

April 23, 2018

Charlotte B. Theobald New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Re: Post-SSDS Sampling Work Plan

Eldre Corporation

1500 Jefferson Road & 55 Hofstra Road

Henrietta, New York

NYSDEC BCP Site C828182 LaBella Project No. 212721.01

Dear Ms. Theobald.

LaBella Associates, D.P.C. (LaBella) is submitting this letter work plan detailing proposed post-sub-slab depressurization system (SSDS) installation testing at the above referenced New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site (BCP ID No. C828182) located at 1500 Jefferson Road and 55 Hofstra Road in the Town of Henrietta, New York, herein after referred to as "the Site." Per the *Interim Remedial Measures Work Plan* dated September 2016 conditional approval letter dated June 15, 2017 and subsequent email correspondence, this letter work plan is being submitted to request approval of the post-SSDS installation soil vapor intrusion (SVI) sampling locations.

Baseline SVI Sampling:

Seven (7) sub-slab samples, eight (8) indoor air samples, and one (1) outdoor air sample were collected on December 13, 2017. Sampling was conducted in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006 and subsequent updates and the Interim Remedial Measures Work Plan dated September 2016 and conditional approval. It should be noted that one (1) deviation from the planned work occurred. One (1) planned sub-slab sample proximate to IAQ-07 in the gold plating area (lower level) could not be collected due to infiltration of water into the tubing during sample collection.

A comparison of results to NYSDOH Decision Matrices indicated three (3) sample locations (SVI/IAQ-04, SVI/IAQ-05, and SVI/IAQ-06) within the northern lower level of the Site Building warranted mitigation due to concentrations of TCE. Although a sub-slab sample could not be collected proximate IAQ-07, the concentration of TCE in the indoor air in IAQ-07 was 0.54 ug/m³ and is considerably lower than the concentrations of TCE in remaining lower-level indoor air samples which ranged from 7.1 to 9.9 ug/m³.

A letter dated February 14, 2018 was submitted to the NYSDEC and NYSDOH with baseline SVI sampling results and requested modifications to the area requiring mitigation based on the baseline SVI sampling. The area of mitigation was expanded to cover impacts identified in the location of

NYSDEC – Ms. Charlotte Theobald April 23, 2018 Page 2

SVI/IAQ-05.

The validated data for the baseline SVI data is included on the attached tables and Figure 1. The Data Usability Summary Report (DUSR) and ASP Category B laboratory report are also attached. It should be noted the results of sub-slab soil vapor sample SVI-03 were rejected in the DUSR due to a malfunction with the canister which lost pressure during sample collection; however, the concentration of TCE in the corresponding indoor air sample (IAQ-03) was 0.43 ug/m³ which is considerably lower than the concentrations of TCE in lower-level indoor air samples warranting mitigation; as such, this area (SVI/IAQ-03) does not warrant mitigation.

Proposed Post-SSDS Sampling

SSDS installation took place from February 19 through April 4, 2018. System installation details will be documented in a Construction Completion Report (CCR). The general layout is shown on Figure 2, attached.

Pressure field extension (PFE) testing was completed on April 11, 2018 using a digital manometer (Fluke 922 Airflow Meter). PFE points are shown on Figure 2. Sub-slab pressure contours were developed and the approximate inferred area of influence of the SSDS is shown on Figure 2. This area is consistent with the planned area of mitigation in the *Interim Remedial Measures Work Plan* dated September 2016 and requested modifications documented in a letter dated February 14, 2018. It should be noted water is present immediately below the floor slab in the location of PFE-7.1 and PFE-7.2 and to the south and west of this location in the lower level; as such, negative pressures were not present in this area.

In accordance with the *Interim Remedial Measures Work Plan* dated September 2016 and conditional approval, following 30 days of SSDS operation, SVI sampling will be conducted. Indoor air samples will be collected from within the area of SSDS influence and sub-slab and indoor air samples will be collected from the area outside SSDS influence. An outdoor air sample will also be collected. Due to water directly beneath the floor slab during attempted PFE point installation (PFE-7.1 and PFE-7.2), depressurization point installation and baseline sub-slab sampling (proximate to IAQ-07) in the southeastern portion of the lower-level, a sub-slab sample will not be attempted in the area of IAQ-07. It should be noted a depressurization point was attempted south of PFE-7.1 and PFE-7.2; however, water was present directly below the floor slab and the point was sealed. The sub-slab sampling points installed for the baseline sampling will be utilized. The following sampling is proposed (refer to Figure 2 for locations):

Indoor Air Only:

- IAO-04 (lower level)
- IAQ-05 (lower level)
- IAQ-06 (lower level)
- IAO-07 (lower level)

Sub-Slab and Indoor Air:

- SVI/ IAQ-01 (upper level)
- SVI/ IAQ-02 (upper level)
- SVI/ IAO-03 (upper level)
- SVI/ IAQ-08 (lower level)

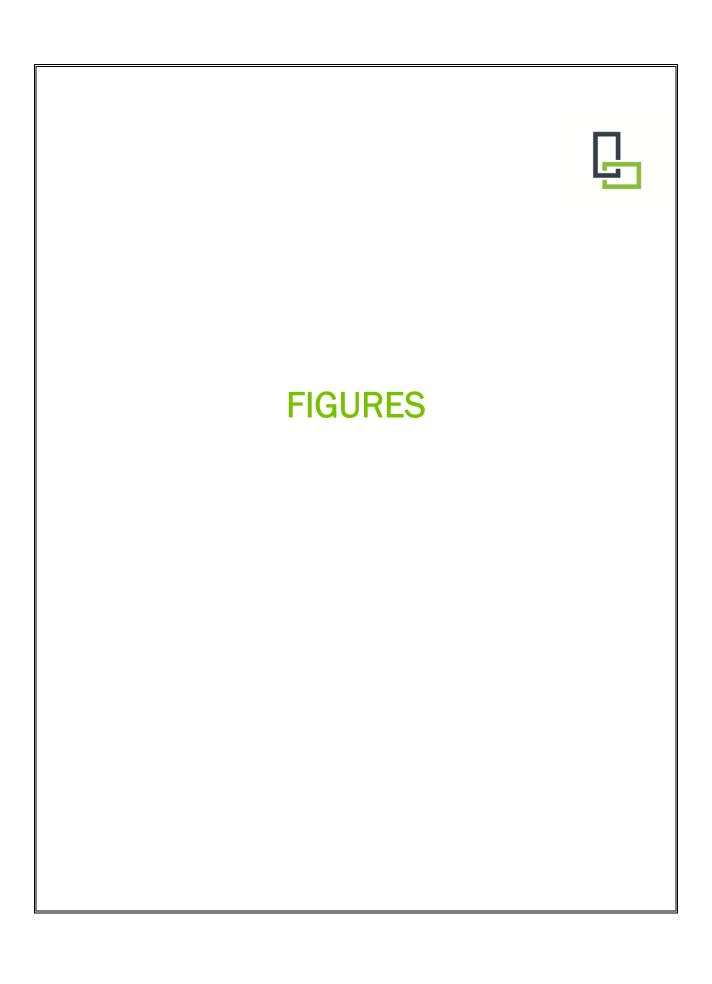
Samples will be analyzed via USEPA Method TO-15 for the select list of VOCs listed in the IRM Work Plan (PCE, TCE, cis-1,2-dichloroethene, trans-1,2-dichloroethene, vinyl chloride, 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, chloroethane, and chloromethane). Other VOCs not on this select list were not detected in indoor air during the baseline SVI sampling above the USEPA Building Assessment and Survey Evaluation (BASE) Database 90th percentile with the exception of acetone which was also detected in the outdoor air sample and may be a result of background conditions and/or laboratory analysis, and chloroform which was not detected in subslab samples and is therefore not a subsurface contaminant at the Site. Samples will be collected in the same manner as the baseline SVI sampling, in accordance with the IRM Work Plan and NYSDOH Guidance. Sampling will be conducted no sooner than 30 days following system startup (i.e., May 4th or later). Although May 4th is by definition outside of the heating season, if the building's heating system is operating, sample collection will proceed. If the heat is not operating, sample collection will take place in the following heating season.

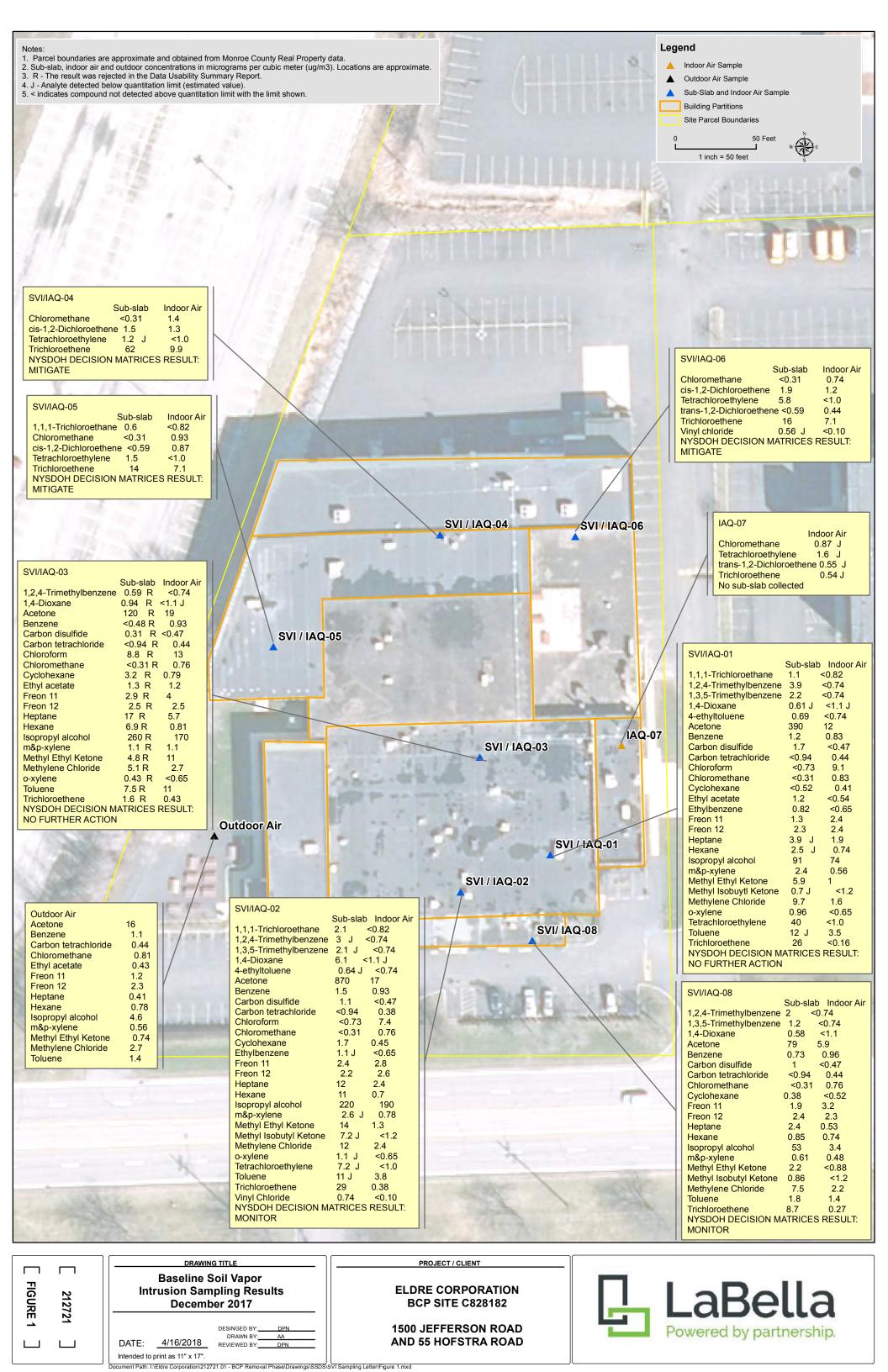
If you have any questions, or require additional information, please do not hesitate to contact me at (585) 295-6611.

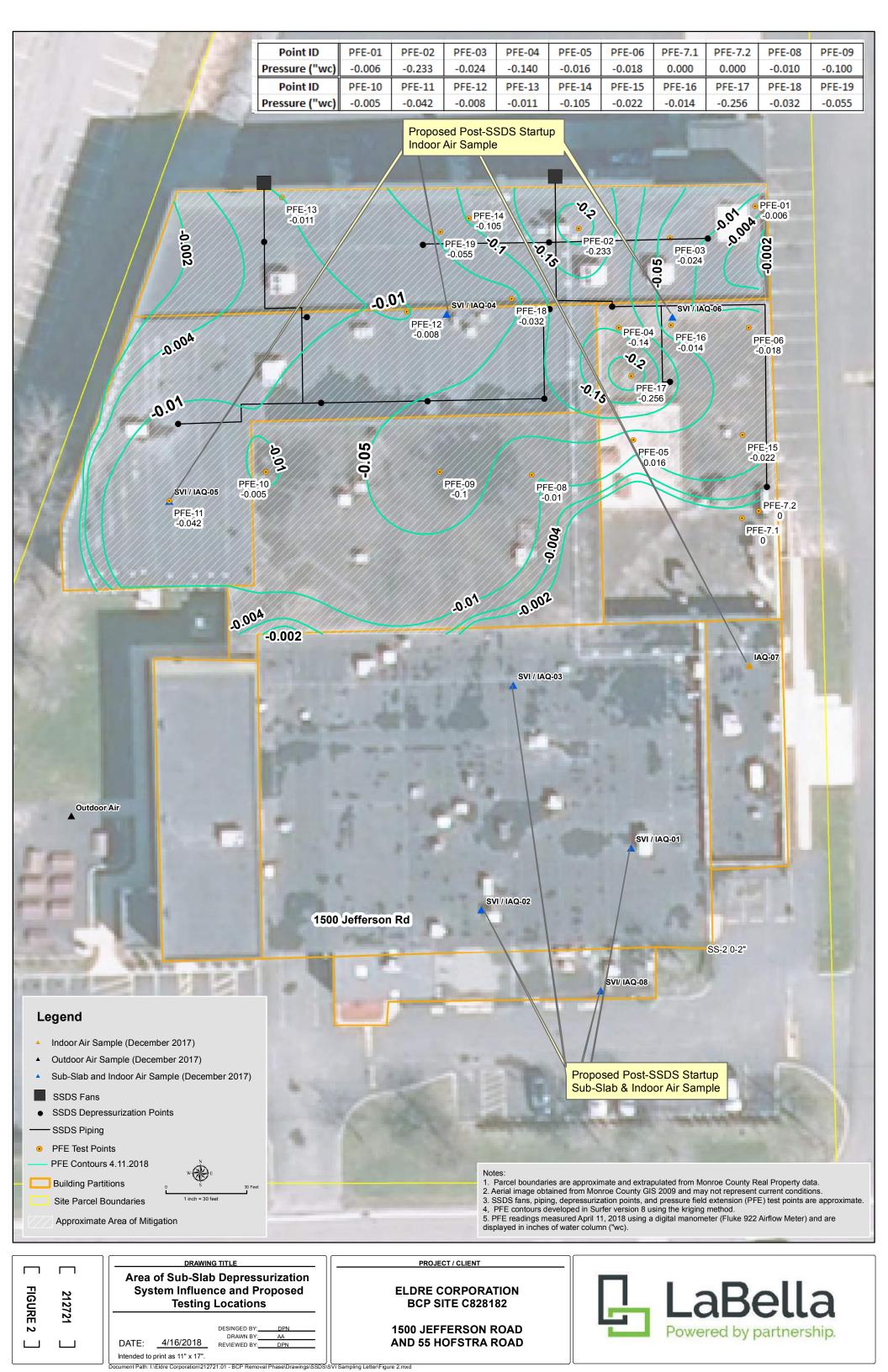
Respectfully submitted,

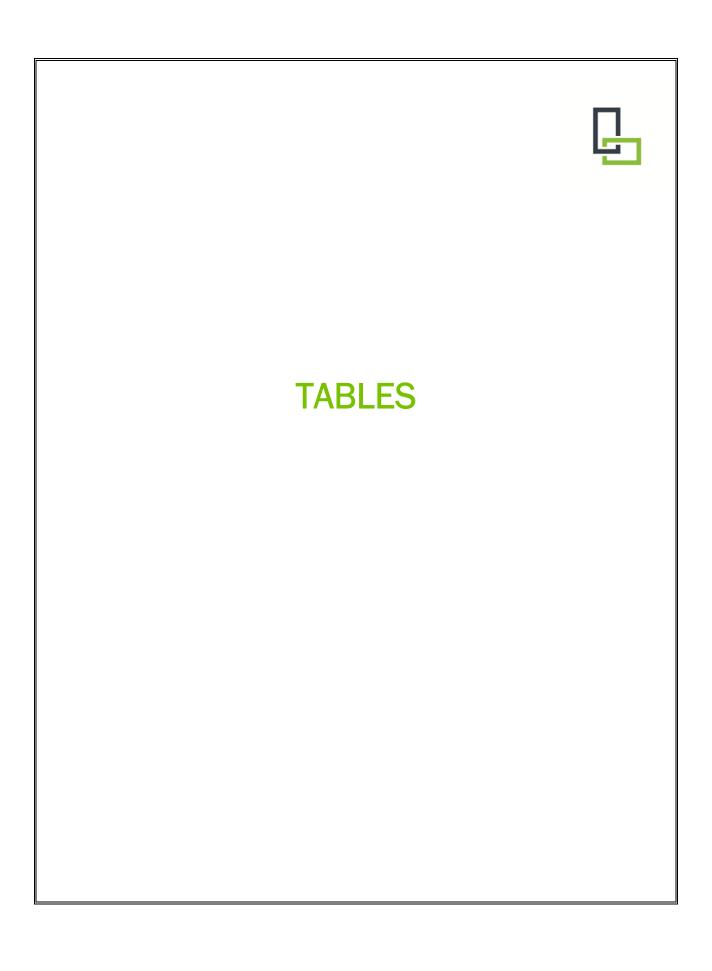
LABELLA ASSOCIATES, D.P.C.

Daniel P. Noll, PE Project Manager


ATTACHMENTS:


Figures Tables


Appendix A: Baseline SVI Laboratory Report


Appendix B: Baseline SVI DUSR

I:\ELDRE CORPORATION\212721.01 - BCP REMOVAL PHASE\REPORTS\SVI STUDY\POST-SSDS LETTER WORK PLAN\C828182 ELDRE CORPORATION SVI SAMPLING WORK PLAN.DOC

Table 1 - Baseline Soil Vapor Intrusion Sampling Results C828182 Eldre Corporation - 1500 Jefferson Road & 55 Hofstra Road Results in Micrograms per Cubic Meter

Location	Ground Level (Ac	counting Department)	Ground Level (Produc	ct/ Cart Storage Area)	Ground Level (En	gineering Department)	Southern Lower L	evel (Storage Area)				
Sample ID	SVI-01	IAQ-01	SVI-02	IAQ-02	SVI-03	IAQ-03	SVI-08	IAQ-08	Outdoor Air	NYSDOH Sub-Slab Vapor Concentration		NYSDOH Guidance Table C2.
Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Outdoor Air	Decision Matrix (minimum action level)	NYSDOH Indoor Air Concentration (minimum action level) (1)	USEPA BASE Database - 90th Percentile (2)
Sample Date	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	,,		Percentile \'
1,1,1-Trichloroethane	1.1	< 0.82	2.1	< 0.82	<0.82	R < 0.82	< 0.82	< 0.82	< 0.82	100***	3***	20.6
1,2,4-Trimethylbenzene	3.9	< 0.74	3.0 J	< 0.74	0.59	R < 0.74	2	< 0.74	< 0.74	NL	NL	9.5
1,3,5-Trimethylbenzene	2.2	< 0.74	2.1 J	< 0.74	< 0.74	R < 0.74	1.2	< 0.74	< 0.74	NL	NL	9.5
1,4-Dioxane	0.61	J <1.1 J	6.1 J	< 1.1 J	0.94	R < 1.1	J 0.58 J	< 1.1	J < 1.1	J NL	NL	NL
4-ethyltoluene	0.69	J < 0.74	0.64 J	< 0.74	< 0.74	R < 0.74	< 0.74	< 0.74	< 0.74	NL	NL	3.6
Acetone	390	12 J	870	17	120	R 19	79	5.9	16	NL	NL	98.9
Benzene	1.2	0.83	1.5	0.93	< 0.48	R 0.93	0.73	0.96	1.1	NL	NL	9.4
Carbon disulfide	1.7	< 0.47	1.1	< 0.47	0.31	R < 0.47	1	< 0.47	< 0.47	NL	NL	4.2
Carbon tetrachloride	< 0.94	0.44	< 0.94	0.38	< 0.94	R 0.44	< 0.94	0.44	0.44	6 **	0.2**	<1.3
Chloroform	< 0.73	9.1	< 0.73	7.4	8.8	R 13	< 0.73	< 0.73	< 0.73	NL	NL	1.1
Chloromethane	< 0.31	0.83	< 0.31	0.76	< 0.31	R 0.76	< 0.31	0.76	0.81	NL	NL	3.7
Cyclohexane	< 0.52	0.41 J	1.7	0.45 J	3.2	R 0.79	0.38 J	< 0.52	< 0.52	NL	NL	NL
Ethyl acetate	1.2	< 0.54	0.54 U	< 0.54	1.3	R 1.2	< 0.54	< 0.54	0.43	J NL	NL	5.4
Ethylbenzene	0.82	< 0.65	1.1 J	< 0.65	< 0.65	R < 0.65	< 0.65	< 0.65	< 0.65	NL	NL	5.7
Freon 11	1.3	2.4	2.4	2.8	2.9	R 4	1.9	3.2	1.2	NL	NL	18.1
Freon 12	2.3	2.4	2.2	2.6	2.5	R 2.5	2.4	2.3	2.3	NL	NL	16.5
Heptane	3.9	J 1.9	12 JH	2.4	17	R 5.7	2.4	0.53	J 0.41	J NL	NL	NL
Hexane	2.5	J 0.74	11	0.7	6.9	R 0.81	0.85	0.74	0.78	NL	NL	10.2
Isopropyl alcohol	91	74	220	190	260	R 170	53	3.4	4.6	NL	NL	NL
m&p-Xylene	2.4	0.56 J	2.6 J	0.78 J	1.1	R 1.1	J 0.61 J	0.48	J 0.56	J NL	NL	22.2
Methyl Ethyl Ketone	5.9	J 1	14 JH	1.3	4.8	R 11	2.2	< 0.88	0.74	J NL	NL	NL
Methyl Isobutyl Ketone	0.7	J < 1.2	7.2 J	< 1.2	< 1.2	R < 1.2	0.86 J	< 1.2	< 1.2	NL	NL	NL
Methylene chloride	9.7	J 1.6	12	2.4	5.1	R 2.7	7.5	2.2	2.7	100***	3***/60*	NL
o-Xylene	0.96	< 0.65	1.1 J	< 0.65	0.43	R < 0.65	< 0.65	< 0.65	< 0.65	NL	NL	7.9
Tetrachloroethylene	40	< 1.0	7.2 J	< 1.0	<1.0	R < 1.0	< 1.0	< 1.0	< 1.0	100***	3***/30*	NL
Toluene	12	J 3.5	11 JH	3.8	7.5	R 11	1.8	1.4	1.4	NL	NL NL	43
Trichloroethene	26	< 0.16	29	0.38	1.6	R 0.43	8.7	0.27	< 0.16	6 **	0.2** / 2*	4.2
Vinyl chloride	0.38 L	J < 0.10	0.74	< 0.10	< 0.38	R < 0.10	< 0.38	< 0.10	< 0.10	6****	0.2***	< 1.9

MONITOR:

Concentrations in micrograms per cubic meter (ug/m³) Samples analyzed for VOCs by USEPA Method TO-15

< indicates the concentration was not detected above the reporting limit

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and subsequent updates. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

(2) USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote *1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

* = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York and updates in September 2013 for PCE and August 2015 for TCE.

** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix A (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017. *** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix B (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

**** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix C (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates).

J - Analyte detected below quantitation limit R - The result was rejected in the DUSR.

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York , May 2017 Decision Matrices Notes:

IDENTIFY SOURCE(S) AND RESAMPLE OR MITIGATE:

We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air outdoor or outdoor or outdoor or outdoor air outdo resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning might also be recommend to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site, building, and analyte-specific information, taking into account applicable environmental media

MITIGATE:

We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Table 1 continued - Baseline Soil Vapor Intrusion Sampling Results C828182 Eldre Corporation - 1500 Jefferson Road & 55 Hofstra Road Results in Micrograms per Cubic Meter

Location	Northern Lower Leve	el (Stamping Department)	Northern Lower	_evel (Deburring)	Northern Lower Level	(Waste Treatment Room)	Northern Lower Level (Gold Plating)	Northern Lower Level (Deburring)			
Sample ID	SVI-04	IAQ-04	SVI-05	IAQ-05	SVI-06	IAQ-06	IAQ-07		NVCDOU Cub Clab Vanor Concentration		NYSDOH Guidance Table C2.
Sample Type	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Sub-Slab	Indoor Air	Indoor Air	Indoor Air	Decision Matrix (minimum action level)	NYSDOH Indoor Air Concentration (minimum action level) (1)	USEPA BASE Database - 90th Percentile (2)
Sample Date	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017			i ercentile
1,1,1-Trichloroethane	< 0.82	< 0.82	0.6 J	< 0.82	< 0.82	< 0.82	< 0.82 J	< 0.82	100***	3***	20.6
Chloromethane	< 0.31	1.4	< 0.31	0.93	< 0.31	0.74	0.87 J	0.85	NL	NL	3.7
cis-1,2-Dichloroethene	1.5	1.3	< 0.59	0.87	1.9	1.2	< 0.59 J	0.87	6**	0.2**	NL
Tetrachloroethylene	1.2 J	J < 1.0	1.5	< 1.0	5.8 J	< 1.0	1.6 J	< 1.0	100***	3***/30*	NL
trans-1,2-Dichloroethene	< 0.59	< 0.59	< 0.59	< 0.59	< 0.59	0.44 J	0.55 J	< 0.59	NL	NL	NL
Trichloroethene	62	9.9	14	7.1	16	7.1	0.54 J	7.0	6 **	0.2** / 2*	4.2
Vinyl chloride	0.38 L	J < 0.10	< 0.38	< 0.10	0.38 U	< 0.10	< 0.10 J	< 0.10	6****	0.2***	< 1.9

Notes:

Concentrations in micrograms per cubic meter (ug/m³)

Samples analyzed for VOCs by USEPA Method TO-15

< indicates the concentration was not detected above the reporting limit

(1) New York State Department of Health (NYSDOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and subsequent updates. [Note: This Guidance uses a combination of indoor air and sub-slab soil vapor when comparing to the matrices. In addition, for compounds not listed in the matrices an overall site approach is employed which utilizes the USEPA BASE Database (see 2. below) as typical background for commercial buildings and also uses the outdoor air sample, refer to Guidance document for details.]

(2) USEPA Building Assessment and Survey Evaluation (BASE) Database (90th Percentile). As recommended in Section 3.2.4 of the NYSDOH Guidance (Refer to Footnote "1") this database is referenced for the indoor air sampling results. This database is also referenced to provide initial benchmarks for comparison to the air sampling data and does not represent regulatory standards or compliance values.

* = Air Guideline Values obtained from Table 3.1, NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York and updates in September 2013 for TCE.

** = Guideline Value obtained from Soil Vapor/Indoor Air Matrix A (minimum action level), NYSDOH, Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

*** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix B (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

**** = Guidance Value obtained from Soil Vapor/Indoor Air Matrix C (minimum action level), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York May 2017.

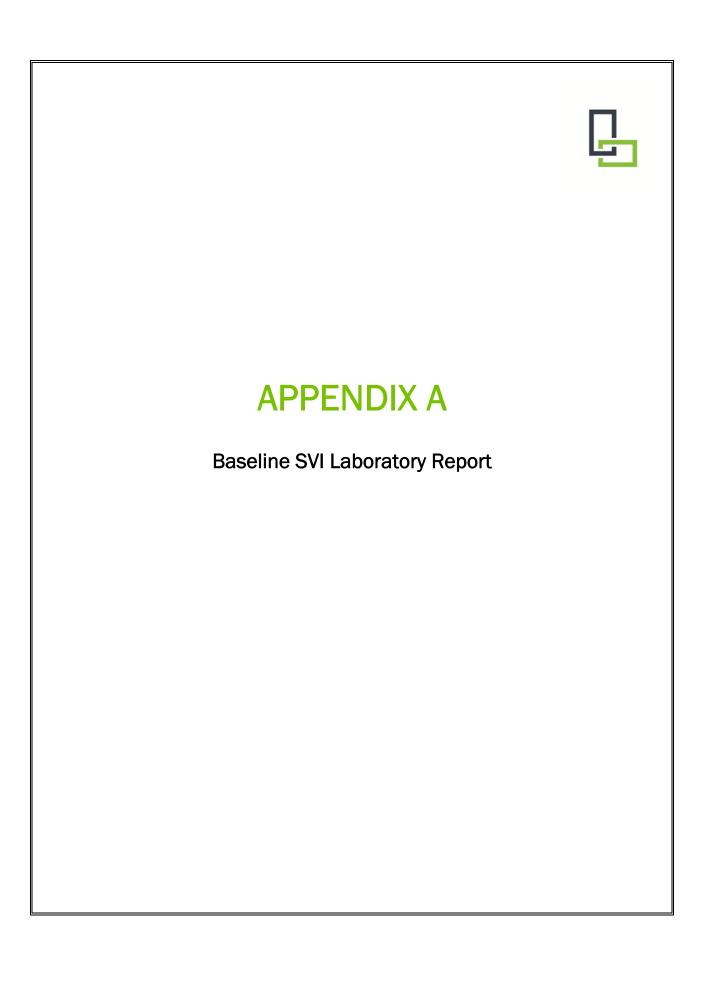
Red values are above Air Guideline Derived by NYSDOH in Table 3.1 of NYSDOH Guidance titled "Evaluating Soil Vapor Intrusion in the State of New York", October 2006 (and subsequent updates).

J - Analyte detected below quantitation limit

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York , May 2017 Decision Matrices Notes:

NO FURTHER ACTION:

No additional actions are recommended to address human exposures


IDENTIFY SOURCE(S) AND RESAMPLE OR MITIGATE:

We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation actions are not needed when soil vapor intrusion cannot be ruled out.

are needed. The type and frequency of monitoring is determined based on site, building, and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are mendiance.

We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes

Centek Laboratories TO-15 Package Review CheckList

Analytical Results TIC's Present Present and Complete Holdin Times Met Comments: Chain of Custody Present and Complete Surrogate Present and Complete Recoveries within Limit	Project:	Eldre Corp	SDG:	C1712063
TIC's Present Present and Complete Holdin Times Met Comments: Chain of Custody Present and Complete Surrogate Present and Complete Recoveries within Limit			YES NO	<u> NA</u>
TIC's Present Present and Complete Holdin Times Met Comments: Chain of Custody Present and Complete Surrogate Present and Complete Recoveries within Limit			_	
Comments: Chain of Custody Present and Complete Surrogate Present and Complete Recoveries within Limit				
Comments: Chain of Custody Present and Complete Surrogate Present and Complete Recoveries within Limit				
Chain of Custody Present and Complete Surrogate Present and Complete Recoveries within Limit				
Surrogate Present and Complete Recoveries within Limit				
Recoveries within Limit				
Recoveries within Limit			`	
	ts		**	
Sample(s) reanalyzed	. <u>-</u>			
Internal Standards Present and Complete			<u> </u>	. —
Recovery Recoveries within Limit	ts			- —
Sample(s) reanalyzed				_ ~
Comments:		***************************************		***************************************
Lab Control Sample Present and Complete (LCS) Recoveries within Limit	te		_	
(CC) Recoveries within Limit				
Lab Control Sample Dupe Present and Complete			~	
(LCSD) Recoveries within Limit	ts		<u> </u>	
MS/MSD Present and Complete			<u> </u>	
Recoveries within Limit	(\$			MY SANTONY
Comments: £6EE CAS	E NARRA	TIVE		
Sample Raw Data Present and Complete			<u> </u>	
Spectra present				
Comments:			<u> </u>	
			<u> </u>	

Centek Laboratories TO-15 Package Review CheckList

Cantal Laboratores	Client:	LaBella	Project:	Eldre Corp	S	DG:	C1712063
Standards Data					YES	<u>NO</u>	<u>NA</u>
Intial Calibration		Present and Complete			\sim		
		Calibration meets criteria					***************************************
Continuing Calibration	1	Present and Complete				×	
		Calibration meets criteria					
Standards Raw Data		Present and Complete			<u>\</u>		<u> </u>
Comments:		* SEE CASE	NARA	ATIVE			
Raw Quality Control D	ata						
Tune Criteria Report		Present and Complete					
Method Blank Data		MB Results <pql< td=""><td></td><td></td><td><u></u></td><td></td><td></td></pql<>			<u></u>		
		Associated results flagged "E	}"				
LCS Sample Data		Present and Complete					
LCSD Sample Data		Present and Complete			<u>` </u>		
MS/MSD Sample Data		Present and Complete					
Comments:							
Logbooks							<u>.</u>
Injection Log							
Standards Log					<u> </u>	***************************************	
Can Cleaning Log						******	
						FURE	- 114111111
Calculation Sheet							
IDL's					<u> </u>		THINAMESTA
Canister Order Form							
Sample Tracking Form					-		
Additional Comments:		* SEE CASE	NAR	LATIVE			
Section Supervisor:	Will	2 Dall	Date:	1115/2	2018		
· · · · · · · · · · · · · · · ·	4	· / -	Date.		- · · ·		
QC Supervisor:	- Lui	(saile	Date:	115/2	018		

Page 2 of 477

Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752 NYSDOH ELAP Certificate No. 11830

Analytical Report

Ann Aquilina LaBella Associates, P.C. 300 State Street, Suite 201 Rochester, NY 14614

TEL: (585) 454-6110 FAX (585) 454-3066

RE: Eldre Corp

Dear Ann Aquilina:

Wednesday, December 27, 2017 Order No.: C1712063

Centek Laboratories, LLC received 17 sample(s) on 12/18/2017 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely votatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Well Dall

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g, Calculation
- 8. Sample Data
 - a. Form 1 (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Date
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

Date: 15-Jan-18

CLIENT:

LaBella Associates, P.C.

Project:

Eldre Corp

Lab Order:

C1712063

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Samples were received over 2 separate days. See sample summary forms.

See Corrective Action: [3643] MS/MSD did not meet criteria.

See Corrective Action: [3644] CC did not meet criteria.

Corrective Action Report

Date Initiated:	21-Dec-17	Corrective Action Report ID:	3643

Department: MSVOA Initiated By: Russell Pellegrino THE CONTROL OF THE CO

Corrective Action Description

MS/MSD did not meet criteria. **CAR Summary:**

MS/MSD did not meet criteria for a several compounds for samples C1712063-001A Description of MS/MSD. Based on the chromatographic evidence this is most likely due to matrix Nonconformance

interference. Root/Cause(s):

Since MS/MSD show similar results at this time no further corrective action taken. All Description of other QC meets criteria. The samples show many hits in the matrix which will interfere Corrective Action

entre de la companya del companya de la companya della company

with spike results. All sets of data submitted w/Proposed C.A.:

Completion Date: 22-Dec-17 Russell Pellegrino Performed By:

Client Notification

Client Notification Required: Notified By:

Comment:

Nonconformance Type:

Quality Assurance Review

Monitor all quality control for sample matrix interference. At this time no further corrective Further Action

action taken. All sets of data submitted required by QA:

Deficiency

Approval and Closure

Technical Director / Deputy Tech. Dir.:

Close Date: 27-Dec-17

......

William Dobbin

QA Officer Approval: QA Date: 27-Dec-17

15-Jan-2018 12:20 PM Reported: 15-Jan-2018 12:20 P Last Updated BY russ Updated:

......

Corrective Action Report

Date Initiated:	22-Dec-17	Corrective Action Report ID: 3644
Initiated By:	Russell Pellegrino	Department: MSVOA
	Corrective	Action Description
CAR Summary:		
Description of Nonconformant Root/Cause(s):	Continuing calibration did n The compound was more s in the associated samples a	ot meet criteria on 12/22//17 for 1,4-Dioxane, MIB & MBK. ensitive in the CC. The compounds in question was not found at a trace amount.
Description of Corrective Action W/Proposed C.J.	on should be considered bias i	erest was found in the associated sample, sample results nigh. If compounds remain outside criteria perform system submitted.
Performed By:	Russell Pellegrino	Completion Date: 23-Dec-17
	Clie	nt Notification
Client Notificati	ion Required: No No	dified By:
Comment:		
	Quality	Assurance Review
Nonconforman	•	
Further Action required by QA	Recalibrate the system ASA	P if compound remains outside criteria. Monitoring of all initial calibration. All sets of data submitted.
	Appro	oval and Closure
Technical Direct Deputy Tech	"'	Close Date: 27-Dec-17
	William D	obbigy
QA Officer App	roval:	QA Date: 27-Dec-17

Last Updated 8Y rose

Page 10 of 477

Updated: 15-Jan-2018 12:23 PM

Reported: 15-Jan-2018 12;23 P

143 MORE PAR ONS STATES AND THE PART ONS STA	143 Midler Park Drive Syracuse, NY 13206 315-431-9730 www.CentekLabs.com Check Rush TAT Due One Surcharge % Date: 0% 50% 50% 50% 50% 100% 150%	Vapor Intrusion & Vapor Intrusion & Company: A TReport to: Address: M// City, State, Zip Phone: Canister R Number 120 120	To label	2721 01 2721 01 HESTER HeIII 5 -15 -15	Company: Check Here if Sar Invoice to: Address: City, State, Zip Email: Apgligh		Level I
Check Ruth 73 200 Project Company Project Company Project Company Project Company	Syracuse, NY 13206 315-431-9730 www.Centeklabs.com Check Rush TAT Due One Surcharge % Date: 0% 25% 50% 100% 150% 150% 150% 150% 150% 150	Vapor Intrusion & Vapor Intrusion & Company: A 1 Report to: Address: Minder Email: Agair It. Phone: Canister R Number 120 120 150 150 16	SELCA Selection of the state of	2721 01 2721 01 HESTER HeIII 5 - 15 - 15	Company: Check Here if Sar Invoice to: Address: City, State, Zip Email: Apgligh	, 1	
Signature NV 13008 Signatu	Syracuse, NY 13206 315-431-9730 www.Centekl.abs.com Check Rush TAT Due One Surcharge % Date: One Surcharge % Date: 0% 25% 50% 100% 150% 150% 150% 150% 150% 150	Vapor Intrusion & Vapor Intrusion & Company: (4.1 Report to: Address: 20 City, State, Zip Phone: Canister R Number 120 250 250 160	3ELCO Selacife A Social Sella Number 146 146 146 146	2721 01 1467 Eq. 14614 5 -15 -15	Company: Check Here if Sar Invoice to: Address: City, State, Zip Email: Apglah	,	
Check Real TAT Due Company: A B ELCA - R OF	315-431-9730 www.Centeklabs.com Check Rush TAT Due One Surcharge % Date: 25% 25% 50% 50% 100% 100% 12/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7 2/2/7	Company: AT Report to: Address: My City, State, Zip Phone: Canister R Number 120 120 150 160 1	SELCA Selecter Colories (Selecter) Sullator (170 146 146 146	1614 1614 1614 5 -(5 -(5 -15	Company: Check Here If Sar Invoice to: Address: City, State, Zip Email: Apgligh	,	٠.
Check Real Not ABELCA - 20 CH657Eq Company Compa	Check Rush TAT Due One Surcharge % Data: 25% 25% 25% 50% 100% 150% 200% 200% 200% 200% 200% 200% 200% 2	Company: (A) Report to: Address: 2// City, State, 2/p Canister R Number R 12.0 12.0 12.0 12.0 12.0 12.0 12.0 14.0 14.1 14.1 15.0 16.1 16	SELCA Schoole Labella Bullator 19 19 19 19 19	4614 4614 5 -15 -15	Company: Check Here If Sar Invoice to: Address: City, State, Zip Email: Apglah		
Control Cont	25% 25% 50% 100% 100% 150% 200% 200% 200% 200% 200% 200% 200% 2	Report to: Address: Mo City, State, Zip Fhone: Canister R Number 1201 359 359	Schoole Stella Schoole Stella Sullator P Sullator P	4614 5 - (5 - (5 - (5	Invoice to: Address: City, State, Zip		
20% Addiess M. State Street M. State Street Street M. State Street M. M. State	25% 50% 50% 100% 100% 100% 100% 100% 100%	Address: 200 City, State, 21p Email: Qqqqii Iu Phone: Canister R Number 120 359 3	Society fra Cochester in a a labella in a a labella in a	46/4 Feduest - (5 - (5	Address: City, State, Zip Email: Goglub		
100% 100%	75% 100% 100% 150% 150% 150% 150% 100% 1	Email: Qqqqii	ra @ labella ra @ labella Number 170 146 240	4614 bequest -15 -15	City, State, Zip		
100% Email Aggin long Blakellance Corr	100% 200% 200% 200% 200% 200% 200% 200%	Email: Qqqqii U. Phone: Canister R 120	170 146 170 146 170 146 170 146 170	1 5 5 - (5 5 - (5 5 5 5 5 5 5 5 5 5 5 5 5	Email: Qp@/uh		
	Day TAT Phusse Notify Lab 1D Date Samoled 12 (2) (7) (7) (2) (7) (7) (2) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	ter Der		Request		ellascom	
	317 [2] 7 [2] 7 [2] 7 7 7 7 7 7 7 7 7		 	Request	Phone:		
12 12 12 12 117 10 15 15 15 15 15 15 15	2 (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/17) (2/(3/(3/(3/(3/(3/(3/(3/(3/(3/(3/(3/(3/(3/	ž i	170 146 240 297	12 14 15 1	Field Vacuum		Comments
	2 (2/(3/17) 2 (2/(3/17) 2 (2/(3/17) (2/(3/17) (2/(3/17)		94° 94°	70-15 70-15 70-15	Start / Stop		
2 2 377 359 346 10-15 27.0 15.5 -5 1.5 2.6 2.6	2 (2/12/17 2		267 040 940	70-15 70-15 70-15	28,015.0	-8 /-\$	
2 12 12 12 249 70-15 28615.5 -5 1-5 -5 -5 -5 -5 -5 -5	2 (2/(2/17)		2672 2672	TO-15 TO-15	~-0;	-	
2 12 12 14 2-97 10-15 28.5 60 -10 1-2 12 12 12 12 12 12 1	2 (2/0/17		£67	70-15	15	1-51-5	
	12/12/17		417		-	21 01	
	7/2/17		~	١	1.0	-1 12	
	7/2/2/	2	59	70-15	7.	-	
	V. 10.1.	-	79	Limited List	1	-	
2/13/7 186 294 Limited List 29.5 1400 -6 1-8)		2.60		1.5	ナーシノ	
2 3 7 86 294 Limited List 27.5 1400 -6 1	12/13/2	•	181	ر م			
2	12/17/17	<i>f</i> .	794	\ \	-	- 1	
	12/13/17	•	2.5		-	15.15	
	12/13/17		279	1	1.5.	5-15-	
	12/12/12		591	1	*		
	42/19/17		19,	timited List	1	·	
	(2/12/12		137	Limited List	4	1-1-8-	
	7/2/21	7	103	TO-15	1.5	7-15-	
	2-08 2/13/17		620	10-15	~~	-51-5	
Print Name Allan Engelbert Allan Engel	12/13/17		52	TO-15		-512	
Allan Engelbert Allan	tody Print	Sig	nature		15127 at	Courier: CIRCLE	ĘIJ
Man Enachert 12-14-17/1400	11 191	9			/ 100/	FedEx) UPS	(up/Dropoff
12-12-C1-1-12-12-12-12-12-12-12-12-12-12-12-12-	Allan E				OPI	For LAB USE DNLY	
	Received at Lab by: N/4- / N/4 W DG-141 NO	Ž			12-18-17	Work Order # C(7)	2065 B

Date: 15-Jan-18

CLIENT:

LaBella Associates, P.C.

Project: Lab Orde

Eldre Corp

C1712063

Work	Order	Sample	Summary
TIUIT	WILL COLU	CHELLENIA	L741141443641 Y

Lab Order:	C1712063			· · · · · · · · · · · · · · · · · · ·
Lab Sample ID C1712063-001A	Client Sample ID SVI-01	Tag Number 1201.1170	Collection Date	Date Received 12/18/2017
C1712063-002A	1AQ-01	359.346	12/£3/2017	12/21/2017
C1712063-003A	SV1-02	561.340	12/13/2017	12/18/2017
C1712063-004A	IAQ-02	161.297	12/13/2017	12/18/2017
C1712063-005A	SVI-03	222.345	12/13/2017	12/18/2017
C1712063-006A	IAQ-03	316.259	12/13/2017	12/18/2017
C1712063-007A	SV1-04	100.309	12/13/2017	12/18/2017

CLIENT: Project: Lab Order:	LaBella Associates, P.C. Eldre Corp C1712063		Work Order Sa	mple Summary
Lab Sample ID C1712063-008A	Client Sample 1D IAQ-04	Tag Number 287.260	Collection Date 12/13/2017	Date Received 12/18/2017
C1712063-009A	SV1-05	336.381	12/13/2017	12/18/2017
C1712063-010A	IAQ-05	1188.294	12/13/2017	12/18/2017
C1712063-011A	DUPE	130.1152	12/13/2017	12/18/2017
C1712063-012A	SV1-06	171.279	12/13/2017	12/18/2017
C1712063-013A	1AQ-06	1193.1165	12/13/2017	12/18/2017
C1712063-014A	IAQ-07	1289.337	12/13/2017	12/21/2017
C1712063-015A	SV1-08	562.403	12/13/2017	12/21/2017

CLIENT:

LaBella Associates, P.C.

Project:

Eldre Corp

Lab Order:

C1712063

Work Order Sample Summary

Lab Sample ID Client Sample ID

Tag Number

Collection Date

Date Received

C1712063-016A 1AQ-08

539,379

12/13/2017

12/21/2017

C1712063-017A Outdoor

1179.265

12/13/2017

12/21/2017

Page 3 of 3

	•	
	CENTEK LABORATORIES, LI	_C
Mil	CENTER LABORATORIES, LI	

Sample Receipt Checklist

Client Name LABELLA - ROCHESTER		Date and Tim	e Receive	12/18/2017
Work Order Numbe C1712063		Received by	NM	
Checklist completed by 2-	(8-17	Reviewed by		12/21/17 Date
Matrix: Carrier name:	FedEx Ground			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Presen	
Custody seals intact on shippping container/cooter?	Yes 🖺	No 🗀	Not Presen	⊠
Custody seals intact on sample bottles?	Yes 🗀	No 🗀	Not Presen	×
Chain of custody present?	Yes 🗹	No 🗀		
Chain of custody signed when relinquished and received?	Yes 🛂	No 🗀		
Chain of custody agrees with sample tabels?	Yes 🗌	No ⊡		
Samples in proper container/bottle?	Yes 🔽	No 🗀		
Sample containers intact?	Yes 🗹	No 🗀		
Sufficient sample volume for indicated test?	Yes 🔽	No 🗀		
All samples received within holding time?	Yes 🗹	No []		
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗔		
Water - VOA vials have zero headspace? No VOA vials sub-	mitted 😾	Yes 🗀	No 🗀	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗹		
Adjusted?	Chec	ked by		_
Any No and/or NA (not applicable) response must be detailed in the o				
Client contacted VES Date contacted:	12-18-1	Perso	on contacted	ANN H.
Contacted by: (C/55 PRegarding: NO		-	•	
comments: SAMPLES SHOWN ON	LOC N	or Ri	EC 19	BIN WAS
SEPARATED IN TRANSIT.				
Corrective Action				HART WE THE THE COLUMN AND A STAN

15-Jan-18

Project:	Labella Associates, P.C. Eldre Corp	P.C.			DATES REPORT	.T
Sample ID	Citent Sample 1D	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1712063-001A	SVI-01	12/13/2017	Air	Fug/M3 by Method FO35		12/23/2017
				tag/M3 by Method TOE5		12/23/2017
				lug/M3 by Mothod TO15		12/22/2017
C1712063-002A	10-04			lugins w/ 0.2ng/M3 CT-TCE-VC		12/21/2017
				lugims w/ G.Zug/M3 CT-TTE-VC		1102/22/21
C1712063-003A	SVI-02			lug/M3 by Method TO15		12/23/2017
				11g/M3 by Method TO15		12/22/2017
				lug/M3 by Method TO15		12/23/2017
CI712063-004A	14Q-02			Tug/m3 w/ 0,2ug/M3 CTL-TCE-VC		12/22/2017
				lug/m3 w/ 9.2ug/M3 CT-TCE-VC		12/21/2017
				tag/m3 w/ 0.2ug/M3 CT-TCE-VC		12/22/2017
C1712063-005A	SVI-03			hg/M3 by Method FO15		12/22/2017
				lug/M3 by Method TO35		12/23/2017
				tug/M3 by Method TOL5		12/23/2017
C1712063-006A	1AQ-03			lug/m3 w/ 0.2ug/M3 CT-TCE-VC		12/23/2017
				Hegin3 w/ 0.2tg/M3 CT-TCE-VC		12/21/2017
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC		12/22/2017
C1712063-007A	SVI-04			tug/M3 by Method TO15		12/23/2017
				lug/M3 by Method TO15		12/22/2617
C1712063-008A	#0-0¢			Tug/m3 w/ 0.2sg/M3 CT-TCE-VC		12/21/2017
C1732063-009A	SVI-05			lug/M3 by Method TO15		12/22/2017
				lug/M3 by Method TO15		12/23/2017
CE7120634010A	FAQ-05			lugins w/ 0.2ug/M3 CT-TCE-VC		12/21/2017
C1712063-011A	DUPE			Lugins wi (Llugints CT-TCE-VC		12/21/2017
CF712063-012A	SVI-06			lug/M3 by Method TO15		12/22/2017
				1ug/M3 by Method TO15		12/23/2017
C1712063-013A	MQ•@6			lug/m3 w/0.2ug/M3 CT-TCE-VC		12/21/2017
C1312063-034A	140-07			Locations and of Broad Add Series Server		1000

6 3	
\odot	:
	:
٦,	
-	- :
-	
]	
•	
(4)	
7.	•
~	
• .	٠.

_	
_	
	- :
boratories,	
3	
_	
(C)	
Ŧ	
-	
44	* *
. 7	
_	
	1.1
	7
et 2	
~	
-	
Ξ	
景	11
= 7	10
•	. 1
y ~	
LJ	1
-	

C1712063

Lab Order;

15-Jan-18

Client:	LaBella Associates, P.C.	 			DATES REPORT	<u> </u>
Project:	Eldre Corp					•
Sample ID	Client Sample II)	Collection Date	Matríx	Yest Name	TCL,P Date Prep Date	Analysis Date
C1712063-015A SVI-(18	SVI-(18	12/13/2017	Air	Jug/M3 by Methed TO15		12/22/2017
				lug/M3 by Method TO15		12/23/2017
C1712063-016A	IAQ-08			Jugim3 w/ 0.2ug/M3 CT-TCE-VC		12/21/2017
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC		12/23/2017
C1712063-017A	Ostdoor			bugim3 w/ 0.2ug/M3 CT-TCE-VC		12/23/2017
				Lughns w/ 0 Zug/M3 CT-TCE-VC		12/22/2017

CANISTER ORDER

CENTEK LABORATORIES, LLC

Air Quality Fasting., D's a Clas-

143 Midler Park Drive * Syracuse, NY 13206 TEL: 315-431-9730 * FAX: 315-431-9731 6924

15-Jan-18

SHIPPED TO:

Сопърапу:

LaBella Associates, P.C.

Contact:

ct: Ann Aquilina

Address: 300

300 State Street, Suite 201 Rochester, NY 14614

Phone:

(585) 454-6110

Quote ID:

2204

Project:

PO:

Eldre Corp

Submitted By:

MadeBy:

NM

Ship Date: 12/8/2017

VIA: FedEx Ground

Due Date: 12/11/2017

Bottle Code	Bottle Type	TEST(s)	QTY
MC1400CC MC1000CC	1.4L Mini-Can	1ug/M3 by Method TO15 1ug/M3 by Method TO15	19
Can / Reg ID	Description		
100	1L Mini-Can - 1083 VI		

100	12 Million Coll - 1000 M
130	1L Mini-Can - 1078 VI
161	1L Minł-Can - 1131 VI
171	1L Mini-Can - 1142 VI
222	†Ł Mini-Can - 1184 VI
259	Time-Set Reg - 597 VI
250	Time-Set Reg - 698 V!
279	Time-Set Reg - 635 VI
287	1L Mini-Can ∞ 255 VI
294	Time-Set Reg - 717R VI
297	Time-Set Reg - 720 VI
309	Time-Set Reg - 732 VI
316	1L Mini-Can - 1279 VI
338	1L Mini-Can - 1299 VI
337	Time-Set Reg - 734 VI
340	Time-Set Reg - 737 VI
345	Time-Set Reg - 742 VI
346	Time-Set Reg - 743 VI
381	Time-Set Reg - 755 VI
561	1L Mini-Can - 130 VI
1152	Time-Set Reg-0744 VI
1161	Time-Set Reg-0674 VI
1165	Time-Set Reg-0578 VI
1170	Time-Set Reg-0795 VI
1182	1L Mini-Can - 1237 Vi
1188	1l. Mini-Can - 1256 VI
11 9 3	1L Minj-Can - 1246 VI
1201	1.4Ł Mini-Can - 1362 VI
1289	1 L Mini-Can - VI
265	Time-Set Reg - 703 VI
288	1L Mini-Can - 1264 VI
403	Time-Set Reg - 782 VI

SHIPPED TO:

Company: Laßella Associates, P.C. Submitted By: Contact: Ann Aquilina MadeBy: NM Address: 300 State Street, Suite 201 Rochester, NY 14614 Ship Date: 12/8/2017 Phone: (585) 454-6110 VIA: FedEx Ground Quote ID: 2204 Due Date: 12/11/2017 Project: PO: Eldre Corp **Bottle Code Bottle Type** TEST(s) QTY 562 tt. Mini-Can - 132 VI 379 Time-Set Reg - 753 VI 359 1L Mini∗Can - 1308 VI 1179 1L Mint-Can - 1249 VI 1172 Time-Set Reg-0797 VI 539 1t. Mini-Can - 107 VI 226 1L Mini-Can - 1188 VI

Comments: (19) 1L @ 6hrs, (1) 1.4L @ 6hrs W/ "T" for dupe + He set-up (no reg/no emp) was 041417g-h, 112717a-d, 113017a-d

2 of 2

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

TO THE PROPERTY OF THE PROPERT LaBella Associates, P.C.

C1712063 Lab Order:

CLIENT:

Project: Eldre Corp

Lab ID: C1712063-001A Date: 10-Jan-18

Client Sample ID: SVI-01

Tag Number: 1201-1170 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qua	d Units	OF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-5		"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	0.20	0.15	ррьV	1	12/22/2017 6:09:00 AM
1,1,2,2-Tetrachtoroethane	< 0.15	0.15	₽₽b∨	1	12/22/2017 6:09:00 AM
1,1,2-Trichtoroethane	< 0.15	0.15	ppb∨	1	12/22/2017 6:09:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppb∨	1	12/22/2017 6:09:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,2,4-Trichtorobenzene	< 0.15	0.16	ppbV	1	12/22/2017 6:09:00 AM
1,2,4-Trimethylbenzene	0.79	0.15	Vdqq	ŧ	12/22/2017 6:09:00 AM
1.2-Dibromoethane	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ρρbV	1	12/22/2017 6:09:00 AM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppb∀	1	12/22/2017 6:09:00 AM
1,3,5-Trimethylbenzene	0.44	0.15	Vđqq	1	12/22/2017 6:09:00 AM
1.3-butadiene	< 0.15	0.15	ppb∀	1	12/22/2017 6:09:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
1.4-Dioxane	0.17	0.30 J	₽₽₽V	1	12/22/2017 6:09:00 AM
2,2,4-trimethy/pentane	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
4-ethyltoluene	0.14	0.15 J	ppb∀	1	12/22/2017 6:09:00 AM
Acetone	170	27	ppb∨	90	12/23/2017 8:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Benzene	0.38	0.15	Vđqq	1	12/22/2017 6:09:00 AM
Benzył chłoride	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Bromodichloromethane	< 0.15	0.15	ppb∀	1	12/22/2017 6:09:00 AM
Bromoform	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Bromomethane	< 0.15	0.15	ppb√	1	12/22/2017 6:09:00 AM
Carbon disulfide	0.53	0.15	ppbV	1	12/22/2017 6:09:00 AM
Carbon tetrachloride	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
Chlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AN
Chloroform	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Chloromethane	< 0.15	0.15	Vđqq	1	12/22/2017 6:09:00 AM
cis-1.2-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
cis-1,3-Dichtoropropene	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Cyclohexane	< 0.15	0.15	pptV	1	12/22/2017 6:09:00 AM
Dibromochloromethane	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
Ethyl acetate	0.33	0.15	ppbV	1	12/22/2017 6:09:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyse detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Œ Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 26

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-001A

Date: 10-Jan-18

Client Sample ID: SVI-01

Tag Number: 1201.1170 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Quai	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		то)-1 5			Analyst: RJP
Ethylbenzene	0.19	0.15	·	ppb∨	1	12/22/2017 6:09:00 AM
Freon 11	0.24	0.15		ppbV	1	12/22/2017 6:09:00 AM
Freon 113	< 0.15	0.15		ppb∨	1	12/22/2017 6:09:00 AM
Freon 114	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Freon 12	0.47	0.15		ppbV	1	12/22/2017 6:09:00 AM
Heptane	0.98	0.15		ppbV	1	12/22/2017 6:09:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Hexane	0.70	0.15		ppbV	1	12/22/2017 6:09:00 AM
isopropyl atcohot	37	14		ppbV	90	12/23/2017 8:17:00 AM
т&р-Хујеле	0.55	0.30		ppbV	1	12/22/2017 6:09:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	12/22/2017 5:09:00 AM
Methyl Ethyl Ketone	2.0	0.30		ppb∀	1	12/22/2017 6:09:00 AM
Methyl Isobutyl Ketone	0.17	0.30	j	ppbV	1	12/22/2017 6:09:00 AM
Methyl terl-butyl ethor	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Methylene chloride	2.8	1.4		ppb∀	9	12/23/2017 7:40:00 AM
o-Xylene	0.22	0.15		ppbV	1	12/22/2017 6:09:00 AM
Propylene	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Styrene	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Tetrachloroethylene	5.8	1.4		ppbV	9	12/23/2017 7:40:00 AM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Toluene	3.2	1,4		Vdqq	9	12/23/2017 7:40:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	12/22/2017 6:09:00 AM
Trichloroethene	4.9	1.4		Vdqq	g	12/23/2017 7:40:00 AM
Vinyl acetate	< 0.15	0.15		рраV	1	12/22/2017 6:09:00 AM
Vinyl Bromide	< 0.15	0.16		ppbV	1	12/22/2017 6:09:00 AM
Vinyl chloride	0.16	0.15		ppbV	1	12/22/2017 6:09:00 AM
Surr: Bromofluorobenzene	96.0	70-130		%REC	1	12/22/2017 6:09:00 AM

О	úя	ŧi	ľī	er	3

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 26

CLIENT: LaBella Associates, P.C. Client Sample ID: SVI-01

CLIENT:LaBelia Associates, P.C.Client Sample ID: SVI-01Lab Order:C1712063Tag Number: 1201.1170Project:Eldre CorpCollection Date: 12/13/2017

Lab ID: C1712063-001A Matrix: AIR

Analyses	Result	**Limit	Qual U	Inits	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO)-15		·····	Analyst: RJF
1,1,1-Trichloroethane	1.1	0.82	U	g/m3	1	12/22/2017 6:09:00 AN
1.1,2,2-Tetrachloroethane	< 1.0	1.0	¥4	g/m3	i	12/22/2017 6:09:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	U	g/m3	1	12/22/2017 6:09:00 AN
1,1-Dichloroethane	< 0.61	0.63	u	g/m3	1	12/22/2017 6:09:00 AN
1,1-Dichloroethene	< 0.59	0.59	u	g/m3	1	12/22/2017 6:09:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	U	g/m3	1	12/22/2017 6:09:00 AM
1,2,4-Trimethylbenzene	3.9	0.74	u	g/m3	†	12/22/2017 6:09:00 AM
1,2-Dibromoethane	< 1.2	1.2	U	g/m3	1	12/22/2017 6:09:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	U	g/m3	1	12/22/2017 6:09:00 AM
1,2-Dichloroethane	< 0.51	0.61	u!	g/m3	1	12/22/2017 6:09:00 AM
1,2-Dichloropropane	< 0.69	0.69	U ₁	g/m3	1	12/22/2017 6:09:00 AM
1,3,5-Trimethylbenzene	2.2	0.74	U	g/m3	1	12/22/2017 6:09:00 AM
1,3-butadiene	< 0.33	0.33	u	g/m3	1	12/22/2017 6:09:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	uş	g/m3	1	12/22/2017 6:09:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	Ц	g/m3	1	12/22/2017 6:09:00 AM
1,4-Dioxane	0.61	1.1	J u	g/m3	1	12/22/2017 6:09:00 Af
2,2,4-trimethylpestane	< 0.70	0.70	u	g/m3	1	12/22/2017 6:09:00 AF
4-ethyltotuene	0.69	0.74	J uş	g/m3	1	12/22/2017 6:09:00 A
Acetone	390	64	យុ	g/m3	90	12/23/2017 8:17:00 Af
Allyl chloride	< 0.47	0.47	uş	g/m3	1	12/22/2017 6:09:00 A
Benzene	1.2	0.48	Light State of the Light State o	g/m3	1	12/22/2017 6:09:00 A
Senzyl chloride	< 0.86	0.86	ы	g/m3	1	12/22/2017 6:09:00 At
Bromodichloromethane	< 1.0	1.0	ui	g/m3	1	12/22/2017 6:09:00 AP
Bromoform	< 1.6	1.6	Цģ	g/m3	1	12/22/2017 6:09:00 Af
Bromomethane	< 0.58	0.58	ug	g/m3	1	12/22/2017 6:09:00 AN
Carbon disulfide	1.7	0.47	Ųį	g/m3	1	12/22/2017 6:09:00 AF
Carbon tetrachioride	< 0.94	0.94	ц	g/m3	1	12/22/2017 6:09:00 Af
Chlorobenzene	< 0.69	0.69	Цį	g/m3	1	12/22/2017 6:09:00 AM
Chiorcethane	< 0.40	0.40	μģ	g/m3	1	12/22/2017 6:09:00 AM
Chloroform	< 0.73	0.73	บรู	g/m3	1	12/22/2017 6:09:00 AM
Chioromethane	< 0.31	0.31	uş	g/m3	1	12/22/2017 6:09:00 A
cis-1,2-Dichloraethene	< 0.59	0.59	uş	g/m3	1	12/22/2017 6:09:00 At
cis-1,3-Dichloropropene	< 0.68	88.0	บรู	g/m3	1	12/22/2017 6:09:00 Af
Cyclohexane	< 0.52	0.52	uş	g/m3	1	12/22/2017 6:09:00 Af
Dibromochloromethane	< 1.3	1.3	u	g/m3	1	12/22/2017 6:09:00 AM
Ethyl acetate	1,2	0.54	uş	g/m3	1	12/22/2017 6:09:00 AF
Ethylbenzene	0.82	0.65	uş	g/m3	1	12/22/2017 6:09:00 Af
Freon 11	1.3	0.84	u(g/m3	1	12/22/2017 6:09:00 Ai
Freon 113	< 1.1	1.1	uş	g/m3	1	12/22/2017 6:09:00 A
Freon 114	< 3,0	1,0	uş	g/m3	1	12/22/2017 6:09:00 AM

Qualifiers:

Date: 10-Jan-18

Page 1 of 26

^{**} Quantitation Limit

B. Analyte detected in the associated Method Blank

¹¹ Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E. Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Client Sample ID: SVI-01

Project:

Eldre Corp

Tag Number: 1201.1170 Collection Date: 12/13/2017

Date: 10-Jan-18

Lab ID:

C1712063-001A

Matrix: AIR.

Analyses	Result	**Limit (Quai	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	15			Analyst: RJP
Freen 12	2.3	0.74		ug/m3	1	12/22/2017 6:09:00 AM
Heptane	3.9	0.61		ug/m3	1	12/22/2017 6:09:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		սց/m3	1	12/22/2017 6:09:00 AM
Hexane	2.5	0.53		ug/m3	1	12/22/2017 6:09:00 AM
Isopropyl alcohol	91	34		<u>սց/m3</u>	90	12/23/2017 8:17:00 AM
m&p-Xylene	2.4	1.3		ug/m3	1	12/22/2017 6:09:00 AM
Methyl Bulyl Ketone	< 1,2	1,2		ug/m3	1	12/22/2017 6:09:00 AM
Methyl Ethyl Ketone	5.9	0.88		ug/m3	1	12/22/2017 6:09:00 AM
Methyl Isobutyl Ketone	0.70	1.2	J	ug/m3	1	12/22/2017 6:09:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 6:09:00 AM
Methylene chloride	9.7	4.9		ug/m3	9	12/23/2017 7:40:00 AM
o-Xylene	0.96	0.65		ug/m3	1	12/22/2017 6:09:00 AM
Propylene	< 0.26	0.26		ug/m3	1	12/22/2017 6:09:00 AM
Styrene	< 0.64	0.64		ug/m3	1	12/22/2017 6:09:00 AM
Tetrachloroethylene	40	9.5		ug/m3	9	12/23/2017 7:40:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	7	12/22/2017 6:09:00 AM
Toluene	12	5.3		ug/m3	9	12/23/2017 7:40:00 AM
trans-1,2-Dichloroethane	< 0.59	0.59		ug/m3	1	12/22/2017 6:09:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m 3	1	12/22/2017 6:09:00 AM
Trichloroethene	26	7.5		ug/m3	9	12/23/2017 7:40:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 6:09:00 AM
Vinyi Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 6:D9:00 AM
Vinyl chloride	0.41	0.38		ug/m3	1	12/22/2017 6:09:00 AM

Ω	387	t:	ı۲	

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN . Non-routine analyse. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- j Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 26

ries, LLC Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-01

Lab Order:

C1712063

Tag Number: 359.346

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-002A

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum tn	-5		"Hg		12/21/2017
Lab Vacuum Out	-30		"Hg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichlorgethane	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1.1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,1,2-Trichtoroethane	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,1-Dichloroethens	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppb∀	1	12/21/2017 6:25:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	PpbV	1	12/21/2017 6:25:00 PM
1,2-Dichloroethans	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1.3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
1.3-butadiene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,3-Dichiorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,4-Dioxane	< 0.30	0.30	Vđqq	1	12/21/2017 6:26:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Acetone	5,0	6.0 J	ppbV	20	12/22/2017 9:29:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Benzene	0.26	0.15	Vdqq	1	32/21/2017 6:25:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Bromaform	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
Carbon disulfide	< 0.15	0.15	Vdqq	1	12/21/2017 6;25:00 PM
Carbon tetrachloride	0.070	0.040	ppbV	1	12/21/2017 6:25:00 PM
Chiorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
Chloroform	1.9	0.15	ppbV	1	12/21/2017 6:25:00 PM
Chloromethane	0.40	0.15	ppb∨	1	12/21/2017 6:25:00 PM
cis-1.2-Dightoroethene	< 0.15	0.15	ρpb∨	1	12/21/2017 6:25:00 PM
cls-1,3-Dichtoropropene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Cyclohexane	0.12	0.15 J	ppbV	1	12/21/2017 6:25:00 PM
Dibromochloromethane	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
Ethyl acetate	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C.

C1712063

Project: Eldre Corp

Lab Order:

Client Sample ID: IAQ-01 Tag Number: 359.346 Collection Date: 12/13/2017

Lab ID: C1712063-002A

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO	-15	······································	· · · · · · · · · · · · · · · · · · ·	Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Freon 11	0.42	0.15		pρbV	1	12/21/2017 6:25:00 PM
Freon 173	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Freon 114	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Freon 12	0.49	0.15		ppbV	1	12/21/2017 6:25:00 PM
Heptan e	0.46	0.15		ppbV	1	12/21/2017 6:25:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppb√	1	12/21/2017 6:25:00 PM
Hexase	0.21	0.15		ppbV	1	12/21/2017 6:26:00 PM
sopropyl alcohol	30	3.0		ppbV	20	12/22/2017 9:29:00 PM
m&p-Xylene	0.13	0.30	J	ppbV	1	12/21/2017 6:25:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	12/21/2017 6:25:00 PM
Methyl Ethyl Ketone	0.35	0.30		ppb∨	1	12/21/2017 6:25:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∀	1	12/21/2017 6;25:00 PM
Methyl text-butyl ether	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Methylene chtoride	0.47	0.15		ρρb∀	1	12/21/2017 6:25:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Propylene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Styrene	< 0.15	0.15		Vdqq	1	12/21/2017 6:25:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Toluene	0.93	0.15		ppbV	1	12/21/2017 6:25:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
trans-1,3-Dichtoropropene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	12/21/2017 6:25:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Vinyl chtoride	< 0.040	0.040		ppbV	1	12/21/2017 6:25:00 PM
Surr: Bromofisorobenzens	80.0	70-130		%REC	1	12/21/2017 6:25:00 PM

Qualific	×	:
----------	---	---

^{**} Quantitation Limit

ND Not Detected at the Limit of Detection

B Analyte detected in the associated Method Blank

¹⁴ Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project: Eldre Corp

Lab ID:

C1712063-002A

Date: 10-Jan-18

Client Sample ID: IAQ-01

Tag Number: 359.346

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	TO-	15		Analyst: RJF
1.1.1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 6:25:00 PN
7,1,2,2-Tetrachlorosthane	< 1.0	1.0	ug/m3	1	12/21/2017 6:25:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	<u>ед/m3</u>	1	12/21/2017 6:25:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	12/21/2017 6:25:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 6:25:00 PM
1,2,4-Trichlorobenzene	< 1, 1	1.1	ug/m3	1	12/21/2017 6:25:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 6:25:00 PN
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	12/21/2017 6:25:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	Em/gu	1	12/21/2017 6:25:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 6:25:00 PM
1,2-Dichloropropane	< 0.69	0.59	ug/m3	1	12/21/2017 6:25:00 PM
1,3.5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 6:25:00 PM
1,3-butadiene	< 0,33	0.33	ug/m3	1	12/21/2017 6:25:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 6:25:00 PM
1,4-Dichtorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 6:25:00 PM
1,4-Dioxane	< 1.1	1,1	ug/m3	3	12/21/2017 6:25:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/21/2017 6:25:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	12/21/2017 6:25:00 PM
Acetone	12	14	J ug/m3	20	12/22/2017 9:29:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	12/21/2017 6:25:00 PM
Benzene	0.83	0.48	ug/m3	1	12/21/2017 6:25:00 PM
Benzyl chłoride	< 0.86	0.86	ug/m3	1	12/21/2017 6:25:00 PM
Bromodichioromethane	< 1.0	1.0	ug/m3	1	12/21/2017 6:25:00 PM
Bromoform	< 1. 6	1.6	ug/m3	1	12/21/2017 6:25:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	12/21/2017 6:25:00 PM
Carbon disuifide	< 0.47	0.47	ug/m3	1	12/21/2017 6:25:00 PM
Carbon tetrachloride	0.44	0.25	ug/m3	1	12/21/2017 6:25:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	12/21/2017 6:25:00 PM
Chioroethane	< 0.40	0.40	ug/m3	1	12/21/2017 6:25:00 PM
Chloroform	9.1	0.73	ug/m3	1	12/21/2017 6:25:00 PM
Chloromethane	0.83	0.31	ug/m3	1	12/21/2017 6:25:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	υ ց/ m3	1	12/21/2017 6:25:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/21/2017 6:25:00 PM
Cyclohexane	0.41	0.52	J ug/m3	1	12/21/2017 6:25:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/21/2017 6:25:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	12/21/2017 6:25:00 PM
Ethylbenzene	< 0.65	0.85	ug/m3	1	12/21/2017 6:25:00 PM
reon 11	2.4	0.84	ug/m3	1	12/21/2017 6:25:00 PM
Freon 113	< 1,1	1.1	ug/m3	1	12/21/2017 6:25:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	12/21/2017 6:25:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- \mathbb{R} Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection

Page 3 of 26

Date: 10-Jan-18

CLIENT:

Lab ID:

LaBella Associates, P.C.

Lab Order:

C1712063

CITIZOD

Project: Eldre Corp

C1712063-002A

Client Sample 1D: IAQ-01

T. N. A. BERRY

Tag Number: 359,346

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
TUG/M3 W/ 0.2UG/M3 CT-TCE-VC		TC)-15			Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	12/21/2017 6:25:00 PM
Heptane	1,9	0.61		ug/m3	1	12/21/2017 6:25:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/21/2017 6:25:00 PM
Hexane	0.74	0.53		ug/m3	1	12/21/2017 6:25:00 PM
Isopropyl alcohol	74	7.4		ug/m3	20	12/22/2017 9:29:00 PM
m&p-Xylene	0.56	1.3	J	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 6:25:00 PM
Methyl Ethyl Ketone	1.0	0.88		ug/m3	1	12/21/2017 6:25:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 6:25:00 PM
Methyl terf-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 6:25:00 PM
Methylene chloride	1.6	0.52		ug/m3	1	12/21/2017 6:25:00 PM
o-Xy ie ne	< 0.65	0.65		ug/m3	1	12/21/2017 6:25:00 PM
Propylene	< 0.26	0.26		ug/m3	1	12/21/2017 6:25:00 PM
Styrene	< 0.64	0.64		ug/m3	1	12/21/2017 6:25:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	12/21/2017 6:25:00 PM
Tetrahydrofuran	< 0.44	0.44		u g/m 3	1	12/21/2017 6:25:00 PM
Toluene	3.5	0.57		ug/m3	1	12/21/2017 6:25:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 6:25:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/21/2017 6:25:00 PM
Trichloroethene	< 0.16	0.16		աց/ու3	1	12/21/2017 6:25:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/21/2017 5:25:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/21/2017 6:25:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	12/21/2017 6:25:00 PM

0.00.0 # 0

Qualifiers:

ND Not Detected at the Limit of Detection

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Eldre Corp

Project: Lab ID:

C1712063-003A

Client Sample ID: SVI-02

Tag Number: 561,340

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"Hg		12/18/2017
Lab Vacuum Ost	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		₹O-15			Analyst: RJP
1,1,1-Trichloroethane	0.38	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1.1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,1-Dichforoethane	< 0.15	0.15	₽₽bV	1	12/22/2017 2:00:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2,4-Trimethylbenzene	0.62	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2-Dichtorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,3,5-Trime(hylbenzene	0.42	0.15	ppbV	1	12/22/2017 2:00:00 AM
1.3-butadiene	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,4-Dioxane	1,7	0.30	ρρbV	ţ	12/22/2017 2:00:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	Vdqq	\$	12/22/2017 2:00:00 AM
4-ethyltoluene	0.13	0.15 J	Vdqq	1	12/22/2017 2:00:00 AM
Acetons	370	81	ppbV	270	12/23/2017 3:14:00 AM
Allyl chloride	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
Benzene	0.48	0.15	ppbV	1	12/22/2017 2:00:00 AM
Benzyl chloride	< 0.15	0.15	Vđạq	1	12/22/2017 2:00:00 AM
Bromodichioromethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Bromoform	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Bromomethane	< 0.15	0.15	₽₽₽V	1	12/22/2017 2:00:00 AM
Carbon disulfide	0.34	0.15	ppbV	1	12/22/2017 2:00:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Chlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Chloroethane	< 0.15	0.15	Vđạq	1	12/22/2017 2:00:00 AM
Chloroform	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Cyclohexane	0.49	0.15	ppbV	t t	12/22/2017 2:00:00 AM
Dibromochloromethane	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
Ethyl acelate	0.95	0.15	Väqq	1	12/22/2017 2:00:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 26

Date: 10-Jun-18

CLIENT:

Lab ID:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

C1712063-003A

Client Sample ID: SVI-02

Tag Number: 561.340

Collection Date: 12/13/2017

Matrix: AJR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		ŢĊ	-15			Analyst: RJP
Ethylbenzene	0.26	0.15		ppbV	1	12/22/2017 2:00:00 AM
Freon 11	0.43	0.15		ppbV	1	12/22/2017 2:00:00 AM
Freon 113	< 0.15	0.15		ppb∀	1	12/22/2017 2:00:00 AM
Freon 114	< 0.15	0.15		ppb∨	1	12/22/2017 2:00:00 AM
Freon 12	0.44	0.15		∨dqq	1	12/22/2017 2:00:00 AM
Heptane	3.0	4.0	JH	ppb∨	27	12/23/2017 2:37:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vđqq	1	12/22/2017 2:00:00 AM
Hexane	3.2	0.15		ppb∨	1	12/22/2017 2:00:00 AM
Isopropyi alcohol	89	40		₽₽bV	270	12/23/2017 3:14:00 AM
m&p-Xytene	0.60	0.30		₽₽bV	1	12/22/2017 2:00:00 AM
Methyl Butyl Ketone	< 0.30	0.30		Vdqq	1	12/22/2017 2:00:00 AM
Methyl Ethyl Ketone	4.6	8.1	JH	ppbV	27	12/23/2017 2:37:00 AM
Methyl Isobutyl Ketone	1.B	0.30		ppb∀	1	12/22/2017 2:00:00 AN
Methyl tert-butyl ether	< 0.15	0.15		ρρb∨	1	12/22/2017 2:00:00 AM
Methylene chloride	3.5	4.0	JH	∀dqq	27	12/23/2017 2:37:00 AM
o-Xylene	0.25	0.15		Vđqq	1	12/22/2017 2:00:00 AN
Propylene	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Styrene	< 0.15	0.15		Vdqq	1	12/22/2017 2:00:00 AM
Tetrachloroethylene	1.1	0.15		₽₽₽V	1	12/22/2017 2:00:00 AM
Tetrahydrofuran	< 0.15	0.15		₽₽₽V	1	12/22/2017 2:00:00 AM
Toluene	3.0	4.0	JH	Vdqq	27	12/23/2017 2:37:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	12/22/2017 2:00:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Trichloroethene	5.4	4.0		ppb∨	27	12/23/2017 2:37:00 AM
Vinyl ecetate	< 0.15	0.15		Vdqq	1	12/22/2017 2:00:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Vinyl chloride	0.29	0.15		ppbV	1	12/22/2017 2:00:00 AM
Surr: Bromofivorobenzene	113	70-130		%REC	1	12/22/2017 2:00:00 AM

n	 16	G	(* T	

^{**} Quantitation Limit

ND Not Detected at the Limit of Detection

Page 6 of 26

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Eldre Corp

Project: Lab ID:

C1712063-003A

Client Sample ID: SVI-02

Tag Number: 561.340

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
1.1,1-Trichtoroethane	2.1	0.82		ug/m3	1	12/22/2017 2:00:00 AM
1,1,2,2-Tetrachloroettane	< 1.0	1.0		ug/m3	1	12/22/2017 2:00:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	12/22/2017 2:00:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 2:00:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:00:00 AM
1,2,4-Trichlorobenzene	< 1.1	1,1		ug/m3	1	12/22/2017 2:00:00 AM
1,2,4-Trimethylbenzene	3.0	0.74		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	12/22/2017 2:00:00 AM
1,3,5-Trimethylbenzene	2.1	0.74		ug/m3	1	12/22/2017 2:00:00 AM
1.3-butadiene	< 0.33	0.33		ug/m3	1	12/22/2017 2:00:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 2:00:00 AM
1.4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 2:00:00 AM
1,4-Dioxane	6.1	1.1		ug/m3	1	12/22/2017 2:00:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	12/22/2017 2:00:00 AM
4-sthyltoluene	0.64	0.74	J	ug/m3	1	12/22/2017 2:00:00 AM
Acetone	870	190		ug/m3	270	12/23/2017 3:14:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	12/22/2017 2:00:00 AM
Benzene	1.5	0.48		ug/m3	1	12/22/2017 2:00:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	12/22/2017 2:00:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	12/22/2017 2:00:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	12/22/2017 2:00:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	12/22/2017 2:00:00 AM
Carbon disulfide	1.1	0.47		ug/m3	1	12/22/2017 2:00:00 AM
Carbon tetrachloride	< 0.94	0,94		ug/m3	1	12/22/2017 2:00:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	†	12/22/2017 2:00:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	12/22/2017 2:00:00 AM
Chioroform	< 0.73	0.73		ug/m3	1	12/22/2017 2:00:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	12/22/2017 2:00:00 AM
dis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:00:00 AM
cis-1,3-Dichloraprapene	< 0.68	0.68		ug/m3	1	12/22/2017 2:00:00 AM
Cyclohexane	1.7	0.52		սց/m3	1	12/22/2017 2:00:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	12/22/2017 2:00:00 AM
Ethyl acetate	3.4	0.54		քու/քա	1	12/22/2017 2:00:00 AM
Ethylbenzene	1.1	0.65		ug/m3	1	12/22/2017 2:00:00 AM
Freon 11	2.4	0.84		ug/m3	1	12/22/2017 2:00:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	12/22/2017 2:00:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	12/22/2017 2:00:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation fimit
- ND Not Detected at the Limit of Detection

Page 5 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063 Project: Eldre Corp

Lab ID: C1712063-003A Date: 10-Jan-18

Client Sample ID: SVI-02

> Tag Number: 561.340 Collection Date: 12/13/2017

> > Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		то	⊱15ï	***************************************		Analyst: RJP
Freon 12	2.2	0.74		ug/m3	1	12/22/2017 2:00:00 AM
Heptane	12	16	JH	ug/m3	27	12/23/2017 2:37:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/22/2017 2:00:00 AM
Hexane	11	0.53		ug/m3	1	12/22/2017 2:00:00 AM
isopropyl alcohol	220	98		ug/m3	270	12/23/2017 3:14:00 AM
m&p-Xylene	3.5	1.3		ug/m3	1	12/22/2017 2:00:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 2:00:00 AM
Methyl Ethyl Ketone	14	24	114	ug/m3	27	12/23/2017 2:37:00 AM
Methył Isobutył Ketone	7.2	1.2		ug/m3	1	12/22/2017 2:00:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 2:00:00 AM
Methylene chloride	12	14	JН	ug/m3	27	12/23/2017 2:37:00 AM
o-Xylene	1.1	0.65		ug/m3	1	12/22/2017 2:00:00 AM
Propylene	< 0.26	0.26		ug/m3	1	12/22/2017 2:00:00 AM
Styrene	< 0.64	0.64		ug/m3	1	12/22/2017 2:00:00 AM
Tetrachloroethylene	7.2	1.0		ug/m3	1	12/22/2017 2:00:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/22/2017 2:00:00 AM
Toluene	1 1	15	JН	⊔g/m3	27	12/23/2017 2:37:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:00:00 AM
trans-1,3-Dichtoropropene	< 0.68	0.68		ug/m3	1	12/22/2017 2:00:00 AM
Trichloroethene	29	21		ug/m3	27	12/23/2017 2:37:00 AM
Vinyl acetate	< 0.63	0.53		ug/m3	1	12/22/2017 2:00:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 2:00:00 AM
Vinyl chloride	0.74	0.38		ug/m3	1	12/22/2017 2:00:00 AM

		_	
Oua	11	FF/s	40

^{**} Quantitation Limit

ND Not Detected at the Limit of Detection

Page 6 of 26

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected.

E Estimated Value above quantitation range

Analyte detected below quantitation limit

Centek Laboratories, LLC

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-004A

Date: 10-Jan-18

Client Sample ID: IAQ-02

Tag Number: 161,297

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit ()ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLC			Analyst:
Lab Vacuum in	-6		"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
1.1.1-Trichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
1,1,2,2-Tetrachtoroethane	< 0.15	0.15	ppb∨	1	12/21/2017 7:06:00 PM
1.1,2-Trichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
1,1-Dichloroethane	< 0.15	0.15	Vđạq	1	12/21/2017 7:06:00 PM
1,1-Dichloroethene	< 0.15	0.15	₽₽bV	1	12/21/2017 7:06:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15	∨dqq	1	12/21/2017 7:06:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	₽₽bV	1	12/21/2017 7:06:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	12/21/2017 7:06:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ρρbΥ	1	12/21/2017 7:06:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
1,2-Dickloropropane	< 0.15	0.15	Vđqq	1	12/21/2017 7:06:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
1,3-butadiene	< 0.15	0.15	Vdqq	1	12/21/2017 7:06:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	₽₽₽V	1	12/21/2017 7:06:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	∨dqq	1	12/21/2017 7:06:00 PM
1,4-Dioxane	< 0.30	0.30	ppb∀	1	12/21/2017 7:06:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	Vdqq	1	12/21/2017 7:05:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Acetone	7.0	2.7	Vđqq	9	12/22/2017 10:09:00 PM
Aliyi chloride	< 0.15	0.15	Vdqq	1	12/21/2017 7:06:00 PM
Benzene	0.29	0.15	ppbV	i	12/21/2017 7:06:00 PM
Benzyl chloride	< 0.15	0.15	ydqq	1	12/21/2017 7:06:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	ŧ	12/21/2017 7:06:00 PM
Bromoform	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Carbon disulfide	< 0.15	0.16	ppbV	1	12/21/2017 7:06:00 PM
Carbon tetrachioride	0.060	0.040	ppbV	1	12/21/2017 7:06:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Chloroform	1.5	0.15	Vdqq	1	12/21/2017 7:06:00 PM
Chloromethane	0.37	0.15	Vdqq	1	12/21/2017 7:06:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	12/21/2017 7:06:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Cyclohexane	0.13	0.15	J ppbV	1	12/21/2017 7:06:00 PM
Dibromochioromethane	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM
Ethyi acetate	< 0.15	0.15	ppbV	1	12/21/2017 7:06:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- **E-1** Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range \mathbf{E}
- 1 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Eldre Corp

Project: Lab ID:

C1712063-004A

Client Sample ID: IAQ-02

Tag Number: 161.297

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC		то	1-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∨	1	12/21/2017 7:06:00 PM
Freon 11	0.50	0.15		Vđqq	t	12/21/2017 7:06:00 PM
Freon 113	< 0,15	0.15		ppb∨	1	12/21/2017 7:06:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	12/21/2017 7:06:00 PM
Freon 12	0.52	0.15		Vdqq	1	12/21/2017 7:06:00 PM
Heptane	0.59	0.15		ppbV	1	12/21/2017 7:06:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vdqq	1	12/21/2017 7:06:00 PM
Hexane	0.20	0.15		Vdqg	1	12/21/2017 7:06:00 PM
Isopropyl alcohol	77	14		ppbV	90	12/22/2017 10:46:00 PM
m&p-Xylene	0.18	0.30	J	Vdqq	1	12/21/2017 7:06:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	12/21/2017 7:06:00 PM
Methyl Ethyl Ketone	0.45	0.30		ppbV	1	12/21/2017 7:06:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		Vdqq	1	12/21/2017 7:06:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppb∀	1	12/21/2017 7:06:00 PM
Methylene chloride	0.70	0.15		ppbV	1	12/21/2017 7:06:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	12/21/2017 7:06:00 PM
Propylene	< 0.15	0.15		ppb∨	1	12/21/2017 7:06:00 PM
Styrene	< 0.15	0.15		ppbV	1	12/21/2017 7:06:00 PM
Tetrachloroethylene	< 0.15	0.15		ppb∨	1	12/21/2017 7:06:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	12/21/2017 7:06:00 PM
Toluene	1.0	0.15		ppbV	1	12/21/2017 7:06:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/21/2017 7:06:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	12/21/2017 7:06:00 PM
Trichloroethene	0.070	0.030		Vdgq	1	12/21/2017 7:06:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	12/21/2017 7:06:00 PM
Vinyl Bromide	< 0.15	0.15		Vdqq	1	12/21/2017 7:06:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	12/21/2017 7:06:00 PM
Surr: Bromofluorobenzene	81.0	70-130		%REC	1	12/21/2017 7:06:00 PM

Qualit	Tarres .
A 13 11 11 11 11 11 11 11 11 11 11 11 11	

^{••} Quantitation Limit

ND Not Detected at the Limit of Detection

Page 8 of 26

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

LaBella Associates, P.C.

CLIENT: Lab Order:

C1712063

Project;

Lab ID:

Eldre Corp

C1712063-004A

Date: 10-Jan-18

Client Sample ID: IAQ-02

Tag Number: 161.297

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO	-15		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:06:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	₽	1	12/21/2017 7:06:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:06:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 7:06:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:06:00 PM
1,2,4-Trichlorobenzene	< 1,1	1,1	ug/m3	1	12/21/2017 7:06:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 7:06:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	12/21/2017 7:06:00 PM
1.2-Dichtorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:06:00 PM
1,2-Dichlorosthage	< 0.61	0.61	υg/m3	1	12/21/2017 7:06:00 PM
1,2-Dichloropropane	< 0.69	0.69	- - - - - - - - - - - - - - - - - - -	1	12/21/2017 7:06:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 7:06:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/21/2017 7:06:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:06:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:06:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	12/21/2017 7:06:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	eg/m3	1	12/21/2017 7:06:00 PM
4-ethyltoluene	< 0.74	0.74	srg/m3	1	12/21/2017 7:06:00 PM
Acetone	17	6.4	ug/m3	9	12/22/2017 10:09:00 PM
Allyl chloride	< 0.47	0.47	იე/ო3	1	12/21/2017 7:05:00 PM
Benzene	0.93	0.48	ug/m3	1	12/21/2017 7:06:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	12/21/2017 7:06:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	12/21/2017 7:06:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	12/21/2017 7:06:00 PM
Sromomethane	< 0.58	0.58	աց/m3	1	12/21/2017 7:06:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	12/21/2017 7:06:00 PM
Carbon tetrachloride	0.38	0.25	ug/m3	1	12/21/2017 7:06:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	12/21/2017 7:06:00 PM
Chloroethane	< 0.40	0.40	ug/ <i>m</i> 3	1	12/21/2017 7:06:00 PM
Chloroform	7.4	0.73	ug/m3	1	12/21/2017 7:06:00 PM
Chloromethane	0.75	0.31	ug/m3	1	12/21/2017 7:06:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:06:00 PM
cis-1,3-Dichloropropane	< 0.68	0.68	ug/m3	1	12/21/2017 7:06:00 PM
Cyclohexane	0.45	0.52	J ug/m3	1	12/21/2017 7:06:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/21/2017 7:06:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	12/21/2017 7:06:00 PM
Ethylbenzene	< 0.65	0.65	4g/m3	1	12/21/2017 7:06:00 PM
Freen 11	2.8	0.84	ug/m3	1	12/21/2017 7:06:00 PM
Freen 113	< 1,1	1,1	ug/m3	1	12/21/2017 7:06:00 PM
Freen 114	< 1.0	1.0	ug/m3	1	12/21/2017 7:06:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- $\delta N = Non-contine analyte.$ Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1 Project: Eld

C1712063

Eldre Corp

Lab ID: C1712063-004A

Date: 10-Jan-18

Client Sample ID: IAQ-02

Tag Number: 161.297

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit (Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-	15			Analyst: RJP
Freon 12	2.6	0.74		ug/m3	1	12/21/2017 7:06:00 PM
Heptana	2.4	0.6 1		սց/m3	1	12/21/2017 7:06:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/21/2017 7:06:00 PM
Hexane	0.70	0.53		ug/m3	1	12/21/2017 7:06:00 PM
isopropyi alcohol	190	34		ug/m3	90	12/22/2017 10:48:00 PM
m&p-Xylene	0.78	1.3	3	ug/m3	1	12/21/2017 7:06:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 7:06:00 PM
Methyl Ethyl Ketone	1.3	0.88		սց/m3	3	12/21/2017 7:06:00 PM
Methył isobutyl Kelone	< 1.2	1.2		ug/m3	1	12/21/2017 7:06:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 7:06:00 PM
Methylene chloride	2.4	0.52		ug/m3	î	12/21/2017 7:06:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	12/21/2017 7:06:00 PM
Propylene	< 0.26	0.26		ug/m3	1	12/21/2017 7:06:00 PM
Styrene	< 0.64	0.64		սց/m3	1	12/21/2017 7:06:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	12/21/2017 7:06:00 FM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/21/2017 7:06:00 PM
Toluene	3.8	0.57		ug/m3	1	12/21/2017 7:06:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 7:06:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/21/2017 7:06:00 PM
Trichloroethene	0.38	0.16		ug/m3	1	12/21/2017 7:06:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/21/2017 7:06:00 PM
Vinyl Bromide	< 0.68	0.66		ug/m3	1	12/21/2017 7:06:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	12/21/2017 7:06:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits.
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 26

Date: 10-Jan-18

CLIENT: Lab Order: LaBella Associates, P.C.

C1712063

Project:

Ç1714005

Lab ID: CI

Eldre Corp

C1712063-005A

Client Sample 1D: SVI-03

Tag Number: 222.345

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		Fl	.D			Analyst:
Lab Vacuum In	-1			"Но		12/18/2017
Lab Vacuum Out	-30			"Hg		12/18/2017
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,1,2-Trichloroethane	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
1,1-Dichteroethane	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
1,1-Dichtoroethene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1.2,4-Trichlorobenzene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,2,4-Trimethylbenzene	0.12	0.15	j	ppb∨	1	12/22/2017 2:40:00 AM
1,2-Dibromoethane	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,2-Dichlorobenzens	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,2-Dichloroethane	< 0.15	0.15		ρpbV	1	12/22/2017 2:40:00 AM
1,2-Dichloropropane	< 0.15	0.15		ρρbV	1	12/22/2017 2:40:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,3-butadiene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,3-Dichlorobenzene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,4-Dichlorobenzene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
1,4-Dioxane	0.26	0.30	J	ppbV	1	12/22/2017 2:40:00 AM
2,2,4-trimethylpentane	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
4-ethyltoluene	< 0.15	0.15		ppb∀	1	12/22/2017 2:40:00 AM
Acetone	52	27		ppbV	90	12/23/2017 4:30:00 AM
Allyl chioride	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Benzene	< 0.15	0.15		ppb∀	1	12/22/2017 2:40:00 AM
Benzyl chloride	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Bromodichloromethane	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Bramoform	< 0.15	0.15		ppb∀	1	12/22/2017 2:40:00 AM
Bromomethane	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Carbon disulfide	0.10	0.15	J	ppb∨	1	12/22/2017 2:40:00 AM
Carbon tetrachloride	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Chlorobenzena	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Chloroethane	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Chloroform	1.8	0.15		ppbV	1	12/22/2017 2:40:00 AM
Chloromethane	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Cyclohexane	0.93	0.15		ppbV	1	12/22/2017 2:40:00 AM
Dibromochloromethane	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Ethyl acetate	0.35	0.15		ppbV	1	12/22/2017 2:40:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-matine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-005A

Client Sample ID: SVI-03

Tag Number: 222,345

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Ethylbenzene	< 0.15	0,15		∨dqq	1	12/22/2017 2:40:00 AM
Freon 11	0.57	0.15		ppbV	1	12/22/2017 2:40:00 AM
Freon 113	< 0.15	0.15		Vđạq	1	12/22/2017 2:40:00 AM
Freon 114	< 0.15	0.15		∨dqq	1	12/22/2017 2:40:00 AM
Freon 12	0.51	0.15		₽₽bV	1	12/22/2017 2:40:00 AM
Heptane	4.2	1.4		ppb∀	9	12/23/2017 3:53:00 AM
Hexachtoro-1,3-butadiene	< 0.15	0.15		∨dqq	1	12/22/2017 2:40:00 AM
Hexane	2.0	0.15		ρρb∨	1	12/22/2017 2:40:00 AM
Isopropył alcohol	110	14		ρρbV	90	12/23/2017 4:30:00 AM
m&p-Xylene	0.26	0.30	J	ppbV	1	12/22/2017 2:40:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppb∀	1	12/22/2017 2:40:00 AM
Methyl Ethyl Ketone	1.6	2.7	JH	ppbV	9	12/23/2017 3:53:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	12/22/2017 2:40:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Methylene chloride	1,5	0.15		ppbV	1	12/22/2017 2:40:00 AM
o-Xylene	0.10	0.15	J	ppbV	1	12/22/2017 2:40:00 AM
Propylene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Styrene	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Tetrachioroethylene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Toluene	2.0	1.4		₽₽bV	9	12/23/2017 3:53:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Trichtoroethene	0.29	0.15		ppbV	1	12/22/2017 2:40:00 AM
Vinyl acetate	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Vinyl Bromide	< 0.15	0.15		ppb∨	1	12/22/2017 2:40:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Surr: Bromofluorobenzene	84.0	70-130		%REC	7	12/22/2017 2:40:00 AM

			_	_					
"	٠.	24	1	•	ſ	۲.		٢S	٠
4.5	и	21	1	C	Ł		Ľ	13	i

^{**} Quantitation Limit

ND Not Detected at the Limit of Detection

Page 10 of 26

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

¹ Analyte detected below quantitation limit

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

CLIENT:

Eldre Corp

Lab ID:

C1712063-005A

Date: 10-Jan-18

Client Sample 1D: SVI-03

Tag Number: 222.345

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TC	-15			Analyst: RJP
1,3,1-Trichloroethane	< 0.82	0.82		ug/m3	1	12/22/2017 2:40:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		սց/m3	1	12/22/2017 2:40:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	12/22/2017 2:40:00 AM
1,1-Dichioroethane	< 0.61	0.61		ug/m3	1	12/22/2017 2:40:00 AM
1,1-Dichtoroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:40:00 AM
1,2,4-Trichlorobenzene	< 1.3	1.1		u g/m3	1	12/22/2017 2:40:00 AM
1,2,4-Trimethythenzene	0.59	0.74	J	ug/m3	1	12/22/2017 2:40:00 AM
1,2-Dibromoethane	< 1.2	1.2		սց/m3	1	12/22/2017 2:40:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		սց/m3	1	12/22/2017 2:40:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 2:40:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	12/22/2017 2:40:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/22/2017 2:40:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	12/22/2017 2:40:00 AM
1,3-Dichlorobenzese	< 0.90	0.90		ug/m3	1	12/22/2017 2:40:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 2:40:00 AM
1,4-Dioxane	0.94	1.1	J	цд/т3	1	12/22/2017 2:40:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	12/22/2017 2:40:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	12/22/2017 2:40:00 AM
Acetone	120	64		ug/m3	90	12/23/2017 4:30:00 AM
Altyl chloride	< 0.47	0.47		ug/m3	1	12/22/2017 2:40:00 AM
Benzene	< 0.48	0.48		ug/m3	1	12/22/2017 2:40:00 AM
Benzyl chloride	< 0.86	0.85		սց/m3	1	12/22/2017 2:40:00 AM
Bromodichloromethane	< 1,0	1.0		ug/m3	1	12/22/2017 2:40:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	12/22/2017 2:40:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	12/22/2017 2:40:00 AM
Carbon disulfide	0.31	0.47	J	ug/m3	1	12/22/2017 2:40:00 AM
Carbon tetrachloride	< 0.94	0.94		սց/m3	1	12/22/2017 2:40:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	12/22/2017 2:40:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	12/22/2017 2:40:00 AM
Chloroform	8.8	0.73		ug/m3	1	12/22/2017 2:40:00 AM
Chloromethane	< 0.31	0.31		ug/m3	‡	12/22/2017 2:40:00 AM
cis-1,2-Dichtoroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:40:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 2:40:00 AM
Cyclohexane	3.2	0.52		ug/m3	1	12/22/2017 2:40:00 AM
Dibromochloromethane	< 1,3	1.3		ug/m3	1	12/22/2017 2:40:00 AM
Ethyl acetate	1.3	0.54		ug/m3	1	12/22/2017 2:40:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	12/22/2017 2:40:00 AM
Freon 11	2.9	0.84		ug/m3	1	12/22/2017 2:40:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	12/22/2017 2:40:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	12/22/2017 2:40:00 AM

Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded.

Spike Recovery outside accepted recovery limits

- JN Non-routine analyte, Quantitation estimated.

Results reported are not blank corrected

- Estimated Value above quantitation range E
- Analyte detected below quantitation limit 3
- Not Detected at the Limit of Detection

Page 9 of 26

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project;

Eldre Corp

Lab ID:

C1712063-005A

Date: 10-Jan-18

The state of the s

Client Sample ID: SVI-03

Tag Number: 222,345

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
IUG/M3 BY METHOD TO15	7711111	TC)-15			Analyst: RJP
Freon 12	2.5	0.74		ug/m3	1	12/22/2017 2:40:00 AM
Heptane	17	5.7		ug/m3	9	12/23/2017 3:53:00 AM
Hexachloro-1.3-butadiene	< 1.6	1.6		ug/m3	1	12/22/2017 2:40:00 AM
Hexane	6.9	0.53		ug/m3	1	12/22/2017 2:40:00 AM
sopropyl atcohol	260	34		ug/m3	90	12/23/2017 4:30:00 AM
m&p-Xylens	1,1	1.3	J	սց/m3	1	12/22/2017 2:40:00 AM
Methyl Butyl Ketone	< 1.2	1,2		ug/m3	1	12/22/2017 2:40:00 AM
Methyl Ethyl Ketone	4.6	8.0	JΗ	ug/m3	9	12/23/2017 3:53:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 2:40:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 2:40:00 AM
Methylene chloride	5.1	0.52		ug/m3	1	12/22/2017 2:40:00 AM
o-Xylene	0.43	0.65	4	ug/m3	1	12/22/2017 2:40:00 AM
Propylene	< 0.26	0.26		ug/m3	1	12/22/2017 2:40:00 AM
Styrene	< 0.64	0.64		ug/m3	1	12/22/2017 2:40:00 AM
Tetrachlorcethylene	< 1.0	1.0		ug/m3	1	12/22/2017 2:40:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/22/2017 2:40:00 AM
Toluene	7.5	5.3		ug/m3	G	12/23/2017 3:53:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:40:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 2:40:00 AM
Trichloroethene	1.6	0.81		ug/m3	1	12/22/2017 2:40:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 2:40:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 2:40:00 AM
Vinyi chloride	< 0.38	0.38		ug/m3	1	12/22/2017 2:40:00 AM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- ĭł Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 15 Estimated Value above quantitation range
- Ĵ Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-006A

Client Sample ID: IAQ-03

Tag Number: 316.259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS	*******	FLD			Analyst:
Lab Vacuum In	-6		"Hg		12/18/2017
Lab Vacuum Qut	-30		"tlg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichleroethane	< 0.15	0.15	₽₽bV	1	12/21/2017 7:48:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,1-Dichloroethane	< 0.15	0.15	₽₽bV	1	12/21/2017 7:48:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	12/21/2017 7:48:00 戸縁
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,3-butadiene	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1.4-Dichtorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	12/21/2017 7:48:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppb∨	1	12/21/2017 7:48:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Acetone	7.8	2.7	Vdqq	9	12/22/2017 11:25:00 PM
Allyi chloride	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Benzene	0.29	0.15	ppbV	1	12/21/2017 7:48:00 PM
Benzyl chloride	< 0.15	0.15	ppb∨	1	12/21/2017 7:48:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Bramoform	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Carbon tetrachloride	0.070	0.040	ppbV	1	12/21/2017 7:48:00 PM
Chloropenzene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Chloroform	2.6	1.4	ppbV	9	12/22/2017 11:25:00 PM
Chioromethane	0.37	0.15	ppbV	1	12/21/2017 7:48:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
cis-1,3-Dichloropropens	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Cyclohexane	0.23	0.15	ppbV	ì	12/21/2017 7:48:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Ethyl acetate	0.34	0.15	ppbV	1	12/21/2017 7:48:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- F Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 26

CLIENT:

LaBella Associates, P.C.

Lab Order;

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-006A

Date: 10-Jan-18

Client Sample ID: IAQ-03

Tag Number: 316.259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	12/21/2017 7:48:00 PM
Freon 11	0.71	0.15		ppb∀	1	12/21/2017 7:48:00 PM
Freon 113	< 0.15	0.15		ppbV	1	12/21/2017 7:48:00 PM
Frenn 114	< 0.15	0.15		ppbV	1	12/21/2017 7:48:00 PM
Freon 12	0.50	0.15		ρρbV	1	12/21/2017 7:48:00 PM
Heptane	1.4	0.15		Vdqq	1	12/21/2017 7:48:00 PM
Hexachtoro-1,3-butadiene	< 0.15	0.15		ppbV	1	12/21/2017 7:48:00 PM
Hexane	0.23	0.15		ppb∀	1	12/21/2017 7:48:00 PM
tsopropył alcohol	70	14		ppbV	90	12/23/2017 12:02:00 AM
m&p-Xylene	0.25	0.30	J	ppbV	1	12/21/2017 7:48:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	12/21/2017 7:48:00 PM
Methyl Ethyl Ketone	3.9	2.7		ppbV	9	12/22/2017 11:25:00 PM
Methyl Isobulyl Ketone	< 0.30	0.30		∨dqq	1	12/21/2017 7:48:00 PM
Methyl test-bufyl ether	< 0.15	0.15		Vdqq	1	12/21/2017 7:48:00 PM
Methylene chloride	0.78	0.15		₽₽₿V	1	12/21/2017 7:48:00 PM
o-Xylene	< 0.15	0.15		∨dqq	1	12/21/2017 7:48:00 PM
Propylene	< 0.15	0.15		ppb∨	1	12/21/2017 7:48:00 PM
Styrene	< 0.15	0.15		Vđạq	ŧ	12/21/2017 7:48:00 PM
Tetrachioroethyiene	< 0.15	0.15		₽₽bV	1	12/21/2017 7:48:00 PM
Tetrahydrofuran	< 0.15	0.15		∨dqq	1	12/21/2017 7:48:00 PM
Taluene	2.9	1.4		ppbV	9	12/22/2017 11:25:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		p¢b∀	1	12/21/2017 7:48:00 PM
trans-1,3-Dichloropropane	< 0.15	0.15		Vdqq	1	12/21/2017 7:48:00 PM
Trichloroethene	0.080	0.030		ppbV	1	12/21/2017 7:48:00 PM
Vinyl acetate	< 0.15	0.15		Vdqq	1	12/21/2017 7:48:00 PM
Vinyl Bromide	< 0.15	0.15		pρbV	1	12/21/2017 7:48:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	12/21/2017 7:48:00 PM
Surr: Bromoßuorobenzene	81.0	70-130		%REC	1	12/21/2017 7:48:00 PM

Onalifiers					
	Ð	19	lii	ĪΜ	rs.

- Ogantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 26

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C. Client Sample ID: IAQ-03

Lab Order: C1712063 Tag Number: 316.259
Project: Eldre Corp Collection Date: 12/13/2017

Lab ID: C1712063-006A Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	······································	то	-15		Analyst: RJP
1,1,1-Trichiorgethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:48:00 PM
1.1,2,2-Tetrachforoethane	< 1.0	1.0	⊎ ց/m 3	1	12/21/2017 7:48:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ս ց/m 3	1	12/21/2017 7:48:00 PM
1,1-Dichloroethans	< 0.61	0.61	ug/m3	1	12/21/2017 7:48:00 PM
1,1-Dichloroethene	< 0.59	0.59	⊎ց/m3	1	12/21/2017 7:48:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	12/21/2017 7:48:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	∪ց/m 3	1	12/21/2017 7:48:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 7:48:00 PM
1.2-Dichloropropane	< 0.69	0.69	ug/m3	1	12/21/2017 7:48:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 7:48:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/21/2017 7:48:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,4-Dioxane	< 1,1	1.1	ug/m3	1	12/21/2017 7:48:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/21/2017 7:48:00 PM
4-ethyltaluene	< 0.74	0.74	ug/m3	3	12/21/2017 7:48:00 PM
Acetone	19	6.4	ug/m3	9	12/22/2017 11:25:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	7	12/21/2017 7:48:00 PM
Benzene	0.93	0.48	eg/m3	1	12/21/2017 7:48:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	12/21/2017 7:48:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	12/21/2017 7:48:00 PM
Bromotorm	< 1.6	1.6	ug/m3	1	12/21/2017 7:48:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	12/21/2017 7:48:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	12/21/2017 7:48:00 PM
Carbon tetrachloride	0.44	0.25	ug/m3	1	12/21/2017 7:48:00 PM
Chłorobenzene	< 0.69	0.69	ug/m3	1	12/21/2017 7:48:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 7:48:00 PM
Chloroform	13	6.8	ug/m3	9	12/22/2017 11:25:00 PM
Chloromethane	0.76	0.31	ug/m3	1	12/21/2017 7:48:00 PM
cis-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:48:00 PM
cis-1,3-Dichloropropens	< 0.68	0.68	ug/m3	1	12/21/2017 7:48:00 PM
Cyclohexane	0.79	0.52	ug/m3	1	12/21/2017 7:48:00 PM
Dibromochloromethane	< 1.3	1,3	ug/m3	1	12/21/2017 7:48:00 PM
Ethyl acetate	1.2	0.54	u g/m 3	1	12/21/2017 7:48:00 PM
Ethylbenzene	< 0.65	0.65	Errhgu	1	12/21/2017 7:48:00 PM
Freen 11	4.0	0.84	ug/m3	1	12/21/2017 7:48:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	12/21/2017 7:48:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	12/21/2017 7:48:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Lab ID:

Eldre Corp

C1712063-006A

Client Sample ID: IAQ-03

Tag Number: 316.259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO	-15			Analysi: RJP
Freon 12	2.5	0.74		ug/m3	1	12/21/2017 7:48:00 PM
Heptane	5.7	0.61		ug/m3	3	12/21/2017 7:48:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/21/2017 7:48:00 PM
Hexane	0.81	0.53		ug/m3	1	12/21/2017 7:48:00 PM
isopropyi alcohol	170	34		ug/m3	90	12/23/2017 12:02:00 AM
m&p-Xylene	1.1	1.3	į	ug/m3	1	12/21/2017 7:48:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 7:48:00 PM
Methyl Ethyl Ketone	11	8.0		ug/m3	9	12/22/2017 11:25:00 PM
Methyl isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 7:48:00 PM
Mothyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 7:48:00 PM
Methylene chloride	2.7	0.52		ug/m3	1	12/21/2017 7:48:00 PM
o-Xyiene	< 0.65	0.65		ug/m3	1	12/21/2017 7:48:00 PM
Propylene	< 0.26	0.26		սց/m3	1	12/21/2017 7:48:00 PM
Styrene	< 0.64	0.64		ug/m3	1	12/21/2017 7:48:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	12/21/2017 7:48:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/21/2017 7:48:00 PM
Toluene	11	5.3		ug/m3	9	12/22/2017 11:25:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		u g/m 3	1	12/21/2017 7;48:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/21/2017 7:48:00 PM
Trichloroethene	0.43	0.16		ug/m3	1	12/21/2017 7:48:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/21/2017 7:48:00 PM
Vinyl 8romide	< 0.66	0.66		ug/m3	1	12/21/2017 7:48:00 PM

0.10

ug/m3

< 0.10

Viny! chloride

ND Not Detected at the Limit of Detection

Page 12 of 26

12/21/2017 7:48:00 PM

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank.

¹⁻¹ Hulding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit J

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Client Sample ID: SVI-04

Tag Number: 100.309

Date: 10-Jan-18

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-007A

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-6		"Hg		12/18/2017
Łab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 3:22:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 3:22:00 AM
1,1-Dichloroethene	< 0.15	0.15	ρρb∀	1	12/22/2017 3:22:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 3:22:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	12/22/2017 3:22:00 AM
cis-1,2-Dichloroethese	0.38	0.15	ppbV	1	12/22/2017 3:22:00 AM
Tetrachloroethylene	0.17	0.15	ppbV	1	12/22/2017 3:22:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	Vdqq	1	12/22/2017 3:22:00 AM
Trichioroethene	12	1.5	ppb∨	10	12/23/2017 5:07:00 AM
Visyl chloride	0.31	0.15	ppbV	1	12/22/2017 3:22:00 AM
Surr: Bromofluorobenzene	100	70-130	%REC	1	12/22/2017 3:22:00 AM

Qualifiers:

** Quantitation Limit

E3 Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

 \mathbf{E} Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 13 of 26

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project: Eldre Corp

Lab ID:

C1712063-007A

Date: 10-Jan-18

Client Sample ID: SVI-04

Tag Number: 100.309

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/22/2017 3:22:00 AM
1,1-Dichloroethane	< 0.61	0,61	ug/m3	1	12/22/2017 3:22:00 AM
1,1-Dichloraethene	< 0.59	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 3:22:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	12/22/2017 3:22:00 AM
cis-1,2-Dichloroethene	1.5	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Tetrachioroethylene	1,2	1.0	ug/m3	1	12/22/2017 3:22:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	មg/m3	1	12/22/2017 3:22:00 AM
Trichloroethene	62	8.1	ug/m3	10	12/23/2017 5:07:00 AM
Vinyt chloride	0.79	0.38	ug/m3	1	12/22/2017 3:22:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- IN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected.
- Estimated Value above quantitation range Æ
- j Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-04

Lab Order;

C1712063

Project:

Tag Number: 287.260 Collection Date: 12/13/2017

Lab ID:

Eldre Corp

Matrix: AlR

Lab 1D: C1712063-008A				Matrix: AlR	
Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLO			Analyst:
Lab Vacuum In	-6		"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1.1-Trichloroethane	< 0.15	0.15	₽₽bV	1	12/21/2017 8:29:00 PM
1,1-Dichloroethane	< 0.15	0.15	ρpbV	1	12/21/2017 8:29:00 PM
1,1-Dichloroethene	< 0.15	0.15	Vdgq	1	12/21/2017 8:29:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 8:29:00 PM
Chloromethane	0.70	0.15	ρρbV	1	12/21/2017 8:29:00 PM
cls-1,2-Dichloroethene	0.33	0.15	γdqq	1	12/21/2017 8:29:00 PM
Tetrachioroethylene	< 0.15	0.15	ppbV	1	12/21/2017 8:29:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	₽₽bV	1	12/21/2017 8:29:00 PM
Trichloroethene	1.8	0.040	ppbV	1	12/21/2017 8:29:00 PM
Vinyl chłoride	< 0.040	0.040	ppbV	1	12/21/2017 8:29:00 PM
Surr: Bromofluorobenzene	84.0	70-130	%REC	1	12/21/2017 8:29:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- 3N Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 14 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063 Project: Eldre Corp

C1712063-008A Lab ID:

Date: 10-Jan-18

Client Sample ID: IAQ-04

> Tag Number: 287.260 Collection Date: 12/13/2017

> > Matrix: AIR

Anaiyses	Resuit	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 8:29:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 B:29:00 PM
1,1-Dichloroethese	< 0.59	0.59	ug/m3	1	12/21/2017 8:29:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 8:29:00 PM
Chloromethane	1.4	0.31	ug/m3	1	12/21/2017 8:29:00 PM
cis-1,2-Dichloroethene	1.3	0.59	ug/m3	1	12/21/2017 8:29:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	12/21/2017 B:29:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 8:29:00 PM
Trichloroethene	9.9	0.21	ug/m3	1	12/21/2017 B:29:00 PM
Vinyl chloride	< 0.10	0.10	uo/m3	1	12/21/2017 8:29:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Estimated Value above quantitation range
- Analyte detected below quantitation limit 3
- Not Detected at the Limit of Detection ND

LaBella Associates, P.C.

Lab Order:

C1712063

Eldre Corp

Project: Lab ID:

CLIENT:

C1712063-009A

Date: 10-Jan-18

Client Sample ID: SVI-05

Tag Number: 336.381 Collection Date: 12/13/2017

|--|

Analyses	Result	**Limit	Quat	Units	DF	Date Analyzed
FIELD PARAMETERS		Fi	.D			Analyst:
Lab Vacuum in	-6			"Hg		12/18/2017
Lab Vacuum Out	-30			"Hg		12/18/2017
UG/M3 BY METHOD TO15		TO-	-15			Analyst: RJP
1,1,1-Trichtoroethane	0.11	0.15	Ţ	₽₽bV	1	12/22/2017 4:03:00 AM
1,1-Dichloroethane	< 0.15	0.15		Váqq	1	12/22/2017 4:03:00 AM
1,1-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 4:03:00 AM
Chloroethane	< 0.15	0.15		₽₽bV	1	12/22/2017 4:03:00 AM
Chloromethane	< 0.15	0.15		ppbV	1	12/22/2017 4:03:00 AM
cis-1.2-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 4:03:00 AM
Tetrachioroethylene	0.22	0.15		Vdqq	1	12/22/2017 4:03:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	12/22/2017 4:03:00 AM
Trichloroethene	2.6	0.60		ppb∨	4	12/23/2017 5:45:00 AM
Vinyl chloride	< 0.15	0.15		Vdqq	1	12/22/2017 4:03:00 AM
Surr Bromofluorobenzene	91.0	70-130		%REC	1	12/22/2017 4:03:00 AM

Qualifiers:

Page 15 of 26

Quantitation Limit

¹³ Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Ħ

JΝ Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected.

Ε Estimated Value above quantitation range

Analyte detected below quantitation limit j

ND Not Detected at the Limit of Detection

CLIENT: LaBella Associates, P.C. Client Sample ID: SVI-05

Lab Order:C1712063Tag Number: 336.381Project:Eldre CorpCollection Date: 12/13/2017

Lab ID: C1712063-009A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1.1-Trichtoroethane	0.60	0.82	Į.	ug/m3	1	12/22/2017 4:03:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 4:03:00 AM
1.1-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 4:03:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	12/22/2017 4:03:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	12/22/2017 4:03:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 4:03:00 AM
Tetrachioroathylene	1.5	1.0		ug/m3	1	12/22/2017 4:03:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 4:03:00 AM
Trichloroethene	14	3.2		ug/m3	4	12/23/2017 5:45:00 AM
Vinyl chloride	< 0.38	0.38		110/013	1	12/22/2017 4:03:00 AM

Qualifiers:

* Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded.

JN Non-routine analyte, Quantitation estimated,

S Spike Recovery outside accepted recovery fimits

Results reported are not blank corrected

Date: 10-Jan-18

B Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 15 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: 1AQ-05

Lab Order:

C1712063

Tag Number: 1188.294

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-010A

Matrix: AIR

Analyses	Result	**Limit Quai	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		ghi"		12/18/2017
Łab Vacuum Oot	-30		"Hg		12/18/2017
IUG/M3 W/ 0,2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 9:11:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 9:11:00 PM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	12/21/2017 9:11:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 9:11:00 PM
Chloromethane	0.45	0.15	ppbV	1	12/21/2017 9:11:00 PM
cis-1,2-Dichloroethene	0.22	0.15	ppbV	1	12/21/2017 9:11:00 PM
Tetrachloroethylene	< 0.15	0.15	ррбV	1	12/21/2017 9:11:00 PM
trans-1,2-Dichiproethene	< 0.15	0.15	ppbV	1	12/21/2017 9:11:00 PM
Trichloroethene	1.3	0.040	ppbV	1	12/21/2017 9:11:00 PM
Vinyt chloride	< 0.040	0.040	ppbV	1	12/21/2017 9:11:00 PM
Surr. Bromofluorobenzene	83.0	70-130	%REC	1	12/21/2017 9:11:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- £ Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 16 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: 1AQ-05

Lab Order:

C1712063

Tag Number: 1188.294

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-010A

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichforcethane	< 0.82	0.82	սց /m3	\$	12/21/2017 9:11:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 9:11:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:11:00 PM
Chloroethane	< 0.40	0.40	ug/m3	7	12/21/2017 9:11:00 PM
Chloromethane	0.93	0.31	ug/m3	1	12/21/2017 9:11:00 PM
cis-1,2-Dichloroethene	0.87	0.59	ug/m3	1	12/21/2017 9:11:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	12/21/2017 9:11:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	ŧ	12/21/2017 9:11:00 PM
Trichioroethene	7.1	0.21	ug/m3	1	12/21/2017 9:11:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 9:11:00 PM

Qualifiers:

** Quantitation Limit

B. Analyte detected in the associated Method Blank.

H Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

F2 Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 16 of 26

Date: 10-Jan-18

CLIENT: Lab Order: LaBella Associates, P.C.

Client Sample 1D: DUPE

C1712063

Tag Number: 130.1152

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-011A

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
FIELD PARAMETERS		FL	D		Analyst:
Lab Vacuum In	-5		"Hg		12/18/2017
Lab Vacuum Out	-30		.,14ô		12/18/2017
UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-	15		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 9:53:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 9:53:00 PM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	12/21/2017 9:53:00 PM
Chlorgethane	< 0.15	0.15	ppbV	1	12/21/2017 9:53:00 PM
Chloromethane	0.41	0.15	ppbV	1	12/21/2017 9:53:00 PM
cis-1,2-Dichloroethene	0.22	0.15	ppbV	1	12/21/2017 9:53:00 PM
Tetrachloroethylene	< 0.15	0.15	∨dqq	1	12/21/2017 9:53:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 9:53:00 PM
Trichlorgethene	1.3	0.040	Vdqq	1	12/21/2017 9:53:00 PM
Vinyt chloride	< 0.040	0.040	ppbV	1	12/21/2017 9:53:00 PM
Surr: Bromofluorobenzens	86.0	70-130	%REC	1	12/21/2017 9:53:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte, Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 17 of 26

CLIENT: LaBella Associates, P.C. Client Sample 1D: DUPE Lab Order: C1712063 Tag Number: 130.1152

Project: Eldre Corp Collection Date: 12/13/2017

Lab ID: C1712063-011A Matrix: AIR

Analyses	Result	**Limit Qua	al Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	"	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 9:53:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 9:53:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:53:00 PM
Chloroethane	< 0.40	0.40	ս ց/m 3	1	12/21/2017 9:53:00 PM
Chloromethane	0.85	0.31	ug/m3	1	12/21/2017 9:53:00 PM
cis-1.2-Dichloroethene	0.87	0.59	ug/m3	1	12/21/2017 9:53:00 PM
Tetrachloroethylene	< 1.0	1.0	⊔g/m3	1	12/21/2017 9:53:00 PM
trans-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:53:00 PM
Trichloroethene	7.0	0.21	սց/m3	1	12/21/2017 9:53:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 9:53:00 PM

Qualifiers:

Results reported are not blank corrected

Date: 10-./on-18

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Lunit of Detection Page 17 of 26

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

LaBella Associates, P.C.

Lab Order:

CLIENT:

Project:

Lab ID:

C1712063

Eldre Corp C1712063-012A Date: 10-Jan-18

Client Sample ID: SVI-06

Tag Number: 171.279

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit Q	uat Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-5		"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		TO-15	i		Analyst: RJP
1,1,1-Trichlorgethane	< 0.15	0.15	ppbV	1	12/22/2017 4:46:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vdgq	1	12/22/2017 4:46:00 AM
1,1-Dichloroethene	< 0.15	0.15	ρ ρ bV	1	12/22/2017 4:46:00 AM
Chloroethane	< 0.15	0.15	Vdgq	1	12/22/2017 4:46:00 AM
Chloromethane	< 0.15	0.15	ppb∨	1	12/22/2017 4:46:00 AM
cis-1,2-Dichlorgethens	0.49	0.15	Vdqq	1	12/22/2017 4:46:00 AM
Tetrachioroethylene	0.86	0.15	ppbV	1	12/22/2017 4:46:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 4:46:00 AM
Trichtoroethene	2.9	0.60	ppbV	4	12/23/2017 6:23:00 AM
Vinyl chloride	0.22	0.15	ppbV	1	12/22/2017 4:46:00 AM
Surr: Bromofluorobenzene	93.0	70-130	%REC	1	12/22/2017 4:46:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 18 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: SVI-06

Lab Order:

C1712063

Tag Number: 171,279

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-012A

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
1.1.1-Trichlorgethane	< 0.82	0.82	ug/m3	1	12/22/2017 4:46:00 AM
1,1-Dichlorgethane	< 0.61	0.61	ug/m3	1	12/22/2017 4:46:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 4:46:00 AM
Chloroethane	< 0.40	0,40	ug/m3	1	12/22/2017 4:46:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	12/22/2017 4:46:00 AM
cis-1,2-Dichloraethene	1.9	0.59	ug/m3	1	12/22/2017 4:46:00 AM
Tetrachioroethylene	5.8	1.0	ug/m3	1	12/22/2017 4:46:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 4:46:00 AM
Trichloroethene	16	3.2	աց/m3	4	12/23/2017 6:23:00 AM
Vinyl chloride	0.56	0.38	ug/m3	1	12/22/2017 4:46:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J. Analyte detected below quantitation firms
- ND Not Detected at the Limit of Detection

Page 18 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-06

Lab Order:

C1712063

Tag Number: 1193.1165

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-013A

Matrix: AIR.

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"H g		12/18/2017
Leb Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppb∀	1	12/21/2017 10:34:00 PM
1,1-Dichloroethane	< 0.15	0.15	PpbV	1	12/21/2017 10:34:00 PM
1,1-Dichtoroethene	< 0.15	0.15	ppb∀	1	12/21/2017 10:34:00 PM
Chloroethane	< 0.15	0.15	ppbY	1	12/21/2017 10:34:00 PM
Chloromethane	0.36	0.15	ppbV	1	12/21/2017 10:34:00 PM
cis-1,2-Dichlorgethene	0.30	0.15	Vdqq	1	12/21/2017 10:34:00 PM
Tetrachloroethylene	< 0.15	0.15	ppbV	1	12/21/2017 10:34:00 PM
trans-1,2-Dichloroethene	0.11	0,15 J	ppbV	1	12/21/2017 10:34:00 PM
Trichloroethene	1.3	0.040	ppbV	1	12/21/2017 10:34:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	12/21/2017 10:34:00 PM
Surr. Bromofluorobenzene	87.0	70-130	%REC	1	12/21/2017 10:34:00 PM

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated,

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

Page 19 of 26

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C. Client Sample ID: IAQ-06

 Lab Order:
 C1712063
 Tag Number:
 1193.1165

 Project:
 Ekire Corp
 Collection Date:
 12/13/2017

Lab ID: C1712063-013A Matrix: AIR

Analyses	Result	**Limit Qua	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 10:34:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 10:34:00 PM
1,1-Dichloroethene	< 0.59	0.59	មg/m3	1	12/21/2017 10:34:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 10:34:00 PM
Chloromethane	0.74	0.31	ug/m3	1	12/21/2017 10:34:00 PM
cis-1,2-Dichloroethene	1.2	0.59	ug/m3	1	12/21/2017 10:34:00 PM
Tetrachloroethylene	< 1.0	1,0	ug/m3	1	12/21/2017 10:34:00 PM
trans-1,2-Dichloroethene	0.44	0.59 J	ug/m3	1	12/21/2017 10:34:00 PM
Trichloroethene	7.1	0.21	ug/m3	1	12/21/2017 10:34:00 PM
Vinvi chloride	< 0.40	0.10	Ha/m3	1	12/21/2017 10:34:00 PM

Qualifiers:

** Quantitation Limit

B.—Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E. Estimated Value above quantitation range.

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 19 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-07

Lab Order:

C1712063

Project:

Tag Number: 1289.337 Collection Date: 12/13/2017

Lab ID:

Eldre Corp C1712063-014A

Matrix: AIR.

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		12/21/2017
Lab Vacuum Out	-30		"Ftg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichlorgethane	< 0.15	0.15	ppbV	1	12/21/2017 11:17:00 PM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:17:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 11:17:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 11:17:00 PM
Chloromethane	0.42	0.15	ppbV	1	12/21/2017 11:17:00 PM
cis-1.2-Dichloroethene	< 0.15	0.15	Vdqq	1	12/21/2017 11:17:00 PM
Tetrachloroethylene	0.24	0.15	ppbV	1	12/21/2017 11:17:00 PM
trans-1,2-Dichloroethene	0.14	0.15 J	ppbV	1	12/21/2017 11:37:00 PM
Trichlorcethene	0.10	0.040	ppbV	1	12/21/2017 11:17:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	12/21/2017 11:17:00 PM
Surr: Bromofluorobenzene	82.0	70-130	%REC	1	12/21/2017 11:17:00 PM

Qualifiers:

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

Page 20 of 26

Quantitation Limit

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

JN. Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Date: 10-Jun-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-07

Lab Order:

C1712063

Tag Number: 1289.337

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-014A

Matrix: AIR

Analyses	Result	**Limit Qua	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 11:17:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 11:17:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:17:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 11:17:00 PM
Chloromethane	0.67	0.31	ug/m3	1	12/21/2017 11:17:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:17:00 PM
Tetrachloroethylene	1.6	1.0	ug/m3	1	12/21/2017 11:17:00 PM
trans-1,2-Dichloroethene	0.55	0.59 J	ug/m3	1	12/21/2017 11:17:00 PM
Trichloroethene	0.54	0.21	ug/m3	1	12/21/2017 11:17:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 11:17:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN. Non-routing analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- ή. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 20 of 26

Date: 10-Jun-18

CLIENT:

LaBella Associates, P.C.

THE REPORT OF THE PARTY OF THE Client Sample ID: SVI-08

Lab Order:

C1712063

Tag Number: 562.403

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-015A

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"Hg		12/21/2017
Lab Vacuum Out	-30		"Hg		12/21/2017
1UG/M3 BY METHOD TO15		TO-15		Analyst: RJP	
1,1,1-Trichtoroethane	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdgq	1	12/22/2017 5:27:00 AM
1.1,2-Trichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppb∨	1	12/22/2017 5:27:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppb∨	1	12/22/2017 5:27:00 AM
1,2.4-Trimethylbenzone	0.40	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,2-Dichloroethane	< 0.15	0.15	∨dqq	1	12/22/2017 5:27:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppb∨	1	12/22/2017 5:27:00 AM
1,3,5-Trimethylbanzone	0.25	0.15	Vdqq	1	12/22/2017 5:27:00 AM
1,3-butadiene	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
1.3-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
1,4-Dioxane	0.16	0.30) ppbV	1	12/22/2017 5:27:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
4-ethylloluene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Acetone	33	6.0	Vdqq	20	12/23/2017 7:00:00 AM
Allyl chloride	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Benzene	0.23	0.15	ppbV	1	12/22/2017 5:27:00 AM
Benzyl chloride	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Bromoform	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Bromomethane	< 0.15	0.15	Vđạq	1	12/22/2017 5:27:00 AM
Carbon disulfide	0.33	0.15	ppb∨	1	12/22/2017 5:27:00 AM
Carbon tetrachioride	< 0.15	0.15	Vđạq	1	12/22/2017 5:27:00 AM
Chlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Chiorosthane	< 0.15	0.15	pptV	\$	12/22/2017 5:27:00 AM
Chloroform	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Cyclohexane	0.11		l βρβ√	1	12/22/2017 5:27:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Ethyl acetate	< 0.15	0.15	٧٥٩٩	1	12/22/2017 5:27:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 21 of 26

Date: 10-Jan-18

CLIENT:

LaBeila Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-015A

Client Sample ID: SVI-08

Tag Number: 562.403

Collection Date: 12/13/2017

Matrix: AIR

Analyses Result **Limit Qual Units DF Date Analyzed

1UG/M3 BY METHOD TO15 TO-15 Analyst: R.

1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJ₽
Ethylben≵ene	< 0.15	0.15		ррь∨	1	12/22/2017 5:27:00 AM
Freon 11	0.34	0.15		ррЬ∨	1	12/22/2017 5:27:00 AM
Freon 113	< 0.15	0.15		ppb∀	1	12/22/2017 5:27:00 AM
Freon 114	< 0.15	0.15		ppb∨	1	12/22/2017 5:27:00 AM
Freon 12	0.49	0.15		ppb∨	1	12/22/2017 5:27:00 AM
Heptane	0.59	0.15		ppbV	1	12/22/2017 5:27:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		γdqq	1	12/22/2017 5:27:00 AM
Hexane	0.24	0.15		ppb∨	1	12/22/2017 5:27:00 AM
Isopropyl alcohol	21	3.0		Vdqq	20	12/23/2017 7:00:00 AM
m&p-Xylene	0.14	0.30	J	ppbV	1	12/22/2017 5:27:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppb∀	1	12/22/2017 5:27:00 AM
Methyl Ethyl Ketone	0.73	0.30		ppb∨	1	12/22/2017 5:27:00 AM
Methyl Isobutyl Ketone	0.21	0.30	J	Vđạq	1	12/22/2017 5:27:00 AM
Methyl tert-butyl ether	< 0.15	0.15		₽₽bV	1	12/22/2017 5:27:00 AM
Methylene chłoride	2.2	0.15		∨dqq	1	12/22/2017 5:27:00 AM
o-Xylene	< 0.15	0.15		ppbV	1	12/22/2017 5:27:00 AM
Propylene	< 0.15	0.15		ppbV	1	12/22/2017 5:27:00 AM
Styrene	< 0.16	0.15		Vđqq	1	12/22/2017 5:27:00 AM
Tetrachloroethylene	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Toluene	0.47	0.15		ppb∨	1	12/22/2017 5:27:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		p₽bV	1	12/22/2017 5:27:00 AM
Trichloroethene	1.6	0.15		₽₽6V	1	12/22/2017 5:27:00 AM
Vinyl acetate	< 0.15	0.15		₽₽bV	j	12/22/2017 5:27:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	12/22/2017 5:27:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	12/22/2017 5:27:00 AM
Surr: Bromofluorobenzene	91,0	70-130		%REC	1	12/22/2017 5:27:00 AM

Qualifiers:

ND Not Detected at the Limit of Detection

Page 22 of 26

^{*} Quantitation Limit

B. Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

IN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J. Analyte detected below quantitation limit

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-015A

Client Sample ID: SVI-08

Tag Number: 562.403

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual U	nits	DF	Date Analyzed
UG/M3 BY METHOD TO15		то	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	លួច	/m3	1	12/22/2017 5:27:00 AM
1,1,2,2-Tetrachioroethane	< 1.0	1.0	սց	/m3	1	12/22/2017 5:27:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	цg	/m3	1	12/22/2017 5:27:00 AM
1,1-Dichloroethane	< 0.61	0.63	ug.	/m3	1	12/22/2017 5:27:00 At
1,1-Dichloroethene	< 0.59	0.59	υg	/m3	1	12/22/2017 5:27:00 Af
1,2,4-Trichlorobenzene	< 1.1	1.1	uģ	/m3	1	12/22/2017 5:27:00 At
1,2,4-Trimethythenzene	2.0	0.74	ug	/m3	1	12/22/2017 5:27:00 Af
1,2-Dibromoethane	< 1.2	1.2	ug	/m3	1	12/22/2017 5:27:00 At
1,2-Dichforobenzene	< 0.90	0.90	ug.	/m3	1	12/22/2017 5:27:00 At
1,2-Dichtoroethane	< 0.61	0.61	ug.	/m3	1	12/22/2017 5:27:00 At
1,2-Dichloropropane	< 0.69	0.69	ug	/m3	1	12/22/2017 5:27:00 Af
1,3,5-Trimethylbenzene	1.2	0.74	ug	/m3	1	12/22/2017 5:27:00 Al
1,3-buladiene	< 0.33	0.33	ug.	/m3	1	12/22/2017 5:27:00 Al
1,3-Dichlorobenzene	< 0.90	0.90	ug.	/m3	1	12/22/2017 5:27:00 Af
1,4-Dichlorobenzene	< 0.90	0.90	ug	/m3	1	12/22/2017 5:27:00 AI
1,4-Dioxane	0.58	1.1	J ug	/m3	1	12/22/2017 5:27:00 Al
2,2,4-trimethylpentane	< 0.70	0.70	цд	/m3	1	12/22/2017 5:27:00 A
4-ethyltoluene	< 0.74	0.74	ug	/m3	1	12/22/2017 5:27:00 A
Acetone	79	14	ug.	/m3	20	12/23/2017 7:00:00 A
Allyl chloride	< 0.47	0.47	ug	/m3	1	12/22/2017 5:27:00 A
Велделе	0.73	0.48	ug.	tm3	1	12/22/2017 5:27:00 At
Benzyl chtoride	< 0.86	0.86	цg	/m3	1	12/22/2017 \$:27:00 Ai
Bromodichloromethane	< 1.0	1.0	ug.	/m3	1	12/22/2017 5:27:00 A
Bromoform	< 1.6	1.6	ug.	tm3	1	12/22/2017 5:27:00 A
Bromomethane	< 0.58	0.58	ug	/m3	1	12/22/2017 5:27:00 A
Carbon disulfide	1.0	0.47	_	/m3	1	12/22/2017 5:27:00 Al
Carbon tetrachloride	< 0.94	0.94	-	/m3	1	12/22/2017 5:27:00 At
Chigrobenzene	< 0.69	0.69	ug	/m3	1	12/22/2017 5:27:00 A
Chioroethane	< 0.40	0.40	ug	/m3	1	12/22/2017 5:27:00 Al
Chloroform	< 0.73	0.73	ug.	/m3	1	12/22/2017 5:27:00 A
Chioromethane	< 0.31	0.31	_	/m3	1	12/22/2017 5:27:00 A
cis-1,2-Dichloroethene	< 0.59	0.59	-	/m3	1	12/22/2017 5:27:00 A
cis-1,3-Dichloropropene	< 0.68	0.68	_	/m3	1	12/22/2017 5:27:00 A
Cyclohexane	0.38	0.52	_	tm3	ì	12/22/2017 5:27:00 A
Dibromochtoromethane	< 1.3	1.3	-	/m3	1	12/22/2017 5:27:00 A
Ethyl acetate	< 0.54	0,54		/m3	1	12/22/2017 5:27:00 A
Ethylbenzene	< 0.65	0.65	_	lm3	1	12/22/2017 5:27:00 A
Freon 11	1.9	0.84		/m3	1	12/22/2017 5:27:00 A
Freon 113	< 1.1	1.1		/m3	1	12/22/2017 5:27:00 A
Freon 114	< 1.0	1.0		/m3	1	12/22/2017 5:27:00 A

Qualifiers:

Results reported are not blank corrected

Page 21 of 26

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

CLIENT:

Eldre Corp

Lab ID:

C1712063-015A

Date: 10-Jan-18

Client Sample 1D: SVI-08

Tag Number: 562.403

Collection Date: 12/13/2017

Matrix: AIR.

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
Freon 12	2.4	0.74		սց/m 3	1	12/22/2017 5:27:00 AM
Heptane	2.4	0.61		ug/m3	1	12/22/2017 5:27:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/22/2017 5:27:00 AM
Hexans	0.85	0.53		ug/m3	1	12/22/2017 5:27:00 AM
isopropyi alcohol	53	7.4		ug/m3	20	12/23/2017 7:00:00 AM
m&p-Xylene	0.61	1.3	J	სე/m3	1	12/22/2017 5:27:00 AM
Methyl Butyl Ketone	< 1.2	1.2		սց/m3	1	12/22/2017 5:27:00 AM
Methyl Ethyl Ketone	2.2	0.88		ug/m3	1	12/22/2017 5:27:00 AM
Methyl Isobutyl Ketone	0.86	1.2	į,	սք/ու3	1	12/22/2017 5:27:00 AN
Methyl lert-butyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 5:27:00 AM
Methylene chloride	7.5	0.52		սց/m3	1	12/22/2017 5:27:00 AN
o-Xylene	< 0.65	0.65		ug/m3	1	12/22/2017 5:27:00 AM
Propylene	< 0.26	0.26		սց/ռոֆ	1	12/22/2017 5:27:00 AN
Styrene	< 0.64	0.64		ug/m3	1	12/22/2017 5:27:00 AN
Tetrachlorgethylene	< 1.0	1.0		ug/m3	1	12/22/2017 5:27:00 AN
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/22/2017 5:27:00 AN
Toluene	1.8	0.57		ug/m3	1	12/22/2017 5:27:00 AN
trans-1,2-Dichloroethene	< 0.59	0.59		⊔ g/m3	1	12/22/2017 5:27:00 AN
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 5:27:00 AM
Trichloroethane	8.7	0.81		ug/m3	1	12/22/2017 5:27:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 5:27:00 AN
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 5:27:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	12/22/2017 5:27:00 At

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank ¥.
- Holding times for preparation or analysis exceeded Н
- Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range Ε
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 22 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063
Project: Eldre Corp

Lab ID: C1712063-016A

Date: 10-Jan-18

Client Sample ID: IAQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"Hg		12/21/2017
Lab Vacuum Out	-30		" ⊱ lġ		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1.1-Trichloroethane	< 0.15	0.15	ppb∨	1	12/21/2017 11:59:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,1,2-Trichlorgethane	< 0.15	0.15	₽₽₽V	1	12/21/2017 11:59:00 PM
1,1-Dichloroethane	< 0.15	0.15	₽₽₽V	1	12/21/2017 11:59:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,2-Dibromoethane	< 0.16	0.15	ppb∀	1	12/21/2017 11:59:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,3-butadiene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	12/21/2017 11:59:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
Acetone	2.5	1.5	ppbV	5	12/23/2017 12:40:00 AM
Allyl chloride	< 0.15	0.15	Vďqq	1	12/21/2017 11:59:00 PM
Benzene	0.30	0.15	ppb∀	1	12/21/2017 11:59:00 PM
Benzyl chloride	< 0.15	0.15	₽₽ b V	1	12/21/2017 11:59:00 PM
Bromodichioromethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Bromoform	< 0.15	0.15	Vdqq	\$	12/21/2017 11:59:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Carbon disulfide	< 0.15	0.15	∨dqq	1	12/21/2017 11:59:00 PM
Carbon tetrachloride	0.070	0.040	ppbV	1	12/21/2017 11:59:00 PM
Chłorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
Chtaroform	< 0.15	0.15	ppb∨	1	12/21/2017 11:59:00 PM
Chloromethane	0.37	0.15	ppb∀	1	12/21/2017 11:59:00 PM
cis-1,2-Dichtoroethene	< 0.15	0.15	Velgq	1	12/21/2017 11:59:00 PM
cis-1,3-Dichtoropropene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Cyclohexane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
Ethyl acetate	< 0.15	0.15	γρbV	1	12/21/2017 11:59:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 23 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Lab ID:

C () 12000

Project:

Eldre Corp

C1712063-016A

Client Sample ID: 1AQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AfR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TC)-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Freon 11	0.57	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Freon 113	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Fregn 12	0.47	0.15		ppbV	1	12/21/2017 11:59:00 PM
Heptane	0.13	0.15	Ļ	ppb∨	1	12/21/2017 11:59:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		₽₽bV	1	12/21/2017 11:59:00 PM
Hexane	0.21	0.15		ppbV	1	12/21/2017 11:59:00 PM
isopropyl alcohol	1.4	0.15		ppb∨	1	12/21/2017 11:59:00 PM
n:&p-Xylene	0.11	0.30	J	ppbV	1	12/21/2017 11:59:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∀	1	12/21/2017 11:59:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		Vdgq	1	12/21/2017 11:59:00 PM
Mathyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	12/21/2017 11:59:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Methylene chloride	0.63	0.15		ppbV	1	12/21/2017 11:59:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Propylene	< 0.15	0.15		₽₽bV	ť	12/21/2017 11:59:00 PM
Styrene	< 0.15	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Toluene	0.36	0.15		ppbV	7	12/21/2017 11:59:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdgq	1	12/21/2017 11:59:00 PM
Trichlorosthene	0.050	0.030		₽₽₽V	1	12/21/2017 11:59:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Vinyl chloride	< 0.040	0.040		Vdqq	1	12/21/2017 11:59:00 PM
Surr: Bromofluorobenzene	82.0	70-130		%REC	1	12/21/2017 11:59:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits.
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 24 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-016A

Client Sample ID: IAQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC		то	-15	•		Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82		ug/m3	1	12/21/2017 11:59:00 PN
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	12/21/2017 11:59:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	12/21/2017 11:59:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/21/2017 11:59:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 11:59: 0 0 PN
1,2,4-Trichtorobenzene	< 1.1	1.1		աց/ւթ3	1	12/21/2017 11:59:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/21/2017 11:59:00 PA
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	12/21/2017 11:59:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		սց/m3	1	12/21/2017 11:59:00 PM
1,2-Dichloroethane	< 0.61	0.61		trg/m3	1	12/21/2017 11:59:00 PM
1,2-Dichloropropens	< 0.69	0.69		ψg/m3	1	12/21/2017 11:59:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/21/2017 11:59:00 ዎለ
1,3-butadiene	< 0.33	0.33		ug/m3	1	12/21/2017 11:59:00 PM
1.3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 11:59:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 11:59:00 Pf
1,4-Dioxane	< 1,1	1.1		ug/m3	1	12/21/2017 11:59:00 Pf
2,2,4-trimethylpentane	< 0.70	0.70		սց/m3	1	12/21/2017 11:59:00 Pf
4-ethyltaluene	< 0.74	0.74		ug/m3	1	12/21/2017 11:59:00 Pf
Acetone	5.9	3.6		ug/m3	5	12/23/2017 12:40:00 Al
Allyl chloride	< 0.47	0.47		ug/m3	1	12/21/2017 11:59:00 Pf
Benzens	0.96	0.48		ug/m3	1	12/21/2017 11:59:00 Pf
Benzyl chloride	< 0.86	0.86		ug/m3	3	12/21/2017 11:59:00 Pt
Bromodichloromethane	< 1.0	1.0		ug/m3	1	12/21/2017 11:59:00 PF
Bromoform	< 1.6	1.6		ug/m3	1	12/21/2017 11:59:00 Pf
Bromomethane	< 0.58	0.58		ug/m3	1	12/21/2017 11:59:00 Pt
Carbon disulfide	< 0.47	0.47		ug/m3	1	12/21/2017 11:59:00 PF
Carbon tetrachloride	0.44	0.25		ug/m3	7	12/21/2017 11:59:00 Pt
Chlorobenzene	< 0.69	0.69		ug/m3	1	12/21/2017 11:59:00 Pf
Chloroethane	< 0.40	0.40		ug/m3	1	12/21/2017 11:59:00 PI
Chloroform	< 0.73	0.73		ug/m3	1	12/21/2017 11:59:00 Pf
Chloromethane	0.76	0.31		ug/m3	1	12/21/2017 11:59:00 PF
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 11:59:00 PI
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/21/2017 11:59:00 PI
Cyclohexane	< 0.52	0.52		ug/m3	1	12/21/2017 11:59:00 PI
Dibromochloromethane	< 7.3	1.3		ug/m3	1	12/21/2017 11:59:00 P
Ethyl acetate	< 0.54	0.54		ug/m3	1	12/21/2017 11:59:00 Pt
Ethylbenzena	< 0.85	0.65		ug/m3	t	12/21/2017 11:59:00 P
Freon 11	3.2	0.84		ug/m3	1	12/21/2017 11:59:00 P
Freon 113	< 1.1	1.1		ug/m3	1	12/21/2017 11:59:00 P
Freon 114	< 1.0	1.0		ug/m3	1	12/21/2017 11:59:00 PI

Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank В
- H Holding times for preparation or analysis exceeded.
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ę Estimated Value above quantitation range
- Analyte detected below quantitation limit 3
- NO Not Detected at the Limit of Detection

Page 23 of 26

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063

Project: Eldre Corp

Lab ID: C1712063-016A

Client Sample ID: IAQ-08
Tag Number: 539.379
Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO)-15			Analyst: RJP
Freon 12	2,3	0.74		ug/m3	1	12/21/2017 11:59:00 PM
Heptane	0.53	0.61	j	ug/m3	1	12/21/2017 11:59:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/21/2017 11:59:00 PM
Hexane	0.74	0.53		ug/m3	1	12/21/2017 11:59:00 ₽M
Isopropyl alcohol	3.4	0.37		ug/m3	1	12/21/2017 11:59:00 PM
m&p-Xylene	0.48	1.3	J	ug/m3	1	12/21/2017 11:59:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 11:59:00 PM
Methyl Ethyl Ketone	< 0.88	0.88		ug/m3	1	12/21/2017 11:59:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	i	12/21/2017 11:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 11:59:00 PM
Methylene chloride	2.2	0.52		սց/m3	1	12/21/2017 11:59:00 PM
o-Xylena	< 0.65	0.65		ug/m3	1	12/21/2017 11:59:00 PM
Propylene	< 0.26	0.26		ц g/m 3	1	12/21/2017 11:59:00 PM
Styrens	< 0.64	0.64		ug/m3	1	12/21/2017 11:59:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	12/21/2017 11:59:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/21/2017 11:59:00 PM
Toluene	1,4	0.57		ug/m3	1	12/21/2017 11:59:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 11:59:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/21/2017 11:59:00 PM
Trichloroethene	0.27	0.16		u g/ m3	1	12/21/2017 11;59:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/21/2017 11:59:00 PM
Vinyl Bromide	< 0.66	0.66		u g/ m3	1	12/21/2017 11:59:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	12/21/2017 11:59:00 PM

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 24 of 26

Date: 10-Jan-18

CLIENT:

Lab ID:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		⁴Hg		12/21/2017
Lab Vacuum Out	-30		"i-lg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	∨dqq	1	12/22/2017 12:40:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppb∀	1	12/22/2017 12:40:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,1-Dichloroethene	< 0.15	0.15	ρ ρ b∨	1	12/22/2017 12:40:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,2,4-Trimethylbenzene	< 0.15	0.15	Vdqq	†	12/22/2017 12:40:00 AM
1,2-Dibromoethane	< 0.15	0.15	∨dqq	1	12/22/2017 12:40:00 AM
1,2-Dichterobenzene	< 0.15	0.15	ppb∨	1	12/22/2017 12:40:00 AM
1,2-Dichtoroethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15	∨dqq	1	12/22/2017 12:40:00 AM
1,3-bytadiene	< 0.15	0.15	Vdgq	1	12/22/2017 12:40:00 AM
1.3-Dichloropenzene	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	3	12/22/2017 12:40:00 AM
3,4-Dioxane	< 0.30	0.30	Vdqq	1	12/22/2017 12:40:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
4-athylioluene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Acetone	6.6	1.5	ppbV	5	12/23/2017 1:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Benzene	0.36	0.15	ppbV	1	12/22/2017 12:40:00 AM
Benzyl chloride	< 0.15	0.15	Vđạq	1	12/22/2017 12:40:00 AM
Bromodichtoromethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Bromotorm	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AN
Bromomethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Carbon disulfide	0.070	0.040	ppbV	1	12/22/2017 12:40:00 AM
Carbon tetrachloride	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
Chlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AN
Chloroethane		0.15	Vdqq	1	12/22/2017 12:40:00 AN
Chloroform	< 0.15 0.39	0.15	Vdqq	1	12/22/2017 12:40:00 AN
Chloromethana			Vdqq	1	12/22/2017 12:40:00 AN
cis-1,2-Dichloroethene	< 0.15	0.15 0.46	1.1	1	12/22/2017 12:40:00 AN
cis-1,3-Dichloropropene	< 0.15	0.15	∨dqq Vdqq	1	12/22/2017 12:40:00 AN
Cyclohexane	< 0.15	0.15		,	12/22/2017 12:40:00 AN
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AN
Ethyl acetate	Q.12	0.15) ppbV	ī	1472212011 12.40.00 MM

Qualifiers:

Page 25 of 26

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

³N Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order;

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Lim i t	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TC	1-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∀	1	12/22/2017 12:40:00 AM
Freen 11	0.21	0.15		ppbV	1	12/22/2017 12:40:00 AM
Freon 113	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Freon 114	< 0.15	0.15		ppb∨	1	12/22/2017 12:40:00 AM
Freon 12	0.47	0.15		ppb∨	1	12/22/2017 12:40:00 AM
Heptane	0.10	0.15	Ţ	ppbV	7	12/22/2017 12:40:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∀	1	12/22/2017 12:40:00 AM
Hexane	0.22	0.15		ppbV	ኀ	12/22/2017 12:40:00 AM
Isopropyl alcohol	1.9	0.15		ppb∨	1	12/22/2017 12:40:00 AM
m&p-Xytene	0.13	0.30	Ļ	pρbV	1	12/22/2017 12:40:00 AM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	12/22/2017 12:40:00 AM
Methyl Ethyl Ketone	0.25	0.30	J	ppbV	1	12/22/2017 12:40:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30		ppb√	1	12/22/2017 12:40:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Methylene chloride	0.77	0.15		ppbV	1	12/22/2017 12:40:00 AM
o-Xylene	< 0.15	0.15		ppb∀	1	12/22/2017 12:40:00 AM
Propylene	< 0.15	0.15		ppbV	7	12/22/2017 12:40:00 AM
Styrene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Toluene	0.37	0.15		ppb∀	1	12/22/2017 12:40:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Trichtoroethene	< 0.030	0.030		ppbV	1	12/22/2017 12:40:00 AM
Vinyl acetate	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Vinyl Bromide	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM
Vinyl chloride	< 0.040	0.040		ppbV	1	12/22/2017 12:40:00 AM
Surr: Bromofluorobenzene	83.0	70-130		%REC	1	12/22/2017 12:40:00 AM

One	tí	fic	PE.

^{**} Quantitation Limit

ND Not Detected at the Limit of Detection

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyse, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range 15

Analyte detected below quantitation limit

LaBella Associates, P.C.

CLIENT:

C1712063

Client Sample ID: Outdoor

Lab Order:

Tag Number: 1179.265

Date: 10-Jan-18

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-017A

Matrix: AfR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-	-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82		ug/m3	1	12/22/2017 12:40:00 AN
1,1,2,2-Tetrechloroethane	< 1.0	1.0		ug/m3	†	12/22/2017 12:40:00 AN
1,1,2-Trichioroethane	< 0.82	0.82		ug/m3	1	12/22/2017 12:40:00 AN
1.1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 12:40:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 12:40:00 AN
1,2,4-Trichtorobenzene	< 1.1	1.1		սց/m3	1	12/22/2017 12:40:00 AM
1,2,4-Trimelhylbenzene	< 0.74	0.74		սց/m3	1	12/22/2017 12:40:00 AN
1,2-Dibromoethane	< 1.2	1.2		սց/m3	1	12/22/2017 12:40:00 AN
1,2-Dichlorobenzene	< 0.90	0.90		eg/m3	1	12/22/2017 12:40:00 AN
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 12:40:00 AN
1,2-Dichloropropane	< 0.69	0.69		ชg/m3	1	12/22/2017 12:40:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/22/2017 12:40:00 AN
1,3-butadiene	< 0.33	0.33		µg/m3	1	12/22/2017 12:40:00 AN
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 12:40:00 AN
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 12:40:00 AN
1,4-Dioxarie	< 1.1	1.1		ug/m3	1	12/22/2017 12:40:00 A&
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	12/22/2017 12:40:00 AN
4-ethyltoluene	< 0.74	0.74		ug/m3	1	12/22/2017 12:40:00 AM
Acetone	16	3.6		ug/m3	5	12/23/2017 1:17:00 AM
Allyl chlaride	< 0.47	0.47		սց/m3	1	12/22/2017 12:40:00 AM
Benzene	1.1	0.48		ug/m3	1	12/22/2017 12:40:00 AN
Benzyl chloride	< 0.86	88.0		ug/m3	1	12/22/2017 12:40:00 AN
Bromodichloromethane	< 1.0	1.0		ug/m3	1	12/22/2017 12:40:00 AN
Bromoform	< 1.6	1.6		ug/m3	1	12/22/2017 12:40:00 AM
Bromomethana	< 0.58	0.58		ug/m3	1	12/22/2017 12:40:00 AN
Carbon disulfide	< 0.47	0.47		ug/m3	1	12/22/2017 12:40:00 AN
Carbon tetrachloride	0.44	0.25		ug/m3	1	12/22/2017 12:40:00 AN
Chlorobenzana	< 0.69	0.69		ყე/ თ3	1	12/22/2017 12:40:00 AN
Chloroethane	< 0.40	0.40		⊔ g/ m3	1	12/22/2017 12:40:00 AM
Chloraform	< 0.73	0.73		ug/m3	1	12/22/2017 12:40:00 Aft
Chloromethane	0.81	0.31		u g/m 3	1	12/22/2017 12:40:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 12:40:00 AM
cis-1,3-Dichioropropene	< 0.68	0.68		ug/m3	1	12/22/2017 12:40:00 Aft
Cyclohexane	< 0.52	0.52		ug/m3	1	12/22/2017 12:40:00 AM
Dibromochioromethane	< 1.3	1.3		ug/m3	1	12/22/2017 12:40:00 AM
Ethyl acetate	0.43	0.54	J	Em\gu	1	12/22/2017 12:40:00 Aft
Ethy/benzene	< 0.65	0.65		ug/m3	1	12/22/2017 12:40:00 Af
Freen 11	1.2	0.84		ug/m3	1	12/22/2017 12:40:00 A
Freon 113	< 1.1	1.3		ug/m3	3	12/22/2017 12:40:00 At
Freon 114	< 1.0	1.0		ug/m3	1	12/22/2017 12:40:00 AM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- н Holding times for preparation or analysis occeeded
- Nun-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- Not Detected at the Limit of Detection

Page 25 of 26

Centek Laboratories, LLC THE CONTROL OF THE CO

LaBella Associates, P.C.

CLIENT: Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-017A

Date: 10-Jan-18

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TC	-15			Analyst: RJP
Freon 12	2.3	0.74		ug/m3	1	12/22/2017 12:40:00 AM
	0.41	0.61	J	բ ց/m3	1	12/22/2017 12:40:00 AM
Heptane Hexachforo-1,3-butadiene	< 1,6	1.6		ug/m3	1	12/22/2017 12:40:00 AM
	0.78	0.53		ug/m3	1	12/22/2017 12:40:00 AM
Hexane	4.6	0.37		ug/m3	1	12/22/2017 12:40:00 AM
Isopropyl alcohol	0.56	1.3	J	ug/m3	3	12/22/2017 12:40:00 AM
m&p-Xylene	< 1.2	1,2		ug/m3	1	12/22/2017 12:40:00 AM
Methyl Butyl Ketone	0.74	0.88	J	ug/m3	1	12/22/2017 12:40:00 AM
Methyl Ethyl Ketone	< 1.2	1.2		սց/m3	1	12/22/2017 12:40:00 AM
Methyl Isobutyl Ketone	< 0.54	0.54		ບ໘/m3	1	12/22/2017 12:40:00 AM
Methyl tert-butyl ether	2.7	0.52		ug/m3	1	12/22/2017 12:40:00 AM
Methylene chloride	< 0.65	0,65		ug/m3	1	12/22/2017 12:40:00 AM
o-Xylene	< 0.26	0.26		ug/m3	7	12/22/2017 12:40:00 AM
Propylene	< 0.64	0.64		ug/m3	1	12/22/2017 12:40:00 AM
Styrene	< 1.0	1.0		ug/m3	1	12/22/2017 12:40:00 AM
Tetrachloroethylene	< 0.44	0.44		ug/m3	1	12/22/2017 12:40:00 AM
Tetrahydrofuran	1.4	0.57		ug/m3	1	12/22/2017 12:40:00 AM
Toluene	< 0.59	0.59		ug/m3	1	12/22/2017 12:40:00 AM
trans-1,2-Dichloroethens	< 0.68	0.58		ug/m3	3	12/22/2017 12:40:00 AM
trans-1,3-Dichloropropene		0.36		ug/m3	1	12/22/2017 12:40:00 AM
Trichtoroethene	< 0.16	0.53		ug/m3	1	12/22/2017 12:40:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 12:40:00 AM
Vinyl Bromide	< 0.66			ug/m3	1	12/22/2017 12:40:00 AM
Vinyl chloride	< 0.10	0.10	,	ng/illa	•	

$\Omega_{\rm HW}$	1:07	are

- ** Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded ĿΙ
- Non-youtine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range 5
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 26 of 26

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 10-Jan-18

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:

LaBella Associates, P.C.

