14. Transport information

IATA/IMDG/DOT/TDG: Please refer to the Bill of Lading/receiving documents for up to date shipping information.

### Section 15. Regulatory information

| U.S. Federal regulations                                            | :  | TSCA 12(b) one-time export: No products were found.                                                                             |
|---------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |    | TSCA 12(b) annual export notification: No products were found.                                                                  |
|                                                                     |    | United States inventory (TSCA 8b): All components are listed or exempted.                                                       |
| EPA Registration Number                                             | :  | Not available.                                                                                                                  |
| Clean Air Act Section 112<br>(b) Hazardous Air<br>Pollutants (HAPs) | :  | Not listed                                                                                                                      |
| <u>SARA 302/304</u>                                                 |    |                                                                                                                                 |
| Composition/information c                                           | on | ingredients                                                                                                                     |
| No products were found.                                             |    |                                                                                                                                 |
| SARA 304 RQ                                                         | :  | Not applicable.                                                                                                                 |
| <u>SARA 311/312</u>                                                 |    |                                                                                                                                 |
| Classification                                                      | :  | Immediate (acute) health hazard<br>Delayed (chronic) health hazard                                                              |
| State regulations                                                   |    |                                                                                                                                 |
| Massachusetts                                                       | :  | The following components are listed: MINERAL OIL, PETROLEUM DISTILLATES, HYDROTREATED LIGHT NAPHTHENIC; TRIETHANOLAMINE         |
| New York                                                            | :  | None of the components are listed.                                                                                              |
| New Jersey                                                          | :  | The following components are listed: MINERAL OIL (UNTREATED and MILDLY TREATED); TRIETHANOLAMINE; ETHANOL, 2,2',2"-NITRILOTRIS- |
| Pennsylvania                                                        | ;  | The following components are listed: ETHANOL, 2,2',2"-NITRILOTRIS-                                                              |
| <u>California Prop. 65</u>                                          |    |                                                                                                                                 |
| Not available.                                                      |    |                                                                                                                                 |
| <u>Canada</u>                                                       |    |                                                                                                                                 |
| <u>Canadian lists</u>                                               |    |                                                                                                                                 |
| Canadian NPRI                                                       | :  | None of the components are listed.                                                                                              |
| Canada inventory                                                    |    | All components are listed or exempted.                                                                                          |
| Canadian PCP/DIN Number                                             | :  | Not available.                                                                                                                  |
| International regulations                                           |    |                                                                                                                                 |

### Section 15. Regulatory information

| International lists                                           | : Australia inventory (AICS): Not determined.               |
|---------------------------------------------------------------|-------------------------------------------------------------|
|                                                               | China inventory (IECSC): Not determined.                    |
|                                                               | Japan inventory: Not determined.                            |
|                                                               | Korea inventory: Not determined.                            |
|                                                               | Malaysia Inventory (EHS Register): Not determined.          |
|                                                               | New Zealand Inventory of Chemicals (NZIoC): Not determined. |
|                                                               | Philippines inventory (PICCS): Not determined.              |
|                                                               | Taiwan inventory (CSNN): Not determined.                    |
| Chemical Weapons                                              | : Listed                                                    |
| Convention List Schedule                                      |                                                             |
| III Chemicals                                                 |                                                             |
| Chemical Weapons<br>Convention List Schedule<br>III Chemicals | Taiwan inventory (CSNN): Not determined.<br>: Listed        |

### Section 16. Other information

#### **History**

| Date of printing               | : | 5/21/2015. |
|--------------------------------|---|------------|
| Date of issue/Date of revision | : | 5/21/2015. |
| Date of previous issue         | : | 3/25/2015. |
| Version                        | : | 2          |
|                                |   |            |

#### Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.