

Stantec Consulting Services Inc.

61 Commercial Street Rochester NY 14614 Tel: (585) 475-1440 Fax: (585) 272-1814

May 10, 2013 File: 190500751

Mr. Todd Caffoe, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation 6274 East Avon-Lima Road Avon, NY 14414

Reference: Brownfield Cleanup Program

Monthly Progress Report #2

Site #C828184

Former Carriage Factory

33 Litchfield Street

Rochester, Monroe County, New York

Dear Todd:

On behalf of Carriage Factory Special Needs Apartments, LP (CFSNA), Stantec Consulting Services Inc. (Stantec) has prepared this Monthly Progress Report #2 for the Brownfield Cleanup Program (BCP) at the Former Carriage Factory located at 33 Litchfield Street in the City of Rochester, Monroe County, New York (Site). This report covers activities that took place during the month of April 2013.

1. Actions During The Previous Month

- Excavated test pits and trenches on April 10th at the locations of exterior anomalies identified by the geophysical (EM-61) survey performed in March. Figure 1 shows the test pit locations; logs of the explorations are included in Appendix A. No evidence of underground storage tanks was observed in any of the test pits, and the anomalies appear to have been the result of miscellaneous metallic objects contained in the fill soils at each location. PID screening did not indicate the presence of VOCs with the exception of relatively minor readings (0.1-0.2 parts per million, or ppm) in fill soils in test pit TP-4A located near the loading dock on the south side of the building.
- Project construction activities included excavation of shallow (<2 ft deep) trenches for the east and west stair tower footings on April 17th and 18th. Stantec screened excavated soil with a PID. Conditions in each of the excavations are summarized below:
 - <u>East Stair Tower</u>. PID readings up to approximately 10-15 parts per million (ppm) were encountered within the footing trenches. Gray- to black-stained soils were occasionally observed, and as excavation progressed in the southeast corner of the east stair tower excavation, more elevated PID readings were encountered. Accordingly, the excavation was extended toward the southeast in an attempt to further delineate the soils appearing most impacted. PID readings up to approximately 400 ppm were encountered, and the soil exhibited a strong weathered petroleum odor. The contamination appeared to be most prevalent in the vicinity of shallow subsurface cast iron roof drain piping and other steel piping that had been previously identified by the geophysical survey. The piping was removed as excavation progressed. A sample (LI-B-1S) of the impacted soil was

May 10, 2013 Page 2

Reference: Brownfield Cleanup Program Monthly Progress Report #2

Site # C828184
Former Carriage Factory
33 Litchfield Street

Rochester, Monroe County, New York

obtained and submitted for laboratory analysis. A sample (LI-B-3S) was also obtained within the stair tower footing trench where stained soil and PID readings of up to approximately 10 ppm were observed.

The analytical results for soil sample LI-B-S1, taken from the impacted area where PID readings of up to 400 ppm were observed was "non-detect" for all semivolatile organic compounds (SVOCs). One volatile organic compound (VOC) was detected: tetrachloroethene was detected at 6.07 ug/Kg (ug/Kg, equivalent to parts per billion). This concentration is well below the NYSDEC Restricted Residential Soil Cleanup Objectives (SCOs).

Several semi-volatile "tentatively identified compounds" (TICs) were also detected at concentrations up to 11,200 ug/Kg, and volatile TICs were detected up to 657 ug/Kg. There are no SCOs for TICs.

The analytical results for soil sample LI-B-3S, taken from the stair tower footing trench where PID readings of up to 10 ppm were observed was "non-detect" for all SVOCs. VOCs detected included acetone at 9.38 ug/Kg and sec-butylbenzene at 2.16 ug/Kg. These concentrations are all well below the NYSDEC Restricted Residential SCOs.

Several semi-volatile "tentatively identified compounds" (TICs) were also detected at concentrations up to 19,300 ug/Kg, and volatile TICs were detected up to 341 ug/Kg.

West Stair Tower. Conditions encountered in the west stair tower excavation indicated less apparent impact than the east excavation. No subsurface piping was encountered in this excavation, PID readings did not exceed approximately 17 ppm, and soil staining was relatively limited. A sample was obtained from the west footing trench and submitted for analysis. Several inches of water accumulated in the footing excavation over a period of 1 to 2 days. The water was contained in drums and pending analytical results will likely be discharged to the sanitary sewer under a discharge permit to be obtained from the Monroe County Department of Environmental Services (MCDES).

The analytical results for the soil sample (LI-B-4S) taken from the east stair tower excavation where PID readings up to 10 ppm were observed was "non-detect" for all semivolatile organic compounds SVOCs. The sample exhibited trichloroethene (TCE) at 63.5 ug/Kg, cis-1,2-dichloroethene at 27.0 ug/Kg trans-1,2-dichloroethene at 4.77 ug/Kg, and tetrachloroethene (PERC) at 2.35 ug/Kg. These concentrations are below the NYSDEC Restricted Residential SCOs.

Two VOC TICs were detected at levels up to 40.5 ug/Kg.

- Impacted soils from both areas were stockpiled in the basement on poly sheeting. A
 minor amount of water accumulated in the stair tower excavation, and water also
 accumulated in the portion of the exploration excavation that extended to the top of rock
 (approximately 3 ft below grade).
- The laboratory results for these samples are summarized in the attached Table 1.

May 10, 2013 Page 3

Reference: Brownfield Cleanup Program

Monthly Progress Report #2 Site # C828184

Former Carriage Factory
33 Litchfield Street

Rochester, Monroe County, New York

• In accordance with the Remedial Investigation Work Plan (RIWP), five exterior test borings were drilled and two exterior monitoring wells were installed in bedrock in two of the completed test borings (TB101-MW and TB102-MW). The work was completed during the period March 22 through March 24. The borings were drilled in very close proximity to the locations shown on the attached Figure 7 from the RIWP. An updated plan will be generated to reflect actual as-drilled locations. One soil sample from each test boring was submitted for laboratory analysis. The wells were developed to remove water lost to the formation during drilling; this water was contained in drums and pending analytical results will be discharged to the sanitary sewer under a MCDES discharge permit.

- Additional geophysical investigation in the form of a ground-penetrating radar (GPR) survey
 was performed in the basement of the building and in the Wiley Street right-of-way (ROW).
- The RIWP was revised to incorporate the March 22nd response to comments as per the NYSDEC's conditional approval dated April 16.

2. Data Received or Generated in the Previous Month

- The results of the second phase of passive soil gas (PSG) investigation were received from Beacon Environmental. The survey did not identify any new findings immediately to the south of the building, however low-levels of total petroleum hydrocarbons (TPH) were reported in one location on the northwest corner of the building, in one location along west side of the Site within the proposed parking lot, and at the south end of the Site. To the north of the building, methylene chloride was still reported to be present, although at lower levels than the initial survey detected and no indications of the methylene chloride were reported beneath the north end of the building. Accordingly, the methylene chloride source appears to be located off-site.
- The final report for the EM-61 and GPR geophysical survey was received from Amec (note
 the exterior EM-61 results were discussed in Progress Report No. 1). The interior EM-61
 survey results indicated several metallic pipes are present throughout much of the
 basement; several of the pipes appeared to be roof drain-related, although other pipes may
 also be present. The GPR survey results inside the building and in the Wiley Street Rightof-way did not detect subsurface piping or structures.
- Laboratory analytical results were received for three soil samples: one obtained in the base of the each of the stair tower footing excavations and one from the area of impacted soil adjacent to the east stair tower (discussed above in Item No. 1). The data are summarized on the attached Table 1, and copies of the results are included in Appendix B.

3. Deliverables Completed and Submitted during the Previous Month

- Monthly Progress Report No. 1 was provided to NYSDEC on April 10th.
- Copies of the Geophysical Survey Report and results of the Supplemental Passive Soil Gas investigation were transmitted to NYSDEC on April 15th.
- The Stair Tower soil analytical results were submitted to NYSDEC on April 23rd.
- The revised RIWP was submitted to NYSDEC on May 1st.

May 10, 2013 Page 4

Reference: Brownfield Cleanup Program

Monthly Progress Report #2

Site # C828184 Former Carriage Factory 33 Litchfield Street

Rochester, Monroe County, New York

4. Actions Scheduled for the Next Reporting Period

Pending receipt of approval from the Department, the following activities are planned for May:

- Drilling of interior borings and installation of two bedrock groundwater monitoring wells.
- Collection of soil and groundwater samples for the Enhanced Reductive Dechlorination (ERD) bench study.
- Surface soil sampling.
- Groundwater elevation measurements, groundwater sampling, and hydraulic conductivity testing.
- Monitoring of construction-related activities: basement piping and soil removal; exterior site
 work, including excavations and grading; basement utility trenching; and demolition of
 selected building elements. CAMP monitoring will be performed for all exterior activities.

5. Completion, Delays and Future Schedule

Although construction delays have occurred, no completion, delay, or schedule issues have been identified with respect to the Remedial Investigation.

Closing

Should you have any questions or require further information, please call me at 585-413-5266.

Sincerely,

STANTEC CONSULTING SERVICES INC.