Work Order:

C1712063

Project:

Eldre Corp

Test No:

TO-15

Matrix: A

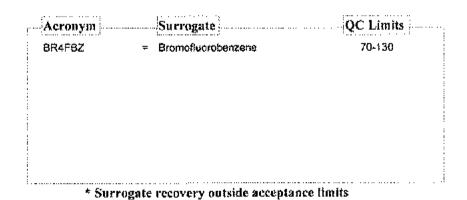
Sample ID	BR4FBZ	
ALCS1UG-122117	111	
ALCS1UG-122217	106	
ALCS1UGD-122117	110	
ALCSTUGD-122217	111	
AMBHUG-122117	75.0	
AMB1UG-122217	75.0	
C1712063-001A	96.0	
C1712063-001A MS	98.0	
C1712063-001A MSD	99.0	
C1712063-002A	80.0	
C1712063-003A	113	
C1712063-004A	0.18	
C1712063-005A	84.0	
C1712063-006A	81.0	
C1712063-007A	100	
C1712063-008A	84.0	
C1712063-009A	91.0	
C1712063-010A	83.0	
C1712063-011A	86.0	
C1712063-012A	93.0	
C1712063-013A	87.0	
C1712063-014A	82.0	
C1712063-015A	91.0	

Aeronym	Surrogate	QC Limits
BR4FBZ	= Bromofluorobenzene	70-130

* Surrogate recovery outside acceptance limits

CLIENT:

LaBella Associates, P.C.


Work Order:

C1712063

Project:

Eldre Corp

Test No:	TQ-15	Matrix: A		
Sample ID	BR4FB7	_		
C1712063-016A	82.0			
C:1712063-017A	83.0			

2

Centek Laboratories, LLC GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA2\2017DEC\A0122103.D

Tune Time : 21 Dec 2017 10:28 am

Daily Calibration File : C:\HPCHEM\1\DATA2\2017DEC\A0122103.D

(BFB) (IS1) (IS2) (IS3) 29831 117409 99397

°ile	Sample	DĿ	Surrogate Recovery %	Internal	Standard Re	sponses
O122104.	ALCS1UG-12211	7	======================================	28996	122693	99555
O122105.I	AMB1UG-122117		75	27931	109788	84888
10122115.I	C1712063-002A		80	27947	111393	93288
\O122116.I	C1712063-004A		81	28488	119028	99003
10122117.1	C1712063-006A		81	29204	119613	101635
10122118.	C1712063-008A		84	30144	147268	123752
VO122119.I	C1712063-010A		83	33779	155824	135034
10122120.I	C1712063-011A		86	33739	157236	135272
10122121.0	C1712063-013A		87	35217	158400	134892
10122122.1	C1712063-014A		82	38374	154467	135308
(0122123.1	C1712063-016A		82	32723	122520	93219
VO322124.I	C1712063-017A		83	29360	116019	90206
\0122125.I	ALCS1UGD-1221	17	110	30198	116840	94590
10122126.T	C1712063-003A		113	34102	141416	157825
10122127.	C1712063-005A		84	32636	130968	117795
\O122128.I	C1712063-007A		100	35416	142832	150689
A0122129.I	C1712063-009A		91	34838	135840	134756
VO122130.I	C1712063-012A		93	33745	134485	141572
(0122131.1	C1712063-015A		91	31636	122159	118620
10122132.0	C1712063-001A		96	31357	131559	123656
VO122133.I	C1712063-001A	MS	98	32593	128983	128259
kQ122134.E	C1712063-001A	MSD	99	32163	128753	119976
		~			_ · · · · 	

t - fails 24hr time check * - fails criteria

Created: Wed Jan 10 09:27:30 2018 MSD #1/

GC/MS QA-QC Check Report

rune File : C:\HPCHEM\1\DATA2\2017DEC\A0122203.D
fune Time : 22 Dec 2017 9:48 am

Daily Calibration File : C:\HPCHEM\1\DATA2\2017DEC\A0122203.D

(BFB)	(XSI)	(IS2)	(IS3)
	27884	107934	91366

				27884	10793	4 91366
71 1e	Sample		Surrogate Recove		Standard	Responses
	ALCS1UG-12221		106	27634	10373	
10122205.I	AMB1UG-122217		75	25697	9938	8 78135
\0122221.D	C1712063-002A	Sox.	76	24618	9310	4 70873
10122222.I	C1712063-004A	9X	74	24921	9415	1 73967
\0,122223.I	C1712063-004A	90X	76	24455	9180	2 70208
10122224.I	C1712063-006A	9X	75	24742	9567	8 74243
A0122225.T	C1712063-006A	90X	75	23736	9333	7 70778
A0122226.L	C1712063-016A	5X	73	23960	9262	2 71561
AO122227.E	C1712063-017A	5X	76	24058	9478	9 71991
A0122228.I	ALCSIUGD-1222	17	111	25485	9872	4 81455
10122229.E	C1712063-003A	27X	82	26308	10166	1 69223
10122230.E	C1712063-003A	2702	77	25489	9589	4 74534
λO122231.Σ	C1712063-005A	9X	76	25567	10285	2 78759
\0122232.E	C1712063-005A	90X	76	25108	9368	0 71586
AO122233.E	C1712063-007A	10X	80	26678	10282	0 92305
AO122234,E	C1712063-009A	4X	80	26837	10605	3 91343
10122235,E	C1712063-012A	4X	83	26773	10725	9 102726
A0122236.E	C1712063-015A	20X	74	25762	9506	3 74285
10122237.E	C1712063-001A	9X	80	26129	10132	2 85498
O122238.D	C1712063-001A	90X	78	26264	9579	3 74017
		W TI E V T				

t - fails 24hr time check * - fails criteria

Created: Wed Jan 10 09:30:12 2018 MSD #1/

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

LaBella Associates, P.C. CLIENT;

C1712063 Work Order:

Eldre Corp

Project:

	Sample ID: ALCS10G-122117 SampType: LCS	esto	lesktode: 0,25CI-TCE-	. Units: ppbV		Prep Date:	نة		RunNo: 13073	073	
Client ID; 22222	Batch ID: R13073	Test	TestNo: TO-15			Analysis Date:	e: 12/21/2017		SegNo: 151944	1944	
Analyte	Result	Pal	SPK value S	SPK Ref Val	%REC	LowLimit	Hightimit RP	RPD Ref Val	%RPD	RPDLimit	Qual
1, f, f-Trichloroethane	1,016	0.15	-	0	101	22	130				
1,1,2,2-Tetrachloroethane	1.010	6.15	-	0	101	70	130				
1,1,2-Trichloroethane	1.010	0.15	-	0	101	70	130				
1,t-Dichloroethane	1,020	0.15	-	0	102	70	130				
1,1-Dichloroethene	0.8700	0.15	-	0	67.0	20	130				
1,2,4-Tricklorobenzene	0.9900	0.15	-	0	99.0	20	130				
t,2,4-Trimethylbenzene	1.020	0.15	-	0	102	70	130				
1,2-Dibromoethane	0.9600	0.15	-	0	0'96	70	130				
1.2-Dicfikorobenzene	1.030	0.15	٢	0	5	2	130				
1,2-Dichloroethane	1.000	0.15	-	0	100	70	130				
1,2-Dichlorepropane	1.000	0.15	-	0	\$	92	130				
f,3,5-Trimethylbenzene	1.080	0.15	-	0	108	70	130				
1,3-butadiene	1.070	0.15	4	0	107	70	130				
f.3-Dichlorobenzene	1,040	0.35	~	0	104	70	130				
1,4-Dichlorobenzene	1.080	0.55	-	0	106	70	130				
1,4-Dioxane	0.8160	0.30	÷	0	81.0	70	130				
2,2,4-trimethyppentane	0.9500	0.15	~ **	0	95.0	202	130				
4-ethylloluene	1.040	9,15	₩.	0	इ	76	130				
Acetone	0.9500	0.30	~ ~	0	95.0	5	130				
Allyf chloride	0.9400	0.35	***	o	94.0	22	130				
Ве п z ење	0.9160	0.15	*	Đ	91.0	22	130				
Benzyl chloride	1.030	0.15	₩	Đ	103	70	130				
Bromodichloromethane	1.010	0.15	~	c	101	70	130				
Вговъобогт	1.020	0.15	+	Ū	102	70	130				
Gramomethana	1.060	0.15	****	o	106	70	130				
Qualifters: Results rep-	Results reported are not blank corrected		E Estimates	Estimated Value shove quantitation range	itation rang	9.	1. {told	ing times for p	lolding times for preparation or analysis exceeded	paaxa siskleu	çç
ap skiery – f	Analyse desected below quantitation limit		ND Not Dele	Not Detected at the Limit of Extection	Rection		R RPD	outside accep	RPD outside accepted recovery limits	mits.	
S Spike Reun	Spike Recovery outside accepted recovery limits	rsits								a,	Puna ! of 5

2 Batch ID. R 18973 TearIMtr. TO-15 SPR. Ref. Value	Sample ID: ALCS1UG-122117	SampType: LCS	TestCode: 0	Code: 0.25CT-TCE-	- Units: ppbV		Prep Date:		RunNo: 13073		
Second		Batch ID: R13073	TestMo: T	0-15		~	knatysis Date:	12/21/2017	SeqNo: 151944	_	
0,9900 0,15 1 0 95.0 70 130 0,9800 0,14 1 0 97.0 70 130 1,080 0,15 1 0 98.0 70 130 1,080 0,15 1 0 101 70 130 1,080 0,15 1 0 101 70 130 0,9900 0,15 1 0 101 70 130 0,9900 0,15 1 0 98.0 70 130 0,9900 0,15 1 0 96.0 70 130 0,9900 0,15 1 0 94.0 70 130 0,9900 0,15 1 0 94.0 70 130 0,9900 0,15 1 0 94.0 70 130 0,9900 0,15 1 0 94.0 70 130 0,9900 0,15	Analyte	Result			SPK Ref Val	%REC			% RPD		}ka∮
0.95700 0.040 1 0 97.0 70 73	Carbon disulfide	0.9500	0.15	4	0	95.0	79	130			
1,060	Carbon tetrachloride	0.9700	0.040	4	0	97.0	70	130			
1,080	Снюгарепzепе	0,9800	0.15	•	٥	98.0	70	130			
1010	Chloroethane	1.060	0.15	' E	0	106	7.0	130			
1,090 0,15 1 0 109 70 130	Chtoroform	1.010	0.15	•	Φ	101	5	130			
0,95000 0,15 1 0 93.0 70 130 0,95000 0,15 1 0 0 96.0 70 130 1,010 0,15 1 0 0 96.0 70 130 1,010 0,15 1 0 0 96.0 70 130 0,95000 0,15 1 0 0 96.0 70 130 1,010 0,15 1 0 0 96.0 70 130 0,9500 0,15 1 0 0 96.0 70 130 0,9500 0,15 1 0 0 96.0 70 130 0,9700 0,15 1 0 0 97.0 10 0,9700 0,15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chloromethane	1.090	0.15	₹••	0	109	70	130			
0 9500 0.15 1 0 96.0 70 130 1 0500 0.15 1 0 95.0 70 130 1 0500 0.15 1 0 10 70 130 0.8800 0.15 1 0 94.0 70 130 0.9400 0.15 1 0 94.0 70 130 0.9400 0.15 1 0 94.0 70 130 0.9400 0.15 1 0 94.0 70 130 0.9500 0.15 1 0 96.0 70 130 0.9500 0.15 1 0 96.0 70 130 0.9500 0.15 1 0 96.0 70 130 0.9700 0.15 1 0 96.0 70 130 0.9700 0.15 1 0 96.0 70 130 0.9700 0.15 1 0 96.0 70 130 0.98700 0.15 1 0 96.0 <t< td=""><td>cis-1,2-Dichkomethene</td><td>0.9300</td><td>0.15</td><td>•</td><td>0</td><td>93.0</td><td>70</td><td>130</td><td></td><td></td><td></td></t<>	cis-1,2-Dichkomethene	0.9300	0.15	•	0	93.0	70	130			
6 9500 0.15 1 0 95.0 70 130 1,010 0.15 1 0 101 70 130 0,9400 0.15 1 0 94.0 70 130 1,110 0.15 1 0 94.0 70 130 1,030 0.15 1 0 94.0 70 130 1,030 0.15 1 0 96.0 70 130 1,060 0.15 1 0 103 70 130 0,9600 0.15 1 0 96.0 70 130 0,9600 0.15 1 0 97.0 130 70 130 0,9700 0.15 1 0 97.0 70 130 70 130 0,9700 0.15 1 0 97.0 70 130 70 130 0,9700 0.15 1 0 97.0	cis-1,3-Dichkropropere	0.9600			0	96.0	70	130			
1.010 0.15 1 0 10 10 10 10 10 10 10 10 10 10 10 10	Cyclohexane	0.9500			0	95.0	20	130			
figle 0.880 0.15 1 0.880 70 130 Szere 0.9400 0.15 1 0 94.0 70 130 4 1.130 0.15 1 0 94.0 70 130 4 1.030 0.15 1 0 101 70 130 4 1.030 0.15 1 0 103 70 130 rov-1.3-butardene 1.010 0.15 1 0 96.0 70 130 rov-1.3-butardene 1.010 0.15 1 0 96.0 70 130 rov-1.3-butardene 0.9700 0.15 1 0 97.0 70 130 rov-1.3-butyl ether 0.9700 0.15 1 0 97.0 70 130 rov-14-butyl ether 0.9500 0.30 1 0 97.0 70 130 rov-14-butyl ether 0.9500 0.15 1 0	Dibromochloromethane	1.010		•	O	301	22	130			
Seine 0.9400 0.15 1 0 94.0 70 130 3 1.100 0.15 1 0 111 70 130 4 1.030 0.15 1 0 96.0 70 130 4 1.030 0.15 1 0 96.0 70 130 1.040 0.15 1 0 103 70 130 1.001 0.15 1 0 96.0 70 130 1.001 0.15 1 0 96.0 70 130 1.001 0.15 1 0 97.0 70 130 1.001 0.15 1 0 97.0 70 130 1.001 0.15 1 0 97.0 70 130 1.001 0.15 1 0 97.0 70 130 1.001 0.15 1 0 97.0 70 130<	Ethyl acetate	0.8800		-	Ģ.	88.0	7.0	130			
1.110 0.15 1.11 70 130 1	Ethylbenzene	0.9400		-	0	94.0	7	130			
3 0.95600 0.15 1 0.96.0 70 130 4 1.039 0.15 1 0 103 70 130 roro-1,3-butladene 1.090 0.15 1 0 96.0 70 130 netchol 0.9700 0.15 1 0 97.0 70 130 netchol 0.9700 0.15 1 0 97.0 70 130 netchol 0.9700 0.15 1 0 97.0 70 130 nutyl Ketone 0.9700 0.30 1 0 97.0 70 130 nutyl Ketone 0.9500 0.30 1 0 97.0 70 130 nutyl Ketone 0.9500 0.30 1 0 97.0 70 130 nutyl Ketone 0.9500 0.30 1 0 97.0 70 130 nutyl Ketone 0.9500 0.15 1 0 <th< td=""><td>Freon 11</td><td>1.110</td><td>0.15</td><td>-</td><td>0</td><td>111</td><td>5</td><td>130</td><td></td><td></td><td></td></th<>	Freon 11	1.110	0.15	-	0	111	5	130			
4 1.036 0.15 1 0.03 70 130 nc-1,3-butadene 1.046 0.15 1 0 106 70 130 nc-1,3-butadene 1.010 0.15 1 0 97.0 70 130 nc-1,3-butadene 0.9700 0.15 1 0 97.0 70 130 nere 1.990 0.37 1 0 97.0 70 130 nere 1.990 0.30 1 0 97.0 70 130 ntyl Ketone 0.9700 0.30 1 0 97.0 70 130 ntyl Ketone 0.9300 0.30 1 0 97.0 70 130 ntyl Ketone 0.9300 0.30 1 0 97.0 70 130 ntyl Ketone 0.9300 0.30 1 0 97.0 70 130 nt-bifyl Ketone 0.9300 0.15 1 0	Freon 113	0.9600	0.15	-	0	96.0	70	130			
1,060 0.15 1,060 0.15 1 0 106 70 130	Frech 114	1.030	0.15	-	0	50	70	130			
0.9600 0.15 1 0 96.0 70 130	Freon 12	1,060	0.15	-	0	106	70	130			
1010 0.15 1 0 101 70 130 alcohol 0.3700 0.15 1 0 97.0 70 130 alcohol 0.8700 0.15 1 0 97.0 70 130 entre 1.990 0.30 2 0 97.0 70 130 thyl Ketone 0.9700 0.30 1 0 97.0 70 130 thyl Ketone 0.9900 0.30 1 0 97.0 70 130 obuyll Ketone 0.8900 0.30 1 0 97.0 70 130 arbuyl Ketone 0.8900 0.30 1 0 97.0 70 130 obuyl Ketone 0.8900 0.15 1 0 95.0 70 130 erblor/de 0.9900 0.15 1 0 95.0 70 130 erblor/de 0.130 0.130 0.130 1 1<	Heptane	0.9600	0.15	+ -	0	96.0	70	130			
1,970	Hexachioro-1,3-butadiene	1.010			Ó	101	70	130			
Description 0.9700 0.15 1	Некапе	0.9700	0.15	-	o	97.0	76	130			
outly Ketone 1.990 0.30 2 0 99.5 70 130 tityl Ketone 0.8300 0.30 1 0 97.0 70 130 cobutyl Ketone 0.9200 0.36 1 0 92.0 70 130 orbutyl Ketone 0.9500 0.15 1 0 92.0 70 130 orbutyl Ketone 0.9500 0.15 1 0 92.0 70 130 ort-butyl ether 0.9500 0.15 1 0 97.0 70 130 or chioride 1.010 0.15 1 0 97.0 70 130 or cethylene 1.03 1 0 103 70 130 or cethylene 1.010 0.15 1 0 130 70 130 or cethylene 1.010 0.15 1 0 101 70 130 or cethylene 1.010 0.15 1	fsopropyl atcohol	0.9700	0.15		0	97.0	70	130			
utyl Ketone 0.9700 0.30 1 0 97.0 70 130 obutyl Ketone 0.8300 0.30 1 0 92.0 70 130 obutyl Ketone 0.9200 0.30 1 0 92.0 70 130 art-butyl Ketone 0.9200 0.15 1 0 97.0 70 130 art-butyl Ketone 0.9500 0.15 1 0 97.0 70 130 art-butyl Ketone 0.9500 0.15 1 0 97.0 70 130 e 1.010 0.15 1 0 130 70 130 e 1.030 0.15 1 0 103 70 130 proturan 0.8900 0.15 1 0 101 70 130 round 0.15 1 0 101 70 130 round 0.15 1 0 10 70	т&р-Хуюве	1.990	0.30	2	Ó	99.5	70	‡30			
thyl Ketone 6.9200 0.30 1 0 83.0 70 130 obbutyl Ketone 6.9200 0.30 1 0 92.0 70 130 str-butyl ether 0.9500 0.15 1 0 95.0 70 130 ie chloride 0.9700 0.15 1 0 97.0 70 130 ie chloride 1.010 0.15 1 0 97.0 70 130 ie chloride 1.030 0.15 1 0 101 70 130 incethylene 1.010 0.15 1 0 103 70 130 incluran 0.8900 0.15 1 0 101 70 130 incluran 0.8900 0.15 1 0 101 70 130 s: Results reported are not blank corrected Estimated Value above quantitation range R RPD outside tecepted recepted at the Limit of Detected at the	Methyi Butyi Ketone	0.9700	0.30	W	O	67.0	70	\$30			
obbityl Ketone 0.9200 0.36 1 0 92.0 70 130 art-bufyl ether 0.9500 0.15 1 0 95.0 70 130 in chloride 1.010 0.15 1 0 97.0 70 130 e 1.010 0.15 1 0 113 70 130 proethylene 1.010 0.15 1 0 103 70 130 profuran 1.010 0.15 1 0 101 70 130 profuran 0.8900 0.15 1 0 89.0 70 130 rockurs 1.010 1.02 1.01 1.02	Methyi Ethyi Ketone	0.8300	0.30	·~	¢	83.0	70	130			
in chloride 0.9700 0.15 1 0 95.0 70 130 in chloride 0.9700 0.15 1 0 97.0 70 130 in chloride 1.010 0.15 1 0 113 70 130 in chloride 1.030 0.15 1 0 101 70 130 incluran 0.8900 0.15 1 0 101 70 130 incluran 0.8900 0.15 1 0 89.0 70 130 sexulls reported are not blank corrected E. Estimated Value above quantitation range E. Estimated Value above quantitation range H. Holding times for proparation at analysis excess J. Analyse detected below quantitation limit ND. Not Detected at the Limit of Detection R. RYD outside accepted the proventy limits	Methyf (sobuty) Ketone	0.9200	0.30	٧	0	92.0	70	130			
1.010 0.15 1 0 97.0 70 130	Methyi tert-bulyl ether	0.9500		•	0	95.0	7.0	130			
1.010	Methylene chloride	0.9700		-	Đ	97.0	22	130			
term £.130 0.15 1 0 113 70 130 profusor ±.010 0.15 1 0 101 70 130 profusor ±.030 0.15 1 0 101 70 130 profusor 0.15 1 0 89,0 70 130 profusor 2.8900 0.15 1 0 89,0 70 130 profusor 2.82018 cepartic dare not blank corrected E. Extimated Value above quantitation range H. Holding times for proparation at analysis excessor profusor 1 No. Detected at the Limit of Detection R. RPD outside accepted recopred recopred recopred recoperly limits	o-Xylene	1.010		-	0	\$01	70	130			
1.030 0.15 1 0 101 70 130 Infuran 0.8900 0.15 1 0 101 70 130 Infuran 0.8900 0.15 1 0 89,0 70 130 Infurance Extimated Value above quantitation range Helding times for proparation or analysis excess Information for analysis excess Infurance Analyse detected below quantitation limit ND. Not Detected at the Limit of Detection R. RPD outside accepted recoprecty limits	Propylene	1.130	0.15	-	0	113	70	130			
1.010 0.15 1 0 101 70 130 0.8900 0.15 1 0 89.0 70 130 Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for proparation or analysis extended before quantitation limit ND Not Betreted at the Limit of Detection R RPD outside accepted recovery limits	Styrene	1.030		-	0	103	70	130			
Results reported are not blank corrected E Estimated Value above quantitation range (4 Holding times for proparation or analysis exceed Analyte detected below quantitation limit (5 Not Benedice at the Limit of Detection (6 RPD outside accopted recovery limits)	Tetrachioroethylene	1.010	0.15	-	φ	101	20	130			
Results reported are not blank corrected Estimated Value above quantitation range Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside recepted recovery limits	Tetrahydrofuran	0.8900	0.15	-	o	0'68	70	130	•		
Analyte detected below quantitation limit ND Not Betected at the Limit of Detection R RPD outside accepted recovery limits	: ! :	ted are not blank corrected	1111	:	of Value above quan	titatios rang	u.		for proparation or area?	sis exceeded	
		ted below quantitation limit	∑ .		ected at the Limit of	Detection			evented recovery limits		
		Saile Removen outside arrented recovery limits							•	4	f

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order: CLIENT:

Sample ID: ALCS1UG-122117	SampType: LCS	TestCo	TestCode: 0,25CT-TCE-	. Units: ppbY		Prep Date:	6:	RunNo: 13073	
Client ID: ZZZZ	Balch (D: R13073	Fest	FestNo: TO-15		-	Analysis Date:	12/21/2017	SeqNo: 151944	
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	Hightimit RPD Ref Val	I %RPD RPDLimit	Qual
Toluene	0.9500	0.15	٣	o	95.0	70	130		
trans-1,2-Dichloroethene	0.9500	6,15	-	Ò	95.0	5	30		
(rans-1,3-Dichloropropene	0.9100	0.15	-	0	91.0	70	130		
Trichloroethene	0.8900	0.030	-	0	89.0	52	130		
Vinyl acetate	0.8600	0.15	-	0	86.0	5	130		
Vinył Bromide	1.040	0.15	-	0	104	92	130		
Vinyt chloride	0.9900	0.045	1	0	0.66	7.0	130		
Sample ID: ALCS1UG-122217	SampType: LCS	TestCoo	TestCode; 0.25CT-TCE-	Units: ppbV		Prep Date:		RunNo: 13074	
Client ID: 22222	Batch ID: R13074	Jesh	TestNo: TO-15			Analysis Date:	12/22/2017	SeqNo: 151966	
Апакую	Result	POL	SPK value S	SPK Ref Vai	%REC	LawLimit	HigaLimit RPD Ref Val	I %RPD RPDLimit	Quai
1,1,1-Trichloroethane	1.110	0.15		0	111	92	130		
1,1,2,2-Tetrachlomethane	1.010	0.15	•	o	101	70	130		
1,1,2-Trichloroethane	1.100	0.15	9 47	Q	410	25	130		
1,1-Dichloroethane	0.9700	0.15	v.	Ç	97.0	70	130		
1,1-Dichloroethene	0.7700	0.15	4-	0	77.0	7.0	130		
1,2,4-Trichlorobenzene	0.9700	0.15	•	Đ	97.0	5	130		
1,2,4-Trimethylbenzene	0.9500	0.15	* ~	O	95.0	2	130		
1,2-Dibromoethane	1.010	0.15		¢	\$	7.0	130		
1,2-Dichlorobenzene	1.020	0.15	£.r.	0	102	7.0	130		
1,2-Dichlomethans	0.9600	0.15	-	ß	96.0	70	130		
1,2-Dichloropropane	1.080	0,45	upun	¢	108	70	130		
1,3,5-Trimethylbenzene	1.050	0.15	4-	0	105	7.0	130		
1,3-butadiene	1.040	0.15	Y nn	Ç	104	70	130		
1,3-Dichlorobenzene	1.020	0.15	dn	o	102	70	130		
1,4-Dichlorobenzene	1.050	0.15	414	O	105	20	130		
1,4-Dіохапе	0.8600	0.30	₹=•	Ġ	98.0	52	130		
2,2,4-trimethylpentane	1.010	0.15	ź.	0	103	70	130		
4-ethylloluene	1.02D	0.15	•••	0	102	70	130		
Qualifiers: Results repor	Results reported are not blank corrected		E Estimates	Estimated Value above quantitation range	Hation rang	9.	il Holding times	Holding times for preparation or analysis exceeded	E
	Analyte detected below quantitation limit		ND Not Dete	Not Detected at the Limit of Detection	Receion		R RPD outside a	RPD outside accepted recovery limits	
S Spike Recovi	Spike Recovery outside accepted recovery limits	in ils						12,	Page 2 of 3

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order: CELENT:

Sample ID: ALCS1UG-122217	Sampiype: LCS	TestCo	TestCode: 0,25CT-TCE-	E- Units: pobV		Prep Date			RunNo: 13074	74	
Client ID: ZZZZZ	Batch ID: R13074	Fest	TestNo: TO-15			Anatysis Date:	12/22/2017	1017	SeqNo: 151966	996	
Analyte	Result	ğ	SPK value	SPK Ref Val	%REC	LowLinst	HighLimit	RPD Ref Val	048%	RPOLimit	Qua
Acetone	0.8900	6.30	-	0	89.0	70	130				
Atlyl chloride	0.8900	0.15	-	0	89.0	70	130				
Benzene	0.9800	0.15	٠	0	0.86	02	130				
Benzył chloride	1.020	0,15	-	0	102	7.0	133				
Bromodichloromethane	1,090	0.15	-	0	109	70	£5				
Вколаобогт	1.010	0.15	-	0	101	202	130				
Bromomethane	0.9900	0.15	٢	6	99.0	7.0	130				
Carbon disulfide	0.9400	0.15	_	0	94.0	70	£5				
Carbon tefrachloride	1,050	0.040	-	0	105	2	130				
Chlorobenzene	0.9800	0.15	-	0	98.0	70	130				
Chloroethane	0.9800	0.15	-	0	98.0	70	130				
Chloroform	1,000	0.15	-	0	100	70	130				
Chloremethane	1.070	0.15	-	0	107	70	130				
cis-1,2-Dichloroethene	0.9100	0.15	+	0	91.0	70	130				
cis-1,3-Dichloropropene	1.070	0,15	-	0	107	70	130				
Cyclohexane	0.9700	0.15	-	0	97.0	70	130				
Dibromochloromethane	1.020	0.15	-	0	102	2	8				
Ethył acetaie	0.8406	0.15	-	0	84.0	70	130				
Ethylbenzene	0.9200	0.15	+	0	92.0	70	130				
Freon 11	1.070	0.15	, "	0	107	70	55				
Freon 113	0.9500	0.15	٢	0	95.0	70	130				
Freon 114	1,050	0.15	Ψ-	0	105	70	130				
Freon 12	1.070	0.15	+	0	107	70	130				
Heptane	1.010	0.15	-	0	5	70	130				
Hexachloro-1,3-butadiene	1.010	0.15	₩-	o	101	70	130				
Hexane	0.9000	0.35	*	D	90.0	20	130				
Isopropyl alceho!	0.7800	0.15		O	78.0	70	130				
m&p-Xylene	1,950	0.30	74	Ċ	97.5	7.0	130				
Methyl Butyl Ketone	1,910	0.30	F -4	0	191	7.0	130				Ø
Methyi Ethyi Katone	0.7890	0.30	+*	٥	78.0	70	130				
	0.9700	0.30	,	O	97.0	25	130				
Qualifiers: Results reporte	Results reported are not blank corrected		E Estim	Estimated Value above quantitation range	itation can		3 .	Holding times for preparation or analysis exceeded	preparation or an	ialysis exceed	2
Analyte detect	Analyte detected below quantitation limit		ND Not D	Not Deweled at the Limit of Expection	Assection		×	RPD outside accepted excevery limits	pied excevery lim	īĒIS	
S Spike Reseven	Spike Recevery outside accepted recovery simits	mits									Daniel Line

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order: CLIENT:

TestCode: 0.25CT-TCE-VC

	5	
	CLIENT:	LaBella Associates, P.C.
	Work Order:	C1712063
_	Project:	Eldre Corp TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-12217	SampType: LCS	TestCo	de: 0,25CT-TCE	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	idi	RunNo: 13074
Client (D. ZZZZZ	Batch ID: R13074	Fest	TestNo: TO-15		,	Analysis Dat	Analysis Date: 12/22/2017	SeqNo: 151966
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	%REC LowLimit HighLimit RPD Ref Val	I %RPD RPDLimit Qual
Methyl tert-butyl ether	0.9000	6.15	-	0	90.0	20	130	
Methylene chloride	0.9700	0.15	-	0	97.0	70	130	
o-Xylene	1.030	0.15	-	Φ	\$03	20	130	
Propylene	1,070	6.15	-	0	107	75	130	
Styrene	1.040	0.15	-	O	‡ 04	2	130	
Tetrachloroethylene	1.010	0.15	-	0	101	02	130	
Tetrahydrośuran	0.8500	0.15	-	0	85.0	70	130	
Toluene	0.9200	0.15	-	Q	92.0	2	130	
trans-1,2-Dichloroethene	0.9500	0.15	-	0	95.0	2	130	
trans-1,3-Dichloropropene	0.9800	0.15	-	0	98.0	70	130	
Trichloroethene	0.9700	0.030	-	0	97.0	70	130	
Vinyl acetate	0.8300	0.15	٢	0	83.0	5	130	
Vinyl Bramide	1.000	0.15	-	0	100	70	130	
Vinyl chloride	0.9900	0.040	-	0	99.0	202	130	

Qualifiers:	-	Results reported are not blank corrected	E Estimated Value above quantimion unge	#	Holding times for preparation or analysis exceeded	
	-	Analyte detected below quantitation limit	ND Not Detected at the Limit of Detection	œ	RPD outside accepted recovery limits	
	Ś	Spike Recovery outside accepted recovery limits			13 5 mm 6	Ĭ,

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

LaBella Associates, P.C. CLAENT:

C1712063 Work Order:

Project;

Eldre Corp

Sample ID: ALCS1UGD-122117	SampType: LCSD	TestCo	Tes(Code: 0.25CT-TCE-	E- Units: ppbV		Prep Date:			RunNo: 13073	073	
Clent ID: ZZZZZ	Batch ID: R13073	Tesil	Testino: TO-15			Analysis Date:	12/22/2017	017	SeqNo: 151945	1945	
Analyte	Result	망	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimii	Qual
1, t, 1-Trichloroethane	1.036	0.15	-	0	103	70	130	1.01	1.96	30	
1,1,2,2-Tefrachloroethane	1.020	0.15	-	0	102	70	130	1.01	0.985	33	
1,1,2-Trickloroethane	1.040	6,15	-	0	104	70	130	1.01	2.93	8	
1,1-Dichlorcethane	0.9600	0.15	-	0	96.0	70	130	1.02	6.06	30	
1,1-Dichloroethene	0.8500	0.15	**	0	85.0	70	130	0.87	2.33	8	
1,2,4-Trichlorobenzene	0.8100	0.15	۳.	0	81.0	70	130	0.99	26.0	8	
1,2,4-Trimethylbenzene	0.9400	0.15	٣.	0	94.0	70	130	1.02	8.16	8	
\$,2.Dibromoethane	0.9800	0.15	**	0	0.66	70	130	0.96	3.08	ଛ	
1,2-Dichlorobenzene	1,000	0.15		0	100	10	130	1.03	2.96	33	
1,2-Dichlorœthane	0.9500	0.15	**	0	95.0	70	130	-	5.13	30	
1,2-Dichloropropane	1.010	0.15	₩.	Ö	101	92	130	-	0.995	æ	
1,3,5-Trimethylbenzene	1.060	0.15	***	o	5	70	130	83.	1.87	33	
1,3-butadiene	0.9600	0.15	***	o	96.0	70	130	1.07	10.8	30	
1,3-Dichlorobenzene	1.060	0.15	4~	o	3 5	70	130	1.04	1.90	30	
1,4-0ichlorobenzene	1.060	0.15	ψu	o	2	7.0	130	1.06	0	33	
1,4-Dioxane	0.2600	0.30	₹~	0	26.0	70	130	18:0	0	30	द्ध
2,2,4-trimethylpentane	0.9900	0.15	ę.	Ō	98.0	7.0	130	0.95	4.12	8	
4-ethytoluene	1.040	0.15		0	\$	5	130	1.04	O	8	
Acetone	0.8300	0.30	***	0	83.0	2	130	0.95	13.5	30	
Allyt chloride	0.9000	0.15	Y ····	o	89.0	70	133	0.94	4.35	30	
Benzene	0.9600	0.15	T	Đ	98.0	70	130	0.91	5.35	සි	
Benzyl chloride	0.9900	0.15	•	o	0.66	5	£	1.03	3.95	8	
Bromodichloromethane	1.040	0.15	•	φ	10 4	02	S	1.01	2,93	8	
Bromoform	1.040	0.15	₹"	o	\$	70	130	1.02	1.94	36	
Bromomethane	0.9300	0.15	ţ.	0	93.0	6	130	1.06	13.1	30	
Qualifiers: Results report	Results reported are not blank corrected		E Estima	Estimated Value above quantitation ange	nitation emg	3,		Holding times for preparation or analysis exceeded	preparation or a	malysis excess	12
J Analyte detect	Analyte detected below quantitation limit		MD Not De	Not Detected at the Linnit of Detection	Detection		24	RPD outside accepted recovery limits	sid yravopar batq	their states	
S Spike Recover	Spike Recovery natside accepted recovery limits	mis								•	Dam Inf

Spike Recovery outside accepted recovery limits Analyte detected below grantitution limit

-, o

P.C.	
Laßella Associates,	
CLIENT:	

TestCode: 0.25CT-TCE-VC

C1712063 Work Order:

Eldre Com Project:

According the control of the contr	Sample ID: ALCS1UGD-122117 SampType: LCSD	SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	E. Units: ppbv		Prep Date:			RunNo: 13073	073	
Page		Balch ID: R13073	Test	√o: TO-15			Aralysis Date:		017	SeqNo: 15	1945	
Colored Colo	Analyte	Result	201	SPK value	SPK Ref Val	%REC		ightlimit	RPD Ref Val	%RPD		Oual
Control Cont	Carbon disulfide	0.9400	0.15		0	24.0	70	130	0.95	1.06	33	
0.9400 0.15	Carbon letrachloride	0.9900	0.040	ų ia	0	39.0	25	130	0.97	2.04	S	
0.9400 0.15 1 1 0 940 170 170 180 180 190 190 190 190 190 190 190 190 190 19	Chlorobenzene	0.9700	0.15	*-	c	97.0	7.0	130	0.98	1.03	30	
Control Cont	Chloroethane	0.9400	0.15	100	O	<u>\$</u>	70	130	1.05	12.0	30	
0.9800	Chloroform	0.9700	0.15	4111	٠	97.0	52	130	۲,0	4.04	30	
0.9200 0.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chforomethane	0.9800	0.15	ųm	0	98.0	70	130	1.09	10.6	30	
0.9100 0.16 1 1 0 0 0.15 1 1 0 0 0.10 1 1 0 0 0.10 1 1 0 0.26 5.35 3 0 0 0.56 0.56 0.10 1 0 1 0 0.56 0.10 1 0 0.56 0.10	cis-1,2-Dichloroethene	0.9200	0.15	**	O	92.0	70	130	0.93	1.08	30	
0.9900 0.15 1	cis-1,3-Dichloropropere	0.9100	0.15		0	91.0	70	130	96'0	5,35	30	
1040 015 1	Cyclohexane	0.9500	0.15	₹~	Ð	96.0	7.0	130	0.95	1.05	8	
sile 0.7900 0.14 1 0 79.0 79.0 10.8 10.8 30 sine 0.9200 0.15 1 0 79.0 70 130 0.84 1.15 30 sine 0.9200 0.15 1 1 0 99.0 70 130 0.96 2.15 30 1.300 0.15 1 1 0 92.0 70 130 0.96 4.26 30 1.300 0.15 1 1 0 103 70 130 1.11 11.4 <	Dibromochloromethane	1.040	0.15	***	0	\$	70	130	1.01	2.93	8	
10 10 10 10 10 10 10 10	Ethyl acetate	0.7900	0.15	Em	c	79.0	22	130	0.88	10.8	30	
1,090 0.15 1.00 0.15	Ethylbenzene	0.9200	0.15	4	0	92.0	70	130	0.94	2.15	8	
1,000 0.15 1	Frean 11	0.9900	0.15	•	0	99.0	70	130	1,11	11,4	30	
1,000 0.15 1,000 0.15 1,000	Freon 113	0.9200	0.15	•	¢	92.0	70	130	96.0	4.26	30	
1.034 1.034 1.034 1.04	Freon 114	1.000	0.15	•	O	100	70	130	1.03	2.96	33	
0.9700 0.15 0.15 1 0 97.0 70 130 0.96 1.04 30 P-1.3-butadiene 0.9100 0.15 1 0 91.0 70 130 0.96 1.04 30 Hoohol 0.7200 0.15 1 0 91.0 70 130 0.97 7.49 30 Hochol 1.980 0.30 1 0 92.0 70 130 0.97 7.49 30 My Ketone 0.1500 0.30 1 0 92.0 70 130 0.97 6.50 30 My Ketone 0.1500 0.30 1 0 150 70 130 0.95 6.50 30 My Ketone 0.1600 0.30 1 0 150 70 130 0.95 6.50 0 30 Dutyl Ketone 0.1800 0.30 1 0 180 70 130 0.95 6.50	Freon 12	1.030	0.15	-	0	103	5	130	1.06	2.87	39	
1,3 butadene 0,9100 0,15 1	Heptane	0.9700	0.15	_	0	0′26	2	130	0.96	1.04	33	
Color Colo	Hexachloro-1,3-butadiene	0.9100	0.15	_	0	94.0	02	130	1.01	10.4	33	
looked 0.7260 0.15 1 0 72,0 70 130 0.97 29,6 30 ee 1.980 0.30 2 0 99,0 70 130 1.99 6.504 30 yl Ketone 0.1500 0.30 1 0 76,0 70 130 0.97 0.95 30 yl Ketone 0.7500 0.30 1 0 76,0 70 130 0.97 0 30 yl Ketone 0.7500 0.30 1 0 76,0 70 130 0.97 0 30 butyl Ketone 0.1800 0.35 1 0 76,0 70 130 0.92 0 30 butyl Ketone 0.105 1 0 160 70 150 150 0 30 30 chlorid ethor 0.105 1 0 104 70 130 0 101 101 101 101	Hexane	0.9000	0.15	-	a	90.0	70	130	0.97	7.49	33	
ee 1,980 0.30 2 0.90 70 130 1.99 0.504 30 yl Ketone 0.1560 0.30 1 0 76.0 70 130 0.97 0 30 yl Ketone 0.7560 0.30 1 0 76.0 70 130 0.93 8.81 30 butyl Ketone 0.1450 0.30 1 0 76.0 70 130 0.92 0 30 butyl Ketone 0.1450 0.15 1 0 18.0 70 130 0.92 0 30 chlorid 0.15 1 0 87.0 70 130 0.95 70 130 0.95 30 chlorides 0.15 1 0 104 70 130 1.01 2.03 30 chlorides 0.15 1 0 104 70 130 1.01 1.02 30 chlorid 0.15 </td <td>Isopropył akcohol</td> <td>0.7200</td> <td>0.15</td> <td>-</td> <td>0</td> <td>72,0</td> <td>5</td> <td>130</td> <td>0.97</td> <td>29,6</td> <td>ੜ</td> <td></td>	Isopropył akcohol	0.7200	0.15	-	0	72,0	5	130	0.97	29,6	ੜ	
yl Ketone 0.1500 0.30 1 0 45.0 70 130 0.87 0 30 yl Ketone 0.7800 0.30 1 0 76.0 70 130 0.83 8.81 30 butyl Ketone 0.1800 0.30 1 0 18.0 70 130 0.92 0 30 butyl Ketone 0.1870 0.15 1 0 18.0 70 130 0.92 0 30 butyl Ketone 0.1870 0.15 1 0 87.0 70 130 0.92 0 30 chloride 0.105 1 0 95.0 70 130 0.95 8.79 30 chloride 1 0 104 70 70 101 101 2.93 30 chloride 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m&p-Xylene	1.990	0.30	87	0	99.0	70	130	1.99	6.504	30	
yl Keltone 0.7600 0.30 1 0 76.0 70 130 0.63 8.81 30 butyl Ketone 0.1800 0.30 1 0 18.0 70 130 0.92 0 30 butyl ether 0.8700 0.15 1 0 87.0 70 130 0.95 8.79 30 chloride 0.8500 0.15 1 0 95.0 70 130 0.95 8.79 30 chloride 0.15 1 0 95.0 70 130 0.95 8.79 30 1.04 7 1 0 1 0 1 0 1 0 1 0 0 30 30 30 2 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0	Methyl Butyl Ketone	0.1500	0.30	-	0	15.0	70	130	78.0	0	8	പ്പ
butyl Ketone 0.1800 0.30 1 0 18.0 70 130 0.92 0 30 -butyl either 0.8700 0.15 1 0 87.0 70 130 0.95 8.79 30 chloride 0.9500 0.15 1 0 104 70 130 0.97 2.08 30 1.070 0.15 1 0 100 70 130 1,13 12.2 30 1.070 0.15 1 0 107 70 130 1,03 3.81 30 fursil 0.8300 0.15 1 0 83.0 70 130 0.089 6.98 30 Analyst derected Estimated Value, above quantitation range Estimated Value, above quantitation range Holding tinns for preparation or analysis exceeded Analyst derected Estimated Value, above quantitation family R. RPD outside account analysis exceeded	Methyt Ethyl Ketone	0.7600	0.30	-	0	76.0	70	130	0.83	8.81	8	
Outpletible 0.03700 0.15 T 0 87.0 70 130 chloride 0.045 1 0 95.0 70 130 1.040 0.15 1 0 104 70 130 1.070 0.15 1 0 107 70 139 1.020 0.15 1 0 102 70 130 fursin 0.8300 0.15 1 0 83.0 70 130 1. Analysis derivated are not blank corrected E. Estimated Value above quantitation range E. Stimated Value above quantitation range H	Methyl Isobutyl Ketone	0.1800	0.30	~	0	18.0	70	130	0.92	0	93	ন্ট
chloride 0.15 f 0 95.0 70 f30 1.040 0.15 f 0 104 70 130 1.070 0.15 f 0 100 70 130 1.070 0.15 f 0 107 70 130 fursh 0.8300 0.15 f 0 102 70 130 Results reported are not blank corrected E Estimated Value above quantitation range H Ranket derection H	Methyl tert-butyl either	0.8700	0.15	-	0	87.0	20	130	0.95	8.79	8	
1.040 0.15 † 0 104 70 130 130 1.00 1.15 † 0 104 70 130 130 1.070 0.15 † 0 107 70 130 130 1.020 0.15 † 0 107 70 130 130 1.020 0.15 † 0 102 70 130 130 130 130 130 130 130 130 130 13	Methylena chloride	0.9500	0.15	سي	Ö	95.0	70	\$30	26.0	2.08	30	
1.000 0.15 1 0 100 70 130 1.070 0.15 1 0 107 70 130 1.020 0.15 1 0 107 70 130 furan 0.8300 0.15 1 0 102 70 130 Results reported are and blank corrected E Estimated Value above quantitation sange H A harder derivated Andrew namultitation limit (o-Xylene	1.040	0.15	444	0	\$	70	130	1.01	2.93	8	
1.070 0.15 1 0 107 70 139 1.020 0.15 1 0 102 70 130 6.830 0.15 1 0 83.0 70 130 Results reported are not blank corrected Results detected below anomitting allows NO Not Detected at the Lineit of Selection R	Propylene	1.000	0,15	ąn.	٥	100 001	ይ	130	1,13	12.2	8	
furant 1.020 0.15 1 0 130 70 130 furant 0.8300 0.15 1 0 83.0 70 130 Results reported are not blank corrected E. Estimated Value above quantitation range H H R In Analysis derected below granditation lines NO Not Detected at the Lines of Detection of the Lines of Detection R	Styrene	1.070	0.15		٥	107	0,	130	1,03	3.81	30	
furen 0.8300 0.15 t 6 83.0 70 130 Results reported are not blank corrected E Estimated Value above quantitation range H Analyte detected below annotating and North Man Detected at the Limit of Detection R	Tetrachloroethylene	1.020	0.15	+:-	Đ	102	70	130	1.03	0.985	39	
Results reported are not blank corrected E Estimated Value above quantitation range H Analyse detected below anomittation limit ND Not Detected at the Limit of Detection R	Telrahydrofuran	0.8300	0.15	***	Φ	83.0	70	130	0.89	6.98	30	
1 Analyte detected below anontitution these NS Mar Detected at the Lieutin of Detection R	!	rted are not blank corrected		į	led Value above quan	ditations ran		:	folding times for	preparation or	analysis exece	pap
	-	cred helpst assentitution limit			To state I also as formation	Shelocations			SPD outside acce	ented seconders li	, sien	

Sample ID: ALCS1UGD-122117	SampType: LCSD	TestCode:	TestCode: 0.25CT-TCE-	- Units: poby		Prep Date:			RunNo: 13073	073	
Cilent ID: ZZZZZ	Batch ID: R13073	TestNo: TO-15	TO-45		•	Analysis Date:	12/22/2017	711	SegNo: 151945	1945	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLinit	HighLimit	RPD Ref Val	%ጽ₽D	RPOLimit	Oual
Toluene	0.9500	0.15	1	0	95.0	70	130	0.95	0	30	
trans-1,2-Dichlorcethane	0.9300	0.15	-	a	93.0	22	130	0.95	2.13	30	
Irans-1,3-Dichloropropene	0.9100	0.15	-	0	91.0	Q2	130	0.91	¢	36	
Trickloroethene	0.9600	0.030	-	0	96.0	7.0	130	0.89	7.57	8	
Vinyl acetate	0,8600	0.15	-	٥	88.0	5	330	0.56	Ö	30	
Vinyl Bromide	0.9700	0.15	-	Q	97.0	5	130	1.04	6.97	8	
Vinyl chtoride	0.9300	0.040	-	O	93.0	20	130	6.93	6.25	30	
Sample ID: ALCS1UGD-122217	SampType: LCSD	TestCode:	ode: 0.25CT-TCE-	- Units: ppbv		Prep Date:			RunNo; 13074	074	
Client ID: ZZZZZ	Batch ID: R13074	TestNo: TO-15	TO-15			Analysis Date;	12/23/2017	711	SeqNo: 151967	1967	
Analyte	Result	S TOU	SPK value S	SPK Ref Vat	%REC	LowLimit	HighLimit	RPD Ref Val	WRPD	RPDLimit	Quai
1,1,1-Trichloroethane	1.140	0.15	-	٥	114	70	130	1.11	2.67	30	
1,1,2,2-Teirachloroethane	1.140	0.15	-	٥	114	22	130	1.01	12.1	39	
1, 1, 2-Trichloroethane	1.130	0.15	-	o	113	5	130	*-	2.69	30	
1,1-Dichloroethane	1.030	0.15	-	ø	103	2	130	0.97	6.00	30	
1,1-Dichforoethene	0.8700	0.15	-	0	87.0	57	130	0.77	12.2	8	
1,2,4-Trichlorobenzene	0.8200	0.15	-	Đ	82.0	22	130	0.97	16.8	33	
1,2,4-Trimethylbenzene	1,050	0.15	-	٥	±05	6	130	0.95	10.0	30	
1,2-Dibromoethane	1,040	0.15	-	O	\$04	5	130	1.01	2.93	8	
1,2-Dichlorobenzene	1.140	0.15	-	O	134	70	130	1.02	11.1	33	
1,2-Dichloroethane	1.050	0.15	-	0	105	70	130	0.96	8.96	83	
1,2-Dichloropropane	1.080	0.15	-	٥	108	20	130	1.08	0	8	
1,3,5-Trimethylbenzene	1.160	0.15	-	Q	116	70	130	1.05	8.95	33	
‡,3-butadiene	1.030	0.15	-	0	£03	7.0	130	1.04	0.966	8	
t.3-Dichlorobenzene	1,140	0.15	-	0	114	5	130	1.02	11.1	8	
1,4-Dichtorobenzene	1.170	0.15	-	0	117	0,2	£5	1.05	10.8	용	
1,4-Dioxane	0.1100	0.30	-	o	11.0	70	133	D.86	Q	윲	SI
2.2,4-trimethylpentane	1.050	0.15	-	0	105	20	58 33	1.01	3.88	8	
4-ethylloluene	1.100	0.15	-	0	10	5	130	1.02	7.55	30	
Qualifiers: Results reporte	Results reported are not blank corrected Analyse detected below quantitation limit	_	E Estimase	Estimated Value above quantitation range Not Detected at the Limit of Detection	itation rang Detection	2	# &	folding times fo	Relding times for preparation or analysis exceeded RPD outside account recovery limits	matysis exceed	p <u>s</u>
S Spike Recover	Spike Recovery outside accopted recovery limits	mits									Page 3 of 5

Eldre Corp C1712063

Work Order: Project:

CLIENT: LaBella Associates, P.C.

+ 5	
	LaBella Associates, P.C.
	CEJENT:

C1712063 Work Order:

2002111	Eldre Com
1000	Project:
	2

Cubert ID. Eastly Entry ID. Feether TO-15 Feether TO-15 Analysis Date: 122232017 Analysis Date: 122232017 Sequio: 151050 Analysis Date: 122232017 Analysis Date: 12223017 Analysis Date: 122	Settiple 10. ALCO 1060-122217	SampType: LCSD	TestCode: 0.25CT-TCE-	E: 0.29C		Units: ppbV		Prep Date:	áį		RunNo: 13074	1074	
PQL SPK Red Value SPK Re		Baich ID: R13074	TestN	lo: TO-15				Analysis Dat		110	SeqNo: 15	1961	
tigge 0.30 0.30 1.00 0.00 0.00 0.00 0.00 0.00	knalyte	Resuft	P.O.	SPK val		i Val	%REC	LowLimit	HighLimit	RPD Ref Vel	%RPD	RPDLimit	Qua
1,000	celone	1.030	0.30		-	0	163	70	130	68.0	14.6	30	
1010 0.15 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	채yl chloride	0.8900	0.15		4 777	Ö	99.0	70	130	0.89	0	30	
1,060 0,15 1 1 0 108 70 130 1,02 1,110 0,15 1 1 0 111 70 130 1,00 1,010 0,15 1 0 0 111 70 130 1,00 1,010 0,15 1 0 0 111 70 130 1,00 1,010 0,15 1 0 0 10 10 1 0 1 0 1 0 1 0 1 0 1 0 1	Зепzеле	1,010	0.15		•	⇔	101	22	130	0.98	3.02	æ	
1,110 0.15 1 1 0 110 1 11 0 110 1 11 0 110 1 110 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 100 0.15 1 1 0 0 100 0.15 1 100 0.15 1 1 0 0 100 0.15 1 100 0.15 1 1 0 0 100 0.15 1 100 0.15 1 1 0 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1 0 100 0.15 1 0 1	3enzyl chłoride	1.060	0.15		•	Ö	82	70	130	1.02	3.65	33	
1,080 0.15 1 0 0 10 0 10 0 10 0 10 0 10 0 10	3romodichloromethane	1.110	0.15		ţu.	٥	111	70	130	1.09	1.82	8	
1,010 0,15 1 0 0 15 1 0 101 70 130 0.99 1,080 0,040 0,15 1 0 105 70 130 0.94 1,080 0,040 0,15 1 0 103 70 130 0.98 1,080 0,15 1 0 0 105 70 130 0.98 1,080 0,15 1 0 0 104 70 130 0.98 1,080 0,15 1 0 0 104 70 130 0.97 1,080 0,15 1 0 0 105 1 0 0 106 100 100 100 100 100 100 100 1	зтогнобоття	1.080	0.15		~	Ö	108	70	130	1.01	6.70	30	
0.9700 0.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bromomethane	1.010	0.15		* ···	Ö	161	70	130	66.0	2.00	30	
1,080 0,040 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sarbon disulfide	0,9700	0.15		~	÷	97.0	70	130	0.94	3.14	93	
1,030 0,15 1 0 103 103 103 103 103 103 103 103 103	Carbon tetrachloride	1.060	0.040		,	O	8	70	130	1.05	0.948	30	
1,070 0.15 1 0 101 70 130 0.98 1,050 0.15 1 0 0 104 70 130 0.98 1,040 0.15 1 0 0 104 70 130 1.07 0,9900 0.15 1 0 0 96.0 70 130 1.07 1,050 0.15 1 0 0 106 70 130 1.07 1,050 0.15 1 0 0 106 70 130 0.98 1,070 0.15 1 0 0 109 70 130 0.98 1,070 0.15 1 0 0 109 70 130 0.98 1,070 0.15 1 0 0 109 70 130 0.98 1,070 0.15 1 0 0 109 70 130 0.98 1,070 0.15 1 0 0 109 70 130 0.98 1,070 0.15 1 0 0 109 100 70 130 1.07 1,050 0.15 1 0 0 109 10 100 100 100 100 100 100 10	Chlorobenzene	1.030	0.15		-	Ö	163	70	130	0.98	4.98	30	
1.050 0.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chloroethane	1.010	0.15		•	φ	101	70	130	95.0	3.02	8	
1.040 0.15 1 0 104 70 130 1.07 1.07 1.090 0.15 1 1 0 0 99.0 70 130 0.91 1.07 1.050 0.15 1 0 0 96.0 70 130 0.91 1.07 1.050 0.15 1 0 0 96.0 70 130 0.97 1.050 0.15 1 0 0 96.0 70 130 0.97 1.050 0.15 1 0 0 98.0 70 130 0.95 1.02 1.050 0.15 1 0 0 98.0 70 130 0.95 1.05 1.050 0.15 1 0 0 98.0 70 130 0.95 1.05 1.050 0.15 1 0 0 98.0 70 130 0.95 1.05 1.050 0.15 1 0 0 99.0 70 130 0.95 1.05 1.050 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 130 0.101 1.010 0.15 1 0 0 99.0 70 0.101 1.010 0.15 1 0 0 99.0 70 0.101 1.010 0.15 1 0 0 99.0 70 0.101 1.010 0.15 1 0 0 99.0 70 0.101 1.010 0.15 1 0 0 99.0 70 0 130 0.15 1 0 0 99.0 70 0.101 1.010 0.101 1.010 0.15 1 0 0 99.0 70 0.101 1.010 0.15 1 0 0 99.0 70 0.101 1.010 0.101 1.01	Shloroform	1.050	0.15		•••	0	105	5	130	+	4.88	8	
0.9900 0.15 1 0 99.0 70 130 0.91 0.9600 0.15 1 0 96.0 70 130 107 1.050 0.15 1 0 103 70 130 107 0.9200 0.15 1 0 106 70 130 0.97 1.000 0.15 1 0 106 70 130 0.84 1.000 0.15 1 0 100 70 130 0.84 1.090 0.15 1 0 109 70 130 0.92 1.070 0.15 1 0 109 70 130 0.95 1.070 0.15 1 0 107 70 130 1.07 1.050 0.15 1 0 105 70 130 1.01 1.050 0.15 1 0 105 70 130 1.01 <	Chloromethane	1.040	0.15			0	\$	20	130	1.07	2.84	93	
0.9600 0.15 1 96.0 70 130 107 1.030 0.15 1 0 103 70 130 0.97 1.060 0.15 1 0 106 70 130 0.97 0.9200 0.15 1 0 106 70 130 0.94 1.000 0.15 1 0 109 70 130 0.94 1.090 0.15 1 0 109 70 130 0.92 1.070 0.15 1 0 109 70 130 0.95 1.070 0.15 1 0 107 70 130 1.07 1.050 0.15 1 0 105 70 130 1.07 1.050 0.15 1 0 105 70 130 1.01 1.050 0.15 0.15 1 0 105 70 130 1.01	sis-1,2-Dichloroethene	0.9900	0.15		* ···	0	99.0	70	130	0.91	8.42	30	
1.930 0.15 1 0 103 70 130 0.97 comethane 1.060 0.15 1 0 106 70 130 0.94 comethane 1.060 0.15 1 0 106 70 130 0.84 complete 1.090 0.15 1 0 109 70 130 0.92 complete 0.9800 0.15 1 0 98.0 70 130 0.95 1.110 0.15 1 0 107 70 130 1.07 1.070 0.15 1 0 107 70 130 1.07 1.110 0.15 1 0 105 70 130 1.07 1.050 0.15 1 0 105 70 130 1.01 Actions 0.250 0.15 1 0 105 70 130 0.3 Actions 0.30 </td <td>ds-1,3-Dichloropropere</td> <td>0.9600</td> <td>0.15</td> <td></td> <td>4112</td> <td>Û</td> <td>0.98</td> <td>70</td> <td>130</td> <td>1.07</td> <td>10.8</td> <td>8</td> <td></td>	ds-1,3-Dichloropropere	0.9600	0.15		4112	Û	0.98	70	130	1.07	10.8	8	
1.060 0.15 1 0 106 70 130 102 0.9200 0.15 1 0 92.0 70 130 0.984 1.000 0.15 1 0 0 100 70 130 0.92 1.070 0.15 1 0 0 98.0 70 130 0.95 1.070 0.15 1 0 0 109 70 130 0.95 1.050 0.15 1 0 0 109 70 130 1.07 1.050 0.15 1 0 0 109 70 130 1.07 1.050 0.15 1 0 0 109 70 130 1.07 1.050 0.15 1 0 0 109 70 130 1.07 1.050 0.15 1 0 0 109 70 130 1.07 0.9500 0.15 1 0 0 109 70 130 1.01 0.9500 0.15 1 0 0 109 70 130 1.01 0.9500 0.15 1 0 0 109 70 130 1.01 0.9500 0.15 1 0 0 109 1.01 0.9500 0.15 1 0 0 109 1.01 0.9500 0.15 1 0 0 109 1.01 0.9500 0.15 1 0 0 109 1.01 0.9500 0.15 1 0 0 109 1.01 0.9500 0.15 1 0 0 109 1.01 0.9500 0.15 1 0 0 0.15 0.9500 0.15 1 0 0 0.15 0.9500 0.15 1 0 0 0.15	Cyclohexane	1.030	0.15		Ţ	0	103	2	130	0.97	6.00	30	
6,9200 0.15 1 9 92.0 70 130 0.92 1.000 0.15 1 0 100 70 130 0.92 1.090 0.15 1 0 109 70 130 0.95 1.070 0.15 1 0 98.0 70 130 0.95 1.070 0.15 1 0 107 70 130 0.95 1.110 0.15 1 0 111 70 130 1.05 1.050 0.15 1 0 111 70 130 1.07 1.050 0.15 1 0 105 70 130 1.01 1.050 0.15 1 0 95.0 70 130 1.01 1.050 0.15 1 0 75.0 70 130 1.01 1.050 0.150 0 0 0 70 130 1.01	Dibromochloromethane	1.060	0.15			٥	106	70	130	1.02	3.85	33	_
1.000 0.15 1 0 0 100 70 130 6.92 1.090 0.15 1 0 109 70 130 1.07 0.9800 0.15 1 0 0 80.0 70 130 1.07 1.070 0.15 1 0 0 90.0 70 130 0.95 1.110 0.15 1 0 0 105 10 1.05 1.050 0.15 1 0 0 90.0 70 130 1.01 0.9500 0.15 1 0 0 90.0 70 130 1.01 0.9500 0.15 1 0 0 90.0 70 130 1.01 0.9500 0.15 1 0 0 90.0 70 130 0.38 2.139 0.30 2 0 106 70 130 1.95 < 0.30 0.30 1 0 0 0 0 130 1.91 0.8200 0.30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sthyl acelate	0.9200	0.15		, ,	Ф	92.0	7.0	130	0.84	9.09	8	_
1.090 0.15 1 0 109 70 130 1.07 0.9800 0.15 1 0 98.0 70 130 0.95 1.070 0.15 1 0 10 98.0 70 130 0.95 1.110 0.15 1 0 10 107 10 130 1.05 1.050 0.15 1 0 99.0 70 130 1.01 0.9500 0.15 1 0 99.0 70 130 1.01 0.9500 0.15 1 0 99.0 70 130 1.01 0.7500 0.15 1 0 95.0 70 130 0.78 0.7500 0.15 1 0 75.0 70 130 0.78 0.8200 0.30 1 0 82.0 70 130 1.91 0.8200 0.30 1 0 92.0 70 130 0.78 0.30 0.30 1 0 92.0 70 130 0.78 0.30 0.30 1 0 92.0 70 130 0.78	Ethylbenzene	1.000	0.15		•	¢	100 100	70	130	0.92	8,33	æ	_
0,9800 0.15 1 0 98.0 70 130 0.95 1,070 0.15 1 0 407 70 130 1.05 1,110 0.15 1 0 411 70 130 1.07 1,050 0.15 1 0 405 70 130 1.01 ne 0,9900 0.15 1 0 95.0 70 130 1.01 ne 0,9500 0.15 1 0 95.0 70 130 1.01 0,7500 0.15 1 0 75.0 70 130 0.38 0,700 0.30 1 0 0 70 130 1.91 0,8209 0.30 1 0 6.30 1 0 70 130 0.78 0,30 0.30 1 0 0 70 130 0.39 0,30 0.30 1 0 <t< td=""><td>Freon 11</td><td>1.090</td><td>0.15</td><td></td><td>-</td><td>o</td><td>109</td><td>2</td><td>130</td><td>1.07</td><td>1.85</td><td>33</td><td></td></t<>	Freon 11	1.090	0.15		-	o	109	2	130	1.07	1.85	33	
1.070 0.15 1 0 105 10 105 106 105 106 106 1.07 101 1.01 1.050 0.15 1 0 111 70 130 1.07 1.07 1.050 0.15 1 0 101 1.01 1.01 1.01 1.01	Freah 113	0,9800	0.15		-	Ф	98.0	70	130	0.95	3.11	30	_
1.110 0.15 1 0 111 70 130 1.07 1.050 0.15 1 0 105 70 130 1.01 1.050 0.15 1 0 105 70 130 1.01 0.9500 0.15 1 0 99.0 70 130 1.01 0.7500 0.15 1 0 95.0 70 130 0.78 2.130 0.30 2 0 106 70 130 1.95 < 0.30 0.30 1 0 82.0 70 130 1.91 < 0.8200 0.30 1 0 82.0 70 130 0.78 < 0.30 0.30 1 0 95.0 70 130 0.78	Freon 114	1,070	0.15		-	Φ	107	72	130	1.05	1.89	8	_
1.050 0.15 1 0 105 70 130 1.01 ne 0.9900 0.15 1 0 99.0 70 130 1.01 0.9500 0.15 1 0 99.0 70 130 1.01 0.7500 0.15 1 0 95.0 70 130 0.78 2.130 0.30 2 0 146 70 130 1.95 < 0.30 1 0 82.0 70 130 1.91 < 0.30 1 0 82.0 70 130 0.78 < 0.30 1 0 95.0 70 130 0.78	Frach \$2	1,110	0.15		-	o	#". ***	2	130	1.07	3,67	30	_
ne 0.9900 0.15 1 0 99.0 70 130 1.01 0.9500 0.15 1 0 95.0 70 130 0.3 2.130 0.15 1 0 75.0 70 130 0.78 < 0.30	-leptane	1,050	0.15		-	0	105	2	130	1.01	3.88	ଛ	_
0.9500 0.15 1 0 95.0 70 130 0.9 0.7500 0.15 1 0 75.0 70 130 0.78 2.130 0.30 2 0 106 70 130 1.95 < 0.30	fexachtoro-1,3-5utadiene	0.9900	0.15		_	0	99.0	7.0	130	1.04	2.60	8	_
0.7500 0.15 1 0 75.0 70 130 0.78 2.130 0.30 2 0 106 70 1.95 < 0.36	-fexane	0.9500	0.15		-	0	95.0	5	5	0.9	5.4‡	æ	_
2.130 0.30 2 0 106 70 130 1.95 < 0.30 1 0 0 70 130 1.91 0.8200 0.30 1 0 82.0 70 130 0.78 < 0.30 0.30 1 0 0.97	sopropyl atcohol	0.7500	0.15		-	0	75.0	70	5	0.78	3.92	æ	
 < 0.36 6.30 0.8209 6.30 1 0 82.0 70 130 0.78 < 0.36 1 0 0 70 130 0.97 	n&p-Xylene	2.130	0.30		2	0	106	2	£5	1.95	8.82	33	_
0,6200 0.30 1 0 82.0 70 130 0.78 < 0.30 0.30 1 0 6 70 130 0.97	Methyi Butyi Ketone	< 0.3Ø	0.30		-	0	o	70	130	1.91	0	33	S
< 0.30	Wethyl Ethyl Ketone	0,8200	0.30		-	0	82.0	30	130	0.78	5.00	8	_
	Methyt Isobutyl Ketone	< 0.30	0.30		-	0	O	70	130	26.0	0	93	S
Qualifiers: Regults reported are not blank corrected E. Estimated Value above quantification range. H. Holding times for proparation or analysis exounded	· : '	ted are not blank corrected			stimated Value	above quant	Station rang	25.		नेशवींकृष्ट times कि	и ртераганов ог	analysis excu	yded
Analyte deserted below quantitation limit ND Not Detected at the Limit of Detection R RPD susside accepted recovery limits	Analyde deser	sted below quantitation limit			ot Detected at t	he timil of l	Rection			RPD outside acc	epted recovery li	štimi	
INDEPENDENT OF PRECEION OF THE CHILD OF TAKECESON						IIC (.IMI) 91	A ECCE ION			APPLY STREETING ACC		#FE	

A	Sample ID: ALCS1UGD-122217 SampType: LCS0	TestCo	TestCode: 0,25CT-TCE-	Units: ppby		Prep Date:	, tu		Rupho: 42074	740	
Crient IU: 22222	Batch ID: R13074	Test	TestNo: TO-15	:	•	Analysis Date: 12/23/2017	e: 12/23/2	2017	SeqNe: 151967	#100 #967	
Analyte	Resuil	PO.	SPK value SF	SPK Ref Val	%REC	LowLimi	HighLimiť	RPD Ref Val	%RPD	RPDLimit	Oual In
Methyl tert-butyl ether	0.9600	0,15	+	D	98.0	70	130	00	28.0		
Methylene chloride	0.9800	0.15	-	0	98.0	2.2	130	70.0	0.40	3 8	
o-Xylene	1,120	0.15	-	Ф	112	2	130	. c. t	3.0	7 8	
Propylene	1.050	0.15		ψ	101	2.	330	50.	72.5	3 8	
Styrene	1.150	0.15		Ö	115	7.0	130	20.5	- 007	2	
Tetrachloroeitykene	1.050	0.15	440	0	505	202	130	10.1	9 6	2	
Tetrahydrofuran	0.9100	0.15		0	0.56	? ?	3 5	10.5	9 6	₹ \$	
То\целе	0.9900	0.15	-		000	2 6	2 6	Ç. 0.	70.0	7	
trans-1,2-Dichloroethene	0.9800	5.0		> <	0 6 6 6	2 ₽	3	0.92	7.33	99	
Trans. 1.3. Dichioropopo	0000	5 6	- ,	> '	χ. Ο	5	130	0.95	ж, Т	8	
	0.9600	Ü.	• "	~	88.0	70	130	0.98	Ö	30	
	0.5500	0.030	-	۵	0.66	70	130	0,97	2.04	30	
Vinyl acetate	0.8300	0.15	~	o	93.0	92	130	0.83	4.11	- E	
Vinyl Bromide	1.010	0.15	+-	0	101	70	130	-	0.995	8	
Vinyl chloride	0.9800	0.040	+	0	98.0	7	130	0.99	1.02	3	

Estimated Value adove quantitation range ND Not Detection if the Limit of Detection

Spike Recovery outside accepted recovery timits Analyte detected below quantitation famit Results reported are not blank corrected

-- J

Qualiffers:

H Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits RPD outside accepted recovery limits

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order: CLIENT

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 10-lan-18

LaBella Associates, P.C. CLIENT:

C1712063 Work Order: Eldre Corp

%RPD RPDLImit Qual TestCode: 0.25CT-TCE-VC SeqNo: 151943 RunNo: 13073 %REC LowLinit HighLimit RPD Ref Val Analysis Date: 12/21/2017 Prep Date: TestCode: 0.25CT-TCE- Units: ppbV SPK value SPK Ref Val TestNo: TO-15 PQE Batch ID: Rf3073 Result SampType: MBLK Sample ID: AMB1UG-122117 Client ID: ZZZZZ **Project**: Analyte

		·			CONTRACTOR A SQUEETIME		E 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2		(Const
1,1,1-Trichloroethane	< 0.15 (0.	15								
1, 1, 2, 2-Tetrachloroethane	< 0.15 0.	15								
1,1,2-Trichloroethane	< 0.15 0.	45								
f, 1-Dichlorcethane	< 0.15 0.	₹2								
1,1-Dichloroethene	< 0.15	15								
1,2,4-Trichtorobenzene	< 0.15 0.	15								
1,2,4-Trimethylbenzane	< 0.15 0.	15								
f,2-Dibromoethane	< 0.15 0	15								
1,2-Dichlorobenzene	< 0.15 0.	35								
1,2-Dichloroethane	< 0.15 0.	35								
1,2-Dichloropropane	< 0.15 0.	15								
1,3,5-Trimethytbenzene	< 0.15 0.	35								
1,3-tutadiene	< 0.15 0	0.15								
1,3-Dichlorobenzene	< 0.15 0.	15								
1,4-Dichlarobenzene	< 0,15 0.	15								
1,4-Dioxane	< 0,30 0	0:30								
2,2,4-trimethylpentane	< 0.15 0.	15								
4-ethylloluene	< 0.15 0.	±.								
Acetone	< 0.30	0.30								
Allyl chloride	< 0.15 G	0.15								
Benzene	< 0.15 0	0.15								
Benzyl chloride	< 0.15 0	0.15								
Bromodichioromethane	< 0.15	0.15								
Вгогаобоят	< 0.15	0.15								
Влототейале	< 0.15 9	0.15								
Qualifiers: Results reported are	Results reported are not blank corrected		į.	ititation range			Holding times for preparation or analysis exceeded	загатіоп от ав	alysis excee	3
J Analyse detected be	Analyse detected below quantitation limit	ź	Not Detected at the Limit of Detection	Detection		æ ≈	RPD netside accepted recovery limits	госочету Іня	its	
S Spike Recovery ont	Spike Recovery outside accepted recovery lithins								***	Page Laf.

Sample ID: AMB1UG-122117	Samplype: MBLK	TestCoo	TestCode: 0.25CT-TCE-	rce- Units: ppbV	Prep Date:		RunNo: 13073	
Offent ID: ZZZZZ	Batch ID: R13073	Testh	TesiNo; TO-15		Analysis Date: 12	12/21/2017	SeqNo: 161943	
Analyte	Result	104	SPX value	SPK Ref Vai %REC	EC LowLimit HighLimit	imit RPD Ref Vat	%RPO RPDLimit	Q Ea
Carbon disulfide	< 0.15	0.15						
Carbon tetrachloride	< 0.040	0.040						
Chlorobenzene	< 0.15	0.15						
Chloroethane	< 0.15	0.15						
Chloroform	< 0.15	0.15						
Chloromethane	< 0.15	0.15						
cis-1,2-Dichloroethene	< 0.15	0.15						
cis-f,3-Dichioropropene	< 0.15	0.15						
Cyclohexane	< 0.15	0.15						
Dibromochloromethane	< 0.15	0.15						
Ethyl acetale	< 0.15	0.15						
Ethylbenzene	< 0.15	0.15						
Freon 11	< 0.15	0.35						
Freon 113	< 0.15	0.15						
Freon 114	< 0.15	0.15						
Freon 12	< 0.15	0.15						
Heptane	< 0.15	0.15						
Hexachtoro-1,3-butadiene	< 0.15	6,15						
Нехале	< 0.15	0.15						
Isopropyi alcohol	< 0.15	0.15						
m&p-Xylene	< 0.30	0.30						
Methyl Butyl Ketons	< 0.30	0.30						
Methyl Ethyl Ketone	< 0.30	0.30						
Methyl Isobulyl Ketone	< 0.30	0.30						
Methyl tert-butyl ether	< 0.15	0.15						
Methylene chloride	< 0.15	0.15						
o-Xylene	< 0.15	0.15						
Propylene	< 0.15	0.15						
Styrene	< 0.15	0.15						
Fetrachloroethylene	< 0.15	0.15						
Tetrakydrofuran	< 0,15	0.15						
Qualifiers: Results report	Results reported are not blank corrected		Estin	Estimated Value ahove quentitation range	:	H Holding times for p	Holding times for preparation or analysis exceeded	. 5
	Analyte detected below quantitation limit		ND MAIL	Not Detected at the Limit of Detection		R RPD outside accepted recovery limits	ed recovery limits	

LaBella Associates, P.C.

CLJENT: Work Order:

C1712063 Eldre Corp

Project:

Sample ID: AMB1UG-122117	SampType: MBLK	TestCode: 0.25CT-TCE-	T-TCE- Units: ppbV	Prep Date:		RunNo: 13073	
Client ID: ZZZZZ	Batch ID: R13073	TestNo: TO-15		Analysis Date: 12	12/21/2017	SeqNo: 151943	
Analyte	Result	PQL SPK value	tue SPK Ref Val	%REC Low-Limit Hight-imit	init RPD Ref Val	%RPD RPDLimit	Qual
Toluene	< 0,15	0.15					
trans-1,2-Dichloroethene	< 0.15	0.15					
trans-1,3-Dichloropropene	< 0.15	0.15					
Trichioroethene	< 0.036	0.030					
Vinyl acetate	< 0.15	0.15					
Vinyl Bromide	< 0.15	0.15					
Vinyi chloride	< 0.040	0.040					
Sample ID: AMB1UG-122217	SampType: MBLK	TesiCode: 0,25CT-TCE-	T-TCE- Units: pobV	Prep Date:		RunNo: 13074	
Client ID: ZZZZZ	Batch ID: R13074	TestNo: TO-15		Analysis Date: 12	12/22/2017	SeqNo: 151965	
Anaiyle	Result	POL SPK value	tue SPK Ref Val	%REC LowLimit HighLimit	imit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Frichloroethane	< 0.15	0.15					
1, 1, 2, 2-Tetrachiomethane	< 0.15	0.15					
1,1,2-Trichloroethane	< 0.15	0.15					
1,1-Dichloroethane	< 0.15	0.15					
1,1-Dichtorpethene	< 0.15	0,15					
1,2,4-Trichforobenzene	< 0.15	0.15					
1,2,4-Trimethylbenzene	< 0.15	0.15					
1,2-Dibromoethane	< 0.15	0.15					
1,2-Dichlorobenzene	< 0.15	0.15					
f.2-Dichloroethane	< 0.15	0.15					
1,2-Dichloropropane	< 0.15	0.15					
1,3,5-Trimethylbenzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichlorobenzene	< 0.15	0.15					
1,4-Dichlorobenzene	< 0.15	0.15					
1,4-Dioxane	< 0.30	0.30					
2,2,4-trimethylpenlane	< 0.15	0.15					
4 ethylfoluene	< 0.15	0.15					
Qualifiers: Results repo	Results reported are not blank corrected	H 3	Estimated Value ubove quantitation range)	Holding times for preparation or analysis exceeded	12
	Analyte detected below quantization limit	QN	Not Detected at the Limit of Detection		R RPD ourside never	RPD outside accepted recurrery limits	
S Spike Recov	Spike Recovery outside accepted recovery limits	mits				-	Page 3 of 5

Eldre Corp C1712063

Project:

Work Order: CLIENT

LaBella Associates, P.C.

TestCode: 0.25CT-TCE-VC

		100000		300 A		THE PARTY.	
Client ID: ZZZZZ	Batch ID: R13074	TestNo: TO-15	0.15	Analysis Date:	12222017	SeqNo: 151965	
Analyte	Resuil	PQL SP	SPK value SPK Ref Val	%REC LowLimit Higi	HighLimit RPD Ref Vas	%RPD RPDLimit	Qual
Acelone	< 0.30	0.30					
Allyl chtoride	<0.15	0.15					
Benzane	< 0.15	0.15					
Benzyl chloride	< 0.15	0.15					
Bromodichloromethane	< 0.15	0.15					
Bramoform	< 0.15	0.15					
Bromomethane	< 0.15	0.15					
Carbon disulfide	< 0.15	0.15					
Carbon tetrachloride	< 0.040	0.040					
Chlorobenzene	< 0.15	0.15					
Chloroethane	< 0.15	0.15					
Chloroform	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1,2-Dichloroethene	< 0.15	0.15					
cis-1,3-Dichloropropene	< 0.15	0.15					
Cyclohexane	< 0.15	0.15					
Dibromochloromethane	< 0.15	0.15					
Elfhyl acetate	< 0.15	0.15					
Ethylbenzene	< 0.15	0.15					
Freon 18	< 0.15	0.15					
Freon 113	< 0.15	0.15					
Freon 114	< 0.15	0.15					
Freon 12	< 0.15	6,15					
Heplane	< 0.15	0.15					
Hexachloro-1,3-butadiene	< 0.15	0.15					
Hexare	< 0.15	0.15					
isopropyl alcohof	< 0.15	0.15					
m&p-Xylene	< 0.30	0.30					
Methyi Butyi Ketone	< 0.30	0.30					
Methyt Ethyt Ketone	< 0.30	0.30					
Methyl Isobutyl Ketone		0.30					
	Results reported are not blank corrected	<u></u>	Estimated Value above quantitation range	अगेशिक त्यवट	H Holding times for p	Holding times for preparation or analysis exceeded	79
J Analyte deta	Analyte detected below quantitation limit	ÜN	 Not Detected at the Limit of Detection 	Detection	R RPD outside accep	RPD outside accepted necovery limits	
S Spike Reco	Spike Recovery outside accepted recovery limits	13				•	

LaBella Associates, P.C. C1712063

Work Order: CLIENT:

Eldre Corp

Project:

Holding times for proparation or analysis exceeded

RPD natisfies accepted recovery limits

≖ 24

Estimated Veius above cuantitation range Not Detected at the Linit of Detection

H ON

Spike Recovery outside accopied recovery limits Analyte detected below quantitation limit Results reported are not blank corrected

Qualifiers:

Sample ID: AMB1UG-122217	SampType: MBLK	TestCode: 0.25CT-TCE- Units: ppbV	Prep Date:	RunNo: 13874
Client ID: ZZZZZ	Batch (D: R13074	TestNo: TO-15	Analysis Date: 12/22/2017	SeqNo: 151965
Analyte	Result	PQL SPK value SPK Ref Val	WREC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Methyl tert-butyl ether	< 0.15	0.16		1
Methylene chloride	< 0.15	0.15		
o-Xylene	< 0.15	0,15		
Propylene	< 0.15	0.15		
Styrene	< 0.15	0.15		
Tetrachioroethylene	< 0.15	0.15		
Teirahydrofuran	< 0.15	0.15		
Totuene	< 0.15	0.15		
trans-1,2-Dichlorue(herre	< 0.15	0.15		
frans-1,3-Dichloropropene	< 0.15	0.15		
Trickloroethene	< 0.030	0.030		
Vinyl acetate	< 0.15	0.15		
Vinyl Bromide	< 0.15	0.15		
Vinyl chloride	< 0.040	0.040		

LaBella Associates, P.C.

Eldre Corp C1712063

Work Order: CLIENT;

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

LaBella Associates, P.C. CLIENT:

C1712063 Work Order: Project:

Eldre Corp

TestCode: IugM3_TO15

Sample ID: C1712063-001A MS	SampType: MS	TestCo	TestCode: 1ugM3_TO15	715 Units: ppbV		Prep Date:		RunNo: 13073		
Client ID: SVF-01	Batch ID: R13073	Test	TestNo: TO-15			Analysis Date:	12/22/2017	SeqNo: 151963	2	
Analyte	Result	201	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD	RPOLimit	Qua
1,1,1-Trichloroethane	1.160	0.15	*	0.2	96.0	8	130			
1,1,2,2-Tetrachloroethane	0.7800	0.15	\ ***	0	78.0	7.0	130			
1,1,2-Trichloroethane	0.9500	0.15	•	0	95.0	70	130			
1,1-Dichloroethane	0.9600	0.15	ŧ	0	96.0	70	130			
1,1-Dichloroethene	0.8600	0.15	۳,	0	86.0	7.0	130			
1,2,4-Trichlorobenzene	1.170	0.15	v	0	117	20	130			
,2,4-Trimethylbenzene	1.720	0.15	•	0.79	93.0	70	130			
,2-Dibromoethane	0.8300	0.15	Ţm	0	83.0	5	130			
,2-Dichlarobenzene	0.9500	0.15	***	0	95.0	70	130			
,2-Dichloroethane	0.9500	0.15	•	¢	95.0	22	130			
,2-Dichloropropane	0.9700	0.15	•	0	97.0	70	130			
,3,5-Trimethyibenzene	1.250	0.15	-	0.44	81.0	70	130			
3-buladiene	1,230	0.15	-	0	124	70	130			
t,3-Dichtorobenzene	1,070	0.15	-	Ф	107	7.0	130			
f,4-Dichlorobenzene	1.010	0.15	•	Ф	101	5	130			
t,4-Dioxane	0.5600	6.30	-	0.17	39.0	02	130			ισ
2,2,4-trimethylpentane	1,000	0.15	-	٥	100	02	130			
4-ethylioluene	1.060	0.15	-	0.14	92.0	70	130			
Acelone	149.5	0.30	-	191,2	4170	70	130			υ
Allyl chloride	1.040	0.15	-	0	졅	70	130			
Senzene	1,376	0.45	,-	6.38	99.0	7.0	130			
Benzyl chloride	1.016	6.15	+	0	횬	20	130			
Bramodichloromethane	0.9700	0.15	**	0	97.0	70	130			
Bramoform	0.7700	0.15	-	a	77.0	70	130			
Bromomethane	0.9900	0.15	-	0	0.66	70	130			
Qualifiers: Rosults repor	Results reported are not blank corrected		E Estim	Estimated Value above quantisation mage	Bisation may		H Holding times	Holding times for preparation or analysis exceeded	ysis exceede	
J Analyte delet	Analyte detected below quantitation limit		ND Not D	Not Detected at the Limit of Detection	Detection		R RPD outside ac	RPD outside accepted recovery limits		
Moosy skies &	Spike Recovery outside accepted recovery firmits	ctealts							ď	Prog Last

Sample ID: C1712063-001A MS	SampType: MS	TestCode	TestCode: 1ugM3_T015	15 Units: ppbV		Prep Date:		RunNo: 13073	3073	
Client ID: SVI-01	Balch ID: R13073	TestNo	TestNo: TO-15		*	Analysis Date:	12/22/2017	SeqNo: 151963	51963	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit B	HighLimit RPD Ref Vat	f Va! %RPD	RPDLimit	Qua
Carbon disulfide	1,340	0.15	,	0.53	81.0	70	130			
Carbon letrachloride	0.9700	0.15	₹"	0	97.0	70	130			
Chlorobenzens	0.8900	0.15	~ ~	ð	85.0	70	130			
Chforoethane	0.9600	0.15	₩.	b	98.0	70	130			
Chloroform	0.9900	0.15	+-	٥	0'66	70	130			
Chloromethane	1.070	0.15	, -	Ð	107	20	130			
cis-1,2-Dichloroethene	1.000	0.15		Ď	100	70	130			
cis-1,3-Dichloropropeae	0.9500	0.15	~	Ó	95.0	70	130			
Cyclehexane	1,220	5,15	~	0	122	70	130			
Dibromochloromethane	0.8900	0.15	,	Ö	90.08	70	130			
Ethyl acetate	1,050	0.15	+	0.33	72.0	70	130			
Ethylbanzene	1,070	0.15	***	0,19	88.0	70	130			
Freon 11	1.120	0.15	 -	0.24	38.0	70	130			
Freon 113	0.9900	0.15	₩.	D	98.0	70	130			
Freon 114	0.9900	0.15	4-	0	0.66	70	130			
Freon 12	1.330	0.15	٢	0.47	86.0	70	130			
Неріале	1.890	0.15	+	0.96	93.0	70	130			
Hexachioro-1,3-butadiene	0.8600	0.15	-	0	86.0	2	130			
Нехапе	1.510	0.15	-	0.7	81.0	6	130			
sopropyl afcohol	28.43	0.15	+	36.54	-821	20	130			Ø
т&р-Ху⁄еле	2.180	0.30	ત	0.55	81.5	70	130			
Methyl Butyl Ketone	0.8160	0.30	-	0	81.0	70	130			
Methyl Ethyl Ketone	2.380	0.30	-	2.01	37.0	70	130			Ø
Methyf Isobutyl Ketone	0.7600	Ð.30	-	0.17	59.0	70	130			Ø
Methyl tert-butyl ether	0.9300	0.15	•	o	93.0	70	130			
Methykene chloride	2.630	0.15	-	2.2	43.0	70	130			Ø
o-Xylene	1.000	0.15	₩.	0,22	78.0	70	130			
Propylene	1.710	0.15	-	0	171	70	130			w
Styrene	0.9250	0.75	+	0	92.0	70	130			
Fetrachloroethylene	4.240	0.15	-	4.44	-20.0	70	130			တ
Fetrahydrofuran	1.100	0.15	•	0	116	76	130			
Qualifiers: Results report	Results reported are not blank corrected		£ Estimas	Estimated Value above quentitation range	itation rang		H Holding ta	Holding times for preparation or analysis exceeded	ansiysis excess	ded
) Analyte detec	Analyte detected below quantitation limit		ND Not Det	Not Detected at the Limit of Detection	Jetection		R RPD outsi	RPD outside accepted recovery limits	limis	
S Spike Recove	Spike Recovery outside accepted recovery limits	nits								•

LaBella Associates, P.C.

C1712063 Eldre Corp

CLIENT: Work Order:

Project:

TestCode: 1ugM3_T015

22/2017 SeqNo: 151963 30 30 30 30 30 30 30 30 30 30 30 30 30	ö		!	!			9	٠		Talland Total	2	
Page	4nalyle	Batch (D; R13073	TestNo. 1	0-15		*4	tnalysis Date		017	SeqNo: 151	863	
3.460 0.15 1 3.27 19.0 70 130 130 14		Resuit			PK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qua
1,040 0,15 1 1 1,0	Soluene	3.460	0.15	+	3.27	19.0	70	130				s
1,044 0,15 1 1,046 1,104	rans-1,2-Dichloroethene	0.9100	0.15	-	0	91.0	202	130				
A 386 615 1 1 1 1 1 1 1 1 1	rans-f,3-Dichloropropene	1.040	0.15	-	0	104	7.0	130				
1,140 0,15 1 0,16 98.0 70 13	Trichtoroethene	4.380	0.15	-	4.18	20.0	5	130				ťΩ
Samptiype: MSD 1140 015 1 0.16 98.0 70 130 Samptiype: MSD ToestCode: 1ugM3_TO15 Units: ppt/L Analysis Date: 12/22/2017 RunNo: 13073 RunNo: 13073 Belch ID: R13073 TestCode: 1ugM3_TO15 Units: ppt/L Analysis Date: 12/22/2017 SoqNo: 151964 Rasult PCL SPK Ref Val %REC LOWLINI Hight-linit RPD Ref Val %RPD RPD Ref Val SpgNo: 151964 0.8500 0.15 1 0 2 66.0 70 130 0.78 9.76 30 0.9500 0.15 1 0 95.0 70 130 0.78 9.76 30 0.9500 0.15 1 0 95.0 70 130 0.78 9.76 30 0.8500 0.15 1 0 95.0 70 130 0.76 1.74 30 1.560 0.15 1 0 126 70 130 1.72 1.74 <th< td=""><td>Vinyl acetale</td><td>0.9600</td><td>0.15</td><td>-</td><td>0</td><td>96.0</td><td>12</td><td>130</td><td></td><td></td><td></td><td></td></th<>	Vinyl acetale	0.9600	0.15	-	0	96.0	12	130				
Sampt'spe. MSD TestCode: 1ugM3_TO15 Units. ppbV Prep Date: Perp Date:	Vinyl Bromide	0.9860	0.15	-	0	98.0	02	55				
Samply year MSD TestiCode: *LugMA_TOTS Units. ppb/ Analysis Date: 12222017 SeqNo: 151964 Beach ID: R13073 TestINo: TO-15 Analysis Date: 121222017 SeqNo: 151964 Result PQL SPK Value SPK Ref Val %REC LowLinit High Linit RPD Ref Val %RED To 130 1.16 20 30	vinyi chloride	1.140	0.15	+	0.16	98.0	2.0	130				
Part	Sample ID: C1712063-001A MS	SampType: MSD	TestCode: 1	ugM3_TO1;	11		Prep Date				73	
Figure F		Batch ID; R13073	TestNo: T	70-45		4	knalysis Date		017	SeqNo: 1519	964	
racytloroethane 1,080 0,15 1 0,2 88.0 70 130 1,16 7,14 30 racytloroethane 0,8600 0,15 1 0 86.0 70 130 0,78 9.76 30 cloroethane 0,8600 0,15 1 0 86.0 70 130 0,78 9.76 30 ochtaere 0,8900 0,15 1 0 86.0 70 130 0,78 9.76 30 sthybenzene 1,360 0,15 1 0 76.0 70 130 0.78 9.76 30 sthybenzene 1,350 0,15 1 0 88.0 70 130 1,77 7.41 30 obenzene 0,3600 0,15 1 0 88.0 70 130 0.97 103 30 obenzene 0,15 1 0 4 70 10 10 10 10 10 <td>Analyte</td> <td>Rasult</td> <td></td> <td></td> <td>PK Ref Val</td> <td>%REC</td> <td></td> <td></td> <td>RPD Ref Val</td> <td>%RPD</td> <td>RPDLIMIT</td> <td>Qual</td>	Analyte	Rasult			PK Ref Val	%REC			RPD Ref Val	%RPD	RPDLIMIT	Qual
rachloroethane 0.8600 0.15 1 0 66.0 70 130 0.78 9.76 30 cloroethane 0.95500 0.15 1 0 95.0 70 130 0.78 9.76 30 certaene 0.9900 0.15 1 0 95.0 70 130 0.96 3.78 9.78 30 brobberzene 1.280 0.15 1 0 126 70 130 0.96 3.78 30 30 brobberzene 1.550 0.15 1 0 126 70 130 0.83 30 30 broberzene 0.8800 0.15 1 0 96.0 70 130 0.83 30 30 broberzene 0.9800 0.15 1 0 96.0 70 130 125 10.4 30 broberzene 1.170 0.15 1 0 96.0 70 130 125<	f, 1, 1-Trichloroethane	1,080	0.15	-	0.2	88.0	70	130	1.16	7,14	8	
Discretization Disc	f. 1,2,2-Tetrachioroethane	0.8600	0.15	-	0	\$6.0	70	130	0.78	9.76	30	
oethane 0.9900 0.15 1 0.990 70 130 0.96 3.08 3.0 oethane 0.8300 0.15 1 0 63.0 70 130 0.96 3.55 30 biotoberizene 1.280 0.15 1 0 726 70 130 0.96 3.55 30 althybenzene 1.280 0.15 1 0 76 70 130 0.98 30 obenzene 0.5400 0.15 1 0 94.0 70 130 0.95 71 30 optopare 0.9900 0.15 1 0 94.0 70 130 0.95 71 10 optopare 0.9900 0.15 1 0 94.0 70 130 0.95 70 130 125 70 130 125 70 130 125 70 130 125 70 130 125 103 30	t, 1,2- Frichlonethane	0.9500	0.15	-	0	95.0	70	130	0.95	¢.	8	
Oethere 0.8309 0.15 1 0 63.0 70 130 0.86 3.55 30 Introductione 1.260 0.15 1 0 126 76 130 1.17 7.41 30 attrification 1.560 0.15 1 0 79 76 130 1.72 7.41 30 oberation 1.020 0.15 1 0 78 76 130 0.85 7.71 30 oberation 0.9800 0.15 1 0 94.0 70 130 0.95 7.11 30 otherscene 0.9800 0.15 1 0 94.0 70 130 0.95 7.11 30 openzene 1.170 0.15 1 0.44 73.0 70 130 1.25 6.61 30 obenzene 1.120 0.15 1 0 125 70 130 1.25 6.61 30	t, 1-Dichloroethane	0.9900	0.15	~	0	0.66	70	130	0.96	3.08	8	
1.250 0.15	1,1-Dichforoethene	0.8300	0.15		0	63.0	70	130	0.86	3,55	8	
sthylbenzene 1.550 0.15 1 0.79 76.0 70 130 1.72 10.4 30 coethane 0.8809 0.15 1 0 88.0 70 130 0.83 5.85 30 obenzene 1.020 0.15 1 0 102 70 130 0.83 5.85 30 othopsine 0.9400 0.15 1 0 94.0 70 130 0.95 7.11 30 othopsine 0.9800 0.15 1 0 94.0 70 130 0.95 7.11 30 othopsine 0.1400 0.15 1 0 94.0 70 130 1.25 7.11 30 oberrace 0.15 1 0 1.25 70 130 1.25 5.61 30 oberrace 0.150 1 0 1.25 70 130 1.25 5.61 32 oberrace	1,2,4-Trichforobenzene	1.250	0.15	-	0	126	70	130	1.17	7.41	30	
coethane 0.8890 0.15 1 0 68.0 70 130 0.83 5,85 30 obenzene 1.020 0.15 1 0 94.0 70 130 0.95 7.11 30 oethane 0.9400 0.15 1 0 94.0 70 130 0.95 7.11 30 opropane 0.9800 0.15 1 0 94.0 70 130 0.95 7.11 30 ethylibenzane 1.170 0.15 1 0.44 73.0 70 130 1.21 1.05 30 obenzene 1.120 0.15 1 0 1.25 70 130 1.21 70 130 1.25 56.1 30 obenzene 1.060 0.15 1 0 1.25 70 130 1.21 30 32 32 30 eth 0.6300 0.15 1 0.14 0	1,2,4-Trimethylbenzene	1,550	0.15		0.79	76.0	20	130	1.72	10.4	8	
Obertzene 1,020 0.15 1 0 102 70 130 0.95 7.11 30 Octhane 0.5400 0.15 1 0 94.0 70 130 0.95 7.11 30 Optropane 0.9800 0.15 1 0 98.0 70 130 0.97 1.05 30 ethylibenzene 1.170 0.15 1 0 4.25 70 130 1.21 3.25 30 obenzene 1.120 0.15 1 0 112 70 130 1.21 3.25 30 obenzene 1.060 0.15 1 0 112 70 130 1.21 3.25 30 ethylpentane 0.6300 0.15 1 0 1.06 70 130 1.01 4.83 30 ethylpentane 0.9700 0.15 1 0 1.06 70 130 1.01 1.03 1.01 <td>1,2-Dibromoethane</td> <td>0.8800</td> <td>0.15</td> <td></td> <td>0</td> <td>88.0</td> <td>70</td> <td>130</td> <td>0.83</td> <td>5,85</td> <td>39</td> <td></td>	1,2-Dibromoethane	0.8800	0.15		0	88.0	70	130	0.83	5,85	39	
Oethane 0.9460 0.15 1 0 94.0 70 130 0.95 1.06 30 Optropane 0.9800 0.15 1 0 98.0 70 130 0.97 1.03 30 ethylbenzane 1.170 0.15 1 0.44 73.0 70 130 1.21 3.25 30 obenzene 1.120 0.15 1 0 1.25 70 130 1.21 3.25 30 obenzene 1.060 0.15 1 0 1.25 70 130 1.21 3.25 30 obenzene 1.060 0.15 1 0 1.25 70 130 1.21 3.25 30 obenzene 0.060 0.15 1 0 1.06 70 130 1.07 4.57 30 athyloentane 0.9700 0.15 1 0.14 94.0 70 130 1.06 1.87 30 <td>1.2-Dichlorobenzene</td> <td>1.020</td> <td>0.15</td> <td></td> <td>o</td> <td>102</td> <td>70</td> <td>130</td> <td>0.95</td> <td>7.11</td> <td>30</td> <td></td>	1.2-Dichlorobenzene	1.020	0.15		o	102	70	130	0.95	7.11	30	
optropende 0.15 1 0 98.0 70 130 0.97 1.03 30 eithylbenzane 1.170 0.15 1 0.44 73.0 70 130 1.25 6.61 30 ne 1.250 0.15 1 0 125 70 130 1.21 3.25 30 obenzene 1.120 0.15 1 0 112 70 130 1.21 3.25 30 obenzene 1.060 0.15 1 0 112 70 130 1.07 4.57 30 obenzene 0.150 1 0 1 0 1.07 4.57 30 athyloentene 0.150 1 0.17 46.0 70 130 0.56 11.8 30 athyloentene 0.150 1 0.14 94.0 70 130 1.05 1.8 30 athyloentene 1.080 0.15 1	1,2-Dichloroethane	0.9460	0.15		0	94.0	70	130	0.95	1.06	30	
sthylbenzene 1.170 0.15 1 0.44 73.0 70 130 1.25 5.61 30 ne 1.250 0.15 1 0 125 70 130 1.21 3.25 30 obenzene 1.120 0.15 1 0 112 70 130 1.27 3.25 30 obenzene 1.060 0.15 1 0 1 2 70 130 1.07 4.57 30 e 0.6300 0.30 1 0.17 46.0 70 130 1.87 30 en 0.70 1 30 1 30 1.87 30 ene 1.080 0.15 1 0.14 94.0 70 130 1.06 1.87 30 ne Results reported are soil blank corrected E Estimated Value above quantitation tanalysis exceeded H Holding times for preparation or analysis exceeded I Analyte detected below quantitation in malysis	1,2-Dichloropropane	0086.0	0.55		0	98.6	70	130	18.0	1.03	8	
1.250 0.15	1,3,5-Trânethylbenzane	1.170	0.15	سپ	0.44	73.0	æ	130	1,25	5.61	æ	
Obsenzene 1 120 0.15 1 0 12 70 130 1.07 4.57 30 Obsenzene 1.060 0.15 1 0 106 70 130 1.01 4.83 30 Results reported are and blank connected 0.15 1 0.17 46.0 70 130 0.56 11.87 30 Individed percented are and blank connected Eximated Value above quantitation tringe Individed percented are and blank connected Eximated Value above quantitation tringe Individed percented are and blank connected Individual provision accounting to provide accounting to provided accounting to provide accounting to pr	1,3-butadiene	1.250	0.15	w	O	125	72	130	1.21	3.25	30	
obenzene 1.060 0.15 1 0.17 46.0 70 130 1.01 4.83 30 and 0.6300 0.30 1 0.17 46.0 70 130 0.56 11.8 30 drift/pentane 0.9700 0.15 1 0.14 94.0 70 130 1 305 30 and 1.080 0.15 1 0.14 94.0 70 130 1.87 30 and Results reported are not blank corrected E. Estimated Value above quantitation trange H. Holding times for preparation or analysis exceeded H. Holding times for preparation or analysis exceeded J. Analyte detected below quantitation limit ND. Not Detected at the Limit of Chercidon R. RPD outside accepted recovery limits	1,3-thichlorobenzene	1 120	0.15	~~	Đ	112	72	130	1.07	4.57	8	
thypertane 0.9700 0.15 1 0.17 46.0 70 130 0.56 11.8 30 thypertane 0.9700 0.15 1 0.14 94.0 70 130 1 3.05 30 and a sessits reported are not blank connected E Estimated Value above quantitation tange H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit at ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits	1,4-Dichlorobenzene	1.060	0.15	-	ø	106	72	130	1.01	4.83	ଞ	
136	1,4-Dioxane	0.6300	0.30	₩	0.17	46.0	8	130	6.56	11.8	8	Ø
Analyte detected below quantilation firmt NP Not Detected at the Limit of Certains R	2,2,4-trimethylpentane	0.9700	0.15	Ann.	O	97.0	8	130	•••	3.05	30	
Results reported are and blank convected E Estimated Value above quantitation tange H Analyte detected below quantitation first NP Not Detected at the Lisnic of Evelvetion R	4-ethyltoluene	1.080	0.15	4	0.14	94.0	8	130	1.06	1.87	30	
Analyte detected below quantitation Henri ND Not Detected at the Limit of Extection R	} .	d are and blank corrected	EI.	}	d Value above quans	itation cmg	ی		folding times for	preparation or an	alysis exceeds	18
		d below quantitation linit	Z		cted at the Limit of E	Detection		8.	PD outside acce,	pted recovery lim.	its	

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order: CLIENT:

TestCode: lugM3_TO15

TestCode: JugM3_TO15

Spike Recovery outside accepted neovery limits

Analyte defected below quantitation limit
 Spike Recovery outside excepted recovery

	CLENT: LaBella Associates P.C.
--	--------------------------------

Eldre Corp C1712063 Work Order: Project:

Packet P	Sample ID: C1712063-001A MS	SampType: MSD	ID: C1712063-001A MS SampType: MSD TestCo	de: fugM3_TC	TestCode: fugM3_TO15 Units: ppbV		Prep Date	<u>ب</u> ه		RunMo 13073	073	
Present Present Prop. SPK value SPK Red Val "KFEC Lond.Inth High-Linth RPD Red Val "KFEC Lond.Inth High-Linth RPD Red Val "KFEC SPK value SPK Red Val "KFEC Lond.Inth High-Linth RPD Red Val "SP SP SP SP SP SP SP S	Client ID: SVI-01	Batch (D; R13073	Test	Vo: TO-15			Aralysis Dat		2017	SeqNo: 15	1964	
obsert 104.4 0.36 1 191.2 -888d 70 130 149.5 35.5 30 orded 1.280 0.15 1 0 99.0 70 130 149.5 35.5 30 orded 1.280 0.15 1 0 99.0 70 130 149.5 30 30 n 1.280 0.15 1 0 99.0 70 130 104 4.83 30 n 1.280 0.15 1 0 95.0 70 130 104 7.82 30 n 1.280 0.15 1 0 94.0 70 130 0.17 7.00 30 30 n 1.280 0.15 1 0 94.0 70 130 0.17 7.0 130 17.2 30 n 1.280 0.15 1 0 94.0 70 130 0.17 130	Analyie	Resutt	Po	SPK value	SPK Ref Val	%REC	LowLimit	Highi.smit	RPD Ref Val	%RPD	RPDLimit	Octa
dep 0,9800 0,15 1 0,9800 77 130 130 130 300	Acetone	104.4	0.30	-	191.2	.8880	5	130	146 5	26.0		1 2
1.250	Allyf chloride	0.9900	0.15	•	0	0.66	2 5	130	15.5	3 6	8 8	ņ
Noticipation (1980) 0.15 (1980) 0.16 (1980) 0.16 (1980) 0.16 (1980) 0.16 (1980) 0.15 (1980) 0.16 (1980) 0.15 (1980	Вепzепе	1.250	0.15	***	0.38	87.0	2 8	130	\$ 2	910	3 8	
Not properties 0.9500 0.15 1.0 0.950 70 1.50 0.977 2.05 2.05 1.0	Benzyl chlorida	1.090	0.15		0	109	2 2	ğ £	5. 19.	9-1-6	2 6	
National Control of the control of	Bromodichloromethane	0.9500	0.15	4	0	95.0	2 62	3 55	1.0.0	40°	200	
thatesheetheetheetheetheetheetheetheetheeth	Stomoform	0.8300	0.15	4~	0	83.0	202	5 55	16:0 14:0	4:08	2 %	
	Sromomethane	0.9400	0.15	-	0	94.0	202	130	900		R ₽	
25000 0.15 1 0 0.40 70 130 0.97 3.14 3.0 3.14 3.0 3.14 3.0 3.14 3.0 3.14 3.0 3.14 3.0 3.14 3.0 3.14 3.0 3.14 3.0 3.0 3.14 3.0	Carbon disulfide	1.220	0.15	~	0.53	0.69	202	£ 8	4	0 00	₹ 8	ď
Specifie 0,5000 0,15 1 0,900 70 130 0,89 1,12 30 antes 0,9000 0,15 1 0 97.0 70 130 0,89 1,12 30 harre 0,9900 0,15 1 0 99.0 70 130 0,99 1 30 30 hharre 1,090 0,15 1 0 94.0 70 130 0.99 0 30 shore-tenee 1,990 0,15 1 0 94.0 70 130 0.99 0 0 obstractions 0,15 1 0 94.0 70 130 0.96 1,05 30 ne 1,700 0,15 1 0 94.0 70 130 0,16 30 she 1,700 0,15 1 0 92.0 70 130 0,16 30 she 1,050 0,15 1	Carbon tetrachtoride	0.9400	0.15	-	0	94.0	70	130	76.0	3. 15. E.	8 8	
Native Heat 0,8700 0,15 1 0 87.0 70 130 0,980 1,03 30 30 30 30 30 30 30	Chlorobenzene	0.9000	0.15	-	Ф	90.0	22	130	0.69	1.12	Ê	
hatter 6,9900 0.15 1 0 0 99.0 70 130 0.99 0 0 30 hatter 1,090 0.15 1 0 0 109 109 70 130 0.99 0 0 30 hatter 1,090 0.15 1 0 0 109 109 70 130 107 185 30 hatter 1,170 0.15 1 0 0 10 10 117 10 10 10 10 10 10 10 10 10 10 10 10 10	Shloroefasne	0.9700	0.15	-	0	97.0	7	130	0.98	1.03	. E	
hatter 1,090 0.15 1 1,090 0.15	Shloroform	0066'0	0.15	•	0	0.68	22	130	0.99	Ö	3	
hidroprophene 0.9400 0.15 i	Shloromethane	1.090	0.15	v ~	0	109	7.0	\$30	1.07	1.85	30	
1,170 0.15 1	is-1,2-Dichloroethene	0.9400	0.15	₩	Ö	80	70	130	-	6.19	8	
1,170 0.15 1	is-1,3-Dichloropropere	0.9400	0.15	**	0	94.0	70	130	0.95	1.06	33	
1,020 0,15 1 0,33 69.0 70 130 0,15 2.90 30 30 30 30 30 30 30	Syciohexane	1,170	0.15		Đ	117	22	130	1.22	4,18	30	
she 1,020 0.15 1 0.33 69.0 70 130 1,05 2.90 30 she 1,030 0.15 1 0.19 64.0 70 130 1.07 3.81 30 1,050 0.15 1 0.24 81.0 70 130 1.12 6.45 30 0,9800 0.15 1 0.24 81.0 70 130 0.98 6.24 30 1,240 0.15 1 0.47 74.0 70 130 0.99 1.02 30 1,350 0.15 1 0.47 74.0 70 139 17.9 30 1,340 0.15 1 0.46 70 130 17.9 30 1,340 0.15 1 0.40 70 130 17.9 30 1,450 0.20 0.15 1 0.40 70 130 17.9 17.9 17.9 17.9 <	Dibromochloromethane	0.8500	0.15	+ -	0	85.0	70	130	0.8	90'9	8	
1,030 0,15 1 0,19 0,15 1 0,19 0,15 1 0,19 0,15 1 0,19 0,15 1 0,19 0,15 1 0,19 0,15 0,15 1 0,19 0,10 1,10 1,10 0,15 0,100 0,15 1 0,19 0,100 0,15 1 0,10 0,10 1,10 0,10 1,10 0,10 0,10 1,10 0,10 0,10 1,10 0,10 0,10 1,10 0,10 0,10 1,10 0,10 0,10 1,10 0,10 0,10 1,10 0,1	sthyi acetale	1.020	0.15	-	0.33	69.0	70	130	1,05	2.90	1 æ	U)
1.050 0.15 1 0.24 61.0 70 130 1.12 6.45 30 0.9300 0.15 1 0 93.0 70 130 0.98 5.24 30 1.210 0.15 1 0 98.0 70 130 0.99 1.02 30 1.210 0.15 1 0.47 74.0 70 130 0.99 1.02 30 1.520 0.15 1 0.47 74.0 70 130 0.99 1.02 30 1.520 0.15 1 0.96 62.0 70 130 0.86 17.9 30 slicohol 2.02 0.15 1 0.7 64.0 70 130 15.1 11.9 30 sketone 2.02 0.15 1 36.4 -1640 70 130 2.18 37.4 30 sketone 2.00 0.30 1 0.1 2.0	Shylbenzene	1.030	0.15	-	0.19	64.0	20	55	1.07	3.81	3	l
0.9360 0.15 1 0 93.0 70 130 0.98 5.24 30 1.210 0.15 1 0.47 74.0 70 130 0.99 1.02 30 1.210 0.15 1 0.47 74.0 70 130 1.33 9.45 30 1.580 0.15 1 0.96 62.0 70 130 1.89 17.9 30 1.340 0.15 1 0.96 52.0 70 130 1.89 17.9 30 slicohol 2.0.21 0.15 1 0.7 64.0 70 1.89 17.9 30 slicohol 2.0.21 0.15 1 0.7 64.0 70 1.50 1.51 1.13 30 slicohol 2.0.21 0.15 1 36.4 -1640 70 130 2.16 150 1.51 1.51 30 slicohol 2.0.21 0.30	reon 11	1,050	0.15	-	0.24	81.0	57	130	1.12	6.45	89	
0.9800 0.15 1 0 98.0 70 130 0.99 1.02 30 1.210 0.15 1 0.47 74.0 70 130 1.33 9.45 30 0-1.3-butadiene 1.580 0.15 1 0.96 62.0 70 130 189 17.9 30 1.3-butadiene 1.000 0.15 1 0.96 62.0 70 130 189 17.9 30 allochol 1.340 0.15 1 0.7 64.0 70 130 18.9 17.9 30 allochol 2.0.21 0.15 1 36.64 -1640 70 130 28.43 33.8 30 a) Ketone 2.100 0.30 2 0.55 77.5 70 130 2.18 37.4 30 butyl Ketone 0.300 0.30 1 2.01 70 130 0.76 130 17.4 30	reon 113	0.9300	0.15	-	Ф	93.0	22	130	0.98	5.24	33	
1.210 0.15 1 0.47 74.0 70 130 1.33 9.45 30 1.580 0.15 1 0.96 62.0 70 130 1.89 17.9 30 1.580 0.15 1 0.96 62.0 70 130 1.89 17.9 30 1.340 0.15 1 0.7 64.0 70 130 1.81 17.9 30 1.340 0.15 1 0.7 64.0 70 130 1.81 17.9 30 1.340 0.30 2.02 0.35 77.5 70 130 28.43 33.8 30 1.340 0.30 2 0.55 77.5 70 130 28.43 33.8 30 1.340 0.30 0.30 1 0.30 2.05 70 130 28.43 33.8 30 1.340 0.350 0.30 1 0.30 1.00 33.0 70 130 2.18 3.74 30 1.340 0.350 0.30 1 0.01 1.00 70 130 0.31 17.4 30 1.340 0.350 0.30 1 0.01 1.00 1.00 1.00 1.00 1.00 1	reon 114	0.9800	0.15	-	Φ	98.0	20	\$£	0.99	1.02	8	
1.58d 0.15 1 0.96 62.0 70 130 1,89 17.9 30 0-1.3-butadiene 1.000 0.15 1 0 100 70 150 0.86 15.1 30 slicohol 2.0.24 0.15 1 0.7 64.0 70 130 28.43 33 30 slicohol 2.0.24 0.15 1 36.64 -1640 70 130 2.843 33.8 30 ył Ketone 2.100 0.30 2 0.55 77.5 70 130 2.18 3.74 30 ył Ketone 2.000 0.30 1 2.01 -1.00 70 130 0.81 17.4 30 butył Ketone 2.000 0.30 1 2.01 -1.00 70 130 0.76 2.52 30 . Rosults reported are not blank corrected E fishinated Value abovy quantitation rang tank (inition f. Discortion of analysis exceeded H Holding times for preparation of analysis exceeded	reon 12	1,210	0.15	•	0.47	74.0	2	130	1.33	9.45	30	
1.340 0.15 1 0.7 64.0 70 150 15.1 30 1.340 0.15 1 0.7 64.0 70 150 151 11.9 30 1.340 0.15 1 0.7 64.0 70 150 151 11.9 30 1.350 0.15 1 36.64 -1640 70 130 28.43 33.8 30 1.350 0.30 2 0.55 77.5 70 130 28.43 33.8 30 1.374 30 1.375 30 1.374 30 1.375 30 1.	leptane	1.580	0,15	4 00	96'0	62.0	2	130	1.89	17,9	33	¢7
1.340 0.15 1 0.7 64.0 70 150 151 11.9 30 151 12.9 30 151 12.9 30 32.8 3	lexachloro-1,3-butadiene	1.000	0.15	4711	0	100	70	\$£	0.85	15.1	8	
Secretary 20.21 0.15 1 36.64 -1640 70 130 28.43 33.8 30	exane	1.340	0.15	1=1	7.0	64.0	30	130	13.	11.9	8	S
E	sopropyl alcohol	20.21	0.15	**	36.64	-1640	20	130	28.43	33.8	8	8
ył Ketone 0.330 1 0 33.9 70 130 0.81 84.2 30 ył Ketone 2.090 6.30 1 2.01 -1.09 70 130 2.38 17.4 30 butył Ketone 0.590 0 0 70 130 0.76 25.2 30 chyl Ketone 0.590 0 0 70 130 0.76 25.2 30 n Rosults reported are not blank corrected E fishinated Value abovy quentitation range H Holding times for preparation or analysis exceeded H Analyse defected below quantifation limit NO Machine for the corrected NO Machine for the c	n&p-Xylene	2.100	0.30	cv	0.55	77.5	202	130	2.18	3.74	8	
yf Ketone 2.00 6.30 1 2.01 -1.09 70 130 2.38 17.4 30 butyf Ketone 0.5900 0.30 1 0.17 42.0 70 130 0.76 25.2 30 . Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded Analyse defected below quantitation limit NO Analyse defected below quantitation limit	dethy! Buty! Ketone	0,3360	0.30	₩	0	33.0	20	130	0.81	84.2	8	SR
butyl Ketone 0.5909 0.30 1 0.17 42.0 70 130 0.76 25.2 30 Results reported are not blank corrected E Estimated Value above quantitation range H Holding times for preparation or analysis exceeded Analyte detected below quantitation limit AND Not Deserted as the Limit of Deserted.	dethyl Ethyl Kelone	2.000	0.30	-	2.01	-1.00	20	130	2.38	17.4	33	w
Results reported are not blank corrected E Estimated Value above quantitation range R Analyse defected below quantitation limit RD Not Described as the Limit of Described	dethyl Isobutyl Ketone	0.5900	0.30	-	0.17	45.0	7.0	130	0.76	25.2	33	S
NO Not Deserted at the Limit of Denotrion	-	d are not blank corrected			ed Value above quant	Etation fant		į	foldise times for	ncenacition of a	nalveis exceed	! : দু
3.1.7 11 17 17 17 17 17 17	J Analyte defected	d below ussplitstion limit			Servicel as the Lineic of B	Defection			PD A SELECTION AND ADDRESS OF THE PERSON AND		1	}

Clear ID: SW.04	Sample ID; C1712063-001A MS SampType: MSD	TestCo	de: 1ugM3_TC	TestCode: 1ugM3_TO15 Units: ppbV		Prep Date:	5 0		RunNo: 13073	073	
	Batch ID: R13073	Testa	Vo: 70-15			Analysis Date: 12/22/2017	te: 12/22/5	2017	SeqNo: 151964	1964	
Analyte	Result	P01	SPK value	SPK Ref Val	%REC	LowLimis	HighLimiŧ	RPD Ref Val	%RPD	RPDLimit	Qua
Methyi tert-butyl ether	1.000	0.15	72	٥	100	7.0	130	0.93	7.25	30	
Methylene chloride	2.120	0.15	yun.	2.2	-8.GO	70	130	2.63	21.5	88	W
o-Xylene	0.9800	0.15	- -	0.22	76.0	70	₩ <u></u>	-	2.02	8	
Propyfene	1.610	0.15	***	o	161	70	130	1,71	6.02	8	S
Styrene	0.9500	0.15	+	0	95.0	70	33	0.92	3.24	33	
Tetrachloroethylene	3.290	0.15	*	4.44	-115	70	8	4.24	25.2	æ	(A)
Tetrahydrofuran	1.010	0.15	+	O	101	2	130	17	8.53	8	
Тоluеле	2.770	0.15	**	3.27	-50.0	70	130	3.46	22.2	33	¢ρ
trans-1,2-Dichloroethene	0.9600	0.15	-	0	96.0	70	130	0.91	5.35	8	
trans-1,3-Dichloropropene	0.9900	0,15	-	0	0.66	22	130	1.04	4.93	8	
Trichlaroethene	3.190	0.15	-	4.16	-99.0	7.0	130	4.38	31.4 4.TE	8	₩
Vinyl acetate	0.9500	0.15	Г	0	95.0	7	133	0.96	1.05	8	
Vinyl Bromide	0.9800	0.15	-	0	98.0	5	130	0.98	٥	8	
Vinyl chloride	1.090	0.15	-	0.16	93.0	5	130	1.14	4.48	36	

:		:				
•	Results reported are any blank corrected	ਜ਼	Estimated Value above quantitation range	æ	Holding times for preparation or analysis exceeded	
т,	Analyte detected below quantitation litti	GN.	ND Not Detected at the Limit of Detection	×	RPD outside accepted recovery limits	
ø	Spike Recovery outside accepted recovery limits				Page 1 nf 5	

Qualifiers

LaBella Associates, P.C.

C1712063 Eldre Corp

Work Order: CLIENT:

Project:

TestCode: 1ugM3_TO15

ług/m3 Delection Lânil October 2017

Method TO-15 Units=ppb	č	١		0.059	0,086	0.043		0.405 80,405	0.084	0.152	0,034				6.078	0.085	0.10½	0.031	0.097	0,048	0.033	0.034	0.035	0.034	0.039	0.080	2000	280	0.031	0.046	0.035	0,034	0.050	0.043	0.030	0.040	•	-		
	200 E	111.0%	116.2%	112.4%	117.1%	111.0%	119.0%	111.0% 2.1.0%	120.5%	118.6%	118.6%	119.0%	116.7%	114.3%	17.1%	121.9%	\$08.1%	105.2%	201.4%	313.5% 308.7%	108 1%	103.8%	104.3%	103.8%	105.7%	15 88 15 88 15 88	101.4%	103.8%	104.9%	103.8%	105.7%	109.5%	105.7%	105.7%	105.7%	105.2%				
	StdDes	200	50 0	0.02	200	8	() () () () () () () () () ()		0.03	89	€ 100	0.01	60	68 0	0.02	ි. දිරි	ි පිට	ं हुन् हुन्	200 000 000 000 000 000 000	**************************************	00	- F0'0		00 100	्र ,00 0	~ 25 5 25 5 26 5 26 5 26 5 26 5 26 5 26 5	00000000000000000000000000000000000000	88	100	 	200 100	(A)	0.02	те Б	000 100	Ö	25 pt 26 pt	ost (Pak	en inger	VV e
	AVG	0.33	0.35	0.34	0.35	0.33	0 5 5	0.33	0.36	0.36	0.36	0.36	0.35	\$. \$.	0.35	0.38	0.32	G 32	77.6	66.0	0.32	0.31	0.31	0.31	0.32	1.33	2 6	0.31	0.31	0.33	0.32	0.33	0.32	0.32	3 K	0.32				
	ior #s	0.33	0.36	0.3	0.33	25.5	0.00	, O	634	0,35	0.35	6.35	6.35	0.28	98	9	0.3	0.31	3 5	33	0.32	5,3	0.31	0.31	(A)	5 6	9 67	0.31	2	0.32	0.33	0.33	0.33	ස සි දි	7 5	N.				
	15 25 26 27 28	0.33	0.33	0.34	0,32	0,32	200	38	0.36	0.34	8	8 6	0.33	0.35	0.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.28	5.5	470	32	0.32	0.34	0,3	6.33	(C) (C)	8 °	033	0.29	8.33	0.3	0.31	0.31	0.3	д ;	3 6	n S				
ioo Lanii 017	EPT #8	0.37	0.35	86. 198	0.37	60 c	6.00	0.37	0.41	0.4	0.37	0.37	0.37	27		86.0	250	250	0.38	220	0.33	0.32	0.33	0.32	583	25.0	033	0.33	0.33	0.3	0.33	0.34	0.31	0.33	200	£6.5				
tugins Delection Lanil October 2017	™,#4	0.32	0.36	0.33	0.37	0.35	25.0	88	0.38	0.32	98.0	0.36	0.36	0.37	0.35	4.5	77.0	333	200	0.34	€34	0.31	0.32	0.32	a c	2 6	6.32	0.33	6.3	0,33	0.3	0.34	0.33	8 8	3 6	3				
înî	57, #3	0.32	0.35	0.34	929	0.35	7,5	0.39	0.35	D.3	F	8 C	9 4		5. G	20.00	20.00	0.35	0.35	0.32	0.31	0.33	0.32	923	2 2	0.08	9.25	6.32	6.32	0.3	0,33	0.33	6.34	3 6	7.5	r S				
	Š	0.33	550	6.35	7 6 3 6	0.32	50	86.0	0,33	0.3	S (0.35	S. 6	# K	e e	9 6	? f	\$ C.5	25	0.3	0.32	0.3	0.3	5 6 5 6	3 6	\$6.0 0	0.31	0.32	0.31	63	S S	0.32		F 62	0.39	7,74				
	IDL#I	0.33	99	# 12 20 20 20 20 20 20 20 20 20 20 20 20 20	¥	0.35	03	0.35	98	4.5	9 6	3 6	2 5	# 92 5 C	8 8	9 6	333	03	0.35	8	633	5	و ا	3 5	7 E	0.32	0.31	0.28	0.31	0,33	0.31	g .	0.31	3, 50	2	į				
	Amt	5.0	m (7 C	9 6		0.3	0.3		603	3 5	2 5	7 6) k	? 0	2 C	3 6	9 69	83	6.3	63	en (ლ ი ი	3 6	3 63	0.3	0.3	G3	e .	63	63	ල :	en e Eve	2 62		}				
Centek Laboratories IDL Study	Compound	Const & 2	Chicomothesa	Figor 114	Vinor Chlorida	Butane	1,3-buzadiene	Bromomethane	Choroettane		Vice Bronide	Figure 14	Accelura	Pediate	(scoronví alcohol	1. Edich proethere	Freon 113	t-Bulyl alcohol	Methylene chloride	Allyf chloride	Carbon disuride	trans-1,2-oranorchene	industrial encountry earlier	Viewi acetala	Methyl Ellwi Kelone	cis-1,2-dichloroethene	Hexane	Elbyl acetate	Chloreform	letalydroluler	1,4-dichyrochiane		Cytomeskane Carbon terrothynin	Benzera	Mathy! mathacyligie		Confidential			

0.01 100.5% 0.030 0.030 0.001 100.5% 0.030 0.030 0.001 100.5% 0.030 0.030 0.001 100.5% 0.030 0	erasij
<u> </u>	শক্ষা
#4 III	entelelj.
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
7 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 10gh 1 10gh 1 10gh 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0.29 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34	
0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23	
66866666666666666666666666666666666666	
Centek Laboratorias 104. Siurty 1,4-dioxane 2,2,4-trimethylpenfane Heptane 1,2-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropopene trans-1,3-dichloropene trans-1,3-dichloropene 1,2-dichloropene Mathyl Isobutyl Ketone Oboromochloromethane Mathyl Isobutyl Ketone 1,2-dichloroelinylene Chloroberzene Rep-vylene Syrane Stomochloroelinylene Ethylbenzene Syrane Syrane Syrane Syrane Syrane Syrane Syrane 1,1,2,2-tetnachloroelinane Chloroberzene 1,3,2-tetnachloroelinane 1,3-dichloroberzene 1,3-dichloroberzene 1,3-dichloroberzene 1,3-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,3-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,3-dichloroberzene 1,3-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,3-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,2-dichloroberzene 1,3-dichloroberzene	
Centek Laboratoria 14-dioxane 12-3,4-trimetrylpeniane Heptane 12-dichloropopane Bromodichloromethan 13-dichloropopane Bromodichloromethan 13-dichloropopane Bromodichloromethan 13-dichloropopane Interpretational 13-dichloropopane Malay Butyl Ketone 13-dichloropopane Malay Butyl Ketone 13-dichloroperzene Malay Butyl Ketone 12-dichloroperzene Malay Butyl Ketone 12-dichloroperzene Malay Butyl Ketone 12-dichloroperzene Malay Butyl Ketone Malay Butyl Ketone 12-dichloroperzene Malay Butyl Ketone 12-dichloroperzene Malay Butyl Ketone 12-dichloroperzene 13-dichloroperzene 13-dichloroberzene 13-dichloroberzene 13-dichloroberzene Malay Butyl Ketone Malay Malay Malay Ketone Malay Mala	
Centex Laboratories 101. Sturty 1,4-dioxane 2,2,4-trimethylipentane Heptane 1,2-dichloropene 1,3-dichloropene 1,1,2-trichloropene 1,1,2-trichloropene 1,1,2-trichloropene 1,2-dichloropene 1,2-dichloropene 1,2-dichloropene 1,2-dichloropene 1,2-dichloropene 1,2-dichloropene 1,2-dichloropene 1,1,2-trichloropene 1,2-dichloropene 1,1,2-trichloropene 1,1,2-trichloropene 1,1,2-trichloropene 1,1,2-trichloropene 1,1,2-trichloropene 1,1,2-trimethylbenzene 1,2-trimethylbenzene	

		1	
Method TO-15 Units-pab	Ž	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
#en	W. C.	105.0% 105.0% 105.0%	
			444 <u>41</u>
	AVG	2	
	ΩL #10	6.1300 6.1200 0.1200 0.1200	
		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
dion Cánil 777	<u>명</u>	1	
0.2 ugʻm3 Detection Lánit October 2017		0.1300 0.1100 0.1000	
6.2 u	IDL#3	0.100 0.100 0.000 0.000	
	ID: #2	20 CO	
	20	20000 0000 0000 0000 0000	
	Amt	ू इ. द्वां इ. द्वां	
Centek Laboratories IDL Study	Compound Viryl Choride	Confidential	

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

$$RRF = Ax * Cis$$
 $Ais * Cx$

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the

compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

SAMPLE DATA

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063

Project: Eldre Corp Collection Date: 12/13/2017
Lab ID: C1712063-001A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"H g		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	0.20	0.15	₽₽bV	1	12/22/2017 6:09:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
1,1-Dichloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,1-Dichtoroethene	< 0.15	0.15	₽₽bV	1	12/22/2017 6:09:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,2,4-Trimethylbenzene	0,79	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	ĩ	12/22/2017 6:09:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	12/22/2017 6:00:00 AM
1,3,5-Trimethylbenzene	0.44	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,3-butadiene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1.3-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
1,4-Dioxane	0.17	0.30 J		\$	12/22/2017 6:09:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	pobV	1	12/22/2017 6:09:00 AM
4-ethyltoluene	0.14	0.15 J	Vdqq	3	12/22/2017 6:09:00 AM
Acetone	170	27	ppbV	90	12/23/2017 B:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Benzene	0,38	0.15	Vdgq	1	12/22/2017 6:09:00 AM
Benzyl chloride	< 0.15	0.15	Vđạq	1	12/22/2017 6:09:00 AM
Bromodichloromethane	< 0.15	0.15	Vdqq	\$	12/22/2017 6:09:00 AM
Bromoform	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Carbon disulfide	0.53	0.15	ppbV	1	12/22/2017 6:09:00 AM
Carbon tetrachloride	< 0.15	0.15	Vdgq	1	12/22/2017 8:09:00 AM
Chłorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Chioroethane	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Chloroform	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Chloromethase	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
cis-1,2-Dichtoroethene	< 0.15	0.15	Vdqq	1	12/22/2017 6:09:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	Vđạq	1	12/22/2017 6:09:00 AM
Cyclohexane	< 0.15	0.15	PopoV	1	12/22/2017 6:09:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/22/2017 6:09:00 AM
Ethyl acetate	0.33	0.15	Vdqq	1	12/22/2017 6:09:00 AM

Qualifiers:

Results reported are not blank corrected

Date: 10-Jan-18

Client Sample ID: SVI-01

Tag Number: 1201.1170

ND Not Detected at the Limit of Detection

Page 1 of 26

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E. Estimated Value above quantitation range

³ Analyte detected below quantitation limit

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Manager and Manage

Client Sample ID: SVI-01

Lab Order:

C1712063

Tag Number: 1201.1170

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-001A

Matrix: AIR

Analyses	Result	**Limit	Qual (Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO.			Analyst: RJP	
Ethylbenzene	0.19	0.15	£	pbV	1	12/22/2017 6:09:00 AM
Freon 11	0.24	0.15	Ę	pbV	1	12/22/2017 6:09:00 AM
Freon 113	< 0.15	0.15	ţ:	∨dqc	1	12/22/2017 6:09:00 AM
Freon 114	< 0.15	0.15	P	opbV	1	12/22/2017 6:09:00 AM
Freon 12	0.47	0.15	ţ.	opb∀	1	12/22/2017 6:09:00 AM
Heptane	0.96	0.15	£	Vdqc	1	12/22/2017 6:09:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	F	pbV	1	12/22/2017 6:09:00 AM
Hexane	0.70	0.15	r	Vđạc	1	12/22/2017 5:09:00 AM
Isopropyl alcohol	37	14	F	opbV	90	12/23/2017 8:17:00 AM
m&p-Xylene	0.55	0.30	¢	Vdqc	1	12/22/2017 6:09:00 AM
Methyl Butyl Ketone	< 0.30	0.30	p	Vdqc	1	12/22/2017 6:09:00 AM
Methyl Ethyl Ketone	2.0	0.30	ķ	Vdqc	1	12/22/2017 6:09:00 AM
Methyl Isobutyl Ketone	0.17	0.30	J þ	Vdqc	1	12/22/2017 6:09:00 AM
Methyl tert-butyl ether	< 0.15	0.15	ķ	Vdqc	ĭ	12/22/2017 6:09:00 AM
Methylane chloride	2.8	1.4	p	Vdqc	9	12/23/2017 7:40:00 AM
o-Xylene	0.22	0.15	p	Vdqc	1	12/22/2017 6:09:00 AM
Propylene	< 0.15	0.15	þ	Vdqc	1	12/22/2017 6:09:00 AM
Styrene	< 0.15	0.15	F	vdqc	1	12/22/2017 6:09:00 AM
Tetrachioroethylene	5.8	1.4	p	Vdqc	9	12/23/2017 7:40:00 AM
Tetrahydrofuran	< 0.15	0.15	F	opb∨	1	12/22/2017 6:09:00 AM
Toluene	3.2	1.4	ŗ	γbV	9	12/23/2017 7:40:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ŗ	Vdqc	1	12/22/2017 6:09:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15	F	Vdqc	1	12/22/2017 6:09:00 AM
Trichtoroethene	4.9	1.4	g.	γββ	9	12/23/2017 7:40:00 AM
Vinyl acetate	< 0.15	0.15	p	opbV	1	12/22/2017 6:09:00 AM
Vinyl Bromide	< 0.15	0.15	¢	Vdqc	1	12/22/2017 6:09:00 AM
Vinyl chloride	0.16	0.15	F	Vdqc	1	12/22/2017 6:09:00 AM
Surr: Bromofluorobenzene	96.0	70-130	9	MREC	1	12/22/2017 6:09:00 AM

^{**} Quantitation Limit

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 2 of 26

B Analyte detected in the associated Method Blank

¹⁴ Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Date: 10-Jan-18

CLIENT:

LaBelta Associates, P.C.

trancita respondents,

Lab Order:

C1712063

Project: Lab ID: Eldre Corp

C1712063-001A

Client Sample ID: SVI-01

Tag Number: 1201.1170 Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	1.1	0.82	ug/m3	1	12/22/2017 6:09:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	12/22/2017 6:09:00 AM
1,1,2-Trichloroethage	< 0.82	0.82	ug/m3	1	12/22/2017 6:09:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/22/2017 6:09:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 6:09:00 AM
1,2,4-Trichlorobenzene	< 1.1	1,1	eg/m3	1	12/22/2017 6:09:00 AM
1,2,4-Trimethylbenzene	3.9	0.74	ug/m3	1	12/22/2017 6:09:00 AM
1,2-Dibromoethane	< 1.2	1.2	eg/m3	1	12/22/2017 6:09:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/22/2017 6:09:00 AM
1,2-Dichloroelhane	< 0.61	0.61	սք/m3	1	12/22/2017 6:09:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	ş	12/22/2017 6:09:00 AM
1,3,5-Trimethylbenzene	2.2	0.74	ug/m3	1	12/22/2017 6:09:00 AM
1.3-butadiene	< 0.33	0.33	ug/m3	1	12/22/2017 6:09:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	աց/ու3	1	12/22/2017 6:09:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/22/2017 6:09:00 AM
1.4-Dioxane	0.61	1. 3 J	υ ց /m3	1	12/22/2017 6:09:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/22/2017 6:09:00 AM
4-ethylloicene	0.69	0.74 J	ug/m3	1	12/22/2017 6:09:00 AM
Acetone	390	64	ug/m3	90	12/23/2017 8:17:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	12/22/2017 6:09:00 AN
Benzene	1,2	0.48	ug/m3	1	12/22/2017 5:09:00 AM
Benzył chloride	< 0.86	0.86	ug/m3	1	12/22/2017 6:09:00 AM
Bromodichioromethane	< 1.0	1.0	ug/m3	1	12/22/2017 6:09:00 AN
Bromoform	< 1.6	1.6	ug/m3	1	12/22/2017 6:09:00 AN
Bromamethane	< 0.58	0.58	սց/m3	1	12/22/2017 6:09:00 AN
Carbon disulfide	1.7	0.47	ug/m3	1	12/22/2017 6:09:00 AM
Carbon tetrachlorids	< 0.94	0.94	ug/m3	1	12/22/2017 6:09:00 AN
Chlorobenzene	< 0.69	0.59	ug/m3	1	12/22/2017 6:09:00 AN
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 5:09:00 AN
Chloroform	< 0.73	0.73	ug/m3	1	12/22/2017 6:09:00 AN
Chtoromethane	< 0.31	0.31	ug/m3	1	12/22/2017 6:09:00 AM
cis-1.2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 5:09:00 AN
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/22/2017 6:09:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	12/22/2017 6:09:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/22/2017 6:09:00 Alt
Ethyl acetate	1.2	0.54	ug/m3	1	12/22/2017 5:09:00 AM
Ethylbenzene	0.82	0.65	μ g/m3	1	12/22/2017 6:09:00 Af
Freon 11	1.3	0.84	ug/m3	\$	12/22/2017 6:09:00 Aft
Freon 113	< 1.1	1.7	ug/m3	1	12/22/2017 6:09:00 AP
Freon 114	< 1.0	1.0	ug/m3	1	12/22/2017 6:09:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyle detected in the associated Method Blank
- 44 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- 8 Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

C1712063

Lab Order: Project:

Eldre Corp

Lab ID:

C1712063-001A

Client Sample ID: SVI-01

Tag Number: 1201.1170

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
		TO	-15	···		Analyst: RJP
1UG/M3 BY METHOD TO15	2.3	0.74		ug/m3	1	12/22/2017 5:09:00 AM
Freen 12	3.9	0.61		ug/m3	1	12/22/2017 6:09:00 AM
Heptane	< 1,6	1.6		ug/m3	1	12/22/2017 6:09:00 AM
Hexachloro-1,3-butadiene	2.5	0.53		ug/m3	1	12/22/2017 6:09:00 AM
Hexane	91	34		ug/m3	90	12/23/2017 8:17:00 AM
Isopropyl alcohol	2.4	1.3		ug/m3	1	12/22/2017 6:09:00 AM
m&p-Xylene	< 1.2	1,2		սց/m3	1	12/22/2017 6:09:00 AM
Methyl Butyl Ketone	5.9	0.88		ug/m3	1	12/22/2017 6:09:00 AM
Methyl Ethyl Ketone	0.70	1,2	J	ug/m3	1	12/22/2017 6:09:00 AM
Methyl Isobutyl Ketone	< 0.54	0.54	_	ug/m3	1	12/22/2017 6:09:00 AM
Methyl tert-butyl ather	9.7	4.9		ug/m3	9	12/23/2017 7:40:00 AM
Methylene chloride	0.96	0.65		ug/m3	1	12/22/2017 6:09:00 AM
o-Xylene	< 0.26	0.26		ug/m3	1	12/22/2017 6:09:00 AM
Propylene	< 0.64	0.64		ug/m3	1	12/22/2017 6:09:00 AM
Styrene	40	9.5		ug/m3	9	12/23/2017 7:40:00 AM
Tetrachloroethylene	· ·	0.44		ug/m3	1	12/22/2017 6:09:00 AM
Tetrahydrofuran	< 0.44	5.3		ug/m3	8	12/23/2017 7:40:00 AM
Toluene	12	0.59		ug/m3	1	12/22/2017 6:09:00 AM
trans-1,2-Dichleroethene	< 0.59	0.59 0.68		ug/m3	1	12/22/2017 6:09:00 AN
trans-1,3-Dichloropropene	< 0.68	7.5		ug/m3	9	12/23/2017 7:40:00 AM
Trichloroethene	26			ug/m3	1	12/22/2017 6:09:00 AN
Vinyl acetate	< 0.53	Q.53		ug/m3 ug/m3	1	12/22/2017 5:09:00 AN
Vinyl Bromide	< 0.66	0.66			· i	12/22/2017 6:09:00 AM
Vinyl chloride	0.41	0.38	3	ug/m3	,	

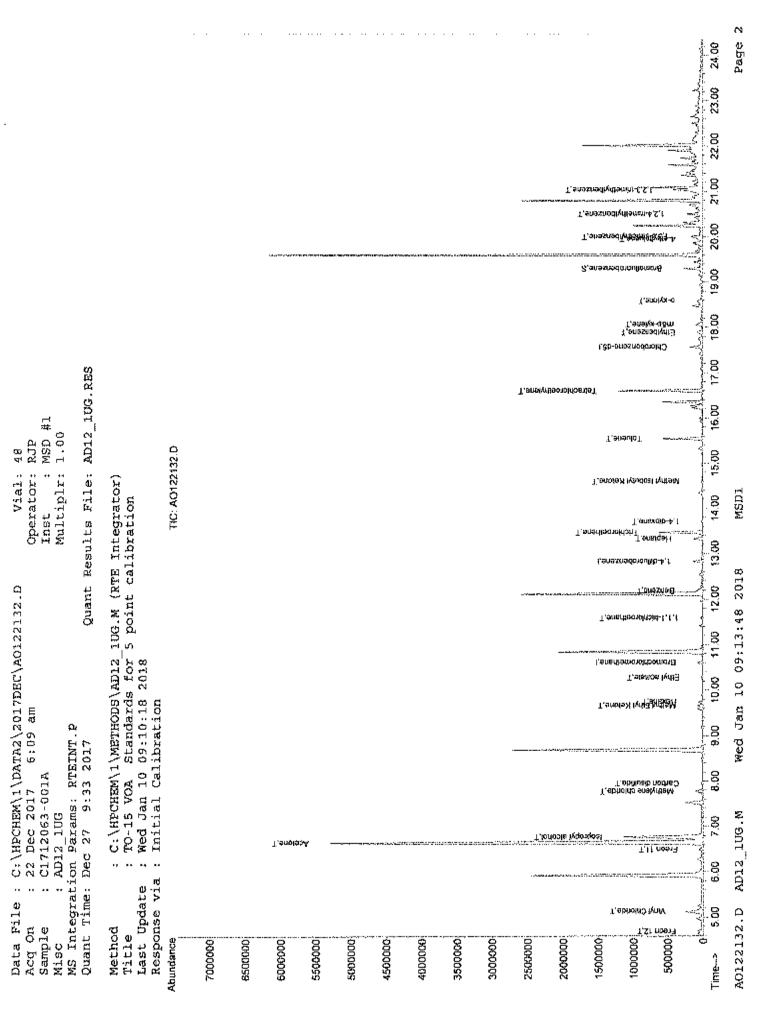
Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank B
- Holding times for preparation or analysis exceeded Н
- Non-routine analyte. Quantitation estimated. ΞN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

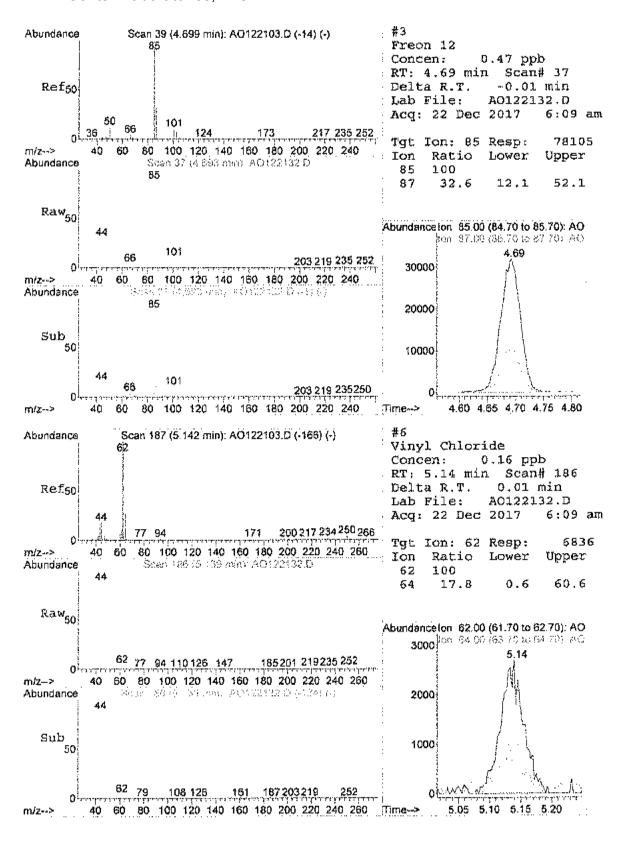
Page 2 of 26

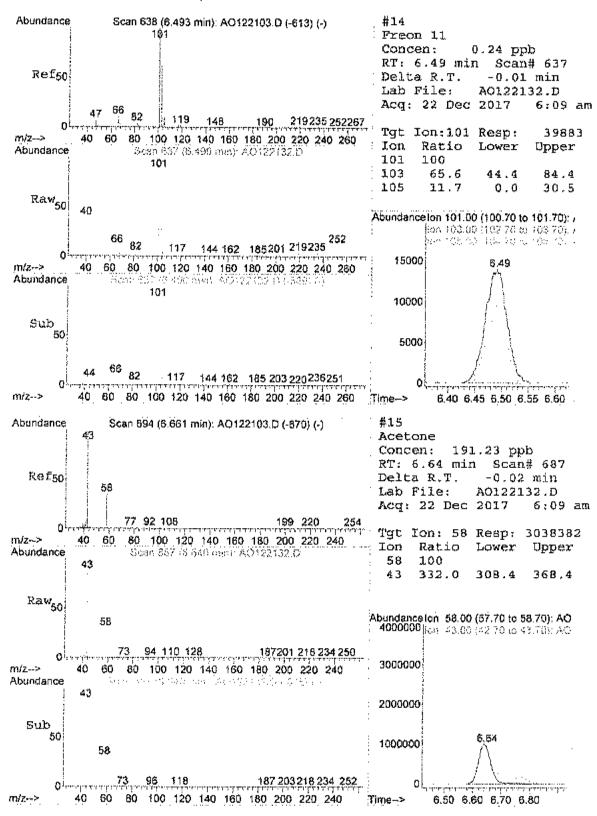
Quantitation Report (QT Reviewed)

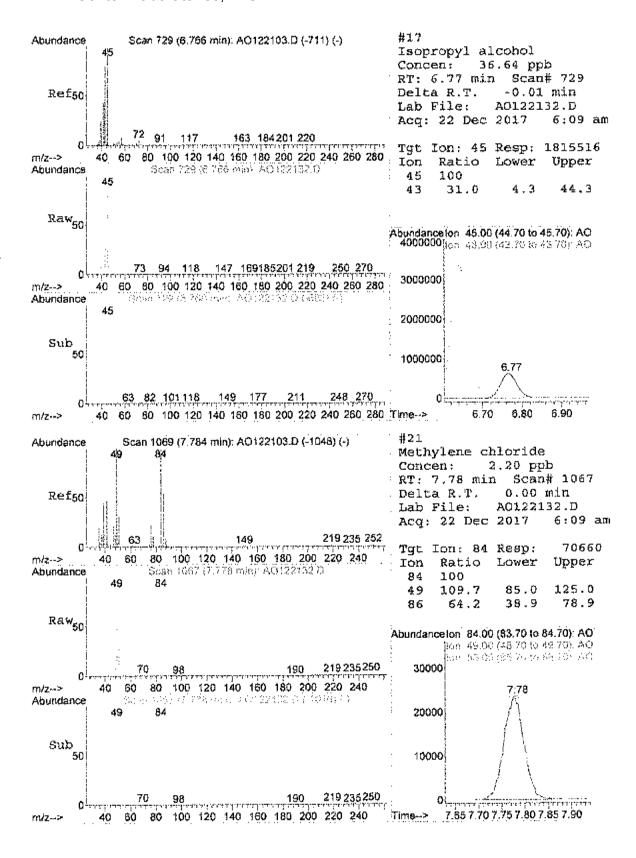
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122132.D Vial: 48 Acq On : 22 Dec 2017 6:09 am Sample : C1712063-001A Misc : AD12_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

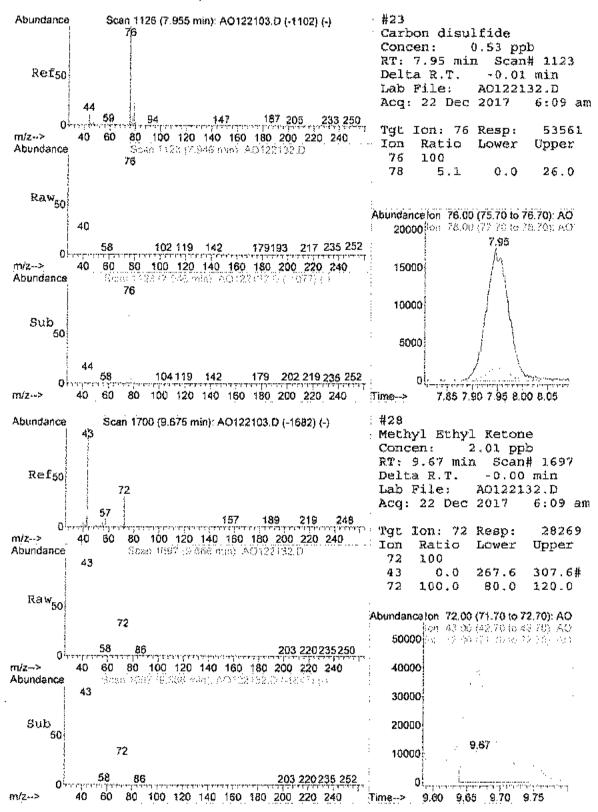

MS Integration Params: RTEINT.P

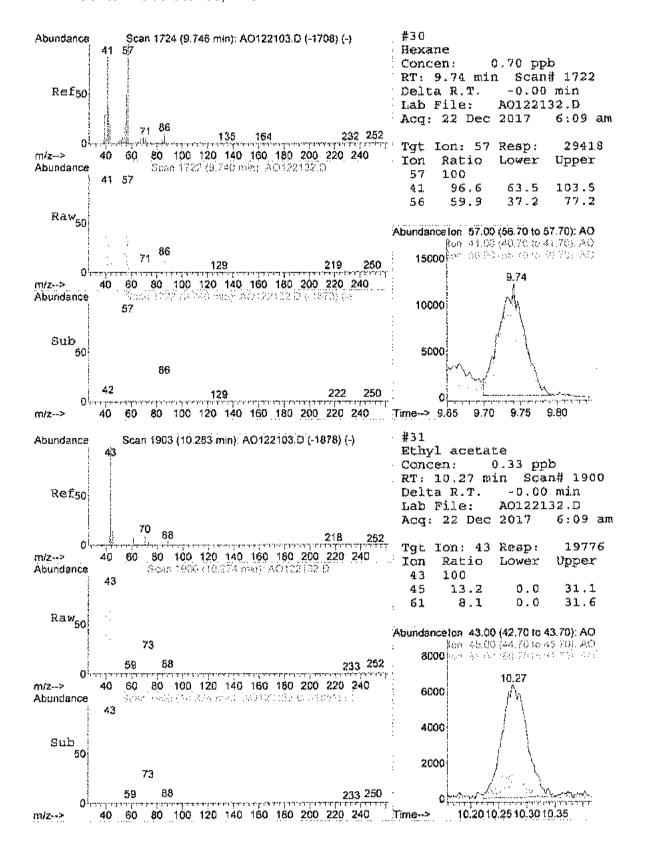
Quant Time: Dec 22 08:07:02 2017 Quant Results File: AD12 1UG.RES

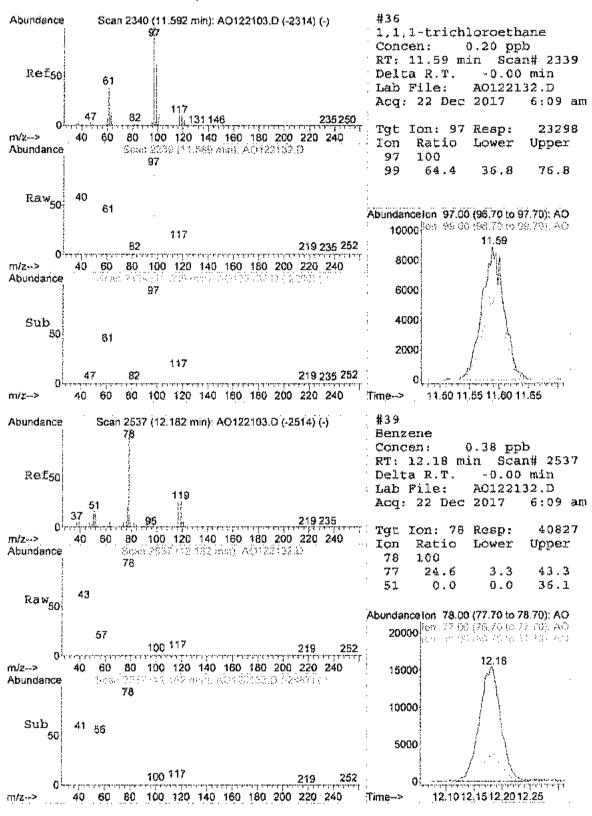

Quant Method : C:\HPCHEM\1\METHOD\$\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration

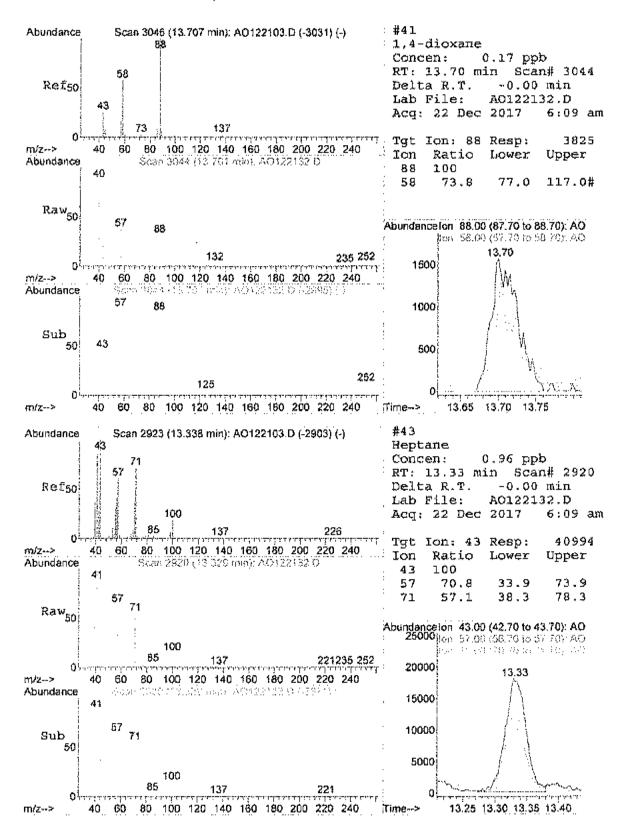

DataAcq Meth : 1UG_RUN


1) Bromochloromethane	Internal Standards	R.T.	QTon	Response	Cone U	aits De	v(Min)
35 1,4-difluorobenzene 12.83 114 131559 1.00 ppb 0.00 50 Chlorobenzene-d5 17.56 117 123656 1.00 ppb 0.00 0.00	1) Brownshloromethee	10 61	100	21757	3 00		0 00
System Monitoring Compounds 65) Bromcfluorobenzene Spiked Amount 1.000 Range 70 - 130 Recovery = 96.00% Target Compounds 3) Freon 12 4.69 85 78105 0.47 ppb 99 6) Vinyl Chloride 5.14 62 6836 0.16 ppb 77 14) Freon 11 6.49 101 39883 0.24 ppb 98 15) Acetone 6.64 58 3038382 191.23 ppb 97 17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70660 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 26223 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 87156 0.55 ppb 96 63) 0-xylene 18.56 91 87156 0.55 ppb 96 63) 0-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.50 105 118797 0.79 ppb 95							
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 Range 70 - 130 Recovery = 96.00% Target Compounds 3) Freon 12 4.69 85 78105 0.47 ppb 99 6) Vinyl Chloride 5.14 62 6836 0.16 ppb 77 14) Freon 11 6.49 101 39883 0.24 ppb 98 15) Acetone 6.64 58 3038382 191.23 ppb 97 17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70560 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9,74 57 29418 0.70 ppb 90 31) Bthyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11,59 97 23298 0.20 ppb 93 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 15.64 91 33715 0.19 ppb 100 59) m&p-xylene 18.58 91 40627 0.22 ppb 91 63) o-xylene 18.58 91 40627 0.22 ppb 96 70 1,3,5-trimethylbenzene 20.50 105 118797 0.79 ppb 95							
Spiked Amount 1.000 Range 70 130 Recovery = 96.00%	507 CHIOLOMCHECHE GO	17.74	44,	TE 70 74	1,00	PP12	0.00
Target Compounds 3) Freon 12 4	System Monitoring Compounds						
Target Compounds 3) Freon 12 4.69 85 78105 0.47 ppb 99 14) Freon 11 6.49 101 39883 0.24 ppb 98 15) Acetone 6.64 58 3038382 191.23 ppb 97 17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70660 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 30.3 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb 1 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb 43) Heptane 13.33 43 40994 0.96 ppb 84 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 52) Methyl Isobutyl Ketone 15.54 92 262235 3.27 ppb 49 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) 0-xylene 18.58 91 40627 0.29 ppb 98 98 98 98 98 98 98 98 98 9	65) Bromofluorobenzene			88223	0.96	ppb	0.00
3) Frech 12	Spiked Amount 1.000	Range 70	- 130	Recove	ery =	96.00	፟
3) Frech 12	Target Compounds					C	value
6) Vinyl Chloride 5.14 62 6836 0.16 ppb 77 14) Freon 11 6.49 101 39883 0.24 ppb 98 15) Acetone 6.64 58 3038382 191.23 ppb 97 17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70660 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 83 41) 1,4-dioxane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) 0-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 88083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb		4.69	8.5	78105	0.47		
14) Freon 11 15) Acetone 16.49 101 39883 0.24 ppb 98 15) Acetone 6.64 58 3038382 191.23 ppb 97 17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70660 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb \$1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb \$83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb \$76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb \$77 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 56) Tetrachloroethylene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69 1,3,55-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb	6) Vinvl Chloride						77
15) Acetone 6.64 58 3038382 191.23 ppb 97 17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70660 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 50) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb		6.49	101				98
17) Isopropyl alcohol 6.77 45 1815516 36.64 ppb 87 21) Methylene chloride 7.78 84 70560 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40627 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 56) Tetrachloroethylene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb	-	6.64		3038382	191.23		
21) Methylene chloride 7.78 84 70660 2.20 ppb 95 23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 65) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb	17) Isopropyl alcohol	6.77	45	1815516	36.64		87
23) Carbon disulfide 7.95 76 53561 0.53 ppb 97 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 1 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Ethyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 263235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 56) Tetrachloroethylene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb		7.78		70660			95
. 28) Methyl Ethyl Ketone 9.67 72 28269 2.01 ppb # 30) Hexane 9.74 57 29418 0.70 ppb 90 31) Bthyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) M&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91		7.95	76	53561			97
30) Hexane 9.74 57 29418 0.70 ppb 90 31) Bthyl acetate 10.27 43 19776 0.33 ppb 93 36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	28) Methyl Ethyl Ketone	9.67	72	28269			1
36) 1,1,1-trichloroethane 11.59 97 23298 0.20 ppb 90 39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) 0-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95		9,74	57	29418	0.70	ppb	90
39) Benzene 12.18 78 40827 0.38 ppb # 83 41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) O-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	31) Ethyl acetate			19776	0.33	ppb	93
41) 1,4-dioxane 13.70 88 3825 0.17 ppb # 76 43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	36) 1,1,1-trichloroethane	11.59	97	23298	0.20	dqq	90
43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	39) Benzene	12.18	78	40827	0.38	ppb #	83
43) Heptane 13.33 43 40994 0.96 ppb 88 44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	41) 1,4-dioxane	13.70	88	3825	0.17	ppb #	76
44) Trichloroethene 13.47 130 263647 4.18 ppb 92 51) Toluene 15.54 92 262235 3.27 ppb 89 52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	43) Heptane	13.33	43	40994	0.96	ppb	88
52) Methyl Isobutyl Ketone 14.60 43 9745 0.17 ppb # 57 56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1.3.5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1.2.4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	44) Trichloroethene	13.47			4.18	ggg	
56) Tetrachloroethylene 16.60 164 334769 4.44 ppb 87 58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	51) Toluene	15.54	92	262235			89
58) Ethylbenzene 17.88 91 33715 0.19 ppb 100 59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	52) Methyl Isobutyl Ketone	14.60	43	9745	0.27	ppb #	57
59) m&p-xylene 18.06 91 87156 0.55 ppb 96 63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	56) Tetrachloroethylene	16.60	164	334769	4.44	ppb	87
63) o-xylene 18.58 91 40627 0.22 ppb 91 69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	58) Ethylbenzene	17.88	91.	33725	0.19	ppb	100
69) 4-ethyltoluene 19.94 105 28083 0.14 ppb 98 70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	59) m&p-xylene	18.06	91	87156	0.55	dqq	96
70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	63) o-xylene	18.58	91.	40627	0.22	ppb	91
70) 1,3,5-trimethylbenzene 20.00 105 83760 0.44 ppb 76 71) 1,2,4-trimethylbenzene 20.50 105 118797 0.79 ppb 95	69) 4-ethyltoluene	19.94	105	28083	0.14	gqqq	98
	70) 1,3,5-trimethylbenzene	20.00	105	83760	0.44	ppb	76
	71) 1,2,4-trimethylbenzene	20.50	105	118797	0.79	ppb	95
-	75) 1,2,3-trimethylbenzene	21.02	105	67895	0.39	dqq	99

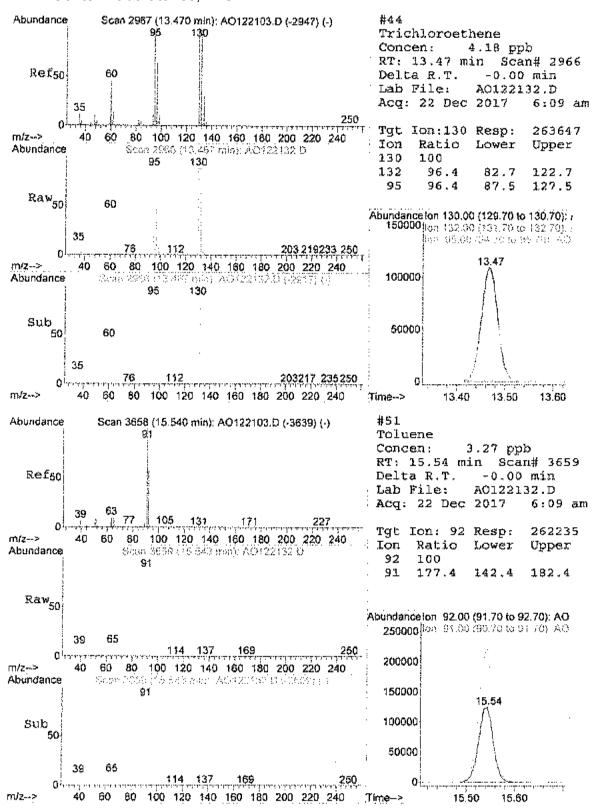

Page 108 of 477

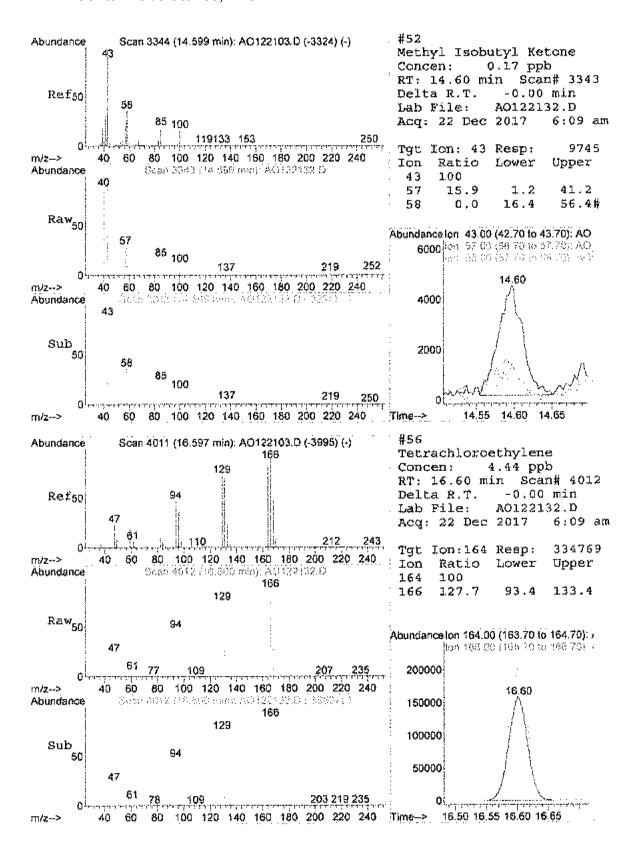


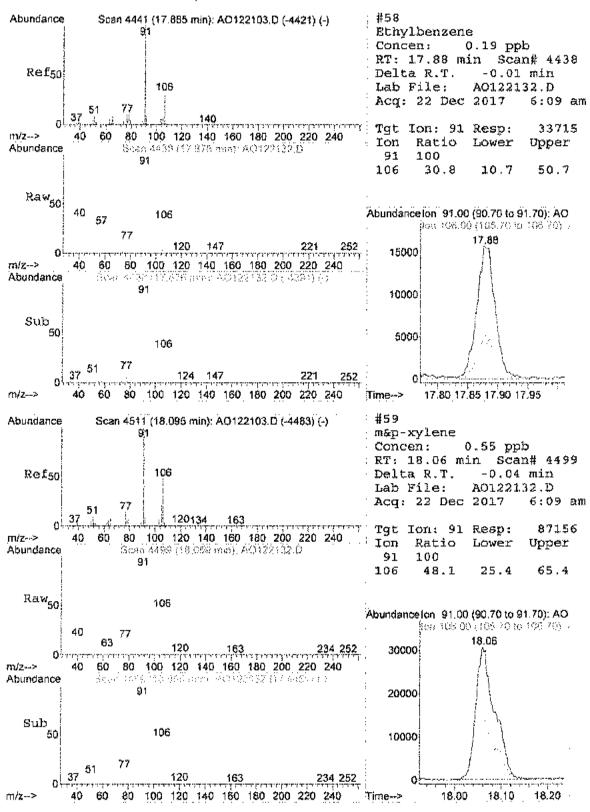


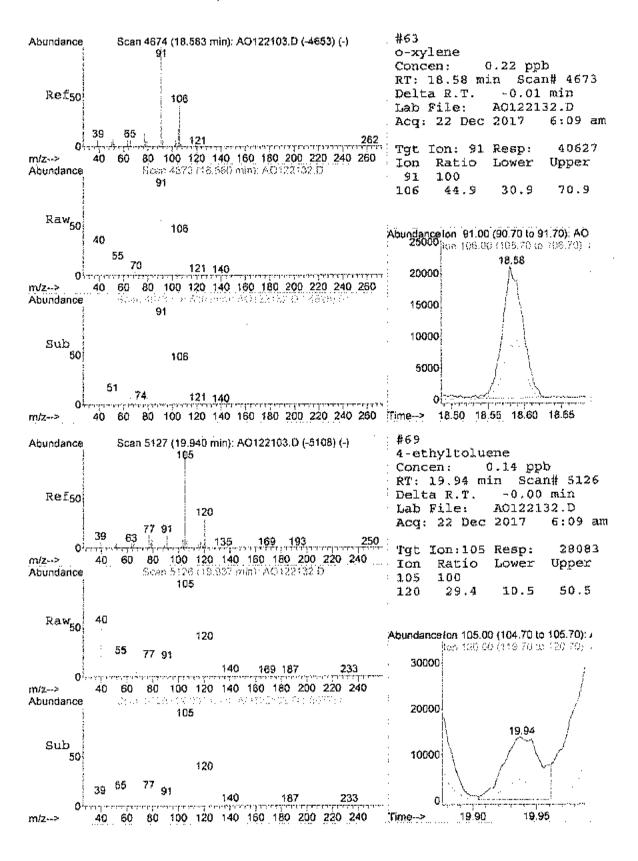


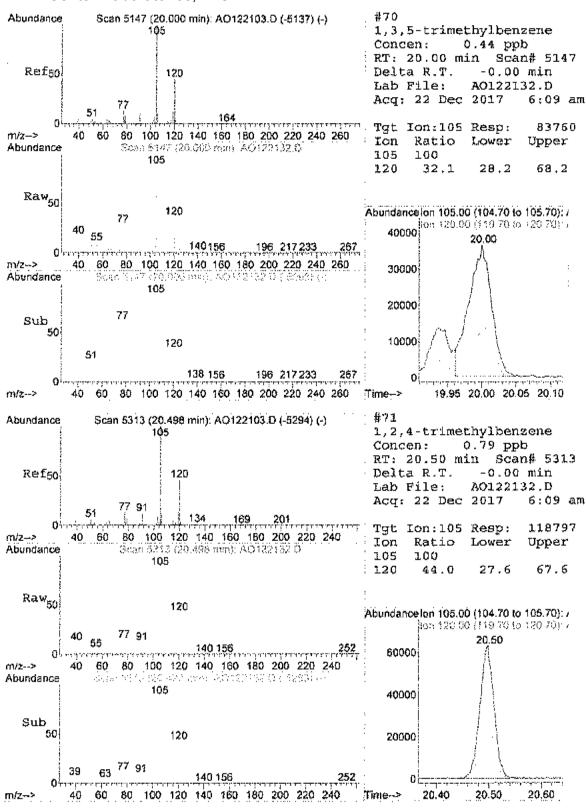
MSD1



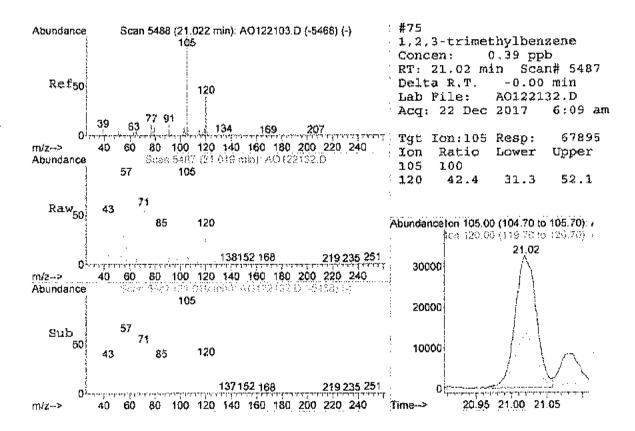





MSD1



MSD1



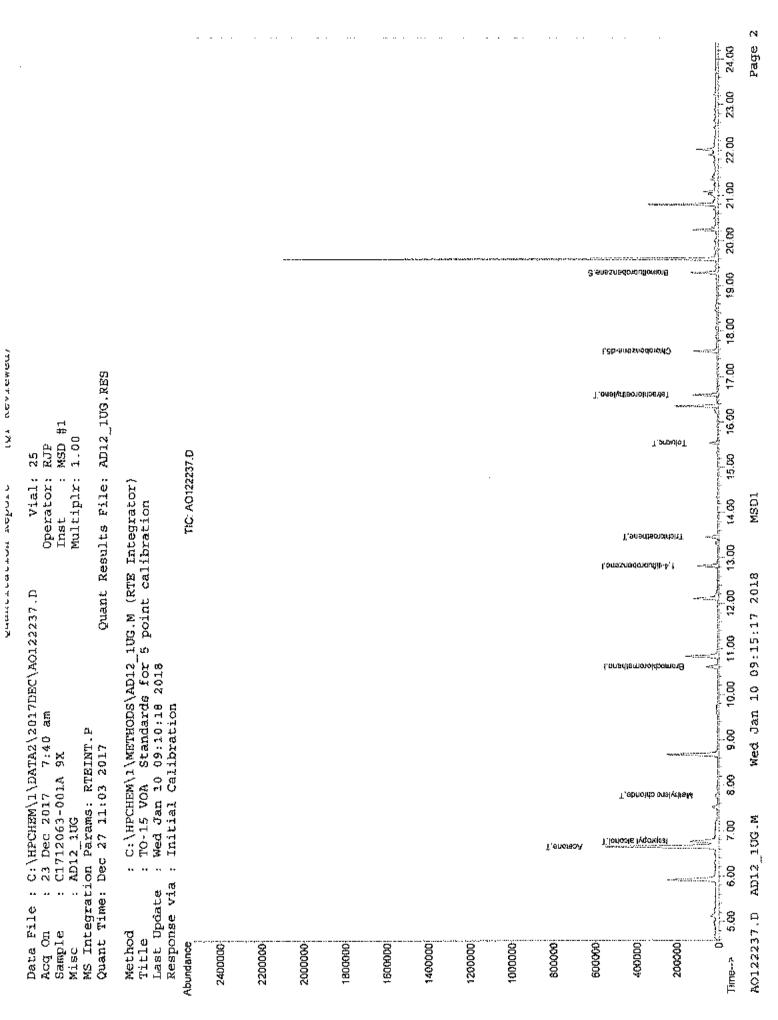
MSD1

A0122132.D AD12 1UG.M

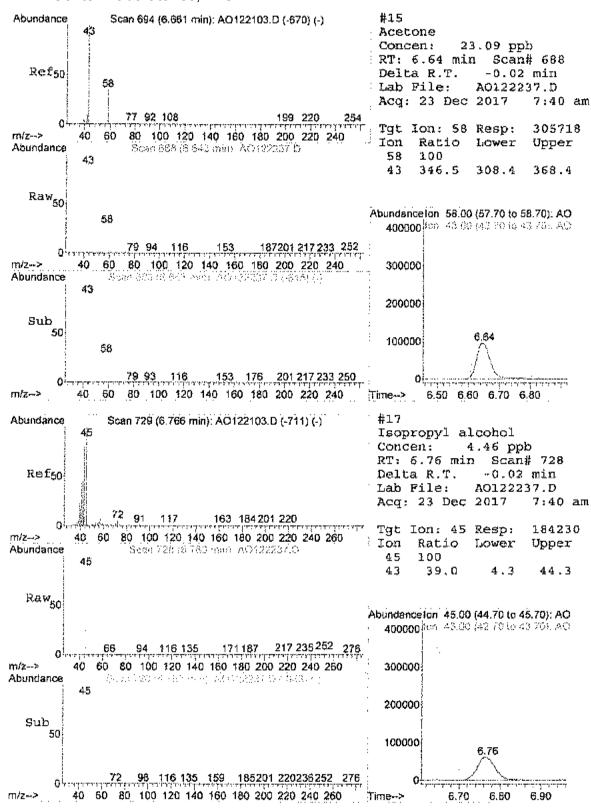
Quantitation Report

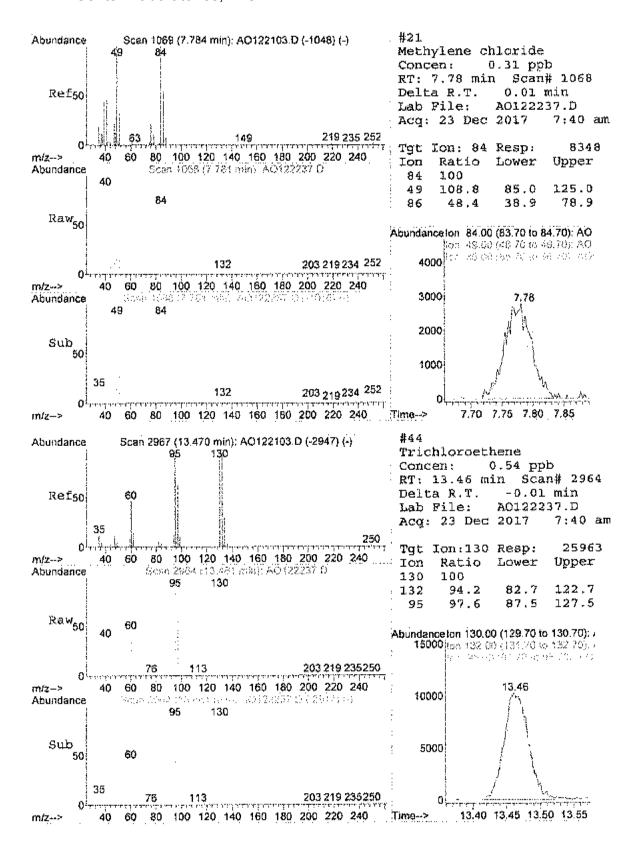
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122237.D Vial: 25 Acg On : 23 Dec 2017 7:40 am Operator: RJP Sample : C1712063-001A 9X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

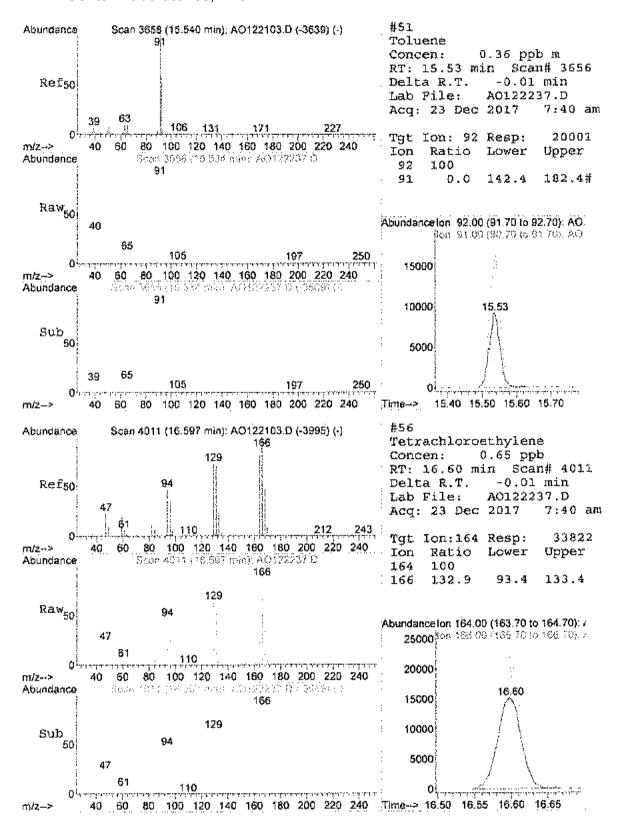

MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:46:50 2017 Quant Results File: AD12 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration DataAcq Meth : LUG_RUN


Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1.4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56		26129 101322 85498	1.00 1.00 1.00	ppb	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70		50840 Recover	0.80 y ≈		0.00 .00%
Target Compounds 15) Acetone 17) Isopropyl alcohol 21) Methylene chloride 44) Trichloroethene 51) Toluene 86) Tetrachloroethylene	6.64 6.76 7.78 13.46 15.53 16.60	84 130	305718 184230 8348 25963 20001m 33822	23.09 4.46 0.31 0.54 0.36 0.65	dqq dqq dqq	Qvalue 96 70 93 91 82

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122237.D AD12_1UG.M Wed Jan 10 09:15:16 2018 MSD1



Page 123 of 477

MSD1

Centek Laboratories, LLC Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122238.D Acq On : 23 Dec 2017 8:17 am Sample : C1712063-001A 90X Misc : AD12_1UG

Vial: 27 Operator: RJP

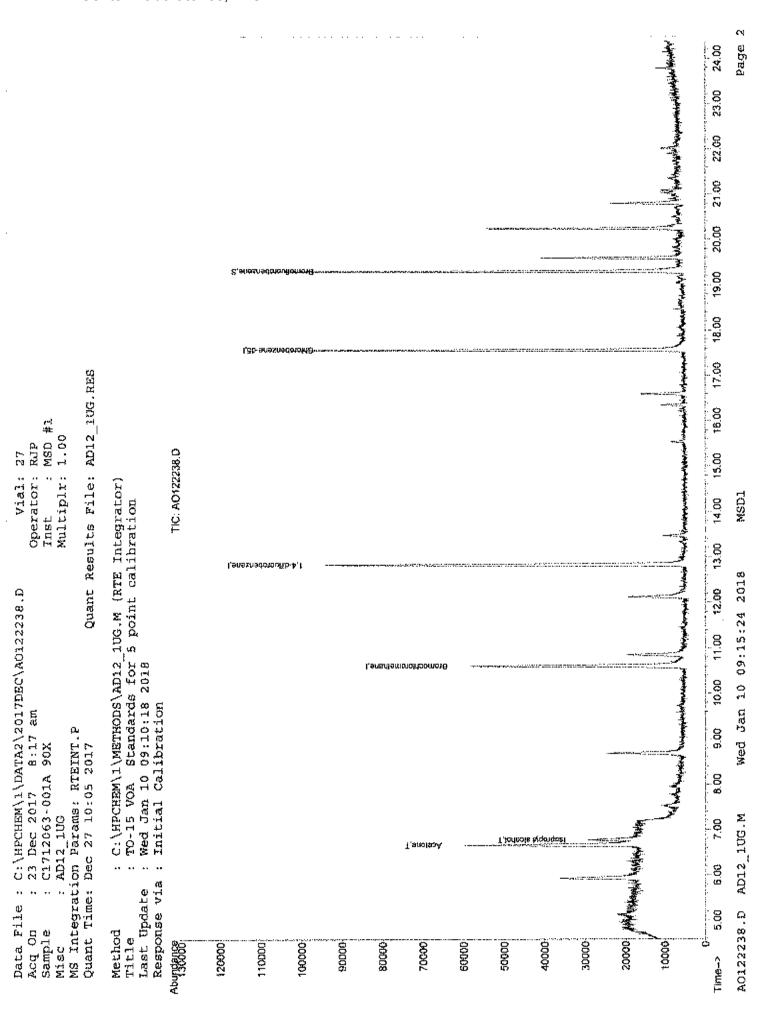
Inst : MSD #1

Multiplr: 1.00

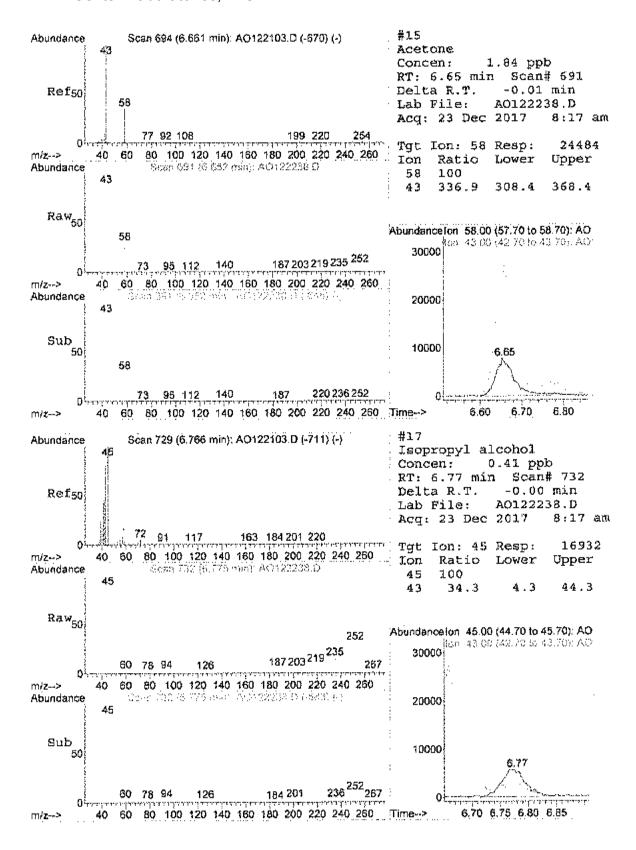
MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:46:51 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration


DataAcq Meth : 1UG RUN

Internal Standards	R.T.	nolg	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56		26264 95793 74017	1.00 1.00 1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	42764 Recovery		ppb 78.	0.00
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.65 6.77	58 45	24484 16932	1.84		Qvalue 99 80

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122238.D AD12_1UG.M Wed Jan 10 09:15:23 2018 MSD1

Page 128 of 477

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-002A

Client Sample ID: IAQ-01

Tag Number: 359.346 Collection Date: 12/13/2017

Matrix: AJR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-5		"Hg		12/21/2017
Lab Vacuum Out	-30		"Hg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
1.1,2,2-Tetrachloroethane	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
1.1-Dichloroethane	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2.4-Trimethylbenzens	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppb∨	1	12/21/2017 6:25:00 PM
1,2-Dichloropropane	< 0.15	0.15	ρpbV	1	12/21/2017 6:25:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
1,3-butadiene	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
1,3-Dichlorobenzesse	< 0.15	0.15	ρρb∨	3	12/21/2017 6:25:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	‡	12/21/2017 6:25:00 PM
1.4-Dioxane	< 0.30	0.30	ppbV	1	12/21/2017 6:25:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	Vđạq	1	12/21/2017 6:25:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Acetone	5.0	6.0 J	₽₽₽V	20	12/22/2017 9:29:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Benzene	0.26	0.15	ppb∀	1	12/21/2017 6:25:00 PM
Benzył chłoride	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Bromoform	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
Carbon disuifide	< 0.15	0.15	₽₽₽V	1	12/21/2017 6:25:00 PM
Carbon tetrachloride	0.070	0.040	Vdqq	1	12/21/2017 6:25:00 PM
Chlorabenzerie	< 0.15	0.15	ppbV	1	12/21/2017 8:25:00 PM
Chioroethane	< 0.15	0.15	ppb∀	1	12/21/2017 6:25:00 PM
Chloroform	1.9	0.15	ppbV	1	12/21/2017 5:25:00 PM
Chloromethane	0.40	0.15	ppbV	1	12/21/2017 6:25:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 6:25:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	12/21/2017 6:25:00 PM
Cyclohexane	0.12	0.15 J	Vdqq	1	12/21/2017 6:25:00 PM
Dibromochloromethan e	< 0.15	0.15	√dqq	1	12/21/2017 6:25:00 PM

0.15

ppbV

Qualifiers:

Ethyl acotate

- ** Quantitation Limit
- Analyte detected in the associated Method Blank

< 0.15

- H Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

1

- Estimated Value above quantitation range E
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 3 of 26

12/21/2017 6:25:00 PM

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C. Client Sample ID: IAQ-01

Lab Order: C1712063 Tag Number: 359.346
Project: Eldre Corp Collection Date: 12/13/2017

Lab 1D: C1712063-002A Matrix: AIR

Analyses	Result	**Limit	Quat	Units	DF	Date Analyzed
UG/M3 W/ 0,2UG/M3 CT-TCE-VC		TC	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Freon 11	0.42	0.15		ppbV	1	12/21/2017 5:25:00 PM
Freon 113	< 0.15	0.15		Vdgq	1	12/21/2017 5:25:00 PM
Freon 114	< 0.15	0.15		Vdgq	1	12/21/2017 6:25:00 PM
Freon 12	0.49	0.15		ppbV	1	12/21/2017 5:25:00 PM
Heptane	0.46	0.15		Vdqq	1	12/21/2017 6:25:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vdqq	1	12/21/2017 6:25:00 PM
Hexane	0.21	0.15		ppb∨	1	12/21/2017 5:25:00 PM
Isopropyl alcohol	30	3.0		₽₽₽V	20	12/22/2017 9:29:00 PM
m&p-Xylene	0.13	0.30	ل	ppbV	1	12/21/2017 8:25:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	12/21/2017 6:25:00 PM
Methyl Ethyl Ketone	0.35	0.30		ppbV	1	12/21/2017 8:25:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	12/21/2017 6:25:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Methylene chloride	0.47	0.15		ppbV	1	12/21/2017 6:25:00 PM
q-Xylene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Propylene	< 0.15	0.15		ppbV	7	12/21/2017 6:25:00 PM
Styrene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	12/21/2017 6:25:00 PM
Toluene	0.93	0.15		Vdqq	1	12/21/2017 6:25:00 PM
trans-1,2-Dictrioroethene	< 0.15	0.15		₽₽bV	1	12/21/2017 6:25:00 PM
trans-1,3-Dichteropropene	< 0.15	0.15		Vdqq	1	12/21/2017 6:25:00 PM
Trichloroethene	< 0.030	0.030		Vdqq	1	12/21/2017 6:25:00 PM
Vinyl acetate	< 0.15	0.15		Vdqq	1	12/21/2017 6:25:00 PM
Vinyt Bromide	< 0.15	0.15		ppbV	1	12/21/2017 6:26:00 PM
Vinyt chloride	< 0.040	0.040		Vdqq	1	12/21/2017 6:25:00 PM
Surr: Bromofluorobenzene	0.08	70-130		%REC	1	12/21/2017 6:25:00 PM

12		lili	~	
•	uн	1120	u	

^{*} Quantitation Limit

B. Analyte detected in the associated Method Blank.

Holding times for preparation or analysis exceeded.

³N Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-002A

Date: 10-Jan-18

Client Sample ID: IAQ-01

Tag Number: 359.346

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	W/ 0.2UG/M3 CT-TCE-VC TO-15				Analyst: RJ	
1,1,1-Trichtoroethane	< 0.82	0.82		ug/m3	1	12/21/2017 6:25:00 P
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m 3	1	12/21/2017 6:25:00 P
1,1,2-Trichtoroethane	< 0.82	0.82		ug/m3	1	12/21/2017 6:25:00 P
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/21/2017 6:25:00 P
1,1-Dichlorgethene	< 0.59	0.59		ug/m3	1	12/21/2017 6:25:00 P
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	12/21/2017 6:25:00 P
1,2,4-Trimethylbenzene	< 0.74	0,74		ug/m3	1	12/21/2017 6:25:00 P
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	12/21/2017 6:25:00 P
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 6:25:00 P
1,2-Dichloroethane	< 0,61	0.61		ug/m3	t	12/21/2017 6:25:00 P
1.2-Oichloropropane	< 0.69	0.69		ug/m3	1	12/21/2017 6:25:00 P
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/21/2017 6:25:00 P
1,3-butadiene	< 0.33	0.33		ug/m3	1	12/21/2017 6:25:00 P
1,3-Dichlorobenzene	< 0.90	0.90		սց/m3	1	12/21/2017 6:25:00 P
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 6:25:00 P
1,4-Digxane	< 1.1	1,1		ug/m3	1	12/21/2017 6:25:00 P
2,2,4-trimethylpentage	< 0.70	0.70		ug/m3	1	12/21/2017 6:25:00 P
4-ethyltoluene	< 0.74	0.74		ug/m3	1	12/21/2017 6;25:00 P
Acetone	12	14	J	ug/m3	20	12/22/2017 9:29:00 P
Allyt chloride	< 0.47	0.47		ug/m3	1	12/21/2017 6:25:00 P
Benzene	0.83	0.48		ug/m3	1	12/21/2017 6:25:00 P
Benzył chłoride	< 0.86	0.86		ug/m3	1	12/21/2017 6:25:00 P
Bromodichloromethane	< 1.0	1.0		ug/m3	1	12/21/2017 6:25:00 P
Bromoform	< 1.6	1.6		ug/m3	1	12/21/2017 6:25:00 P
Bromomethane	< 0.58	0.58		ug/m3	1	12/21/2017 6:25:00 P
Carbon disulfide	< 0.47	0.47		ug/m3	1	12/21/2017 6:25:00 P
Carbon tetrachloride	0.44	0.25		սց/m3	1	12/21/2017 6:25:00 P
Chlorobenzene	< 0.69	0.69		ug/m3	1	12/21/2017 6:25:00 P
Chloroethane	< 0.40	0.40		ug/m3	1	12/21/2017 6:25:00 P
Chloroform	9.1	0.73		ug/m3	1	12/21/2017 6:25:00 P
Chloromethane	0.83	0.31		ug/m3	1	12/21/2017 6:25:00 P
cis-1,2-Dichlorgethene	< 0.59	0.59		ug/m3	1	12/21/2017 6:25:00 P
cis-1,3-Dichloropropene	< 0.68	88.0		ug/m3	1	12/21/2017 6:25:00 F
Cyclohexane	0.41	0.52	J	ug/m3	1	12/21/2017 6;25:00 P
Dibromochloromethane	< 1.3	1.3		ug/m3	1	12/21/2017 6:25:00 P
Ethyl acetate	< 0.54	0.54		ug/m3	1	12/21/2017 6:25:00 P
Ethylbenzene	< 0.65	0.65		ug/m3	1	12/21/2017 6:25:00 P
Freon 11	2.4	0.84		ug/m3	1	12/21/2017 6:25:00 P
Freon 113	< 1.1	1.1		ug/m3	1	12/21/2017 6:25:00 P
Freon 114	< 1,0	1.0		ug/m3	1	12/21/2017 6:25:00 P

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

- JN Non-routine analyte. Quantitation estimated.
- E Estimated Value above quantitation range

Results reported are not blank corrected

- J. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063

Tag Number: 359.346 Project: Eldre Corp Collection Date: 12/13/2017

Lab ID: C1712063-002A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Anaivst: RJP
Freon 12	2.4	0.74	ug/m3	1	12/21/2017 6:25:00 PM
Heptane	1.9	0.61	ug/m3	1	12/21/2017 6:25:00 PM
Hexachloro-1,3-butadiene	< 1,6	1.6	սց/m3	1	12/21/2017 6:25:00 PM
Hexane	0.74	0.53	ug/m3	1	12/21/2017 6:25:00 PM
Isopropyl alcohol	74	7.4	ug/m3	20	12/22/2017 9:29:00 PM
rn&p-Xylene	0.56	1.3 J	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Ethyl Ketone	1.0	0.88	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	12/21/2017 6:25:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	12/21/2017 6:25:00 PM
Methylene chloride	1.6	0.52	ug/m3	1	12/21/2017 6:25:00 PM
o-Xylene	< 0.65	0.65	սց/m3	1	12/21/2017 6:25:00 PM
Propylene	< 0.26	0.26	ug/m3	1	12/21/2017 6:25:00 PM
Styrene	< 0.64	0.64	µg/m3	1	12/21/2017 6:25:00 PM
Tetrachloroethylens	< 1.0	1.0	ug/m3	1	12/21/2017 6:25:00 PM
Tetrahydrofuran	< 0.44	0.44	սց/m3	1	12/21/2017 6:25:00 PM
Toluene	3.5	0.57	ug/m3	1	12/21/2017 6:25:00 PM
trans-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 6:25:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/21/2017 6:25:00 PM
Trichloroethese	< 0.16	0.16	ug/m3	1	12/21/2017 6:25:00 PM
Vinyl acetale	< 0.53	0.53	ug/m3	1	12/21/2017 6:25:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	12/21/2017 6:25:00 PM
Vinyl chloride	< 0.30	0.10	ug/m3	3	12/21/2017 6:25:00 PM

Qualifiers:

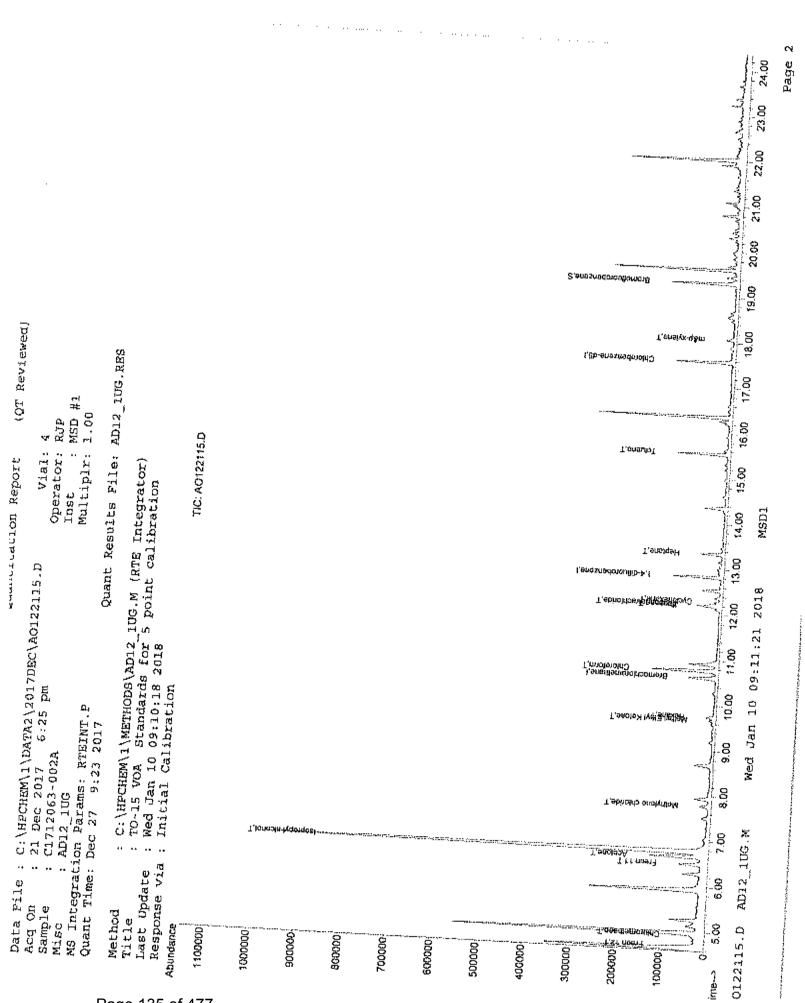
- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Non-routine analyte, Quantitation estimated. JN
- sSpike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 10-Jan-18

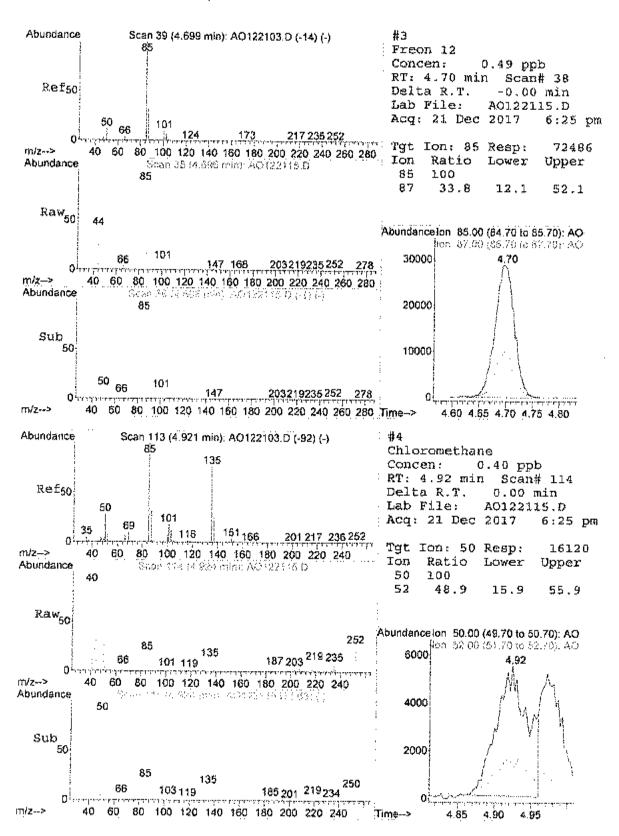
Client Sample ID: IAQ-01

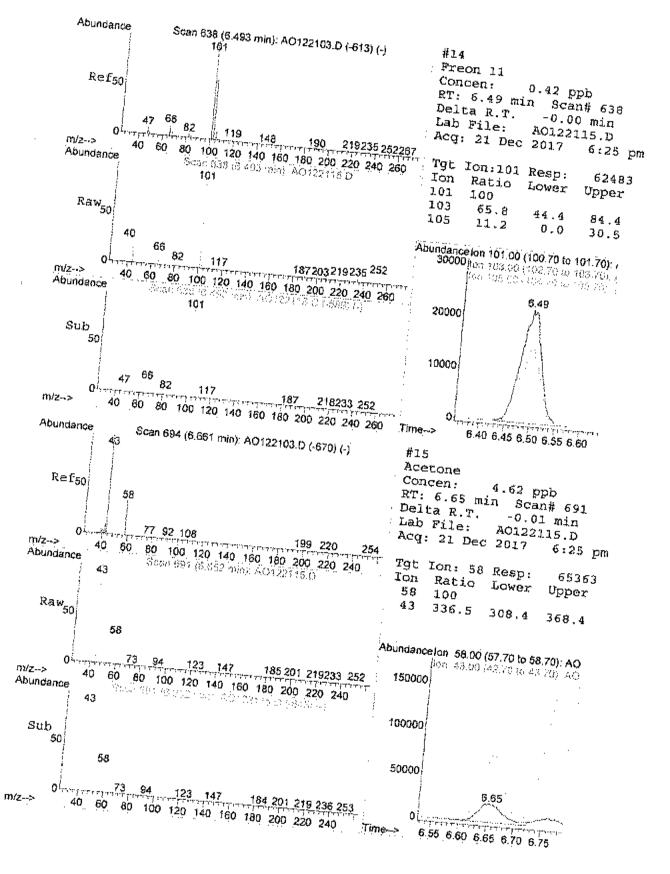
- Æ Estimated Value above quantitation range
- Ţ Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

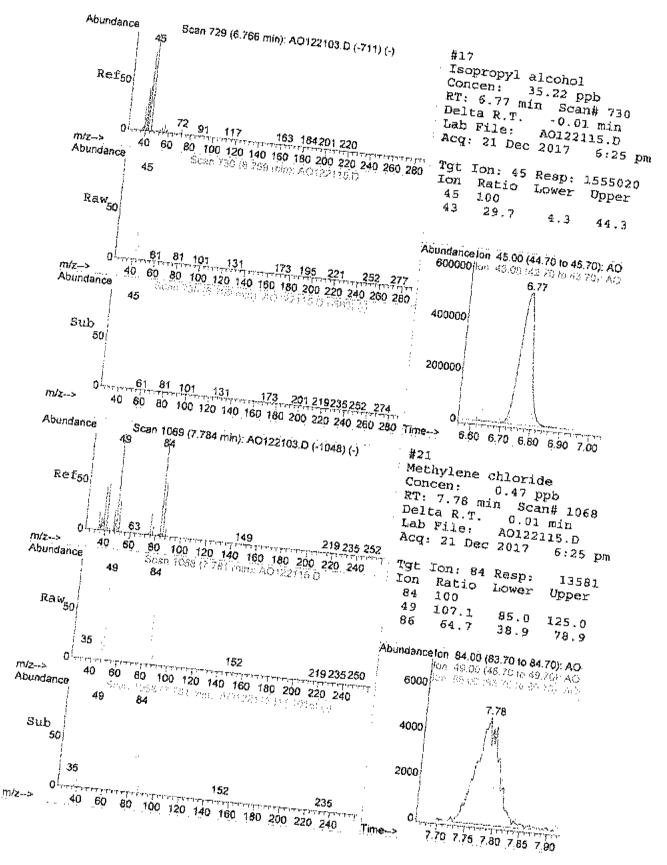
Page 4 of 26

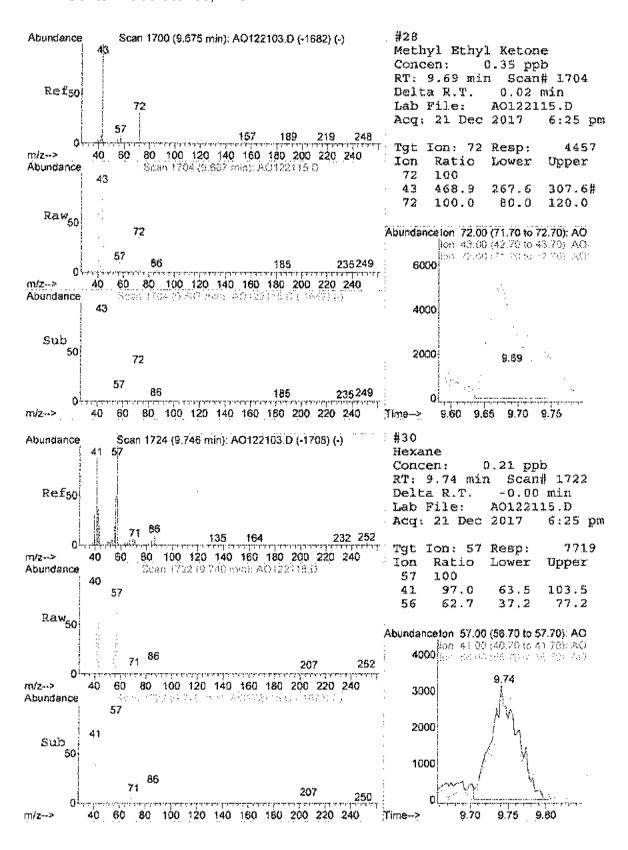

```
Data File : C:\MPCHEM\1\DATA2\2017DEC\A0122115.D
           Acq On : 21 Dec 2017 6:25 pm
                                                     Quantitation Report
           Sample C1712063-002A
Misc AD12_10G
                                                                                  (QT Reviewed)
          MS Integration Params: RTEINT.P
          Quant Time: Dec 22 08:15:03 2017
                                                                                       Vial: 4
                                                                                 Operator: RJP
         Quant Method : C:\RPCHEM\1\METHODS\AD12_IUG.M (RTE Integrator)
: TO-15 VOA REARDANDO FOR CALIBRATION
                                                                                  Inst : MSD #1
        Title

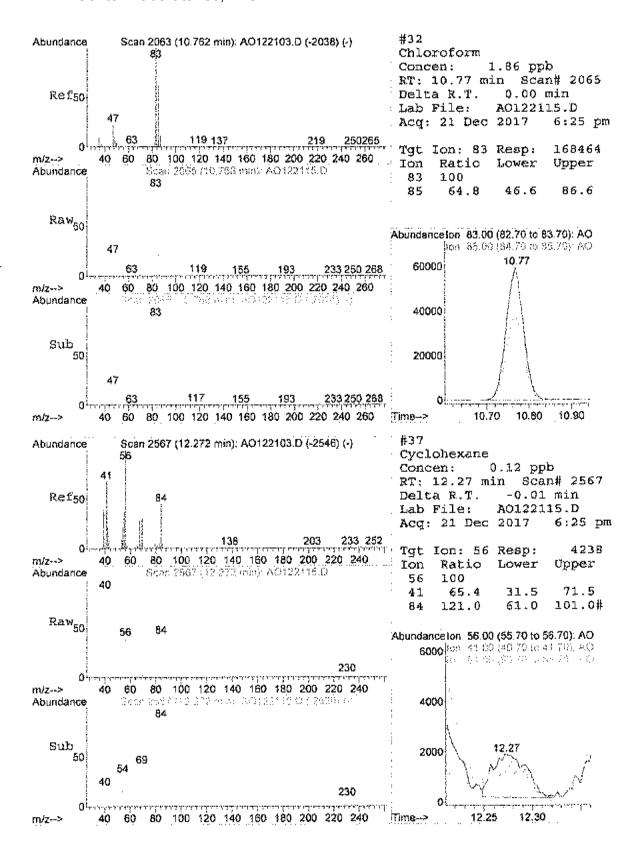
Title

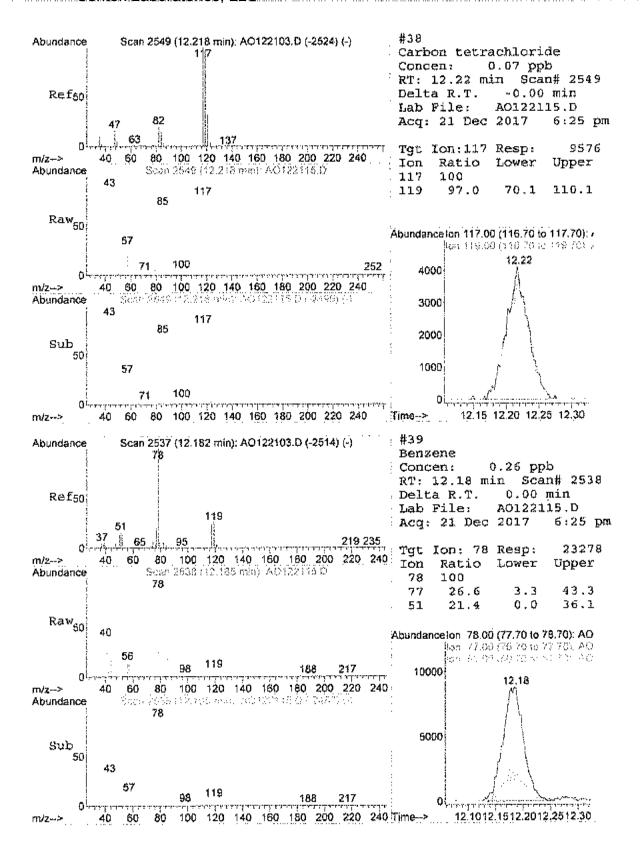

Title: TO-15 VOA Standards for 5 point calibration

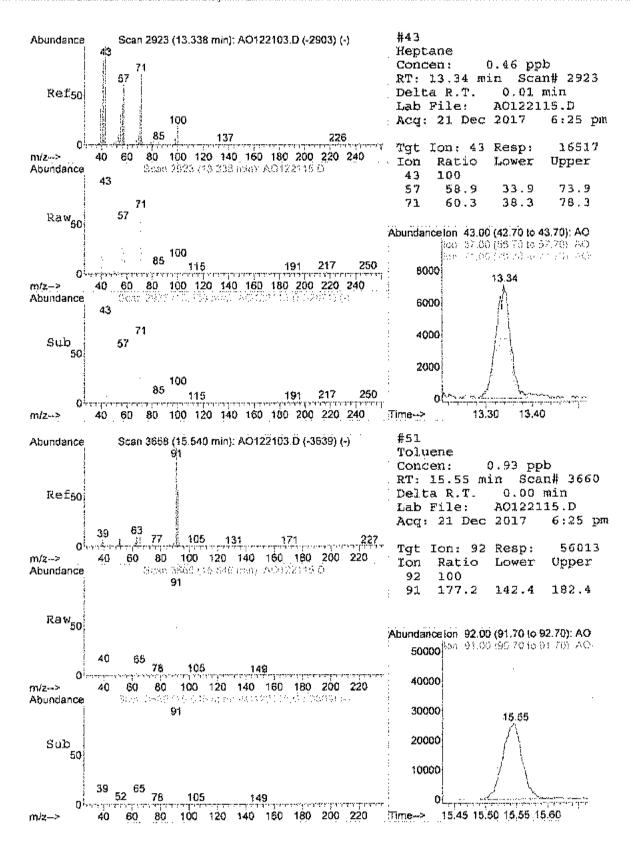

DataAcq Meth: Initial Calibration
                                                                                  Multiplr: 1.00
                                                                   Quant Results File: AD12_1UG.RES
        DataAcq Meth : 10G_RUN
        1) Bromochloromethane

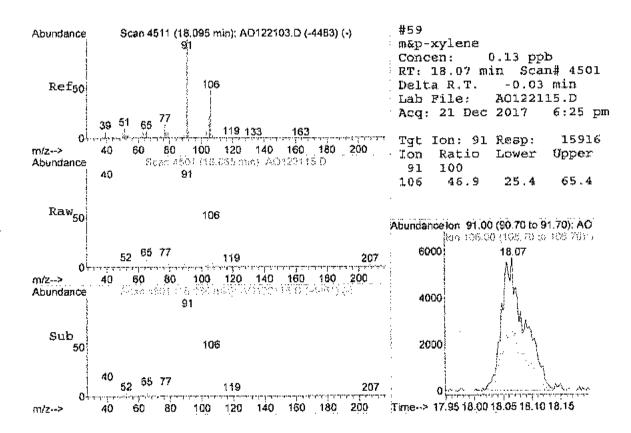

R.T. Qion Response Conc Units Dev(Min)
       1) Bromochloromethane
35) 1,4-difluorobenzene
50) Chlorobenzene
40.61 128 27947 1.00 ppb 0.00
42.83 114 111393 1.00 ppb 0.00
47.56 117 93288 1.00 ppb 0.00
      System Monitoring Compounds
       65) Bromofluorobenzene
    Target Compounds
                               1.000 Range 70 - 130 Recovery = 80.00
      3) Preon 12
      4) Chloromethane
                                                                       Recovery = 80.00%
    14) Freon 11
                                        4.70 85 72486 0.49 ppb 97
6.49 101 16120 0.40 ppb 78
6.77 58 65363 0.42 ppb 98
7.78 84 1555020 35.22 ppb 89
9.69 72 13581 0.47 ppb 96
10.77 57 7719 0.35 pph # 30
12.27 83 168464 1.86 ppb 98
12.22 117 4238 0.12 ppb # 65
13.34 78 23278 0.07 ppb 93
15.55 92 16517 0.46 ppb 95
18.07 91 15916 0.13 ppb 89
0.13 ppb 98
    15) Acetone
   17) Isopropyl alcohol
21) Methylene chloride
   28) Methyl Ethyl Ketone
  30) Hexane
 32) Chloroform
37) Cyclohexane
 38) Carbon tetrachloride
 39) Benzene
43) Heptane
51) Toluene
59) mep-xylene
```




Page 135 of 477







Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122221.D

Acq On : 22 Dec 2017 9:29 pm

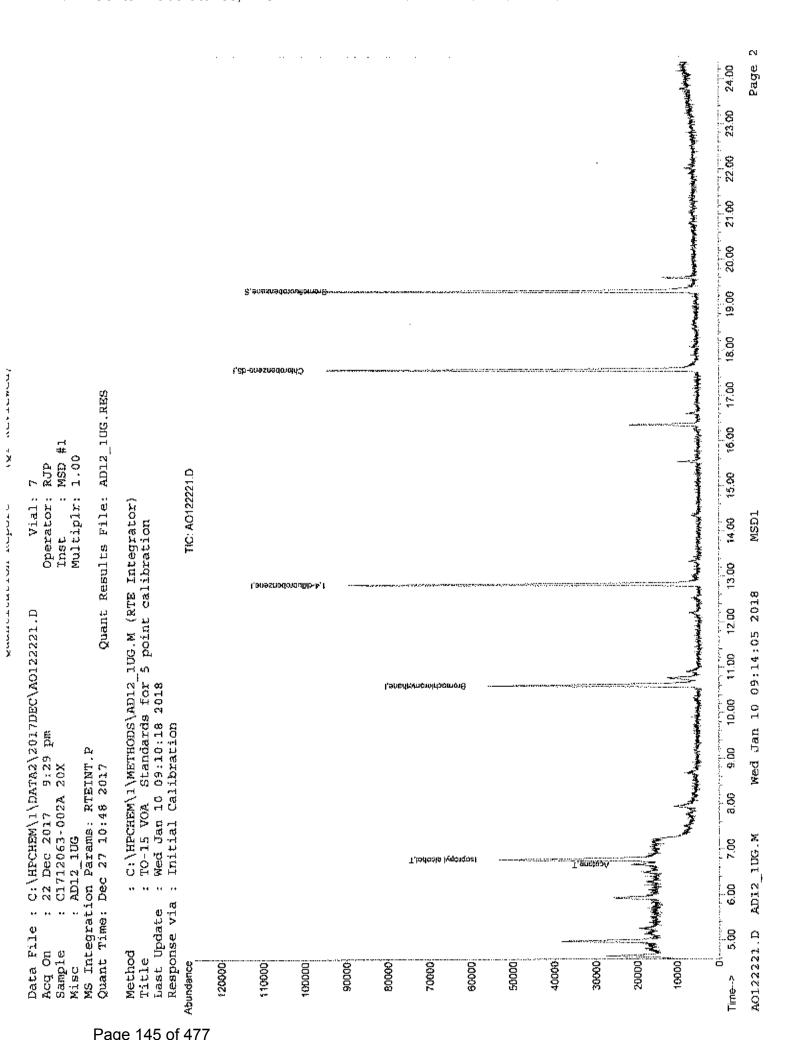
Vial: 7 Operator: RJP Inst : MSD #1

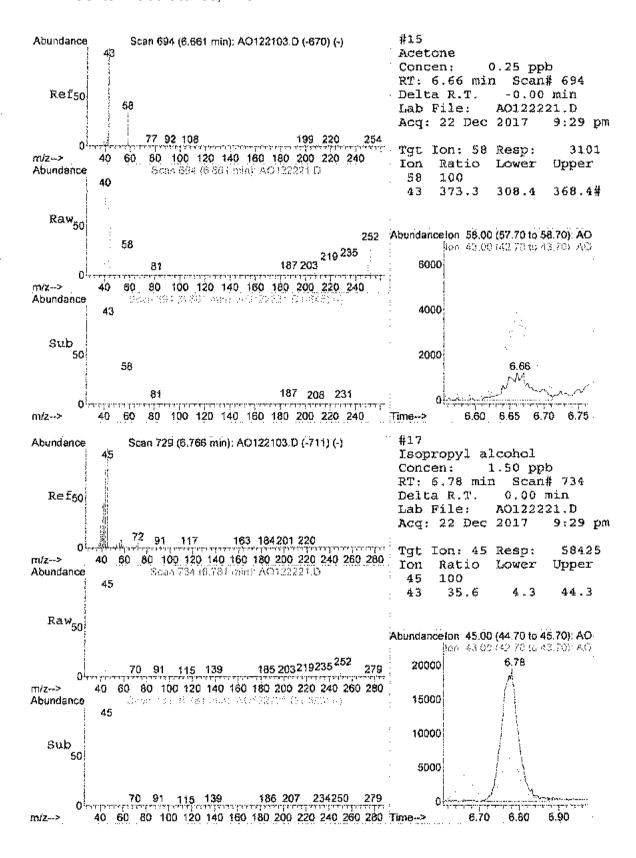
Sample : C1712063-002A 20X Misc : AD12_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:46:35 2017


Quant Results File: AD12_lUG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QTon	Response C	one C	Jnits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	24618 93104 70873	1.00	dqq t	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	39836 Recovery		ppb 76,	
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.66 6.78	58 48	3101 58 42 5		dqq i	Qvalue # 84 77

MSD1

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-003A

Date: 10-Jan-18

Client Sample 1D: SVI-02

Tag Number: 561.340

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS	FLO				Analyst:
Lab Vacuum In	-5		"Hg		12/18/2017
Łab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichioroethans	0.38	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,1,2-Trichtoroethane	< 0.15	0.15	νσαρ	1	12/22/2017 2:00:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,1-Dichloroethene	< 0.15	0.15	PpbV	1	12/22/2017 2:00:00 AM
1,2,4-Trichtorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,2,4-Trimethylbenzene	0.62	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,3.5-Trimethylbenzene	0.42	0.15	Vđqq	1	12/22/2017 2:00:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
1,4-Dioxane	1.7	0.30	Vdqq	1	12/22/2017 2:00:00 AM
2,2,4-trimethylpentane	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
4-ethyltoluene	0.13	0.15 J	ppbV	1	12/22/2017 2:00:00 AM
Acetone	370	81	ρpbV	270	12/23/2017 3:14:00 AM
Allyl chloride	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
Benzene	0.48	0.15	ρρb∨	1	12/22/2017 2:00:00 AM
Benzyl chloride	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Bromodichloromethane	< 0.15	0.15	Vdqq	1	12/22/2017 2:00:00 AM
Bromoform	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Carbon disulfide	0.34	0.15	ppbV	1	12/22/2017 2:00:00 AM
Carbon tetrachloride	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Chlorobenzena	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Chloroform	< 0.15	0.15	ppbV	į	12/22/2017 2:00:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	12/22/2017 2:00:00 AM
Cyclohexane	0.49	0.15	ppbV	1	12/22/2017 2:00:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/22/2017 2:00:00 AM
Ethyl acetate	0.95	0.15	ppbV	1	12/22/2017 2:00:00 AM

Qualifiers:

- 13 Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- JΝ Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range 17
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 5 of 26

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-003A

Date: 10-Jan-18

Client Sample ID: SVI-02

Tag Number: 561.340

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		Analusti D (D	
Ethylbenzene	0.26	0.15		Vdqq	1	Analyst: RJP 12/22/2017 2:00:00 AM
Freon 11	0.43	0.15		ppb∨	1	12/22/2017 2:00:00 AM
Freon 113	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Freon 114	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Freon 12	0.44	0.15		ppbV	1	
Heptane	3.0	4.0	JΗ	ppbV	27	12/22/2017 2:00:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	D. 1	ppbV	1	12/23/2017 2:37:00 AM
Hexane	3.2	0.15		ppbV		12/22/2017 2:00:00 AM
Isopropyi alcohol	89	40		ppbV	1	12/22/2017 2:00:00 AM
m&p-Xylene	0.60	0.30		ppov	270	12/23/2017 3:14:00 AM
Methyl Bulyl Ketone	< 0.30	0.30		, -	1	12/22/2017 2:00:00 AM
Methyl Ethyl Ketone	4.6	8.1	JH	ppbV	1	12/22/2017 2:00:00 AM
Methyl Isobutyl Kelone	1.8	0.30	JII	ppbV	27	12/23/2017 2:37:00 AM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Methylene chloride	3.5	4,0		Vdqq	1	12/22/2017 2:00:00 AM
o-Xylene	0.25	0.15	JH	ppbV	27	12/23/2017 2:37:00 AM
Propylene	< 0.15			∨dqq	1	12/22/2017 2:00:00 AM
Styrene	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Tetrachioroethylene		0.15		ppbV	1	12/22/2017 2:00:00 AM
Tetrahydrofuran	1.1	0.15		ppbV	1	12/22/2017 2:00:00 AM
Toluene	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
trans-1,2-Dichloroethene	3.0	4.0		ppbV	27	12/23/2017 2:37:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		ppbV	1	12/22/2017 2:00:00 AM
Trichloroethene	< 0.15	0.15		ppb∨	1	12/22/2017 2:00:00 AM
Vinyl acetate	5.4	4.0		ppbV	27	12/23/2017 2:37:00 AM
•	< 0.15	0.15		Vdqq	1	12/22/2017 2:00:00 AM
Vinyl shlorida	< 0.15	0.15		pobV	1	12/22/2017 2:00:00 AM
Vinyl chloride	0.29	0.15		∨dqq	1	12/22/2017 2:00:00 AM
Surr: Bramofluorobenzene	113	70-130		%REC	1	12/22/2017 2:00:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection

Page 6 of 26

CLIENT:

LaBella Associates, P.C.

Lab Order;

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-003A

Date: 10-Jan-18

Client Sample (D: SVI-02

Tag Number: 561.340 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15					Analysis Date
1,1,1-Trichforoethane	2,1	0.82		ug/m3	f	Analyst: RJP 12/22/2017 2:00:00 AM
1.1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	12/22/2017 2:00:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	12/22/2017 2:00:00 AM
1,1-Dichlorcethane	< 0.61	0.61		ug/m3	1	12/22/2017 2:00:00 AM
1.1-Dichtoroethene	< 0.59	0.59		ug/m3	1	
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	12/22/2017 2:00:00 AM
1,2,4-Trimethylbenzene	3.0	0.74		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dibromosthane	< 1.2	1.2		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 2:00:00 AM
1.2-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	12/22/2017 2:00:00 AM
1,3,5-Trimethylbenzene	2.1	0.74		ug/m3		12/22/2017 2:00:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	12/22/2017 2:00:00 AM
1.3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 2:00:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		•	1	12/22/2017 2:00:00 AM
1,4-Dioxane	6.1	1.1		ug/m3	1	12/22/2017 2:00:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		цg/m3	1	12/22/2017 2:00:00 AM
4-ethyltoluene	0,64	0.74	J	ug/m3	1	12/22/2017 2:00:00 AM
Acetone	870	190	J	ug/m3	1	12/22/2017 2:00:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	270	12/23/2017 3:14:00 AM
Senzene	1.5	0.48		ug/m3	1	12/22/2017 2:00:00 AM
Benzyl chloride	< 0.86	0.46		ug/m3	1	12/22/2017 2:00:00 AM
Bromodichtoromethane	< 1.0	1.0		ug/m3	1	12/22/2017 2:00:00 AM
Bromoform	< 1.6			ug/m3	1	12/22/2017 2:00:00 AM
Bromomethane	< 0.58	1.6		ug/m3	1	12/22/2017 2:00:00 AM
Carbon disulfide	1.1	0.58		ug/m3	1	12/22/2017 2:00:00 AM
Carbon tetrachioride	< 0.94	0.47		ug/m3	1	12/22/2017 2:00:00 AM
Chloropenzene	< 0.69	0.94		ug/m3	1	12/22/2017 2:00:00 AM
Chloroethane	< 0.40	0.69		ig/m3	1	12/22/2017 2:00:00 AM
Chloraform		0.40		ıg/m3	1	12/22/2017 2:00:00 AM
Chloromethane	< 0.73	0.73		/g/m3	1	12/22/2017 2:00:00 AM
cis-1,2-Dichloroethene	< 0.31	0.31		ıg/m3	1	12/22/2017 2:00:00 AM
ris-1,3-Dichloropropene	< 0.59	0.59		ıg/m3	1	12/22/2017 2:00:00 AM
Syciohexane	< 0.68	0.68)g/m3	1	12/22/2017 2:00:00 AM
Dibromochloromethane	1.7	0.52		g/m3	1	12/22/2017 2:00:00 AM
Sthyl acetate	< 1.3	1.3		g/m3	1	12/22/2017 2:00:00 AM
thylbenzene	3.4	0.54		g/m3	1	12/22/2017 2:00:00 AM
reon 11	1.1	0.65		g/m3	1	12/22/2017 2:00:00 AM
reon 113	2.4	0.84	Ц	g/m3	1	12/22/2017 2:00:00 AM
reon 114	< 1,1	1.1	LI;	g/m3	1	12/22/2017 2:00:00 AM
1001.114	< 1.0	1.0	u	g/m3	- 1	12/22/2017 2:00:00 AM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 26

CLIENT: LaBella Associates, P.C.

Lab Order;

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-003A

Date: 10-Jan-18

Client Sample ID: SVI-02

Tag Number: 561.340 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		ТО		Andrew Dan		
Freon 12	2,2	0.74		ug/m3	1	Analyst: RJP 12/22/2017 2:00:00 AM
Heptane	12	16	JН	ug/m3	27	12/23/2017 2:37:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	• • •	ug/m3	1	12/22/2017 2:00:00 AM
Hexane	11	0.53		ug/m3	1	
Isopropyl alcohol	220	98		ug/m3	270	12/22/2017 2:00:00 AM
m&p-Xylene	2.6	1.3		ug/m3	1	12/23/2017 3:14:00 AM
Methyl Butyl Ketone	< 1.2	1,2		ug/m3	•	12/22/2017 2:00:00 AM
Methyl Ethyl Ketone	14	24	JH	-	1	12/22/2017 2:00:00 AM
Methyl isobutyl Ketone	7.2	1.2	УIT	ug/m3	27	12/23/2017 2:37:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 2:00:00 AM
Methylene chloride	12	14	II.)	ug/m3	1	12/22/2017 2:00:00 AM
a-Xylene	1.1	0.65	JH	ug/m3	27	12/23/2017 2:37:00 AM
Propylene	< 0.26	-		ug/m3	t	12/22/2017 2:00:00 AM
Styrene		0.26		ug/m3	1	12/22/2017 2:00:00 AM
Tetrachloroethylene	< 0.64	0.64		ug/m3	1	12/22/2017 2:00:00 AM
Tetrahydrofuran	7.2	1.0		មg/m3	1	12/22/2017 2:00:00 AM
Toluene	< 0.44	0.44		ug/m3	1	12/22/2017 2:00:00 AM
trans-1,2-Dichloroethene	. 11	15	JH	ug/m3	27	12/23/2017 2:37:00 AM
	< 0.59	0.59		ug/m3	1	12/22/2017 2:00:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 2:00:00 AM
Trichloroethene	29	21		ug/m3	27	12/23/2017 2:37:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 2:00:00 AM
Vinyl Bromide	< 0.66	0.66		սց/m3	1	12/22/2017 2:00:00 AM
Vinyt chloride	0.74	0.38		ug/m3	1	12/22/2017 2:00:00 AM

Character .	lifiers
U U H	HILLETS

Quantitation Limit

Page 6 of 26

Analyte detected in the associated Method Blank

Ħ Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

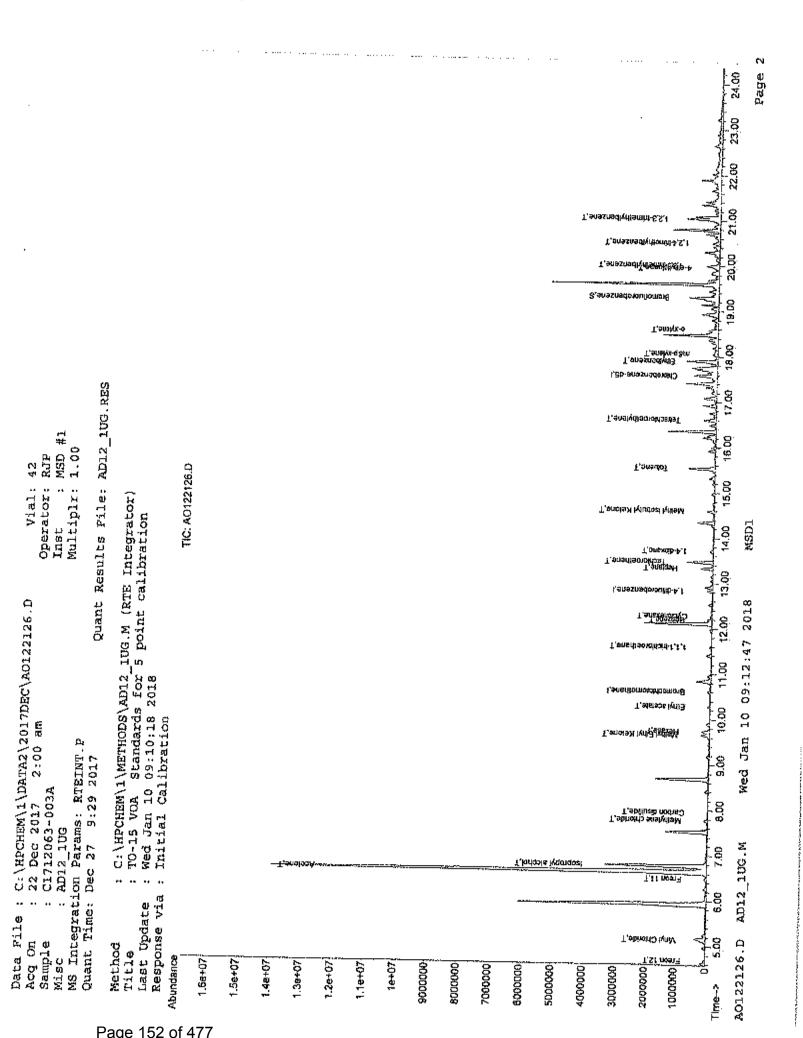
E Estimated Value above quantitation range

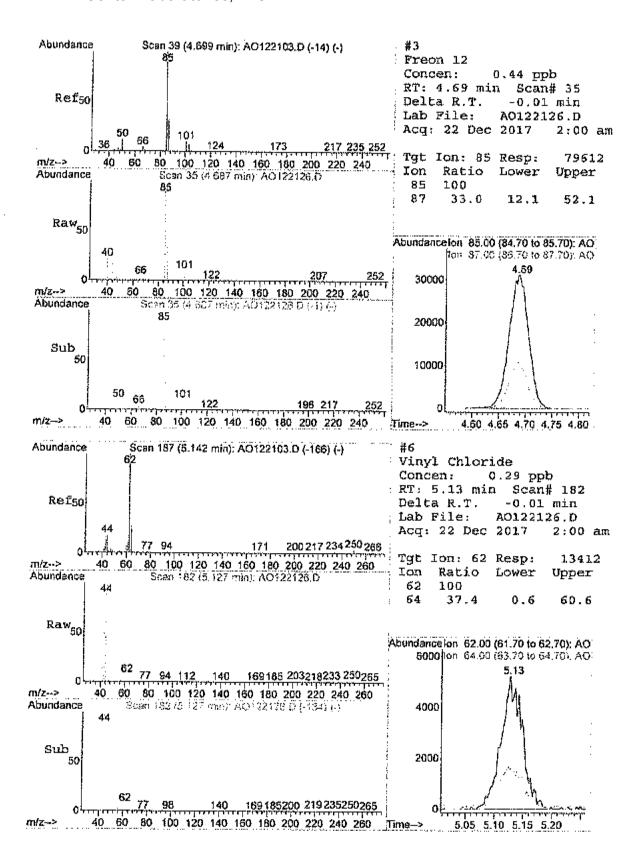
¹ Analyte detected below quantitation limit

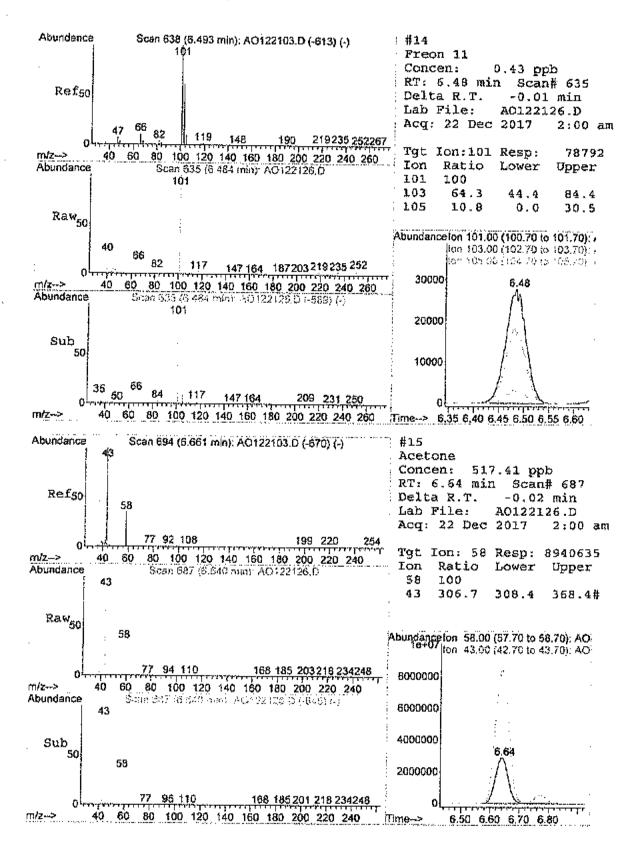
ND Not Detected at the Limit of Detection

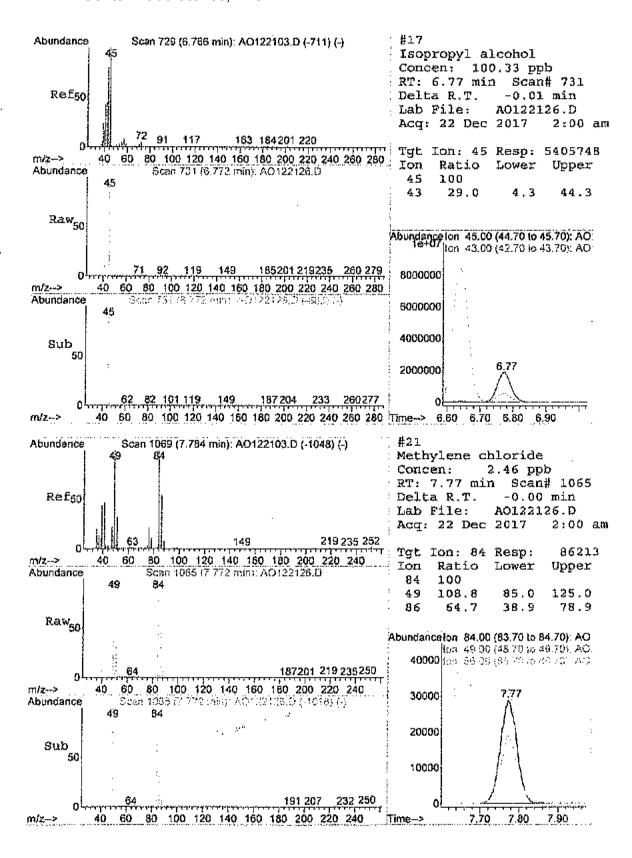
Quantitation Report

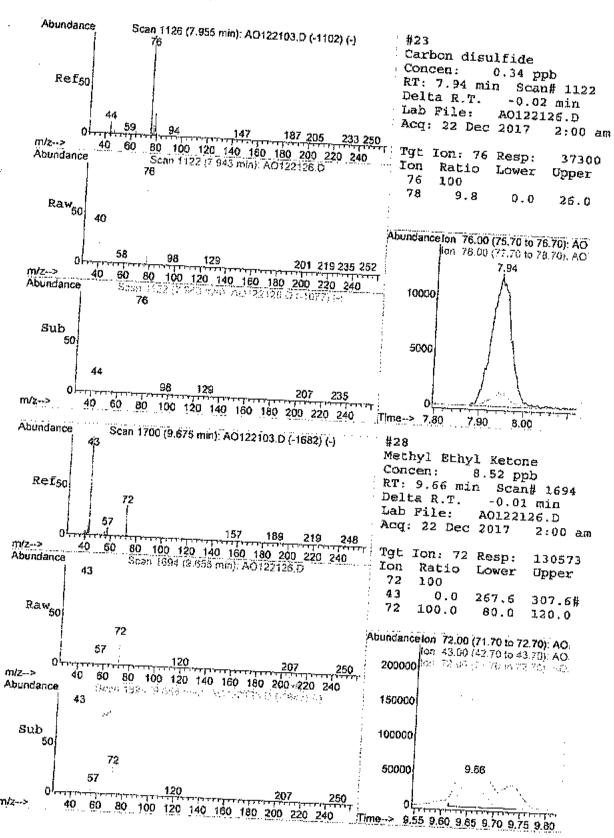
(QT Reviewed)

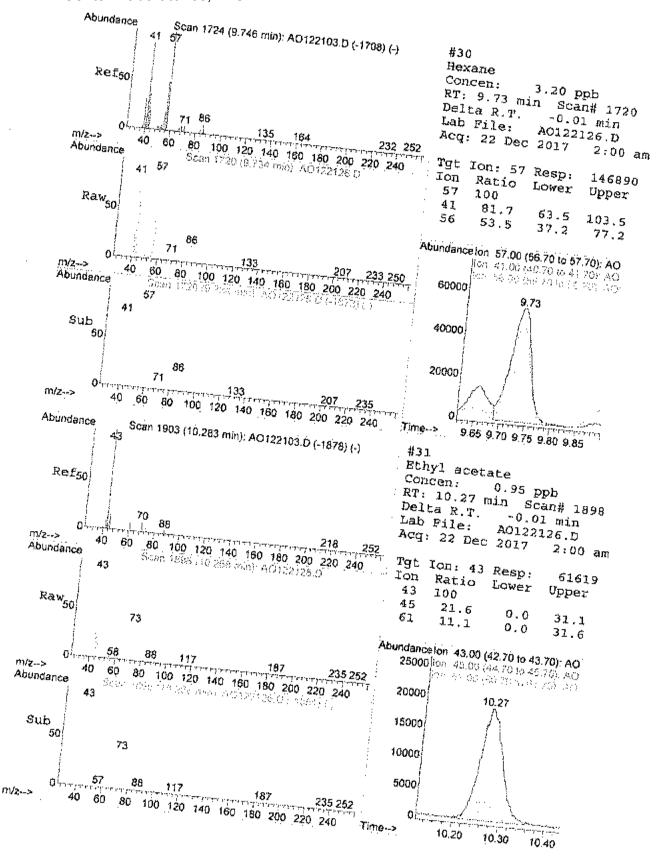

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122126.D Vial: 42 Acq On : 22 Dec 2017 2:00 am Operator: RJP : C1712063-003A Sample Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00 MS Integration Params: RTEINT.P

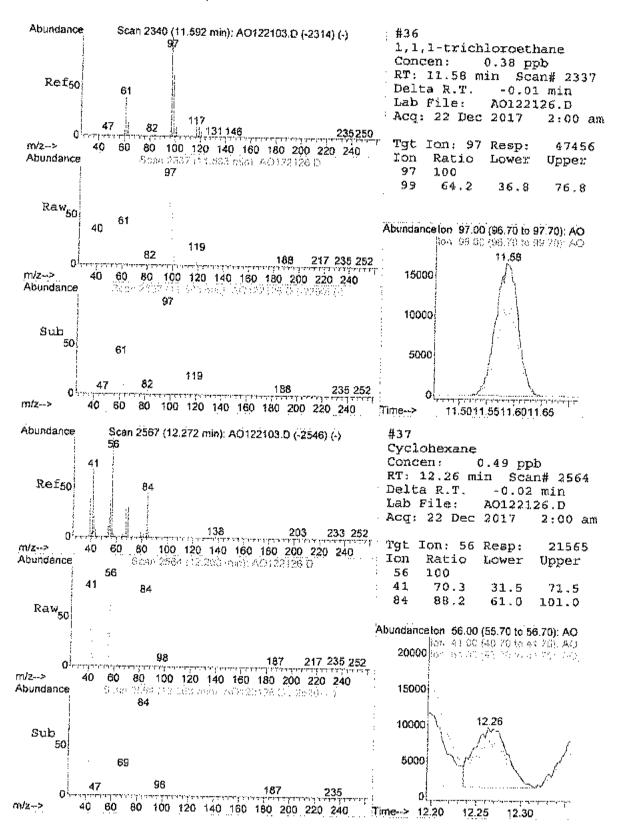

Quant Time: Dec 22 08:06:56 2017 Quant Results File: AD12_10G.RES

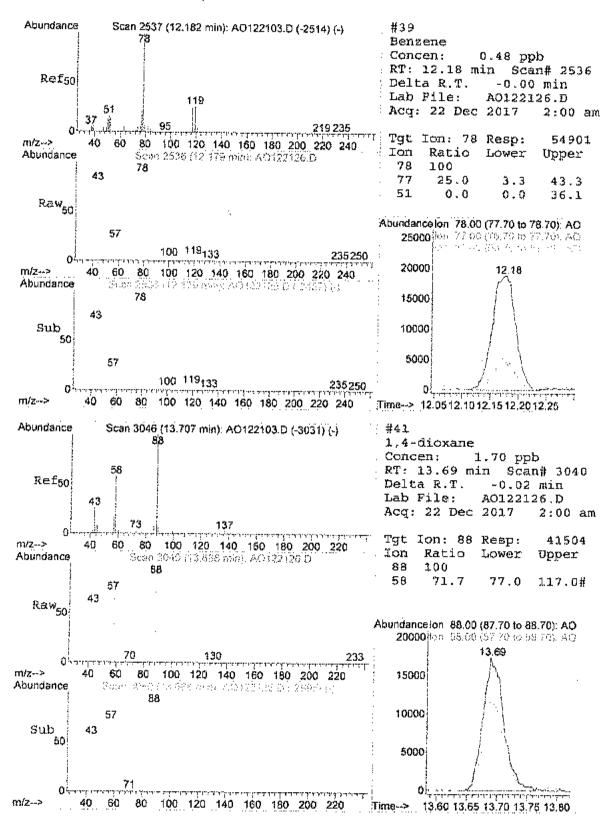

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

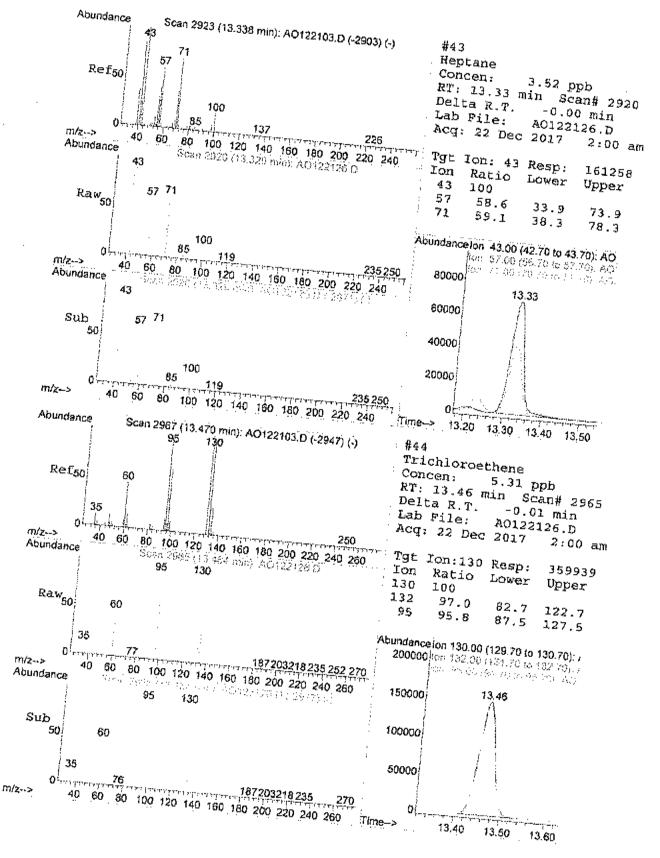

nacawed weth	i : TUG_RU	JN								
Internal St	andards	·	R.7	ľ. QI	on	Response				
1) Bromoo	hlorometh	nane	10.6	 50 1	28	34102		o ppb		0.00
35) 1,4-di	fluorober	lzene				141416		dgg 0		0.00
50) Chloro	benzene-d	15	17.5	56 1	17	157825		dqq 0		0.00
							******	o PP-		0.00
System Moni	toring Co	mpounds								
65) Bromof		ene	19.2	9	95	132479	1.1	daa E		0.00
Spiked Am	ount	1.000	Range 7	70 -	130	Recov	ery =			
D	- · · •						•			
Target Comp									Qvá	lue
3) Freon			4.6	9	85	79612	0.4	dqq i		98
6) Vinyl				.3				dgg (8.8
14) Freon :			6.4		Οī			ppb		100
15) Aceton		~	6.6	4		8940535		dqq	#	85
17) Isoproj	yr alcon	or	6.7	7	45	5405748		ppb		91
21) Methylo 23) Carbon	me chick	iae -	7.7	7	84	86213		ppb		95
			7.9	4	76	_ ,	0.34	dqq		89
28) Methyl 30) Hexane	ECUAT YG	tone	9.6	6	72	130573	ል ፍታ	nonh	#	1
31) Ethyl a	anataba		9.7	3 !	57	146890 61619	3.20	qqq		97
36) 1,1,1-t		~ ** L	10.2	7	£3.	61619	0.95	dqq		85
37) Cyclohe		ecnane	11.5	8 :	97	47456	0.38	ppp		90
39) Benzene			12.2	b !	56	21565	0.49	bbp		85
41) 1,4-dic			12.1	3	/8	54901	0.48	ppp		
43) Heptane			13.6	<i>ጋ</i> ነ	88	41504	1.70	ppp	Ħ	74
44) Trichlo			13.3 13.4		13 10					96
51) Toluene			15.5		12	359939				91
52) Methyl		Kerone	14.5			325733		ppb		88
56) Tetrach	loroethyl	lene	16.6	י ק מנו מ	4	131784 102346		ppp		83
58) Ethylbe	nzene		17.B			60476		ppb		88
59) m&p-xyl			18.0		1	120706		ppb		99
63) o-xylen			18.58			57820		ppb		98
69) 4-ethyl			19,93			34491		dqq		91
70) 1,3,5-6		enzene	20.00					dag		95
71) 1,2,4-t	rimethylb	enzene	20.49			119486		dqq dqq		74 95
75) 1,2,3-t	rimethylb	enzene	21.02		5	71227		ppp		95 96
•	•				~	, 100,	0.52	PPD		29 0

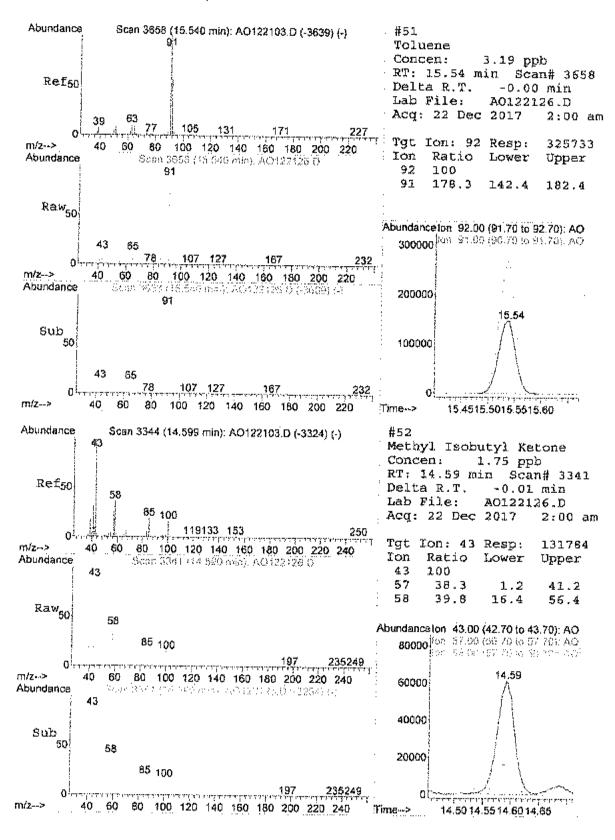

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed 40122126.D AD12 1UG.M Wed Jan 10 09:12:46 2018

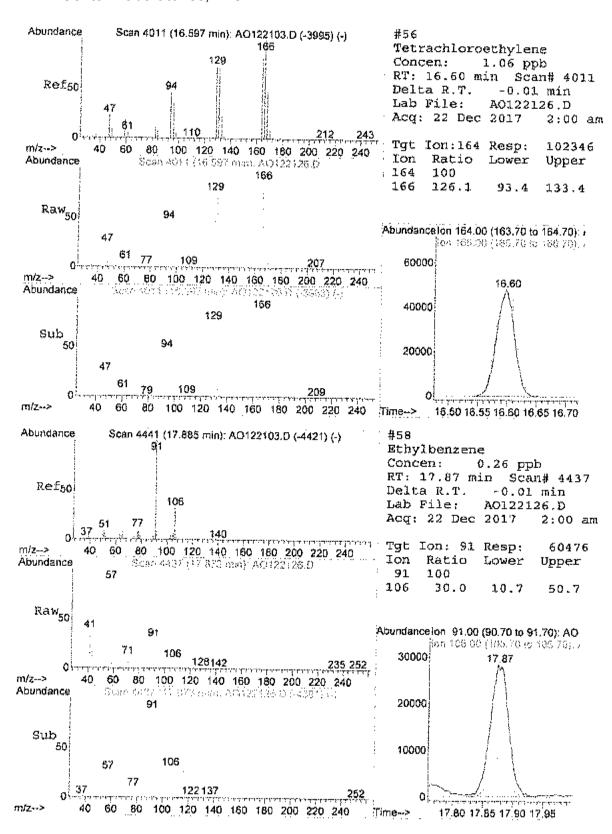


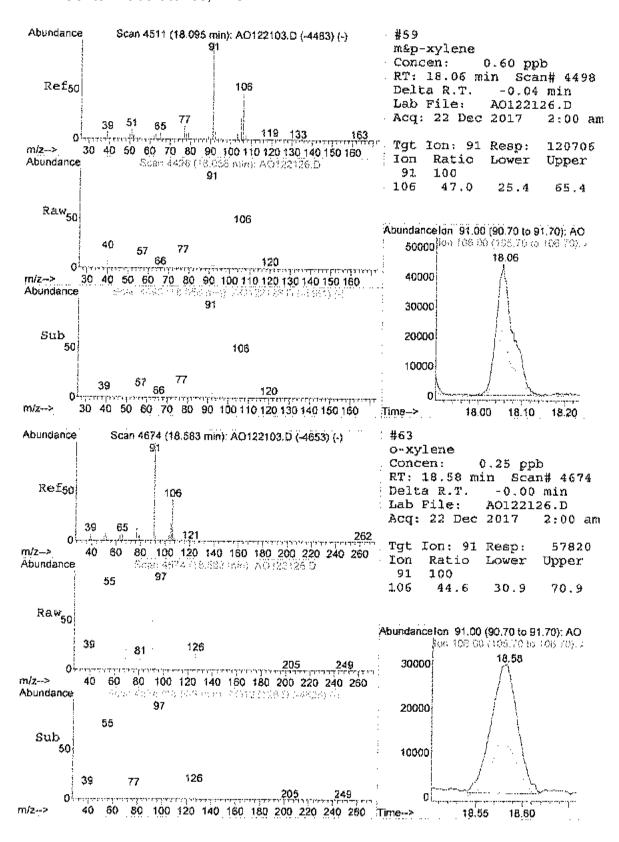


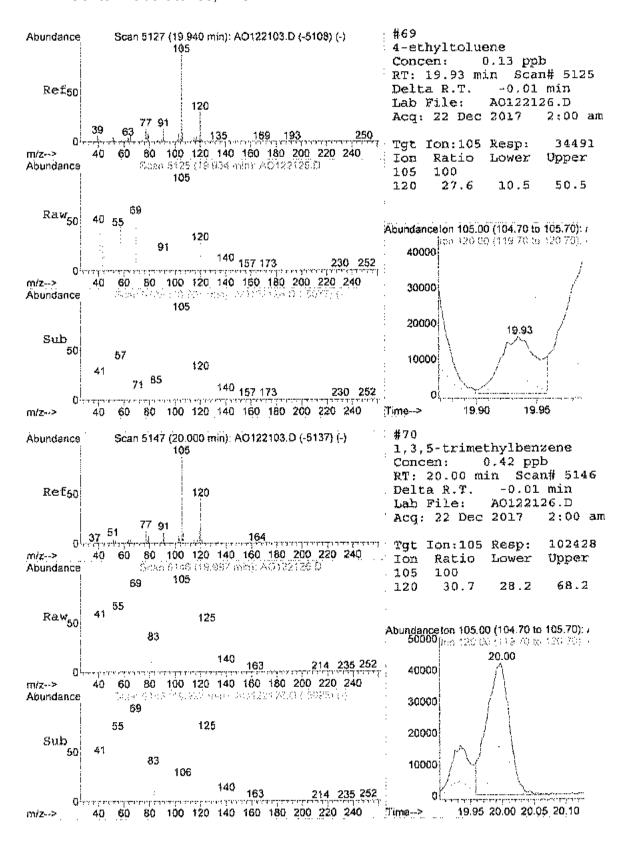


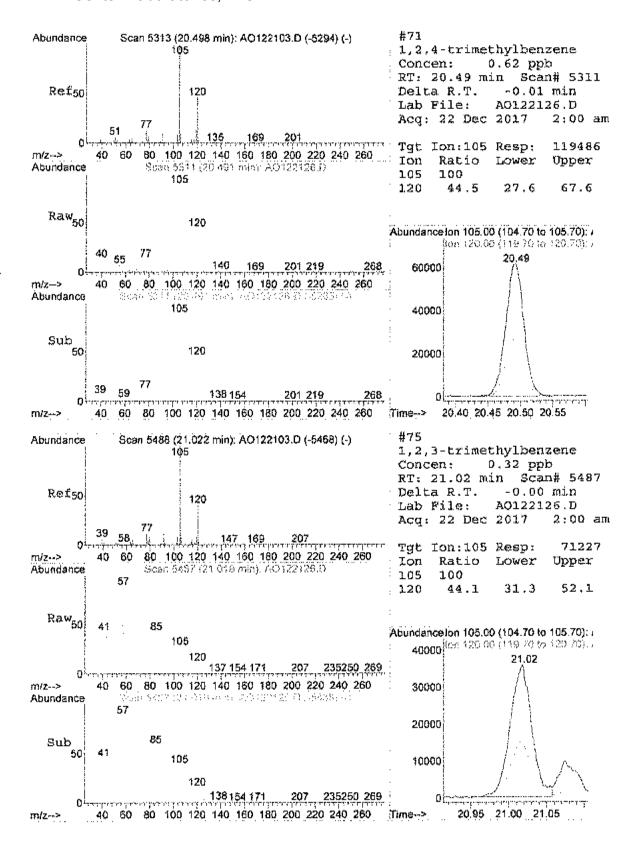








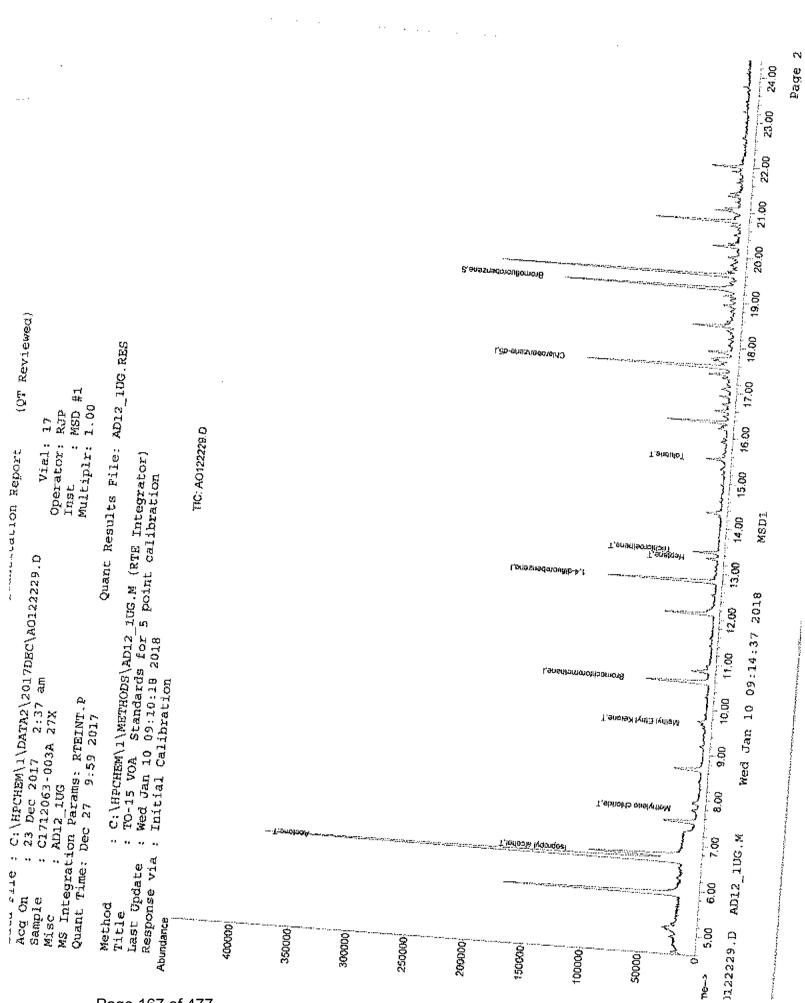




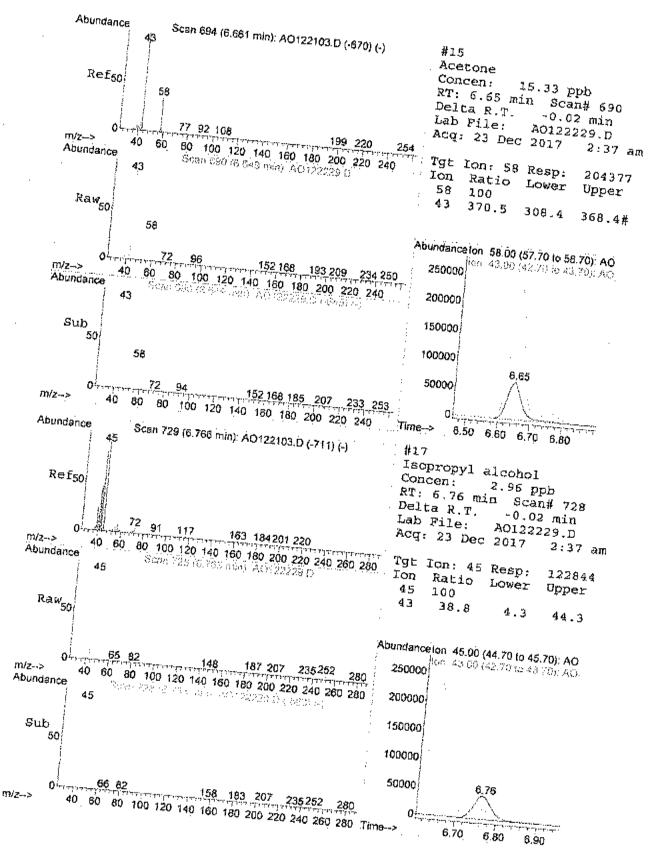
Quantitation Report

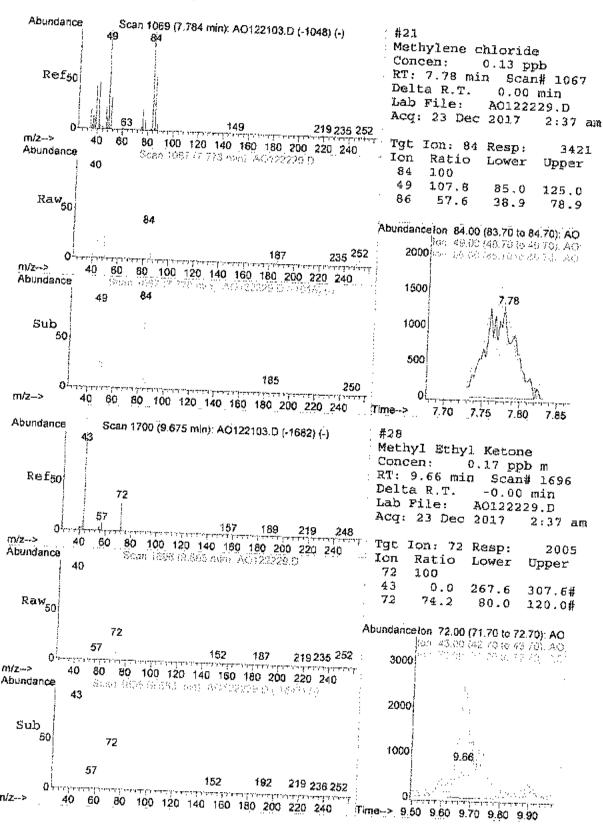
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122229.D Acq On : 23 Dec 2017 2:37 am (QT Reviewed) Sample : C1712063-003A 27X AD12_1UG Vial: 17 Operator: RJP Inst : MSD #1

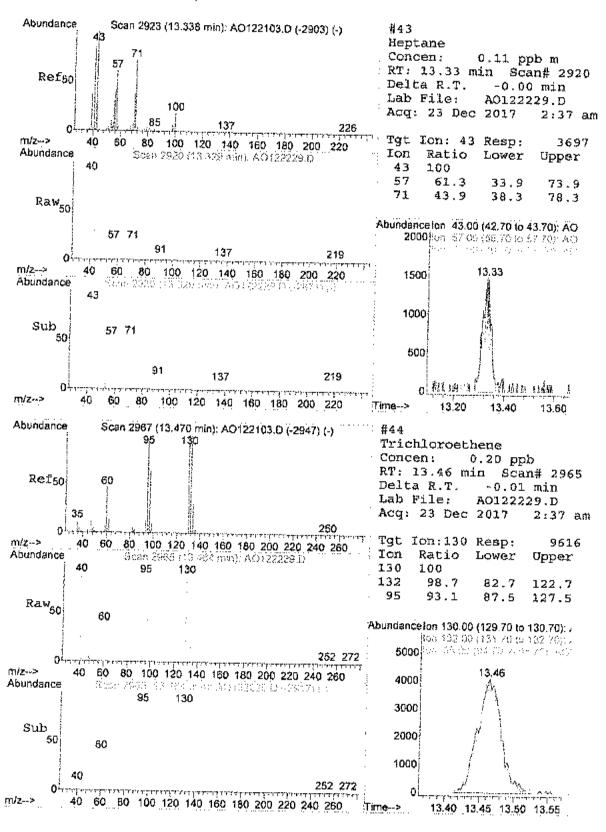
MS Integration Params: RTEINT, P Quant Time: Dec 27 09:46:42 2017 Multiplr: 1.00

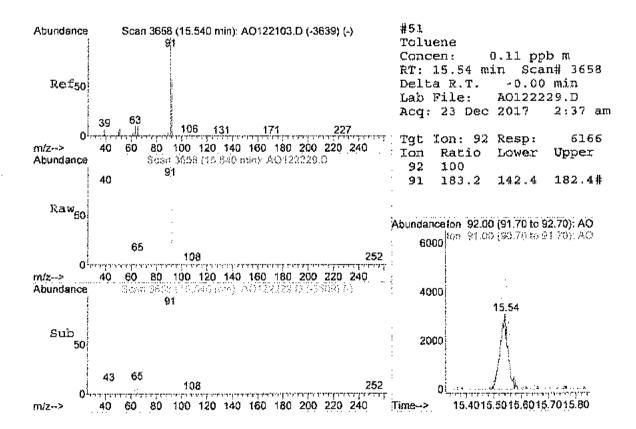

Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Response via : Initial Calibration


DataAcq Meth : IUG_RUN


Internal Standards			
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5 System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 Target Compounds 15) Acerons	R.T. QIon 10.60 128 12.82 114 17.56 117 19.29 95 Range 70 - 130	Response Conc Units 26308	0.00
17) Isopropyl alcohol 21) Methylene chloride 28) Methyl Ethyl Ketone 43) Heptane 44) Trichloroethene 51) Toluene	6.65 58 6.76 45 7.78 84 9.66 72 13.33 43 13.46 130 15.54 92	204377 122844 3421 2005m 3697m 9615 6166m 15.33 ppb 2.96 ppb 0.13 ppb 0.17 ppb 0.11 ppb 0.20 ppb 0.11 ppb	Qvalue # 85 71 98

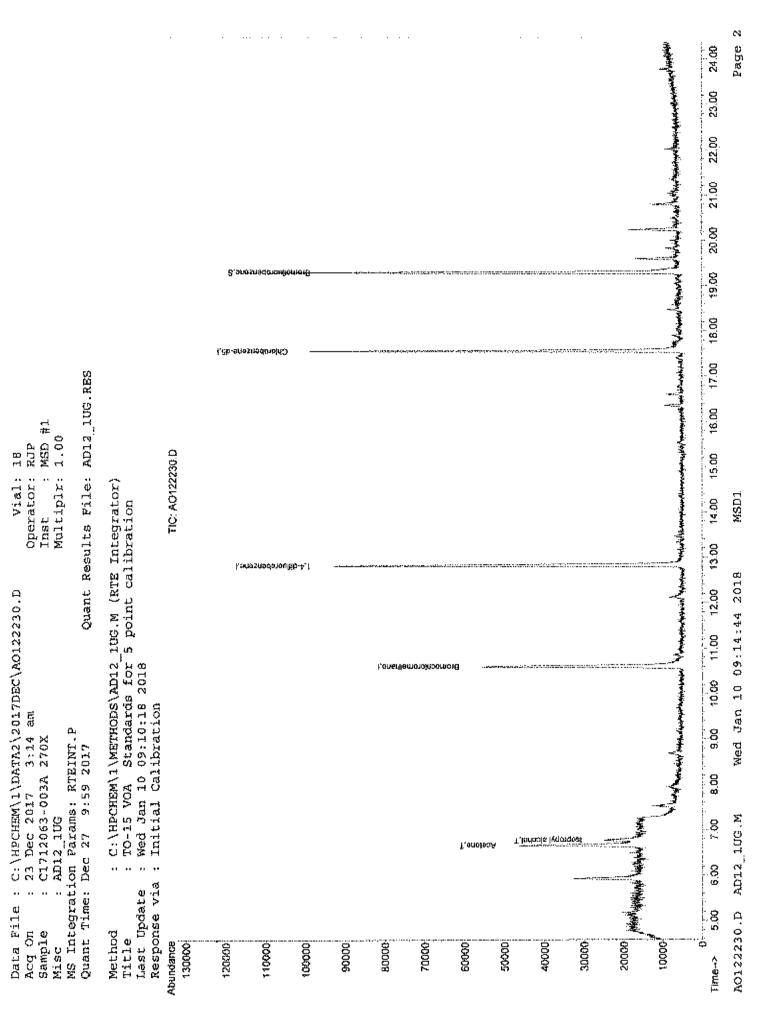


Page 167 of 477

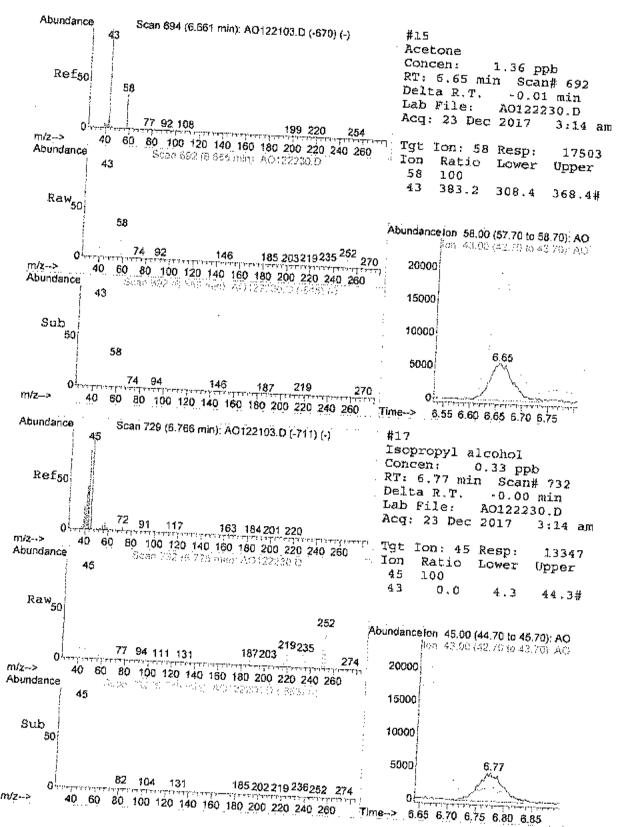
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122230.D Acq On : 23 Dec 2017 3:14 am Vial: 18 Sample : C1712063-003A 270X Misc : AD12_1UG Operator: RJP Inst : MSD #1 MS Integration Params: RTEINT.P Multiplr: 1.00

Quant Time: Dec 27 09:46:43 2017 Quant Results File: AD12_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Response via : Initial Calibration

DataAcq Meth : lug_RUN


Internal Standards	R.T.	QIon	Response (one ()nits	Dev(Min)	
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	25489 95894 74534	1.00	dqq dqq	0.00	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	42650 Recovery	0.77	ppb 77.	0.00	
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.65 6.77	58 45	17503 13347	1.36 0.33	dqq dqq	Qvalue # 79 # 51	

33224,34

11001

Page 173 of 477

Centek Laboratories, LLC CHARLES AND ADDRESS OF TAXABLE PARTY.

Project:

Lab ID;

C1712063-004A

Tag Number: 161.297

Collection Date: 12/13/2017

Analyses							(=)	13/2017
	D					Mat	rix: AIR	
Analyses FIELD PARAMETERS Lab Vacuum in			**Li	mit Qu	af U _B i		DF	
Lab Vacuum Out		æ		FLD	-	· · · · · · · · · · · · · · · · · · ·		Date Analyzed
1UG/M3 W/ 2 ave		-6 -30			"Hg			Analyst;
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	'C	- •			"Hg			12/18/2017
1.1.2.2-Tetrachioroethane				ГО-15				12/18/2017
1.1.2-Trichloroethane		.15	0.1					
1.1-Dichloroethane	< 0.		0.1		PPbV		1	Analyst: RJF
1,1-Dichloroethene	< 0,		0.15		₽₽bV		1	144 1/4U17 7:06:04 ma
1.2.4-Trichiorobenzene	< 0. ⋅		0.15		Vdqq		1	**************************************
1.2.4-Triments	< 0.1		0.15		DOPA		1	1212 (12017 7:06:00 max
1,2,4-Trimethylbenzene	< 0.1		0.15		PPbV		1	1474172017 7:08:00 Dec
1.2-Dibromoethane	< 0.1.		0.15	1	₽₽b∨		1	**** 172017 7:08:00 min
1,2-Dichlorobenzene	< 0.18		0.15	K	OPPV		1	14/4 1/2017 7 DR OD 124
1.2-Dichleroethane	< 0.15	:	0.15	p	ypbV			16/4 1/2017 7:06:00 Dea
1,2-Dichloropropane	< 0.15			Þ	₽ÞV		1	12/4 1/4U17 7:06:00 pv
(.J.D. frimethylbenzas	< 0.15		0.15	P	₽bV			14/41/2017 7:06:00 Dea
',3-Utitadiane	< 0.15		0.15	ρp	ρbV		_	12/2 1/2017 7:06:00 max
1.3-Dichtorobenzene	< 0.16		0.15	₽₽	bV		1 1	2/21/2017 7:06:00 PM
7,4-Dichtoropenzone	< 0.15		0.15	Дp	bν		1	2/21/2017 7:06:00 PM
\.4-t\\0xaue	< 0.15		0.15	ppt		1	1	2/21/2017 7:06:00 PM
2,2,4-trimethylpentane	< 0.30		0.15	pph		1	12	2/21/2017 7:06:00 PM
4-emyliolαene	< 0.15		0.30	Ppb		1	12	721/2017 7:00:00 PM
Acetone	< 0.15		0.15	Pp.5		7	12	721/2017 7:06:00 PM
Allyl chloride	_		0.15	######################################		1	12	/21/2017 7:06:00 PM
Benzene	7.0		2.7			1	12/	21/2017 7:08:00 PM
Benzyl chloride	< 0.15		0.15	₽p b\		9	12/	21/2017 7:06:00 PM
Bromodichloromethane	0.29		0.15	PPbV		1	130	22/2017 10:09:00 PM
Bromoform	< 0.15	(0.15	AppA		1	12/2	772017 7:06:00 ma.
Bromomethane	< 0.15		0.15	Vdqq		1	CELE	7/2017 7:08:00 pm
Carbon disulfide	< 0.15		1.15	₽₽¢V		1	1412	1/2017 7:06:00 pag
Carbon total	< 0.15		.15	PPbV		1	'AIR	72017 7:06 on o
Carbon tetrachloride	< 0.15		15	PPDV		1	12/2/	72017 7:06:00 Oca
Chlorobenzane	0.080	0.0		Vdqq		,	14121	/2017 7:06:00 ou
Chloroethane	< 0.15			PPbV		4	12/2//	2017 7:06:00 ps
Chloraform	< 0.15	0.1		PPbV			1414.14	2017 7:08:00 p
hioromethane	1.5	0.1		₽₽bV		1	12/2 (/)	2017 7:06:00 Occ
s-1.2-Dichloroethene	0.37	0.1		ppbV		1	4/4/1/5	917 7:06:00 per
>-1,3-Dichloroproper-	< 0.15	0.18		PPbV		1	12/21/2	017 7:06:00 PM
υυπ θχ<u>a</u>η_e	< 0.15	0.15	5	PPbV		1	12/21/2	017 7:06:00 PM
promochloromathane	0.13	0.15		PpbV		1	12/21/20	017 7:06:00 PM
y acetate	< 0.15	0.15	J	γρb∨ γρb∨		1	12/21/20	17 7:06:00 PM
iffers: ** Quantitation Limit B Analyte dataset	5 0 4 €	0.15		pbV		1	12/21/20	17.7.00:00 PM
Hers:	- u. 10	0.15	, ,	PbV		7	12/21/20	17 7:06:00 PM 17 7:06:00 PM
Hitre #4								

Qualifiers:

- Analyte detected in the associated Method Blank H
- Floiding times for preparation or analysis exceeded JN
- Non-routine analyte. Quantitation estimated. s
- Spike Recovery outside accepted recovery fimits
- Results reported are not blank corrected
- E Estimated Value above quantitation range 1
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 24

C1712063

Project: Eldre Corp Lab ID:

Client Sample ID: IAQ-02 Tag Number: 161.297 Collection Date: 12/13/2017 C1712063-004A

Analyses		Matrix: AIR				
	Result	**Limit	Qual Units	ĎF	Ph. 5 5	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC			—- 		Date Analyzed	
Ethylbenzene Freen 11 Freen 113 Freen 114 Freen 12 Heptane Hexachloro-1,3-butadiene Hexane Isopropyl alcoho! m&p-Xylene Methyl Butyl Ketone Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylene chlorideXylene Iropylene Ityrene etrachloroethylene atrahydrofuran oliuene Ins-1,2-Dichloroethene Ins-1,3-Dichloroethene Iyl acetate Iyl Bromide Iyl acetate Iyl Bromide Iyl chloride Surr: Bromofluorobenzene	< 0.15	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	PPBV PPBV PPBV PPBV PPBV PPBV PPBV PPBV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analyst: RJP 12/21/2017 7:06:00 PM	

Outs	lifiers.
V-010	14776.15.

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Ħ
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 13 Estimated Value above quantitation range
- Analyte detected below quantitation limit ,J
- ND Not Detected at the Limit of Detection

Page 8 of 26

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

CLIENT:

Lab ID:

Eldre Corp

C1712063-004A

Date: 10-Jun-18

Client Sample ID: IAQ-02

Tag Number: 161.297

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Resuit	**Limit	Qual Un	its DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		то	-15		Analyst: RJP
1,1,1-Trichioroethane	< 0.82	0.82	ug/n	n3 1	12/21/2017 7:06:00 PM
1.1,2,2-Tetrachloroethane	< 1.0	1.0	ug/n	n3 t	12/21/2017 7:06:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/n	n3 1	12/21/2017 7:06:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/n	n3 1	12/21/2017 7:06:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/n	n3 1	12/21/2017 7:08:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/n	n3 1	12/21/2017 7:05:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/n	n3 1	12/21/2017 7:06:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/n	13 1	12/21/2017 7:05:00 PM
1,2-Dichlorobenzane	< 0.90	0.90	ug/n	n3 1	12/21/2017 7:06:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/n	n3 1	12/21/2017 7:06:00 PM
1.2-Dichloropropane	< 0.69	0.69	ug/n	¥ 3 1	12/21/2017 7:06:00 PM
1,3,5-Trimethylbenzens	< 0.74	0.74	ug/n	n3 1	12/21/2017 7:06:00 PM
1,3-butadiene	< 0.33	0.33	ug/n	13 1	12/21/2017 7:06:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/n		12/21/2017 7:06:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/n		12/21/2017 7:06:00 PM
1,4-Dioxane	< 1.1	1.1	ug/n		12/21/2017 7:06:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m		12/21/2017 7:06:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m	13 1	12/21/2017 7:06:00 PM
Acetone	17	6.4	ug/π		12/22/2017 10:09:00 PI
Allyl chloride	< 0.47	0.47	ug/n		12/21/2017 7:06:00 PM
Benzene	0.93	0.48	ug/n		12/21/2017 7:06:00 PM
Benzyl chloride	< 0.86	0.86	ψ g/ α	3 1	12/21/2017 7:06:00 PM
Bromodichloromethase	< 1.0	1,0	ug/m		12/21/2017 7:06:00 PM
Bromoform	< 1. 6	1.6	ug/m		12/21/2017 7:05:00 PM
8romomethane	< 0.58	0.58	ug/m		12/21/2017 7:06:00 PM
Carbon disulfide	< 0.47	0.47	ug/m		12/21/2017 7:06:00 PM
Carbon tetrachloride	0.38	0.25	ug/m		12/21/2017 7:06:00 PM
Chlorobenzene	< 0.69	0.69	ug/m		12/21/2017 7:06:00 PM
Chloroethane	< 0.40	0.40	ug/m		12/21/2017 7:06:00 PM
Chloroform	7.4	0.73	ug/m		12/21/2017 7:06:00 PM
Chloromethane	0.76	0.31	ug/m		12/21/2017 7:06:00 PM
cis-1,2-Dichlorosthene	< 0.59	0.59	ug/m		12/21/2017 7:06:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m		12/21/2017 7:06:00 PM
Cyclohexane	0.45	0.52	J նելևա		12/21/2017 7:06:00 PM
Dibromochloromethane	< 1.3	1.3	นฎ/กา		12/21/2017 7:06:00 PM
Ethyl acetate	< 0.54	0.54	ug/m		12/21/2017 7:06:00 PM
Ethylbenzene	< 0.65	0.65	ug/m		12/21/2017 7:06:00 PM
Freon 11	2.8	0.64	ug/m		12/21/2017 7:06:00 PM
Freon 113	< 1.1	1.1	ug/m		12/21/2017 7:06:00 PM
Freon 114	< 1.0	1.0	ug/m		12/21/2017 7:05:00 PM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 6 Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 26

CLIENT: Lab Order:

Project;

Eldre Corp

Lab ID: C1712063-004A

Client Sample ID: IAQ-02

Tag Number: 161.297 Collection Date: 12/13/2017

Analyses				Ma	trix; Ai	2/13/2017 R
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	Result	**Limit	Qual ប	nits	D <i>F</i>	
Heptane Hexachloro-1,3-butadiene Hexane Isopropyl alcohol m&p-Xylene Methyl Butyl Ketone Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl tert-butyl ether Methylene chibride	2.6 2.4 < 1.6 0.70 190 0.78 < 1.2 1.3 < 1.2 < 0.54 2.4 < 0.65 < 0.26 < 0.64 < 1.0 < 0.44 3.8 < 0.59 < 0.68 0.38 < 0.53 < 0.66 < 0.10	70 0.74 0.61 1.6 0.53 34 1.3 1.2 0.88 1.2 0.54 0.52 0.65 0.26 0.64 1.0 0.44 0.57 0.59 0.68 0.16 0.53	-15 ug/n ug/m ug/m ug/m ug/m3	m3 m	f	Analyst: RJP 12/21/2017 7:06:00 PM

Qualific	r

- ** Quantitation Limit
- B Analyse detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded IN
- Non-routine analyte. Quantitation estimated, Spike Recovery omside accepted recovery limits

- Results reported are not blank corrected ϵ
- Estimated Value above quantitation range J
- Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

Page 8 of 26

Quantitation Report (QT Reviewed)

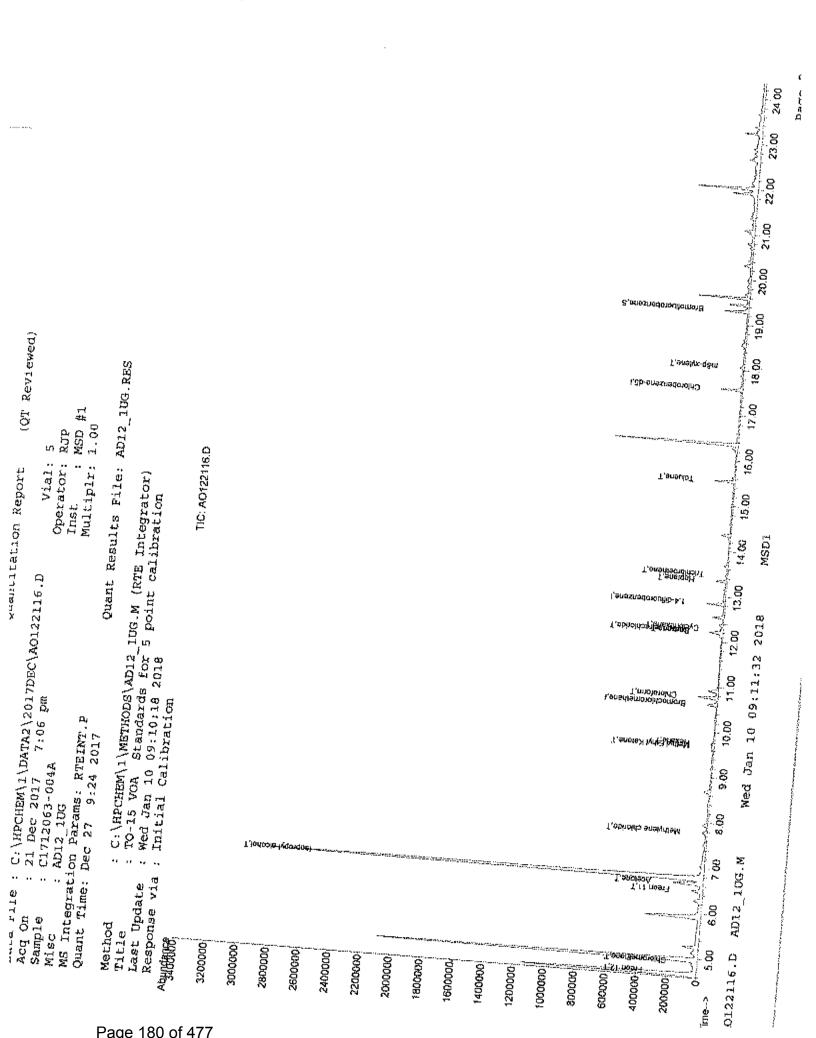
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122116.D

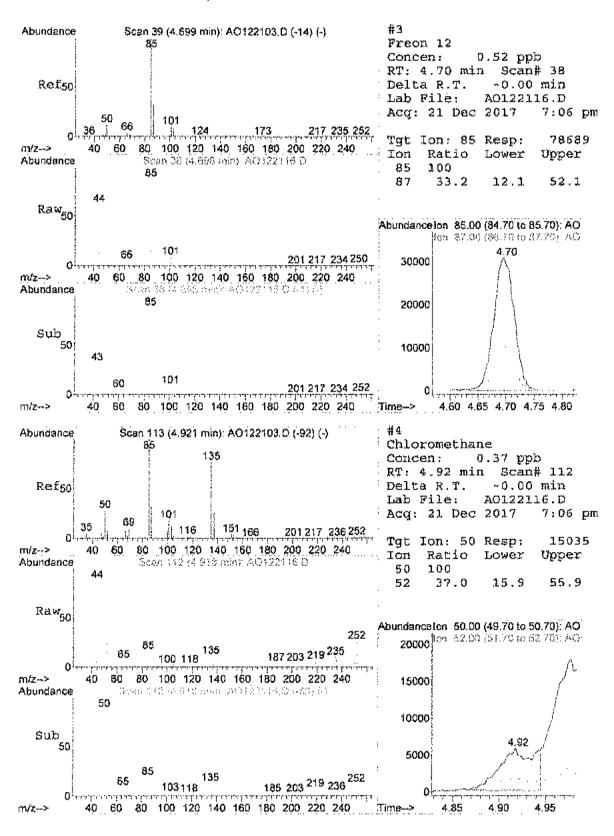
Vial: 5 : 21 Dec 2017 7:06 pm Operator: RJP Sample : C1712063-004A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

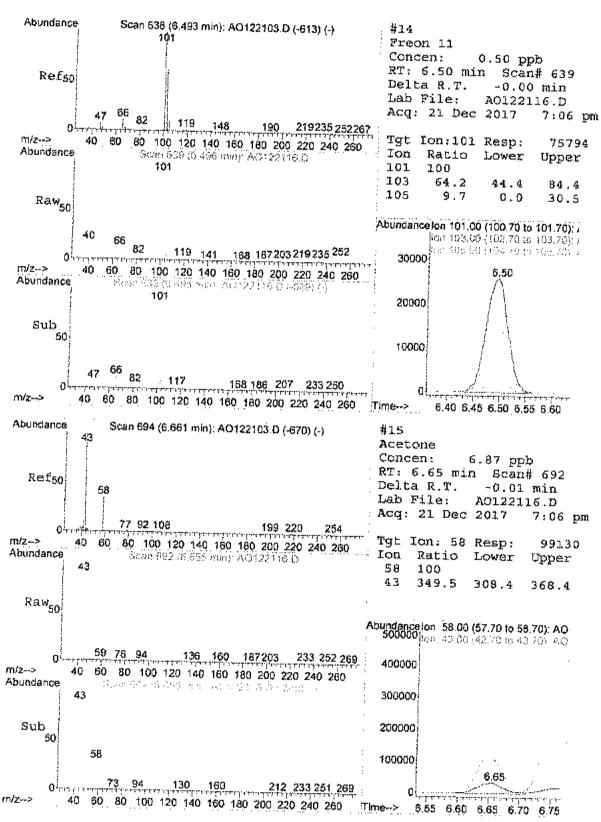
MS Integration Params: RTEINT.P

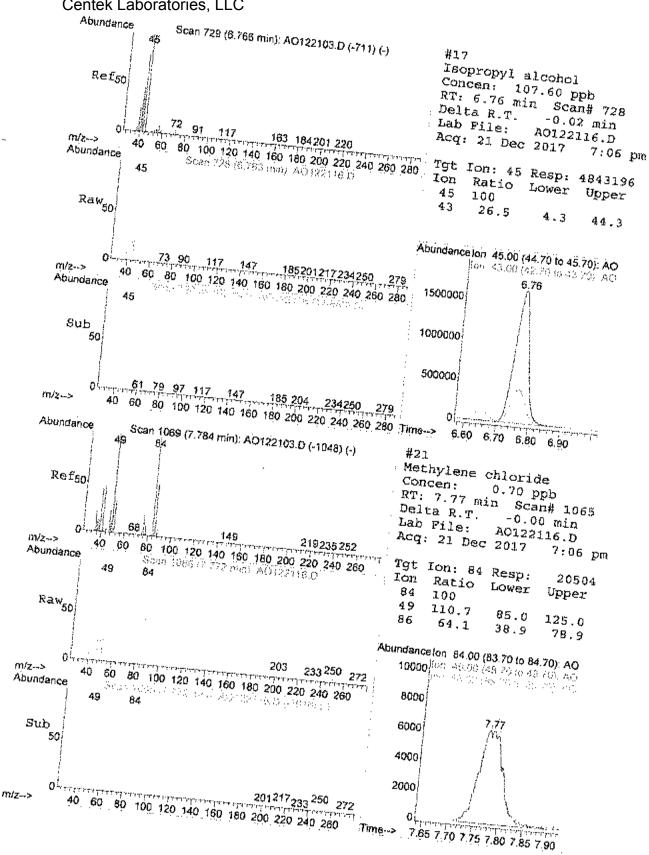
Quant Time: Dec 22 08:15:04 2017 Quant Results File: AD12_1UG.RES

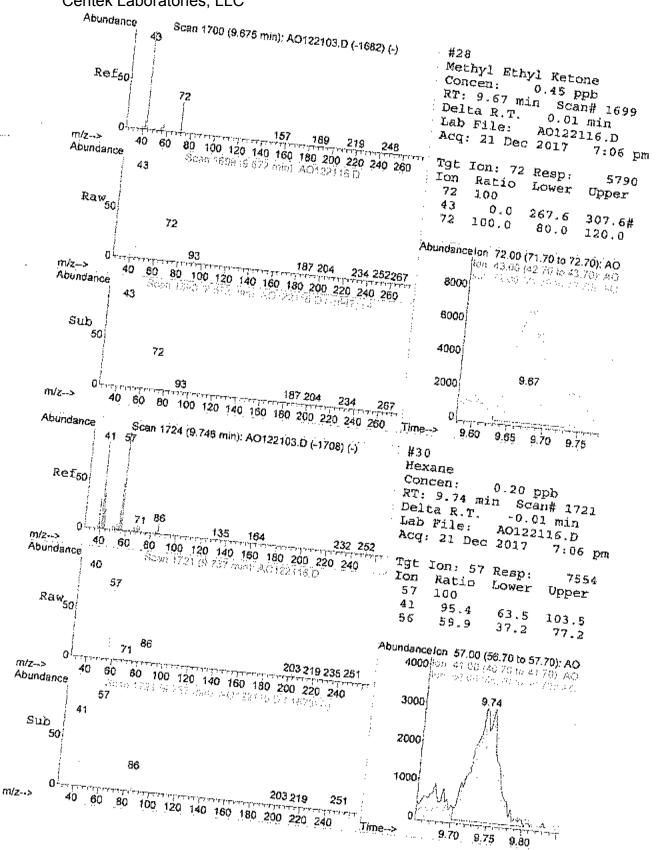
Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Title

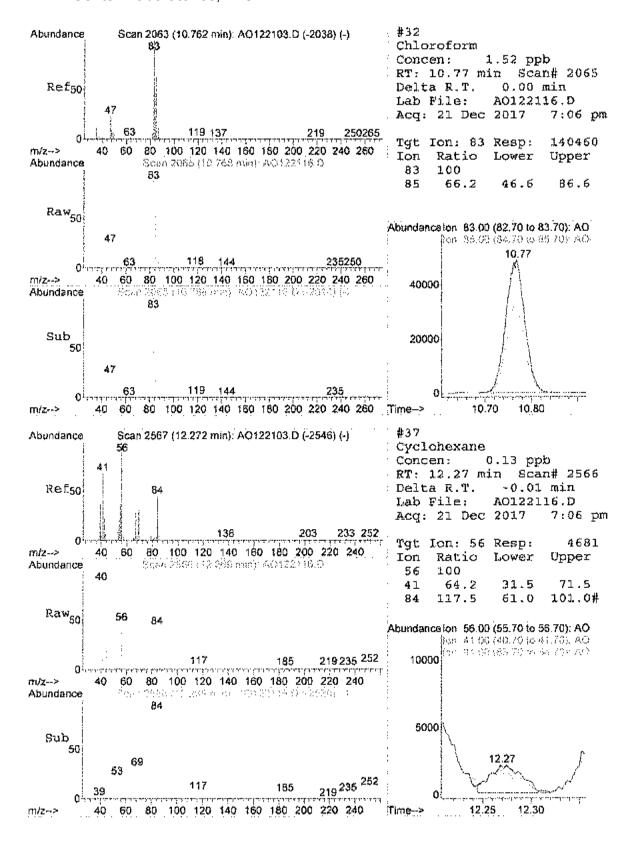

Last Update : Wed Dec 13 05:59:29 2017

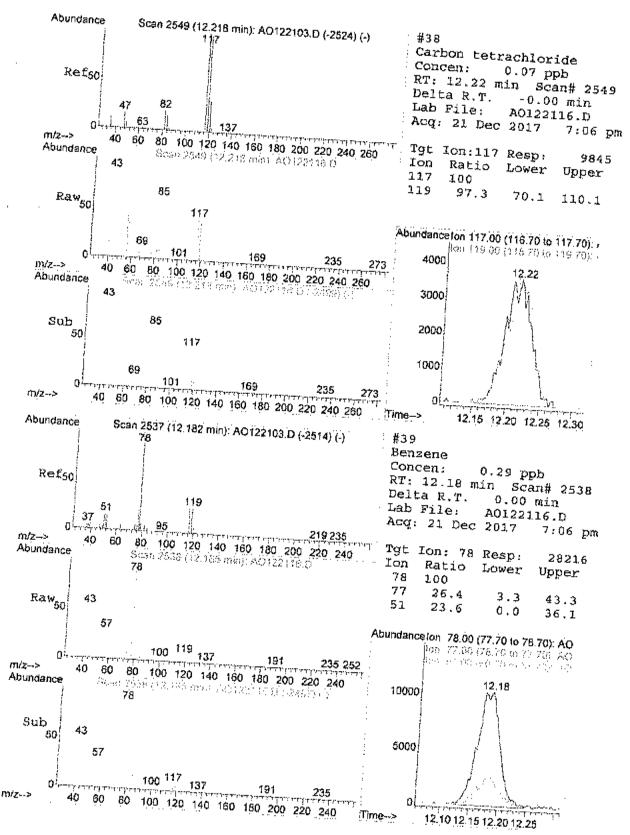

Response via : Initial Calibration

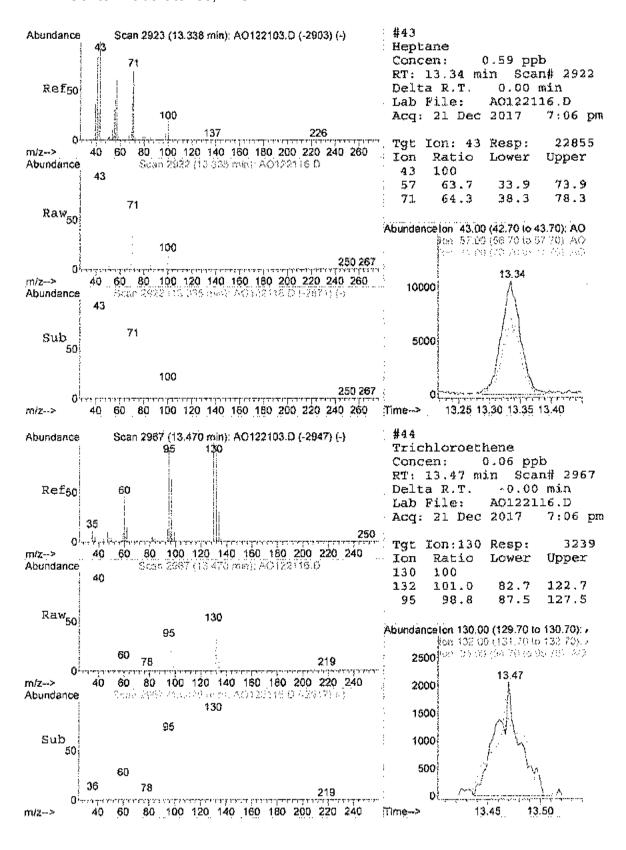

DataAcq Meth : LUG_RUN

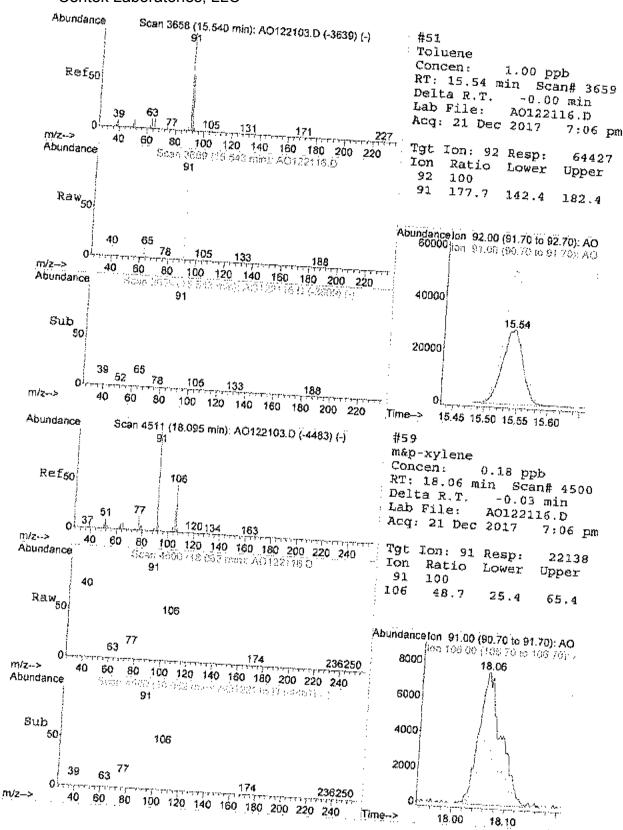

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.83		28488 119028 99003	1.00			0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70	95 - 130		0.81 ry =	ppb 81.	. 00¥	0.00
Target Compounds						Ova	lue
3) Freon 12	4.70	85	78689	0.52	dag	*	98
4) Chloromethane	4.92	50	15035				98
14) Freon 1.1	6.50		75794	0.50	daa		1.00
<pre>35) Acetone</pre>	6.65	58	99130		dag		95
17) Isopropyl alcohol	6.76	45	4843196				96
21) Methylene chloride	7.77	84	20504				94
28) Methyl Ethyl Ketone	9.67	72	5790				ı
30) Hexans	9.74	57	7554		a		91
32) Chloroform	10.77	83	140460	1.52			99
37) Cyclohexane	12.27	56	4681				68
38) Carbon tetrachloride	12.22	117	9845				92
39) Benzene	12.18	78	28216	0.29			89
' 43) Heptane	13.34	4.3	22855				89
44) Trichloroethene			3239	0.06			95
51) Toluene	15.54	92	64427	1.00			89
59) m&p-xylene	18.06	91	22138	0.18			95


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122116.D AD12 1UG.M Wed Jan 10 09:11:31 2018 MSD1







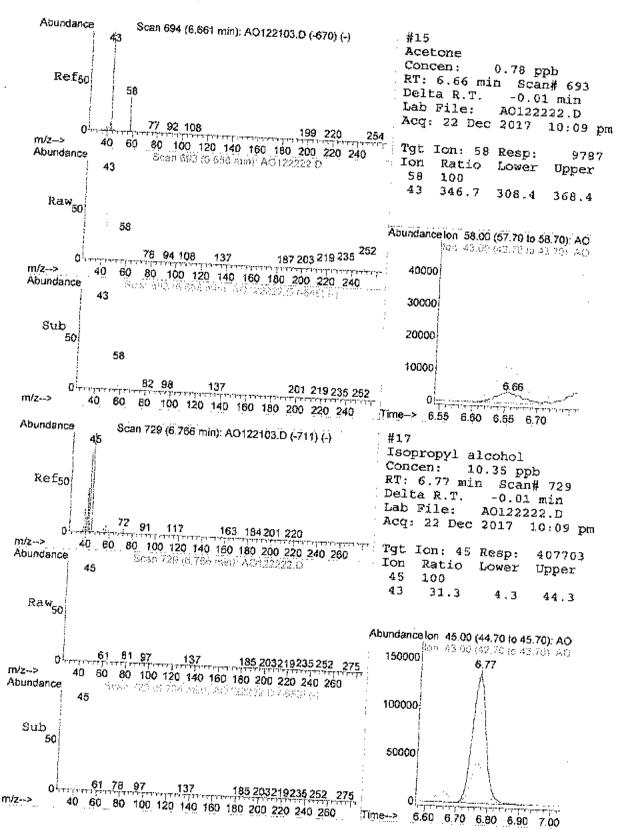


Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122222.D
Acq On : 22 Dec 2017 10:09 pm Vial: 9 Operator: RJP Sample : C1712063-004A 9X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:46:36 2017 Quant Results File: AD12_1UG.RES


Quant Method : C:\HPCHEM\1\MRTHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

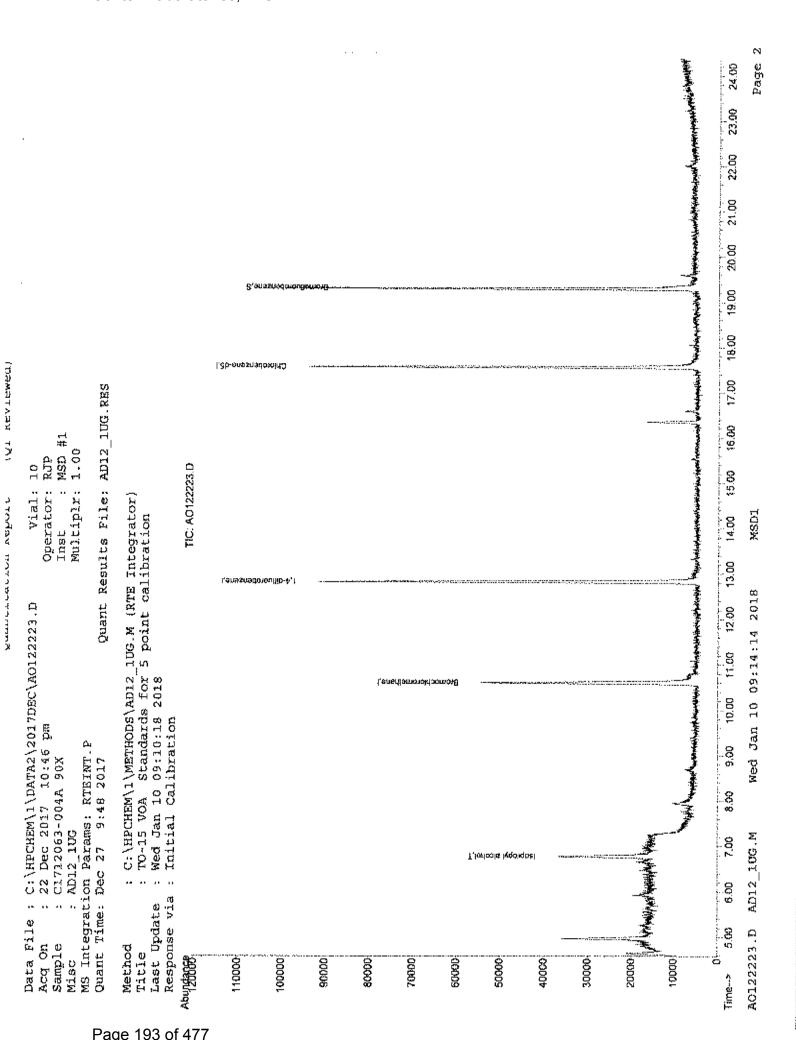
Internal Standards	R.T. (QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.82 17.56	128 114 117	24921 94151 73967	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	40752 Recover	0.74 y =	ppb 74.	0.00 00%
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.66 6.77	58 45	9787 407703	0.78 10.35	4, 5	Qvalue 96 86

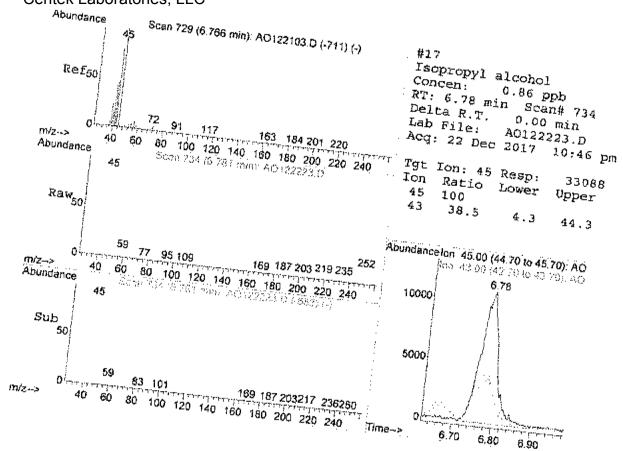
MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122223.D Acq On : 22 Dec 2017 10:46 pm Vial: 10 Operator: RJP Sample : C1712063-004A 90X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTBINT.P


Quant Time: Dec 27 09:46:37 2017 Quant Results File: AD12_1UG.RES


Quant Method: C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Кезролве (Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1.4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56	128 114 117	24455 91802 70208		ppb dqq ppb	0.00
System Monitoring Compour 65) Bromofluorobenzene Spiked Amount 1.00	19.29	95 - 130	39331 Recovery	0.76	PPb 76.	0.00
Target Compounds 17) Isopropyl alcohol	6.78	45	33088	0.86	dąą	Qvalue 71

Project:

Eldre Corp

Lab ID:

C1712063-005A

Client Sample ID: SVI-03

Tag Number: 222,345

Collection Date: 12/13/2017

**************************************	Resul	t **Lin:	it Our	· · · · · · · · · · · · · · · · · · ·	···· ·· ··	W. C. W. St.
CHELL PARAMETERS		·	it Qual Ui	ij(s	ÐF	
Lao Vacuum (n			FLD	·		Date Analyzed
Lab Vacuum Out	-1					Analus
1UG/M3 BY METHOD TO15	-30		"Hg "Hg			Analyst; 12/18/2017
1.1.1-Trichloroethene						12/18/2017
1.1.2,2-Tetrachloroethane	< 0.15		0-15			
1.1.2-Trichloroethane	< 0.15	0.15	ומטט	,		Analyst: RJF
1,1-Dichloroethane	< 0.15	0.15	PPOY	•	1	12/22/2017 2:40:00 AN
1,1-Dichloroethene	< 0.15	0.15	PODV	ı	1	14/22/2017 2:40:00 AM
1.2 4-Trightane	< 0.15	0.15	PPbV		1	12/22/2017 2:40:00 AM
1.2.4-Trichtorobenzene		0.15	₽₽₽V		1	12/22/2017 2:40:00 AM
1.2.4-Trimethylbenzene	< 0.15	0.15	Vdqq		1	T2/22/2017 2:40:00 AM
1.2-Dibromoethane	0.12	0.15	J ppbV		1	12/22/2017 2:40:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq		1	12/22/2017 2:40:00 AM
1,2-Dichloroethane	< 0.15	0.15	PPbV		7	12/22/2017 2:40:00 AM
1.2-Dichloropropane	< 0.15	0.15	ррь∨		1	12/22/2017 2:40:00 AM
1,3,5.Trimethy/benzene	< 0.15	0.15	Vdqq		7	12/22/2017 2:40:00 AM
1.3-butadiene	< 0.15	0.15	ppbV		1	12/22/2017 2:40:00 AM
1.3-Dichlorobenzene	< 0.15	0.15			1	12/22/2017 2:40:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	PPbV		1	12/22/2017 2:40:00 AM
1.4-Dioxane	< 0.15	0.15	ppbV		1	12/22/2017 2:40:00 AM
2,2,4-trimethylpentane	0.26	0.30	-PpbV J anb∨		1	12/22/2017 2:40:00 AM
4-ethyltoluene	< 0.15	0.15	ppov		1	12/22/2017 2:40:00 AM
Acetone	< 0.15	0.15	₽₽ЬV		1 .	12/22/2017 2:40:00 AM
Allyl chloride	52	27	PPbV		1 .	12/22/2017 2:40:00 AM
Benzene	< 0.15	0.15	Vdqq	ç	90 1	2/22/2017 2:40:00 AM
Benzyl chloride	< 0.15	0.15	PDPA	f	1	2/23/2017 4:30:00 AM
Bromodichloromethage	< 0.15	0.15	Vdqq	1		2/22/2017 2:40:00 AM
Bromoform	< 0.15	0.15	PpbV	1	11	2/22/2017 2:40:00 AM
Bromomethane	< 0.15	0.15	Vdqq	1	42	2/22/2017 2:40:00 AM
arbon disulfide	< 0.15		Vdqq	1	12	2/22/2017 2:40:00 AM
arbon tetrachloride	0.10	0.15	V∂qq	1	14	/22/2017 2:40:00 AM
hiorobenzene	< 0.15	0.15 J	PPbV	1	140	/22/2017 2:40:00 AM
niorcethene	< 0.15	0.15	₽₽ĎV	1	12	22/2017 2:40:00 AM
Naroform	5 0.15	0.15	PPbV	· 1	12/	22/2017 2:40:00 AM
Icromethane	1.8	0.15	Vdaq	ť	127	22/2017 2:40:00 AM
-1.2-Dichloroethene	< 0.15	0.15	PPbV	1	12/2	22/2017 2:40:00 AM
1.3-Dichloropropene	< 0.15	0.15	Vdqq	1	1212	(2/2017 2:40:00 AM
Schexane	< 0.15	0.15	PPbV	,	72/2	2/2017 2:40:00 AM
fornochioromethane	0.93	0.15	PPbV	4	12/2	2/2017 2:40:00 AM
A acetate	~ 0.45	0.15	PpbV	f a	12/2	2/2017 2:40:00 AM
	0.00	0.15	PobV	7	12/22	2/2017 2:40:00 AM
fiers: ** Ounorfeet		0.15	PPDV	7	12/22	72017 2:40:00 AM

- Quantitation Limit
- Analyte detected in the associated Method Blank 13 H
- Holding times for preparation or analysis exceeded MI.
- Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 26

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-005A

Date: 10-Jan-18

C'S BENEFIC

Client Sample ID: SVI-03

Tag Number: 222.345

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		το	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Freen 11	0.51	0.15		ppbV	1	12/22/2017 2:40:00 AM
Freon 113	< 0.15	0.15		ppb∨	1	12/22/2017 2:40:00 AM
Freon 114	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Freon 12	0.51	0.15		ppbV	1	12/22/2017 2:40:00 AM
Heptane	4.2	1.4		ppbV	9	12/23/2017 3:53:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Hexane	2.0	0.15		ppbV	1	12/22/2017 2:40:00 AM
isopropyl alcohol	110	14		ppbV	90	12/23/2017 4:30:00 AM
m&p-Xylene	0.26	0.30	J	ppbV	1	12/22/2017 2:40:00 AM
Methyl Sutyl Ketone	< 0.30	0.30		Vdqq	1	12/22/2017 2:40:00 AM
Methyl Ethyl Ketone	1.6	2.7	ЯĽ	ppb∨	g	12/23/2017 3:53:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	12/22/2017 2:40:00 AM
Methyl test-butyl ether	< 0.15	0.15		ppb∀	1	12/22/2017 2:40:00 AM
Methylene chioride	1.5	0.15		ppb∨	1	12/22/2017 2:40:00 AM
o-Xyiene	0.10	0.15	J	ppbV	1	12/22/2017 2:40:00 AM
Propylene	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Styrene	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Tetrahydrofuran	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Toluene	2.0	1.4		ppbV	9	12/23/2017 3:53:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∀	1	12/22/2017 2:40:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Trichloroethene	0.29	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Vinyl acetate	< 0.15	0.15		ppb∨	1	12/22/2017 2:40:00 AM
Vinyl Bromide	< 0.15	0.15		Vdqq	1	12/22/2017 2:40:00 AM
Vinyl chloride	< 0.15	0.15		ppbV	1	12/22/2017 2:40:00 AM
Surr: Bromoffuorobenzene	84,0	70-130		%REC	1	12/22/2017 2:40:00 AM

Chies	iffers
1.71020	\$11C 3

- Quantitation Limit
- B Analyse detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery autside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 26

Lab Order;

Project:

Lab ID:

C1712063-005A

T-Dalla Associate B.C.

Tag Number: 222.345 Collection Date: 12/13/2017

Analyses Result				Collection Date: 12/13/2017							
4110	Raust				Matrix: AIR						
**************************************			°*I., řeki ji	t Qual U	iits	ÐF					
1, 1, 4, 4- Tetrachloro	•	0.82	TO-15				DF Date Analyzed				
TE THEREOGRAPHS -		< 1.0	0.82	ug/r							
'' '"PiChiDroethana		0.82	1.0	∪g/n	_	1	Analyst: RJF				
1,7-Dichloroothes).61	0.82			1	**************************************				
rising the second secon			0.61	ug/ _m		1	144242017 2140100 A				
1517-17IMethylbana.		.59	0.59	ug/m		Ť	****/4017 2 Anima and				
COOLON OBJECT		1.1	1.1	ug/m	_	7	1-14-212017 2:40:00 a.s.				
1.2-Dichlorobenzene		59	0.74	μg/m:		1	1 47 6 47 401 7 2:40:00 ns				
1,2-Dichloroethane	< 1		1.2			1	12/42/2017 2:40:00 And				
1.2-Dichloropropane	₹ 0,9		0.90	µg/m3		1	**************************************				
1.3.5.Trimott	< 0.6	: 1	0.61	ug/m3			12/22/2017 2:40-00 ALL				
1,3,5-Trimethylbenzene 1,3-butadiene	< 0.69	O .		սց/m3		1	1674474017 2 ADIDA ALL				
1.3-Diosi-	< 0.74	1	0.69	ug/m3		_	**************************************				
1,3-Dichlorobenzene	₹ 0.33	ì	7.74	ug/m3		1 .	12/22/2017 2:40:00 AM				
1.4-Dichlerobenzene	< 0,90	U	.33	ug/m3		7 7	2/22/2017 2:40:00 AM				
',4-Dioxane	< 0.90	V.	90	ug/m3		1 1	2/22/2017 2016 AM				
2.2.4-trimethylpentane	0,94	O .:	90	4g/m3		7 13	2/22/2017 2:40:00 AM				
T-GITY/foluene	< 0.70	1	.1 J	ug/m3		1 12	2/22/2017 2:40:00 AM				
Acetone	< 0.74	0.7	O			1 19	2/22/2017 2:40:00 AM				
Allyl chloride		0.7	4	ug/m3		. '4	144/4017 2:40:00 av-				
Benzene	120	64	1	ug/m3		_	16474917 2-40-00 Ass				
Benzyl chloride	< 0.47	0.47		ug/m3	9	·	42/4017 2:40:00 AL-				
Bromodichloromethane	< 0.48	0.48		vg/m3	1	127	23/2017 4:30:00 has				
Bromoform	< 0.8⊜	0.86		ug/m3	,	14/4	54/4017 2:40:00 AA-				
Bromomethane	< 1.0	1,0		ug/m3	1	7202	40'00 axx</td				
Carbon disulfide	< 1.6			ug/m3	,	,44	~~U17 2:40:00 444				
Carbon disulfide	< 0.58	1.6		ug/m3		12/2;	2/2017 2:40:00 AM				
Carbon tetrachloride	0.31	0.58		ug/m3	1	12/22	72017 2:40:00 AM				
Chlorobenzene	< 0.94	0.47	J	Em/8h	1	12/22	/2017 2:40:00 AM				
Chloroethane	< 0.69	0.94		lg/m3	1	12/22/	2017 2:40:00 AM				
Chloroform	< 0.40	0.69		g/m3	1	12/22/	2017 2:40:00 AM				
Chloromethane	8.8	0.40		9/m3	1	12/22/	2017 2:40:00 AM				
cis-1.2-Dichloroethene	₹ 0.31	0.73		1/m3	1	12/220	2017 2:40:00 AM				
O'S-1,3-Dichiorna-	< 0.59	0.31			1	12/22/2	017 2:40:00 AM				
~) O O I D X A D A		0.59		/m3	1	12.2616	977 2:40:00 A				
Dibromochloromethan	< 0.68	0.68		/m3	4	14122121	217 2:40:00 Ass				
~~ In acetate	3,2	0.52		m3	1		/17.2:40:00 A				
thylbenzene	< 1.3	1.3	ug/i	_	1	,-E2/20	17.2:40:00 A.A.				
reon 11	1.3	0.54	ug/r		1	. e. e. e/20.	17.2:40:00 A				
eon 113	< 0.65	0.65	n0 \4	n 3	1	1-1421201	7.2'40:00 A				
ean 114	114 2.9 0.84		4g/m3		1	**********	7.2:40:00 ***				
	< 1.1		ug/m	3	·	15/22/201	7.240.00 ***				
diffiers: ** O	< 1.0	1,1	ug/m.	3	1	*****/ZUT/	2:40:00				
Quentitation Limit		1.0	ug/m3		1	12/22/2017	2:40:00 AM				
B Analyte detected in the associate					1	12/22/2017	2:40:00 AM 2:40:00 AM				

- Analyte detected in the associated Method Blank Н
- Holding times for preparation or analysis exceeded JN.
- Non-routine analyse. Quantitation estimated, 5
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range 1
- Analyte detected below quantitation fimit ND Not Detected at the Limit of Detection
 - Parent a-

CLIENT: LaBella Associates, P.C.