Michael P. Storonsky Project Manager

ec: Bart Putzig (NYSDEC)

James Mahoney (NYSDEC)

Justin Deming (NYSDOH) James Whalen (CFSNA)

Mark Fuller (CFSNA)

Al Floro (Nixon Peabody)

Jonathan Penna (Nixon Peabody

Mark Gregor (City of Rochester)

James Patchett (Goldman Sachs)

Eleonora Bershadskaya (Goldman Sachs)

Linda Kaiser (Goldman Sachs)

David Lent (IVI)

May 10, 2013 Page 5

Reference: Brownfield Cleanup Program

Monthly Progress Report #2

Site # C828184 Former Carriage Factory 33 Litchfield Street

Rochester, Monroe County, New York

Attachments:

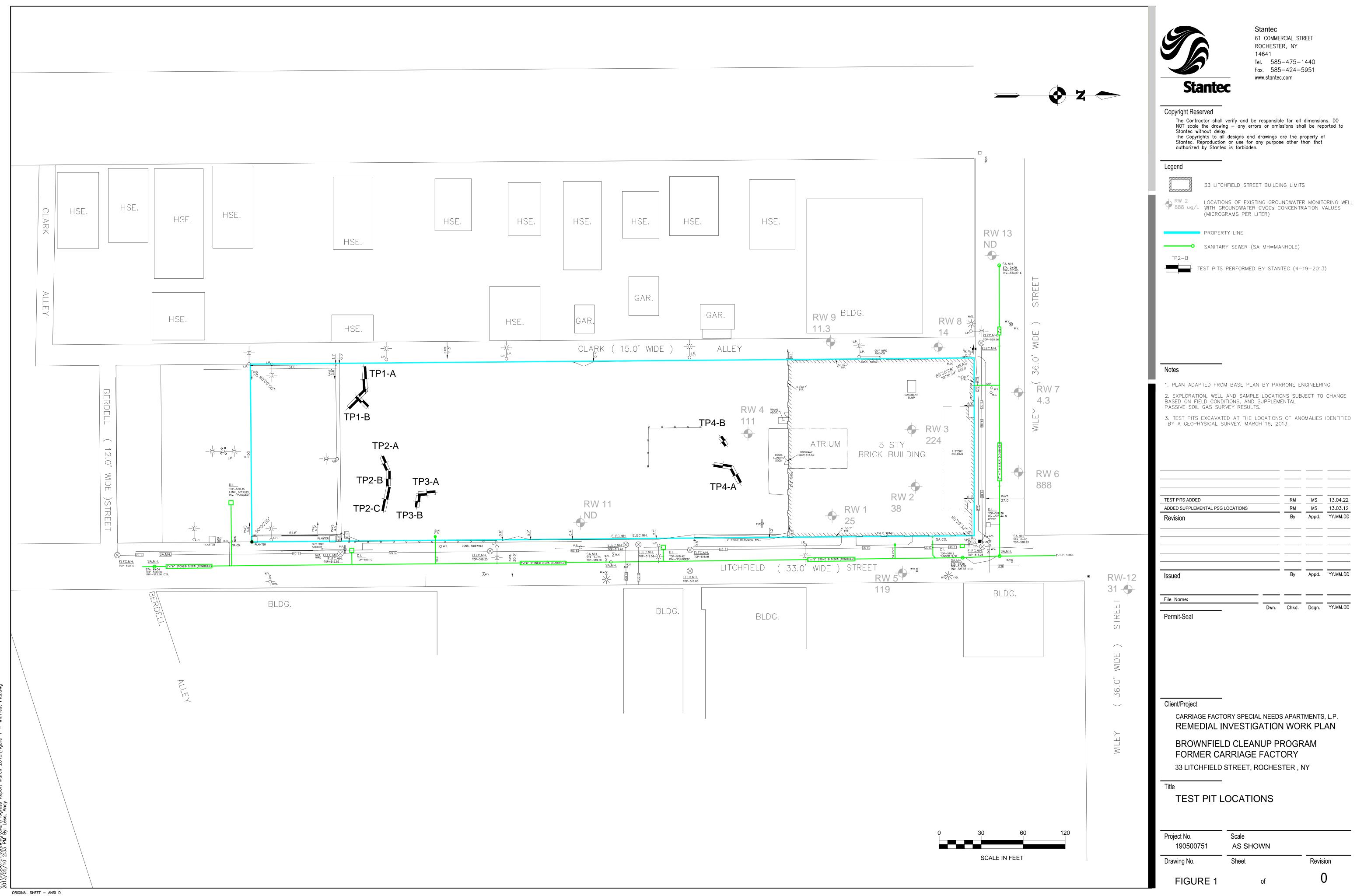

Figure 1 - Test Pit Location Plan

Table 1 - Summary of Laboratory Results for Soil

Appendix A - Test Pit Logs

Appendix B - Analytical Laboratory Reports

FIGURES

RW 2 LOCATIONS OF EXISTING GROUNDWATER MONITORING WELL WITH GROUNDWATER CVOCs CONCENTRATION VALUES

RM MS 13.04.22 RM MS 13.03.12 By Appd. YY.MM.DD Dwn. Chkd. Dsgn. YY.MM.DD

REMEDIAL INVESTIGATION WORK PLAN

Project No. 190500751	Scale AS SHOWN	
Drawing No.	Sheet	Revision
FIGURE 1	of	0

TABLES

Table 1 Summary of Analytical Results in Soil - April 2013 Brownfield Cleanup Program Phase II Environmental Investigation 33 Litchfield Street, Rochester, New York

Sample Location Sample Date Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	6NYCRR	L1-B-1S 17-Apr-13 L1-B-1S 1.3 ft STANTEC PARAROCH 131326 131326-01	L1-B-3S 18-Apr-13 L1-B-3S 1.5 ft STANTEC PARAROCH 131358 131358-01	L1-B-4S 18-Apr-13 L1-B-4S 1.5 ft STANTEC PARAROCH 131358 131358-02
Semi - Volatile Organic Compounds Acenaphthene	μg/kg	100000 _b ^A 98000 ^B	324 U	323 U	331 U
Acenaphthylene Acetophenone	μg/kg μg/kg	100000 _b ^A 107000 ^B n/v	324 U 324 U	323 U 323 U	331 U 331 U
Anthracene	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Atrazine	μg/kg	n/v	324 U	323 U	331 U
Benzaldehyde Benzo(a)anthracene	μg/kg μg/kg	n/v 1000 _a ^{AB}	324 U 324 U	323 U 323 U	331 U 331 U
Benzo(a)pyrene	μg/kg	1000 _g ^A 22000 ^B	324 U	323 U	331 U
Benzo(b)fluoranthene Benzo(g,h,i)perylene	μg/kg μg/kg	1000 _g ^A 1700 ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Benzo(k)fluoranthene	μg/kg	3900 ^A 1700 ^B	324 U	323 U	331 U
Biphenyl, 1,1'- (Biphenyl) Bis(2-Chloroethoxy)methane	μg/kg μg/kg	n/v 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Bis(2-Chloroethyl)ether	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg μg/kg	n/v 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Bromophenyl Phenyl Ether, 4-	μg/kg μg/kg	100000 _b 1000000 _d	324 U	323 U	331 U
Butyl Benzyl Phthalate	μg/kg	NS ^A 1000000d ^B	324 U	323 U	331 U
Caprolactam Carbazole	μg/kg μg/kg	n/v 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Chloro-3-methyl phenol, 4-	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Chloroaniline, 4- Chloronaphthalene, 2-	μg/kg μg/kg	NS ^A 1000000d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Chlorophenyl Phenyl Ether, 4-	μg/kg	100000 _b ^A 1000000 _d ^B 3900 ^A 1000 _a ^B	324 U	323 U	331 U
Chrysene Cresol, m & p- (Methylphenol, 3&4-)	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Cresol, o- (Methylphenol, 2-)	μg/kg	100000 _b ^A 330 _f ^B	324 U	323 U	331 U
Dibenzo(a,h)anthracene Dibenzofuran	μg/kg μg/kg	330 _f ^A 1000000 _d ^B 59000 ^A 210000 ^B	324 U 324 U	323 U 323 U	331 U 331 U
Dibutyl Phthalate (DBP)	μg/kg	NS ^A 1000000d ^B	324 U	323 U	331 U
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	μg/kg μg/kg	100000 _b ^A 1100 ^B 49000 ^A 2400 ^B	324 U 324 U	323 U 323 U	331 U 331 U
Dichlorobenzene, 1,4-	μg/kg	13000 ^A 1800 ^B	324 U	323 U	331 U
Dichlorobenzidine, 3,3'- Dichlorophenol, 2,4-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Diethyl Phthalate	μg/kg μg/kg	100000 _b 1000000 _d	324 U	323 U	331 U
Dimethyl Phthalate	μg/kg	100000 _b ^A 1000000 _d ^B	649 U	647 U	661 U
Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 649 U	323 U 647 U	331 U 661 U
Dinitrophenol, 2,4-	μg/kg		649 U	647 U	661 U
Dinitrotoluene, 2,4- Dinitrotoluene, 2,6-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Di-n-Octyl phthalate	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Fluoranthene Fluorene	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 386000 ^B	324 U 324 U	323 U 323 U	331 U 331 U
Hexachlorobenzene	μg/kg	1200 ^A 3200 ^B	324 U	323 U	331 U
Hexachlorobutadiene (Heachloro-1,3-butadiene) Hexachlorocyclopentadiene	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Hexachloroethane	μg/kg μg/kg	100000 _b 1000000 _d	324 U	323 U	331 U
Indeno(1,2,3-cd)pyrene	μg/kg	500 _g ^A 8200 ^B	324 U	323 U	331 U
Isophorone Methylnaphthalene, 2-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Naphthalene	μg/kg	100000 _b ^A 12000 ^B	324 U	323 U	331 U
Nitroaniline, 2- Nitroaniline, 3-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	649 U 649 U	647 U 647 U	661 U 661 U
Nitroaniline, 4-	μg/kg	100000 _b ^A 1000000 _d ^B	649 U	647 U	661 U
Nitrobenzene Nitrophenol, 2-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Nitrophenol, 4-	μg/kg	100000 _b ^A 1000000 _d ^B	649 U	647 U	661 U
N-Nitrosodi-n-Propylamine n-Nitrosodiphenylamine	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Pentachlorophenol	μg/kg μg/kg	6700 ^A 800 _f ^B	649 U	647 U	661 U
Phenanthrene	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Phenol Pyrene	μg/kg μg/kg	100000 _b ^A 330 _f ^B 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Tetrachlorobenzene, 1,2,4,5-	μg/kg	n/v	324 U	323 U	331 U
Tetrachlorophenol, 2,3,4,6- Trichlorobenzene, 1,2,4-	μg/kg μg/kg	n/v 100000 _b ^A 1000000 _d ^B	324 U 324 U	323 U 323 U	331 U 331 U
Trichlorophenol, 2,4,5-	μg/kg	100000 _b ^A 1000000 _d ^B	649 U	647 U	661 U
Trichlorophenol, 2,4,6- SVOC Tentatively Identified Compounds	μg/kg	100000 _b ^A 1000000 _d ^B	324 U	323 U	331 U
Total tentatively identified compounds	μg/kg	n/v	38654	30753	ND
Volatile Organic Compounds	1			•	
Acetone	μg/kg	100000 _b ^A 50 ^B	22.6 U	9.38	22.0 U
Benzene Bromodichloromethane	μg/kg μg/kg	4800 ^A 60 ^B 100000 _b ^A 1000000 _d ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 4.40 U
Bromoform (Tribromomethane)	μg/kg	100000 _b ^A 1000000 _d ^B	11.3 U	8.74 U	11.0 U
Bromomethane (Methyl bromide) Butylbenzene, n-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 12000 ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 4.40 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	100000 _b ^A 11000 ^B	4.51 U	2.16	4.40 U
Butylbenzene, tert- Carbon Disulfide	μg/kg μg/kg	100000 _b ^A 5900 ^B 100000 _b ^A 1000000 _d ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 4.40 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	2400 ^A 760 ^B	4.51 U	3.49 U	4.40 U
Chlorobenzene (Monochlorobenzene)	μg/kg	100000 _b ^A 1100 ^B	4.51 U	3.49 U	4.40 U
Chlorobromomethane Chloroethane (Ethyl Chloride)	μg/kg μg/kg	n/v 100000 _b ^A 1000000 _d ^B	11.3 U 4.51 U	8.74 U 3.49 U	11.0 U 4.40 U
Chloroform (Trichloromethane)	μg/kg	49000 ^A 370 ^B	4.51 U	3.49 U	4.40 U
Chloromethane Cyclohexane	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B n/v	4.51 U 22.6 U	3.49 U 17.5 U	4.40 U 22.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	n/v	22.6 U	17.5 U	22.0 U
Dibromochloromethane	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1100 ^B	4.51 U 4.51 II	3.49 U 3.49 H	4.40 U 4.40 U
Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	μg/kg μg/kg	100000 _b ^A 1100 ^S 49000 ^A 2400 ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 4.40 U
Dichlorobenzene, 1,4-	μg/kg	13000 ^A 1800 ^B	4.51 U	3.49 U	4.40 U
Dichlorodifluoromethane (Freon 12) Dichloroethane, 1,1-	μg/kg μg/kg	n/v 26000 ^A 270 ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 4.40 U
Dichloroethane, 1,2-	μg/kg	3100 ^A 20 _g ^B	4.51 U	3.49 U	4.40 U
Dichloroethene, 1,1- Dichloroethylene, cis-1,2-	μg/kg μg/kg	100000 _b ^A 330 ^B 100000 _b ^A 250 ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 27.0
Dichloroethylene, trans-1,2-	μg/kg μg/kg	100000 _b ^A 190 ^B	4.51 U	3.49 U 3.49 U	4.77
Dichloropropane, 1,2-	μg/kg	100000 _b ^A 1000000 _d ^B	4.51 U	3.49 U	4.40 U
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	μg/kg μg/kg	100000 _b ^A 1000000 _d ^B 100000 _b ^A 1000000 _d ^B	4.51 U 4.51 U	3.49 U 3.49 U	4.40 U 4.40 U
Dioxane, 1,4-	μg/kg	13000 ^A 100 _f ^B	45.1 U	34.9 U	44.0 U
Ethylbenzene	μg/kg	41000 ^{AB}	4.51 U	3.49 U	4.40 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	n/v	4.51 U	3.49 U	4.40 U