C1712063 Lab Order:

Project:

Eldre Corp

Lab ID;

C1712063-005A

Date: 10-Jan-18

Client Sample ID: SVI-03

Tag Number: 222.345

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 BY METHOD TO15		TO-15				Analyst: RJP		
Freon 12	2.5	0.74		ug/m3	1	12/22/2017 2:40:00 AM		
Heptane	17	5.7		ug/m3	9	12/23/2017 3:53:00 AM		
Hexachloro-1,3-butadiens	< 1.6	1.6		ug/m3	1	12/22/2017 2:40:00 AM		
Hexans	6.9	0.53		աց/տ3	t	12/22/2017 2:40:00 AM		
isopropyl alcohol	260	34		u g/m 3	90	12/23/2017 4:30:00 AM		
m&p-Xylene	1.3	1.3	J	ug/m3	1	12/22/2017 2:40:00 AM		
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 2:40:00 AM		
Methyl Ethyl Ketone	4.8	0.8	JH	ug/m3	9	12/23/2017 3:53:00 AM		
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 2:40:00 AM		
Methyl tert-butyl ether	< 0.54	0.54		⊔ ç /m3	1	12/22/2017 2:40:00 AM		
Methylene chloride	5.1	0.52		ug/m3	1	12/22/2017 2:40:00 AM		
o-Xylene	0.43	0.65	J	⊔g/m3	1	12/22/2017 2:40:00 AM		
Propylene	< 0.26	0.26		ug/m3	1	12/22/2017 2:40:00 AM		
Styrene	< 0.64	0.64		µg/m3	1	12/22/2017 2:40:00 AM		
Tetrachloroethylene	< 1.0	1.0		u g/m 3	1	12/22/2017 2:40:00 AM		
Tetrahydrofuran	< 0.44	0.44		∪ g/m 3	1	12/22/2017 2:40:00 AM		
Toluene	7.5	5.3		u g/m 3	9	12/23/2017 3:53:00 AM		
trans-1,2-Dichloroethene	< 0.59	0.59		∪g/m 3	1	12/22/2017 2:40:00 AM		
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 2:40:00 AM		
Trichloroethene	1.6	0.81		ug/m3	1	12/22/2017 2:40:00 AM		
Vinyl acetate	< 0.63	0.53		ug/m3	1	12/22/2017 2:40:00 AM		
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 2:40:00 AM		
Vinyl chloride	< 0.38	0.38		ug/m3	1	12/22/2017 2:40:00 AM		

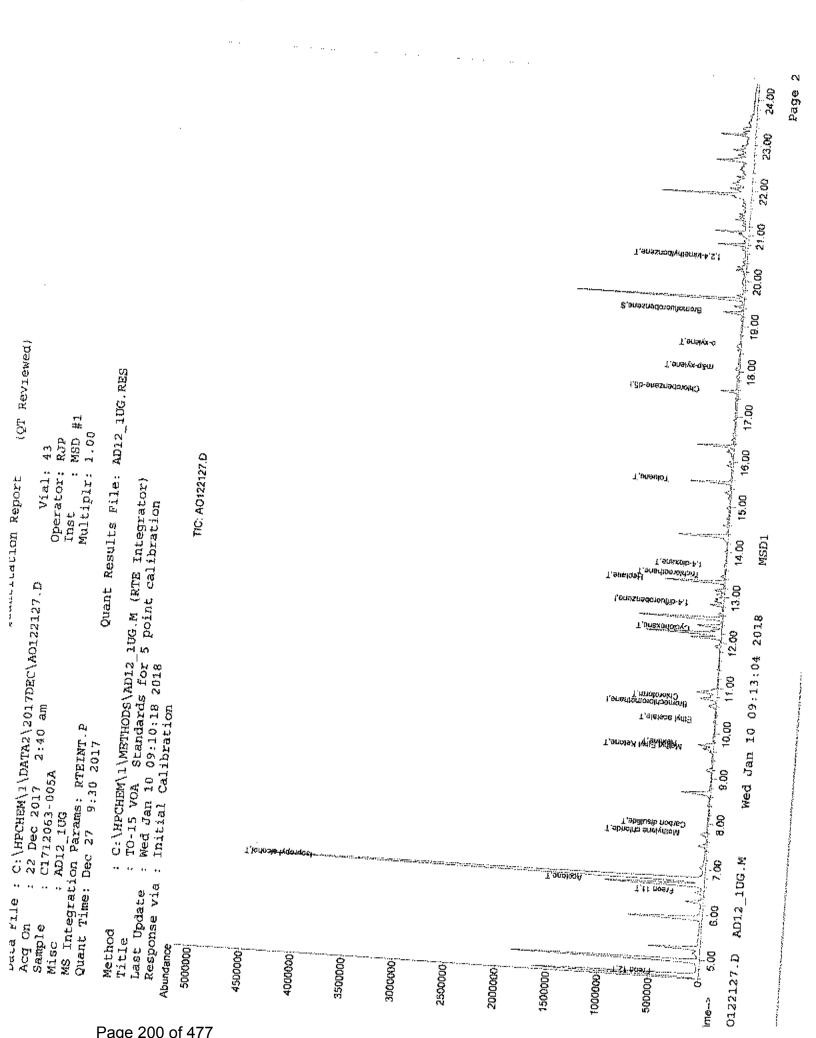
Qualifiers:

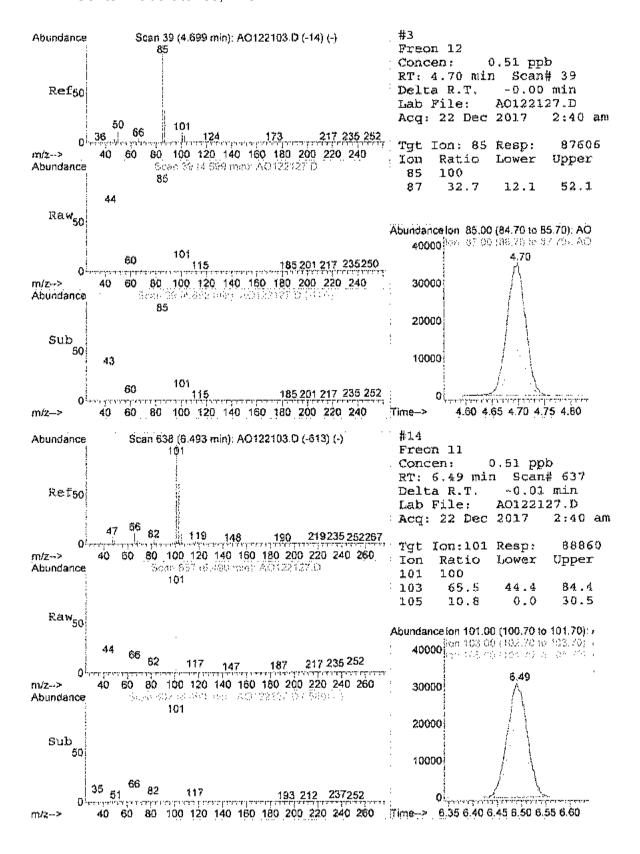
- ** Quantitation Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E. Estimated Value above quantitation range
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

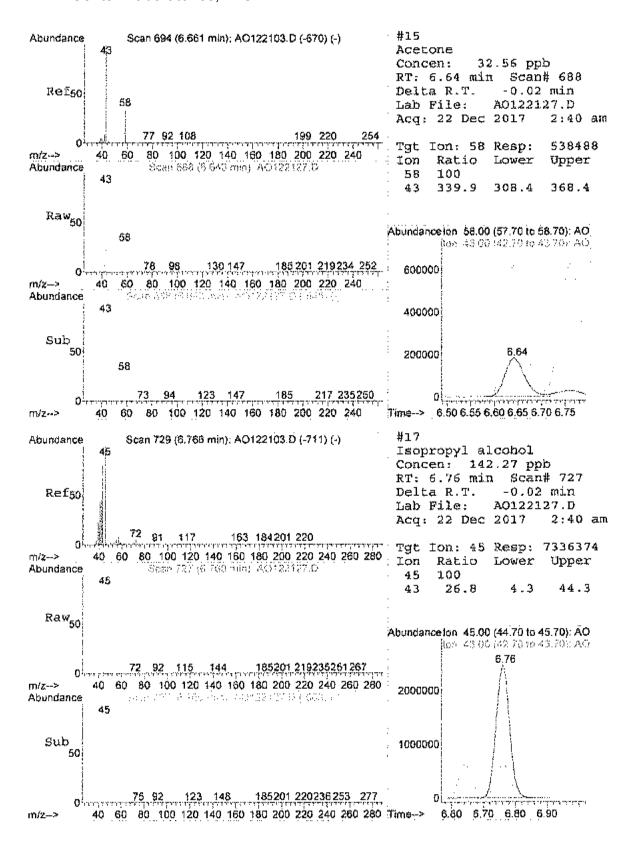
Page 10 of 26

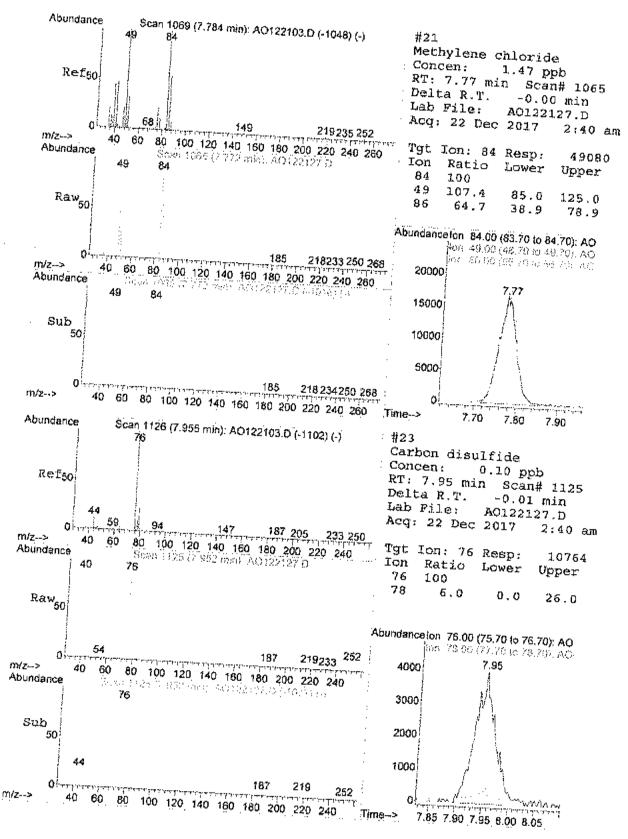
Quantitation Report (QT Reviewed)

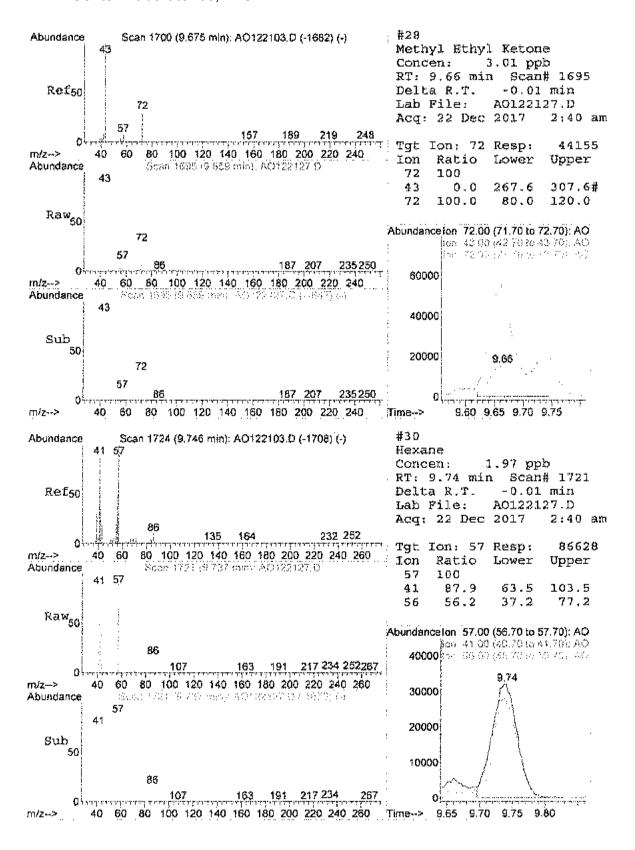
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122127.D Vial: 43 Operator: RJP Acq On : 22 Dec 2017 2:40 am Sample : C1712063-005A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

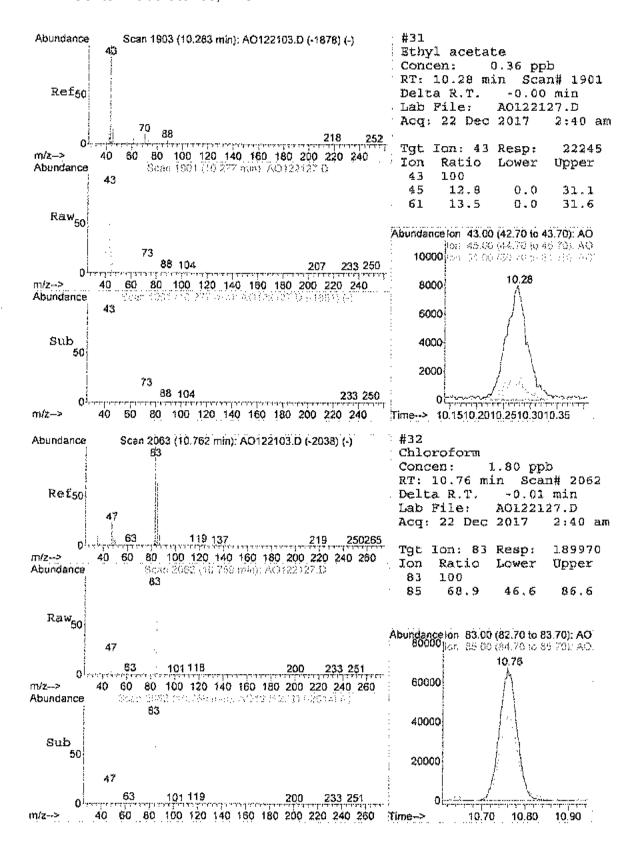

MS Integration Params: RTEINT.P

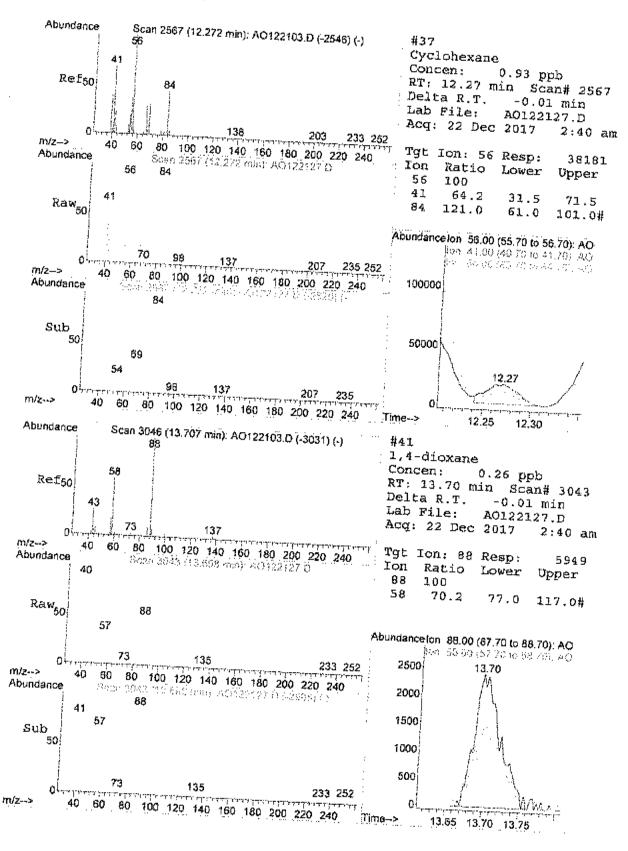

Quant Results File: AD12_1UG.RES Quant Time: Dec 22 08:06:57 2017

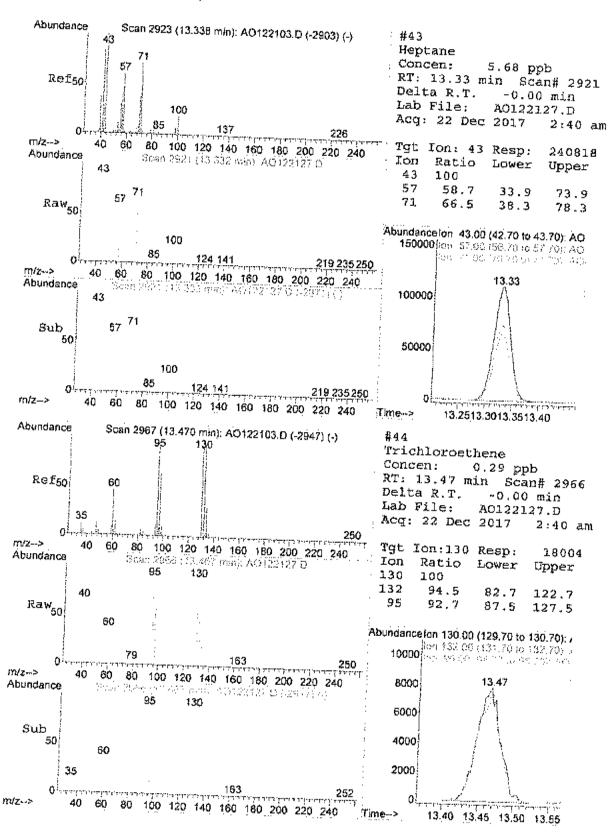

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

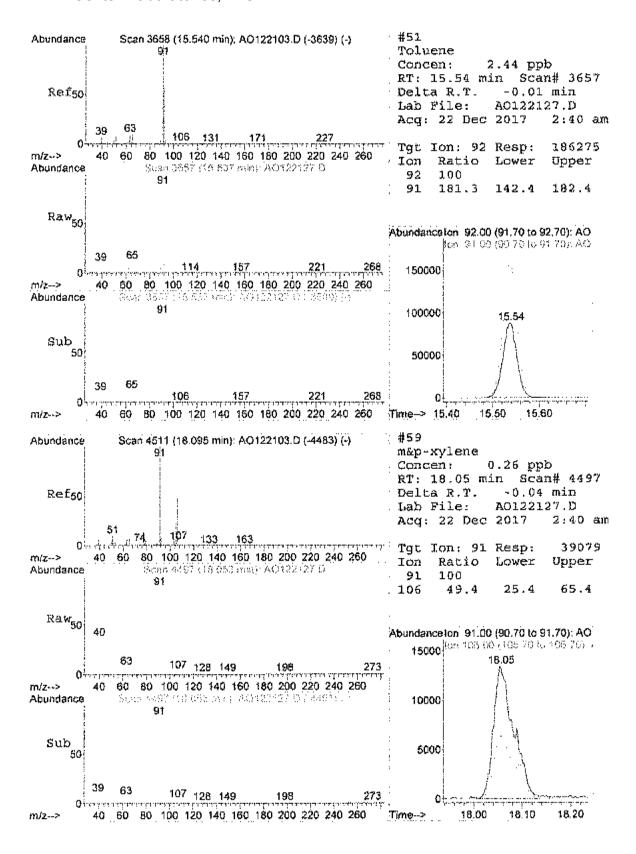

							
Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1.4-difluorobenzene	10.60 12.83	128 114	32636 130968	1.00	ppb dqq		0.00
50) Chlorobenzene-d5	17.56	117	117795	1.00	dqq		0.00
System Monitoring Compoun	ds				1-		
65) Bromofluorobenzene	19.29	95	73566	Ų.84	aqq		0.00
Spiked Amount 1.00	0 Range 70	- 130	Recove	ery =	84.	.00¥	
Target Compounds							lue
3) Freon 12	4.70	85	87606	0.51	dqq		99
14) Freon 11	6.49	101	88860	0.51	ppb		99
15) Acetone	6.64	58	538488	32.56	ppb		99
17) Isopropyl alcohol	6.64 6.76	45	7336374	142.27	ppb		95
21) Methylene chloride	7.77	84	49080	1.47	ppb		96
21) Methylene chloride 23) Carbon disulfide	7.95	76	10764	0.10	dqq		100
28) Methyl Ethyl Ketone 30) Hexane	9.66	72	44155	3.01	dqq	Ħ	1
30) Hexane	9.74	57	86628	1.97	ppb		97
31) Ethyl acetate	10.28	43	22245	0.36	ppb		95
32) Chloroform	30.76	83	189970	1.80	ppb		97
37) Cyclohexane	12.27	56	38181	0.93	dqq	#	65
41) 1,4-dioxane	13.70	88	5949	0.26	ppb	Ħ	73
43) Heptane	13.33	43	240818	5.68	ppb		93
44) Trichloroethene	13.47	130	18004	0.29	dqq		89
51) Toluene	15,54	92	186275	2,44	dad		86
59) m&p-xylene	18.05	91	39079	0.26	dqq		94
63) o-xylene	18.58	91	18148	0.10	ppb		94
71) 1,2,4-trimethylbenze		105	16663	0.12	ppb		98


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122127.D AD12_1UG.M Wed Jan 10 09:13:03 2018 MSD1

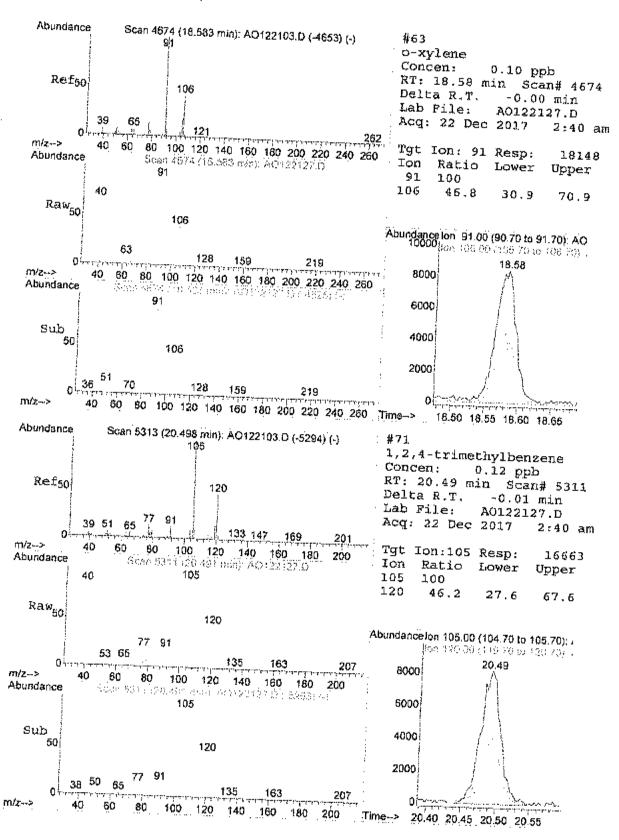







MSDI

AO122127.D AD12 1UG.M

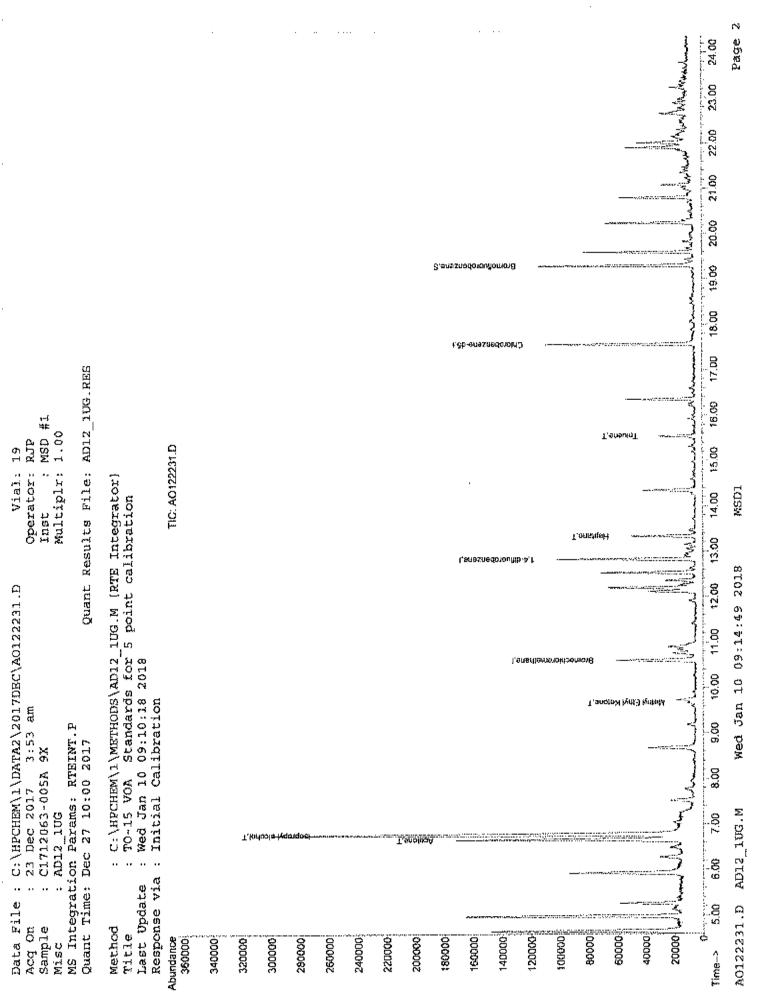


MSDI

Quantitation Report

(QT Reviewed)

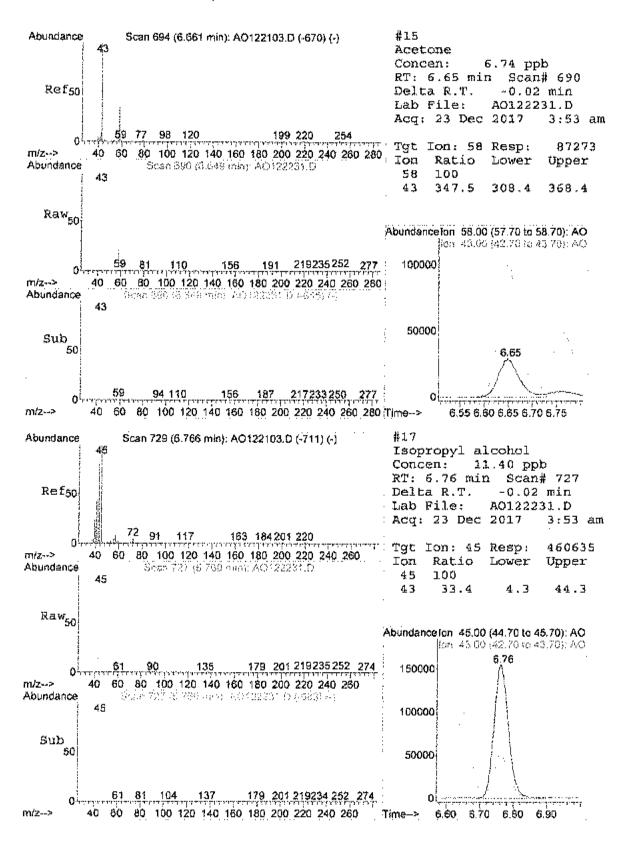
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122231.D Vial: 19 Acq On : 23 Dec 2017 3:53 am Operator: RJP Sample : C1712063~005A 9X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

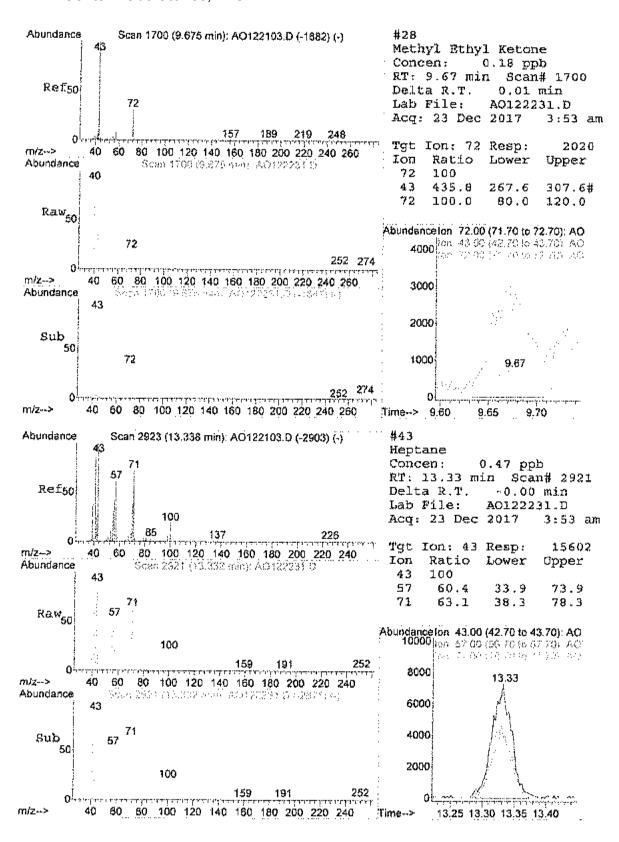

MS Integration Params: RTEINT.P

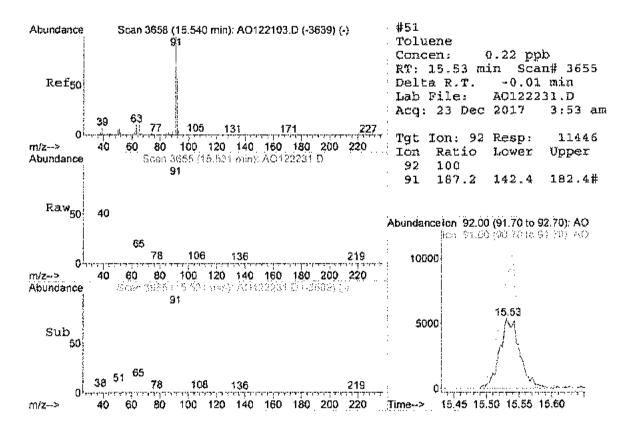
Quant Time: Dec 27 09:46:44 2017 Quant Results File: AD12 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane	10.60	128	25567	1.00	daa	0.00
35) 1,4-difluorobenzene	12.63	114	102852	1.00	ppb	0.00
50) Chlorobenzene-d5	17.56	117	7875 9	1.00	ppb	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	19.29	95	44203	0.76		
Spiked Amount 1.000	Range 70	- 130	Recove	ay =	76.	00%
Target Compounds						Qvalue
15) Acetone	6.65	58	87273	6.74	ppb	96
17) Isopropyl alcohol	6.76	45	460635	11.40	qqq	82
28) Methyl Ethyl Ketone	9.67	72	5050	0.18	ppb	# 42
43) Heptane	13.33	43	15602	0.47	ppb	92
51) Toluene	15.53	92	11446	0.22	dqq	# 81


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO122231.D AD12_1UG.M Wed Jan 10 09:14:48 2018 MSD1




Page 211 of 477

Tradest mercantarmax

INDUSTRIAL TAI

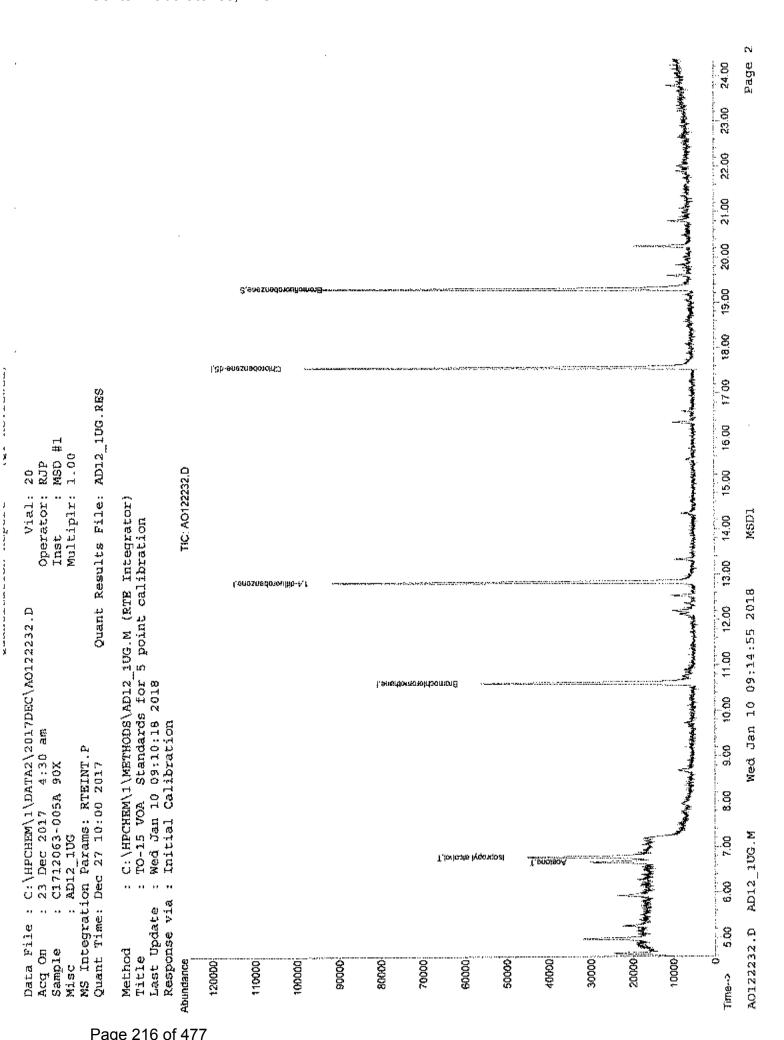
MSD1

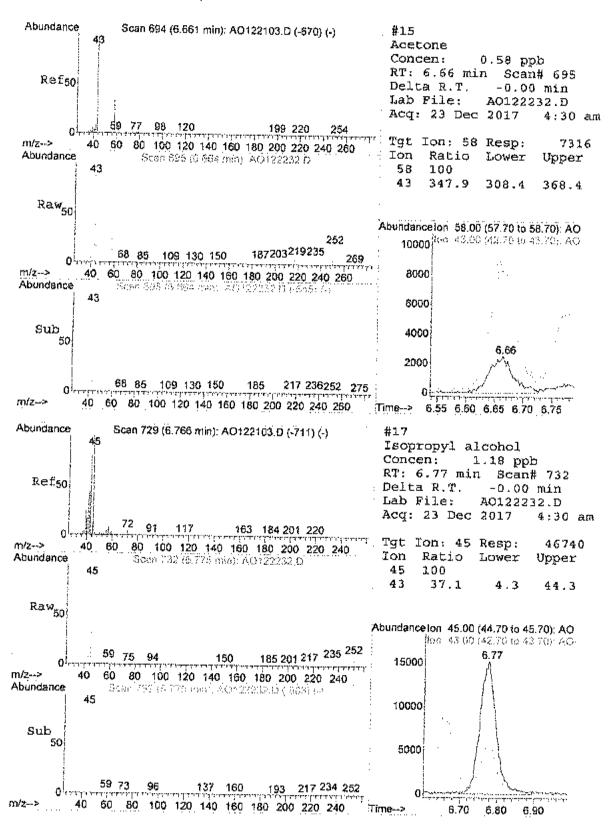
(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122232.D

Vial: 20 Acq On : 23 Dec 2017 4:30 am Sample : C1712063-005A 90X Misc : AD12_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: AD12_1UG.RES Quant Time: Dec 27 09:46:45 2017


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.82 17.56	128 114 117	2510B 93680 71586	1.00	dqq dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	40322 Recovery		ppb 76.	
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.66 6.77	58 45	7316 46740		dqq	Qvalue 96 74

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project: Lab ID: Eldre Corp

C1712063-006A

Client Sample ID: IAQ-03

Tag Number: 316.259

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD	***		Analyst:
Lab Vacuum In	-6		" } lg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,1,2,2-Tetrachioroethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppb∀	1	12/21/2017 7:48:00 PM
1,1-Dichloroethane	< 0.15	0.15	ρμb∨	1	12/21/2017 7:48:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppb∨	1	12/21/2017 7:48:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppb∨	‡	12/21/2017 7:48:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	∨dqq	1	12/21/2017 7:48:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
1,2-Dichtorgethane	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
1,2-Dichloropropane	< 0.15	0.15	₽pbV	1	12/21/2017 7:48:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
1,3-butadisne	< 0.15	0.15	Váqq	1	12/21/2017 7:48:00 PM
1,3-Dichlarobenzene	< 0.15	0.15	Vđqq	í	12/21/2017 7:48:00 PM
1,4-Dichterobenzene	< 0.15	0.15	₽₽bV	1	12/21/2017 7:48:00 PM
1,4-Dioxane	< 0.30	0.30	₽₽ ৳ V	1	12/21/2017 7:48:00 PM
2,2,4-trimethylpentana	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
4-ethyltoluene	< 0.15	0.15	ρρb∀	1	12/21/2017 7:48:00 PM
Acetone	7.8	2.7	Vđợq	9	12/22/2017 11:25:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
Benzene	0.29	0.15	∨dqq	1	12/21/2017 7:48:00 PM
Benzyl chloride	< 0.15	0.15	∨dqq	1	12/21/2017 7:48:00 PM
Bromodichloromethane	< 0.15	0.15	ρpb∀	1	12/21/2017 7:48:00 PM
Bromoform	< 0.15	0.15	∨dqq	1	12/21/2017 7:48:00 PM
Bromomethane	< 0.15	0.15	ppb∀	1	12/21/2017 7:48:00 PM
Carbon disulfide	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
Carbon tetrachloride	0.070	0.040	ppb∀	1	12/21/2017 7:48:00 PM
Chlorobenzene	< 0.15	0.15	₽₽₽V	1	12/21/2017 7:48:00 PM
Chloroethane	< 0.15	0.15	Vdq q	1	12/21/2017 7:48:00 PM
Chloroform	2.6	1.4	ppb∨	9	12/22/2017 11:25:00 PI
Chloromethane	0.37	0.15	Vdqq	1	12/21/2017 7:48:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	12/21/2017 7:48:00 PM
Cyclohexane	0.23	0.15	ρρον	1	12/21/2017 7:48:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/21/2017 7:48:00 ₽M
Ethyl acetate	0.34	0.15	ppbV	1	12/21/2017 7:48:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 26

CLIENT:

Lab Order:

Project:

C1712063 Eldre Corp

Lab 1D:

C1712063-006A

Date: 10-Jan-18

Client Sample ID: 1AQ-03

Tag Number: 316,259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit		Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		···		·····		Ditt Analyzed
Ethylbenzene	< 0.15	TO 0.15	-15			Analyst: RJP
Freon 11	0.71	0.15		Vdqq	1	12/21/2017 7:48:00 PM
Freon 113	< 0.15			PpbV	1	12/21/2017 7:48:00 PM
Freon 114	< 0.15	0.15		₽₽bV	1	12/21/2017 7:48:00 PM
Freen 12	0.50	0.15		ppb∨	1	12/21/2017 7:48:00 PM
Replane		0.15		Vđqq	1	12/21/2017 7:48:00 PM
Hexachioro-1,3-butadiens	1.4	0.15		ppb∨	1	12/21/2017 7:48:00 PM
Hexane	< 0.15	0.15		ρρb∨	1	12/21/2017 7:48:00 PM
Isopropyl alcohol	0.23	0.15		Vdqq	1	12/21/2017 7:48:00 PM
m&p-Xylene	70	14		ppbV	90	12/23/2017 12:02:00 AM
Methyl Butyl Ketone	0.25	0.30	J	ppbV	1	12/21/2017 7:46:00 PM
Methyl Ethyl Kelone	< 0.30	0.30		ydqq	1	12/21/2017 7:48:00 PM
Methyl isobutyl Ketone	3.9	2.7		ppbV	9	12/22/2017 11:25:00 PM
Methyl tert-butyl ether	< 0.30	0.30	,	ppbV	1	12/21/2017 7:48:00 PM
Methylene chloride	< 0.15	0.15	ı	ppbV	1	12/21/2017 7:48:00 PM
>-Xylene	0.78	0.15	1	opbV	1	12/21/2017 7:48:00 PM
Propylena	< 0.15	0.15		γδα	1	12/21/2017 7:48:00 PM
Styrene	< 0.15	0.15		pbV	1	
etrachioroethylene	< 0.15	0.15		γdα	1	12/21/2017 7:48:00 PM
etrahydrofuran	< 0.15	0.15		pbV	1	12/21/2017 7:48:00 PM
Oktene	< 0.15	0.15		pb∨	1	12/21/2017 7:48:00 PM
	2.9	1.4		pbV	9	12/21/2017 7:48:00 PM
ans-1,2-Dichloroethene	< 0.15	0.15		pbV	1	12/22/2017 11:25:00 PM
ans-1,3-Dichloropropene	< 0.15	0.15		p b∨		12/21/2017 7:48:00 PM
richloroethene	0.080	0.030		obV	1	12/21/2017 7:48:00 PM
nyl acetate	< 0.15	0.15		ob∨	1	12/21/2017 7:48:00 PM
nyl Bromide	< 0.15	0.15		ob∨ JbV	1	12/21/2017 7:48:00 PM
nyl chloride	< 0.040	0.040			1	12/21/2017 7:48:00 PM
Sur: Bromofluorobenzene	81.0	70-130		bΕ.~	1	12/21/2017 7:48:00 PM
		r 0-150	76	REÇ	1	12/21/2017 7:48:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- Floiding times for preparation or analysis exceeded н
- jΝ Non-routine analyte. Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 26

LaBella Associates, P.C.

CLIENT: Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-006A

Date: 10-Jan-18

Client Sample ID: IAQ-03

Tag Number: 316.259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15	***************************************		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:48:00 PM
1,1,2,2-Tetrachlorgethane	< 1.0	1.0	սց/m3	1	12/21/2017 7:48:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:48:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 7:48:00 PM
1,1-Dichloroethene	< 0.59	0.59	eg/m3	1	12/21/2017 7:48:00 PM
1,2,4-Trichlorobenzene	< 1.1	\$.1	ug/m3	1	12/21/2017 7:48:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	սց/ m3	1	12/21/2017 7:48:00 PM
1,2-Dibramoethane	< 1.2	1.2	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichiorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	12/21/2017 7:48:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 7:48:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/21/2017 7:48:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,4-Dioxane	< 1.1	1,1	սց/m3	1	12/21/2017 7:48:00 PM
2,2,4-trimethylpenlane	< 0.70	0.70	ug/m3	1	12/21/2017 7:48:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	12/21/2017 7:48:00 PM
Acetone	19	6.4	ug/m3	9	12/22/2017 11:25:00 PM
Ally! chloride	< 0.47	0.47	ug/m3	3	12/21/2017 7:48:00 PM
Benzene	0.93	0.48	ug/m3	1	12/21/2017 7:48:00 PM
Senzyi chloride	< 0.8 6	0.86	ug/m3	1	12/21/2017 7:48:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	12/21/2017 7:48:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	12/21/2017 7:48:00 PM
Bromomethane	< 0.58	0.58	ug/m3	7	12/21/2017 7:48:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	12/21/2017 7:48:00 PM
Carbon tetrachloride	0.44	0.25	ug/m3	3	12/21/2017 7:48:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	12/21/2017 7:48:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 7:48:00 PM
Chloroform	13	6.8	ug/m3	9	12/22/2017 11:25:00 PM
Chloromethane	0.76	0.31	ug/m3	1	12/21/2017 7:48:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:48:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/21/2017 7:48:00 PM
Cyclohexane	0.79	0.52	սց/m3	1	12/21/2017 7:48:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/21/2017 7:48:00 PM
Ethyl acetate	1.2	0.54	ug/m3	1	12/21/2017 7:48:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	12/21/2017 7:48:00 PM
Freon 11	4.0	0.84	ug/m3	1	12/21/2017 7:48:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	12/21/2017 7:48:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	12/21/2017 7:48:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits.
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063 Project: Eldre Corp

Lab ID:

C1712063-006A

Date: 10-/cm-18

Client Sample ID: IAQ-03

Tag Number: 316,259 Collection Date: 12/13/2017

Matrix: AIR

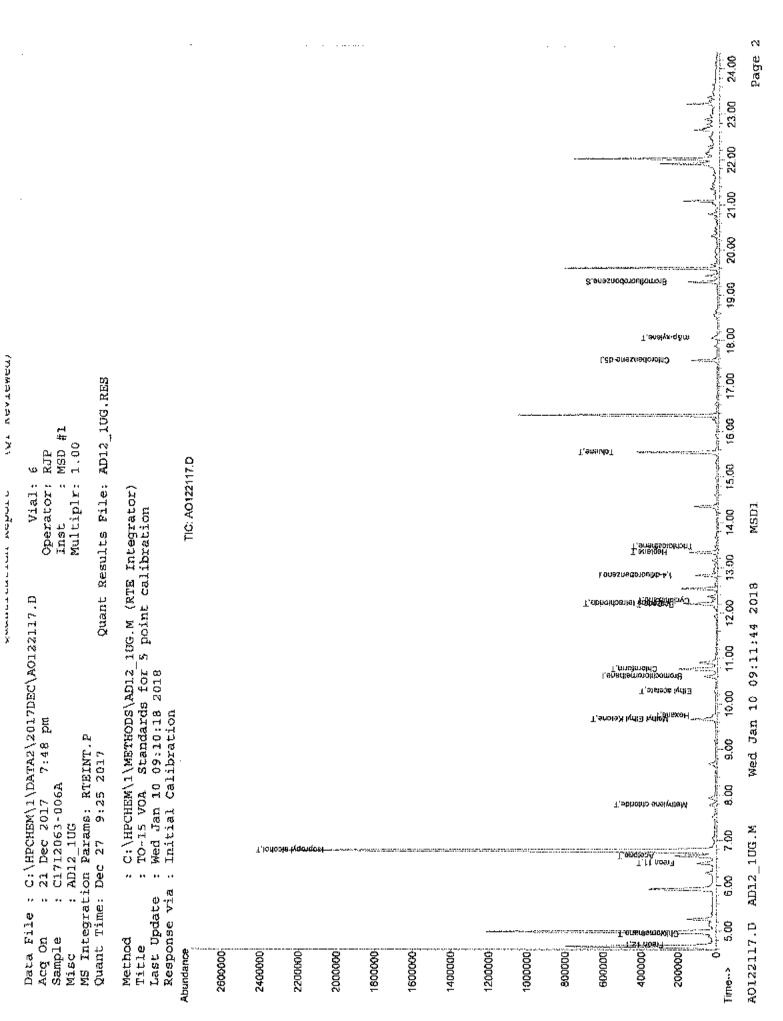
Analyses	Result	**Limit	Qua	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	······				*	TO THE PARTY EACH
Freon 12	2,5	0.74	-15			Analyst: RJP
Heptane	5.7			ug/m3	1	12/21/2017 7:48:00 PM
Hexachloro-1,3-butadiene	< 1.6	0.61		ug/m3	1	12/21/2017 7:48:00 PM
Hexane	0.81	1.6		ug/m3	1	12/21/2017 7:48:00 PM
isopropyl alcohol	170	0.53		ug/m3	1	12/21/2017 7:48:00 PM
m&p-Xylene		34		ug/m3	30	12/23/2017 12:02:00 AM
Methyl Butyl Kelone	1.1	1.3	J	ug/m 3	1	12/21/2017 7:48:00 PM
Methyl Ethyl Ketone	< 1.2	1.2		ug/m3	†	12/21/2017 7:48:00 PM
Methyl Isobutyl Ketone	11	8.0		ug/m3	9	12/22/2017 11:25:00 PM
Methyl ted-bulyl ether	< 1.2	1,2		ug/m3	7	12/21/2017 7:48:00 PM
Methylene chloride	< 0.54	0.54		ug/m3	1	12/21/2017 7:48:00 PM
o-Xylene	2,7	0.52		u ց/m3	1	12/21/2017 7:48:00 (PM
Propylene	< 0.65	0.65		ug/m3	1	12/21/2017 7:48:00 PM
Styrene	< 0.26	0.26		ug/m3	3	12/21/2017 7:48:00 PM
Tetrachlorgethylene	< 0.64	0.64		ug/m3	1	12/21/2017 7:48:00 PM
Tetrahydrofuran	< 1.0	1.0		ug/m3	1	12/21/2017 7:48:00 PM
Foluene	< 0.44	0.44		ug/m3	1	12/21/2017 7:48:00 PM
rans-1,2-Dichloroetherie	11	5.3		ug/m3	9	12/22/2017 11:25:00 PM
rans-1,3-Dichloropropene	< 0.59	0.59		սց/ու3	1	12/21/2017 7:48:00 PM
richloroethane	< 0.68	0.68		ug/m3	1	12/21/2017 7:48:00 PM
_	0.43	0.16		ug/m3	1	12/21/2017 7:48:00 PM
/inyl acetate	< 0.53	0.53		ug/m3	1	12/21/2017 7:48:00 PM
rinyl Bromide	< 0.68	0.66		ug/m3	1	
linyl chloride	< 0.10	0.10		≠g/m3	;	12/21/2017 7:48:00 PM 12/21/2017 7:48:00 PM

Ω	tr sk	Γŧ	17.	

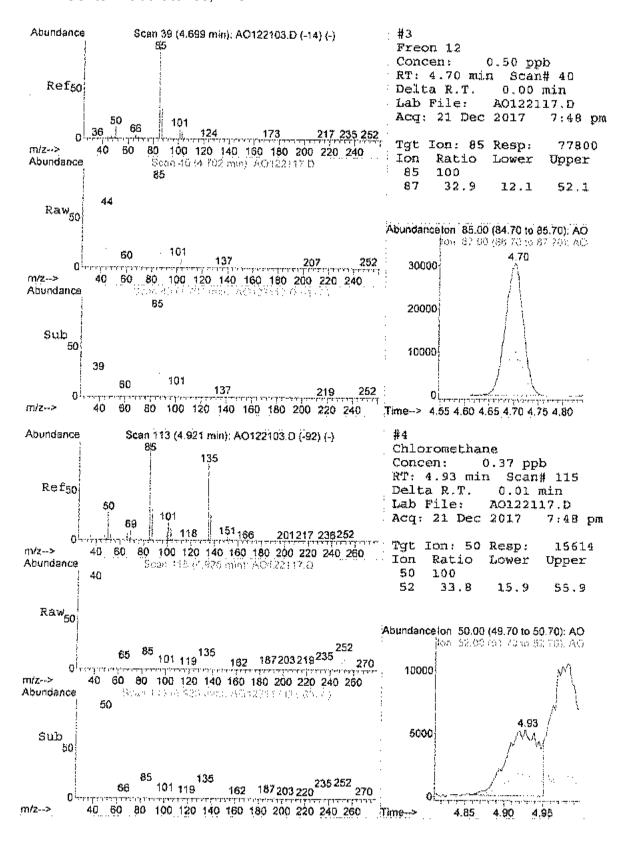
- ** Quantitation Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 1 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

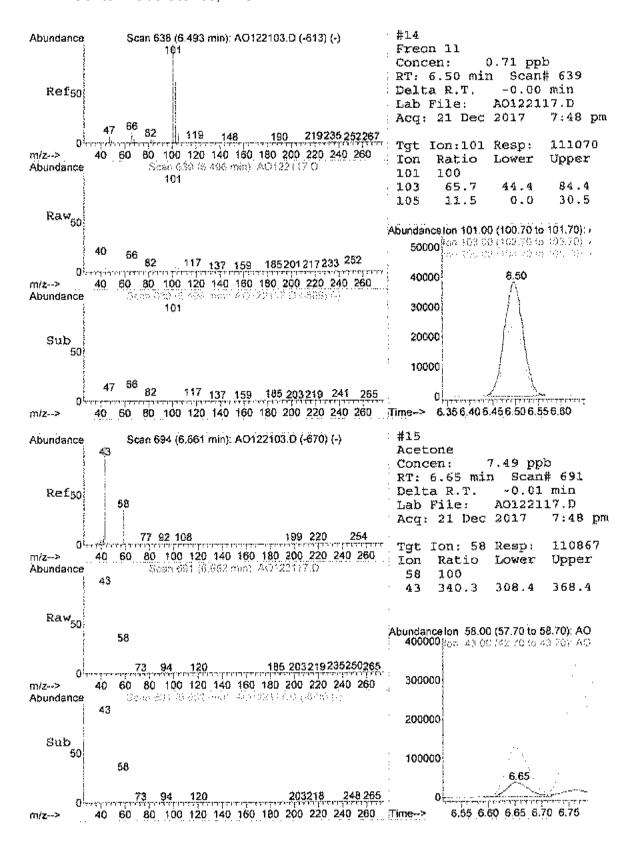
Page 12 of 26

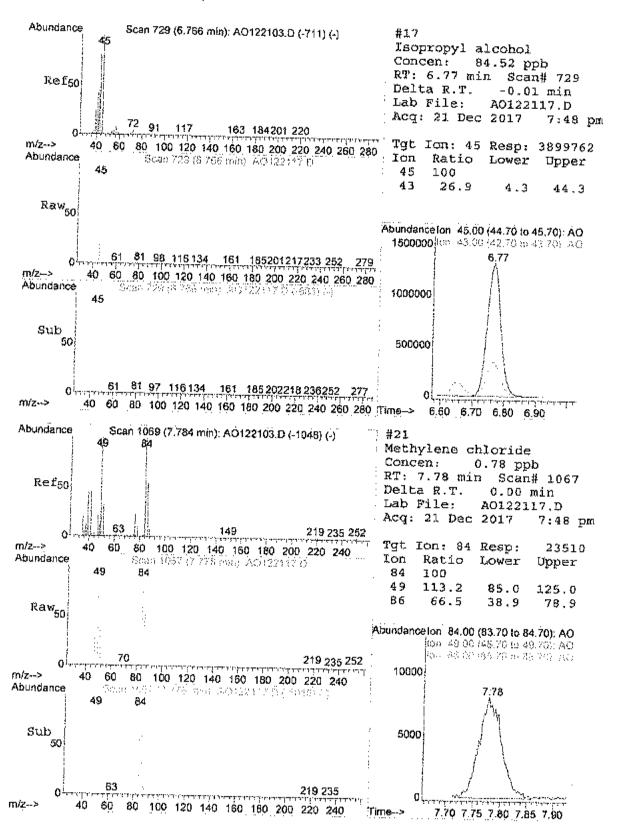
Quantitation Report (QT Reviewed)

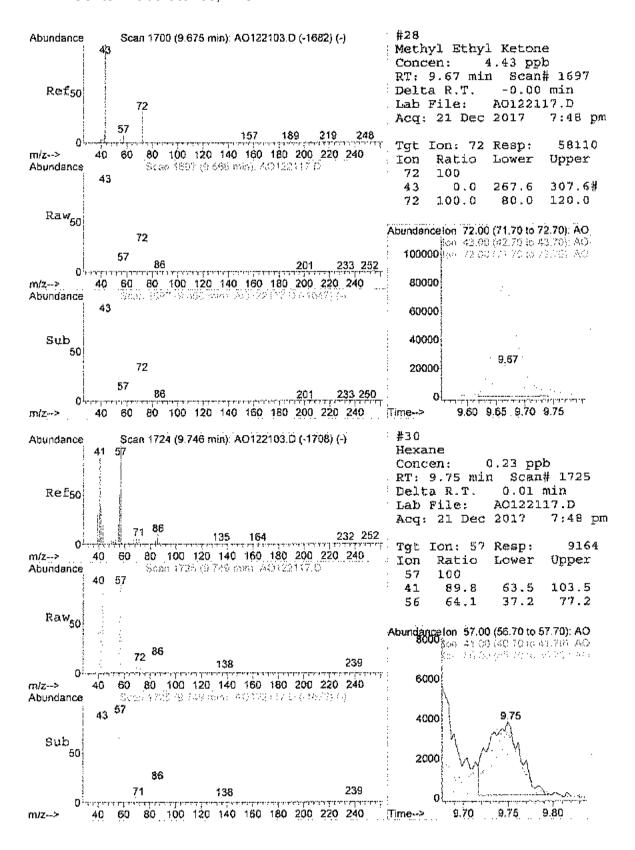

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122117.D Vial: 6 Acq On : 21 Dec 2017 7:48 pm Operator: RJP Sample : C1712063-006A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

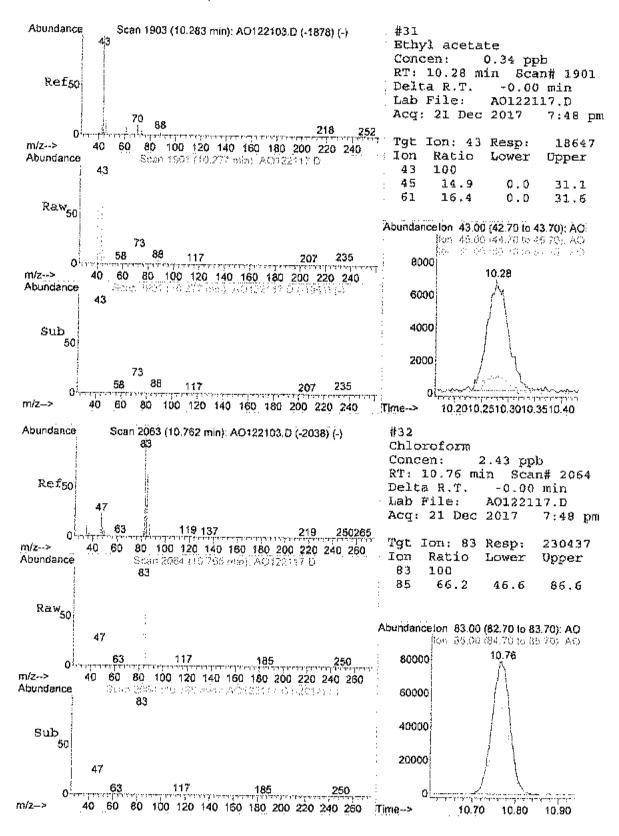
MS Integration Params: RTEINT.P

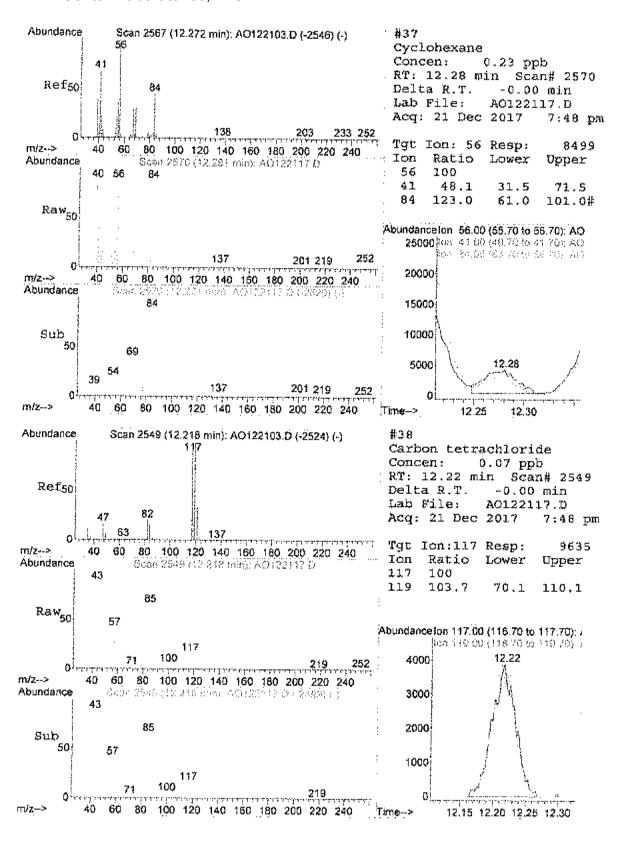

Quant Time: Dec 22 08:15:05 2017 Quant Results File: AD12 1UG.RES

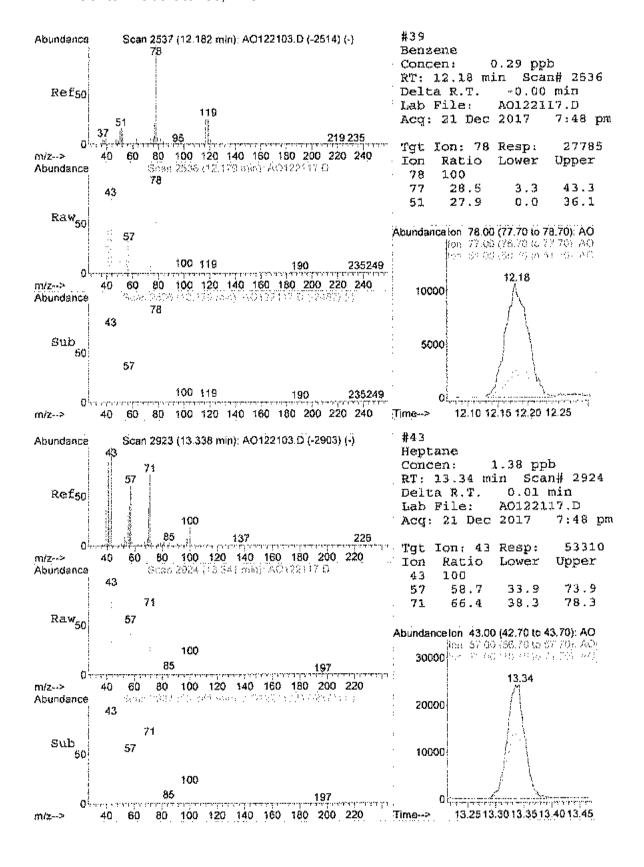

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

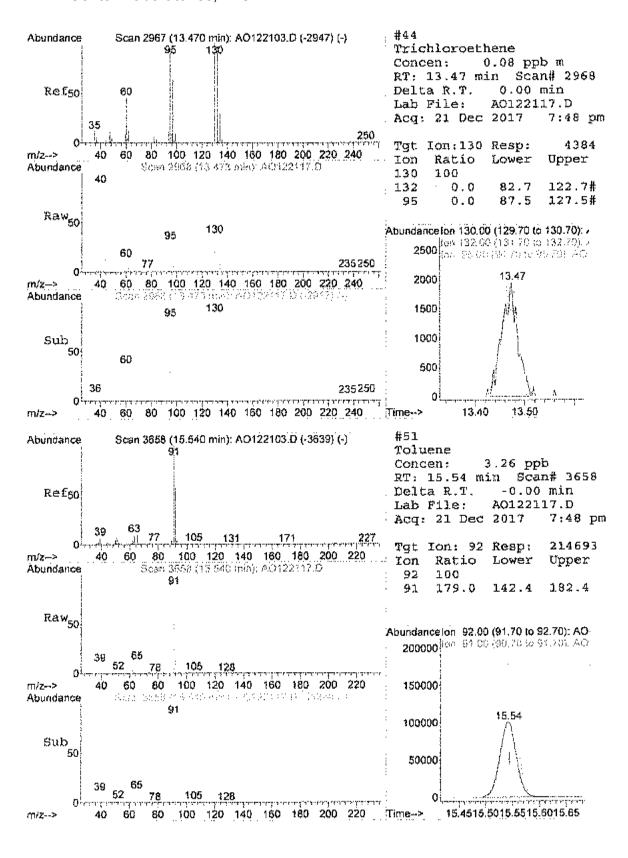

Internal Standards	R.Т.	QIon	Response	Conc Ur	nits	Dev (Min}
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.83			1.00	dqq		0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000			60711 Recover		ppb 81.		0.00
Target Compounds						Qva	lue
3) Preon 12	4.70	85	77800	0.50	dqq		99
4) Chloromethane	4.93	50	15614				96
14) Freon 11	6.50	101		0.71			98
15) Acetone	6.65		110867				99
17) Isopropyl alcohol	6.77	45	3899762				95
21) Methylene chloride	7.78		23510				91.
28) Methyl Ethyl Ketone			58110			#	1
30) Hexane			9164				92
31) Ethyl acetate			18647				89
32) Chloroform	10.76	83					100
37) Cyclohexane	12.28		8499				69
38) Carbon tetrachloride	12.22		9635				86
39) Benzene	12.18		27785				82
43) Heptane	13.34	43	53310	1.38			91
44) Trichloroethene	13.47	1.30	53310 4384m/ 214693	0.08			
51) Toluene							88
59) m&p-xylene	18.06	91	32134	0.25	ББр		95

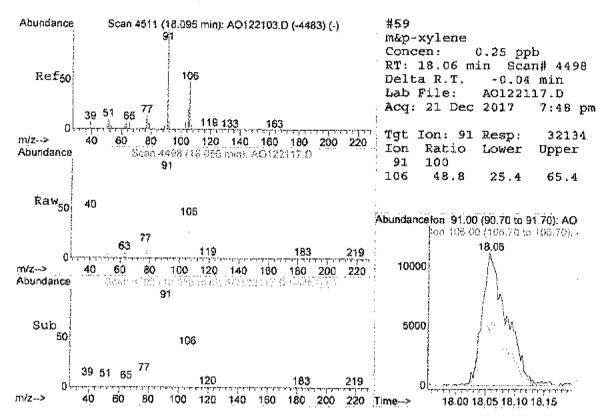



Page 223 of 477







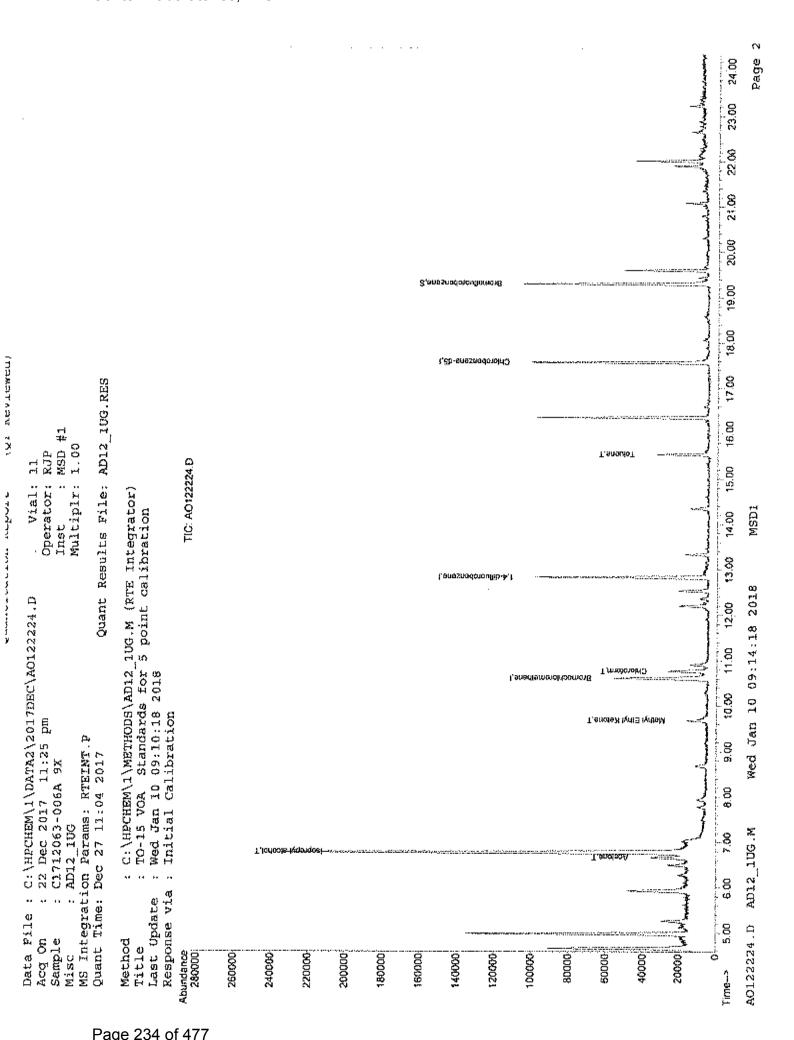


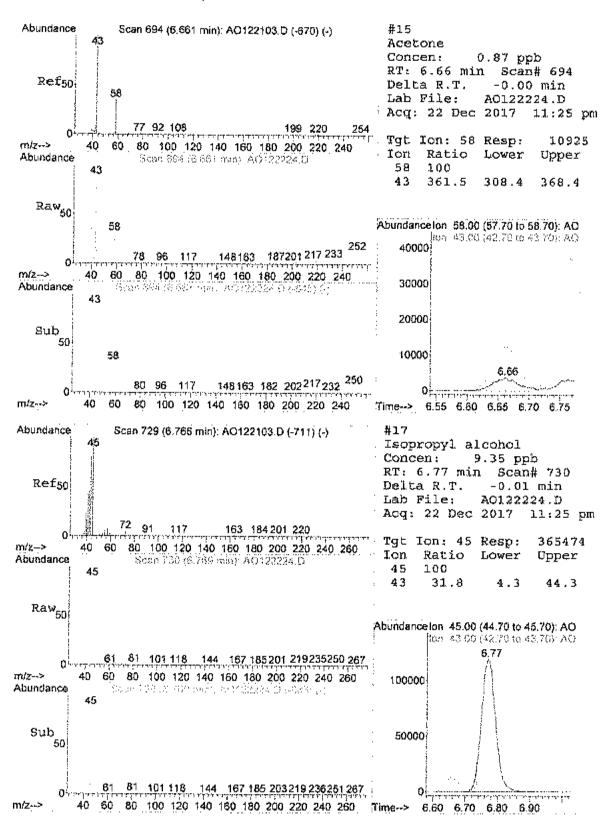
Quantitation Report

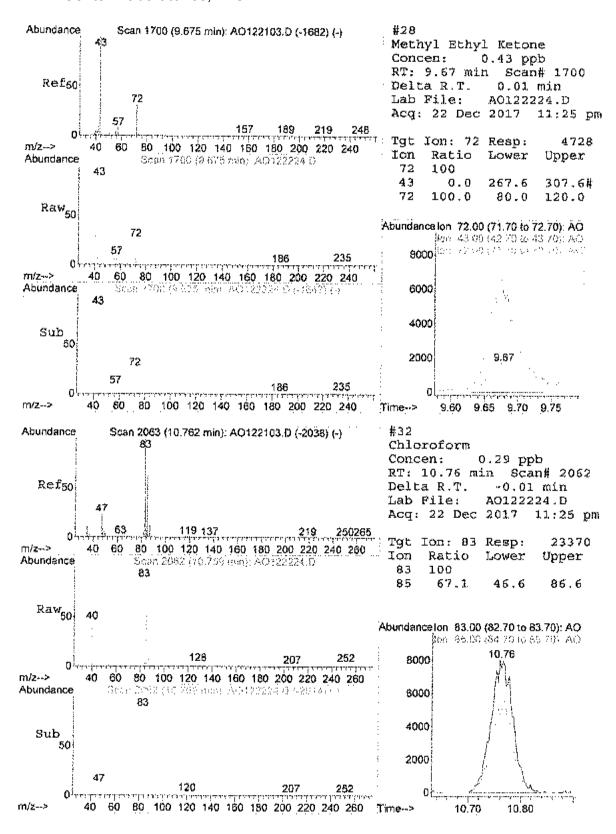
(QT Reviewed)

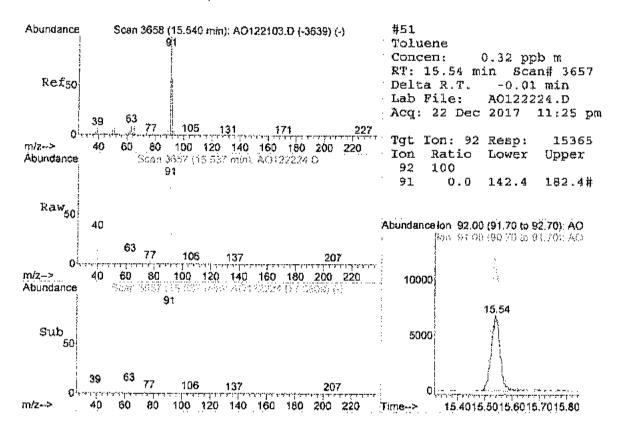
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122224.D Acq On : 22 Dec 2017 11:25 pm

Vial: 11 Operator: RJP Inst : MSD #1 Multiplr: 1.00


Sample : C1712063-006A 9X Misc : AD12_1UG


MS Integration Params: RTEINT.P


Quant Time: Dec 27 09:46:38 2017 Quant Results File: AD12 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration DataAcq Meth : UUG_RUN

Internal Standards	R.T.	QIon	Response (Conc t	Inits	Dev(Min)
1) Bromochloromethane	10.61	128	24742		dqq (
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.83 17.56		95678 74243		dqq (
System Monitoring Compounds						
65) Bromofluorobenzene	19.29					
Spiked Amount 1.000	Range 70	- 130	Recovery	У =	75	.00%
Target Compounds						Qvalue
15) Acetone	6,66	58	10925	0.87	ppb	89
17) Isopropyl alcohol	6.77	45	365474	9.35	dqq i	85
28) Methyl Ethyl Ketone	9.67	72	4728	0.43	dqq 8	# 1
32) Chloroform	10.76	83	23370	0.29) ppb	99
51) Toluenc	15.54	92	15365m <i>y</i> ∤/	0.32	dqq s	

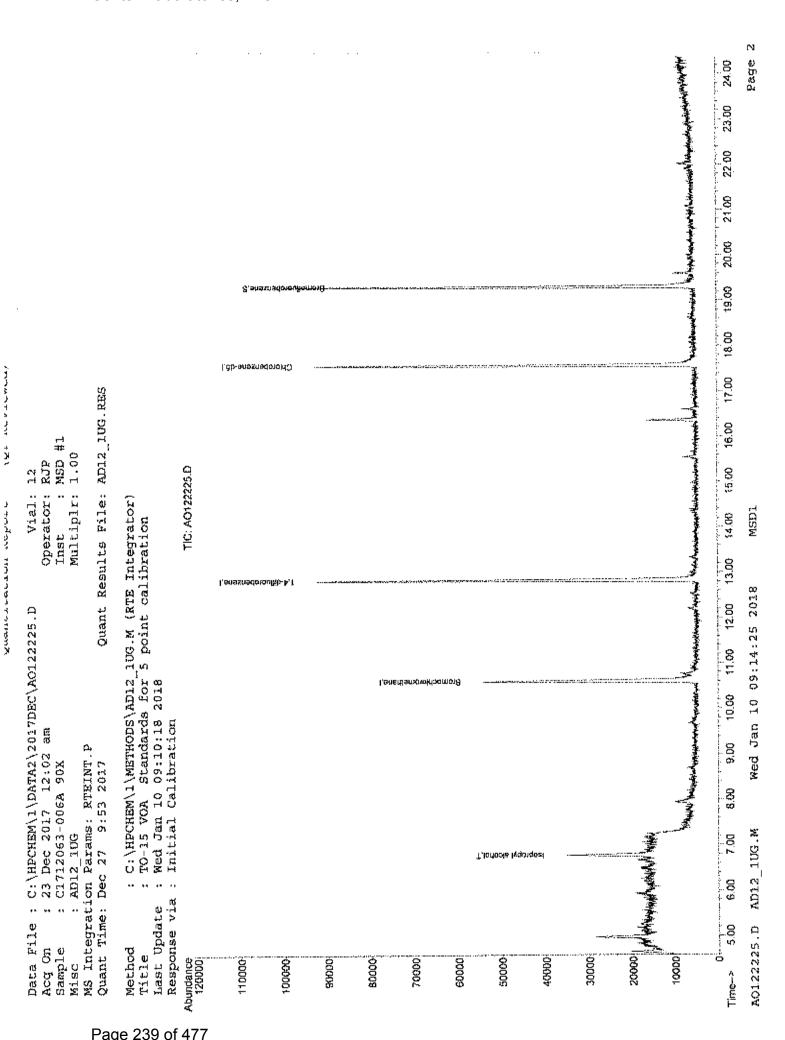
Quantitation Report (QT Reviewed)

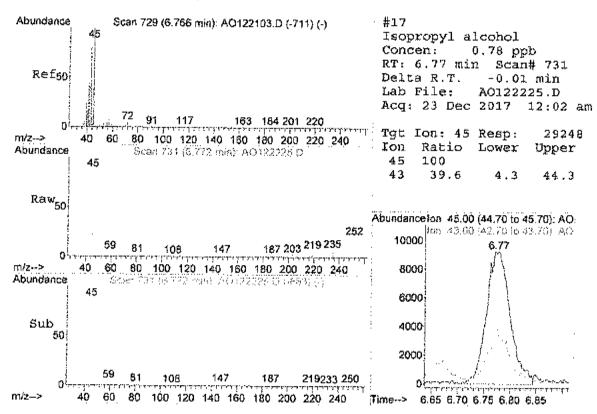
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122225.D

Vial: 12 Acq On : 23 Dec 2017 12:02 am Operator: RJP Sample : C1712063-006A 90X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:46:39 2017 Quant Results File: AD12_10G.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017


Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	Ŕ.T.	QIon	Response (Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-dS	20.60 12.83 17.56	128 114 117	23736 93337 70778	1.00 pp 1.00 pp 1.00 pp	b 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29	95 - 130	39568 Recovery	0.75 pp	b 0.00 5.00∜
Target Compounds 17) Isopropyl alcohol	6.77	45	29248	0.78 pp	Qvalue b 69

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122225.D AD12_10G.M Wed Jan 10 09:14:24 2018 MSD1

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063

Project: Eldre Corp

Lab ID: C1712063-007A Date: 10-Jan-18

Client Sample ID: SVI-04

Tag Number: 100.309 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD	**************************************	·	Analyst:
Leb Vacuum In	-6	, ==	"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 BY METHOD TO15		TO-15	;		Analyst; RJP
1.1,1-Trichloroethane	< 0.15	0.15	ρρb∨	1	12/22/2017 3:22:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 3:22:00 AM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	12/22/2017 3:22:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 3:22:00 AM
Chloromethane	< 0.35	0.15	Vdqq	1	12/22/2017 3:22:00 AM
cis-1,2-Dichloroethene	0.38	0.15	Vdqq	1	12/22/2017 3:22:00 AM
Tetrachloroethylene	0.17	0.15	Vdqq	1	12/22/2017 3:22:00 AM
trans-1,2-Dichloroethena	< 0.15	0.15	Vdqq	1	12/22/2017 3:22:00 AM
Trichloroethen e	12	1.5	ppbV	10	12/23/2017 5:07:00 AM
Vinyl chloride	0.31	0.15	ppbV	1	12/22/2017 3:22:00 AM
Surr: Bromofluorobenzene	100	70-130	%REC	1	12/22/2017 3:22:00 AM

Qualifiers:

Quantitation Limit

В Analyte detected in the associated Method Blank

J-1 Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range

5 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 13 of 26

AND THE COMMENDED CONTROL OF THE CONTROL OF T LaBella Associates, P.C.

Lab Order:

C1712063

Project:

CLIENT:

Eldre Corp

Lab ID:

C1712063-007A

Date: 10-Jan-18

Client Sample ID: SVI-04

Tag Number: 100.309

Collection Date: 12/13/2017

Matrix: AIR

		· · · · · · · · · · · · · · · · · · ·	· •···· · · · · · · · · · · · · · · · ·		
Analyses	Result	**Limit Qual	Units	ÐF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	12/22/2017 3:22:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/22/2017 3:22:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Chioroethane	< 0.40	0.40	ug/m3	1	12/22/2017 3:22:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	12/22/2017 3:22:00 AM
cis-1,2-Dichtoroethene	1.5	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Tetrachioroethylene	1.2	1,0	ug/m3	1	12/22/2017 3:22:00 AM
trans-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Trichioroethene	62	8.1	ug/m3	10	12/23/2017 5:07:00 AM
Vinyl chioride	0.79	0.38	មច្ច/៣3	1	12/22/2017 3:22:00 AM
-			-		

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ЛŲ Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbb{H} Estimated Value above quantitation range
- Analyte detected below quantitation limit
- Not Detected at the Limit of Detection CIM

Page 13 of 26

Quantitation Report

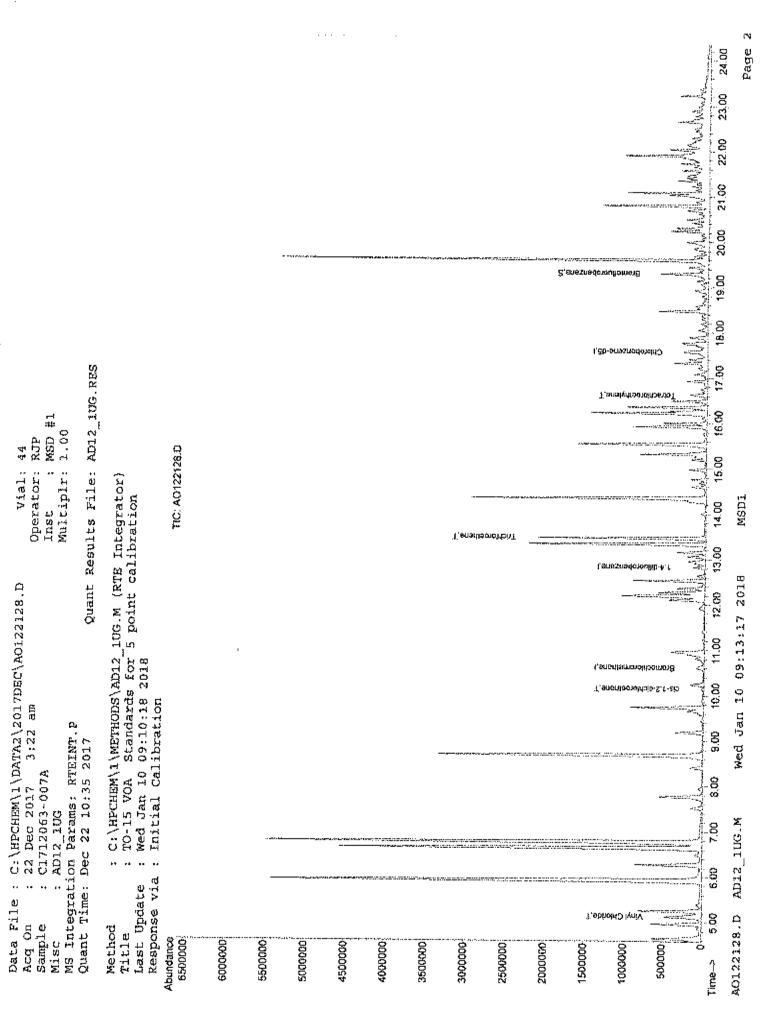
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122128.D Vial: 44 Acq On : 22 Dec 2017 3:22 am Operator: RJP Sample : C1712063-007A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

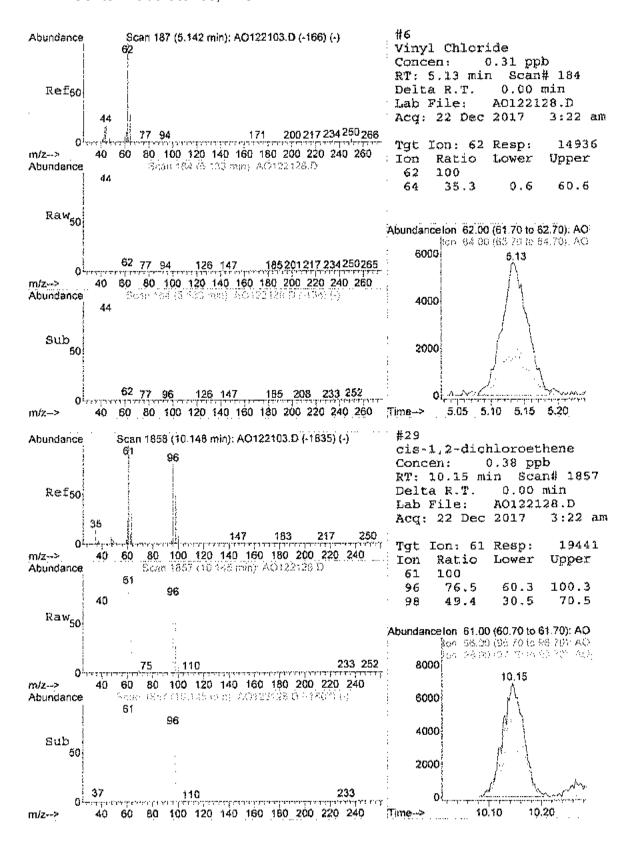
MS Integration Params: RTEINT.P

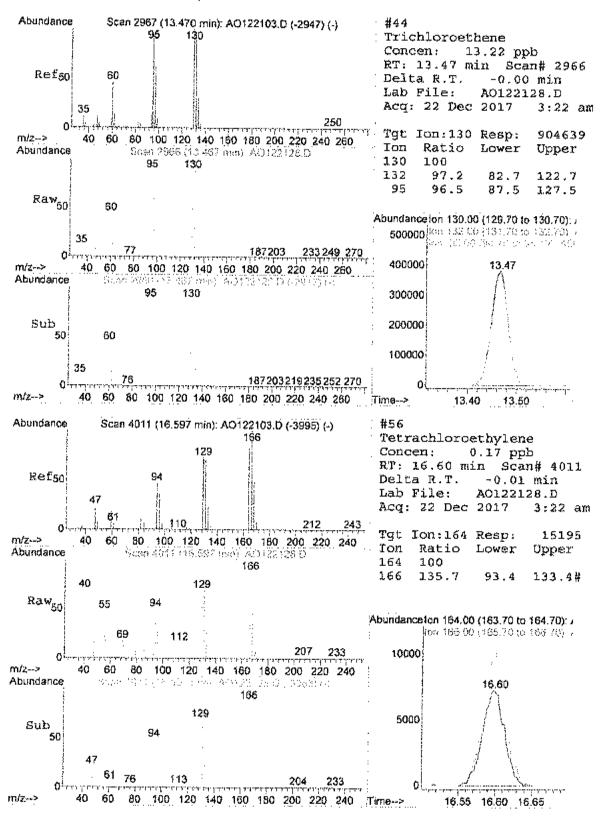
Quant Time: Dec 22 08:06:58 2017 Quant Results File: AD12 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc t	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	35416 142832 150689	1.00	ppb ppb ppb	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	111822 Recove		ppb 100	
Target Compounds 6) Vinyl Chloride 29) cis-1,2-dichloroethene 44) Trichloroethene 56) Tetrachloroethylene	5.13 10.15 13.47 16.60	62 51 130 164	14936 19441 904639 15195	0.38 13.22	bpp pp pp pp	


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122128.D AD12_1UG.M Wed Jan 10 09:13:16 2018 MSD1

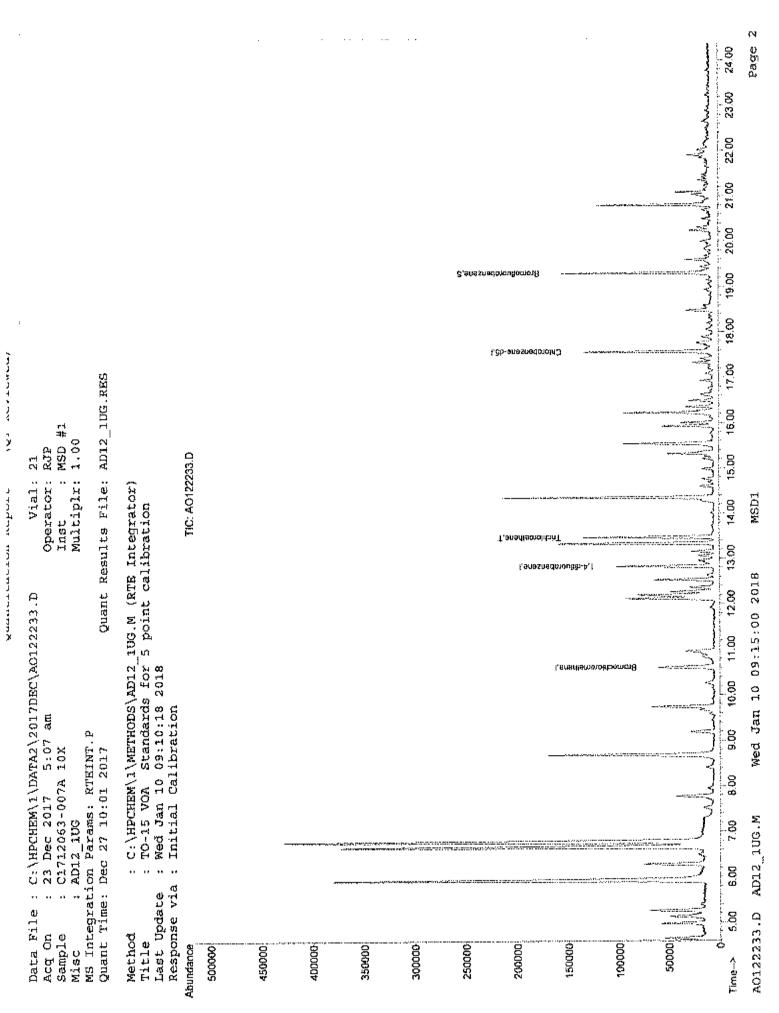

(VI REVIEWER)

TINIAU HOTSBSTSTRA

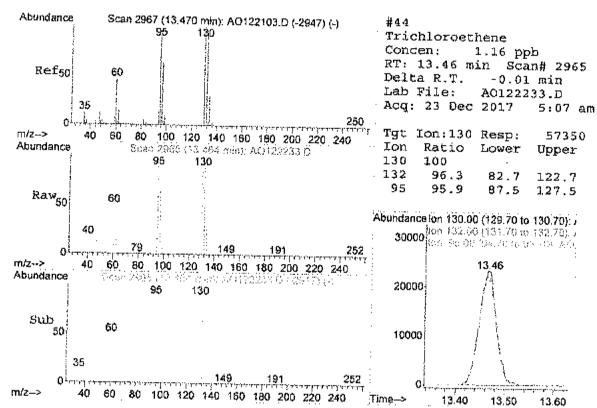
Page 244 of 477

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122233.D Vial: 21 Acq On : 23 Dec 2017 5:07 am Operator: RJP Sample : C1712063-007A 10X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Results File: AD12_1UG.RES Quant Time: Dec 27 09:46:46 2017


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

Internal Standards	R.T. Q	on R	esponse Co	onc Units	Dev(Min)
1) Bromochloromethane 35) 1.4-difluorobenzene 50) Chlorobenzene-d5		128 114 117	26678 102820 92305	1.00 ppb 1.00 ppb 1.00 ppb	-0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70 -	95 130	54819 Recovery	0.80 ppb = 80	_
Target Compounds 44) Trichloroethene	13.46	130	57350	1.16 ppb	Qvalue 91

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed Wed Jan 10 09:14:59 2018 MSD1 A0122233.D AD12 1UG.M

Page 248 of 477

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-008A

THE CONTROL OF THE CO Client Sample ID: IAQ-04

Tag Number: 287.260

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppb∨	4	12/21/2017 8:29:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppb∀	1	12/21/2017 8:29:00 PM
1,1-Dichloroethene	< 0.15	0.15	pρb∨	3	12/21/2017 8:29:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 8:29:00 PM
Chloromethane	0.70	0.15	∨dqq	1	12/21/2017 8:29:00 PM
cis-1,2-Dichloroethene	0.33	0.15	Vdqq	1	12/21/2017 8:29:00 PM
Tetrachtoroethylene	< 0.15	0.15	ppb∨	1	12/21/2017 8:29:00 PM
trans-1,2-Dichioroethene	< 0.15	0.15	Vdqq	1	12/21/2017 8:29:00 PM
Trichloraethese	1,8	0.040	₽₽bV	1	12/21/2017 8:29:00 PM
Vinyl chloride	< 0.040	0.040	γdqq	1	12/21/2017 8:29:00 PM
Surr; Bromofluarobenzene	84.0	70-130	%REC	1	12/21/2017 8:29:00 PM

Qualifiers:

** Quantitation Limit

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded П

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

[5 Estimated Value above quantitation range

Ţ Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 14 of 26

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C.

Client Sample ID: IAQ-04 Lab Order: C1712063 Tag Number: 287.260 Project: Eldre Corp Collection Date: 12/13/2017

Lab ID: C1712063-008A Matrix: AlR

Analyses	Result	**Limit Q		ÐF	Date Analyzed			
UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15	·	158112-1	A			
1.1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	Analyst: RJP			
1,1-Dichloroethane	< 0.61	0.61	ug/m3	:	12/21/2017 8:29:00 PM			
1.1-Dichtoroethene	< 0.59	0.59	•	,	12/21/2017 8:29:00 ₽M			
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 8:29:00 PM			
Chloromethane	1,4		ug/m3	1	12/21/2017 8:29:00 PM			
cis-1,2-Dichloroethene		0.31	ug/m3	1	12/21/2017 8:29:00 PM			
Tetrachloroethylene	1.3	0.59	ug/m3	1	12/21/2017 8:29:00 PM			
trans-1,2-Dichloroethene	< 1.0	1.0	ug/m3	1	12/21/2017 8:29:00 PM			
	< 0.59	0.59	ug/m3	1	12/21/2017 8:29:00 PM			
Trichloroethene	9.9	0.21	ug/m3	1	12/21/2017 8:29:00 PM			
Vinyl chloride	< 0.10	0.10	ug/m3	t	12/21/2017 8:29:00 PM			

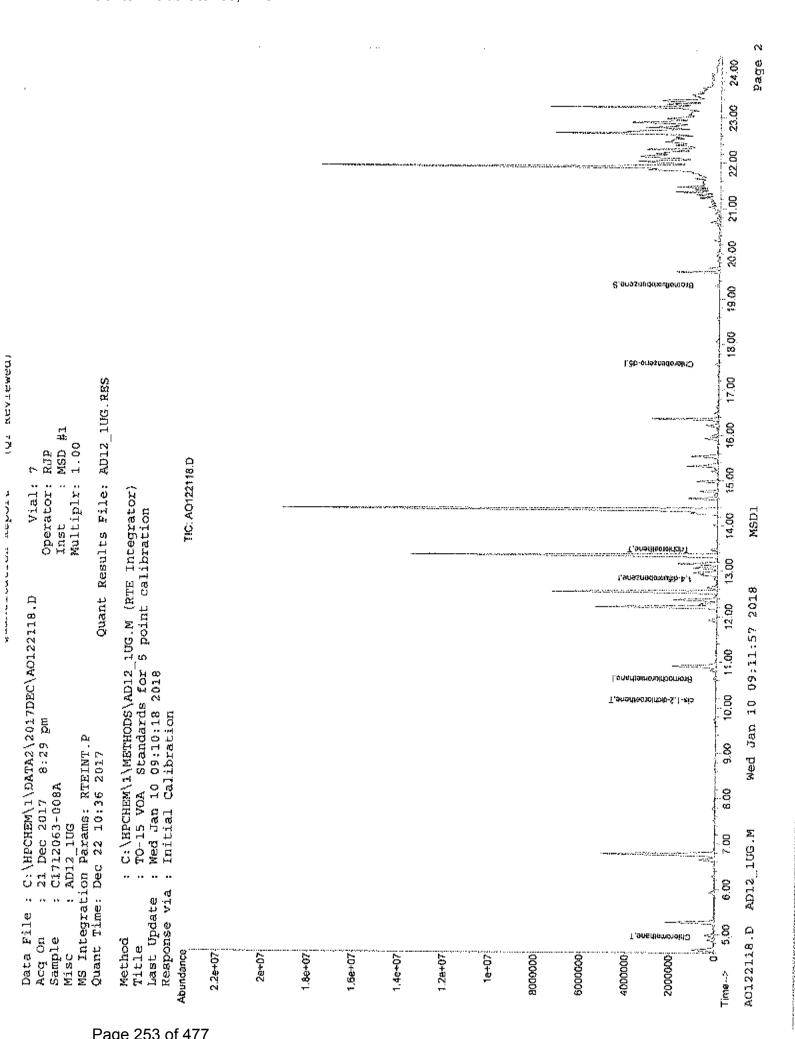
Qualifiers:

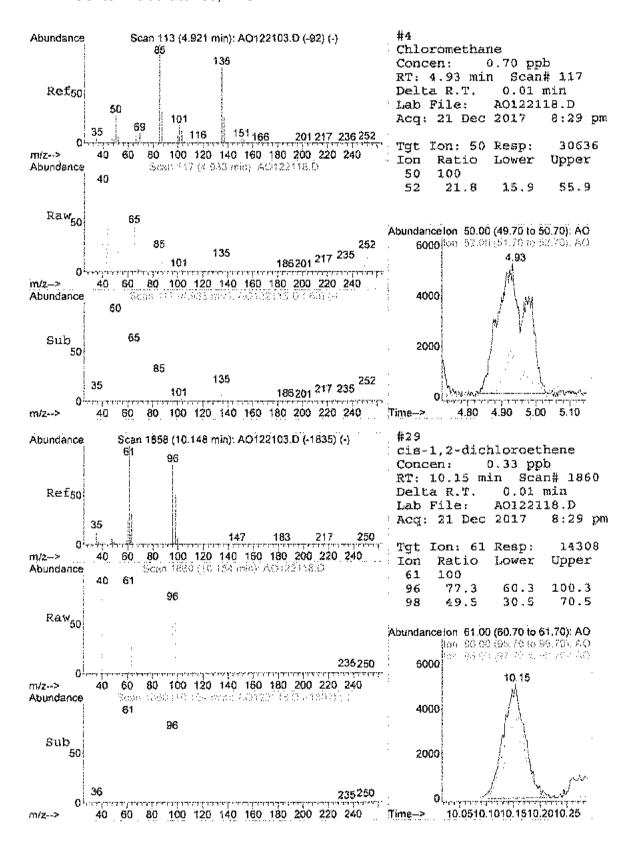
- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JM
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 1 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

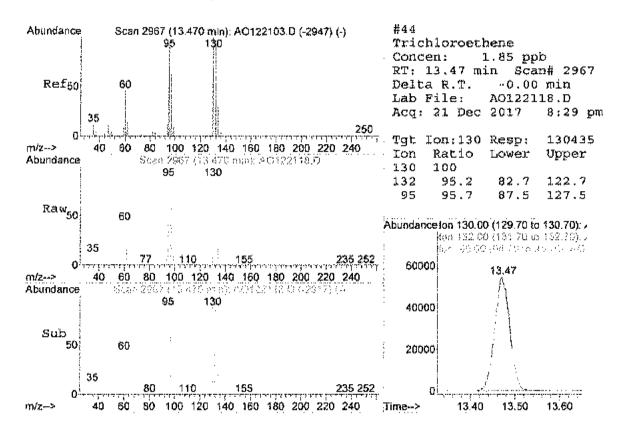
Page 14 of 26

Quantitation Report

(QT Reviewed)


Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122118.D Acq On : 21 Dec 2017 8:29 pm Vial: 7 Operator: RJP Sample : C1712063-008A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P


Quant Results File: AD12 1UG.RES Quant Time: Dec 22 08:15:06 2017

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards			Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56	128 114	30144 147268 123752	1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70		77095 Recovery	0.84		0.00
Target Compounds 4) Chloromethane	4,93	50	30636	0.70	daa	Qvalue 76
29) cis-1,2-dichloroethene 44) Trichloroethene	10.15	61 130	14308 130435		ppb	97 91

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-009A

Date: 10-Jan-18

Client Sample (D: SVI-05

Tag Number: 336.381

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FL		····		Analyst:
Lab Vacuum In	-6		•	"Hg		12/18/2017
Lab Vacuum Out	-30			"Нұ		12/18/2017
1UG/M3 BY METHOD TO15		TO-	15			Analyst: RJP
1,1,1-Trichloroethane	0.11	0.15	J	Vđạq	1	12/22/2017 4:03:00 AM
1,1-Dichtoroethane	< 0.15	0.15		ppbV	1	12/22/2017 4:03:00 AM
1.1-Dichloroethene	< 0.15	0.15		ppbV	1	12/22/2017 4:03:00 AM
Chloroethane	< 0.15	0.15		Váqq	1	12/22/2017 4:03:00 AM
Chloromethane	< 0.15	0.15		ppb∨	1	12/22/2017 4:03:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	12/22/2017 4:03:00 AM
Tetrachloroethylene	0.22	0.15		ppbV	1	12/22/2017 4:03:00 AM
trans-1,2-Dichtoroethene	< 0.15	0.15		ppbV	1	12/22/2017 4:03:00 AM
Trichloroethene	2.6	0.60		ppbV	4	12/23/2017 5:45:00 AM
Vinyl chloride	< 0.15	0.15		Vdqq	1	12/22/2017 4:03:00 AM
Surr: Bromoffuorobenzene	91.0	70-130		%REC	1	12/22/2017 4:03:00 AM

Qualifiers:

Quantitation Limit

В Analyte detected in the associated Method Blank

į·[Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

<u>£2</u> Estimated Value above quantitation range

Į, Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 15 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: SVI-05

C1712063

Lab Order:

Tag Number: 336.381

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-009A

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO.	-15			Analyst: RJP
1,1,1-Trichloroethane	0.60	0.82	J	u g/ਲਾ 3	1	12/22/2017 4:03:00 AM
1,1-Dichioroethane	< 0.61	0.61		ug/m3	1	12/22/2017 4:03:00 AM
1,1-Dichtoroethene	< 0.59	0.59		ug/m3	1	12/22/2017 4:03:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	12/22/2017 4:03:00 AM
Chloromethane	< 0.31	0.31		u g/m 3	1	12/22/2017 4:03:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		⊔ g/m 3	1	12/22/2017 4:03:00 AM
Tetrachloroethylens	1.5	1.0		ug/m3	t	12/22/2017 4:03:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 4:03:00 AM
Trichloroethene	14	3.2		Em/gu	4	12/23/2017 5:45:00 AM
Vinyi chloride	< 0.38	0.38		ug/m3	†	12/22/2017 4:03:00 AM

Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 3N Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{e} Estimated Value above quantitation range
- Analyte detected below quantitation limit 3
- Not Detected at the Limit of Detection

Page 15 of 26

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122129.D

Acq On : 22 Dec 2017 4:03 am

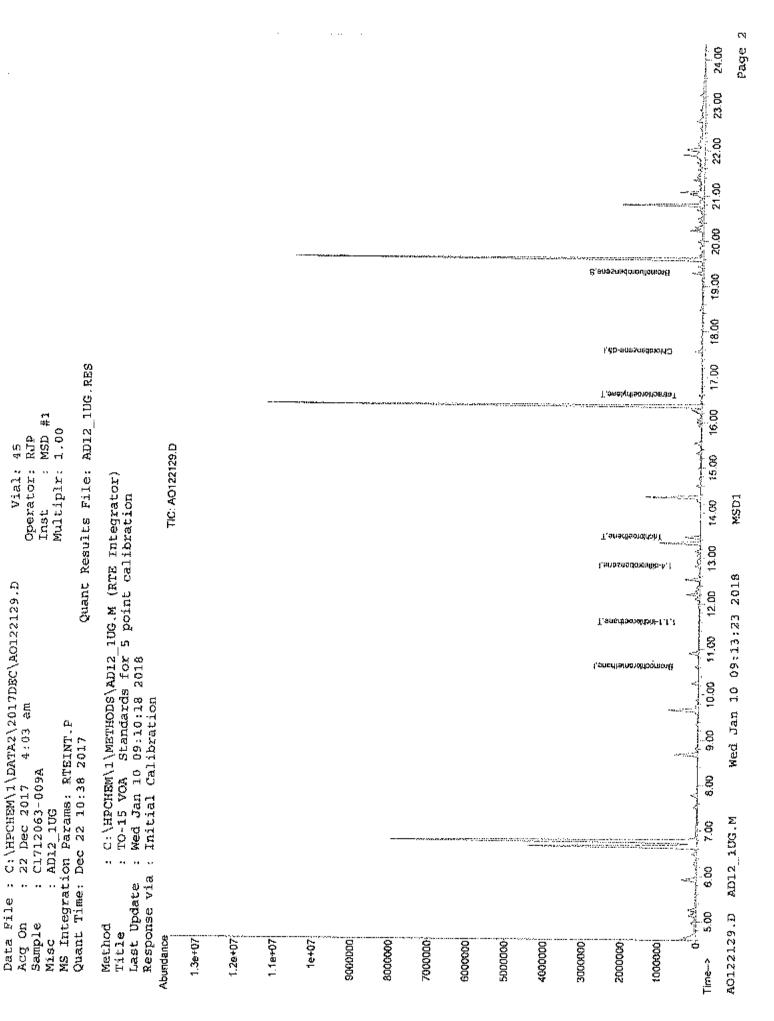
Operator: RJP Inst : MSD #1

Vial: 45

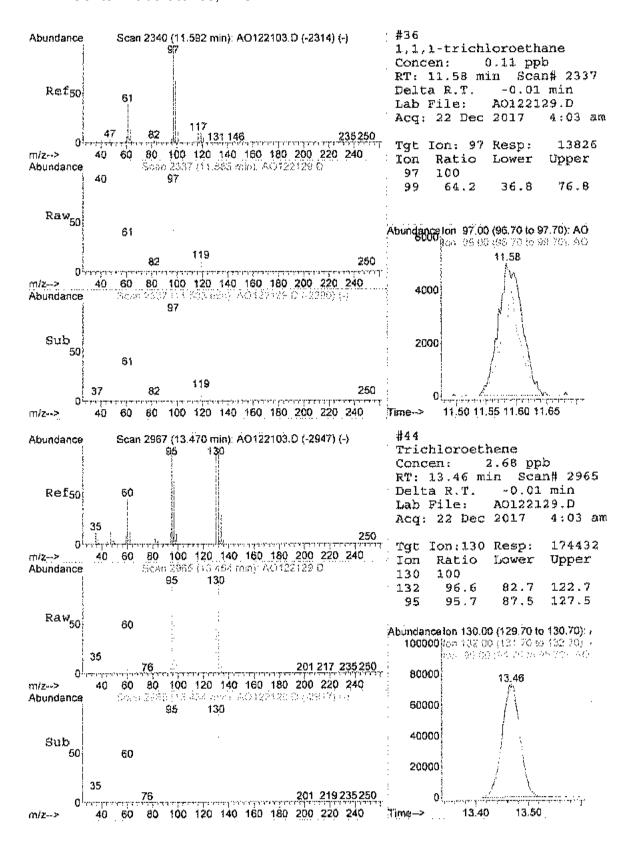
Sample : C1712063-009A Misc : AD12_1UG

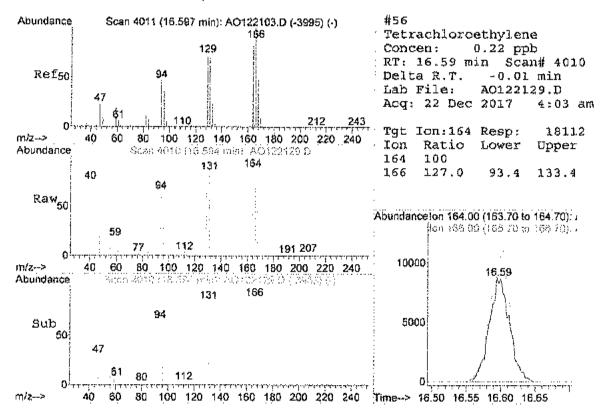
Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 22 08:06:59 2017 Quant Results File: AD12 1UG.RES

Quant Method : C:\HPCHEM\l\METHODS\AD12_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : lUG_RUN


Internal Standards	R.T.	QIon	Response C	one U	nits.	Dev (Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	34838 135840 134756	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70		90639 Recovery	0.91	ppb 91.	0.00 00%
Target Compounds 36) 1,1,1-trichloroethane 44) Trichloroethene 56) Tetrachloroethylene	11.58 13.46 16.59	97 130 164	13826 174432 19112	0.11 2.68 0.22	dąg	Qvalue 90 91 87


121 KEVLEWEGJ

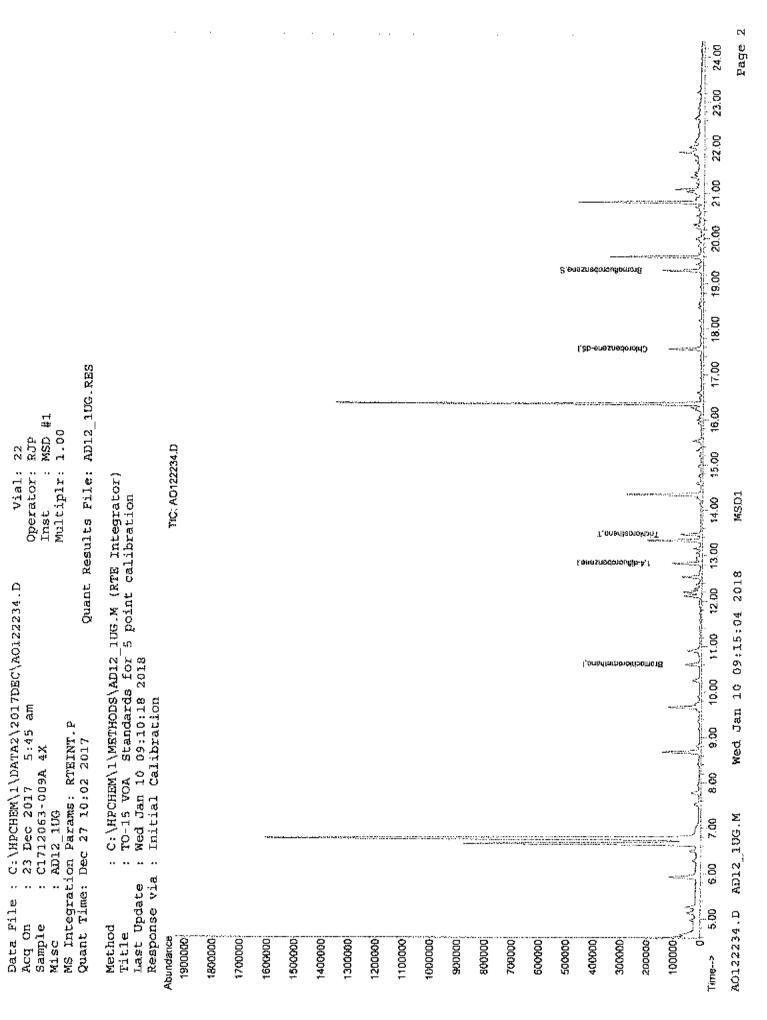
1404411 11011111111

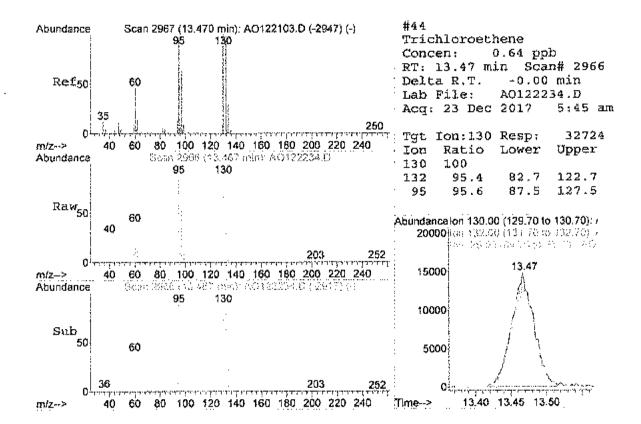
Page 259 of 477

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122234.D Vial: 22 Acq On : 23 Dec 2017 5:45 am Operator: RJP Sample : C1712063-009A 4X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: AD12_1UG.RES Quant Time: Dec 27 09:46:47 2017


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56	128 114 117	26837 106053 91343	1.00 pg 1.00 pg 1.00 pg	b 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	54246 Recovery	0.80 pg = 8	00.0 de
Target Compounds 44) Trichloroethene	13.47	130	32724	0.64 pr	Qvalue b 91

(DAMATABY TA)

Tradem morrows

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-05

Lab Order:

C1712063

Tag Number: 1188.294

Project:

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-010A

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-6		"Hg		12/18/2017
Łab Vacoum Out	-30		"I 1g		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 9:11:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 9:11:00 PM
1,1-Dichloroethene	< 0.15	0.15	Vdqq	1	12/21/2017 9:11:00 PM
Chloroethane	< 0.15	0.15	₽₽bV	1	12/21/2017 9:11:00 PM
Chloromethane	0.45	0.15	ppbV	1	12/21/2017 9:11:00 PM
cis-1,2-Dichloroethene	0.22	0.15	Vdqq	1	12/21/2017 9:31:00 PM
Tetrachioroethylene	< 0.15	0.15	ppbV	1	12/21/2017 9:11:00 PM
trans-1,2-Dichioroethene	< 0.15	0.15	Vdgq	1	12/21/2017 9:11:00 PM
Trichloroethene	1.3	0.040	ppb∨	1	12/21/2017 9:11:00 PM
Vinyl chloride	< 0.040	0.040	ppbV	1	12/21/2017 9:11:00 PM
Surr: Bromofluorobenzane	83.0	70-130	%REC	1	12/21/2017 9:11:00 PM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- łΓ Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated, JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 1 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 16 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Lab ID:

Eldre Corp

C1712063-010A

Client Sample ID: IAQ-05

Tag Number: 1188.294

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0,2UG/M3 CT-TCE-VC	. "	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 9:11:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 9:11:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:11:00 PM
Chłoroethane	< 0.40	0.40	ug/m3	1	12/21/2017 9:11:00 PM
Chloromethane	0.93	0.31	ug/m3	1	12/21/2017 9:11:00 PM
cis-1,2-Dichtoroethene	0.87	0.59	ug/m3	1	12/21/2017 9:11:00 PM
Tetrachtoroethylene	< 1.0	1.0	ug/m3	1	12/21/2017 9:11:00 PM
trens-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:11:00 PM
Trichtoroethene	7.1	0.21	ug/m3	1	12/21/2017 9:11:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 9:11:00 PM

Qualifiers:

** Quantitation Limit

Analyte detected in the associated Method Blank 13

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

JN Non-routine analyte. Quantitation estimated.

Results reported are not blank corrected

Ε Estimated Value above quantitation range

j Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 16 of 26

(QT Reviewed) Quantitation Report

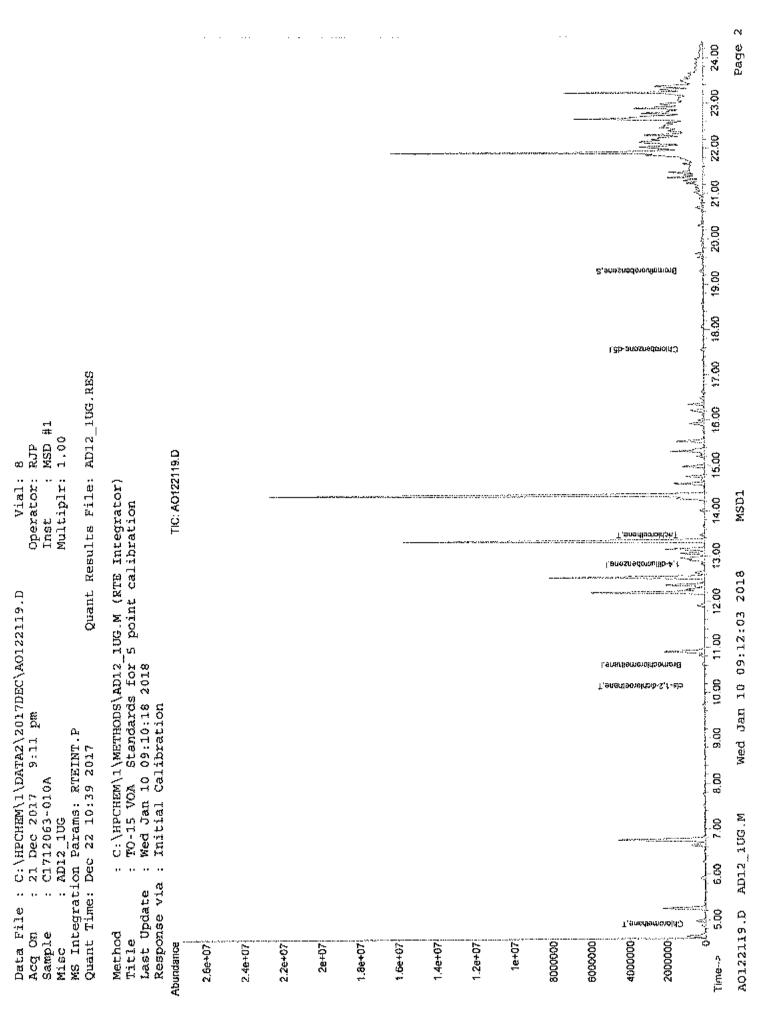
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122119.D

Vial: 8 Acq On : 21 Dec 2017 9:11 pm Sample : C1712063-010A Misc : AD12_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

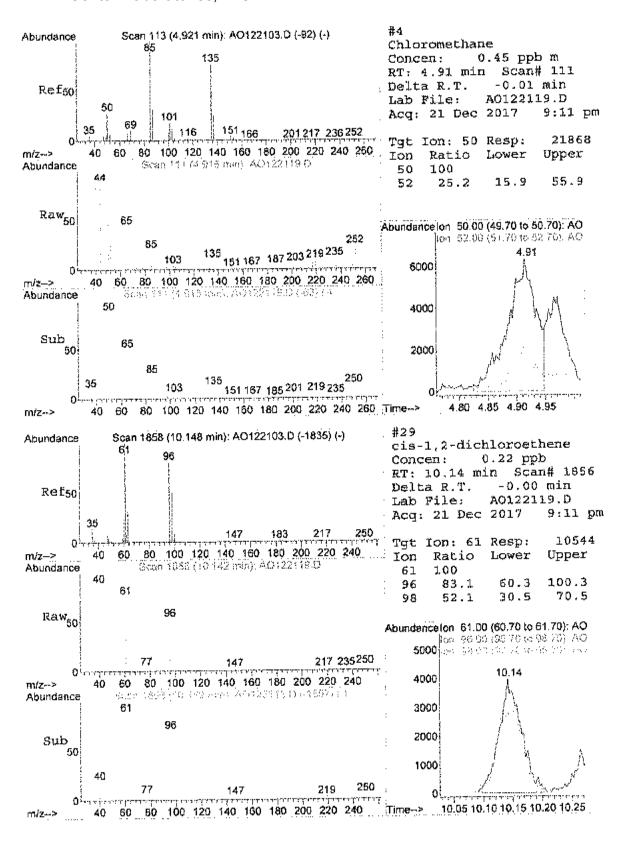
MS Integration Params: RTEINT.P

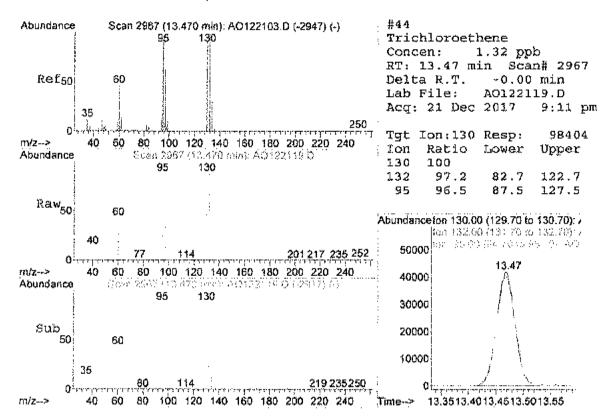
Quant Time: Dec 22 08:15:07 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration


DataAcq Meth : 1UG RUN


Internal Standards	R.T.	QIon	Response C	one U	nits	Dev (Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	33779 155824 135034	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	82804 Recovery	0.83		0.00 .00%
Target Compounds						Qvalue
4) Chloromethane	4.91	50	21868m	0.45	dgg	
29) cis-1,2-dichloroethene	10.14	61	10544	0.22	dqq	97
44) Trichloroethene	13.47	130	98404	1.32	ppb	92

Author motopotentian

Page 268 of 477

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: DUPE

Lab Order:

C1712063

Tag Number: 130.1152

Collection Date: 12/13/2017

Project:

Eldre Corp

Matrix: AIR

Lab ID:

C1712063-011A

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS	FLD			Analyst:	
Lab Vecuum in	-5 "Hg		12/18/2017		
Lab Vacuum Out	-30		"Нд		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 9:53:00 PM
1,1-Dichloroethane	< 0.15	0.15	₽₽bV	1	12/21/2017 9:53:00 PM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 9:53:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 9:53:00 PM
Chloromethane	0.41	0.15	ppbV	1	12/21/2017 9:53:00 PM
cis-1,2-Dichlorgethene	0.22	0.15	Vdqq	1	12/21/2017 9:53:00 PM
Tetrachioroethylene	< 0.15	0.15	ppbV	1	12/21/2017 9:53:00 PM
trans-1.2-Dichloroethene	< 0.15	0.15	ppb∨	1	12/21/2017 9:53:00 PM
Trichtorgethene	1,3	0.040	ppbV	ŧ	12/21/2017 9:53:00 PM
Vinyl chloride	< 0.040	0.040	Voqq	1 12/21/2017 9:53:	
Surr: Bromofluorobenzene	86.0	70-130	%REC	1	12/21/2017 9:53:00 PM

Qualifiers:

** Quantitation Limit

Analyte detected in the associated Method Blank E3

H Holding times for preparation or analysis exceeded.

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

F Estimated Value above quantitation range

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

Page 17 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063

Project: Eldre Corp

Lab ID: C1712063-011A Date: 10-Jan-18

Client Sample ID: DUPE

Tag Number: 130.1152

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	TO-15				Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 9:53:00 PM	
1,1-Dichtoroethane	< 0.61	0.61	u g/m 3	1	12/21/2017 9:53:00 PM	
1,1-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:53:00 PM	
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 9:53:00 PM	
Chloromethane	0.85	0.31	ug/m3	1	12/21/2017 9:53:00 PM	
cis-1,2-Dichloroethene	0.87	0,59	սց/m3	1	12/21/2017 9:53:00 PM	
Tetrachloroethylen e	< 1.0	1.0	ug/m3	1	12/21/2017 9:53:00 PM	
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:53:00 PM	
Trichtoroethene	7.0	0.21	ug/m3	1	12/21/2017 9:53:00 PM	
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 9:53:00 PM	

Qualifiers:

Quantitation Limit

13 Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Иţ Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

j Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 17 of 26

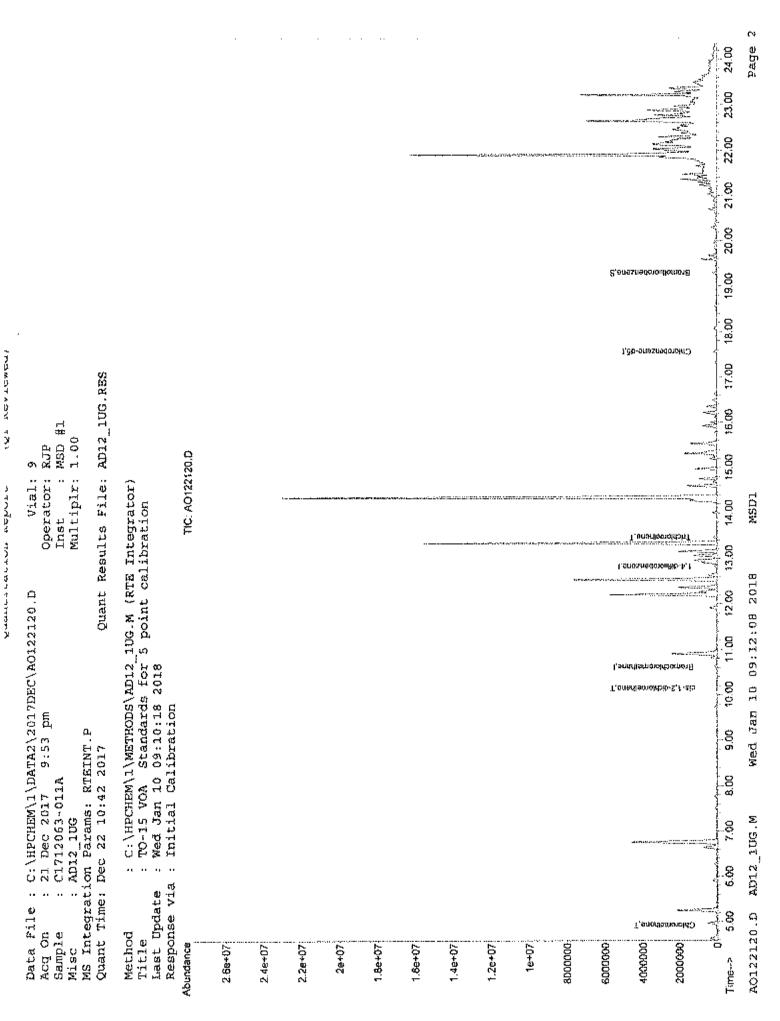
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122120.D
Acq On : 21 Dec 2017 9:53 pm

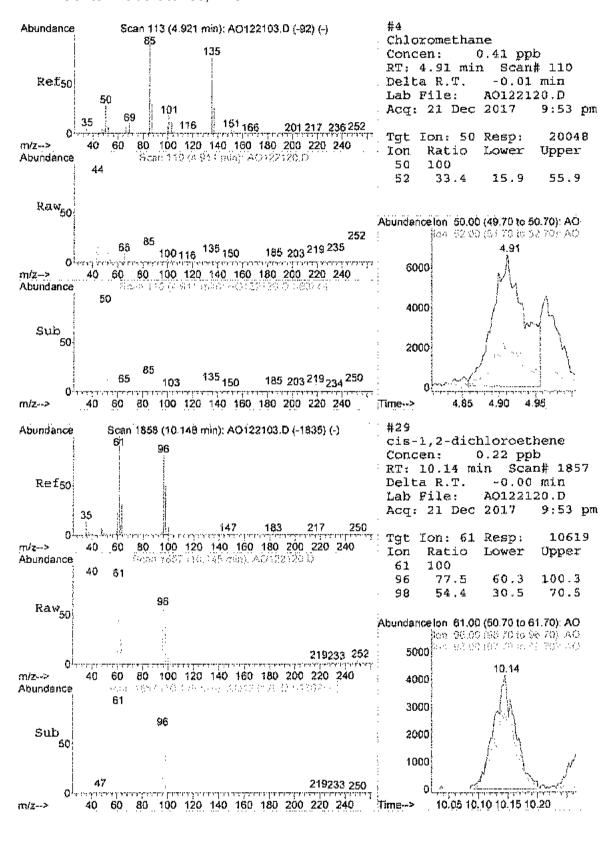
Vial: 9 Operator: RJP Inst : MSD #1

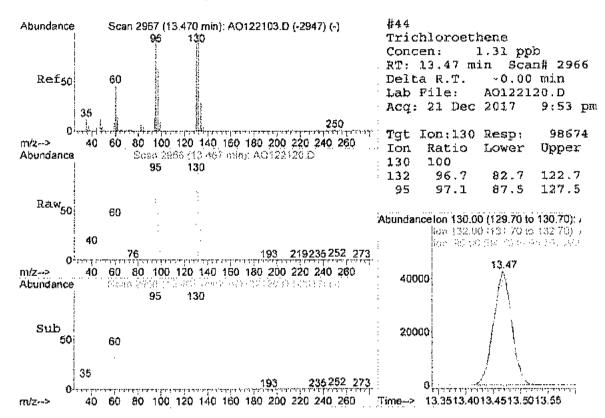
Sample : C1712063-011A Misc : AD12_1UG

Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Dec 22 08:15:08 2017 Quant Results File: AD12_1UG.RES


Quant Method: C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Opdate: Wed Dec 13 05:59:29 2017
Response via: Initial Calibration


DataAcq Meth : 1UG RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	33739 157236 135272	1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	86485 Recovery	0.86		0.00
Target Compounds 4) Chloromethane 29) cis-1,2-dichloroethene 44) Trichloroethene	4.91 10.14 13.47	50 61 130	20048 10619 98674	0.41 0.22 1.31	ppb	Qvalue 96 96 92

Page 274 of 477

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: SVI-06

Lab Order:

C1712063

Tag Number: 171.279

Eldre Corp

Collection Date: 12/13/2017

Project: Lab ID:

C1712063-012A

Matrix: AIR

Analyses	Result	**Limit Qua	il Units	DF	Date Analyzed
FIELD PARAMETERS	FLD				Analyst:
Lab Vaccom In	-5	"Hg		12/18/2017	
tab Vacuum Out	-30		"Hg		12/18/2017
IUG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 4:46:00 AM
1,1-Dichloroethene	< 0.15	0.15	ρρb∀	1	12/22/2017 4:46:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 4:46:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	12/22/2017 4:46:00 AM
Chloromethane	< 0.15	0.15	₽₽₽₽	1	12/22/2017 4:46:00 AM
cis-1,2-Dichtoroethene	0.49	0.15	₽₽b∀	1	12/22/2017 4:46:00 AM
Tetrachloroethylene	0.86	0.15	ppbV	1	12/22/2017 4:46:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ppb∀	1	12/22/2017 4:46:00 AM
Trichtoroethene	2.9	0.60	ppb∀	4 12/23/2017 6:20	
Vinyl chloride	0.22	0.15	ppbV	1	12/22/2017 4:45:00 AM
Suz: Bromoffunmhenzene	93.0	70-130	%REC	1	12/22/2017 4:46:00 AM

Qualifiers:

ND Not Detected at the Limit of Detection

Page 18 of 26

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

[.] Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit J

CLIENT: LaBella Associates, P.C.

Lab Order:

Lab ID:

C1712063

Eldre Corp Project:

C1712063-012A

Date: 10-Jun-18

Client Sample ID: SVI-06

Tag Number: 171.279

Collection Date: 12/13/2017

Matrix: AIR.

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed	
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP	
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/22/2017 4:46:00 AM	
1,1-Dichloroethans	< 0.61	0.61	ug/m3	1	12/22/2017 4:46:00 AM	
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 4:46:00 AM	
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 4:46:00 AM	
Chloromethene	< 0.31	0.31	ug/m3	1	12/22/2017 4:46:00 AM	
cis-1,2-Dichloroethene	1.9	0.59	ug/m3	1	12/22/2017 4:46:00 AM	
Tetrachloroethylene	5.8	1.0	ug/m3	1	12/22/2017 4:46:00 AM	
trans-1,2-Dichlorgethene	< 0.59	0.59	ug/m3	1	12/22/2017 4:46:00 AM	
Trichtoroethene	16	3.2	ug/m3	4	12/23/2017 6:23:00 AM	
Vinyl chloride	0.56	0.38	ug/m3	1	12/22/2017 4:46:00 AM	

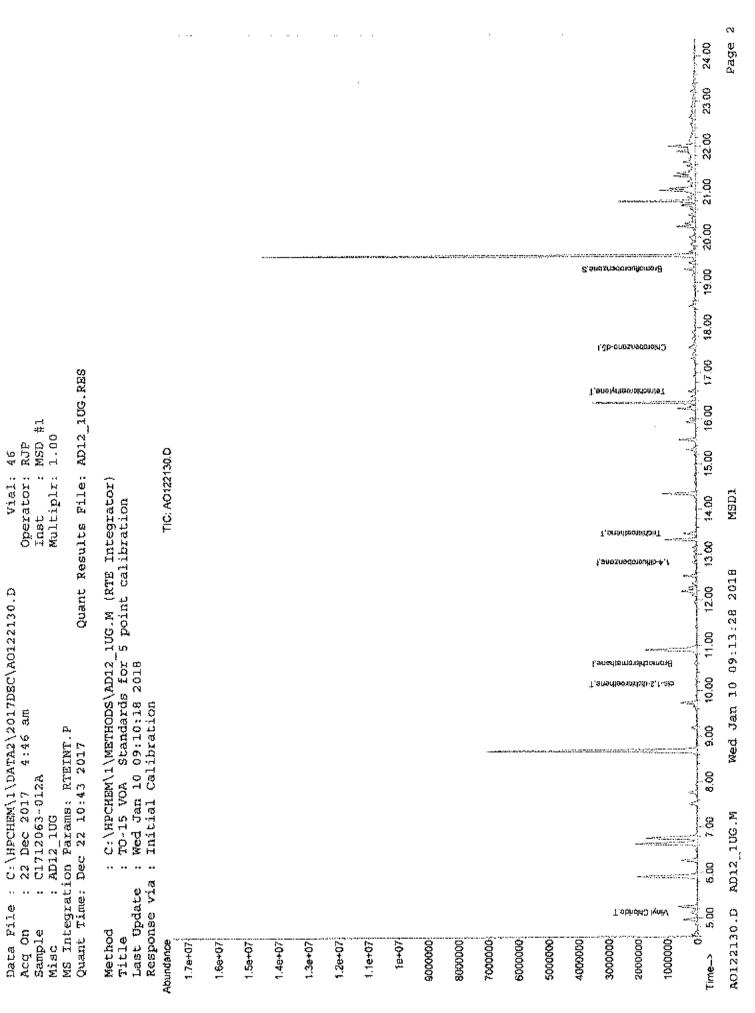
Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- н Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- \mathbf{E} Estimated Value above quantitation range
- ľ Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

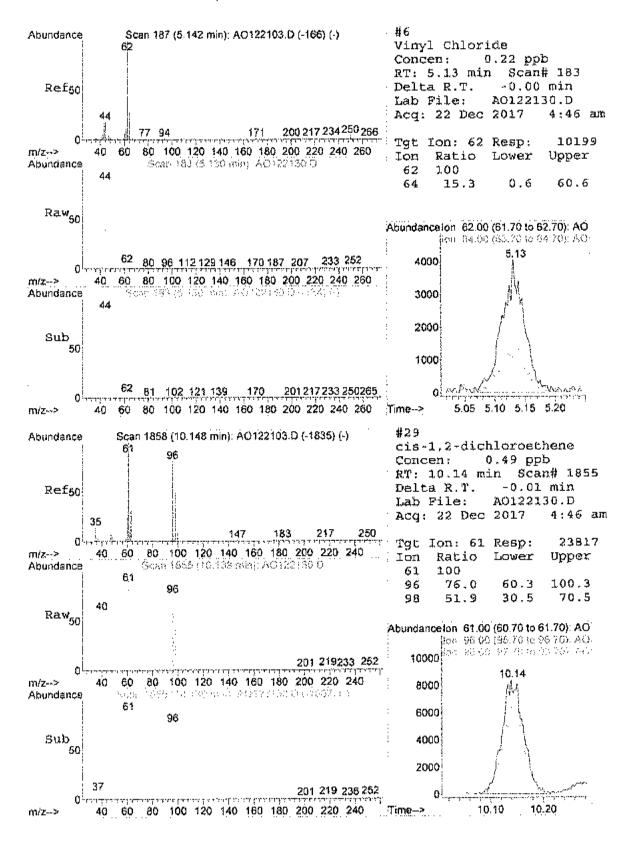
Page 18 of 26

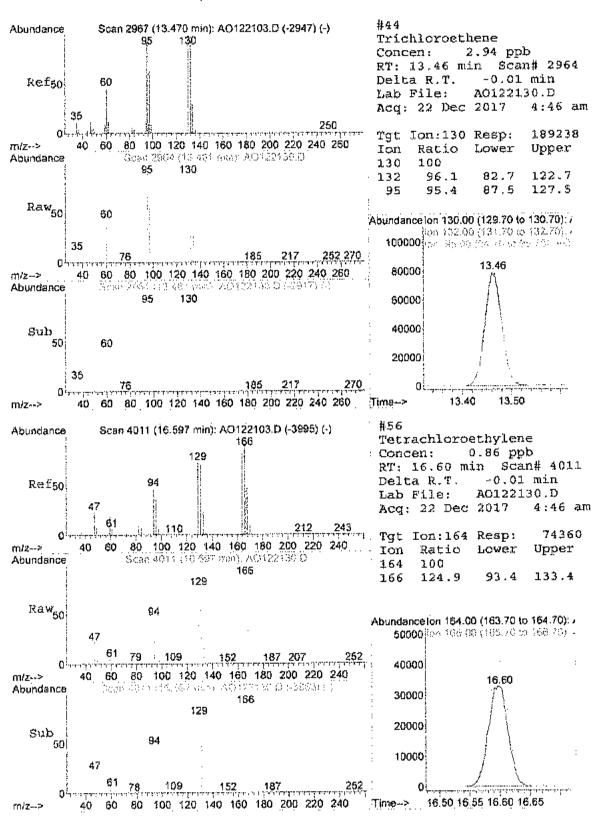
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122130.D Vial: 46 Operator: RJP Acq On : 22 Dec 2017 4:46 am Sample : C1712063-012A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Dec 22 08:07:00 2017 Quant Results File: AD12_1UG.RES


Quant Method : C:\MPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one Ur	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.82 17.56	128 114 117	33745 134485 141572	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	97846 Recovery	0.93		0.00 .00%
Target Compounds 6) Vinyl Chloride 29) cis-1,2-dichloroethene 44) Trichloroethene 56) Tetrachloroethylene	5.13 10.14 13.46 16.60	62 61 130 164	10199 23817 189238 74360	0.22 0.49 2.94 0.86	ppb	

Page 280 of 477

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122235.D

Acq On : 23 Dec 2017 6:23 am

Vial: 23 Operator: RJP Inst : MSD #1

Sample : C1712063-012A 4X

Inst : MSD : Multiplr: 1.00

Misc : AD12_1UG

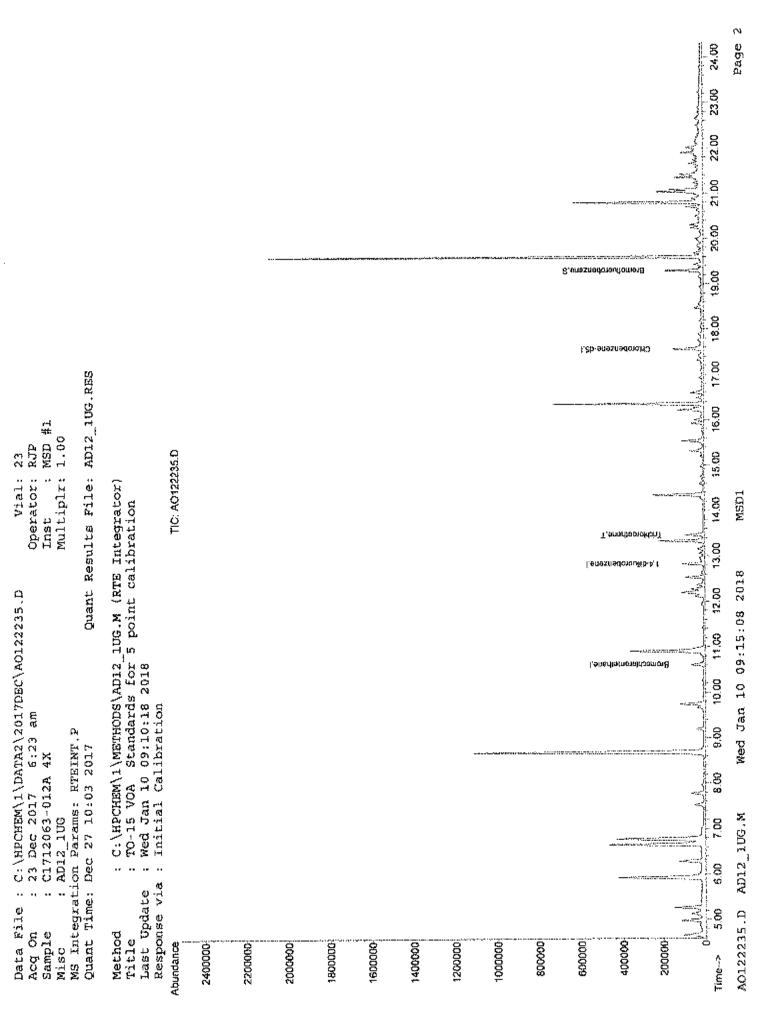
MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:46:48 2017 Quant Results File: AD12_10G.RES

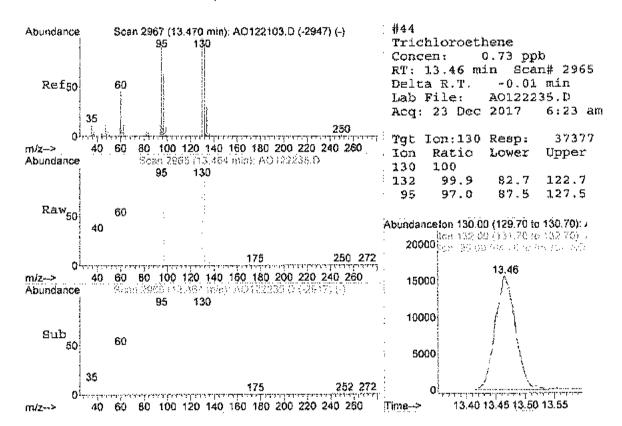
Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)

Fitle : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017


Response via : Initial Calibration

DataAcg Meth : 1UG RUN


Internal Standards	R.T.	QIon	Response	Conc Un	its I	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56	128 114 117	26773 107259 102726	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	62833 Recover	0.83 Y =	ppb 83.0	0.00
Target Compounds 44) Trichloroethene	13.46	130	37377	0.73	ppb	Qvalue 93

AND TANK AND

nender mare better 8

Page 284 of 477

Date: 10-Jan-18

....

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-013A

Client Sample ID: IAQ-06

Tag Number: 1193,1165

Collection Date: 12/13/2017

Matrix: AIR

A b	73 14				
Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Łab Vacuum In	-6		"Hg		12/18/2017
Lab Vacuum Out	-30		"Hg		12/18/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	í	12/21/2017 10:34:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 10:34:00 PM
1.1-Dichtgroethene	< 0.15	0.15	ρ₽bV	1	12/21/2017 10:34:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	12/21/2017 10:34:00 PM
Chloromethane	0.36	0.15	ppbV	1	12/21/2017 10:34:00 PM
cis-1,2-Dichloroethens	0.30	0.15	ppbV	1	12/21/2017 10:34:00 PM
Tetrachloroethylene	< 0.15	0.15	pρbV	1	12/21/2017 10:34:00 PM
trans-1,2-Dichloroethene	0.11	0.15 J	ppb∀	1	12/21/2017 10:34:00 PM
Trichloroethene	1.3	0.040	ppbV	1	12/21/2017 10:34:00 PM
Vinyl chloride	< 0.040	0.040	Vdqq	1	12/21/2017 10:34:00 PM
Sur: Bromnfluorobenzene	87.0	70-130	%REC	1	12/21/2017 10:34:00 PM

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank.

H Holding times for preparation or analysis exceeded

JN Non-contine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 19 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Eldre Corp

Project: Lab ID:

C1712063-013A

Client Sample ID: IAQ-06

Tag Number: 1193.1165

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qua	I Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1.1-Trichforoethans	< 0.82	0.82	ug/m3	1	12/21/2017 10:34:00 PM
1,1-Oichloroethane	< 0.61	0.61	ug/m3	†	12/21/2017 10:34:00 PM
1,1-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 10:34:00 PM
Chloroethane	< 0.40	0.40	սց/m3	1	12/21/2017 10:34:00 PM
Chloromethane	0.74	0.31	ug/m3	†	12/21/2017 10:34:00 PM
cis-1,2-Dichlaroethene	1.2	0.59	աց/m3	1	12/21/2017 10:34:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	12/21/2017 10:34:00 PM
trans-1,2-Dichloroethene	0.44	0.59 J	ug/m3	1	12/21/2017 10:34:00 PM
Trichlorgethene	7.1	0.21	ug/m3	1	12/21/2017 10:34:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 10:34:00 PM

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Spike Recovery outside accepted recovery limits

JN Non-routine analyte. Quantitation estimated.

Results reported are not blank corrected

E Estimated Value above quantitation range

1 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

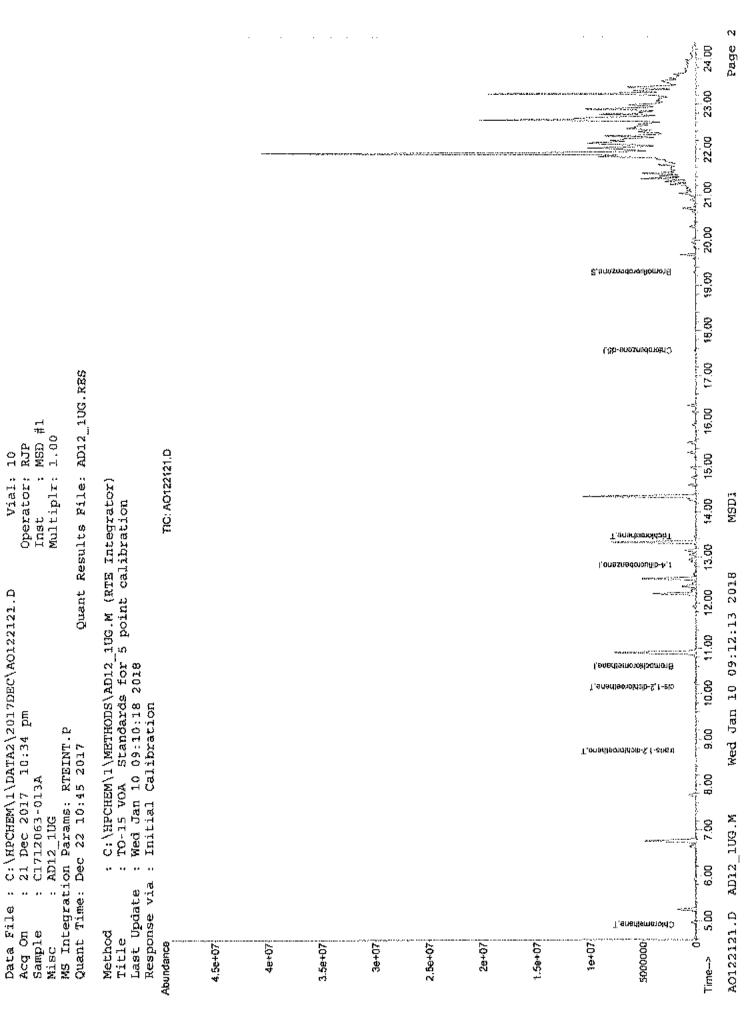
Page 19 of 26

Quantitation Report (QT Reviewed)

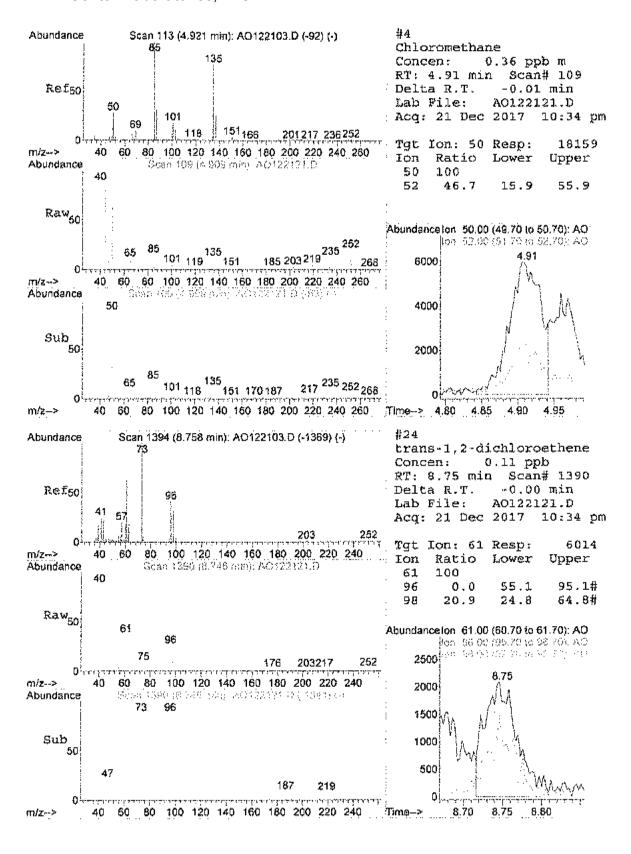
MS Integration Params: RTEINT.P

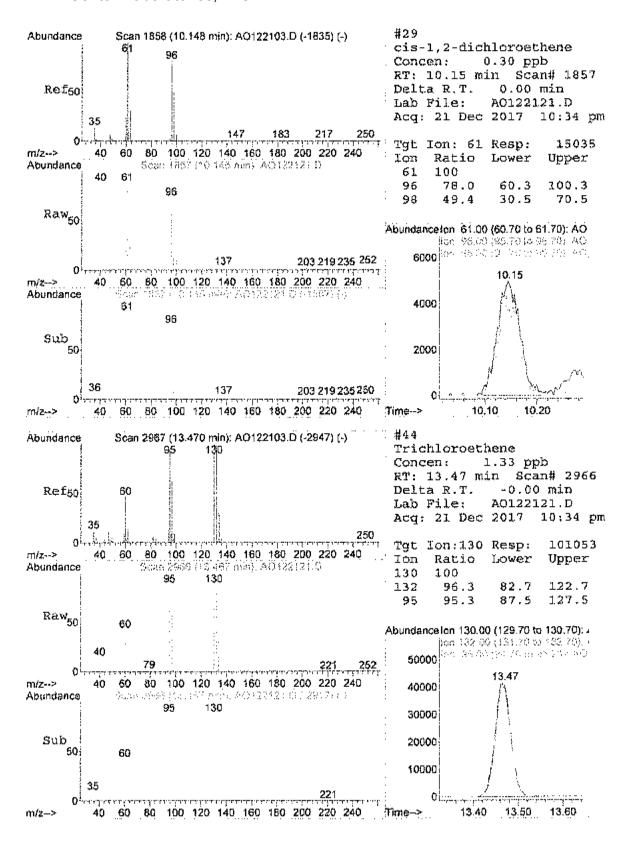
Quant Time: Dec 22 08:06:51 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration


DataAcq Meth : 1UG_RUN


Internal Standards	R.T.	QIon	Response (cone U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56	128 114 117	35217 158400 134892	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	86919 Recovery	0.87	ppb 87.	
Target Compounds						Qvalue
4) Chloromethane	4.91	50	18159m 🗚	D.36	ppb	
24) trans-1,2-dichloroethene	∌ 8.75	61	6014	0.11	ppb	# 31
29) cis-1,2-dichloroethene	10.15	61	15035	0.30	ppb	98
44) Trichloroethene	13.47	130	101053	1.33	ppb	91

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122121.D AD12 1UG.M Wed Jan 10 09:12:12 2018 MSD1

Page 289 of 477

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-014A

Date: 10-Jun-18

Client Sample ID: 1AQ-07

Tag Number: 1289.337

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qua	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FL	D.			Analyst:
Lab Vacuum In	-8			"Hg		12/21/2017
Lab Vacuum Out	-30			"Hg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15		₽₽₽V	1	12/21/2017 ±1:17:00 PM
1,1-Dichloroethane	< 0.15	0.15		ppbV	1	12/21/2017 11:17:00 PM
1,1-Dichloroethene	< 0.15	0.15		ppbV	1	12/21/2017 11:17:00 PM
Chloroethane	< 0.15	0.15		ppbV	1	12/21/2017 11:17:00 PM
Chloromethane	0.42	0.15		ppbV	1	12/21/2017 11:17:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15		Vđqq	1	12/21/2017 11:17:00 PM
Tetrachloroethylene	0.24	0.15		ppbV	1	12/21/2017 11:17:00 PM
trans-1,2-Dichloroethene	0.14	0.15	J	Vdqq	1	12/21/2017 11:17:00 PM
Trichloroethene	0.10	0.040		ppbV	1	12/21/2017 11:17:00 PM
Vinyl chloride	< 0.040	0.040		рръ∨	1	12/21/2017 11:17:00 PM
Surr: Bromofluorobenzene	82.0	70-130		%REC	1	12/21/2017 11:17:00 PM

Chara l	liffers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 20 of 26

Date: 10-Jun-18

CLIENT:

LaBella Associates, P.C.

Client Sample ID: IAQ-07

Lab Order:

Tag Number: 1289.337

Project:

C1712063

Eldre Corp

Collection Date: 12/13/2017

Lab ID:

C1712063-014A

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ս ց/m 3	1	12/21/2017 11:17:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 11:17:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:17:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 11:17:00 PM
Chloromethane	0.87	0.31	ug/m3	1	12/21/2017 11:17:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:17:00 PM
Tetrachloroethylene	1.6	1.0	ug/m3	1	12/21/2017 11:17:00 PM
trans-1,2-Dichloroethene	0.55	0.59 J	ug/m3	1	12/21/2017 11:17:00 PM
Trichloroethene	0.54	0.21	ug/mt3	1	12/21/2017 11:17:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 11:17:00 PM

Qualifiers:

** Quantitation Limit

B Analyte detected in the associated Method Blank

14 Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

В Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 20 of 26

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122122.D

Acq On : 21 Dec 2017 11:17 pm

Vial: 11 Operator: RJP Inst : MSD #1

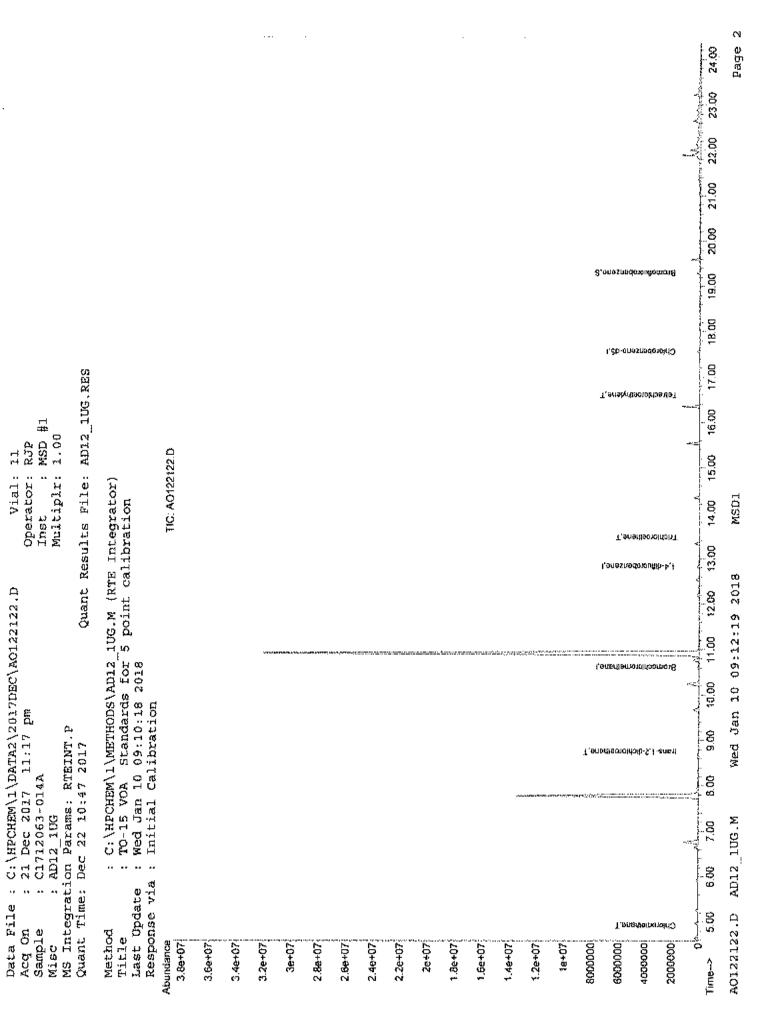
Sample : C1712063-014A Misc : AD12_1UG

Multiplr: 1.00

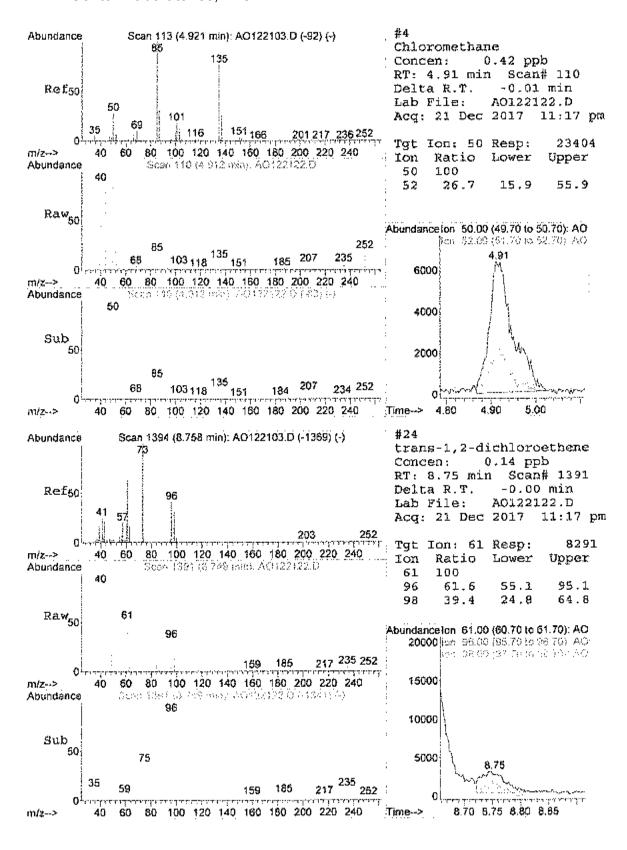
MS Integration Params: RTEINT.P

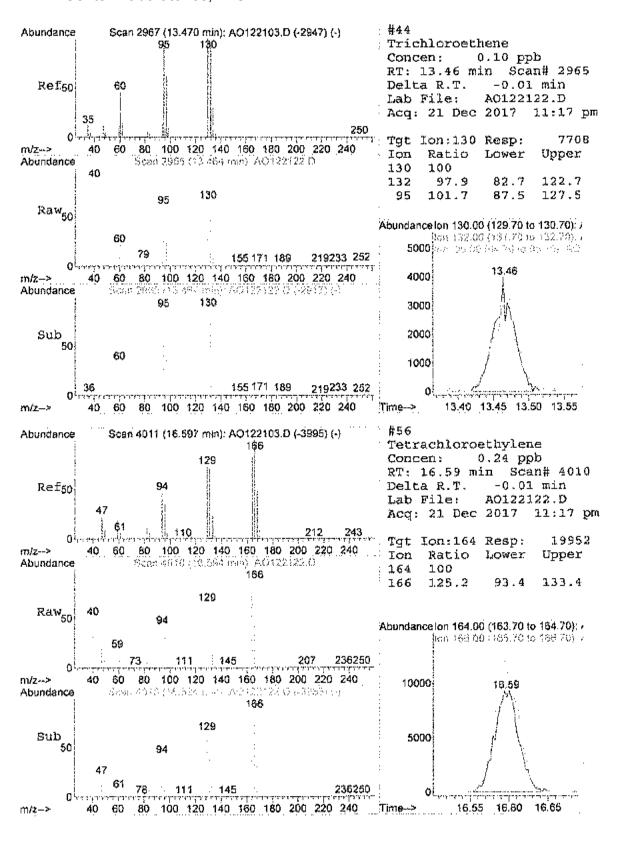
Quant Time: Dec 22 08:06:52 2017

Quant Results File: AD12 1UG.RES


Quant Method : C:\MPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIOD	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56	128 114 117	38374 154467 135308	1.00 1.00	ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene	19.29	95	81835	0.82		
Spiked Amount 1.000	Range 70	- 130	Recover	Y ≅	82.	.00%
Target Compounds						Qvalue
4) Chloromethane	4.91	50	23404	0.42	ppp	84
24) trans-1,2-dichloroethene	8.75	61	8291	0.14	dqq	87
44) Trichloroethene	13.46	130	7708	0.10	ppb	95
56) Tetrachloroethylene	16.59	164	19952	0.24	dqq	89


TOADTADE


ž

andan manasanas

Page 295 of 477

MSD1

THE CONTROL OF THE PROPERTY OF LaBella Associates, P.C.

CLIENT: Lab Order:

C1712063

Project:

Lab ID:

Eldre Corp

C1712063-015A

Date: 10-Jan-18

Client Sample ID: SVI-08

Tag Number: 562,403

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Anaiyst:
Lab Vacuum In	-5		"Hig		12/21/2017
Lab Vacuum Out	-30		"Hg		12/21/2017
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vøgq	1	12/22/2017 5:27:00 AM
1,1,2,2-Tetrachtoroethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	Vøqq	1	12/22/2017 5:27:00 AM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AN
1,1-Dichloroethene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	₽₽bV	1	12/22/2017 5:27:00 AM
1,2,4-Trimethylbenzene	0.40	0.15	ppb∨	1	12/22/2017 5:27:00 AM
1,2-Dibromoethane	< 0.15	0.15	Vđqq	1	12/22/2017 5:27:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1.2-Dichloropropane	< 0.15	0.15	₽₽bV	1	12/22/2017 5:27:00 AM
1,3,5-Trimethylbenzene	0.25	0.15	Vdqq	1	12/22/2017 5:27:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	Vđạq	1	12/22/2017 5:27:00 AM
1,4-Dłoxane	0.16	0.30	J ppbV	1	12/22/2017 5:27:00 AM
2,2,4-trimethylpentans	< 0.15	0.15	Vđqq	1	12/22/2017 5:27:00 AM
4-ethyltoluene	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Acetone	33	6.0	Vdqq	20	12/23/2017 7:00:00 AM
Allyl chloride	< 0.15	0.15	ppb∀	1	12/22/2017 5:27:00 AM
Benzene	0.23	0.15	ppbV	1	12/22/2017 5:27:00 AM
Berizyl chloride	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Bromodichloromethane	< 0.15	0.15	ppb∨	1	12/22/2017 5:27:00 AM
Bromoform	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Bromomethane	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Çarbon disulfide	0.33	0.15	₽₽bV	1	12/22/2017 5:27:00 AM
Carbon tetrachloride	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Chlorobenzana	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Chloroform	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Chloromethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
cis-1,2-Dichforoethene	< 0.16	0.15	ppbV	1	12/22/2017 5:27:00 AM
cis-1,3-Dichlorapropene	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM
Cyclohexane	0.11	0.15	J ppbV	1	12/22/2017 5:27:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	12/22/2017 5:27:00 AM
Ethyl acetate	< 0.15	0.15	Vdqq	1	12/22/2017 5:27:00 AM

- 13 Analyte derected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- £ Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 21 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project: Eldre Corp

Lab ID:

C1712063-015A

Client Sample 1D: SVI-08

Tag Number: 562,403 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		•	Analyst: RJP
Ethylbenzene	< 0.15	0.15		PpbV	1	12/22/2017 5:27:00 AM
Frean 11	0.34	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Freon 113	< 0.15	0.15		ppbV	1	12/22/2017 5:27:00 AM
Freen 114	< 0.15	0.15		ppbV	1	12/22/2017 5:27:00 AM
Freon 12	0.49	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Heptane	0.59	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Hexachtoro-1,3-butadiene	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Нехале	0.24	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Isopropyl alcohol	21	3.0		Vdqq	20	12/23/2017 7:00:00 AM
m&p-Xyfene	0.14	0.30	Ł	₽₽bV	1	12/22/2017 5:27:00 AM
Methyl Butyl Kelone	< 0.30	0.30		∨dqq	1	12/22/2017 5:27:00 AM
Methyl Ethyl Ketone	0.73	0.30		ppbV	1	12/22/2017 5:27:00 AM
Methyl Isobutyl Ketone	0.21	0.30	J	Vdqq	1	12/22/2017 5:27:00 AM
Methyl teri-butyl ether	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Methylene chloride	2.2	0.15		ppbV	1	12/22/2017 5:27:00 AM
o-Xylene	< 0.15	0.15		₽₽bV	1	12/22/2017 5:27:00 AM
Propylene	< 0.15	0.15		₽₽bV	1	12/22/2017 5:27:00 AM
Styrene	< 0.15	0.15		₽₽bV	1	12/22/2017 5:27:00 AM
Tetrachloroethylene	< 0.45	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Tetrehydrofuran	< 0.35	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Toluene	0.47	0.15		Vdqq	1	12/22/2017 5:27:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Trichloroethene	1.6	0.15		ppbV	1	12/22/2017 5:27:00 AM
Vinyl acetate	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Vinyl Bromide	< 0.15	0.15		Vdqq	1	12/22/2017 5:27:00 AM
Vinyl chloride	< 0.15	0.15		√dqq	1	12/22/2017 5:27:00 AM
Surr: Bromofluorobenzene	91.0	70-130		%REC	1	12/22/2017 5:27:00 AM

Qualifiers:

Quantitation Limit

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Ε Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-015A

Client Sample 1D: SVI-08

Tag Number: 562.403

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit	Qual L	Jnits	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	u	g/m3	1	12/22/2017 5:27:00 AM
1,1,2,2-Tetrachtoroethane	< 1.0	1,0	u	g/m3	1	12/22/2017 5:27:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	u	g/m3	1	12/22/2017 5:27:00 AM
1,1-Dichloroethane	< 0.61	0.61	u	g/m3	1	12/22/2017 5:27:00 AM
1,1-Dichloroethene	< 0.59	0.59	u	g/m3	1	12/22/2017 5:27:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	u	g/m3	1	12/22/2017 5:27:00 AM
1,2,4-Trimethylbenzene	2.0	0.74	u	g/m3	1	12/22/2017 5:27:00 AM
1,2-Dibromoethane	< 1,2	1.2	Li	g/m3	1	12/22/2017 5:27:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	u	g/m3	1	12/22/2017 5:27:00 AM
1,2-Dichtoroethane	< 0.61	0.61	L	g/m3	1	12/22/2017 5:27:00 AM
1,2-Dichtoropropana	< 0.69	0.69	u	g/m3	1	12/22/2017 5:27:00 AM
1,3,5-Trimethylbenzese	1.2	0,74	Ц	g/m 3	1	12/22/2017 5:27:00 AM
1,3-butadiene	< 0.33	0.33	и	g/m3	1	12/22/2017 5:27:00 AM
1,3-Dichlorobenzese	< 0.90	0.90	Ц	g/m3	1	12/22/2017 5:27:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	Ц	g/m3	1	12/22/2017 5:27:00 AM
1,4-Dioxane	0.58	1.1	J u	g/m3	1	12/22/2017 5:27:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	и	g/m3	1	12/22/2017 5:27:00 AM
4-ethyltoluene	< 0.74	0.74	u	g/m3	1	12/22/2017 5:27:00 AM
Acetone	79	14	и	g/m3	20	12/23/2017 7:00:00 AM
Allyl chloride	< 0.47	0.47	u	g/m3	1	12/22/2017 5:27:00 AM
Веплеле	0.73	0.48	ш	g/m3	1	12/22/2017 5:27:00 AM
Benzyl chloride	< 0.86	0.86	ų	g/m3	1	12/22/2017 5:27:00 AM
Bromodichloromethane	< 1.0	1.0	บ	g/m3	1	12/22/2017 5:27;00 AM
Bromoform	< 1.6	1.8	u	g/m3	1	12/22/2017 5:27:00 AM
Bromomethane	< 0.58	0.58	u	g/m3	1	12/22/2017 5:27:00 AM
Carbon disulfide	1.0	0.47	u	g/m3	1	12/22/2017 5:27:00 AM
Carbon tetrachloride	< 0.94	0.94	u	g/m3	1	12/22/2017 5:27:00 AM
Chlorobenzene	< 0.69	0.69	ប	g/m3	1	12/22/2017 5:27:00 AM
Chloroethane	< 0.40	0.40	u	g/m3	1	12/22/2017 5:27:00 AM
Chloroform	< 0.73	0.73	ų	g/m3	1	12/22/2017 5:27:00 AM
Chloromethane	< 0.31	0.31	u	g/m3	1	12/22/2017 5:27:00 AM
cis-1.2-Dichloroethene	< 0.59	0.59	υ	g/m3	1	12/22/2017 5:27:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		g/m3	t	12/22/2017 5:27:00 AM
Cyclohexane	0.38	0.52	Ju	g/m3	1	12/22/2017 5:27:00 AM
Dibromochloromethase	< 1.3	1.3	น	g/m3	1	12/22/2017 5:27:00 AM
Ethyl acetate	< 0.54	0.54		g/m3	1	12/22/2017 5:27:00 AM
Ethylbenzene	< 0.65	0.65		g/m3	1	12/22/2017 5:27:00 AM
Freen 11	1.9	0.84		g/m3	1	12/22/2017 5:27:00 AM
Freon 113	< 1.1	1.1		g/m3	1	12/22/2017 5:27:00 AM
Freen 114	< 1.0	1.0		g/m3	1	12/22/2017 5:27:00 AM

Qualiflers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated. Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 1. Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 21 of 26

Date: 10-Jan-18

LaBella Associates, P.C. CLIENT:

Lab Order:

Client Sample ID: SVI-08

C1712063 Project: Eldre Corp

Tag Number: 562.403 Collection Date: 12/13/2017

Lab ID:

C1712063-015A

Matrix: AlR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
tUG/M3 BY METHOD TO15	TQ-15				Analyst: RJP	
Freon 12	2.4	0.74		ug/m3	1	12/22/2017 5:27:00 AM
Heptane	2.4	0.61		ug/m3	1	12/22/2017 5:27:00 AM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/22/2017 5:27:00 AM
Hexane	0.85	0.53		ug/m3	1	12/22/2017 5:27:00 AM
Isopropyl alcohol	53	7.4		ug/m3	20	12/23/2017 7:00:00 AM
m&p-Xytene	0.61	1.3	J	ug/m3	1	12/22/2017 5:27:00 AM
Methyl Butyl Ketone	< 1,2	1.2		ug/m3	1	12/22/2017 5:27:00 AM
Methyl Ethyl Ketone	2.2	0.88		ug/m3	1	12/22/2017 5:27:00 AM
Methyl Isobutyl Ketone	0.86	1.2	J	ug/m3	1	12/22/2017 5:27:00 AM
Methyl tert-bulyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 5:27:00 AM
Methylene chloride	7.5	0.52		υg/m3	1	12/22/2017 5:27:00 AM
o-Xylene	< 0.65	0.65		υ ց/ m3	1	12/22/2017 5:27:00 AM
Propylene	< 0.26	0.26		ug/m3	1	12/22/2017 5:27:00 AM
Styrene	< 0.64	0.64		ug/m3	1	12/22/2017 5:27:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	12/22/2017 5:27:00 AM
Tetrahydrofuran	< 0.44	0,44		սց/m3	1	12/22/2017 5:27:00 AM
Toluene	1.8	0.57		ug/m3	1	12/22/2017 5:27:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 5:27:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 5:27:00 AM
Trichloroethene	8.7	0.81		ug/m3	1	12/22/2017 5:27:00 AM
Vinyl acetate	< 0.53	0.53		u g/m 3	1	12/22/2017 5:27:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 5:27:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	12/22/2017 5:27:00 AM

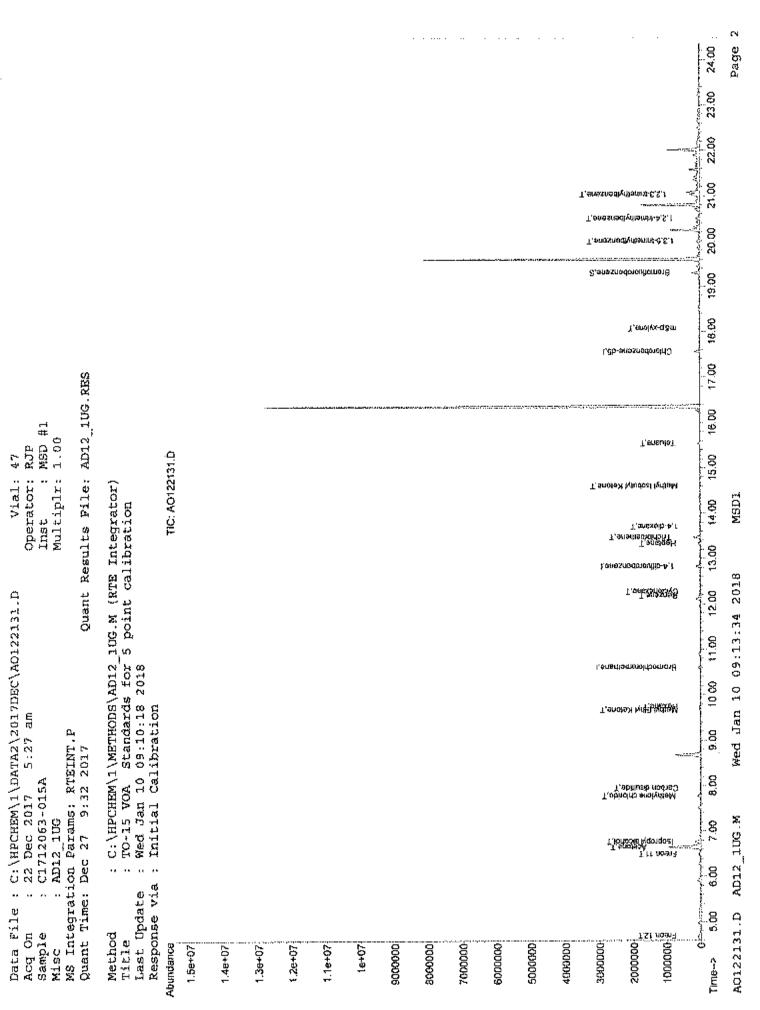
Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 22 of 26

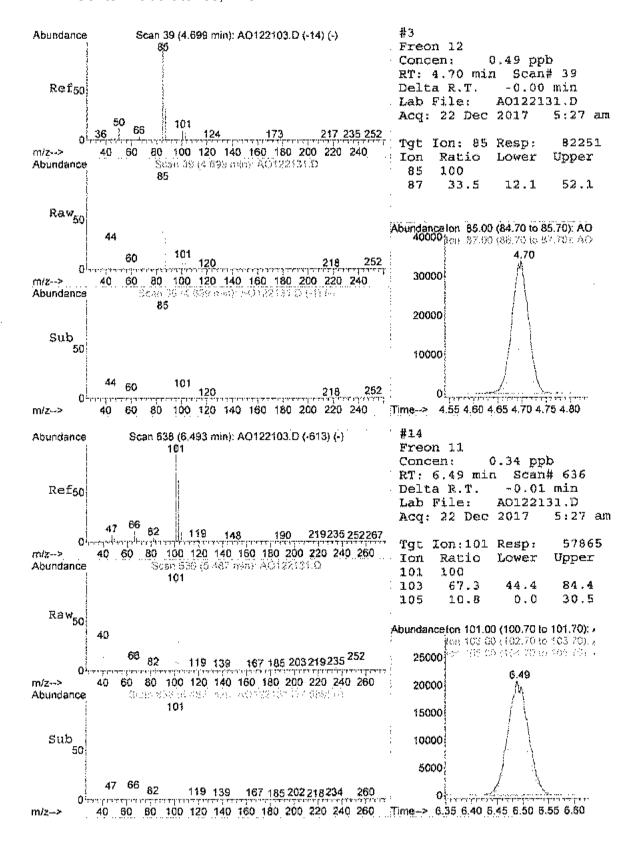
Quantitation Report (QT Reviewed)

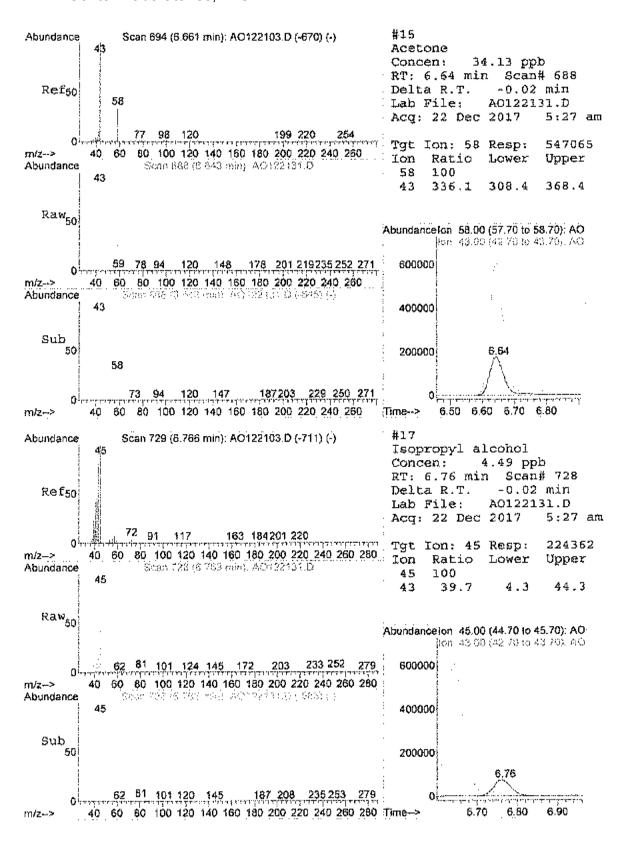
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122131.D Vial: 47 Acq On : 22 Dec 2017 5:27 am Operator: RJP Sample : C1712063-015A Misc : AD12_1UG Inst : MSD #1 Multiplx: 1.00

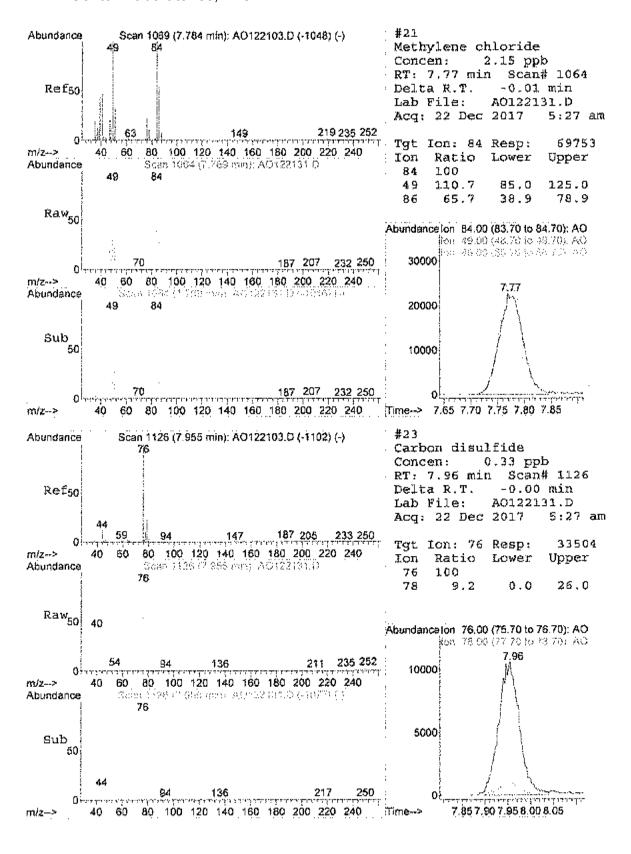

MS Integration Params: RTEINT.P

Quant Time: Dec 22 08:07:01 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

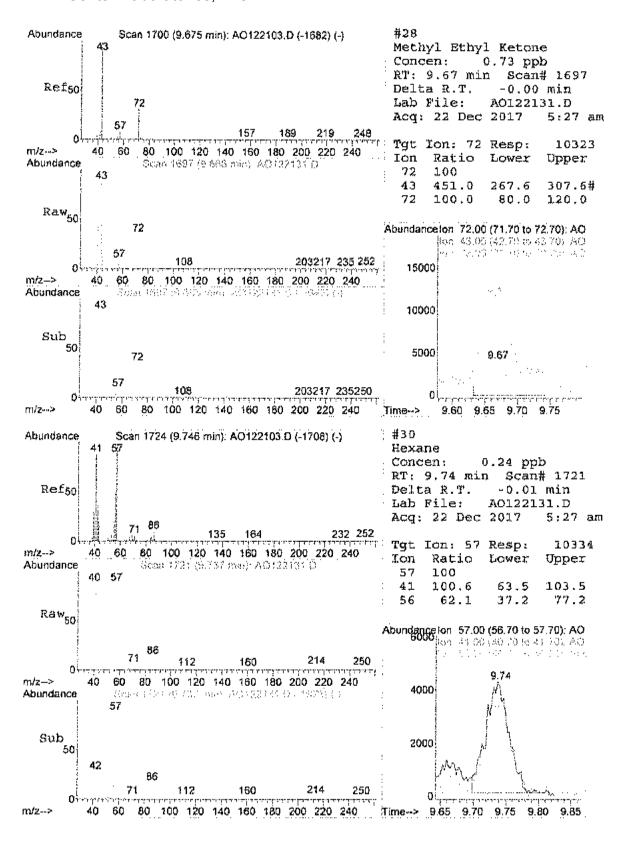

DataAcq Meth : 1UG_RUN

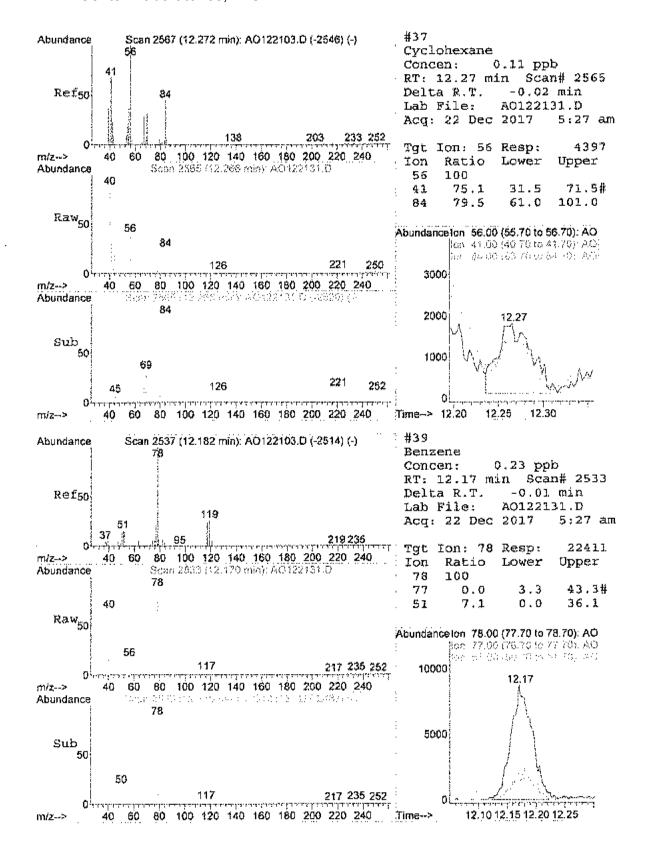

Internal Standards	R.T.	QIon	Response	Conc Uni	ts D	ev(Min)
1) Bromochloromethane	10.59	128	31636	1.00 p	dq	-0.01
35) 1,4-difluorobenzene	1.2.83	114				
50) Chlorobenzene-d5		117				
System Monitoring Compounds						
65) Bromofluorobenzene	19.29	95	79835	0.91 p	ďqq	0.00
Spiked Amount 1.000			Recove	ery =	91.0	0,8
Target Compounds						Qvalue
3) Freon 12	4.70	85	82251	0.49 p	dqo	98
14) Freon 11	6.49	101	57865	0.34	ρb	97
15) Acetone	6.64	58	547065	34.13 g	dga	99
17) Isopropyl alcohol	6.76	45	224362	4.49 r	dqc	69
21) Methylene chloride	7.77	84	69753	2.15 [dqq	93
23) Carbon disulfide	7.96		33504			90
28) Methyl Ethyl Ketone	9.67	72	10323	0.73 p	dqq	# 36
30) Hexane	9.74		10334	0.24 g	dqo	86
37) Cyclohexane	12,27	5€	4397	0.11 p	. 44	# B6
39) Benzene	12.17	78	22411	0.23 g		# 63
41) 1,4-dioxane	13.70	88	3311	0.16 բ	dac	# 67
43) Heptane	13.33	43		_		84
44) Trichloroethene	13.47	130				92
51) Toluene	15.54		35781			88
52) Methyl Isobutyl Ketone	14.59	43	11830			81.
59) m&p-xylene	18.06	97		-		93
70) 1,3,5-trimethylbenzene	20.00		46773			73
71) 1,2,4-trimethylbenzene	20.49	105	57668			97
75) 1,2,3-trimethylbenzene	21.02	105	38686	0.23 g	dge	97

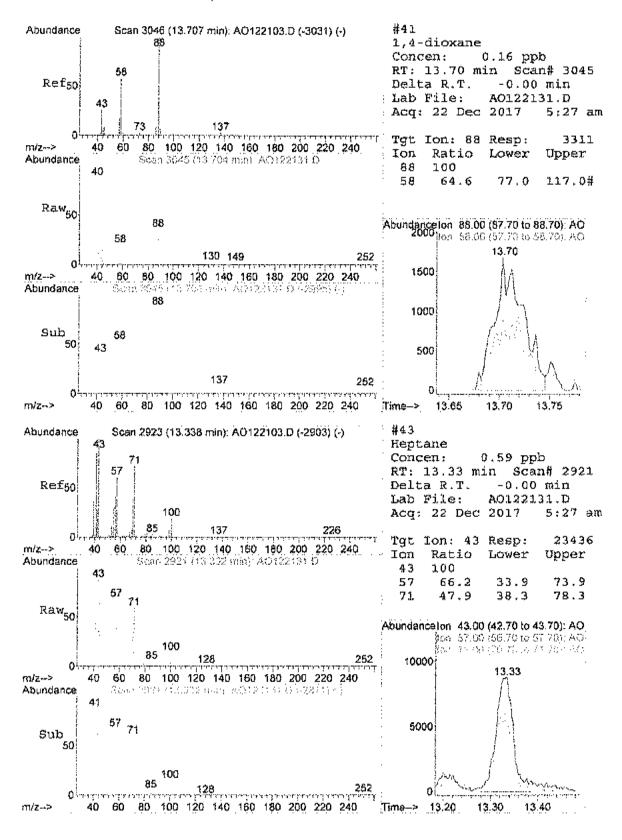


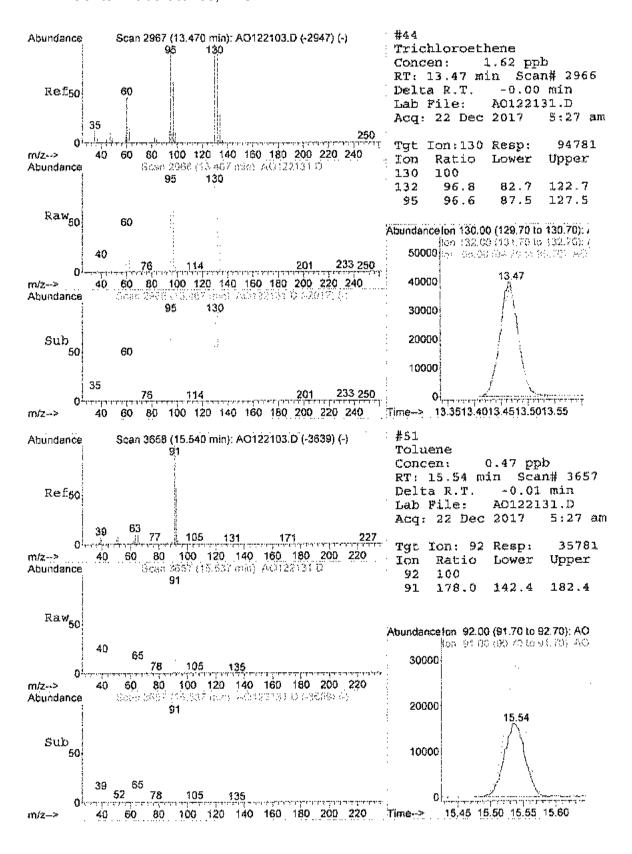
Page 303 of 477

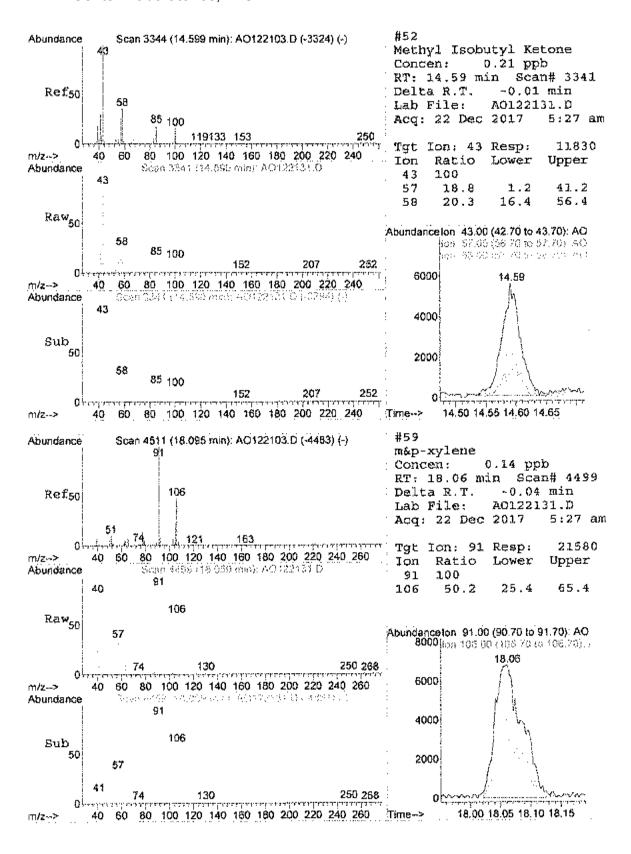
1111111

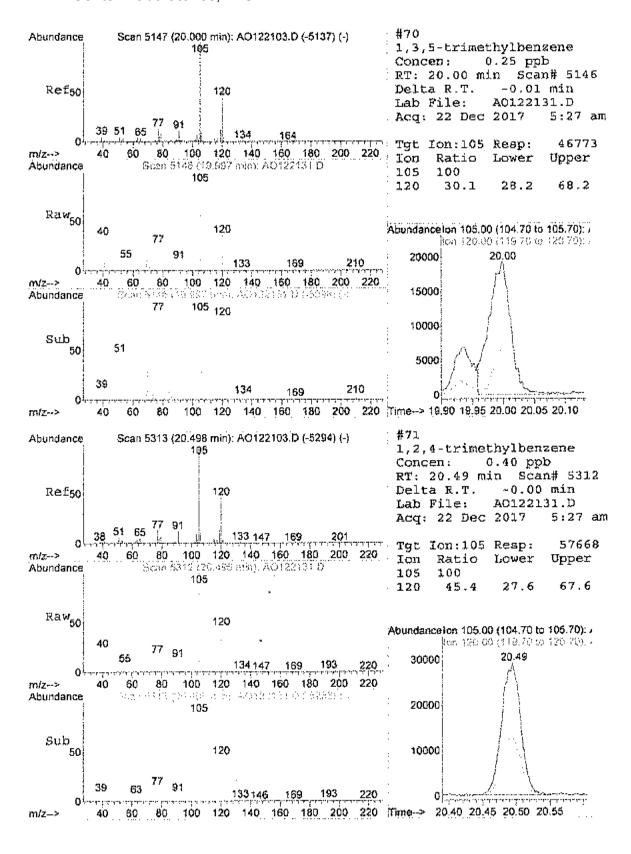


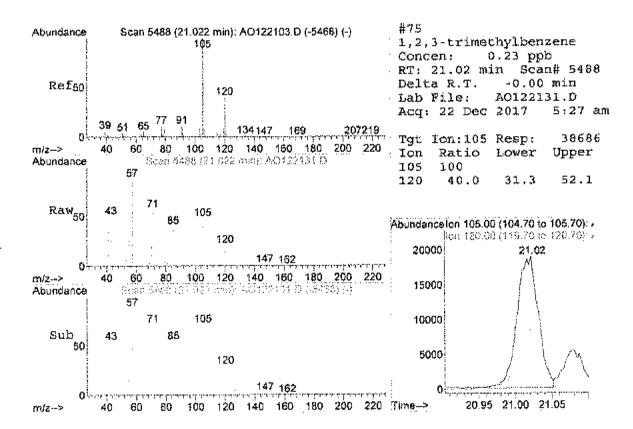





MSD1


Page 5





Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122236.D

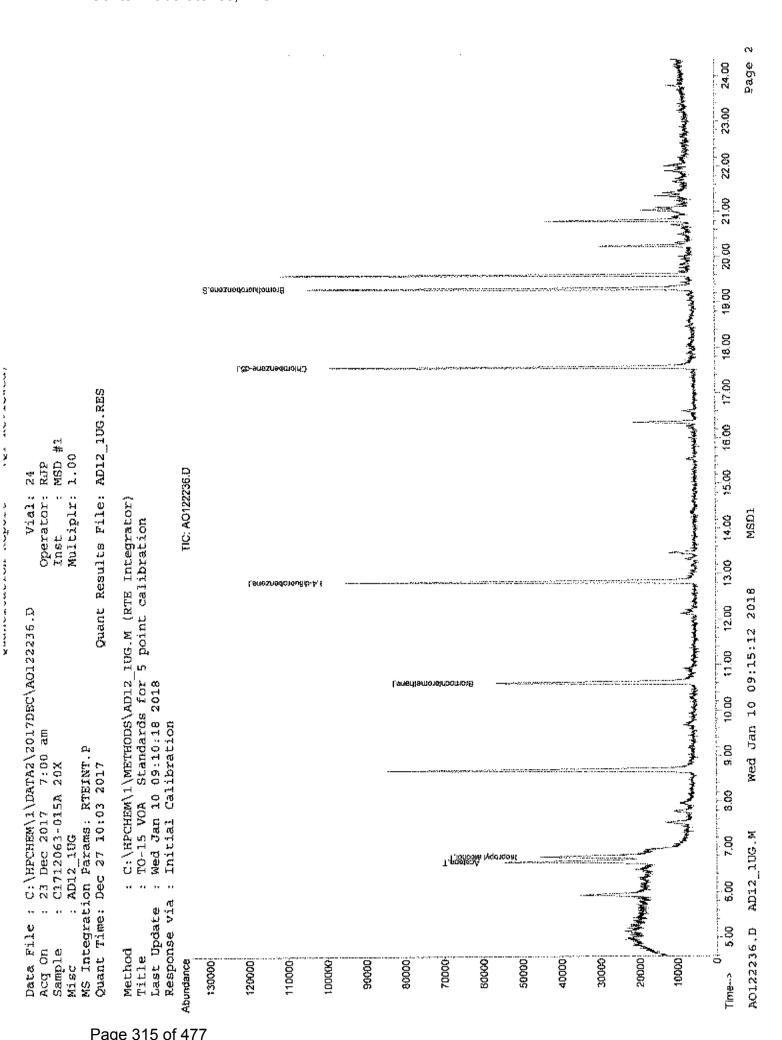
Acq On : 23 Dec 2017 7:00 am

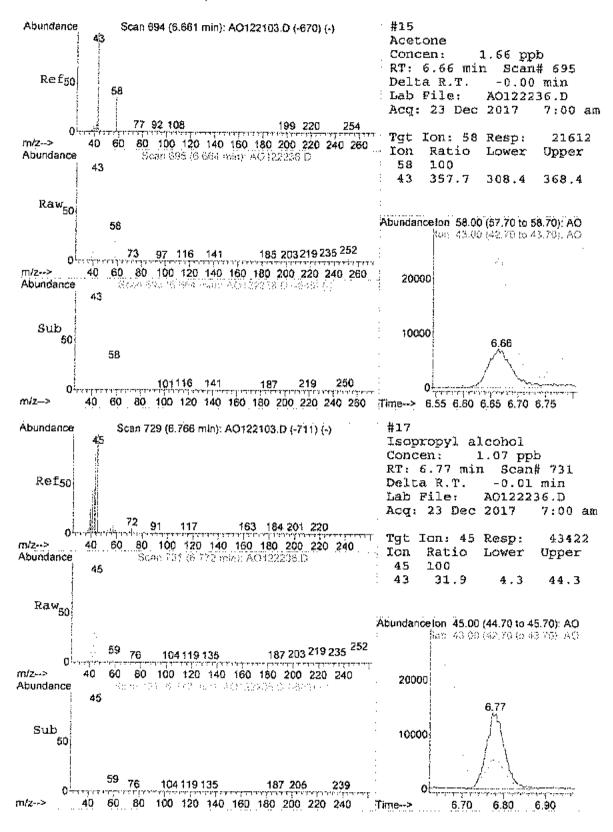
Vial: 24 Operator: RJP Inst : MSD #1

Sample : C1712063-015A 20X Misc : AD12_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 27 09:46:49 2017


Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration
DataAcq Meth : lUG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56		25762 95063 74285	1,00	ppb dqq dqq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 ~ 130	40465 Recovery		ppb 74	0.00 .00%
Target Compounds						Qvalue
15) Acetone	6.66	58	21612	1.66	dqq	91.
17) Isopropyl alcohol	6.77	45	43422	1.07	ppb	85

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122236.D AD12_1UG.M Wed Jan 10 09:15:11 2018 MSD1

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-016A

Client Sample ID: IAQ-08
Tag Number: 539.379
Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS	FLD				Analyst:
Lab Vacuum In	-5		"Hg		12/21/2017
Lab Vacuum Out	-30		"Hg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppb∨	1	12/21/2017 11:59:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppb∨	1	12/21/2017 11:59:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppb∀	1	12/21/2017 11:59:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1,1-Dichlorgethene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15	ppb∨	1	12/21/2017 11:59:00 PM
1,2,4-Trimethy/benzene	< 0.16	0.15	Vďqq	1	12/21/2017 11:59:00 PM
1,2-Dibromoethane	< 0.15	0.15	PPbV	1	12/21/2017 11:59:00 PM
1.2-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1.2-Dichloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
1.3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
1.4-Dioxane	< 0.30	0.30	Vdqq	1	12/21/2017 11:59:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
4-ethyltoluene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 ₽M
Acetone	2.5	1.5	Vdqq	5	12/23/2017 12:40:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
Benzene	0.30	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
Bromodichloromethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Bromoform	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Sromomelhane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Carbon disulfide	< Q.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Carbon tetrachlorida	0.070	0.040	ppbV	1	12/21/2017 11:69:00 PM
Chlorobeazene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PN
Chloroform	< 0.15	D.15	ppbV	1	12/21/2017 11:59:00 PM
Chloromethane	0.37	0.15	ppbV	1	12/21/2017 11:59:00 PM
cis-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	12/21/2017 11:59:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PM
Cyclohexane	< 0.15	0.15	νσαα	1	12/21/2017 11:59:00 PM
Dibromochloromethane	< 0.15	0.15	∨ة موظ	1	12/21/2017 11:59:00 PM
Ethyl acetale	< 0.15	0.15	Vdqq	1	12/21/2017 11:59:00 PN

Qualifiers:

- ** Quantitation Limit
- B. Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 23 of 26

Date: 10~Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

V1112003

Lab ID:

Eldre Corp C1712063-016A Client Sample 1D: IAQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	Dk	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		₽₽bV	1	12/21/2017 11:59:00 PM
Freon 11	D.57	0.15		√dqq	1	12/21/2017 11:59:00 PM
Freon 113	< 0.15	0.15		₽₽bV	1	12/21/2017 11:59:00 PM
Freon 114	< 0.15	0.15		Vdqq	1	12/21/2017 11:59:00 PM
Frean 12	0.47	0.15		₽₽bV	1	12/21/2017 11:59:00 PM
Heptane	0.13	0.15	J	ppb∨	1	12/21/2017 11:59:00 PM
Hexachtoro-1,3-butadiene	< 0.15	0.15		ppb∨	7	12/21/2017 11:59:00 PM
Hexane	0.21	0.15		ppb∨	í	12/21/2017 11:59:00 PM
Isopropyl alcohol	1.4	0.15		ppb∨	1	12/21/2017 11:59:00 PM
m&p-Xylene	0.11	0.30	J	γ¢φV	1	12/21/2017 11:59:00 户M
Methyl Butyl Ketorie	< 0.30	0.30		ppb∨	1	12/21/2017 11:59:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	12/21/2017 11:59:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ρpbV	1	12/21/2017 11:59:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppb∀	1	12/21/2017 11:59:00 PM
Methylene chloride	0.63	0.15		Vđqq	1	12/21/2017 11:59:00 PM
o-Xylene	< 0.15	0.15		Vđqq	1	12/21/2017 11:59:00 PM
Propylene	< 0.15	0.15		Vđqq	1	12/21/2017 11:59:00 PM
Styrene	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
Tetrachloroethylene	< 0.15	0.15		Vdqq	1	12/21/2017 11:59:00 PM
Tetrahydrofuran	< 0.15	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Toluene	0.36	0.15		∨dqq	1	12/21/2017 11:59:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	12/21/2017 11:59:00 PM
trans-1,3-Dichtoropropens	< 0.15	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Trichloroethene	0.050	0.030		ρρόν	1	12/21/2017 11:59:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	12/21/2017 11:59:00 PM
Vinyl Bromide	< 0.15	0.15		ρρό∨	1	12/21/2017 11:59:00 PM
Vinyl chloride	< 0.040	0.040		ppb∨	1	12/21/2017 11:59:00 PM
Surr: Bromofluorobenzene	82.0	70-130		%REC	1	12/21/2017 11:59:00 PM

0	цH	н	ſī	e۲	

Ouantitation Limit

. Results reported are not black corrected

3 Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 24 of 26

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

CLIENT; LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-016A

Date: 10-Jan-18

Client Sample ID: IAQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-	15		Analysi: RJP	
1,1,1-Trichlorgethane	< 0.82	0.82	ug/m3	1	12/21/2017 11:59:00 PM	
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	12/21/2017 11:59:00 PM	
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 11:59:00 PM	
1,1-Dichloroethane	< 0.61	0.61	սց/m3	1	12/21/2017 11:59:00 PM	
1,1-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:59:00 PM	
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	12/21/2017 11:59:00 PM	
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 11:59:00 PM	
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	12/21/2017 11:59:00 PM	
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 11:59:00 PM	
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 11:59:00 PM	
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	12/21/2017 11:59:00 PM	
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 11:59:00 PM	
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/21/2017 11:59:00 PM	
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 11:59:00 PM	
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 11:59:00 PM	
1,4-Dioxane	< 1,1	1,1	ug/m3	1	12/21/2017 11:59:00 PM	
2.2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/21/2017 11:59:00 PM	
4-ethyltoluene	< 0.74	0.74	ug/m3	1	12/21/2017 11:59:00 PM	
Acetone	5.9	3.6	ug/m3	5	12/23/2017 12:40:00 AM	
Allyl chlorids	< 0.47	0.47	ug/m3	1	12/21/2017 11:59:00 PM	
Benzene	0.96	0.48	ug/m3	1	12/21/2017 11:59:00 PM	
Senzyl chloride	< 0.86	0.86	ug/m3	1	12/21/2017 11:59:00 PM	
Bromodichloromethane	< 1.0	1,0	ug/m3	1	12/21/2017 11:59:00 PM	
Bromoform	< 1.6	1.6	ug/m3	1	12/21/2017 11:59:00 PM	
Bromomethane	< 0.58	0.58	ug/m3	1	12/21/2017 11:59:00 PM	
Carbon disulfide	< 0.47	0.47	ug/m3	1	12/21/2017 11:59:00 PM	
Carbon tetrachloride	0.44	0.25	ug/m3	1	12/21/2017 11:59:00 PM	
Chlorobenzene	< 0.69	0.69	บg/m3	1	12/21/2017 11:59:00 PM	
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 11:59:00 PM	
Chloroform	< 0.73	0.73	ug/m3	1	12/21/2017 11:59:00 PM	
Chloromethane	0.76	0.31	ug/m3	1	12/21/2017 11:59:00 PM	
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:59:00 PM	
cis-1,3-Dichlaropropene	< 0.68	0.68	иg/m3	1	12/21/2017 11:59:00 PM	
Cyclohexane	< 0.52	0.52	ug/m3	1	12/21/2017 11:59:00 PM	
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/21/2017 11:59:00 PM	
Ethyl acetate	< 0.54	0.54	ug/m3	1	12/21/2017 11:59:00 PM	
Ethylbenzene	< 0.65	0.65	ug/m3	1	12/21/2017 11:59:00 PM	
Freon 11	3.2	0.84	ug/m3	1	12/21/2017 11:59:00 PM	
Freon 113	< 1.1	1.1	ug/m3	1	12/21/2017 11:59:00 PN	
Freon 114	< 1.0	1.0	ug/m3	ì	12/21/2017 11:59:00 PM	

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 23 of 26

Date: 10-Jan-18

CLIENT:

Project:

Lab ID:

LaBella Associates, P.C.

Lab Order:

C1712063

Eldre Corp C1712063-016A Client Sample ID: IAQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	2.3	0.74		ug/m3	1	12/21/2017 11:59:00 PM
Heptane	0.53	0.61	J	ug/m3	1	12/21/2017 11:59:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	12/21/2017 11:59:00 PM
Hexane	0.74	0.53		ug/m3	1	12/21/2017 11:59:00 PM
Isopropyl alcohol	3.4	0.37		ug/m3	1	12/21/2017 11:59:00 PM
m&p-Xyłene	0.48	1.3	Ļ	սց/m3	1	12/21/2017 £1:59:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 11:59:00 PM
Methyl Ethyl Ketone	< 0.68	0.88		սց/m3	1	12/21/2017 11:59:00 PM
Methyl Isobutyl Ketone	< 1,2	1.2		ug/m3	1	12/21/2017 11:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 11:59:00 PM
Methylene chloride	2.2	0.52		ug/m3	1	12/21/2017 11:59:00 PM
o-Xylena	< 0.65	0.65		ug/m3	1	12/21/2017 11:59:00 PM
Propylene	< 0.26	0.26		ug/m3	1	12/21/2017 11:59:00 PM
Styrene	< 0.64	0.64		ug/m3	1	12/21/2017 11:59:00 PM
Tetrachloroethylene	< 1.0	1,0		ug/m3	1	12/21/2017 11:59:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/21/2017 11:59:00 PM
Toluene	1.4	0.57		∪ ց/m3	1	12/21/2017 11:59:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 11:59:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		Em\gu	1	12/21/2017 11:59:00 PM
Trichloroethene	0.27	0.16		ug/m3	1	12/21/2017 11:59:00 PM
Vinyl acetate	< 0.53	0.53		u g/n 33	1	12/21/2017 11:59:00 PM
Vinyl Bromide	< 0.66	0.66		Em\gu	1	12/21/2017 11:59:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	12/21/2017 11:59:00 PM

Qualifiers:

Results reported are not blank corrected.

 \mathbf{E} Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 24 of 26

Quantitation Limit

Analyte detected in the associated Method Blank 13

^{}}} Holding times for preparation or analysis exceeded

JΝ Non-routine analyte. Quantitation estimated.

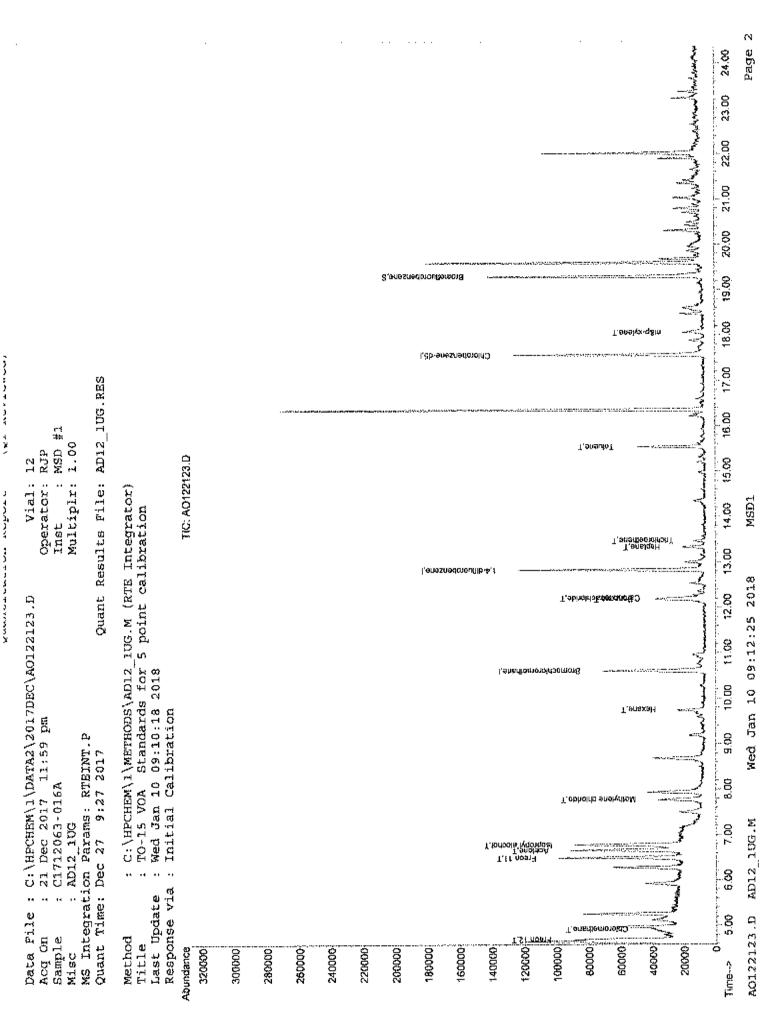
Spike Recovery outside accepted recovery limits

(QT Reviewed) Quantitation Report

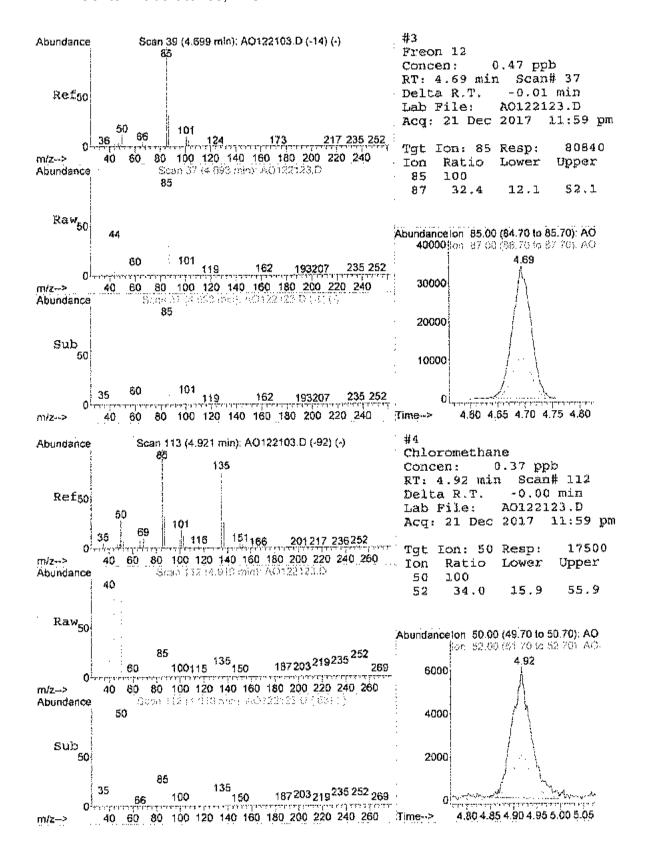
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122123.D
Acq On : 21 Dec 2017 11:59 pm
Sample : C1712063-016A
Misc : AD12_1UG Vial: 12 Operator: RJP Inst : MSD #1 Multiplr: 1.00

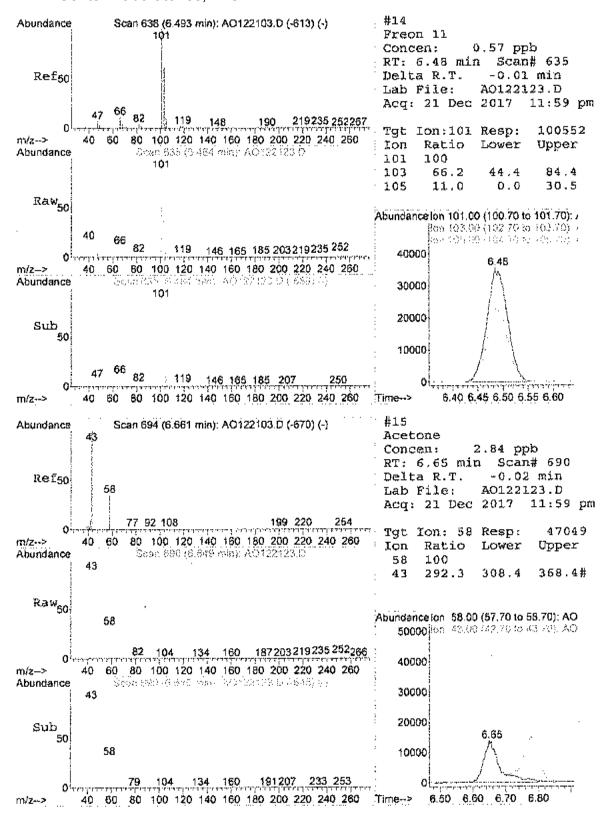
MS Integration Params: RTEINT.P

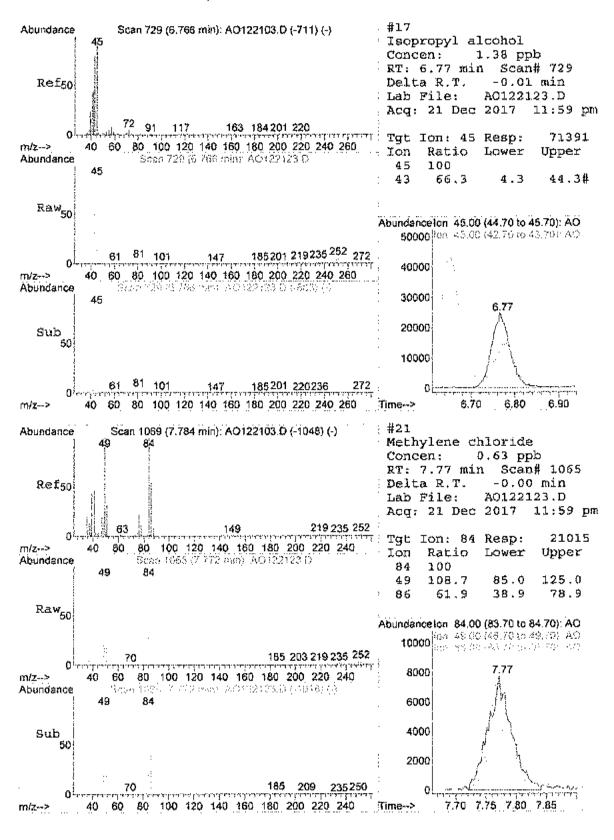
Quant Time: Dec 22 08:06:53 2017 Quant Results File: AD12_1UG.RES

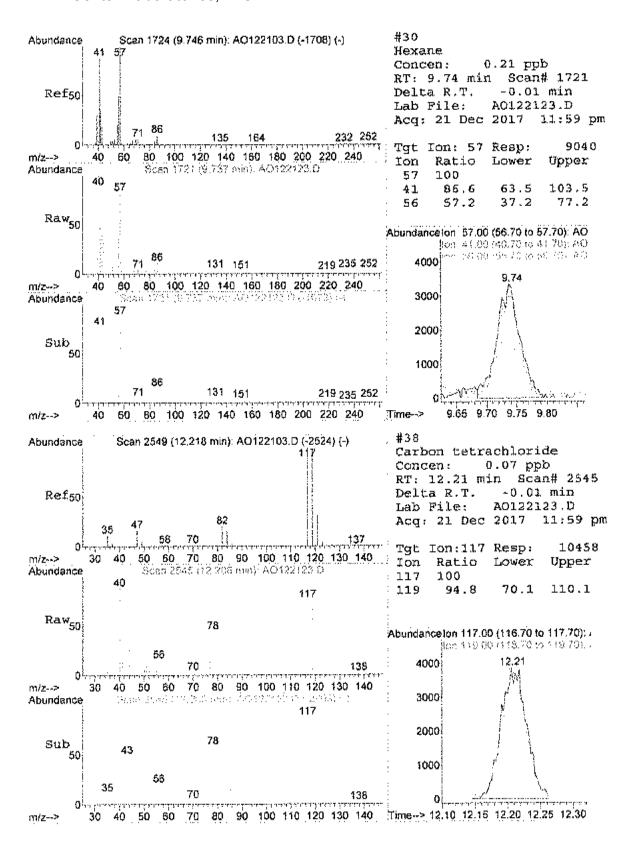

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

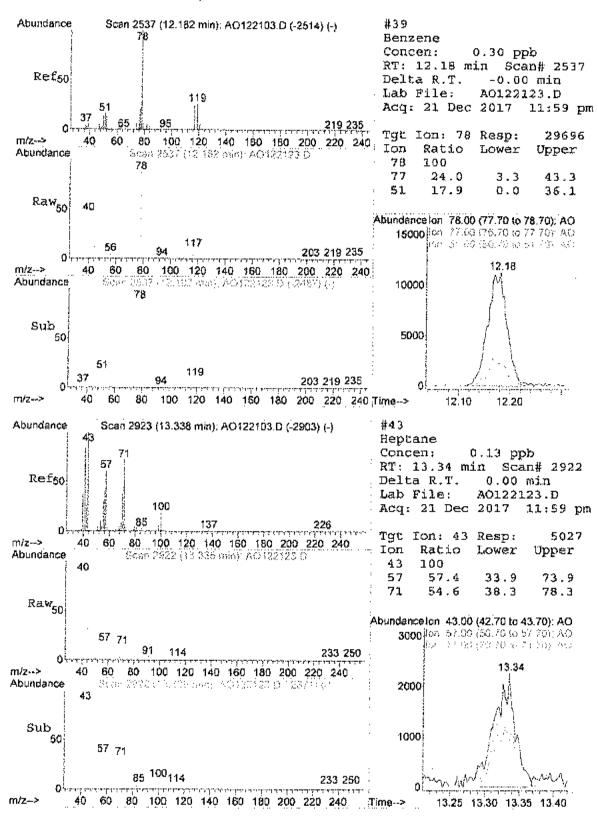
Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

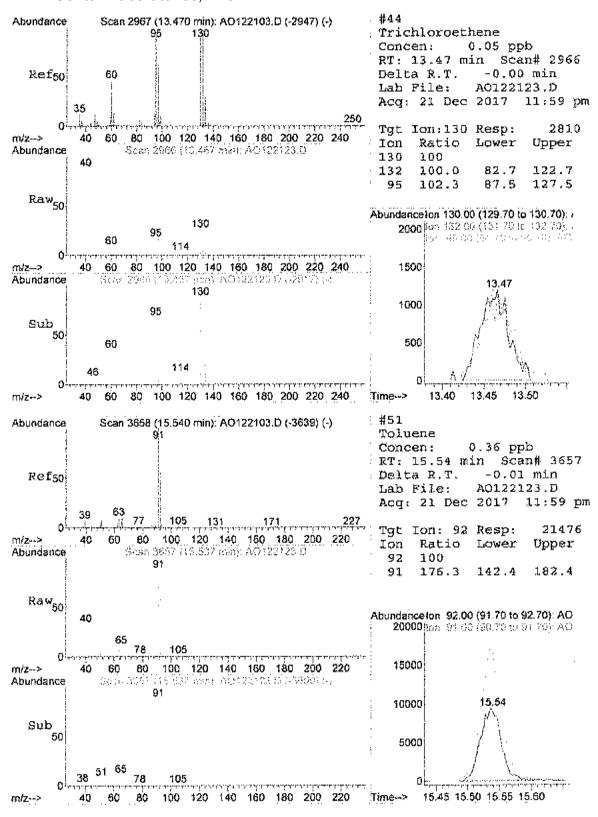

DataAcq Meth : 1UG_RUN

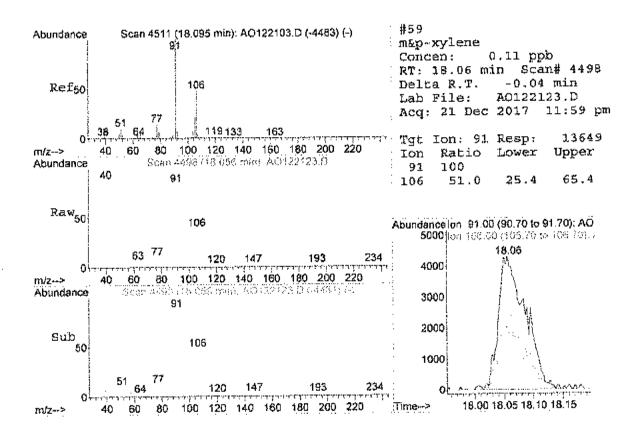

Internal Standards			Response (Units	Dev(Min)
1) Bromochloromethane			32723		dqq 0	0.00
35) 1,4-difluorobenzene			122520		dqq Q	
50) Chlorobenzene-d5			93219		dqq 0	
System Monitoring Compounds						
65) Bromofluorobenzene	19.29	95	56383	0.83	2 ppb	0.00
Spiked Amount 1.000	Range 70	- 130	Recovery			
Target Compounds						Qvalue
3) Freon 12	4.69	85	80840	0.47	dqq v	99
4) Chloromethane	4.92	5 Q	17500	0.37	7 ppb	97
` 14) Freon 11	6.48	101	100552	0.5	dqq 7	
15) Acetone	6.65	58	47049	2.84	dqq P	
17) Isopropyl alcohol	6.77	4.5	71391		dqq B	
21) Methylene chloride	7.77	84	21015		वव्यव ६	
30) Hexane	9.74	57	9040		l ppb	
38) Carbon tetrachloride		117			7 ppb	
39) Benzene	12.18	78	29696		dqq 0	
43) Heptane			5027		g bbp	
44) Trichloroethene	13.47	130	2810		वंतृत् ह	
51) Toluene	15.54	92			dqq a	
59) m&p-xylene	18.06	91	13649	0.13	ı bbp	91


7777777




Page 322 of 477

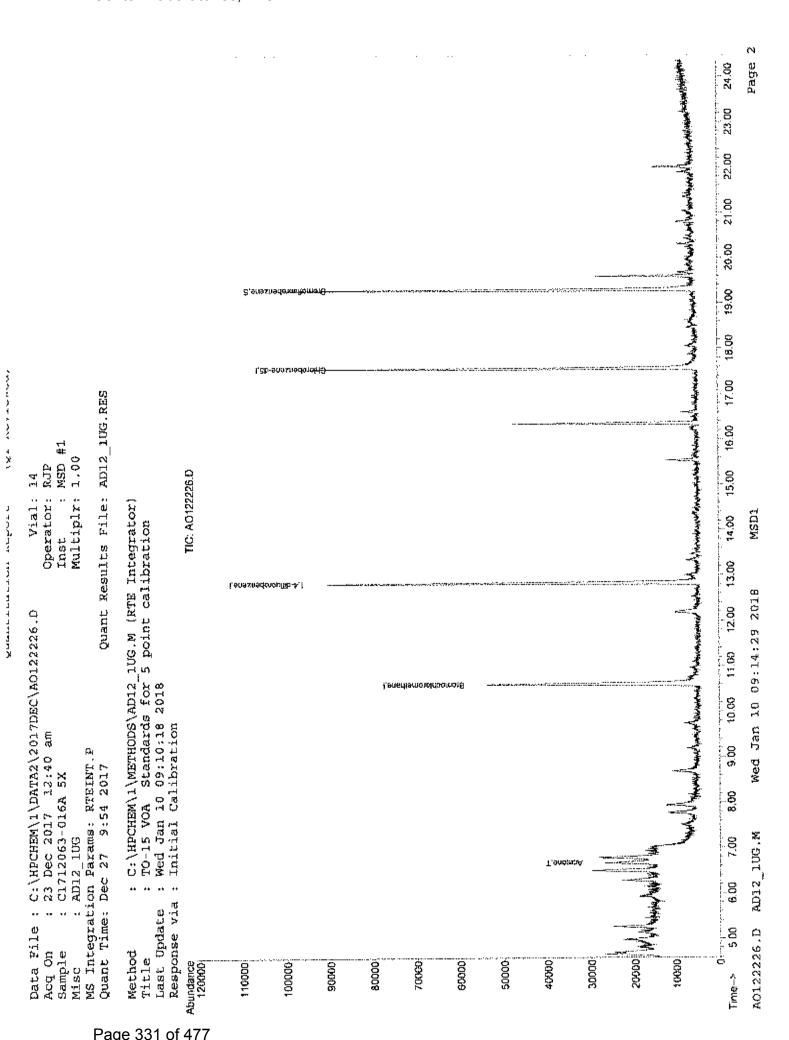


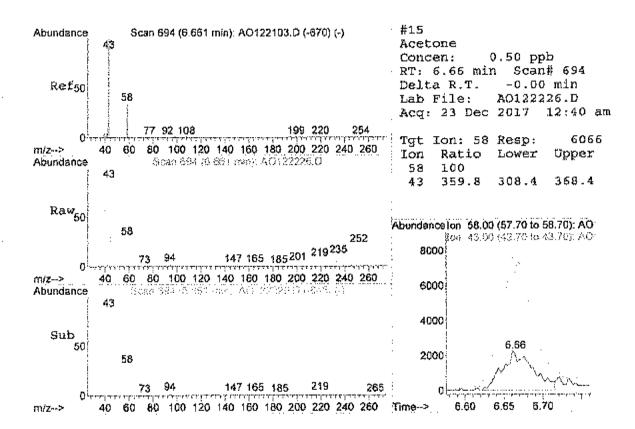


Quantitation Report {QT Reviewed}

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122226.D

Vial: 14 Acq On : 23 Dec 2017 12:40 am Operator: RJP Sample : C1712063-016A 5X Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RIEINT.P Quant Time: Dec 27 09:46:40 2017 Quant Results File: AD12_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

DataAcq Meth : lug_RUN

Internal Standards		R.T.	QIon	Response C	one t	nits	Dev(Min)
1) Bromochlorometha 35) 1,4-difluorobena 50) Chlorobenzene-d	zene	10.60 12.83 17.56	128 114 117	23960 92622 71561	1.00	dad dad dad	0.00 0.00 0.00
System Monitoring Com 65) Bromofluorobenze Spiked Amount		19.29 Range 70	95 - 130	38832 Recovery		ppb 73	
Target Compounds 15) Acetone		6.66	58	6066	0.50	ppb	Qvalue 90

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO122226.D AD12_1UG.M Wed Jan 10 09:14:28 2018 MSD1

Page 3

MSD1

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-017A

Date: 10-Jan-18

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qua	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-5		"Hg		12/21/2017
Lab Vacuum Out	-30		"Hg		12/21/2017
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1.1-Trichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,1,2,2-Tetrachtoroethane	< 0.15	0.15	∨dqq	1	12/22/2017 12:40:00 AM
1,1.2-Trichloroethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,1-Dichloroethane	< 0.15	0.15	₽₽bV	1	12/22/2017 12:40:00 AM
1,1-Dichloroethene	< 0.15	0.15	ppb∀	1	12/22/2017 12:40:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,2,4-Trimethylbenzene	< 0.15	0.15	∨dqq	1	12/22/2017 12:40:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	12/22/2017 12:40:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,3-butadiene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ρρb∨	1	12/22/2017 12:40:00 AM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	12/22/2017 12:40:00 AM
2,2,4-trimelhylpentane	< 0.15	0.15	Vdqq	1	12/22/2017 12;40:00 AM
4-ethyltoluene	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Acetone	6.6	1.5	ρρb∨	5	12/23/2017 1:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Benzene	0.36	0.15	₽₽b∨	t	12/22/2017 12:40:00 AM
Benzyl chloride	< 0.15	0.15	Vdqq	3	12/22/2017 12:40:00 AM
Bromodichloromethane	< 0.15	0.15	Vdqg	1	12/22/2017 12:40:00 AM
Bromoform	< 0.15	0.15	∨dqg	3	12/22/2017 12:40:00 AM
Bromomethane	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Carbon disulfide	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Carbon tetrachioride	0.070	0.040	ppbV	1	12/22/2017 12:40:00 AM
Chlorobenzene	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
Chloroethane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
Chieroform	< 0.15	0.15	ppbV	1	12/22/2017 12:40:00 AM
Chlgromethane	0.39	0.15	ppbV	1	12/22/2017 12:40:00 AM
cis-1,2-Dichloroethene	< 0.15	0.15	ppb∨	1	12/22/2017 12:40:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
Cyclohexane	< 0.15	0.15	Vdqq	1	12/22/2017 12:40:00 AM
Dibromochloromethane	< 0.15	0.15	ppb∨	1	12/22/2017 12:40:00 AM
Ethyl acetate	0.12	0.15 J	ppb∨	1	12/22/2017 12:40:00 AM

Qualifiers:

Results reported are not blank corrected

Page 25 of 26

^{**} Quantitation Limit

Analyte detected in the associated Method Blank В

H Holding times for preparation or analysis exceeded

JN Non-rottine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

E; Estimated Value above quantitation range

Analyte detected below quantitation limit J

ND Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project: Lab ID: Eldre Corp

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DÆ	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		τĊ)-15			Analyst; RJP	
Ethylbenzene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Freon 11	0.21	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Freon 113	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Freon 114	< 0.15	0.15		γρbV	1	12/22/2017 12:40:00 AM	
Freon 12	0.47	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Heptane	0.10	0.15	J	ppbV	1	12/22/2017 12:40:00 AM	
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Hexane	0.22	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Isopropyl alcohol	1.9	0.15		ppbV	1	12/22/2017 12:40:00 AM	
m&p-Xylene	0.13	0.30	J	ppbV	1	12/22/2017 12:40:00 AM	
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	12/22/2017 12:40:00 AM	
Methyl Ethyl Ketone	0.25	0.30	J	ppbV	1	12/22/2017 12:40:00 AM	
Methyl isobutyl Ketone	< 0.30	0.30		ppbV	1	12/22/2017 12:40:00 AM	
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Methylene chloride	0.77	0.15		₽₽bV	1	12/22/2017 12:40:00 AM	
o-Xylene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Propylene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Styrene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Tetrachloroethylene	< 0.15	0.15		ppbV	1	12/22/2017 12:40:00 AM	
Tetrahydrofuran	< 0.15	0.15		₽₽₽V	1	12/22/2017 12:40:00 AM	
Totuene	0.37	0.15		ppbV	1	12/22/2017 12:40:00 AM	
trans-1,2-Dichlorgethene	< 0.15	0.15		ppb∀	τ	12/22/2017 12:40:00 AM	
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	12/22/2017 12:40:00 AM	
Trichloroethene	< 0.030	0.030		ρpb∀	1	12/22/2017 12:40:00 AM	
Vinyl acetate	< 0.15	0.15		Vdqq	1	12/22/2017 12:40:00 AM	
Vinyl Bromide	< 0.15	0.15		ppb∨	1	12/22/2017 12:40:00 AM	
Vinyl chloride	< 0.040	0.040		Vđạq	1	12/22/2017 12:40:00 AM	
Surr, Bromofluorobenzene	83.0	70-130		%REC	1	12/22/2017 12:40:00 AM	

One	114	Tar-

- ** Quantitation Limit
- 13 Analyte detected in the associated Method Blank
- ŀΓ Holding times for preparation or analysis exceeded
- JN. Non-rootine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- j Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 26 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15	*****		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/22/2017 12:40:00 AM
1,1,2,2-Tetrachtoroethane	< 1.0	1.0	ug/m3	1	12/22/2017 12:40:00 AM
1,1,2-Trichioroethane	< 0.82	0.82	<i>Ագլիո</i> 3	1	12/22/2017 12:40:00 AM
1,1-Dichloroethane	< 0.61	0.61	սց/m3	1	12/22/2017 12:40:00 AM
1,1-Dichtoroethene	< 0.59	0.59	⊔g/m3	1	12/22/2017 12:40:00 AM
1,2,4-Trichlorobenzese	< 1.1	1.1	ug/m3	1	12/22/2017 12:40:00 AM
1,2,4-Trimethy/benzene	< 0.74	0.74	ug/m3	1	12/22/2017 12:40:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	12/22/2017 12:40:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/22/2017 12:40:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	12/22/2017 12:40:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	12/22/2017 12:40:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/22/2017 12:40:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/22/2017 12:40:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/22/2017 12:40:00 AM
1,4-Dichlorobenzene	< 0.9 0	0.90	ug/m3	1	12/22/2017 12:40:00 AM
1,4-Dioxane	< 1,1	1.1	ug/m3	1	12/22/2017 12:40:00 AM
2,2,4-tomethylpentane	< 0.70	0.70	ug/m3	1	12/22/2017 12:40:00 AM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	12/22/2017 12:40:00 AM
Acetone	16	3.6	ug/m3	5	12/23/2017 1:17:00 AM
Allyl chloride	< 0.47	0.47	ս ց/m 3	1	12/22/2017 12:40:00 AM
Benzene	1.1	0.48	ug/m3	1	12/22/2017 12:40:00 AM
Benzyl chłoride	< 0.86	0.86	ug/m3	1	12/22/2017 12:40:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	12/22/2017 12:40:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	12/22/2017 12:40:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	12/22/2017 12:40:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	12/22/2017 12:40:00 AM
Carbon tetrachloride	0.44	0.25	ug/m3	1	12/22/2017 12:40:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	12/22/2017 12:40:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 12:40:00 AM
Chloreform	< 0.73	0.73	ug/m3	1	12/22/2017 12:40:00 AM
Chloromethane	0.81	0.31	ug/m3	1	12/22/2017 12:40:00 AM
cis-1,2-Dichloraethene	< 0.59	0.59	ug/m3	1	12/22/2017 12:40:00 AM
cls-1,3-Dichloropropene	< 0.68	0.68	ug/m3	3	12/22/2017 12:40:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	12/22/2017 12:40:00 AM
Dibromochioromethane	< 1.3	1,3	ug/m3	1	12/22/2017 12:40:00 AM
Ethyl acetate	0.43		յ սց/m3	1	12/22/2017 12:40:00 AM
Ethylbenzene	< 0.65	0.85	ug/m3	1	12/22/2017 12:40:00 AM
Freon 31	1.2	0.84	ug/m3	1	12/22/2017 12:40:00 AM
Freon 113	< 1.1	1.1	ug/រก3	1	12/22/2017 12:40:00 AM
Freon 114	< 1.0	1.0	աց/m3	1	12/22/2017 12:40:00 AN

Qualifiers:

Page 25 of 26

^{**} Quantitation Limi

B Analyte detected in the associated Method Blank

¹⁴ Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		ŦC	-15			Analyst: RJP	
Freon 12	2.3	0.74		ug/m3	1	12/22/2017 12:40:00 AM	
Heptane	0.41	0.63	J	ug/m3	1	12/22/2017 12:40:00 AM	
Hexachloro-1,3-butadiene	< 1.6	1,6		ug/m3	1	12/22/2017 12:40:00 AM	
Hexane	0.78	0.53		ug/m3	1	12/22/2017 12:40:00 AM	
tsopropyi alcohol	4.6	0.37		ug/m3	1	12/22/2017 12:40:00 AM	
m&p-Xylene	0.56	1.3	j	ug/m3	1	12/22/2017 12:40:00 AM	
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 12:40:00 AM	
Methyl Ethyl Ketone	0.74	0.88	J	ug/m3	1	12/22/2017 12:40:00 AM	
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 12:40:00 AM	
Methyl tert-butyl ether	< 0.54	0.54		սց/m3	1	12/22/2017 12:40:00 AM	
•	2.7	0.52		ug/m3	1	12/22/2017 12:40:00 AM	
Methylene chloride	< 0.65	0.65		ug/m3	1	12/22/2017 12:40:00 AM	
o-Xylene	< 0.26	0.26		սց/m 3	1	12/22/2017 12:40:00 AM	
Propylene	< 0.64	0.64		ug/m3	1	12/22/2017 12:40:00 AM	
Styrene	< 1.0	1,0		ug/m3	1	12/22/2017 12:40:00 AM	
Tetrachloroethylene	< 0.44	0.44		ug/m3	1	12/22/2017 12:40:00 AM	
Tetrahydrofuran	1.4	0.57		ug/m3	1	12/22/2017 12:40:00 AM	
Toluene	< 0.59	0.59		ug/m3	1	12/22/2017 12:40:00 AM	
trans-1,2-Dichloroethene	< 0.68	0.68		ug/m3	1	12/22/2017 12:40:00 AM	
trans-1,3-Dickloropropeле	< 0.16	0.16		ug/m3	1	12/22/2017 12:40:00 AM	
Trichlorgethene	-	0.10		ug/m3	1	12/22/2017 12:40:00 AM	
Vinyl acetate	< 0.53			ug/m3		12/22/2017 12:40:00 AM	
Vinyl Bromide	< 0.66	0.66			1	12/22/2017 12:40:00 AM	
Vinył chloride	< 0.10	0.10	,	ug/m3	•	LIZEREO I THE THE PERSON OF THE	

13	lifiers	
J. P.LEEL	11111115	٠

^{**} Quantitation Limit

Page 26 of 26

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range Ε

Analyte detected below quantitation fimit

ND Not Detected at the Limit of Detection

Quantitation Report

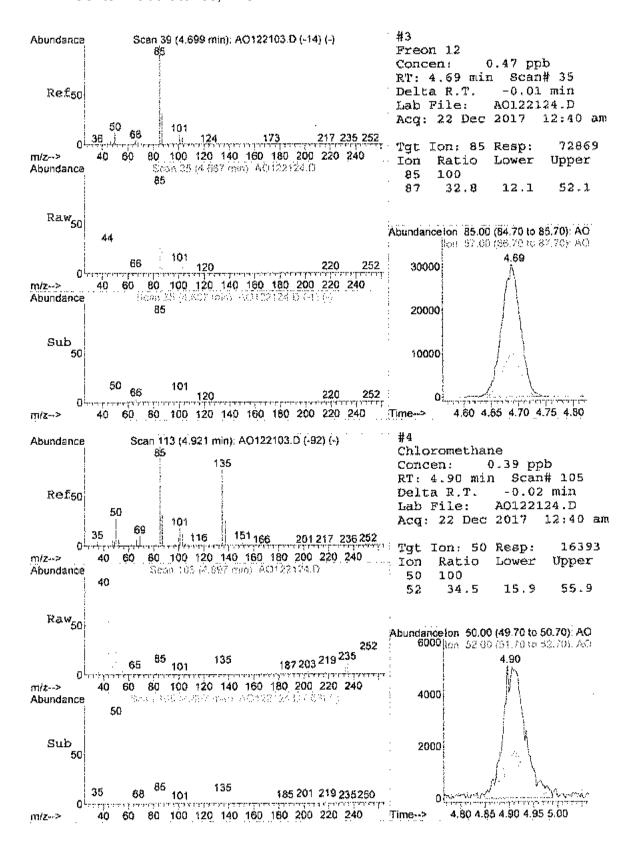
(QT Reviewed)

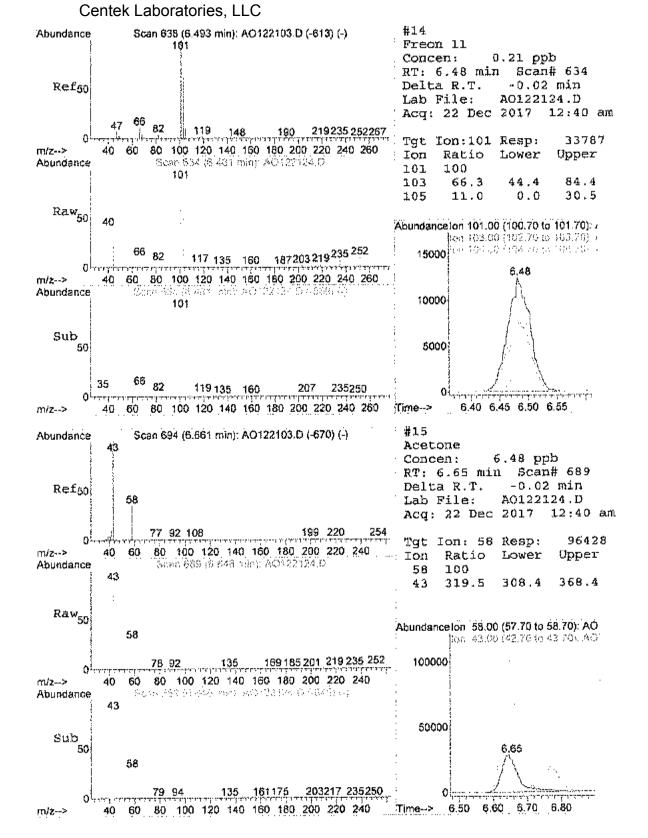
Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122124.D Vial: 41 : 22 Dec 2017 12:40 am Acq On Operator: RJP Sample : C1712063-017A Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

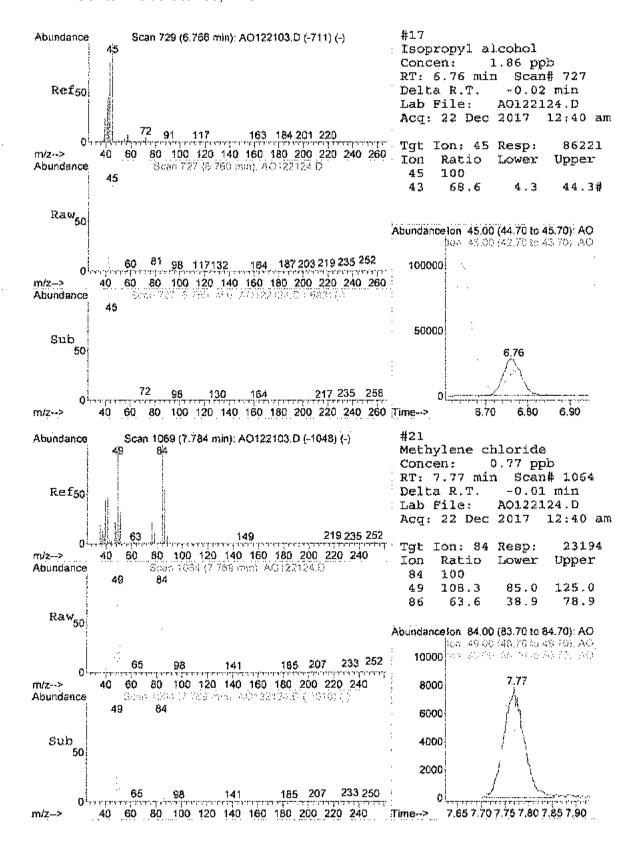

MS Integration Params: RTEINT.P

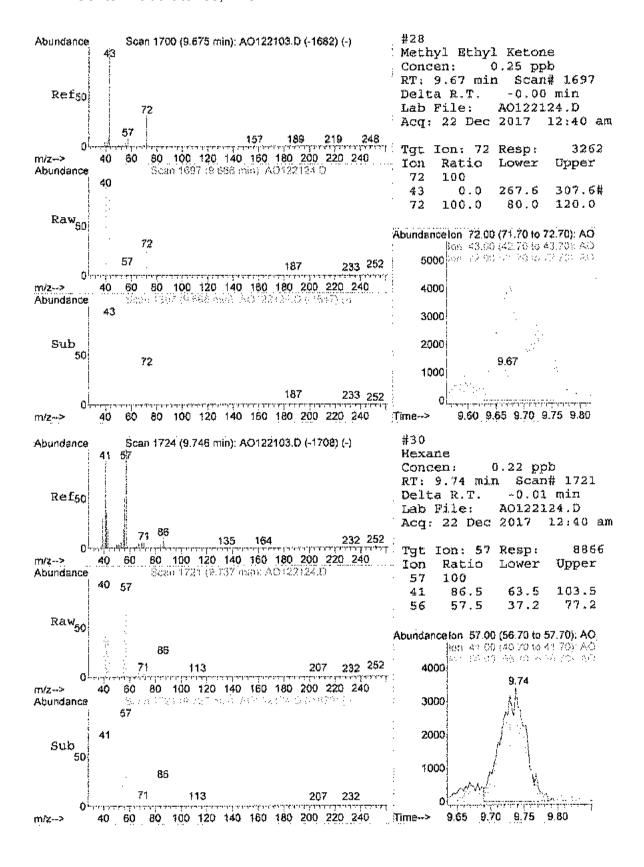
Quant Time: Dec 22 08:06:54 2017 Quant Results File: AD12_1UG.RES

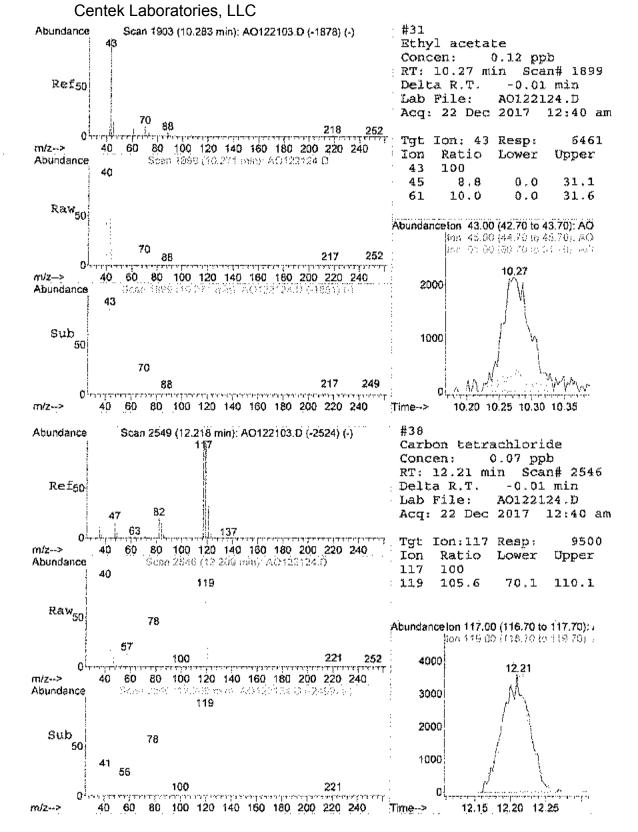
Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

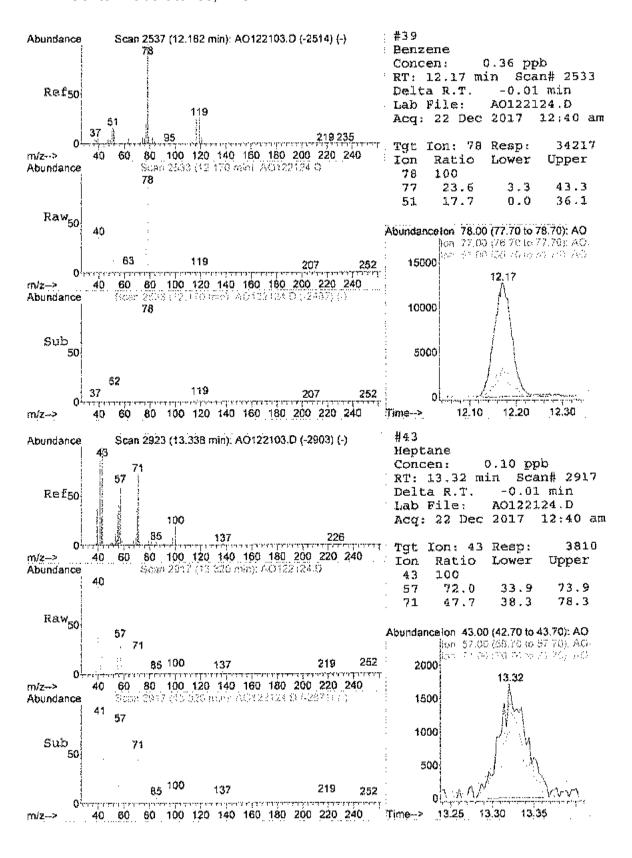

DataAcq Meth : 1UG_RUN

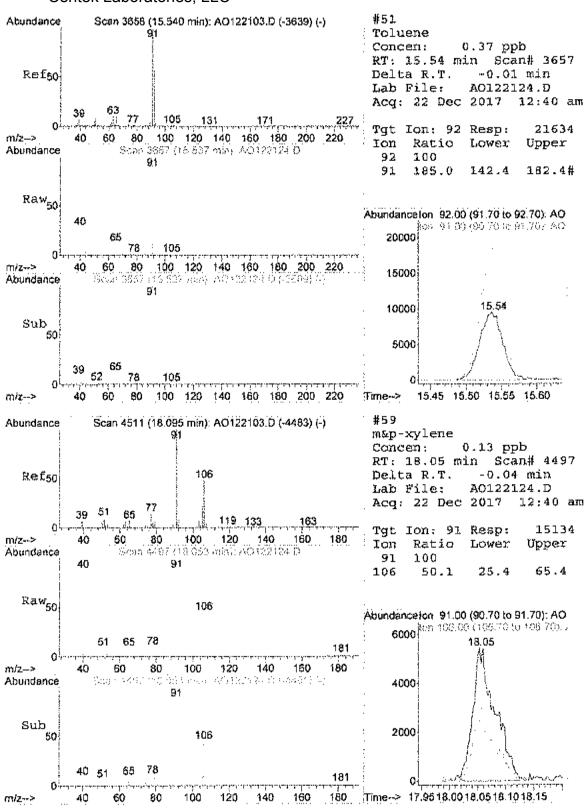

Internal Standards	R.T.	QIon		onc U		
 Bromochloromethane 			29360	1.00	ppb	
35) 1,4-difluorobenzene 50) Chlorobenzene-d5			90206	1.00	ppp	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	19.29	95	55580	0.83	фф	0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	<i>'</i> =	83	. ዕዕቴ
Target Compounds						Qvalue
3) Freon 12	4.69	85	72869	0.47	dqq	99
4) Chloromethane	4.90	50	16393	0.39	qqq	98
14) Freon 11	6.48	101	33787	0.21	dgg	98
15) Acetone	6.65	58	96428	6.48	dad	91
17) Isopropyl alcohol			86221			
			231.94			
28) Methyl Ethyl Ketone	9.67	72	3262	0.25	dgg	# 1
			8866			
31) Ethyl acetate	10.27	43	6461	0.12	ppb	95
38) Carbon tetrachloride	12.21	117	9500	0.07	ppb	84
39) Benzene			34217			
43) Heptane			3810			
51) Toluene			21634			
59) m&p-xylene		91				


Page 338 of 477


ATOMAN TOTANATANNA




MSD1



MSD1

Centek Laboratories, LLC $_{\tt Quantitation\ Report}$

(QT Reviewed)

Vial: 15

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122227.D

Acq On : 23 Dec 2017 1:17 am Sample : C1712063-017A 5X

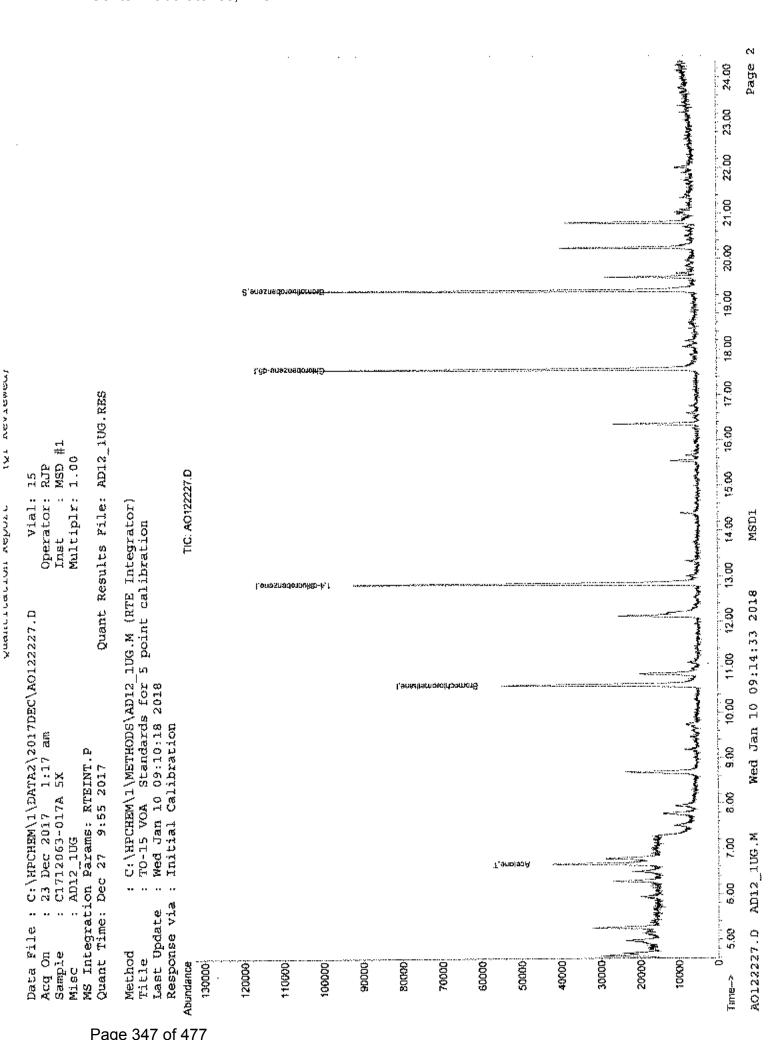
Operator: RJP Inst : MSD #1

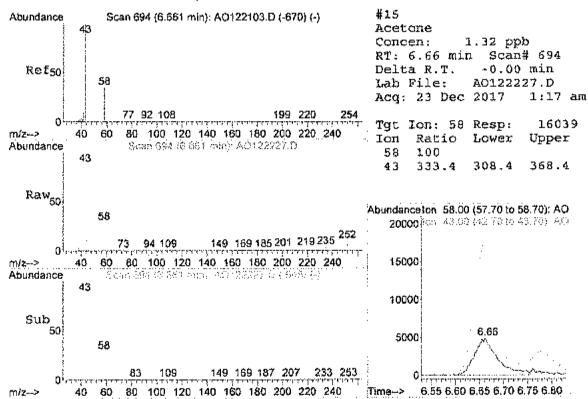
Misc : AD12_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 27 09:46:41 2017

Quant Results File: AD12_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017


Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Internal Standards	R.T. (QIon	Response C	one Un	its Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.82 17.56	128 114 117	24058 94789 71991	1.00 1.00 1.00	0.00 dqq
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 130	40584 Recovery	0.76) =	- -
Target Compounds 15) Acetone	6.66	58	1.6039	1.32	Qvalue ppb 98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122227.D AD12 1UG.M Wed Jan 10 09:14:32 2018

MSDl

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS DATA

GC/MS YOLATILES-WHOLE AIR

METHOD TO-15 INITIAL CALIBRATION

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

Calibration Files

0,04 0.10 0.03 -AO121214.D =A0121213.D =A0121212.D =A0121210.D =AQ121209,D 0.15 =A0121211.D 0.30 0.50

		Compound	0.03	0.04	0.10	0.15	0.30	0.50	Avg	%RSD
1.)		Bromochloromethan				15T1	J			
2)		Propylene				0.857	0.799	0.821	0.776 5.279	5.85
	T	Freon 12				5.908	5.571	5.494	5.279	5.39
4)		Chloromethane Freon 114 Vinyl Chloride				1.646	1.4/5	1.554	1.442	7.47
5)		Freon 114		* ***	* 200	5.249	4.975	4.888	4.718	0.07
6)		Vinyi Chioride		1.656	1.303	1,456	1.440	1,382	1.585	3.05
7)		Butane				1.793	1.738	1.622	1.585	7,00
8)		1,3-butadiene				7,305	1,2/5	1.209	1.211	3.00
9)		Bromomethane				1.884	1.843	7. (73	1.666 0.611	7,01
10)		Chloroethane				0.002	0.003	0.612	0.395	5.43
11) 12)		Ethanol				0.420	0.444	0.388	0.335	6 46
		Acrolein				7 622	U. % D.J	0.427	0.436 1.601 5.372	3.40
13}		Vinyl Bromide				1.073	# 715	1.040	T.00T	5 77
14)		Freon 11				D.0/0	D. / LZ	0.040	0.507	2.12
15)		Acetone				0.550	0.000	1 176	1 134	7 09
16)		Pentane				3 776	1 724	7.7.70	1.134 1.580	7.03
17) 18)		Isopropyl alcoh				1.730	1 270	7.047	1,276	7,03
		1,1-dichloroeth Freon 113								
19)						1 001	1 000	3.000	2.987	4.01
20)	T	t-Butyl alcohol				3 7 C C	1.777 1.000	1.020	1.902 1.026	5.00
		Methylene chlor				1 100	1.005	1.007	1.093	4 90
22)		Allyl chloride Carbon disulfid								
23) 24)		trans-1,2-dichl				3.3%0	3.471	3.557	3.223	3,99
25)		methyl tert-but				2 011	2.363	2 214	1.575 2.768	2 75
26)		1,1-dichloroeth				ታ ኃኃ፣	4. Q40	2.014	2.149	Δ FΩ
27)		Vinyl acetate				1 067	7 REI	2.4.21	4-472 1 POS	3 26
28)		Methyl Ethyl Ke				1,302	0.480	11 466	1.899 0.449 1.445	2.50
29)		cis-1,2-dichlor				1 538	1 520	1 478	1 445	3 93
30)		Hexane				1 397	1 345	1 359	1.347	3 33
31)		Ethyl acetate				1 010	7 849	1 928	1 897	3 7R
32)		Chloroform				3 655	3 370	3 277	1.897 3.242	5 96
33)		Tetrahydrofuran				0.783	0 842	0.817	0.814	2.86
34)		1,2-dichloroeth							2.138	
J 14 ,	1									
35)		1,4-difluorobenzer	1 e -			ISTI)			¬ ¬
		1,1,1-trichloro				0.954	0.930	0.888	0.893	3.59
		Cyclohexane Carbon tetrachl Benzene				0.314	0.291	0.304	0.314	4.08
38)		Carbon tetrachl		1.471	1.294	1.198	1,119	1,097	1.149	11.96
39)	T									
40)		Methyl methacry					0.269			6.84
41)	T	1,4-dioxane							0.173	5.18
42)		2,2,4-trimethyl					0.967			3.75
43)	T	Heptane							0.324	6.40
44)	π,	Trichloroethene	0.594	0.560	0.509					11.23
45)	${f T}$	1,2-dichloropro							0.285	3.50
46)		Bromodichlorome							0.884	3.40
47)		cis-1,3-dichlor							0.456	5.64
48)		trans-1,3-dichl							0.384	6.00
49)	${f T}$	1,1,2-trichloro				0.433	0.419	0.401	0.410	2.81
50)	I	Chlorobenzene-d5	_			ISTI)			
51)		Toluene				0.644	0.607	0.623	0.648	5.34

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### Wed Jan 10 08:56:37 2018 MSD1 AD12_lUG.M

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

Calibration Files

0.03 =AC121214.D 0.04 =AC121213.D 0.10 =AC121212.D 0.15 =AC121211.D 0.30 =AC121210.D 0.50 =AC121209.D

	Compound	0.03	0.04	0.10	0.15	0.30	0.50	Avg	%RSD
52) T	Methyl Isobutyl				0.458	0.467	0.435	0.477	5.66
53) T	Dibromochlorome				1.253	1.202	1.211	1.185	2.92
54) T	Methyl Butyl Ke				0.356	0.400	0.369	0.408	9.48
55) T	1,2-dibromoetha				0.803	0.783	0.765	0.775	2.20
56) T	Tetrachloroethy				0.646	0.614	0.616	0.610	2.61
57) T	Chlorobenzene				1.074	1.017	1.027	1.034	2.26
58) T	Ethylbenzene				1,447	1.341	1,366	1.460	6.80
59) T	m&p-xylene				1.151	1.084	1.181	1.274	9.81
60) T	Nonane				0.470	0.523	0.540	0.580	11.78
61) T	Styrene				0.738	0.779	0.873	0.901	11,34
62) T	Bromoform				1.285	1.303	1.258	1.238	3.22
63) T	o-xylene				1.335	1.395	1.465	1.489	5.86
64) T	Cumene				1.483	1.480	1.534	1.655	9.68
65) S	Bromofluorobenz	0.655	0.620	0.659	0.66%	0.747	0.781	0.740	10.24
66) T	1,1,2,2-tetrach				1.183	1.123	1.084	1.075	5.01
67) T	Propylbenzene				0.347	0.390	0.400	0.429	11.36
68) T	2-Chlorotoluene				0.426	0.433	0.486	0.493	8.76
69) T	4-ethyltoluene				1.326	1.404	1.562	1.666	13.27
70) T	1,3,5-trimethyl				1.215	1.369	1.493	1.557	11.97
71) T	1,2,4 crimethyl				1.013	1.039	1.071	1.213	13.80
72) T	1,3-dichloroben				1.026	1.016	1.063	1.101	5.81
73) T	benzyl chloride				0.784	0.848	0.844	0.923	10.38
74) T	1,4-dichloroben				0.885	0.996	1.057	1.087	10.12
75) T	1,2,3-trimethyl				1.114	1.178	1.272	1.417	14.59
76) T	1,2-dichloroben				1.016	1.039	1.056	1.093	4.98
77) T	1,2,4-trichloro				0.366	0.370	0.374	0.428	12.90
78) T	Naphthalene		0.730	0.577	0.568	0.560	0.580	0.684	17,00
79) T	Hexachloro-1,3-				0.932	0.950	0.925	0.941	1.37

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121204.D Vial: 2 Acq On : 12 Dec 2017 6:30 pm Operator: RJP Sample : Alug_2.0 Misc : AD12_lug Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTRINT.P

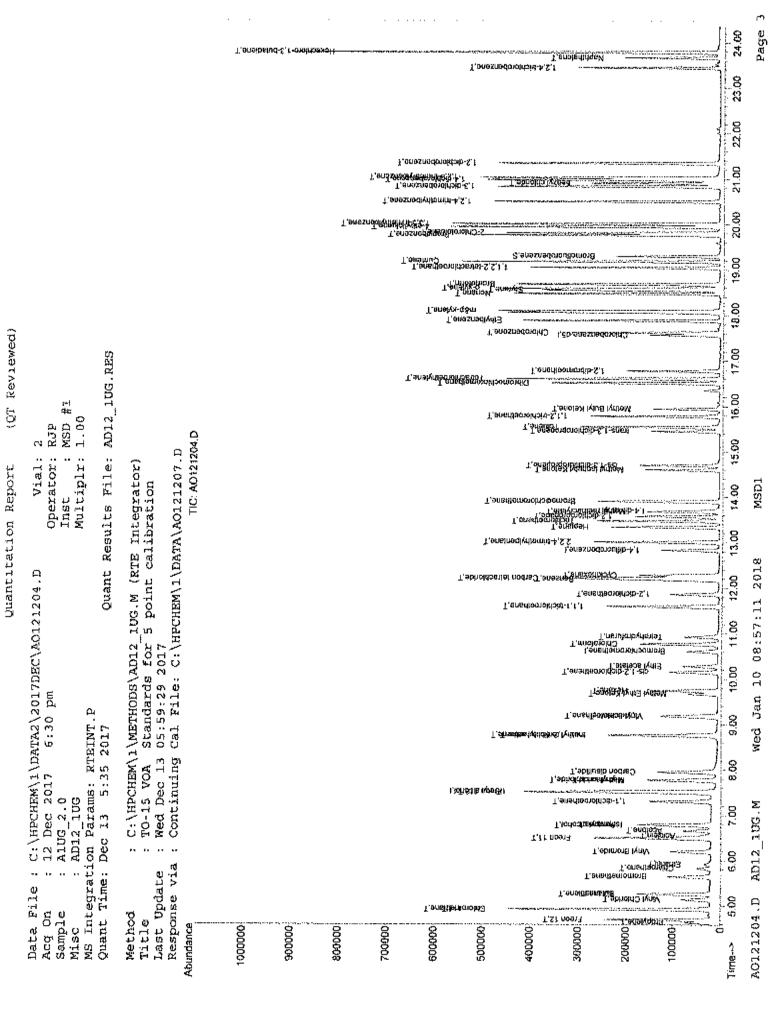
Quant Time: Dec 12 22:47:45 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Dec 12 22:46:05 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AO121207.D
DataAcq Meth : lUG_RUN

Internal Standards	R.T.		Response		nits	Dev(Min)
1) Bromochloromethane	10.60	128	31664		dqq	0.00
35) 1,4-difluorobenzene	12.83	114	126357 106411	1.00	ppb	0.00
50) Chlorobenzene-d5	17.56	1.1.7	106411	1.00	ppb	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	19.29	95	85965	1.00	dqq	0.00
Spiked Amount 1.000	Range 70	- 1.30	Recover	су	100	.00%
Target Compounds						Qvalue
2) Propylene	4.63	41	48142	2.06	ppb	84
3) Freon 12	4.70	85	314760		ppb	99
4) Chloromethane	4.92	50	86454		dqq	
5) Freon 114	4.92	85	283607		dqq	
6) Vinyl Chloride	5.14	62	80017		ppb	
7) Butane	5.26	43	92292		ppb	
8) 1,3-butadiene	5.26	39	74389		ppb	
9) Bromomethane	5.65	94	99004		dqq	
10) Chloroethane	5.83	64	37697	. 2.02	gpb	
11) Ethanol	5.92	4.5	25098m	2.15	ppb	
12) Acrolein	6.55	56	26431m	2.02	dqq	
13) Vinvl Bromide	6.20	106	97551		ppb	
14) Freon 11	6.49	101	318431		ppb	
15) Acetone	6.56	58	30880		dqq	
16) Pentane	6.79	42	67893		ppb	
17) Isopropyl alcohol	6.77	45	67893 94368	2.00	dqq	
18) 1,1-dichloroethene	7,30	96	85456	2.48	ppb	
19) Freon 113	7.51	101	1.96778		dqq	
20) t-Butyl alcohol	7.52	59	121284		dqq	97
21) Methylene chloride	7.78	84	61753		ppb	
22) Allyl chloride	7.76	41	70563		dqq	95
23) Carbon disulfide	7.96	76	193707	2.00	ppb	86
24) trans-1,2-dichloroethene		61	99616	2.05	ppb	
25) methyl text-butyl ether	8.76	73	173650	2.05	ppb	
26) 1,1-dichloroethane	9.19	63	131022		ppb	
27) Vinyl acetate	9.17	43	126386		ppb	
28) Methyl Ethyl Ketone	9.67	72	28801		ppb	
29) cis-1,2-dichloroethene	10.15	61	90049		ppb	
30) Hexane	9.74		88936		ppb	
31) Ethyl acetate	10,28	43	120056		dqq	
32) Chloroform	10.76	83	120056 195916	1.99	ppb	98
33) Tetrahydrofuran	10.92	42	52994		dqq	92
34) 1,2-dichloroethane	11.86	62	130351		ppb	99
36) 1,1,1-trichloroethane	11.59	97	220015		ppb	90
37) Cyclohexane	12.28	56	83024		dqq	84
38) Carbon tetrachloride	12.21	117	269097		dqq	93
39) Benzene	12.18	78	200637		ppp	98
40) Methyl methacrylate	13.67	41	78120		dqq	97
41) 1,4-dioxane	13.70	88	45674		ppb	
42) 2,2,4-trimethylpentane	13.01	57	268684		dad	94
43) Heptane	13.34	4.3	90111		ggb	91
44) Trichloroethene	13.47	130	113503		ppb	92
45) 1,2-dichloropropane	13.57	63	70962		dqq	92
*** *** *** *** **** **** **** **** ****						

^{(#) =} qualifier out of range (m) = manual integration A0121204.D AD12 1UG.M Wed Jan 10 08:57:09 2018

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121204.D Vial: 2 Acq On : 12 Dec 2017 6:30 pm Operator: RJP Sample : A1UG_2.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:47:45 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13,90	83	218545	1.93 ppb	97
47)	cis-1,3-dichloropropene	14.70	75	124684	2.09 ppb	95
48)	trans-1,3-dichloropropene	15.45	75	109299	2.28 ppb	100
49)	1,1,2-trichloroethane	15.77	97	103585	1.99 ppb	90
51)	Toluene	15.54	92	148891	2.15 ppb	88
52)	Methyl Isobutyl Ketone	14.60	43	110255	2.12 ppb	94
53)	Dibromochloromethane	16.51	129	246673	1.98 ppb	99
54)	Methyl Butyl Ketone	15.94	43	99662	2.19 ppb	98
55)	1,2-dibromoethane	16.77	107	166533	1.98 ppb	97
56)	Tetrachloroethylene	16.60	164	127885	1.99 ppb	8 B
57)	Chlorobenzene	17.62	112	227134	2.07 ppb	90
58)	Ethylbenzene	17.89	91	348483	2,25 ppb	99
59)	m&p-xylene	18.09	91	609033	4.30 ppb	97
60)	Nonane	18.47	43	143163	2.19 ppb	95
61)	Styrene	18.55	104	219206	2.18 ppb	69
62)	Bromoform	18.68	173	259771	1.99 ppb	96
63)	o~xylene	18.59	91	330628	2.00 ppb	92
64)	Cumene	19.18	105	408128	2.27 ppb	97
66)	1,1,2,2-tetrachloroethane	19.05	83	220540	1.97 ppb	99
67)	Propylbenzene	19.76	120	106074	2.25 ppb	74
68)	2-Chlorotoluene	39.81	126	112884	2.02 ppb	# 89
69)	4-ethyltoluene	19.94	105	413297	2.18 ppb	99
70)	1,3,5-trimethylbenzene	20.00	105	369610	2.06 ppb	98
71)	1,2,4-trimethylbenzene	20.50	105	312691	2.31 ppb	95
72)	1,3-dichlorobenzene	20.83	146	254293	2.12 ppb	98
73)	benzyl chloride	20.91	91	227404	2.23 ppb	99
74)	1,4-dichlorobenzene	20.98	146	262621	2.16 ppb	94.
75)	1,2,3-trimethylbenzene	21.02	105	353768	2.19 ppb	100
76)	1,2-dichlorobenzene	21.34	146	246636	2.05 ppb	97
77)	1,2,4-trichlorobenzene	23.45	180	110387	2.33 ppb	94
78)	Naphthalene	23.66	128	195559	2.64 ppb	93
79)	Hexachloro-1,3-butadiene	23.78	225	202136	1.98 ppb	95

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121205.D Vial: 3 Operator: RJP Acq On : 12 Dec 2017 7:11 pm Sample : AlUG_1.50 Misc : AD12_lUG Inst : MSD #1 Maltiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:47:22 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

DataAcq Meth : 1UG_RUN

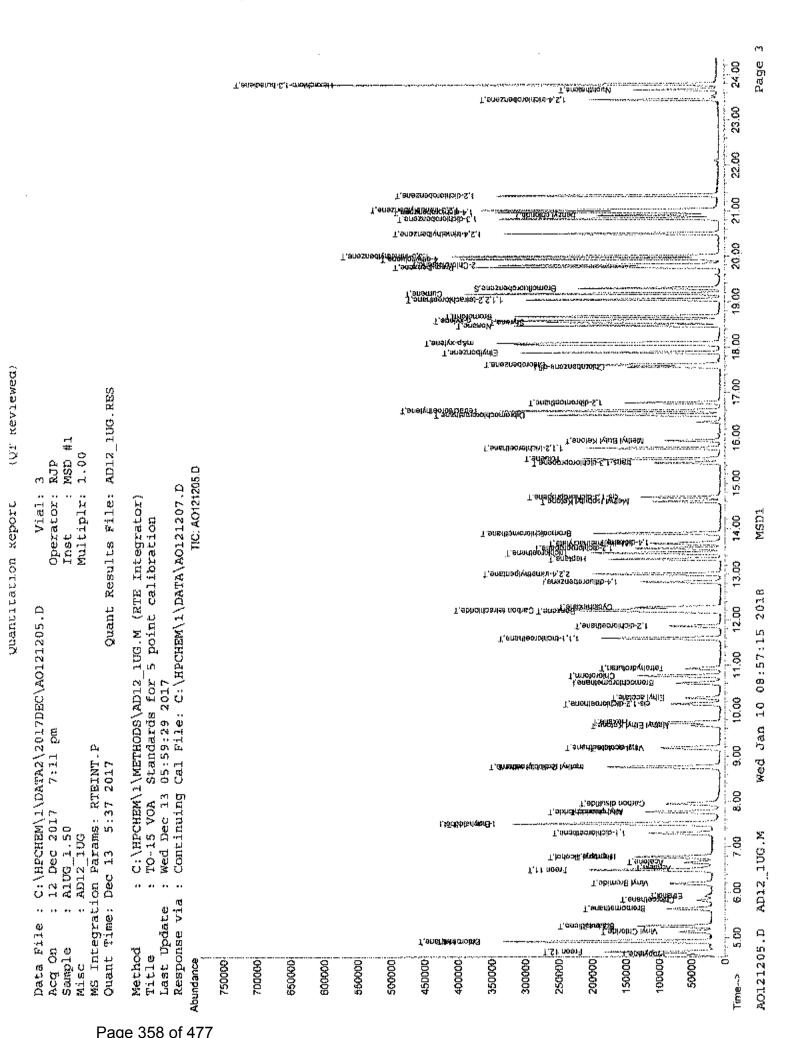
Internal Standards		QIon	Response	Conc U	nits	Dev	(Min)
1) Bromochloromethane		120	31404		ppb		0.00
35) 1,4-difluorobenzene	12.83	134	126416		ppb		0.00
50) Chlorobenzene-d5	17 55	117	104859	7.00	pbp		0.00
50) Chiciopenzene-us	17.30	111	104022	4,00	PPD		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.29	95	86018	1.01	ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	у	101	. ০০৯	
_						_	
Target Compounds			0.4.077.0		1	QV	alue
2) Propylene	4.63	41	34973		pp		84
3) Freon 12	4,69	85	237400		ppb		99
4) Chloromethane	4.91	50	64136 210249	1.51	dqq		81
5) Freon 114	4.92	85	210249	2.47	ББр		95
Vinyl Chloride	5.14	62	60567	1.50	ggg		95
7) Butane	5.25	43 39	70891	1.48	ььр		93
8) 1,3-butadiene	5.26	39	54959	1.5%	dqq		85
Bromomethane	5.64	94	72926	1.45	dqq		87
10) Chloroethane	5.83	64			dqq		95
11) Ethanol	5.92	45	16919	3.46	dqq		52
12) Acrolein	6.54	45 56	19957m /8	1.54	dąą		
13) Vinyl Bromide	6,20	106	71914	1.49	dqq		88
14) Freon 11	6.49	101		3.48	ppb		98
15) Acetone	6.65	202	22554	1 46	ppb		98
16) Pentane	6.78	40	22554 51146	7 47	ppb		72
			67550	7 44			1
17) Isopropyl alcohol	6.77	4:5	67550	4,44	bbp		94
18) 1,1-dichloroethene	7.30	96	62549 149053	1.03	dqq		-
19) Freon 113	7.51	101	143023	1.75	ББр		85
20) t-Butyl alcohol	7.52		87609	1.55	dqq		94
21) Methylene chloride	7.77	84	46508	1.51	ppp		89
22) Allyl chloride	7.76	41	52709 142838	1.66	ppp		92
23) Carbon disulfide	7.95	76	142838		ppb		86
24) trans-1,2-dichloroethene			74102		bbp		97
25) methyl tert-butyl ether	8.76	73			dqq		100
<pre>26) 1,1-dichloroethane</pre>	9.19	63	97253		qqq		98
27) Vinyl acetate	9.16	43	97253 90326	1.64	dqq		98
28) Methyl Ethyl Ketone	9.67		20708	1,50	qqq	#	64
29) cis-1,2-dichloroethene	10.15	61	65825	1.52	dqq		99
30) Hexane	9.74	57	64458 88781	1.58	ppb		98
31) Ethyl acetate	10,28	43	65825 64458 88781	1.53	dqq		92
32) Chloroform	10.76	83	146617	1.51	dqq		98
33) Tetrahydrofuran	10.93	42	39374	1.58	р́рЪ		93
34) 1,2-dichloroethane	11.86	62	96283		đqq		99
36) 1,1,1-trichloroethane	11.59	97	165842		ppb		89
37) Cyclohexane	12,28	56	61399		ppb		86
38) Carbon tetrachloride	12.22	117	196483		ppb		93
	12.18	7B	148767		bbp		98
39) Benzene							98
40) Methyl methacrylate	13.67	41	54058		dqq		
41) 1,4-dioxane	13.70	88	321.07		bbp		65
42) 2,2,4-trimethylpentane	13.01	57			ppb		94
43) Heptane	13.34	43	64162		ppp		90
44) Trichloroethene	13.47				БЪр		91
45) 1,2-dichloropropane	13.57	63	52446	1.46	dqq		93
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							

(#) = qualifier out of range (m) = manual integration A0121205.D AD12_1UG.M Wed Jan 10 08:57:13 2018

MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121205.D Vial: 3 Acq On : 12 Dec 2017 7:11 pm Operator: RJP Sample : AlUG_1.50 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:47:22 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M {RTE Integrator} Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QIon	Response	Cone Unit	Qvalue
46)	Bromodichloromethane	13.90	83	162102	1.43 ppb	97
47)	cis-1,3-dichloropropene	14.69	75	89177	1.49 ppb	96
48)	trans-1,3-dichloropropene	15.45	75	73866	1.54 ppb	97
49)	1,1,2-trichloroethane	15.78	97	75641	1.45 ppb	89
51)	Toluene	15.54	92	107536	1.58 ppb	90
52)	Methyl Isobutyl Ketone	14.60	43	72200	1.41 ppb	96
53)	Dibromochloromethane	16.51	129	181723	1.48 ppb	98
54)	Methyl Butyl Ketone	15.94	43	59230m 🍂	7 1.32 ppb	
55)	1,2-dibromoethane	16.77	107	120751	1.46 ppb	98
56)	Tetrachloroethylene	16.60	164	93503	1.48 ppb	88
57)	Chlorobenzene	17.62	112	161182	1.49 ppb	89
58)	Ethylbenzene	17.88	91	244593	1.60 ppb	100
59)	m&p-xylene	18.09	91	436879	3.13 ppb	98
60)	Nonane	18.48	4.3	100675	1.56 ppb	94
61)	Styrene	18.55	104	154898	1.56 ppb	68
62)	Bromoform	18.68	173	189348	1.47 ppb	95
63)	o-xylene	18.59	91	248283	1.52 ppb	91
64)	Chwebe	19.18	105	282510	1.60 ppb	96
66)		19.04	83	161434	1.46 ppb	99
67)	Propylbenzene	19.76		74317	1.60 ppb	70
68)		19.81		82570	1.50 ppb	# 85
69)		19.94	105	290340	1.56 թթե	99
70)	va va	20.00	105	267687	1.51 ppb	97
71.)		20.50	105	213869	1.60 ppb	96
72)		20.83	146	181810	1.54 ppb	98
	benzyl chloride	20.90	91	154628	1.54 ppb	99
74)		20,98		182126	1.52 ppb	95
75)	1,2,3-trimethylbenzene	21.02	105	252254	1.58 ppb	99
76)	1,2-dichlorobenzene	21.34	146	179407	1.51 ppb	98
	1,2,4-trichlorobenzene	23.45		73365	1.57 ppb	94
79)	Naphthalene	23.66	128	122511	1.68 ppb	94
79)	Hexachloro-1,3-butadiene	23.78	225	145625	1.45 ppb	94



Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121206.D Vial: 4 Acq On : 12 Dec 2017 7:51 pm Operator: RJP Sample : A1UG_1.25 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:46:38 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Dec 12 22:46:05 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AO121207.D

DataAcq Meth : 1UG_RUN

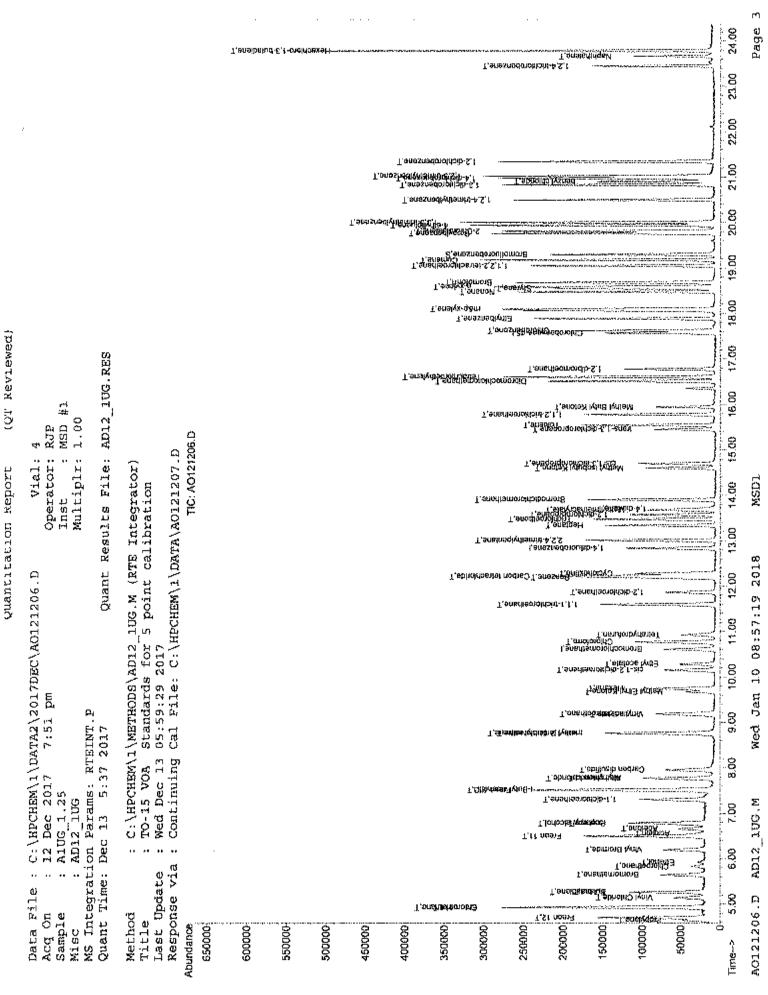
Internal Standards	<b>R.</b> Т.	QIon	Response (	Conc U	Jnits	Dev	(Min)
1) Bromochloromethane	10.60	128	30610	1,00	ppb		0.00
35) 1,4-difluorobenzene			124259	1.00	dqq (		0.00
50) Chlorobenzene-d5	17,56	117	103282	3.DO	ppb		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.30	95	82889	0.99	dqq (		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	<i>r</i> =	99	.00%	
Target Compounds						Qva	alue
2) Propylene	4.64	41	28928	1.28	dqq 8		87
3) Preon 12	4.70	85	196180		dgq i		99
4) Chloromethane	4.92	50	53073 173506	1.28	dqq 8		81
5) Freon 114	4.92	85	173506	1.24	ppb		96
<li>6) Vinyl Chloride</li>	5.14	62	49421	1.26	dqq		98
7) Butane	5.26	43 39	57744	1.24	dqq		98
8) 1,3-butadiene	5.26	39	45022	1.27	qqq N		87
9) Bromomethane	5.64		60510	1.23	dqq t		86
10) Chloroethane	5.83	64 45 56	22460	1.24	ggq l		95
11) Ethanol	5.92	45	14690	1.30	daa t		60
· 12) Acrolein	6.56	56	16336m / ⁿ	1.29	bbp		
13) Vinyl Bromide	6.20		59722	1.27	ववव १		88
14) Freon 11	6.50	101	200708		dqq 1		100
15) Acetone	6.66 6.78	58	18279		dqq ,		95
16) Pentane	6.78	42	40696	1.20	dqq	#	65
17) Isopropyl alcohol			59091		bbp		ŀ
18) 1,1-dichloroethene	7.31	96	51310		dqq		92
19) Freon 113	7.51	101	110344 74552	1.31	. ppb		87
20) t-Butyl alcohol	7.53	59	74552	1.35	qqq		96
21) Methylene chloride		54	35148	1.2	dqq		89
22) Allyl chloride	7.77		41224 118798	1.34	bbp		91
23) Carbon disulfide	7.96	76	118798	1.27	dđđ		90
24) trans-1,2-dichloroethene			60724	1.29	dqq (		97
25) methyl tert-butyl ether		73	105951		ddd (		100
26) 1,1-dichloroethane	9.19	63	80768 72676	1.26	dqq		98
27) Vinyl acetate	9.16	63 43 72	72676 16947		ppb		97
28) Methyl Ethyl Ketone					dqq		1.
29) cis-1,2-dichloroethene			54577		ddd (		97
30) Hexane	9.75	57	51482		dag (		98 92
31) Ethyl acetate	10.28	4.3	74365 120433		ppb		
32) Chloroform				ተ ተ ተ	bbp		98
33) Tetrahydrofuran	10.93	42	31299		ppb		89
34) 1,2-dichloroethane	11.86	62	80105		dqq i		100
36) 1,1,1-trichloroethane	11.59	97 56	135136		dad		88 87
37) Cyclohexane 38) Carbon tetrachloride	12.27	56	50467		dqq !		93
39) Benzens	12.21 12.18	117 78	165326 125236		dqq i		99
			44783		qqq		99
40) Methyl methacrylate 41) 1,4-dioxane	13.67 13.70	8B	27770		qqq ı		<b>6</b> 5
42) 2,2,4-trimethylpentane	13.01				qdd ,	41	93
43) Heptane	13.34	43	160961 53175		dqq		93
44) Trichloroethene			69081		dqq		92
45) 1,2-dichloropropane	13.57	63	43629		dqq		93
20) T'S ATCHTOLOM OF THE						<b></b>	

⁽#) = qualifier out of range (m) = manual integration

Wed Jan 10 08:57:17 2018 A0121206.D A012_1UG.M

MSD1

MS Integration Params: RTEINT.P


Quant Time: Dec 12 22:46:38 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QIon	Response	Cone Unit	Qvalue
46)	Bromodichloromethane	13.90	83	134817	1.21 ppb	97
47)	cis-1,3-dichloropropene	14.70	75	73941	1.26 ppb	96
48)	trans-1,3-dichloropropene	15.45	75	59748	1.27 ppb	99
49)	1,1,2-trichloroethane	15.78	97	62919	1.23 ppb	91
51.)	Toluene	15.54	92	86275	1.29 ppb	91
52)	Methyl Isobutyl Ketone	14.60	43	64523	1.28 ppb	94
53)		16.51	129	149700	1.24 ppb	98
54)		15.94	43	56297	1.28 ppb	98
55)	1,2-dibromoethane	16.77	107	98336	1.21 ppb	98
56)		16.60	164	77814	1.25 ppb	89
57)	Chlorobenzene "	17,62	112	131823	1.24 ppb	89
58)	Ethylbenzene	1.7.89	91	192010	1.28 ppb	99
59)		18.09	91	352360	2.56 ppb	99
60)	Nonane	18.47	43	80349	1.26 ppb	94
61)	Styrene	18.55	104	125308	1.28 ppb	67
62)	Bromoform	18.68	173	155580	1.23 ppb	95
63)	o-xylene	18.59	91	199659	1.24 ppb	91
64)	Cumene	19.18	105	226512	1.30 ppb	96
66)	1,1,2,2-tetrachloroethane	19.05	83	133733	1.23 ppb	99
67)	Propylbenzene	19.76	120	58760	1.29 ppb	73
68)	2-Chlorotoluene	1.9.81	126	68647	1.27 ppb	# 87
69)	4-ethyltoluene	19.94	105	235558	1.28 ppb	98
70)	1,3,5-trimethylbenzene	20.00	105	217637	1.25 ppb	96
71)	1,2,4-trimethylbenzene	20.50	105	170553	1.30 ppb	95
72)	1,3-dichlorobenzene	20.83	146	147089	1.26 ppb	98
73)	benzyl chloride	20.90	91	129402	1.31 ppb	99
74)	1,4-dichlorobenzene	20.98	145	149338	1.27 ppb	94
75)	1,2,3-trimethylbenzene	21,02	105	202578	1.29 ppb	98
76)	1,2-dichlorobenzene	21.34	146	146870	1.26 ppb	98
77)	1,2,4-trichlorobenzene	23,45	180	59427	1.29 ppb	96
78)	Naphthalene	23,66	128	96745	1.34 ppb	92
79)	Mexachloro-1,3-butadiene	23.78	225	122871	1.24 ppb	94



Page 361 of 477

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:46:14 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc	Units	Dev(	Min)
<ol> <li>Bromochloromethane</li> </ol>	10.60	128	30720	1.0	dqq 0		0.00
35) 1,4-difluorobenzene	12.83	114	121920	1.0	dqq 0		
50) Chlorobenzene-d5	17.56	117	101111	1.0	dqq 0		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.29				dqq 0		0.00
Spiked Amount 1.800	Range 70	- 130	Recovery	=	100	.00%	
Target Compounds						Qva	lue.
2) Propylene	4,64	41	22647		dqq 0		85
3) Freon 12	4.70	8.5	156029	1.0	dqq 0		100
4) Chloromethane	4.92	50	41456	1.0	dqq 0		83
5) Freon 114	4.93	85	139944	1.0	dag 0		95
6) Vinyl Chloride	5.13	62	39492	1.0	dqq 0		96
7) Butane	5.25	43	40020	+. •	dqq 0		98
8) 1,3-butadiene	5.26		35647	1.0	dqq 0		82
<ol><li>Bromomethane</li></ol>	5.64	94	49196	1.0	dqq 0		86
10) Chloroethane	5.83	64 45	18116	1.0	dqq 0		96
11) Ethanol	5.92	45	11323	O	dqq 0		70
12) Acrolein	6.55	56	12793m 💋	4.0	l ppb		
13) Vinyl Bromide	6.21	106	47329	1.0	dqq 0		88
14) Freon 11	6.50	101	158712	1.0	dqq 0		99
15) Acetone	6.66	58	15142	3.0	dqq 0		97
16) Pentane	6.78	42	33969	1.0	dqq 0	#	68
17) Isopropyl alcohol	6.78 7.30	4.5	45867	10	dqq 0	Ħ	1
18) 1,1-dichloroethene	7.30	96	45867 33464	1.0	dqq 0	#	85
19) Freon 113	7.51	101	84387		dqq 0		97
20) t-Butyl alcohol	7.53	59	55406	3.00	dag 0		95
21) Methylene chloride	7.78 7.77	84	30038		dqq 0		89
22) Allyl chloride	7.77	4 1.	30980	1.00	dqq 0		90
23) Carbon disulfide	7.96	76	94396	1.00	dqq 0		99
24) trans-1,2-dichloroethene	8.75	61	47250		o ppb		96
25) methyl tert-butyl ether	8.77	73	名グエフフ	1.04	dqq 0		99
26) 1,1-dichloroethane	8.77 9.20	63	82127 64234		dqq 0		97
27) Vinyl acetate	9.17	43	54022		dag 0		98
28) Methyl Ethyl Ketone	9.67	72	13461		dqq 0		1
29) cis-1,2-dichloroethene	10.15	61	42371	1.00	dgg 0		98
30) Hexane	9.74	72 61 57	42371 39829	1.00	dqq 0		96
31) Ethyl acetate	10.28		56909	1.00	dqq 0		92
32) Chloroform	10,77	83	95278	1.00	dqq 0		97
33) Tetrahydrofuran	10.93	42	24421		dqq 0		91
34) 1,2-dichloroethane	11.86	62	63009		dgg 0		99
36) 1,1,1-trichloroethane	11.59	97	108030		ďďď 0		90
37) Cyclohexane	12.28	56	38904	1.00	dqq 0		85
38) Carbon tetrachloride	12.22	117	132882		agg 0		94
39) Benzene	12.18	78	96021		dqq 0		97
40) Methyl methacrylate	13.67	41	35687m 🎤		dqq 0		
41) 1,4-dioxane	13.70	88	22092		dqq 0	#	63
42) 2,2,4-trimethylpentane	13.01	57	123909		dqq 0		92
43) Heptane	13.33	43	39962		dqq t		89
44) Trichloroethene	13.47	130	54297		dqq 0		92
45) 1,2-dichloropropane	13.57	63	34589		dgg 0		94

^{(#) =} qualifier out of range (m) = manual integration

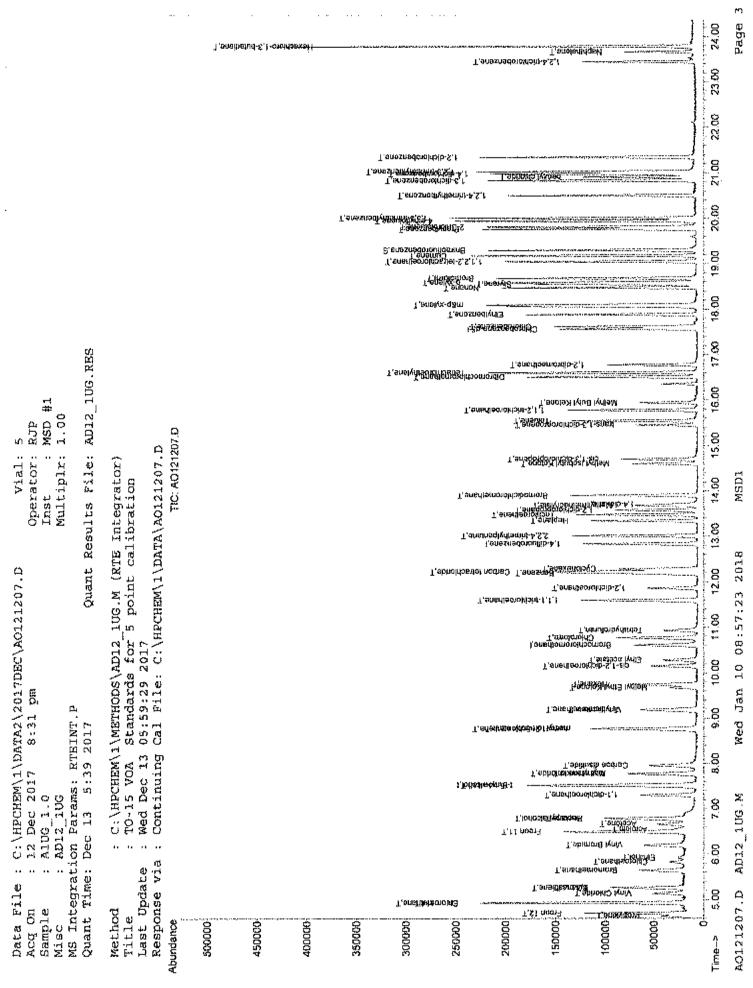
AO121207.D AD12_1UG.M Wed Jan 10 08:57:21 2018

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121207.D Vial: 5 Acq On : 12 Dec 2017 8:31 pm Operator: RJP Sample : AlUG_1.0 Misc : AD12_1UG Inst: : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:46:14 2017 Quant Results File: AD12_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Dec 12 22:46:05 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AO121207.D
DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Cone Unit	Qvalue
46)	Bromodichloromethane	13.90	83	109073	1.00 ppb	95
	cis-1,3-dichloropropene	14.70	75	57641	1.00 ppb	94
	trans-1,3-dichloropropene	15.45	75	46334	1.00 ppb	98
	1,1,2-trichloroethane	15.78	97	50296	1.00 ppb	90
51)	Toluene	15.54	92	65728	1.00 ppb	88
52)	Methyl Isobutyl Ketone	14.60	43	49449	1.00 ppb	96
	Dibromochloromethane	16.51	129	118375	1.00 ppb	98
	Methyl Butyl Ketone	15.94	43	43225	1.00 ppb	98
55)	1,2-dibromoethane	16.77	107	79734	1.00 ppb	95
56)	Tetrachloroethylene	16.60	164	60955	1.00 ppb	87
57)	Chlorobenzene	17.61	112	104452	1.00 ppb	89
58)	Ethylbenzene	17.89	91	146967	1.00 ppb	97
59)	m&p-xylene	18.10	91	269179	2.00 ppb	98
60)	Nonane	18.47	4.3	62217	1.00 ppb	95
61.)	Styrene	18.55	104	95574	1.00 ppb	# 66
62)	Bromoform	18.68	173	124034	1.00 ppb	94
63}	o-xylene	18.59	91	157423	1.00 ppb	91
64)	Cumene	19.18		170594	dqq 00.1	94
66)	1,1,2,2-tetrachloroethane	19.05	83	106498	1,00 ppb	99
67)	Propylbenzene	19.76		44744	dqq 00.1	71
68)	2-Chlorotoluene	19.81	126	52992	1.00 ppb	# 87
69)		19.94		179899	1.00 ppb	98
	1,3,5-trimethylbenzene	20.00	105	170407	1.00 ppb	96
	1,2,4-trimethylbenzene	20.50	105	128517	1.00 ppb	95
72)	1,3-dichlorobenzene	20.83	146	114165	1.00 ppb	99
73)	benzyl chloride	20.90	91	97019	1.00  ppb	98
74)	1,4-dichlorobenzene	20.98	146	115428	1.00  ppb	94
	1,2,3-trimethylbenzene	21.02	105	153813	1.00 ppb	99
	1,2-dichlorobenzene	21.34	146	114258	1.00 ppb	97
	1,2,4-trichlorobenzene	23.45	180	44965	1.00 ppb	97
78)	Naphthalene	23.66	128	70427	1.00 ppb	92
79)	Hexachloro-1,3-butadiene	23.78	225	96991	1.00 ppb	95

KEV LEWELL

7.7

Arementary mathematic



Page 364 of 477

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121208.D Vial: 6 Acq On : 12 Dec 2017 9:10 pm Operator: RJP Sample : Alug_0.75 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:48:16 2017 Quant Results File: ADI2 10G.RBS

Quant Method: C:\HPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

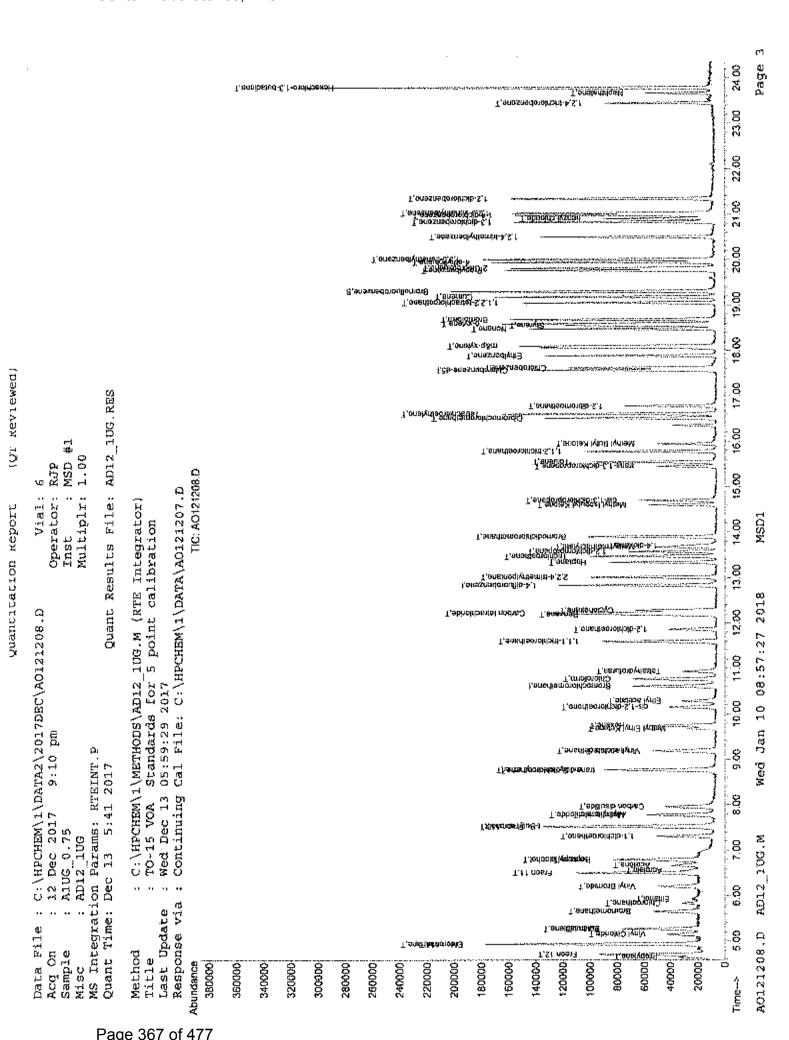
DataAcq Meth : 1UG_RUN

Internal Standards	יזי קי	QXon	Response	Conc U	nits	Dev	(Min)
				<b></b>			
<ol> <li>Bromochloromethane</li> </ol>	10.62		30384	1.00			0.01
35) 1,4-difluorobenzene	12.83						0.00
50) Chlorobenzene-d5	17.56	117	100728	1.00	qqq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.30	95	78679	0.96	dqq		0.00
		- 130				. QQ\$	
						_	•
Target Compounds	4 65	4.7				QV	alue
2) Propylene	4.65	41	15684	0.74			82
3) Freon 12	4.70	85	114997	0.75			98
4) Chloromethane	4.93	50	31821	0.78			83
5) Freon 114	4.93	85		0.76			95
6) Vinyl Chloride	5.15	62	29432	0.75			92
7) Butane	5.27	43 39	34864	0.75			95
8) 1,3-butadiene	5.27	39	26441	0.75			90
<ol><li>9) Bromomethane</li></ol>	5.65	94		0.76			88
10) Chloroethane	5.83	<b>5</b> 4	13500	0.75			92
11) Ethanol	5.93	45					
12) Acrolein	6.56	56		0.77	dqq		
13) Vinyl Bromide	6.20	106	36192	0.77	ppb		91
14) Freon 11	6.50	101	120892	0.77	ppb		100
15) Acetone	6.67	58	11068m\b				
16) Pentane	6.79		24449	0.73	dag	#	61
17) Isopropyl alcohol	6.78	45		0.79			1
18) 1,1-dichloroethene	7.31	96	251.95	0.76			86
19) Freon 113	7.51	96 101	64837	0.78			8.9
20) t-Butyl alcohol	7.54	59	41210	0.75			96
21) Methylene chloride	7.78	84	22162	0.75			87
22) Allyl chloride	7.76	41	23748	0.78			94
23) Carbon disulfide	7.96	76	72802	0.78			90
		62	34105	0.73			97
24) trans-1,2-dichloroethene		73		0.74			98
25) methyl tert-butyl ether	8.76		6031.6				100
26) 1,1-dichloroethane	9.20	63	47387	0.75			94
27) Vinyl acetate	9.17	43	42689	0.80			
28) Methyl Ethyl Ketone	9.67	72		0.75			1
29) cis-1,2-dichloroethene		61 57	32042	0.76	ppp		98
30) Hexane	9.74		28928	0.73			95
31) Ethyl acetate	10.29			0.77			96
32) Chloroform	10.77	83	72334	0.77	bbp		98
33) Tetrahydrofuran	10.93	42	17960	0.74	dqq		89
34) 1,2-dichloroethane	1186	62	45902	0.74	ppb		1.00
36) 1,1,1-trichloroethane	11.59	97	80461	0.73			89
37) Cyclohexane	12.28	56	28259	0.72	ggg		84
38) Carbon tetrachloride	12.22	117	97838	0.73	ppb		91
39) Benzene	12.18	78	72457	0.74	qqq		98
40) Methyl methacrylate	13.67	41	2574Qm 🖋	0.71	dqq		
41) 1,4-dioxane	13.71	8 B	16417	0.73		#	62
42) 2,2,4-trimethylpentane	13.01	57	89338	0.71			91
43) Heptane	13.34		29094	0.72			92
44) Trichloroethene	13.47						91
45) 1,2-dichloropropane	13.57		26274	0.75			93

^{(#) =} qualifier out of range (m) = manual integration A0121208.D AD12 1UG.M Wed Jan 10 08:57:25 2018

MSD1

Quantitation Report (QT Reviewed)


Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121208.D Vial: 6 Acq On : 12 Dec 2017 Operator: RJP 9:10 pm Sample : A1UG_0.75 Misc : AD12_1UG Inst : MSD #1 Multiplx: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 12 22:48:16 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12 1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QIon	Response	Cone Unit	Qvalue
46)	Bromodichloromethane	13.90	83	80927	0.73 ppb	97
47)		14.70	75	41307	0.71 ppb	96
48)	trans-1,3-dichloropropene	15.45	75	34646	0.74 ppb	98
49)	1,1,2-trichloroethane	15.78	97	37157	0.73 ppb	90
51)	Toluene	15.55	92	45879	0.70 ppb	# 83
52)	Methyl Isobutyl Ketone	14.60	43	37033	0.75 ppb	97
53)		16.51	129	88056	0.75 ppb	98
54)	Methyl Butyl Ketone	15.94	43	32334	0.75 ppb	96
55)	1,2-dibromoethane	16.78	107	56674	0.71 ppb	97
56)	Tetrachloroethylene	16.60	1.64	45765	0.75 ppb	87
57)	Chlorobenzene	17.62	112	76419	0.73 ppb	90
58)	Ethylbenzene	17.88	91.	105133	0.72 ppb	99
59)	m&p-xylene	18.10	91	190975	1.42 ppb	99
60)	Nonane	18.48	43	42040	0.68 ppb	95
61)	Styrene	18.55	104	673.80	0.71 ppb	67
62)	Bromoform	18.68	173	90509	0.73 ppb	95
63)	o-xylene	18.59	91.	111966	0.71 ppb	93
64)	Cumene	19.18	105	119795	0.70 ppb	95
66)		19.05	83	79738	0.75 ppb	98
67)		19.76	120	32053	0.72 ppb	79
68)	2-Chlorotoluene	19.81	126	36914	0.70 ppb	96
69)	4-ethyltoluene	19.94	1.05	123963	0.69 ppb	98
70)		20.01	105	118607	0.70 ppb	97
71)	• • •	20.50	105	87390	0.68 ppb	95
72)	1,3-dichlorobenzene	20.83	146	81995	0.72 ppb	99
	benzyl chloride	20.90	91	677 <i>6</i> 5	0.70 ppb	99
74)	1,4-dichlorobenzene	20.98	146	80698	0.70 ppb	95
75)	• •	21.02	105	106746	0.70 ppb	9B
76}	1,2-dichlorobenzene	21.34	146	80583	o 0.71 ppb	95
77)		23.44	180	31890m 🖋	0.71 ppb	
78)		23.66	138	51708m 🎺	0.74 ppb	
79)	Hexachloro-1.3-butadiene	23.78	225	70816	0.73 ppb	95



Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121209.D Vial: 7 : 12 Dec 2017 9:47 pm Operator: RJP Acq On : A1UG_0.50 : AD12_1UG Inst : MSD #1 Sample Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:48:50 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

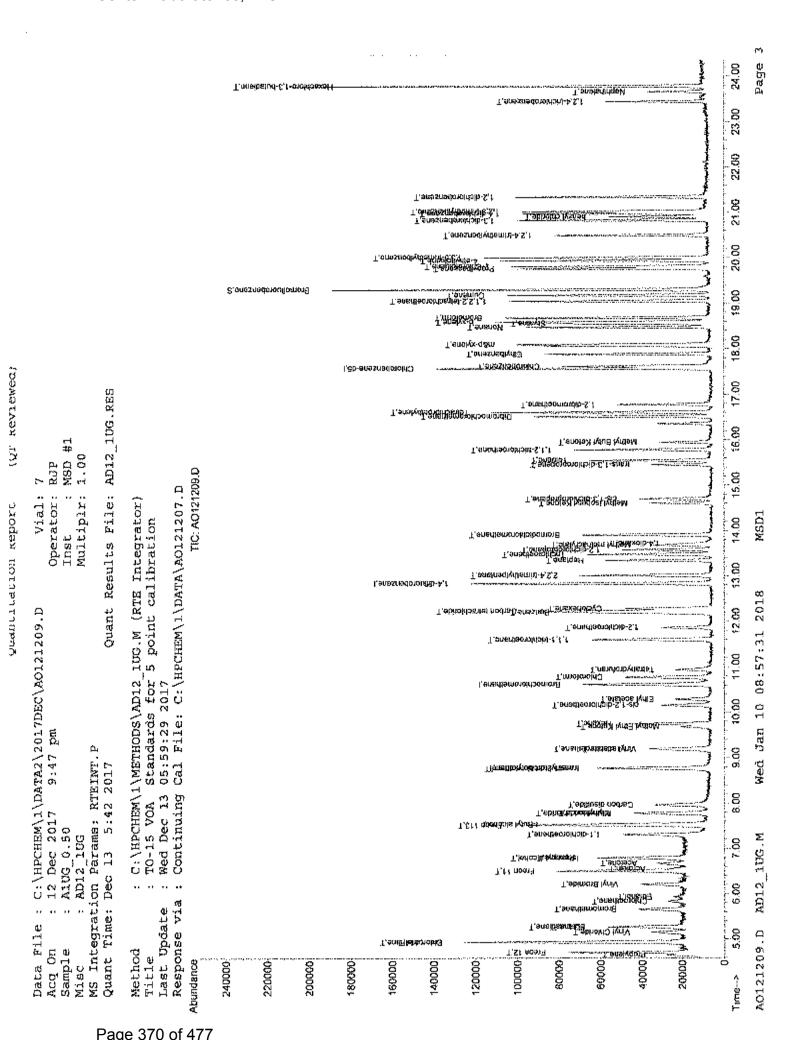
Response via : Continuing Cal File: C:\MPCHEM\1\DATA\A0121207.D

Internal Standards	R.T.	QIon	Response (	Conc Un	iits	Dev	(Min)
1) Bromochloromethane	10 63	128	28929	1.00	nnh		0.00
35) 1,4-difluorobenzene	12.83	114	122565	1.00			0.00
50) Chlorobenzene-d5	17 57	117	97192	1.00			
DOY CHIOLOGGIANGIAG US	1713,		3,132		FF		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.30	95	75890	0.96			0.00
Spiked Amount 1.000	Range 70	- 130	Recover	<b>Y</b> ≖	96.	00%	
						_	
Target Compounds						Qva	alue
2) Propylene	4.65	41	11879	0.56			84
3) Freon 12	4.70	85	79462	0.54			99
4) Chloromethane	4.93	50	22471	0.58			80
5) Freon 114	4.93	85		0.54			94
6) Vinyl Chloride	5.14	62		0.54			97
7) Butane	5 - 27	43 39	23457	0.53		#	96
8) 1,3-butadiene	5.27		18354	0.55			88
9) Bromomethane	5.65	94	24778				89
10) Chloroethane	5.83	64	8856 5605m 6172m	0.52	agg		99
11) Ethanol	5.93	4.5	5605m /	0.53			
12) Acrolein	6.55	56	6172m 🛴	0.52			
13) Vinyl Bromide	6.20			0.53			88
14) Freom 11	6.50	101	80217	0.54			99
15) Acetone	6.66	58	7479	0.52			90
16) Pentane	6.79		17014	0.53			69
17) Isopropyl alcohol	6.78	45	23830	0.55		#	1
18) 1,1-dichloroethene	7.31	96	20250	0.64			91
19) Freon 113	7.51	101	44263	0.56			88
20) t-Eutyl alcohol	7.54	59	27449	0.53			95
21) Methylene chloride	7.78	84	1.5440	0.55			89
22) Allyl chloride	7.77	41 76	15896	0.54			87
23) Carbon disulfide	7.96	76	48558	0.55			88
24) trans-1,2-dichloroethene		61	23059				92
25) methyl tert-butyl ether		73	40698	0.53		#	51
26) 1,1-dichloroethane	9.20	63 43	32275	0.53			97
27) Vinyl acetate	9.17			0.55			92
28) Methyl Ethyl Ketone		72	6745	0.53		#	1
29) cis-1,2-dichloroethene		61	21380	0.54			98
30) Hexane	9.74	61 57 43	19653	0.52			97
31) Ethyl acetate	10.28		27885	0.52			88
32) Chloroform	10.77	83	47396	0.53	agg		100
33) Tetrahydrofuran	10,94	42	11817	0.51	pbp		89
34) 1,2-dichloroethane	11.86	62	32064	0.54			98
36) 1,1,1-trichloroethane	11.60	97	54449	0.50			90
37) Cyclohexane	12.28	56	18630	0.48			78
38) Carbon tetrachloride	12.22	117	67215	0.50			95
39) Benzene	12.19	78	49062	0.51			97
40) Methyl methacrylate	13.67	4.1	16216m 🕖	0.45			
41) 1,4-dioxane	13.72	88	9703m 🎸				
42) 2,2,4-trimethylpentane	13.01	57	60014	0.48			91
43) Heptane	13.34	43	18612	0.46			91
44) Trichloroethene	13.47		27377				90
45) 1,2-dichloropropane	13.57	63	3.7017	0.49	qąą		94
							•

^{(#) =} qualifier out of range (m) = manual integration A0121209.D AD12_1UG.M Wed Jan 10 08:57:29 2018

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121209.D Vial: 7 Acq On : 12 Dec 2017 9:47 pm Operator: RJP Sample : AlUG_0.50 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params; RTEINT.P

Quant Time: Dec 12 22:48:50 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.90	83	53718	0,49 ppb	99
47)	cis-1,3-dichloropropene	14.70	75	26579	0.46 ppb	97
48)	trans-1,3-dichloropropene	15.45	75	23110	0.50 ppb	96
49)	1,1,2-trichloroethane	15.78	97	24596	0.49 ppb	89
51)	Toluene	15.54	92	30275	0.48 ppb	88
52)		14.60	43	21135	0.44  ppb	94
53)	Dibromochloromethane	16.51	129	58867	0.52 ppb	99
54)	Methyl Butyl Ketone	15.95	43	17948	0.43  ppb	96
55)	1,2-dibromoethane	16.77	107	37159	0.48 ppb	98
56)	Tetrachloroethylene	16,60	154	29945	0.51 ppb	90
57)		17.62	112	49930	0.50 ppb	93
58)	Ethylbenzene	17.89	91	66387	0.47 ppb	97
59)	m&p-xylene	18.09	91	114802	dqq 88.0	95
60)	Nonane	18.47	43	26257	0.44 ppb	97
61)	Styrene	18.55	104	42408	0.46 ppb	69
62)	Bromoform	18.68	173	61129	0.51 დებ	97
	o-xylene	18.58	31	71193	0.47 ppb	94
64)		19.18	1.05	74522	0.45 ppb	95
66)	1,1,2,2-tetrachloroethane	19.05	83	52701	0.51 ppb	98
67)		19.76	120	19433	0.45 ppb	72
68)	2-Chlorotoluene	19.81	126	23613	0.46 ppb	# 83
69)	<b>-</b>	19.94	105	75885	0.44 ppb	98
	1,3,5-trimethylbenzene	20.00	1.05	72575	0.44 ppb	98
71)	,	20.50	105	52037	0.42 ppb	97
72)	1,3-dichlorobenzene	20.83	146	51645	0.47 ppb	99
73)	benzyl chloride	20.91	91	41005	0.44 ppb	97
74)	•	20.98	146	51352	0.46 ppb	93
	1,2,3-trimethylbenzene	21.02	105	61821	0.42 ppb	99
76)	1,2-dichlorobenzene	21.34	146	51323	0.47 ppb	97
77)	1,2,4-trichlorobenzene	23.44	160	18163	0.42 ppb	94
	Naphthalene	23.66	128	28184	0.42 ppb	# 82
79)	Hexachloro-1,3-butadiene	23.78	225	44968	0.48 ppb	96



Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121210.D Vial: 8 Acq On : 12 Dec 2017 10:25 pm Operator: RJP : AlUG_0.30 : AD12_1UG Sample Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 12 22:50:06 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

DataAcq Meth : 1UG_RUN

_	<del></del>							
Interna	al Standards	R.T.	QIon	Response C	one U	nits	Dev	(Min)
					~ ~ ~ ~ ~ ~			
1.) Br	romochloromethane	10.61	128	28888 119786 95162	1.00			0.00
35) 1,	,4-difluorobenzene	12.83	114	119786	1.00	qqq		0.00
50) Cl	romochloromethane ,4-difluorobenzene nlorobenzene-d5	17.56	117	95162	1.00	dqq		0.00
System	Monitoring Compounds							
	romofluorobenzene	19.30						
Spike	ed Amount 1.000	Range 70	- 130	Recovery	=	92	.00%	
FTI on annexa on to	Compounds						0	-1
	Compounds	4,65	4.7	6922	מל ח	mmh	Q۷۰	alue 79
	copylene ceon 12	4.71						99
•						dqq		85
	loromethane	4.93		12784		ppp		93
	ceon 114	4.93 5.15	62	43117 $12534$	0.34	dqq		
	inyl Chloride Itane	5.27			0.34			97
	3-butadiene	D. 21	43	15061				97
		5.27 5.65	37	11034 15796	0.34	ppb		91
	comonethare	5.05	54 61	5759	0.34	ggg		95
	loroethane		40	2123	0.34	գութ		93 89
11) Et		5.94	45	3848 4034m M 15028	0.30	ppo		63
	rolein	6.57	700	4034#1.4	0.34	ppp		200
	inyl Bromide	6.21	7.00	10000	0.34	ppp		100
,	reon 11	6.50	TOT	49505	0.33			98
15) Ac		6.67	58	4835 10556 14942	0.34			98
16) Pe		6.79	4.2	10556	0.33			63
	sopropyl alcohol	6.79	45	14942	0.35			1.
	1-dichloroethene	7.30	96 101 59	11072	0.35			85
	reon 133	7.52 7.53	101	26640 17323 9232	0.34			90
20) t-	Butyl alcohol	7.53	23	1/323	0.33			96
	ethylene chloride	7.78	84	9232	0.33			82
	lyl chloride	7.77	41	9567 29612 13771	0.33			89
	rbon disulfide	7.96 8.76	76	83618	0.33			90
	ans-1,2-dichloroethene	8.76	ĐΤ	13771	0.31			50
	thyl tert-butyl ether	8.11	13	24641	0.32			97
46) I	1-dichloroethane	9.20	6.3	19215 16038 3903	0.32	ppp		99
27) V1	nyl acetate thyl Ethyl Ketone	9.17	43	76038	0.32			88
		9.70	72	3903	0.31			1
	s-1,2-dichloroethene	10.15	61	13251				95
30) He		9.74	57 43 83	11655	0.31			97
	hyl acetate	10.29	4.3	16021	0.30	ppp		98
	loroform				0.33			97
	trahydrofuran	10.95	42	7297	0.32			91
	2-dichloroethane	11.86	62	19411	0.33	ppp		96
	1,1-trichloroethane	11.59	97	33435	0.32			90
	clohexane	12.28	56	10469	0.27			87
:	rbon tetrachloride	12.22	117	40221	0.31			93
	nzene	12.18	78	29761	0.32			97
	thyl methacrylate	13.67	41	9678m/0	0.28		11	
	4-dioxane	13.72	88	5782		ppb	Ħ	68
	2,4-trimethylpentane	13.01	57	34759	0.29			89
43) He	# 1 To a 1	13.34	43	10667	0.27			87
	ichloroethene	13.47	130	15765	0.30			95
	2-dichloropropane	13.57	63	10537	0.31	aqq		90

^{(#) =} qualifier out of range (m) = manual integration A0121210.D AD12_1UG.M Wed Jan 10 08:57:33 2018

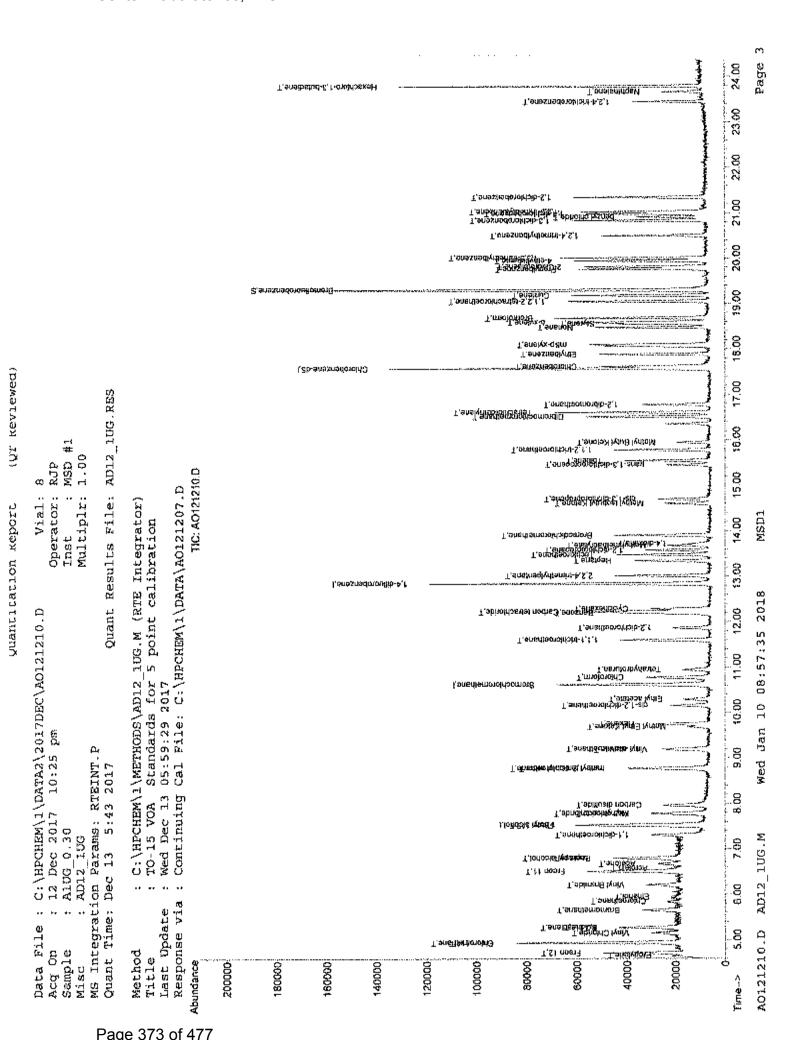
MSDI

Quantitation Report (QT Reviewed)

Quant Results File: AD12_1UG.RES

Data File : C:\HPCNEM\1\DATA2\2017DEC\A0121210.D Vial: 8
Acg On : 12 Dec 2017 10:25 pm Operator: RJP
Sample : Alug_0.30 Inst : MSD #1

Misc : AD12_1UG Multiplr: 1.00
MS Integration Params: RTBINT.P


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)

Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Quant Time: Dec 12 22:50:06 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QXon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.90	83	32027	dqq 08.0	96
47)	cis-1,3-dichloropropene	14.70	75	15041	0.27 ppb	96
48)	trans-1,3-dichloropropene	15.44	75	12578	0.28 ppb	93
49)	1,1,2-trichloroethane	15.78	97	15044	0.30 ppb	90
51)	Toluene	15.55	92	17315	0.28 ppb	86
52)	Methyl Isobutyl Ketone	14.60	43	13320	0.29 ppb	95
53)	Dibromochloromethane	16.51	129	34316	0.31 ppb	97
54)	Methyl Butyl Ketone	15.94	43	11414m <b>/</b> 6	0.28 ppb	
55)	1,2-dibromoethane	16.78	107	22360	0.30 ppb	98
56)	Tetrachloroethylene	16.60	164	17537	0.31 ppb	85
57)	Chlorobenzene	17.62	112	29022	dqq 08.0	87
58)	Ethylbenzene	17.88	91	38292	0.28 ppb	99
59)	m&p-xylene	18.09	91.	61884	0.49 ppb	95
60)	Nonane	18.48	43	14918m 🔏	0.25 ppb	
61)	Styrene	18.55	104	22228	0.25 ppb	67
62)	Bromoform	18.69	173	37201	0.32 ppb	98
53)	o-xylene	19.58	91	39826	0.27 ppb	91
64)	Cumene	19.18	105	42247	0.26 ppb	95
66)	1,1,2,2-tetrachloroethane	19.04	83	32057	0.32 ppb	99
67)	Propylbenzene	19.75	1.20	11146	0.26 ppb	80
68}	2-Chlorotoluene	19.81	126	12353	0.25 ppb	# 85
69}	4-ethyltoluene	19.94	105	40095	0.24 ppb	99
	1,3,5-trimethylbenzene	20.01	105	39081	0.24 popolo	99
71)	1,2,4-trimethylbenzene	20.50	105	29676	0.25 ppb	98
72)	1,3-dichlorobenzene	20.83	1.46	29008	0.27 ppb	99
73)	benzyl chloride	20.90	91	24216	0.27 ppb	98
74)	1,4-dichlorobenzene	20.98	146	28423	0.26 ppb	96
	1,2,3-trimethylbenzene	21.02	105	33630	0.23 ppb	97
	1,2-dichlorobenzene	21.34	146	29575	0.28 ppb	97
	1,2,4-trichlorobenzene	23.45	180	10555	0.25 დდხ	95
	Naphthalene	23.66	128	15987	0.24 ppb	93
79)	Hexachloro-1,3-butadiene	23.78	225	27107	0.30 ppb	95



Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121211.D Vial: 9 : 12 Dec 2017 11:01 pm Operator: RJP Acq On : A1UG_0.15 Sample Inst : MSD #1 Misc : AD12_lug Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 13 00:13:26 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

DataAcg Meth : 1UG RUN

		<b></b>		" · <b>v</b> "-		D	( <b>24</b> - 1 )
Internal Standards		Qion	Response (	onc v	ព១៥៩	Dev	(Min)
1) Bromochloromethane		128	29225	1.00	daa		0.00
35) 1,4-difluorobenzene	12.84	114	117907	1.00			0.00
50) Chlorobenzene-d5	17.57	117	93255	1.00			0.00
· - /							
System Monitoring Compounds							
65) Bromofluorobenzene	19.30	95					0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	<i>=</i>	82	.00%	
77 to						^	-1
Target Compounds	4.64	41	3756	0.17	mnh	QV	alue 90
2) Propylene 3) Freon 12	4.71	85	25898	0.17			100
4) Chloromethane	4.93	50	7215	0.18	pph	#	59
5) Freon 114	4.93	85	23011	0.17	daa	*1	95
6) Vinyl Chloride	5.15	62	6383	0.17			77
7) Butane	5.27	43	7050	0.30			98
8) 1,3-butadiene	5.27		5721m A	0.17			
9) Bromomethane	5.65	94	8257	0.18			94
10) Chloroethane	5.83		2902	0.17			88
11) Ethanol	5.94			0.17			
12) Acrolein	6.57	45 56	2106m	0.17	ppb		
13) Vinyl Bromide	6.21	106	7336	0.16	đąg	#	76
14) Freon 11	6.51	101	25769	0.17	ppb		98
15) Acetone	6.68		2/22	0.17			81
16) Pentane	6.80	42	5602	0.17	dqq	#	6.5
17) Isopropyl alcohol	6.78	415	7609 {	0.17			1
<pre>18) 1,1-dichloroethene</pre>	7.31	96 101	5790	0.18			92
19) Freon 113	7.51			0.16		#	87
20) t-Butyl alcohol	7.54	59	8683	0.16			91
21) Methylene chloride	7.78	84	5110	0.18			86
22) Allyl chloride	7.7B	41	51.85m	0.18			
23) Carbon disulfide	7.97	76	15545	0.17			91
24) trans-1,2-dichloroethene		61	7226	0.16			76
25) methyl tert-butyl ether	8.78	73	12763	0.16			98
26) 1,1-dichloroethane	9.20	63		0.17	ppp		100
27) Vinyl acetate	9.17	43	8603	0.17	ppo		79
28) Methyl Ethyl Ketone				0.16	ppp		97
29) cis-1,2-dichloroethene			6656	0.17	PPD		97
30) Hexane	9.75	57	6081 8381	0.16			81
31) Ethyl acetate	10.29		16029	0.15			98
32) Chloroform	10.78 10.96	83 42	3433	$0.18 \\ 0.15$	FPT	4)	65
33) Tetrahydrofuran	11.87	62	10455	0.17	gara	11	78
34) 1,2-dichloroethane 36) 1,1,1-trichloroethane	11.59	97	16875	0.16	ppp		88
	12.28	56	5552	0.15			85
37) Cyclohexane 38) Carbon tetrachloride	12,22	117	21194	0.16	ppb		92
39) Benzene	12.18	78	16051	0.17			86
40) Methyl methacrylate	13.68	41	4366m	0.13			
41) 1,4~dioxane	13.72	88	3110m	0.15			
42) 2,2,4-trimethylpentane	13.01	57	17320	0.14			89
43) Heptane	13.33	43	5518	0.14		#	47
44) Trichloroethene	13.47	130	8652	0.16		,.	85
45) 1,2-dichloropropane	13.58	63	5423	0.16			96

^{(#) =} qualifier out of range (m) = manual integration Wed Jan 10 08:57:37 2018

A0121211.D AD12_1UG.M

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121211.D Vial: 9 Acq On : 12 Dec 2017 11:01 pm Operator: RJP Sample : AlUG_0.15 Misc : AD12_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 13 00:13:26 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Tue Dec 12 22:46:05 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue	
46)	Bromodichloromethane	13.90	83	16822	0.16 ppb	9	6
47)	cis-1,3-dichloropropene	14.71	75	7742	0.14 ppb	9.	4
48)		15.46	75	6762	0.15 ppb	9	8
49)		15.78	97	7663	0.16 ppb	9	5
51)	Toluene	15.55	92	9010	0.15 ppb	# 8	5
52)	Methyl Isobutyl Ketone	14.60	43	6401	0.14 ppb	8	4
53)		16.51	129	17526	0.16 ppb	10	Ű
54)	Methyl Butyl Ketone	15.94	4.3	4980	0.12 ppb	9	6
55)		16.78	107	11228	0.15 ppb	9	8
	Tetrachloroethylene	16.60	1.64	9033	0.16 ppb	8	5
	Chlorobenzene	17.62	112	15024	0.16 ppb	8	5
58)	Ethylbenzene	17.89	91	20246	0.15 ppb	9	5
59)	-	18.09	91	32193	0.26 ppb	9	5
60)	• •	18.48	43	6581	dqq 11.0	9	2
63.)	Styrene	18.55	104	10320m 🕖			
62)	Bromoform	18.68	173	17980	0.16 ppb	9	4
63)	o-xylene	18,59	91	18671	0.13 ppb	9	2
64)	Cumene	19.18	105	20749	0.13 ppb	9	5
66)	1,1,2,2-tetrachloroethane	19.05	83	16549	0.17 ppb	9	5
67)	Propylbenzene	19.76	120	4858	0.12 ppb	# 6	Ö
68)	2-Chlorotoluene	19.81	126	5962	0.12 ppb	# 8	
69)	4-ethyltoluene	19.94	105	18549	0.11 ppb	9	
70)	1,3,5-trimethylbenzene	20.00	1.05	16991	0.11 ppb	9	7
71)	1,2,4-trimethylbenzene	20,50	105	14164	0.12 ppb	9.	4
72)	1,3-dichlorobenzene	20.84	146	14352	0.14 ppb	9	6
73)	benzyl chłoride	20.90	91	10964	0.12 ppb	9	8
74)	1,4-dichlorobenzene	20.98	146	1.2382	0.12 ppb	9	8
75)	1,2,3-trimethylbenzene	21.02	105	15580m 🛉	0.11 ppb		
76)	1,2-dichlorobenzene	21.34	146	14218	0.13 ppb	9	8
77)	1,2,4-trichlorobenzene	23.44	180	5113m	dqq \$1.0		
78)	Naphthalene	23.66	128	7948πւ⊈	0.12 ppb		
79)	Hexachloro-1,3-butadiene	23.78	552	13034	0.15 <b>p</b> pb	9	0

reviewed.