Table 1 Summary of Analytical Results in Soil - April 2013 **Brownfield Cleanup Program** Phase II Environmental Investigation 33 Litchfield Street, Rochester, New York

Sample Location Sample Date			L1-B-1S 17-Apr-13	L1-B-3S 18-Apr-13	L1-B-4S 18-Apr-13
Sample ID			L1-B-1S	L1-B-3S	L1-B-4S
Sample Depth			1.3 ft	1.5 ft	1.5 ft
Sampling Company			STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order		annann	131326	131358	131358
Laboratory Sample ID	Units	6NYCRR	131326-01	131358-01	131358-02
Volatile Organic Compounds (Continued)					
Isopropylbenzene	μg/kg		4.51 U	3.49 U	4.40 U
Isopropyltoluene, p- (Cymene)	μg/kg	100000 _b ^A 1000000 _d ^B	4.51 U	3.49 U	4.40 U
Methyl Acetate	μg/kg	n/v	4.51 U	3.49 U	4.40 U
Methyl Ethyl Ketone (MEK)	μg/kg	100000 _b ^A 120 ^B	22.6 U	17.5 U	22.0 U
Methyl Isobutyl Ketone (MIBK)	μg/kg	100000 _b ^A 1000000 _d ^B	11.3 U	8.74 U	11.0 U
Methyl tert-butyl ether (MTBE)	μg/kg	100000 _b ^A 930 ^B	4.51 U	3.49 U	4.40 U
Methylcyclohexane	μg/kg	n/v	4.51 U	3.49 U	4.40 U
Methylene Chloride (Dichloromethane)	μg/kg	100000 _b ^A 50 ^B	11.3 U	8.74 U	11.0 U
Naphthalene	μg/kg	100000 _b ^A 12000 ^B	11.3 U	8.74 U	11.0 U
Propylbenzene, n-	μg/kg	100000 _b ^A 3900 ^B	4.51 U	3.49 U	4.40 U
Styrene	μg/kg	100000 _b ^A 1000000 _d ^B	11.3 U	8.74 U	11.0 U
Tetrachloroethane, 1,1,2,2-	μg/kg	100000 _b ^A 1000000 _d ^B	4.51 U	3.49 U	4.40 U
Tetrachloroethylene (PCE)	μg/kg	19000 ^A 1300 ^B	6.07	3.49 U	2.35
Toluene	μg/kg	100000 _b ^A 700 ^B	4.51 U	3.49 U	4.40 U
Trichlorobenzene, 1,2,3-	μg/kg	n/v	11.3 U	8.74 U	11.0 U
Trichlorobenzene, 1,2,4-	μg/kg	100000 _b ^A 1000000 _d ^B	11.3 U	8.74 U	11.0 U
Trichloroethane, 1,1,1-	μg/kg	100000 _b ^A 680 ^B	4.51 U	3.49 U	4.40 U
Trichloroethane, 1,1,2-	μg/kg	100000 _b ^A 1000000 _d ^B	4.51 U	3.49 U	4.40 U
Trichloroethylene (TCE)	μg/kg	21000 ^A 470 ^B	4.51 U	3.49 U	63.5
Trichlorofluoromethane (Freon 11)	μg/kg	n/v	4.51 U	3.49 U	4.40 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100000 _b ^A 1000000 _d ^B	4.51 U	3.49 U	4.40 U
Trimethylbenzene, 1,2,4-	μg/kg	52000 ^A 3600 ^B	4.51 U	3.49 U	4.40 U
Trimethylbenzene, 1,3,5-	μg/kg	52000 ^A 8400 ^B	4.51 U	3.49 U	4.40 U
Vinyl chloride	μg/kg	900 ^A 20 ^B	4.51 U	3.49 U	4.40 U
Xylene, m & p-	μg/kg	100000 _{b,p} ^A 1600 _p ^B	4.51 U	3.49 U	4.40 U
Xylene, o-	μg/kg	100000 _{b,p} ^A 1600 _p ^B	4.51 U	3.49 U	4.40 U

Notes:

6NYCRR

NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Restricted Residential

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater

Concentration exceeds the indicated standard.

Concentration was detected but did not exceed applicable standards. 15.2

0.50 U Laboratory estimated quantitation limit exceeded standard.

The analyte was not detected above the laboratory estimated quantitation limit. 0.03 U

No standard/guideline value. n/v

Parameter not analyzed / not available.

No SCO has been established for this compound. NS The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual b,p isomers should be added for comparison.

d AB f AB g The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

For constituents where the calculated SCO was lower than the CRQL, the CRQL is used as the SCO value. For constituents where the calculated SCO was lower than the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

ND

PARAROCH PARADIGM ENVIRONMENTAL SERVICES, ROCHESTER, NY

APPENDIX A

Test Pit Logs

Project:	Former Carriage Factory	Contractor:	Nothnagle	Date	4/10/2013	
Project #:	190500751.000	Operator:	S. Loranty	Time:	9:30 AM	
Client:	CFSNA, LP	Equip Used:	Hitachi EX-25			
_ocation:	33 Litchfield St, Rochester	Weather:	Rain, 40s			

Test Pit: TP-1A

0	PID (ppm)	Samp ID	le Info Depth	Strata Change	Soil & Stratigraphy Descriptions	Remarks
Ť	0		200	0.1	Weathered ASPHALT	
1	0			1.2	Gray coarse GRAVEL (Crushed Stone)	"
	0				Brown to black layered ASH & CINDERS	
2	0				(increasing amount of demo debris in east end of pit: large angular stones)	4" CIP encountered at 2. ft., runs E-W.
	0			-	- FILL -	
3	0			2.8	Light brown SILT, trace - little Clay, trace fine sand, moist	Contact at base of ASH/ CINDERS varies
4	0			1	(grades to dark brown in east portion of pit) - TILL -	
-	U				Bottom of Pit at 4 ft.	Encountered 2nd 4" CIP
5				1	201011 01 11 11 11	at east end of pit, runs
				1		NE-SW
6				1		
0				1		No water encountered.
7				1		
				1		
8						
9				1		
10						
11						
12						
13				1		
				_		
14						

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
- 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc:
See also log for TP-1B

Project:	Former Carriage Factory	Contractor:	Nothnagle	Date	4/10/2013	
Project #:	190500751.000	Operator:	S. Loranty	Time:	9:45 AM	
Client:	CFSNA, LP	Equip Used:	Hitachi EX-25			
_ocation:	33 Litchfield St, Rochester	Weather:	Rain, 40s			

Test Pit: TP-1B

0	PID (ppm)	Samp ID	le Info Depth	Strata Change	Soil & Stratigraphy Descriptions	Remarks
	0			0.1	Weathered ASPHALT	
1	0					Roots more prevalent
	0			_	Brown to black layered ASH & CINDERS	than in TP-1A.
2	0			1	(large angular stones prevalent)	
	0					Metal screen and metal
3	0			2.8	- FILL -	bar encountered
	0				Light brown SILT, trace - little Clay, trace fine sand, moist	
4	0				- TILL -	
					Bottom of Pit at 4 ft.	
5				4		
				4		
6				4		
				_		No water encountered.
7				4		
				4		
8				-		
_				-		
9				4		
				4		
10				-		
4.4				1		
11				1		
10				1		
12				-		
13				1		
13				-		
14				1		

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
- 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc
See also log for TP-1B

Project:	Former Carriage Factory	Contractor: Nothnagle	Date 4/10/2013
Project #:	190500751.000	Operator: S. Loranty	Time: 10:05
Client:	CFSNA, LP	Equip Used: Hitachi EX-25	
Location:	33 Litchfield St, Rochester	Weather: Rain, 40s	

Test Pit: TP-2A

0	PID (ppm)	Samp ID	le Info Depth	Strata Change	Soil & Stratigraphy Descriptions	Remarks
	0			0.2	Weathered ASPHALT	Some peastone under
1	0			1.2	Varible colored, mixed CINDER/ASH/BRICK, trace	asphalt.
	0			1	gravel, occasional cobbles	ung
2	0			1	Black CINDERS, thinly-layered	
	0			2.6		4
3	0			4	Gray SILT, trace sand and clay.	
					- TILL -	
4				-	Bottom of Pit 3.2 ft.	
5				1		
5				1		
6				1		No water encountered.
				1		
7						
				1		
8						
9						
10				_		
				_		
11				4		
4.0				4		
12				-		
13						
				1		
14				1		