...

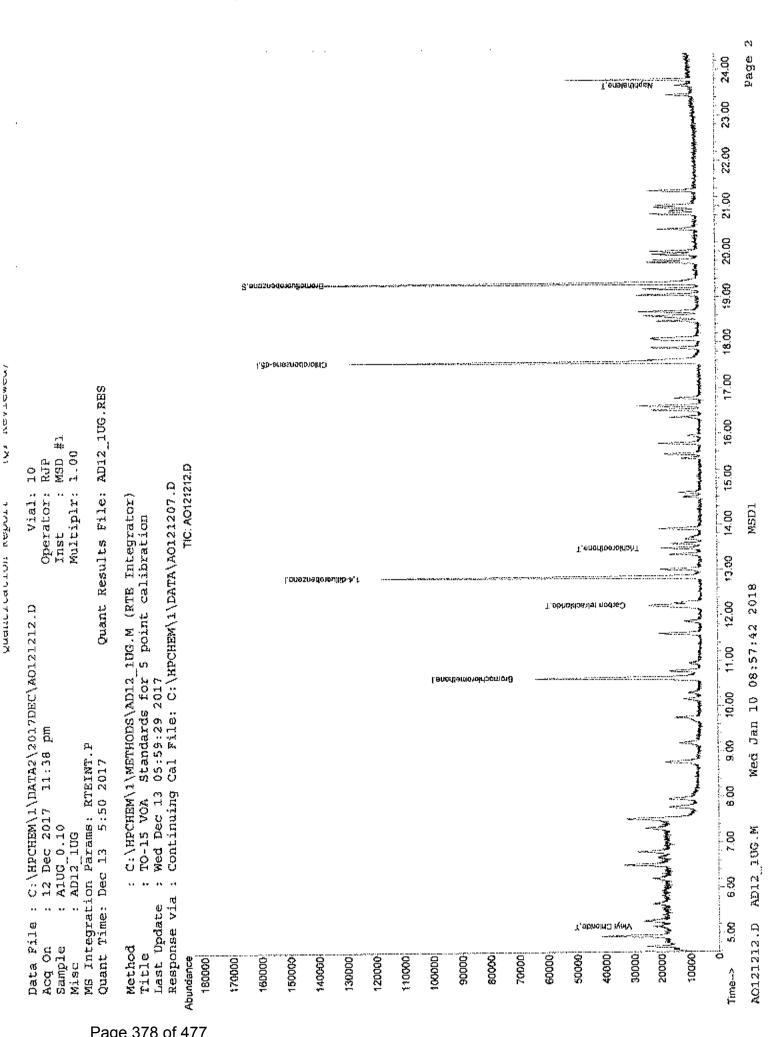
Changa tanah keport

Page 376 of 477

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P

Quant Time: Dec 13 05:48:43 2017 Quant Results File: AD12_lUG.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:48:20 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AO121207.D

Internal Standards	R.T.	Qlon	Response C	one t	mi.ts	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.57		28964 117779 90987	1.00	dgg ( dgg (	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70	95 - 130	59980 Recovery		ppb 81.	0.00
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene 78) Naphthalene	5.14 12.21 13.47 23.66	62 117 130 128	3774 15237 5997 5251	0.12	ddd g ddd g bbp	Qvalue 78 100 87 # 77

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0121212.D AD12_1UG.M Wed Jan 10 08:57:41 2018 MSD1

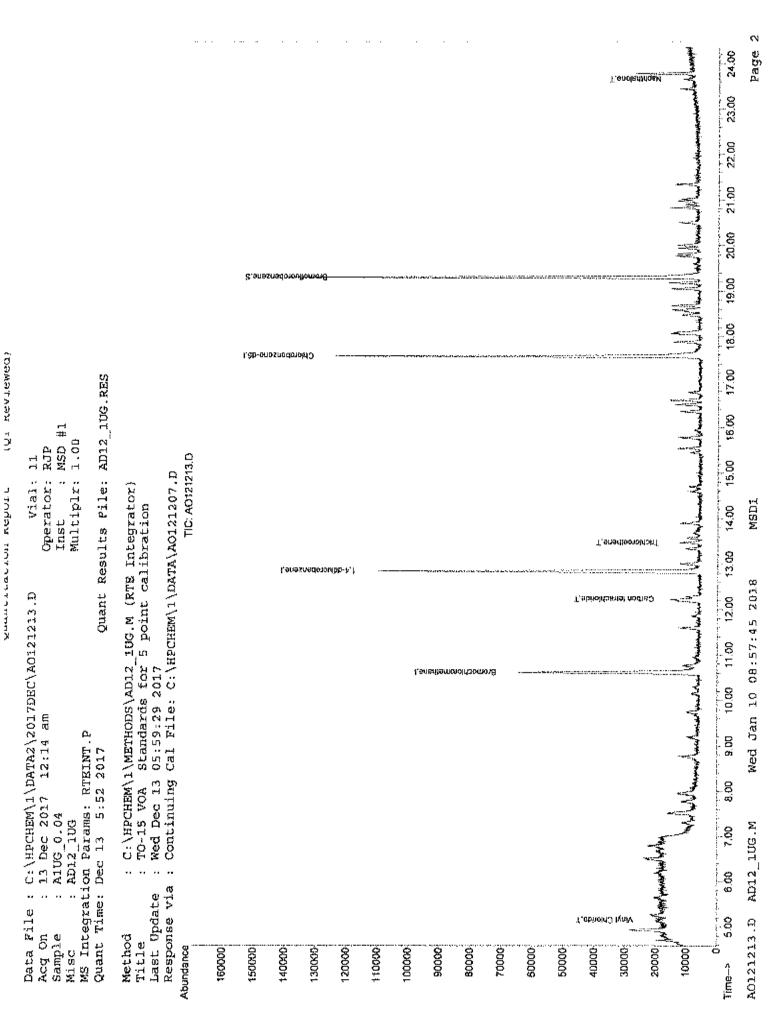


Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121213.D Vial: 11
Acq On : 13 Dec 2017 12:14 am Operator: RJP
Sample : Alug_0.04 Inst : MSD #1
Misc : AD12_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 13 05:51:12 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\MPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:48:20 2017

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\A0121207.D

Internal Standards	R.T.	QIon	Response C	onc O	nite	Dev (Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.60 12.83 17.56		29222 113624 87920	1.00	ppp ppp ppp	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	54520 Recovery			
Target Compounds 6) Vinyl Chloride 38) Carbon tetrachloride 44) Trichloroethene 78) Naphthalene	5.14 12.22 13.47 23.66	62 117 130 128	1936m / 6686 2547 2567	0.05 0.05	ppb ppb ppb ppb	

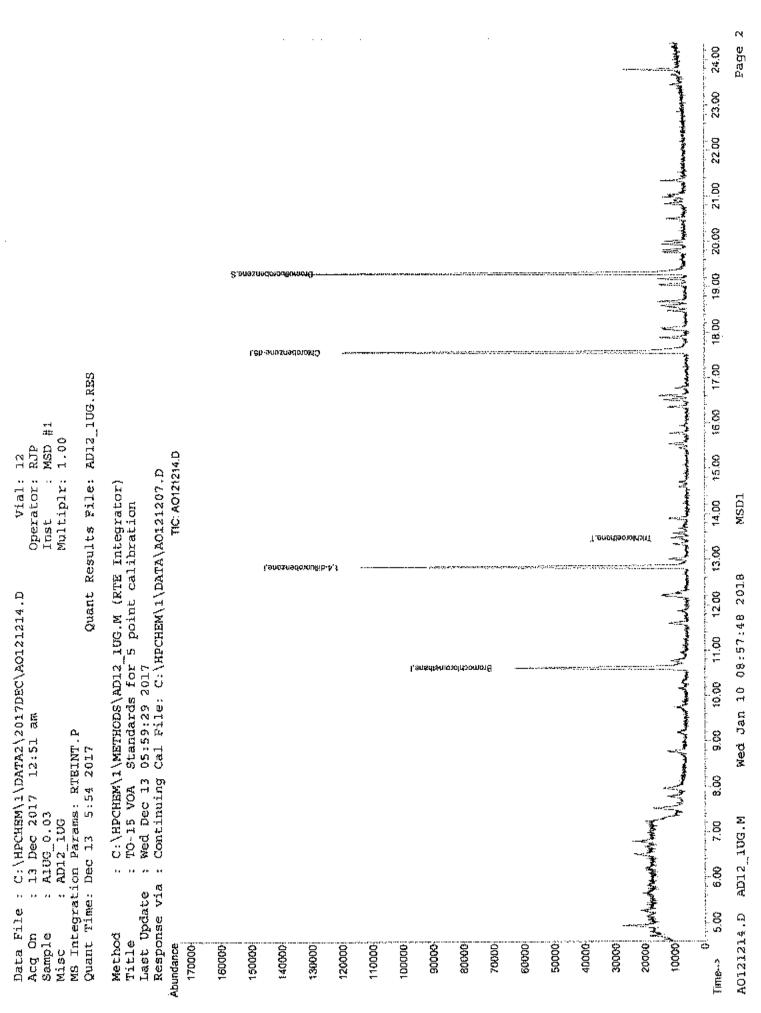


Page 380 of 477

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0121214.D Vial: 12 Acq On : 13 Dec 2017 12:51 am Operator: RJP Sample : Alug_0.03 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Dec 13 05:34:24 2017 Quant Results File: AD12 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Tue Dec 12 22:46:05 2017
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AO121207.D

Internal Standards	R.T.	QIon	Response (	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.57	128 114 117	29266 114535 84567	1.00 1.00 1.00	ppb	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 - 130	55392m Recovery			0.00 00%
Target Compounds 44) Trichloroethene	13.45	130	2040m 💋	0.04	dqq	Qvalue

TOTAL MONTHWOOL

ARBITTON TOTAL



Page 382 of 477

# GC/MS VOLATILES-WHOLE AIR

# METHOD TO-15 CALIBRATION VERIFICATION

#### Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122103.D Vial: 3 Acq On : 21 Dec 2017 10:28 am Operator: RJP Sample : AlUG_1.0 Inst : MSD #1 Misc : AD12 1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Jan 10 09:10:18 2018 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Areat	Dev(min)
	I	Bromochloromethane	1.000	1.000	0.0	97	0.00
	T	propylene	0.776		-1.0		0.00
	$\dot{ extbf{T}}$	Freon 12	5.279		-6.1		0.00
	Ţ	Chloromethane	1.442	1.458	-1.1.		0.00
	Ť	Freon 114	4.718		-3.7		0.00
	$ar{ extbf{T}}$	Vinyl Chloride	1.366	4,894 1.339	2.0		0.00
	T'	Butane	1.585	1.571	0.9		0.00
	Ť	1,3-butadiene	1.211	1.233	-1.8		0.00
	T	Bromomethane		1.666	0.0		0.00
10		Chloroethane	1.666 0.611	0.595	2.6		0.00
1.1		Ethanol	0.395	0.363	8.1		0.00
12		Acrolein	0.436	0.368	15.6		0.00
13		Vinyl Bromide	1.601	1.583	1.1		0.00
3.4		Freon 11	5.372		~2.3	1.03	0.00
15		Acetone	0.507		2.6		0.00
1.6		Pentane			7.7	92	0.00
17		Isopropyl alcohol	1.134	1.330	15.8	87	0.00
1.8	$\mathbf{r}$	1,1-dichloroethene	1.276	1.024	19.7	91	0.00
19		Freon 113	2.987		8.6	97	0.00
20				1.591	16.4	86	0.00
2.1		t-Butyl alcohol Methylene chloride Allvl chloride	1.026	0.961	6.3	95	0.00
22		Allyl chloride	1.093		8.9	96	0.00
23		Carbon disulfide	3.223	2.993	7.1	95	0.00
24		trans-1,2-dichloroethene	3 676	1.457	7.5	92	0.00
25	Ŧ	methyl tert-butyl ether 1,1-dichloroethane	2.768	2.476	10.5	90	0.00
26		1,1-dichloroethane	2.149	2.022	5.9		0.00
27		Vinyl acetate	1.899	1,669	12.1	92	0.00
28		Methyl Ethyl Ketone	0.449	0.371	17.4	82	0.00
29		cis-1,2-dichloroethene	1.445	1,312	9.2	92	0.00
30		Hexane	1.347	1.209	10.2		0.00
31	'I'	Ethyl acetate	1,897 3,242	1.568	17.3	82	0.00
32	${f T}$	Chloroform	3.242	3,115	3.9	98	0.00
33	T	Tetrahydrofuran	0.814	0.668	17.9	82	0.00
34	${f T}$	1,2-dichloroethane	2.138	2.026	5.2	96	0.00
35		1,4-difluorobenzene	1.000		0.0		0.00
36		1,1,1-trichloroethane			-1.6		0.00
37		Cyclohexane	0.314		7.3		0.00
38		Carbon tetrachloride	1.149		1.3		0.00
	$\mathbf{r}$	Benzene	0.811	0.765	5.7		0.00
40		Methyl methacrylate	0.279	0.244	12.5	80	0.00
41		1,4-dioxane	0.173	0.138	20.2	73	0.00
42		2,2,4-trimethylpentane	1.005	0.974	3.1	92	0.00
4.3		Heptane	0.324	0.316	2.5	93	0.00
44		Trichloroethene	0.479	0.438	8.6	95	0.00
	T	1,2-dichloropropane	0.285	0.285	0.0	97	0.00
4.6		Bromodichloromethane	0.884	0.899	-1.7		0.00
47		cis-1,3-dichloropropene	0.456	0.459	~0.7	94	0.00
	$\overline{x}$	trans-1,3-dichloropropene	0.384	0.357	7.0	91	0.00
49	$\mathbf{T}$	1,1,2-trichloroethane	0.410	0.411	-0.2	96	0.00

^{(#) =} Out of Range

### Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122103.D Vial: 3 Acq On : 21 Dec 2017 10:28 am Operator: RJP Sample : AlUG_1.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Jan 10 09:10:18 2018

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRP		Area%	Dev(min)
51	- ·	Toluene	0.648	0.593	8.5	90	0.00
	_		0.6477	0.400	16.1	80	0.00
52		Methyl Isobutyl Ketone Dibromochloromethane	1.185	1.162	1.9	-	0.00
53	T'		0.408	0.307	24.8	71	0.00
54	T	Methyl Butyl Ketone	0.775	0.722	6.8	90	0.00
55	T	1,2-dibromoethane	0.610	0.722	5.1	94	0.00
56	T	Tetrachloroethylene		0.575	4.4	94	0.00
57		Chlorobenzene	1.034		9.8	89	0.00
58	T	Ethylbenzene	1.460	1.317	4.8	90	0.00
59	T	m&p-xylene	1.274	1.213		95	0.00
60	T	Nonane	0.580	0.595	-2.6		0.00
61	T	Styrene	0.901	0.914	-1.4	95	
62		Bromoform	1.238	1,210	2.3		0.00
63	T'	o-xylene	1.489	1.476	0.9		0.00
64	J.	Cumene	1.655	1.551	6.3	90	0.00
65	S	Bromofluorobenzene	0.740	0.798	-7.B	97	0.00
66	$\mathbf{T}$	1,1,2,2-tetrachloroethane	1.075	1.035	3.7		0.00
67	$\mathbf{T}$	Propylbenzene	0.429	0.437	~1.9		0.00
68	T.	2-Chlorotoluene	0.493	0.517	-4.9	97	0.00
69	7.	4-ethyltoluene	1,566	1.672	-0.4	92	0.00
70		1,3,5-trimethylbenzene	1.557	1.606	-3.1	94	0.00
71	ינֵי	1,2,4-trimethylbenzene	1.213	1.181	2.6	91	0.00
72		1,3-dichlorobenzene	1.101	1.086	1.4	95	0.00
73	_	benzyl chloride	0.923	0.913	1.1	94	0.00
74	Ť	1,4-dichlorobenzene	1.087	1,102	-1.4	95	0.00
75		1,2,3-trimethylbenzene	1.417	1.426	-0.6	92	0.00
76	T	1,2-dichlorobenzene	1.093	1.075	1.6		0.00
77	_	1,2,4-trichlorobenzene	0.428	0.384	10.3		0.00
78	Ť	Naphthalene	0.684	0.611	10.7		0.00
			0.941	0.909	3.4	93	0.00
79	${f T}$	Hexachloro-1,3-butadiene	0.941	0.909	3.4	93	0.00

Data File : C:\HPCHEM\1\DATA2\2017DEC\AQ122103.D Vial: 3 Acq On : 21 Dec 2017 10:28 am Operator: RJP Sample : A1UG_1.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 21 13:59:08 2017 Quant Results File: AD12_1UG.RES

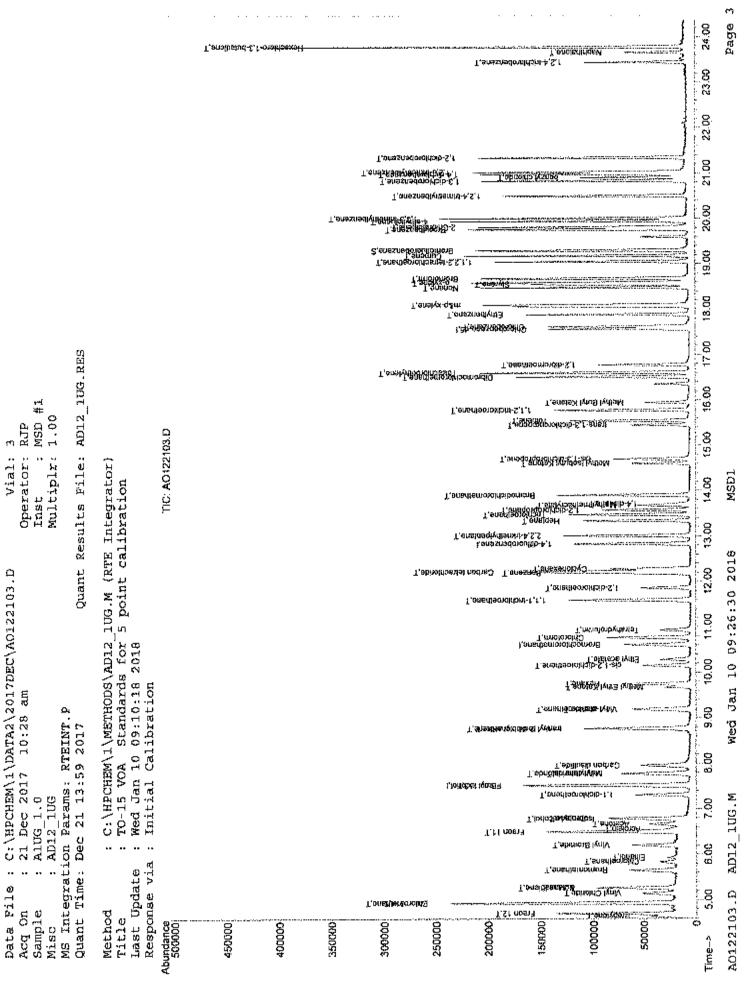
Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration

Internal S							e Conc	UY	nits	Dev	(Min)
	chlorometh					29831	 1		dgg		0.00
35) 1.4-d	ifluoroben	zene	12	.83	114	117409	1.	aa.	ppb		0.00
35) 1,4-d 50) Chlor	obenzene-d	5	17	.56	717	99397	1.	aa.	dgg		0.00
307 CIIIOI	ozenzena a	_				33037		~~	P.S.~		4,42
System Mon	itoring Co	mpounds									
65) Bromo	fluorobenz	ene	19	.30	95	79363	1.	80	dqq		0.00
Spiked A	mount	1.000	Range	70	- 130	Reco	very	<b>=</b>	108	.00₺	
										_	
Target Com			_						,	QVa	llue
2) Propy			_	. 63		23379	1	0.7	рър		80
3) Freon				.70		167092			ggg		98
	omethane		4		50	43492	1.		ьБр		85
5) Freon			4		85 62	145985	Τ.		dqq		96
	Chloride			. 14	9.5	39935	0.		ьър		94
7) Butan				. 26		46861			ьър		94
	utadi <b>e</b> ne		5			36795			dad		82
9) Bromo			5	. 65 . 83	94 64	49710 17740	1.		ьbр		89
10) Chlor				. 83	64	17740	0.		dąq		98
11) Ethan							0.		ЪЪр		
12) Acrol			6		56	10982			фф		87
13) Vinyl				. 20	106 101	47211 164015	0.		ppb		88
14) Freon				.49			1.		ьbр		99
15) Aceto			6		58	7.4.20	٠.		dqq		97
16) Penta		_	6	.78	42	31237	ο.		$\mathbf{p}\mathbf{p}$		72
	opyl alcoh		5	.77	42 45 96	39687	ņ.		bbp		1
	ichloroeth	ene	7	. 31	96	30533	0.		ppb		83
19) Freon			7	.51		81439	0.		ppp		89
	yl alcohol		7	. 53	59	47475	0.		dqq		98
	lene chlor	íde	7	. 78	84	28574	Q.	94	ppb		91.
55) YIJAY			7	. 77		29721	0.		ppp		93
	n disulfid			. 96	76		o.		qqq		87
	-1,2-dichle			. 76	61 73	43476 73876	0.		фф		97
	l tert-buty		8 9	.77	73	73876	0.		$\mathbf{q}\mathbf{q}\mathbf{q}$		98
	ichloroeth	ane			63	PO3TT	0.		bbp		97
27) Vinyl			9.		43	49785		ន្ត	ppb	ш	95
28) Metny	l_Ethyl_Ker	cone	9 10	. 67	72 61	11062 39124	Ų.	83	ppb	#	68
	,2-dichlore	secuene	10	. 1,5			v.		dqq		98
30) Hexan					57			20	ppb		94
	acetate			. 28	43	46766	0.	83	ppb		88
32) Chlor				. 76	83	92937			ggg		99
	hydrofuran			. 92	42	19940			ppp		92
·	ichloroeth			. 96	62	60443			dqq		98
	-trichloro	etnane		.59	97	106517			ppb		89
37) Cyclo				. 27	56	34160			ppp		77
:	n tetrachlo	oriae		. 22	117	133185			ppp		93
39) Benze:				.18	78	89875			ppb		98
	1 methacry	ıace		. 67	41	28602			dqq	11	94
41) 1,4-d				. 71	88	16226			ppb	#	64
	-trimethyl) 	pentane		.01	57 43	114316			ppb		90 91
43) Hepta:				. 34	43	37117			dqq		92
	loroethene			.47	130	51382			ppb		92 96
	ichloroprop		13		63	33461			dqq		

^{(#) =} qualifier out of range (m) = manual integration A0322103.D AD12 1UG.M Wed Jan 10 09:26:29 2018

## Centek Laboratories, LLC

(QT Reviewed) Quantitation Report


Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122103.D Vial: 3 Acq On : 21 Dec 2017 10:28 am Operator: RJP Sample : AlUG_1.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 21 13:59:08 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.90	83	105586	1.02 ppb	95
47)	cis-1,3-dichloropropene	14.70	75	53937	1.01 ppb	96
48)	trans-1,3-dichloropropene	15.44	7.5	41942	0.93 ppb	97
49)	1,1,2-trichloroethane	15.78	97	48233	1.00 ppb	90
51)	Toluene	15.54	92	58939	0.92 ppb	88
52)	Methyl Isobutyl Ketone	14.60	43	39760	0.84 ppb	95
53)	Dibromochloromethane	16.51	129	115519	0.98 ppb	98
54)	Methyl Butyl Ketone	15.94	43	30548	0.75 ppb	94
55)	1,2-dibromoethane	16.77	107	71723	0.93 ppb	99
56)	Tetrachloroethylene	16.60	164	57549	0.95 ppb	89
57)	Chlorobenzene	17.61	112	98195	0.95 ppb	90
58)	Sthylbenzene	17.89	91	130893	0.90 ppb	99
59)	m&p-xylene	18.10	91	241136	1.90 ppb	97
60)	Nonane	18.47	4.3	59161	1.03 ppb	97
61)	Styrene	18.55	104	90849	1.01 ppb	68
62)	Bromoform	18.68	173	120284	dqq 88.0	95
63)	o-xylene	18.58	91	146749	dgg 88.D	91
64)	Cumene	19.18		154150	0.94 ppb	95
66)	1,1,2,2-tetrachloroethane	19.04	83	102896	dqq 36.0	100
67)	Propylbenzene	19.76	120	43443	1.02 ppb	7.5
68)	2-Chlorotoluene	19.81	126	51417	1.05 ppb	# 89
69)	4-ethyltoluene	19.94	105	166212	1.00 ppb	100
70)	1,3,5-trimethylbenzene	20.00		159586	1.03  ppb	97
71)	1,2,4-trimethylbenzene	20.50	1.05	117367	0.97 ppb	94
72)	1,3-dichlorobenzene	20.83	146	107943	0.99 ppb	98
73)	benzyl chloride	20.90	91	90780	0.99 <b>p</b> pb	99
74)	1,4-dichlorobenzene	20.98	146	109495	1.01 ppb	94
75)	1,2,3-trimethylbenzene	21.02	105	141783	1.01 ppb	99
76)	1,2-dichlorobenzene	21.34		1,06850	0.98 ppb	98
77)	1,2,4-trichlorobenzene	23.44	180	38188	0.90 ppb	95
78)	Naphthalene	23.66		60719	0.89 ppb	95
79)	Hexachloro-1,3-butadiene	23.78	225	90377	0.97 <b>p</b> pb	95



Page 388 of 477

## Evaluate Continuing Calibration Report

Data File : C:\MPCHEM\1\DATA2\2017DEC\A0122203.D Vial: 3 Operator: RJP Acq On : 22 Dec 2017 9:48 am Sample : A1UG_1.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

; C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Jan 10 09:10:18 2018

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

	Compound	AvgRF		%Dev Area%	Dev(min)
I I	Bromochloromethane	1.000	1.000	0.0 91	0.01
2 T	Propylene	0.776			0.02
3 T	Freen 12	5.279	5.713	-8.2 102	0.00
4 T	Chloromethane	1.442		-2.4 99	0.01
5 T	Freon 114	4.718		-4.9 99 1.2 95 -2.3 96	0.02
6 T	Vinyl Chloride			1.2 95	0.00
7 77	Butane	1.366 1.585	1,621	-2.3 96	0.00
вт	1,3-butadiene	1.211	1.297	-7.1 101	0.00
9 T	Bromomethane	1.666	1.569	-0.2 95	0.00
10 T	Chloroethane	0.611	0.596	2.5 92	0.00
aa T	Ethanol	0.395	0.396		0.00
12 T	Acrolein	0.436			0.00
3.3 T	Vinyl Bromide	1.601	1.625	-1.5 96	0.00
14 T	Freon 11	5.372	5.573	-3.7 98	0.00
3.5 T	Acetone	0.507	0.549		0.00
16 T	Pentane	1.134	1.127	0.6 92	0.00
17 T	Isopropyl alcohol	1.580	1.867	-18.2 114	0.00
1,8 T	1,1-dichloroethene	1.276	1.050	17.7 88	0.00
3.9 T	Freon 113	2.987			
20 t	t-Butyl alcohol	1.902	2.602		0.00
21. T	Methylene chloride	1.026	0.981 0.997	4.4 91	0.00
22 T	Allyl chloride	1.093			0.00
23 T	Carbon disulfide	3.223	2.998	7.0 89	0.01
24 T	trans-1,2-dichloroethene	1.575		4.3 89	0.00
25 T	methyl tert-butyl ether	2.768		0.9 93	0.00
26 T	methyl tert-butyl ether 1,1-dichloroethane	2.149	2,084		0.00
27 T	Vinyl acetate	1.899		8.4 90	0.00
28 T	Methyl Ethyl Ketone	0.449		-4.5 97	0.00
29 T	cis-1,2-dichloroethene	1.445	1.346	6.9 89	0.00
30 T	Hexane	1.347			0.00
31 T	Ethyl acetate	1.897	2.023	-6.6 99	0.00
32 T	Chloroform	3.242	3.207	1.1 94	0.00
33 T	Tetrahydrofuran	0.814		1,1 92	
34 T	1,2-dichloroethane	2.138	2.094	2.1 93	0.00
35 I	1,4-difluorobenzene	1.000	1.000	0.0 89	0.00
36 T	1,1,1-trichloroethane		0.962	-7.7 96	0.00
37 T	Cyclohexane		0.296	5,7 82	0.00
38 T	Carbon tetrachloride	1.149	1186	-3.2 96	0.00
39 T	Benzene	0.811	0.761	6.2 85	0.00
40 T	Methyl methacrylate	0.279	0.308	-10.4 93	0.00
41 T	1,4-dioxane	0.173	0.303	-75.1# 148	0.00
42 T	2,2,4-trimethylpentane	1.005	0.974	3.1 85	0.00
43 T	Heptane	0.324	0.313	3.4 84	0.00
44 T	Trichloroethene	0.479		6,5 89	0.00
45 T	1,2-dichloropropane	0.285	0.288	-1.1 90	0.00
46 T	Bromodichloromethane	0.884		-4.9 92	0.00
47 T	cis-1,3-dichloropropene	0.456		~6.6 91	0.00
48 T	trans-1,3-dichloropropene	0.384		4.2 86	
49 T	1,1,2-trichloroethane	0.410		-6.6 94	0.00

^{(#) =} Out of Range AO122203.D AD12 1UG.M

Page 1

## Centek Laboratories, LLC

### Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122203.D Vial: 3 Acq On : 22 Dec 2017 9:48 am Operator: RJP Sample : Alug_1.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Jan 10 09:10:18 2018

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	<pre>%Dev Area% Dev(min)</pre>
51		Tolvene	0.648	0.603	6.9 84 0.00
52		Methyl Isobutyl Ketone	0.477	0.975	-104.4# 180# 0.00
53		Dibromochloromethane	1,185	1.209	-2,0 93 0.00
54		Methyl Butyl Ketone	0.408	0.657	-61.0# 139 0.00
55		1,2-dibromoethane	0.775	0.759	2.1 87 0.00
56	$\mathbf{T}$	Tetrachloroethylene	0.610	0.605	0.8 91 0.00
57	T	Chlorobenzene	1.034	1.006	2.7 88 0.00
58		Ethylbenzene	1.460	1.361	6.8 85 0.00
59		m&p-xylene	1.274	1.255	1.5 85 0.00
60		Nonane	0.580	0.598	-3.1 88 O.00
61	$\mathbf{T}$	Styrene	0.901	0.972	-7.9 93 0.00
62	$\mathbf{T}$	Bromoform	1.238	1.270	-2.6 94 0.00
63	${f T}$	o-xylene	1.489	1,551	~4.2 90 <b>0.</b> 00
64	Ţ	Cumene	1.655	1.673	
65	S	Bromofluorobenzene	0.740	0.792	-7.0 88 0.00
66		1,1,2,2-tetrachloroethane	1.075	1.150	- <b>7.0 99 0.0</b> 0
67	ፗ	Propylbenzene	0.429	0.461	-7.5 94 0.00
68		2-Chlorotoluene	0.493	0.542	-9.9 93 0.00
69	Ţ,	4-ethyltoluene	1.666	1.895	-13.7 96 0.00
70	$\mathbf{T}$	1,3,5-trimethylbenzene	1.557	1.789	-14.9 96 0.00
71	Τ'	1,2,4-trimethylbenzene	1.213	1.349	-11.2 96 D.OO
72	Ť	1,3-dichlorobenzene	1.101	1.198	-8.8 96 0.00
73	$\mathbf{T}$	benzyl chloride	0.923	1.164	-26.1 110 0.00
74	$\mathbf{r}$	1,4-dichlorobenzene	1.087	1.225	-12.7 97 0.00
75	$\mathbf{T}$	1,2,3-trimethylbenzene	1.417	1.709	-20.6 102 0.00
76	<b>ጥ</b>	1,2-dichlorobenzene	1.093	1.228	-12.4 98 $0.00$
77	'T	1,2,4-trichlorobenzene	0.428	0.553	~29.2 112 0.00
78	T	Naphthalene	0.684	0.967	-41.4# 125 O.00
79	${f T}$	Hexachloro-1,3-butadiene	0.941	1.188	-26.2 112 0.00

## Centek Laboratories, $LLC_{Quantitation\ Report}$ (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122203.D Acq On : 22 Dec 2017 9:48 am Sample : Alug 1.0 Misc : AD12_10g

Vial: 3 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P Quant Time: Dec 27 09:49:20 2017

Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

DataAcq Meth ; 1UG_RUN

Internal Standards	Ŕ.T.	QIon	Response	Cone U	nits	Dev	(Min)
1) Bromochloromethane	10 62	129	27994				~
35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.84	114	27884 107934 91366	1.00	dqq		0.01
50) Chlorobenzene-d5	17.56	117	91366	1.00	dqq		
		,	21400	1.00	PFV		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.29	95	72366	1.07	nnb		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	y =	107.	800	****
<b>5</b>				•			
Target Compounds						Qva	alue
2) Propylene	4.65		22705	1.05	ppb		84
3) Freon 12	4.70	85	159309	1 08	ppb		99
4) Chloromethane	4.93	5 Q	41191 137939 37652	1.02	ppb		82
5) Freon 114	4.94	85	137939 37652	1.05	ppb		96
6) Vinyl Chloride	5.15	62	37652	0.99	$_{\rm dqq}$		95
7) Butane	5.27		45213	1.02	dqq	#	97
8) 1,3-butadiene	5.27 5.65	39	36152	1.07	ppb		82
9) Bromomethane			46537 16616	1.00			87
10) Chloroethane	5.83	64	15616				98
11) Ethanol	5.93	45	11045	1.00			
12) Acrolein	6.56	56	10062 45310	0.83			89
13) Vinyl Bromide	6.20	106	45310	1.01			90
14) Freon 11	6.50	101	1.55400	1.04	dqq		98
15) Acetone	6.66	58	15303	T.08			93
16) Pentane	6.66 6.79 6.77	42	31416 52061	0.99		#	
17) Isopropyl alcohol	6.77	45	52061	1.18			1
18) 1,1-dichloroethene	7.31	96	29283	0.82			83
19) Freon 113	7.51	101 59 84	79150	0.95			90
20) t-Butyl alcohol	7.51 7.53	59	72554 27353	1.37	dqq		99
21) Methylene chloride	7.79	84	27353	0.96			87
22) Allyl chloride	7.77	4.1	27791	0.91	ppb		93
23) Carbon disulfide	7.97	76 61	83592	0.93			89
24) trans-1,2-dichloroethene	8.76		42011	0.96			95
25) methyl tert-butyl ether		73		0.99	ppb		99
26) 1,1-dichloroethane	9.20 9.17	63	58113	0.97	ppb		99
27) Vinyl acetate	9.17	43 72	48482 13074	0,92			91
28) Methyl Ethyl Ketone	9.67	72	13074	1.04	dqq	#	57
29) cis-1,2-dichloroethene		61	37526	0.93	ppb		98
30) Hexane	9.75	57	34284 56422 89429	0.91	dqq		93
31) Ethyl acetate	10.28	43	56422	1.07	gqq		92
32) Chloroform	10.77	83		0.99	dqq		98
33) Tetrahydrofuran	10.93	42	22446	0.99	ppb		94
34) 1,2-dichloroethane	11.86	62	58400	0.98	dąą		100
36) 1,1,1-trichloroethane	11.59	97	103874	1.08	ppb		88
37) Cyclohexane	12.28	56	31981	0.94	ppp		84
38) Carbon tetrachloride	12,22	117	127992	1.03	dąą		95
39) Benzene	12.19	78	82094	0.94			98
40) Methyl methacrylate	13.68	41	33245	1.10	dqq		97
41) 1,4-dioxane	13.70	88	32692	1.75	ppb	#	62
42) 2,2,4-trimethylpentane	13.01	57	105103	0.97	ьbр		88
43) Heptane	13.34	43	33753	0.97	dqq		92
44) Trichloroethene	13.47	130	48326	0.93	ppb		92
45) 1,2-dichloropropane	13.57	63	31082	1.01	dąą		94
	<del></del>						

^{(#) =} qualifier out of range (m) = manual integration

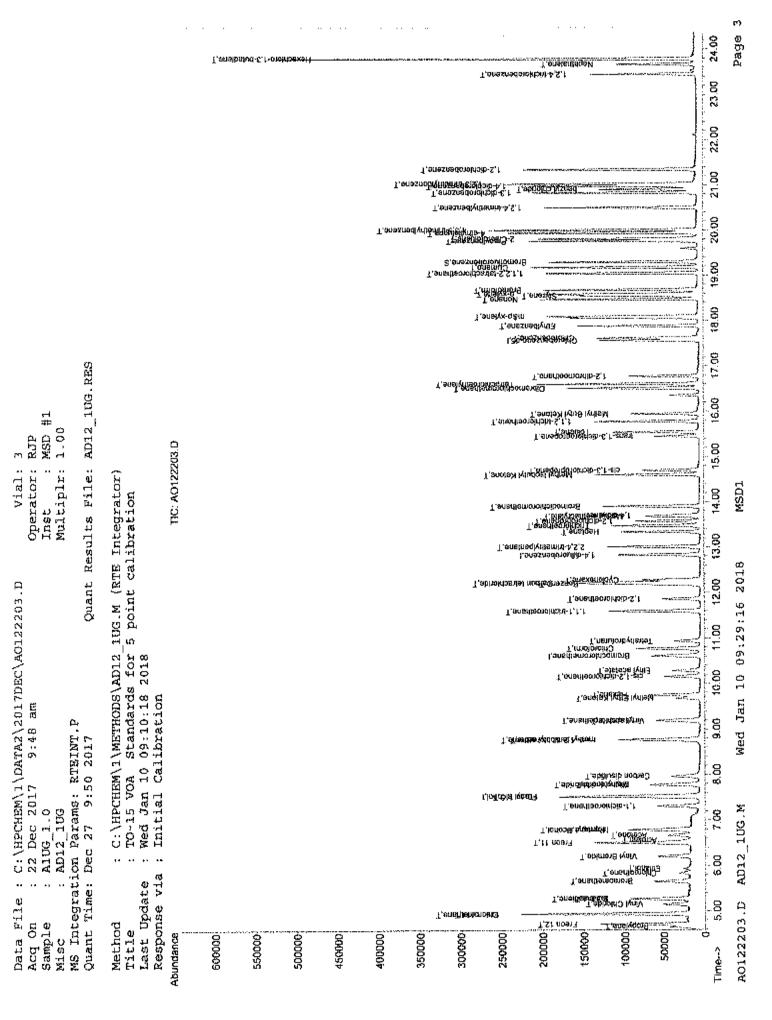
AO122203.D AD12_lUG.M Wed Jan 10 09:29:15 2018

MSD1

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122203.D Vial: 3 Acq On : 22 Dec 2017 9:48 am Operator: RJP

Sample : A1UG_1.0 Misc : AD12_1UG Inst : MSD #1 Multiplr: 2.00 MS Integration Params: RTEINT.P


Quant Time: Dec 27 09:49:20 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46) Bromodichloromethane	13.90	83	100004	1.05 ppb	97
47) cis-1,3-dichloropropene	14.70	75	52417	1.06 ppb	95
48) trans-1,3-dichloropropene	15.45	75	39773	0.96 ppb	99
49) 1,1,2-trichloroethane	15.78	97	47174	1.07 ppb	90
51) Toluene	15.54	92	55072	0.93 ppb	87
52) Methyl Isobutyl Ketone	14.50	43	89126	2.05 ppb	95
53) Dibromochloromethane	16.51	129	110481	1.02 ppb	98
54) Methyl Butyl Ketone	15.94	43	60007	1.61 ppb	97
55) 1,2-dibromoethane	16.78	107	69348	0.98 ppb	99
56) Tetrachloroethylene	16.60	164	55269	dqq 99.0	87
57) Chlorobenzene	17.62	112	91946	dqq 78.0	89
58) Ethylbenzene	17.89	91	124385	0.93 ppb	98
59) m&p-xylene	18.10	91	229318	1.97 ppb	95
60) Monane	18.48	43	54655	1.03 ppb	94
61) Styr <del>e</del> ne	18.55	104	88792	1.08 ppb	71
62) Bromoform	18.68	173	116058	1.03 ppb	96
63) o-xylane	18.58	91	141728	1.04 ppb	92
64) Cumene	19.18	105	152877	1.01 ppb	96
66) 1,1,2,2-tetrachloroethane	19.04	83	105028	1.07 ppb	98
67) Propylbenzene	19.76	1.20	42081	1.07 ppb	75
68) 2-Chlorotoluene	19.81	126	49516	1.10 ppb	# 87
69) 4-ethyltoluene	19.94	105	173137	1.14 ppb	99
70) 1,3,5-trimethylbenzene	20.00	105	163420	1.15 ppb	100
71) 1,2,4-trimethylbenzene	20.50	105	1.23263	1.11 ppb	96
72) 1.3-dichlorobenzene	20.83	146	109435	1.09 ppb	97
73) benzyl chloride	20.90	91	106369	1.26 ppb	99
74) 1,4-dichlorobenzene	20.97	146	111890	1.13 ppb	94
75) 1,2,3-trimethylbenzene	21.02	105	156188	1.21 ppb	100
76) 1,2-dichlorobenzene	21.34	146	112192	1.12 ppb	97
77) 1,2,4-trichlorobenzene	23.45	180	50523	1.29 ppb	97
78) Naphthalene	23.66	128	88372m 🚧	1.41 ppb	
79) Hexachloro-1,3-butadiens	23.78	225	108507m 💃	1.26 ppb	

^(#)  $\Rightarrow$  qualifier out of range (m) = manual integration (+)  $\Rightarrow$  signals summed AO122203.D AD12_1UG.M Wed Jan 10 09:29:15 2018 MSD1




# GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

RAW DATA

MS Integration Params: RTEINT.P

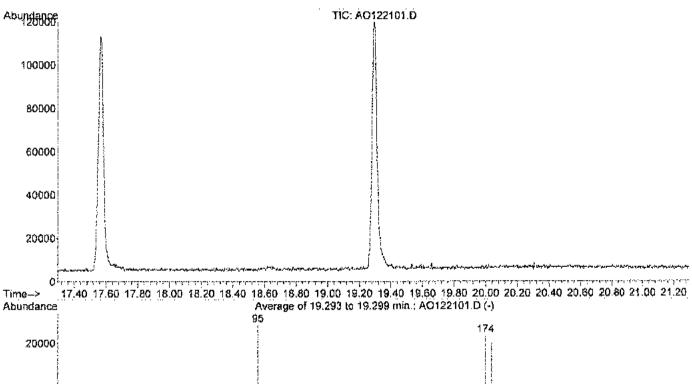
Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

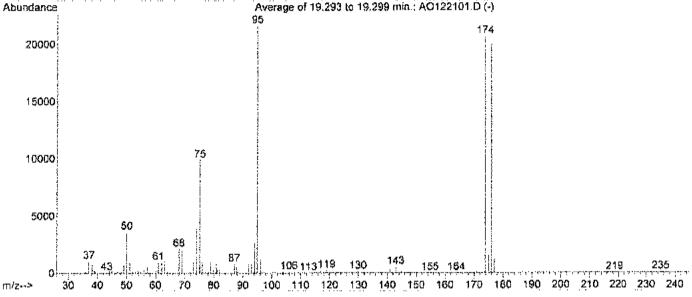


Spectrum Information: Average of 19.296 to 19.302 min.

Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abnŧ	Raw Abn	Result   Pass/Fail
1 50 I	95	8	40	16.9	4484	PASS
75	95	30	66	49.0	12994	PASS
95	95	100	100	100.0	26498	PASS
96	95	5	9	5.7	1523	PASS
173	174	0.00	2	0.0	0	PASS
1.74	95	50	120	93.7	24832	PASS
175	174	4	9	7.9	1966	PASS
1.76	174	95	101	97.7	24258	PASS
177	176	5	9	7.0	1705	PASS

A0121201,D AD12_1UG.M Wed Jan 10 08:56:31 2018 MSD1


Vial: 1


Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122101.D

Operator: RJP : 21 Dec 2017 9:08 am : MSD #1 Sample : BFBlUG Multiplr: 1.00

Misc : AD12 1UG

MS Integration Params: RTEINT.P : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

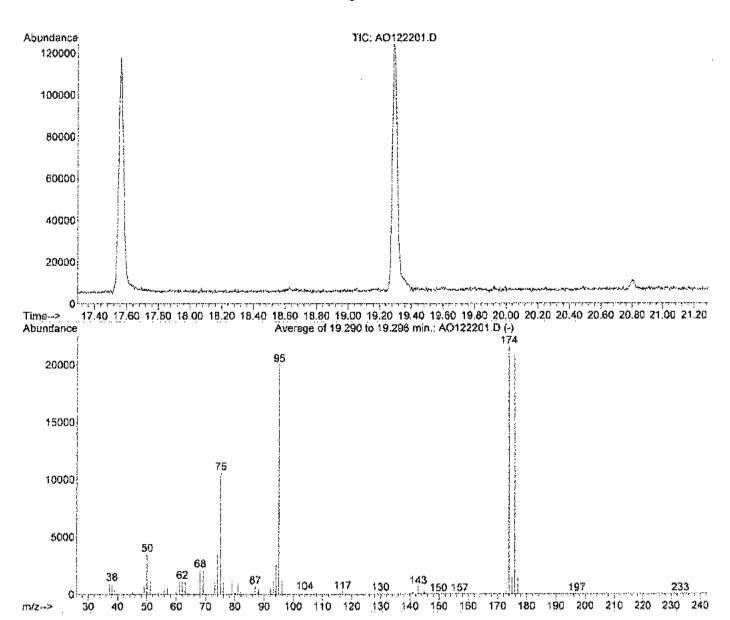




Spectrum Information: Average of 19.293 to 19.299 min.

	Target Mass	Rel. to Mass	Lower   Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
Ĩ	50	95	8	4.0	1.6.8	3632	PASS
į	75	95	30	66	45.7	9895	PASS
ĺ	95	95	100	100	100.0	21629	PASS
i	96	95	5	9	5.8	1245	PASS
-	173	174	0.00	2	0.4	91	PASS
- 1	174	95	50	120	95,5	20666	PASS
1	1.75	1.74	4	9	7.8	1614	PASS
į	176	174	95	1.01	96.6	19957	PASS
	177	176	5	9	6.2	1237	PASS
				m			

A0122101.D AD12_1UG.M


Wed Jan 10 09:25:59 2018 MSD1

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122201.D

Vial: 1 Operator: RJP : 22 Dec 2017 8:23 am : MSD #1 Sample : BFB1UG Misc : AD12_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Method Title : TO-15 VOA Standards for 5 point calibration



Spectrum Information: Average of 19.290 to 19.296 min.

ASS
ASS
ASS
ASS
SSA
ASS
ASS
ASS
ASS

AO122201.D AD12_1UG.M Wed Jan 10 09:28:46 2018

# GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
RAW QC DATA

TestCode: 0.25CT-TCE-VC

# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jan-18

LaBella Associates, P.C. CLIENT:

CENTEK LABORATORIES, LLC

C1712063 Work Order:

Project;

Eldre Corp

Sample ID: AMB1UG-122117	SampType: MBLK	TesiCode: 0.25CT-TCE- Units: pp6V	V Prep Date:	Runko: 13873
Client ID: ZZZZZ	Batch (D: R13073	TestNo: TO-15	Analysis Date: 12/21/2017	SeqNo: 151943
Analyte	Result	PQL SPK value SPK Ref Val	WREC LOWLIMIT HighLimit RPD Ref Val	Val %RPD RPDLimit Qual
1.1.1-Trichloroethane	< 0.15	0.15		

0.15 0.15 0.15 0.15 0.15 6.15

< 0.15 < 0.15 < 0.15

1,2,4-Trimethyibenzene 1,2,4-Trichlorobenzene

1,2-Dibromoethane

< 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15

1, 1, 2, 2-Tetrachloroethane

1,1,2-Trichloroethane

1,1-Dichloroethene 1,1-Dichloroethane

Page		ilits	Spike Recovery outside accepted recovery limits	S Spik
RPD outside accepted recovery limits	O Not Detected at the Limit of Detection R	QN	Analyse detected below guantitution limit	
Holding times for preparetion or analysis exceeded	Estimated Value above quantitation range	in in	Results reported are not blank corrected	Qualifiers: Resu
		0.15	< 0.15	Bromomethane
		0.15	< 0.15	Влотогоят
		0.15	< 0.15	Bromodichloromethane
		0.15	< 0.15	Benzył chloride
		0,15	< 0.15	Вепzеле
		0.15	< 0.15	Alfy! chloride
		0.30	06.0 >	Acetone
		0.15	< 0.15	4-ethyltoluene
		0.15	< 0.15	2,2,4-trimethylpentane
		0.30	< 6.30	1,4-Dioxane
		0.15	< 0.15	1,4-Dichlorobenzene
		0.15	< 0.15	1,3-Dichlorobenzene
		0.15	< 0.15	1,3-butadiene
		0.15	< 0.15	1,3,5-Trimethy!benzene
		0.15	< 0,15	1,2-Dichloropropane
		0.15	< 0.15	1,2-Dichloroethane
		0.15	< 0.15	1,2-Dichtorobenzene

ZZZZ  uffide rachloride sene nachloride hiproethene hiproethene ke loromethane te cohol  f. Abutadiene utyl Ketone utyl Ketone utyl Ketone utyl ether hibride  i Results reported a  J. Analyse detected a	Sample ID: AMB4316, 122117	2000		11				
	Charles Control of the Control of th	Samplype: MBLX	TestCode		its: ppbV	Prep Date		Rundo: 13073
Resealt   PQL   SPK value   SPK Ref Val   %REC   Lond.inth   Highl.inti   RPD Ref Val   %RPD   RPDL.inth   RPD Ref Val   %RPD Ref Val   %RPD Ref Val   %RPD   RPDL.inth   RPD Ref Val   %RPD Ref Val   %RPD   RPD Ref Val   %RPD Ref Val   RPD Ref Val   RPD Ref Val   RPD Ref Val   RPD Ref Val   %RPD Ref Val   RPD	4	Batch ID: R13073	TestMo	: TO-15		Analysis Date		SeqNo: 151943
Unique	Analyte	Result				LowLing		Ž
Control   Cont	Carbon disuffide	< 0.15	0,15			•	- 1	T-CULBING
Compared by the control of the con	Carbon fetrachloride	< 0.040	0.040					
10	Chlarobenzene	< 0.15	0.15					
Authorities	Chloroethane	< 0.15	0.15 15.0					
National control of the control of	Chloraform	< 0.15	0.35					
Notice there	Chloromethane	< 0.15	5 C					
Appropriese	cis-1,2-Dichloroethene	< 0.15	0.15					
Control than   Co.15   Co.15   Co.15	cis-1,3-Dichloropropene	< 0.15	0.15					
contract c	Oydohexane	< 0.15	0.15					
e	Dibromochloromethane	< 0.15	0, 15					
Control   Cont	Ethyl acetate	< 0.15	0.15					
Continue	Ethylbenzene	< 0.15	0.15					
-0.15       0.15         < 0.15	Freon 11	< 0.15	0.15					
-0.15     0.15       -1,3-butadisene     -0.15       -0.15     0.15       cohol     0.15       cohol     0.15       cohol     0.15       cohol     0.15       cohol     0.30       l Ketone     -0.30       constant     0.30       utyl Ketone     -0.30       constant     -0.15       utyl ether     -0.15       constant     -0.15       do 15     0.15       constant     -0.15	Freon 113	< 0.15	0.15					
-1,3-butadiene     < 0.15	Freon 114	< 0.15	0.15					
-1,3-butadiene         < 0.15	Freon 12	< 0.15	0.15					
3-butadene   < 0.15   0.15     3-butadene   < 0.15   0.15     4-butadene   < 0.15   0.15     5-butadene   < 0.16   0.15     6-butadene   < 0.30   0.30     7-butyl Ketone   < 0.30   0.30     8-butyl Ketone   < 0.30   0.30     9-butyl Ketone   < 0.15   0.15	Heptane	< 0,15	0.15					
cohol         < 0.15	Hexachloro-1,3-butadiene	< 0.15	0.15					
Ketone	<b>Нехале</b>	< 0.15	0.15					
Ketone	Isopropyi alcohol	< 0.16	0.15					
Ketone	м&р-ХуІвле	< 0.30	0.30					
Ketone	Methyl Bulyl Ketone	< 0.30	0.30					
utyl Kefone         < 0.30         0.30           bufyl ether         < 0.15	fethyl Ketone	< 0.30	0.30					
butly ether         < 0.15         0.15           Ahlorise         < 0.15	Methyl Isobutyl Kelone	< 0.30	0.30					
Analyse   < 0.15	Methyl text-butyl ether	< 0.15	0.15					
Court   Cour	Methylene chloride	< 0.15	0.15					
<ul> <li>&lt; 0.15</li> <li>Analyse detected are not blank corrected J. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit R. Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R. Analyse detected below quantitation limit R. Analyse detected below quantitation limit</li></ul>	о-Ху⁄епе	< 0.15	0.15					
<ul> <li>&lt; 0.15</li> <li>15</li> <li>15</li> <li>15</li> <li>175</li> <li>175</li></ul>	Propylene	< 0.15	15					
sthylene < 0.15 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15  - 0.15	Styrene	< 0.15	0.15					
Results reported are not blank corrected E Estimated Value above quantitation range H Analyse detected helper quantitation limit ND Not Detected at the Limit of Detection R	Tetrachloroethylene	< 0.15	0.15					
Results reported are not blank corrected  J. Analyse detected below quantitation limit  N.D. Not Detected at the Limit of Detection  R. Analyse detected below quantitation limit  R. H.	Tetrahydroturan	< 0.15	0.15					
Analyse detected below quantitation limit ND Not Detected at the Limit of Detection R	Qualifiers: Results reporte	ed are not blank corrected	-	:	bore anaptitation		1	
		ed below quantitation limit	Z		SOVE QUARTIMATION (433)	e.		reparation or analysis exceeded

C1712063 Eldre Corp

Work Order: Project:

CLIENT: LaBella Associates, P.C.

Sample ID AMBTLIG-12217   Sample ID R 13973   TestiCode 0.2367-TiDE   Units: pbt/ Piep Date   Runho: 19073   TestiNo. 17-15   Runho: 19074   Piep Date   Runho: 19073   TestiNo. 17-15   Runho: 19074   Sequiv. 19073   TestiNo. 17-15   Runho: 19074   Sequiv. 19073   TestiNo. 17-15   Runho: 19074   Sequiv. 19073   Sequiv. 19074   Sequiv. 19073   Sequiv. 19074   Sequ										
Patch   Patc	Sample ID: AMB10G-122117	SampType: MBLK	TestCode	0.25CT-TCE	11	ď	ep Date:		Dunka, 49070	
Roseld   POL SPK value SPK Rel Val   WREC   LowLinii HighLinit RPD Rel Val   WRED   RPD Leint   RPD		Batch ID: R13073	TesiNo	: TO-15		Analys		2/21/2017	SeqNo: 151943	
Continue than   Continue tha	Analyte	Resuil	PQ							
Dichlotteriene   <-0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.	Taluene	< 0.15	0.15			-	[	ı	ł	ļ
Control   Cont	trans-1,2-Dichloroethene	< 0.35	2.0							
Ambitude-122217   Samplyger, MELK   Testicode 0.2350   Prop Date:   C.0.490   0.040	trans-1,3-Dichlotopropene	< 0.15	. O							
AMBTUGGAZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Trichloroefhene	< 0.030	0.030							
Ambrilde   < 0.054	Vinyt acetate	< 0.15	0.15							
AMBTUG-122217   SampType: MBLK   TestCode: 0.236CT-TICE: Unils: ppby   Prep Date:   RunNo: 13074   Prep Date:   RunNo: 13074   PrestCode: 0.236CT-TICE: Unils: ppby   Prep Date:   PrestCode: 0.236CT-TICE: Unils: ppby   Prep Date:   Prep Date:   PrestCode: 0.236CT-TICE: Unils: ppby   Prep Date:   Prep Date:   PrestCode: 0.236CT-TICE: Unils: ppby   Prep Date:   Prep Date:   PrestCode: 0.236CT-TICE: Unils: ppby   Prep Date:   Prep Da	Vinyl Bromide	< 0.15	0.15							
22222         Batch 1D: R13074         TestiCode: Q.25CT-TCE- Linits: ppby         Analysis Date: T2222017         Runko: 13074           22222         Batch 1D: R13074         TestNo: TO-15         Analysis Date: T2222017         Saphu: 151965           22222         Rosult         TestNo: TO-15         Analysis Date: T2222017         Saphu: 151965           Rocethane         < 0.15	Vinyl chlonde	< 0.040	0.040							
Patch ID R13074   Testho: TO-15   Patch ID R1207077   Patch ID R13074	Sample ID: AMB1UG-122217	SampType, MBLK	TestCode	0.25CT-TCF	#					
Result   POLi   SPK value   SPK Ret Val   %REC   LowLinnt   HighLinnt   RPD Ret Val   %RPD   RPDLINHt   Annual   HighLinnt   RPD Ret Val   %RPD   RPDLINHt   RPD Ret Val   %RPD Ret Val   %RPD   RPDLINHt   RPD Ret Val   %RPD Ret Val   RPDLINHt   RPDLINHt   RPDLINHt   RPDLINHt   RPDLINHt   RPDLINHT   RESUlts   RPD Ret	Cilent ID: ZZZZ	Batch ID: R13074	TestNo	TO-15		Anahun		1,000,000	RunNo: 13074	
	Analyte	Resutt						Ū	389NO: 151965	
trachloroethane	1, 2, 1-Trichloroethane	< 0.15		- 1		f	ł	ı	. !	Onai
vocethane   < 0.15	1,1,2,2-Tetrachloroethane	< 0.15	2 C							
roethane         < 0.15         0.15           roethane         < 0.15	1,1,2-Trichloroethane	< 0.15	\$ C							
roethene         < 0.15         0.15           ethylbenzene         < 0.15         0.15           ethylbenzene         < 0.15         0.15           roethane         < 0.15         0.15           roethane         < 0.15         0.15           ropupane         < 0.15         0.15           ethylbenzene         < 0.15         0.15           ethylbenzene         < 0.15         0.15           obenzene         < 0.15         0.15           obenzene         < 0.15         0.15           ethylbenzene         < 0.15         0.15           he         < 0.15         0.15           he         < 0.15         0.15           he         < 0.15         0.15    Analyse dedecated below quantitation limit         No l Datected at the Limit of Datection         H	i.1-Dichloroethane	× 0.15	15							
condense   < 0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0	1,1-Dichloroethene	< 0.15	0.15							
ethylbenzene         < 0.15         0.15           roethane         < 0.15	1,2,4-Tichlorobenzene	< 0.15	0.15							
Outstane	1,2,4-TrimethyBenzene	< 0.15	0.15							
robenzene         < 0.15         0.15           roethane         < 0.15	1,2-Dibromoethane	< 0.15	0,15							
roelhane         < 0.15         0.15           ropropane         < 0.15	f.2-Dichforobenzene	< 0.15	0.15							
Oppropane         < 0.15         0.15           eithylbenzene         < 0.15         0.15           ane         < 0.15         0.15           obenzene         < 0.15         0.15           obenzene         < 0.15         0.15           e         < 0.30         0.30           thylpentane         < 0.15         0.15           ane         < 0.15         0.15           ane         < 0.15         0.15           Analyse decreed below quantisation limit         F. Estimated Vallae above quantitation range         H           J. Analyse decreed below quantisation limit         ND. Not Desceed at the Limit of Descention         R	, 2-Dichloroethane	< 0.15	0.15							
continued by the continued by the strength of the continued by the continued by the time of Detection   Residue detected below quantitation limit   Resi	,.2-Dichloropropane	< 0.15	0.15							
Cobenzene	1,3,5-Trimethylberzene	< 0.15	0.15							
obsenzene         < 0.15         0.15           obsenzene         < 0.15         0.15           e         < 0.30         0.30           thylpentane         < 0.15         0.15           and         < 0.15         0.15           and         < 0.15         Estimated Valla above quantitation range         H           J Analyse descreted below quantitation limit         ND Not Descreted at the Limit of Descention         R	1.3-butadiene	< 0.15	1 45							
Obsenzene         < 0.15         0.15           e         < 0.30         0.30           thylpertane         < 0.15         0.15           ane         < 0.15         0.15           Results reported are not blank corrected         F. Estimated Value above quantitation range         H           J. Analyse descreted below quantitation limit         ND. Not Dosected at the 1-imit of Descention         R	1,3-Dichlorobenzene	< 0.15	0 45 45							
thypertane < 0.15 0.15  ane < 0.15 0.15  Results reported are not blank corrected F. Fistimated Value above quantitation range H. Analyte detected below quantitation limit ND Not Dotected at the 1.imit of Detection R.	1,4-Dichlorobenzene	< 0.15	0.15							
thylpentane < 0.15 0.15  Propertion	1,4-Dioxane	< 0.30	0.30							
Results reported are not blank corrected F. Estimated Value above quantitation range P.  J. Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R.	2,2,4-trimethylpertane	< 0.15	0.15							
Results reported are not blank corrected  F. Estimated Value above quantitation limit  Analyte detected below quantitation limit  ND Not Descrete at the Limit of Described  R	4-ethyltotuene	< 0.15	0.15							
Analyse detected below quantitation limit MD Not Descrete at the Limit of Detection R	Qualifiers: Results report	ed are not blank corrected			Value above quantitati	03. Tätled				
		ed betow quantitiation limit			sed at the limit of Dese	acion			especialism analysis exceeds	<del>2</del>

CLIENT: LaBella Associates, P.C.

C1712063

Work Order:

TestCode: 0.25CT-TCE-VC

Sample ID: AMB1UG-122217	SampType: MBLK	TestCode: 0.25CT-TCE-	TCE- Units: ppbV	Prep Date:		RunNo: 13074	
Client ID: ZZZZZ	Batch ID: R13074	TestNo: TO-15		Analysis Date: 12/2	12/22/2017	SeqNo: 151965	NO.
Analyte	Result	POL SPK value	e SPK Ref Val	WREC LowLimit HighLimit	nii RPD Ref Vai	%RPD R	RPDLimit Quel
Acetone	< 0.30	0.30					
Allyl chloride	< 0.15	0.15					
Вептепе	< 0.15	0.15					
Benzył chloride	< 0.15	0.15					
Bromodichloromethane	< 0.15	0.15					
Sremoform	< 0.15	0.15					
Bromomethane	< 0.15	0.15					
Carbon disuffide	< 0.15	0.15					
Carbon fetrachloride	< 0.046	0.040					
Chlorobenzene	< 0.15	0.15					
Chloroethans	< 0.15	0.15					
Chloroform	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1,2-Dichleroethene	< 0.15	0.15					
cls-1,3-Dichloropropene	< 0.15	0.15					
Cyclohexane	< 0.15	0.15					
Dibromochloromethane	< 0.15	0.15					
Ethyl aceiate	< 0.15	0.15					
Ethylbenzene	< 0.15	0.15					
Freon 11	< 0.15	0.15					
Freon 113	< 0.15	0.15					
Frech 114	< 0.15	0.15					
Freor 12	< 0.15	0.15					
Heplane	< 0.15	0.15					
Hexachloro-1,3-butadiene	< 0.15	0.15					
Hexane	< 0.15	0.15					
Isopropyl alcohot	< 0.15	0.15					
m&p-Xylane	< 0.30	0.30					
Methyl Butyl Ketons	< 0.30	0.30					
Methyl Ethyl Ketore	< 0.30	D:30					
Methyl isobutyl Ketone	< 0.30	0.30					
Qualifiers: Results reported	Results reported are not blank corrected	E Est	Estimated Value above quantitation range	H Hation range	Holding times for	preparation or anal	ysis exceeded
7	Analyte detected below quantitation literi	_	Not Detected at the Limit of Detection	Detection R	RPD outside accepted recevery limits	tes recevery limits	
S Spike Recov	Spike Recovery outside accepted recovery limits	s					Dana A of S

LaBella Associates, P.C.

C1712063 Eldre Corp

CLIENT: Work Order:

Project:

Quai

Sample ID: AMB1UG-122217	SampType: MBLK	TestCode	TestCode: 0.25CT-TCE- Units: ppbV	Units: ppbV		Prep Date:	ie:		RunNo: 13074	1074
Client iD: ZZZZZ	Batch ID: R13074	TestN	TestNo: TO-15		7	Analysis Date: 12/22/2017	te: 12/22/	5102	SeqNo: 151965	1965
Analyle	Result	g d	SPK value SPK Ref Val	⊃K Ref Val	%REC	Lowimit	HighLímit	%REC LowLimit HighLimit RPD Ref Val	%ጸዖዑ	%RPD RPOLimit
Methyl tert-butyt ether	< 0.15	0.15								
Methylene chloride	< 0.15	0.15								
o-Xylene	< 0.15	0.15								
Propylene	< 0.15	0.15								
Styrene	< 0.15	0.15								
Tetrachloroathylene	< 0.15	0.15								
Tetrahydrofuran	< 0.15	0.15								
Toluene	< 0.15	0.15								
trans-1,2-Dichloroethene	< 0.15	0.15								
trans-1,3-Dichloropropene	<0.15	0.15								
Trichloroethene	< 0.030	0.030								
Vinyl acetate	< 0.15	0.15								
Vinyl Bromide	< 0.15	0.15								
Vinyl chloride	< 0.040	0.040								

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order:

CLIENT:

TestCode: 0.25CT-TCE-VC

,	. Results reparted are not blank corrected	E Estimated Value above quantitation range	He Holding times for preparation or analysis exceeded
_	Analyte descried below quantitation limit	ND Not Detected at the Limit of Detection	R RPD outside accepted recovery limits
S	Spike Recovery emiside neverted recovery limits		2000 Z 400 Z

Centek Laboratories,  $LL_{Contitation Report}$ (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122105.D

Vial: 5

Operator: RJP Acq On : 21 Dec 2017 11:45 am Sample : AMBIUG-122117 Misc : AD12_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 21 13:59:10 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene~d5	10.62 12.84 17.56	128 114 117	27931 109786 84888	1.00 pph 1.00 pph 1.00 pph	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70	95 ~ 130	47082 Recover	0.75 ppb ry = 75	0.00 5.00%

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122105.D AD12_1UG,M Wed Jan 10 09:25:10 2018 MSD1

Page 405 of 477

Centek Laboratories,  $LL_{Quantitation\ Report}$ (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122205.D Acq On

Vial: 5 Operator: RJP ; 22 Dec 2017 11:05 am

Inst : MSD #1 Sample : AMB1UG~122217 Multiplr: 1.00 : AD12 1UG

MS Integration Params: RTEINT.P

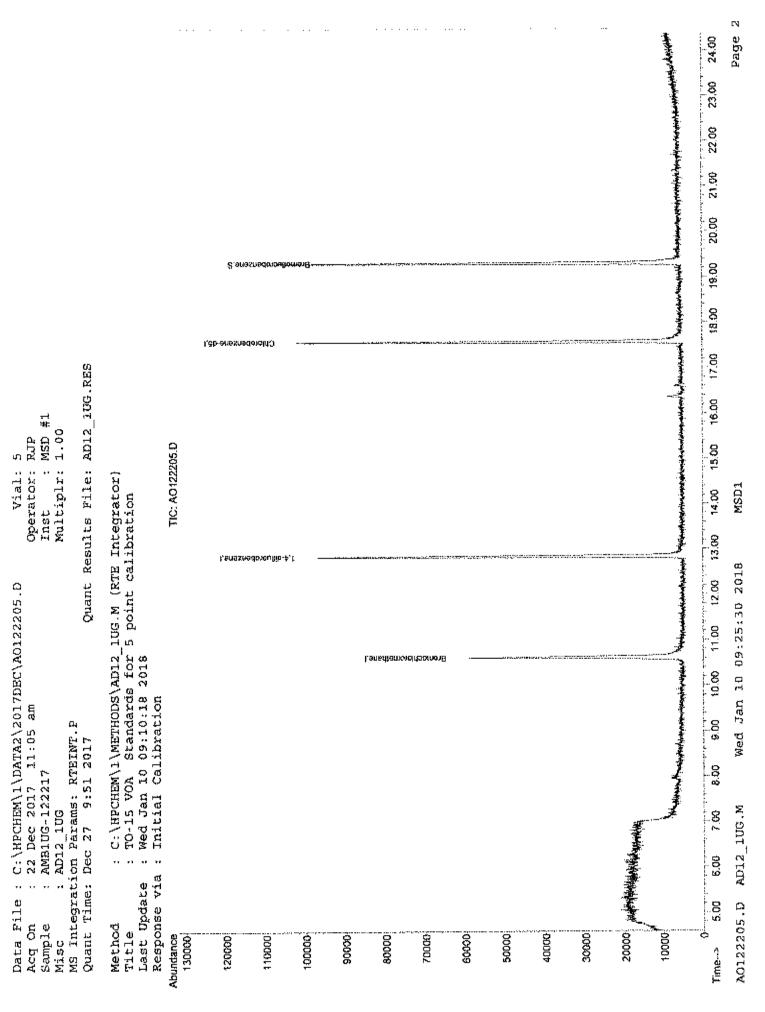
Quant Results File: AD12_1UG.RES Quant Time: Dec 27 09:49:22 2017

Quant Method : C:\HPCHEM\1\METHODS\AD12_lUG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one Un	its Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.56	128 114 117	25697 99388 78135	1.00 1.00 1.00	рpр	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.29 Range 70	95 1.30	43497m / Recovery	0.75	ppb 75,00%	0.00


Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+)  $\approx$  signals summed AQ122205.D AD12_1UG.M Wed Jan 10 09:25:29 2018

/******** • X1

ATOMETICATION TOTAL



Page 407 of 477

S Spike Recovery outside accepted recovery limits

# CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jan-18

CLIENT: LaBella Associates, P.C.

Work Order: C1712063

Eldre Corp

Project:

TestCode: 1ngM3_TO15

-15         Analysis Date:         12/22/2017         SeqNor. 15/15           value         SPK Ref Val         %REC         LowLinit         HighLimit         RPD Ref Val         %RPD           1         0.2         96.0         70         130         ARPD           1         0         78.0         70         130         ARPD           1         0         95.0         70         130         ARPD           1         0         96.0         70         130         ARPD         ARPD           1         0         96.0         70         130         ARPD         ARPD         ARPD         ARPD           1         0         96.0<	Sample ID: C1712063-001A MS	SampType: MS	TestCox	FestCode: tugM3_TO15	TO15 Units: ppbV		Prep Date:		RunNo: 13073	
Cichlotroethane         Total Configuration         FPQL         SPK value         SPK Red Val         %REC         LowLinit         HighLinit           Cichlotroethane         0.7800         0.15         1         0         78.0         70         130           Ichloroethane         0.9500         0.15         1         0         95.0         70         130           incroethane         0.9500         0.15         1         0         96.0         70         130           incroethane         0.8600         0.15         1         0         96.0         70         130           incroethane         0.8500         0.15         1         0         96.0         70         130           omoethane         0.8300         0.15         1         0         83.0         70         130           introbenzane         0.9500         0.15         1         0         83.0         70         130           introbenzane         0.9500         0.15         1         0         95.0         70         130           introbenzane         1.070         0.15         1         0.15         7         130           introbenzane         1.070		Batch (D; R13073	Jesth	to: TO-15		•	Analysis Date:	12/22/2017	SegNo: 151963	
1.160   0.15   1   0.2   96.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	เกลlyte	Result	Pol	SPK value		%REC			%RPD RPDLimit	Qua
1,260	,1,1-Trichiproethane	1.160	0.15		1 0.2	0.96	92	130		
0.9500 0.15 1 0 95.0 70 130	,1,2,2-Tetrachloroethane	0.7800	0.15	-	0	78.0	70	130		
0.9600 0.15 1 0 660 70 130  0.8600 0.15 1 1 0 0 86.0 70 130  1.1720 0.15 1 0.79 93.0 70 130  0.9500 0.15 1 0 0 83.0 70 130  0.9500 0.15 1 0 0 83.0 70 130  1.250 0.15 1 0 0 95.0 70 130  1.250 0.15 1 0 0 95.0 70 130  1.250 0.15 1 0 0 95.0 70 130  1.250 0.15 1 0 0 95.0 70 130  1.250 0.15 1 0 0 10 10 10 10 10 10 10 10 10 10 10	,1,2-Trichloroethane	0.9500	0.15	•	0	95.0	70	130		
6.8600 0.15 1 0 86.0 70 130  1.1720 0.15 1 0 0.79 93.0 70 130  8.05500 0.15 1 0 0 83.0 70 130  9.9500 0.15 1 0 0 95.0 70 130  1.210 0.15 1 0 0 95.0 70 130  1.210 0.15 1 0 0 95.0 70 130  1.210 0.15 1 0 0 95.0 70 130  1.210 0.15 1 0 0 97.0 70 130  1.210 0.15 1 0 0 17 121 70 130  1.070 0.15 1 0 0 17 121 70 130  1.070 0.15 1 0 0 17 121 70 130  1.080 0.15 1 0 0 14 92.0 70 130  1.080 0.15 1 0 0 14 92.0 70 130  1.090 0.15 1 0 0 10 10 10 10 10 10 10 10 10 10 10	,1-Dichloroethane	0.9600	0.15	•	£	98	7.0	130		
1,170	.1-Dichlaroethene	0.8600	0.15	•	0	86.0	20	130		
e         1,720         0,15         1         0,79         93.0         70         130           0,8300         0,15         1         0         95.0         70         130           0,9500         0,15         1         0         95.0         70         130           0,9500         0,15         1         0         95.0         70         130           0,9700         0,15         1         0         97.0         70         130           1,210         0,15         1         0         97.0         70         130           1,070         0,15         1         0         121         70         130           1,070         0,15         1         0         107         70         130           1,070         0,15         1         0         107         70         130           1,040         0,15         1         0         100         70         130           1,040         0,15         1         0         104         70         130           1,040         0,15         1         0         104         70         130           1,040	,2,4-Trichlorobenzene	1.170	0.15	•	0	117	2	130		
6.8300 0.15 1 0 83.0 70 130 6.9500 0.15 1 0 0 95.0 70 130 6.9500 0.15 1 0 0 95.0 70 130 6.9500 0.15 1 0 0 95.0 70 130 7.0700 0.15 1 0 0 97.0 70 130 7.070 0.15 1 0 0 14 121 70 130 7.070 0.15 1 0 0.14 92.0 70 130 7.080 0.15 1 0.14 92.0 70 130 7.080 0.15 1 0.014 92.0 70 130 7.080 0.15 1 0.014 92.0 70 130 7.080 0.15 1 0.014 92.0 70 130 7.080 0.15 1 0.014 92.0 70 130 7.080 0.15 1 0.014 92.0 70 130 7.080 0.15 1 0 0.15 1 0 1014 70 130 7.080 0.15 1 0 0.15 1 0 1014 70 130 7.080 0.15 1 0 0.15 1 0 1014 70 130 7.080 0.15 1 0 0.15 1 0 0.15 1 0 130 7.0800 0.15 1 0 0.15 1 0 0.15 1 0 1014 70 130 7.0800 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.1	,2,4-Trimethyfbenzene	1.720	0,15		0.79	93.0	70	130		
9.9500 6.15 1 0 95.0 70 130 6.950	2-Dibromoethane	0.8300	0.15	•	0	83.0	70	130		
6.9500 6.15 1 0 95.0 70 130 6.25 6 6.15 1 0 95.0 70 130 6.25 6 6.15 1 0 97.0 70 130 130 1.250 6.15 1 0 97.0 70 130 1.250 6.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0 0.15 1 0	2-Dichlorobenzene	0.9500	0.15	•	0	95.0	ደ	130		
6 1.256 6.15 1 0.44 81.0 70 130 130 1.256 6.15 1 0.44 81.0 70 130 130 1.210 6.15 1 0.15 1 0.44 81.0 70 130 130 1.210 6.15 1 0.15 1 0 121 70 130 130 1.010 6.15 1 0 14 6.17 70 130 130 1.060 0.15 1 0.15 1 0 104 92.0 70 130 130 1.040 0.15 1 0.15 1 0 101 70 130 130 1.010 0.15 1 0 101 70 130 130 1.010 0.15 1 0 101 70 130 130 1.010 0.15 1 0 101 70 130 130 130 130 130 130 130 130 130 13	.2-Dichloroethane	0.9500	0.15	•	0	95.0	2	130		
6.4         6.44         6.44         6.15         70         130           1.210         0.15         1         0         121         70         130           1.070         0.15         1         0         107         70         130           1.070         0.15         1         0         101         70         130           0.5600         0.15         1         0.14         92.0         70         130           1.060         0.15         1         0.14         92.0         70         130           1.040         0.15         1         0.14         92.0         70         130           1.040         0.15         1         0         104         70         130           1.040         0.15         1         0         104         70         130           1.010         0.15         1         0         70         130           0.9900         0.15         1         0         77.0         70         130           0.9900         0.15         1         0         77.0         70         130           0.9900         0.15         1         0	.2-Dichloropropane	0.9700	0.15	•	0	0.76	8	130		
1.210	,3,5-Trimethylbenzene	1.250	0.15	•	0.44	81.0	70	130		
1,070 0.15 1 0 101 107 70 130 130 1.010 0.15 1.010 0.15 1 0 101 101 70 130 130 1.05600 0.30 1 0.15 1 0 100 101 70 130 130 1.0600 0.15 1 0 100 70 130 130 149.5 0.30 1 1912 -4170 70 130 130 1.030 0.15 1 0 104 70 130 130 1.030 0.15 1 0 104 70 130 130 1.030 0.15 1 0 101 7.00 130 130 130 130 130 130 130 130 130 1	,3-butadiene	1.210	0.15		0	121	70	130		
1.010 0.15 1 0 101 101 70 1030  0.5600 0.30 1 0.17 39.0 70 130  1.060 0.15 1 0 14 92.0 70 130  1.060 0.15 1 0.14 92.0 70 130  1.070 0.15 1 0.38 99.0 70 130  1.010 0.15 1 0 97.0 70 130  0.7700 0.15 1 0 99.0 70 130  0.8001s ceputed are not blank corrected	3-Dichlorobenzene	1.070	0.15	•	0	107	02	130		
0.5600 0.30 1 0.17 39.0 70 130 130 1.000 1.000 0.15 1 0.15 1.000 0.15 1 0.14 0.14 0.2.0 70 130 130 149.5 0.30 1 1912 1912 1912 1912 1913 130 130 130 130 130 130 130 130 130 1	.4-Dichlorobenzene	1.010	0.55		0 1	101	70	130		
1,000 0.15 1 0 100 100 100 100 100 100 100 100 1	4-Dioxane	0.5600	0.30	•	0.17	39.0	20	130		Ø
1.060 0.15 1 0.14 92.0 70 130 130 149.5 0.30 1 191.2 -4170 70 130 130 130 130 130 130 130 130 130 13	2,4-trimethyipentane	1.000	0.15		0	<b>3</b> 5	70	130		
149.5   0.30   1   191.2   -4170   70   130   1.040   0.15   1   0.36   99.0   70   130   130   1.010   0.15   1   0.36   99.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   13	-ethyltoluen <del>a</del>	1.050	0.15	•	0.34	92.0	70	130		
1040   0.15   1   0.38   99.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	cetone	149.5	0.30	1	191.2	-4170	70	130		S
1.370 0.15 1 0.38 99.0 70 130 1.010 0.15 1 0.38 99.0 70 130 0.9700 0.15 1 0 97.0 70 130 0.9900 0.15 1 0 99.0 70 139 sulls reported arc not brank corrected E Estimated Value above quantitation range H	llyd chloride	1.040	0.15		0	<del>1</del>	70	130		
1.010 0.15 1 0 101 70 130 0.9700 0.15 1 0 97.0 70 130 0.7700 0.15 1 0 77.0 70 130 0.9900 0.15 1 0 77.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9900 0.15 1 0 99.0 70 0.9000 0.15 1 0 99.0 70 0.9000 0.15 1 0 99.0 70 0.90	Senzene	1.370	0.15	•	1 0.38	86	55	130		
0.9700 0.15 1 0 97.0 70 130 0.770 0.15 1 0 77.0 70 130 0.9900 0.15 1 0 77.0 70 130 130 130 130 130 130 130 130 130 13	Senzyl chloride	1.010	0.15	•	0	101	70	130		
6.7700 0.15 1 0 77.0 70 139 0.9900 0.15 1 0 99.0 70 130 130	stomodichloromethane	0.9700	0.15	•	0	97.0	5	130		
Results reported are not blank corrected E Estimated Value above quantitation range H	tromoform	0.7700	0,15	•	0	77.0	52	139		
Results reported are not blank corrected E Estimated Value above quantitation range H	stomomelinane	0.9900	0.15		0	99.0	20	130		
T And the discount hallow accomplished that has been bloomed as the fine of Passamian		rted are not biank corrected		:	mated Value above quan	Hation Fang			4 preparation or analysis excre	124
		in in interest of the first		_	Development the Linit of	Determinan			mented measure limits	

TestCode: lugM3_T015

	CLIENT:	LaBella Associates, P.C.
	Work Order:	C1712063
Pa	Project:	Eldre Corp

1   Batch ID   R19073   TeatNot: TO-15   Annabyeis Debts   120222017   Sepulor   12040   SPK rathe   SPK rather   SPK ra	Sample ID: C1712063-001A MS	SampType: MS	TestCode: 1ugM3_TO15	ugM3_TO	15 Units: ppbV		Prep Date:	h2		RunNo: 13073	073	
1346   P21   SPK Red Vale   SPK Re		Batch ID: R13073	Testato:	70-15		**	knakysis Date		.017	SeqNo: 15	1963	
1346   0.15   1 0.53   810   70   130     0.8070   0.15   1 0 0.93   87.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   130     0.8080   0.15   1 0 0 99.0   70   70   70   70     0.8080   0.15   1 0 0 99.0   70   70   70     0.8080   0.15   1 0 0 99.0   70   70   70     0.8080   0.15   1 0 0 99.0   70   70   70     0.8080   0.15   1 0 0 99.0   70   70   70     0.8080   0.15   1 0 0 99.0   70   70   7	nalyte	Result			SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
10   10   10   10   10   10   10   10	arbon disuffide	1,340	0.15	T.	0.53	81.0	70	130				
table         0.8900         0.15         1         0         690         70         130           tarnel         0.8900         0.15         1         0         990         70         139           mine         0.8900         0.15         1         0         990         70         139           athleane         1,070         0.15         1         0         900         70         130           athleane         1,070         0.15         1         0         1         0	tarbon tetrachlonde	0.9700	0.15	•	0	97.0	R	130				
Marche   M	Morobenzene	0.8900	0.15	<b></b>	0	89.0	2	133				
December   Composition   Com	hloroethane	0.9800	0.15	-	0	98.0	2	130				
1,000	hloroform	0.9900	0.15	-	0	99.0	70	130				
1000   015   1   0   100   101   100   101   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1	hloromethane	1.070	0.15	-	0	107	70	133				
Comparison   Com	is-1,2-Dichloroethens	1.000	0.15	-	0	ţ00	20	130				
anne 1220 015 1 1 20 120 110 110 110 110 110 110 110	is-1,3-Dichloropropene	0.9500	0.15	-	0	95.0	5	130				
tate 1.050 0.15 1 0.050 0.15 1 0.050 70 130 200 130 200 130 200 150 1050 0.15 1 0.050 0.15 1 0.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.050 0.15 1 1.0	усюнекале	1.220	0.15	-	0	122	70	130				
tate         1050         0.15         1         0.33         72.0         70         130           sene         1.070         0.15         1         0.19         70         130         70         130           4         1.070         0.15         1         0.19         70         130         70         130           4         1.120         0.15         1         0.24         86.0         70         130           4         1.220         0.15         1         0.24         86.0         70         130           4         1.300         0.15         1         0.47         86.0         70         130           nro-1,3-buladiane         0.8500         0.15         1         0.47         86.0         70         130           nro-1,3-buladiane         0.8600         0.15         1         0.47         86.0         70         130           nro-1,3-buladiane         0.8600         0.15         1         0.47         86.0         70         130           alcoholity Ketone         2.180         0.30         1         0.7         91.0         70         130           hily Ketone         2.380	)ibromochloromethane	D.8000	0.15	-	0	60.0	5	130				
1,070   0.15   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00	thy! acetate	1.050	0.15	-	0.33	72.0	22	130				
3 1120 0 145	thytbenzene	1.070	0.15	-	0.19	88.0	2	130				
3	reon 11	1.120	0.15	-	0.24	88.0	70	130				
4 1 29900 0.15 1 0.47 86.0 70 130  no-1,3-builadlene 0.8600 0.15 1 0.47 86.0 70 130  no-1,3-builadlene 0.8600 0.15 1 0.47 86.0 70 130  no-1,3-builadlene 0.8600 0.15 1 0.96 39.0 70 130  no-1,3-builadlene 0.8600 0.15 1 0.96 39.0 70 130  no-1,3-builadlene 0.8600 0.15 1 0.96 39.0 70 130  no-1,3-builadlene 0.8600 0.15 1 0.7 10 130  no-1,3-builadlene 0.8600 0.15 1 0.7 10 130  no-1,3-builadlene 0.8600 0.15 1 0.7 10 130  no-1,3-builadlene 0.8600 0.15 1 0.17 1.00 130  no-1,3-builadlene 0.1800 0.15 1 0.12 1.00 130  no-1,3-builadlene 0.1800 0.15 1 0.15 1.00 130  no-1,3-builadlene 0.1800 0.15 1 0.15 1.00 130  no-1,3-builadlene 0.1800 0.15 1 0.10 130  no-1,3-builadlene 0.1800 0.1800 0.1800 0.1800 0.1800 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900	repn 113	0.9800	0.15	₩	0	98.0	2	130				
1,330   0.15   1,300   0.15   1   0.47   86.0   70   130   130   1.880   1.1880   0.15   1   0.96   93.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	reon 114	0.9900	0.15	+	0	99.0	20	130				
1.890   0.15   1.890   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50   1.50	reon 12	1,330	0.15	<del></del>	0.47	86.0	70	130				
1.510   0.15   1   0.7   81.0   70   130   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140	leptane	1.890	0.15		96.0	93.0	70	130				
1.510   0.15   1.510   0.15   1   0.7   81.0   70   130	lexachloro-1,3-buiadiene	0.8600	0.15	4	0	86.0	7.0	130				
Second   S	exane	1.510	0.15	₽~L	6.0	81.0	92	130				
tryl Ketone         2.180         0.36         2         0.55         81.5         70         130           tryl Ketone         0.8100         0.30         1         0.017         70         130           cobutyl Ketone         0.7600         0.30         1         2.01         37.0         70         130           crt-buryl ether         0.7600         0.30         1         0.17         58.0         70         130           crt-buryl ether         2.530         0.15         1         0.17         59.0         70         130           crt-buryl ether         2.530         0.15         1         0.17         59.0         70         130           crt-buryl ether         2.530         0.15         1         0.22         70         130           crt-buryl ether         1.000         0.15         1         0.22         70         130           crt-buryl ether         1.710         0.15         1         0.22         78.0         70         130           crt-buryl ether         0.350         0.15         1         0.22         78.0         70         130           concethylene         4.240         0.15         1	sopropyt alcohoł	28.43	0.15	•	38.64	-821	70	130				ഗ
thyl Ketone         0.8100         0.30         1         0         81.0         70         130           thyl Ketone         2.380         0.30         1         2.01         37.0         70         130           ochutyl Ketone         0.7600         0.30         1         0.17         59.0         70         130           art-butyl ether         0.5300         0.15         1         0.17         59.0         70         130           ce chloride         2.530         0.15         1         0.22         43.0         70         130           ce chloride         2.530         0.15         1         0.22         78.0         70         130           ce chloride         3.00         0.15         1         0.22         78.0         70         130           norethylene         4.240         0.15         1         0.22         78.0         70         130           rofutan         4.240         0.15         1         4.44         -20.0         70         130           rofutan         4.240         0.15         1         0.15         70         130           rs         Results reported are not blank corrected <t< td=""><td>ъвр-Хујепе</td><td>2.180</td><td>0.30</td><td>2</td><td>0.55</td><td>81.5</td><td>£</td><td>130</td><td></td><td></td><td></td><td></td></t<>	ъвр-Хујепе	2.180	0.30	2	0.55	81.5	£	130				
triyl Ketone 2.380 0.30 1 2.01 37.0 70 130 cobutyl Ketone 0.7600 0.30 1 0.17 59.0 70 130 cobutyl Ketone 0.500 0.15 1 0.17 59.0 70 130 cobutyl Ketone 0.500 0.15 1 0.17 59.0 70 130 cobutyl Ketone 0.500 0.15 1 0.22 43.0 70 130 cobutyl Ketone 0.500 0.15 1 0.52 78.0 70 130 cobutyl Ketone 0.500 0.15 1 0.52 78.0 70 130 cobutyl Ketone 0.500 0.15 1 0.50 170 170 170 170 170 170 170 170 170 17	fethyl Butyl Ketone	9.8100	0.30	•	0	81.0	22	130				
cobutyl Ketone         0.7600         0.30         1         0.17         59.0         70         130           nrł-buryl ether         0.9300         0.15         1         0.22         43.0         70         130           ic chloride         2.630         0.15         1         0.22         70         130           ic chloride         1.000         0.15         1         0.22         78.0         70         130           ic chloride         1.710         0.15         1         0.22         78.0         70         130           ic chloride         0.15         1         0.22         78.0         70         130           ic oftural         4.240         0.15         1         4.44         -20.0         70         130           icofural         1.190         0.15         1         4.44         -20.0         70         130           icofural         1.300         1.100         0.15         1         4.44         -20.0         70         130           icofural         1.300         1.30         1.30         1.30         1.30         1.30           icofural         1.300         1.30         1.30	Aethyl Ethyl Ketone	2.380	0.30	-	2.01	37.0	20	130				s
rit-butylether         0.9360         0.15         1         0         93.0         70         130           te chloride         2.630         0.15         1         2.2         43.0         70         130           te chloride         1.000         0.15         1         0.22         78.0         70         130           moethylene         4.240         0.15         1         4.44         -20.0         70         130           irofuran         1.180         0.15         1         4.44         -20.0         70         130           irofuran         1.180         0.15         1         0.16         130         130           srofuran         Analyte detexted below quantilation limit         R. Estimated Value above quantilation range         R. RPD outside accepted recovery limits           s. Soike Recovery rustide accepted recovery limits         No Not Detected at the 1.fmit of Detection         R. RPD outside accepted recovery limits	Aethyl Isobutył Ketone	0.7600	0.30	-	0.17	59.0	22	130				s
te chloride 2.630 0.15 1 2.2 43.0 70 130 130 1.000 0.15 1 0.22 78.0 70 130 130 1.710 0.15 1 0.22 78.0 70 130 130 1.710 0.15 1 0 171 70 130 130 1.710 0.15 1 4.240 0.15 1 4.244 -20.0 70 130 130 1.100 0.15 1 0 110 70 130 1.30 1.30 1.30 1.30 1.30 1.30 1.30	dethyl tert-butyl elher	0.9300	0.15	-	Ф	93.0	70	130				
1.000	dethyene chloride	2.630	0.15	-	2.2	43.0	70	<u>₹</u>				ŝ
1.710	Xylene	1.000	0.15	-	0.22	78.0	70	130				
notethylene         4.240         0.15         1         4.44         -20,0         70         130           irefuran         1.180         0.15         1         4.44         -20,0         70         130           rs.         Results reported are not blank corrected         E. Estimated Value above quantitation range         H. Holding times for preparation or analysis excess yang analysis in the Limit of Datection         R. RPD outside accepted recovery limits           S. Noike Recovery nutside accepted recovery limits         No. Not Detected at the Limit of Datection         R. RPD outside accepted recovery limits	hopylene	1.710	0.15	**	0	171	70	130				S
furan 1.100 0.15 1 4.44 -20,0 70 130 furan 1.100 0.15 1 0 110 70 130  Results reported are not blank corrected E. Estimated Value above quantifation range H. Holding times for preparation or analysis excelled to the secretary against times. No Not Detected at the Limit of Detection R. R. R. P.D. outside accepted recovery limits.	Хутеле	0.9200	0.15	•	0	92.0	20	130				
furan 1.100 0.15 to 130  Results reported are not blank corrected E. Estimated Value above quantifation range H. Floiding times for preparation or analysis extent J. Analyse detected below quantifation limit  ND. Not Detected at the Limit of Detection R. R. R. P.D. outside accepted recovery limits S. Sofke Recovery outside accepted recovery limits	etrachloroethylene	4.240	0.15	-	4.44	-20.0	02	130				(y)
Regults reported are not blank corrected E. Estimated Value above quantifation range H. Floiding titues for preparation or analysis extex J. Analyte detected below quantifation limit ND. Not Detected at the Limit of Detection R. RPD outside accepted recovery limits. Solike Recovery outside accepted recovery limits.	etrahydrofuran	1.100	0.15	+	0	110	76	£3				
Analyte detected below quantitation limit ND Not Detected at the Limit of Datection R RPD outside accepted recovery limits. Softe Recovery nutside accepted recovery limits		arted are not blank corrected			red Value above quant	ifation rang	ū	Œ	Holding times for	preparation or	arriysis excex	P2
Softe Recovery nutside accord recovery linits	J Analyte det	octed below quantitation limit	Z		lected at the Limit of I	Detection		æ	RPD outside accep	ted recovery li	mits	
	S Spike Recor	very outside accepted recovery lit	Bits								4	Prom ? of 5

Clinat ID: Rtf. of	Sample ID: C1712063-001A MS SampType: MS	TestCode: 1ugM3_T015	ugM3_TO1	5 Units: ppbV		Prep Date	.,		RunNo: 13073	173	
	Batch ID: R13073	TestNo: TO-15	0.15		•	Analysis Date:	12/22/2017	141	SeqNo: 151963	963	
Analyta	Result	POLSP	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vaf	%RPO	RPDLimit	Qual
Toluene	3.460	0.15	ą.	3.27	18.0	70	130				S
rans-1,2-Dichloroethene	0.9100	0.16	<b>/</b>	o	91.0	20	130				
trans-1,3-Dichloropropene	1.940	0.15	***	Ö	द्ध	20	130				
Trichloroethene	4.380	0.15	***	4.18	20.0	70	130				Ø
Vinyl acetate	0.9600	0.16	***	Ö	96.0	70	130				
Vinyl Bromide	0.9800	0.15	fan	0	98.0	70	130				
Vinyl chloride	1.140	0.15	-	0.16	98.0	70	130				
Sample ID: C1712063-001A MS	SampType: MSD	TestCode: 1ugM3_T015	ugwis_TO1	5 Units: ppbV		Prep Date			RunNo: 13073	173	
Ciient ID: SVI-01	Batch ID: R13073	TestMo: TO-15	0.45			Analysis Dete:	12/22/2017	D17	SeqNo: 151964	964	
Analyte	Resut	Pals	SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.080	0.15	-	0.2	88.0	70	130	1.16	7.14	30	
1,1,2,2-Tetrachloroethane	0.8600	0.15	<del>,-</del>	0	96.0	70	130	0.78	9.76	æ	
I, f, 2-Trichloroethane	0.9500	0.15	•••	0	95.0	70	130	0.95	٥	8	
1,1-Dichloroethane	0.9900	0.15	₹"	¢.	39.0	2	130	0.96	3.08	8	
1,1-Dichloroethene	0.8300	0,15	₹-	0	83.0	72	130	0.85	3.55	30	
1,2,4-Tricklorobenzene	1.260	0.15	•	Đ	126	70	130	1.17	7.41	8	
1.2.4-Trimethylbenzene	1.550	0.15	-	0.79	76.0	7.	130	1.72	10.4	8	
f,2-Dibromoethane	0.8800	0.15	-	0	\$8.0	22	130	0.83	5.85	30	
f,2-Dichforobenzene	1.020	0.15	-	Ф	102	70	133	0.95	7.11	30	
f,2-Dichloroethane	0.9400	0.15	-	o	94.0	20	130	0.95	8.	ଚ୍ଚ	
f,2-Dichloropropane	0.9800	0.15	-	Ö	98.0	22	130	0.97	1.03	30	
1,3,5-Trimethylbenzene	1.170	0.15	-	4.0	73.0	70	130	1.25	6.61	30	
1,3-buladiene	1,250	0.55	-	0	125	70	130	1.24	3.25	83	
1,3-Dichlorobenzene	1.120	0.15	-	0	112	70	130	1.07	4.57	ଞ	
1,4-Dichlorobenzene	1.060	0.15	-	0	136	g	130	1.01	4.83	8	
1,4-Dioxane	0.6300	0.30	+	0.17	46.0	70	130	0.56	11.8	8	v)
2,2,4-trimethy/peniane	0.9700	0.15	-	D	97.0	70	130	-	3.05	æ	
4-ethylloluene	1.080	0.15	-	0,14	94.0	70	130	1.06	1.87	30	
Qualifiers: Residis repoi	Results reported are not blank corrected	<b>4</b>	)	Estimated Value above quantitation range	itation rang	: : :	. E	Holding times for preparation or analysis exceeded	preparation or an	uspysis excera	귤
j Analyte dete	Analyte detected below quantitation limit	ON		Not Detected at the Limit of Detection	Detection		×	RPD outside accepted recovery limits	sted recovery lim	nits	
S Spike Recov	Spike Recovery outside accepted recovery limits	strits								****	Page 3 055

C1712063 Eldre Corp

Work Order: Project:

CLIENT:

CLIENT: LaBella Associates, P.C.

TestCode: fugM3_T015

Spike Recovery outside accepted recovery limits Annlyse desected below quantitation limit

LaBella Associates, P.C. CLIENT:

TestCode: fugM3_T015

C1712063 Work Order:

Eldre Corp Project:

Sample ID: C1712063-001A MS	SampType: MSO	TestCode	i fugiti3_T(	TestCode: fugM3_TO15 Units: ppbV		Prep Date:			RunNo: 13073	073	
Client ID: SVI-01	Batch ID: R13073	TestN	No: TO-15			Analysis Date:	12/22/2017	117	SeqNo: 151964	1964	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPOLimit	Quai
Acetone	104.4	0.30	F	191.2	0899	07	130	149.5	35.5	30	S.
Allyl chloride	0.9900	0.15	*-	φ	99.0	52	130	1.04	4.93	30	
Benzene	1.250	0.15	₹	0.38	87.D	7.0	130	1.37	9.16	30	
Benzyl chloride	1.090	0.15	•	۵	109	70	130	1.01	7.62	8	
Bromodichloromethane	0.9500	0.15	•	o	95.0	70	130	76.0	2.08	8	
Bromaform	0.8300	0.15	•	o	83.0	6	130	0.77	7.50	30	
<del>ರಿಣ್ಯಗಾಳ</del> ಗಿತ್ತಾ	0.9400	0.15	-	Q	34.0	70	130	66.0	5.18	S	
Carbon disuffide	1.220	0.15	-	0.53	69.0	70	130	1,34	96.98	33	ဟ
Carbon teirachloride	0.9400	0.15	•	Φ	94.0	5	139	0.97	3,14	33	
Chlorobenzene	0.9000	0.15	-	٥	90.0	70	130	0.89	1.12	8	
Chloroethane	0.9700	0.15	-	o	97.0	5	130	0.98	1.03	83	
Сывлобеня	0.9900	0.15	-	0	99.0	2	<del>1</del> 3	0.99	Φ	R	
Chloromethane	1,090	0.15	-	0	109	6	133	1.07	1.85	33	
cis-1,2-Dichloroethere	0.9400	0.15	•	0	94.0	70	130	<b>4</b> m	6.19	36	
cis-1,3-Dichloropropene	0.9400	0.15	-	a	94.0	5	130	0.95	1.06	89	
Cyclohexane	1,170	0.15	-	Ó	117	5	130	1.22	4,18	8	
Dibromochloromethane	0.8500	0.15	-	Ö	85.0	02	130	0.8	6.06	30	
Ethyl acetale	1.020	0.15	***	0.33	0.69	20	130	1.05	2.90	30	တ
Ethybenzene	1.030	0.15	<del>~~</del>	0.19	84.0	70	130	1.07	3,81	8	
Freon 11	1.050	0,15	₹***	0.24	0.10	92	130	1.12	6.45	8	
Freon 113	0.9300	0.15	<b>-</b>	Ð	93.0	70	130	0.98	5.24	30	
Freon 114	0.9800	0.15	₩	0	98.0	70	130	68.0	1.02	30	
Freon 12	1.210	0.45	<b>/</b>	0,47	74.0	70	130	1,33	9,45	8	
Heptane	1.580	0.15	<b>W</b>	0.96	62.0	70	130	1.89	17.9	30	ဟ
Hexachloro-1,3-buladiene	1.000	0.15	***	o	100	70	130	0.86	15.1	33	
Hexane	1.340	0.15	•	0.7	2.0	70	130	1.51	11.9	33	Ø
Isopropyť akcehol	20.21	0.15	-	36,64	-1640	23	130	28.43	33.8	8	an an
т&р-Ху́еге	2.100	0.30	2	0.55	77.5	70	130	2,18	3,74	8	
Methyl Butyl Ketone	0.3300	0.30	-	0	33.0	70	130	0.81	84.2	8	SS
Methyl Ethyl Ketone	2,000	0.30	-	2.01	1.00	7.0	130	2.38	17.4	8	Ø
Methyl Isobutyl Ketone	0.5900	0.30	-	0.17	42.0	92	130	0.76	25,2	8	w
Qualifiers: Results report	Results reported are not biank corrected		E Estim	Estimated Value above quantitation mange	titation ran	· · · · ·	# H	Holding times for preparation or analysis exceeded	preparation or a	matysis exceo	ded
-	Sambote abstant halow arrantication limit		O MAN CIN	Not Described at the figure of Desection	Detection	ı	~	PD outside accepted attention	nted attaitment lit	nit.	
Parties and State of the State	The second secon							1	,	-	

Sample ID; C1712063-001A MS SampType; MSD	SampType: MSD	TestCo	TestCode: 1ugM3_TO15	O15 Units: ppbV		Prep Date	<u>ن</u> و		RunNo: 13073	073	
Ollent 1D: SVI-01	Batch ID: Rf3073	Test	TestNc: TO-15			Analysis Date: 12/22/2017	le: 12/22/3	2017	SecNo: 15	151964	
Analyte	Result	ğ	SPK value	SPK Ref Val	%REC	LowLimit	Higátúmit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	1.000	0.15	*	0	150	70	130	0.93	7.25	30	
Methylene chloride	2.120	0.15	•	2.2	-8.80 50.80	70	130	2.63	21.5	8	w
o-Xylene	0.9800	0.15	-	0.22	76.0	2	130	<b>-</b>	2.02	8	
Propylene	1.610	0.15	•	O	161	70	130	1.75	6.02	30	S
Styrene	0.9500	0.15	•	O	95.0	70	139	0.92	3.21	30	
Tetrachtoroethylene	3.290	0.15	_	44.4	-115	70	130	4.24	25.2	æ	Ś
Tetrahydrofuran	1.010	0.15	**	0	101	ድ	130	1.1	8.53	33	
Toltrene	2.770	0.15	+	3.27	-50.0	92	130	3.46	22.2	89	S
trans-1,2-Dichtoroethene	0.9500	0.15	-	0	96.0	29	130	0.91	5.35	8	
trans-1,3-Dichloropropene	0.9900	0.15	•	0	0.00	2	130	<b>2</b> .	4.93	ଞ	
Trichlorcethene	3,190	0.15	•	4.18	0.66	70	130	4.38	31.4	8	SR
Vinyl acetate	0.9500	0.15	-	O	95.0	2	130	96.0	1.05	ਲ	
Vinyl Bromide	0.9800	0.15	1	0	98.0	52	133	0.98	0	8	
Vinyl chtoride	1.090	0.15	4	0.16	93.0	20	130	1.14	4,48	8	

lask corrected  E. Estimated Value above quantitation range R PPD outside secrepted a rectivery limits
lank corrected E Estimated Value above quantitation range nansitation limit ND Not Detected at the Limit of Detection
lank corrected E. Liank corrected E. M.C. M.C. M.C. M.C. M.C. M.C. M.C. M
lank corrected unstitution limit
Qualifiers: Results reported are not blank corrected hardyne detected below quantitation limit
Qualifiers:

LaBella Associates, P.C.

CLIENT: Work Order:

Project:

C1712063 Eldre Corp

TestCode: fugM3_TO15

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P
Quant Time: Dec 22 08:07:03 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Cone U	nits	Dev	(Min)
1) Bromochloromethane	10.61	1,28	32593	£ _ 0 0	ppb		0.00
35) 1,4-difluorobenzene					dgg		0.00
50) Chlorobenzene-d5	17.57	117	128983 128259	1.00	ppb		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.29						0.00
Spiked Amount 1.000	Range 70	- 130	Recove	ry =	98	.00%	
						On 7:	alue
Target Compounds	4.64	41	43319m	Ø 1 71	ppb	Qv.	arne
<ul><li>2) Propylene</li><li>3) Freon 12</li></ul>	4.70		228499	1 33	qqq		99
4) Chloromethane	4.93		50057	1.07	dqq		81
5) Freon 114	4.93		152619	0.99	ppb		96
6) Vinyl Chloride	5.14		152619 50800	1.14	dqq		96
7) Butane	5.26	43	102790	1.99	ppb		95
8) 1,3-butadiene	5.26	39	102790 47936m/	1.21	dqq		
9) Bromomethane	5.64	94	53561	0.99	dqq		88
10) Chloroethane	5.83		19583	0.98	qqq		94
11) Ethanol	5.92		3424488	265.92	dqq	#	64
12) Acrolein	6.56	56		0.99	dag		97
13) Vinyl Bromide	6.20	1.06	50946	0.98	$_{\rm pbp}$		8.9
14) Freon 11	6.50	101	195955		ದ್ವರ್ಥ		98
15) Acetone	6.65		2469142	149.51			98
16) Pentane	6.78		145611	3.94	ppp		1.
17) Isopropyl alcohol	6.77			28.43			79
18) 1,1-dichloroethene	7.31		35692	0.86	ББр		83
19) Freon 113	7.51		95759	0.98	ggg		88
20) t-Butyl alcohol	7.53	59	240149	4.10	ppb		95
21) Methylene chloride	7.79	84	88104	2.63	dag		92
22) Allyl chloride	7.77	41	37207	1.04	ppb		100 90
23) Carbon disulfide	7.96		140749	1.34	dgg		88
24) trans-1,2-dichloroethene			46751 83633		dqq		97
25) methyl tert-butyl ether	8.75				ppb		100
26) 1,1-dichloroethane	9.20 9.16				ppb		96
<pre>27) Vinyl acetate 28) Methyl Ethyl Ketone</pre>	9.10		59311 34811 47305	2.38	dqq		ĩ
29) cis-1,2-dichloroethene		61 1	47206	1.00	ppb		98
30) Hexane	9.75				ppb		97
31) Ethyl acetate	10.28	43	64765		ppb		93
32) Chloroform	10.77		104674	. 0 99	dqq		100
33) Tetrahydrofuran	10.90		291.68m	$(\prime)$ 1.10	dqq		
34) 1,2-dichloroethane	11.86	62	66065	0.95	gpb		1.00
36) 1,1,1-trichloroethane	11.59	97	133099		dqq		91
37) Cyclohexane	12.27		49511	1,22	ppb		85
38) Carbon tetrachloride	12.22	117	143556		ppp		94
39) Benzene	12.18	78	143689		ರಥರ್ಥ		98
40) Methyl methacrylate	13.67	41.	29399	4 0.82	ppb		89
41) 1,4-dioxane	13.70	88	12515m/		ppb		_ ==
42) 2,2,4-trimethylpentane	13.01		129807		ppp		B-6
43) Heptane	13.34		79126		bbp		92
44) Trichloroethene	13.47		270590		qqq		91
45) 1,2-dichloropropane	13.58		35867		dad		92
					<b>*</b>		

^{(#) =} qualifier out of range (m) = manual integration A0122133.D AD12_1UG.M Wed Jan 10 09:25:17 2018

MSD1

# Centek Laboratories, $LL_{Cantitation\ Report}$

(QT Reviewed)

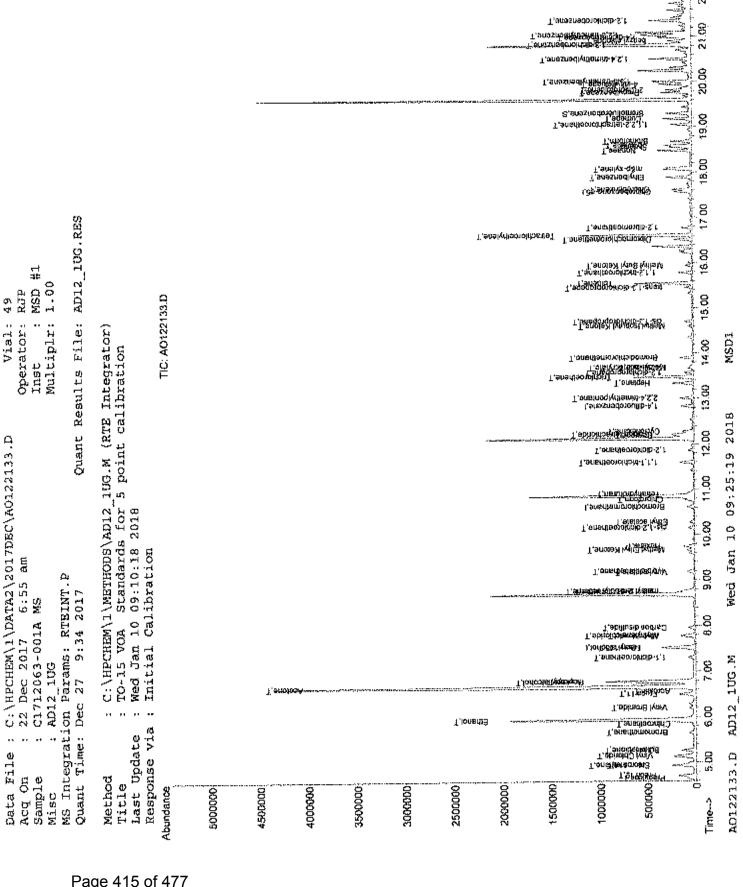
Data File : C:\MPCHEM\1\DATA2\2017DEC\A0122133.D

Acq On : 22 Dec 2017 6:55 am

Vial: 49 Operator: RJP Inst : MSD #1

Sample : C1712063-001A MS Misc : AD12_1UG

Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Dec 22 08:07:03 2017

Quant Results File: AD12_10G.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017 Response via : Initial Calibration

DataAcq Meth : luG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	1.3.90	83	110253	0.97 ppb	95
47)	cis-1,3-dichloropropene	14.70	75	55967	dqq 26.0	96
48)	trans-1,3-dichloropropene	15.45	75	51714	1.04 ppb	98
49)	1,1,2-trichloroethane	15.78	97	50240	dqq 20.0	87
51)	Toluene	15.54	92	287719 A	3.46 ppb	89
52)	Methyl Isobutyl Ketone	14.60	43	46285m∭,'	0.76 ppb	
53)	Dibromochloromethane	16.51	129	122114	ರೇವ್ 08.0	100
54)	Methyl Butyl Ketone	15.94	43	42298m/	0.81 ppb	
55)	1,2-dibromoethane	16.77	1.07	82677	dqq 88.0	98
S6)	Tetrachloroethylene	16.60	164	331552	4.24 ppb	86
57)	Chlorobenzene	17.62	112	118435	0.89 ppb	88
58)	Ethylbenzene	17.89	91	199532	1.07 ppb	100
59}	m&p-xylene	18.06	91	356112	2.18 ppb	96
60)	Nonane	18.47	43	106212	1.43 ppb	94
61)	Styrene	18.55		105993	0.92 ppb	# 66
62)		18.68		122598	0.77 ppb	96
63}	o~xylene	18.59		190531	1.00 ppb	91
64)	Cumene	19.18		207781	0.98 ppb	95
66)	1,1,2,2-tetrachloroethanc	19.05		108166	0.76 ppb	98
67)	Propylbenzene	19.76		59208	1.08 ppb	69
68)	2-Chlorotoluene	19.81		58217	0.92 ppb	92
69)	4-ethyltoluene	19.94		227072	1.06 ppb	97
70)		20.00		249918	1.25 ppb	93
73.)	•	20.49		266955	1.72 ppb	95
72)	1,3-dichlorobenzene	20.83		150901	1.07 ppb	94
73)	benzyl chloride	20.90		119654	1.01 ppb	99
74)	1.4-dichlorobenzene	20.97		141176	1.01 ppb	94
75)		21.02		227188	1.25 ppb	98
76)	1,2-dichlorobenzene	21.34		133480	0.95 ppb	95
77)	• •	23.44		64180	1.17 ppb	98
78)	Naphthalene	23.66		70797	0.81 ppb	90 96
79)	Hexachloro-1,3-butadiene	23.78	225	104133	dqq 38.0	96



## Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122134.D Vial: 50 : 22 Dec 2017 7:42 am Operator: RJP Acq On : C1712063-001A MSD Sample Inst : MSD #1 Misc : AD12_1UG Multiplr: 1.00

MS Integration Params: RTBINT.P

Quant Time: Dec 22 08:07:04 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12 1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

Inte	rnal Standards	R.T.	QIon	Response	Conc U	níts	Dev	(Min)
1)	Bromochloromethane	10.62	128	32163	1.00	daa		0.01
. 351	1,4~difluorobenzene	12.83	114	32163 128753	1.00	daa		0.00
50)	Chlorobenzene-d5	17.57	117	119976		dqq		0.00
						••		
	em Monitoring Compounds							
	Bromofluorobenzene	19.29						0.00
sp	iked Amount 1.000	Range 70	- 130	Recove	ery =	99	. ዑርቄ	
מי בי זיירי	et Compounds						Ouz	alue
	Propylene	4.64	41	40056	1.61	daa	~**	72
	Freon 12	4.70	85	204620		dau		99
	Chloromethane	4.93		50557	1.09			79
	Freon 114	4.93	85	148748	0.98			94
	Vinyl Chloride	5.14	62	48071	1,09			95
	Butane	5.26	43		1.70			94
	1,3-butadiene	5.27		48645	1.25			72
	Bromomethane	5.64	94	50543	0.94			85
	Chloroethane	5.83	64	19045				93
	Ethanol	5.92	4.5	2369740				64
	Acrolein	6.56		14033				86
	Vinyl Bromide	6.20		50288	0.98			87
	Freon 11	6.50	103	181571	1.05			99
-	Acetone	6.65	58	1702291	104.45			99
-	Pentane	6.78	42		3,08			1
	Isopropyl alcohol	6.77	45	1026913	20.21			74
	1,1-dichloroethene	7.30	96	34105				84
	Freon 113	7.51	101	89326				88
	t-Butyl alcohol	"ሃ ፍር	59	231815				95
	Methylene chloride	7.79	84	70060				90
	Allyl chloride	7.77	41	34653				96
	Carbon disulfide	7.96	76	126543				89
	trans-1,2-dichloroethene		61	48807				97
	methyl tert-butyl ether		73	89301	1.00			97
	1,1-dichloroethane	9.19	63	68644	0.99			98
	Vinyl acetate	9.17	43	58068	0.95			99
	Methyl Ethyl Ketone	9.67		28900	2.00			66
29)	cis-1,2-dichloroethene		61	43808		dqq		98
30)	Hexane	9.75	57	57883	1.34	ppb		96
	Ethyl acetate	10.28	57 43	62264	1.02	dqq		90
	Chloroform	10.77	8.3	103255	A 0.99	ppb		97
33)	Tetrahydrofuran	10.91	42	26372m	P 1.01	ppb		
34)	1,2-dichloroethane	11.86	62	64707	0.94			99
36)	1,1,1-trichloroethane	11.59	97	124063	1,08	ppb		88
37)	Cyclohexane	12.28	56	47259	1.17	þþþ		85
38)	Carbon tetrachloride	12.22	117	139220	0.94	dqq		93
39)	Benzene	12.18	78	130285	1.25			98
40)	Methyl methacrylate	13.67	41	31642	0.88	dqq		92
	1,4-dioxane	13.71	88	14086m				
42)	2,2,4-trimethylpentane	13.01	57		0.97			85
	Heptane	13.34	43	65937	1.58			91
44)	Trichloroethene	13.47		196927	3.19			92
	1,2-dichloropropane	13.58	63	36097	0.98			94

^{(#) =} qualifier out of range (m) = manual integration

A0122134.D AD12_1UG.M Wed Jan 10 09:25:21 2018

MSD1

# Centek Laboratories, LLC Quantitation Report

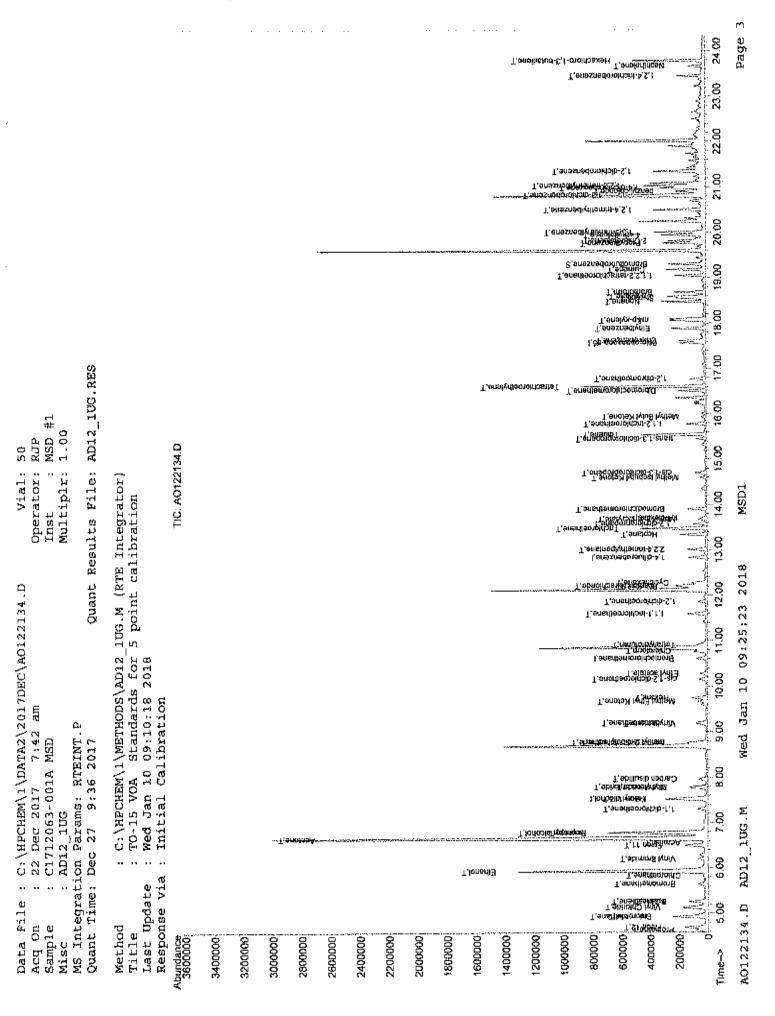
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122134.D Vial: 50 Acq On : 22 Dec 2017 7:42 am Sample : C1712063-001A MSD Operator: RJP Inst : MSD #1 Misc : AD12_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 22 08:07:04 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.90	83	107749	0.95 ppb	97
47)	cis-1,3-dichloropropene	14.70	75	55084	0.94 ppb	97
48)	trans-1,3-dichloropropene	15.45	75	48924	0.99 ppb	96
49)	1,1,2-trichloroethane	15.78	97	50326	dqq 20.0	90
51)	Toluene	15.54	92	215115	2.77 ppb	91
52)	Methyl Isobutyl Ketone	14.60	43	33865m 🗗	0.59 ppb	
53)	Dibromochloromethane	16.51	129	121276 /	0.85 ppb	98
54)	Methyl Butyl Ketone	15.95	43	16377mb	0.33 ppb	
55)	1,2-dibromoethane	16.77	107	B1543	0.88 ppb	98
	Tetrachloroethylene	16.60	164	241074	3.29 ppb	98
57)	Chlorobenzene	17.62	112	112258	0.90 ppb	88
58)	Ethylbenzene	17.89	91	181029	1.03 ppb	99
59)	m&p-xylene	18.06	91	320546	2.10 ppb	97
60)	Nonane	18.47	43	90819	1.31 ppb	95
61)	Styrene	18.55	104	103202	0.95 დღან	# 66
62)	Bromoform	18.68	173	122963	0.83 ppb	96
63)	o-xylene	18.59	91.	175267	dqq 80.0	92
64)	Cumene	19.18	105	195977	0.99 ppb	95
66)	1,1,2,2-tetrachloroethane	19.05	83	111202	0.86 ppb	99
67)	Propylbenzene	19.76	120	56448	1.10 ppb	68
68)	2-Chlorotoluene	19,81	126	56735	0.96 ppb	91
69)	4-ethyltoluene	19.94	1.05	215294	1.08 ppb	97
70)	1,3,5-trimethylbenzene	20.00	105	218902	1.17 ppb	94
フュ)	1,2,4-trimethylbenzene	20.50	105	225829	1.55 ppb	96
72)	1,3-dichlorobenzene	20.83	146	147880	1.12 ppb	95
73)	benzyl chloride	20.90	91	120398	1.09 ppb	100
74)	1,4-dichlorobenzene	20.98	1.46	138596	1.06 დებ	94
75)	1,2,3-trimethylbenzene	21.02	105	212172	1.25 ppb	100
76)	1,2-dichlorobenzene	21.34	146	133530	1.02 ppb	96
77)	1,2,4-trichlorobenzene	23,45	180	64685m 🎉		
	Naphthalene	23.67	128	97564	1.19 ppb	92
79)	Hexachloro-1,3-butadiene	23.79	225	113026	1.00 ppb	96

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO122134.D AD12_1UG.M Wed Jan 10 09:25:22 2018 MSD1



Page 418 of 477

S Spike Recovery outside accepted recovery limits

# CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jan-18

LaBella Associates, P.C. C1712063 Work Order: CLIENT

Project:

Eldre Corp

TestCode: 0.25CT-TCE-VC

Sample ID: ALCS1UG-122117	SampType: LCS	TestCode	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:		RunNo: 13073	573	
Client ID: 2222	Batch ID: R13073	₹estNt	TestNo: TO-15			Anafysis Date:	12/21/2017	SeqNo: 151944	1944	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimik RPD Ref Val	al %RPD	RPDLimit	Qual
1,1,1-Trichtoroethane	1.010	0.15	-	¢	†04	62	130			
1,1,2,2-Tetrachloroethane	1.010	0.15	***	0	101	70	130			
1,1,2-Trichioroethane	1.010	0.15	۳	٥	101	5	130			
1,1-Dichloroethane	1.020	0.15	•	0	102	70	130			
1,1-Dichloroethene	0.8760	0.15	-	a	87.0	70	130			
1,2,4-Trichlorobenzene	0.9900	0.15	-	0	99.0	70	130			
1,2,4-Trimethylbenzene	1,020	0.15	•	O	102	70	130			
1,2-Dibromoethane	0.9600	0.15	-	Ö	0.98	76	130			
1,2-Dichlorobenzene	1.030	0.15	***	O	103	7.0	130			
1,2-Dichloroethane	1.000	0.15	₩	0	100	70	130			
1,2-Dichloropropane	1.000	0.15	***	o	100	20	130			
1,3,5-Trimethylbenzene	1.080	0.15	qur	o	108	57	130			
1,3-Sutadiene	1,070	0.15	T	o	107	70	130			
1,3-Dichlorobenzene	1.040	0.15	•	o	‡0¢	70	130			
1,4-Dichlorobenzene	1.060	0.15	-	o	106	02	130			
1,4-Dioxane	0.8100	6.30	٦	0	81.0	7.0	130			
2,2,4-trimethylpentane	0.9500	0.15	-	0	95.0	70	130			
4-ethylloluene	1.040	0.15	<b>+</b>	Ó	\$	70	130			
Acelone	0.9500	0.30	4~	Ď	95.0	70	130			
Allyt chloride	0.9400	0.15	γ	o	94.0	70	130			
Велгеле	0.9100	0.15	•	O	91.0	2	130			
Benzyi chloride	1.030	0.15	į.	Q	103	70	130			
Bromodichloromethane	1.010	0.15	-	¢	101	7.0	130			
Вготобот	1,020	0.15	-	0	102	70	130			
Bromomethane	1.060	0.15	-	0	106	92	130			
Ouglifiere: Results remain	Results reported are not blank currected		E Estimat	Estimated Value above quantitation range	ព្រំដូវស្រែ ខេត		H Holding times	Holding times for preparation or analysis expeeded	mithysis exteed	
	dambare detector below enancilation timit		,,,,,	Not Detected at the Limit of Detection	Descript		R RPD outside	RPD outside accepted recovery limits	mits	
The second secon	The second secon									

Project: Eldi	Eldre Corp						TestCode: (	0.25CT-TCE-VC	
Sample ID: ALCS1UG-122117	22117 SampType: LCS	TestCo	TesiCode: 0.25CT-TCE-	CE- Units: ppbV		Prep Date	·	RunNo: 13073	
Client ID: ZZZZZ	Betch ID: R13073	Fest	Festivo: TO-15		*	Analysis Date:	a: 12/21/2017	SeqNo: 151944	
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	Hightimit RPD Raf Val	%RPD RPDLinit	Qual
Carbon disulfide	0.9500	0.15	-	0	95.0	70	130		
Carbon tetrachloride	0.9790	0,040	***	0	97.0	92	130		
Chlorobenzene	0.9860	0.15	<del>*</del>	0	98.0	20	130		
Chloroethane	1,060	0.15	4-	0	106	70	130		
Chloroform	1.010	0.15	<del></del>	O	101	70	130		
Chloromethane	1.090	0.15	<del>,</del>	0	109	92	130		
cis-1,2-Dichloroethene	0.9360	0.15	#	0	93.0	65	130		
cis-1,3-Dichloropropene	0.9600	0.15	<b>***</b>	0	96.0	7.0	130		
Cyclohexane	0.9540	0.15	#	0	95.0	22	130		
Dibromochloromethane	1.010	0.15	4	0	101	£	130		
Ethyl acetale	0.8800	0.15	<b>*</b> ···	0	98.0	75	130		
Ellylbenzene	0.9400	0.15	-	0	94.0	70	130		
Freon 11	1.110	0.15	6m	0	#	32	130		
Freor 113	0.960	0.15	<b>\</b>	Đ	0.98	23	130		
Freon 114	1.030	0.15	,-	0	103	25	130		
Freon 12	1.060	0.15	***	0	901	70	130		
Heptane	0.9600	0.15	r.	Đ	0.58	70	130		
Hexachloro-1,3-butadiene	1.010	0.15	<b>W</b>	O	101	29	130		
Hexane	0.9700	0.15	<b>+</b>	o	97.0	22	130		
isopropyl alcoho!	0.9700	0.15	-	O	97.0	70	130		
<b>ពា</b> ¢p-Хуlепе	1.990	0.30	2	Đ	99.5	2	130		
Methyl Butyl Ketone	0.9700	0.30	•	0	97.0	2	130		
Methyl Ethyl Ketone	0.8300	0.30		o	83.0	22	130		
Methyl Isobutyl Ketone	0.9200	0.30	-	Q.	92.0	70	130		
Methyl lert-butyl ether	0.9500	0.15	-	Φ	95.0	2	130		
Mathylene chloride	0.9700	0.15	-	0	97.0	2	130		
o-Xy <del>l</del> ene	1.010	0.15	-	0	101	0,4	130		
Propylene	1,130	0.15	-	0	113	70	130		
Styrene	t.030	0.15	-	0	103	70	130		
Tetrachioroethylene	1,010	0.15	-	0	101	70	130		
Tetrahydrofuran	0.8900	0.15	-	0	89.0	7.0	130		
Qualifiers: Res	Results reported are not blank corrected	7	E Estim	Estimated Value above quantitation range	tifation mag		H Holding times fin	Holding times for preparation or analysis exceeded	g
1 ARE	Asselyte despected bolow ansetsication limit								
	rive occerent menus dansarson asin	LETT.	71 TOX. 17 TX	Not Detected at the Limit of Detection	Defection		R KPD ostside acco	RPD ostside accepted recovery limits	

LaBella Associates, P.C.

CLIENT:

Beatch ID: R139773   Festivo: TO-15   Anabjes Deet: IZZZZIZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Sample ID: ALCS1UG-122117	SampType: LCS	TestCode: (	FastCode: 0.25CT-TC€-	Units: ppbV		Prep Date			RunNo: 130	13073	
Peesut	Client ID: ZZZZ	Batch ID: R13073	FestNo:	ro-ts		•	Analysis Date		<b>.</b>	SeqNo: 151	1944	
0.9500   0.15   1   0   950   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Analyte	Result			PK Ref Val	%REC			OD Ref Val	%RPD	RPOUmit	Qua
0.8500   0.15   1	Toluene	0.9500	0.15	,	0	95.0	70	130				
19100   0.15   1	rans-1,2-Dichloroethene	0.9500	0.15	4	0	0.58	25	130				
0.8900   0.030   1	rans-1,3-Dichloropropere	0.9100	0.15	<b>4</b> .*	¢	91.0	6	130				
Company   Comp	Trichloroethene	0.8900	0.030	₩	æ	89.0	76	130				
1,040   0,15   1	Vinyl acetate	0.8500	0.15	•	۵	86.0	70	130				
Samplype: LCS TestCode: 0.25CT-TCE- Units: ppbV   Prep Date:	Jinyl Bramide	1.040	0.15	<b>y</b> w	٥	\$	70	130				
Samplype: LCS         TestCode: 0.2SCT-TCE- Units: pub/y         Analysis Date:         7272/2017         Runivo: 18074           Batch ID: R13074         TostMor: TO-15         Analysis Date:         1272/2017         ScqNo: 151986           Batch ID: R13074         POL         SPK value         SPK Ref Vai         %REC         Low-Lmii         HighLimit         RPD Ref Vai         %RED         ScqNo: 151986           1.1100         0.15         1         0         111         70         130         ScqNo: 151986         PDDLimit           0.9700         0.15         1         0         110         70         130         ScqNo: 151986         PDDLimit           0.9700         0.15         1         0         110         70         130         ScqNo: 151996         PDDLimit           0.9700         0.15         1         0         170         70         130         PDDLimit         PDDLimit <td>Vinyl chioride</td> <td>0.9900</td> <td>0.040</td> <td>₹~~</td> <td>0</td> <td>0.66</td> <td>7.0</td> <td>130</td> <td></td> <td></td> <td></td> <td></td>	Vinyl chioride	0.9900	0.040	₹~~	0	0.66	7.0	130				
Pack	Sample ID: ALCS1UG-122217	SampType: LCS	TestCode: (	),25CT-TC€-	Units: ppbV		Prep Date			Runillo: 130	374	
Cyclinate Chilocoptiane         1.110         0.16         SPK Ref Value         %REC         LowI-Init         HighI-Init         RPD Ref Val         %RPD         RPD Linkt           Tellachlocoptiane         1.110         0.15         1         1         70         130         8.8PD         RPD Linkt           Chilocoptiane         1.100         0.15         1         1         70         130         8.8PD         RPD Linkt           Ichlorochane         0.3700         0.15         1         0         140         70         130         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150         150		Batch ID: R13074	TestNo:	ro-45		•	4nalysis Date			SeqNo: 151	1986	
1.110   D.15   1   0   111   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Ansiyte	Result			ok Rei Vai	%REC			O Ref Val	%RPD	RPDLimit	Quai
1010   0.15   1   0   1011   1010   1015   1   0   1011   1010   1015   100   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010   1010	1,1,1-Trichloroethane	1.110	0.15	1	0	111	82	130				
oethane         1.100         0.15         1         0         140         70         130           oethane         6.9700         0.15         1         0         97.0         70         130           oethane         6.9700         0.15         1         1         0         97.0         70         130           oethane         6.9700         0.15         1         0         97.0         70         130           dorthane         6.9500         0.15         1         0         95.0         70         130           optopane         1.020         0.15         1         0         102         70         130           optopane         1.020         0.15         1         0         102         70         130           optopane         1.020         0.15         1         0         102         70         130           sthylbenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0	, 1,2,2-Tetrachloroethane	1.010	0.15	•	٥	101	70	130				
oethane         6.9700         0.15         1         0         97.0         77.0         70         130           oethene         0.9700         0.15         1         0         77.0         70         130           lorobenzene         0.9700         0.15         1         0         97.0         70         130           altzylbenzene         0.9500         0.15         1         0         101         70         130           oethrane         1.020         0.15         1         0         102         70         130           oethrane         0.9600         0.15         1         0         102         70         130           optropane         1.020         0.15         1         0         102         70         130           sthylbenzene         1.050         0.15         1         0         105         70         130           obenzene         1.050         0.15         1         0         105         70         130           obenzene         1.050         0.15         1         0         105         105         130           obenzene         1.050         0.15         1	, 1,2-Trichloroethane	1.100	0.15		٥	110	22	£30				
oethene         0.7700         0.15         1         0         77.0         70         130           lorobenzene         0.9500         0.15         1         0         97.0         70         130           elthylbenzene         0.9500         0.15         1         0         95.0         70         130           oethrane         1.020         0.15         1         0         102         70         130           oethrane         0.9600         0.15         1         0         102         70         130           sthylbenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         86.0         70         130           obenzene         1.020         0.15         1         0         86.0         70         130           sing         1.020         0.15         1         0 <t< td=""><td>I,1-Dichloroethane</td><td>0.9700</td><td>0.15</td><td><del>-</del></td><td>0</td><td>97.0</td><td>22</td><td>130</td><td></td><td></td><td></td><td></td></t<>	I,1-Dichloroethane	0.9700	0.15	<del>-</del>	0	97.0	22	130				
lordbenzene         6.9700         0.15         1         0         97.0         70         130           elthylbenzene         0.9800         0.15         1         0         95.0         70         130           oethrane         1.020         0.15         1         0         101         70         130           oethrane         0.9600         0.15         1         0         102         70         130           othropane         1.080         0.15         1         0         102         70         130           sthylbenzene         1.080         0.15         1         0         108         70         130           obenzene         1.050         0.15         1         0         104         70         130           obenzene         1.050         0.15         1         0         102         70         130           obenzene         1.050         0.15         1         0         102         70         130           obenzene         1.050         0.36         1         0         105         70         130           sine         1.010         0.105         1         0 <th< td=""><td>1,1-Dichloroethene</td><td>0.7700</td><td>0.15</td><td>₩.</td><td>o</td><td>77.0</td><td>20</td><td>130</td><td></td><td></td><td></td><td></td></th<>	1,1-Dichloroethene	0.7700	0.15	₩.	o	77.0	20	130				
edity/sibenzene         0.9500         0.15         1         0         95.0         70         130           coethane         1.010         0.15         1         0         101         70         130           deenzene         1.020         0.15         1         0         102         70         130           optopane         1.080         0.15         1         0         102         70         130           htylbenzene         1.080         0.15         1         0         103         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           e         1.020         0.15         1         0         102         70         130           sne         1.020         0.15         1         0         101         70         130           and         1.020         0.15         1         0         101 <t< td=""><td>1,2,4.Trichlorobenzene</td><td>0.9700</td><td>0,15</td><td></td><td>٥</td><td>97.0</td><td>70</td><td>130</td><td></td><td></td><td></td><td></td></t<>	1,2,4.Trichlorobenzene	0.9700	0,15		٥	97.0	70	130				
Oethane         1.010         0.15         1         0         101         70         130           Oberizene         1.020         0.15         1         0         102         70         130           Cethane         0.9600         0.15         1         0         96.0         70         130           Optropane         1.080         0.15         1         0         96.0         70         130           arthylbenzene         1.050         0.15         1         0         103         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         86.0         70         130           e         1.020         0.15         1         0         86.0         70         130           thylpentane         1.010         0.15         1         0         86.0         70         130           e         1.020         0.15         1         0         101         70         130           e         1.020         0.15         1         0         101	1,2,4-Trimethylbenzene	0.9500	0.15	-	0	85.0	72	130				
obenzene         1,020         0.15         1         0         102         70         130           certhane         0.9600         0.15         1         0         96.0         70         130           opropane         1.080         0.15         1         0         108         70         130           ethylbenzene         1.050         0.15         1         0         104         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         102         70         130           e         0.8609         0.15         1         0         105         70         130           sne         1.010         0.15         1         0         101         70         130           sne         1.020         0.15         1         0         101         70         130           sne         1.020         0.15         1         0         101         70	1,2-Dibromoethane	1.010	0.15	-	0	101	足	130				
certhane         0.9600         0.15         1         96.0         70         130           opropane         1.080         0.15         1         0         108         70         130           sthylbenzene         1.050         0.15         1         0         105         70         130           obenzene         1.020         0.15         1         0         102         70         130           obenzene         1.020         0.15         1         0         105         70         130           e         0.8600         0.30         1         0         86.0         70         130           thypentane         1.010         0.15         1         0         86.0         70         130           angent         1.020         0.15         1         0         101         70         130           angent         Essults reported are not blank corrected         1         1         0         102         70         130           angent         Results reported are not blank corrected         1         1         0         101         1         1           j Anadyte detected before quelected before quantisation limit         1 <td>1,Z-Dichforobenzene</td> <td>1.020</td> <td>0.15</td> <td>-</td> <td>¢</td> <td>102</td> <td>70</td> <td>130</td> <td></td> <td></td> <td></td> <td></td>	1,Z-Dichforobenzene	1.020	0.15	-	¢	102	70	130				
Optropane         1.080         0.15         1         0         108         70         130           Pthylbenzene         1.050         0.15         1         0         105         70         130           Principle         1.020         0.15         1         0         104         70         130           Obenzene         1.020         0.15         1         0         102         70         130           e         0.8600         0.30         1         0         86.0         70         130           thypentane         1.010         0.15         1         0         86.0         70         130           ane         1.020         0.15         1         0         101         70         130           ane         1.020         0.15         1         0         102         70         130           A Maskyte detected before quantified on limit         MD Not Detected at the Limit of Detection         R         1         1	1,2-Dichloroethane	0.9600	0.15	-	Φ	96.0	22	130				
ethylbenzene         1.050         0.15         1         0         105         70         139           ane         1.040         0.15         1         0         104         70         130           obenzene         1.020         0.15         1         0         102         70         130           e         0.8600         0.30         1         0         86.0         70         130           thypentane         1.010         0.15         1         0         101         70         130           sne         1.020         0.15         1         0         101         70         130           sne         1.020         0.15         1         0         101         70         130           Analyse detected before quentisation limit         MD Not Detected at the Limit of Detection         R         Initiation of Detection         R	1,2-Dichtoropropane	1.080	0.15	-	Φ	103	22	130				
me         1,046         0.15         1         0         104         70         130           oberizene         1,020         0.15         1         0         102         70         130           oberizene         1,020         0.15         1         0         102         70         130           thyperian         0.8600         0.30         1         0         101         70         130           sine         1,010         0.15         1         0         101         70         130           sine         1,020         0.15         1         0         101         70         130           sine         1,020         0.15         1         0         102         70         130           sine         1,020         0.15         1         0         102         70         130           A Maskyte detected before quantifiation limit         1         15 stimated Value not bleast distinct and percent of the limit of Detected at the Limit of Detection         H	f,3,5-Trimethylbenzene	1.050	0.15	٢	0	105	ይ	130				
obenzene         1,020         0.15         1         0         102         70         136           obenzene         1,056         0.15         1         0         105         70         130           thylpentane         1,010         0.15         1         0         86.0         70         130           sne         1,020         0.15         1         0         101         70         130           sne         1,020         0.15         1         0         102         70         130           sne         1,020         0.15         1         0         102         70         130           A Analyse exported are not blank concected         Estimated Value above quantisation range         If         Initial Obetection         If	t _r 3-butadiene	1,040	0.15	-	0	104	72	130				
obenzene         1.056         0.15         1         0         105         70         130           e         0.8609         0.30         1         0         86.0         70         130           thylpentane         1.010         0.15         1         0         101         70         130           sne         1.020         0.15         1         0         102         70         130           sne         Results reported are not blank corrected         E. Istimated Value above quantisation range         H         ND Not Detected at the Limit of Detection         H	t,3-Dichtorobenzens	1,020	0.15	-	0	102	02	130				
thyspentane 1.010 0.15 1 0 86.0 70 130 130 140 pentane 1.010 0.15 1 0 101 70 130 130 130 130 130 130 130 130 130 13	f,4-Dichlorobenzene	1,050	0.15	-	0	105	70	130				
thylpentane         1.010         0.15         1         0         101         70         139           ane         1.020         0.15         1         0         102         70         130           .         Results reported are not blank corrected         If         Istimated Value above quantisation range         If           J. Analyse detected below quantisation limit         ND. Not Detected at the Limit of Detection         R	t,4-Dioxane	0.8609	0:30	₩.	0	86.0	22	130				
139 1.020 6.15 1 0 102 70 139  Results reported are not blank corrected if Estimated Value above quantitation limit is Analyse detected below quantitation limit is No Poleced at the Limit of Detection R	2,2,4-trimethylpentane	1.010	0.15	*	0	101	70	130				
Results reported are not blank corrected E. Estimated Value above quantitation fange H. Anabyte detected below quantitation limit ND Not Detected at the Limit of Detection R.	4-ethyloluene	\$.020	0.15	-	0	102	70	130				
ND Not Detected at the Limit of Detection R		rted are not blank corrected			Value above quant	isation rang	H.	}	ding times for p	этератацоп ог а	nalysis extees	pg.
	f Anakyie dete	cted below quastitation limit	2		ted at the Limit of [	<b>Detection</b>			3 outside accep	ted recovery lis	Bits	

LaBella Associates, P.C. C1712063

Work Order: CELIENT:

Project:

Eldre Corp

TestCode: 0.25CT-TCE-VC

Qual

Ø

D. ALCSTUGA-122217   Samplytyee LCS   TestCode 0.25CT-TCGE Units: ppbV   Prep Date: 12/22   Batch ID: R13074   TestNor. TO-15   Anabysis Date: 12/22   Batch ID: R13074   TestNor. TO-15   Anabysis Date: 12/22   Batch ID: R13074   TestNor. TO-15   TestNor. To-1	Work Order: C1712063							-	TontCody		27.
Samplifyee         LCS         Test/Code 0.28GCT-TCSE.         Units:         Poby         FreeD Date:         Table 1.222017         Scapus:         Flank 1.222017         Sc	rryect: Laure Colp							<b>-</b>		1.43C1-1.CI	ر د
Page	Sample ID: ALCS1UG-122217	SampType: L.CS	TestCode	0,25CT-T	11		Prep Dat	اا		RunNo: 130	174
Politic   SPK kelt   Politic   SPK kelt		Batch ID: R13074	FestNo	. TO-15			Analysis Dat		2017	SeqNo: 151	386
thicke 0.8900 0.15 1 0 890 70 130  bridge 0.8900 0.15 1 0 0 890 70 130  bridge 0.8900 0.15 1 0 0 890 70 130  bridge 0.8900 0.15 1 0 0 890 70 130  bridge 0.8900 0.15 1 0 0 102 70 130  bridge 0.8900 0.15 1 0 0 101 70 130  bridge 0.8900 0.15 1 0 0 101 70 130  bridge 0.8900 0.15 1 0 0 105 70 130  bridge 0.8900 0.15 1 0 0 105 70 130  bridge 0.8900 0.15 1 0 0 105 70 130  bridge 0.8900 0.15 1 0 0 105 70 130  bridge 0.8900 0.15 1 0 0 105 70 130  bridge 0.8900 0.15 1 0 0 100 100 100 100 100 100 100 100	Analyte	Resuit	PQL	SPK value		%REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPCLimit
1,020	Acetone	0.8900	0.30	+-	ð	99.0	57	130			
C 3860	Allyl chioride	0.8900	0.15	+	O	89.0	70	130			
1200   0.15   1   0   102   103   103   103   103   103   104   103   103   104   103   104   103   104   104   104   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105	Вепzеле	0.9600	0.15	· ·	0	98.0	30	130			
1,090   0,15   1	Benzyl chloride	1.020	0.15	yee	o	102	65	130			
1,070   0,15   1	<b>Bromodichloromethane</b>	1.090	0.15	*-	0	109	22	130			
1,050	Bromoform	1.010	0.15	-	Đ	101	70	130			
0.9400 0.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bromomethane	0.9900	0.15	•	0	89.0	70	130			
1,050 0,040 1 1 0 105 70 130 0,9800 0,15 1 0 98.0 70 130 0,9800 0,15 1 0 98.0 70 130 1,000 0,15 1 0 98.0 70 130 1,000 0,15 1 0 0 107 70 130 0,9100 0,15 1 0 0 107 70 130 0,9100 0,15 1 0 0 107 70 130 0,9100 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 102 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 107 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,15 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 197 70 130 0,9200 0,10 1 0 0 10 10 10 10 10 10 10 10 10 10 1	Carbon disuffide	0.9400	0.15	***	Φ	94.0	29	130			
0.9800 0.15 1 0 98.0 70 130   1.000 0.15 1 0 0 98.0 70 130   1.000 0.15 1 0 0 100 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 91.0 70 130   1.000 0.15 1 0 0 97.0 70 130   1.000 0.15 1 0 0 97.0 70 130   1.000 0.15 1 0 0 92.0 70 130   1.000 0.15 1 0 0 92.0 70 130   1.000 0.15 1 0 0 92.0 70 130   1.000 0.15 1 0 0 92.0 70 130   1.000 0.15 1 0 0 92.0 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130   1.000 0.15 1 0 0 107 70 130	Carbon tetrachloride	1.050	0.040	Ţ	0	105	2	130			
0 9800         0.15         1         98.0         70         130           1,000         0.15         1         0         100         70         130           1,000         0.15         1         0         107         70         130           0,910         0.910         70         130         130         130           0,970         0.15         1         0         97.0         70         130           0,870         0.15         1         0         97.0         70         130           0,840         0.15         1         0         97.0         70         130           0,850         0.15         1         0         92.0         70         130           0,850         0.15         1         0         92.0         70         130           0,950         0.15         1         0         92.0         70         130           0,950         0.15         1         0         92.0         70         130           1,070         0.15         1         0         107         70         130           1,070         0.15         1         0 <t< td=""><td>Chlorobenzene</td><td>0.9800</td><td>0.15</td><td>-</td><td>Q.</td><td>98.0</td><td>70</td><td>130</td><td></td><td></td><td></td></t<>	Chlorobenzene	0.9800	0.15	-	Q.	98.0	70	130			
1,000 0,15 1 0 100 70 130  1,070 0,15 1 0 1 107 70 130  1,070 0,15 1 0 1 107 70 130  1,070 0,15 1 0 0 107 70 130  1,020 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,15 1 0 0 107 70 130  1,070 0,10 0,10 0 10 10 10 10 10 10 10 10 10 10 10 10	Chloroethane	0.9800	0.15	-	Q	98.0	70	130			
1,0770 0,15 1 0 107 107 109 1107 109 1107 109 1107 109 1100 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 109 1107 1	Chloroform	1:000	0.15	-	0	<b>0</b> 0	20	130			
1,070   0.15   1   0   910   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Chloromethane	1.070	0.15	-	0	107	70	130			
1,070 0,15 1,070 130 130 130 130 130 130 130 130 130 13	cis-1,2-Dichloroethene	0.9100	0.15	-	a	91.0	70	130			
0.9706         0.15         1         0         97.0         70         130           1.020         0.15         1         0         97.0         70         130           0.8400         0.15         1         0         84.0         70         130           0.9200         0.15         1         0         92.0         70         130           0.9500         0.15         1         0         107         70         130           1.070         0.15         1         0         107         70         130           1.070         0.15         1         0         107         70         130           1.070         0.15         1         0         107         70         130           1.070         0.15         1         0         107         70         130           0.7800         0.15         1         0         107         70         130           0.7800         0.15         1         0         107         70         130           0.7800         0.15         1         0         120         130         130           1.910         0.20 <t< td=""><td>cls-1,3-Dichloropropene</td><td>1.070</td><td>0.15</td><td>-</td><td>0</td><td>107</td><td>20</td><td>130</td><td></td><td></td><td></td></t<>	cls-1,3-Dichloropropene	1.070	0.15	-	0	107	20	130			
1,020 0.15 1 0 1020 0.15 1 0 102	Cyclohexane	0.9700	0.15	-	0	97.0	70	130			
1,070   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   1   0   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15	Dibromochloromethane	1.020	0.15	<b>+</b>	Ď	102	52	130			
1,070   0,15   1   0   197   70   130   130   1407   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150	Ethyl acetate	0.8400	0.15	+-	C	84.0	70	130			
1.670   0.15   1 0   167   70   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   15	Ethylbenzene	0.9200	0.15		O	92.0	92	130			
0.9500   0.15   1   0   96.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Freon 11	1.070	0.15	~	Ö	107	70	130			
1.050 0.15 1 0 105 70 130  1.070 0.15 1 0 107 70 130  1.010 0.15 1 0 101 70 130  1.010 0.15 1 0 101 70 130  0.9000 0.15 1 0 90.0 70 130  1.850 0.30 2 0 97.5 70 130  1.910 0.30 1 0 191 70 130  0.7800 0.30 1 0 97.5 70 130  0.7800 0.30 1 0 97.5 70 130  0.7800 0.30 1 0 97.5 70 130  1.810 0.30 1 0 97.6 70 130  1.810 0.30 1 0 97.6 70 130  0.7800 0.30 1 0 97.6 70 130  0.7800 0.30 1 0 97.6 70 130  0.7800 0.30 1 0 97.6 70 130  0.7800 0.30 1 0 97.6 70 130  0.7800 0.30 1 0 97.6 70 130	Freon 113	0.9500	0.15	•-	0	95.0	76	130			
1.070 0.15 1 0 107 70 130 1.010 0.15 1 0 101 70 130 1.010 0.15 1 0 101 70 130 1.010 0.15 1 0 101 70 130 0.7800 0.15 1 0 90.0 70 130 1.910 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130	Freon 114	1.050	0.15	4	0	105	20	130			
1.010 0.15 1 0 101 70 130 1.010 0.15 1 0 101 70 130 0.9000 0.15 1 0 90.0 70 130 1.850 0.30 2 0 97.5 70 130 1.910 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130 0.9760 0.30 1 0 97.0 70 130	Freon 12	1.070	0.15		0	107	£	\$30			
1.010 0.15 1 0 101 70 130  0.9000 0.15 1 0 90.0 70 130  1.950 0.30 2 0 97.5 70 130  1.910 0.30 1 0 78.0 70 130  0.9769 0.30 1 0 97.0 70 130  0.9769 0.30 1 0 97.0 70 130  0.9769 0.30 1 0 97.0 70 130  0.9769 0.30 1 0 97.0 70 130  0.9769 0.30 1 0 97.0 70 130  1.910 0.9769 0.30 1 0 97.0 70 130  1.910 0.9769 0.30 1 0 97.0 70 130  1.910 0.9769 0.30 1 0 97.0 70 130  1.910 0.9769 0.30 1 0 97.0 70 130	Heptane	1.010	0.15	-	0	101	70	130			
0.9000         0.15         1         0         90.0         70         130           1.950         0.30         2         0         97.5         70         130           0.7800         0.30         1         0         78.0         70         130           0.7800         0.30         1         0         72.0         130           0.9700         0.30         1         0         97.0         70         130           nalyte detected me not blank corrected         E         Estimated Value above quantitation name         H         Holding times for preparation or analysis excended           Ballyte detected below quantitation limit         ND         Not Detected at the Limit of Detection         R         R RPD outside recepted recovery limits	Hexachtoro-1,3-butadiene	1,010	0.15	-	0	101	22	130			
9.7800         0.15         1         0         78.0         70         130           1.910         0.30         1         0         97.5         70         130           0.7800         0.30         1         0         78.0         70         130           0.9700         0.30         1         0         97.0         70         130           0.9700         0.30         1         0         97.0         70         130           0.9700         0.30         1         0         97.0         70         130           0.9700         0.30         1         0         97.0         70         130           0.9700         1         0         97.0         70         130           0.9700         1         0         97.0         70         130           0.9700         1         0         97.0         70         130           0.9700         1         0         97.0         70         130           0.9700         1         0         97.0         70         130           0.9700         1         0         97.0         130         130           <	Hexane	0.9000	0.15	_	0	90.0	5	130			
1.950         0.30         1         0         97.5         70         130           1.910         0.30         1         0         78.0         70         130           0.9760         0.30         1         0         97.0         70         130           systis reported me not blank corrected         E. Estimated Value above quantitation in anger         E. Estimated Value above quantitation in anger         H. Hotding tithes for preparation or analysis excellent to Detected below quantitation limit         ND Not Detected at the Limit of Detection         R. RPD outside recepted recovery limits	isopropyl aicohol	0.7800	0.15	-	0	78.0	5	130			
1,910         0,30         1         0         78.0         70         130           0,7800         0,30         1         0         77.0         130           55setts reported me not blank corrected         E. Estimated Value above quantitation range         H. Holding times for preparation or analysis excellented detected below quantitation limit         N.D. Not Detected at the Limit of Detection         R. RPD outside recepted recovery limits	m&p-Xylene	1.950	0.30	2	0	97.5	70	130			
0.7869 0.30 1 0 78.0 70 130  0.9769 0.30 1 0 97.0 79 130  1	Methyl Butyl Ketone	1.910	0.30	+	0	191	20	130			
0.9760 0.30 † 0 97.0 70 130  State of the Description of the Descripti	Methyl Ethyl Kelone	0.7800	0.30	-	0	78.0	5	130			
Results reported are not blank corrected Estimated Value above quantifiation range H Holding titues for preparation or analysis excedenced below quantitation finite. NO Not Detected at the Limit of Detection R RPD outside accepted recovery limits of the Limit of Detection R RPD outside accepted recovery limits.	Methyl Isobutyl Ketone	0.9700	0.30	<del>**</del>	ð	97.0	70	130			
Alian is detacted using the property of the pr	. •	ried are not blank corrected		:	nated Value above quan	Detation range			Holding times for	preparation or a	naiysis eveee
		Sign Delow quantitities sittii Am Annoide adoostad sacarda E	en ès		באנגנית או נווכ דינונוו נוו	Deserator		ź	ויז כי טשיפוחר ערכר	الدواء احجمه والأراد	

Sample ID: ALCS1UG-122217	SampType: LCS	TestCo	TestCode: 0.25CT-TCE-	E. Units: ppbV		Prep Date:	<b>.</b>		RunNo; 13074	74	
Client ID: ZZZZ	Batch ID: R13074	Test	TestNo: TO-15			Analysis Da	Analysis Date: 12/22/2017		SeqNo: 151966	996	
Analyte	Result	ğ	SPK value	SPK value SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	%RPD RPDLimit	Quai
Methyl ten-butyt ether	0.9600	0.15	-	0	90.0	70	130				
Methylene chloride	0.9700	0.15	4	0	97.0	70	130				
o-Xyřene	1.030	0.15	+	0	103	6	130				
Propylene	1.070	0.15	**	0	107	70	130				
Slyrene	1.040	0,15	+	0	\$	70	130				
Tetrachloroethylene	1.010	0.15	~	0	101	70	130				
Tetrahydrofuran	0.8500	0.15	*	0	85.0	70	130				
Toluene	0.9200	0.15	4	0	92.0	20	130				
trans-1,2-Dichloroethene	0.9500	0.15	۳-	o	95.0	5	130				
trans-1,3-Dichloropropene	0.9800	0.15	•	o	98.0	70	130				
Trichforgethene	0.9700	0.030	vr=	O	97.0	22	130				
Vinyl acetate	0.8300	0.15	ķα	Ċ	83.0	70	130				
Vinył Bromide	1,000	0.15	dru.	o	190	R	130				
Vinyl chloride	0.9900	0.040	<b>y</b> m	0	0.68	70	130				

LaBella Associates, P.C.

Eldre Corp CI712063

Project:

Work Order: CLIENT:

### Centek Laboratories, LLC $_{\tt Quantitation\ Report}$ (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122104.D Vial: 4 Acq On : 21 Dec 2017 11:07 am Operator: RJP Sample : ALCS1UG-122117 Inst : MSD #1 Misc : AD12_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 21 13:59:09 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Internal Standards		QIon	Response	Conc Un:	its I	)ev (	Min)
1) Bromochloromethane	10.62	128	28996	1.00 j	onb		0.01
35) 1,4-difluorobenzene	12.83	114	122693	1.00			0.00
50) Chlorobenzene-d5	17.56	117	122693 99555	1.00			0.00
	27.00				,		
System Monitoring Compounds							
65) Bromofluorobenzene	19.30	95	82180	1.11 )	dqq		0.00
Spiked Amount 1.000	Range 70	- 130	Recove	ery = :	111.0	30₺	
Target Compounds					,	Qva	lue
2) Propylenc	4.64		25465	1.13 )			89
3) Freon 12	4.70						99
4) Chloromethane	4.92		45776	1.09			79
5) Freon 114	4.93 5.35	85	140291 39098	1.03			93
6) Vinyl Chloride	5 - 3.5	62	39098				96
7) Butane	5.27						97
8) 1,3-butadiene	5.27		37645	1.07			78
<ol><li>Bromomethane</li></ol>	5.65	94	51359	1.06			88
10) Chloroethane	5.83	64	18807	1.06			97
11) Ethanol	5.95	45	11583				65
12) Acrolein	6.57	56 106	10647 48496	0.84			92
13) Vinyl Browide	6.20	106	48496	1.04			88
14) Freon 11	6.50	101	172233	1.11			100
15) Acetone	6.67	58	13997	0.95			9'7
1.6) Pentane	6.79	42 45	32344 44561	0.98			68
17) Isopropyl alcohol			44561	0.97 j			1
18) 1,1-dichloroethene	7,31					#	81
19) Freon 113	7.51	1.01	83510	0.96			88
20) t-Butyl alcohol	7.5 <b>4</b> 7.79	59	ແລວດ	0.95			97
21) Methylene chloride	7.79	94		0.97 j			90
22) Allyl chloride	7.77	4.1		0.94			93
23) Carbon disulfide	7.96	76 61	893.04	0.95			84
24) trans-1,2-dichloroethene	<b>≘ 8.76</b>	61	43414	U. PP			97
25) methyl tert-butyl ether	8.78	73		0.95			98
26) 1,1-dichloroethane	9.20			3.02			98
27) Vinyl acetate	9.17	43 72	47187 10754	0.86			89
28) Methyl Ethyl Ketone	9.67	72	10754	0.83		林	1
29) cis-1,2-dichloroethene		61		0.93			99
30) Hexane	9.75	57	38038	0.97			95
31) Ethyl acetate	10.29	43 83	48167 95196	0.88			90
32) Chloroform	10.77						99
33) Tetrahydrofuran	10.94	42	20914		ppp		93
34) 1,2-dichloroethane	11,86	62	62174	1.00			98
<pre>36) 1,1,1-trichloroethane</pre>	11.59	97	110738	1.01			88
37) Cyclohexane	12.27	56	36584	0.95			85
38) Carbon tetrachloride	12.22	117	137263	0.97			94
39) Benzene	12.19	78	91002	0.91			98
40) Methyl methacrylate	13.58	41	58088	0.82			99
41) 1,4-dioxane	13.72	88	17085			#	62
42) 2,2,4 trimethylpentane	13.01	57	117746				89
43) Heptane	13.34	43	38101	0.96			91.
44) Trichloroethene	13.47	130					94
45) 1,2-dichloropropane	13.58	63	34885				93
					~ ~		

^{(#) =} qualifier out of range (m) = manual integration Wed Jan 10 09:25:06 2018 A0122104.D AD12_1UG.M

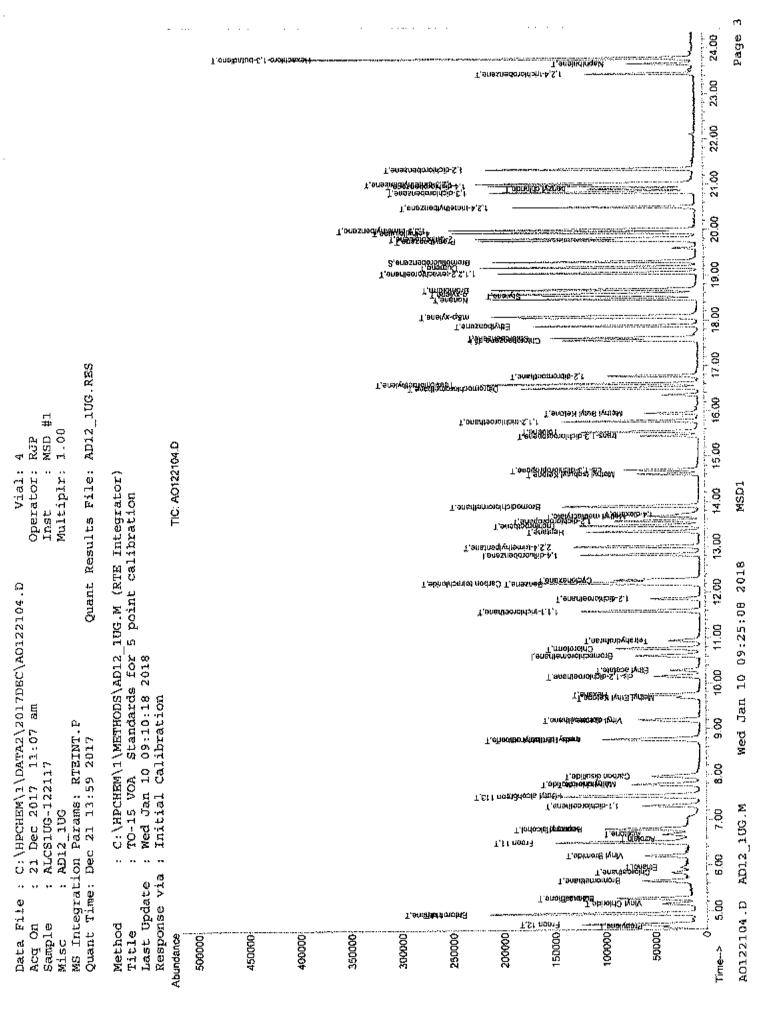
MSD1

## Centek Laboratories, LLC Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122104.D Vial: 4 Acq On : 21 Dec 2017 11:07 am Operator: RJP Inst : MSD #1 Sample : ALCS1UG-122117 Misc : AD12_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P


Ouant Time: Dec 21 13:59:09 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Dec 13 05:59:29 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qva	lue
46)	Bromodichloromethane	13.90	83	109641	1.01 ppb		97
47)	cis-1,3-dichloropropene	14.70	75	53697	0.96 ppb		96
48)	trans-1,3-dichloropropene	15.45	75	42932	0.91 բբե		98
49)	1,1,2-trichloroethane	15.78	97	50570	1.01 ppb		91
51)	Toluene	15.54		61358	0.95 <b>pp</b> b		8.9
52)	Methyl Isobutyl Ketone	14.61	43	43579	0.92 ppb		94
53)	Dibromochloromethane	16.51	129	118710	1.01 ppb		99
54)	Methyl Butyl Ketone	15.94	43	39562	0.97 დღხ		94
55}	1,2-dibromoethane	16.77	107	74126	ი.96 დდხ		98
	Tetrachloroethylene	16.60	164	61280	dqq 10,1		₿9
57)	Chlorobenzene	17.61	112	100776	dqq 86.0		90
58)	Ethylbenzene	17.88	91	137295	0.94 ppb		98
59)	m&p-xylene	18.10	91	253042	1.99 ppb		97
60)	Nonane	1,8.48	43	59687	1.03 ppb		95
61)	Styrene	18.55	104	92598	1.03 ppb	#	67
62)	Bromoform	18.68	173	125932	1.02 ppb		96
63)	o-xylene	18.59	91	149366	1,01 ppb		90
64)	Cumene	19.18	105	161320	0.98 ppb		95
66)	1,1,2,2-tetrachloroethane	19.05	83	108170	dqq 10.£		99
67)	Propylbenzene	19.76	120	45276	1.06  ppb		75
	2-Chlorotoluene	19.81	126	53177	1.08 ppb	#	85
69)	4-ethyltoluene	19.94	105	173253	1.04 ppb		99
	1,3,5-trimethylbenzene	20.00	105	167105	1.08 ppb		97
71)	1,2,4-trimethylbenzene	20.50	105	123578	1.02 დებ		96
72)	1,3-dichlorobenzene	20.83	146	113561	1.04 ppb		98
73)	benzyl chloride	20.90	91	94405	1.03 ppb		100
74)	1,4-dichlorobenzene	20.97	146	115261	1.06 ppb		93
75)	1,2,3-trimethylbenzene	21.02	105	146430	1.04  ppb		98
76)	1,2-dichlorobenzene	21.34	146	112310	1.03 ppb		97
77)	1,2,4-trichlorobenzene	23.44	180	42327	0.99 ppb		97
78)	Naphthalene	23.66		66313	0.97 ppb		93
79)	Hexachloro-1,3-butadiene	23.78	225	94345	1,01 ppb		95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122104.D AD12_1UG.M Wed Jan 10 09:25:07 2018



(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122204.D

Acq On : 22 Dec 2017 10:28 am Sample : ALCS1UG-122217 Misc : AD12_1UG

Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 27 09:49:21 2017

Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Inte	rnal Standards	R.T.	QIon	Response		nits	Dev	(Min)
				22574				
	Bromochloromethane		128					0.01
	1,4-difluorobenzene		114	103731				0.00
50)	Chlorobenzene-d5	11.50	117	90475	1.00	ppo		0.00
	em Monitoring Compounds				- 6-5	,		
•	Bromofluorobenzene	1.9.29						0.00
ರ್ಣ	iked Amount 1.000	Range 70	- 130	Recove	ry z	106	.00%	
Targ	et Compounds						Qv	alue
2)	Propylene	4.64	41	22956	1.07	ppb		86
	Freon 12	4.70	85	156485	1.07	dqq		98
4)	Chloromethane	4.93	50	42566	1.07	ppb		81
5)	Freon 114	4.93	85	136515	1.05	dqq		95
5)	Vinyl Chloride	5.15	62	37360	0.99	dqq		96
	Butane	5.26	43	37360 43262	0.99	$_{\rm ppb}$	#	96
	1,3-butadiene	5.26		34830	1.04	dag		79
	Bromomethane	5.65	94	45731	0.99			87
	Chloroethane	5.83	64	16607	0.98	ppp	#	83
	Ethanol	5.94	45	9179	0.84			56
	Acrolein	6.56	56		0.88			94
	Vinyl Bromide	6.20	106					89
	Freon 11	6,50	106 101	44037 158854	1.07			1.00
	Acetone	6.66	58	12472	0.89			86
	Pentane				0.87			69
	Isopropyl alcohol	6,80 6,78 7.31	45	33865	0.78			1
	1,1-dichloroethene	7.31	96	27311	0.77			79
	Freon 113	7.51	101	78380	0.95			8,9
	t-Butyl alcohol	7.52	59	44029	0.84			97
	Methylene chloride	7.78	84		0.97			91
	Allyl chloride	7.76	41		0.89			94
	Carbon disulfide	7.97	76		0.94			91
	trans-1, 2-dichloroethene			41136	0.95			95
	methyl text-butyl ether	8.77	73		0.90			98
	1,1-dichloroethane	9.20	63	57712	0.97			98
	Vinyl acetate	8.77 9.20 9.16	43		0.83			99
	Methyl Ethyl Ketone		77					70
	cis-1,2-dichloroethene	9.67 10.15	61	9738 36463	0.91			98
	Hexane	9.75	57	33416	0.90			93
_	Ethyl acetate	10.29			0.84	dag		91
	Chloroform	10.76	43 83	89621	1.00	daa		97
	Tetrahydrofuran	10.93		19124		daa		94
341	1,2-dichloroethane	11.86	62	56900	0.96	daa		99
	1,1,1-trichloroethane	11.59	97	103183	1.11			89
	Cyclohexane	12.28	56	31588	0.97	daa		81
381	Carbon tetrachloride	12.22	117	125477	1.05	daa		92
	Benzene	12.18	78	82373	0.98			96
	Methyl methacxylate	13.67	41	25336	0.87			97
	1,4-dioxane	13.71		15464	0.86			56
421	2,2,4-trimethylpentane	13.01	57		1.01			8.8
	Heptane	13.34	43	33816	1.01			91
	Trichloroethene	13.47	130	48317	0.97			93
	1,2-dichloropropane	13.58	63	33816 48317 32028	1.08			92

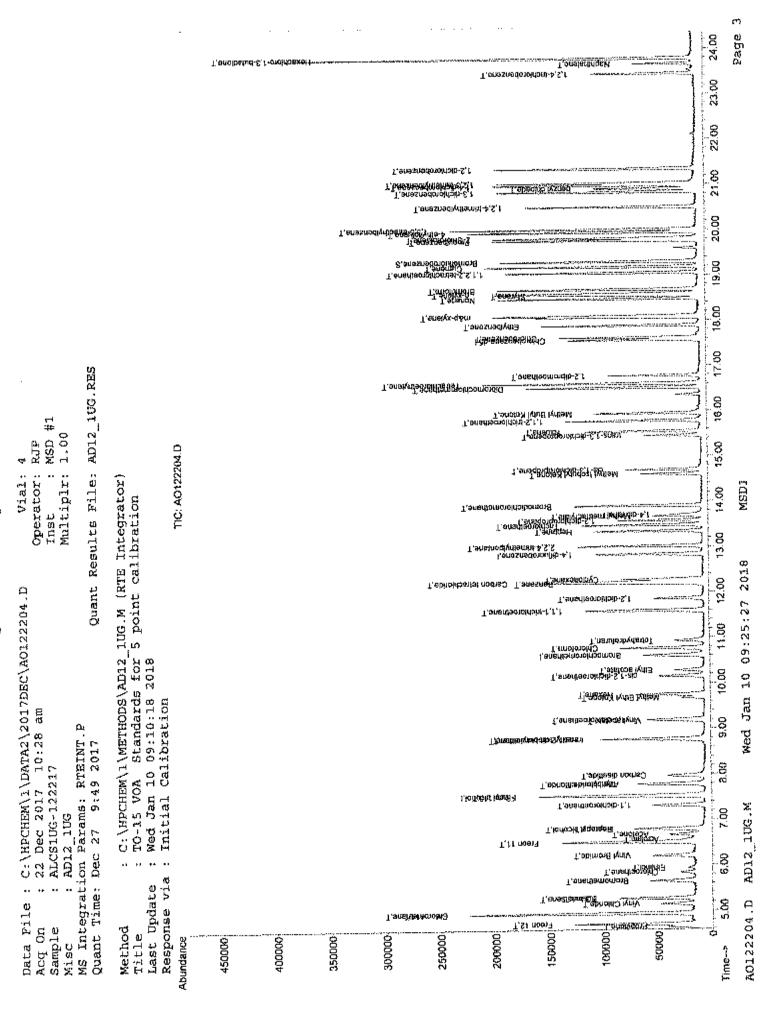
^{(#) =} qualifier out of range (m) = manual integration AQ122204.D AD12 1UG.M Wed Jan 10 09:25:25 2018

MSDl

## Centek Laboratories, LLC Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P
Quant Time: Dec 27 09:49:21 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.90	83	100368	1.09 ppb	96
47)		14.70	75	50716	1.07 ppb	96
	trans-1,3-dichloropropene	15.45	75	39128	0.98 ppb	100
49)	• "	15.77		46579	1.10 ppb	94
51)	Toluene	15.54	92	53903	0.92 ppb	87
52)	Methyl Isobutyl Ketone	14.60	43	41886	0.97 ppb	98
53)	Dibromochloromethane	16.51	129	108784	1.02 ppb	99
54)	Methyl Butyl Ketone	15.94	43	70580	1,91 ppb	96
55)	1,2-dibromoethane	16.77	107	70792	1.01 ppb	98
56)	Tetrachloroethylene	16.60	164	56021	1.01 ppb	88
57)	Chlorobenzene	17.62	112	91594	0.98 ppb	89
58)	Ethylbenzene	17.88	91	120950	0.92 ppb	97
59)	m&p-xylene	18.10	91	225171	1.95 ppb	96
60)	Nonane	18.48	43	53466	1.02 ppb	94
61)	Styrene	1.8.55	104	84609	1.04 ppb	68
62)		18.68	173	113069	1.01 ppb	96
63)	o-xylene	18.58	91	138312	1.03 ppb	91
64)	Cumene	19.18	105	143704	$0.96~\mathrm{ppb}$	95
66)	1,1,2,2-tetrachloroethane	19.04	83	98688	1.01 ppb	97
67)	Propylbenzene	19.76	1.20	39925	1.03  ppb	80
68)	2-Chlorotoluene	19,81	126	47783	1.07  ppb	# 85
69)	4-ethyltoluene	19.94	105	154440	1.02 ppb	100
70)	1,3,5-trimethylbenzene	20.00	105	147983	1.05  ppb	96
71)	1,2,4-trimethylbenzene	20.50	105	104691	0.95 დებ	97
72)	1,3-dichlorobenzene	20.83	1.46	101647	1.02 ppb	99
73)	benzyl chloride	20.90	91	85141	1.02 ppb	99
74)	1,4-dichlorobenzene	20.98	146	102942	1.05 ppb	94
75)	1,2,3-trimethylbenzene	21.02	105	130639	1.02 ppb	98
76)	1,2-dichlorobenzene	21.34	145	100479	1.02 დდა	9 <b>7</b>
77)	1,2,4-trichlorobenzene	23.44	180	37421	0.97 ppb	95
78)	Naphthalene	23.65	128	53747	0.87 ppb	92
79)	Hexachloro-1,3-butadiene	23.78	225	85928	1.01 ppb	95

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO122204.D AD12_1UG.M Wed Jan 10 09:25:26 2018 MSD1



Page 429 of 477

## CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

LaBella Associates, P.C. CLIENT:

C1712063 Work Order: Project:

Eldre Corp

Olient ID: ZZZZZ	SampType: LCSD	TestCod	TestCode: 0.25CT-TCE-	- Units: ppbV		Prep Date			RunNo: 13073	073	
	Batch ID: R13073	Testh	TestNo: TO-15			Analysis Date;	12/22/2017	017	SeqNo: 151945	1945	
Analyte	Result	정	SPK value	SPK Ref Vai	%REC	Lowtimit	HighLimil	RPO Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.030	0.15	<b>.</b>	o	103	£	130	101	1.96	8	
1, f, 2, 2-Tetrachloroethane	1,020	0.15	ųm	O	102	22	139	1.03	0.985	30	
1, 1,2-Trichloroeinane	1.040	0.15	***	0	104	5	130	1.01	2.93	33	
1,1-Dichloroethane	0.9600	0.15	₩.	0	96.0	2	130	1.02	8.06	30	
1,1-Dichloroethene	0.8500	0.15	-	O	85.0	70	130	9.87	2.33	33	
1,2.4-Trichlorobenzene	0.8100	0.15	-	0	81.0	70	136	0.99	20.0	30	
1,2,4-Trimethy/benzene	0.9400	0.15	-	0	94.0	20	130	1.02	8.15	8	
t,2-Dibromoethane	0.9900	0.15	-	0	99.0	5	138	0.96	3.08	83	
1,2-Dichlorobenzene	1.000	0.15	-	0	100	70	65	1.03	2.98	8	
1,2-Dichtorgethane	0.9500	9.55	-	0	95.0	70	130	•	5.13	ਲ	
1,2-Dichtoropropane	1.010	0.15	-	0	101	70	55	•	0.995	8	
1,3,5-Trimethylbenzene	1.060	0.15	-	0	106	70	130	1.08	1.87	8	
1,3-butadiene	0.9600	0.15	-	0	96.0	70	130	1.07	10.8	30	
1,3-Dichlorobenzene	1.080	0.15	٣	0	106	70	130	1.04	1.90	30	
1,4-Dichlorobenzene	1.060	0.15	-	٥	106	70	130	1.06	0	30	
1,4-Dioxane	0.2600	0.30	*	o	56.0	70	130	0.81	O	æ	ट्
2,2,4-trimethylpentane	0.9900	0.15	+-	0	0.99	76	130	0.95	4.12	30	
4-ethyltoluene	1.040	0.15	<del>, -</del> -	0	\$	70	130 051	1.04	0	8	
Acetone	0.8300	0.30	₩	o	83.0	70	130	0.95	13.5	30	
AByi chloride	0.9000	0.15	<b>*</b>	٥	0.08	310	\$30	0.94	4.35	8	
Benzene	0.9600	0.15	4==	o	96.0	5	130	16.0	5.35	30	
Benzyl chloride	0.9900	0.15	₩"	¢	99.0	70	130	1.03	3.96	8	
Bromodichloromethane	1.040	0.15	ų,	٥	<del>1</del> 04	7.0	130	1.01	2.93	8	
Вютобрет	1.040	0.15	ųu	o	104	72	33	1.02	1,94	8	
Bromomethane	0.9300	0.15	<b>v-</b>	0	93.0	20	130	1.06	13.1	8	
Qualifiers: Results reported	Results reported are not blank corrected	: : :	E Estimate	Estimated Value above quantitution range	titation ran	  £	#	Holding times for preparation or analysis exceeded	ресрагатіоп от	Bualysis excert	3
,1 Analyte detecte	Analyte detected below quantitation limit		ND Not Dete	Not Detected at the Limit of Detection	Detection		*	RPD outside accepted recovery Fimits	picd recovery E	mits	
S Spike Recovery	Spike Recovery outside accepted recovery limits	nits								Hadia,	Page ! of 5

Spike Recovery outside accupied recovery limits

LaBelia Associates, P.C.
CLIENT:

C1712063 Work Order: Project:

Eldre Corp

Sample ID: ALCS1UGD-122117	LCS1UGD-122117 SampType: LCSD	TestCod	TestCode: 0.25CT-TCE-	Units: ppbV		Prep Date:	v		RunNo: 13073	73	
Client ID: ZZZZZ	Batch ID: R13073	TestN	TestNo: TO-15		44,	Analysis Date:	12/22/2017	17	SeqNo: 151945	845	
; Analyte	Result	P.	SPK value SI	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vat	%RPD	RPDLimit	Qual
Carbon disulfide	0.9400	0.15	Ψ	0	94.0	70	130	0.95	1.06	30	
Carbon tetrachloride	0.9900	0.040	τ	0	99.0	70	130	0.97	2.04	ਲ	
Chlorobenzene	0.9700	0.15	-	0	0.79	70	130	0.98	1.03	8	
Chloroethane	0.9460	0.15	-	Ó	94.0	70	130	1.06	12.0	8	
Chloroform	0.9700	0.15	₩.	O	97.0	76	130	1.01	4.04	93	
Chloromethane	0.9800	0.15	₹"	0	98.0	70	130	1.09	10.6	30	
cis- \$ 2-Dichlocethene	0.9200	0.15	•	O	92.0	7.0	130	0.93	1.08	8	
ris-13-Dichloromoene	0.9100	0.15	-	0	91,0	2	133	0.96	5.35	8	
Cuchhavana	0.9600	6.15	-	0	96.0	5	130	0.95	1.05	8	
Disronachloromethane	1.040	0.15	4	o	104	70	130	1.01	2.93	ଚ୍ଚ	
Ethyl ageists	0.7900	0.15	<b></b>	0	79.0	70	130	0.88	10.8	8	
Fibylberzene	0.9200	0.15	•	0	92.0	R	130	0.94	2.15	30	
Freen 11	0.9900	0.15	-	0	99.0	0.2	130	1.1	4.	33	
F1600 113	0.9200	0.15	-	0	92.0	70	130	0.96	4.26	8	
Trees 114	1.000	0.15	-	0	100	70	130	1.03	2.96	õ	
French 12	1.030	0.15	•	0	103	22	130	1.06	2.87	33	
Hadane	0.9700	0.15	-	O	97.0	2	130	96.0	1.04	33	
Fexaching -1.3-butadiene	0.9160	0.15	-	0	95.0	07	130	1.01	10,4	8	
Hexage	0.9900	0.15	₩	Ö	90.0	22	130	0.97	7.49	æ	
sengration alcohol	0.7200	0.15	***	o	72.0	22	130	76.0	29.6	30	
Social Opyrication	1.980	0.30	7	o	99.0	£	130	1.99	0.504	క్ట	
Modern Ruise Kolono	0 1500	6,30	-	0	15.0	5	130	0.97	¢.	8	ស
Methyl Ethyl Ketone	0.7600	0.30	+	O	78.0	70	133	0.83	8.81	æ	
Methyl Isobutyl Kelone	0.1800	0.30	***	ø	18.0	70	130	0.92	0	200	- 53
Methyl led-butyl ether	0.8700	0.15	₩.	٥	87.0	2	130	0.95	8.79	ର :	_
Methylene chloride	0.9506	0.15	-	0	95.0	20	130	0.97	2.08	S 1	
o-Xvlene	1.540	0.15	-	0	104	2	130	1.03	2.93	æ	
Occupane	1.000	0.15	<b>γ</b>	Ö	<del>1</del> 35	70	130	1.13	12.2	묽	_
Shrone	1.070	0.15	***	c	107	70	130	1.03	3.81	S	_
Tetrachinoethylene	1.020	0.15	•	¢	102	5	130	1.01	0.985	8	
Tetrahydrofuran	0.8300	0.15	-	0	83.0	2	133	0.89	8.98	8	
:	Describer some dest are not blank sourceted		Estimate	Estimated Value above quantitation range	elitation ran	: 31	I	Holding times for preparation or analysis exceeded	r preparation of a	analysis exce	eded
Leganiers: Newstrate design	1960 als my bean something		,	Not Detected at the Limit of Detection	f Detection	1	≥4	RPD outside accepted recovery limits	spied recevery li	mits	
กรด สำห์เหม	Analyte detected eatow qualification areas										•

ZZZZ         Batch ID: R13073         TestNo: TO-15         Analysis           Result         PQL         SPK value         SPK Ref Val         %REC         Lowkia           tionopropene         0.9500         0.15         1         0         95.0         Proposition           tionopropene         0.9500         0.15         1         0         95.0         Proposition           LCS1UGD-12Z217         SampType: LCSD         TestNoc: TCE-         Units         Ppt A         Proposition         Pr	mit HighLimit RPD Ref Val 70 130 0.95 70 130 0.95 70 130 0.91 70 130 0.89 70 130 0.89 70 130 0.89 70 130 0.89 70 130 0.89	SeqNo: 151945  %RPD RPDLir  2.13  0  7.57	
PQL   SPK value   SPK Ref Val   SAGE   SPK Ref Val   SAGE   SAG	130 130 130 130 130 130 130	2.13 0 7.57	
Discription of the method of the mixing of the mi	130 130 130 130 130 130	2,13 0 7.57	i Quai
6.9300 0.15 1 0 0 93.0 91.0 0.8200 0.15 1 0 0 94.0 95.0 0.9500 0.15 1 0 0 96.0 95.0 0.9500 0.15 1 0 0 96.0 95.0 0.9500 0.15 1 0 0 96.0 95.0 0.9500 0.15 1 0 0 96.0 95.0 0.9500 0.15 1 0 0 96.0 95.0 1 0 96.0 95.0 1 0 96.0 95.0 1 0 96.0 95.0 1 0 96.0 95.0 1 0 96.0 95.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.0 1 0 96.	130 130 130 130 130 130	2.13 0 7.57	٥
6.9100 0.15 1 0 94.0 0.8600 0.030 1 0 96.0 0.8500 0.15 1 0 9 86.0 0.9700 0.15 1 0 9 96.0 0.9700 0.15 1 0 9 96.0 0.9700 0.15 1 0 0 97.0 SampType: LCSD TestCode: 0.2SCT-TCE- Units: ppbV  Result D. R13074 TestNo: TO-45  1.140 0.15 1 0 0 1 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114	130 130 130 130 130	0 7.57 0	
6.9600 0.036 1 0 96.0 0.8500 0.15 1 0 96.0 0.9700 0.15 1 0 97.0 0.9300 0.040 1 0 0 97.0 SampType: LCSD TestCode: 0.2SCT-TCE- Units: ppbV Batch ID: R130T4 TestNo: TO-45 1.140 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114 1.140 0.15 1 0 0 114	130 130 130 130	7.57	Ġ
0.9500 0.15 1 0 0 95.0  0.9700 0.15 1 0 0 97.0  SampType: LCSD TestCode: 0.25CT-TCE Units: pab V Batch ID: R13074 TestNo: TO-15  1.140 0.15 1 0 0 1 114  1.130 0.15 1 0 0 1 114  1.030 0.15 1 0 0 1 114  1.050 0.15 1 0 0 10  1.040 0.15 1 0 0 10  1.040 0.15 1 0 0 10  1.040 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0 10  1.050 0.15 1 0 0	130 130 130 130	0	0
0.9700 0.15 1 0 0 97.0  SampType: LCSD TestCode: 0.25CT-TCE- Units: pabv Batch ID: R13074 TestNo: TO-15 1.140 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.130 0.15 1 0 0 114 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.050 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.15 1 0 0 105 1.140 0.1	130		0
SampType: LCSD TestCode: 0.2SCT-TCE- Units: ppbV Batch IO: R13074 TestNo: TO-15 Result D0.15 R1400 0.15 Result Result Result Result D0.15 Result Resu	130	6.97	33
SampType: LCSD         TestCode: 0.25CT-TCE-         Units: ppbV           Batch ID: R13074         TestNo: TO-15         Indexcense of the control of the contro	4 5	6.25	
Match ID:         R13074         TestNo:         TO-15           Horoethane         1.140         0.15         1         0         114           Horoethane         1.130         0.15         1         0         114           Horoethane         1.130         0.15         1         0         114           Horobenzena         0.8700         0.15         1         0         113           Horobenzena         0.8200         0.15         1         0         82.0           Horobenzena         1.050         0.15         1         0         82.0           Horobenzena         1.050         0.15         1         0         103           Horobenzena         1.050         0.15         1         0         104           Horopenzena         1.050         0.15         1         0         104           Horopenzena         1.050         0.15         1		RunNo: 13074	
cichloroethane         1.140         0.15         1         0         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         <		SeqNo: 151957	
1.140 0.15	mit HighLimit RPD Ref Val	'ai %RPD RPDLimit	t Qual
ne     1.140     0.15     1     0     114       1.130     0.15     1     0     113       1.030     0.15     1     0     103       0.8700     0.15     1     0     87.0       1.050     0.15     1     0     104       1.040     0.15     1     0     104       1.040     0.15     1     0     104       1.050     0.15     1     0     104       1.080     0.15     1     0     104       1.080     0.15     1     0     105       1.160     0.15     1     0     105	70 130 1.11	11 2,57 30	
1.130     0.15     1     0     113       1.030     0.15     1     0     103       0.870     0.15     1     0     87.0       0.8200     0.15     1     0     82.0       1.050     0.15     1     0     104       1.040     0.15     1     0     114       1.050     0.15     1     0     104       1.080     0.15     1     0     105       1.160     0.15     1     0     105       1.160     0.15     1     0     108       1.160     0.15     1     0     108	70 130 1.01	12.1	0
1,030     0.15     1     0     103       0,8700     0.15     1     0     87.0       0,8200     0.15     1     0     82.0       1,050     0.15     1     0     104       1,040     0.15     1     0     114       1,050     0.15     1     0     105       1,080     0.15     1     0     105       1,160     0.15     1     0     106	130	1.1 2.69 30	0
0.8700 0.15 1 0 87.0 0.8200 0.15 1 0 82.0 1.050 0.15 1 0 105 1.140 0.15 1 0 114 1.050 0.15 1 0 105 1.080 0.15 1 0 105 1.160 0.15 1 0 108	70 130 0.97	97 6:00 30	
0.8260 0.15 1 0 82.0 1.050 0.15 1 0 105 1.040 0.15 1 0 104 1.140 0.15 1 0 114 1.080 0.15 1 0 105 1.160 0.15 1 0 116	70 130 0.77	77 12.2 30	0
1.050     0.15     1     0     105       1.040     0.15     1     0     104       1.140     0.15     1     0     114       1.080     0.15     1     0     105       1.160     0.15     1     0     108       1.160     0.15     1     0     116	70 130 0.97	30 16.8 30	5
1.040 0.15 1 0 104 1.140 0.15 1 0 114 1.050 0.15 1 0 105 1.080 0.15 1 0 108	70 130 0.95	35 10.0 30	-
1.050 0.15 1 0 114 1.050 0.15 1 0 105 1.080 0.15 1 0 108 ne 1.160 0.15 1 0 116	70 130 1.01	11 2,93 30	0
1,050     0,15     1     0     105       1,080     0,15     1     0     108       1,160     0,15     1     0     116	70 130 1,02	72 11.1 30	0
1.080 0.15 1 0 108 1.160 0.15 1 0 116	70 130 0.96	36 8.96 30	_
1.160 0.15 1 0 116	70 130 1.08	30	0
	70 130 1.05	30 9,95 30	
,3-butadiene 1.030 0.15 1 0 103 70	70 130 1.04	04 0.965 30	0
1,3-Dichlorobenzene 1.140 0.15 1 0 114 70	70 130 1.02	22 11.1 30	0
1.4-Dichlorobenzene 1.170 0.15 1 0 117 70 70	70 130 1.05	16.8 30	0
1,4-Dioxane 0.1100 0.30 1 0 11.0 70	70 130 0.86	36 0 30	Sr. O
105	70 130 1.01	3.88 30	0
4-ethylloluene 1.108 0.15 1 0 110 70	70 130 1.02	30 7.55 30	6
Qualifiers: Results reported are not blank corrected E Estimated Value above quantitation range	1t Holding times	Holding times for preparation or analysis exceeded	eded
J Analyse desected below quantisation limit ND Not Detected at the Limit of Detection	R RPD outside a	RPD outside accepted recovery limits	

LaBella Associates, P.C.

Eldre Corp C1712063

Project:

Work Order: CLIENT:

Spike Recovery outside accepted recovery limits

çe,

ن
<u>_</u>
Associates.
굔
703
aBe
_
,,
-
CLIEN
T-
***
<u>-</u>
u

TestCode: 0.25CT-TCE-VC

Work Order: C1712063

Work Order: C1/1/2053
Project: Eldre Corp

Sample ID: ALCS1UGD-122217	31UGD-122217 SampType: LCSD	TestCo	TestCode: 0.25CT-TCE-	. Units: ppbV		Prep Date:			RunNa: 13074	)74	
Client ID; ZZZZZ	Batch ID: R13074	Test	TestNo: TO-15	:		Analysis Date:	12/23/2017	117	SeqNo: 151967	1961	
Analyte	Resut	Ğ	SPK value S	SPK Ref Val	%REC	LowLimit H	Hightúmit	RPD Ref Val	%RPD	RPDLimit	Qual lead
Acelone	1.030	0.30	-	0	103	5	130	0.89	14.6	30	
Allyl chloride	0.8900	0.15	<b>V</b>	0	0.68	70	130	0.89	Ö	30	
Benzene	1.010	0.15	₹~	o	101	70	130	0.98	3.02	33	
Benzyl chloride	1.060	0.15	-	0	\$	70	130	1.02	3.85	30	
Bromodichloromethane	1.110	0.15	ę.,	٥	111	70	130	1.09	1.82	30	
Bromoform	1.080	0.15	g.m	Ð	108	7.0	130	1.01	6.70	30	
Bromomethane	1.010	0.15	₩.	0	101	70	130	0.99	2.00	30	
Carbon disufide	0.9700	0.15	<b>\</b> ***	0	97.0	70	130	0.94	3,14	8	
Carbon tetrachloride	1,060	0,040	***	C	106	70	130	1,05	0.948	33	
Chlorobenzene	1.030	0.15	-	¢	103	70	130	0.98	4.98	30	
Chloroethane	1.010	0.15	-	0	101	70	130	0.98	3.02	33	
Chloroform	1,050	0.15	-	0	105	20	130	<b>***</b>	4.88	8	
Chloromethane	1.040	0.15	-	Φ	42	70	130	1.07	2.84	33	
cis-1,2-Dichloroethene	0.9900	0.15	-	Q	99.0	70	130	0.93	8.42	30	
cis-1,3-Dichloropropene	0.9600	0.15	-	0	96.0	5	<del>(S)</del>	1.07	10.8	ŝ	
Cyclohexane	1:030	0.15	-	0	103	5	130	0.97	6.00	8	
Dibromochloromethane	1.060	0.15	-	0	106	57	130	1.02	3.85	83	
Ethyl acetale	0.9269	0.15	-	0	92.0	70	130	0.84	60.6	33	
Ethylbenzene	1.000	0.16	<del></del>	0	100	0.2	130	0.92	8.33	8	
Freon 11	1.090	0.15	<del>,</del>	٥	109	5	130	1.07	1.85	8	
Freon 113	0.9860	0.15	+**	0	98.0	70	130	0.95	3.11	8	
Freah 114	1.070	0.35	<i>ψ-</i>	O	107	70	130	1.05	1,89	8	
Freon 12	1.110	0.15	<b></b>	o	111	20	130	1.07	3.67	ଛ	
Heptane	1.050	0.15	<b>y=</b> -	0	105	30	130	1.01	3.83	30	
Hexachloro-1,3-butadiene	0.9900	0.15	**	0	0.99	70	130	1.01	2.00	30	
Hexane	0.9500	0.15	<b>4</b> 111	٥	95.0	70	130	6.0	5.41	8	
Isopropyi alcohol	0.7500	0.15	-	۵	75.0	70	130	0.78	3.92	&	
m&p-Xyiene	2.130	0.30	2	0	106	70	130	1.95	8.82	8	
Methyl Butyl Ketone	< 0.30	0.30	-	Ф	0	20	130	1.94	0	30	Ø
Methyl Ethyl Ketone	0.8200	0.30	-	Φ	82.0	D2	130	0.78	5.00	30	
Methyl Isobutył Ketone	< 0.30	0.30	-	٥	o	73	130	9,97	Q	8	Ø
Ouglifiers: Results report	Results reported are not blank corrected		E Estimate	Estimated Volue above quantitation range	Iteration ran	26	==	Holding times for preparation or analysis exceeded	preparation or a	malysis exceed	3
-	Analyse detected below quantitation limit		ND Not Exer	Not Exected at the Limit of Detection	Detection		2	RPD cutside accepted recovery limits	ated recovery lia	Trics	
	-										

0.25CT-TCE-VC
estCode:

LaBella Associates, P.C.

C1712063 Eldre Corp

Project:

CLIENT: Work Order:

	7 SampType: LCSD	TestCo	de: 0.25CT-TCE	TestCode: 0,25CT-TCE- Units: ppbV		Prep Date:	نة		RunNo: 13074	074	
Client ID: ZZZZZ	Batch ID: R13074	Test	TestNo: TO-15		-	Analysis Date: 12/23/2017	e: 12/23/2	2017	SeqNo: 151967	1961	
Analyte	Result	PO	SPK value	SPK Ref Vat	%REC	LowLimit	Hightimi	RPD Ref Vai	%RPD	RPDLimit	Qua
Methyl tert-butyl ether	0.9600	0.15	-	o	0.98 98	73	130	6'0	6.45	30	
Methylene chloride	0.9800	0.15	***	٥	98.0	7.0	130	0.97	1.03	33	
o-Xylene	1.120	0.15	-	O.	112	₽	33	1.03	8.37	39	
Propylene	1.010	0.15	-	0	101	2	130	1.07	5.77	8	
Siyrene	1.150	0.15	-	0	115	70	130	1.04	10.0	93	
Tetrachloroethytene	1.050	0,15	-	0	105	70	130	1,01	3.88	8	
Tetrahydrofuran	0.9100	0.15	***	0	91.0	70	130	0.85	6.82	33	
Totuene	0.9900	0.15	-fran	0	0.99	70	130	0.92	7.33	83	
trans-1,2-Dichloroethene	0.9800	0.15	4"	0	98.0	92	130	0.95	3,11	30	
trans-1,3-Dichloropropene	0.9600	0.15	***	0	98.0	29	130	0.98	Ď	30	
Tricitloroethene	0.9900	0.030	-	0	99.0	£	130	0.97	2.04	8	
Vinyl acetale	0.9300	0.15	-	0	93.0	2	130	0.83	41.4	30	
Vinyl Bromide	1,010	0.15	-	0	101	2	133	•	0.995	8	
Vinyl chloride	0.9800	0.040		0	98.0	70	130	99.0	1.02	33	

: : : : : : : : : : : : : : : : : : : :	}		:		
Qualifiers:		Results reported are not blank corrected	33	Estimated Value above quantitation range	<ul> <li>Holding times for preparation or analysis exceeded</li> </ul>
	-	Analyte detected below quantitation limit	ND Nº	ND Not Described at the Limit of Detection	t RPD outside accepted recovery limits
	s	Spike Rocavsty outside accepted recovery limits			Page 5

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122125.D Vial: 1 Acq On : 22 Dec 2017 1:19 am Operator: RJP : ALCS1UGD-122117 Inst : MSD #1 Sample Multiplr: 1.00 Misc : AD12_1UG

MS Integration Params: RTEINT.P

Quant Time: Dec 22 08:06:55 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Inte	rnal Standards		QIon	Response	Conc U	aits	Dev	(Min)
				-		h		0 00
1)	Bromochloromethane	10.59	128	30198	1.00			0.00
35)	1,4-difluorobenzene	12.83	114	316840	1.00 1.00			0.00
. 50)	Chilorobenzene-d5	17.56	117	94590	1.00	ppp		0.00
Syste	em Monitoring Compounds							
	Bromofluorobenzene	19,29	95	77293	1.10	ppb		0.00
		Range 70						
1		_						
	et Compounds					_	Õ۸	alue
2)	Propylene	4.64		23305	1.00			86
	Freon 12	4.70		164846	1.03			99
4)	Chloromethane	4.92		42697	0.98			82
	Freon 114	4.92		142284	1.00			96
- 6)	Vinyl Chloride	5.14		38426	0.93	ppp	14	95
7}	Butane	5.25		44591				97
8)	1,3-butadiene	5.25		35254	0.96			83
9)	Bromomethane	5.63		46671	0.93			B2
0.00	Chloroethane	5.82			0.94			95
11)	Ethanol	5.92						74
12)	Acrolein	6.55	56	10341	0.79			90
13)	Vinyl Bromide	6.19	106	46921	0.97			89
	Freon 11	6.49	101	160973				98
15)	Acetone	6.66	58	12732				89
	Pentane	6.78	42	30192	0.88			71
17)	Isopropyl alcohol	6.77	45		0.72			1
	1,1-dichloroethene	7.29	96	32596				94
	Freon 113	7.50	101	83260	0.92			87
	t-Butyl alcohol	7.53	59	25508	0.44			97
	Methylene chloride	7.77	84	29404	0.95			91
	Allyl chloride	7.76	41	29615	0.90			90
	Carbon disulfide	7.95	76	91123	0.94			86
24)	trans-1,2-dichloroethene			44102	0.93			98
28)	methyl tert butyl ether	8.7 <del>6</del>	73	72672	0.87			98
	1,1-dichloroethane	9,19	63	62512	0.96			98
27)	Vinyl acetate	9.15		49300	0.86			99
28)	Methyl Ethyl Ketone	9.67	72	10340	0.76			1
29)	cis-1,2-dichloroethene	10.14						97
30)	Hexane	9.74	57	36657	0.90			94
31)	Ethyl acetate	10.27	43	45419	0.79			90
32)	Chloroform	10.76	83	94982	0.97	ppb		98
33)	Tetrahydrofuran	10.92	42	20418	0.83	bbp		94
34)	1,2-dichloroethane	11.65	62	61453	0.95			100
	1,1,1-trichloroethane	11.58	97	107658		bbp		8.9
37)	Cyclohexane	12.27	56	35178		gąg		83
38)	Carbon tetrachloride	12.21	117	132983	0.99	ppb		92
39)	Benzene	12.17		90745		ppb		98
40)	Methyl methacrylate	13.67	41	25053	0.77	ppb		97
41)	1,4-dioxane	13.71	88	5223m 4		qqq		
	2,2,4-trimethylpentane	13.00		116107	0.99	ddd		89
	Heptane	13.33	43	36640 53462		ppb		92
	Trichloroethene	13.46	130			ppb		90
45)	1.2-dichloropropane	13.57		33667		ppb		93
				~ <del></del>				

^{(#) =} qualifier out of range (m) = manual integration A0122125.D AD12_1UG.M Wed Jan 10 09:25:13 2018

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122125.D

Acq On : 22 Dec 2017 1:19 am Op.
Sample : ALCS1UGD-122117 In

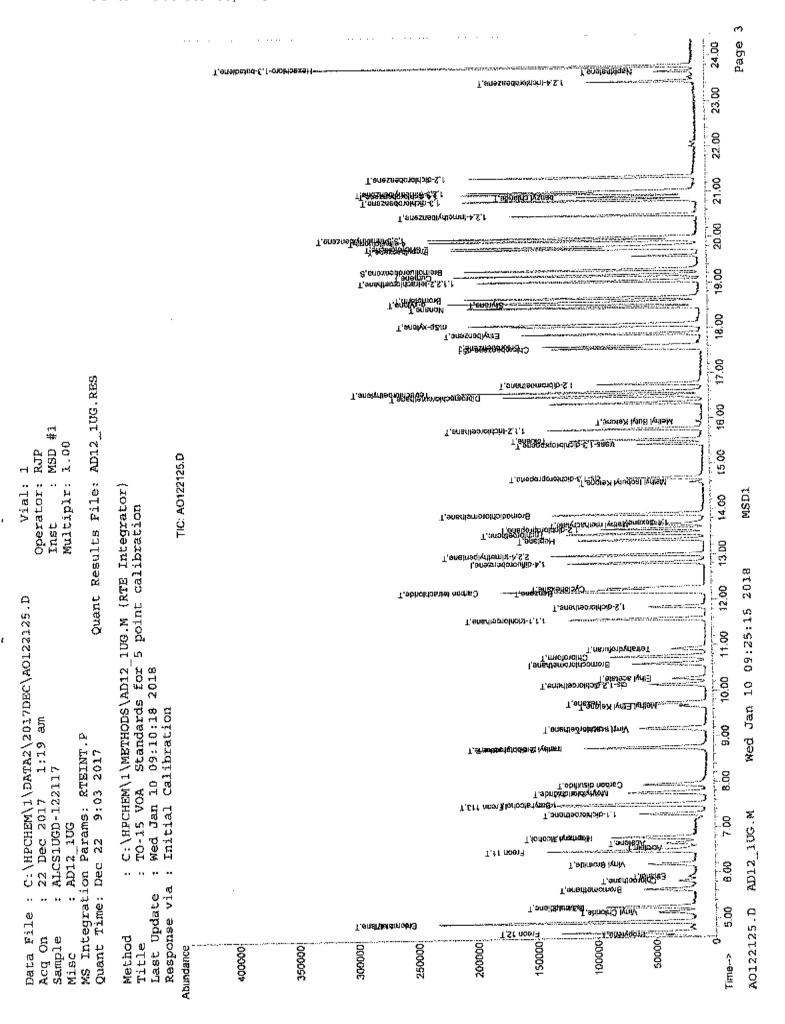
Operator: RJP Inst :: MSD #1 Multiplr: 1.00

Vial: 1

Misc : AD12_1UG
MS Integration Params: RTEINT.P

Quant Time: Dec 22 08:06:55 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46}	Bromodichloromethane	13.89	83	107609	1.04 ppb	95
47)	cis-1,3-dichloropropene	14.69	75	48226	0.91 ppb	96
48)	trans-1,3-dichloropropene	15.44		40938	0.91 ppb	100
49)	1,1,2-trichloroethane	15.77	97	49900	1.04 ppb	92
51)	Toluene	15.54	92	58414 N	0.95 ppb	8.9
52)	Methyl Isobutyl Ketone	14.59	4.3	8018m [#] /		
53)	Dibromochloromethane	16.50		116700	1.04 ppb	97
54)	Methyl Butyl Ketone	15.94	43	5763m∭y		
55)	1,2-dibromoethane	16,77	107	72489	dqq 66.0	99
56)	Tetrachloroethylene	16.60	164	58659	1.02 ppb	8€
57)	Chlorobenzene	17.61	112	95346	0.97 ppb	87
58)	Ethylbenzene	17.88	91	126405	0.92 ppb	99
59)	m&p-xylene	18.09		238492	1.98 ppb	97
60)	Nonane	18.47		58136	1.06 ညူသုံး	96
61)	Styrene	18.54		91432	1.07 թքե	72
62)	Bromoform	18.67		121839	1.04 ppb	96
63)	o-xylene	18.58	91	146912	1,04 ppb	91
64)	Cumente	19.17		149465	0.95 ppb	95
66)	1,1,2,2-tetrachloroethane	19.04		104115	1.02 ppb	99
67)	Propylbenzene	19.75		42763	1.05 ppb	69
68)	2-Chlorotoluene	19.80		49763	1.07 ppb	# 85
69)		19.93		163736	1.04 ppb	99
70)		20.00		155678	1.06 ppb	97
	1,2,4-trimethylbenzene	20.49		108369	0.94 ppb	96 98
72)	1,3-dichlorobenzene	20.82	1.46	110625	1.06 ppb	99
73)	benzyl chloride	20.90	91	86317	0.99 ppb	99
74)	1,4-dichlorobenzene	20.97		109068	1.06 ppb	1.00
75)	1,2,3-trimethylbenzene	21.02	105	131985	0.98 ppb	98
76)		21.33		103316	1,00 ppb	97
	1,2,4-trichlorobenzene	23.44		32960	0.81 ppb	90
78)	Naphthalene	23.65		30327	0.47 ppb	95
79)	Hexachloro-1,3-butadiene	23.78	225	80872	0.91 ppb	35

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0122125.D AD12_1UG.M Wed Jan 10 09:25:14 2018 MSD1



Page 437 of 477

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122228.D Vial: 16 : 23 Dec 2017 1:57 am Operator: RJP Acq On Sample : ALCS1UGD-122217 Inst : MSD #1 : AD12_1UG Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

Quant Time: Dec 27 09:49:38 2017 Quant Results File: AD12_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTB Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R, T,	QIon	Response	Conc Units	Dev (Min)
1) Bromochloromethane		128	25485	dqq 00.1	0.00
35) 1,4-difluorobenzen		114	98724	dqq 00.£	
50) Chlorobenzene-d5	e 12.83 17.56	117	81455	dgg 00.1	
	27.00		w +	4-07	
System Monitoring Compo					0.00
65) Bromofluorobenzene					0.00
Spiked Amount 1.	000 Range 70	- 130	Recover	= 3.11.	00%
Target Compounds					Qvalue
2) Propylene	4.64	41	19868	1.01 ppb	83
3) Freon 12	4.70		149475	1.11 ppb	98
4) Chloromethane	4.92		38275		
5) Freon 114	4.93			1.07 ppb	
6) Vinyl Chloride	5.15		34013	0.98 ppb	
7) Butane	5.26			0.96 ppb	
8) 1,3-butadiene	5,26				81
9) Bromomethane	5.65		42779	1.01 ppb	87
10) Chloroethane	5,83	64	15745	1.01 ppb	
11) Ethanol	5.92				
12) Acrolein	6.55				
13) Vinyl Bromide	6.20	106	41225	1.01 ppb	86
14) Freon 11	6.49	101	149648	1.09 ppb	
15) Acetone	6.66		13242		
16) Pentane	6.79		27726	0.96 ppb	
17) Isopropyl alcohol	6.77			0.75 ppb	
18) 1,1-dichloroethene			28239		
19) Freon 113	7.50		74359	dqq 88.0	
20) t-Butyl alcohol	7.53		15846	dqq 88.0	
21) Methylene chloride	7.78	59 84	25654	0.98 ppb	90
22) Allyl chloride	7.76		24930		88
23) Carbon disulfide	7.95		79373	0.97 ppb	89
24) trans-1,2-dichloro			39395	dag 88.0	97
25) methyl tert-butyl			67370	0.96 ppb	97
26) 1,1-dichloroethane			56288	1.03 ppb	97
27) Vinyl acetate	9.16		44826		
28) Methyl Ethyl Keton		72	44826 9430	0.82 ppb	
29) cis-1,2-dichlorost	hene 10.14	61	36325		99
30) Hexane	9.74	57	32691	0.95 ppb	94
31) Ethyl acetate	10.28		44256	dqq \$2.0	92
32) Chloroform	10.76	83	86591	1,05 ppb	98
33) Tetrahydrofuran	10.93		18871	0.91 ppb	89
34) 1,2-dichloroethane		62	57042	1.05 ppb	99
36) 1,1,1-trichloroeth		97	100242	1.14 ppb	89
37) Cyclohexane	12,27		31,904	1.03 բբն	83
38) Carbon tetrachlori		117	120088	1.06 ppb	92
39) Benzene	12.18	78	81200	1.01 ppb	97
40) Methyl methacrylat		41	24060	በ ደን ተነክኒ	97
41) 1,4-dioxane	13.71	88	1894m	0.11 ppb	
42) 2,2,4-trimethylpen			104292	1.05 ppb	89
43) Heptane	13.33			1.05 ppb	91
44) Trichloroethene	13.46	130	33602 46730	dqq ee.o	93
45) 1.2-dichloropropan	e 13.56	63	30428	1.08 ppb	94

^{(#) =} qualifier out of range (m) = manual integration Wed Jan 10 09:25:32 2018 A0122228.D AD12_1UG.M

MSD1

## Centek Laboratories, LLC

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017DEC\A0122228.D

Acq On : 23 Dec 2017 1:57 am

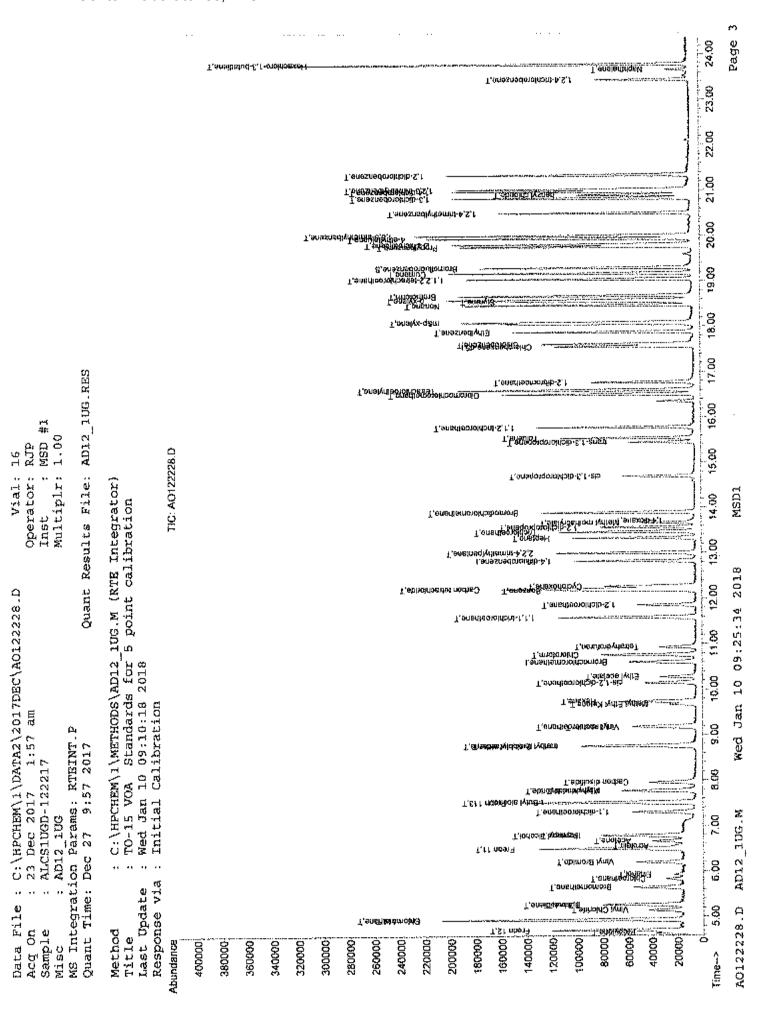
Vial: 16 Operator: RJP Inst : MSD #1

Sample : ALCS1UGD-122217 Misc : AD12_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 27 09:49:38 2017

Quant Results File: AD12_10G.RES


Quant Method : C:\HPCHEM\1\METHODS\AD12_1UG.M (RTE Integrator)

Title : TO-15 VOA Standards for 5 point calibration Last Opdate : Wed Dec 13 05:59:29 2017

Response via : Initial Calibration

DataAcq Meth : 1UG RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qval	lue
n	Bromodichloromethane	13.89	83	97158	1.11 ppb		96
46) 47)	cis-1,3-dichloropropene	14.70	75	43168	0.96 ppb		96
48)	trans-1,3-dichloropropene	15.44		37175	dqq 8e.o		98
49)	1,1,2-trichloroethane	15.77		45651	1.13 ppb		91
51)	Toluene	15.54		52119	dqq ee.o		86
53)	Dibromochloromethane	16.50		102140	1.06 ppb		98
55)	1,2-dibromoethane	16.77		65626	1.04 ppb		98
56)	Tetrachloroethylene	15.60	164	52349	ರ್ಇಇ 20.1		85
57)	Chlorobenzene	17.61	1.12	87066	1.03 ppb		88
58)	Ethylbenzene	17.88	91	118581	1.00 ppb		98
59)	m&p-xylene	18.09	91	220609	2.13 ppb		97
60)	Nonane	18.47	43	53063	1.12 ppb		96
61)	Styrene	18.54	104	84134	1,15 ppb		68
62)	<del>-</del>	18.68	173	108858	1.08 ppb		94
63)	o-xylene	18.58	91	136142	1.12 ppb		93
64)	Cumene	19.17		141765	1.05 ppb		95
66)	1,1,2,2-tetrachloroethane	19.04		99504	1.14 ppb		99
67)	Propylbenzene	19.76		38963	1.12 ppb	14	82
68)	2-Chlorotoluene	19.81		48076	1.20 ppb	#	88
69)	4-ethyltoluene	19.94		149512	1.10 ppb		100
70)	1,3,5-trimethylbenzene	20.00		146529	1.16 ppb		98
71)		20.49		104149	1.05 ppb		96 99
72)	1,3-dichlorobenzene	20.82		102342	1.14 ppb		99
73)		20,90		80024	1.06 ppb		95
74}		20.97		103534	1.17 ppb		99
75)		21.02		127692	1.11 ppb		99
76)		21.33		101176	1.14 ppb		98
77)	• -	23.44		28641	0.82 ppb		91
78)		23.56		17056	0.31 ppb		95
79)	Hexachloro-1,3-butadiene	23.78	225	76084	0.99 ppb		23



## GC/MS VOLATILES-WHOLE AIR

## METHOD TO-15 INJECTION LOG

	B: .	* 4		Injection Log	: Empression 1	
	Directory:	C:\HPCHEN	//1\DATA2\2017DEC		- Karad Slandard Steel # A 2 Securiard Stock # 2	3/4
₋ine	Vial FileName	Multiplier	SampleName		Misc Info	/ Jahrjecteg
166 167 168 169 70 71 72 73 74 75	24 Ao121115. 25 Ao121116. 25 Ao121117. 26 Ao121118. 27 Ao121119. 28 Ao121120. Ao121121. 3 Ao121201. 4 Ao121202. 1 Ao121203.	d 1.	C1712033 C1712033-002A 40X ALCS1UGD-121117 C1712033 C1712031-001A C1712031-001A 10x No MS or GC data pres BFB1UG A1UG A1UG	sent	AN27_1UG -002A 10X AN27_1UG AN27_1UG -001A 810X AN27_1UG -001A 810X AN27_1UG AN27_1UG AN27_1UG AD12_1UG AD12_1UG AD12_1UG	11 Dec 2017 21:39 11 Dec 2017 22:15 11 Dec 2017 22:54 12 Dec 2017 08:03 12 Dec 2017 08:46 12 Dec 2017 09:23 12 Dec 2017 16:10 12 Dec 2017 16:50 12 Dec 2017 17:47
76 77 78 79 80 81 62 83 84 85	2 Ao121204, 3 Ao121205, 4 Ao121206, 5 Ao121207, 6 Ao121208, 7 Ao121209, 8 Ao121211, 9 Ao121211, 10 Ao121212, 11 Ao121213,	d 1.	A1UG_2.0 A1UG_1.50 A1UG_1.25 A1UG_1.0 A1UG_0.75 A1UG_0.50 A1UG_0.30 A1UG_0.15 A1UG_0.10 A1UG_0.04		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	12 Dec 2017 18:30 12 Dec 2017 19:11 12 Dec 2017 19:51 12 Dec 2017 20:31 12 Dec 2017 21:10 12 Dec 2017 21:47 12 Dec 2017 22:25 12 Dec 2017 23:01 12 Dec 2017 23:38 13 Dec 2017 00:14
34	12 A0121214.0 13 A0121215.0 14 A0121216.0 15 A0121217.0 16 A0121218.0 17 A0121219.0 18 A0121220.0 19 A0121221.0 A0121301.0	1 1. 1 1. 1 1. 1 1. 1 1. 1 1.	A1UG_0.03 A1UG ALCS1UG-121217 AMB1UG-121217 C1712042-001A C1712042-001A 10X C1712042-002A C1712042-002A 10X No MS or GC data presibestud	ent	AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	13 Dec 2017 00:51 13 Dec 2017 01:27 13 Dec 2017 02:06 13 Dec 2017 02:43 13 Dec 2017 06:26 13 Dec 2017 07:04 13 Dec 2017 07:47 13 Dec 2017 08:24
37 38 39 30 31 32 33	2 Ao121302.d 3 Ao121303.d 4 Ao121304.d 21 Ao121305.d 22 Ao121306.d 23 Ao121307.d 24 Ao121308.d 25 Ao121310.d 26 Ao121311.d	1, 1, 1, 1, 1, 1, 1,	A1UG_1.0 ALCS1UG-121317 AMB1UG-121317 WAC121317A WAC121317B WAC121317C WAC121317D WAC121317E C1712040-005A C1712040-001A		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	13 Dec 2017 09:54 13 Dec 2017 10:39 13 Dec 2017 11:16 13 Dec 2017 11:58 13 Dec 2017 12:36 13 Dec 2017 13:13 13 Dec 2017 13:50 13 Dec 2017 14:28 13 Dec 2017 15:07 13 Dec 2017 15:47
789012	Ao121321.d Ao121322.d	1. 1. 1. 1. 1. 1.	C1712040-002A C1712040-003A C1712040-004A C1712035-001A C1712035-002A C1712035-003A ALCS1UGD-121317 C1712045-005A C1712045-001A C1712045-002A C1712045-003A C1712045-004A		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	13 Dec 2017 16:27 13 Dec 2017 17:07 13 Dec 2017 17:46 13 Dec 2017 18:26 13 Dec 2017 19:06 13 Dec 2017 19:47 13 Dec 2017 20:27 13 Dec 2017 21:46 13 Dec 2017 22:26 13 Dec 2017 23:06 13 Dec 2017 23:46
9 1	0 Ao121324.d 1 Ao121325.d 2 Ao121326.d	1.	C1712036-001A C1712036-002A C1712039-001A	,	AD12_1UG AD12_1UG AD12_1UG	14 Dec 2017 00:26 14 Dec 2017 01:05 14 Dec 2017 01:47

Injection Log Secret Stock # A2328

	Į	Directory:	C:\HPCHEN	1/1/DATA2/2017DEC	Injection Log	Gesmal Standard Stock # Standard Stock # LCD Stock #	A1317
ne	Via	l FileName	Multiplier	SampleName		LCS Stock # Food Refi EPA T Misc Info	injected
31 32 33 34 35 36 37 38 39 40	1 2 3 4 5 6 7 8 9 10	Ao122001.d Ao122002.d Ao122003.d Ao122004.d Ao122005.d Ao122007.d Ao122008.d Ao122009.d Ao122010.d	1. 1. 1. 1. 1. 1.	BFB1UG A1UG_1.0 A1UG_1.0 ALCS1UG-122017 AMB1UG-122017 C1712053-001A 54X C1712064-010A C1712064-011A C1712064-011A DUP C1712064-012A		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	20 Dec 2017 10:49 20 Dec 2017 11:32 20 Dec 2017 12:27 20 Dec 2017 13:07 20 Dec 2017 13:45 20 Dec 2017 14:26 20 Dec 2017 15:16 20 Dec 2017 15:56 20 Dec 2017 16:40 20 Dec 2017 17:21
11 12 13 14 15 16 17 18 19 50	11 12 13 14 15 16 17 18 19 20	Ao122011.d Ao122012.d Ao122013.d Ao122014.d Ao122015.d Ao122016.d Ao122017.d Ao122018.d Ao122019.d Ao122020.d	1. 1. 1. 1. 1. 1.	C1712064-013A C1712064-014A C1712064-001A 5X C1712064-002A 5X C1712064-003A 5X C1712064-004A 5X C1712064-005A 5X C1712064-006A 5X C1712064-007A 5X C1712064-008A 5X		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	20 Dec 2017 18:02 20 Dec 2017 18:42 20 Dec 2017 19:20 20 Dec 2017 19:58 20 Dec 2017 20:37 20 Dec 2017 21:14 20 Dec 2017 21:51 20 Dec 2017 22:29 20 Dec 2017 23:06 20 Dec 2017 23:44
11 12 13 14 15 16 17 18 19 10	20 21 22 1 2 3 4 5	Ao122021.d Ao122022.d Ao122023.d Ao122024.d Ao122101.d Ao122102.d Ao122103.d Ao122104.d Ao122105.d Ao122106.d	1, 1, 1, 1, 1, 1, 1, 1,	C1712064-009A 5X C1712064-010A 5X C1712064-011A 5X No MS or GC data pres BFB1UG A1UG A1UG_1.0 ALCS1UG-122117 AMB1UG-122117 C1712064-012A 5X	sent	AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	21 Dec 2017 07:13 21 Dec 2017 07:51 21 Dec 2017 08:29 21 Dec 2017 09:08 21 Dec 2017 09:48 21 Dec 2017 10:28 21 Dec 2017 11:07 21 Dec 2017 11:45 21 Dec 2017 12:22
11234567890	7 8 1 2 2 3 3 4 5	Ao122107.d Ao122108.d Ao122109.d Ao122110.d Ao122111.d Ao122112.d Ao122113.d Ao122115.d Ao122116.d	1. 1, 1, 1, 1, 1, 1,	C1712064-013A 5X C1712064-014A 5X C1712069-001A C1712069-001A 10x C1712069-002A C1712069-002A 10x C1712069-003A C1712069-003A 10x C1712063-002A C1712063-004A		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	21 Dec 2017 12:59 21 Dec 2017 13:37 21 Dec 2017 14:30 21 Dec 2017 15:08 21 Dec 2017 15:48 21 Dec 2017 16:26 21 Dec 2017 17:06 21 Dec 2017 17:44 21 Dec 2017 18:25 21 Dec 2017 19:06
1234567890	6 7 8 9 10 11 12 41 1	A0122117.d A0122118.d A0122119.d A0122120.d A0122121.d A0122123.d A0122123.d A0122125.d A0122125.d A0122126.d	1. 1. 1. 1. 1. 1. 1.	C1712063-006A C1712063-008A C1712063-010A C1712063-011A C1712063-013A C1712063-014A C1712063-016A C1712063-017A ALCS1UGD-122117 C1712063-003A		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	21 Dec 2017 19:48 21 Dec 2017 20:29 21 Dec 2017 21:11 21 Dec 2017 21:53 21 Dec 2017 22:34 21 Dec 2017 23:17 21 Dec 2017 23:59 22 Dec 2017 00:40 22 Dec 2017 01:19 22 Dec 2017 02:00
1 2 3 4 5	45 46	Ao122127.d Ao122128.d Ao122129.d Ao122130.d Ao122131.d	1. 1. 1. 1.	C1712063-005A C1712063-007A C1712063-009A C1712063-012A C1712063-015A		AD12_1UG AD12_1UG AD12_1UG AD12_1UG AD12_1UG	22 Dec 2017 02:40 22 Dec 2017 03:22 22 Dec 2017 04:03 22 Dec 2017 04:46 22 Dec 2017 05:27

	_			Injection		1
	ŧ	Directory: C	CHERCHEM	N1\DATA2\2017DEC	Productions on Page 1996 Patronia Standard Standard	A2329
ie	Vial	FileName	Multiplier	SampleName	Standard Cook a LOS <b>MiscAnfo</b> Method Ptor, CP/	A2319 Injected
6	48	Ao122132.d	1.	C1712063-001A	AD12_1UG	22 Dec 2017 06:09
6 7	49	A0122133.d	1.	C1712063-001A MS	AD12_1UG	22 Dec 2017 06:55
8	50	Ao122134,d	1.	C1712063-001A MSD	AD12_1UG	22 Dec 2017 07:42
9	30	A0122135.d	1.	No MS or GC data present	11012100	
ő	1	Ao122201.d	1.	BFB1UG	AD12_1UG	22 Dec 2017 08:23
1	2	Ao122202.d	1.	A1UG	AD12_1UG	22 Dec 2017 09:05
2	3	Ao122203.d	1.	A1UG_1.0	AD12_1UG	22 Dec 2017 09:48
3	4	Ao122204.d	1.	ALCSTUG-122217	AD12_1UG	22 Dec 2017 10:28
4	5	Ao122205.d	1.	AMB1UG-122217	AD12_1UG	22 Dec 2017 11:05
5	21	Ao122206.d	1.	WAC122217A n	AD12_1UG	22 Dec 2017 11:58
6	22	Ao122207.d	1,	WAC122217B n	AD12_1UG	22 Dec 2017 12:35
7	23	Ao122208.d	1.	WAC122217C n	AD12_1UG	22 Dec 2017 13:13
8	24	Ao122209.d	1.	WAC122217D	AD12_1UG	22 Dec 2017 13:51
9	25	Ao122210.d	1.	WAC122217E	AD12_1UG	22 Dec 2017 14:28
0	26	Ao122211.d	1.	WAC122217F	AD12_1UG	22 Dec 2017 15:06
1	27	Ao122212.d	1.	WAC122217G	AD12_1UG	22 Dec 2017 15:43
2	28	Ao122213.d	1.	WAC122217H	AD12_1UG	22 Oec 2017 16:21
3	29	Ao122214.d	1,	WAC1222171	AD12_1UG	22 Dec 2017 16:58
4	1	Ao122215.d	1.	C1712072-001A	AD12_1UG	22 Dec 2017 17:39
5	2	Ao122216.d	1.	C1712072-001A 10X	AD12_1UG	22 Dec 2017 18:17
6	3	Ao122217.d	1.	C1712072-002A	AD12_1UG	22 Dec 2017 18:58
7	4	Ao122218.d	1.	C1712072-002A 10X	AD12_1UG	22 Dec 2017 19:35
8	5	Ao122219.d	1.	C1712072-003A	AD12_1UG	22 Dec 2017 20:15
9	6	Ao122220.d	1,	C1712072-003A 10X	AD12_1UG	22 Dec 2017 20:52
0	7	Ao122221.d	1.	C1712063-002A 20X	AD12_1UG	22 Dec 2017 21:29
1	9	Ao122222.d	1.	C1712063-004A 9X	AD12_1UG	22 Dec 2017 22:09 22 Dec 2017 22:46
2	10	Ao122223.d	1.	C1712063-004A 90X	AD12_1UG AD12_1UG	22 Dec 2017 22:40
3	11 12	Ao122224.d Ao122225.d	1. 1.	C1712063-006A 9X C1712063-006A 90X	AD12_10G AD12_1UG	23 Dec 2017 25:25
4 5	14	A0122226.d	1.	C1712063-005A 55A C1712063-016A 5X	AD12_1UG	23 Dec 2017 00:02
6		Ao122227.d	1.	C1712063-017A 5X	AD12_1UG	23 Dec 2017 01:17
7	-	Ao122228.d	1.	ALCS1UGD-122217	AD12_1UG	23 Dec 2017 01:57
8		Ao122229.d	1.	C1712063-003A 27X	AD12_1UG	23 Dec 2017 02:37
9		Ao122230.d	1.	C1712063-003A 270X	AD12_1UG	23 Dec 2017 03:14
ō		Ao122231.d	1.	C1712063-005A 9X	AD12_1UG	23 Dec 2017 03:53
ì		Ao122232.d	1.	C1712063-005A 90X	AD12_1UG	23 Dec 2017 04:30
2	21	Ao122233.d	1.	C1712063-007A 10X	AD12_1UG	23 Dec 2017 05:07
3		Ao122234.d	1.	C1712063-009A 4X	AD12_1UG	23 Dec 2017 05:45
4		Ao122235.d	1.	C1712063-012A 4X	AD12_1UG	23 Dec 2017 06:23
5		Ao122236.d	1.	C1712063-015A 20X	AD12_1UG	23 Dec 2017 07:00
3	25	Ao122237.d	1.	C1712063-001A 9X	AD12_1UG	23 Dec 2017 07:40
7	27	Ao122238.d	1.	C1712063-001A 90X	AD12_1UG	23 Dec 2017 08:17
3	28	Ao122239.d	1.	C1712063	AD12_1UG -	001A 180X 23 Dec 2017 08:54
Э		Ao122240.d	1.	No MS or GC data present		<b></b>
C		Ao122701.d	1.	BFB1UG	AD12_1UG	27 Dec 2017 07:49
1		Ao122702.d	1.	A1UG	AD12_1UG	27 Dec 2017 09:24
2	31	Ao122703.d	1,	A1UG_1.0	AD12_1UG	27 Dec 2017 10:05
3		Ao122704.d	1.	ALCS1UG-122717	AD12_1UG	27 Dec 2017 10:47
4		Ao122705.d	1.	AMB1UG-122717	AD12_1UG	27 Dec 2017 11:24
5	34	Ao122706.d	1.	WAC122717A	AD12_1UG	27 Dec 2017 12:01
3		Ao122707.d	1.	WAC122717B	AD12_1UG	27 Dec 2017 12:38
7		Ao122708.d	1.	WAC122717C	AD12_1UG	27 Dec 2017 13:16 27 Dec 2017 14:01
3		Ao122709.d	1.	WAC122717D	AD12_1UG AD12_1UG	27 Dec 2017 14:01 27 Dec 2017 14:39
3		Ao122710.d	1.	WAC122717E	AD12_10G AD12_1UG	27 Dec 2017 14:35 27 Dec 2017 15:16
<b>)</b>	39	Ao122711.d	1.	WAC122717F	AD12_100	21 000 20 (1 10.10

## GC/MS VOLATILES-WHOLE AIR

## METHOD TO-15 STANDARDS LOG

Centek Laboratories, LLC	rc	U	SC/MS Calibi	ration Star	GC/MS Calibration Standards Logbook	jok K		С
		<u> </u>			(pisol Vol (pela)	Circle (Vol /osia) Final Conc (bob)	Prep by C	ente Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva Sylva S
Std # Date Prep Date Exp	xp Description	Stock #	Stock Conc Initi	initial Vol (psig.	Iniai voi (poia)	<b>(</b>		k L
┪┈	LANG ING STA	47221	50 gal	50	GH.	2	1	_at
A-7240 11174117 14191	777				<b>-</b> >	<b>→</b>	*	ora
A-229 V	ĺ	4	#F\1	77	30	50	77	ato
12-2292 1201 17 12/08/	1r1 TO15 IS.	41806		12 -	)	-	-	ries
A. 7293	STD	A1807	1 l'yrm					, LI
7.0000	57	A 1808						LC
H- 464 (7	11 25 1		<b>-</b>	<del>`</del>	>	<b>&gt;</b>		
A-2292			17.73	٦,٠	36	Ŋ		1
A-2296	C ALL	C1772 C	<u> </u>	3 6	45	50		ļ
A- 2297	FORM	1 A0474	┩ ゙	47	0 0	C V		
4.7298	STION	N.V. WAID	1000 pt	5	50 1			ļ
0000	SULF	F Agzzol	pp.ml	1.5	90	201		
A- 2677	AC 11 1/2	1 '	Oppose	Ī	30	500		
A- 2300	у П.А.	_		o	70	ď		
A-2301	TOIS 11/6 IS	-}-	a a a	7	-			
A-7302	STD		-	-		<b>)</b>	<b>&gt;</b>	
→ 1×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0×0	551 V	S A 2294	?	>	×	, ,	9	
7/2/12 12/12/12 12/12/	7 TOIS 3		l pom	51	Ø.	50	7	1
7	,							
220/	57	5 A1808				-		
A. 43.VØ	T-XI-T	1	→ ->	>	<b>-&gt;</b>	>		
A- 230/	125	1	12/ Kg/	Ć,	30	70	_	_
A-2308	27.	70577 41	) 5 /	200	(y =	50		
A- 2309	LOKIM	A COL	٦,	3 6	7,00	50	À	
A-2310 V U	MIC A I		ALOCA SOLVER	2				
FORM 153					Page # 33	3		

10 m

1720000

Cente	Centek Laboratories, LLC	rries, LLC			GC/MS Ca	libration Sta	GC/MS Calibration Standards Logbook	ok	-	<u> </u>
# pts	# Date Prep	Date Exp	Description	Stock #	Stock Conc	nitial Vol (psig)	psia)	Final Conc (ppb)	Prep by	Chkd by
2311	<del>                                     </del>	1/2/12/17	TOIS SULF	A0270	mod	5	30	50	ブズ	
A- 2312	-		H25	A0269	10ppm	->	<b>→</b>	200		
A-2313	2		T015 106 IS		- !	0.9	45	0		
A- 2314	7		\$11		-					
2.72.5	7	- <del>&gt;</del>	571	17230L	→	<b>→</b>		<b>→</b>	> .	
100	2	7.7	すけらによっ	<b>1</b>	-X-4-X-	LINDE	2000x16	IG PPM	H	
1 (	1 2 2				FT-47781		11	SIE I PPM	272	
127 V		101614	- u 5	A 1807	woo ,	A 1807	3	DW LCS	77	
J	9101		7	-+						
										····
Ą										
A-										
Ą-										
¥										
4										
¥										
¥-				-						
A-										

TTC
Laboratories,
Centek ]

opposition production of the contract of the c

GC/MS Calibration Standards Logbook

Chkd b Prep by 77 € Final Conc (ppb) PPM PPM 500 50 Q 5.00 0: 0 9 2200 RXIC 00 STOTSNOW 2000 ps/6 Stock Conc Initial Vol (psig) Finial Vol (psia) T O 9 **→** I. <u>ව.</u> <u>t</u> 邻 A 1807 6 ر 2 2 Ø 3,0 9 Ċ 100 1200m 0 00 PM FI-47281 Stopp Ppm Oppm 10000 A130 2018 408 2018 408 AISON A2305 P1318 A0269 105 IS A 230Y A3317 40500 A02270 A2320 15 A230L A2.316 J5 | A2315 4 PCH5 A2322 Stock # A0269 9515 4232 IZIZIKSTOCK TOLESTD N N トンドナの FORM 4 pc.A H 25 516.0X SOLF 50L1 পু S 435 STD Description 12/18/17/12/18/18/18/19/19/19 1015 ľŪ 7015 17/24/11 12/15/17 12 04 Date Prep | Date Exp 7 12/08/17 1204 23/8 A-2217 A-23388 A-2326 A-2330 2313 A-2315 A-2321 A-233 A- 2315 A- 2327 A. 13.17 A. 2314 A- 1322 A-1333 A- 7.3380 A-1325 A-2312 A- 2321 23) #PIS 23

FORM 153

## GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
CANISTER CLEANING LOG

O
ŏ
×
<u></u>
Q,
O
O
$\Box$
•===
<u> </u>
Ø
Cleaning
-
U
_
1
눖
fer
ster
ister
nister
anister
<b>Sanister</b>
Ö

## Centek Laboratories, LLC

Instrument: Entech 3100

Ce	ntek	k La	bor	ato	ries	, LL	.C																	·····			
Leak Test 24hr Int & Date	⊢ <del>ሁጠ</del> ብ <mark>የ</mark> የ	+	<del>†</del> .	+_	+	+	. +.	4	*	*	4	4	+		+	4	*	+	<del>. 1</del>				‡	+	<del>1</del> .	951	
	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	Page #	
Detection Limits	12 Just 19 5																										
QC Batch Number	MACOUNTINA					WACONIUN B					別 に に に に に に に に に に に に に					ע רוויוויסאוע					JAN OHIMIT E						
30000 2000 2000	NB-D RP D					7					Ţ					<u> </u>					3						
Canister Number   Canister Size   QC Can Number   # of Cycles   Int & Date Cleaned																											
QC Gan Num	110					539					77 F					b[[					151						
r Canister Size																											
	€\$ ge	891 50	1471	_	000	200	345	85		539	3,15	354	1316	3C	203	1187	157	165	(6)	229	333	LIST	3_4	568	5	Form C151	

QC Canister Cleaning Logbook

Centek Laboratories, LLC

Instrument: Entech 3100

Leak Test 24hr Int & Date	+ 11/24/17 A	4	+	+	4	+		4			<del>-</del>	+		uğ.	+			<b>+</b>		· *	+_	4	+	4	+	r o
Leak	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	
Detection Limits	12/10/125	·																<b></b>		<b>→</b>						
QC Batch Number	WARIITI A				4)	WAR 112717 B				\$	D CICLIONIC				}	C COUNTY				->						
Int & Date Cleaned	ON CIGUII																			<i>-</i> →						
# of Cycles	00																				<b>1</b>					
Canister Size QC Can Number	5				1,5	1185				<b>-</b> q	475				_ <	1 5				 						
Canister Size																				2						
Canister Number		5	183	73.5	180	70	320	) <u>\</u>	500	1195	<u>                                      </u>	<b>58</b> (	33/	1(1)	17.70	· 元	7.	14	-0	2611						

Form C151

Page 451 of 477

QC Canister Cleaning Logbook

	ပ
	_
	es,
	or <u>i</u>
	borate
	abo
	ntek
	ent
Pag	e'45

Leak Test 24hr Int & Date	4 30				<u>+</u>	+	+	4	+	**	+	+	-	-1	4	+.	4	-		+	+	+	+	+	
res	+ 30	90	200	4.39	89	+ 30	+ 30	£ 33	+ 30	+ 30	+ 30	ee +	+ 30	+ 30	+ 30	+ 30	+ 30	+ 30	8	+ 30	+ 30	+ 30	+ 30	+ 30	5
Detection Limits	1.3.11.15																				<b>3</b> - <b>3</b> - <b>3</b>				
OC Batch Number	D CINCH YN					9	R LINKII 781.				5	2 (11811 2011				3	Q (10211 4411				}	1 10× 1(2/11) 5			
Int & Date Cleaned	W. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.																								
1		2																							~
	Canister Number   Canister Size QC Can Number	**	***************************************			9					1	2011					7 0 10	000					2,16		
	Canister Size	1									-														
of 4	anister Number	187	21	0 0	107	5	1188	737	176	25 Y	36.7		533	200	£ (	5   2		787	13.5	75.7	7	369	35	35\$	17

Centek Laboratories, LLC Instrument: Entech 3100

Cei	ntek	(La	bora	ator	ies,	LL	С																			
Leak Test 24hr Int & Date	+ 30 + 30	-+		+ 30 +	+ 30	+ 30	+ 30	+ 30	+ 30 +	+ 30 +	+ 30	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	+ 30 +	000
Detection Limits	1.	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	ተ	+	+	4	#	+	+	+	+	1
OC Batch Number	7 C(10) (1) X(1)					J.					7					7					כל				ナ	
Int & Date Cleaned		_																							9	
# of Cycles	240													-						"					J.	
QC Can Number	0 t t	+			- <del>j</del>	419				ナ	11.0.1	c.			J	386				اد	236				ŕ	
Canister Size	718																								4	
Canister Number   Canister Size QC Can Number	124	167	1173	276	240	353	139	0	351	7	722	526	163	22.3	1177	98//	555	1150	733	366	1181	360	35	325	236	

page #

Form C151

## Centek Laboratories, LLC

Quantitation Report (QT Reviewed)

Data File : F:\GCMS1DATA\2017DATAMS1\2017AFR\A0041412.D Vial: 7 Operator: RJP Acq On : 14 Apr 2017 3:50 pm Inst : MSD #1 Sample : WAC041417G Misc : A331_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: A331_1UG.RES Quant Time: Apr 18 09:33:11 2017

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	gron	Response C	one Ur	nits D	ev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9.57 11.95 16.83	128 114 117	33381 342467 126743	1.00 1.00 1.00	ppb	0.03 0.01 0.01
System Monitoring Compounds 65) Bromofluoxobenzene Spiked Amount 1.000	18.46 Range 70	95 - 130	76786 Recovery	0,89	dqq 0.e8	0.01 0%
						O 3

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0041412.D AD12_1UG.M Mon Jan 15 11:54:11 2018 MSD1

Page 455 of 477

Centek Laboratories, LLC Quantitation Report (QT Reviewed)

Quant Results File: A331_1UG.RES

Data File: F:\GCMS1DATA\2017DATAMS1\2017APR\A0041413.D Vial: 8 Acq On : 14 Apr 2017 4:27 pm Sample : WAC041417H Misc : A331_1UG Operator: RJP Inst : MSD #1

Multiplr: 1.00

Quant Method : C:\HPCHEM\1\METHODS\A331_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 03 10:15:59 2017

Response via : Initial Calibration

MS Integration Params: RTEINT.P

Quant Time: Apr 18 09:33:12 2017

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits :	Dev (Min.)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	9,57 11.95 16.83	128 114 117	32156 140341 122812	1.00 1.00 1.00	dąą	0.03 0.02 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	10.46 Range 70	95 ~ 130	77430 Recovery	0.92	ppb 92.	0.00 0.00
Target Compounds						Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0041413.D AD12 1UG.M Mon Jan 15 11:54:17 2018 MSD1

Page 457 of 477

### Centek Laboratories, LLC

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0112716.D

Acq On : 27 Nov 2017 11:11 pm Sample : WAC112717A Misc : AN27_1UG

Operator: RJP : MSD #1 Inst

Vial: 21

Multiplr: 1.00

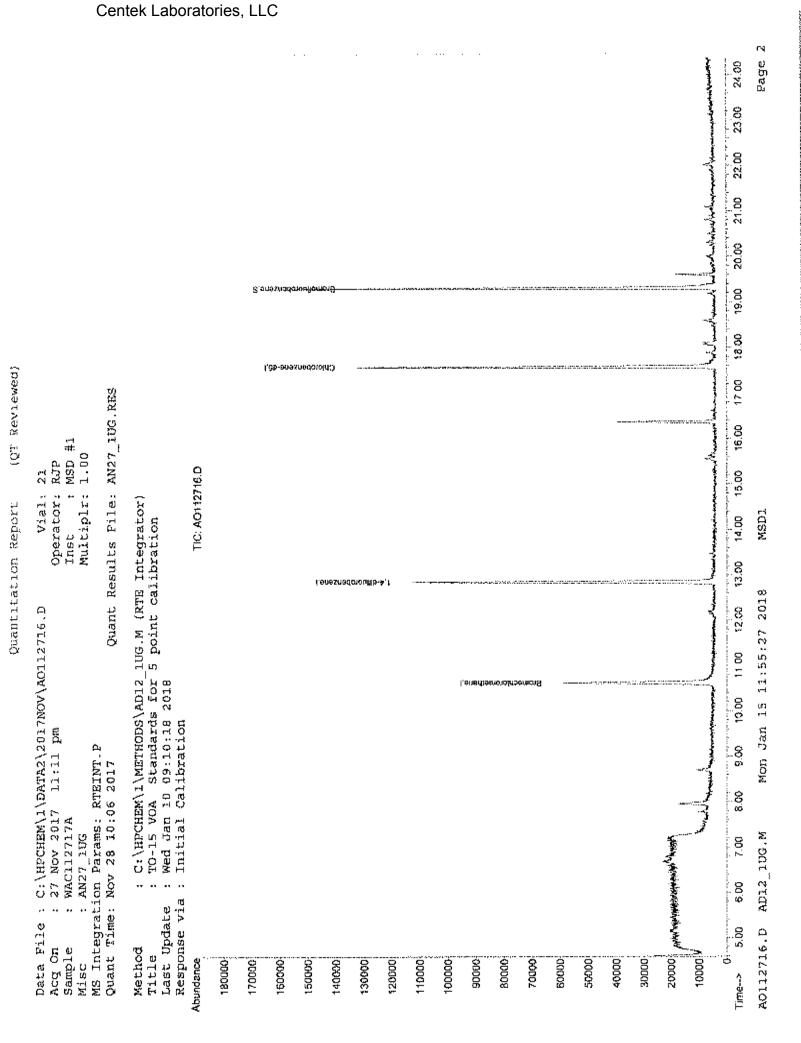
MS Integration Params: RTEINT.P

Quant Time: Nov 28 03:06:54 2017

Quant Results File: AN27_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN27_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Nov 27 21:34:35 2017


Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. (	QIon	Response C	one U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.62 12.84 17.57	128 114 117	25253 112699 88865	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70 -	95 - 130	62282 Recovery	0.93	ppb 93.00%	0.00

Target Compounds

Qvalue



Page 459 of 477

Centek Laboratories, LLC  $_{\tt Quantitation\ Report}$ (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0112717.D

Vial: 22 Operator: RJP Inst : MSD #1

Acq On : 27 Nov 2017 11:48 pm Sample : WAC112717B Misc : AN27_1UG

Multiplx: 1.00

MS Integration Params: RTEINT.P

Quant Results File: AN27_1UG.RES

Quant Time: Nov 28 03:06:55 2017

Quant Method : C:\HPCHEM\1\METHODS\AN27_lUG.M (RTE Integrator)

Title : TO-15 VOA Standards for 5 point calibration Last Opdate : Mon Nov 27 21:34:35 2017

Response via : Initial Calibration

DataAcq Meth : lUG_RUN

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev	(Min)
1) Bromochloromethane 35) 1.4-difluorobenzene 50) Chlorobenzene-d5	10.62 12.84 17.58	128 114 117	23880 109774 89205	1.00 1.00 1.00	dqq	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.31 Range 70	95 - 130	60060 Recover	0.90 Y =	ppb 90.00%	0.00
Target Compounds					ZQ.	alue

(#) = qualifier out of range (m) = manual integration (+) = signals summed AO112717.D AD12_1UG.M Mon Jan 15 11:55:29 2018 MSD1

Page 461 of 477

ил кемпемест

Quantitation Report

MSD #1

RJP

Vial: Operator:

C:\HPCHEM\1\DATA2\2017NOV\A0112717.D

27 Nov 2017 WAC112717B

Data File

Acq On

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0112718.D

Vial: 23 Acq On : 28 Nov 2017 12:26 am Operator: RJP Sample : WAC112717C Misc : AN27_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Nov 28 03:06:56 2017 Quant Results File: AN27_10G.RES

Quant Method : C:\HPCHEM\1\METHODS\AN27_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Nov 27 21:34:35 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Un	its Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.62 12.84 17.57	128 114 117	24285 108213 87832	1.00 p	ggg	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70	95 - 130	60073 Recover	0.91 j y =	ppb 91.00%	0.00

Qvalue Target Compounds

(Ол кемтемес)

Vuantitation Report

Page 463 of 477

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0112719.D

Acq On : 28 Nov 2017 1:04 am

Operator: RJP Inst : MSD #1

Vial: 24

Sample : WAC112717D Misc : AN27_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Nov 28 03:06:57 2017

Quant Results File: AN27_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN27_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Nov 27 21:34:35 2017
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. Q	)Ion	Response (	Conc U	nits De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5		128 114 117	24016 104626 85418	1,00 1,00 1,00	ppb	-0.01 -0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70 -	95 - 130	59153 Recovery	0.92	ppb 92.00	0,00 )%

Target Compounds

Qvalue

^(#) = qualifier out of range (m) = manual integration (+) = signals summed A0112719.D AD12_1UG.M Mon Jan 15 11:55:35 2018 MSD1

Page 465 of 477

Centek Laboratories, LLC  $_{\tt Quantitation\ Report}$ 

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0113007.D

Vial: 1

Acq On : 30 Nov 2017 12:55 pm Sample : WAC113017A Misc : AN27_1UG

Operator: RJP Inst : MSD #1

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: AN27_1UG.RES Quant Time: Dec 01 07:45:28 2017

Quant Method : C:\HPCHEM\1\METHODS\AN27_10G.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Nov 27 21:34:35 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Unit	s Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.62 12.84 17.57	128 114 117	20960 90352 72264	1.00 pp 1.00 pp 1.00 pp	00,00 dc
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30	95 - 130	48583 Recover	0.90 pr	0.00 \$00.00
Warrant Campaunds					Ovalue

Target Compounds

Qvalue

Page 467 of 477

(U) Kevzewed)

циалелеатной нероги

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0113008.D

Vial: 2 Operator: RJP

Sample : WAC113017B Misc : AN27_1UG

Acq On : 30 Nov 2017 1:33 pm

Inst : MSD #1

Quant Results File: AN27_1UG.RES

Multiplr: 1.00

MS Integration Params: RTEINT.P Quant Time: Dec 01 07:45:29 2017

Quant Method : C:\HPCHEM\1\METHODS\AN27_1UG.M (RTE Integrator)

Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Nov 27 21:34:35 2017

Response via : Initial Calibration

DataAcq Meth : LUG_RUN

Internal Standards	R.T.	QIon	Response C	onc Units Dev()	4in)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-dS	10.62 12.84 17,57	128 114 117	20674 87310 70855	1.00 ppb (	0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.31 Range 70	95 - <b>1</b> 30	47316 Recovery		0.00

Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0113008.D AD12_1UG.M Mon Jan 15 11:55:41 2018 MSD1

Page 469 of 477

(MX Kevlewed)

Quantitation Report

MSD #1

Inst

RJP

Vial: Operator:

C:\HPCHEM\1\DATA2\2017NOV\A0113008.D

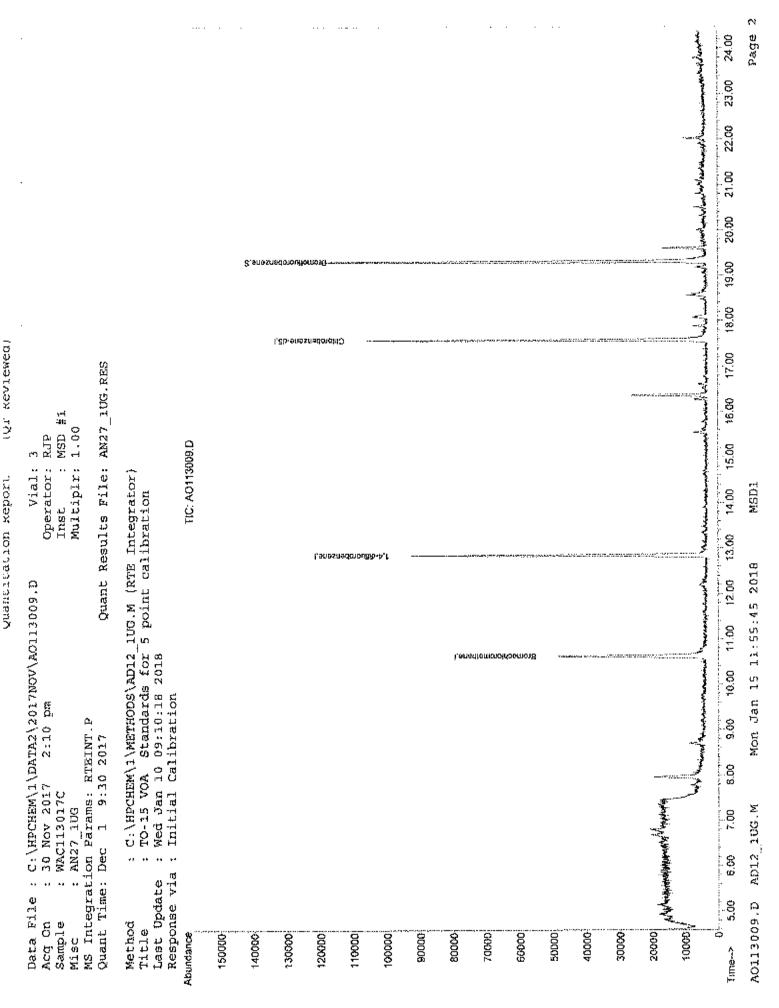
30 NOV 2017 WAC113017B

Data File

Acq On Sample

(QT Reviewed) Quantitation Report

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0113009.D


Vial: 3 Operator: RJP Acq On : 30 Nov 2017 2:10 pm Inst : MSD #1 Sample : WAC113017C Misc : AN27_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Results File: AN27_1UG.RES Quant Time: Dec 01 07:45:30 2017

Quant Method : C:\HPCHEM\1\METHODS\AN27_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Nov 27 21:34:35 2017
Response via : Initial Calibration
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.61 12.83 17.57	128 114 117	20950 93045 72119	1.00 1.00 1.00	ppb -0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 Range 70	95 - 130	500B3 Recovery	0.93	93.00% 0.00
Target Compounds					Qvalue



Page 471 of 477

Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0113010.D

Vial: 4

Acq On : 30 Nov 2017 2:48 pm

Operator: RJP

Inst : MSD #1

Sample : WAC113017D Misc : AN27_1UG

Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Dec 01 07:45:31 2017

Quant Results File: AN27_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\AN27_1UG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Nov 27 21:34:35 2017

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QIOD	Response	Conc Units Dev(Min)
<ol> <li>Bromochloromethane</li> </ol>	10.62 128	20799	1.00 ppb 0.00
35) 1,4-difluorobenzene	12.84 114	89326	1.00 ppb 0.00
50) Chlorobenzene-d5	17.57 117	72226	1.00 ppb 0.00
System Monitoring Compounds			
65) Bromofluorobenzene	19.30 95		0.88 ppb 0.00
Spiked Amount 1.000	Range 70 - 13	0 Recove:	ry = 88.00%

Target Compounds

Ovalue

W A III THE TO TO TO THE TOTAL THE TOTAL TO THE TOTAL TOT (#) = qualifier out of range (m) = manual integration (+) = signals summed AO113010.D AD12_1UG.M Mon Jan 15 11:55:47 2018 MSD1

AC113010.D

5.00

11F16-->

20090

50000

40000

30000

70000

30000

60000

Method

Title

Response via Last Update

Abundance

130000

340000

20000

100000

110000

90500

19:1:) + 1 3 4

MSD #1

Inst

Operator: RJP

Vial:

C:\HPCHEM\1\DATA2\2017NOV\A0113616.D

2:48 pm

30 Nov 2017 WAC113017D

Data File

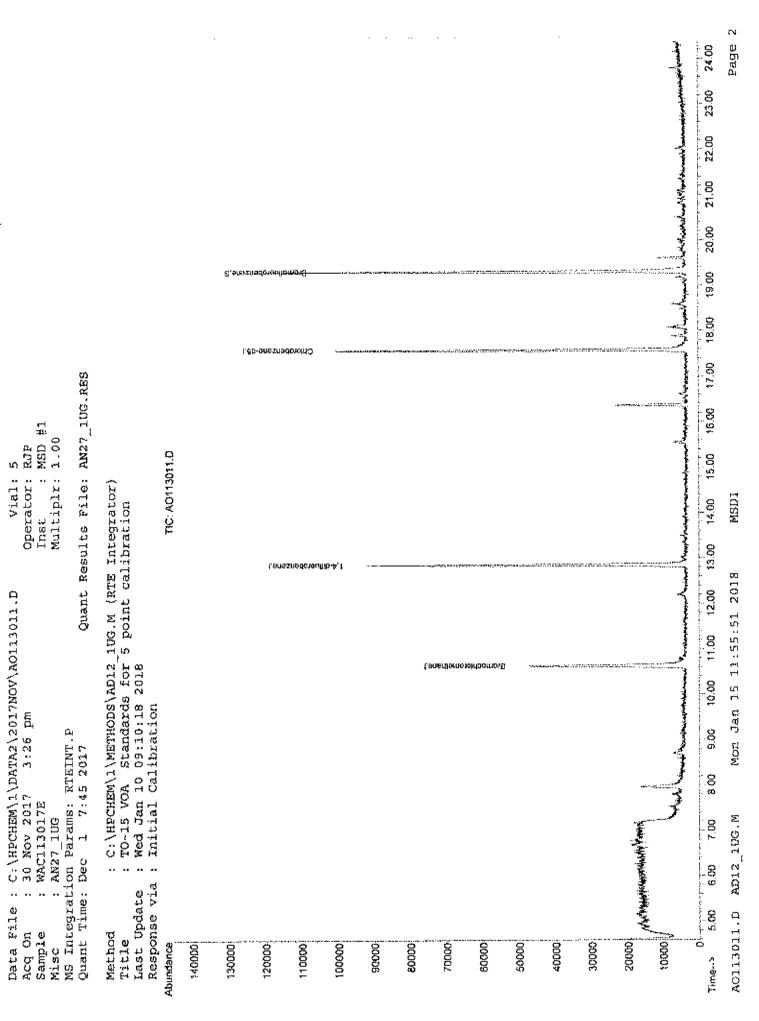
Acg On Sample

Quantitation Report (QT Reviewed)

Data File: C:\HPCHEM\1\DATA2\2017NOV\A0113011.D

Vial: 5 Acq On : 30 Nov 2017 3:26 pm Operator: RJP Sample : WAC113017E Misc : AN27_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Results File: AN27_1UG.RES Quant Time: Dec 01 07:45:32 2017

Quant Method: C:\HPCHEM\l\METHODS\AN27_1UG.M (RTE Integrator)
Title: TO-15 VOA Standards for 5 point calibration
Last Update: Mon Nov 27 21:34:36 2017
Response via: Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nita Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.62 12.84 17.57	128 114 117	20670 89324 69360	1.00	ppp	0.00 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.31 Range 70	95 - 130	45498 Recovery		ppb 87.00%	0.00
Target Compounds					Q٧	alue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AO113011.D AD12_1UG.M Mon Jan 15 11:55:50 2018 MSD1



Page 475 of 477

1 1 Adding

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2017NOV\A0113012.D

Vial: 6 Acq On : 30 Nov 2017 4:03 pm Sample : WAC113017F Misc : AN27_1UG Operator: RJP Inst : MSD #1

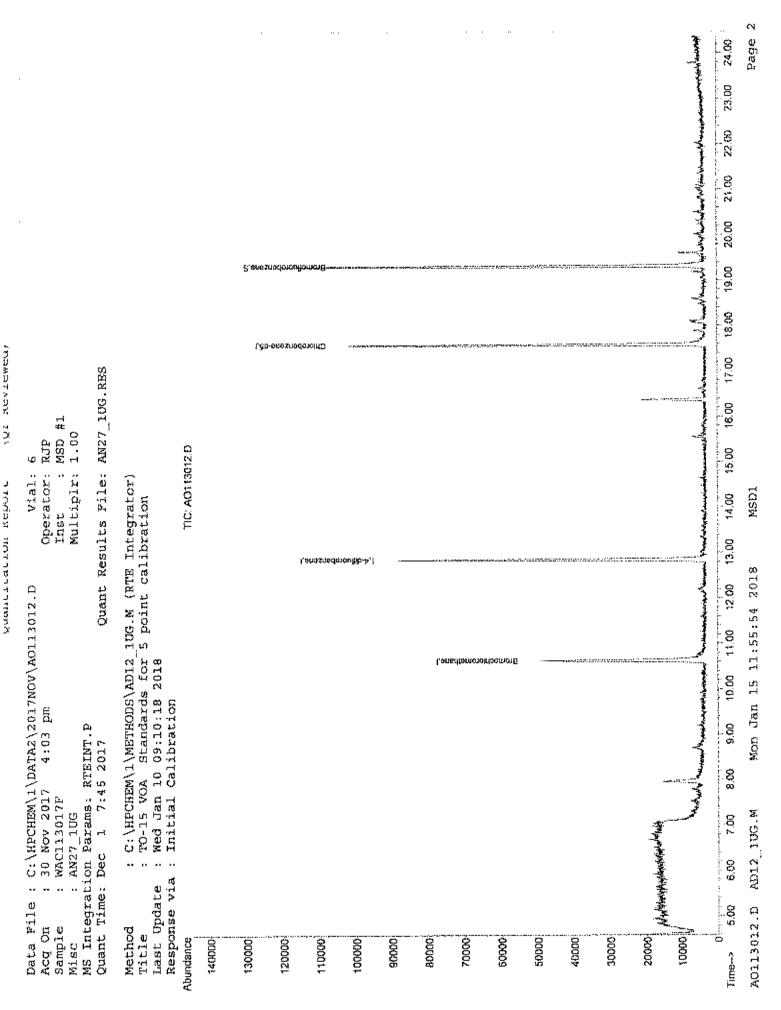
Multiplr: 1.00

MS Integration Params: RTEINT.P

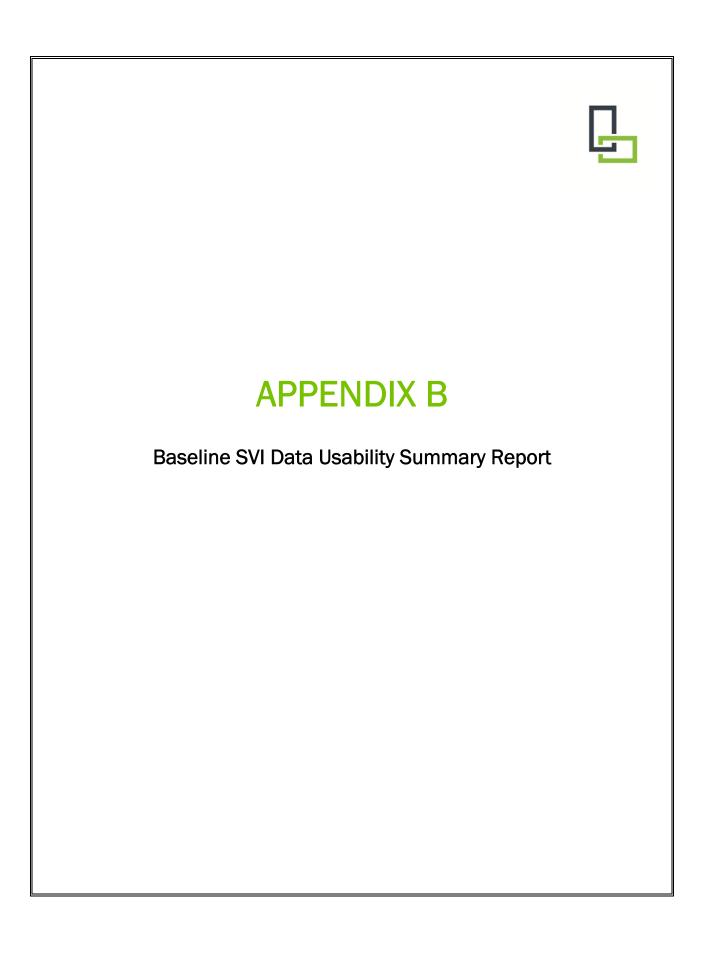
Quant Time: Dec 01 07:45:33 2017 Quant Results File: AN27_1UG.RES

Quant Method : C:\HFCHEM\1\METHODS\AN27_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Nov 27 21:34:35 2017

Response via : Initial Calibration


DataAcq Meth : IUG_RUN

Internal Standards	R.T. QIon	Response Con	to Units Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.62 128 12.84 114 17.57 117	89929 1	00.00 dqq 00.00 00.00 dqq 00.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.30 95 Range 70 - 13		00_0 dqq e8.0
Parat Compande			Ovalue


Target Compounds

Qvalue

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed A0113012.D AD12_1UG.M Mon Jan 15 11:55:53 2018 MSD1



Page 477 of 477



### DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

ELDRE CORP SITE Project 212721.01 SDG: C1712063 Sampled 12/13/2017

### TO-15 AIR SAMPLES

		T30 01	(01712062 02)
SVI-01	(C1712063-01)		(C1712063-02)
SVI-02	(C1712063-03)	IAQ-02	(C1712063-04)
SVI-03	(C1712063-05)	IAQ-03	(C1712063-06)
SVI-04	(C1712063-07)	IAO-04	(C1712063-08)
SVI-05	(C1712063-09)		(C1712063-10)
DUPE	(C1712063-11)		(C1712063-12)
	•		
IAO-06	(C1712063-13)		(C1712063-14)
SVĪ-08	(C1712063-15)	BO-QAI	(C1712063-16)
OUTDOOR	(C1712063-17)		

### DATA ASSESSMENT

A TO-15 data package containing analytical results for seventeen air samples was received from LaBella Associates, P.C. on 08Jan18. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Eldre Corp Site, were identified by Chain of Custody documents and traceable through the work of Centek Laboratories, LLC, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

The results reported from IAQ-07 have been qualified as estimations because the sampling event was not terminated at the correct vacuum reading. The results from SVI-03 have been rejected.

The toluene, methyl isobutyl ketone, dibromochloromethane, methyl butyl ketone, 1,2-dibromoethane, tetrachloroethene, chlorobenzene, ethylbenzene, m&p-xylenes, styrene, bromoform, o-xylene, 1,1,2,2-tetrachloroethane, 4-ethyltoluene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3-dichlorobenzene, benzyl chloride, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene and hexachloro-1,3-butadiene results from SVI-02, and the tetrachloroethene results from SVI-04 and SVI-06 have been qualified as estimations due to a high internal standard response.

The 1,4-Dioxane, heptane, hexane, methyl butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride and toluene results from SVI-01 have been qualified as estimations due to low spiked sample recoveries.

The 1,4-Dioxane and methyl butyl ketone results from this group of samples have been qualified as estimations due to low spiked blank recoveries.

The presence of vinyl chloride in SVI-01, SVI-04 and SVI-06, and ethyl acetate in SVI-02 could not be confirmed, based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples.

### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have

Date: 21 May 18

been flagged "J", "U" or "UJ". Data felt to be unreliable has been identified with a single red line and flagged "R". Rejected data should not be included in data tables. Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly, DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

/James B. Baldwin

DATAVAL, Inc.

### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sampling. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained sixteen air samples that were collected in 1-liter SUMMA canisters and SVI-01, which was collected in a 1.4-liter canister to facilitate the preparation of MS/MSD samples. Sampling was completed on 13Dec17. The canisters were shipped back to the laboratory, via FedEx-ground, on 14Dec17, and were received on 18Dec17. Although the sample canisters were received intact, custody seals were not present on the packaging.

Although each SUMMA canister was set in the laboratory to collect a 6-hour sample, sampling was terminated based on the canister vacuum readings. The vacuum readings from every canister except SVI-03 (0"Hg) and IAQ-07 (-8.5"Hg) satisfied the ASP requirement of  $-5\pm1$ "Hg. The results reported from IAQ-07 have been qualified as estimations based on this performance. The results from SVI-03 have been rejected because the sample was only collected for one hour.

The agreement between vacuum readings recorded following sample collection and at the time of analysis indicated that sample integrity was maintained during this period.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECEIPT	ANALYSIS
	("Hg)	( <b>"</b> Hg)	("Hg)	("Hg)	("Hg)
SVI-01	-30	-28	-5	-5 -5	<u>-5</u>
IAQ-01	-30	-30	-6	<b>-</b> 5	-5
SVI-02	-30	-28	-5.5	-5	<b>-</b> 5
IAQ-02	-30	-28.5	-6	-6	-6
SVI-03	-30	-28.5	-0	-1	-1_
IAQ-03	-30	-29	-5.5	-6	-6
SVI-04	-30	-29	-5.5	-6_	-6
IAQ-04	-30	-30	-5.5	-6	-6_
SVI-05	-30	-30	-5.5	-6	<b>-</b> 6
IAQ-05	-30	-29.5	-6	<u>-6</u>	6
DUPE	-30	-27	-4.5	-5	<b>-</b> 5
SVI-06	-30	-27.5	-5	-5	-5
IAQ-06	-30	-30	-6	-6	-6
IAQ-07	-30	-29	-8.5	-8 -5	-8
SVI-08	-30	-30	<b>-</b> 5	-5	-5
IAQ-08	-30	-27.5	-5	-5	-5
OUTDOOR	-30	-30	-5.5	-5	<u>-5</u>

The analysis of this group of samples was completed between 21Dec17 and 23Dec17, satisfying the ASP holding time limitations.

### CANISTER CERTIFICATION

The canisters used for this project were pressure tested at 30 psig for 24 hours. Each canister demonstrated a change  $\leq 0.5$  psig over this period.

The canisters for this project were cleaned in eight batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination exceeding the laboratory's reporting limit.

### **BLANKS**

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling activities, sample transport, and storage. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks was analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination.

### MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples on 21Dec17 and 22Dec17. Each of these checks satisfied the ASP acceptance criteria.

### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 12Dec17. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.50 and 2.0 ppbV were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standards were analyzed on 21Dec17 and 22Dec17, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, unacceptable shifts were observed in the instrument response of 1,4-Dioxane (75%) and methyl butyl ketone (61%) on 22Dec17. This performance, however, had no impact on reported data. 1,4-Dioxane and methyl butyl ketone were not

reported from the sample dilutions that were associated with the 22Dec17 calibration check. The remaining analytes demonstrated an acceptable level of instrument stability during both calibration checks.

### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, however, acceptable surrogate recoveries were reported from the initial analysis of each program sample. It is noted that low recoveries were reported for several diluted samples. The recoveries obtained from sample dilutions are not considered significant results.

### INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not reported, they were calculated by this reviewer. When compared to these limits, an unacceptably high response was reported for the chlorobenzene-d5 additions to SVI-02, SVI-04 and SVI-06. The toluene, methyl isobutyl ketone, methyl butyl ketone, 1,2-dibromoethane, dibromochloromethane, chlorobenzene, ethylbenzene, m&p-xylenes, tetrachloroethene. 1,1,2,2-tetrachloroethane, 4styrene, bromoform, o-xylene, ethyltoluene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3dichlorobenzene, benzyl chloride, 1,4-dichlorobenzene, 1,2-1,2,4-trichlorobenzene and hexachloro-1,3dichlorobenzene, butadiene results from SVI-02, and the tetrachloroethene results from SVI-04 and SVI-06 have been qualified as estimations based on this performance.

Internal standard retention times were not addressed by the laboratory. The ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide

an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

SVI-01 was selected for matrix spiking. The entire list of targeted analytes was added to two volumes of this sample. The recoveries reported for these additions included unacceptable results for 1,4-Dioxane (39%,46%), heptane (62%), hexane (64%), methyl butyl ketone (33%), methyl ethyl ketone (37%,-1%), methyl isobutyl ketone (59%,42%), methylene chloride (43%,-8%), propylene (171%,161%) and toluene (19%,-50%). The positive bias indicated by the high recoveries of propylene warrants no concern because propylene was not detected in SVI-01. The 1,4-Dioxane, heptane, hexane, methyl butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride and toluene results from SVI-01 have been qualified as estimations based on these indications of negative bias.

Two pairs of spiked blanks (LCS/LCSD) were also analyzed with this group of samples. The recoveries reported from these LCS/LCSD pairs included unacceptable results for 1,4-Dioxane (26%), methyl butyl ketone (15%,0%), methyl isobutyl ketone (0%). The 1,4-Dioxane (14DIOXANE) and methyl butyl ketone (METH BUT KET) results from this delivery group have been qualified as estimations based on these indications of negative bias. The unrecovered (0%) ketone spikes warrant no concern. These recoveries were not associated with reportable results.

### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

The duplicate sample that was included in this delivery group was not identified.

### REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

The presence of vinyl chloride in SVI-01, SVI-04 and SVI-06, and ethyl acetate in SVI-02 could not be confirmed, based on the mass spectra references included in the raw data. These analytes should be interpreted as undetected in the affected samples. A detection limit equaling the laboratory's reporting limit should be assumed.

# SUMMARY OF QUALIFIED DATA

### ELDRE CORP SITE

## SAMPLED DECEMBER 2017

SPIKED BLANK METH BUT KET.	1.20J 1.20J 1.20J 1.20J 1.20J 1.20J 1.20J	
SPK BLK 14DIOXANE	0.61J 1.1UJ 6.1J 1.1UJ 1.1UJ 0.58J 1.1UJ 1.1UJ	
SPIKES MS1*	ALL J/UJ	
INT STD 3 TETRACHLOROETHENE	1.23	
INT STD 3 I/S3*	ALL J/UJ	
SAMPLING	ALL R	
	(C1712063-01) (C1712063-02) (C1712063-03) (C1712063-04) (C1712063-05) (C1712063-06) (C1712063-09) (C1712063-10) (C1712063-11) (C1712063-12) (C1712063-12) (C1712063-14) (C1712063-15) (C1712063-15) (C1712063-16)	
	SVI-01 IAQ-01 SVI-02 IAQ-03 SVI-04 IAQ-05 SVI-05 IAQ-05 IAQ-05 IAQ-06 IAQ-07 SVI-08 IAQ-08	

ethane, tetrachloroethene, chlorobenzene, ethylbenzene, m&p-xylenes, styrene, bromoform, o-xylene, 1,1,2,2-tetrachloroethane, 4-ethyltoluene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2,4-trimethylbenzene, 1,2,4-trichlorobenzene, hexachloro-1,3-butadiene = toluene, methyl isobutyl ketone, dibromochloromethane, methyl butyl ketone, 1,2-dibromo-

MS1* = 1,4-Dioxane, heptane, hexane, methyl butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride, toluene

# SUMMARY OF QUALIFIED DATA

## ELDRE CORP SITE

SPECTRA ID ETHYL ACETATE

0.54U

SAMPLED DECEMBER 2017

SPECTRA ID VINYL CHLORIDE	12063-01) 0.38U 12063-02) 12063-03) 12063-04) 12063-05)	2063-0 2063-0 2063-0 2063-0 2063-1	12063-1 12063-1 12063-1 12063-1
	2063-0 2063-0 2063-0 2063-0 2063-0	1712063-0 1712063-0 1712063-0 1712063-0 1712063-1	2063-1 2063-1 2063-1 2063-1 2063-1
	SVI-01 IAQ-01 SVI-02 IAQ-02 SVI-03	IAQ-03 SVI-04 IAQ-04 SVI-05 IAQ-05	DUFE SVI-06 IAQ-07 SVI-08

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

C1712003

Lab ID:

Eldre Corp C1712063-001A Client Sample ID: SVI-01

Tag Number: 1201.1170

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	<u> </u>	TO-15			Analyst: RJP
1.1.1-Trichtoroethane -	1.1	0.82	ид/т3	1	12/22/2017 6:09:00 AM
1,1,2,2-Tetrachioroethane	< 1.0	1.0	ug/m3	1	12/22/2017 6:09:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	12/22/2017 6:09:00 AM
1,1-Dichlorgethane	< 0.61	0.61	ug/m3	1	12/22/2017 6:09:00 AM
1 1-Dichlorgethene	< 0.59	0.59	ug/m3	1	12/22/2017 6:09:00 AM
1.2.4-Trichlorobenzene	< 1.1	1,1	ug/m3	1	12/22/2017 6:09:00 AM
1.2 4-Trimethylbenzene -	3.9	0.74	ug/m3	1	12/22/2017 6:09:00 AM
1.2-Dibromoethane	< 1.2	1,2	ы <b>д/</b> ғп3	1	12/22/2017 6;09:00 AM
1.2-Dichtorobenzene	< 0.90	0.90	ug/m3	1	12/22/2017 6:09:00 AM
1,2-Dichloroelhane	< 0.61	0,61	ա <b>ֆ</b> /m3	1	12/22/2017 6:09:00 AM
1,2-Dichloropropane	< 0.69	0.89	ug/m3	1	12/22/2017 6:09:00 AM
1.3.5-Trimethylbenzene =	2.2	0.74	ug/m3	1	12/22/2017 6:09:00 AM
1,3-butadiene	< 0.33	0 33	ug/m3	1	12/22/2017 5:09:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/22/2017 6:09:00 AM
1,4-Dichlorobenzené	< 0.90	0.90	ug/m3	1	12/22/2017 6:09:00 AM
1.4-Dioxane =	0.61 <b>J</b>	11 J	ug/m3	1	12/22/2017 6:09:00 AM
2.2.4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/22/2017 6:09:00 AM
4-ethylloluene -	0.69	0.74 J	სე/ო3	1	12/22/2017 6:09:00 AM
Acetone =	390	64	ug/m3	90	12/23/2017 B:17:00 AM
Ally! chloride	< 0.47	0.47	ug/m3	1	12/22/2017 8:09:00 AM
Benzene -	1,2	0.48	ug/m3	1	12/22/2017 6:09:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	12/22/2017 6:09:00 AM
Bromodichioromethane	< 1.0	1.0	ug/m3	1	12/22/2017 6:09:00 AM
Bromoform	< 1.6	1,6	ug/m3	1	12/22/2017 6:09:00 AM
Bromomethane	< 0.58	0.58	<i>Մա</i> /թը	1	12/22/2017 6:09:00 AM
Carpon disuffide 4	1.7	0.47	ug/m3	1	12/22/2017 5:09:00 AM
Carbon letrachloride	< 0.94	0.94	ug/m3	1	12/22/2017 6:09:00 AM
Chlorobenzerie	< 0.69	0.69	<b>ug/m</b> 3	1	12/22/2017 6:09:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 6:09:00 AM
Chloroform	< 0.73	0.73	ug/m3	1	12/22/2017 6:09:00 AN
Chtoromathane	< 0.31	0.31	ug/m3	1	12/22/2017 8:09:00 AN
cis-1.Z-Dichloroetherie	4 0.59	0.59	<b>ug/m3</b>	1	12/22/2017 6:09:00 AN
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/22/2017 8:09:00 AN
Cyclohexane	< 0.52	0.52	ug/m3	1	12/22/2017 6:09:00 Af
Dibromochioremethane	< 1.3	1.3	սգ/m3	1	12/22/2017 6:09:00 Ail
Ethyl acetate -	1.2	0.54	ug/m3	1	12/22/2017 5:09:00 AM
Ethylbenzene -	0.82	0.65	սց/m3	1	12/22/2017 6:09:00 AM
Freon 11-	1.3	0.84	ug/m3	1	12/22/2017 5:09:00 AM
Freon 113	< 1.1	1.1	ug/m3	1	12/22/2017 5:09:00 AN
Freon 114	< 1,0	1.0	ug/m3	1	12/22/2017 6:09:00 AN

Qualifiers:

- ** Quassitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- B Stimuted Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 26

Date: 10-Jun-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-001A

THE RESERVE OF THE PROPERTY OF Client Sample ID: SVI-01

Tag Number: 1201.1170 Collection Date: 12/13/2017

Ma	trix:	AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
		TO-15			Analyst: RJP
TUG/M3 BY METHOD TO15	2.3	0.74	ug/m3	1	12/22/2017 6:09:00 AM
Freen 12 -	3.9 <b>J</b>	0.61	ug/m3	1	12/22/2017 6:09:00 AM
Heptane	¢ 1,6	1.6	սց/m3	1	12/22/2017 6:09:00 AM
Hexachloro-1,3-butadiene	2.5 🕽	0,53	ug/m3	1	12/22/2017 6:09:00 AM
Mexane -	91	34	ug/m3	90	12/23/2017 8:17:00 AM
Isopropyl alcohol -	2.4	1.3	ເອຼົາກາ3	1	12/22/2017 6:09:00 AM
m&p-Xylene -	< 1.2 <b>U</b> J		ug/m3	1	12/22/2017 5:09:00 AM
Methyl Butyl Ketone	5.9	0.88	μg/m3	1	12/22/2017 6:00:00 AM
Methyl Ethyl Kelone -	0.70 J	1,2 J		1	12/22/2017 6:09:00 AM
Methyl Isobutyl Kelone -	< 0.54	0.54	ug/m3	1	12/22/2017 6:09:00 AM
Methyl lert-butyl other	9.7 <b>J</b>	4,9	ug/m3	9	12/23/2017 7:40:00 AM
Methylene chloride≠	9.7 <b>J</b> 0.96	0.65	ug/m3	1	12/22/2017 6:09:00 AM
o-Xylene =	€ 0.26	0.26	ug/m3	1	12/22/2017 6:09:00 AM
Propylene		0.64	บฐ/m3	1	12/22/2017 6:09:00 AM
Styrene	< 0.64	9.5	ug/m3	9	12/23/2017 7:40:00 AM
Tetrachloroethylene =	40	9.5 0,44	ug/m3	1	12/22/2017 5:09:00 AM
Tetrahydrofurah	< 0.44	5.3	ug/m3	9	12/23/2017 7:40:00 AM
Toluene -	12 <b>J</b>	0,59	ug/m3	1	12/22/2017 6:09:00 AM
trans-1,2-Dichloroethene	< 0.59	0.68	ug/m3	1	12/22/2017 6:09:00 AM
trans-1,3-Dichloropropene	< 0.68	7.5	ug/m3	9	12/23/2017 7:40:00 AM
Trichloroethana -	26		ug/m3	1	12/22/2017 6:09:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3 ug/m3	1	12/22/2017 6:09:00 AM
Vinyl Bromide Vinyl chloride	< 0.66 0,3% €.4° U	0.86 0.38	ug/m3	1	12/22/2017 6:09:00 AM



Qualifiers:

Quantitation Limit

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Non-routine analyse. Quantitation estimated, JN.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 2 of 26

CLIENT: LaBella Associates, P.C.

Lab Order: C1712063 Project:

Eldre Corp

Lab ID:

C1712063-002A

Date: 10-Jan-18

Client Sample ID: IAQ-01

Tag Number: 359.346

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0,2UG/M3 CT-TCE-VC		TO.	-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	12/21/2017 6:25:00 PR
1,1,2,2-Tetrachtoroethane	< 1.0	1.0		ug/m3	1	12/21/2017 6:25:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	12/21/2017 6:25:00 PI
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/21/2017 6:25:00 PI
1,1-Dichloroethene	< 0.69	0.59		ug/m3	1	12/21/2017 6:25:00 Pt
1,2,4-Trichlorobonzene	< 1.1	1.1		ug/m3	1	12/21/2017 6:25:00 PI
1,2,4-Trimethy/benzene	< 0.74	0.74		ug/m3	1	12/21/2017 6:25:00 PI
1.2-Dibromoethane	< 1.2	1.2		ug/m3	1	12/21/2017 6:25:00 PI
1,2-Dichlerobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 5:25:00 PI
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	12/21/2017 5:25:00 PI
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	12/21/2017 6:25:00 Pt
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/21/2017 6:25:00 PI
1,3-butadiene	< 0.33	0.33		ug/m3	1	12/21/2017 6:25:00 P
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 6:25:00 P
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/21/2017 6:26:00 P
1.4-Dioxane	< 1.1 <b>0 J</b>	1,1		ug/m3	1	12/21/2017 5:25:00 P
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	12/21/2017 5:25:00 P
4-ethyltokiene	< 0.74	0.74		աց/m3	1	12/21/2017 6:25:00 P
Acetone -	12	14	J	ug/m3	20	12/22 <b>/2017</b> 9:29:00 P
Allyl chloride	< 0.47	0.47		ug/m3	1	12/21/2017 6:25:00 P
Benzene _	0.83	0.48		ug/m3	1	12/21/2017 6:25:00 P
Benzyl chioride	< 0.86	0.86		<b></b> սց/m3	1	12/21/2017 6:25:00 P
Bromodichloromethane	< 1.0	1.0		ug/m3	1	12/21/2017 6:25:00 P
Bromoform	< 1.6	1.6		სე/ო3	1	12/21/2017 6:25:00 P
Bromomethane	< 0.58	0.58		<i>Մախ</i>	1	12/21/2017 6:25:00 P
Carbon disulfide	< 0.47	0.47		სექრ3	í	12/21/2017 6:25:00 P
Carbon tetrachloride -	0.44	0.25		µg/m3	1	12/21/2017 6:25:00 P
Chlorobenzene	< 0.69	0.69		ug/m3	1	12/21/2017 6:25:00 P
Chloroethane	< 0.40	0.40		<b>იე/ო3</b>	1	12/21/2017 6:25:00 P
Chioroform -	9,1	0.73		Շու\ըս	1	12/21/2017 6:25:00 P
Chloromethane -	0.83	0.31		սց/m3	1	12/21/2017 6:25:00 F
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/21/2017 6:25:00 P
cis-1,3-Dichloropropene	< 0.68	0.68		աք/m3	1	12/21/2017 6:25:00 F
Сусіопехеле —	0.41	0.52	Ţ	vg/m3	1	12/21/2017 6:25:00 P
Dibromochloromethane	< 1.3	1.3		ug/m3	1	12/21/2017 6:25:00 P
Ethyl acetate	< 0.54	0.54		ug/m3	1	12/21/2017 6:25:00 F
Ethylbenzene	< 0.65	0.65		ug/m3	1	12/21/2017 6:25:00 F
Freon 11 -	2.4	0.84		ug/m3	1	12/21/2017 6:25:00 F
Freon 113	< 1.1	1.1		սց/m3	1	12/21/2017 6:25:00 F
Freen 114	< 1,0	1.0		ug/m3	1	12/21/2017 6:25:00 F

Qualifiers:

- ** Quantitution Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN.
- Spike Recovery outside accepted recovery limits



Results reported are not blank corrected

- E Estimated Value above quantitation range
- Analyse detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 26

The state of the s CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063 Eldre Corp

Project: Lab ID:

C1712063-002A

Date: 10-Jun-18

Client Sample ID: IAQ-01

Tag Number: 359.346 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu	el Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15	·		Analyst: RJP
Freon 12 -	2.4	0.74	∪ <b>g/m</b> 3	1	12/21/2017 6:25:00 PM
Hoptane ~	1.9	0.61	ug/m3	1	12/21/2017 6:25:00 PM
Hexachtoro-1,3-butadiene	< 1,6	1.6	<b>цд/m</b> 3	1	12/21/2017 6:25:00 PM
Hexane -	0.74	0.53	ug/m3	1	12/21/2017 6:25:00 PM
isopropyl alcohol =	74	74	ug/m3	20	12/22/2017 9:28:00 PM
m&p-Xylene ~	0.56	1.3 J	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Butyl Ketone	< 1.2 <b>(/)</b>	1.2	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Ethyl Ketone -	1.0	0.88	ug/m3	1	12/21/2017 6:25:00 PM
Methyl Isobidyl Ketone	< 1.2	1.2	ug/m3	1	12/21/2017 6:25:00 PM
Methyl ted-butyl ether	< 0.54	0.54	ug/m3	1	12/21/2017 8:25:00 PM
Methylene chloride -	1.6	0.52	ug/m3	1	12/21/2017 8:25:00 PM
о-Хучеле	< 0.65	0.65	ug/m3	1	12/21/2017 6:25:00 PM
Propylene	< 0.26	0.26	ug/m3	1	12/21/2017 8:25:00 PM
Styrene	< 0.64	0.64	ug/m3	1	12/21/2017 6:25:00 PM
Tetrachioroethylena	< 1.0	1.0	ug/m3	1	12/21/2017 6:25:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	12/21/2017 6:25:00 PM
Toluene -	3.5	0.57	ug/m3	1	12/21/2017 6:25:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 6:25:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/21/2017 6:25:00 PM
Trichloroethene	< 0.16	0.16	ug/m3	1	12/21/2017 6:25:00 PM
Vinyl acetata	< 0.53	0.53	ug/m3	1	12/21/2017 8:25:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	12/21/2017 6:25:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 6:25:00 PM



### Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded.
- 3N Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected.
- Estimated Value above quantitation range
- J Analyse detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 4 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-003A

Client Sample ID: SVI-02

Tag Number: 561,340

Collection Date: 12/13/2017

Matrix: AiR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15	******	· · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane	2.1	0.82	- to ug/m3	1	Analyst: RJP
1,1,2,2-Tetrachlorgethane	< 1.0 <b>い</b> )	. –	ug/m3	1	12/22/2017 2:00:00 AM
1,1,2-Trichtoroethane	< 0.82	0.82	ug/m3		12/22/2017 2:00:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/22/2017 2:00:00 AM
1.1-Dichloroethene	< 0.59	0.59	-	1	12/32/2017 2:00:00 AM
1,2,4-Trichlorobenzene	< 1.1 UT		ug/m3	1	12/22/2017 2:00:00 AM
1,2,4-Trimethylbenzane	3.0 1	0.74	ug/m3 /=2	1	12/22/2017 2:00:00 AM
1,2-Dibromosihane	< 1.2 <b>0</b> J	1.2	ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichlorobenzene	< 0.90 0 3	0.90	ug/m3	1	12/22/2017 2:00:00 AM
1,2-Dichloroethane	< 0.61		vg/m3	1	12/22/2017 2:00:00 AM
1,2-Dichloropropane	< 0.69	0.61	ug/m3	1	12/22/2017 2:00:00 AM
1,3,5-Trimethylbenzeno	2.1 <b>J</b>	0.69	ug/m3	1	12/22/2017 2:00:00 AM
1.3-butadiene	< 0.33	0.74	ոმլա3	1	12/22/2017 2:00:00 AM
1.3-Dichiorobenzene	< 0.90 <b>/</b> J	0.33	ug/m3	1	12/22/2017 2:00:00 AM
1.4-Dichlorobenzene		0.90	ug/m3	1	12/22/2017 2:00:00 AM
1.4-Dioxane	< 0.90 UJ	0.90	ug/m3	1	12/22/2017 2:00:00 AM
2,2,4-trimethylpentane	6.1 <b>J</b>	1.1	ug/m3	1	12/22/2017 2:00:00 AM
4-eihyltoluene	< 0.70	0.70	ug/m3	1	12/22/2017 2:00:00 AM
Acetone	0.64 🕽	0.74	J <b>ა</b> g/m3	1	12/22/2017 2:00:00 AM
Allyl chloride	870	190	ug/m3	270	12/23/2017 3:14:00 AM
Senzene	< 0.47	0.47	ug/m3	1	12/22/2017 2:00:00 AM
Benzyl chloride	1.5	0.48	ug/m3	1	12/22/2017 2:00:00 AM
•	< 0.86 🗸 🕽	0.86	ug/m3	1	12/22/2017 2:00:00 AM
Bromodichioromethane	< 1.0	1.0	ug/m3	1	12/22/2017 2:00:00 AM
Sromoform	< 1.8 <b>[]</b>	1.8	ug/m3	ţ	12/22/2017 2:00:00 AM
dromomethane	< 0.58	0.58	ug/m3	1	12/22/2017 2:00:00 AM
Carbon disulfide	1.1	0.47	<b>u</b> g/m3	1	12/22/2017 2:00:00 AM
Carbon letrachloride	< 0.94	0.94	ug/m3	1	12/22/2017 2:00:00 AM
Chlorobenzene	< 0.69 UJ	0.69	ug/m3	1	12/22/2017 2:00:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 2:00:00 AM
Moraform	< 0.73	0.73	ug/m3	1	12/22/2017 2:00:00 AM
Stitoromethane	< 0.31	0.31	£m\gu	t	12/22/2017 2:00:00 AM
is-1,2-Dichlorgethene	< 0.59	0.59	սց/m3	1	12/22/2017 2:00:00 AM
is-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/22/2017 2:00:00 AM
yclohexane	1.7	0.52	ug/m3	1	12/22/2017 2:00:00 AM
ibromochloromethane	_< 1.3 <b>UJ</b>	1.3	ug/m3	1	12/22/2017 2:00:00 AM
thyl acetate	0.54 34 U	0.54	ug/m3	1	12/22/2017 2:00:00 AM
thylbenzene	1.1 <b>J</b>	0.65	ug/m3	1	12/22/2017 2:00:00 AM
teon 11	2.4	0.84	ug/m3	1	12/22/2017 2:00:00 AM
reon 113	< 1,1	1.1	ug/m3	1	12/22/2017 2:00:00 AM
reon 114	< 1.0	1.0	ug/m3	1	12/22/2017 2:00:00 AM

Qualifiers:

Page 5 of 26

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

¹⁴ Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated,

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range

Analyte detected below quantitation limit

NO Not Detected at the Limit of Detection

Date: 10-Jon-18

LaBella Associates, F.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-003A

Client Sample 1D: SVI-02

Tag Number: 561,340

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15		······	
Freen 12	2.2	0.74	- 13	og/m3	1	Analysi: RJP 12/22/2017 2:00:00 AM
Heptane	12	16	JН	บฏ/m3	27	12/23/2017 2:37:00 AM
Hexachloro-1,3-butadiene	< 1.6℃3	1.6		ug/m3	1	
Hexane	11	0.53		ug/m3	1	12/22/2017 2:00:00 AM
Isopropyl alcohol	220	98		ug/m3		12/22/2017 2:00:00 AM
m&p-Xylene	2.6 1	1.3		-	270	12/23/2017 3:14:00 AM
Methyl Butyl Ketone	< 1.2UJ	1.2		ug/m3	1	12/22/2017 2:00:00 AM
Methyl Ethyl Ketone	14	24		ug/m3	1	12/22/2017 2:00:00 AM
Methyl Isobutyl Ketone	7.2 <b>5</b>		JĦ	ug/m3	27	12/23/2017 2:37:00 AM
Mathyl tert-butyl other	ر د./ 4 0,54	1.2		Em/gu	1	12/22/2017 2:00:00 AM
Methylene chloride		0.54		ug/m3	1	12/22/2017 2:00:00 AM
o-Xylene	1.1 <b>J</b>	14	JH	ug/m3	27	12/23/2017 2:37:00 AM
Propylene	_	0.65		ກ <b>ດ້</b> ໄຟ/ຊີ	†	12/22/2017 2:00:00 AM
Styrene	< 0.26	0.26		ug/m3	1	12/22/2017 Z:00:00 AM
Tetrachlorosthylene	< 0.64	0.64		Dg/m3	1	12/22/2017 2:00:00 AM
•	7.2 <b>J</b>	1.0		ug/m3	1	12/22/2017 2:00:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/22/2017 2:00:00 AM
Toluene	11 🕽	15	JΗ	vg/m3	27	12/23/2017 2:37:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 2:00:00 AM
trans-1,3-Dichloropropone	< 0.68	9.08		ug/m3	1	12/22/2017 2:00:00 AM
Trichloroethene	29	21		սց/m3	27	12/23/2017 2:37:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 2:00:00 AM
Vlnyl Bromida	< 0.66	0.66		ug/m3	1	12/22/2017 2:00:00 AM
Vinyl chloride	0,74	0.38		պց/m3	1	12/22/2017 2:00:00 AM



- · · Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 6 Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 26

Qualifiers:

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-004A

Date: 10-Jun-18

Client Sample ID: 1AQ-02

Tag Number: 161.297

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit	Qual Units	ÐF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	Analysi: RJF				
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:06:00 PN
1.1.2.2-Tetrachioroethane	< 1.0	1.0	ug/m3	1	12/21/2017 7:06:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	<b>ug/m3</b>	1	12/21/2017 7:06:00 PM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 7:06:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:08:00 PA
1.2,4-Trichtorobenzene	< 1,1	1.1	ug/m3	1	12/21/2017 7:06:00 PA
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 7:06:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	12/21/2017 7:05:00 PN
1,2-Dichlorobanzane	< 0.90	0.90	ug/m3	1	12/21/2017 7:06:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 7:06:00 PN
1.2-Dichloropropane	< 0.69	0.69	ug/m3	1	12/21/2017 7:06:00 PN
1,3,5-Trimethylbenzena	< 0.74	0.74	ug/m3	1	12/21/2017 7:06:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/21/2017 7:06:00 PM
1,3-Dichlorobenzena	< 0.90	0.90	ug/m3	1	12/21/2017 7:06:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:06:00 PM
1.4-Dioxane	< t.1 <b>(/ )</b>	1.1	սց/m3	<b>†</b>	12/21/2017 7:06:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/21/2017 7:08:00 PN
4-ethyltoluene	< 0.74	0.74	սց/m3	3	12/21/2017 7:06:00 PA
Acetone -	17	6.4	ug/m3	9	12/22/2017 10:09:00 P
Allyt chloride	< 0.47	0.47	ug/m3	1	12/21/2017 7:06:00 PN
Benzene -	0.93	0.48	ug/m3	1	12/21/2017 7:05:00 PN
Benzyl chloride	< 0.86	0.86	ug/m3	1	12/21/2017 7:05:00 PN
Bromodichloromethane	< 1.0	1.0	ag/m3	1	12/21/2017 7:06:00 PA
Bromoform	< 1.6	1.6	ყვ/ლპ	1	12/21/2017 7:06:00 PN
8romomethane	< 0.58	0.58	ug/m3	1	12/21/2017 7:06:00 PN
Carpon disulfide	< 0.47	0.47	ug/m3	1	12/21/2017 7:06:00 PN
Carbon tetrachloride -	0.38	0.25	ย <b>g/m3</b>	1	12/21/2017 7:06:00 PN
Chlorobenzene	< 0.69	0.69	ug/m3	1	12/21/2017 7:06:00 PN
Chloroethane	< 0.40	0.40	ug/m3	t	12/21/2017 7:06:00 PM
Chloroform -	7.4	0.73	<b>⊈g/m</b> 3	t	12/21/2017 7:06:00 PM
Chloromethane -	0.76	0.31	ug/m3	1	12/21/2017 7:06:00 PM
c/s-1,2-Dichloroethene	< 0,59	0.59	ug/m3	1	12/21/2017 7:06:00 PN
cis-1.3-Dichloropropene	< 0.68	0.68	eg/m3	t	12/21/2017 7:06:00 PN
Cyclohexane -	0.45	0.52	J ug/m3	1	12/21/2017 7:06:00 PN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/21/2017 7:06:00 PN
Ethyl acotate	< 0.54	0,54	ug/mä	1	12/21/2017 7:06:00 PM
Ethylbenzene	< 0.65	0.65	<b>∉g/m</b> 3	1	12/21/2017 7:06:00 PN
Freon 11 -	2.8	0.84	ug/m3	1	12/21/2017 7:06:00 PN
Freon 113	< 1,1	1.1	Lg/m3	1	12/21/2017 7:06:00 PN
Freon 114	< 1.0	1,0	ug/m3	1	12/21/2017 7:08:00 PM

Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyse detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 26

Lab Order: Project; Eldre Corp Lab ID: C1712063-004A

CLIENT:

Client Sample ID: IAQ-02 Tag Number: 161.297 Collection Date: 12/13/2017

	Result	the state of the s		"· - ····• · · · ·	Matrix; A	114
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		**Limit		Units	Di	F Date Analyzed
Heptane — Hexachloro-1,3-butadiene Hexachloro-1,3-butadiene Hexane — Isopropyl alcohol — Map-Xylene — Methyl Butyl Ketone Methyl Ethyl Ketone Methyl Isobutyl Ketone Methyl tert-butyl ether Methylene chloride — P-Xylene Propylene Styrene etrachloroethylene atrahydrofuran pluene — Ins-1,2-Dichloroethene Ins-1,3-Dichloropropene chloroethene — yl acetate yl Bromide il chloride	< 0 to	0.74 0.61 1.6 0.53 34 1.3 1.2 0.88 1.2 0.54 0.52 0.65 0.26 0.44 0.57 0.59 0.68 0.16 0.53 0.66	იმ იმ ინ ი ი ე ი	m3 m3 m3 m3 m3 m3 m3 m3	1	Analyst: RJF 12/21/2017 7:06:00 PM



### Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank B
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 26

TOWER TO BE ACCOUNTED TO THE PROPERTY OF THE P CLIENT: Lab Order;

Project;

Lab ID: C1712063-005A

Tag Number: 222.345 Coffection Date: 12/13/2017

	D	on a second migration of all		Matrix	AIR	
1UG/M3 BY METHOD TO15	Result	**Limit	Qual Units		manager	
			Carrie Ontis	i 	DF	Name of the second second
'''' P.4"   @frachingash -	< 0.82	TO	-15			Date Analyzed
TE UPROPERS	· 1	0.82				
1.1-Dichloroethane	< 1.4	1.0	ug/m3		1	Analyst; RJr
1.1-Dichloroethane	< 0.82	0.82	Vg/m3		1	**************************************
1.2.4-Trichlorobenzene	< 0.6	0.61	ug/m3		1	" 212212017 2:40:00 A.
1.2.4-Trionet	< 0.5	0.59	ug/m3	1	I	18/84/2017 2:40:00 A.
1.2,4-Trimethylbenzene	< 1.		ug/mg			14/22/2017 2:4n·nn xxx
1,2-Dibramosthane	0.59	1.1	ug/m3	1		1672474017 2:40:00 ALE
1.2-Dichlorobenzene	<1,2	0,74	J ug/ms	1		12/22/2017 2:40:00 AM
1,2-Dichloroethane	< 0.9b <b>/</b>	1.2	ug/m3	Ť		12/22/2017 2:40:00 AM
1.<-Dichloroprophes	< 0.64	0.90	ug/m3	7		12/22/2017 2:40:00 AM
1,3,5, Frimethylhans	< 0.ess	0.81	nā\w3	1	1	12/22/2017 2:40:00 AM
1.3-butadiene		0.69		1	1	2/22/2017 2:40:00 AM
1,3-Dichlorobenzene	< 0.74	0.74	₽ <b>9/m</b> 3	1		2/22/2017 2:40:00 AM
1.4-Dichlorobenzene	< 0.33	0.33	ug/m3	1		*****************************
1.4-Dioxane	< 0.≰0 {	0.90	ug/m3	1	• •	"E4/4U17 2:40:40 ALL
2.2 d sain	< 0.90	0.90	⊔g/n₁3	1	,,,	^{(42/20} 17 2:40:00 Av.
2.2.4-trimethyloemane	0.44	4	⊔g/m3	•		24/4017 2:40:00 AL
T-Giriyitolyane	< 0.10	1.1 J	ug/m3	1	12	22/2017 2:40:00 Ass
Acetone	< 0.74	0.70	⊔g/m3	1	12)	22/2017 2:40:00 AM
Allyl chloride	120	0,74	ug/m3	1	12/2	2/2017 2:40:00 AM
Benzene	< 0.47	<b>\$</b> 4	ug/m3	1	12/2	2/2017 2:40:00 AM
Benzyl chloride	<0.88 \R	0.47	ug/m3	90	12/2	3/2017 4:40:00 AM
Bromodichloromethane		0.48	ug/m3	1	12/2	3/2017 4:30:00 AM
Bromoform	<086	0.86		1	13/2/	2/2017 2:40:00 AM
Bromomethane	< <b>/</b> .0/	1.0	ug/m3	1	1717	72017 2:40:00 AM
Carbon disulfide	<  .6	1.6	09/m3	7	14122	72017 2:40:00 Ass
Carbon taxas	< 0 5 ₈	0.58	ug/m3	1	"KIZZ	2017 2:40:00 ALA
Carbon tetrachloride	<b>0</b> ∤31∤	0.25	ug/mg	i	14/22/	4017 2:40 hn Au
Chlorobenzene	< 0/94	0.94	/g/m3	•	CIECI	<017 2:40:00 a
Chloroethane	< 0 69	u	ig/mg	-	12/22/2	917.2:40:00 Aka
hloroform	≺dan I	0.89 0.39	g/m3	1	12/22/2	017 2:40:00 AM
hloromethane	ادوا	0.40 LK	g/m3	1	12/22/2	017 2:40:00 AM
s-1,2-Dichloroethene	× (31)	73	7/m3	1	12/22/2	317 2:40:00 AM
3-1,3-Dichlomorogen	4.59	131	/m3	7	12/22/20	17 2:40:00 AM
clopexane	7 ¹³ I 0	.59	/m3	1	12/22/20	13 2:40 -
romochioromethane	1 0	FR.	/m3	1	2/22/20	17 2:40:00 AM
yi acetate	$\int_{0.1}^{3.2} \int_{0.1}^{3.2} o.$	<del>5</del> 2		1	2/22/20	17 2:40:00 AM
Vibenzene	\$1.3 / T	.3 Ug/		1 ,	5125150.	7 2:40:00 AM
טה 11	1.3	υg/:			*******	7.2:40:00 A.A
n 113	\P.65   0 s	ւգ	-		~~~~~~	/ 2:40:no a.a.
n 113 n 114	2.9 0.8	UQ/N	13	. '*	**********	7 2 40 00 ***
1114	4111	ugim	3		'ZZZV17	240:00 ***
ters:	11.0	ug/m	3		**/ZU]/	2:40:00 444
Camultation Limit	1.0	ug/m:	_	1 13	344	2:40:00 AM

Analyte detected in the associated Method Blank Н

Holding times for preparation or analysis exceeded

Non-routine analyse. Quantitation estimated,

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

Estimated Value above quantitation range J

Analyse detected below quantitation timic ND

Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID;

C1712063-005A

Client Sample ID: SVI-03

Tag Number: 222.345 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 BY METHOD TO15		TO	-15			Analyst: RJP
Freon 12	2.4	0.74		ug/m3	1	12/22/2017 2:40:00 AM
Reptane	17 )	5.7		ug/m3	9	12/23/2017 3:53:00 AM
Hexachtoro-1.3-butadiens	< 1.	1.6		ug/m3	1	12/22/2017 2:40:00 AM
Hexane	6.8	0.53		ug/m3	1	12/22/2017 2:40:00 AM
isopropy) alcohol	260	34		ug/m3	90	12/23/2017 4:30:00 AM
m&p-Xylene	1/3 /	1.3	3	ug/m3	1	12/22/2017 2:40:00 AM
Methyl Butyl Ketone	< 1 2	1.2		ug/m3	1	12/22/2017 2:40:00 AM
Methyl Elhyl Ketone	48	8.0	JΗ	ug/m3	8	12/23/2017 3:53:00 AM
Methyl isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/22/2017 2:40:00 AM
Methyl tert-bulyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 2:40:00 AM
Methylene chloride	\$.1	0.52		ug/m3	1	12/22/2017 2:40:00 AM
o-Xylene	0/43 \	0.65	J	ug/m3	1	12/22/2017 2:40:00 AM
Propylene	< 0/26	0.25		ug/m3	1	12/22/2017 2:40:00 AM
Styrene	< d.84 /	0.64		ug/m3	1	12/22/2017 2:40:00 AM
Tetrachloroethylene	< 1.0	1.0		<u>სტ/m3</u>	1	12/22/2017 2:40:00 AM
Tetrahydrofuran	< 4.44 ∫	0.44		ug/m3	1	12/22/2017 2:40:00 AM
Toluene	7.5	5.3		ug/m3	9	12/23/2017 3:53:00 AM
trans-1,2-Dichloroethene	< p.59 \	0.59		սց/m3	1	12/22/2017 2:40:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 2:40:00 AM
Trichiorgethene	( 1.8 )	0.81		ug/m3	1	12/22/2017 2:40:00 AM
Vinyl acetate	40.53	0.53		ug/m3	1	12/22/2017 2:40:00 AM
Vinyl Bromide	40.66 1	0.66		ug/m3	1	12/22/2017 2:40:00 AM
Vinyl chloride	0.38	0.38		ug/m3	1	12/22/2017 2:40:00 AM

Qualifiers:

- ** Quantitation Limit
  - B Apalyte dejected in the associated Method Blank
  - 13 Holding times for preparation or analysis exceeded
  - JN Non-routine analyte. Quantitation estimated.
  - Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 26

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

CLIENT:

Eldre Corp

Lab ID:

C1712063-006A

Date: 10-Jan-18

The state of the s Client Sample iD: IAQ-03

Tag Number: 316.259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu.	at Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	սց/m3	1	12/21/2017 7:48:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1-0	ug/m3	1	12/21/2017 7:48:00 PM
1.1.2-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 7:48:00 PM
1.1-Dichiorgethane	< 0.61	0.61	սց/m3	1	12/21/2017 7:48:00 PM
1,1-Dichtorgethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:48:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	12/21/2017 7:48:00 PM
1,2,4-Trimethylpenzene	< 0.74	0.74	սց/m3	1	12/21/2017 7:48:00 PM
1.2-Dipromoethane	₹ 1.2	1.2	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	սց/m3	1	12/21/2017 7:48:00 PM
1,2-Dichloroethane	< 0.61	0.81	ug/m3	1	12/21/2017 7:48:00 PM
1,2-Dichloropropane	< 0.69	0.69	<u>ს</u> g/m3	1	12/21/2017 7:48:00 PM
1,3,5-Trimethylbenzene	< 0.74	0,74	ug/m3	1	12/21/2017 7:48:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	12/21/2017 7:48:00 PM
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1.4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 7:48:00 PM
1,4-Dioxane	<1.1 <b>0</b> 7	1,1	ug/m3	†	12/21/2017 7:48:00 PM
2,2,4-trimethylpenlane	< 0.70	0.70	ug/m3	1	12/21/2017 7:48:00 PM
4-ethyltoluena	< 0.74	0.74	սց/ու3	1	12/21/2017 7:48:00 PM
Acetone =	19	5.4	ug/m3	9	12/22/2017 11:25:00 Pf
Allyl chloride	< 0.47	0.47	ug/m3	1	12/21/2017 7.48:00 PM
Benzene -	0.93	0.48	ug/m3	1	12/21/2017 7:48:00 PM
Benzyi chloride	< 0.86	0.86	ս <b>ց</b> /m3	1	12/21/2017 7:48:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	12/21/2017 7:48:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	12/21/2017 7:48:00 PM
Bromomethane	< 0.58	p.58	ug/m3	1	12/21/2017 7:48:00 PM
Carbon disulfide	< 0,47	0.47	ug/m3	1	12/21/2017 7:48:00 PM
Carbon tetrachloride -	0.44	0.25	ug/m3	1	12/21/2017 7:48:00 PM
Chlorobenzene	< 0.69	0.69	ug/វារៈ3	1	12/21/2017 7:48:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 7:48:00 PM
Chloroform -	13	6.8	ug/m3	8	12/22/2017 11: <b>25</b> :00 PI
Chloromethane ~	0.76	0.31	ug/m3	1	12/21/2017 7:48:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 7:48:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	12/21/2017 7:48:00 PM
Cyclohexane -	0.79	0.52	µg/m3	1	12/21/2017 7:48:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	12/21/2017 7:48:00 PM
Ethyl acetate -	1.2	0.54	ug/m3	1	12/21/2017 7:48:00 PA
Ethylbenzene	< 0.85	0.65	ug/m3	1	12/21/2017 7:48:00 PM
Freen 11 -	4.0	0.84	ug/m3	1	12/21/2017 7:48:00 PM
Freon 113	< 1.1	1.1	ი <u>ი</u> /m3	1	12/21/2017 7:48:00 PN
Freen 114	< 1.0	1.0	ug/m3	1	12/21/2017 7:48:00 PN

Qualifiers:

Page 11 of 26

Quantitation Limit

Analyte detected in the associated Method Biank

Holding times for preparation or analysis exceeded 1-1

Non-routine analyte. Quantitation estimated. JW

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 10-Jan-18

CLIENT:

Lab Order;

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-006A

Client Sample ID: IAQ-03

Tag Number: 316,259

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	The American
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	7770				175	Date Analyzed
Freon 12 _	0.5		-15			Analysi: RJP
Heptane _	2.5	0.74		ug/m3	1	12/21/2017 7:48:00 PM
Hexachloro-1,3-butadiene	5.7	0.61		ug/n)3	1	12/21/2017 7:48:00 PM
Hexang =	< 1.5	1.6		ug/m3	1	12/21/2017 7:48:00 PM
isopropyl alcohol —	0.61	0.53		ug/m3	t	12/21/2017 7:48:00 PM
m&p-Xylene -	170	34		ug/m3	90	12/23/2017 12:02:00 AM
Methyl Butyl Katone	1,1	1.3	J	ug/m3	1	12/21/2017 7:48:00 PM
Methyl Ethyl Ketone -	< 1.2 <b>じ丁</b>	1.2		սց/m3	1	12/21/2017 7:48:00 PM
	11	8.0		ug/m3	9	12/22/2017 11:25:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	12/21/2017 7:48:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 7:48:00 PM
Methylene chloride _	2.7	0.52		ug/m3	•	12/21/2017 7:48:00 PM
o-Xyleno	< 0.65	0.65		ພ໘/ກາ3	,	
Propylene	< 0.26	0.26		ug/m3	1	12/21/2017 7:48:00 PM
Styrene	< 0.64	0.64		ug/m3	,	12/21/2017 7:48:00 PM
Tetrachloroethylene	< 1.0	1,0		ug/m3	1	12/21/2017 7:48:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3		12/21/2017 7:48:00 PM
Toluene -	11	5.3		ug/m3	,	12/21/2017 7:48:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ມຽ/ຄາ3 ມຽ/ຄາ3	9	12/22/2017 11:25:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		-	1	12/21/2017 7:48:00 PM
Trichloroethene -	0.43	0.16		.g/m3 /3	1	12/21/2017 7:48:00 PM
Vinyi acetate	< 0.53	0.10		ag/m3	1	12/21/2017 7:48:00 PM
Vinyl Bromide	< 0.68			ig/m3	1	12/21/2017 7:48:00 PM
/inyl chloride	< 0.10	0.66		ig/m3	1	12/21/2017 7:48:00 PM
•	~ <b>0</b> .70	0.10	L	g/m3	1	12/21/2017 7:48:00 PM



Qualifiers:

- ** Quantitation Limit
  - 13 Analyte detected in the associated Method Blank
  - H. Holding times for preparation or analysis exceeded
  - JN Non-routine analyte. Quantitation estimated.
  - Spike Recovery outside accepted recovery limits
- Restrits reported are not blank corrected.
- $E=\mathrm{Estimated}$  Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-007A

Client Sample 10: SVI-04

Tag Number: 100.309

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichtoroethane	< 0.82	0.82	ug/m3	1	12/22/2017 3:22:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/22/2017 3:22:00 AM
1,1-Dichleroethene	< 0.59	0.59	ug/m3	t	12/22/2017 3:22:00 AM
Chioroethane	< 0.40	0.40	ag/m3	1	12/22/2017 3:22:00 AM
Chloromethane	< 0.31	0.31	սց/m3	1	12/22/2017 3:22:00 AM
cis-1,2-Dichloroethene	1.5	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Tetrachioroethylene	1.2 🕽	1.0	ug/m3	1	12/22/2017 3:22:00 AM
trans-1_2-Dichioroethene	< 0.59	0.59	ug/m3	1	12/22/2017 3:22:00 AM
Trichioroethene	62	8.1	ug/m3	10	12/23/2017 5.07:00 AM
Vinyl chloride	0,38020 U	0.38	មg/m3	1	12/22/2017 3:22:00 AM



Qualifiers:

** Quantitation Limit

H. Analyte detected in the associated Method Blank.

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S — Spike Recovery outside accepted recovery limits.