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
- 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc:
See also log for test pits TP-2B and TP-2C

Project:	Former Carriage Factory	Contractor: N	lothnagle	Date	4/10/2013	
Project #:	190500751.000	Operator: S	S. Loranty	Time:	10:24	
Client:	CFSNA, LP	Equip Used: H	litachi EX-25			
_ocation:	33 Litchfield St, Rochester	Weather: R	Rain, 40s			

Test Pit: TP-2B

	PID	Sample Info Strata Soil & Stratigraphy Descriptions Re		Remarks		
0	(ppm)	ID	Depth	Change	Jon & Stratigraphy Descriptions	Kemarks
	0			0.3	Dark Brown LOAM & roots - TOPSOIL -	
1	0			1	Black and gray ASH	
	0				Black CINDERS & ASH	
2	0			2.2		
	0				Tan Fine SAND	
3	0			2.8	- FILL -	
	0				Gray SILT, trace clay and fine sand	
4	0				- TILL -	
					Bottom of Pit 3.8 ft.	
5						
6						No water encountered.
7						
8						
9						
10						
11						
12						
13				1		
				1		
14				1		

Notes:

- 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
- 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc.
See also log for test pits TP-2A and TP-2C

Project:	Former Carriage Factory	Contractor: Nothnagle	Date 4/10/2013	
Project #:	190500751.000	Operator: S. Loranty	Time: 10:30	
Client:	CFSNA, LP	Equip Used: Hitachi EX-25		
_ocation:	33 Litchfield St, Rochester	Weather: Rain, 40s		

Test Pit: TP-2C

0	PID (ppm)	Samp ID	le Info Depth	Strata Change	Soil & Stratigraphy Descriptions	Remarks
	0			0.5	Dark Brown LOAM with roots - TOPSOIL -	
1	0					
	0				Variable colored ASH & CINDERS in layers and	One piece of metal
2	0				pockets, occasoinal bricks	observed
	0			2.4		
3	0			3.0	Black CINDERS/ASH	
	0				Gray SILT, trace fine Sand, trace Clay, trace Gravel	
4			-	-	Bottom of Pit 3.5 ft.	
						No water encountered.
5				-		No water encountered.
_						
6						
7				1		
8				1		
Ť						
9						
10						
11						
]		
12						
]		
13						
				1		
14						

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc:
See also log for test pits TP-2A and TP-2B

Project:	Former Carriage Factory	Contractor: Nothnagle	Date 4/10/2013
Project #:	190500751.000	Operator: S. Loranty	Time: 11:20
Client:	CFSNA, LP	Equip Used: Hitachi EX-25	
_ocation:	33 Litchfield St, Rochester	Weather: Rain, 40s	

Test Pit: TP-3A

0	PID (ppm)	Samp ID	le Info Depth	Strata Change	Soil & Stratigraphy Descriptions	Remarks
	0			0.2	Brown LOAM & Roots - TOPSOIL -	
1	0				Mixed. bldg stone rubble, loam and & sandy gravel	Encountered several
	0			1.5	- FILL -	large metal objects
2	0					
	0				Mottled brown fine SAND, trace silt.	
3	0				- FILL -	
	0			3.5		
4	0				Tan SILT, trace fine sand and clay - TILL -	
					Bottom of Pit 4.0 ft.	
5						
						No water encountered.
6						
7						
8						
9				_		
				<u> </u>		
10				1		
				_		
11				_		
				_		
12						
				_		
13				1		
				1		
14						

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc:
See also log for TP-3B, excavated perpendicular to TP-3A

Project:	Former Carriage Factory	Contractor: Nothnagle	Date 4/10/2013	
Project #:	190500751.000	Operator: S. Loranty	Time:	
Client:	CFSNA, LP	Equip Used: Hitachi EX-25		
_ocation:	33 Litchfield St, Rochester	Weather: Rain, 40s		

Test Pit: TP-3B

0	PID (ppm)	Sample Info		Strata Change	Soil & Stratigraphy Descriptions	Remarks
	0			0.2	Brown LOAM & Roots - TOPSOIL -	
1	0			1	Mixed. bldg stone rubble, loam and & sandy gravel	Occasional metal
	0			1.5	Black ASH/CINDERS	encountered
2	0]		
	0				Mottled brown fine SAND, trace silt.	
3	0]	- FILL -	
	0			3.5		
4	0				Tan SILT, trace fine sand and clay - TILL -	
5						
6						
7						
8						
9						
10						
11				1		
]		
12]		
]		
13]		
]		
14						

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc:
See also log for TP-3A, adjacent and perpendicular

Project:	Former Carriage Factory	Contractor: Nothnagle	Date 4/10/2013	
Project #:	190500751.000	Operator: S. Loranty	Time: 12:30	
Client:	CFSNA, LP	Equip Used: Hitachi EX-25		
_ocation:	33 Litchfield St, Rochester	Weather: Rain, 40s		

Test Pit: TP-4A

0	PID (ppm)	Samp ID	le Info Depth	Strata Change	Soil & Stratigraphy Descriptions	Remarks
	0			0.3	ASPHALT	
1	0				Mixed ASH, CINDERS and SAND, with bricks, ceramics	
	0				rubber, wood, etc FILL - Layer of tan silty SAND	Layers slope to west.
2	0.1				Layer of tan silty SAND	
	0.2				at 2 ft.	"organic" odor noticed
3	0					throughout excavation
	0				Semi-cemented layer of ASH at ~3.0 ft., 8-in thick	
4	0			3.7		
	0				Brown to light brown SILT, trace sand and clay	
5	0				(grades to dark gray in south end of pit)	
					Bottom of Exploration at 5.0 Ft.	
6						
						No water encountered
7						
8						
9						
10						
]		
11]		
]		
12]		
]		
13						
14						

- Notes:
 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc:
Test pit bends toward south at west end (see plan).

Project:	Former Carriage Factory	Contractor: Nothnagle	Date 4/10/2013	
Project #:	190500751.000	Operator: S. Loranty	Time: 2:00	
Client:	CFSNA, LP	Equip Used: Hitachi EX-25		
Location:	33 Litchfield St, Rochester	Weather: Rain, 40s		

Test Pit: TP-4B

	PID		le Info	Strata Change	Soil & Stratigraphy Descriptions	Remarks
0	(ppm)	ID	Depth			
	0			0.2	ASPHALT	
1	0			0.4	GRAVEL	
	0			0.5	ASPHALT	Several large pieces of
2	0			_		rusty metal
	0				Mixed ASH, CINDER and BRICK, with other	encountered.
3	0				fill materials.	
	0					
4	0					
					Bottom of Exploration at 4.0 Ft.	
5						
				_		No water encountered
6						
				_		
7						
8						
9						
10						
				1		
11				_		
				_		
12		-		_		
				_		
13						
14						

Notes:

- 1. PID Model Mini-Rae 3000 with 10.2 eV lamp.
- 2. Depth to water at completion.

Remarks (Unusal observations, caving characteristics, sheen or layers on water, odors, boulder count, etc.							

APPENDIX B Analytical Laboratory Results

Client: <u>Stantec</u>

Project Reference: Former Carriage Facility

Sample Identifier: L1-B-S1

Lab Sample ID: 131326-01 **Date Sampled:** 4/17/2013

Matrix: Soil Date Received: 4/17/2013

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1-Biphenyl	< 324	ug/Kg	•	4/18/2013
1,2,4,5-Tetrachlorobenzene	< 324	ug/Kg		4/18/2013
1,2,4-Trichlorobenzene	< 324	ug/Kg		4/18/2013
1,2-Dichlorobenzene	< 324	ug/Kg		4/18/2013
1,3-Dichlorobenzene	< 324	ug/Kg		4/18/2013
1,4-Dichlorobenzene	< 324	ug/Kg		4/18/2013
2,3,4,6-Tetrachlorophenol	< 324	ug/Kg		4/18/2013
2,4,5-Trichlorophenol	< 649	ug/Kg		4/18/2013
2,4,6-Trichlorophenol	< 324	ug/Kg		4/18/2013
2,4-Dichlorophenol	< 324	ug/Kg		4/18/2013
2,4-Dimethylphenol	< 324	ug/Kg		4/18/2013
2,4-Dinitrophenol	< 649	ug/Kg		4/18/2013
2,4-Dinitrotoluene	< 324	ug/Kg		4/18/2013
2,6-Dinitrotoluene	< 324	ug/Kg		4/18/2013
2-Chloronaphthalene	< 324	ug/Kg		4/18/2013
2-Chlorophenol	< 324	ug/Kg		4/18/2013
2-Methylnapthalene	< 324	ug/Kg		4/18/2013
2-Methylphenol	< 324	ug/Kg		4/18/2013
2-Nitroaniline	< 649	ug/Kg		4/18/2013
2-Nitrophenol	< 324	ug/Kg		4/18/2013
3&4-Methylphenol	< 324	ug/Kg		4/18/2013
3,3'-Dichlorobenzidine	< 324	ug/Kg		4/18/2013
3-Nitroaniline	< 649	ug/Kg		4/18/2013
4,6-Dinitro-2-methylphenol	< 649	ug/Kg		4/18/2013
4-Bromophenyl phenyl ether	< 324	ug/Kg		4/18/2013
4-Chloro-3-methylphenol	< 324	ug/Kg		4/18/2013
4-Chloroaniline	< 324	ug/Kg		4/18/2013

Client: **Stantec**

Sample Identifier:

Project Reference: Former Carriage Facility

Bis (2-chloroethoxy) methane

Bis (2-chloroisopropyl) ether

Bis (2-ethylhexyl) phthalate

Bis (2-chloroethyl) ether

Butylbenzylphthalate

Dibenz (a,h) anthracene

Caprolactam

Carbazole

Chrysene

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

Di-n-butyl phthalate

Di-n-octylphthalate

Fluoranthene

L1-B-S1

131326-01

Lab Sample ID: **Date Sampled:** 4/17/2013 Matrix: **Date Received:** 4/17/2013 Soil 4-Chlorophenyl phenyl ether < 324 ug/Kg 4/18/2013 4-Nitroaniline < 649 ug/Kg 4/18/2013 4-Nitrophenol < 649 ug/Kg 4/18/2013 < 324 Acenaphthene ug/Kg 4/18/2013 Acenaphthylene < 324 ug/Kg 4/18/2013 Acetophenone < 324 ug/Kg 4/18/2013 Anthracene < 324 ug/Kg 4/18/2013 Atrazine < 324 ug/Kg 4/18/2013 Benzaldehyde < 324 ug/Kg 4/18/2013 Benzo (a) anthracene < 324 ug/Kg 4/18/2013 < 324 Benzo (a) pyrene ug/Kg 4/18/2013 Benzo (b) fluoranthene < 324 ug/Kg 4/18/2013 Benzo (g,h,i) perylene < 324 ug/Kg 4/18/2013 < 324 Benzo (k) fluoranthene ug/Kg 4/18/2013

< 324

< 324

< 324

< 324

< 324

< 324

< 324

< 324

< 324

< 324

< 324

< 649

< 324

< 324

< 324

ug/Kg

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

4/18/2013

Client: <u>Stantec</u>

Project Reference: Former Carriage Facility

Sample Identifier:L1-B-S1Lab Sample ID:131326-01Date Sampled:4/17/2013Matrix:SoilDate Received:4/17/2013

			, , ,
Fluorene	< 324	ug/Kg	4/18/2013
Hexachlorobenzene	< 324	ug/Kg	4/18/2013
Hexachlorobutadiene	< 324	ug/Kg	4/18/2013
Hexachlorocyclopentadiene	< 324	ug/Kg	4/18/2013
Hexachloroethane	< 324	ug/Kg	4/18/2013
Indeno (1,2,3-cd) pyrene	< 324	ug/Kg	4/18/2013
Isophorone	< 324	ug/Kg	4/18/2013
Naphthalene	< 324	ug/Kg	4/18/2013
Nitrobenzene	< 324	ug/Kg	4/18/2013
N-Nitroso-di-n-propylamine	< 324	ug/Kg	4/18/2013
N-Nitrosodiphenylamine	< 324	ug/Kg	4/18/2013
Pentachlorophenol	< 649	ug/Kg	4/18/2013
Phenanthrene	< 324	ug/Kg	4/18/2013
Phenol	< 324	ug/Kg	4/18/2013
Pyrene	< 324	ug/Kg	4/18/2013
M-H ID-6(-) EDA 0070C			

Method Reference(s): EPA 8270C

EPA 3550C

Data File: S69031.D

Client: <u>Stantec</u>

Project Reference: Former Carriage Facility

Sample Identifier: L1-B-S1

Lab Sample ID: 131326-01 **Date Sampled:** 4/17/2013

Matrix: Soil Date Received: 4/17/2013

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.51	ug/Kg		4/17/2013
1,1,2,2-Tetrachloroethane	< 4.51	ug/Kg		4/17/2013
1,1,2-Trichloroethane	< 4.51	ug/Kg		4/17/2013
1,1-Dichloroethane	< 4.51	ug/Kg		4/17/2013
1,1-Dichloroethene	< 4.51	ug/Kg		4/17/2013
1,2,3-Trichlorobenzene	< 11.3	ug/Kg		4/17/2013
1,2,4-Trichlorobenzene	< 11.3	ug/Kg		4/17/2013
1,2,4-Trimethylbenzene	< 4.51	ug/Kg		4/17/2013
1,2-Dibromo-3-Chloropropane	< 22.6	ug/Kg		4/17/2013
1,2-Dibromoethane	< 4.51	ug/Kg		4/17/2013
1,2-Dichlorobenzene	< 4.51	ug/Kg		4/17/2013
1,2-Dichloroethane	< 4.51	ug/Kg		4/17/2013
1,2-Dichloropropane	< 4.51	ug/Kg		4/17/2013
1,3,5-Trimethylbenzene	< 4.51	ug/Kg		4/17/2013
1,3-Dichlorobenzene	< 4.51	ug/Kg		4/17/2013
1,4-Dichlorobenzene	< 4.51	ug/Kg		4/17/2013
1,4-dioxane	< 45.1	ug/Kg		4/17/2013
2-Butanone	< 22.6	ug/Kg		4/17/2013
2-Hexanone	< 11.3	ug/Kg		4/17/2013
4-Methyl-2-pentanone	< 11.3	ug/Kg		4/17/2013
Acetone	< 22.6	ug/Kg		4/17/2013
Benzene	< 4.51	ug/Kg		4/17/2013
Bromochloromethane	< 11.3	ug/Kg		4/17/2013
Bromodichloromethane	< 4.51	ug/Kg		4/17/2013
Bromoform	< 11.3	ug/Kg		4/17/2013
Bromomethane	< 4.51	ug/Kg		4/17/2013
Carbon disulfide	< 4.51	ug/Kg		4/17/2013

Client: Stantec

Former Carriage Facility **Project Reference:**

Sample Identifier: L1-B-S1 Lab Sample ID: 131326-01 **Date Sampled:** 4/17/2013

Lab Sam	pie iD: 131326-01		Date Sampiea:	4/17/2013
Matrix:	Soil		Date Received:	4/17/2013
	Carbon Tetrachloride	< 4.51	ug/Kg	4/17/2013
	Chlorobenzene	< 4.51	ug/Kg	4/17/2013
	Chloroethane	< 4.51	ug/Kg	4/17/2013
	Chloroform	< 4.51	ug/Kg	4/17/2013
	Chloromethane	< 4.51	ug/Kg	4/17/2013
	cis-1,2-Dichloroethene	< 4.51	ug/Kg	4/17/2013
	cis-1,3-Dichloropropene	< 4.51	ug/Kg	4/17/2013
	Cyclohexane	< 22.6	ug/Kg	4/17/2013
	Dibromochloromethane	< 4.51	ug/Kg	4/17/2013
	Dichlorodifluoromethane	< 4.51	ug/Kg	4/17/2013
	Ethylbenzene	< 4.51	ug/Kg	4/17/2013
	Freon 113	< 4.51	ug/Kg	4/17/2013
	Isopropylbenzene	< 4.51	ug/Kg	4/17/2013
	m,p-Xylene	< 4.51	ug/Kg	4/17/2013
	Methyl acetate	< 4.51	ug/Kg	4/17/2013
	Methyl tert-butyl Ether	< 4.51	ug/Kg	4/17/2013
	Methylcyclohexane	< 4.51	ug/Kg	4/17/2013
	Methylene chloride	< 11.3	ug/Kg	4/17/2013
	Naphthalene	< 11.3	ug/Kg	4/17/2013
	n-Butylbenzene	< 4.51	ug/Kg	4/17/2013
	n-Propylbenzene	< 4.51	ug/Kg	4/17/2013
	o-Xylene	< 4.51	ug/Kg	4/17/2013
	p-Isopropyltoluene	< 4.51	ug/Kg	4/17/2013
	sec-Butylbenzene	< 4.51	ug/Kg	4/17/2013
	Styrene	< 11.3	ug/Kg	4/17/2013
	tert-Butylbenzene	< 4.51	ug/Kg	4/17/2013
	Tetrachloroethene	6.07	ug/Kg	4/17/2013
	Toluene	< 4.51	ug/Kg	4/17/2013
	trans-1,2-Dichloroethene	< 4.51	ug/Kg	4/17/2013

Client: <u>Stantec</u>

Project Reference: Former Carriage Facility

Sample Identifier: L1-B-S1

 Lab Sample ID:
 131326-01
 Date Sampled:
 4/17/2013

 Matrix:
 Soil
 Date Received:
 4/17/2013

trans-1,3-Dichloropropene < 4.51 ug/Kg 4/17/2013 Trichloroethene < 4.51 ug/Kg 4/17/2013 Trichlorofluoromethane < 4.51 ug/Kg 4/17/2013 Vinyl chloride < 4.51 ug/Kg 4/17/2013

Method Reference(s): EPA 8260B

EPA 5035

Data File: X04526.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Stantec</u>

Project Reference: Former Carriage Facility

Sample Identifier: L1-B-S1

Lab Sample ID: 131326-01 **Date Sampled:** 4/17/2013

Matrix: Soil Date Received: 4/17/2013

Semi-Volatile Tentatively Identified Compounds

Tentatively Identified Compound	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Unknown	974	ug/Kg		4/18/2013
Unknown Alkane	4690	ug/Kg		4/18/2013
Unknown Alkane	2270	ug/Kg		4/18/2013
Unknown Alkane	678	ug/Kg		4/18/2013
Unknown Alkane	3720	ug/Kg		4/18/2013
Unknown Alkane	927	ug/Kg		4/18/2013
Decahydro-trans-naphthalene	994	ug/Kg		4/18/2013
Unknown	2470	ug/Kg		4/18/2013
Unknown	694	ug/Kg		4/18/2013
Unknown PAH	1060	ug/Kg		4/18/2013
Unknown Alkane	1300	ug/Kg		4/18/2013
Unknown Alkane	1170	ug/Kg		4/18/2013
Unknown	595	ug/Kg		4/18/2013
Unknown Alkane	1410	ug/Kg		4/18/2013
Unknown Alkane	795	ug/Kg		4/18/2013
Unknown	913	ug/Kg		4/18/2013
Unknown	796	ug/Kg		4/18/2013
Unknown Alkane	1270	ug/Kg		4/18/2013
Unknown Alkane	728	ug/Kg		4/18/2013
Sulfur	11200	ug/Kg		4/18/2013

Method Reference(s): EPA 8270C

EPA 3550C

Tentatively Identified Compound results are estimated values, based on Internal Standard response factors.

Client: <u>Stantec</u>

Project Reference: Former Carriage Facility

Sample Identifier: L1-B-S1

Lab Sample ID: 131326-01 **Date Sampled:** 4/17/2013

Matrix: Soil Date Received: 4/17/2013

Volatile Tentatively Identified Compounds

Tentatively Identified Compound	Result	<u>Units</u>	Qualifier	Date Analyzed
Unknown Cyclohexane	250	ug/Kg		4/17/2013
Unknown Alkane	313	ug/Kg		4/17/2013
Unknown	171	ug/Kg		4/17/2013
Unknown	634	ug/Kg		4/17/2013
Unknown	297	ug/Kg		4/17/2013
Unknown	657	ug/Kg		4/17/2013
Unknown	384	ug/Kg		4/17/2013
Unknown	213	ug/Kg		4/17/2013
Unknown Cyclohexane	198	ug/Kg		4/17/2013
Unknown	262	ug/Kg		4/17/2013
Unknown Alkane	176	ug/Kg		4/17/2013
Unknown Alkane	196	ug/Kg		4/17/2013
Unknown Alkane	344	ug/Kg		4/17/2013
Unknown Alkane	227	ug/Kg		4/17/2013
Unknown Naphthalene	377	ug/Kg		4/17/2013
Unknown	188	ug/Kg		4/17/2013
Unknown Alkane	210	ug/Kg		4/17/2013
Unknown	342	ug/Kg		4/17/2013
Unknown Alkane	142	ug/Kg		4/17/2013
Unknown	140	ug/Kg		4/17/2013

Method Reference(s): EPA 8260B

EPA 5035A

Tentatively Identified Compound results are estimated values, based on Internal Standard response factors.

CHAIN OF CUSTODY

0

1

Chain of Custody Supplement

Client:	Stantec	Completed by:	EAH
Lab Project ID:	<u>Stantec</u> 131326	Date:	4/19/17
	Sample Condits Per NELAC/ELAP 2	ion Requirements 10/241/242/243/244	
N. Condition	ELAC compliance with the sample Yes	e condition requirements upo No	n receipt N/A
Container Type Comments	ee EA. 4/17	н <u>х</u> 50 <i>35</i>	
Transferred to method-			
compliant container Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time			
Temperature Comments	20°C-OK b/c	rec'd Within 6 h	nes. of sampling.
Sufficient Sample Quantity Comments	<u>@1212 4/17</u>	From sample.	nrs. of sampling.
Comments			

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-3S

Lab Sample ID: 131358-01 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	<u>Oualifier</u>	Date Analyzed
1,1-Biphenyl	< 323	ug/Kg	_	4/18/2013
1,2,4,5-Tetrachlorobenzene	< 323	ug/Kg		4/18/2013
1,2,4-Trichlorobenzene	< 323	ug/Kg		4/18/2013
1,2-Dichlorobenzene	< 323	ug/Kg		4/18/2013
1,3-Dichlorobenzene	< 323	ug/Kg		4/18/2013
1,4-Dichlorobenzene	< 323	ug/Kg		4/18/2013
2,3,4,6-Tetrachlorophenol	< 323	ug/Kg		4/18/2013
2,4,5-Trichlorophenol	< 647	ug/Kg		4/18/2013
2,4,6-Trichlorophenol	< 323	ug/Kg		4/18/2013
2,4-Dichlorophenol	< 323	ug/Kg		4/18/2013
2,4-Dimethylphenol	< 323	ug/Kg		4/18/2013
2,4-Dinitrophenol	< 647	ug/Kg		4/18/2013
2,4-Dinitrotoluene	< 323	ug/Kg		4/18/2013
2,6-Dinitrotoluene	< 323	ug/Kg		4/18/2013
2-Chloronaphthalene	< 323	ug/Kg		4/18/2013
2-Chlorophenol	< 323	ug/Kg		4/18/2013
2-Methylnapthalene	< 323	ug/Kg		4/18/2013
2-Methylphenol	< 323	ug/Kg		4/18/2013
2-Nitroaniline	< 647	ug/Kg		4/18/2013
2-Nitrophenol	< 323	ug/Kg		4/18/2013
3&4-Methylphenol	< 323	ug/Kg		4/18/2013
3,3'-Dichlorobenzidine	< 323	ug/Kg		4/18/2013
3-Nitroaniline	< 647	ug/Kg		4/18/2013
4,6-Dinitro-2-methylphenol	< 647	ug/Kg		4/18/2013
4-Bromophenyl phenyl ether	< 323	ug/Kg		4/18/2013
4-Chloro-3-methylphenol	< 323	ug/Kg		4/18/2013
4-Chloroaniline	< 323	ug/Kg		4/18/2013

Client: Stantec Project Reference: 190500751

Sample Identifier: L1-B-3S Lah Samnle ID: 131358-01 **Date Sampled:** 4/18/2013

Lab Sample ID: 131358-01			Date Sampled:	4/18/2013
Matrix:	Soil		Date Received:	4/18/2013
	4-Chlorophenyl phenyl ether	< 323	ug/Kg	4/18/2013
	4-Nitroaniline	< 647	ug/Kg	4/18/2013
	4-Nitrophenol	< 647	ug/Kg	4/18/2013
	Acenaphthene	< 323	ug/Kg	4/18/2013
	Acenaphthylene	< 323	ug/Kg	4/18/2013
	Acetophenone	< 323	ug/Kg	4/18/2013
	Anthracene	< 323	ug/Kg	4/18/2013
	Atrazine	< 323	ug/Kg	4/18/2013
	Benzaldehyde	< 323	ug/Kg	4/18/2013
	Benzo (a) anthracene	< 323	ug/Kg	4/18/2013
	Benzo (a) pyrene	< 323	ug/Kg	4/18/2013
	Benzo (b) fluoranthene	< 323	ug/Kg	4/18/2013
	Benzo (g,h,i) perylene	< 323	ug/Kg	4/18/2013
	Benzo (k) fluoranthene	< 323	ug/Kg	4/18/2013
	Bis (2-chloroethoxy) methane	< 323	ug/Kg	4/18/2013
	Bis (2-chloroethyl) ether	< 323	ug/Kg	4/18/2013
	Bis (2-chloroisopropyl) ether	< 323	ug/Kg	4/18/2013
	Bis (2-ethylhexyl) phthalate	< 323	ug/Kg	4/18/2013
	Butylbenzylphthalate	< 323	ug/Kg	4/18/2013
	Caprolactam	< 323	ug/Kg	4/18/2013
	Carbazole	< 323	ug/Kg	4/18/2013
	Chrysene	< 323	ug/Kg	4/18/2013
	Dibenz (a,h) anthracene	< 323	ug/Kg	4/18/2013
	Dibenzofuran	< 323	ug/Kg	4/18/2013
	Diethyl phthalate	< 323	ug/Kg	4/18/2013
	Dimethyl phthalate	< 647	ug/Kg	4/18/2013
	Di-n-butyl phthalate	< 323	ug/Kg	4/18/2013
	Di-n-octylphthalate	< 323	ug/Kg	4/18/2013
	Fluoranthene	< 323	ug/Kg	4/18/2013

Client: Stantec

Project Reference: 190500751

Sample Identifier: L1-B-3S

Lab Sample ID: 131358-01 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

5011			1, 10, 2010
Fluorene	< 323	ug/Kg	4/18/2013
Hexachlorobenzene	< 323	ug/Kg	4/18/2013
Hexachlorobutadiene	< 323	ug/Kg	4/18/2013
Hexachlorocyclopentadiene	< 323	ug/Kg	4/18/2013
Hexachloroethane	< 323	ug/Kg	4/18/2013
Indeno (1,2,3-cd) pyrene	< 323	ug/Kg	4/18/2013
Isophorone	< 323	ug/Kg	4/18/2013
Naphthalene	< 323	ug/Kg	4/18/2013
Nitrobenzene	< 323	ug/Kg	4/18/2013
N-Nitroso-di-n-propylamine	< 323	ug/Kg	4/18/2013
N-Nitrosodiphenylamine	< 323	ug/Kg	4/18/2013
Pentachlorophenol	< 647	ug/Kg	4/18/2013
Phenanthrene	< 323	ug/Kg	4/18/2013
Phenol	< 323	ug/Kg	4/18/2013
Pyrene	< 323	ug/Kg	4/18/2013
Mothod Deference(c). EDA 9270C			

Method Reference(s): EPA 8270C EPA 3550C

Data File: S69029.D

Client: Stantec

Project Reference: 190500751

Sample Identifier: L1-B-3S

Lab Sample ID: 131358-01 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 3.49	ug/Kg		4/18/2013
1,1,2,2-Tetrachloroethane	< 3.49	ug/Kg		4/18/2013
1,1,2-Trichloroethane	< 3.49	ug/Kg		4/18/2013
1,1-Dichloroethane	< 3.49	ug/Kg		4/18/2013
1,1-Dichloroethene	< 3.49	ug/Kg		4/18/2013
1,2,3-Trichlorobenzene	< 8.74	ug/Kg		4/18/2013
1,2,4-Trichlorobenzene	< 8.74	ug/Kg		4/18/2013
1,2,4-Trimethylbenzene	< 3.49	ug/Kg		4/18/2013
1,2-Dibromo-3-Chloropropane	< 17.5	ug/Kg		4/18/2013
1,2-Dibromoethane	< 3.49	ug/Kg		4/18/2013
1,2-Dichlorobenzene	< 3.49	ug/Kg		4/18/2013
1,2-Dichloroethane	< 3.49	ug/Kg		4/18/2013
1,2-Dichloropropane	< 3.49	ug/Kg		4/18/2013
1,3,5-Trimethylbenzene	< 3.49	ug/Kg		4/18/2013
1,3-Dichlorobenzene	< 3.49	ug/Kg		4/18/2013
1,4-Dichlorobenzene	< 3.49	ug/Kg		4/18/2013
1,4-dioxane	< 34.9	ug/Kg		4/18/2013
2-Butanone	< 17.5	ug/Kg		4/18/2013
2-Hexanone	< 8.74	ug/Kg		4/18/2013
4-Methyl-2-pentanone	< 8.74	ug/Kg		4/18/2013
Acetone	9.38	ug/Kg		4/18/2013
Benzene	< 3.49	ug/Kg		4/18/2013
Bromochloromethane	< 8.74	ug/Kg		4/18/2013
Bromodichloromethane	< 3.49	ug/Kg		4/18/2013
Bromoform	< 8.74	ug/Kg		4/18/2013
Bromomethane	< 3.49	ug/Kg		4/18/2013
Carbon disulfide	< 3.49	ug/Kg		4/18/2013

Client: Stantec

Project Reference: 190500751

Sample Identifier:L1-B-3SLab Sample ID:131358-01Date Sampled:4/18/2013Matrix:SoilDate Received:4/18/2013

Lab Sample 1D: 151550-01		Date Samplea.	4/10/2013
Matrix: Soil		Date Received:	4/18/2013
Carbon Tetrachloride	< 3.49	ug/Kg	4/18/2013
Chlorobenzene	< 3.49	ug/Kg	4/18/2013
Chloroethane	< 3.49	ug/Kg	4/18/2013
Chloroform	< 3.49	ug/Kg	4/18/2013
Chloromethane	< 3.49	ug/Kg	4/18/2013
cis-1,2-Dichloroethene	< 3.49	ug/Kg	4/18/2013
cis-1,3-Dichloropropene	< 3.49	ug/Kg	4/18/2013
Cyclohexane	< 17.5	ug/Kg	4/18/2013
Dibromochloromethane	< 3.49	ug/Kg	4/18/2013
Dichlorodifluoromethane	< 3.49	ug/Kg	4/18/2013
Ethylbenzene	< 3.49	ug/Kg	4/18/2013
Freon 113	< 3.49	ug/Kg	4/18/2013
Isopropylbenzene	< 3.49	ug/Kg	4/18/2013
m,p-Xylene	< 3.49	ug/Kg	4/18/2013
Methyl acetate	< 3.49	ug/Kg	4/18/2013
Methyl tert-butyl Ether	< 3.49	ug/Kg	4/18/2013
Methylcyclohexane	< 3.49	ug/Kg	4/18/2013
Methylene chloride	< 8.74	ug/Kg	4/18/2013
Naphthalene	< 8.74	ug/Kg	4/18/2013
n-Butylbenzene	< 3.49	ug/Kg	4/18/2013
n-Propylbenzene	< 3.49	ug/Kg	4/18/2013
o-Xylene	< 3.49	ug/Kg	4/18/2013
p-Isopropyltoluene	< 3.49	ug/Kg	4/18/2013
sec-Butylbenzene	2.16	ug/Kg	4/18/2013
Styrene	< 8.74	ug/Kg	4/18/2013
tert-Butylbenzene	< 3.49	ug/Kg	4/18/2013
Tetrachloroethene	< 3.49	ug/Kg	4/18/2013
Toluene	< 3.49	ug/Kg	4/18/2013
trans-1,2-Dichloroethene	< 3.49	ug/Kg	4/18/2013

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-3S

Lab Sample ID:131358-01Date Sampled:4/18/2013Matrix:SoilDate Received:4/18/2013

trans-1,3-Dichloropropene	< 3.49	ug/Kg	4/18/2013
Trichloroethene	< 3.49	ug/Kg	4/18/2013
Trichlorofluoromethane	< 3.49	ug/Kg	4/18/2013
Vinyl chloride	< 3.49	ug/Kg	4/18/2013

Surrogate outliers indicate probable matrix interference

Method Reference(s): EPA 8260B

EPA 5035

Data File: X04546.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-4S

Lab Sample ID: 131358-02 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Semi-Volatile Organics (Acid/Base Neutrals)

Analyte	Result	<u>Units</u>	Oualifier	Date Analyzed
1,1-Biphenyl	< 331	ug/Kg		4/18/2013
1,2,4,5-Tetrachlorobenzene	< 331	ug/Kg		4/18/2013
1,2,4-Trichlorobenzene	< 331	ug/Kg		4/18/2013
1,2-Dichlorobenzene	< 331	ug/Kg		4/18/2013
1,3-Dichlorobenzene	< 331	ug/Kg		4/18/2013
1,4-Dichlorobenzene	< 331	ug/Kg		4/18/2013
2,3,4,6-Tetrachlorophenol	< 331	ug/Kg		4/18/2013
2,4,5-Trichlorophenol	< 661	ug/Kg		4/18/2013
2,4,6-Trichlorophenol	< 331	ug/Kg		4/18/2013
2,4-Dichlorophenol	< 331	ug/Kg		4/18/2013
2,4-Dimethylphenol	< 331	ug/Kg		4/18/2013
2,4-Dinitrophenol	< 661	ug/Kg		4/18/2013
2,4-Dinitrotoluene	< 331	ug/Kg		4/18/2013
2,6-Dinitrotoluene	< 331	ug/Kg		4/18/2013
2-Chloronaphthalene	< 331	ug/Kg		4/18/2013
2-Chlorophenol	< 331	ug/Kg		4/18/2013
2-Methylnapthalene	< 331	ug/Kg		4/18/2013
2-Methylphenol	< 331	ug/Kg		4/18/2013
2-Nitroaniline	< 661	ug/Kg		4/18/2013
2-Nitrophenol	< 331	ug/Kg		4/18/2013
3&4-Methylphenol	< 331	ug/Kg		4/18/2013
3,3'-Dichlorobenzidine	< 331	ug/Kg		4/18/2013
3-Nitroaniline	< 661	ug/Kg		4/18/2013
4,6-Dinitro-2-methylphenol	< 661	ug/Kg		4/18/2013
4-Bromophenyl phenyl ether	< 331	ug/Kg		4/18/2013
4-Chloro-3-methylphenol	< 331	ug/Kg		4/18/2013
4-Chloroaniline	< 331	ug/Kg		4/18/2013

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier:	L1-B-4S		
Lab Sample ID:	131358-02	Date Sampled:	4/18/2013
Matrix:	Soil	Date Received:	4/18/2013

Lab Sample 1D: 131358-02		Date Sampleu:	4/18/2013
Matrix: Soil		Date Received:	4/18/2013
4-Chlorophenyl phenyl ether	< 331	ug/Kg	4/18/2013
4-Nitroaniline	< 661	ug/Kg	4/18/2013
4-Nitrophenol	< 661	ug/Kg	4/18/2013
Acenaphthene	< 331	ug/Kg	4/18/2013
Acenaphthylene	< 331	ug/Kg	4/18/2013
Acetophenone	< 331	ug/Kg	4/18/2013
Anthracene	< 331	ug/Kg	4/18/2013
Atrazine	< 331	ug/Kg	4/18/2013
Benzaldehyde	< 331	ug/Kg	4/18/2013
Benzo (a) anthracene	< 331	ug/Kg	4/18/2013
Benzo (a) pyrene	< 331	ug/Kg	4/18/2013
Benzo (b) fluoranthene	< 331	ug/Kg	4/18/2013
Benzo (g,h,i) perylene	< 331	ug/Kg	4/18/2013
Benzo (k) fluoranthene	< 331	ug/Kg	4/18/2013
Bis (2-chloroethoxy) methane	< 331	ug/Kg	4/18/2013
Bis (2-chloroethyl) ether	< 331	ug/Kg	4/18/201
Bis (2-chloroisopropyl) ether	< 331	ug/Kg	4/18/201
Bis (2-ethylhexyl) phthalate	< 331	ug/Kg	4/18/201
Butylbenzylphthalate	< 331	ug/Kg	4/18/2013
Caprolactam	< 331	ug/Kg	4/18/201
Carbazole	< 331	ug/Kg	4/18/201
Chrysene	< 331	ug/Kg	4/18/2013
Dibenz (a,h) anthracene	< 331	ug/Kg	4/18/2013
Dibenzofuran	< 331	ug/Kg	4/18/201
Diethyl phthalate	< 331	ug/Kg	4/18/201
Dimethyl phthalate	< 661	ug/Kg	4/18/2013
Di-n-butyl phthalate	< 331	ug/Kg	4/18/201
Di-n-octylphthalate	< 331	ug/Kg	4/18/201
Fluoranthene	< 331	ug/Kg	4/18/2013

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-4S

Lab Sample ID: 131358-02 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

			, ,
Fluorene	< 331	ug/Kg	4/18/2013
Hexachlorobenzene	< 331	ug/Kg	4/18/2013
Hexachlorobutadiene	< 331	ug/Kg	4/18/2013
Hexachlorocyclopentadiene	< 331	ug/Kg	4/18/2013
Hexachloroethane	< 331	ug/Kg	4/18/2013
Indeno (1,2,3-cd) pyrene	< 331	ug/Kg	4/18/2013
Isophorone	< 331	ug/Kg	4/18/2013
Naphthalene	< 331	ug/Kg	4/18/2013
Nitrobenzene	< 331	ug/Kg	4/18/2013
N-Nitroso-di-n-propylamine	< 331	ug/Kg	4/18/2013
N-Nitrosodiphenylamine	< 331	ug/Kg	4/18/2013
Pentachlorophenol	< 661	ug/Kg	4/18/2013
Phenanthrene	< 331	ug/Kg	4/18/2013
Phenol	< 331	ug/Kg	4/18/2013
Pyrene	< 331	ug/Kg	4/18/2013
Method Reference(s): EPA 8270C			

Method Reference(s): EPA 8270C

EPA 3550C

Data File: \$69030.D

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-4S

Lab Sample ID: 131358-02 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.40	ug/Kg		4/18/2013
1,1,2,2-Tetrachloroethane	< 4.40	ug/Kg		4/18/2013
1,1,2-Trichloroethane	< 4.40	ug/Kg		4/18/2013
1,1-Dichloroethane	< 4.40	ug/Kg		4/18/2013
1,1-Dichloroethene	< 4.40	ug/Kg		4/18/2013
1,2,3-Trichlorobenzene	< 11.0	ug/Kg		4/18/2013
1,2,4-Trichlorobenzene	< 11.0	ug/Kg		4/18/2013
1,2,4-Trimethylbenzene	< 4.40	ug/Kg		4/18/2013
1,2-Dibromo-3-Chloropropane	< 22.0	ug/Kg		4/18/2013
1,2-Dibromoethane	< 4.40	ug/Kg		4/18/2013
1,2-Dichlorobenzene	< 4.40	ug/Kg		4/18/2013
1,2-Dichloroethane	< 4.40	ug/Kg		4/18/2013
1,2-Dichloropropane	< 4.40	ug/Kg		4/18/2013
1,3,5-Trimethylbenzene	< 4.40	ug/Kg		4/18/2013
1,3-Dichlorobenzene	< 4.40	ug/Kg		4/18/2013
1,4-Dichlorobenzene	< 4.40	ug/Kg		4/18/2013
1,4-dioxane	< 44.0	ug/Kg		4/18/2013
2-Butanone	< 22.0	ug/Kg		4/18/2013
2-Hexanone	< 11.0	ug/Kg		4/18/2013
4-Methyl-2-pentanone	< 11.0	ug/Kg		4/18/2013
Acetone	< 22.0	ug/Kg		4/18/2013
Benzene	< 4.40	ug/Kg		4/18/2013
Bromochloromethane	< 11.0	ug/Kg		4/18/2013
Bromodichloromethane	< 4.40	ug/Kg		4/18/2013
Bromoform	< 11.0	ug/Kg		4/18/2013
Bromomethane	< 4.40	ug/Kg		4/18/2013
Carbon disulfide	< 4.40	ug/Kg		4/18/2013

Client: Stantec

Project Reference: 190500751

Sample Identifier:L1-B-4SLab Sample ID:131358-02Date Sampled:4/18/2013Matrix:SoilDate Received:4/18/2013

245 54mpre 12:			z z z z z mprou.	1/10/2010		
Matrix:	Soil		Date Received:	4/18/2013		
	Carbon Tetrachloride	< 4.40	ug/Kg	4/18/2013		
	Chlorobenzene	< 4.40	ug/Kg	4/18/2013		
	Chloroethane	< 4.40	ug/Kg	4/18/2013		
	Chloroform	< 4.40	ug/Kg	4/18/2013		
	Chloromethane	< 4.40	ug/Kg	4/18/2013		
	cis-1,2-Dichloroethene	27.0	ug/Kg	4/18/2013		
	cis-1,3-Dichloropropene	< 4.40	ug/Kg	4/18/2013		
	Cyclohexane	< 22.0	ug/Kg	4/18/2013		
	Dibromochloromethane	< 4.40	ug/Kg	4/18/2013		
	Dichlorodifluoromethane	< 4.40	ug/Kg	4/18/2013		
	Ethylbenzene	< 4.40	ug/Kg	4/18/2013		
	Freon 113	< 4.40	ug/Kg	4/18/2013		
	Isopropylbenzene	< 4.40	ug/Kg	4/18/2013		
	m,p-Xylene	< 4.40	ug/Kg	4/18/2013		
	Methyl acetate	< 4.40	ug/Kg	4/18/2013		
	Methyl tert-butyl Ether	< 4.40	ug/Kg	4/18/2013		
	Methylcyclohexane	< 4.40	ug/Kg	4/18/2013		
	Methylene chloride	< 11.0	ug/Kg	4/18/2013		
	Naphthalene	< 11.0	ug/Kg	4/18/2013		
	n-Butylbenzene	< 4.40	ug/Kg	4/18/2013		
	n-Propylbenzene	< 4.40	ug/Kg	4/18/2013		
	o-Xylene	< 4.40	ug/Kg	4/18/2013		
	p-Isopropyltoluene	< 4.40	ug/Kg	4/18/2013		
	sec-Butylbenzene	< 4.40	ug/Kg	4/18/2013		
	Styrene	< 11.0	ug/Kg	4/18/2013		
	tert-Butylbenzene	< 4.40	ug/Kg	4/18/2013		
	Tetrachloroethene	2.35	ug/Kg	4/18/2013		
	Toluene	< 4.40	ug/Kg	4/18/2013		
	trans-1,2-Dichloroethene	4.77	ug/Kg	4/18/2013		

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-4S

 Lab Sample ID:
 131358-02
 Date Sampled:
 4/18/2013

 Matrix:
 Soil
 Date Received:
 4/18/2013

trans-1,3-Dichloropropene < 4.40 ug/Kg 4/18/2013 Trichloroethene 63.5 ug/Kg 4/18/2013 Trichlorofluoromethane < 4.40 ug/Kg 4/18/2013 Vinyl chloride < 4.40 ug/Kg 4/18/2013

Method Reference(s): EPA 8260B

EPA 5035

Data File: X04555.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-3S

Lab Sample ID: 131358-01 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Semi-Volatile Tentatively Identified Compounds

Tentatively Identified Compound	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed			
Unknown Alkane	349	ya/Va		4/18/2013			
		ug/Kg					
Unknown Alkane	265	ug/Kg		4/18/2013			
Unknown Alkane	336	ug/Kg		4/18/2013			
Unknown Alkane	1070	ug/Kg		4/18/2013			
Unknown Alkane	605	ug/Kg		4/18/2013			
Unknown	243	ug/Kg		4/18/2013			
Decahydro-trans-naphthalene	796	ug/Kg		4/18/2013			
Tricyclo [3.3.1 (n,7) decane	289		4/18/2013 4/18/2013				
Unknown	263						
Unknown Alkane	263	ug/Kg		4/18/2013			
Unknown PAH	552	ug/Kg		4/18/2013			
Unknown	502	ug/Kg		4/18/2013			
Unknown Alkane	1330	ug/Kg		4/18/2013			
Unknown	714	ug/Kg		4/18/2013			
Unknown	456	ug/Kg		4/18/2013			
Unknown	618	ug/Kg		4/18/2013			
Unknown	943	ug/Kg		4/18/2013			
Unknown	569	ug/Kg		4/18/2013			
Sulfur	19300	ug/Kg		4/18/2013			
Unknown	1290	ug/Kg		4/18/2013			

Method Reference(s): EPA 8270C

EPA 3550C

Tentatively Identified Compound results are estimated values, based on Internal Standard response factors.

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-3S

Lab Sample ID: 131358-01 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Volatile Tentatively Identified Compounds

Tentatively Identified Compound	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Alkyl Hydrocarbon	202	ug/Kg		4/18/2013
Alkyl Hydrocarbon	120	ug/Kg		4/18/2013
Alkyl Hydrocarbon	313	ug/Kg		4/18/2013
Unknown	122	ug/Kg		4/18/2013
Alkyl Hydrocarbon	237	ug/Kg		4/18/2013
Alkyl Cyclohexane	127	ug/Kg		4/18/2013
Alkyl Cyclohexane	121	ug/Kg		4/18/2013
Alkyl Cyclohexane	97.7	ug/Kg		4/18/2013
Alkyl Hydrocarbon	100	ug/Kg		4/18/2013
Alkyl Hydrocarbon	268	ug/Kg		4/18/2013
Unknown	201	ug/Kg		4/18/2013
Alkyl Hydrocarbon	104	ug/Kg		4/18/2013
Unknown	95.9	ug/Kg		4/18/2013
Alkyl Naphthalene	341	ug/Kg		4/18/2013
Unknown	96.6	ug/Kg		4/18/2013
Alkyl Cyclohexane	136	ug/Kg		4/18/2013
Alkyl Hydrocarbon	178	ug/Kg		4/18/2013
Alkyl Hydrocarbon	103	ug/Kg		4/18/2013
Unknown	281	ug/Kg		4/18/2013
Unknown	158	ug/Kg		4/18/2013

Method Reference(s): EPA 8260B

EPA 5035A

Tentatively Identified Compound results are estimated values, based on Internal Standard response factors.

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-4S

Lab Sample ID: 131358-02 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Semi-Volatile Tentatively Identified Compounds

Tentatively Identified Compound Result Units Qualifier Date Analyzed

None Found < 132 ug/Kg 4/18/2013

Method Reference(s): EPA 8270C

EPA 3550C

Tentatively Identified Compound results are estimated values, based on Internal Standard response factors.

Client: <u>Stantec</u>

Project Reference: 190500751

Sample Identifier: L1-B-4S

Lab Sample ID: 131358-02 **Date Sampled:** 4/18/2013

Matrix: Soil Date Received: 4/18/2013

Volatile Tentatively Identified Compounds

Tentatively Identified Compound	Result	<u>Units</u>	Qualifier	Date Analyzed
Unknown	40.5	ug/Kg		4/18/2013
Unknown	39.2	ug/Kg		4/18/2013

Method Reference(s): EPA 8260B

EPA 5035A

Tentatively Identified Compound results are estimated values, based on Internal Standard response factors.

CHAIN OF CUSTODY

								1						,						COLUMN .						
please indicate:	Other	Rush 1 day	Rush 2 day	Rush 3 day	Standard 5 day	Availa	Turnaround Time		10	9	00	7	0	On	4	3	2 4/18/13	14/18/13	DATE COLLECTED			PROJECT RE				PAH
		j				Availability contingent upon lab approval; additional fees may apply.	nd Time										1140	0715	TIME COLLECTED			PROJECT REFERENCE				PARADIGM
please indicate:	Other		Category B	Category A	Batch QC	t upon lak													m ⊣ − 0 0 ≥ 5 0 0			NCE				
9.			ω			approva	Z										7	X	B > ౫ 6			LIV	PHC	СПТҮ:	ADE	입
		~	8			រៅ; additional fe	Report Supplements						Mayor version of the first and				L) -8.	1 B -			Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous L	W SOEL	PHONE: 645-	7)	ADDRESS:	CLIENT:
please indicate:	Other EDD		4×5×5	NYSDEC EDD	Basic EDD	es may appl	ements										22	35	SAMPLE IDENTIFIER		Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	Mhare	10-57-57	7	~ 4	4
		S E	を変え			ly.								111111111111111111111111111111111111111	The state of the s	-	A CANADA CANADA A CANADA CANAD		ENTIFIER			1 Mik		نا.	200	YEPON IO:
	Receive		Recalling	Relinqu	Sampled By,		3									77,11111					WA - Water WG - Grour	Mike Sterowsky		ZIP:		
	- 6	A.	ied By	Relinquished By	led By/	45)										20	S	X - X - Z ≤ O O O O m o		ã.	*			P	-
		* 1	2			2											×	_	пО хтшЗСZ ИхтZ->-IZOC		s f	2°5	PHONE:	сітү:	ADDRESS:	CLIENT:
		5	and	`	9	3											X	×	TCL VOUS + ST TCL SVOES #	FREQUI	DW - Dri	Malione		A STATE OF THE STA	0	C2
		3	8	R																STEDA	DW - Drinking Water WW - Wastewater			ω		SV INVO
	Date/Time	4/12	Date/Time	Date/Time	Dane/III	EV3111														ED ANALYSIS	-	44		STATE:		NVOICE 10:
		x/(2)	m 5//3	me	me 2	200	•													- 01	SO - Soil SL - Sludge			ZIP:		
		デ つ う	1500	- C.	120	5110	i ,											inchile						1		
		ō																S.	R.		SD - Solid PT - Paint	but in	Emaii	Quotation #:		
			P		iotai	1 :	す	T. 0/										52	REMARKS		1 3	ما م		ion #:	131358	LA.
					Iotal Cost:		なる。そうないのでは、これのでは、こ	のアップシャ								3					WP - Wipe CK - Caulk	0 12			00 (V)	LAB PROJECT ID
				4	CC	BUNERO		の え の え の									0	0	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air	graf.				5
					So Eustod	4	Par.	57										Olivon	BER BER		\$	C C				
					500		1														\$	f				

2012

Chain of Custody Supplement

Client:		Stanter	Completed by:	mail
Lab Project ID:	i	131358	Date:	4//8/13
			on Requirements 10/241/242/243/244	
Condition	N.	ELAC compliance with the sample Yes	condition requirements up No	oon receipt N/A
Container Type	Comments		X5035	
Transferred to metho				<u> </u>
Headspace (<1 mL)	Comments			
Preservation	Comments			
Chlorine Absent (<0.10 ppm per tes	st strip) Comments			X
Holding Time	Comments	<u> </u>		
Temperature (Comments	H°Cicel @ 150:	7 from Sern	gles. Cooler de liver
Sufficient Sample (Quantity Comments			