Results reported are not blank corrected

E. Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 13 of 26

Date: 10-Jan-18

CLIENT:

The second secon LaBella Associates, P.C.

Lab Order;

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-008A

Client Sample ID: IAQ-04

Tag Number: 287.260

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15		· · · · · · · · · · · · · · · · · · ·	Anghou
1,1,1-Tricnforoethane	< 0.82	0.82	ug/m/3	1	Analyst: RJP 12/21/2017 8:29:00 PM
1,5-Dichloroethane	< 0.61	0.61	ug/m3	,	12/21/2017 8:29:00 PM
1.1-Dichloroethene	< 0.59	0.59	ug/m3		
Chloroethane	< 0.40	0.40	ug/m3	•	12/21/2017 8:29:00 PM
Chipromethane -	1,4	0.3t		1	12/21/2017 8:29:00 PM
cis-1,2-Dichloroethene_	1.3		ug/m3	1	12/21/2017 8:29:00 PM
Tetrachloroethylene	•	0.59	ug/m3	1	12/21/2017 8:29:00 PM
trans-1,2-Dichloroethene	< 1.0	1.0	ug/m3	1	12/21/2017 8:29:00 PM
	< 0.59	0.59	ug/m3	1	12/21/2017 8:29:00 PM
Tríchlaraethene 🕳	9.9	0.21	ug/m3	1	12/21/2017 8:29:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 8:29:00 PM



Qus	lifiers
-----	---------

- ** Quantitation Limit
  - B Analyte detected in the associated Method Blank
  - H Holding times for preparation or analysis exceeded
  - JN Non-routine analyte. Quantitation estimated.
  - S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 14 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order: C1712063

Project:

Eldre Corp

Lab ID:

C1712063-009A

Client Sample ID: SVI-05

Tag Number: 336,381

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METROD TO15		то	-15			Analyst: RJP
1,1,1-Trichloroethane	0.60	0.82	J	u <b>g/m3</b>	1	12/22/2017 4:03:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 4:03:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 4:03:00 AM
Chloroethene	< 0.40	0.40		ug/m3	1	12/22/2017 4:03:00 AM
Chloromethane	< 0.31	0.31		⊔g/m3	1	12/22/2017 4:03:00 AM
cis-1.2-Dichloroethene	< 0.59	0.5 <del>9</del>		u <b>g/m3</b>	1	12/22/2017 4:03:00 AM
Tetrachloroethylene ~	1,5	1.0		ug/m3	t	12/22/2017 4:03:00 AM
trans-1.2-Dichloroethene	< 0.59	Q.59		ug/m3	1	12/22/2017 4:03:00 AM
Trichloroethene -	14	3,2		ug/m3	4	12/23/2017 5:45:00 AM
Vinyl chloride	< 0.38	0.38		ша/т3	1	12/22/2017 4:03:00 AM



Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection

Page 15 of 26

CLIENT: LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-010A

Date: 10-Jan-18

TO A STATE OF THE PROPERTY OF

Client Sample ID: IAQ-05

Tag Number: 1188.294

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1.1.1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 9:11:00 PM
1.1-Dichlorosthane	< 0,61	0.61	ug/m3	1	12/21/2017 9:11:00 PM
1.1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:11:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 9:11:00 PM
Chloromethane =	0.93	0.31	ug/m3	1	12/21/2017 9:11:00 PM
cis-1,2-Dichtoroethene -	0.87	0.59	<b>ug/m3</b>	1	12/21/2017 9:11:00 PM
Tetrschloroethylene	< 1.0	1.0	ug/m3	1	12/21/2017 9:11:00 PM
trens-1,2-Dichloroethene	₹ 0.59	0.59	บดู/กา3	1	12/21/2017 9:11:00 PM
Trichloroethere _	7.1	0.21	ug/m3	1	12/21/2017 9:11:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 9:11:00 PM



- Qualiffers: ** Quantitation Limit
  - B Analyte detected in the associated Method Htank
  - H Holding times for preparation or analysis exceeded
  - JN Non-routine analyte. Quantitation estimated
  - Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 16 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

C1712063

Lab Order: Project:

Eldre Corp

Lab ID:

C1712063-011A

Client Sample ID: DUPE

Tag Number: 130.1152

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qua	d Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	<i>սց/m</i> 3	1	12/21/2017 9:53:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 9:53:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:53:00 PM
Chloroethane	< 0.40	3.40	ug/m3	1	12/21/2017 9:53:00 PM
Chloromethane -	0,85	0.31	ug/m3	1	12/21/2017 9:50:00 PM
cis-1,2-Dichloroethene	0.87	0,59	ug/m3	1	12/21/2017 9:53:00 PM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	12/21/2017 9:53:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	12/21/2017 9:63:00 PM
Trichtorosthene -	7.0	0.21	ug/m3	1	12/21/2017 9:53:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	12/21/2017 9:53:00 PM

TO THE SECOND CONTROL OF THE SECOND CONTROL



Qualifiers:

- ** Quantitation Limit
- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded H
- JN Non-routing analyte, Quantitation estimated.
- Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- Analyte detected below quantitation limit 3
- ND Not Detected at the Limit of Detection

Page 17 of 26

Date: 10-Jun-18

The second secon CLIENT: Lab Order:

LaBella Associates, P.C.

C1712063

Project: Lab ID:

Eldre Corp

C1712063-012A

Tag Number: 171.279

Collection Date: 12/13/2017

Client Sample ID: SVI-06

Matrix: AlR.

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/22/2017 4:46:00 AM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/22/2017 4:46:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	12/22/2017 4:48:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	12/22/2017 4:46:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	12/22/2017 4:46:00 AM
cis-1,2-Dichlorgethene -	1.9	0.59	og/m3	1	12/22/2017 4:46:00 AM
Tetrachloroethylene~	5.8 <b>J</b>	1.0	ug/m3	1	12/22/2017 4:46:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	vg/m3	1	12/22/2017 4:46:00 AM
Trichtoroethène +	16	3.2	ug/m3	4	12/23/2017 6:23:00 AM
Vinyl chloride	0,39 0.85 U	0.38	ug/m3	1	12/22/2017 4:46:00 AM



Ouz	ılifi	CI'S:

- Quantitation Limit
- Analyte detected in the associated Method Blank 13
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit ţ
- ND Not Detected at the Limit of Detection

Page 18 of 26

Date: 10-Jan-18

12/21/2017 10:34:00 PM

12/21/2017 10:34:00 PM

12/21/2017 10:34:00 FM

12/21/2017 10:34:00 PM

CLIENT:

LaBella Associates, P.C.

Lab Order:

Tetrachloroethylene

Trichloroethene __

Vinyl chloride

trans-1,2-Dichloroethene -

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-013A

Client Sample ID: IAQ-06

Tag Number: 1193.1165 Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	CE-VC 70-15				Analyst: RJP	
1,1.1-Trichloroethane	< 0.82	0.82	ug/m3	1	12/21/2017 10:34:00 PM	
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 10:34:00 PM	
1,1-Dichtoroethene	< 0.59	0.59	ug/m3	1	12/21/2017 10:34:00 PM	
Chloroethane	< 0.40	0.40	սց/m3	1	12/21/2017 10:34:00 PM	
Chioromethane -	0.74	0.31	ug/m3	†	12/21/2017 10:34:00 PM	
cis-1,2-Dichloroethene	1,2	0,59	ug/m3	1	12/21/2017 10:34:00 PM	

1.0

0.59

0.21

0.10

ua/m3

ug/m3

ug/m3

սց/៣3

< 1.0

0.44

7.1

< 0.10



### Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Black
- H Holding times for preparation or analysis exceeded
- JN Non-routine maryte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range Е
- Analyte detected below quantitation limit 1
- ND Not Detected at the Limit of Detection

Page 19 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-014A

A CONTROL OF THE CONT

Client Sample ID: IAQ-07

Tag Number: 1289.337

Collection Date: 12/13/2017

Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.62	ug/m3	1	12/21/2017 11:17:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 11:17:00 PM
1,1-Dichloroethene	< 0.59 U.	0.59	ug/m3	1	12/21/2017 11:17:00 FM
Chloroethane	< 0.40 €	0.40	uġ/m3	t	12/21/2017 11:17:00 PM
Chloromethane =	0.87 <b>J</b>	0.31	ug/m3	1	12/21/2017 11:17:00 PM
cis-1,2-Dichloroethene	< 0.59 UJ	0.59	ug/m3	1	12/21/2017 11:17:00 PM
Tetrachloroethylene =	1.6 <b>J</b>	1,0	ug/m3	1	12/21/2017 11:17:00 PM
trans-1,2-Dichloroethene -	0.55 🔰	0.59 J	u <del>g</del> /m3	1	12/21/2017 11:17:00 PM
Trichlgroethene -	0.54 🗾	0.21	ug/m3	1	12/21/2017 11:17:00 PM
Vinyl chloride	< 0.10 U I	0.10	ug/m3	1	12/21/2017 11:17:00 PM



Qualiflers:

- ** Quantitation Limit
- B Analyse detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded.
- 3N Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyse detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 20 of 26

Date: 10-.lan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-015A

Client Sample 1D: SVI-08

Tag Number: 562.403

AND A SERVICE OF A SERVICE OF THE PROPERTY OF

Collection Date: \$2/13/2017

Matrix: AlR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		TO-	-15			Analyst: RJP
1,1.1-Trichloroethane	< 0.82	0.82	i	ıg/m3	1	12/22/2017 6:27:00 AN
1,1,2,2-Tetrachloroethane	< 1.0	1.0	•	ıg/m3	1	12/22/2017 5:27:00 AN
1,1,2-Trichloroethane	< 0.82	0.82	١	ig/m3	1	\$2/22/2017 5:27:00 AN
1,1-Dichloroethane	< 0.61	0.61	t	ig/m3	1	12/22/2017 5:27:00 AN
1,1-Dichloroethene	< 0.59	0.59	t	<b>ιg/m</b> 3	1	12/22/2017 5:27:00 AN
1,2,4-Trichlorobenzene	< 1.1	1.1		<i>1</i> g/m3	1	12/22/2017 5:27:00 AN
1,2,4-Trimethylbenzene →	2.0	0.74	,	ig/m3	1	12/22/2017 5:27:00 AN
1,2-Dibromoethene	< 1,2	1.2		ug/m3	1	12/22/2017 5:27:00 AN
1,2-Dichlorobenzane	< 0.90	0.90		ug/m3	1	12/22/2017 5:27:00 AN
1,2-Dichloroethane	< 0.61	0.51		ıg/m3	1	12/22/2017 5:27:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	12/22/2017 5:27:00 AN
1.3.5-Trimethylbenzene =	1.2	0.74		.g/m3	1	12/22/2017 5:27:00 AM
1.3-butadiene	< 0.33	0.33		ag/m3	1	12/22/2017 5:27:00 Air
1.3-Dichlerobenzene	< 0.90	0.90	1	g/m3	1	12/22/2017 5:27:00 AM
1.4-Dichlorobenzené	< 0.90	0.90		ug/m3	1	12/22/2017 5:27:00 Af
1.4-Dioxane =	0.58 🕽	1.1	J	/g/m3	1	12/22/2017 5:27:00 Af
2.2.4-trimethylpentane	< 0.70	0.70	1	₃g/m3	1	12/22/2017 5:27:00 Af
4-ethyltoluene	< 0.74	0.74	1	ug/m3	1	12/22/2017 5:27:00 At
Acetone -	79	14	1	աց/m3	20	12/23/2017 7:00:00 At
Allyi chloride	4 0.47	0.47	+	ug/m3	1	12/22/2017 5:27:00 Al
Benzene =	0.73	0.48	1	ug/m3	1	12/22/2017 5:27:00 Af
Benzyl chlorida	< 0.86	0.86	1	/g/m3	1	12/22/2017 5:27:00 AM
Bromodichloromethane	< 1.0	1.0	1	_ ug/m3	t	12/22/2017 5:27:00 At
Bremofern	< 1.6	1.6	,	ug/m3	1	12/22/2017 5:27:00 Al
Bromomethane	< 0.58	0.58		ug/m3	1	12/22/2017 5:27:00 Al
Carbon disulfide -	1.0	0.47	1	ug/m3	1	12/22/2017 5:27:00 Af
Carbon tetrachloride	< 0.94	0.94		ս <b>ց/m</b> 3	1	12/22/2017 5:27:00 Af
Chlorobenzene	< 0.69	0.69	1	ប <b>្</b> /m3	1	12/22/2017 5:27:00 AF
Chloroethane	< 0.40	0.40		ug/m3	1	12/22/2017 5:27:00 AI
Chloroform	< 0.73	0.73	,	ոգ/m3	1	12/22/2017 5:27:00 AI
Chloromethane	< 0.31	0.31	:	ug/m3	1	12/22/2017 5:27:00 Al
cis-1.2-Dichloroethene	< 0.59	0.59	i	υ <b>g</b> /ιπ3	1	12/22/2017 6:27:00 A
cis-1,3-Dichloropropene	< 0.68	0.68	;	ug/m3	1	12/22/2017 5:27:00 A
Cyclohexans -	0.38	0.52	J :	ug/m3	1	12/22/2017 5:27:00 A
Dibromochloromethane	< 1.3	1.3	,	<b>ug/m</b> 3	1	12/22/2017 5:27:00 A
Ethyl acetate	< 0.54	0.54		ug/m3	1	12/22/2017 5:27:00 A
Ethylhenzene	< 0.65	0.65		ug/m3	1	12/22/2017 5:27:00 A
Freon 11 -	1.9	0.84	:	ug/m3	1	12/22/2017 5:27:00 A
Freon 113	< 1.1	1,1		ს <b>ე/m</b> 3	1	12/22/2017 5:27:00 A
Freon 114	< 1.0	1.0		ug/m3	1	12/22/2017 5:27:00 A

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- 18 Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 21 of 26

Date: 10-Jan-18

CLIENT: Lab Order:

Project:

Lab ID:

AND SECURITY OF THE CONTROL OF THE C LaBella Associates, P.C.

C1712063

Eldre Corp

C1712063-015A

Client Sample ID: SVI-08

Tag Number: 562,403

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		TO	-15			Analyst: RJF
Freon 12 -	2.4	0.74		րმ/ພ3	1	12/22/2017 5:27:00 AM
Heptane ~	2.4	0.61		ug/m3	1	12/22/2017 5:27:00 AN
Hexachloro-1,3-butadiene	< 1.6	1.6		<b>Է</b> Րո\ըս	1	12/22/2017 5:27:00 AN
Hexane 🗻	0.85	0.53		ug/m3	1	12/22/2017 5:27:00 AN
Isopropyi alcohol —	53	7.4		սց/m3	20	12/23/2017 7:00:00 AN
m&p-Xylene 🖚	0.81	1.3	J	ug/m3	1	12/22/2017 5:27:00 AM
Methyl Botyl Ketone	د 1,2 <b>ل</b> اح	1.2		ug/m3	1	12/22/2017 5:27:00 AN
Methyl Ethyl Ketone -	2.2	0.88		ug/m3	1	12/22/2017 5:27:00 AN
Methyl Isobutyl Ketone -	0.86	1.2	J	ug/m3	1	12/22/2017 5:27:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/22/2017 5:27:00 Aft
Methylene chloride -	7.5	0.52		ug/m3	1	12/22/2017 5:27:00 Af
o-Xylena	< 0.65	0.66		ug/m3	1	12/22/2017 5:27:00 Al
Propylene	< 0.26	0.26		ug/m3	1	12/22/2017 5:27:00 Af
Styrene	< 0.64	0.64		ug/m3	1	12/22/2017 5:27:00 AM
Tetrachloroethylene	< 1.0	1.0		սց/m3	1	12/22/2017 5:27:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	12/22/2017 5:27:00 AM
Toluene -	1.8	0.57		ug/m3	1	12/22/2017 5:27:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	12/22/2017 5:27:00 Af
trans-1_3-Dichloropropens	< 0.68	0.68		ug/m3	1	12/22/2017 5:27:00 Al
Trichloroethene-	8.7	0.81		ug/m3	1	12/22/2017 5:27:00 Af
Vinyi acetate	< 0.53	0.53		ug/m3	1	12/22/2017 5:27:00 At
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/22/2017 5:27:00 Al
Vinyl chloride	< 0.38	0.38		ug/m3	1	12/22/2017 5:27:00 Al



Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte, Quantitation estimated
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 15 Estimated Value above quantitation range
- Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Page 22 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-016A

Client Sample ID: IAQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

Matrix: AIR

Annlyses	Result	**Limit (	Juai Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-1	5		Analyst: RJP
1,1,1-Trichlorgethane	< 0.82	0.82	ug/m3	1	12/21/2017 11:59:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	12/21/2017 11:59:00 PM
1,1,2-Trichloroathane	< 0.82	0.82	ug/m3	1	12/21/2017 11:59:00 PM
1.1-Dichloroethane	< 0.61	0.61	ug/m3	1	12/21/2017 11:59:00 PN
1.1-Dichtorgethene	< 0.59	0.59	ug/m3	1	12/21/2017 11:89:00 PM
1,2.4-Trichlorobenzene	≤ 1.1	1.1	ug/m3	1	12/21/2017 11:59:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ag/m3	1	12/21/2017 11:59:00 PM
1,2-Dibromoethane	4 1.2	1.2	ug/m3	1	12/21/2017 11:59:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 11:59:00 PM
1,2-Dichloroethene	< 0.61	0.61	ug/m3	1	12/21/2017 11:59:00 PA
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	12/21/2017 11:59:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	12/21/2017 11:59:00 PR
1,3-butadiene	< D.33	0.33	ug/m3	1	12/21/2017 11:59:00 PA
1.3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	12/21/2017 11:59:00 PM
1,4-Dichlorobenzens	< 0.90	0.90	ug/m3	1	12/21/2017 11:59:00 Pt
1,4-Dioxane	< 1,1 <b>U</b> Ū	1,1	ug/m3	1	12/21/2017 11:59:00 PI
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	12/21/2017 11:59:00 PI
4-einykoluene	< 0.74	0.74	ug/m3	1	12/21/2017 11:59:00 위
Acetone -	5.9	3.6	ug/m3	5	12/23/2017 12:40:00 Al
Aliyl chloride	< 0.47	0.47	ug/m3	1	12/21/2017 11:59:00 PI
Benzene =	0.96	0.48	ug/m3	1	12/21/2017 11:59:00 PI
Benzyl chloride	< 0.86	0.86	ug/m3	1	12/21/2017 11:59:00 Pt
Bromodichloromethane	< 1.0	1,0	ug/m3	1	12/21/2017 11:59:00 PI
Bromoform	< 1.6	1.6	սց/ու3	1	12/21/2017 11:59:00 PI
Bromomethane	< 0.58	0.58	ug/m3	1	12/21/2017 11:59:00 PI
Carbon disulfide	< 0.47	0.47	ug/m3	1	12/21/2017 11:59:00 PI
Carbon tetrachloride -	0.44	0.25	ug/m3	1	12/21/2017 11:59:00 PI
Chlorobenzene	< 0.69	0.69	ug/m3	1	12/21/2017 11:59:00 PI
Chloroethane	< 0.40	0.40	ug/m3	1	12/21/2017 11:59:00 PI
Chloroform	< 0.73	0.73	ug/m3	1	12/21/2017 11:59:00 Pi
Chloromethane -	0.76	0.31	uģ <b>∕</b> m3	1	12/21/2017 11:59:00 Pi
cis-1,2-Dichloroethene	< 0.59	0.59	u <b>д/m3</b>	1	12/21/2017 11:59:00 P
cis-1,3-Dichloropropene	< 0.68	89.0	ug/m3	1	12/21/2017 11:59:00 P
Cyclohexane	< 0.52	0.52	<b>μ</b> g/m3	1	12/21/2017 11:59:00 P
Dibromochloromethane	s 1.3	1.3	ug/m3	1	12/21/2017 11:59:00 P
Ethyl acetate	< 0.54	0.54	ug/m3	1	12/21/2017 11:59:00 P
Ethylbenzene	< 0.65	0.65	ug/m3	1	12/21/2017 11:59:00 P
Freon 11-	3.2	0.84	ug/m3	1	12/21/2017 11:59:00 P
Freon 113	< 1.1	1.1	ug/m3	1	12/21/2017 11:59:00 P
Freon 114	< 1.0	1.0	u <b>g/m</b> 3	1	12/21/2017 11:59:00 P

Qualifiers:

- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded H
- Non-routine analyte, Quantitation estimated. Иţ
- Spike Recovery outside accepted recovery limits



Results reported are not blank corrected

Estimated Value above quantitation range

- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 23 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-016A

and the state of t

Client Sample ID: 1AQ-08

Tag Number: 539.379

Collection Date: 12/13/2017

M	at	rix:	Al	ŀR
		I LA.	- 73	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TC	-15			Analyst: RJP
Freen 12 🗭	2.3	0.74		ug/m3	1	12/21/2017 11:59:00 PM
Heptane _	0.53	0.61	J	υg/m3	1	12/21/2017 11:59:00 PM
Hexachioro-1.3-butadiene	< 1,5	1.6		ug/m3	1	12/21/2017 11:59:00 PM
Hexane -	0.74	0.53		ug/m3	1	12/21/2017 11:59:00 PM
Isopropyi alcohol-	3.4	0.37		ug/m3	1	12/21/2017 11:59:00 PM
m&p-Xylene -	0.48	1.3	J	մ <b>ա</b> \ա	1	12/21/2017 11:59:00 PM
Methyl Butyl Ketone	< 1.2 <b>Ư</b> :	<b>1</b> 1.2		ug/m3	1	12/21/2017 11:59:00 PM
Methyl Ethyl Ketone	< 0.88	0.88		ug/m3	1	12/21/2017 11:59:00 PM
Methyl tsobutyl Ketone	< 1,2	1.2		ug/m3	1	12/21/2017 11:59:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	12/21/2017 11:59:00 PM
Methylene chloride -	2.2	0.52		ug/m3	1	12/21/2017 11:59:00 PM
o-Xylene	< 0.65	0 65		ug/m3	1	12/21/2017 11:59:00 PM
Propylene	< 0.28	0.26		ug/m3	1	12/21/2017 11:59:00 PM
Styrene	< 0.64	0.64		սց/m3	1	12/21/2017 11:59:00 PM
Tetrachioroethylene	< 1.0	1,0		ug/m3	1	12/21/2017 11:59:00 PM
Tetrahydrofuran	< 0.44	0.44		սը/m3	1	12/21/2017 11:59:00 PM
Toluene 🖛	1,4	0.57		ug/m3	1	12/21/2017 11:59:00 PM
trans-1,2-Dichloroethene	< 0.69	0.59		ug/m3	1	12/21/2017 11:59:00 PM
trans-1,3-Dichloropropene	< 0.68	0,68		աց/m3	1	12/21/2017 11:59:00 PM
Trichloroethene -	0.27	0.16		ug/m3	1	12/21/2017 11:59:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/21/2017 11:59:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	12/21/2017 11:59:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	12/21/2017 11:59:00 PM



### Qualifiers:

- ** Quantitation Limit
- B Analyte desected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- E Estimated Value above quantitation range
- Ţ Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 24 of 26

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Orders

C1712063

Project:

Eldre Corp

Lab ID:

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Analyses	Result	**Limit(	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC		TO-1		1		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	12/22/2017 12:40:00 AM
1.1,2,2-Tetrachtoroethane	< 1.0	1.0		ug/m3	1	12/22/2017 12:40:00 AM
1.1.2-Trichloroethane	< 0.82	0.62		ug/m3	1	12/22/2017 12:40:00 AM
1,1-Dichleroethane	< 0.61	0.61		yg/m3	1	12/22/2017 12:40:00 AM
( 1-Dichloroethene	< 0.59	0.59		սց/m3	1	12/22/2017 12:40:00 AM
1.2.4-Trichlorobenzese	< 1.1	1.1		ug/m3	1	12/22/2017 12:40:00 AM
1,2,4-Trimethylbenzene	< 0.74	0.74		սց/m3	1	12/22/2017 12:40:00 AM
1.2-Dibromoethane	< 1.2	1.2		ug/m\$	1	12/22/2017 12:40:00 AM
1.2-Oichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 12:40:00 AM
1.2-Dichloroethane	< 0.61	0.61		ug/m3	1	12/22/2017 12:40:00 AM
1 Z-Dichloropropane	< 0.69	0.69		սց/m3	1	12/22/2017 12:40:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	12/22/2017 12:40:00 AM
1.3-butadiene	< 0.33	0.33		ug/m3	1	12/22/2017 12:40:00 AM
1.3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	12/22/2017 12:40:00 AM
1.4-Dichlorobenzone	< 0.90	0.90		ug/m3	1	12/22/2017 12:40:00 AM
1.4-Dioxane	<1.1 UJ	1.1		ug/m3	1	12/22/2017 12:40:00 AM
2,2,4-tomethylpentane	< 0.70	0.70		ug/m3	1	12/22/2017 12:40:00 AM
4-ethylloluene	< 0.74	0.74		ยg/เท3	1	12/22/2017 12:40:00 AM
Acetone -	16	3.6		ug/m3	5	12/23/2017 1:17:00 AM
Allylichlonde	< 0.47	0.47		ug/m3	1	12/22/2017 12:40:00 AM
Benzene -	1.1	0.48		ug/m3	1	12/22/2017 12:40:00 AN
Benzyl chlorida	< 0.85	0.86		սց/m3	1	12/22/2017 12:40:00 AN
Bromodichloromethane	< 1.0	1,0		ug/m3	ា	12/22/2017 12:40:00 AM
Bromoform	< 1. <del>6</del>	1.6		ug/m3	1	12/22/2017 12:40:00 AN
Bromamethane	< 0.58	0.58		ug/m3	1	12/22/2017 12:40:00 AN
Carbon disulfide	< 0.47	0.47		ug/m3	1	12/22/2017 12:40:00 AN
Carbon tetrachloride -	0.44	0.25		ug/m3	1	12/22/2017 12:40:00 AN
Chlorobeozene	< 0.69	0.69		ug/m3	1	12/22/2017 12:40:00 AM
Chlorcethana	< 0.40	0.40		ug/m3	1	12/22/2017 12:40:00 AN
Chloroform	< 0.73	0.73		ug/m3	1	12/22/2017 12:40:00 AM
Chloromethane ~	0.81	0.31		μ <b>g/m</b> 3	1	12/22/2017 12:40:00 AN
cis-1,2-Dichlorgethene	< 0.59	0.59		ug/m3	1	12/22/2017 12:40:00 AM
cis-1,3-Dichloropropens	< Q.68	0.68		ug/m3	1	12/22/2017 12:40:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	12/22/2017 12:40:00 Af
Dibromochloromelhane	< 1.3	1,3		ug/m3	1	12/22/2017 12:40:00 Af
Ethyl acetale -	0.43	0.54	J	ug/m3	1	12/22/2017 12:40:00 Al
Ethylbenzene	< 0.65	0.65		ug/m3	1	12/22/2017 12:40:00 Al
Freen 11 -	1.2	0.84		ug/m3	1	12/22/2017 12:40:00 Al
Freen 113	< 1.1	1.1		աց/m3	1	12/22/2017 12:40:00 Al
Freen 114	< 1.0	\$.0		បន្ល/ពាធិ	1	12/22/2017 12:40:00 A

Qualifiers:

Page 25 of 26

Quantitation Limit

Analyte detected in the associated Method Blank Ħ

Holding times for preparation of analysis exceeded 15

Non-routine analyte. Quantitation estimated. JN

Spike Recovery nutside accepted recovery limits

Results reported are not blank corrected

[£] Estimated Value above quantitation range

Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

### Centek Laboratories, LLC The second secon

Date: 10-Jan-18

CLIENT:

LaBella Associates, P.C.

Lab Order:

C1712063

Project:

Eldre Corp

Lob ID.

C1712063-017A

Client Sample ID: Outdoor

Tag Number: 1179.265

Collection Date: 12/13/2017

Matrix: AIR

Lab ID: C1712063-017A	The second secon						
Analyses	Result	**Limit (	Qual	Units	DF	Date Analyzed	
AMORAL MAN O SUCIMA CT. TCE MC		TO-	15			Analyst: RJP	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	2.3	0.74		ug/m3	1	12/22/2017 12:40:00 AM	
Freon 12 -	0.41	0.63	J	ug/m3	1	12/22/2017 12:40:00 AM	
Heptane =	< 1.6	1.6		ug/m3	1	12/22/2017 12:40:00 AM	
Hexachloro-1,3-butadieng	0.78	0.53		uq/m3	1	12/22/2017 13:40:00 AM	
Hexane =	4.6	0.37		fiðuu 3	1	12/22/2017 12:40:00 AM	
teopropyi alcohol_	0.56	1.3	J	ug/m3	1	12/32/2017 12:40:00 AM	
m&p-Xylene =	4 1.2 <b>لاتا</b>		•	ug/m3	i	12/22/2017 12:40:00 AM	
Methyl Butyl Ketone	0.74	0.88	1	ug/m3	1	12/22/2017 12:40:00 AM	
Methyl Ethyl Kelone -		1.2		ug/m3	1	12/22/2017 12:40:00 AM	
Methyl Isobulyl Ketone	< 1.2	0,54		ug/m3	1	12/22/2017 12:40:00 AM	
Methyl tert-buly) ether	< 0.54	0.52		ug/m3	1	12/22/2017 12:40:00 AM	
Methylone chloride	2.7			ug/m3	1	12/22/2017 12:40:00 AM	
o-Xylene	< 0.65	0.65		_	•	12/22/2017 12:40:00 AM	
Propylene	< 0.26	0.26		ug/m3	,	12/22/2017 12:40:00 AM	
Styrene	< 0.64	0.64		ug/m3 ····!=-3		12/22/2017 12:40:00 AM	
Tetrachloroethylene	< 1.0	1,0		и <b>9</b> /m3	1	12/22/2017 12:40:00 AM	
Tetrahydrofuran	< 0.44	0.44		⊔g/m3		12/22/2017 12:40:00 AM	
Toluerie -	1,4	0.57		ug/m3	1	12/22/2017 12:40:00 AM	
trans-1,2-Dichloroethane	< 0.59	0.59		ug/m3	1	12/22/2017 12:40:00 AM	
trans-1,3-Dickloropropene	< 0.68	0.68		ug/m3	1	12/22/2017 12:40:00 AM	
Trichloroethene	< 0.16	0.16		ug/m3	1	12/22/2017 12:40:00 AM	
Vinyl acetate	< 0.53	0.53		ug/m3	1	12/22/2017 12:40:00 AM	
Vinyi Bromide	< 0.66	0.68		սը/ու3	1		
View chloride	< 0.10	0.10		ყე/ომ	1	12/22/2017 12:40:00 AM	



Qualifiers:

Vinyl chloride

Quantitation Limit

B. Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded }1

IN Non-routine analyte Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E - Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Lurit of Detection

Page 26 of 26



Date: 10-Jan-18

1

### QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT:

LaBella Associates, P.C.

Work Order:

C1712063

Project:

Eldre Corp

Test No:

TO-15

Matrix: A

1011101		/*************************************
Sample 1D	BR4F8Z	
ALCS100-122117	211	
ALCSTUG-122217	106	
ALC51UGD-122117	110	
ALCSTUGD-122217	111	
AMB1UG-122117	(5.0)	
AMB1UG-122217	75.0	
C1712063-001A	96.0	The state of the s
C1712063-001A MS	98.0	
C1712063-001A MSD	99.0	
C1712063-002A	80.0	
C1712063-003A	113	
C1712063-004A	81.0	
C1712063-005A	84.0	
C1712063-006A	0.18	
C1712063-007A	100	
C1712063-008A	84.0	
C1712063-009A	0,10	The state of the s
C1712063-010A	83.0	
C1712063-011A	86.0	
C1712063-012A	93.0	
C1712063-013A	87.0	
C1712063-014A	82.0	
C1712063-015A	91,0	

Acronym	<b></b>	Surrogate	QC Limits
BR4FBZ	<del>u</del>	Bramofluarobenzene	<del>70 130</del> 80-120
		recovery outside acceptan	

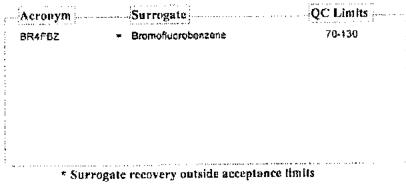
CLIENT:

LaBella Associates, P.C.

Work Order:

C1712063

Project:


Eldre Corp

Test No:

TO-15

Matrix: A

Sample ID	BR4FBZ /		·			<del></del>
				1	1	1
C1712063-017A	83.0	i.	į			



### Centek Laboratories, LLC GC/MS QA-QC Check Report

fune File : C:\HPCHEM\1\DATA2\2017DEC\A0122103.D
fune Time : 21 Dec 2017 10:28 am

Daily Cal	Libration	file :	с:\нрсн	EM/1/D	ATA2\20		3122103.D	164373	139156	
			(BFB	)			4/763 (IS1)	(IS2)	(IS3)	
CCV	12/21/17	10:28		10.60	12.83	17,56	29831 <b>/7199</b>	117409 <b>76445</b>	99397 <b>5963</b> 8	
lile	Sample	<b>:</b>	DL Sur		Recove			Standard Res		
O122104	D ALCSIU	G~122111	7 111	* * = * * *	*****		28996 🗸	122693	99555	: <u>m</u>
01.22105	D AMBLUG	1-122117	75	)			27931	109788	84888	- 
10122115	D C17120	63-002A	80	10,61	12.83	17.56	27947	11.1393	93288	
10122116	D C17120	63-004A	81	10:66	/2.83	17.56	28488	119028	99003	
10122117	D C17120	63-006A	81.	10,40	12.83	17.56	29204	119613	101635	
10122118	D C17120	63-008A	84	10,61	12.85	17,56	30144	147268	123752	
10122119	D C17120	63~010A	83	16.40	12:85	17.56	33779	155824	135034	
10122120	D C17120	63-011A	86	10,60	12.83	17.56	33739	157236	135272	
10122121	D C17120	63-013A	87	1016	12.83	17.56	35217	158400	134892	
10122122	D C17120	63-014A	82	16,41	12.83	17.56	38374	154467	135308	
(0122123	D C17120	63-016A	82	10.60	12.82	17.56	32723	122520	93219	<b>.</b>
103.221.24	D C17120	63-017A	83	10,59	12.82	17.56	29360	116019	90206	. <b>-</b>
\0122125	D ALCSIU	GD-12213	17 110	10.59	12,83	17.56	30198	116840	94590 	
10122126	D C17120	63-003A	113	10,60	12.85	17.56	34102	141416	(157825)	
\0122127	D C171.20	63- <del>865</del> A	<b>X5</b> 84	10,59	12.83	17,56	32636	130968	117795	
\0122128	D C17120	63-007A	100	10,60	12.85	17.56	35416	142832	150689	a 1-
10122329	.D C17120	63-009A	91	10,60	12.85	17.56	34838	135840	134756	
(0122130	D C17120	63~012A	93	10,60	12.82	17.50	33745	134485	(141572)	
(0122131	D C17120	63- <del>015A</del> (	<b>205</b> 91	10,40	/2.83	17,56	31636	122159	118620	
10122132	D C17120	63-001A	96	10.41	12.83	17.56	31357	131559	123656	
10122133	D C17120	63-001A	MS 98			<b>.</b>	32593	128983	128259	
\Q122134	D C17120	63-001A	M\$D 99			****	32163	128753	119976	. w

t - fails 24hr time check * - fails criteria

Created: Wed Jan 10 09:27:30 2018 MSD #1/

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA2\2017DEC\A0122203.D tune Time : 22 Dec 2017 9:48 am

arily our	bration File :	٠. ,,	(BFB)	(2.1.3.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	The second	39038 (ISI)	/ <b>5//0%</b> (IS2)	/ <b>179/2</b> (IS3)
Ccv 12/2	2/17 0948 Sample	DL			/2.84 ecovery		27884 <b>/6730</b>	107934 <b>64740</b> andard Respo	91366 <b>1482</b> 0
	) ALCS1UG-12221		106	· 10 12 CB	ᄄᇹᇎᇔᇎᇶᇷ	=======	27634	103731	90475
0122205.0	AMB1UG-122217		(75)				25697	99388	78135
0122221.5	C1712063-002A	20X	76	16,60	12.83	17.56	24618	93104	70873
0122222.0	C1712063-004A	9X	74	10.61	12.82	17.56	24921	94151	73967
O12223.E	C1712063-004A	90X	76	10,61	12.85	17.56	24455	91802	70208
0122224.1	C1712063-006A	9X			12,83	17.56	24742	95678	74243
0122225.0	C1712063-006A	90X	75√	10,60	12.83	17.56	23736	93337	70778
.01.22226.0	C1712063-016A	5 X	73√	10.60	12.85	17.56	23960	92622	71561
.0122227.0	C1712063-017A	5 X	76./	10,60	12.82	17.56	24058	94789	71991
.0122228.D	ALCS1UGD-1222	1.7	111.	~ * "			25485	98724	81455
.0122229.0	C1712063-003A	27X	82 /	0.60	2.82	17.50	26308	101661	89223
O122230.D	C1712063-003A	2702	¢ 77/	16.60	/2.83	17.56	25489	95894	74534
0122231.0	C1712063-005A	9X	· - <i>-</i>	10.60		17.56	25567	102852	78759
O122232.D	C1712063-005A	xoe	761	10.60	12.82	17.56	25108	93680	71586
O122233.D	C1712063-007A	. 10X	80	10,60	12.82	17.56	26678	102820	92305
.0122234,D	C1712063~009A	. 4X	60	10.61	12.83	17,56	26837	106053	91343
.0122235.D	C1712063-012A	4X		10,61	12.83	~	26773	107259	102726
.0122236.D	C1712063-015A	20X	74	10.60	12.83	17.50	25762	95063	74265
O122237.D	C1712063-001A	. 9X	<b>B</b> D	10.61	12.83	17.56	26129	101322	85498
O122238.D	C1712063-001A	90X	76√	10,60	12.83	17.56	26264	95793	74017

t - fails 24hr time check * - fails criteria

Created: Wed Jan 10 09:30:12 2018 MSD #1/



# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

LaBella Associates, P.C. CLIENT:

C1712063 Work Order:

Eldre Corp Project:

	SampType: LCS	TestCode: 0.25CT-TCE-	25CT-TCE-	Units: puby		Prep Date:		u	RunNo: 13073	173	
Client 10: ZZZZZ	Batch (D): R13073	Testivo: TO-15	2-15		`	Analysis Dale:	12/21/2017	0,	SegNo: 151944	944	
Analyte	Result	PQL SPK	SPK value SP	SPK Ref Val	%REC	1 pont in the	HighLimit RPD Ref Val	ef Val	%RPD	RPDLimit	Oual
1, £, 1-Trichloroethare	1,010	0.15	-	٥	7 101	20	130				
1,1,2,2-Tetrachloroethane	1.010	0.15	<del>-</del>	a	101	70	130				
1,1,2-Trichloroethane	1.010	0.15	-	٥	õ	70	130				
1, t-Dichtoroethane	1.020	0.15	-	0	102	70	130				
1,3-Dichteraethene	0.8700	0.15	-	0	87.0	2	130				
1,2,4-Trichlorobenzene	0.9900	0.15	-	0	0.65	2	130				
1,2,4-Trimethylbenzene	1.020	0.15	-	0	102	20	130				
1,2-Dibromoethane	0096 O	0.15	-	0	0.96	2	130				
1,2-Dichkprobenzene	1.030	0.15	-	D	103	22	130				
1,2-Dichloroethane	1,000	0.15	-	0	300	22	130				
1,2-Dichlorepropane	1.000	0.15	-	0	5	2	130				
f,3,5-Trimethylbenzene	1.080	0.15	-	0	109	25	130				
1,3-butadiene	1.070	0.15	<b></b>	0	107	20	130				
1,3-Dichlorobenzene	1,040	Q.35		0	ş	8	<del>1</del> 30				
1,4-Dichorobenzere	1.060	0,15	-	0	106	70	130				
t,4-Dioxane	0.8160	0.30	-	0	81.0	29	138				
2,2,4-trimethy ipentane	0.9500	0, 15	-	O	95.0	70	130				
4-ethylloluene	1,040	0.55		0	ā	57	53				
Acetone	0.9500	0.30		Ð	95.0	52	130				
Allyl chloride	0.9400	0.15	₩	o	94.0	30	£30				
депгене	0.9100	0,15	-	€	91.0	2	133				
Benzyl chloride	1.030	0.15	<del></del>	÷	<b>103</b>	20	56				
Bromodichloromethane	1,010	0.15		0	101	5	130				
Втовнобогт	1.020	0.15	-	0	102	70	130				
Бгототеthane	1,060	0.15	-	•	106 80	52	130				
Qualifiers: Reselts rep	Results reponed are not blank corrected	<u>81</u>	Estimated	Estimated Value above quantitation range	Hation rang	. <b>.</b>	¥f }{obeling t	imes for pre-	paralion of a	Holding times for preparation or analysis exceeded	22
J Analyte det	Analyte detected below quantitation limit	Q.		Not Detacted at the Limit of Detection	<b>Xetection</b>		R RPD cuts	RPD outside accepted recovery limits	recovery lin	slir	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3										

	CLENT: LaBella Associates, P.C.	CLIENT: LaBella Associates, P.C.	
	Work Order:	(171366)	
Pa	Project	Eddic Corp Test Code	TestCode: 0.25C1-TCE-VC

PQL SPK Value SPK Ref Val SPK R	Alybris Date:         12/21/2017         SeqNo:         15/944           70         130         RPD Ret Vat         RRPD         RPP           70         130         RPP         RP
disulfide         PQL         SPK value         SPK Ref Val         %REC         Jpm Interplantide           disulfide         0.9500         0.15         1         0         95.0         70           retrachloride         0.9700         0.040         1         0         95.0         70           inflare         1.060         0.15         1         0         96.0         70           inflare         1.060         0.15         1         0         96.0         70           inflare         1.060         0.15         1         0         96.0         70           Orthkorpropene         0.9500         0.15         1         0         96.0         70           Italia         0.9500         0.15         1         0	HighLimit RPD Ret Val 130 130 130 130 130 130 130 130 130 130
ride         0.9500         0.15         1         0         95.0           1.060         0.040         1         0         97.0           1.060         0.15         1         0         97.0           1.060         0.15         1         0         98.0           1.010         0.15         1         0         101           1.090         0.15         1         0         109           0.9500         0.15         1         0         93.0           sixpene         0.9500         0.15         1         0         95.0           ethane         0.9500         0.15         1         0         96.0           espect         0.15         1         0         96.0         96.0           0.9500         0.15         1         0         96.0         96.0           0.9500         0.15         1         0         96.0         96.0           1.030         0.15         1         0         96.0         96.0           1.030         0.15         1         0         96.0         96.0         96.0           1.030         0.15         1         0	
tide 0.9700 0.040 1 0 97.0  0.9800 0.15 1 0 98.0  1.060 0.15 1 0 0 98.0  1.070 0.15 1 0 0 98.0  1.090 0.15 1 0 0 109  0.9500 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 98.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.15 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0  0.9800 0.10 1 0 0 99.0	
6.9800 0.15 1 6 98.0 1.060 0.15 1 6 106 1.070 0.15 1 0 109 1.090 0.15 1 0 109 0.9300 0.15 1 0 0 109 0.9500 0.15 1 0 0 93.0 0.9800 0.15 1 0 0 95.0 0.9400 0.15 1 0 0 95.0 0.9600 0.15 1 0 0 96.0 1.030 0.15 1 0 0 96.0 1.030 0.15 1 0 0 96.0 1.030 0.15 1 0 0 96.0 1.030 0.15 1 0 0 96.0 1.030 0.15 1 0 0 97.0 1.990 0.30 1.5 1 0 0 97.0 1.990 0.30 1 0 97.0 0.8300 0.30 1 0 95.0 0.8500 0.30 1 0 0 95.0	
1.060 0.15 1 60 100 100 100 100 100 100 100 100 10	
1.010 0.15 1 00 100 100 100 100 100 100 100 100	
1.090 0.15 1 00 100 100 0.09300 0.15 1 0 0 93.0 0.9300 0.15 1 0 0 93.0 0.9500 0.15 1 0 0 93.0 0.9500 0.15 1 0 0 95.0 0.09500 0.15 1 0 0 95.0 0.09500 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0 0 95.0 0.15 1 0	
6.9500 0.15 1 6 93.0  6.9500 0.15 1 6 93.0  6.9500 0.15 1 0 9 95.0  6.9500 0.15 1 0 9 95.0  6.9400 0.15 1 0 0 95.0  6.9400 0.15 1 0 0 95.0  7.030 0.15 1 0 0 95.0  7.030 0.15 1 0 0 95.0  7.030 0.15 1 0 0 95.0  7.030 0.30 1 0 97.0  7.030 0.30 1 0 95.0  7.030 0.30 1 0 95.0  7.030 0.30 1 0 95.0  7.030 0.30 1 0 95.0  7.030 0.30 1 0 95.0  7.030 0.30 1 0 95.0	
6.9500 0.15 1 6 96.0  6.9500 0.15 1 0 95.0  1.010 0.15 1 0 95.0  1.010 0.15 1 0 10  1.010 0.15 1 0 10  1.010 0.15 1 0 10  1.030 0.15 1 0 94.0  1.030 0.15 1 0 96.0  1.040 0.15 1 0 96.0  1.0500 0.15 1 0 96.0  1.0500 0.15 1 0 96.0  1.0500 0.15 1 0 97.0  1.090 0.30 1 0 97.0  1.090 0.30 1 0 97.0  1.090 0.30 1 0 95.0  1.09200 0.30 1 0 95.0  1.09200 0.30 1 0 95.0  1.09200 0.30 1 0 95.0	
pyringitialize         1,016         0.15         1         0         95.0           pyringitialize         1,016         0.15         1         0         101           pyringitialize         0,8800         0.15         1         0         101           pyringitialize         0,9400         0.15         1         0         94.0           pyringitialize         0,9500         0.15         1         0         94.0           phol         1,030         0.15         1         0         95.0           phol         1,090         0.30         1         0         97.0           cetone         0,9700         0.30         1         0         97.0           ptol         1,990         0.30         1         0         97.0           ptylicione         0,300         0,30         1         0         97.0           ptylicione         0,300	
Annethane         1,016         0.15         1         00         101           0,8800         0.15         1         0         88.0           0,9400         0.15         1         0         88.0           1,140         0.15         1         0         94.0           1,130         0.15         1         0         94.0           1,030         0.15         1         0         103           1,060         0.15         1         0         96.0           1,060         0.15         1         0         103           1,090         0.15         1         0         97.0           Inhol         1,990         0.30         1         0         97.0           Actone         0.9700         0.15         1         0         97.0           Actone         0.9700         0.30         1         0         97.0           Actone         0.9800         0.30         1         0         97.0           Actone         0.950         0.30         1         0         95.0           Actone         0.950         0.30         1         0         95.0	
0.8800         0.15         1         0         86.0           0.9400         0.15         1         0         94.0           1.110         0.15         1         0         94.0           1.030         0.15         1         0         94.0           1.030         0.15         1         0         96.0           1.030         0.15         1         0         96.0           1.040         0.15         1         0         96.0           hol         1.01         0         101         97.0           hol         0.9700         0.15         1         0         97.0           cetone         0.9700         0.15         1         0         97.0           cetone         0.9700         0.15         1         0         97.0           cetone         0.9700         0.30         2         0         99.5           cetone         0.9300         0.30         1         0         97.0           cetone         0.9500         0.30         1         0         95.0           cetone         0.9500         0.30         1         0         95.0	
3.9400         6.15         1         6         94.0           1.110         6.15         1         0         94.0           1.030         0.15         1         0         96.0           1.030         0.15         1         0         96.0           1.030         0.15         1         0         103           3-buladiere         1.010         0.15         1         0         106           3-buladiere         1.010         0.15         1         0         95.0           hol         1.090         0.15         1         0         97.0           ketone         0.9700         0.15         1         0         97.0           ketone         0.9700         0.30         2         0         99.5           ketone         0.9800         0.30         1         0         97.0           ketone         0.9800         0.30         1         0         95.0           ketone         0.9800         0.30         1         0         95.0	
3-110         0.15         1         0         111           0.9600         0.15         1         0         96.0           1.030         0.15         1         0         96.0           1.040         0.15         1         0         103           3-buladiere         1.010         0.15         1         0         96.0           hol         1.010         0.15         1         0         97.0           hol         1.990         0.30         2         0         99.5           cetone         0.9700         0.30         1         0         97.0           vetone         0.800         0.30         1         0         97.0           vetone         0.8500         0.30         1         0         95.0           vit ether         0.9500         0.30         1         0         95.0	
0.9600     0.15     1     0     96.0       1.030     0.15     1     0     103       1.060     0.15     1     0     106       0.9602     0.15     1     0     106       0.9700     0.15     1     0     95.0       0.9700     0.15     1     0     97.0       0.9700     0.30     2     0     97.0       0.8700     0.30     1     0     97.0       0.8300     0.30     1     0     97.0       0.9500     0.15     1     0     95.0	
1,030     0,15     1     0     103       1,060     0,15     1     0     106       0,960     0,15     1     0     96.0       1,010     0,15     1     0     96.0       0,970     0,15     1     0     97.0       0,970     0,30     2     0     99.5       0,8300     0,30     1     0     97.0       0,820     0,30     1     0     97.0       0,850     0,15     1     0     95.0	
1,060     0.15     1     0     106       0,9602     0.15     1     0     95.0       1,010     0.15     1     0     101       0,9700     0.15     1     0     97.0       1,990     0.30     1     0     97.0       0,8700     0.30     1     0     97.0       0,8300     0.30     1     0     97.0       0,8500     0.15     1     0     95.0       0,8500     0.15     1     0     95.0	
0.9600     0.15     1     0     96.0       1.010     0.15     1     0     101       0.9700     0.15     1     0     97.0       0.9700     0.30     2     0     99.5       0.9700     0.30     1     0     97.0       0.8300     0.30     1     0     83.0       0.9500     0.15     1     0     92.0	
1.010 0.15 1 0 101 0.9700 0.15 1 0 97.0 0.9700 0.30 2 0 99.5 0.9700 0.30 1 0 97.0 0.8300 0.30 1 0 92.0 0.9500 0.15 1 0 95.0	
0.9700         0.15         1         0         97.0           0.9700         0.15         1         0         97.0           she         0.9700         0.30         2         0         99.5           she         0.9700         0.30         1         0         97.0           elone         0.9200         0.30         1         0         92.0           ether         0.9500         0.15         1         0         95.0	
0.9700         0.15         1         0         97.0           1,990         0.30         2         0         99.5           nne         0.9700         0.30         1         0         97.0           eione         0.300         1         0         97.0           ether         0.300         1         0         92.0           ether         0.9500         0.15         1         0         95.0	
1,990 0,30 2 0 99.5 0,9700 0,30 1 0 97.0 0,8200 0,30 1 0 92.0 0,9500 0.15 1 0 95.0	
0.9700 0.30 1 0 97.0 0.8300 0.30 1 0 83.0 0.9200 0.30 1 0 92.0 0.9500 0.15 1 0 95.0	
0.8300     0.30     1     0     83.0       0.9200     0.30     1     0     92.0       0.9500     0.15     1     0     95.0	
6.9200 0.30 1 0 92.0 6.9500 0.15 1 0 95.0	
0.9500 0.15 1 0 95.0	70 130
	70 130
Methylene chloride 0.9700 0.15 1 0 97.0 70	70 130
o-Xylene 1.010 0.15 t 0 101 70	
Propytene 1,130 0.15 1 0 113 70	70 130
1,030 0,15 1 0 103 70	70 130
Tetrahydrofuran 0.89.00 0.15 1 0 89.0 70	70 130
Qualifiers: Results reported are not blank connected. E. Entimated Value above quantitation range.	[4] Holding times for preparation of analysis exceeded
J. Analyte detected below quantitation limit. MD. Not Detected at the Limit of Detection	

ij
Labella Associates, P.C.
CELENTS

C1712063 Work Order:

Eldre Corp Project:

Sample ID: ALCSTUG-122117	UG-122117	nple ID: ALCS1UG-122117 SampType: LCS	TestCox	TestCode: 0,25CT-1CE-	e- Units: ppbV		Prep Date:	24	RunMo: 13073		
Client ID: 22222		Batch (D: R13073	Test	TestNo: TO:15		•	Analycie Date.	410679464	Cooking Arena		
			9			£	פופעופיווי		Section 151944		
Analyte		Resull	Pa	SPK value	SPK Ref Val	%REC	Lowdimil !	Hightimit RPD Ref Val	%RPD	RPDLimit Qual	
Toluene		09260	0.15	-	b	95.0 🗸	202	130			ו
trans-1,2-Orchloroethene	thene	0.9500	0.15	-	Ď	95.0	20	130			
(rans-1,3-Dichtoropropene	opene	0.9100	0.15	-	O	91.0	22	130			
Trichforaethene		0.8900	0.030	-	0	89.0	20	130			
Vinyl acetate		0.8600	0.15	-	Ċ	86.0	5	13.6			
Vinyt Bromide		1.040	0.15	-	o	<b>\$</b> 04	22	130			
Vinyl chloride		0.9900	0.040	-	0	99.0	70	130			
Sample IO: ALCS1UG-122217	UG-122217	SampType: LCS	TestCo	TestCode; 0.25CT-TCE-	- Units: ppbV		Prep Date:		RunNe: 13074		
Cfent ID: ZZZZZ		Batch ID: R13074	Test	TestNo: TO-15		4	Analysis Date:	12/22/2017	SeqNo: 151966		
Analyte		Result	POL	SPX value	SPK Rei Vai	%REC	LowLimit	HighLimik RPD Ref Val	%RPD	RPUSimit Qual	
1,1,1-Trichloroethane	ne	1.130	0.15	<del></del>	0	111	70	130			״
1,1,2,2-Tetrachiomethane	ethane	1.030	0.15	***	Q	101	2	130			
1,1,2-Trichloroethane	€	1,100	0.15	***	Ф	110	8	130			
1,1-Dichloroethane		0.9700	0.15	<b>y~</b>	0	97.0	70	130			
1,1-Dichloroethene		0.7700	0.15	-	0	77.0	70	430			
1,2,4-Trichlorobenzene	cene	0.9700	0.15	•	Ð	97.0	5	130			
1,2,4-Trimethy@benzene	zene	0.9500	0.15	-	0	95.0	2	130			
1,2-Dibromoethane	. د د	1.010	0.15	<b>v</b> -	۵	101	20	130			
1,2-Dichloroberzene	핟	1.020	0.15	<b>-</b>	0	102	70	130			
1,2-Dichloroethane		0.9600	0.15	••	O	96.0	72	130			
1,2-Dichlotopropane	อี	1.080	0.15	•	0	108	20	130			
1,3,5-Trimethylbenzene	3ERE	1.050	0.15	•	o	105	2	130			
1,3-butadiene		1.040	0.15	4-0	0	104	02	130			
1,3-Dichlorobenzene	솯	1,020	0.15	<b>ب</b>	a	102	70	130			
1,4-Dichlorobenzene	ē	1.050	0.15	۴	Ó	105	2	130			
1,4-Dioxane		0.8600	0.30	<b>4-</b>	۵	88.0	2	130			
2,2,4-trimeffylpentane	ane	1.010	0.35	<b>₹</b> -	ô	101	õ	130			
4-eihyltoluene		1.020	0.15	-	ø	102	Š,	130			
Qualifices:	Results reported	Results reported are not blank corrected		Е Еміта	Estimated Volue above quantitation cange	sitation cange		H Holding ri	Holding times for preparation or analysis exceeded	is excurded	
πт,	Apolyte dett	Analyte detected below quantitation fight		NO Not Det	Not Detected at the Lisait of Detection	Detection		R RPD oursi	RPD outside accepted rocovery limits		
st.	Spike Recon	Spike Recovery autside accepted recovery bimits	bincids							Page 3 of 3	

:	
:	
:	
	LaBella Associates, P.C.
	CUENT

C1712063 Work Order:

Eldre Corp Project:

0.25CT-TCE-VC	
<b>TestCode:</b>	

Clent (D: ZZZZZ	Batch ID. R13074	TestNo: TO-15	TO-15		•	Analysis Date:	12/22/2017	SeqNo: 151956
Analyte	Result	POL	SPK vatue	SPK Ref Val	%REC	Loyd imit H	HighLimit RPD Ref Val	*RPD RPDLIMI Qual
Acetone	0.8900	0.30	4	0	39.0	02	130	
Allyl chloride	0.8900	0.15	_	0	89.0	0,	130	
Benzene	0.9800	0.15	-	0	0,86	02	130	
Benzyl chloride	1.020	0,15	-	0	102	70	130	
Bromodichloromethane	1.090	0.15	-	0	109	5	130	
Bramoform	1.010	0.15	~	0	101	02	130	
Bromomethane	0.9900	0.15	*	0	99.0	0,2	130	
Carbon disulfide	0.9400	0.15	-	0	9,0	70	138	
Carbon tetrachloride	1.050	0.040	-	0	105	70	130	
Chlorobenzene	0.9800	0.15	-	0	98.0	7.0	130	
Chloroethane	0.9800	0.15	-	0	98.0	70	130	
Chloroform	1.000	0.15	•	0	50	70	130	
Chloromethane	1.070	0.15	•	0	107	5	130	
cis-1,2-Dichloroethene	0.9100	0.15	۲	0	91.0	0,	130	
cia-1,3-Dichlotopropene	1.070	0,15	•	0	107	70	130	
Cyclobexane	0.9700	0.15	-	٥	97.0	2	130	
Dibromochloromethane	1.020	0.15	₩.	0	102	5	130	
Ethyl acetale	0.8400	0.15	-1	o	<u>%</u>	20	130	
Ethylbenzene	0.9200	0.15	*	0	92.0	67	130	
Freon 11	5,070	0.15		0	107	5	<del>13</del>	
Freen 113	0.9500	0.15	-	O	95.0	70	130	
Freon 114	1,050	0.15	-	o	105	70	130	
Freon 12	1.070	0,15	-	o	107	70	130	
Heptane	1.010	0.15	<b>-</b>	0	ş	Ď,	130	
Hexachloro-1,3-butadiene	1.010	0.15	<b>4</b> 11	œ	5	0.T	130	
Нехапе	00006:0	0.15	<b>*</b> *	Ö	0.06	70	130	
Isopropyl alcoho?	0.7800	0.15		O	78.0	76	130	
m&p-Xylene	1.950	0.30	8	Ċ	97.5	2	130	
Methyl Butyl Ketone	1,910	0.30	-	Ó	191	202	130	
Methyl Ethyl Kalone	0.7800	0.30	-	Ö	78.0	70	130	
/l Ketone		0.30	<b></b> -	O	97.0	22	130	:
Qualifiers: Results rep	Results reported are not blank corrected		E Estiman	Estimated Value above quantitation range	filatios rang	2	H Holding times for p	-
J Analyle de	Analyte deveted below quantitatina limit		ND Not De	Not Detected at the Limit of Detection	Perceion		R RPD outside acre	RPD outside accepted recovery limits

S.C.
Associates,
LaBella
CLIENT

,我们就是我们的时间,我们就是我们的时间,我们就是我们的时候,我们就是我们的时候,我们就是我们的一个人,我们就是我们的时候,我们就是我们的人,我们就是我们的人,

TestCode: 0.25CT-TCE-VC

C1712063 Eldre Corp Work Order:

Project:

Sample ID: ALCS1UG-122217	SampType: LCS	TestCo	de: 0.25CT-TC	TestCode: 0.25CT-TCE- Units: ppbV		Prep Date:	ئۆ		RunNo, 13074	)74	
Client ID; ZZZZ	Batch ID. R13074	Test	TestNo: TO-15		₹	nalysis Dat	Analysis Date: 12/22/2017	4	SeqNo: 151966	9961	
Analyte	Result	정	SPK value	SPK Ref Vak	%REC	%REC LOWLINE	HighLimit RPD Ref Val	PD Ref Val	%RPD	%RPD RPDLIMI	Qual
Methyl ten-butyl ether	0.9000	0.15	1	D	> 0.06	70	130				
Wethylene chloride	0.9700	0.15	<b>←</b>	o	0.79	70	<del>(S)</del>				
b-Xylene	1.036	0.15	_	٥	103	70	130				
Propylene	1,070	6.15	_	0	£03	ß	130				
Siyrene	1,040	0.15	-	0	\$	2	130				
Tetrachloroethylene	1.010	0.15	-	٥	101	22	130				
Tetrahydrofuran	0.8500	0.15	•	Đ	85.0	202	130				
Totuene	0.9200	0.15	-	Ð	92.0	2	130				
trans-1,2-Dichloroethene	0.9500	0.15	-	0	95.0	2	£				
trans-1,3-Dichloropropene	0.9800	0.15	-	0	98.0	5	139				
Trickloroethene	0.9700	0:030	_	0	97.0	2	130				
Vinyl acetate	0.8300	0.15	-		83.0	7.0	130				
Vinyl Bramide	1.000	0.15	+-	a	8	02	130				
Vinyl chlorida	0086:0	0.040	τ-	٥	99.0	70	130				

1	-	Results reported are not blank corrected Estimated Value above quantitution tunge if Holding times for preparation or analysis exceeded	<u>.</u>	Estimated Value above quantitution mage	7	Holding times for preparation or analysis exceeded	
	_	Analyse detected below quantitation finish	Q	ND Not Detected at the Limit of Detection	œ	RPD outside accepted recovery limits	
	S	Spike Recovery outside accepted recovery limits				Page	24 24

Qualifiers:

TestCode: 0.25CT-TCE-VC

## (CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

Laßella Associates, P.C. CLIENT:

C1712063 Work Order:

Eldre Corp Project:

Sample ID: ALCS1UGD-122117	7 SampType: LCSD	TestCod	TestCode: 0.25CT-FCE-	CE- Units: ppbV		Prep Date:			Rucho: 13073	033	
Client (O; 22222	Batch (D): R13073	TestM	Testivo: TO-15		•	Analysis Date:	12/22/2017	1017	SeqNo: 151945	1945	
Analyte	Result	Pa	SPK value	SPK Ref Val	%REC	Loughimil H	High≟imil	RPD Ref Val	%RPD	RPDLimit	Q Fa
.t.1-Trichlomelhane	1.030	0.15	-	Q	<b>£</b> 03	67	138	1.01	<u>8</u>	33	
. 1.2,2-Tetrachloroethane	1.020	0.15	1	0	305	70	130	1.01	0.985	8	
,1,2-Trichlomethane	1.040	9.15	-	o	<b>†</b> 04	92	50	1.01	2.53	99	
.1-Dichlonethane	0.9600	0.15	<b>*</b>	٥	0.96	70	130	1.02	90.9	8	
t, 1-Dichtoroethene	0.8500	51.6	-	0	85.0	70	130	0.87	2.33	ន	
5,2,4-Trichlorobenzene	0.8100	0.15	~	0	81.0	2	130	0.99	20.0	8	
1,2,4-Trimethylbenzene	0.9400	0.15	•	0	94.0	5	130	\$.02	8.16	8	
1,2-Dibromoethane	0.9900	0.15	-	0	0.99	ę	130	96.0	3.08	ි	
1,2-Dichlorobenzene	1,000	0.15	-	0	56	ę	55	1,03	2.96	8	
1.2-Dichloroethane	0.9500	0.15	-	0	95.0	ę	130	•	5.13	30	
1.2-Dichloropropane	1.010	0,15	•	0	ē	6	130	-	0.996	8	
3,3,5-Trimethylbenzene	1.060	0.15	**	O	90,	70	130	1.08	1.87	8	
1,3-bulaciene	0.9600	0.15	**	Ċ	96.0	70	130	1.07	10.8	30	
1,3-Dichlorobenzene	1,660	0.15	*	o	5	õ	130	<u>8</u>	1.90	ଛ	
1,4-Dichlorobenzene	1.960	0.15	<b>h.</b>	0	5	67	130	1.86	0	30	
,4-Dioxane	0.2600	0.30	~	Ó	(3g)	70	130	0.81	0	30	ध
2,2,4-trimethylpentane	0066:0	0.15	\ <del>-</del>	ø	) 68 68	07	130	0.95	4.12	8	
4-ethyttoluene	1.040	0.15	-	o	ž	92	130	1.04	O	怒	
Acetone	0.8300	0.30	•	0	83.0	92	8	0.95	13.5	怒	
Allyl chlonde	0,9000	0.15	•	Ð	99.0	70	8	0.94	4.35	ଜ	
Benzene	0.9600	0.15	•	ø	96.0	02	136	0.91	5.35	ଛ	
Benzyl chloride	0.9900	0.15	•	•	99.0	70	130	1.03	3.96	8	
Вголюдісью петрапе	1.040	0.15	•	•	<b>₫</b>	6	130	1.01	2.93	ଝ	
Bromoform	1.040	ō 간	•	Ф	<u> </u>	ð.	130	1,02	1.94	Se Se	
Bromomethane	0.9300	0.15	-	٥	93.0	R	130	1.06	13.1	30	
Qualifiers: Results re	Results reported are not Mank corrected	:	E Estim	Estimated Value above quantitation range	Hitation rati	· ·	=	Rolding times for preparation or analysis exceeded	preparation or a	malysis exceed	128
-	Analyte detected below quantitation listst		NO CE	Not Detected at the Limit of Detection	Detection		æ	RPD outside accepted recovery limits	sted recovery lis	Rics	

CLIENT: Labella Associates, P.C. CLIENT:

Eldre Corp

TestCode: 0.25CT-TCE-VC

Client ID: ZZZZZ		Baich 10: R13073	Testh	estNo: TD-15			Analysis Date:	12/22/2017	917	SeqNo: 151945	1945	
Analyte		Result	장	SPK value SP	SPK Rei Val	%REC	LowLimit	Hightimit	RPD Ref Val	%RPD	RP DLIMI	Qual
Carbon disulfice		0.9400	0.15	-	0	0.2%	52	130	0.95	1.06	E	
Carbon letrachloride		0066'0	0.040		٥	35.0	52	130	0.97	2.04	æ	
Chlorobenzene		0.9700	0.15		0	0.78	70	130	96.0	1.03	S	
Chloroethane		0.9400	0.15	ų,a	o	<b>Å</b>	02	130	1.06	12.0	8	
Chloroform		0.9700	0.15		ę	97.0	52	530	1.01	4.04	æ	,
Chloromethane		0.9800	0.15	+-	o	98.0	70	130	1.09	10.6	93	
cis-1,2-Dichloroethene		0.9200	0.15	1.0	G	92.0	70	130	0.93	1.08	<b>€</b>	
cis-1,3-Dichloropropene		0.9100	0.15	*	0	91.0	70	130	96.0	5.35	8	
Cyclohexane		0.9600	0.15	F	O	95.0	7.0	130	0.95	1.05	용	
Dibromochloromethane		1.040	0.15	<del></del>	¢	호	92	130	1.01	2.93	8	
Ethyl acelate		0.7900	0.15		0	79.0	70	130	0.68	10.8	8	
Ethylbeazene		0.9200	0.15		C	92.0	70	130	0.94	2.15	8	
Freon 11		0.9900	0.15	-	O	99.0	92	130	1,11	11.4	8	
Fredn 113		0026'0	0.15	•	Q	52,0	0.2	33	96.0	4.26	8	
Freon 114		1.000	0.15	€-	٥	<del>5</del>	92	<del>5</del>	1,03	2.96	ଛ	
Freen 12		1.030	0.15	-	O	±03	5	<del>(</del> 8	1.06	2.87	8	
Heptane		0.9700	0.15	-	o	0.78	2	130	0.96	1.02	දි	
Hexachtoro-1,3-butadiene	53	0.9100	<b>0</b> ,	-	0	94.0	70	<u>8</u>	1.03	10.4	ੜ	
Hexane		0.9000	0.15	•	o	<b>8</b> 0€	Ü	130	0.97	7.49	8	
laopropyi alcohol		0.7200	0.15	-	0	72.0	ő	130	0.97	29,6	8	
m&p-Xytene		1.980	0.30	2	0	9( 8(	92	130	1.99	0.504	30	
Methyl Butyl Katone		0.1500	0.30	<b>-</b>	0	9	70	130	0.97	Ö	30 30	5
Methyl Ethyl Ketone		0.7600	0.30	-	0	26.0	Ď	130	0.83	8.81	30	
Methyl (sobutyl Ketone		0.1800	0.30		0	18.0	ę	130	0.92	O	30	- St
Methyl tert-butyl either		0.8700	đ.	₩.	Ċ	87.0	20	130	0.95	8.79	S	
Methylena chloride		0.9500	0.15	<b>,,,</b> ,	ò	95.0	92	130	75.0	2.08	99	_
o-Xylene		1,040	0.15	+-	٥	104	£	130	£.9	2.93	8	_
Propylene		1.000	0,15	~	o	<del>6</del>	52 02	130	1,13	12.2	8	_
Styrene		1.070	0.15	<b>u</b> n	٥	107	20	130	£.	3.81	ଞ	_
Terrachloroethylene		1,020	0.15	1=	Ċ	102	70	£1	1.03	0.985	8	_
Tetrahydrofuran		0.8300	0.15	•	Ċ	93.0	2	130	89.0	6.93	유 :	_
Qualiffers: Resu	wits reported	Results reported are not blank entrected		F. Estimated	Estimated Vake above quantitation range	निकासिका		# #	Holding times for preparation or analysis exceeded	рисраваноп ог	anulysis excor	<u> </u>
_	lyte detector	Analyte detected below quentitution limit		ND No Detect	Not Detected at the Listin of Detection	Detection		~	RPD outside accepted recovery limits	pred recovery li	mits	

C1712063 Work Order:

TestCode: 0.25CT-TCE-VC

Sample (D: ALCS1UGD-122117	SampType: LCSD	TestCode	estCode: 0.25CT-TCE-	Units: ppbV		Prep Date:			RusNo: 13873	973	
Cilent ID: ZZZZZ	Batch ID: R13073	TestNo: TO-15	TO-15		न्द	Analysis Date:	12/22/2017	17	SeqNo: 151945	1945	
Analyte	Result	POL SI	SPK value SPI	SPK Ref Val	%REC	Manufacture H	HaghLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Tairene	0.9500	0.15	-	0	95.0 🗸	2	85	0.95	0	30	
trans-1,2-Dichiorgethene	5.9300	0.15	<b>-</b>	Q	93.0	22	<del>13</del> 0	0.95	2.13	30	
kans-1,3-Dichforopropene	0.9100	0.15	-	ū	91.0	R	130	0.91	¢	30	
Trichloroethene	0,9600	0.030	-	٥	96.0	R	13	0.89	7.57	30	
Vinyl acetate	0.8600	0.15	-	0	86.0	2	85	O.RS	Ö	30	
Vinyl Bromide	0.9700	0.15	<del>-</del>	0	0.76	70	8	<u>\$</u> .	5.97	8	
Vinyl chtoride	0.9300	0.040	1	0	93.0	70	130	0.99	6.25	30	
Sample (D; ALCS10GD-122217	SampType: LCSD	TestCode;	estCode: 0.25CT-TCE-	Units. ppbV		Prep Date:			RunNo: £3(	13074	
Cilent ID: ZZZZ	Batch ID: R13074	TestNo: TO-15	10-15		₹	Analysis Date:	12/23/2017	11	SeqNo: £51967	1967	
Analyte	Result	PQL S	SPK value SPI	SPK Ref Val	%REC	Lyweimid H	HighLimit F	RPD Ref Val	%RPD	RPDL(m)t	Qual
1,1, 1-Trichloroethane	1.140	0.15	1	0	1:4	2	130	1.11	2.67	30	
1,1.2,2-Tetrachioroethane	1.140	0.15	-	Q	114	R	130	1.0;	12.1	30	
1,1,2-Trichloroethane	1,130	0.15	-	ø	113	2	130	<del>*</del>	2.69	30	
1,3-Dichleroethane	1,030	0.15	-	φ	±03	R	55	0.97	6.00	30	
1,1-Dichloroethene	0.8700	0.15	-	o	87.0	2	130	0.77	12.2	S	
1,2,4-Trichlombenzene	0.8200	0,15	-	Ġ	82.0	₽	130	26.0	16.8	30	
1,2,4-Trimethylbenzene	1.050	0.15	-	Ö	<b>20</b> 5	R	130	0.95	10.0	30	
1,2-Dibromosthane	1,040	0.15	-	Ċ)	\$	R	130	1,01	2.93	8	
1,2-DkHorobenzene	1.140	0.15	-	<b>G</b>	134	2	130	1.02	11,1	æ	
1,2-Dichloroethane	1.050	0.15	-	6	505	5	돥	0.96	8.96	8	
1,2-Dichloropropane	1,080	0.15	-	٥	<b>₽</b>	R	130	1.08	٥	8	
1,3,5-Trimethy/benzere	1,160	0.15	<b>-</b>	¢	116	2	130	1.05	96.9	8	
f,3-butadiene	1.030	0.15	-	0	<del>1</del> 03	2	130	1.D4	0.966	S	
1,3-Dichlorobenzene	1,146	0.15	<b>←</b>	0	44	2	130	1.02	11.1	8	
1,4-Dichlorobenzene	1.170	0.15	-	6	117	70	₽ 1	1.05	10.8	ନ	
1,4-Dioxane	0.1100	0:30	-	O	11,0	2	130	0.86	٥	8	ςŞ
2.2.4-trimethylpenlane	1,050	0.15	-	0	105	2	55 55	1,01	3.88	8	
4-ethylloiuene	1.100	0.15	-	0	110	Ŕ	<del>130</del>	1.02	7.55	30	
Ounificers: Results repor	Results reported are not blank cornected		E Estimated	Estimated Value above quantitistion range	agaer noisek		¥ ==	alding times for	Holding times for preparation or snabysis exceeded	natysis excess	3
-	Apaige detected below quantitation limit	<i>p</i>	ND Not Detect	Not Detected at the Limit of Detection	Detection		R	Y) outside acce	RPD outside accepted recovery limits	nks	
S Spike Recov	Spike Rocovery outside accupted recovery limits	imits								*	Puge 3 of 5

LaBella Associates, P.C.

Eldre Corp C1712063

Work Order: CLIENT:

LaBella Associates, P.C.	
CLIENT:	

C1713063 Eldre Corp Work Order:

Project:

Com
Ŭ,
늘

Post										Time of the state		
1,000   0.30   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000		Barch (D: R13074	Test	to: TO-15			Analysis Date:		112	SeqNo: 15	1967	
1,030   0,20   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030   1,030	nalyte	Resuit	Pot		SPK Ref Val	%REC		ightirait	RPD Ref Vel	%RPD	RPOLimit	Qual
1,010   0.15   1   0   0.15   1   0   0   0.15   1   0   0   0.15   1   0   0   0.15   1   0   0   0.15   1   0   0   0.15   1   0   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15   0   0.15	cetone	1,030		-	o	103	8	130	0.89	14.6	S	
1,010   0.15   1   0   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101	flyl chtoride	0.8900		Ε.	O	99.0	70	130	68.0	0	GF.	
1,060   0.15   1.9   1.96   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	enzene	1.010		<b>.</b> -	ø	ρ	70	130	96.0	3.02	8	
1,110 0.15 1 1 1 1 70 119  1,080 0.15 1 1 0 111 70 139  1,080 0.040 1 1 0 105 70 103  1,080 0.040 1 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 105 70 130  1,090 0.15 1 0 106 70 130  1,090 0.15 1 0 106 70 130  1,090 0.15 1 0 106 70 130  1,090 0.15 1 0 106 70 130  1,090 0.15 1 0 106 70 130  1,090 0.15 1 0 0 106 70 130  1,090 0.15 1 0 0 106 70 130  1,090 0.15 1 0 0 106 70 130  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 107  1,090 0.15 1 0 0 0 107  1,090 0.15 1 0 0 0 107  1,090 0.15 1 0 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0 107  1,090 0.10 1 0 0	enzyl chloride	1,060		**	0	\$	70	130	1.02	3.85	30	
1,080	romodichioromethane	1.110		4716	٥	111	70	130	1.09	1.82	8	
1,010	neroform	1.080		٧٠	C	108	70	130	1.01	6.70	S	
0.9700 0.15 1 0 97.0 70 130 1.660 0.040 1 0 0 105 70 130 1.030 0.15 1 0 105 70 130 1.040 0.15 1 0 105 70 130 0.9900 0.15 1 0 0 105 70 130 1.050 0.015 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 1.050 0.15 1 0 0 105 70 130 0.9900 0.15 1 0 0 105 70 130 0.2500 0.15 1 0 0 105 70 130 0.2500 0.15 1 0 0 105 70 130 0.2500 0.15 1 0 0 0 105 70 130 0.2500 0.15 1 0 0 0 105 70 130 0.2500 0.15 1 0 0 0 105 70 130 0.2500 0.30 1 0 0 0 0 10 0 100 0.5000 0.30 1 0 0 0 0 100 0.5000 0.30 1 0 0 0 0 130 0.5000 0.30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	romomethane	1.010		<b>}</b>	0	5	70	130	66.0	2.00	8	
1,050 0,040 1 0 105 70 130 1,030 0,045 1 0 103 70 130 1,040 0,15 1 0 104 70 130 1,040 0,15 1 0 104 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,040 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 70 130 1,050 0,15 1 0 0 105 75 0 130 1,050 0,15 1 0 0 105 75 0 130 1,050 0,15 1 0 0 105 75 0 130 1,050 0,15 1 0 0 105 75 0 130 1,050 0,15 1 0 0 105 75 0 130 1,050 0,150 0,150 1 0 0 105 70 130	arbon disuffide	0,9700	0.45	¥m.	0	97.0	20	130	<b>5</b> 6.0	3.14	8	
1,030 0,15 1 0 10 101 70 101 102 100 105 100 100 100 100 100 100 100 100	arbon tetrachloride	1.060	0.040	ę.	0	\$	70	130	1.05	0.948	8	
1,010 0.15 1 0 101 70 101 70 130  1,040 0.15 1 0 104 70 130  0.9900 0.15 1 0 99.0 70 130  1,030 0.15 1 0 99.0 70 130  1,030 0.15 1 0 99.0 70 130  1,030 0.15 1 0 99.0 70 130  1,030 0.15 1 0 99.0 70 130  1,030 0.15 1 0 0 99.0 70 130  1,040 0.15 1 0 0 99.0 70 130  1,050 0.15 1 0 0 99.0 70 130  2,130 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 105 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100  1,050 0.30 1 0 0 100	hierobenzene	1.030		<b>1</b> 00	0	\$	92	130	96.0	4.98	8	
1.05G 0.15 1 0 105G 70 130  1.05G 0.15 1 0 104 70 130  0.9950 0.15 1 0 99.0 70 130  1.05G 0.15 1 0 99.0 70 130  1.05G 0.15 1 0 103 70 130  1.05G 0.15 1 0 106 70 130  1.05G 0.15 1 0 10 106 70 130  1.05G 0.15 1 0 10 10 10 10 130  1.05G 0.15 1 0 10 10 10 10 130  1.05G 0.15 1 0 10 10 10 130  2.13G 0.30G 0.15 1 0 10 10 10 10 10 10 10 10 10 10 10 10	hioroethane	1.010		***	٥	5	94	<del>동</del>	96.0	3.02	8	
1.04G 0.15 1 0 104 70 130 0.9900 0.15 1 0 99.0 70 130 0.9900 0.15 1 0 99.0 70 130 1.030 0.15 1 0 103 70 130 1.000 0.15 1 0 106 70 130 1.000 0.15 1 0 100 70 130 1.000 0.15 1 0 100 70 130 1.000 0.15 1 0 100 70 130 1.11G 0.15 1 0 107 70 130 1.050 0.15 1 0 105 70 130 1.050 0.15 1 0 105 70 130 0.8000 0.15 1 0 105 70 130 0.2130 0.30 1 0 10 106 70 130 0.8200 0.30 1 0 0 130 0.8200 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.8000 0.30 1 0 0 130 0.30 1 0 0 130	hloroform	1.050		<b>T</b>	0	105	8	130	•	4.88	8	
0.9960 0.15 1 0 99.0 70 130 0.9500 0.15 1 0 96.0 70 130 1.030 0.15 1 0 106 70 130 1.050 0.15 1 0 106 70 130 1.000 0.15 1 0 106 70 130 1.000 0.15 1 0 100 70 130 1.000 0.15 1 0 100 70 130 1.010 0.15 1 0 109 70 130 1.010 0.15 1 0 109 70 130 1.010 0.15 1 0 107 70 130 1.050 0.15 1 0 105 70 130 0.9500 0.15 1 0 105 70 130 0.7500 0.15 1 0 105 70 130 0.7500 0.15 1 0 0 95.0 70 130 0.8200 0.15 1 0 0 95.0 70 130 0.8200 0.30 1 0 0 106 70 130 0.8200 0.30 1 0 0 106 70 130 0.8200 0.30 1 0 0 106 70 130	hioromethane	1,040	0.15	-	o	7	02	130	1.07	2.84	용	
0.9900 0.15 1 0 96.0 70 130 1.030 0.15 1 0 106 70 130 1.080 0.15 1 0 106 70 130 1.080 0.15 1 0 106 70 130 1.080 0.15 1 0 100 70 130 1.090 0.15 1 0 100 70 130 1.070 0.15 1 0 100 70 130 1.050 0.15 1 0 100 70 130 1.050 0.15 1 0 107 70 130 1.050 0.15 1 0 105 70 130 2.130 0.30 1 0 0 10 10 100 2.130 0.30 1 0 0 10 10 100 2.030 0.30 1 0 0 10 10 100 2.030 0.30 1 0 0 10 100 2.030 0.30 1 0 0 100 2.030 0.30 1 0 0 100 2.030 0.30 1 0 0 100 2.030 0.30 1 0 100 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00 130 2.00	s-1,2-Dichloroethene	0.9950	0.15	***	o	966	70	130	0.91	8.42	8	
1.030 0.15 1 0 103 70 130 1.080 0.15 1 0 106 70 130 0.9200 0.15 1 0 106 70 130 1.000 0.15 1 0 100 70 130 0.9800 0.15 1 0 100 70 130 1.110 0.15 1 0 10 100 70 130 1.100 0.15 1 0 10 100 70 130 1.100 0.15 1 0 10 107 70 130 1.100 0.15 1 0 100 70 130 1.050 0.15 1 0 105 70 130 0.9500 0.15 1 0 95.0 70 130 0.7500 0.15 1 0 95.0 70 130 0.7500 0.30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	is-1,3-Dichtoropropene	0.9500	0.15	-	O	98.0	70	130	1.07	10.8	8	
1.050 0.15 1 0 106 70 130  0.9200 0.15 1 0 106 70 130  1.000 0.15 1 0 100 70 130  1.000 0.15 1 0 100 70 130  1.000 0.15 1 0 100 70 130  1.000 0.15 1 0 100 70 130  1.010 0.15 1 0 10 107 70 130  1.050 0.15 1 0 10 105 70 130  0.9500 0.15 1 0 95.0 70 130  0.7500 0.15 1 0 95.0 70 130  2.130 0.30 1 0 0 10 130  0.820 0.30 1 0 0 130  0.820 0.30 1 0 0 130  0.000 0.30 1 0 0 130  0.000 0.30 1 0 0 130  0.000 0.30 1 0 0 130  0.000 0.30 1 0 0 130  0.000 0.30 1 0 0 130	yclohexane	1.630	0.15	₽	Ф	t03	52	130	16.0	6.00	8	
6.9200 0.15 1 0 92.0 70 130 1.000 0.15 1 0 100 70 130 1.000 0.15 1 0 100 70 130 1.000 0.15 1 0 100 70 130 1.070 0.15 1 0 100 70 130 1.110 0.15 1 0 107 70 130 1.050 0.15 1 0 105 70 130 0.9500 0.15 1 0 105 70 130 0.9500 0.15 1 0 95.0 70 130 0.9500 0.15 1 0 95.0 70 130 0.9500 0.15 1 0 95.0 70 130 0.9500 0.15 1 0 95.0 70 130 0.9500 0.15 1 0 95.0 70 130 0.9500 0.30 1 0 0 105 70 130 0.9500 0.30 1 0 0 105 70 130 0.9000 0.30 1 0 0 105 70 130 0.9000 0.30 1 0 0 100 100 100 100 0.9000 0.30 1 0 0 100 100 100 100 0.9000 0.30 1 0 0 100 100 100 100 100 0.9000 0.30 1 0 0 100 100 100 100 100 100 100 100	ibromochloromelhane	1.050	0.15	•-	Đ	106	92	130	1.02	3.85	8	
nne         1,000         0.15         1         0         100         70         130           1,090         0.15         1         0         109         70         130           0,9900         0.15         1         0         109         70         130           1,070         0.15         1         0         107         70         130           1,110         0.15         1         0         107         70         130           1,050         0.15         1         0         105         70         130           1,30         0.9500         0.15         1         0         95.0         70         130           1         0.9500         0.15         1         0         95.0         70         130           1         0.0500         0.15         1         0         95.0         70         130           1         0.30         0.30         1         0         75.0         70         130           1         0.30         0.30         1         0         70         130           1         0.30         0.30         1         0         70	thyl acetate	0.9200	0.15	-	o	92.0	29	130	.ez	9.09	ଚ	
1,090 0.15 1 0 109 70 130 0,9800 0.15 1 0 109 70 130 1,070 0.15 1 0 107 70 130 1,110 0.15 1 0 107 70 130 1,110 0.15 1 0 107 70 130 1,050 0.15 1 0 0 105 70 130 1,050 0.15 1 0 95.0 70 130 1,0404 0.7500 0.15 1 0 95.0 70 130 1,0404 0.230 0.30 1 0 0 106 1,050 0.30 1 0 0 106 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 0	thylbenzene	1.000	0.15	-	Đ	100	2	130	0.92	8,33	S	
0.9800     0.15     1     98.0     70     130       1.070     0.15     1     0     107     70     130       1.110     0.15     1     0     101     70     130       1.110     0.15     1     0     105     70     130       1.050     0.15     1     0     105     70     130       1.050     0.15     1     0     95.0     70     130       1.050     0.15     1     0     95.0     70     130       1.05     0.2500     0.15     1     0     75.0     70     130       1.0     0.2500     0.30     1     0     6     70     130       1.0     0.30     0.30     1     0     6     70     130       1.0     0.30     0.30     1     0     6     70     130       1.0     0.30     0.30     1     0     70     130       1.0     0.30     0.30     1     0     70     130       1.0     0.30     0.30     1     0     70     130       1.0     0.30     0.30     1     0     70     130	reon 11	1.090	0.15	-	o	109	92	130	1.07	1.85	<del>2</del>	
1,070 0.15 1 0 107 70 130 1,110 0.15 1 0 107 70 130 1,050 0.15 1 0 111 70 130 1,050 0.15 1 0 105 70 130 1,050 0.15 1 0 0 105 70 130 1,050 0.15 1 0 0 95,0 70 130 1,050 0.15 1 0 0 95,0 70 130 1,050 0.15 1 0 0 95,0 70 130 1,050 0.30 1 0 0 106 75,0 70 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.30 1 0 0 130 1,050 0.3	reon 113	0.9800	0.15	-	Đ	98.0	۶	130	0.95	3.11	용	
1.110 0.15 1 0 111 70 130 130 1.050 0.15 1 0 111 70 130 130 1.050 0.15 1 0 105 70 130 130 13.4 triadiene 0.9900 0.15 1 0 99.0 70 130 130 130 130 130 130 130 130 130 13	reon 114	1,070	0.15	-	o	107	2	130	.B	1.89	<del>2</del>	
1.050         0.15         1         0         105         70         139           ove-1,3-butactiene         0.9900         0.15         1         0         99.0         70         139           labohol         0.7500         0.15         1         0         95.0         70         130           ene         2.130         0.30         2         0         75.0         70         130           ulyl Kekne         < 0.30	recn 12	1,110	0.15	-	0	÷ 1.1	2	130	1.07	3.67	99	
0.9900 0.15 1 0 99.0 70 130 0.9500 0.15 1 0 99.0 70 130 0.7500 0.15 1 0 95.0 70 130 0.7500 0.15 1 0 75.0 75.0 70 130 0.8200 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 0.30 1 0 0 82.0 70 130 0.30 1 0 0.30 1 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ephane	1.050	0,15	-	0	<u>5</u>	2	130	1.01	3.88	윲	
0.9500 0.15 † 0 95.0 70 130 0.7500 0.15 † 0 95.0 70 130 0.7500 0.15 † 0 75.0 70 130 0.30 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 130 0.30 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 82.0 70 1 0 8	lexachloro-1,3-butadiene	0.9900	0,15	**	0	99.0	2	130	1.04	2.80	ଚ	
0.7500 0.15 1 0 75.0 70 130 2.130 0.30 2 0 106 70 130 130 <0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0.30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sexane	0.9500	0.15	+-	Đ	95.0	70	130	60	5.41	8	
2,130 0,30 2 0 10 <u>6</u> 70 130 c 0,30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sopropyl alcohol	0.7500	0.15	-	0	75.0	70	130	0.78	3.92	8	
<ul> <li>&lt;0.30</li> <li>0.8200</li> <li>0.30</li> <li>0</li> <li>0</li> <li>0</li> <li>0</li> <li>0</li> <li>0</li> <li>0</li> <li>0</li> <li>0</li> <li>130</li> <li>130<!--</td--><td>n&amp;p-Xylene</td><td>2,130</td><td>0.30</td><td>2</td><td>0</td><td>ã(</td><td>2</td><td><u>&amp;</u></td><td>1.95</td><td>8.82</td><td>93</td><td></td></li></ul>	n&p-Xylene	2,130	0.30	2	0	ã(	2	<u>&amp;</u>	1.95	8.82	93	
0,8200 0.30 1 0 82.0 70 130 me < 0.30 0.30 1 0 0 0 70 130	Aethyš Butyl Ketone	00.0 >	8.0	-	0	೨	ę	130	1.91	0	8	W
<0.30 0.30 1 0 (0 70 130	Sethyl Ethyl Ketone	0.8200	0.30	-	0	85.0	20	130	0.78	5.00	8	
	fethyf Isobulyl Ketone	< 0.30	0.30	-	0	6	۵۲	<del>2</del> 3	0.97	0	33	w
Results reported are not blank corrected to Listinated Value Libore quantitation tange		red are not blank corrected		E Estimat	ed Value above quan	tilation m	4	1	Holding times for	preparation or	Brathais exem	ded
Q.	Analyse descri	cted below quantitation limit			ected at the Limit of	Detection			PD outside acce	pled recovery li	mits	
Not Detected at the Limit of Detection	l Analyse desc	ered below quantitation limit			ected at the Limit of	Detection			RPD ontiside acor	plied recovery li	mis	

LaBella Associates, P.C.

C1712063

Work Order: CLIENT:

Sample ID: ALCS1UGD-122217	SampType: LCSD	TestCr	TestCode: 0,25CT-TCE-	E- Units: ppbV		Prep Date:			RunNo: 13074	374	
Client ID: ZZZZZ	Batch (D: R13074	Tes	TestNo; TO-15			Analysis Date. 12/23/2017	. 12/23/2	2017	SeqNo: 151967	1967	
Analyte	Result	90.	SPK value	SPK Ref Val	%REC	kowLimit	Hightimit	RPD Ref Val	RPD PD	RPDLIMA	Qua
Methyl tart-butyt ether	0.9600	0.15		0	98.0	g	130	00	E AC	**	
Methylene chloride	0.9800	0.15	-	٥	0.86	2	136	260	C#10	7 8	
c-Xylene	1.120	0.15	<b>-</b>	O	112	2	130	1.03		3 8	
Propylene	1.010	0.15	-	0	101	202	130	1.07	76.3	3 8	
Slyrene	1.150	0.15	-	0	115	: 8	130	10.	2 6	3 8	
<b>Fetrachloroeihyle</b> ne	1.050	0.35	-	٥	105	2 8	9	7 5	0,00	3 5	
Fetrahydrofuran	0.9100	0.15	-	0	910	? =	3 5	- v	0.00	₹ 8	
Toluene	0066 0	0.15	•		9 6	2 8	3 6	Day o	29.0	2	
tagos. 1 2. Dichiospethene	0080 0		• •	3 (	0 0	2 1	2	0.92	7.33	8	
	D. SOCO	5	_	<b>Q</b>	980	2	130	0.95	3.11	8	
trans-1, 3-Dichkoropropene	0.9800	0.15		*	98.0	22	130	0.98	Ö	e e	
Trichforcethene	0.5900	0,030	***	6	99.0	70	130	0.97	204	90	
Vinyl acetate	0.9300	0.15	<b>/</b>	0	93.0	5	130	0.83	11.4	; F	
Vinyl Bromide	1.010	0.15	-	D	5	2	130	-	55.0	8 8	
Vinyl cl¥oride	0.9800	0.040	<b>+</b>	0	98.0	20	130	0.99	1.02	3 8	
									!	;	

The second secon	Holding times for preparation or make is exceeded	R RPD outside accorded recovery limits	
The second secon	Estimated Value above quantitation range	NO Not Detected at the Limit of Detection	
	Results reported are not blank corrected	Analyte detected below quantitation fant	Spike Recovery outside accepted recovery finits
	Qualificers:	-	S

### CENTEK LABORATORIES, LLC

# ANALYTICAL QC SUMMARY REPORT

Date: 10-Jun-18

Part Copp.   Par	CLENT: Work Order: Project:	LaBella Ass C1712063 Pfire Corr	LaBella Associates, P.C. C1712063						Toet Code: 0	0.2507-705-30	
Samp Type:         MBELK         Test/Code         Code         Runko:         1902           Batch ID, R13073         Test/Code         20.15 (code)         Analysis Dale:         1721/2017         Seq No. 151943           Respit POR R13073         Test/Analises SPK Ref Val         %REC         Loverunt         Highthmit RPD Ref Val         %RPD RPD Rightmit RPD Ref Val           < 0.15         0.15         Cod 15         0.15         Respit Port Ref Val         %RPD Ref Val         %RPD Ref Val           < 0.15         0.15         Cod 15         0.15         Ref Ref Val         %RPD Ref Val         %RPD Ref Val           < 0.15         0.15         Cod 15         0.15         Ref Ref Val         %RPD Ref Val         %RPD Ref Val           < 0.15         0.15         Cod 15         0.15         Ref Ref Val         RRPD Ref Val         RRPD Ref Val           < 0.15         0.15         Cod 15         0.15         RRPD Ref Val         RRPD Ref Val         RRPD Ref Ref Ref Ref Val           < 0.15         0.15         Cod 15         0.15         RRPD Ref Val         RRPD Ref		)								2	
	Sample ID AMB1U	IG-122117	SampType: MBLK	TestCode	0.25CT-TC	ij	Pre	p Oate:		RunNo: 13073	
POL SPK value   POL SPK value   SPK Red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   VAREC   Concurred   Fight-finit   RPD Red Val   VAREC   SPK red Val   SPK red Va			Batch ID: R13073	TestNo	3 10-45		Analysi		1/2017	SeqNo: 151943	
Course   C	Analyte		Result	PQ	SPK value	SPK Ref Val					Quai
Act	1,1,1-Trichloroethan	20	<0.15 🗸	0.15							
10   10   10   10   10   10   10   10	1, 1, 2, 2-Tetrachloroe	sthane	< 0.15	0.15							
Course   C	1.1,2-3 richloroethan	Ş.	< 0.15	0.15							
CO   15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15	1,1-Dichtoroethane		< 0.15	6.15							
CO   S   D   S	1.1-Dichloroethene		< 0.15	0.15							
Continue of the continue of	1,2,4-Trichtorobenza	ense.	< 0.15	0.15							
<ul> <li>- 0.15</li> <li>0.15</li> <li>- 0.15</li> <li>- 0.15</li></ul>	1,2,4-Trimethylbenz	tene	< 0.15	0.15							
Colification of the control of the	1,2-Dibromoethane		< 0.15	0.15							
Colision	1,2-Dichlorobenzen	ų.	< 0.15	0.15							
C 0.15   C	1,2-Dichloroethane		< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	1,2-Dichloropropane	a)	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	1,3,5-Trimethylbena	36136	< 0.15	0.15							
<ul> <li>6.15 (0.15)</li> <li>6.030 (0.30)</li> <li>6.015 (0.15)</li> <li>6.015 (0.15)</li> <li>6.015 (0.05)</li> <li>7. Estimated Value above quantifarities in miss from range analysis cover analysis cover analysis cover finals</li> <li>7. Estimated Value above quantifarities in miss from the Limit of Defection (0.05)</li> <li>7. Estimated Value above quantifarities in miss from the Limit of Defection (0.05)</li> <li>8. RPI) outside accepted accorded acc</li></ul>	1,3-ъцедзеве		< 0.15	0.15							
<ul> <li>6.0.15</li> <li>6.0.30</li> <li>6.0.15</li> <li>6.0.15</li></ul>	1,3-Dichkmbenzen	<u>o</u>	< 0.15	0.15							
<ul> <li>&lt; 0.30</li> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	1,4-Dichlorobenzea	ह	< 0.15	0.15							
<ul> <li>© 15 0.15</li> <li>© 0.15</li> <li>© 0.20</li> <li>© 0.20</li> <li>© 0.15</li> <li>© 0.15<td>1,4-Dloxane</td><td></td><td>&lt; 0.30</td><td>08'0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li></ul>	1,4-Dloxane		< 0.30	08'0							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	2,2,4-trimethylpenta	ane	< 0.15	0.15							
<ul> <li>&lt; 0.30</li> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	4-ethyltoiuene		< 0.15	0.15							
<ul> <li>0.15</li> <li>0.16</li> <li>0.17</li> <li>0.18</li> <li>0.19</li> <li>0.19</li> <li>0.15</li> <li< td=""><td>Acetone</td><td></td><td>&lt; 0.30</td><td>0.30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li<></ul>	Acetone		< 0.30	0.30							
<ul> <li>0.15</li></ul>	Atlyl chloride		< 0 15	0.15							
<ul> <li>0.15</li> <li< td=""><td>Вептене</td><td></td><td>&lt; 0.15</td><td>0.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li<></ul>	Вептене		< 0.15	0.15							
<ul> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>0.15</li> <li>Estimated Value above quantifation range</li> <li>13</li> <li>14 Holding times for preparation or analysis excertables defected below quantifation limit</li> <li>15</li> <li>16</li> <li>17</li> <li>18</li> <li>19</li> <li>19</li> <li>19</li> <li>10</li> <li>1</li></ul>	Benzyl chłoride		< 0.15	0.15							
<ul> <li>c 0.15</li> <li>c 0.15</li></ul>	Bromodichiprometh	tane	< 0.15	0.15							
C. 15     C	Bromoform		< 0.15	0.15							
Results reported are not blank corrected II. Estimated Value above quantitation range III. Holding times for preparation or analysis excess Analyse detected below quantitation limit ND Not Extended at the Limit of Detection R. RPD outside accepted recovery limits of Soute Beneview uniside accepted recovery limits.	Sromomethane		< 0.15	0.15							
Many & Defected Delity quantitation from the control of the contro	Qualifiers:	Results repor	ted are not blank corrected		•	sated Value above quant	likation range	<b>*</b> •	Holding times for	preparation or analysis execu-	:
	- 4	Coile Report	este obtain quantification filler	Fact				1			•

Spike Recovery oatside accepted recovery limits

y,

Sample ID, AMBHI ID-12211         Sample ID, AMBHI ID-12211         Sample ID, AMBHI ID-12211         Rander ID-12212         Rander ID-122	rroject: Exare Corp						
Result   PQL   SFX value   SPK Ret Ve)   WREC   LowLand   Heghtlank   RPD Ret Ve)   RFDLand     Can 16	Sample ID: AMB1UG-122117 Client ID: ZZZZZ	Sampfype: MBLK Baich ID: R13073	TestCode: 0.25CT-TCI TestNo: TO-15	1	Prep Dak	il	RunNo: 13073 SegNo: 151943
Column	Analyte	Result		SPK Ref Val	LowLinit		RPDLimit
<ul> <li>&lt; 0.040</li> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	Carbon disulfate	< 9.15	0.15				
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Carbon tetrachioride	< 0.640	0.040				
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chlorobenzene	< 0.15	0.15				
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chloroethane	< 0.15	0.15				
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chloroform	< 0.15	0.15				
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chloromethane	< 0.15	0.15				
<ul> <li>6.0.15 0.15</li> <li>6.0.10 0.10</li> <li>6.0.20 0.30</li> <li>6.0.30 0.30</li> <li>6.0.30 0.30</li> <li>6.0.15 0.15</li> <li></li></ul>	cis-1,2-Dichloroethene	< 0.15	0.15				
Comparison	cis-1,3-Dichtoropropene	< 0.15	0.15				
critoromethane         < 0.15         0.15           zale         < 0.15	Cyclohexane	< 0.35	0.15				
2015   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15	<b>Dibromochloromethane</b>	< 0.15	0.15				
zene         < 0.15         0.15           3         < 0.15	Ethyl acetale	< 0.15	0.15				
3	Ethylbenzene	< 0.15	0.15				
3	Frech 11	< 0.15	0.35				
4	Freon 113	< 0.15	0.15				
Co.15	Freen 114	< 0.15	0.15				
< 0.15	Freon 12	< 0.15	0.15				
2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015   2015	Heptane	<0.15	0.15				
Course   C	Hexacktoro-1,3-butadiene	< 0.15	0.15				
Falcoholi	Hexane	< 0.15	0.15				
ene         < 0.30         0.30           utyl Ketone         < 0.30         0.30           obutyl Ketone         < 0.30         0.30           obutyl Ketone         < 0.30         0.30           ordutyl Ketone         < 0.30         0.30           ordutyl Ketone         < 0.15         0.15           ne chloride         < 0.15         0.15           e         < 0.15         0.15           consethylene         < 0.15         0.15           consethylene         < 0.15         0.15           controlled         < 0.15         0.15           refurnant         < 0.15         0.15           Adalyte detected below quantitation limn         NO Mrt Detected at the £ inni of Detection         R	isopropyt alcohol	< 0.15	0.15				
utyl Ketone         < 0.30         0.30           robutyl Ketone         < 0.30         0.30           robutyl Ketone         < 0.30         0.30           rat-butyl Ketone         < 0.15         0.15           re chloride         < 0.15         0.15           re chloride         < 0.15         0.15           re         < 0.15         0.15           re         < 0.15         0.15           reschiple ne         < 0.15         0.15           refurant         < 0.15         0.15           refurant         < 0.15         0.15           refuranted below quantitation limn         NO Mrt Detected at the £ inni of Detection          R	m&p-Xylene	× 0.30	0.30				
tbyl Ketone         < 0.30         0.30           obukly Ketone         < 0.30	Mathyl Butyl Ketone	< 0.30	0.30				
obulty! Ketone         < 0.30         0.30           ort-bury either         < 0.15         0.15           is chloride         < 0.15         0.15           icontinual         < 0.15         0.15           icontinual         < 0.15         0.15           icontinual         < 0.15         O.15	Methyl Ethyl Ketone	< 0.30	0.30				
Section   Sect	Methyl Isobutyl Kelone	< 0.30	0,30				
chloride	Wethyl text-buryl either	< 0.15	0.15				
Control   Cont	Methylene chloride	< 0.15	51.0				
Control   Cont	o-Xylene	< 0.15	0.15				
<ul> <li>&lt; 0.15</li> <li>&lt; 0.15</li> <li>&lt; 0.15</li> <li></li> <li>&lt; 0.15</li> <li></li> <li>Results reported are not blank corrected     Extinated Value ahave quantitation range     14     15     </li> <li>16     </li> <li>16     </li> <li>17     </li> <li>18     </li> <li>19     </li> <li>19     </li> <li>10     </li> <li>10     </li> <li>10     </li> <li>11     </li> <li>12     </li> <li>14     </li> <li>16     &lt;</li></ul>	Ргоруйеле	< 0.15	0.15				
furan < 0.15 0.15  furan < 0.15 0.15  Results reported are not blank corrected E. Estimated Value ahave quantitation range	Styrene	< 0.15	0.15				
Furan Caulis reported are not blank corrected E. Estimated Value ahave quantitation range	Fetrachioroethylene	< 0.15	0.15				
Results reported are not blank corrected E. Estimated Value ahave quantitation range	Tetrahydrofuran	< 0.15	0.15				
N() And Obsected at the Einsti of Desection	. •	ted are not blank corrected	-	ed Value ahave quantil	ation range	!	returnation or analysis excessied
	3 Apalyte dele	sted below ausertitetion limit		ected at the finiting Offi	Particol .		and an account from the

CLIENT: LaBella Associates, P.C.

C1712063 Eldre Corp

Work Order: Project: LaBella Associates, P.C.

C1712063 Eldre Corp

Work Order: CLIENT

Project:

	Samplype, MBLK	TestCode:	TestCode: 0.25CF.TCE- Units: ppbV	Prep Date:		RunNo: 13073	
Client ID: ZZZZZ	Batch ID: R13073	Testido: TO-15	TO-15	Analysis Date:	122712017	SeqNo: 151943	
Analyte	Result	PQ! S	SPK value SPK Ref Val	%REC LOWLIMIT High	HighLimit RPD Ref vzł	%RPD RPDLimit	mit Qual
Toluene	<0.15 J	0.15					
trans-1,2-Oichloroethene	< 0.15	0.15					
trans-1,3-Dichloropropene	< 0.15	0.15					
Trichioroethene	< 0.030	0.030					
Vinyt acetate	< 0.15	0.15					
Vinyi Bromide	< 0.15	0.15					
Vinyi chlaride	< 0.040	0.040					
Sample ID: AMB1UG-122217	SampType: MBLK	TestCode:	TestCode: 0.25CT-TCE- Units: ppbV	Prep Date:		RunNo 13074	
Client ID: ZZZZZ	Batch (D. R13074	Testivo: TO-45	TO-45	Analysis Date: 1	12/22/2017	SeqNo: 151965	
Analyte	Resuft	Pal	SPK value SPK Ref Val	%REC LowLinst High	HighLimt RPD Ref Val	%RPD RPDLIMI	mil Qual
1,1,1-Trichloroethane	<0.15 V	0.15					
1,1,2,2-Tetrachioroethane	< 0.15	0.15					
1,1,2-Trichlorcethane	< 0.15	0.15					
1,1-Dichloroethane	< 0.15	0.15					
1,1-Díchtoroethene	< 0.15	0.15					
1,2,4-Trichlorobenzene	< 0.15	0.15					
1,2,4-Trimethylbenzene	< 0.15	0.15					
1,2-Dibromoethane	< 0.15	0.15					
1,2-Dichiorobenzene	< 0.15	0.15					
1,2-Dichloroethane	< 0.15	9.15					
1,2-Dechloropropane	< 0.15	0.15					
1,3,5-Trimethylbenzene	< 0.15	0.15					
1,3-butadiene	< 0.15	0.15					
1,3-Dichkorobenzene	<0.15	0.15					
1.4-Oshlorobenzene	< 0.15	0.15					
1,4-Dioxane	< 0.30	0.30					
2.2,4-trimethy/pentane	< 0.15	0 15					
4-ethylloluene	< 0.15	0.15					
Canificers: Results sep-	Results reported are not blank corrected		E Estimated Value above quantitatian range	itiani range	) )	Holding times for preparation or analysis exceeded	xceeded
	Analyte detected below quantitation limit		ND Not Detected at the Limit of Detection	Detection	R RPD nutside accept	RPD suiside accepted recovery limits	

Spike Recovery outside accepted recovery limits

ن بد	
 ASSOCIATES	
 1.475	

TestCode: 0.25CT-TCE-VC

C1712063 Work Order:

Pol.   SPK value   SPK Rat Val   %REC   LowLimit   HighLimit   RPD Ret Val   %RPD   NRPD Ret Val   %RPD Ret Val   %RP	Sample ID: AMB1UG-122217	SampType: MBLK	FestCode: 0.25CT-TCE-	0.25CT	-TCE- Units: ppbV	Prep Date:	93		Runklo: 13074	
Reault   POL   SPK Red Val   %REC   LowLinnt Hightlinin     < 0.30		Batch ID: R13074	TestiNo	1045		Analysis Dal		12017	SeqNo: 151965	
Continue	Analyte	Result	Pal	SРК val			Hight.imil		WRPD RPDLumi	Qual
Continuence	Acetone	< 0.30 V	0.30							
< Q.15         0.15           < Q.04         0.040           < Q.05         0.15           earlier         < Q.15         0.15           earlier         < Q.15         0.15           earlier         < Q.15         0.15           proppend         < Q.15         0.15           coll         < Q.15         0.15	Allyl chloride	< 0.15	0.15							
< 0.15	Вепzвле	< 0.15	0.15							
<ul> <li>(-0.15)</li> &lt;</ul>	Benzyl chłoride	< 0.15	0.15							
Colin	Bromodichtoromethane	< 0.15	0.15							
Course	Вголтобоят	< 0.15	0.15							
<ul> <li>40.15 0.15</li> <li>40.040</li> <li>40.15 0.15</li> <li>4</li></ul>	Bromomethane	< 0.15	0.15							
<ul> <li>&lt; 0.040</li> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	Carbon disulfide	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Carbon tetrachloride	< 0.040	0.040							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chlocobenzene	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chloroethane	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.1</li></ul>	Chloroform	< 0.15	0.15							
<ul> <li>0.15</li> <li< td=""><td>Chloromethane</td><td>&lt; 0.15</td><td>0.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li<></ul>	Chloromethane	< 0.15	0.15							
<ul> <li>0.15</li> <li< td=""><td>cis-1,2-Dichlorcethene</td><td>&lt; 0.15</td><td>0.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li<></ul>	cis-1,2-Dichlorcethene	< 0.15	0.15							
Conference   Con	cis-1,3-Dichteropropene	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.15</li></ul>	Cyclohexane	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.20</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Dibromochloromethane	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Eshyl acetate	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Ethylbeszene	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Frem 11	< 0.35	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Freon 113	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Freon £14	< 0.15	0.15							
<ul> <li>&lt; 0.15</li></ul>	Freon 12	< 0.15	0,15							
diene < 0.15 0.15 0.15	Heplane	< 0.15	0.15							
<ul> <li>c 0.15</li> <li>c 0.15</li> <li>c 0.30</li> <li>d 0.30</li> <li>Results argorred are not blank corrected</li> <li>f Estimated Value above quantitation range</li> <li>f 1</li> </ul>	Hexachloro-1,3-butadiene	< 0.15	0.15							
<ul> <li>&lt; 0.15</li> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	Hexane	< 0.15	0.15							
<ul> <li>&lt; 0.30</li> <li>&lt; 0.30</li></ul>	isopropyl atcohol	< 0.15	0.15							
<ul> <li>6.30 0.30</li> <li>6.30 0.30</li> <li>6.30</li> <li>6.30</li> <li>6.30</li> <li>6.30</li> <li>6.30</li> <li>6.30</li> <li>7.30</li> <li>8.2 imate Value above quantitation range</li> <li>8.2 imate Value above quantitation range</li> </ul>	т&р-Хуlеле	< 0.30	0.30							
< 0.30 0.30 < 0.30 < 0.30 < 0.30 < 0.30	Methyl Butyl Ketone	× 0.30	0.30							
< 0.30	Methyl Elhyl Kelone	₹ 0.30	0.30							
Results supported are not blank corrected I. Estimated Value above quantitation marge.	Methyl Isobutyl Xetone		0.30							
	!	nried are not blank corrected			stimated Value above quant	tation range	I	Holding times for	reparation or analysis exce	cded
	.236	Analyse detected below enautitation limit		Ž	No. Detected at the Limit of Desection	Assessing	GK.	RPD onlyide accen	ted recovery limits	

Eldre Corp.  2. AMB1UG-122217 SampType: MBLK TestCode: 0.25CT-TCE- Units apby Prep Date: 22222 Batch ID: R13074 TestNo: TO-15	TestCode: 0.25CF-TCE-VC	RunNo: 13074	
Eldre Corp 3: AMB1UG-122217 SampType: IMBL 22222 Batch ID: R130	TestCode: (	Prep Date:	Conference Comment
Eldre Corp 3: AMB1UG-122217 SampType: IMBL/ ZZZZ Batch ID: R130		Units: ppbV	
Eldre Corp 3: AMB1UG-122217 SampType: IMBL 22222 Batch ID: R130		TestCode: 0.25CT-TCE-	TestMo: TO-15
Eldre ): AMB1UG-1222 22222		SampType: MBL	Batch ID: R13074
Project: Sample ID Client ID:	Eldre Corp	AMB1UG-122217	22222
	Project:	Sample III	Cigal EQ.

LaBella Associates, P.C.

C1712063 Eldre Corp

Work Order: CLIENT:

	SampType: MBLK	TestCode: 0.25CT-TCE. Units: ppbV	Prep Date:	RunNo: 13074
Client ID; ZZZZZ	Batch (D. R13074	Testivo; TO-15	Analysis Date: 12/22/2017	SeqNo: 151965
Analyte	Result	POL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Refival	%RPD RPDEtmil Qual
Methyl tert-buty! ether	< 0.15 V	0.15		
Methylene chloride	< 0.15	0.25		
o-Xylene	< 0.15	0.15		
Propytene	< 0.15	0.15		
Styrene	< 0.15	0.15		
Tetrachtoroethylene	< 0.15	0.15		
Telrahydrofuran	< 0.15	0.15		
Totuene	< 0.15	0.15		
trans-1.2-Dichloroethene	< 0.15	0.15		
frans-1,3-Dichloropropene	< 0.15	0.15		
Trichloroethene	< 0.030	0.030		
Vinyl acetate	< 0.15	0.15		
Viayl Bramide	< 0.15	0.15		
Vinyl chloride	< 0.040	0.540		

	:		A CONTRACTOR OF THE CONTRACTOR		
Ousliffers:	٠	Results reported are not hisply corrected	Estimated Value above quantitation range	₾	(4 Holding times for preparation of analysis ex
	━,	Analyte detected below quantitation limit MD	NO Not Detected at the Limit of Detection	æ.	RPD outside accepted recovery limits
	÷	Spille Recovery outside accepted recovery lands			•

S. Spike Recovery outside accepted recovery limits



# ANALYTICAL QC SUMMARY REPORT

Date: 10.5an-18

LaBella Associates, P.C. CLIENT;

C1712063 Work Order:

Eldre Corp							TestC	ode: I1	TestCode: fugM3_TO15	ıo		
C1712063-001A MS SampType: MS	SampType: MS	TestCoc	de 1ugM3_FC	TesiCode: 1ugM3_F015 Units: ppbV		Prep Date:	41		RunNo: 13073	23		
SVI-01	Balch ID: R13073	Test	TestNo. TO-15			Analysis Dab	Analysis Date: 12/22/2017		SeqNo: 151963	363		
	Result	TOd	SPK value	POL SPK value SPK Ref Val	%REC	LowLinit	%REC LowLimit HighLimit RPD Ret Val	Ref Val	%RPD	%RPD RPDLimit Qual	Qual	
orbethane	1 160	25.0	•	0.5	0.98	5	130					

Sample Sc. C 1 120	Sample IL: C1712063-001A MS	SampType: MS	TestCod	TestCode: 1ugM3_T015 Units: ppbV	5 Units: ppbV		Prep Date:		RunNo: 13073	13073	
Client ID: SVI-01		Batch ID: R13073	TestN	TestNo. TO-15		~	Analysis Date:	12/22/2017	SeqNo: 151963	151963	
Analyte		Result	PQ.	SPK value S	SPK Ref val	%REC	LowLimit Hi	Hightimil RPD Ref Val	d Val	PD RPDLIM	Cual
1.1,1-Trichtoroethane	25	1.160	0.15	•	0.2	0.98	55	130			
1,1,2,2-Tetrachloroethane	ethane	0.7800	0.15	417	0	78.0	55	130			
1,1,2-Trichbroethane	je je	0.9500	0.15	••	Ó	95.0	82	130			
1,1-Dichlocoefnane		0.9600	0.15	₹~	٥	0.98	2	130			
1,1-Dichloroethene		0.8600	0.15	<b>(</b>	Ö	86.0	70	130			
1,2,4-Trichlorobenzene	ene	1.170	0.15	~	٥	117	92	130			
1,2,4-Trimethylbenzene	tene	1.720	0.15	<del>,-</del>	0.79	93.0	92	130			
1,2-Dibromoethane		0.8300	0.15	-	6	83.0	70	130			
1,2-Dichlombenzene	<b>⊉</b>	0.9500	0 15	-	O	95.0	92	130			
1,2-Dichlomethane		0.9500	0.15	-	0	950	Ž,	130			
1,2-Dichloropropane	ú	0.9700	0.15	-	¢	97.0	57	130			
1,3,5-Trimethybenzere	Sece	1,250	0.15	-	0.44	61.0	5	136			
1,3-butadiene		1.230	0.15	•	a	121	6	130			
1,3-Dichlorobertzene	ā	1.070	0 15	-	Φ	107	Б	130			
1,4-Dichlorobenzene	je je	1.010	0.15	-	¢	<u>=</u> (	6	130			
1,4-Dioxene		0.5600	0.30	-	0.17		2	130			တ
2,2,4-timethylpentane	ane	1,000	0.15	-	۵	9	22	130			
4-ethyliotuene		1.060	0.15	-	0.14	92.0	Q2.	130			,
Асеюне		148.5	0.30	7	191.2	4170	2	130			لو
Allyl chloride		1.040	0.15	F	0	<u>₹</u>	70	130			
Вептеле		1.370	0.15		0.38	99.0	0,	130			
Senzyl chłaride		1.010	0.15	4-	o	101	70	130			
Bromodichloromethane	hane	0.9760	0.15	**	0	0.76	92	130			
Bromoform		0.7700	0,15	-	0	77.0	2	130			
Bromonethane		D066.0	0.15	-	0	0.99	20	130			
Oualifiers	Results sepon	Results seponted are not blank corrected	:	E Estimate	Estimated Value above quantitation mage	Citation mag		H Hading ti	Helding times for preparation or analysis excepted	or analysis excee	ted.
-	Analyte defer	Analyse deserted below quantitation limit		_	Not Detected at the Urmit of Detection	Detection		K RPD mutsi	RPD uniside accepted recovery limits	y limits	

Spike Recovery cutside accepted recovery limits

Chart   Char	Sample ID: C1712063-001A MS	SampType: MS	TestCode	⁴սցM3_TO	FestCode: 4ugM3_TO15 Units: ppbV		Prep Date	M	Rua	RunNo: 13073	
Continue		Batch ID: R13073	TestMo:	TO-15		ব	natysis Date		Seq	No. 151963	
1.340 0.16 1 0.53 810 70 130  0.05900 0.15 1 0.0 830 70 130  0.05900 0.15 1 0.0 830 70 130  0.05900 0.15 1 0.0 830 70 130  0.05900 0.15 1 0.0 830 70 130  0.0500 0.15 1 0.0 930 70 130  0.0500 0.15 1 0.0 930 70 130  0.0500 0.15 1 0.0 930 70 130  0.0500 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 930 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.05900 0.15 1 0.0 940 70 130  0.059	Analyte	Result		PK value	SPK Ref Val	%REC					
0.9700 0.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carbon disulfide	1.340	0.15	4	0.53	81.0	0,2	130			
Compact   Comp	Carbon letrachloride	0.9700	0.15	4**	0	97.0	92	530			
1,000   0.15   1   0   986   70   130   130   140   130   140   130   140   130   140   130   140   140   130   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140	Chlorobenzense	0.8900	0.15	*-	0	88.0	92	130			
0.9900 0.15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Chloroethane	0.9600	0.15	-	o	98.6	٤	130			
1,070    0,15	Chloroform	0.9900	0.15	-	0	98.0	70	130			
1,000   0.15   1	Chloromethane	1.670	0.15	•	Ö	107	2	130			
1,250   0,15   1	cis-1,2-Dichloroethene	1.000	0.15		Ö	160	ů,	130			
1220   0.15   1   1   0   122   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	cis-1,3-Dichloropropene	0.9500	0.15	<b>*</b>	Ď	95.0	32	130			
0,600   0,15   1   0,33   72,0   76   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   13	Cyclobexane	1,220	0.15	•	О	122	7.0	130			
1,050   0.15   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050   1,050	Oibromochloromethane	0 8000	0.15	•	Ò	80.0	52	130			
1,070   0.15   1,070   0.15   1,024   88.0   70   130   130   1400   0.15   1,024   88.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Ethyl acetate	1.650	0.15	*-	0.33	72.0	70	130			
1120   015   1   1   1   1   1   1   1   1   1	Ethylbedzene	1.070	0.15	+-	<b>©</b> .19	0.88	52	130			
0.9800   0.15   1   0   98.0   70   130     0.9800   0.15   1   0.047   86.0   70   130     0.9800   0.15   1   0.047   86.0   70   130     0.9800   0.15   1   0.047   86.0   70   130     0.9800   0.15   1   0.047   86.0   70   130     0.9800   0.15   1   0.07   81.0   70   130     0.9800   0.15   1   0.07   81.0   70   130     0.9800   0.15   1   0.07   81.0   70   130     0.9800   0.30   1   2.05   81.5   70   130     0.9900   0.30   1   2.05   81.5   70   130     0.9910   0.30   1   2.05   81.5   70   130     0.9910   0.15   1   0.17   86.0   70   130     0.9910   0.15   1   0.17   86.0   70   130     0.9910   0.15   1   0.17   8.00     0.17   0.15   1   0.0     0.17   0.15   1   0.0     0.17   0.15   1   0.0     0.17   0.15   1   0.0     0.18   0.19   1   0.0     0.19   0.15   1   0   0.0     0.10   0.15   1   0   0.0     0.10   0.10   0.15   1   0   0.0     0.10   0.10   0.15   1   0   0.0     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0.10     0.10   0.10   0.10   0	Freon 11	1 120	0.15	<b></b> -	57.0	88.0	70	130			
1,390   0,15   1   0,47   860   70   130   1,30   1,30   1,150   1,30   0,15   1   0,47   860   70   130   1,30   1,30   1,151   1   0,47   860   70   130   130   1,510   0,15   1   0,7   0,15   1   0,7   130   1,30   1,510   1,510   0,15   1   0,7   130   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,30   1,	Freon 113	0.9800	0.15	<b>-</b>	6	98.0	2	130			
1,330	Freor 114	0.9900	0.15	۲	0	066	5	130			
ro-1,3-buradiene         1.890         0.15         1         0.96         93.0         70         130           stochol         1.510         0.15         1         0.7         81.0         70         130           stochol         28.43         0.15         1         0.7         81.0         70         130           stochol         28.43         0.15         1         0.7         81.0         70         130           stochol         28.43         0.15         1         2.05         81.5         70         130           stylesone         0.310         0.30         1         2.01         67.0         70         130           stri-dulyl Ketone         0.390         0.30         1         2.01         67.0         70         130           chlyrid         0.01         0.30         1         0.17         68.0         70         130           stri-dulyl Ketone         0.350         0.15         1         0.17         68.0         70         130           stri-dulyl ether         0.9300         0.15         1         0.17         68.0         70         130           stri-dulyl ether         0.100 <th< td=""><td>Freon 12</td><td>1.330</td><td>20,15</td><td>-</td><td>0.47</td><td>86.0</td><td>ξ</td><td>130</td><td></td><td></td><td></td></th<>	Freon 12	1.330	20,15	-	0.47	86.0	ξ	130			
0.8600         0.15         1         0         86.0         70         130           1.510         0.15         1         0.7         81.0         70         130           2.843         0.15         1         36.4         -821         70         130           2.169         0.30         2         0.56         81.5         70         130           0.8100         0.30         1         2.01         97.0         70         130           0.7650         0.30         1         2.01         97.0         70         130           0.7650         0.30         1         2.01         97.0         70         130           0.7650         0.30         1         0.17         98.0         70         130           0.9300         0.15         1         0.22         6.30         70         130           1.710         0.15         1         0         92.0         70         130           0.9320         0.15         1         0         92.0         70         130           4.240         0.15         1         0         92.0         70         130           4.240	Heplane	1.890	0.15	+	96.0	93.0	2	130			
1,510 0.15 1 0.7 81.0 70 130  2,843 0.15 1 0.7 81.0 70 130  2,160 0.30 2 0.55 81.5 70 130  2,360 0.30 1 2.01 0.00 70 130  0,9300 0.15 1 0.17 0.930 70 130  2,530 0.15 1 0.0 83.0 70 130  2,530 0.15 1 0.0 83.0 70 130  2,530 0.15 1 0.0 83.0 70 130  2,530 0.15 1 0.0 83.0 70 130  2,530 0.15 1 0.0 83.0 70 130  1,710 0.15 1 0.0 92.0 70 130  0,9200 0.15 1 0.0 92.0 70 130  1,100 0.15 1 0.0 92.0 70 130  1,100 0.15 1 0.0 92.0 70 130  1,100 0.15 1 0.0 92.0 70 130  1,100 0.15 1 0.0 92.0 70 130  1,100 0.15 1 0.0 92.0 70 130  1,100 0.15 1 0.0 110 70 130  1,100 0.15 1 0.0 110 70 130  1,100 0.15 1 0.0 110 110 110 110 110 110 110 110 1	Hexachioro-1,3-butadiene	0.8600	0.15	-	a	86.0	5	130			
2843 9.15 1 3644 4817 70 130  2.160 0.30 2 0.55 81.5 70 130  2.360 0.30 1 0.17 690 70 130  0.7600 0.30 1 0.17 690 70 130  2.630 0.15 1 0.17 690 70 130  2.630 0.15 1 0.22 780 70 130  1.710 0.15 1 0.22 780 70 130  2.9200 0.15 1 0.22 780 70 130  2.9200 0.15 1 0.22 780 70 130  2.9200 0.15 1 0.22 780 70 130  2.9200 0.15 1 0.22 780 70 130  2.9200 0.15 1 0.02 780 70 130  2.9200 0.15 1 4.44 2.20 70 130  2.9200 0.15 1 4.44 2.20 70 130  2.9200 0.15 1 4.44 2.20 70 130  2.9200 0.15 1 4.44 2.20 70 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8.90 130  2.9200 0.15 1 8	Hexane	1.510	0.15	-	0.7	81.0	2	130			
2.189 0.30 2 0.55 81.5 70 130  2.380 0.30 1 0 81.0 70 130  2.380 0.30 1 2.01 37.0 70 130  0.7660 0.30 1 0.17 660 70 130  2.530 0.15 1 0.17 660 70 130  2.530 0.15 1 0.22 76.0 70 130  1.710 0.15 1 0.22 76.0 70 130  1.710 0.15 1 0 170  0.9200 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 130  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1 0 144  1.710 0.15 1	Isopropyl afcohol	28.43	0.15	<u>,</u>	36.64	-821	2	130			
2.360 0.30 1 2.01 70 130 2.360 0.30 1 2.01 (3.0) 70 130 0.7860 0.30 1 2.01 (3.0) 70 130 0.9300 0.15 1 0.17 (58.0) 70 130 2.530 0.15 1 0.22 (43.0) 70 130 1.710 0.15 1 0.22 78.0 70 130 0.9200 0.15 1 0.22 78.0 70 130 1.710 0.15 1 0 130 2.240 0.15 1 0 130 2.240 0.15 1 0 130 2.250 70 130 2.250 0.15 1 0 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2.250 70 130 2	m&p-Хучепе	2.180	0.30	cva	0.55	81.5	2	130			•
2.360 0.30 1 2.05 770 130  0.7650 0.30 1 0.17 660 70 130  0.9300 0.15 1 0.17 660 70 130  2.630 0.15 1 0.22 780 70 130  1.710 0.15 1 0.22 780 70 130  0.9200 0.15 1 0 92.0 70 130  4.240 0.15 1 0 92.0 70 130  4.240 0.15 1 0 130  1.100 0.15 1 0 130  MD Marke cleared below quantitation range R RPD outside account removed limits.	Methyl Butyl Ketone	0.8160	0.30	-	0	8/ 0/	70	130			
0.7660 0.30 1 0.17 680 70 130  2.630 0.15 1 2.2 (43.0) 70 130  1.000 0.15 1 0.22 780 70 130  1.710 0.15 1 0.22 780 70 130  0.9200 0.15 1 0.22 780 70 130  4.240 0.15 1 0 92.0 70 130  4.240 0.15 1 0 92.0 70 130  4.240 0.15 1 0 92.0 70 130  4.240 0.15 1 0 92.0 70 130  4.240 0.15 1 0 92.0 70 130  A.240 0.15 1 0 9	Methyl Efnyl Ketone	2.380	0.30	-	2.01	(a)	20	130			
2.630 0.15 1 0.22 (43.0) 70 130  2.630 0.15 1 2.2 (43.0) 70 130  1.000 0.15 1 0.22 78.0 70 130  1.710 0.15 1 0.92.0 70 130  6.9200 0.15 1 0 92.0 70 130  4.240 0.15 1 4.44 20.0 70 130  7.100 0.15 1 0 110  A.240 0.15 1 0 110  A.240 0.15 1 0 100  A.	Methyl Isobutyl Ketone	0.7600	0.30	-	0.17	98.0	70	130			•,
2.630 0.15 1 2.2 (45.0) 70 130 1.000 0.15 1 0.22 78.0 70 130 1.710 0.15 1 0.22 78.0 70 130 0.9250 0.15 1 0 92.0 70 130 1.710 0.15 1 0 92.0 70 130 1.100 0.15 1 0 110 10 130  Results reported are not blank corrected E. Estimated Value above quentitation range H. Hobbing times for preparation or analysis exceeded Analyse detected below quantitation limit of Detected at the 1 min of Detection R. R. RPD outside personnel property.	Methy! text-buty! ether	0.8300	0.15	-	0	000	70	Š			
1.710 0.15 1 0.22 78.0 70 130 1.710 0.15 1 0 (171) 70 130 0.9200 0.15 1 0 92.0 70 130 1.100 0.15 1 4.44 20.0 70 130 1.100 0.15 1 8.444 120.0 70 130 1.100 0.15 1 8.444 130.0 70 130 1.100 0.15 1 8.444 130.0 70 130 1.100 0.15 1 0 140 140 140 140 140 140 140 140 140	Methyens chloride	2.630	0.15	<b></b>	2.2	(A)	92	130			
1.710 0.15 1 0 130 0.9200 0.15 1 0 92.0 70 130 0.9200 0.15 1 4.44 20.0 70 130 1.160 0.15 1 0 110 70 130  Results reported are not blank corrected 1 Assayue detected below, quantisation limit ND Not Detected at the Limit of Detection R	o-Xylene	1.000	0.15	-	0.22	) 92 1	29	130			
6.9200 6.15 1 0 92.0 76 130  4.240 6.15 1 4.44 20.0 7 70 130  1.100 0.15 1 0 110 70 130  Results reported are not blank corrected E. Estimated Value above quentifation range H. Analyte detected below, quantifation limit MD. Not Detected at the Limit of Detection R.	Propyene	1.710	0.15	-	0	٥	70	130			
ene	Styrene	0.9200	0.75	-	0	95.0	70	130			
1.109 0.15 1 0 110 70 130  Results reported are not blank corrected  Estimated Value above quantitation range H  Assaure detected below, quantitation limit ND Not Detected at the Limit of Detection R	Tetrachloroethylene	4.240	6.15	-	4.44	-20.0	2	130			•
Results reported are not blank corrected E. Estimated Value above quentitation range H. Analyte detected below quantitation limit. All Not Detected at the Limit of Beterring.	Tetrahydrofuran	1.100	0.15	-	0	110	2	130			•
Ansalvic detected below augministation limit MD. Not Defected as the Limit of Detection R		ted are not blank corrected		1	ted Value above quer	lisation range	:		times for prepara	ation or analysis	expended
	,_	red below greatisestized limit	~		dones as the term of	Detraction			teide acceptado		

LaBella Associates, P.C.

C1712063 Eldre Corp

Project:

CLIENT: Work Order: TestCode: 1ugM3_TO15

POL   SPK value   SPK Ref Val   %REC   LowLimit   Hightimit   RPD Ref Val   0   91.0   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   13		Samplyte. MS	estCode:	TestCode: 1ugM3_T015	Units ppbV		Prep Date			RunNo: 13073	ĘD.	
Result   POL   SPK Rel Vel   %FEC   LowLinit Hight-line   3.460   015   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130		Batch (D. R13073	TestNo.	TO-15		•	Analysis Date		17	SeqNo; 151963	163	
3.460   0.15   1   3.27   190   70   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Analyte	Resuil			'K Ref Val	%REC			RPD Ref val	%RPD	RPDLimit	Oual
1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360   1360	Coluene	3 460	0.15	,-	3.27	19.0	202	130				S
1,040   0.15   1.1   0.164   1.1   0.15   1.0   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1	Irans-1,2-Dichlorpethene	0.9100	615	-	0	) <u>e</u>	70	130				
1300   115   1   1184   20,0   10   10   10   10   10   10   10	lrans-1,3-Dichloropropene	1.040	0.15	-	0	ş	22	130				
130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130   130	Inchloroethene	4.389	0.15	-	4.18	20.0	5	130				À
SampType: MSD	Jinyt acetate	0.3600	0.15	-	0	96.0	7.0	130				
SampType: MSD TestCode: 1ugM3_TO15 Units: ppbV Frep Date:  Batch IO: R13073 FestNo: TO-15 Analysis Date: 12/22/  Batch IO: R13073 FestNo: TO-15 Analysis Date: 12/22/  Result POI, SPK value SPK Ref Val SAREC Low! Fruit Hight.imit  1,080 0.15 1 0.2 86.0 70 130  0,9800 0.15 1 0.0 95.0 70 130  0,8800 0.15 1 0.0 95.0 70 130  0,8800 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 95.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.15 1 0.0 70 130  1,260 0.	/inyl Bromide	0.9800	0.15	•	0	0.86	70	130				
SampType: MSD         TestCode: 1ugM3_TO16         Units: ppbV         Analysis Date: 12/22/2           Batch IO: R13073         TestMo: TO-15         Analysis: ppbV         Analysis: Date: 12/22/2           Batch IO: R13073         TestMo: TO-15         Analysis: Date: 12/22/2           1.0850         0.15         1         0.2         88.0         70         130           0.8660         0.15         1         0         95.0         70         130           0.9500         0.15         1         0         95.0         70         130           0.9500         0.15         1         0         99.0         70         130           0.9500         0.15         1         0         99.0         70         130           0.8800         0.15         1         0         99.0         70         130           0.8800         0.15         1         0         94.0         70         130           0.9900         0.15         1         0         94.0         70         130           1.250         0.15         1         0         94.0         70         130           1.250         0.15         1         0         0	/knyf chloride	1.140	0.15	<b>-</b>	0.16	0.86	22	130				
SVI-01         Batch IO:         R13073         TestNo.         TO-15         Analysis Date:         12222           Result         PQL         SPK Net Veal         %REC         LowLinit         Hightlinit           Notroethane         1.08C         0.15         1         0.2         8E.0         70         130           Ricchichroethane         0.38CO         0.15         1         0.2         8E.0         70         130           Rinchellorethane         0.38CO         0.15         1         0.2         8E.0         70         130           Rinchellorethane         0.38CO         0.15         1         0.2         8E.0         70         130           Recharce         0.35CO         0.15         1         0.2         8E.0         70         130           Nocethane         0.35CO         0.15         1         0.79         70         130           Nobenzene         1.02CO         0.15         1         0.79         70         130           Nobenzene         1.02CO         0.15         1         0.2         3E.0         70         130           Inchenzene         1.22O         0.15         1         0.44         73.	Sample ID: C1712063-001A MS	-	TestCode:	1ugM3_T015	11		Реер Оак			Runhto: 13073	ņ	
Composition		Batch IO: R13073	TestNo	TO-15		~	Analysis Date		17	SeqNo: 151964	2	
1,080	Analyte	Resuft			'K Ref Val	%REC			RPD Ref Val	%RPO	RPOLimit	Qual
name         0.86¢0         0.15         1         0         86.0         70         130           0.99¢0         0.15         1         0         95.0         70         130           0.99¢0         0.15         1         0         99.0         70         130           ne         1.260         0.15         1         0         99.0         70         130           ne         1.560         0.15         1         0         99.0         70         130           ne         1.560         0.15         1         0         98.0         70         130           ne         1.620         0.15         1         0         98.0         70         130           ne         1.250         0.15         1         0         94.0         70         130           ne         1.770         0.15         1         0         94.0         70         130           ne         1.770         0.15         1         0         94.0         70         130           ne         1.250         0.15         1         0         94.0         70 <t>130           ne         1.20</t>	1,1,1-Trichloroethane	1.080	0.15	-	0.2	88.0	7.0	130	1.16	7.14	8	
0.9560         0.15         1         0         95.0         70         130           0.9900         0.15         1         0         99.0         70         130           0.8300         0.15         1         0         83.0         70         130           ne         1.260         0.15         1         0         83.0         70         130           ne         1.550         0.15         1         0         86.0         70         130           ne         1.550         0.15         1         0         86.0         70         130           ne         1.020         0.15         1         0         94.0         70         130           ne         1.170         0.15         1         0         94.0         70         130           ne         1.120         0.15         1         0         94.0         70         130           ne         1.250         0.15         1         0         94.0         70         130           ne         1.250         0.15         1         0         1.25         70         130           ne         0.6300         0	1.1,2,2-Tetrachtoroethane	0.3600	0.15	-	Ö	86.0	70	130	0.78	9.76	8	
0.9900   0.15	E, 1,2-Trichloroethane	0.9500	0.15		o	95.0	70	130	0.95	¢	8	
0.8300 0.15 1 0 83.0 70 130 1.250 0.15 1 0 126 70 130 1.550 0.15 1 0.79 75.0 70 130 0.8800 0.15 1 0.79 75.0 70 130 1.020 0.15 1 0 102 70 130 0.9600 0.15 1 0 102 70 130 1.250 0.15 1 0 102 70 130 1.250 0.15 1 0 125 70 130 1.250 0.15 1 0 112 70 130 1.060 0.15 1 0 112 70 130 0.6300 0.15 1 0 106 70 130 0.6300 0.15 1 0.14 94.0 70 130 1.080 0.15 1 0.14 94.0 70 130	1,1-Dichlorcethane	0.9900	0.15	-	0	0.66	70	130	0.96	3.08	ଞ	
1.256 0.15 1 0 126 70 130 1.550 0.15 1 0.79 750 70 130 0.8800 0.15 1 0.79 750 70 130 1.020 0.15 1 0 102 70 130 0.9400 0.15 1 0 102 70 130 0.9800 0.15 1 0 102 70 130 1.170 0.15 1 0 980 70 130 1.120 0.15 1 0 125 70 130 1.250 0.15 1 0 112 70 130 0.6300 0.15 1 0 112 70 130 0.6300 0.15 1 0 14 94.0 70 130 1.080 0.15 1 0.14 94.0 70 130	1.1-Dichtoroethene	0.8300	0.15	<del>,</del>	0	83.0	70	130	0.86	3.55	30	
tene 1,550 0.15 1 0.79 75.0 70 130 0.1800 0.15 1 0.79 75.0 70 130 0.1800 0.15 1 0 0.8800 70 130 130 1020 0.15 1 0 0.15 1 0 102 70 130 130 141 1.70 0.15 1 0 0.44 73.0 70 130 130 1.250 0.15 1 0 0.44 73.0 70 130 130 1.250 0.15 1 0 112 70 130 130 1.250 0.15 1 0 0.17 46.0 70 130 130 1.080 0.15 1 0.17 46.0 70 130 130 1.080 0.15 1 0.14 94.0 70 130 130 130 130 130 130 130 130 130 13	1,2,4-Frichtorobenzene	1.260	0.15	<b>-</b> -	0	126	70	₩ 0000	1.17	7.41	39	
e 1020 0.15 1 0 88.0 70 130  1020 0.15 1 0 102 70 130  0.9400 0.15 1 0 94.0 70 130  ene 1.170 0.15 1 0 98.0 70 130  e 1.250 0.15 1 0 98.0 70 130  e 1.250 0.15 1 0 142 73.0 70 130  e 1.250 0.15 1 0 112 70 130  e 0.6300 0.15 1 0 112 70 130  1.080 0.15 1 0.17 46.0 70 130  1.080 0.15 1 0.14 94.0 70 130	1,2,4-Trimethylbenzene	1,550	0.15	₩.	0.79	76.0	8	130	1.72	10.4	æ	
e 1920 0.15 1 0 102 70 130 e 0.9900 0.15 1 0 94.0 70 130 zene 1.170 0.15 1 0 98.0 70 130 le 1.250 0.15 1 0 125 70 130 le 1.260 0.15 1 0 125 70 130 le 1.060 0.15 1 0 106 70 130 le 0.6300 0.15 1 0.17 46.0 70 130 le 0.6300 0.15 1 0.17 46.0 70 130 le 0.6300 0.15 1 0.17 46.0 70 130 le 0.6300 0.15 1 0.14 94.0 70 130 le 0.15 1 0.14 94.0 70 130 le 0.15 1 0.14 94.0 70 130 le 0.15 1 0.14 94.0 70 130	1,2-Dibromoe(hane	0.8800	0.15	*	0	88.0	92	130	0.83	5,85	99	
e 0.9600 0.15 1 0 94.0 70 130  2ene 1.170 0.15 1 0 98.0 70 130  1.250 0.15 1 0.44 73.0 70 130  1.250 0.15 1 0 125 70 130  1.250 0.15 1 0 125 70 130  1.250 0.15 1 0 112 70 130  1.250 0.15 1 0 112 70 130  1.250 0.15 1 0 106 70 130  1.250 0.15 1 0.17 46.0 70 130  1.250 0.15 1 0.17 46.0 70 130  1.250 0.15 1 0.14 94.0 70 130  1.250 0.15 1 0.14 94.0 70 130	1.2-Dichtorobenzene	1 020	0.15	<b>-</b> -	0	102	92	<del>0</del>	0.95	7.11	30	
opropane         0.9800         0.15         1         0         98.0         70         130           athybenzene         1.170         0.15         1         0.44         73.0         70         130           ne         1.250         0.15         1         0         1.25         70         130           obenzene         1.260         0.15         1         0         112         70         130           e         0.6300         0.30         1         0         70         130           ihypentane         0.6300         0.15         1         0.17         460         70         130           ane         1.080         0.15         1         0.14         94.0         70         130           Results reported are not blank connected         E. Extinnted Value above quantifation range         H	1,2-Dichloroethane	0.9400	0.15	<b>+</b> -	o	8	92	130	0.95	1,06	æ	
thybenzene 1.170 0.15 1 0.44 73.0 70 130 ne ne 1.250 0.15 1 0 125 70 130 benzene 1.120 0.15 1 0 112 70 130 130 benzene 1.060 0.15 1 0 106 70 130 130 lhybentane 0.6300 0.15 1 0.17 (46.0) 70 130 130 lhybentane 0.9700 0.15 1 0.14 94.0 70 130 130 1 0.14 94.0 70 130 130 130 130 130 130 130 130 130 13	1,2-Oichloropropane	00860	0.15	<b>,-</b>	C	98.0	20	₽ E	76.0	1.03	30	
1.250	1,3,5-Tranethylbenzene	1.170	0.15	<b>~</b>	0.44	73.0	20	<del>1</del> 30	1,25	5.61	8	
obenzene         1 120         0.15         1         0         112         70         130           obenzene         1.060         0.15         1         0         106         70         130           ihydoentane         0.6300         0.15         1         0.17         46.0         70         130           ihydoentane         0.9700         0.15         1         0.14         94.0         70         130           sine         1.080         0.15         1         0.14         94.0         70         130           Results reported are not blank corrected         E         Extinated Value above quantification range         H	1,3-butadiene	1,250	0.15	<b>-</b> -	Đ	Ŕ	20	55	1,21	3.25	8	
be 106 70 130 130 130 130 130 130 130 130 130 13	1,3-Dichlombenzene	1 120	0.15	-	O	112	92	<del>1</del> 30	1,07	4.57	30	
130	1,4-Dichlorobenzene	1.060	0.15	-	O	\$(	2	130	1.01	4.83	윩	
Intyleentane         0.9700         0.15         1         0         94.0         70         130           ane         1.080         0.15         1         0.14         94.0         70         136           1.080         0.15         1         0.14         94.0         70         136           1.080         0.15         1         0.14         94.0         70         136           1.080         0.15         1         Eximple leading state of the control o	1,4-Oioxane	0.6300	0.30	₩.	0.17	46.6 6.6	2	<del>1</del> 36	95'0	11.8	8	(V)
ane 1.080 0.15 1 0.14 94.0 70 130 Results reported are not blank corrected E Estimated Value above quantitation range H	2,2,4-trimethylpentane	0.9700	0.15	<b>-</b>	0	)	2	<u>6</u>	444	3.05	30	
Results reported are ant blank corrected E Estimated Value above quantitation tange H	4-sinyltokvene	1.080	0.15	-	D.14	94.0	22	\$	1.06	1.87	30	
		ried are ant blank corrected	: : : : : : : : : : : : : : : : : : : :		Value above cana	รัศสโรษที่ เลมอู	: :	:	oleing times for	preparation os and	alysis excoed	3.
Not Detected at the Limit of Extention		cted below quantitation limit		ND Not Detect	ted at the Limit of	Detection		~	PD outside accep	sted recovery limit	- 51	
S Spike Recovery autside accepted seconery limits		rery outside accepted recovery fi	phits									Price ! of 5

Eldre Corp C1712063

Work Order: Project:

CLENT: LaBella Associates, P.C.

TestCode: lugM3_TO15

TestCode: JugM3_TO15

Spike Recovery outside accepted necovery limits

The second secon	aBella Associates, P.C.	
	CLIENT:	

Ct712063	Eldre Corp
Work Order:	Project:

			TO A TOWNS TO SOME	and the control of the board		Preo Date			RunNo: 13073	073	
Clent ID: SVI-01	Batch (D): R13073	Tes	TestNo: TO-15		٩	Analysis Date	12/22/2017	71	SeqNo: 151964	1964	
Anatyie	Result	POL	SPK value SI	SPK Ref Val	%REC	LowLimit H	Hightamat	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	104.4	0.30	>-	191.2 🗸	-8680	0,	25	149.5	35.5	38	3
Allyi chloride	0.9900	0.15		o	0.66	5	130	8	£8.4	30	ĺ
Веп <b>z</b> ење	1,250	0.15	-	0.38	87.0	70	130	1.37	9.16	3 6	
Benzyl chloride	1,090	0.15	-	¢	109	70	130	1.61	7.62	S 65	
Bromodichloromethase	0.9500	0.15	**	0	95.0	70	130	0.97	2.08	3 8	
Bromoform	0.8300	0.15	***	o	93.0	8	130	0.77	7.50	<b>R</b>	
Bromomethane	0.9400	0.15	,-	0	94.0	2	130	0.99	13	8 2	
Carbon disulāde	1,220	6.15	<b>-</b>	0.53	69.0	× 500	700	134	86.6	R 7	b
Carbon (etrachforide	0.9400	0.15	-	۵	<b>9</b>	2	55	0.97	3.14	8	L
Chlorobenzene	0.9000	0.15	-	<b>Q</b>	0.08	5	130	0.89	1.12	8	
Chloroethane	0.9700	0.15	-	Ģ	0.76	02	130	0.58	1.03	Ŕ	
Chloroform	0.9900	0.15	•	ø	0.62	8	<b>3</b> 30	0.99	0	ਲਿ	
Chloromethane	1.090	0.15	¥m	Ō	109	70	130	1.07	1.85	8	
cis-1,2-Dichlaroethere	0.9400	0.15	-	٥	340	2	£3	-	6.19	F	
cis-1,3-Dichloropropene	0.9400	0.35	-	o	94.0	2	<del>S</del>	0.95	1.05	: R	
Cyclohexane	1.170	0.15	<del>-</del>	o	117	22	130	1.22	4.18	R	
Dibromochloromethane	0.8500	0.15	-	0	85.0	20	130	8.0	90.9	: F	
Ethyl acetale	1.020	0.15	-	0.33	69.0	18 65	136/3	1,05	2.90	· 8	à
Ethylbenzene	1.030	0.15	-	0.19	84.0	2	55 55	1.07	3.81	8	•
Freon 11	1.050	0.15	-	0.24	81.0	20	<del>8</del>	1.12	6.45	8	
Freon 113	0.9300	0.15	-	٥	93.0	R	051	0.98	5.24	S	
Freon 114	0.9800	0.15	-	Ф	98.0	70	8	66.0	\$.02	8	
Frech 12	1,210	0.15	•	0.47	¥(	22	130	1.33	9.45	8	
Heptane	1,580	0.15	<b>4</b> 27	96.0	(62.0 (62.0	70	130	1.89	17.9	S	W
Hexachloro-1,3-butadiene	1.000	0.15	1-	o	) F(	92	130	0.86	15.1	S S	
Hexane	1.340	0.35	1	7.0	<b>8</b>	22	130	1.51	11.9	8	Ø
tsopropyl alcohol	20.21	0.45	<u>_</u>	36.64	· 多	Ŕ	130	2B.43	33.8	8	à
ளதே-Xylene	2.100	0.30	2	0.55	77.5	5	130	2.18	3.74	30	
Methyl Butyl Ketone	0.3300	0.30	•	0	(3.8)	20	130	0.81	84.2	æ	쁈
Methyl Eihyl Kelone	2:000	0.30	-	2.01	<u>8</u>	2	130	2.38	17,4	30	S
Methyl Isobutyl Ketone	0.5900	0.30	-	0.17	420	20	130	0.76	25.2	33	S
-	Results reported are not blank corrected		E Estimated	Estimated Value above gwantitution range	Litetion range		. ¥	dding brock for	Holding Brace for Decraration of analysis exercited	dalvsis exceed	. 78
	And the state of the last of the state of th		110								

- : '	
	1
1.	$\sim$
	Α.
٠.	<del></del>
	LP1
	a.i
	-
	44
	LaBella Associates, P.C.
11	Q
	257
13	₹.
	-
- 1	_
•	•
	~
- 11	
	***
٠.	
7:	
- N.	
- 61	
٠.	_
2.0	6-3
- 11	بتعر
	CLIENT:
1.5	_1
1.	•
	_

TestCode: 1ngM3_TO15

C1712063 Work Order:

Ridre Corp Project:

Sample ID: C1712063-001A MS SampType. MSD	SampType. MSD	TestCor	TestCode: 1ugN3_TO15 Units: ppbV	Units: ppbV		Prep Date	<u>a</u>		RunNo: 13073	073	
Cilent ID: SW-01	Batch ID: R13073	TestMo	Va: TO-15		*	knatysis Dal	Analysis Dale; 12/22/2017	117	SeqNo: 151964	1964	
Analyte	Result	POL	SPK value Sf	SPK Ref Val	%REC	Lowtimi	LowLimit Hight.imit	RPD Ref Val	%RPD	RPDLimil	Qual
Methyi tert-bulyi ether	1.000	0,15	•	O	130	70	130	0.93	7.25	ස	
Methylene chloride	2.120	0.15	••	2.2	8		130	2.63	21.5	8	Ŋ
o-Xyien <b>e</b>	0.9800	0.15	**	0.22	99	7.0	£	-	2.02	ਲੇ	
Prapylene	1.610	0.45	-	0	(g)	5,	130	1.71	6.02	ह	ιń
Styrene	0.9500	0,15	-	0	85.0 95.0	70	130	0.92	3.21	30	
Теггасијогоейумеве	3.250	0.15	<u>`</u>	4.44	-115 <	2	इ	4.24	25.2	35	7
Tetrahydrofuran	1.010	0.15	<del>, -</del>	a	5		<del>8</del>	1,1	8.53	88	
Toluene	2.770	0.15	<b>,</b>	3.27	(S)	2	130	3.46	22.2	8	Ø
trans-1,2-Dichlomethene	0.9600	0.15	-	0	96.0	5	130	0.91	5.35	Š	
trans-1,3-Dickloropropene	0.9900	0,15	•	o	98.0	5	130	1.04	4.93	8	
Trichloroethene	3.190	0,15	<u>`</u>	4.18	<b>289.0</b>		330	4.38	31.4	30	À
Vinyl acetate	0.9500	0.15	-	٥	95.0	5	8	0.96	1.05	S	1
Vinyl Bromide	0.9800	0.15	-	0	0.86	2	130	0.98	0	8	
Vinyl chloride	1.090	0.15	-	0.16	93.0	₽.	130	1.14	4.48	30	

Estimated Vatue above quantitation range Not Detected at the Limit of Extection 

H Holding times for pesparation or analysis exceeded R RPD outside accepted recovery limits

RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit

Results repeated are and black corrected

Qualifiers: